
 SQL (Structured Query Language)

SQL (Structured Query Language) is the set of commands used to access
data within the ORACLE database.    The intended use of this help manual
is as a quick reference guide as it is not fully inclusive of all
elements of the SQL language.    Please refer to the Oracle7 Server
SQL Language Reference Manual for more information.

The SQL Language Quick Reference manual is organized in the
following manner:

SQL Commands and Clauses

          Commands (SQL)
          ARCHIVE LOG clause
          CONSTRAINT clause
          DISABLE clause
          DROP clause
          ENABLE clause
          Filespec
          RECOVER clause
          STORAGE clause

Elements of SQL

          Literals (SQL)
          Text
          Number
          Datatypes (SQL)
          Nulls
          Pseudocolumns
          Comments (SQL)

Operators, Functions, Expressions, Conditions

          Operators
          Functions (SQL)
          Format Models
          Expr
          Condition

SQL Commands

The SQL commands listed below are divided into these categories:

        * Data Definition Language commands
        * Data Manipulation Language commands
        * Transaction Control commands
        * Session Control commands
        * System Control commands

SQL Data Definition Language commands include the following:

ALTER CLUSTER CREATE DATABASE DROP INDEX
ALTER DATABASE CREATE DATABASE LINK DROP PACKAGE
ALTER FUNCTION CREATE FUNCTION DROP PROCEDURE
ALTER INDEX CREATE INDEX DROP PROFILE
ALTER PACKAGE CREATE PACKAGE DROP ROLE
ALTER PROCEDURE CREATE PACKAGE BODY DROP ROLLBACK SEGMENT
ALTER PROFILE CREATE PROCEDURE DROP SEQUENCE
ALTER RESOURCE COST CREATE PROFILE DROP SNAPSHOT
ALTER ROLE CREATE ROLE DROP SNAPSHOT LOG
ALTER ROLLBACK SEGMENT CREATE ROLLBACK SEGMENT DROP SYNONYM
ALTER SEQUENCE CREATE SCHEMA DROP TABLE
ALTER SNAPSHOT CREATE SEQUENCE DROP TABLESPACE
ALTER SNAPSHOT LOG CREATE SNAPSHOT DROP TRIGGER
ALTER TABLE CREATE SNAPSHOT LOG DROP USER
ALTER TABLESPACE CREATE SYNONYM DROP VIEW
ALTER TRIGGER CREATE TABLE GRANT
ALTER USER CREATE TABLESPACE NOAUDIT
ALTER VIEW CREATE TRIGGER RENAME
ANALYZE CREATE USER REVOKE
AUDIT CREATE VIEW TRUNCATE
COMMENT DROP CLUSTER UPDATE
CREATE CLUSTER DROP DATABASE LINK
CREATE CONTROLFILE DROP FUNCTION

SQL Data Manipulation Language commands include the following:

 DELETE
 EXPLAIN PLAN
 INSERT
 LOCK TABLE
 SELECT

SQL Transaction Control commands include the following:

 COMMIT
 ROLLBACK
 SAVEPOINT
 SET TRANSACTION

SQL Session Control commands include the following:

 ALTER SESSION
 SET ROLE

SQL System Control command (only one command):

 ALTER SYSTEM

ALTER CLUSTER command

PURPOSE:

        To redefine future storage allocations or to allocate an extent for
        a cluster.

SYNTAX:

ALTER CLUSTER [schema.]cluster
 [PCTUSED integer] [PCTFREE integer]
 [SIZE integer [K|M]]
 [INITRANS integer] [MAXTRANS integer]
 [STORAGE storage_clause]
 [PARALLEL ([DEGREE { integer | DEFAULT }]
 [INSTANCES { integer | DEFAULT }]
)
 | NOPARALLEL]
 [CACHE | NOCACHE]
 [ALLOCATE EXTENT [([SIZE integer [K|M]]
 [DATAFILE 'filename']
 [INSTANCE integer])]]

where:

schema
        is the schema containing the cluster.    If you omit schema, Oracle
        assumes the cluster is in your own schema.

cluster
        is the name of the cluster to be altered.

SIZE
        determines how many cluster keys will be stored in data blocks
        allocated to the cluster.    You can only change the SIZE parameter
        for an indexed cluster, not for a hash cluster.    For a description
        of the SIZE parameter, see the CREATE CLUSTER command.

PCTUSED
PCTFREE
INITRANS
MAXTRANS
        changes the values of these parameters for the cluster.    See the
        PCTUSED, PCTFREE, INITRANS, and MAXTRANS parameters of the CREATE
        TABLE command.

STORAGE
        changes the storage characteristics for the cluster.    See the
        STORAGE clause clause.

ALLOCATE EXTENT
        explicitly allocates a new extent for the cluster.
                        SIZE
                                      specifies the size of the extent in bytes.    You can

                                      use K or M to specify the extent size in kilobytes or
                                      megabytes.    If you omit this parameter, Oracle
                                      determines the size based on the values of the
                                      cluster's STORAGE parameters.
                        DATAFILE
                                      specifies one of the data files in the cluster's
                                      tablespace to contain the new extent.    If you omit
                                      this parameter, Oracle chooses the data file.
                        INSTANCE
                                      makes the new extent available to the specified
                                      instance.    An instance is identified by the value of
                                      its initialization parameter INSTANCE_NUMBER.    If you
                                      omit this parameter, the extent is available to all
                                      instances.    Only use this parameter if you are using
                                      Oracle with the Parallel Server option in parallel
                                      mode.

        Explicitly allocating an extent with this clause does not cause
        Oracle to evaluate the cluster's storage parameters and determine a
        new size for the next extent to be allocated.    You can only allocate
        a new extent for an indexed cluster, not a hash cluster.

PARALLEL
        DEGREE specifies the number of query server processes that can scan
        the cluster in parallel.    Either specify a positive integer or DEFAULT
        which signifies to use the initialization parameter
        PARALLEL_DEFAULT_SCANSIZE to estimate the number of query servers to use.

        INSTANCES specifies the minimum number of instances that need to be
        available before the cluster can be spread across all available instances
        of a Parallel Server.    A positive integer specifies the number of
        instances.    DEFAULT signifies that the parameter PARALLEL_MAX_PARTITIONSIZE
        is used to calculate whether a table is split across all instances' buffer
        caches.

NOPARALLEL
        specifies that queries on this cluster are not performed in parallel
        by default.    A hint in the query still causes the query to be
        performed in parallel.

CACHE
        specifies that blocks of this cluster are placed on the most recently
        used end of the LRU list of the buffer cache when the a full table scan
        is performed.
        This option is useful for small lookup tables.

NOCACHE
        specifies that blocks of the cluster in the buffer cache follow the
        standard LRU algorithm when a full table scan is performed.

PREREQUISITES:

        The cluster must be in your own schema or you must have ALTER ANY
        CLUSTER system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the cluster's creation label or you must satisfy one of
        these criteria:

        * If the cluster's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the cluster's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the cluster's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE CLUSTER, CREATE TABLE, STORAGE clause

ALTER DATABASE command

PURPOSE:

        To alter an existing database in one of these ways:

        * mount the database
        * convert an Oracle Version 6 data dictionary when migrating to
            Oracle7
        * open the database
        * choose archivelog or noarchivelog mode for redo log file groups
        * perform media recovery
        * add or drop a redo log file group or a member of a redo log file
            group
        * rename a redo log file member or a data file
        * backup the current control file
        * create a new data file in place of an old one for recovery
            purposes
        * take a data file online or offline
        * enable or disable a thread of redo log file groups
        * change the database's global name
        * change the MAC mode
        * equate the predefined label DBHIGH or DBLOW with an operating
            system label

SYNTAX:

ALTER DATABASE [database]
 { MOUNT [EXCLUSIVE | PARALLEL]
 | CONVERT
 | OPEN [RESETLOGS | NORESETLOGS]
 | ARCHIVELOG
 | NOARCHIVELOG
 | RECOVER recover_clause
 | ADD LOGFILE [THREAD integer] [GROUP integer] filespec
 [, [GROUP integer] filespec] ...
 | ADD LOGFILE MEMBER 'filename' [REUSE] [, 'filename' [REUSE]] ...
 TO { GROUP integer
 | ('filename' [,'filename'] ...)
 | 'filename' }
 [, 'filename' [REUSE] [, 'filename' [REUSE]] ...
 TO { GROUP integer
 | ('filename' [, 'filename'] ...)
 | 'filename' }] ...
 | DROP LOGFILE { GROUP integer
 | ('filename' [, 'filename'] ...)
 | 'filename' }
 [, { GROUP integer
 | ('filename' [,'filename'] ...)
 | 'filename' }] ...
 | DROP LOGFILE MEMBER 'filename' [, 'filename'] ...
 | RENAME FILE 'filename' [, 'filename'] ...
 TO 'filename' [, 'filename'] ...

 | BACKUP CONTROLFILE TO 'filename' [REUSE]
 | CREATE DATAFILE 'filename' [, filename] ...
 [AS filespec [, filespec] ...
 | DATAFILE 'filename' { ONLINE | OFFLINE [DROP] }
 | ENABLE [PUBLIC] THREAD integer
 | DISABLE THREAD integer
 | RENAME GLOBAL_NAME TO database[.domain]...
 | SET { DBMAC {ON | OFF}
 | DBHIGH = 'text'
 | DBLOW = 'text' }
 | RESET COMPATIBILITY }

where:

database
        identifies the database to be altered.    If you omit database, Oracle
        alters the database identified by the value of the initialization
        parameter DB_NAME.    You can only alter the database whose control
        files are specified by the initialization parameter CONTROL_FILES.
        Note that the database identifier is not related to the SQL*Net
        database specification.

You can only use the following options when the database is not mounted
by your instance:

MOUNT
        mounts the database.
                        EXCLUSIVE
                                      mounts the database in exclusive mode.    This mode
                                      allows the database to be mounted by only one
                                      instance at a time.    You cannot use this option if
                                      another instance has already mounted the database.
                        PARALLEL
                                      mounts the database in parallel mode.    This mode
                                      allows the database to be mounted by multiple
                                      instances concurrently.    You can only use this option
                                      if you are using Oracle with the Parallel Server
                                      option.    You cannot use this option if another option
                                      has mounted the database in exclusive mode.

        The default is EXCLUSIVE.

CONVERT
        completes the conversion of the Oracle Server Version 6 data dictionary.
        After you use this option, the Version 6 data dictionary no longer
        exists in the Oracle7 database.    Only use this option when you are
        migrating to Oracle7.    For more information on using this option,
        see the Oracle7 Server Migration Guide.

You can only use the following options when the database is not mounted
by your instance:

MOUNT
        mounts the database.
                        EXCLUSIVE

                                      mounts the database in exclusive mode.    This mode
                                      allows the database to be mounted by only one
                                      instance at a time.    You cannot use this option if
                                      another instance has already mounted the database.
                        PARALLEL
                                      mounts the database in parallel mode.    This mode
                                      allows the database to be mounted by multiple
                                      instances concurrently.    You can only use this option
                                      if you are using Oracle with the Parallel Server
                                      option.    You cannot use this option if another option
                                      has mounted the database in exclusive mode.

        The default is EXCLUSIVE.

CONVERT
        completes the conversion of the Oracle Version 6 data dictionary.
        After you use this option, the Version 6 data dictionary no longer
        exists in the Oracle7 database.    Only use this option when you are
        migrating to Oracle7.    For more information on using this option,
        see the Oracle7 Server Migration Guide.

You can only use the following option when your instance has the
database mounted, but not open:

OPEN
        opens the database, making it available for normal use.    You must
        mount the database before you can open it.
                        RESETLOGS
                                      resets the current log sequence number to 1 and
                                      invalidates all redo entries in the online and
                                      archived redo log files.    You must use this option to
                                      open the database after performing media recovery
                                      with a backup controlfile.    After opening the
                                      database with this option, you should perform a
                                      complete database backup.
                        NORESETLOGS
                                      leaves the log sequence number and redo log files in
                                      their current state.

        You can only specify these options after performing incomplete
        media recovery.    In any other case, Oracle uses the NORESETLOGS
        automatically.

You can only use the following options when your instance has the
database mounted in exclusive mode, but not open:

ARCHIVELOG
        establishes archivelog mode for redo log file groups.    In this mode,
        the contents of a redo log file group must be archived before the
        group can be reused.    This option prepares for the possibility of
        media recovery.    You can only use this option after shutting down
        your instance normally or immediately with no errors and then
        restarting it, mounting the database in exclusive mode.

NOARCHIVELOG

        establishes noarchivelog mode for redo log files.    In this mode, the
        contents of a redo log file group need not be archived so that the
        group can be reused.    This mode does not prepare for recovery after
        media failure.

You can only use the following option when your instance has the
database mounted in exclusive mode:

RECOVER
        performs media recovery.    You only recover the entire database when
        the database is closed.    You can recover tablespaces or data files
        when the database is open or closed, provided the tablespaces or
        data files to be recovered are not being used.    You cannot perform
        media recovery if you are connected to Oracle through the multi-
        threaded server architecture.    You can also perform media recovery
        with the RECOVER SQL*DBA command.

You can use any of the following options when your instance has the
database mounted, open or closed, and the files involved are not in use:

ADD LOGFILE
        adds one or more redo log file groups to the specified thread,
        making them available to the instance assigned the thread.    If you
        omit the THREAD parameter, the redo log file group is added to the
        thread assigned to your instance.    You need only use the THREAD
        parameter if you are using Oracle with the Parallel Server option in
        parallel mode.

        Each filespec specifies a redo log file group containing one or more
        members, or copies.

        You can choose the value of the GROUP parameter for each redo log
        file group.    Each value uniquely identifies the redo log file group
        among all groups in all threads and can range from 1 to the
        MAXLOGFILES value.    You cannot add multiple redo log file groups
        having the same GROUP value.    If you omit this parameter, Oracle
        generates its value automatically.    You can examine the GROUP value
        for a redo log file group through the dynamic performance table.

ADD LOGFILE MEMBER
        adds new members to existing redo log file groups.    Each new member
        is specified by 'filename'.    If the file already exists, it must be
        the same size as the other group members and you must specify the
        REUSE option.    If the file does not exist, Oracle creates a file of
        the correct size.    You cannot add a member to a group if all of the
        group's members have been lost through media failure.

        You can specify an existing redo log file group in one of these
        ways:
                        GROUP parameter
                                      You can specify the value of the GROUP parameter that
                                      identifies the redo log file group.
                        list of filenames
                                      You can list all members of the redo log file group.
                                      You must fully specify each filename according to the

                                      conventions for your operating system.

DROP LOGFILE
        drops all members of a redo log file group.    You can specify a redo
        log file group in the same manners as the ADD LOGFILE MEMBER clause.
        You cannot drop a redo log file group if all of its members have
        been lost through media failure.

DROP LOGFILE MEMBER
        drops one or more redo log file members.    Each 'filename' must fully
        specify a member using the conventions for filenames on your
        operating system.

        You cannot use this clause to drop all members of a redo log file
        group that contain valid data.    To perform this operation, use the
        DROP LOGFILE clause.

RENAME FILE
        renames data files or redo log file members.    This clause only
        renames files in the control file, it does not actually rename them
        on your operating system.    You must specify each filename using the
        conventions for filenames on your operating system.

BACKUP CONTROLFILE
        backs up the current control file to the specified 'filename'.    If
        the backup file already exists, you must specify the REUSE option.

CREATE DATAFILE
        creates a new data file in place of an old one.    You can use this
        option to recreate a data file that was lost with no backup.    The
        'filename' must identify a file that is or was once part of the
        database.    The filespec specifies the name and size of the new data
        file.    If you omit the AS clause, Oracle creates the new file with
        the same name and size as the file specified by 'filename'.

        Oracle creates the new file in the same state as the old file when
        it was created.    You must perform media recovery on the new file to
        return it to the state of the old file at the time it was lost.

        You cannot create a new file based on the first data file of the
        SYSTEM tablespace unless the database was created in archivelog
        mode.

DATAFILE
        takes a data file online or offline.    If any other instance has the
        database open, your instance must also have the database open:
                        ONLINE
                                      brings the data file online.
                        OFFLINE
                                      takes the data file offline.
                        DROP
                                      takes a data file offline when the database is in
                                      noarchivelog mode.

You can only use the following options when your instance has the

database open:

ENABLE
        enables the specified thread of redo log file groups.    The thread
        must have at least two redo log file groups before you can enable
        it.
                        PUBLIC
                                      makes the enabled thread available to any instance
                                      that does not explicitly request a specific thread
                                      with the initialization parameter THREAD.

        If you omit the PUBLIC option, the thread is only available to the
        instance that explicitly requests it with the initialization
        parameter THREAD.

DISABLE
        disables the specified thread, making it unavailable to all
        instances.    You cannot disable a thread if an instance using it has
        the database mounted.

RENAME GLOBAL_NAME
        changes the global name of the database.    The database is the new
        database name and can be as long as eight bytes.    The optional
        domains specifies where the database is effectively located in the
        network hierarchy.    Renaming your database automatically clears all
        data from the shared pool in the SGA.    However, renaming your
        database does not change global references to your database from
        existing database links, synonyms, and stored procedures and
        functions on remote databases.    Changing such references is the
        responsibility of the administrator of the remote databases.

SET
        changes one of the following for your database:
                        DBMAC
                                      changes the mode in which Trusted Oracle is
                                      configured:
  ON
  configures Trusted Oracle in DBMS MAC
  mode.
  OFF
  configures Trusted Oracle in OS MAC
  mode.
                        DBHIGH
                                      equates the predefined label DBHIGH to the operating
                                      system label specified by 'text'.
                        DBLOW
                                      equates the predefined label DBLOW to the operating
                                      system label specified by 'text'.

        You must specify labels in the default label format for your
        session.    Changes made by this option take effect when you next
        start your instance.    You can only use this clause if you are using
        Trusted Oracle.

RESET COMPATIBILITY

        Issue the ALTER DATABASE RESET COMPATIBILITY command when restarting
        the database with the COMPATIBILE initialization parameter set to an
        earlier release.

PREREQUISITES:

        You must have ALTER DATABASE system privilege.

SEE:
 CREATE DATABASE, RECOVER clause

ALTER FUNCTION command

PURPOSE:

        To recompile a stand-alone stored function.

SYNTAX:

ALTER FUNCTION [schema.]function
 COMPILE

where:

schema
        is the schema containing the function.    If you omit schema, Oracle
        assumes the function is in your own schema.

function
        is the name of the function to be recompiled.

COMPILE
        causes Oracle to recompile the function.    The COMPILE keyword is
        required.

PREREQUISITES:

        The function must be in your own schema or you must have ALTER ANY
        PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the function's creation label or you must satisfy one of
        these criteria:

        * If the function's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the function's creation label is lower than your DBMS label,
            you must have WRITEDOWN system privilege.
        * If the function's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 ALTER PROCEDURE, CREATE FUNCTION

ALTER INDEX command

PURPOSE:

        To change future storage allocation for data blocks in an index.

SYNTAX:

ALTER INDEX [schema.]index
 [INITRANS integer] [MAXTRANS integer]
 [STORAGE storage_clause]

where:

schema
        is the schema containing the index.    If you omit schema, Oracle
        assumes the index is in your own schema.

index
        is the name of the index to be altered.

INITRANS
MAXTRANS
        changes the values of these parameters for the index.    See the
        INITRANS and MAXTRANS parameters of the CREATE TABLE command.

STORAGE
        changes the storage parameters for the index.    See the STORAGE
        clause.

PREREQUISITES:

        The index must be in your own schema or you must have ALTER ANY
        INDEX system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the index's creation label or you must satisfy one of
        these criteria:

        * If the index's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the index's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the index's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE INDEX, CREATE TABLE, STORAGE clause

ALTER PACKAGE command

PURPOSE:

        To recompile a stored package.

SYNTAX:

ALTER PACKAGE [schema.]package
 COMPILE [PACKAGE | BODY]

where:

schema
        is the schema containing the package.    If you omit schema, Oracle
        assumes the package is in your own schema.

package
        is the name of the package to be recompiled.

COMPILE
        recompiles the package specification or body.    The COMPILE keyword
        is required.

PACKAGE
        recompiles the package body and specification.

BODY
        recompiles only the package body.

        The default option is PACKAGE.

PREREQUISITES:

        The package must be in your own schema or you must have ALTER ANY
        PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the package's creation label or you must satisfy one of
        these criteria:

        * If the package's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the package's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the package's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE PACKAGE, CREATE PACKAGE BODY

ALTER PROCEDURE command

PURPOSE:

        To recompile a stand-alone stored procedure.

SYNTAX:

ALTER PROCEDURE [schema.]procedure
 COMPILE

where:

schema
        is the schema containing the procedure.    If you omit schema, Oracle
        assumes the procedure is in your own schema.

procedure
        is the name of the procedure to be recompiled.

COMPILE
        causes Oracle to recompile the procedure.    The COMPILE keyword is
        required.

PREREQUISITES:

        The procedure must be in your own schema or you must have ALTER ANY
        PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the procedure's creation label or you must satisfy one of
        these criteria:

        * If the procedure's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the procedure's creation label is lower than your DBMS label,
            you must have WRITEDOWN system privilege.
        * If the procedure's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 ALTER FUNCTION, ALTER PACKAGE, CREATE PROCEDURE

ALTER PROFILE command

PURPOSE:

        To add, modify, or remove a resource limit in a profile.

SYNTAX:

ALTER PROFILE profile
 LIMIT [SESSIONS_PER_USER {integer | UNLIMITED | DEFAULT}]
 [CPU_PER_SESSION {integer | UNLIMITED | DEFAULT}]
 [CPU_PER_CALL {integer | UNLIMITED | DEFAULT}]
 [CONNECT_TIME {integer | UNLIMITED | DEFAULT}]
 [IDLE_TIME {integer | UNLIMITED | DEFAULT}]
 [LOGICAL_READS_PER_SESSION {integer | UNLIMITED | DEFAULT}]
 [LOGICAL_READS_PER_CALL {integer | UNLIMITED | DEFAULT}]
 [COMPOSITE_LIMIT {integer | UNLIMITED | DEFAULT}]
 [PRIVATE_SGA {integer [K|M] | UNLIMITED | DEFAULT}]

where:

profile
        is the name of the profile to be altered.

integer
        defines a new limit for a resource in this profile.    For information
        on resource limits, see the CREATE PROFILE command.

UNLIMITED
        specifies that this profile allows unlimited use of the resource.

DEFAULT
        removes a resource limit from the profile.    Any user assigned the
        profile is subject to the limit on the resource defined in the
        DEFAULT profile in their subsequent sessions.

PREREQUISITES:

        You must have ALTER PROFILE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the profile's creation label or you must satisfy one of
        these criteria:

        * If the profile's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the profile's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the profile's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE PROFILE

ALTER RESOURCE COST command

PURPOSE:

        To specify a formula to calculate the total resource cost used in a
        session.    For any session, this cost is limited by the value of the
        COMPOSITE_LIMIT parameter in the user's profile.

SYNTAX:

ALTER RESOURCE
 COST [CPU_PER_SESSION integer]
 [CONNECT_TIME integer]
 [LOGICAL_READS_PER_SESSION integer]
 [PRIVATE_SGA integer]

where:

integer
        is the weight of each resource.

CPU_PER_SESSION
        is the amount of CPU time used by a session measured in hundredths
        of seconds.

CONNECT_TIME
        is the elapsed time of a session measured in minutes.

LOGICAL_READS_PER_SESSION
        is the number of data blocks read during a session, including blocks
        read from both memory and disk.

PRIVATE_SGA
        is the number of bytes of private space in the System Global Area
        (SGA) used by a session.    This limit only applies if you are using
        the multi-threaded server architecture and allocating private space
        in the SGA for your session.

PREREQUISITES:

        You must have ALTER RESOURCE COST system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match DBLOW or you must have WRITEDOWN system privileges.

SEE:
 CREATE PROFILE

ALTER ROLE command

PURPOSE:

        To change the authorization needed to enable a role.

SYNTAX:

ALTER ROLE role
 { NOT IDENTIFIED
 | IDENTIFIED {BY password | EXTERNALLY }

where:

role
        is the name of the role to be created.    Oracle Corporation
        recommends that the role contain at least one single-byte
        character regardless of whether the database character set also
        contains multi-byte characters.

NOT IDENTIFIED
        indicates that a user granted the role need not be verified when
        enabling it.

IDENTIFIED
        indicates that a user granted the role must be verified when
        enabling it with the SET ROLE command:
                        BY password
                                      The user must specify the password to Oracle when
                                      enabling the role.    The password can only contain
                                      single-byte characters from your database character
                                      set regardless of whether this character set also
                                      contains multi-byte characters.
                        EXTERNALLY
                                      The operating system verifies the user enabling to
                                      the role.    Depending on the operating system, the
                                      user may have to specify a password to the operating
                                      system when enabling the role.

        If you omit both the NOT IDENTIFIED option and the IDENTIFIED
        clause, the role defaults to NOT IDENTIFIED.

PREREQUISITES:

        You must either have been granted the role with the ADMIN OPTION or
        have ALTER ANY ROLE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the role's creation label or you must satisfy one of
        these criteria:

        * If the role's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the role's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.

        * If the role's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE ROLE, SET ROLE

ALTER ROLLBACK SEGMENT command

PURPOSE:

        To alter a rollback segment in one of these ways:

        * by bringing it online
        * by taking it offline
        * by changing its storage characteristics

SYNTAX:

ALTER ROLLBACK SEGMENT rollback_segment
 { ONLINE
 | OFFLINE
 | STORAGE storage_clause }

where:

rollback_segment
        specifies the name of an existing rollback segment.

ONLINE
        brings the rollback segment online.

OFFLINE
        takes the rollback segment offline.

STORAGE
        changes the rollback segment's storage characteristics.

PREREQUISITES:

        You must have ALTER ROLLBACK SEGMENT system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the rollback segment's creation label or you must satisfy
        one of these criteria:

        * If the rollback segment's creation label is higher than your DBMS
            label, you must have READUP and WRITEUP system privileges.
        * If the rollback segment's creation label is lower than your DBMS
            label, you must have WRITEDOWN system privilege.
        * If the rollback segment's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE ROLLBACK SEGMENT, CREATE TABLESPACE, STORAGE clause

ALTER SEQUENCE command

PURPOSE:

        To change the sequence in one of these ways:

        * changing the increment between future sequence values
        * setting or eliminating the minimum or maximum value
        * changing the number of cached sequence numbers
        * specifying whether or not sequence numbers must be ordered

SYNTAX:

ALTER SEQUENCE [schema.]sequence
 [INCREMENT BY integer]
 [MAXVALUE integer | NOMAXVALUE]
 [MINVALUE integer | NOMINVALUE]
 [CYCLE | NOCYCLE]
 [CACHE integer | NOCACHE]
 [ORDER | NOORDER]

where:

schema
        is the schema to contain the sequence.    If you omit schema, Oracle
        creates the sequence in your own schema.

sequence
        is the name of the sequence to be created.

INCREMENT BY
        specifies the interval between sequence numbers.    This value can be
        any positive or negative Oracle integer, but it cannot be 0.    If
        this value is negative, then the sequence descends.    If the
        increment is positive, then the sequence ascends.    If you omit this
        clause, the interval defaults to 1.

MINVALUE
        specifies the sequence's minimum value.

NOMINVALUE
        specifies a minimum value of 1 for an ascending sequence or -10
        for a descending sequence.

        The default is NOMINVALUE.

MAXVALUE
        specifies the maximum value the sequence can generate.

NOMAXVALUE
        specifies a maximum value of 10
        for a descending sequence.

        The default is NOMAXVALUE.

START WITH
        specifies the first sequence number to be generated.    You can use
        this option to start an ascending sequence at a value greater than
        its minimum or to start a descending sequence at a value less than
        its maximum.    For ascending sequences, the default value is the
        sequence's minimum value.    For descending sequences, the default
        value is the sequence's maximum value.

CYCLE
        specifies that the sequence continues to generate values after
        reaching either its maximum or minimum value.    After an ascending
        sequence reaches its maximum value, it generates its minimum value.
        After a descending sequence reaches its minimum, it generates its
        maximum.

NOCYCLE
        specifies that the sequence cannot generate more values after
        reaching its maximum or minimum value.

        The default is NOCYCLE.

CACHE
        specifies how many values of the sequence Oracle preallocates and
        keeps in memory for faster access.    The minimum value for this
        parameter is 2.    For sequences that cycle, this value must be less
        than the number of values in the cycle.

NOCACHE
        specifies that values of the sequence are not preallocated.

        If you omit both the CACHE parameter and the NOCACHE option, Oracle
        caches 20 sequence numbers by default.    However, if you are using
        Oracle with the Parallel Server option in parallel mode and you
        specify the ORDER option, sequence values are never cached,
        regardless of whether you specify the CACHE parameter or the NOCACHE
        option.

ORDER
        guarantees that sequence numbers are generated in order of request.
        You may want to use this option if you are using the sequence
        numbers as timestamps.    Guaranteeing order is usually not important
        for sequences used to generate primary keys.

NOORDER
        does not guarantee sequence numbers are generated in order of
        request.

        If you omit both the ORDER and NOORDER options, Oracle chooses
        NOORDER by default.    Note that the ORDER option is only necessary to
        guarantee ordered generation if you are using Oracle with the
        Parallel Server option in parallel mode.    If you are using exclusive
        mode, sequence numbers are always generated in order.

PREREQUISITES:

        The sequence must be in your own schema or you must have ALTER
        privilege on the sequence or you must have ALTER ANY SEQUENCE system
        privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the sequence's creation label or you must satisfy one of
        these criteria:

        * If the sequence's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the sequence's creation label is lower than your DBMS label,
            you must have WRITEDOWN system privilege.
        * If the sequence's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE SEQUENCE, DROP SEQUENCE

ALTER SESSION command

PURPOSE:

        To alter your current session in one of these ways:

        * to enable or disable the SQL trace facility
        * to change the values of NLS parameters
        * to change your DBMS session label in Trusted Oracle
        * to change the default label format for your session
        * to close a database link
        * to send advice to remote databases for forcing an in-doubt
            distributed transaction
        * to permit or prohibit procedures and stored functions from issuing
            COMMIT and ROLLBACK statements
        * to change the goal of the cost-based optimization approach

SYNTAX:

ALTER SESSION
 { SET { SQL_TRACE = { TRUE | FALSE }
 | GLOBAL_NAMES = { TRUE | FALSE }
 | NLS_LANGUAGE = language
 | NLS_TERRITORY = territory
 | NLS_DATE_FORMAT = 'fmt'
 | NLS_DATE_LANGUAGE = language
 | NLS_NUMERIC_CHARACTERS = 'text'
 | NLS_ISO_CURRENCY = territory
 | NLS_CURRENCY = 'text'
 | NLS_SORT = { sort | BINARY }
 | LABEL = {'text' | DBHIGH | DBLOW | OSLABEL }
 | MLS_LABEL_FORMAT = 'fmt'
 | OPTIMIZER_GOAL = { RULE | ALL_ROWS | FIRST_ROWS | CHOOSE }
 | FLAGGER = { ENTRY | INTERMEDIATE | FULL | OFF }
 | CLOSE_CACHED_OPEN_CURSORS = { TRUE | FALSE }
 } ...
 | CLOSE DATABASE LINK dblink
 | ADVISE {COMMIT | ROLLBACK | NOTHING}
 | {ENABLE | DISABLE} COMMIT IN PROCEDURE }

where:

SQL_TRACE
        controls the SQL trace facility for your session:
                        TRUE
                                      enables the SQL trace facility.
                        FALSE
                                      disables the SQL trace facility.

GLOBAL_NAMES
        controls the enforcement of global name resolution for your session:
                        TRUE
                                      enables the enforcement of global name resolution.
                        FALSE

                                      disables the enforcement of global name resolution.

        For information on enabling and disabling global name resolution
        with this parameter, see the ALTER SYSTEM command.

NLS_LANGUAGE
        changes the language in which Oracle returns errors and other
        messages.    This parameter also implicitly specifies new values for
        these items:

                    * language for day and month names and abbreviations and
                        spelled values of other date format elements
                    * sort sequence

NLS_TERRITORY
        implicitly specifies new values for these items:

                    * default date format
                    * decimal character and group separator
                    * local currency symbol
                    * ISO currency symbol
                    * first day of the week for D date format element

NLS_DATE_FORMAT
        explicitly specifies a new default date format.

NLS_DATE_LANGUAGE
        explicitly changes the language for day and month names and
        abbreviations and spelled values of other date format elements.

NLS_NUMERIC_CHARACTERS
        explicitly specifies a new decimal character and group separator.
        The 'text' value must have this form:
                        'dg'
        where:
                        d
                                      is the new decimal character.
                        g
                                      is the new group separator.

        The decimal character and the group separator must be different and
        can only be single-byte characters.

NLS_ISO_CURRENCY
        explicitly specifies the territory whose ISO currency symbol should
        be used.

NLS_CURRENCY
        explicitly specifies a new local currency symbol.

NLS_SORT
        changes the sequence into which Oracle sorts character values.
                        sort
                                      specifies the name of a linguistic sort sequence.
                        BINARY

                                      specifies a binary sort.

LABEL
        changes your DBMS session label to either:

                    * the label specified by 'text' in your session's default
                        label format
                    * the label equivalent to DBHIGH
                    * the label equivalent to DBLOW
                    * your operating system label using OSLABEL

MLS_LABEL_FORMAT
        changes the default label format for your session.

OPTIMIZER_GOAL
        specifies the approach and goal of the optimizer for your session:
                        RULE
                                      specifies the rule-based approach.
                        ALL_ROWS
                                      specifies the cost-based approach and optimizes for
                                      best throughput.
                        FIRST_ROWS
                                      specifies the cost-based approach and optimizes for
                                      best response time.
                        CHOOSE
                                      causes the optimizer to choose an optimization
                                      approach based on the presence of statistics in the
                                      data dictionary.

FLAGGER
        specifies that non-SQL92 compliant syntax should be flagged for the
        session.    Oracle flags any non-standard constructs as errors and
        displays the violating syntax.
        Currently there is no difference between entry, intermediate, and
        full level flagging.    These options will become significant as
        Oracle conforms to SQL92 intermediate and full level standards.
        OFF disables FIPS flagging.

CLOSE_CACHED_OPEN_CURSORS
        controls whether cursors opened and cached in memory by PL/SQL are
        automatically closed at each COMMIT.    A value of FALSE signifies
        that cursors opened by PL/SQL are held open so that subsequent
        executions need not open a new cursor.    A value of TRUE causes
        open cursors to be closed at each COMMIT or ROLLBACK.
CLOSE DATABASE LINK
        closes the database link dblink, eliminating your session's
        connection to the remote database.    The database link cannot be
        currently in use by an active transaction or an open cursor.

ADVISE
        sends advice for forcing a distributed transaction to a remote
        database.    This advice appears on the remote database in the ADVICE
        column of the DBA_2PC_PENDING data dictionary view in the event the
        distributed transaction becomes in-doubt.    The following are advice
        options:

                        COMMIT
                                      places the value 'C' in DBA_2PC_PENDING.ADVICE.
                        ROLLBACK
                                      places the value 'R' in DBA_2PC_PENDING.ADVICE.
                        NOTHING
                                      places the value ' ' in DBA_2PC_PENDING.ADVICE.

COMMIT IN PROCEDURE
        specifies whether procedures and stored functions can issue COMMIT
        and ROLLBACK statements:
                        ENABLE
                                      permits procedures and stored functions to issue
                                      these statements.
                        DISABLE
                                      prohibits procedures and stored functions from
                                      issuing these statements.

PREREQUISITES:

        To enable and disable the SQL trace facility or to change the
        default label format, you must have ALTER SESSION system privilege.

        To raise your session label, you must have WRITEUP and READUP system
        privileges.    To lower your session label, you must have WRITEDOWN
        system privilege.    To change your session label laterally, you must
        have READUP, WRITEUP, and WRITEDOWN system privileges.

        To perform the other operations of this command, you do not need any
        privileges.

SEE:
        Tuning SQL Statements and Appendix B of the Oracle Server
        Application Developer's Guide.

ALTER SNAPSHOT command

PURPOSE:

        To alter a snapshot in one of these ways:

        * changing its storage characteristics
        * changing its automatic refresh mode and times

SYNTAX:

ALTER SNAPSHOT [schema.]snapshot
 [PCTFREE integer | PCTUSED integer
 | INITRANS integer | MAXTRANS integer
 | STORAGE storage_clause] ...
 [USING INDEX [INITTRANS integer | MAXTRANS integer
 | STORAGE storage_clause] ...
 [REFRESH [FAST | COMPLETE | FORCE] [START WITH date] [NEXT date]]

where:

schema
        is the schema containing the snapshot.    If you omit schema, Oracle
        assumes the snapshot is in your own schema.

snapshot
        is the name of the snapshot to be altered.

PCTFREE
PCTUSED
INITRANS
MAXTRANS
        change the values of these parameters for the internal table that
        Oracle uses to maintain the snapshot's data.    See the PCTFREE,
        PCTUSED, INITRANS, and MAXTRANS parameters of the CREATE TABLE
        command.

STORAGE
        changes the storage characteristics of the internal table that
        Oracle uses to maintain the snapshot's data.

REFRESH
        changes the mode and times for automatic refreshes:
                        FAST
                                      specifies a fast refresh, or a refresh using the
                                      snapshot log associated with the master table.
                        COMPLETE
                                      specifies a complete refresh, or a refresh that
                                      reexecutes the snapshot's query.
                        FORCE
                                      specifies a fast refresh if one is possible or
                                      complete refresh if a fast refresh is not possible.
                                      Oracle decides whether a fast refresh is possible at
                                      refresh time.
                                      If you omit the FAST, COMPLETE, and FORCE options,

                                      Oracle uses FORCE by default.
                        START WITH
                                      specifies a date expression for the next
                                      automatic refresh time.
                        NEXT
                                      specifies a new date expression for calculating the
                                      interval between automatic refreshes.

        START WITH and NEXT values must evaluate to times in the future.

USING INDEX
        alters the storage characteristics for the index on a simple
        snapshot.

PREREQUISITES:

        The snapshot must be in your own schema or you must have ALTER ANY
        SNAPSHOT system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the snapshot's creation label or you must satisfy one of
        these criteria:

        * If the snapshot's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the snapshot's creation label is lower than your DBMS label,
            you must have WRITEDOWN system privilege.
        * If the snapshot's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

        To change the storage characteristics of the internal table that
        Oracle uses to maintain the snapshot's data, you must also have the
        privileges to alter that table.    For information on these
        privileges, see the ALTER TABLE command.

SEE:
 CREATE SNAPSHOT, DROP SNAPSHOT

ALTER SNAPSHOT LOG command

PURPOSE:

        Changes the storage characteristics of a snapshot log.

SYNTAX:

ALTER SNAPSHOT LOG ON [schema.]table
 [PCTFREE integer] [PCTUSED integer]
 [INITRANS integer] [MAXTRANS integer]
 [STORAGE storage_clause]

where:

schema
        is the schema containing the snapshot log and its master table.    If
        you omit schema, Oracle assumes the snapshot log is in your own
        schema.

table
        is the name of the master table associated with the snapshot log to
        be altered.

PCTFREE
PCTUSED
INITRANS
MAXTRANS
        change the values of these parameters for the snapshot log.    See the
        PCTFREE, PCTUSED, INITRANS, and MAXTRANS parameters of the CREATE
        TABLE command.

STORAGE
        changes the storage characteristics of the snapshot log.

PREREQUISITES:

        Since a snapshot log is simply a table, the privileges that
        authorize operations on it are the same as those for a table.    To
        change its storage characteristics, you must have the privileges
        listed for the ALTER TABLE command.

SEE:
 CREATE SNAPSHOT, CREATE SNAPSHOT LOG, DROP SNAPSHOT LOG

ALTER SYSTEM command

PURPOSE:

        To dynamically alter your Oracle instance in one of these ways:

        * to enable or disable resource limits
        * to manage shared server processes or dispatcher processes for the
            multi-threaded server architecture
        * to explicitly switch redo log file groups
        * to explicitly perform a checkpoint
        * to verify access to data files
        * to restrict logons to Oracle to only those users with RESTRICTED
            SESSION system privilege
        * to enable distributed recovery in a single-process environment
        * to disable distributed recovery
        * to manually archive redo log file groups or to enable or disable
              automatic archiving
        * to clear all data from the shared pool in the System Global Area
            (SGA)
        * to terminate a session

SYNTAX:

ALTER SYSTEM
 { {ENABLE | DISABLE} RESTRICTED SESSION
 | FLUSH SHARED_POOL
 | {CHECKPOINT | CHECK DATAFILES} [GLOBAL | LOCAL]
 | SET { RESOURCE_LIMIT = { TRUE | FALSE }
 | GLOBAL_NAMES = { TRUE | FALSE }
 | MTS_DISPATCHERS = 'protocol, integer'
 | MTS_SERVERS = integer
 | LICENSE_MAX_SESSIONS = integer
 | LICENSE_SESSIONS_WARNING = integer
 | LICENSE_MAX_USERS = integer
 | SESSION_CACHED_CURSORS = integer } ...
 | SWITCH LOGFILE
 | {ENABLE | DISABLE} DISTRIBUTED RECOVERY
 | ARCHIVE LOG archive_log_clause
 | KILL SESSION 'integer1, integer2' }

where:

You can use these options regardless of whether your instance has the
database dismounted or mounted, open or closed:

ENABLE RESTRICTED SESSION
        allows only users with RESTRICTED SESSION system privilege to logon
        to Oracle.

DISABLE RESTRICTED SESSION
        reverses the effect of the ENABLE RESTRICTED SESSION option,
        allowing all users with CREATE SESSION system privilege to logon to
        Oracle.

FLUSH SHARED_POOL
        clears all data from the shared pool in the System Global Area
        (SGA).

You can use these options when your instance has the database mounted,
open or closed:

CHECKPOINT
        performs a checkpoint.
                        GLOBAL
                                      performs a checkpoint for all instances that have
                                      opened the database.
                        LOCAL
                                      performs a checkpoint only for the thread of redo log
                                      file groups for your instance.    You can only use this
                                      option when your instance has the database open.

        If you omit both the GLOBAL and LOCAL options, Oracle performs a
        global checkpoint.

CHECK DATAFILES
        verifies access to online data files.
                        GLOBAL
                                      verifies that all instances that have opened the
                                      database can access all online data files.
                        LOCAL
                                      verifies that your instance can access all online
                                      data files.

        If you omit both the GLOBAL and LOCAL options, Oracle uses GLOBAL by
        default.

You can only use these parameters and options when your instance has the
database open:

RESOURCE_LIMIT
        controls resource limits.
                        TRUE
                                      enables resource limits.
                        FALSE
                                      disables resource limits.

GLOBAL_NAMES
        controls the enforcement of global naming:
                        TRUE
                                      enables the enforcement of global names.
                        FALSE
                                      disables the enforcement of global names.

MTS_SERVERS
        specifies a new minimum number of shared server processes.

MTS_DISPATCHERS
        specifies a new number of dispatcher processes:

                        protocol
                                      is the network protocol of the dispatcher processes.
                        integer
                                      is the new number of dispatcher processes of the
                                      specified protocol.

        You can specify multiple MTS_DISPATCHERS parameters in a single
        command for multiple network protocols.

LICENSE_MAX_SESSIONS
        limits the number of sessions on your instance.    A value of 0
        disables the limit.

LICENSE_SESSIONS_WARNING
        establishes a threshold of sessions over which Oracle writes warning
        messages to the ALERT file for subsequent sessions.    A value of 0
        disables the warning threshold.

LICENSE_MAX_USERS
        limits the number of users on your database.    A value of 0 disables
        the limit.

SESSION_CACHED_CURSORS
        specify a positive integer for the maximum number of session cursors
        kept in the cursor cache.

SWITCH LOGFILE
        switches redo log file groups.

ENABLE DISTRIBUTED RECOVERY
        enables distributed recovery.    In a single-process environment, you
        must use this option to initiate distributed recovery.

DISABLE DISTRIBUTED RECOVERY
        disables distributed recovery.

ARCHIVE LOG
        manually archives redo log files or enables or disables automatic
        archiving.

KILL SESSION
        terminates a session.    You must identify the session with both of
        these values from the V$SESSION:
                        integer1
                                      is the value of the SID column.
                        integer2
                                      is the value of the SERIAL# column.

PREREQUISITES:

        You must have ALTER SYSTEM system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must be the equivalent of DBHIGH.

SEE:
 ALTER SESSION, CREATE PROFILE, CREATE USER

ALTER TABLE command

PURPOSE:

        To alter the definition of a table in one of these ways:

        * to add a column
        * to add an integrity constraint
        * to redefine a column (datatype, size, default value)
        * to modify storage characteristics or other parameters
        * to enable, disable, or drop an integrity constraint or trigger
        * to explicitly allocate an extent

SYNTAX:

ALTER TABLE [schema.]table
 [ADD { { column datatype [DEFAULT expr] [column_constraint] ...
 | table_constraint}
 | ({ column datatype [DEFAULT expr] [column_constraint] ...
 | table_constraint}
 [, { column datatype [DEFAULT expr] [column_constraint] ...
 | table_constraint}] ...) }]
 [MODIFY { column [datatype] [DEFAULT expr] [column_constraint] ...
 | (column [datatype] [DEFAULT expr] [column_constraint] ...
 [, column datatype [DEFAULT expr] [column_constraint] ...] ...) }]
 [PCTFREE integer] [PCTUSED integer]
 [INITRANS integer] [MAXTRANS integer]
 [STORAGE storage_clause]
 [DROP drop_clause] ...
 [ALLOCATE EXTENT [([SIZE integer [K|M]]
 [DATAFILE 'filename']
 [INSTANCE integer])]
 [PARALLEL ([DEGREE { integer | DEFAULT }]
 [INSTANCES { integer | DEFAULT }]
)
 | NOPARALLEL]
 [CACHE | NOCACHE]
 [ENABLE enable_clause
 | DISABLE disable_clause] ...

where:

schema
        is the schema containing the table.    If you omit schema, Oracle
        assumes the table is in your own schema.

table
        is the name of the table to be altered.

ADD
        adds a column or integrity constraint.

MODIFY
        modifies a the definition of an existing column.    If you omit any of

        the optional parts of the column definition (datatype, default
        value, or column constraint), these parts remain unchanged.

column
        is the name of the column to be added or modified.

datatype
        specifies a datatype for a new column or a new datatype for an
        existing column.

DEFAULT
        specifies a default value for a new column or a new default for an
        existing column.    Oracle assigns this value to the column if a
        subsequent INSERT statement omits a value for the column.    The
        datatype of the default value must match the datatype specified for
        the column.    A DEFAULT expression cannot contain references to other
        columns, the pseudocolumns CURRVAL, NEXTVAL, LEVEL, and ROWNUM, or
        date constants that are not fully specified.

column_constraint
        adds or removes a NOT NULL constraint to or from and existing
        column.

table_constraint
        adds an integrity constraint to the table.

PCTFREE
PCTUSED
INITRANS
MAXTRANS
        changes the value of one of these parameters for the table.    See the
        PCTFREE, PCTUSED, INITRANS, and MAXTRANS parameters of the CREATE
        TABLE command.

STORAGE
        changes the storage characteristics of the table.

DROP
        drops an integrity constraint.

ALLOCATE EXTENT
        explicitly allocates a new extent for the table.
                        SIZE
                                      specifies the size of the extent in bytes.    You can
                                      use K or M to specify the extent size in kilobytes or
                                      megabytes.    If you omit this parameter, Oracle
                                      determines the size based on the values of the
                                      table's STORAGE parameters.
                        DATAFILE
                                      specifies one of the data files in the table's
                                      tablespace to contain the new extent.    If you omit
                                      this parameter, Oracle chooses the data file.
                        INSTANCE
                                      makes the new extent available to the specified
                                      instance.    An instance is identified by the value of

                                      its initialization parameter INSTANCE_NUMBER.    If you
                                      omit this parameter, the extent is available to all
                                      instances.    Only use this parameter if you are using
                                      Oracle with the Parallel Server option in parallel
                                      mode.

                        Explicitly allocating an extent with this clause does
                        affect the size for the next extent to be allocated
                        as specified by the NEXT and PCTINCREASE storage
                        parameters.

PARALLEL
        DEGREE specifies the number of query server processes that can scan
        the table in parallel.    Either specify a positive integer or DEFAULT
        which signifies to use the initialization parameter
        PARALLEL_DEFAULT_SCANSIZE to estimate the number of query servers to use.

        INSTANCES specifies the minimum number of instances that need to be
        available before the table can be spread across all available instances
        of a Parallel Server.    A positive integer specifies the number of
        instances.    DEFAULT signifies that the parameter PARALLEL_MAX_PARTITIONSIZE
        is used to calculate whether a table is split across all instances' buffer
        caches.

NOPARALLEL
        specifies that queries on this table are not performed in parallel
        by default.    A hint in the query still causes the query to be
        performed in parallel.

CACHE
        specifies that blocks of this table are placed on the most recently
        used end of the LRU list of the buffer cache when the a full table scan
        is performed.
        This option is useful for small lookup tables.

NOCACHE
        specifies that blocks of the table in the buffer cache follow the
        standard LRU algorithm when a full table scan is performed.

ENABLE
        enables a single integrity constraint or all triggers associated
        with the table.

DISABLE
        disables a single integrity constraint or all triggers associated
        with the table.

        Integrity constraints specified in these clauses must be defined in
        the ALTER TABLE statement or in a previously issued statement.    You
        can also enable and disable integrity constraints with the ENABLE
        and DISABLE keywords of the CONSTRAINT clause.    If you define an
        integrity constraint but do not explicitly enable or disable it,
        Oracle enables it by default.

PREREQUISITES:

        The table must be in your own schema or you must have ALTER
        privilege on the table or you must have ALTER ANY TABLE system
        privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the table's creation label or you must satisfy one of
        these criteria:

        * If the table's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the table's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the table's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CONSTRAINT clause, CREATE TABLE, DISABLE clause, DROP clause,
 ENABLE clause, STORAGE clause

ALTER TABLESPACE command

PURPOSE:

        To alter an existing tablespace in one of these ways:

        * to add or rename data file(s)
        * to change default storage parameters
        * to take the tablespace online or offline
        * to begin or end a backup

SYNTAX:

ALTER TABLESPACE tablespace
 { ADD DATAFILE filespec [, filespec] ...
 | RENAME DATAFILE 'filename' [,'filename'] ...
 TO 'filename' [,'filename'] ...
 | DEFAULT STORAGE storage_clause
 | ONLINE
 | OFFLINE [NORMAL | TEMPORARY | IMMEDIATE]
 | READ ONLY
 | READ WRITE
 | {BEGIN | END} BACKUP}

where:

tablespace
        is the name of the tablespace to be altered.

ADD DATAFILE
        adds the data file specified by filespec to the tablespace.    You can
        add a data file while the tablespace is online or offline.    Be sure
        that the data file is not already in use by another database.

RENAME DATAFILE
        renames one or more of the tablespace's data files.    Take the
        tablespace offline before renaming the data file.    Each 'filename'
        must fully specify a data file using the conventions for filenames
        on your operating system.

        This clause only associates the tablespace with the new file rather
        than the old one.    This clause does not actually change the name of
        the operating system file.    You must change the name of the file
        through your operating system.

DEFAULT STORAGE
        specifies the new default storage parameters for objects
        subsequently created in the tablespace.

ONLINE
        brings the tablespace online.

OFFLINE
        takes the tablespace offline and prevents further access to its

        segments.
                        NORMAL
                                      performs a checkpoint for all data files in the
                                      tablespace.    All of these data files must be online.
                                      You need not perform media recovery on this
                                      tablespace before bringing it back online.    You must
                                      use this option if the database is in noarchivelog
                                      mode.
                        TEMPORARY
                                      performs a checkpoint for all online data files in
                                      the tablespace but does not ensure that all files can
                                      be written.    Any offline files may require media
                                      recovery before you bring the tablespace back online.
                        IMMEDIATE
                                      does not ensure that tablespace files are available
                                      and does not perform a checkpoint.    You must perform
                                      media recovery on the tablespace before bringing it
                                      back online.

        The default is NORMAL.

        Before taking a tablespace offline for a long period of time, you
        may want to alter any users who have been assigned the tablespace as
        either a default or temporary tablespace.    When the tablespace is
        offline, these users cannot allocate space for objects or sort areas
        in the tablespace.    You can reassign users new default and
        temporary tablespaces with the ALTER USER command.

READ ONLY
        specifies that write operations are not permitted on the table-
        space.
        Before using this option, the tablespace must meet these pre-
        requisites:

                    * the tablespace must be online
                    * there must not be any active transactions in the entire
                        database
                    * the tablespace must not contain any active rollback
                        segments
                    * the tablespace must not be involved in an online
                        backup
                    * the COMPATIBLE initialization parameter must be set to
                        7.1.0 or greater

READ WRITE
        specifies that a read-only tablespace be made writeable.    To
        issue this command, all of the datafiles in the tablespace must
        be online.

BEGIN BACKUP
        signifies that an online backup is to be performed on the data files
        that comprise this tablespace.    This option does not prevent users
        from accessing the tablespace.    This option is used for control file
        and redo log record keeping.    You must use this option before
        beginning an online backup.

        While the backup is in progress, you cannot perform any of these
        operations:

                    * take the tablespace offline normally
                    * shutdown the instance
                    * begin another backup of the tablespace

END BACKUP
        signifies that an online backup of the tablespace    is complete.    Use
        this option as soon as possible after completing an online backup.

PREREQUISITES:

        If you have ALTER TABLESPACE system privilege, you can perform any
        of this command's operations.    If you have MANAGE TABLESPACE system
        privilege, you can only perform these operations:

        * to take the tablespace online or offline
        * to begin or end a backup

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the tablespace's creation label or you must satisfy one
        of these criteria:

        * If the tablespace's creation label is higher than your DBMS
            label, you must have READUP and WRITEUP system privileges.
        * If the tablespace's creation label is lower than your DBMS label,
              you must have WRITEDOWN system privilege.
        * If the tablespace's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

        If you are using Trusted Oracle in DBMS MAC mode, to add a data
        file, your operating system process label must be the equivalent of
        DBHIGH.

SEE:
 CREATE DATABASE, CREATE TABLESPACE, DROP TABLESPACE, STORAGE clause

ALTER TRIGGER command

PURPOSE:

        To perform one of these operations on a database trigger:

        * enable
        * disable

SYNTAX:

ALTER TRIGGER [schema.]trigger
 { ENABLE
 | DISABLE }

where:

schema
        is the schema containing the trigger.    If you omit schema, Oracle
        assumes the trigger is in your own schema.

trigger
        is the name of the trigger to be altered.

ENABLE
        enables the trigger.

DISABLE
        disables the trigger.

PREREQUISITES:

        The trigger must be in your own schema or you must have ALTER ANY
        TRIGGER system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the trigger's creation label or you must satisfy one of
        these criteria:

        * If the trigger's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the trigger's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the trigger's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE TRIGGER, DISABLE clause, DROP TRIGGER, ENABLE clause

ALTER USER command

PURPOSE:

        To change any of these characteristics of a database user:

        * password
        * default tablespace for object creation
        * tablespace for temporary segments created for the user
        * tablespace access and tablespace quotas
        * limits on database resources
        * default roles

SYNTAX:

ALTER USER user
 [IDENTIFIED {BY password | EXTERNALLY}]
 [DEFAULT TABLESPACE tablespace]
 [TEMPORARY TABLESPACE tablespace]
 [QUOTA {integer [K|M] | UNLIMITED} ON tablespace] ...
 [PROFILE profile]
 [DEFAULT ROLE { role [, role] ...
 | ALL [EXCEPT role [, role] ...]
 | NONE}]

where:

user
        is the user to be altered.

IDENTIFIED
        indicates how Oracle permits user access.
                        BY
                                      specifies a new password for the user.    The password
                                      does not appear in quotes and is not case-sensitive.
                                      The password can only contain single-byte characters
                                      from your database character set regardless of
                                      whether this character set also contains multi-byte
                                      characters.
                        EXTERNALLY
                                      indicates that Oracle verifies user access with the
                                      operating system, rather than with a password.    See
                                      the CREATE USER command.

        Although you do not need privileges to change your own password, you
        must have ALTER USER system privilege to change from BY password to
        EXTERNALLY or vice-versa.

DEFAULT TABLESPACE
        specifies the default tablespace for object creation.

TEMPORARY TABLESPACE
        specifies the tablespace for the creation of temporary segments for
        operations such as sorting that require more space than is available

        in memory.

QUOTA
        establishes a space quota of integer bytes on the tablespace for the
        user.    This quota is the maximum space in tablespace that can be
        allocated for objects in the user's schema. You can use K or M to
        specify the quota in kilobytes or megabytes.    You need not have
        quota on the tablespace to establish a quota on the tablespace for
        another user.    See the CREATE USER command.

        If you reduce an existing quota to a value below the space allocated
        for existing objects in the user's schema in the tablespace, no more
        space in the tablespace can be allocated to objects in the schema.

        Note that an ALTER USER statement can contain multiple QUOTA clauses
        for multiple tablespaces.

                        UNLIMITED
                                      places no limit on the space in the tablespace
                                      allocated to objects in the user's schema.

PROFILE
        changes the user's profile to profile.    In subsequent sessions, the
        user is subject to the limits defined in the new profile.

        To assign the default limits to the user, assign the user the
        DEFAULT profile.

DEFAULT ROLE
        establishes default roles for the user.    Oracle enables the user's
        default roles at logon.    By default, all roles granted to the user
        are default roles.
                        ALL
                                      makes all the roles granted to the user default
                                      roles, except those listed in the EXCEPT clause.
                        NONE
                                      makes none of the roles granted to the user default
                                      roles.

PREREQUISITES:

        You must have ALTER USER privilege.    However, you can change your
        own password without this privilege.

SEE:
 CREATE PROFILE, CREATE ROLE, CREATE TABLESPACE, CREATE USER

ALTER VIEW command

PURPOSE:

        To recompile a view.

SYNTAX:

ALTER VIEW [schema.]view
 COMPILE

where:

schema
        is the schema containing the view.    If you omit schema, Oracle
        assumes the view is in your own schema.

view
        is the name of the view to be recompiled.

COMPILE
        causes Oracle to recompile the view.    The COMPILE keyword is
        required.

PREREQUISITES:

        The view must be in your own schema or you must have ALTER ANY TABLE
        system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the view's creation label or you must satisfy one of
        these criteria:

        * If the view's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the view's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the view's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE VIEW

ANALYZE command

PURPOSE:

        To perform one of these functions on an index, table, or cluster:

        * to collect statistics about the object used by the optimizer and
            store them in the data dictionary
        * to delete statistics about the object from the data dictionary
        * to validate the structure of the object
        * to identify migrated and chained rows of the table or cluster

SYNTAX:

ANALYZE
 { INDEX [schema.]index
 { { COMPUTE STATISTICS
 | ESTIMATE STATISTICS [SAMPLE integer {ROWS | PERCENT}]
 | DELETE STATISTICS }
 | VALIDATE STRUCTURE }
 | {TABLE [schema.]table | CLUSTER [schema.]cluster}
 { { COMPUTE
 | ESTIMATE [SAMPLE integer {ROWS | PERCENT}]
 | DELETE } STATISTICS
 | VALIDATE STRUCTURE [CASCADE]
 | LIST CHAINED ROWS [INTO [schema.]table] } }

where:

INDEX
        identifies an index to be analyzed.    If you omit schema, Oracle
        assumes the index is in your own schema.

TABLE
        identifies a table to be analyzed.    If you omit schema, Oracle
        assumes the table is in your own schema.    When you collect
        statistics for a table, Oracle also automatically collects the
        statistics for each of the table's indexes.

CLUSTER
        identifies a cluster to be analyzed.    If you omit schema, Oracle
        assumes the cluster is in your own schema.    When you collect
        statistics for a cluster, Oracle also automatically collects the
        statistics for all the cluster's tables and all their indexes,
        including the cluster index.

COMPUTE STATISTICS
        computes exact statistics about the analyzed object and stores them
        in the data dictionary.

ESTIMATE STATISTICS
        estimates statistics about the analyzed object and stores them in
        the data dictionary.
                        SAMPLE

                                      specifies the amount of data from the analyzed object
                                      Oracle samples to estimate statistics.    If you omit
                                      this parameter, Oracle samples 1064 rows.    If you
                                      specify more than half of the data, Oracle reads all
                                      the data and computes the statistics.
                        ROWS
                                      causes Oracle to sample integer rows of the table or
                                      cluster or integer entries from the index.    The
                                      integer must be at least 1.
                        PERCENT
                                      causes Oracle to sample integer percent of the rows
                                      from the table or cluster or integer percent of the
                                      index entries.    The integer can range from 1 to 99.

DELETE STATISTICS
        deletes any statistics about the analyzed object that are currently
        stored in the data dictionary.

VALIDATE STRUCTURE
        validates the structure of the analyzed object.    If you use this
        option when analyzing a cluster, Oracle automatically validates the
        structure of the cluster's tables.

CASCADE
        validates the structure of the indexes associated with the table or
        cluster.    If you use this option when validating a table, Oracle
        also validates the table's indexes.    If you use this option when
        validating a cluster, Oracle also validates all the clustered
        tables' indexes, including the cluster index.

LIST CHAINED ROWS
        identifies migrated and chained rows of the analyzed table or
        cluster.    You cannot use this option when analyzing an index.
                        INTO
                                      specifies a table into which Oracle lists the
                                      migrated and chained rows.    If you omit schema,
                                      Oracle assumes the list table is in your own schema.
                                      If you omit this clause altogether, Oracle assumes
                                      that the table is named CHAINED_ROWS.    The list table
                                      must be on your local database.

PREREQUISITES:

        The object to be analyzed must be in your own schema or you must
        have the ANALYZE ANY system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the creation label of the object to be analyzed or you
        must satisfy one of these criteria:

        * If the object's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the object's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the object's creation label and your DBMS label are

            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

        If you want to list chained rows of a table or cluster into a list
        table, the list table must be in your own schema or you must have
        INSERT privilege on the list table or you must have INSERT ANY TABLE
        system privilege.    If you are using Trusted Oracle in DBMS MAC mode,
        the list table must also meet the criteria for the analyzed object
        described above.

SEE:
        Chapter 13, The Optimizer, in the Oracle7 Server Concepts Manual,
        and Chapter 22, Tuning I/O, in the Oracle7 Server Administrator's
        Guide.

ARCHIVE LOG clause

PURPOSE:

        To manually archive redo log file groups or to enable or disable
        automatic archiving.

SYNTAX:

ARCHIVE LOG [THREAD integer]
 { { SEQ integer
 | CHANGE integer
 | CURRENT
 | GROUP integer
 | LOGFILE 'filename'
 | NEXT
 | ALL
 | START }
 [TO 'location']
 | STOP }

where:

THREAD
        specifies thread containing the redo log file group to be archived.
        You only need to specify this parameter if you are using Oracle with
        the Parallel Server option in parallel mode.

SEQ
        manually archives the online redo log file group identified by the
        log sequence number integer in the specified thread.    If you omit
        the THREAD parameter, Oracle archives the specified group from the
        thread assigned to your instance.

CHANGE
        manually archives the online redo log file group containing the redo
        log entry with the system change number (SCN) specified by integer
        in the specified thread.    If the SCN is in the current redo log file
        group, Oracle performs a log switch.    If you omit the THREAD
        parameter, Oracle archives the groups containing this SCN from all
        enabled threads.    You can only use this option when your instance
        has the database open.

CURRENT
        manually archives the current redo log file group of the specified
        thread, forcing a log switch.    If you omit the THREAD parameter,
        Oracle archives the current redo log file groups from all enabled
        threads.    You can only use this option when your instance has the
        database open.

GROUP
        manually archives the online redo log file group with the specified
        GROUP value.    You can determine the GROUP value for a redo log file
        group by examining the data dictionary view DBA_LOG_FILES.    If you

        specify both the THREAD and GROUP parameters, the specified redo log
        file group must be in the specified thread.

LOGFILE
        manually archives the online redo log file group containing the redo
        log file member identified by 'filename'.    If you specify both the
        THREAD and LOGFILE parameters, the specified redo log file group
        must be in the specified thread.

NEXT
        manually archives the next online redo log file group from the
        specified thread that is full but has not yet been archived.    If you
        omit the THREAD parameter, Oracle archives the earliest unarchived
        redo log file group from any enabled thread.

ALL
        manually archives all online redo log file groups from the specified
        thread that are full but have not been archived.    If you omit the
        THREAD parameter, Oracle archives all full unarchived redo log file
        groups from all enabled threads.

START
        enables automatic archiving of redo log file groups.    You can only
        enable automatic archiving for the thread assigned to your instance.

TO
        specifies the location to which the redo log file group is archived.
        The value of this parameter must be a fully-specified file location
        following the conventions of your operating system.    If you omit
        this parameter, Oracle archives the redo log file group to the
        location specified by the initialization parameter LOG_ARCHIVE_DEST.

STOP
        disables automatic archiving of redo log file groups.    You can only
        disable automatic archiving for the thread assigned to your
        instance.

PREREQUISITES:

        The ARCHIVE LOG clause must appear in an ALTER SYSTEM command.    You
        must have the privileges necessary to issue this statement.    For
        information on these privileges, see the ALTER SYSTEM command.

        You must also have the OSDBA or OSOPER role enabled.

        You can use most of the options of this clause when your instance
        has the database mounted, open or closed.    Options that require your
        instance to have the database open are noted.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must be the equivalent of DBHIGH.

SEE:
 ALTER SYSTEM

AUDIT command (SQL Statements)

PURPOSE:

        To choose specific SQL statements for auditing in subsequent user
        sessions.    To choose particular schema objects for auditing, use the
        AUDIT command (Schema Objects).

SYNTAX:

AUDIT {statement_opt | system_priv}
 [, {statement_opt | system_priv}] ...
 [BY user [, user] ...]
 [BY {SESSION | ACCESS}]
 [WHENEVER [NOT] SUCCESSFUL]

where:

statement_opt
        chooses specific SQL statements for auditing.

system_priv
        chooses SQL statements that are authorized by the specified system
        privilege for auditing.

BY user
        chooses only SQL statements issued by specified users for auditing.
        If you omit this clause, Oracle audits all users' statements.

BY SESSION
        causes Oracle to write a single record for all SQL statements of the
        same type issued in the same session.

BY ACCESS
        causes Oracle to write one record for each audited statement.

        If you specify statement options or system privileges that audit
        Data Definition Language statements, Oracle automatically audits by
        access regardless of whether you specify the BY SESSION or BY ACCESS
        option.

        For statement options and system privileges that audit other types
        of SQL statements, you can specify either the BY SESSION or BY
        ACCESS option.    BY SESSION is the default.

WHENEVER SUCCESSFUL
        chooses auditing only for SQL statements that complete successfully.
                        NOT
                                      chooses auditing only for statements that fail, or
                                      result in errors.

        If you omit the WHENEVER clause, Oracle audits SQL statements
        regardless of success or failure.

PREREQUISITES:

        You must have AUDIT SYSTEM system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the creation label of the users whose SQL statements
        you are auditing.

SEE:
 AUDIT (Schema Objects), NOAUDIT (SQL Statements)

AUDIT command (Schema Objects)

PURPOSE:

        To choose a specific schema object for auditing.    To choose
        particular SQL commands for auditing, use the AUDIT command (SQL
        Statements).

SYNTAX:

AUDIT object_opt [, object_opt] ...
 ON { [schema.]object | DEFAULT }
 [BY {SESSION | ACCESS}]
 [WHENEVER [NOT] SUCCESSFUL]

where:

object_opt
        specifies a particular operation for auditing.

schema
        is the schema containing the object chosen for auditing.    If you
        omit schema, Oracle assumes the object is in your own schema.

object
        identifies the object chosen for auditing.    The object must be one
        of these types:

                    * table
                    * view
                    * sequence
                    * stored procedure, function, or package
                    * snapshot

        You can also specify a synonym for a table, view, sequence,
        procedure, stored function, package, or snapshot.

DEFAULT
        establishes the specified object options as default object options
        for subsequently created objects.

BY SESSION
        means that Oracle writes a single record for all operations of the
        same type on the same object issued in the same session.

BY ACCESS
        means that Oracle writes one record for each audited operation.

        If you omit both of these options, Oracle audits by session.

WHENEVER SUCCESSFUL
        chooses auditing only for SQL statements that complete successfully.

NOT
        chooses auditing only for statements that fail, or result in errors.

        If you omit the WHENEVER clause entirely, Oracle audits all SQL
        statements, regardless of success or failure.

PREREQUISITES:

        The object you choose for auditing must be in your own schema or you
        must have AUDIT ANY system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the object's creation label or you must satisfy one of
        these criteria:

        * If the object's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the object's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.

        If the object's creation label and your DBMS label are
        noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
        privileges.

SEE:
 AUDIT (SQL Statements), NOAUDIT (Schema Objects)

COMMENT command

PURPOSE:

        To add a comment about a table, view, snapshot, or column into the
        data dictionary.

SYNTAX:

COMMENT ON { TABLE [schema.]{table | view | snapshot}
 | COLUMN [schema.]{table | view | snapshot}.column }
 IS 'text'

where:

TABLE
        specifies the schema and name of the table, view, or snapshot to be
        commented.

COLUMN
        specifies the name of the column of a table, view, or snapshot to be
        commented.

        If you omit schema, Oracle assumes the table, view, or snapshot is
        in your own schema.

IS 'text'
        is the text of the comment.

PREREQUISITES:

        The table, view, or snapshot must be in your own schema or you must
        have COMMENT ANY TABLE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the creation label of the table, view, snapshot, or
        column.

SEE:
 Comments

COMMIT command

PURPOSE:

        To end your current transaction and make permanent all changes
        performed in the transaction.    This command also erases all
        savepoints in the transaction and releases the transaction's locks.
        You can also use this command to manually commit an in-doubt
        distributed transaction.

SYNTAX:

COMMIT [WORK]
 [COMMENT 'text'
 | FORCE 'text' [, integer]]

where:

WORK
        is supported only for compliance with standard SQL.    The statements
        COMMIT and COMMIT WORK are equivalent.

COMMENT
        specifies a comment to be associated with the current transaction.
        The 'text' is a quoted literal of up to 50 characters that Oracle
        stores in the data dictionary view DBA_2PC_PENDING along with the
        transaction ID if the transaction becomes in-doubt.

FORCE
        manually commits an in-doubt distributed transaction.    The
        transaction is identified by the 'text' containing its local or
        global transaction ID.    To find the IDs of such transactions, query
        the data dictionary view DBA_2PC_PENDING.    You can also use the
        integer to specifically assign the transaction a system change
        number (SCN).    If you omit the integer, the transaction is committed
        using the current SCN.

        COMMIT statements using the FORCE clause are not supported in
        PL/SQL.

PREREQUISITES:

        You need no privileges to commit your current transaction.

        To manually commit a distributed in-doubt transaction that you
        originally committed, you must have FORCE TRANSACTION system
        privilege.    To manually commit a distributed in-doubt transaction
        that was originally committed by another user, you must have FORCE
        ANY TRANSACTION system privilege.

SEE:
 ROLLBACK, SAVEPOINT, SET TRANSACTION

CONSTRAINT clause

PURPOSE:

        To define an integrity constraint.    An integrity constraint is a
        rule that restricts the values for one or more columns in a table.

SYNTAX:

Column constraint:

[CONSTRAINT constraint]
{ [NOT] NULL
| {UNIQUE | PRIMARY KEY}
| REFERENCES [schema.]table [(column)]
 [ON DELETE CASCADE]
| CHECK (condition) }
{ [USING INDEX [PCTFREE integer]
 [INITRANS integer] [MAXTRANS integer]
 [TABLESPACE tablespace]
 [STORAGE storage_clause]
 [PARALLEL [integer] | NOPARALLEL]]
 [EXCEPTIONS INTO [schema.]table
| DISABLE }

Table constraint:

[CONSTRAINT constraint]
{ {UNIQUE | PRIMARY KEY} (column [,column] ...)
| FOREIGN KEY (column [,column] ...)
 REFERENCES [schema.]table [(column [,column] ...)]
 [ON DELETE CASCADE]
| CHECK (condition) }
{ [USING INDEX [PCTFREE integer]
 [INITRANS integer] [MAXTRANS integer]
 [TABLESPACE tablespace]
 [STORAGE storage_clause]
 [PARALLEL [integer] | NOPARALLEL]]
 [EXCEPTIONS INTO [schema.]table[@dblink]
| DISABLE }

where:

CONSTRAINT
        identifies the integrity constraint by the name constraint.    Oracle
        stores this name in the data dictionary along with the definition of
        the integrity constraint.    If you omit this identifier, Oracle
        generates a name with this form:
                        SYS_Cn
        where
                        n
                                      is an integer that makes the name unique
                                      within the database.

        For the names and definitions of integrity constraints, query the
        data dictionary.

NULL
        specifies that a column can contain null values.

NOT NULL
        specifies that a column cannot contain null values.

        If you do not specify NULL or NOT NULL in a column definition, NULL
        is the default.

UNIQUE
        designates a column or combination of columns as a unique key.

PRIMARY KEY
        designates a column or combination of columns as the table's primary
        key.

FOREIGN KEY
        designates a column or combination of columns as the foreign key in
        a referential integrity constraint.

REFERENCES
        identifies the primary or unique key that is referenced by a foreign
        key in a referential integrity constraint.

ON DELETE CASCADE
        specifies that Oracle maintains referential integrity by
        automatically removing dependent foreign key values if you remove a
        referenced primary or unique key value.

CHECK
        specifies a condition that each row in the table must satisfy.

USING INDEX
        specifies parameters for the index Oracle uses to enforce a UNIQUE
        or PRIMARY KEY constraint.    The name of the index is the same as the
        name of the constraint.    You can choose the values of the INITRANS,
        MAXTRANS, TABLESPACE, STORAGE, and PCTFREE parameters for the index.
        For information on these parameters, see the CREATE TABLE command.

        Only use this clause when enabling UNIQUE and PRIMARY KEY
        constraints.

    PARALLEL
          specifies the number of processes that create the index in parallel.
          You can only specify positive integer values greater than 1.    If you
          do not specify an integer, the degree of parallelism is based on
          the parallelism specified in the table's definition.

    NOPARALLEL
          specifies that the index should not be created in parallel.

EXCEPTIONS INTO
        identifies a table into which Oracle places information about rows
        that violate an enabled integrity constraint.    This table must exist
        before you use this option.    If you omit schema, Oracle assumes the
        exception table is in your own schema.    The exception table must be
        on your local database.

DISABLE
        disables the integrity constraint.    If an integrity constraint is
        disabled, Oracle does not enforce it.

        If you do not specify this option, Oracle automatically enables the
        integrity constraint.

        You can also enable and disable integrity constraints with the
        ENABLE and DISABLE clauses of the CREATE TABLE and ALTER TABLE
        commands.

PREREQUISITES:

        CONSTRAINT clauses can appear in either CREATE TABLE or ALTER TABLE
        commands.    To define an integrity constraint, you must have the
        privileges necessary to issue one of these commands.    See the CREATE
        TABLE and ALTER TABLE commands.

        Defining a constraint may also require additional privileges or
        preconditions that depend on the type of constraint.

SEE:
 ALTER TABLE, CREATE TABLE, DISABLE clause, ENABLE clause

CREATE CLUSTER command

PURPOSE:

        To create a cluster.    A cluster is a schema object that contains one
        or more tables that all have one or more columns in common.

SYNTAX:

CREATE CLUSTER [schema.]cluster
 (column datatype [,column datatype] ...)
 [PCTUSED integer] [PCTFREE integer]
 [SIZE integer [K|M]]
 [INITRANS integer] [MAXTRANS integer]
 [TABLESPACE tablespace]
 [STORAGE storage_clause]
 [PARALLEL ([DEGREE { integer | DEFAULT }]
 [INSTANCES { integer | DEFAULT }]
)
 | NOPARALLEL]
 [CACHE | NOCACHE]
 [INDEX
 | [HASH IS column] HASHKEYS integer]

where:

schema
        is the schema to contain the cluster.    If you omit schema, Oracle
        creates the cluster in your current schema.

cluster
        is the name of the cluster to be created.

column
        is the name of a column of the cluster key.

datatype
        is the datatype of a cluster key column.    A cluster key column can
        have any internal datatype except LONG or LONG RAW.

PCTUSED
        specifies the limit that Oracle uses to determine when additional
        rows can be added to a cluster's data block.    The value of this
        parameter is expressed as a whole number and interpreted as a
        percentage.

PCTFREE
        specifies the space reserved in each of the cluster's data blocks
        for future expansion.    The value of the parameter is expressed as a
        whole number and interpreted as a percentage.

INITRANS
        specifies the initial number of concurrent update transactions
        allocated for data blocks of the cluster.    The value of this

        parameter for a cluster cannot be less than 2 or more than the value
        of the MAXTRANS parameter.    The default value is the greater of the
        INITRANS value for the cluster's tablespace and 2.

MAXTRANS
        specifies the maximum number of concurrent update transactions for
        any given data block belonging to the cluster.    The value of this
        parameter cannot be less than the value of the INITRANS parameter.
        The maximum value of this parameter is 255.    The default value is
        the MAXTRANS value for the tablespace to contain the cluster.

        For a complete description of the PCTUSED, PCTFREE, INITRANS, and
        MAXTRANS parameters, see the CREATE TABLE.

SIZE
        specifies the amount of space in bytes to store all rows with the
        same cluster key value or the same hash value.    You can use K or M
        to specify this space in kilobytes or megabytes.    The value of this
        parameter cannot exceed the size of a data block.    If you omit this
        parameter, Oracle reserves one data block for each cluster key value
        or hash value.

TABLESPACE
        specifies the tablespace in which the cluster is created.

STORAGE
        specifies how data blocks are allocated to the cluster.

PARALLEL
        DEGREE specifies the number of query server processes that can scan
        the cluster in parallel.    Either specify a positive integer or DEFAULT
        which signifies to use the initialization parameter
        PARALLEL_DEFAULT_SCANSIZE to estimate the number of query servers to use.

        INSTANCES specifies the minimum number of instances that need to be
        available before the cluster can be spread across all available instances
        of a Parallel Server.    A positive integer specifies the number of
        instances.    DEFAULT signifies that the parameter PARALLEL_MAX_PARTITIONSIZE
        is used to calculate whether a table is split across all instances' buffer
        caches.

NOPARALLEL
        specifies that queries on this cluster are not performed in parallel
        by default.    A hint in the query still causes the query to be
        performed in parallel.

CACHE
        specifies that blocks of this cluster are placed on the most recently
        used end of the LRU list of the buffer cache when the a full table scan
        is performed.
        This option is useful for small lookup tables.

NOCACHE
        specifies that blocks of the cluster in the buffer cache follow the
        standard LRU algorithm when a full table scan is performed.

PARALLEL
          specifies the number of processes that can scan the tables in the
          in parallel.
          You can only specify positive integer values greater than 1.    If you
          do not specify an integer, the degree of parallelism is based on
          an estimate of the size of the table and the value of the
          PARALLEL_DEFAULT_SCANSIZE initialization parameter.

NOPARALLEL
        specifies that queries on this cluster are not performed in parallel
        by default.    A hint in the query still causes the query to be
        performed in parallel.

CACHE
          specifies that the entire table is to be placed in the buffer cache.
          This option is useful for small lookup tables.

NOCACHE
        specifies that blocks of the table in the buffer cache follow the
        standard LRU algorithm.

CACHE PARTITIONS
        specifies the cluster is to be partitioned and cached on all instances
        of a parallel server available for parallel query processing,
        if at least the specified number of instances is available.    If
PARALLEL
        DEGREE specifies the number of query server processes that can scan
        the cluster in parallel.    Either specify a positive integer or DEFAULT
        which signifies to use the initialization parameter
        PARALLEL_DEFAULT_SCANSIZE to estimate the number of query servers to use.

        INSTANCES specifies the minimum number of instances that need to be
        available before the cluster can be spread across all available instances
        of a Parallel Server.    A positive integer specifies the number of
        instances.    DEFAULT signifies that the parameter PARALLEL_MAX_PARTITIONSIZE
        is used to calculate whether a table is split across all instances' buffer
        caches.

NOPARALLEL
        specifies that queries on this cluster are not performed in parallel
        by default.    A hint in the query still causes the query to be
        performed in parallel.

CACHE
        specifies that blocks of this cluster are placed on the most recently
        used end of the LRU list of the buffer cache when the a full table scan
        is performed.
        This option is useful for small lookup tables.

NOCACHE
        specifies that blocks of the cluster in the buffer cache follow the
        standard LRU algorithm when a full table scan is performed.

INDEX

        creates an indexed cluster.    In an indexed cluster, rows are stored
        together based on their cluster key values
.
HASH IS
        specifies a column to be used as the hash function for a hash
        cluster.    In a hash cluster, rows are stored together based on their
        hash values.    The hash function specifies the hash value for each
        row in the cluster.    The value that you specify must be the only
        column of the cluster key and have a datatype of NUMBER with a scale
        of 0.    Each value in the column must be a non-negative integer.

        If you omit this parameter, Oracle uses an internal hash function
        for the hash cluster.    The cluster key of a hash column can have one
        or more columns of any datatype.    Hash clusters with composite
        cluster keys or cluster keys made up of non-integer columns must use
        the internal hash function.

HASHKEYS
        creates a hash cluster and specifies the number of hash values for a
        hash cluster.    Oracle rounds the HASHKEYS value up to the nearest
        prime number to obtain the actual number of hash values.    The
        minimum value for this parameter is 2.

        If you omit both the INDEX option and the HASHKEYS parameter, Oracle
        creates an indexed cluster by default.

PREREQUISITES:

        To create a cluster in your own schema, you must have CREATE CLUSTER
        system privilege.    To create a cluster in another user's schema, you
        must have CREATE ANY CLUSTER system privilege.    Also, the owner of
        the schema to contain the cluster must have either space quota on
        the tablespace containing the cluster or UNLIMITED TABLESPACE system
        privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the label of the tablespace to contain the cluster.
        To create a cluster in another user's schema, your DBMS label must
        dominate the creation label of the owner of the schema.

SEE:
 CREATE INDEX, CREATE TABLE, STORAGE clause

CREATE CONTROLFILE command

PURPOSE:

        To recreate a control file in one of these cases:

        * All copies of your existing control files have been lost through
            media failure.
        * You want to change the name of the database.
        * You want to change the maximum number of redo log file groups,
            redo log file members, archived redo log files, data files, or
            instances that can concurrently have the database mounted and
            open.

        Warning:    Oracle Corporation recommends that you perform a full
        backup of all files in the database before using this command.

SYNTAX:

CREATE CONTROLFILE [REUSE]
 [SET] DATABASE database
 LOGFILE [GROUP integer] filespec [, [GROUP integer] filespec] ...
 {RESETLOGS | NORESETLOGS}
 DATAFILE filespec [, filespec] ...
 [MAXLOGFILES integer]
 [MAXLOGMEMBERS integer]
 [MAXLOGHISTORY integer]
 [MAXDATAFILES integer]
 [MAXINSTANCES integer]
 [ARCHIVELOG | NOARCHIVELOG]

where:

REUSE
        specifies that existing control files identified by the
        initialization parameter CONTROL_FILES can be reused, thus ignoring
        and overwriting any and all information they may currently contain.
        If you omit this option and any of these control files already
        exist, Oracle returns an error.

SET DATABASE
        changes the name of the database.    The name of a database can be as
        long as eight bytes.

DATABASE
        specifies the name of the database.    The value of this parameter
        must be the existing database name established by the previous
        CREATE DATABASE statement or CREATE CONTROLFILE statement.

LOGFILE
        specifies the redo log file groups for your database.    You must list
        all members of all redo log file groups.    These files must all
        exist.

RESETLOGS
        ignores the contents of the files listed in the LOGFILE clause.
        Each filespec in the LOGFILE clause must specify the SIZE parameter.
        Oracle assigns all redo log file groups to thread 1 and enables this
        thread for public use by any instance.    After using this option, you
        must open the database using the RESETLOGS option of the ALTER
        DATABASE command.

NORESETLOGS
        specifies that all files in the LOGFILE clause should be used as
        they were when the database was last open.    These files must be the
        current redo log files rather than restored backups.    Oracle
        reassigns the redo log file groups to the threads to which they were
        previously assigned and reenables the threads as they were
        previously enabled.    If you specify GROUP values, Oracle verifies
        these values with the GROUP values when the database was last open.

DATAFILE
        specifies the data files of the database.    You must list all data
        files.    These files must all exist, although they may be restored
        backups that require media recovery.

MAXLOGFILES
        specifies the maximum number of redo log file groups that can ever
        be created for the database.    Oracle uses this value to determine
        how much space in the control file to allocate for the names of redo
        log files.    The default and maximum values depend on your operating
        system.    The value that you specify should not be less than the
        greatest GROUP value for any redo log file group.

        Note that the number of redo log file groups accessible to your
        instance is also limited by the initialization parameter LOG_FILES.

MAXLOGMEMBERS
        specifies the maximum number of members, or copies, for a redo log
        file group.    Oracle uses this value to determine how much space in
        the control file to allocate for the names of redo log files. The
        minimum value is 1.    The maximum and default values depend on your
        operating system.

MAXLOGHISTORY
        specifies the maximum number of archived redo log file groups for
        automatic media recovery of the Oracle Parallel Server.    Oracle uses
        this value to determine how much space in the control file to
        allocate for the names of archived redo log files.    The minimum
        value is 0.    The default value is a multiple of the MAXINSTANCES
        value and varies depending on your operating system.    The maximum
        value is limited only by the maximum size of the control file.    Note
        that this parameter is only useful if you are using Oracle with the
        Parallel Server option in both parallel mode and archivelog mode.

MAXDATAFILES
        specifies the maximum number of data files that can ever be created
        for the database.    The minimum value is 1.    The maximum and default
        values depend on your operating system.    The value you specify

        should not be less than the total number of data files ever in the
        database, including those for tablespaces that have been dropped.

        Note that the number of data files accessible to your instance is
        also limited by the initialization parameter DB_FILES.

MAXINSTANCES
        specifies the maximum number of instances that can simultaneously
        have the database mounted and open.    This value takes precedence
        over the value of the initialization parameter INSTANCES.    The
        minimum value is 1.    The maximum and default values depend on your
        operating system.

ARCHIVELOG
        establishes the mode of archiving the contents of redo log files
        before reusing them.    This option prepares for the possibility of
        media recovery as well as instance recovery.

NOARCHIVELOG
        establishes the initial mode of reusing redo log files without
        archiving their contents.    This option prepares for the possibility
        of instance recovery but not media recovery.

        If you omit both the ARCHIVELOG and NOARCHIVELOG options, Oracle
        chooses noarchivelog mode by default.    After creating the control
        file, you can change between archivelog mode and noarchivelog mode
        with the ALTER DATABASE command.

PREREQUISITES:

        You must have the OSDBA role enabled.    The database must not be
        mounted by any instance.

        If you are using Trusted Oracle in DBMS MAC mode, your operating
        system label must be the equivalent of DBHIGH.

SEE:
 CREATE DATABASE

CREATE DATABASE command

PURPOSE:

        To create a database, making it available for general use, with
        these options:

        * to establish a maximum number of instances, data files, redo log
            files groups, or redo log file members
        * to specify names and sizes of data files and redo log files
        * to choose a mode of use for the redo log

        Warning:    This command prepares a database for initial use and
        erases any data currently in the specified files.    Only use this
        command when you understand its ramifications.

SYNTAX:

CREATE DATABASE [database]
 [CONTROLFILE REUSE]
 [LOGFILE [GROUP integer] filespec [, [GROUP integer] filespec] ...]
 [MAXLOGFILES integer]
 [MAXLOGMEMBERS integer]
 [MAXLOGHISTORY integer]
 [DATAFILE filespec [, filespec] ...]
 [MAXDATAFILES integer]
 [MAXINSTANCES integer]
 [ARCHIVELOG | NOARCHIVELOG]
 [EXCLUSIVE]
 [CHARACTER SET charset]

where:

database
        is the name of the database to be created and can be up to eight
        bytes long.    Oracle writes this name into the control file.    If you
        subsequently issue an ALTER DATABASE statement and that explicitly
        specifies a database name, Oracle verifies that name with the name
        in the control file.

        The database name may only contain the alphabetic characters:
                    * alphabetic characters (A...Z)
                    * numbers (0...9)
                    * an underscore (_)
                    * a dollar sign ($)
                    * a pound sign (#)

        The database cannot be a SQL*DBA reserved word.    If you omit
        database from a CREATE DATABASE statement, Oracle uses the name
        specified by the initialization parameter DB_NAME.

CONTROLFILE REUSE
        reuses existing control files identified by the initialization
        parameter CONTROL_FILES, thus ignoring and overwriting any

        information they currently contain.    This option is usually used
        only when you are recreating a database, rather than creating one
        for the first time.    You cannot use this option if you also specify
        a parameter value that requires that the control file be larger than
        the existing files.    These parameters are    MAXLOGFILES,
        MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES, and MAXINSTANCES.

        If you omit this option and any of the files specified by
        CONTROL_FILES already exist, Oracle returns an error.

LOGFILE
        specifies one or more files to be used as redo log files.    Each
        filespec specifies a redo log file group containing one or more redo
        log file members, or copies.    All redo log files specified in a
        CREATE DATABASE statement are added to redo log thread number 1.

        You can also choose the value of the GROUP parameter for the redo
        log file group.    Each value uniquely identifies a redo log file
        group and can range from 1 to the value of the MAXLOGFILES
        parameter.    You cannot specify multiple redo log file groups having
        the same GROUP value.    If you omit this parameter, Oracle generates
        its value automatically.    You can examine the GROUP value for a redo
        log file group through the dynamic performance table V$LOG.

        If you omit the LOGFILE clause, Oracle creates two redo log file
        groups by default.    The names and sizes of the default files vary
        depending on your operating system.

MAXLOGFILES
        specifies the maximum number of redo log file groups that can ever
        be created for the database.    Oracle uses this value to determine
        how much space in the control file to allocate for the names of redo
        log files.    The default, minimum, and maximum values vary depending
        on your operating system.

        The number of redo log file groups accessible to your instance is
        also limited by the initialization parameter LOG_FILES.

MAXLOGMEMBERS
        specifies the maximum number of members, or copies, for a redo log
        file group.    Oracle uses this value to determine how much space in
        the control file to allocate for the names of redo log files. The
        minimum value is 1.    The maximum and default values vary depending
        on your operating system.

MAXLOGHISTORY
        specifies the maximum number of archived redo log files for
        automatic media recovery of Oracle with the Parallel Server option.
        Oracle uses this value to determine how much space in the control
        file to allocate for the names of archived redo log files.    The
        minimum value is 0.    The default value is a multiple of the
        MAXINSTANCES value and varies depending on your operating system.
        The maximum value is limited only by the maximum size of the control
        file.    Note that this parameter is only useful if you are using the
        Oracle with the Parallel Server option in parallel mode and

        archivelog mode.

DATAFILE
        specifies one or more files to be used as data files.    These files
        all become part of the SYSTEM tablespace.    If you omit this clause,
        Oracle creates one data file by default.    The name and size of this
        default file depends on your operating system.

MAXDATAFILES
        specifies the maximum number of data files that can ever be created
        for the database.    The minimum value is 1.    The maximum and default
        values depend on your operating system.

        The number of data files accessible to your instance is also limited
        by the initialization parameter DB_FILES

MAXINSTANCES
        specifies the maximum number of instances that can simultaneously
        have this database mounted and open.    This value takes precedence
        over the value of the initialization parameter INSTANCES.    The
        minimum value is 1.    The maximum and default values depend on your
        operating system.

ARCHIVELOG
        establishes archivelog mode for redo log file groups.    In this mode,
        the contents of a redo log file group must be archived before the
        group can be reused.    This option prepares for the possibility of
        media recovery.

NOARCHIVELOG
        establishes noarchivelog mode for redo log files groups.    In this
        mode, the contents of a redo log file group need not be archived
        before the group can be reused.    This option does not prepares for
        the possibility of media recovery.

        The default is noarchivelog mode.    After creating the database, you
        can change between archivelog mode and noarchivelog mode with the
        ALTER DATABASE command.

EXCLUSIVE
        mounts the database in exclusive mode after it is created.    This
        mode allows only your instance to access the database.    Oracle
        automatically mounts the database in exclusive mode after creating
        it, so this keyword is entirely optional.

        For multiple instances to access the database, you must first create
        the database, close and dismount the database, and then mount it in
        parallel mode.    For information on closing, dismounting, and
        mounting the database, see the ALTER DATABASE command.

CHARACTER SET
        specifies the character set the database uses to store data.    You
        cannot change the database character set after creating the
        database.    The supported character sets and default value of this
        parameter depends on your operating system.

PREREQUISITES:

        You must have the OSDBA role enabled.

        If you are using Trusted Oracle and you plan to use the database in
        DBMS MAC mode, your operating system label should be the equivalent
        of DBLOW.

SEE:
 ALTER DATABASE, CREATE ROLLBACK SEGMENT, CREATE TABLESPACE

CREATE DATABASE LINK command

PURPOSE:

        To create a database link.    A database link is an object in the
        local database that allows you to access objects on a remote
        database or to mount a secondary database in read-only mode.    The
        remote database can be either an Oracle or a non-Oracle database.

SYNTAX:

CREATE [PUBLIC] DATABASE LINK dblink
 [CONNECT TO user IDENTIFIED BY password]
 [USING 'connect_string']

where:

PUBLIC
        creates a public database link available to all users.    If you omit
        this option, the database link is private and is available only to
        you.

dblink
        is the complete or partial name of the database link.    For
        guidelines for naming database links, see the section Referring to
        Objects in Remote Databases.

CONNECT TO user
IDENTIFIED BY password
        is the username and password used to connect to the remote database.
        If you omit this clause, the database link uses the username and
        password of each user who uses the database link.

USING
        specifies either:

                        * the database specification of a remote database
                        * the specification of a secondary database for a read-only
                            mount.

        For information on specifying remote databases, see the SQL*Net
        User's Guide for your specific SQL*Net protocol.

        Read-only mounts are only available in Trusted Oracle and can only
        be specified for public database links.

PREREQUISITES:

        To create a private database link, you must have CREATE DATABASE
        LINK system privilege.    To create a public database link, you must
        have CREATE PUBLIC DATABASE LINK system privilege.    Also, you must
        have CREATE SESSION privilege on a remote database.    SQL*Net must be
        installed on both the local and remote databases.

SEE:

 CREATE SYNONYM, SELECT

CREATE FUNCTION command

PURPOSE:

        To create a stand-alone stored function.    A stored function is a set
        of PL/SQL statements you can call by name.    Stored functions are
        very similar to procedures, except that a function returns a value
        to the environment in which it is called.

SYNTAX:

CREATE [OR REPLACE] FUNCTION [schema.]function
 [(argument [IN] datatype
 [, argument [IN] datatype] ...)]
 RETURN datatype
 {IS | AS} pl/sql_subprogram_body

where:

OR REPLACE
        recreates the function if it already exists.    You can use this
        option to change the definition of an existing function without
        dropping, recreating, and regranting object privileges previously
        granted on the function.    If you redefine a function, Oracle
        recompiles it.    For information on recompiling functions, see the
        ALTER FUNCTION command.

        Users who had previously been granted privileges on a redefined
        function can still access the function without being regranted the
        privileges.

schema
        is the schema to contain the function.    If you omit schema, Oracle
        creates the function in your current schema.

function
        is the name of the function to be created.

argument
        is the name of an argument to the function.    If the function does
        not accept arguments, you can omit the parentheses following the
        function name.

IN
        specifies that you must supply a value for the argument when calling
        the function.    This is always true for function arguments, so this
        keyword is entirely optional.

        A procedure, rather than a stored function, can accept arguments for
        which the procedure passes a value back to the calling environment
        after execution.

datatype
        is the datatype of an argument.    An argument can have any datatype
        supported by PL/SQL.

        The datatype cannot specify a length, precision, or scale.    Oracle
        derives the length, precision, or scale of an argument from the
        environment from which the function is called.

RETURN datatype
        specifies the datatype of the function's return value.    Because
        every function must return a value, this clause is required.    The
        return value can have any datatype supported by PL/SQL.

        The datatype cannot specify a length, precision, or scale.    Oracle
        derives the length, precision, or scale of the return value from the
        environment from which the function is called.

pl/sql_subprogram_body
        is the definition of the function.    Function definitions are written
        in PL/SQL.

        To embed a CREATE FUNCTION statement inside an Oracle Precompiler
        program, you must terminate the statement with the keyword END-EXEC
        followed by the embedded SQL statement terminator for the specific
        language.

PREREQUISITES:

        Before a stored function can be created, the user SYS must run the
        SQL script DBMSSTDX.SQL.    The exact name and location of this script
        may vary depending on your operating system.

        To create a function in your own schema, you must have CREATE
        PROCEDURE system privilege.    To create a function in another user's
        schema, you must have CREATE ANY PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, you can create a
        function in another user's schema if your DBMS label dominates the
        creation label of the other user.

SEE:
 ALTER FUNCTION, CREATE PACKAGE, CREATE PACKAGE BODY, CREATE
 PROCEDURE, DROP FUNCTION

CREATE INDEX command

PURPOSE:

        To create an index on one or more columns of a table or a cluster.
        An index is a database object that contains an entry for each value
        that appears in the indexed column(s) of the table or cluster and
        provides direct, fast access to rows.

SYNTAX:

CREATE INDEX [schema.]index
 ON { [schema.]table (column [ASC|DESC][, column [ASC|DESC]] ...)
 | CLUSTER [schema.]cluster }
 [INITRANS integer] [MAXTRANS integer]
 [TABLESPACE tablespace]
 [STORAGE storage_clause]
 [PARALLEL ([DEGREE { integer | DEFAULT }]
 [INSTANCES {integer | DEFAULT }]
)
 | NOPARALLEL]
 [PCTFREE integer]
 [NOSORT]

where:

schema
        is the schema to contain the index.    If you omit schema, Oracle
        creates the index in your own schema.

index
        is the name of the index to be created.

table
        is the name of the table for which the index is to be created.    If
        you do not qualify table with schema, Oracle assumes the table is
        contained in your own schema.

column
        is the name of a column in the table.    An index can have as many as
        16 columns.    A column of an index cannot be of datatype LONG or LONG
        RAW.

ASC
DESC
        are allowed for DB2 syntax compatibility, although indexes are
        always created in ascending order.    Indexes on character data are
        created in ascending order of the character values in the database
        character set.

CLUSTER
        specifies the cluster for which a cluster index is to be created.
        If you do not qualify cluster with schema, Oracle assumes the
        cluster is contained in your current schema.    You cannot create a

        cluster index for a hash cluster.

INITRANS
MAXTRANS
        establishes values for these parameters for the index.    See the
        INITRANS and MAXTRANS parameters of the CREATE TABLE command.

TABLESPACE
        is the name of the tablespace to hold the index.    If you omit this
        option, Oracle creates the index in the default tablespace of the
        owner of the schema containing the index.

STORAGE
        establishes the storage characteristics for the index.

PARALLEL
        DEGREE specifies the number of processes that create an index
        in parallel.    DEFAULT specifies the degree of parallelism is
        based on the parallelism specified in the table's definition.

NOPARALLEL
        specifies that the index should not be created in parallel.

PCTFREE
        is the percentage of space to leave free for updates and insertions
        within each of the index's data blocks.

NOSORT
        indicates to Oracle that the rows are stored in the database in
        ascending order and therefore Oracle does not have to sort the rows
        when creating the index.

PREREQUISITES:

        To create an index in your own schema, one of these conditions must
        be true:

        * The table or cluster to be indexed must be in your own schema.
        * You must have INDEX privilege on the table to be indexed.
        * You must have CREATE ANY INDEX system privilege.

        To create an index in another schema, you must have CREATE ANY INDEX
        system privilege.

        Also, the owner of the schema to contain the index must have either
        space quota on the tablespace to contain the index or UNLIMITED
        TABLESPACE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the tablespace's label and match the table's label.
        If the table was created at DBHIGH or DBLOW, you must explicitly set
        your label to DBHIGH or DBLOW.    You can create an index in another
        user's schema if your DBMS label dominates the creation label of the
        other user.

SEE:
 ALTER INDEX, CONSTRAINT clause, DROP INDEX, STORAGE clause

CREATE PACKAGE command

PURPOSE:

        To create the specification for a stored package.    A package is an
        encapsulated collection of related procedures, functions, and other
        program objects stored together in the database.    The specification
        declares these objects.

SYNTAX:

CREATE [OR REPLACE] PACKAGE [schema.]package
 {IS | AS} pl/sql_package_spec

where:

OR REPLACE
        recreates the package specification if it already exists.    You can
        use this option to change the specification of an existing package
        without dropping, recreating, and regranting object privileges
        previously granted on the package.    If you change a package
        specification, Oracle recompiles it.    For information on recompiling
        package specifications, see the ALTER PROCEDURE command.

        Users who had previously been granted privileges on a redefined
        package can still access the package without being regranted the
        privileges.

schema
        is the schema to contain the package.    If you omit schema, Oracle
        creates the package in your own schema.

package
        is the name of the package to be created.

pl/sql_package_spec
        is the package specification.    The package specification can declare
        program objects.    Package specifications are written in PL/SQL.

        To embed a CREATE PACKAGE statement inside an Oracle Precompiler
        program, you must terminate the statement with the keyword END-EXEC
        followed by the embedded SQL statement terminator for the specific
        language.

PREREQUISITES:

        Before a package can be created, the user SYS must run the SQL
        script DBMSSTDX.SQL.    The exact name and location of this script may
        vary depending on your operating system.

        To create a package in your own schema, you must have CREATE
        PROCEDURE system privilege.    To create a package in another user's
        schema, you must have CREATE ANY PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, you can only

        create a package in another user's schema if your DBMS label
        dominates the creation label of the other user.

        To create a package, you must be using Oracle with the procedural
        option.

SEE:
 ALTER PACKAGE, CREATE FUNCTION, CREATE PACKAGE BODY, CREATE
 PROCEDURE, DROP PACKAGE

CREATE PACKAGE BODY command

PURPOSE:

        To create the body of a stored package.    A package is an
        encapsulated collection of related procedures, stored functions, and
        other program objects stored together in the database.    The body
        defines these objects.

SYNTAX:

CREATE [OR REPLACE] PACKAGE BODY [schema.]package
 {IS | AS} pl/sql_package_body

where:

OR REPLACE
        recreates the package body if it already exists.    You can use this
        option to change the body of an existing package without dropping,
        recreating, and regranting object privileges previously granted on
        it.    If you change a package body, Oracle recompiles it.    For
        information on recompiling package bodies, see the ALTER PACKAGE
        command.

        Users who had previously been granted privileges on a redefined
        package can still access the package without being regranted the
        privileges.

schema
        is the schema to contain the package.    If you omit schema, Oracle
        creates the package in your current schema.

package
        is the name of the package to be created.

pl/sql_package_body
        is the package body.    The package body can declare and define
        program objects.    Package bodies are written in PL/SQL.

        To embed a CREATE PACKAGE BODY statement inside an Oracle
        Precompiler program, you must terminate the statement with the
        keyword END-EXEC followed by the embedded SQL statement terminator
        for the specific language.

PREREQUISITES:

        Before a package can be created, the user SYS must run the SQL
        script DBMSSTDX.SQL.    The exact name and location of this script may
        vary depending on your operating system.

        To create a package in your own schema, you must have CREATE
        PROCEDURE system privilege.    To create a package in another user's
        schema, you must have CREATE ANY PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, you can only

        create a package in another user's schema if your DBMS label
        dominates the creation label of the other user.

        To create a package, you must be using Oracle with the procedural
        option.

SEE:
 ALTER PACKAGE, CREATE FUNCTION, CREATE PACKAGE, CREATE PROCEDURE,
 DROP PACKAGE

CREATE PROCEDURE command

PURPOSE:

        To create a stand-alone stored procedure.    A procedure    is a group
        of PL/SQL statements that you can call by name.

SYNTAX:

CREATE [OR REPLACE] PROCEDURE [schema.]procedure
 [(argument [IN | OUT | IN OUT] datatype
 [, argument [IN | OUT | IN OUT] datatype] ...)]
 {IS | AS} pl/sql_subprogram_body

where:

OR REPLACE
        recreates the procedure if it already exists.    You can use this
        option to change the definition of an existing procedure without
        dropping, recreating, and regranting object privileges previously
        granted on it.    If you redefine a procedure, Oracle recompiles it.
        For information on recompiling procedures, see the ALTER PROCEDURE
        command.

        Users who had previously been granted privileges on a redefined
        procedure can still access the procedure without being regranted the
        privileges.

schema
        is the schema to contain the procedure.    If you omit schema, Oracle
        creates the procedure in your current schema.

procedure
        is the name of the procedure to be created.

argument
        is the name of an argument to the procedure.    If the procedure does
        not accept arguments, you can omit the parentheses following the
        procedure name.

IN
        specifies that you must specify a value for the argument when
        calling the procedure.

OUT
        specifies that the procedure passes a value for this argument back
        to its calling environment after execution.

IN OUT
        specifies that you must specify a value for the argument when
        calling the procedure and that the procedure passes a value back to
        its calling environment after execution.

        If you omit IN, OUT, and IN OUT, the argument defaults to IN.

datatype
        is the datatype of an argument.    An argument can have any datatype
        supported by PL/SQL.

        The datatype cannot specify a length, precision, or scale.    Oracle
        derives the length, precision, or scale of an argument from the
        environment from which the procedure is called.

pl/sql_subprogram_body
        is the definition of the procedure.    Procedure definitions are
        written in PL/SQL.

        To embed a CREATE PROCEDURE statement inside an Oracle Precompiler
        program, you must terminate the statement with the keyword END-EXEC
        followed by the embedded SQL statement terminator for the specific
          language.

PREREQUISITES:

        Before a procedure can be created, the user SYS must run the SQL
        script DBMSSTDX.SQL.    The exact name and location of this script may
        vary depending on your operating system.

        To create a procedure in your own schema, you must have CREATE
        PROCEDURE system privilege.    To create a procedure in another
        schema, you must have CREATE ANY PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, you can only
        create a procedure in another user's schema if your DBMS label
        dominates the creation label of the other user.

        To create a procedure, you must be using Oracle with the procedural
        option.

SEE:
 ALTER PROCEDURE, CREATE FUNCTION, CREATE PACKAGE, CREATE PACKAGE
 BODY, DROP PROCEDURE

CREATE PROFILE command

PURPOSE:

        To create a profile.    A profile is a set of limits on database
        resources.    If you assign the profile to a user, that user cannot
        exceed these limits.

SYNTAX:

CREATE PROFILE profile
 LIMIT [SESSIONS_PER_USER {integer | UNLIMITED | DEFAULT}]
 [CPU_PER_SESSION {integer | UNLIMITED | DEFAULT}]
 [CPU_PER_CALL {integer | UNLIMITED | DEFAULT}]
 [CONNECT_TIME {integer | UNLIMITED | DEFAULT}]
 [IDLE_TIME {integer | UNLIMITED | DEFAULT}]
 [LOGICAL_READS_PER_SESSION {integer | UNLIMITED | DEFAULT}]
 [LOGICAL_READS_PER_CALL {integer | UNLIMITED | DEFAULT}]
 [COMPOSITE_LIMIT {integer | UNLIMITED | DEFAULT}]
 [PRIVATE_SGA {integer [K|M] | UNLIMITED | DEFAULT}]

where:

profile
        is the name of the profile to be created.

SESSIONS_PER_USER
        limits a user to integer concurrent sessions.

CPU_PER_SESSION
        limits the CPU time for a session.    This value is expressed in
        hundredths of seconds.

CPU_PER_CALL
        limits the CPU time for a call (a parse, execute, or fetch).    This
        value is expressed in hundredths of seconds.

CONNECT_TIME
        limits the total elapsed time of a session.    This value is expressed
        in minutes.

IDLE_TIME
        limits periods of continuous inactive time during a session.    This
        value is expressed in minutes.    Long-running queries and other
        operations are not subject to this limit.

LOGICAL_READS_PER_SESSION
        limits the number of data blocks read in a session, including blocks
        read from memory and disk, to integer blocks.

LOGICAL_READS_PER_CALL
        limits the number of data blocks read for a call to process a SQL
        statement (a parse, execute, or fetch) to integer blocks.

PRIVATE_SGA
        limits the amount of private space a session can allocate in the
        shared pool of the System Global Area (SGA) to integer bytes.    You
        can also use the K or M to specify this limit in kilobytes or
        megabytes.    This limit only applies if you are using the multi-
        threaded server architecture.    The private space for a session in
        the SGA includes private SQL and PL/SQL areas, but not shared SQL
        and PL/SQL areas.

COMPOSITE_LIMIT
        limits the total resource cost for a session.    You must express the
        value of this parameter in service units.

        Oracle calculates the total resource cost as a weighted sum of these
        resources:

                        * CPU_PER_SESSION
                        * CONNECT_TIME
                        * LOGICAL_READS_PER_SESSION
                        * PRIVATE_SGA

        For information on how to specify the weight for each session
        resource see the ALTER RESOURCE COST command.

UNLIMITED
        indicates that a user assigned this profile can use an unlimited
        amount of this resource.

DEFAULT
        omits a limit for this resource in this profile.    A user assigned
        this profile is subject to the limit for this resource specified in
        the DEFAULT profile.

PREREQUISITES:

        You must have CREATE PROFILE system privilege.

SEE:
 ALTER PROFILE, ALTER RESOURCE COST, ALTER SYSTEM, ALTER USER, DROP
 PROFILE

CREATE ROLE command

PURPOSE:

        To create a role.    A role is a set of privileges that can be granted
        to users or to other roles.

SYNTAX:

CREATE ROLE role
 [NOT IDENTIFIED
 | IDENTIFIED {BY password | EXTERNALLY}]

where:

role
        is the name of the role to be created.    Oracle Corporation
        recommends that the role contain at least one single-byte character
        regardless of whether the database character set also contains
        multi-byte characters.

NOT IDENTIFIED
        indicates that a user granted the role need not be verified when
        enabling it.

IDENTIFIED
        indicates that a user granted the role must be verified when
        enabling it with the SET ROLE command:
                        BY password
                                      The user must specify the password to Oracle when
                                      enabling the role.    The password can only contain
                                      single-byte characters from your database character
                                      set regardless of whether this character set also
                                      contains multi-byte characters.
                        EXTERNALLY
                                      The operating system verifies the user enabling to
                                      the role.    Depending on the operating system, the
                                      user may have to specify a password to the operating
                                      system when enabling the role.

        If you omit both the NOT IDENTIFIED option and the IDENTIFIED
        clause, the role defaults to NOT IDENTIFIED.

PREREQUISITES:

        You must have CREATE ROLE system privilege.

SEE:
 ALTER ROLE, DROP ROLE, GRANT (System Privileges and Roles), REVOKE
 (System Privileges and Roles), SET ROLE

CREATE ROLLBACK SEGMENT command

PURPOSE:

        To create a rollback segment.    A rollback segment is an object that
        is used by Oracle to store data necessary to reverse, or undo,
        changes made by transactions.

SYNTAX:

CREATE [PUBLIC] ROLLBACK SEGMENT rollback_segment
 [TABLESPACE tablespace]
 [STORAGE storage_clause]

where:

PUBLIC
        specifies that the rollback segment is public and is available to
        any instance.    If you omit this option, the rollback segment is
        private and is only available to the instance naming it in its
        initialization parameter ROLLBACK_SEGMENTS.

rollback_segment
        is the name of the rollback segment to be created.

TABLESPACE
        identifies the tablespace in which the rollback segment is created.
        If you omit this option, Oracle creates the rollback segment in the
        SYSTEM tablespace.

STORAGE
        specifies the characteristics for the rollback segment.

PREREQUISITES:

        You must have CREATE ROLLBACK SEGMENT system privilege.    Also, you
        must have either space quota on the tablespace to contain the
        rollback segment or UNLIMITED TABLESPACE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the tablespace's label.

SEE:
 ALTER ROLLBACK SEGMENT, CREATE DATABASE, CREATE TABLESPACE, DROP
 ROLLBACK SEGMENT, STORAGE clause

CREATE SCHEMA command

PURPOSE:

        To create multiple tables and views and perform multiple grants in a
        single transaction.

SYNTAX:

CREATE SCHEMA AUTHORIZATION schema
 { CREATE TABLE command
 | CREATE VIEW command
 | GRANT command } ...

where:

schema
        is the name of the schema.    The schema name must be the same as your
        Oracle username.

CREATE TABLE command
        is a CREATE TABLE statement to be issued as part of this CREATE
        SCHEMA statement.

CREATE VIEW command
        is a CREATE VIEW statement to be issued as part of this CREATE
        SCHEMA statement.

GRANT command
        is a GRANT statement (Objects Privileges) to be issued as part of
        this CREATE SCHEMA statement.

        The CREATE SCHEMA statement only supports the syntax of these
        commands as defined by standard SQL, rather than the complete syntax
        supported by Oracle.

PREREQUISITES:

        The CREATE SCHEMA statement can include CREATE TABLE, CREATE VIEW,
        and GRANT statements.    To issue a CREATE SCHEMA statement, you must
        have the privileges necessary to issue the included statements.

SEE:
 CREATE TABLE, CREATE VIEW, GRANT

CREATE SEQUENCE command

PURPOSE:

        To create a sequence.    A sequence is a database object from which
        multiple users may generate unique integers.    You can use sequences
        to automatically generate primary key values.

SYNTAX:

CREATE SEQUENCE [schema.]sequence
 [INCREMENT BY integer]
 [START WITH integer]
 [MAXVALUE integer | NOMAXVALUE]
 [MINVALUE integer | NOMINVALUE]
 [CYCLE | NOCYCLE]
 [CACHE integer | NOCACHE]
 [ORDER | NOORDER]

where:

schema
        is the schema to contain the sequence.    If you omit schema, Oracle
        creates the sequence in your own schema.

sequence
        is the name of the sequence to be created.

INCREMENT BY
        specifies the interval between sequence numbers.    This value can be
        any positive or negative Oracle integer, but it cannot be 0.    If
        this value is negative, then the sequence descends.    If the
        increment is positive, then the sequence ascends.    If you omit this
        clause, the interval defaults to 1.

MINVALUE
        specifies the sequence's minimum value.

NOMINVALUE
        specifies a minimum value of 1 for an ascending sequence or -10
        for a descending sequence.

        The default is NOMINVALUE.

MAXVALUE
        specifies the maximum value the sequence can generate.

NOMAXVALUE
        specifies a maximum value of 10
        for a descending sequence.

        The default is NOMAXVALUE.

START WITH

        specifies the first sequence number to be generated.    You can use
        this option to start an ascending sequence at a value greater than
        its minimum or to start a descending sequence at a value less than
        its maximum.    For ascending sequences, the default value is the
        sequence's minimum value.    For descending sequences, the default
        value is the sequence's maximum value.

CYCLE
        specifies that the sequence continues to generate values after
        reaching either its maximum or minimum value.    After an ascending
        sequence reaches its maximum value, it generates its minimum value.
        After a descending sequence reaches its minimum, it generates its
        maximum.

NOCYCLE
        specifies that the sequence cannot generate more values after
        reaching its maximum or minimum value.

        The default is NOCYCLE.

CACHE
        specifies how many values of the sequence Oracle preallocates and
        keeps in memory for faster access.    The minimum value for this
        parameter is 2.    For sequences that cycle, this value must be less
        than the number of values in the cycle.

NOCACHE
        specifies that values of the sequence are not preallocated.

        If you omit both the CACHE parameter and the NOCACHE option, Oracle
        caches 20 sequence numbers by default.    However, if you are using
        Oracle with the Parallel Server option in parallel mode and you
        specify the ORDER option, sequence values are never cached,
        regardless of whether you specify the CACHE parameter or the NOCACHE
        option.

ORDER
        guarantees that sequence numbers are generated in order of request.
        You may want to use this option if you are using the sequence
        numbers as timestamps.    Guaranteeing order is usually not important
        for sequences used to generate primary keys.

NOORDER
        does not guarantee sequence numbers are generated in order of
        request.

        If you omit both the ORDER and NOORDER options, Oracle chooses
        NOORDER by default.    Note that the ORDER option is only necessary to
        guarantee ordered generation if you are using Oracle with the
        Parallel Server option in parallel mode.    If you are using exclusive
        mode, sequence numbers are always generated in order.

PREREQUISITES:

        To create a sequence in your own schema, you must have CREATE

        SEQUENCE privilege.

        To create a sequence in another user's schema, you must have CREATE
        ANY SEQUENCE privilege.    If you are using Trusted Oracle in DBMS MAC
        mode, your DBMS label must dominate the creation label of the owner
        of the schema to contain the sequence.

SEE:
 ALTER SEQUENCE, DROP SEQUENCE

CREATE SNAPSHOT command

PURPOSE:

        To create a snapshot.    A snapshot is a table that contains the
        results of a query of one or more tables or views, often located on
        a remote database.

SYNTAX:

CREATE SNAPSHOT [schema.]snapshot
 [[PCTFREE integer] [PCTUSED integer]
 [INITRANS integer] [MAXTRANS integer]
 [TABLESPACE tablespace]
 [STORAGE storage_clause]
 [USING INDEX [PCTFREE integer | TABLESPACE tablespace
 | INITTRANS integer | MAXTRANS integer
 | STORAGE storage_clause] ...
 | [CLUSTER cluster (column [, column]...)]]
 [REFRESH [FAST | COMPLETE | FORCE] [START WITH date] [NEXT date]]
 AS subquery

where:

schema
        is the schema to contain the snapshot.    If you omit schema, Oracle
        creates the snapshot in your schema.

snapshot
        is the name of the snapshot to be created.

        Oracle chooses names for the table, views, and index used to
        maintain the snapshot by prefixing the snapshot name.    To limit
        these names to 30 bytes and allow them to contain the entire
        snapshot name, Oracle Corporation recommends that you limit your
        snapshot names to 23 bytes.

PCTFREE
PCTUSED
INITRANS
MAXTRANS
        establishes values for these parameters for the internal table
        Oracle uses to maintain the snapshot's data.

TABLESPACE
        specifies the tablespace in which the snapshot is to be created.    If
        you omit this option, Oracle creates the snapshot in the default
        tablespace of the owner of the snapshot's schema.

STORAGE
        establishes storage characteristics for the table Oracle uses to
        maintain the snapshot's data.

USING INDEX

        specifies the storage characteristics for the index on a simple
        snapshot.    If the USING INDEX clause not specified, the index is
        create with the same tablespace and storage parameters as the
        snapshot.

CLUSTER
        creates the snapshot as part of the specified cluster.    Since a
        clustered snapshot uses the cluster's space allocation, do not use
        the PCTFREE, PCTUSED, INITRANS, or MAXTRANS parameters, the
        TABLESPACE option, or the STORAGE clause in conjunction with the
        CLUSTER option.

REFRESH
        specifies how and when Oracle automatically refreshes the snapshot:
                        FAST
                                      specifies a fast refresh, or a refresh using only the
                                      updated data stored in the snapshot log associated
                                      with the master table.
                        COMPLETE
                                      specifies a complete refresh, or a refresh that re-
                                      executes the snapshot's query.
                        FORCE
                                      specifies a fast refresh if one is possible or
                                      complete refresh if a fast refresh is not possible.
                                      Oracle decides whether a fast refresh is possible at
                                      refresh time.
                                      If you omit the FAST, COMPLETE, and FORCE options,
                                      Oracle uses FORCE by default.
                        START WITH
                                      specifies a date expression for the first automatic
                                      refresh time.
                        NEXT
                                      specifies a date expression for calculating the
                                      interval between automatic refreshes.

        Both the START WITH and NEXT values must evaluate to a time in the
        future.    If you omit the START WITH value, Oracle determines the
        first automatic refresh time by evaluating the NEXT expression when
        you create the snapshot.    If you specify a START WITH value but omit
        the NEXT value, Oracle refreshes the snapshot only once.    If you
        omit both the START WITH and NEXT values or if you omit the REFRESH
        clause entirely, Oracle does not automatically refresh the snapshot.

AS subquery
        specifies the snapshot query.    When you create the snapshot, Oracle
        executes this query and places the results in the snapshot.    The
        select list can contain up to 253 expressions.    A snapshot query is
        subject to the same restrictions as a view query.

PREREQUISITES:

        To create a snapshot in your own schema, you must have CREATE
        SNAPSHOT system privilege.    To create a snapshot in another user's
        schema, you must have CREATE ANY SNAPSHOT system privilege.

        Before a snapshot can be created, the user SYS must run the SQL
        script DBMSSNAP.SQL on both the database to contain the snapshot and
        the database(s) containing the tables and views of the snapshot's
        query.    This script creates the package SNAPSHOT which contains both
        public and private stored procedures used for refreshing the
        snapshot and purging the snapshot log.    The exact name and location
        of this script may vary depending on your operating system.

        When you create a snapshot, Oracle creates a table, two views, and
        an index in the schema of the snapshot.    Oracle uses these objects
        to maintain the snapshot's data.    You must have the privileges
        necessary to create these objects.    For information on these
        privileges, see the CREATE TABLE, CREATE VIEW, and CREATE INDEX
        commands.

        The owner of the schema containing the snapshot must have either
        space quota on the tablespace to contain the snapshot or UNLIMITED
        TABLESPACE system privilege.    Also, both you (the creator) and the
        owner must also have the privileges necessary to issue the
        snapshot's query.

        To create a snapshot, you must be using Oracle with the procedural
        option.    To create a snapshot on a remote table or view, you must
        also be using the distributed option.

SEE:
 ALTER SNAPHSOT, CREATE SNAPSHOT LOG, DROP SNAPSHOT

CREATE SNAPSHOT LOG command

PURPOSE:

        To create a snapshot log.    A snapshot log is a table associated with
        the master table of a snapshot.    Oracle stores changes to the master
        table's data in the snapshot log and then uses the snapshot log to
        refresh the master table's snapshots.

SYNTAX:

CREATE SNAPSHOT LOG ON [schema.]table
 [PCTFREE integer] [PCTUSED integer]
 [INITRANS integer] [MAXTRANS integer]
 [TABLESPACE tablespace]
 [STORAGE storage_clause]

where:

schema
        is the schema containing the snapshot log's master table.    If you
        omit schema, Oracle assumes the master table is contained in your
        own schema. Oracle creates the snapshot log in the schema of its
        master table.    You cannot create a snapshot log for a table in the
        schema of the user SYS.

table
        is the name of the master table for which the snapshot log is to be
        created.    You cannot create a snapshot log for a view.

        Oracle chooses names for the table and trigger used to maintain the
        snapshot log by prefixing the master table name.    To limit these
        names to 30 bytes and allow them to contain the entire master table
        name, Oracle Corporation recommends that you limit master table
        names to 24 bytes.

PCTFREE
PCTUSED
INITRANS
MAXTRANS
        establishes values for these parameters for the snapshot log.

TABLESPACE
        specifies the tablespace in which the snapshot log is to be created.
        If you omit this option, Oracle creates the snapshot log in the
        default tablespace the owner of the snapshot log's schema.

STORAGE
        establishes storage characteristics for the snapshot log.

PREREQUISITES:

        You must have the privileges necessary to create a table in the
        schema of the master table.    For information on these privileges,
        see the CREATE TABLE command.

        Before a snapshot log can be created, the user SYS must run the SQL
        script DBMSSNAP.SQL on the database containing the master table.
        This script creates the package SNAPSHOT which contains both public
        and private stored procedures used for refreshing the snapshot and
        urging the snapshot log.    The exact name and location of this script
        may vary depending on your operating system.

        You must also have the privileges to create a trigger on the master
        table.    For information on these privileges, see the CREATE TRIGGER
        command.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the label of the tablespace in which the snapshot log
        is to be stored.

SEE:
 ALTER SNAPSHOT LOG, CREATE SNAPSHOT, DROP SNAPSHOT LOG

CREATE SYNONYM command

PURPOSE:

        To create a synonym.    A synonym is an alternative name for a table,
        view, sequence, procedure, stored function, package, snapshot, or
        another synonym.

SYNTAX:

CREATE [PUBLIC] SYNONYM [schema.]synonym
 FOR [schema.]object[@dblink]

where:

PUBLIC
        creates a public synonym.    Public synonyms are accessible to all
        users.    If you omit this option, the synonym is private and is
        accessible only within its schema.

schema
        is the schema to contain the synonym.    If you omit schema, Oracle
        creates the synonym in your own schema.

synonym
        is the name of the synonym to be created.

FOR
        identifies the object for which the synonym is created.    If you do
        not qualify object with schema, Oracle assumes that the object is in
        your own schema.    The object can be of these types:

                    * table
                    * view
                    * sequence
                    * stored procedure, function, or package
                    * snapshot
                    * synonym

        The object cannot be contained in a package.    Note that the object
        need not currently exist and you need not have privileges to access
        the object.

        You can use a complete or partial dblink to create a synonym for an
        object on a remote database where the object is located.    If you
        specify dblink and omit schema, the synonym refers to an object in
        the schema specified by the database link.    Oracle Corporation
        recommends that you specify the schema containing the object in the
        remote database.

        If you omit dblink, Oracle assumes the object is located on the
        local database.

PREREQUISITES:

        To create a private synonym in your own schema, you must have CREATE
        SYNONYM system privilege.

        To create a private synonym in another user's schema, you must have
        CREATE ANY SYNONYM system privilege.    If you are using Trusted
        Oracle in DBMS MAC mode, your DBMS label must dominate the creation
        label of the owner of schema to contain the synonym.

        To create a PUBLIC synonym, you must have CREATE PUBLIC SYNONYM
        system privilege.

SEE:
 CREATE DATABASE LINK, CREATE TABLE, CREATE VIEW

CREATE TABLE command

PURPOSE:

        To create a table, the basic structure to hold user data, specifying
        this information:

        * column definitions
        * integrity constraints
        * the table's tablespace
        * storage characteristics
        * an optional cluster
        * data from an arbitrary query

SYNTAX:

CREATE TABLE [schema.]table
 ({ column datatype [DEFAULT expr] [column_constraint] ...
 | table_constraint}
 [, { column datatype [DEFAULT expr] [column_constraint] ...
 | table_constraint}]...)
 [[PCTFREE integer] [PCTUSED integer]
 [INITRANS integer] [MAXTRANS integer]
 [TABLESPACE tablespace]
 [STORAGE storage_clause]
 [PARALLEL ([DEGREE { integer | DEFAULT }]
 [INSTANCES { integer | DEFAULT }]
)
 | NOPARALLEL]
 [CACHE | NOCACHE]
 | [CLUSTER cluster (column [, column]...)]]
 [ENABLE enable_clause
 | DISABLE disable_clause] ...
 [AS subquery]

where:

schema
        is the schema to contain the table.    If you omit schema, Oracle
        creates the table in your own schema.

table
        is the name of the table to be created.

column
        specifies the name of a column of the table.    The number of columns
        in a table can range from 1 to 254.

datatype
        is the datatype of a column.

DEFAULT
        specifies a value to be assigned to the column if a subsequent
        INSERT statement omits a value for the column.    The datatype of the

        expression must match the datatype of the column.    A DEFAULT
        expression cannot contain references to other columns, the
        pseudocolumns CURRVAL, NEXTVAL, LEVEL, and ROWNUM, or date constants
        that are not fully specified.

column_constraint
        defines an integrity constraint as part of the column definition.

table_constraint
        defines an integrity constraint as part of the table definition.

PCTFREE
        specifies the percentage of space in each of the table's data blocks
        reserved for future updates to the table's rows.    The value of
        PCTFREE must be a positive integer from 1 to 99.    A value of 0
        allows the entire block to be filled by inserts of new rows.    The
        default value is 10.    This value reserves 10% of each block for
        updates to existing rows and allows inserts of new rows to fill a
        maximum of 90% of each block.

        PCTFREE has the same function in the commands that create and alter
        clusters, indexes, snapshots, and snapshot logs.    The combination of
        PCTFREE and PCTUSED determines whether inserted rows will go into
        existing data blocks or into new blocks.

PCTUSED
        specifies the minimum percentage of used space that Oracle maintains
        for each data block of the table.    A block becomes a candidate for
        row insertion when its used space falls below PCTUSED.    PCTUSED is
        specified as a positive integer from 1 to 99 and defaults to 40.

        PCTUSED has the same function in the commands that create and alter
        clusters, snapshots, and snapshot logs.

        The sum of PCTFREE and PCTUSED must be less than 100.    You can use
        PCTFREE and PCTUSED together use space within a table more
        efficiently.

INITRANS
        specifies the initial number of transaction entries allocated within
        each data block allocated to the table.    This value can range from 1
        to 255 and defaults to 1.    In general, you should not change the
        INITRANS value from its default.

        Each transaction that updates a block requires a transaction entry
        in the block.    The size of a transaction entry depends on your
        operating system.

        This parameter ensures that a minimum number of concurrent
        transactions can update the block and helps avoid the overhead of
        dynamically allocating a transaction entry.

        The INITRANS parameter serves the same purpose in clusters, indexes,
        snapshots, and snapshot logs as in tables.    The minimum and default
        INITRANS value for a cluster or index is 2, rather than 1.

MAXTRANS
        specifies the maximum number of concurrent transactions that can
        update a data block allocated to the table.    This limit does not
        apply to queries.    This value can range from 1 to 255 and the
        default is a function of the data block size.    You should not change
        the MAXTRANS value from its default.

        If the number concurrent transactions updating a block exceeds the
        INITRANS value, Oracle dynamically allocates transaction entries in
        the block until either the MAXTRANS value is exceeded or the block
        has no more free space.

        The MAXTRANS parameter serves the same purpose in clusters,
        snapshots, and snapshot logs as in tables.

TABLESPACE
        specifies the tablespace in which Oracle creates the table.    If you
        omit this option, then Oracle creates the table in the default
        tablespace of the owner of the schema containing the table.

STORAGE
        specifies the storage characteristics for the table.    This clause
        has performance ramifications for large tables.    Storage should be
        allocated to minimize dynamic allocation of additional space.

PARALLEL
        DEGREE specifies the number of query server processes that can scan
        the table in parallel.    Either specify a positive integer or DEFAULT
        which signifies to use the initialization parameter
        PARALLEL_DEFAULT_SCANSIZE to estimate the number of query servers to use.

        INSTANCES specifies the minimum number of instances that need to be
        available before the table can be spread across all available instances
        of a Parallel Server.    A positive integer specifies the number of
        instances.    DEFAULT signifies that the parameter PARALLEL_MAX_PARTITIONSIZE
        is used to calculate whether a table is split across all instances' buffer
        caches.

NOPARALLEL
        specifies that queries on this table are not performed in parallel
        by default.    A hint in the query still causes the query to be
        performed in parallel.

CACHE
        specifies that blocks of this table are placed on the most recently
        used end of the LRU list of the buffer cache when the a full table scan
        is performed.
        This option is useful for small lookup tables.

NOCACHE
        specifies that blocks of the table in the buffer cache follow the
        standard LRU algorithm when a full table scan is performed.

CLUSTER

        specifies that the table is to be part of the cluster.    The columns
        listed in this clause are the table columns that correspond to the
        cluster's columns.    Generally, the cluster columns of a table are
        the column or columns that comprise its primary key or a portion of
        its primary key.

        Specify one column from the table for each column in the cluster
        key.    The columns are matched by position, not by name.    Since a
        clustered table uses the cluster's space allocation, do not use the
        PCTFREE, PCTUSED, INITRANS, or MAXTRANS parameters, the TABLESPACE
        option, or the STORAGE clause in conjunction with the CLUSTER
        option.

ENABLE
        enables an integrity constraint.

DISABLE
        disables an integrity constraint.

        Constraints specified in the ENABLE and DISABLE clauses of a CREATE
        TABLE statement must be defined in the statement.    You can also
        enable and disable constraints with the ENABLE and DISABLE keywords
        of the CONSTRAINT clause.    If you define a constraint but do not
        explicitly enable or disable it, Oracle enables it by default.

        You cannot use the ENABLE and DISABLE clauses in a CREATE TABLE
        statement to enable and disable triggers.

AS subquery
        inserts the rows returned by the subquery into the table upon its
        creation.

        If you include this clause, the column definitions can only specify
        column names, default values, and integrity constraints, not
        datatypes.    Oracle derives column datatypes and lengths from the
        subquery.    Oracle also automatically defines NOT NULL constraints on
        columns in the new table if they existed on the corresponding
        columns of the selected table and the subquery does not modify the
        column value with a SQL function or operator.    A CREATE TABLE
        statement cannot contain both the AS clause and a referential
        integrity constraint definition.

        The number of columns must equal the number of expressions in the
        subquery.    If all expressions in the subquery are columns, you can
        omit the columns from the table definition entirely.    In this case,
        the names of the columns of table are the same as the columns in the
        subquery.

PREREQUISITES:

        To create a table in your own schema, you must have CREATE TABLE
        system privilege.    To create a table in another user's schema, you
        must have CREATE ANY TABLE system privilege.    Also, the owner of the
        schema to contain the table must have either space quota on the
        tablespace to contain the table or UNLIMITED TABLESPACE system

        privilege.

SEE:
 ALTER TABLE, CONSTRAINT clause, CREATE CLUSTER, CREATE INDEX, CREATE
 TABLESPACE, DISABLE clause, DROP TABLE, ENABLE clause, STORAGE clause

CREATE TABLESPACE command

PURPOSE:

        To create a tablespace.    A tablespace is an allocation of space in
        the database that can contain objects.

SYNTAX:

CREATE TABLESPACE tablespace
 DATAFILE filespec [, filespec] ...
 [DEFAULT STORAGE storage_clause]
 [ONLINE | OFFLINE]

where:

tablespace
        is the name of the tablespace to be created.

DATAFILE
        specifies the data file or files to comprise the tablespace.

DEFAULT STORAGE
        specifies the default storage parameters for all objects created in
        the tablespace.

ONLINE
        makes the tablespace available immediately after creation to users
        who have been granted access to the tablespace.

OFFLINE
        makes the tablespace unavailable after immediately after creation.

        If you omit both the ONLINE and OFFLINE options, Oracle creates the
        tablespace online by default.    The data dictionary view
        DBA_TABLESPACES indicates whether each tablespace is online or
        offline.

PREREQUISITES:

        You must have CREATE TABLESPACE system privilege.    Also, the SYSTEM
        tablespace must contain at least two rollback segments including the
        SYSTEM rollback segment.

SEE:
 ALTER TABLESPACE, DROP TABLESPACE

CREATE TRIGGER command

PURPOSE:

        To create and enable a database trigger.    A database trigger is a
        stored PL/SQL block that is associated with a table.    Oracle
        automatically executes a trigger when a specified SQL statement is
        issued against the table.

SYNTAX:

CREATE [OR REPLACE] TRIGGER [schema.]trigger
 {BEFORE | AFTER}
 {DELETE | INSERT | UPDATE [OF column [, column] ...]}
[OR {DELETE | INSERT | UPDATE [OF column [, column] ...]}] ...
 ON [schema.]table
 [[REFERENCING { OLD [AS] old [NEW [AS] new]
 | NEW [AS] new [OLD [AS] old] }]
 FOR EACH ROW
 [WHEN (condition)]]
 pl/sql_block

where:

OR REPLACE
        recreates the trigger if it already exists.    You can use this option
        to change the definition of an existing trigger without first
        dropping it.

schema
        is the schema to contain the trigger.    If you omit schema, Oracle
        creates the trigger in your own schema.

trigger
        is the name of the trigger to be created.

BEFORE
        indicates that Oracle fires the trigger before executing the
        triggering statement.

AFTER
        indicates that Oracle fires the trigger after executing the
        triggering statement.

DELETE
        indicates that Oracle fires the trigger whenever a DELETE statement
        removes a row from the table.

INSERT
        indicates that Oracle fires the trigger whenever an INSERT
        statement adds a row to table.

UPDATE...OF
        indicates that Oracle fires the trigger whenever an UPDATE statement

        changes a value in one of the columns specified in the OF clause.
        If you omit the OF clause, Oracle fires the trigger whenever an
        UPDATE statement changes a value in any column of the table.

ON
        specifies the schema and name of the table on which the trigger is
        to be created.    If you omit schema, Oracle assumes the table is in
        our own schema.    You cannot create a trigger on a table in the
        schema SYS.

REFERENCING
        specifies correlation names.    You can use correlation names in the
        PL/SQL block and WHEN clause of a row trigger to refer specifically
        to old and new values of the current row.    The default correlation
        names are OLD and NEW.    If your row trigger is associated with a
        table named OLD or NEW, you can use this clause to specify different
        correlation names to avoid confusion between the table name and the
        correlation name.

FOR EACH ROW
        designates the trigger to be a row trigger.    Oracle fires a row
        trigger once for each row that is affected by the triggering
        statement and meets the optional trigger constraint defined in the
        WHEN clause.

        If you omit this clause, the trigger is a statement trigger.    Oracle
        fires a statement trigger only once when the triggering statement is
        issued if the optional trigger constraint is met.

WHEN
        specifies the trigger restriction.    The trigger restriction contains
        a SQL condition that must be satisfied for Oracle to fire the
        trigger.    This condition must contain correlation names and cannot
        contain a query.

        You can only specify a trigger restriction for a row trigger.
        Oracle evaluates this condition for each row affected by the
        triggering statement.

pl/sql_block
        is the PL/SQL block that Oracle executes to fire the trigger.

        Note that the PL/SQL block of a trigger cannot contain transaction
        control SQL statements (COMMIT, ROLLBACK, and SAVEPOINT).

To embed a CREATE TRIGGER statement inside an Oracle Precompiler
program, you must terminate the statement with the keyword END-EXEC
followed by the embedded SQL statement terminator for the specific
language.

PREREQUISITES:

        Before a trigger can be created, the user SYS must run the SQL
        script DBMSSTDX.SQL.    The exact name and location of this script may
        vary depending on your operating system.

        To issue this statement, you must have one of these system
        privileges:
                        CREATE    TRIGGER
                                      This system privilege allows you to create a trigger
                                      in your own schema on a table in your own schema.
                        CREATE ANY TRIGGER
                                      This system privilege allows you to create a trigger
                                      in any user's schema on a table in any user's schema.

        If the trigger issues SQL statements or calls procedures or
        functions, then the owner of the schema to contain the trigger must
        have the privileges necessary to perform these operations.    These
        privileges must be granted directly to the owner, rather than
        acquired through roles.

        To create a trigger, you must be using Oracle with the procedural
        option.

SEE:
 ALTER TRIGGER, DISABLE clause, DROP TRIGGER, ENABLE clause

CREATE USER command

PURPOSE:

        To create a database user, or an account through which you can log
        in to the database, and establish the means by which Oracle permits
        access by the user.    You can optionally assign these properties to
        the user:

        * default tablespace
        * temporary tablespace
        * quotas for allocating space in tablespaces
        * profile containing resource limits

SYNTAX:

CREATE USER user
 IDENTIFIED {BY password | EXTERNALLY}
 [DEFAULT TABLESPACE tablespace]
 [TEMPORARY TABLESPACE tablespace]
 [QUOTA {integer [K|M] | UNLIMITED} ON tablespace] ...
 [PROFILE profile]

where:

user
        is the name of the
        user to be created.    This name can only contain characters from your
        database character set.    Oracle Corporation recommends that the user
        contain at least one single-byte character regardless of whether the
        database character set also contains multi-byte characters.

IDENTIFIED
        indicates how Oracle permits user access:
                        BY password
                                      The user must specify this password to logon.    The
                                      password can only contain single-byte characters from
                                      your database character set regardless of whether
                                      this character set also contains multi-byte
                                      characters.
                        EXTERNALLY
                                      Oracle verifies user access through the operating
                                      system.

DEFAULT TABLESPACE
        identifies the default tablespace for objects that the user creates.
        If you omit this clause, objects default to the SYSTEM tablespace.

TEMPORARY TABLESPACE
        identifies the tablespace for the user's temporary segments.    If you
        omit this clause, temporary segments default to the SYSTEM
        tablespace.

QUOTA
        allows the user to allocate space in the tablespace and optionally

        establishes a quota of integer bytes.    This quota is the maximum
        space in the tablespace the user can allocate.    You can also use the
        K or M to specify the quota in kilobytes or megabytes.
                        UNLIMITED
                                      allows the user to allocate space in the tablespace
                                      without bound.

PROFILE
        assigns the profile named profile to the user.    The profile limits
        the amount of database resources the user can use.    If you omit this
        clause, Oracle assigns the DEFAULT profile to the user.

PREREQUISITES:

        You must have CREATE USER system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, you must meet
        additional prerequisites to perform the optional assignments of this
        statement:

        * To assign a default or temporary tablespace, your DBMS label must
            dominate the tablespace's creation label.
        * To assign a profile, your DBMS label must dominate the profile's
            creation label.

SEE:
 ALTER USER, CREATE PROFILE, CREATE TABLESPACE

CREATE VIEW command

PURPOSE:

        To define a view, a logical table based on one or more tables or
        views.

SYNTAX:

CREATE [OR REPLACE] [FORCE | NOFORCE] VIEW [schema.]view
 [(alias [,alias]...)]
 AS subquery
 [WITH CHECK OPTION [CONSTRAINT constraint]]

where:

OR REPLACE
        recreates the view if it already exists.    You can use this option to
        change the definition of an existing view without dropping,
        recreating, and regranting object privileges previously granted on
        it.

FORCE
        creates the view regardless of whether the view's base tables exist
        or the owner of the schema containing the view has privileges on
        them.    Note that both of these conditions must be true before any
        SELECT, INSERT, UPDATE, or DELETE statements can be issued against
        the view.

NOFORCE
        creates the view only if the base tables exist and the owner of the
        schema containing the view has privileges on them.

        The default is NOFORCE.

schema
        is the schema to contain the view.    If you omit schema, Oracle
        creates the view in your own schema.

view
        is the name of the view.

alias
        specifies names for the expressions selected by the view's
        query.    The number of aliases must match the number of expressions
        selected by the view.    Aliases must follow the rules for naming
        schema objects.    Aliases must be unique within the view.

        If you omit the aliases, Oracle derives them from the columns or
        column aliases in the view's query.    For this reason, you must use
        aliases if the view's query contains expressions rather than only
        column names.

AS subquery
        identifies columns and rows of the table(s) that the view is based

        on.    A view's query can be any SELECT statement without the ORDER BY
        or FOR UPDATE clauses.    Its select list can contain up to 254
        expressions.

WITH CHECK OPTION
        specifies that inserts and updates performed through the view must
        result in rows that the view query can select.    The CHECK OPTION
        cannot make this guarantee if there is a subquery in the query of
        this view or any view on which this view is based.

CONSTRAINT
        is the name assigned to the CHECK OPTION constraint. If you omit
        this identifier, Oracle automatically assigns the constraint a name
        of this form:
                        SYS_Cn
        where
                        n
                                      is an integer that makes the constraint name
                                      unique within the database.

PREREQUISITES:

        To create a view in your own schema, you must have CREATE VIEW
        system privilege.    To create a view in another user's schema, you
        must have CREATE ANY VIEW system privilege.

        The owner of the schema containing the view must have the privileges
        necessary to either select, insert, update, or delete rows from all
        the tables or views on which the view is based.    For information on
        these privileges, see the SELECT, INSERT, UPDATE, and DELETE
        commands.    The owner must be granted these privileges directly,
        rather than through a role.

SEE:
 CREATE TABLE, CREATE SYNONYM, DROP VIEW, RENAME

DELETE command

PURPOSE:

        To remove rows from a table or from a view's base table.

SYNTAX:

DELETE [FROM] [schema.]{table | view}[@dblink] [alias]
 [WHERE condition]

where:

schema
        is the schema containing the table or view.    If you omit schema,
        Oracle assumes the table or view is in your own schema.

table
view
        is the name of a table from which the rows are to be deleted.    If
        you specify view, Oracle deletes rows from the view's base table.

dblink
        is the complete or partial name of a database link to a remote
        database where the table or view is located.    You can only delete
        rows from a remote table or view if you are using Oracle with the
        distributed option.

        If you omit dblink, Oracle assumes that the table or view is located
        on the local database.

alias
        is an alias assigned to the table.    Aliases are generally used in
        DELETE statements with correlated queries.

WHERE
        deletes only rows that satisfy the condition.    The condition can
        reference the table and can contain a subquery.    If you omit this
        clause, Oracle deletes all rows from the table.

PREREQUISITES:

        For you to delete rows from a table, the table must be in your own
        schema or you must have DELETE privilege on the table.

        For you to delete rows from the base table of a view, the owner of
        the schema containing the view must have DELETE privilege on the
        base table.    Also, if the view is in a schema other than your own,
        you must be granted DELETE privilege on the view.

        The DELETE ANY TABLE system privilege also allows you to delete rows
        from any table or any view's base table.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the creation label of the table or view or you must

        meet one of these criteria:

        * If the creation label of the table or view is higher than your
            DBMS label, you must have READUP and WRITEUP system privileges.
        * If the creation label of your table or view is noncomparable to
            your DBMS label, you must have READUP, WRITEUP, and WRITEDOWN
            system privileges.

        In addition, for each row to be deleted, your DBMS label must match
        the row's label or you must meet one of these criteria:

        * If the row's label is higher than your DBMS label, you must have
            READUP and WRITEUP system privileges.
        * If the row's label is lower than your DBMS label, you must have
            WRITEDOWN system privilege.
        * If the row's label is noncomparable to your DBMS label, you must
            have READUP, WRITEUP, and WRITEDOWN system privileges.

SEE:
 DROP TABLE, TRUNCATE

DISABLE clause

PURPOSE:

        To disable an integrity constraint or all triggers associated with a
        table:

        * If you disable an integrity constraint, Oracle does not enforce
            it.    However, disabled integrity constraints appear in the data
            dictionary along with enabled integrity constraints.
        * If you disable a trigger, Oracle does not fire it if its
            triggering condition is satisfied.

SYNTAX:

DISABLE { { UNIQUE (column [, column] ...)
 | PRIMARY KEY
 | CONSTRAINT constraint }
 [CASCADE]
 | ALL TRIGGERS }

where:

UNIQUE
        disables the UNIQUE constraint defined on the specified column or
        combination of columns.

PRIMARY KEY
        disables the table's PRIMARY KEY constraint.

CONSTRAINT
        disables the integrity constraint with the name constraint.

CASCADE
        disables any integrity constraints that depend on the specified
        integrity constraint.    To disable a primary or unique key that is
        part of a referential integrity constraint, you must specify this
        option.

ALL TRIGGERS
        disables all triggers associated with the table.    This option can
        only appear in a DISABLE clause in an ALTER TABLE statement, not a
        CREATE TABLE statement.

PREREQUISITES:

        A DISABLE clause that disables an integrity constraint can appear in
        either a CREATE TABLE or ALTER TABLE command.    To disable an
        integrity constraint, you must have the privileges necessary to
        issue one of these commands.    For information on these privileges,
        see the CREATE TABLE and ALTER TABLE commands.

        For an integrity constraint to appear in a DISABLE clause, one of
        these conditions must be true:

        * the integrity constraint must be defined in the containing
            statement.
        * the integrity constraint must already have been defined and
            enabled in previously issued statements.

        A DISABLE clause that disables triggers can only appear in an ALTER
        TABLE statement.    To disable triggers with a DISABLE clause, you
        must have the privileges necessary to issue this statement.    For
        information on these privileges, see the ALTER TABLE command.    Also,
        the triggers must be in your own schema or you must have ALTER ANY
        TRIGGER system privilege.

SEE:
 ALTER TABLE, ALTER TRIGGER, CONSTRAINT clause, CREATE TABLE, CREATE
 TRIGGER, ENABLE clause

DROP clause

PURPOSE:

        To remove an integrity constraint from the database.

SYNTAX:

DROP { PRIMARY KEY
 | UNIQUE (column [, column] ...)
 | CONSTRAINT constraint }
 [CASCADE]

where:

PRIMARY KEY
        drops the table's PRIMARY KEY constraint.

UNIQUE
        drops the UNIQUE constraint on the specified columns.

CONSTRAINT
        drops the integrity constraint named constraint.

CASCADE
        drops all other integrity constraints that depend on the dropped
        integrity constraint.

PREREQUISITES:

        The DROP clause can appear in an ALTER TABLE statement.    To drop an
        integrity constraint, you must have the privileges necessary to
        issue an ALTER TABLE statement.    For information on these
        privileges, see the ALTER TABLE command earlier.

SEE:
 ALTER TABLE, CONSTRAINT clause

DROP CLUSTER command

PURPOSE:

        To remove a cluster from the database.

SYNTAX:

DROP CLUSTER [schema.]cluster
 [INCLUDING TABLES [CASCADE CONSTRAINTS]]

where:

schema
        is the schema containing the cluster.    If you omit schema, Oracle
        assumes the cluster is in your own schema.

cluster
        is the name of the cluster to be dropped.

INCLUDING TABLES
        drops all tables that belong to the cluster.    If you omit this
        clause, and the cluster still contains tables, Oracle returns an
        error and does not drop the cluster.

CASCADE CONSTRAINTS
        drops all referential integrity constraints from tables outside the
        cluster that refer to primary and unique keys in the tables of the
        cluster.    If you omit this option and such referential integrity
        constraints exist, Oracle returns an error and does not drop the
        cluster.

PREREQUISITES:

        The cluster must be in your own schema or you must have DROP ANY
        CLUSTER system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the cluster's creation label or you must satisfy one of
        these criteria:

        * If the cluster's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the cluster's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the cluster's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 DROP TABLE

DROP DATABASE LINK command

PURPOSE:

        To remove a database link from the database.

SYNTAX:

DROP [PUBLIC] DATABASE LINK dblink

where:

PUBLIC
        must be specified to drop a PUBLIC database link.

dblink
        specifies the database link to be dropped.

PREREQUISITES:

        To drop a private database link, the database link must be in your
        own schema.    To drop a PUBLIC database link, you must have DROP
        PUBLIC DATABASE LINK system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the database link's creation label or you must satisfy
        one of these criteria:

        * If the database link's creation label is higher than your DBMS
            label, you must have READUP and WRITEUP system privileges.
        * If the database link's creation label is lower than your DBMS
            label, you must have WRITEDOWN system privilege.
        * If the database link's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN
            system privileges.

SEE:
 CREATE DATABASE LINK

DROP FUNCTION command

PURPOSE:

        To remove a stand-alone stored function from the database.

SYNTAX:

DROP FUNCTION [schema.]function

where:

schema
        is the schema containing the function.    If you omit schema, Oracle
        assumes the function is in your own schema.

function
        is the name of the function to be dropped.

PREREQUISITES:

        The function must be in your own schema or you must have DROP ANY
        PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the function's creation label or you must satisfy one of
        these criteria:

        * If the function's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the function's creation label is lower than your DBMS label,
            you must have WRITEDOWN system privilege.
        * If the function's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE FUNCTION

DROP INDEX command

PURPOSE:

        To remove an index from the database.

SYNTAX:

DROP INDEX [schema.]index

where:

schema
        is the schema containing the index.    If you omit schema, Oracle
        assumes the index is in your own schema.

index
        is the name of the index to be dropped.

PREREQUISITES:

        The index must be in your own schema or you must have DROP ANY INDEX
        system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the index's creation label or you must satisfy one of
        these criteria:

        * If the index's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the index's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the index's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 ALTER INDEX, CREATE INDEX, CREATE TABLE

DROP PACKAGE command

PURPOSE:

        To remove a stored package from the database.

SYNTAX:

DROP PACKAGE [BODY] [schema.]package

where:

BODY
        drops only the body of the package.    If you omit this option, Oracle
        drops both the body and specification of the package.

schema
        is the schema containing the package.    If you omit schema, Oracle
        assumes the package is in your own schema.

package
        is the name of the package to be dropped.

PREREQUISITES:

        The package must be in your own schema or you must have DROP ANY
        PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the cluster's creation label or you must satisfy one of
        these criteria:

        * If the package's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the package's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the package's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE PACKAGE

DROP PROCEDURE command

PURPOSE:

        To remove a stand-alone stored procedure from the database.

SYNTAX:

DROP PROCEDURE [schema.]procedure

where:

schema
        is the schema containing the procedure.    If you omit schema, Oracle
        assumes the procedure is in your own schema.

procedure
        is the name of the procedure to be dropped.

PREREQUISITES:

        The procedure must be in your own schema or you must have DROP ANY
        PROCEDURE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the cluster's creation label or you must satisfy one of
        these criteria:

        * If the procedure's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the procedure's creation label is lower than your DBMS label,
            you must have WRITEDOWN system privilege.
        * If the procedure's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE PROCEDURE

DROP PROFILE command

PURPOSE:

        To remove a profile from the database.

SYNTAX:

DROP PROFILE profile
 [CASCADE]

where:

profile
        is the name of the profile to be dropped.

CASCADE
        deassigns the profile from any users to whom it is assigned.    Oracle
        automatically assigns the DEFAULT profile to such users.    You must
        specify this option to drop a profile that is currently assigned to
        users.

PREREQUISITES:

        You must have DROP PROFILE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the profile's creation label or you must satisfy one of
        these criteria:

        * If the profile's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the profile's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the profile's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE PROFILE

DROP ROLE command

PURPOSE:

        To remove a role from the database.

SYNTAX:

DROP ROLE role

where:

role
        is the role to be dropped.

PREREQUISITES:

        You must have been granted the role with the ADMIN OPTION or have
        DROP ANY ROLE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the role's creation label or you must satisfy one of
        these criteria:

        * If the role's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the role's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.

        If the role's creation label and your DBMS label are noncomparable,
        you must have READUP, WRITEUP, and WRITEDOWN system privileges.

SEE:
 CREATE ROLE, SET ROLE

DROP ROLLBACK SEGMENT command

PURPOSE:

        To remove a rollback segment from the database.

SYNTAX:

DROP ROLLBACK SEGMENT rollback_segment

where:

rollback_segment
        is the name the rollback segment to be dropped.

PREREQUISITES:

        You must have DROP ROLLBACK SEGMENT system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the rollback segment's creation label or you must satisfy
        one of these criteria:

        * If the rollback segment's creation label is higher than your DBMS
            label, you must have READUP and WRITEUP system privileges.
        * If the rollback segment's creation label is lower than your DBMS
            label, you must have WRITEDOWN system privilege.
        * If the rollback segment's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 ALTER ROLLBACK SEGMENT, CREATE ROLLBACK SEGMENT, CREATE TABLESPACE

DROP SEQUENCE command

PURPOSE:

        To remove a sequence from the database.

SYNTAX:

DROP SEQUENCE [schema.]sequence

where:

schema
        is the schema containing the sequence.    If you omit schema, Oracle
        assumes the sequence is in your own schema.

sequence
        is the name of the sequence to be dropped.

PREREQUISITES:

        The sequence must be in your own schema or you must have DROP ANY
        SEQUENCE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the sequence's creation label or you must satisfy one of
        these criteria:

        * If the sequence's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the sequence's creation label is lower than your DBMS label,
            you must have WRITEDOWN system privilege.
        * If the sequence's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 ALTER SEQUENCE, CREATE SEQUENCE

DROP SNAPSHOT command

PURPOSE:

        To remove a snapshot from the database.

SYNTAX:

DROP SNAPSHOT [schema.]snapshot

where:

schema
        is the schema containing the snapshot.    If you omit schema, Oracle
        assumes the snapshot is in your own schema.

snapshot
        is the name of the snapshot to be dropped.

PREREQUISITES:

        The snapshot must be in your own schema or you must have DROP ANY
        SNAPSHOT system privilege.    You must also have the privileges to
        drop the internal table, views, and index that Oracle uses to
        maintain the snapshot's data.    For information on these privileges,
        see the DROP TABLE, DROP VIEW, and DROP INDEX commands.

SEE:
 CREATE SNAPSHOT

DROP SNAPSHOT LOG command

PURPOSE:

        To remove a snapshot log from the database.

SYNTAX:

DROP SNAPSHOT LOG ON [schema.]table

where:

schema
        is the schema containing the snapshot log and its master table.    If
        you omit schema, Oracle assumes the snapshot log and master table
        are in your own schema.

table
        is the name of the master table associated with the snapshot log to
        be dropped.

PREREQUISITES:

        Since a snapshot log consists of a table and a trigger, the
        privileges that authorize operations on it are the same as for a
        table.    To drop a snapshot log, you must have the privileges listed
        for the DROP TABLE command.    You must also have the privileges to
        drop a trigger from the snapshot log's master table.    For
        information on these privileges, see the DROP TRIGGER command.

SEE:
 CREATE SNAPSHOT LOG

DROP SYNONYM command

PURPOSE:

        To remove a synonym from the database.

SYNTAX:

DROP [PUBLIC] SYNONYM [schema.]synonym

where:

PUBLIC
        must be specified to drop a public synonym.

schema
        is the schema containing the synonym.    If you omit schema, Oracle
        assumes the synonym is in your own schema.

synonym
        is the name of the synonym to be dropped.

PREREQUISITES:

        If you want to drop a private synonym, either the synonym must be in
        your own schema or you must have DROP ANY SYNONYM system privilege.
        If you want to drop a PUBLIC synonym, either the synonym must be in
        your own schema or you must have DROP ANY PUBLIC SYNONYM system
        privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the synonym's creation label or you must satisfy one of
        these criteria:

        * If the synonym's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the synonym's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the synonym's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE SYNONYM

DROP TABLE command

PURPOSE:

        To remove a table and all its data from the database.

SYNTAX:

DROP TABLE [schema.]table
 [CASCADE CONSTRAINTS]

where:

schema
        is the schema containing the table.    If you omit schema, Oracle
        assumes the table is in your own schema.

table
        is the name of the table to be dropped.

CASCADE CONSTRAINTS
        drops all referential integrity constraints that refer to primary
        and unique keys in the dropped table.    If you omit this option, and
        such referential integrity constraints exist, Oracle returns an
        error and does not drop the table.

PREREQUISITES:

        The table must be in your own schema or you must have DROP ANY TABLE
        system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the table's creation label or you must satisfy one of
        these criteria:

        * If the table's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the table's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the table's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 ALTER TABLE, CREATE INDEX, CREATE TABLE, DROP CLUSTER

DROP TABLESPACE command

PURPOSE:

        To remove a tablespace from the database.

SYNTAX:

DROP TABLESPACE tablespace
 [INCLUDING CONTENTS [CASCADE CONSTRAINTS]]

where:

tablespace
        is the name of the tablespace to be dropped.

INCLUDING CONTENTS
        drops all the content of the tablespace.    You must specify this
        clause to drop a tablespace that contains any database objects.    If
        you omit this clause, and the tablespace is not empty, Oracle
        returns an error and does not drop the tablespace.

CASCADE CONSTRAINTS
        drops all referential integrity constraints from tables outside the
        tablespace that refer to primary and unique keys in the tables of
        the tablespace.    If you omit this option and such referential
        integrity constraints exist, Oracle returns an error and does not
        drop the tablespace.

PREREQUISITES:

        You must have DROP TABLESPACE system privilege.    No rollback
        segments in the tablespace can be assigned active transactions.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the tablespace's creation label or you must satisfy one
        of these criteria:

        * If the tablespace's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the tablespace's creation label is lower than your DBMS label,
            you must have WRITEDOWN system privilege.
        * If the tablespace's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 ALTER TABLESPACE, CREATE DATABASE, CREATE TABLESPACE

DROP TRIGGER command

PURPOSE:

        To remove a database trigger from the database.

SYNTAX:

DROP TRIGGER [schema.]trigger

where:

schema
        is the schema containing the trigger.    If you omit schema, Oracle
        assumes the trigger is in your own schema.

trigger
        is the name of the trigger to be dropped.

PREREQUISITES:

        The trigger must be in your own schema or you must have DROP ANY
        TRIGGER system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the trigger's creation label or you must satisfy one of
        these criteria:

        * If the trigger's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the trigger's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the trigger's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE TRIGGER

DROP USER command

PURPOSE:

        To remove a database user and optionally remove the user's objects.

SYNTAX:

DROP USER user [CASCADE]

where:

user
        is the user to be dropped.

CASCADE
        drops all objects in the user's schema before dropping the user.
        You must specify this option to drop a user whose schema contains
        any objects.

PREREQUISITES:

        You must have DROP USER system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the user's creation label or you must satisfy one of
        these criteria:

        * If the user's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the user's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the user's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE USER, other DROP commands

DROP VIEW command

PURPOSE:

        To remove a view from the database.

SYNTAX:

DROP VIEW [schema.]view

where:

schema
        is the schema containing the view.    If you omit schema, Oracle
        assumes the view is in your own schema.

view
        is the name of the view to be dropped.

PREREQUISITES:

        The view must be in your own schema or you must have DROP ANY VIEW
        system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the view's creation label or you must satisfy one of
        these criteria:

        * If the view's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the view's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the view's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE SYNONYM, CREATE TABLE, CREATE VIEW

ENABLE clause

PURPOSE:

        To enable an integrity constraint or all triggers associated with a
        table:

        * If you enable a constraint, Oracle enforces it by applying it to
            all data in the table.    All table data must satisfy an enabled
            constraint.
        * If you enable a trigger, Oracle fires the trigger whenever its
            triggering condition is satisfied.

SYNTAX:

ENABLE { {UNIQUE (column [, column] ...)
 |PRIMARY KEY
 |CONSTRAINT constraint}
 [USING INDEX [INITRANS integer]
 [MAXTRANS integer]
 [TABLESPACE tablespace]
 [STORAGE storage_clause]
 [PCTFREE integer]
 [PARALLEL [integer] | NOPARALLEL]
 [EXCEPTIONS INTO [schema.]table]
 | ALL TRIGGERS }

where:

UNIQUE
        enables the UNIQUE constraint defined on the specified column or
        combination of columns.

PRIMARY KEY
        enables the table's PRIMARY KEY constraint.

CONSTRAINT
        enables the integrity constraint named constraint.

USING INDEX
        specifies parameters for the index Oracle creates to enforce a
        UNIQUE or PRIMARY KEY constraint.    Oracle gives the index the same
        name as the constraint.    You can choose the values of the INITRANS,
        MAXTRANS, TABLESPACE, STORAGE, and PCTFREE parameters for the index.
        For information on these parameters, see the CREATE TABLE command.

        Only use these parameters when enabling UNIQUE and PRIMARY KEY
        constraints.

    PARALLEL
          specifies the number of processes that create the index in parallel.
          You can only specify positive integer values greater than 1.    If you
          do not specify an integer, the degree of parallelism is based on
          the parallelism specified in the table's definition.

    NOPARALLEL
          specifies that the index should not be created in parallel.

EXCEPTIONS INTO
        identifies an table into which Oracle places information about rows
        that violate the integrity constraint.    The table must exist before
        you use this option.    If you omit schema, Oracle assumes the
        exception table is in your own schema.    The exception table must be
        on your local database.

ALL TRIGGERS
        enables all triggers associated with the table.    You can only use
        this option in an ENABLE clause in an ALTER TABLE statement, not a
        CREATE TABLE statement.

PREREQUISITES:

        An ENABLE clause that enables an integrity constraint can appear in
        either a CREATE TABLE or ALTER TABLE statement.    To enable a
        constraint in this manner, you must have the privileges necessary to
        issue one of these statements.    For information on these privileges,
        see the CREATE TABLE or ALTER TABLE command.

        If you enable a UNIQUE or PRIMARY KEY constraint, Oracle creates an
        index on the columns of the unique or primary key in the schema
        containing the table.    To enable such a constraint, you must have
        the privileges necessary to create the index.    For information on
        these privileges, see the CREATE INDEX command.

        If you enable a referential integrity constraint, the referenced
        UNIQUE or PRIMARY KEY constraint must already be enabled.

        For an integrity constraint to appear in an ENABLE clause, one of
          these conditions must be true:

        * the integrity constraint must be defined in the containing
            statement
        * the integrity constraint must already have been defined and
            disabled in a previously issued statement

        An ENABLE clause that enables triggers can appear in an ALTER TABLE
        statement.    To enable triggers with the ENABLE clause, you must have
        the privileges necessary to issue this statement.    For information
        on these privileges, see the ALTER TABLE command.    Also, the
        triggers must be in your own schema or you must have ALTER ANY
        TRIGGER system privilege.

SEE:
 ALTER TABLE, ALTER TRIGGER, CONSTRAINT clause, CREATE TABLE, CREATE
 TRIGGER, DISABLE clause, STORAGE clause

EXPLAIN PLAN command

PURPOSE:

        To determine the execution plan Oracle follows to execute a
        specified SQL statement.    This command inserts a row describing each
        step of the execution plan into a specified table.    If you are using
        cost-based optimization, this command also determines the cost of
        executing the statement.

SYNTAX:

EXPLAIN PLAN
 [SET STATEMENT ID = 'text']
 [INTO [schema.]table[@dblink]]
 FOR statement

where:

SET
        specifies the value of the STATEMENT_ID column for the rows of the
        execution plan in the output table.    If you omit this clause, the
        STATEMENT_ID value defaults to null.

INTO
        specifies the schema, name, and database containing the output
        table.    This table must exist before you use the EXPLAIN PLAN
        command.    If you omit schema, Oracle assumes the table is in your
        own schema.

        The dblink can be a complete or partial name of a database link to a
        remote Oracle7 database where the output table is located.    You can
        only specify a remote output table if you are using Oracle with the
        distributed option.    If you omit dblink, Oracle assumes the table is
        on your local database.

        If you omit the INTO clause altogether, Oracle assumes an output
        table named PLAN_TABLE in your own schema on your local database.

FOR
        specifies a SELECT, INSERT, UPDATE, or DELETE statement for which
        the execution plan is generated.

PREREQUISITES:

        To issue an EXPLAIN PLAN statement, you must have the privileges
        necessary to insert rows into an existing output table that you
        specify to hold the execution plan.    For information on these
        privileges, see the INSERT command.

        You must also have the privileges necessary to execute the SQL
        statement for which you are find the execution plan.    If the SQL
        statement accesses a view, you must have privileges to access any
        tables and views on which the view is based.    If the view is based
        on another view that is based on a table, you must have privileges

        to access both the other view and its underlying table.

        To examine the execution plan produced by an EXPLAIN PLAN statement,
        you must have the privileges necessary to query the output table.
        For more information on these privileges, see the SELECT command.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the output table's creation label or you must satisfy
        one of these criteria:

        * If the output table's creation label is higher than your DBMS
            label, you must have READUP and WRITEUP system privileges.
        * If the output table's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
        Appendix B, Performance Diagnostic Tools, in the Oracle7 Server
        Application Developer's Guide.

Filespec statement

PURPOSE:

        To either specify a file as a data file or specify a group of one or
        more files as a redo log file group.

SYNTAX:

Data files:

'filename' [SIZE integer [K|M]] [REUSE]

Redo log file groups:

{ 'filename'
| ('filename' [, 'filename'] ...)}
 [SIZE integer [K|M]] [REUSE]

where:

'filename'
        is the name of either a data file or a redo log file member.    A redo
        log file group can have one or more members, or copies.    Each
        'filename' must be fully specified according to the conventions for
        your operating system.

SIZE
        specifies the size of the file.    If you omit this parameter, the
        file must already exist.
                        K
                                      specifies the size in kilobytes.
                        M
                                      specifies the size in megabytes.

        If you omit K and M, the size is specified in bytes.

REUSE
        allows Oracle to reuse an existing file.    If the file already
        exists, Oracle verifies that its size matches the value of the SIZE
        parameter.    If the file does not exist, Oracle creates it.    If you
        omit this option, the file must not already exist and Oracle creates
        the file.

        The REUSE option is only significant when used with the SIZE option.
        If you omit the SIZE option, Oracle expects the file to exist
        already.    Note that whenever Oracle uses an existing file, the
        file's previous contents are lost.

PREREQUISITES:

        A filespec can appear in either CREATE DATABASE, ALTER DATABASE,
        CREATE TABLESPACE, or ALTER TABLESPACE commands.    You must have the
        privileges necessary to issue one of these commands.    For
        information on these privileges, see the CREATE DATABASE, ALTER

        DATABASE, CREATE TABLESPACE, and ALTER TABLESPACE commands.

SEE:
 ALTER DATABASE, ALTER TABLESPACE, CREATE DATABASE, CREATE
 TABLESPACE

GRANT command (System Privileges and Roles)

PURPOSE:

        To grant system privileges and roles to users and roles.    To grant
        object privileges, use the GRANT command (Object Privileges).

SYNTAX:

GRANT {system_priv | role} [, {system_priv | role}] ...
 TO {user | role | PUBLIC} [, {user | role | PUBLIC}] ...
 [WITH ADMIN OPTION]

where:

system_priv
        is a system privilege to be granted.

role
        is a role to be granted

TO
        identifies users or roles to which system privileges and roles are
        granted.
                        PUBLIC
                                      grants system privileges or roles to all users.

WITH ADMIN OPTION
        allows the grantee to grant the system privilege or role to other
        users or roles.    If you grant a role with ADMIN OPTION, the grantee
        can also alter or drop the role.

PREREQUISITES:

        To grant a system privilege, you must either have been granted the
        system privilege with the ADMIN OPTION or have been granted GRANT
        ANY PRIVILEGE system privilege.

        To grant a role, you must either have been granted the role with the
        ADMIN OPTION or have been granted GRANT ANY ROLE system privilege or
        have created the role.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate both the label at which the system privilege or role
        was granted to you and the creation label of the grantee user or
        role.

SEE:
 ALTER USER, CREATE USER, GRANT (Object Privileges), REVOKE
 Privileges and Roles)

GRANT command (Object Privileges)

PURPOSE:

        To grant privileges for a particular object to users and roles.    To
        grant system privileges and roles, use the GRANT command (System
        Privileges and Roles).

SYNTAX:

GRANT {object_priv | ALL [PRIVILEGES]} [(column [, column] ...)]
 [, {object_priv | ALL [PRIVILEGES]} [(column [, column] ...)]] ...
 ON [schema.]object
 TO {user | role | PUBLIC} [, {user | role | PUBLIC}] ...
 [WITH GRANT OPTION]

where:

object_priv
        is an object privilege to be granted.    You can substitute any of
        these values:

                    * ALTER
                    * DELETE
                    * EXECUTE
                    * INDEX
                    * INSERT
                    * REFERENCES
                    * SELECT
                    * UPDATE

ALL PRIVILEGES
        grants all the privileges for the object that you have been granted
        with the GRANT OPTION.    The user who owns the schema containing an
        object automatically has all privileges on the object with the GRANT
        OPTION.

column
        specifies a table or view column on which privileges are granted.
        You can only specify columns when granting the INSERT, REFERENCES,
        or UPDATE privilege.    If you do not list columns, the grantee has
        the specified privilege on all columns in the table or view.

ON
        identifies the object on which the privileges are granted.    If you
        do not qualify object with schema, Oracle assumes the object is in
        your own schema.    The object can be one of these types:

                    * table
                    * view
                    * sequence
                    * procedure, function, or package
                    * snapshots
                    * synonym for a table, view, sequence, snapshot, procedure,
                        function, or package

TO
        identifies users or roles to which the object privilege is granted.
                        PUBLIC
                                      grants object privileges to all users.

WITH GRANT OPTION
        allows the grantee to grant the object privileges to other users and
        roles.    The grantee must be a user or PUBLIC, rather than a role.

PREREQUISITES:

        The object must be in your own schema or you must have been granted
        the object privileges with the GRANT OPTION.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the label at which the object privilege was granted to
        you and the creation label of the grantee user or role.

SEE:
 GRANT (System Privileges and Roles), REVOKE (Object Privileges)

INSERT command

PURPOSE:

        To add rows to a table or to a view's base table.

SYNTAX:

INSERT INTO [schema.]{table | view}[@dblink]
 [(column [, column] ...)]
 {VALUES (expr [, expr] ...) | subquery}

where:

schema
        is the schema containing the table or view.    If you omit schema,
        Oracle assumes the table or view is in your own schema.

table
view
        is name of the table into which rows are to be inserted.    If you
        specify view, Oracle inserts rows into the view's base table.

dblink
        is a complete or partial name of a database link to a remote
        database where the table or view is located.    You can only insert
        rows into a remote table or view if you are using Oracle with the
        distributed option.

        If you omit dblink, Oracle assumes that the table or view is on the
        local database.

column
        is a column of the table or view.    In the inserted row, each column
        in this list is assigned a value from the VALUES clause or the
        subquery.

        If you omit one of the table's columns from this list, the column's
        value for the inserted row is the column's default value as
        specified when the table was created.    If you omit the column list
        altogether, the VALUES clause or query must specify values for all
        columns in the table.

VALUES
        specifies a row of values to be inserted into the table or view.
        You must specify a value in the VALUES clause for each column in the
        column list.

subquery
        is a SELECT statement that returns rows that are inserted into the
        table.    The select list of this subquery must have the same number
        of columns as the column list of the INSERT statement.

PREREQUISITES:

        For you to insert rows into a table, the table must be in your own
        schema or you must have INSERT privilege on the table.

        For you to insert rows into the base table of a view, the owner of
        the schema containing the view must have INSERT privilege on the
        base table.    Also, if the view is in a schema other than your own,
        you must have INSERT privilege on the view.

        The INSERT ANY TABLE system privilege also allows you to insert rows
        into any table or any view's base table.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the creation label of the table or view:

        * If the creation label of the table or view is higher than your
            DBMS label, you must have READUP and WRITEUP system privileges.
        * If the creation label of your table or view is noncomparable to
            your DBMS label, you must have READUP, WRITEUP, and WRITEDOWN
            system privileges.

SEE:
 DELETE, UPDATE

LOCK TABLE command

PURPOSE:

        To lock one or more tables in a specified mode.    This lock manually
        overrides automatic locking and permits or denies access to a table
        or view by other users for the duration of your operation.

SYNTAX:

LOCK TABLE [schema.]{table | view}[@dblink]
 [, [schema.]{table | view}[@dblink]]...
 IN lockmode MODE
 [NOWAIT]

where:

schema
        is the schema containing the table or view.    If you omit schema,
        Oracle assumes the table or view is in your own schema.

table view
        is the name of the table to be locked.    If you specify view, Oracle
        locks the view's base tables.

dblink
        is a database link to a remote Oracle7 database where the table or
        view is located.    You can only lock tables and views on a remote
        database if you are using Oracle with the distributed option.    All
        tables locked by a LOCK TABLE statement must be on the same
        database.

        If you omit dblink, Oracle assumes the table or view is on the local
        database.

lockmode
        is one of these:

                    * ROW SHARE
                    * ROW EXCLUSIVE
                    * SHARE UPDATE
                    * SHARE
                    * SHARE ROW EXCLUSIVE
                    * EXCLUSIVE

NOWAIT
        specifies that Oracle returns control to you immediately if the
        specified table is already locked by another user.    In this case,
        Oracle returns a message indicating that the table is already locked
        by another user.

        If you omit this clause, Oracle waits until the table is available,
        locks it, and returns control to you.

PREREQUISITES:

        The table or view must be in your own schema or you must have LOCK
        ANY TABLE system privilege or you must have any object privilege on
        the table or view.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the creation label of the table or view or you must
        have READUP system privilege.

SEE:
 COMMIT, DELETE, INSERT, ROLLBACK, SAVEPOINT, UPDATE

NOAUDIT command (SQL Statements)

PURPOSE:

        To stop auditing chosen by the AUDIT command (SQL Statements).    To
        stop auditing chosen by the AUDIT command (Schema Objects), use the
        NOAUDIT command (Schema Objects).

SYNTAX:

NOAUDIT {statement_opt | system_priv}
 [, {statement_opt | system_priv}] ...
 [BY user [, user] ...]
 [WHENEVER [NOT] SUCCESSFUL]

where:

statement_opt
        is a statement option for which auditing is stopped.

system_priv
        is a system privilege for which auditing is stopped.

BY
        stops auditing only for SQL statements issued by specified users in
        their subsequent sessions.    If you omit this clause, Oracle stops
        auditing for all users' statements.

WHENEVER SUCCESSFUL
        stops auditing only for SQL statements that complete successfully.

NOT
        stops auditing only for statements that result in Oracle errors.

        If you omit the WHENEVER clause entirely, Oracle stops auditing for
        all statements, regardless of success or failure.

PREREQUISITES:

        You must have AUDIT SYSTEM system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the label at which the auditing option was set or you
        must satisfy one of these criteria:

        * If the auditing option was set at a label higher than your DBMS
            label, you must have READUP and WRITEUP system privileges.
        * If the auditing option was set at a label lower than your DBMS
            label, you must have WRITEDOWN system privilege.
        * If the auditing option was set at a label noncomparable to your
            DBMS label, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 AUDIT (SQL Statements), NOAUDIT (Schema Objects)

NOAUDIT command (Schema Objects)

PURPOSE:

        To stop auditing chosen by the AUDIT command (Schema Objects).    To
        stop auditing chosen by the AUDIT command (SQL Statements), use the
        NOAUDIT command (SQL Statements).

SYNTAX:

NOAUDIT object_opt [, object_opt] ...
 ON [schema.]object
 [WHENEVER [NOT] SUCCESSFUL]

where:

object_opt
        stops auditing for particular operations on the object.

ON
        identifies the object on which auditing is stopped.    If you do not
        qualify object with schema, Oracle assumes the object is in your own
        schema.

WHENEVER SUCCESSFUL
        stops auditing only for SQL statements that complete successfully.

NOT
        option stops auditing only for statements that result in Oracle
        errors.

        If you omit the WHENEVER clause entirely, Oracle stops auditing for
        all statements, regardless of success or failure.

PREREQUISITES:

        The object on which you stop auditing must be in your own schema or
        you must have AUDIT ANY system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the label at which the auditing option was set or you
        must satisfy one of these criteria:

        * If the auditing option was set at a label higher than your DBMS
            label, you must have READUP and WRITEUP system privileges.
        * If the auditing option was set at a label lower than your DBMS
            label, you must have WRITEDOWN system privilege.
        * If the auditing option was set at a label noncomparable to your
            DBMS label, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 AUDIT (Schema Objects), NOAUDIT (SQL Statements)

RECOVER clause

PURPOSE:

        To perform media recovery.

SYNTAX:

RECOVER [AUTOMATIC] [FROM 'location']
 { [DATABASE] [UNTIL CANCEL
 | UNTIL TIME date
 | UNTIL CHANGE integer
 | USING BACKUP CONTROLFILE]
 [PARALLEL integer | NOPARALLEL]
 | TABLESPACE tablespace [, tablespace] ...
 [PARALLEL integer | NOPARALLEL]
 | DATAFILE 'filename' [, 'filename'] ...
 [PARALLEL integer | NOPARALLEL]
 | LOGFILE 'filename'
 | CONTINUE [DEFAULT]
 | CANCEL }

where:

AUTOMATIC
        automatically generates the names of the redo log files to apply
        during media recovery.    If you omit this option, Oracle prompts you
        for names of redo log files and you must specify them by issuing
        ALTER DATABASE statements with the LOGFILE parameter.

FROM
        specifies the location from which the archived redo log file group
        is read.    The value of this parameter must be a fully-specified file
        location following the conventions of your operating system.    If you
        omit this parameter, Oracle assumes the archived redo log file group
        is in the location specified by the initialization parameter
        LOG_ARCHIVE_DEST

DATABASE
        recovers the entire database.    This is the default option.    You can
        only use this option when the database is closed.

PARALLEL
        specifies the number of recovery processes used to apply redo
        entries to datafiles.    The specified value overrides the
        RECOVERY_PARALLELISM initialization parameter.    Specified values
        must be positive integers greater than 1.

NOPARALLEL
        specifies that recovery should proceed using only one recovery
        process.

UNTIL CANCEL
        performs cancel-based recovery.    This option recovers the database

        until you cancel recovery by issuing an ALTER DATABASE statement
        with a RECOVER clause containing the CANCEL option.

UNTIL TIME
        performs time-based recovery.    This parameter recovers the database
        to the time specified by the date.    The date must be a character
        literal in the format 'YYYY-MM-DD:HH24:MI:SS'.

UNTIL CHANGE
        performs change-based recovery.    This parameter recovers the
        database to a transaction consistent state immediately prior to the
        system change number (SCN) specified by integer.

USING BACKUP CONTROLFILE
        specifies that a backup control file is being used instead of the
        current control file.

TABLESPACE
        recovers only the specified tablespaces.    You can use this option if
        the database is open or closed, provided the tablespaces to be
        recovered are not being used.

DATAFILE
        recovers the specified data files.    You can use this option when the
        database is open or closed, provided the data files to be recovered
        are not being used.

LOGFILE
        continues media recovery by applying the specified the redo log
        file.

CONTINUE
        continues multi-instance recovery after it has been interrupted to
        disable a thread.

CONTINUE DEFAULT
        continues recovery by applying the redo log file that Oracle has
        automatically generated.

CANCEL
        terminates cancel-based recovery.

PREREQUISITES:

        The RECOVER clause must appear in a ALTER DATABASE statement.    You
        must have the privileges necessary to issue this statement.    For
        information on these privileges, see the ALTER DATABASE command.

        You must also have the OSDBA role enabled.    You cannot be connected
        to Oracle through the multi-threaded server architecture. Your
        instance must have the database mounted in exclusive mode.

SEE:
 ALTER DATABASE

RENAME command

PURPOSE:

        To rename a table, view, sequence, or private synonym.

SYNTAX:

RENAME old TO new

where:

old
        is the current name of an existing table, view, sequence, or private
        synonym.

new
        is the new name to be given to the existing object.

PREREQUISITES:

        The object must be in your own schema.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the object's creation label or you must satisfy one of
        these criteria:

        * If the object's creation label is higher than your DBMS label, you
            must have READUP and WRITEUP system privileges.
        * If the object's creation label is lower than your DBMS label, you
            must have WRITEDOWN system privilege.
        * If the object's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

SEE:
 CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE, CREATE VIEW

REVOKE command (System Privileges and Roles)

PURPOSE:

        To revoke system privileges and roles from users and roles.    To
        revoke object privileges from users and roles, use the REVOKE
        command (Object Privileges).

SYNTAX:

REVOKE {system_priv | role} [, {system_priv | role}] ...
 FROM {user | role | PUBLIC} [, {user | role | PUBLIC}] ...

where:

system_priv
        is a system privilege to be revoked.

role
        is a role to be revoked.

FROM
        identifies users and roles from which the system privileges or roles
        are revoked.
                        PUBLIC
                                      revokes the system privilege or role from all users.

PREREQUISITES:

        You must have been granted the system privilege or role with the
        ADMIN OPTION.    Also, you can revoke any role if you have the GRANT
        ANY ROLE system privilege.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the label at which the system privilege or role was
        granted or you must satisfy one of these criteria:

        * If the label at which the system privilege or role was granted is
            higher than your DBMS label, you must have READUP and WRITEUP
            system privileges.
        * If the label at which the system privilege or role was granted is
            lower than your DBMS label, you must have WRITEDOWN system
            privilege.
        * If the label at which the system privilege or role is
            noncomparable to your DBMS label, you must have READUP, WRITEUP,
            and WRITEDOWN system privileges.

SEE:
 GRANT (System Privileges and Roles), REVOKE (Object Privileges)

REVOKE command (Object Privileges)

PURPOSE:

        To revoke object privileges for a particular object from users and
        roles.    To revoke system privileges or roles, use the REVOKE command
        (System Privileges and Roles).

SYNTAX:

REVOKE {object_priv | ALL [PRIVILEGES]}
 [, {object_priv | ALL [PRIVILEGES]}] ...
 ON [schema.]object
 FROM {user | role | PUBLIC} [, {user | role | PUBLIC}] ...
 [CASCADE CONSTRAINTS]

where:

object_priv
        is an object privilege to be revoked.    You can substitute any of
        these values:

                    * ALTER
                    * DELETE
                    * EXECUTE
                    * INDEX
                    * INSERT
                    * REFERENCES
                    * SELECT
                    * UPDATE

ALL PRIVILEGES
        revokes all object privileges that you have granted to the revokee.

ON
        identifies the object on which the object privileges are revoked.
        This object can be one of these types:

                    * table
                    * view
                    * sequence
                    * procedure, stored function, or package
                    * snapshot
                    * synonym for a table, view, sequence, procedure, stored
                        function, package, or snapshot

        If you do not qualify object with schema, Oracle assumes the object
        is in your own schema.

FROM
        identifies users and roles from which the object privileges are
        revoked.
                        PUBLIC
                                      revokes object privileges from all users.

CASCADE CONSTRAINTS
        drops any referential integrity constraints that the revokee has
        defined using REFERENCES privilege that you are now revoking.    You
        must specify this option along with the REFERENCES privilege or the
        ALL PRIVILEGES option if the revokee has exercised the REFERENCES
        privilege to define a referential integrity constraint.

PREREQUISITES:

        You must have previously granted the object privileges to each user
        and role.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the label at which you granted the object privilege or
        you must satisfy one of these criteria:

        * If the label at which you granted the object privilege is higher
            than your DBMS label, you must have READUP and WRITEUP system
            privileges.
        * If the label at which you granted the object privilege is lower
            than your DBMS label, you must have WRITEDOWN system privilege.
        * If the label at which you granted the object privilege is
            noncomparable to your DBMS label, you must have READUP, WRITEUP,
            and WRITEDOWN system privileges.

SEE:
 GRANT (Object Privileges), REVOKE (System Privileges and Roles)

ROLLBACK command

PURPOSE:

        To undo work done in the current transaction.

        You can also use this command to manually undo the work done by an
        in-doubt distributed transaction.

SYNTAX:

ROLLBACK [WORK]
 [TO [SAVEPOINT] savepoint
 | FORCE 'text']

where:

WORK
        is optional and is provided for ANSI compatibility.

TO
        rolls back the current transaction to the specified savepoint.    If
        you omit this clause, the ROLLBACK statement rolls back the entire
        transaction.

FORCE
        manually rolls back an in-doubt distributed transaction.    The
        transaction is identified by the 'text' containing its local or
        global transaction ID.    To find the IDs of such transactions, query
        the data dictionary view DBA_2PC_PENDING.

        ROLLBACK statements with the FORCE clause are not supported in
        PL/SQL.

PREREQUISITES:

        To roll back your current transaction, no privileges are necessary.

        To manually roll back an in-doubt distributed transaction that you
        originally committed, you must have FORCE TRANSACTION system
        privilege.    To manually roll back an in-doubt distributed
        transaction originally committed by another user, you must have
        FORCE ANY TRANSACTION system privilege.

SEE:
 COMMIT, SAVEPOINT, SET TRANSACTION

SAVEPOINT command

PURPOSE:

        To identify a point in a transaction to which you can later roll
        back.

SYNTAX:

SAVEPOINT savepoint

where:

savepoint
        is the name of the savepoint to be created.

PREREQUISITES:

        None.

SEE:
 COMMIT, ROLLBACK, SET TRANSACTION

SELECT command

PURPOSE:

        To retrieve data from one or more tables, views, or snapshots.

SYNTAX:

SELECT [DISTINCT | ALL] { *
 | { [schema.]{table | view | snapshot}.*
 | expr } [[AS] c_alias]
 [, { [schema.]{table | view | snapshot}.*
 | expr } [[AS] c_alias]] ... }
 FROM [schema.]{table | view | snapshot}[@dblink] [t_alias]
 [, [schema.]{table | view | snapshot}[@dblink] [t_alias]] ...
 [WHERE condition]
 [[START WITH condition] CONNECT BY condition]
 [GROUP BY expr [, expr] ... [HAVING condition]]
 [{UNION | UNION ALL | INTERSECT | MINUS} SELECT command]
 [ORDER BY {expr|position} [ASC | DESC]
 [, {expr|position} [ASC | DESC]] ...]
 [FOR UPDATE [OF [[schema.]{table | view}.]column
 [, [[schema.]{table | view}.]column] ...] [NOWAIT]]

where:

DISTINCT
        returns only one copy of each set of duplicate rows selected.
        Duplicate rows are those with matching values for each expression in
        the select list.

ALL
        returns all rows selected, including all copies of duplicates.

        The default is ALL.

*
        selects all columns from all tables, views, or snapshots listed in
        the FROM clause.

table.*
view.*
snapshot.*
        selects all columns from the specified table, view, or snapshot.
        You can use the schema qualifier to select from a table, view, or
        snapshot in a schema other than your own.

        If you are using Trusted Oracle, the * does not select the ROWLABEL
        column.    To select this column, you must explicitly specify it in
        the select list.

expr
        selects an expression, usually based on columns values, from one of
        the tables, views, or snapshots in the FROM clause.    A column name

        in this list can only contain be qualified with schema if the table,
        view, or snapshot containing the column is qualified with schema in
        the FROM clause.

c_alias
        provides a different name for the column expression and causes the
        alias to be used in the column heading.    A column alias does not
        affect the actual name of the column.    Column aliases can be
        referenced in the ORDER BY clause but in no other clauses in a
        statement.

schema
        is the schema containing the selected table, view, or snapshot.    If
        you omit schema, Oracle assumes the table, view, or snapshot is in
        your own schema.

table
view
snapshot
        is the name of a table, view, or snapshot from which data is
        selected.

dblink
        is complete or partial name for a database link to a remote database
        where the table, view, or snapshot is located.    Note that this
        database need not be an Oracle7 database.

        If you omit dblink, Oracle assumes that the table, view, or snapshot
        is on the local database.

t_alias
        provides a different name for the table, view, or snapshot for the
        purpose of evaluating the query and is most often used in a
        correlated query.    Other references to the table, view, or snapshot
        throughout the query must refer to the alias.

WHERE
        restricts the rows selected to those for which the condition is
        TRUE.    If you omit this clause, Oracle returns all rows from the
        tables, views, or snapshots in the FROM clause.

START WITH
CONNECT BY
        returns rows in a hierarchical order.

GROUP BY
        groups the selected rows based on the value of expr for each row and
        returns a single row of summary information for each group.

HAVING
        restricts the groups of rows returned to those groups for which the
        specified condition is TRUE.    If you omit this clause, Oracle
        returns summary rows for all groups.

UNION

UNION ALL
INTERSECT
MINUS
        combines the rows returned by two SELECT statement using a set
        operation.

AS
        can optionally precede a column alias.    To comply with the ANSI SQL92
        standard, column aliases must be preceded by the AS keyword.

ORDER BY
        orders rows returned by the statement.
                        expr
                                      orders rows based on their value for expr.    The
                                      expression is based on columns in the select list or
                                      columns in the tables, views, or snapshots in the
                                      FROM clause.
                        position
                                      orders rows based on their value for the expression
                                      in this position of the select list.
                        ASC
                        DESC
                                      specifies either ascending or descending order.    ASC
                                      is the default.
        The ORDER BY clause can reference column aliases defined in the
        SELECT list.

FOR UPDATE
        locks the selected rows.

NOWAIT
        returns control to you if the SELECT statement attempts to lock a
        row that is locked by another user.    If you omit this clause, Oracle
        waits until the row is available and then returns the results of the
        SELECT statement.

PREREQUISITES:

        For you to select data from a table or snapshot, the table or
        snapshot must be in your own schema or you must have SELECT
        privilege on the table or snapshot.

        For you to select rows from the base tables of a view, the owner of
        the schema containing the view must have SELECT privilege on the
        base tables.    Also, if the view is in a schema other than your own,
        you must have SELECT privilege on the view.

        The SELECT ANY TABLE system privilege also allows you to select data
        from any table or any snapshot or any view's base table.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the creation label of each queried table, view, or
        snapshot or you must have READUP system privileges.

SEE:

 DELETE, UPDATE

SET ROLE command

PURPOSE:

        To enable and disable roles for your current session.

SYNTAX:

SET ROLE { role [IDENTIFIED BY password]
 [, role [IDENTIFIED BY password]] ...
 | ALL [EXCEPT role [, role] ...]
 | NONE }

where:

role
        is a role to be enabled for the current session.    Any roles not
        listed are disabled for the current session.
                        password
                                      is the password for a role.    If the role has a
                                      password, you must specify the password to enable the
                                      role.

ALL EXCEPT
        enables all roles granted to you for the current session, except
        those listed in the EXCEPT clause.    Roles listed in the EXCEPT
        clause must be roles granted directly to you; they cannot be roles
        granted to you through other roles.    You cannot use this option to
        enable roles with passwords that have been granted directly to you.

        If you list a role in the EXCEPT clause that has been granted to you
        both directly and through another role, the role is still enabled by
        virtue of your enabling the role to which it has been granted.

NONE
        disables all roles for the current session.

PREREQUISITES:

        You also must already have been granted the roles that you name in
        this statement.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must dominate the label at which these roles were granted to you.

SEE:
 ALTER USER, CREATE ROLE

SET TRANSACTION command

PURPOSE:

        To perform one of these operations on your current transaction:

        * establish your current transaction as either a read-only or a
            read-write transaction
        * assign your current transaction to a specified rollback segment

SYNTAX:

SET TRANSACTION
 { READ ONLY
 | READ WRITE
 | USE ROLLBACK SEGMENT rollback_segment }

where:

READ ONLY
        establishes the current transaction as a read-only transaction.

READ WRITE
        establishes the current transaction as a read-write transaction.

USE ROLLBACK SEGMENT
        assigns the current transaction to the specified rollback segment.
        This option also establishes the transaction as a read-write
        transaction.

        You cannot use the READ ONLY option and the USE ROLLBACK SEGMENT
        clause in a single SET TRANSACTION statement or in different
        statements in the same transaction.    Read-only transactions do not
        generate rollback information and therefore are not assigned
        rollback segments.

PREREQUISITES:

        A SET TRANSACTION statement must be the first statement in your
        transaction.    However, every transaction need not begin with a SET
        TRANSACTION statement.

SEE:
 COMMIT, ROLLBACK, SAVEPOINT

STORAGE clause

PURPOSE:

        To specify storage characteristics for tables, indexes, clusters,
        and rollback segments, and the default storage characteristics for
        tablespaces.

SYNTAX:

STORAGE ([INITIAL integer [K|M]]
 [NEXT integer [K|M]]
 [PCTINCREASE integer]
 [MINEXTENTS integer]
 [MAXEXTENTS integer]
 [OPTIMAL {integer [K|M] | NULL}]
 [FREELIST GROUPS integer]
 [FREELISTS integer])

where:

INITIAL
        specifies the size in bytes of the object's first extent.    Oracle
        allocates space for this extent when you create the object.    You can
        also use K or M to specify this size in kilobytes or megabytes.    The
        default value is the size of 5 data blocks.    The minimum value is
        the size of 2 data blocks.    The maximum value varies depending on
        your operating system.    Oracle rounds values up to the next multiple
        of the data block size.

NEXT
        specifies the size in bytes of the next extent to be allocated to
        the object.    You can also use K or M to specify the size in
        kilobytes or megabytes.    The default value is the size of 5 data
        blocks.    The minimum value is the size of 1 data block.    The maximum
        value varies depending on your operating system.    Oracle rounds
        values up to the next multiple of the data block size.

PCTINCREASE
        specifies the percent by which each extent after the second grows
        over the previous extent.    The default value is 50,    meaning that
        each subsequent extent is 50% larger than the preceding extent. The
        minimum value is 0, meaning all extents after the first are the same
        size.    The maximum value varies depending on your operating system.

        You cannot specify PCTINCREASE for rollback segments.    Rollback
        segments always have a PCTINCREASE value of 0.

        Oracle rounds the calculated size of each new extent up to the next
        multiple of the data block size.

MINEXTENTS
        specifies the total number of extents allocated when the segment is
        created.    This parameter allows you to allocate a large amount of

        space when you create an object, even if the space available is not
        contiguous.    The default and minimum value is 1, meaning that Oracle
        only allocates the initial extent, except for rollback segments for
        which the default and minimum value is 2.    The maximum value varies
        depending on your operating system.

        If the MINEXTENTS value is greater than 1, then Oracle calculates
        the size of subsequent extents based on the values of the INITIAL,
        NEXT, and PCTINCREASE parameters.

MAXEXTENTS
        specifies the total number of extents, including the first, that
        Oracle can allocate for the object.    The minimum value is 1.    The
        default and maximum values vary depending your data block size.

OPTIMAL
        specifies an optimal size in bytes for a rollback segment.    You can
        also use K or M to specify this size in kilobytes or megabytes.
        Oracle tries to maintain this size for the rollback segment by
        dynamically deallocating extents when their data is no longer needed
        for active transactions.    Oracle deallocates as many extents as
        possible without reducing the total size of the rollback segment
        below the OPTIMAL value.    This parameter is only for rollback
        segments and not for other objects.
                        NULL
                                      specifies no optimal size for the rollback segment,
                                      meaning that Oracle never deallocates the rollback
                                      segment's extents.    This is the default behavior.

        The value of this parameter cannot be less than the space initially
        allocated for the rollback segment specified by the MINEXTENTS,
        INITIAL, NEXT, and PCTINCREASE parameters. The maximum value varies
        depending on your operating system.    Oracle rounds values to the
        next multiple of the data block size.

FREELIST GROUPS
        specifies the number of groups of free lists for a table, cluster,
        or index.    The default and minimum value for this parameter is 1.
        You should only use this parameter if you are using Oracle with the
        Parallel Server option in parallel mode.

FREELISTS
        specifies the number of free lists for each of the free list groups
        for the table, cluster, or index.    The default and minimum value for
        this parameter is 1, meaning that each free list group contains one
        free list.    The maximum value of this parameter depends on the data
        block size.    If you specify a FREELISTS value that is too large,
        Oracle returns an error indicating the maximum value.

        You can only specify the FREELISTS parameter in CREATE TABLE, CREATE
        CLUSTER, and CREATE INDEX statements.    You can only specify the
        FREELIST GROUPS parameter in CREATE TABLE and CREATE CLUSTER
        statements.

PREREQUISITES:

        The STORAGE clause can appear in commands that create or alter any
        of these objects:

        * clusters
        * indexes
        * rollback segments
        * snapshots
        * snapshot logs
        * tables
        * tablespaces

        To change the value of a STORAGE parameter, you must have the
        privileges necessary to issue one of these commands.

SEE:
 CREATE CLUSTER, CREATE INDEX, CREATE ROLLBACK SEGMENT, CREATE TABLE,
 CREATE TABLESPACE

TRUNCATE command

PURPOSE:

        To remove all rows from a table or cluster.

SYNTAX:

TRUNCATE {TABLE [schema.]table | CLUSTER [schema.]cluster}
 [{DROP | REUSE} STORAGE]

where:

TABLE
        specifies the schema and name of the table to be truncated.    If you
        omit schema, Oracle assumes the table is in your own schema.    This
        table cannot be part of a cluster.

        When you truncate a table, Oracle also automatically deletes all
        data in the table's indexes.

CLUSTER
        specifies the schema and name of the cluster to be truncated.    If
        you omit schema, Oracle assumes the cluster is in your own schema.
        You can only truncate an indexed cluster, not a hash cluster.

        When you truncate a cluster, Oracle also automatically deletes all
        data in the cluster's tables' indexes.

DROP STORAGE
        deallocates the space from the deleted rows from the table or
        cluster.    This space can subsequently be used by other objects in
        the tablespace.

REUSE STORAGE
        leaves the space from the deleted rows allocated to the table or
        cluster.    This space can be subsequently used only by new data in
        the table or cluster resulting from inserts or updates.

        The DROP STORAGE or REUSE STORAGE option that you choose also
        applies to the space freed by the data deleted from associated
        indexes.

        If you omit both the REUSE STORAGE and DROP STORAGE options, Oracle
        uses the DROP STORAGE option by default.

PREREQUISITES:

        The table or cluster must be in your schema or you must have DELETE
        ANY TABLE system privilege.

        If you are using Trusted Oracle, your DBMS label must match the
        creation label of the table or cluster or you must satisfy one of
        these criteria:

        * If the creation label of the table or cluster is higher than your
            DBMS label, you must have READUP and WRITEUP system privileges.
        * If the creation label of the table or cluster is lower than your
            DBMS label, you must have WRITEDOWN system privilege.
        * If the creation label of the table or cluster is noncomparable to
            your DBMS label, you must have READUP, WRITEUP, and WRITEDOWN
            system privileges.

SEE:
 DELETE, DROP CLUSTER, DROP TABLE

UPDATE command

PURPOSE:

        To change existing values in a table or in a view's base table.

SYNTAX:

UPDATE [schema.]{table | view}[@dblink] [alias]
 SET { (column [, column] ...) = (subquery)
 | column = { expr | (subquery) } }
 [, { (column [, column] ...) = (subquery)
 | column = { expr | (subquery) } }] ...
 [WHERE condition]

where:

schema
        is the schema containing the table or view.    If you omit schema,
        Oracle assumes the table or view is in your own schema.

table
view
        is the name of the table to be updated.    If you specify view, Oracle
        updates the view's base table.

dblink
        is a complete or partial name of a database link to a remote
        database where the table or view is located.    You can only use a
        database link to update a remote table or view if you are using
        Oracle with the distributed option.

        If you omit dblink, Oracle assumes the table or view is on the local
        database.

alias
        is used to relabel the name of the reference in the other clauses of
        the command.

column
        is the name of a column of the table or view that is to be updated.
        If you omit a column of the table from the SET clause, that column's
        value remains unchanged.

expr
        is the new value assigned to the corresponding column.    This
        expression can contain host variables and optional indicator
        variables.

subquery
        is a SELECT statement that returns new values that are assigned to
        the corresponding columns.

WHERE
        restricts the rows updated to those for which the specified

        condition is TRUE.    If you omit this clause, Oracle updates all rows
        in the table or view.

PREREQUISITES:

        For you to update values in a table, the table must be in your own
        schema or you must have UPDATE privilege on the table.

        For you to update values in the base table of a view, the owner of
        the schema containing the view must have UPDATE privilege on the
        base table.    Also, if the view is in a schema other than your own,
        you must have UPDATE privilege on the view.

        The UPDATE ANY TABLE system privilege also allows you to update
        values in any table or any view's base table.

        If you are using Trusted Oracle in DBMS MAC mode, your DBMS label
        must match the creation label of the table or view:

        * If the creation label of the table or view is higher than your
            DBMS label, you must have READUP and WRITEUP system privileges
        * If the creation label of the table or view is lower than your DBMS
            label, you must have WRITEDOWN system privilege.
        * If the creation label of your table or view is noncomparable to
            your DBMS label, you must have READUP, WRITEUP, and WRITEDOWN
            system privileges.

SEE:
 DELETE, INSERT

Oracle Datatypes

        Each literal or column value manipulated by Oracle has a datatype.
        A value's datatype associates a fixed set of properties with the
        value.    These properties cause Oracle to treat values of one
        datatype differently from values of another.    For example, you can
        add values of NUMBER datatype, but not values of RAW datatype.

        When you create a table or cluster, you must specify an internal
        datatype for each of its columns.    When you create a procedure or
        stored function, you must specify an internal datatype for each of
        its arguments.    These datatypes define the domain of values that
        each column can contain or each argument can have.    For example,
        DATE columns cannot accept the value February 29 (except for a leap
        year) or the values 2 or 'SHOE'.    Each value subsequently placed in
        a column assumes the column's datatype.    For example, if you insert
        '01-JAN-92' into a DATE column, Oracle treats the '01-JAN-92'
        character string as a DATE value after verifying that it translates
        to a valid date.

        The following table summarizes Oracle internal datatypes.    The rest
        of this section describes these datatypes in detail.

        Note:    The Oracle Precompilers recognize other datatypes in embedded
        SQL programs.    These datatypes are called external datatypes and are
        associated with host variables.    Do not confuse the internal
        datatypes with external datatypes.

 Internal
Code Datatype Description
---- -------- -----------

1 VARCHAR2(size) Variable length character string having
 maximum length size bytes. Maximum size is
 2000. You must specify size for a VARCHAR2.
2 NUMBER(p,s) Number having precision p and scale s. The
 precision p can range from 1 to 38. The scale
 s is primarily for values returned by the
 ROWID pseudocolumn.

 Internal
Code Datatype Description
---- -------- -----------

96 CHAR(size) Fixed length character data of length size
 bytes. Maximum size is 255. Default size is
 1 byte.
106 MLSLABEL Binary format of an operating system label.
 This datatype is used primarily with Trusted
 Oracle.

        The codes listed for the datatypes are used internally by Oracle.
        The datatype code of a column is returned when you use the DUMP
        function.    Note that these codes are only for internal use and may

        not necessarily match the datatype codes of expressions of the same
        datatype.

SEE:
 ANSI, DB2, and SQL/DS Datatypes, Character Datatypes, Data
 Conversion, Datatype Comparison Rules, DATE Datatype, LONG Datatype,
 MLSLABEL Datatype, NUMBER Datatype, RAW and LONG RAW Datatypes,
 ROWID Datatype

Character Datatypes

        Character datatypes are used to manipulate words and free-form text.
        These datatypes are used to store character (alphanumeric) data in
        the database character set.    They are less restrictive than other
        datatypes and consequently have fewer properties.    For example,
        character columns can store all alphanumeric values, but NUMBER
        columns can only store numeric values.

        Character data is stored in strings with byte values corresponding
        to the character set, such as 7-bit ASCII or EBCDIC Code Page 500,
        specified when the database was created.    Oracle supports both
        single-byte and multi-byte character sets.

        These datatypes are used for character data:

        * CHAR
        * VARCHAR2

        The character datatypes in Oracle7 are different from those in
        Oracle Version 6.

SEE:
 CHAR Datatype, VARCHAR Datatype, VARCHAR2 Datatype

CHAR Datatype

        The CHAR datatype specifies a fixed length character string.    When
        you create a table with a CHAR column, you can supply the column
        length in bytes.    Oracle subsequently ensures that all values stored
        in that column have this length.    If you insert a value that is
        shorter than the column length, Oracle blank-pads the value to
        column length.    If you try to insert a value that is too long for
        the column, Oracle returns an error.

        The default length for a CHAR column is 1 byte.    The maximum length
        of CHAR data is 255 bytes.    Oracle compares CHAR values using blank-
        padded comparison semantics.

SEE:
 Character Datatypes, VARCHAR Datatype, VARCHAR2 Datatype

VARCHAR2 Datatype

        The VARCHAR2 datatype specifies a variable length character string.
        When you create a VARCHAR2 column, you can supply the maximum number
        of bytes of data that it can hold.    Oracle subsequently stores each
        value in the column exactly as you specify it, provided it does not
        exceed the column's maximum length.    If you try to insert a value
        that exceeds this length, Oracle returns an error.

        You must specify a maximum length for a VARCHAR2 column.    The
        maximum length of VARCHAR2 data is 2000 bytes.    Oracle compares
        VARCHAR2 values using non-padded comparison semantics.

SEE:
 Character Datatypes, CHAR Datatype, VARCHAR Datatype

VARCHAR Datatype

        The VARCHAR datatype is currently synonymous with the VARCHAR2
        datatype.    Oracle Corporation recommends that you use VARCHAR2
        rather than VARCHAR.    In a future version of Oracle, VARCHAR might
        be a separate datatype used for variable length character strings
        compared with different comparison semantics.

SEE:
 Character Datatypes, CHAR Datatype, VARCHAR2 Datatype

NUMBER Datatype

        The NUMBER datatype is used to store zero, positive and negative
        fixed and floating point numbers with magnitudes between 1.0 x
        10
        digits of precision.    If you specify an arithmetic expression whose
        value has a magnitude greater than or equal to 1.0 x 10
        returns an error.    You can specify a fixed point number datatype
        with this syntax:

 NUMBER(p,s)

where:

p
        is the precision, or the total number of digits. Oracle guarantees
        the portability of numbers with precision ranging from 1 to 38.
s
        is the scale, or the number of digits to the right of the decimal
        point. The scale can range from -84 to 127.

You can also use one of these alternate forms:

NUMBER(p)
        is a fixed point number with precision p and scale 0.

NUMBER
        is a floating point number with precision 38.    Note that a scale
        value is not applicable for floating point numbers.

SCALE AND PRECISION
        Specify the scale and precision of a number column for extra
        integrity checking on input.    Specifying scale and precision does
        not force all values to a fixed length.    If a value exceeds the
        precision, Oracle returns an error.    If a value exceeds the scale,
        Oracle rounds it.

        These examples show how Oracle stores data using different
        precisions and scales.

Actual Data Specified as Stored as
----------- ------------ ---------
7456123.89 NUMBER 7456123.89
7456123.89 NUMBER (9) 7456124
7456123.89 NUMBER (9,2) 7456123.89
7456123.89 NUMBER (9,1) 7456123.9
7456123.8 NUMBER (6) exceeds precision
7456123.8 NUMBER (15,1) 7456123.8
7456123.89 NUMBER (7,-2) 7456100
7456123.89 NUMBER(7,2) exceeds precision

NEGATIVE SCALE
        If the scale is negative, the actual data is rounded to the
        specified    number of places to the left of the decimal point. For

        example, a specification of (10,-2) means to round to hundreds.

SCALE GREATER THAN PRECISION
        You can specify a scale that is greater than precision, although it
        is uncommon.    In this case, the precision specifies the maximum
        number of digits to the right of the decimal point.    As with all
        number datatypes, if the value exceeds the precision, Oracle returns
        an error.    If the value exceeds the scale, Oracle rounds the value.
        For example, a column defined as NUMBER(4,5) requires a zero for the
        first digit after the decimal point and rounds all values past the
        fifth digit after the decimal point.    The following examples show
        the effects of a scale greater than precision:

Actual Data Specified as Stored as
----------- ------------ ---------
.01234 NUMBER(4,5) .01234
.00012 NUMBER(4,5) .00012
.000127 NUMBER(4,5) .00013
.0000012 NUMBER(2,7) .0000012
.00000123 NUMBER(2,7) .0000012

FLOATING POINT NUMBERS
        Oracle also allows you to specify floating point numbers.    A
        floating point value either can have a decimal point anywhere from
        the first to the last digit or can omit the decimal point
        altogether.    A scale value is not applicable to floating point
        numbers because there is no restriction on the number of digits that
        can appear after the decimal point.

        You can specify floating point numbers with the appropriate forms of
        the NUMBER datatype discussed in the section    on page -.    Oracle
        also supports the ANSI datatype FLOAT.    You can specify this
        datatype using one of these syntactic forms:

FLOAT
        specifies a floating point number with decimal precision 38, or a
        binary precision of 126.

 FLOAT(b)
                        specifies a floating point number with binary precision b.
                        The precision b can range from 1 to 126.

        To convert from binary to decimal precision, multiply b by 0.30103.
        To convert from decimal to binary precision, multiply the decimal
        precision by 3.32193.    The maximum of 126 digits of binary precision
        is roughly equivalent to 38 digits of decimal precision.

SEE:
 DATE Datatype, LONG Datatype

LONG Datatype

        LONG columns store variable length character strings containing up
        to 2 gigabytes, or 2
        characteristics of VARCHAR2 columns.    You can use LONG columns to
        store long text strings.    Oracle uses LONG columns in the data
        dictionary to store the text of view definitions.    The length of
        LONG values may also be limited by the memory available on your
        computer.

        You can reference LONG columns in SQL statements in these places:

        * SELECT lists
        * SET clauses of UPDATE statements
        * VALUES clauses of INSERT statements

        The use of LONG values are subject to some restrictions:

        * A table cannot contain more than one LONG column.
        * LONG columns cannot appear in integrity constraints (except for
            NULL and NOT NULL constraints).
        * LONG columns cannot be indexed.
        * A procedure or stored function cannot accept a LONG argument.
        * A stored function cannot return a LONG value.
        * Within a single SQL statement, all LONG columns, sequences,
            updated tables, and locked tables must be located on the same
            database.

        Also, LONG columns cannot appear in certain parts of SQL statements:

        * WHERE, GROUP BY, ORDER BY, or CONNECT BY clauses or with the
            DISTINCT operator in SELECT statements
        * SQL Functions (such as SUBSTR or INSTR)
        * expressions or conditions
        * select lists of queries containing GROUP BY clauses
        * select lists of subqueries or queries combined by set operators
        * select lists of CREATE TABLE AS SELECT statements

        You can use the Oracle Call Interfaces to retrieve a portion of a
        LONG value from the database.

SEE:
            Character Datatypes, VARCHAR2 Datatype

DATE Datatype

        The DATE datatype is used to store date and time information.
        Although date and time information can be represented in both CHAR
        and NUMBER datatypes, the DATE datatype has special associated
        properties.

        For each DATE value the following information is stored:

        * century
        * year
        * month
        * day
        * hour
        * minute
        * second

        You cannot specify a date literal.    To specify a date value, you
        must convert a character or numeric value to a data value with the
        TO_DATE function.    Oracle automatically converts character values
        that are in the default date format into date values when they are
        used in date expressions.    The default date format is specified by
        the initialization parameter NLS_DATE_FORMAT and is a string such as
        'DD-MON-YY',    This example date format includes two-digit number for
        the day of the month, an abbreviation of the month name, and the
        last two digits of the year.

        If you specify a date value without a time component, the default
        time is 12:00:00a.m. (midnight).    If you specify a date value
        without a date, the default date is the first day of the current
        month.

        The date function SYSDATE returns the current date and time.    For
        information on the SYSDATE and TO_DATE functions and the default
        date format, see Operators, Functions, Expressions, and Conditions.

DATE ARITHMETIC:

        You can add and subtract number constants as well as other dates
        from dates. Oracle interprets number constants in arithmetic date
        expressions as numbers of days.    For example, SYSDATE + 1 is
        tomorrow.    SYSDATE - 7 is one week ago.    SYSDATE + (10/1440) is ten
        minutes from now.    Subtracting the HIREDATE column of the EMP table
        from SYSDATE returns the number of days since each employee was
        hired.    You cannot multiply or divide DATE values.

        Oracle provides functions for many of the common date operations.
        For example, the ADD_MONTHS function allows you to add or subtract
        months from a date.    The MONTHS_BETWEEN function returns the number
        of months between two dates.    The fractional portion of the result
        represents that portion of a 31-day month.

        Because each date contains a time component, most results of date
        operations include a fraction.    This fraction means a portion of one
        day.    For example, 1.5 days is 36 hours.

USING JULIAN DATES:

        A Julian date is the number of days since Jan 1, 4712 BC.    Julian
        dates allow continuous dating from a common reference.    You can use
        the date format model J with date functions TO_DATE and TO_CHAR to
        convert between Oracle DATE values and their Julian equivalents.

EXAMPLE:

        This statement returns the Julian equivalent of January 1, 1992:

 SELECT TO_CHAR(TO_DATE('01-01-1992', 'MM-DD-YYYY'),'J')
 FROM DUAL
 TO_CHAR(TO_DATE('01-01-1992','MM-DD-YYYY),'J')
 --
 2448623

SEE:
 Character Datatypes, NUMBER Datatype

RAW and LONG RAW Datatypes

        The RAW and LONG RAW datatypes are used for byte-oriented data (for
        example, binary data or byte strings) to store character strings,
        floating point data, and binary data such as graphics images and
        digitized sound.    Oracle returns RAW values as hexadecimal character
        values.    RAW data can only be stored and retrieved.    You cannot
        perform string manipulation on RAW data.

        RAW is equivalent to VARCHAR2 and LONG RAW to LONG except that there
        is no conversion between database and session character set.    While
        CHAR, VARCHAR2, and LONG data is automatically converted between the
        database character set and the user-side character set for the
        session, there is no such conversion for RAW and LONG RAW data.
        LONG RAW data is subject to the same restrictions as LONG data.

SEE:
 CHAR Datatype, LONG Datatype, VARCHAR2 Datatype

ROWID Datatype

        Each row in the database has an address.    You can examine a row's
        address by querying the pseudocolumn ROWID.    Values of this
        pseudocolumn are hexadecimal strings representing the address of
        each row.    These string have the datatype ROWID.    For more
        information on the ROWID pseudocolumn, see Pseudocolumns.    You can
        also create tables and clusters that contain actual columns having
        the ROWID datatype.    Oracle does not guarantee that the values of
        such columns are valid ROWIDs.

        Character values representing ROWIDs:

 block.row.file

where:

block
        is a hexadecimal string identifying the data block of the data file
        containing the row.    The length of this string may vary depending on
        your operating system.

row
        is a four-digit hexadecimal string identifying the row in the data
        block.    The first row in the block has the number 0.

file
        is a hexadecimal string identifying the database file containing the
        row.    The first data file has the number 1.    The length of this
        string may vary depending on your operating system.

EXAMPLE:

        Consider this ROWID value:

 0000000F.0000.0002

        The row corresponding to this ROWID is the first row (0000) in the
        fifteenth data block (0000000F) of the second data file (0002).

SEE:
 Pseudocolumns, ROWID

MLSLABEL Datatype

        The MLSLABEL datatype is used to store the binary format a label
        used on a secure operating system.    Labels are used by Trusted
        Oracle to mediate access to information.    You can also define
        columns with this datatype if you are the standard Oracle Server.

ANSI, DB2, and SQL/DS Datatypes

        SQL commands that create tables and clusters also accept both ANSI
        datatypes and datatypes from IBM's products SQL/DS and DB2.    Oracle
        creates columns with Oracle datatypes based on the conversions
        defined in the following two tables.

ANSI SQL Datatype Oracle Datatype
----------------- ---------------
CHARACTER(n), CHAR(n) CHAR(n)
CHARACTER VARYING(n), CHAR VARYING(n) VARCHAR(n)
NUMERIC(p,s), DECIMAL(p,s), DEC(p,s)[1] NUMBER(p,s)
INTEGER, INT, SMALLINT NUMBER(38)
FLOAT(b)[2], DOUBLE PRECISION[3], REAL[4] NUMBER

SQL/DS or DB2 Datatype Oracle Datatype
----------------- ---------------
CHARACTER(n) CHAR(n)
VARCHAR(n) VARCHAR(n)
LONG VARCHAR LONG
DECIMAL(p,s)[1] NUMBER(p,s)
INTEGER, SMALLINT NUMBER(38)
FLOAT(b)[2] NUMBER

      [1] The NUMERIC, DECIMAL, and DEC datatypes can specify only fixed
              point numbers.    For these datatypes, s defaults to 0.

      [2] The FLOAT datatype is a floating point number with a binary
              precision b.    This default precision for this datatype is 126
              binary, or 38 decimal.

      [3] The DOUBLE PRECISION datatype is a floating point number with
              binary precision 126.

      [4] The REAL datatype is a floating point number with a binary
              precision of 63, or 18 decimal.

        Do not define columns with these SQL/DS and DB2 datatypes because
        they have no corresponding Oracle datatype:

        * GRAPHIC
        * LONG VARGRAPHIC
        * VARGRAPHIC
        * TIME
        * TIMESTAMP

        Note that data of type TIME and TIMESTAMP can also be expressed as
        Oracle DATE data.

Datatype Comparison Rules

NUMBER VALUES:

        A larger value is considered greater than a smaller one.    All
        negative numbers are less than all positive numbers.    Thus, -1 is
        less than 100; -100 is less than -1.

DATE VALUES:

        A later date is considered greater than an earlier one.    For
        example, the date equivalent of '29-MAR-1991' is less than that of
        '05-JAN-1992' and '05-JAN-1992 1:35pm' is greater than '05-JAN-1992
        10:09am'.

CHARACTER STRING VALUES:

        Character values are compared using one of these comparison rules:

        * blank-padded comparison semantics
        * non-padded comparison semantics

        The following sections explain these comparison semantics.    The
        results of comparing two character values using different comparison
        semantics may be different.    The following table shows the results
        of comparing five pairs of character values using each comparison
        semantic.    The last comparison in the table illustrates the
        differences between the blank-padded and non-padded comparison
        semantics.

 Blank-Padded Non-Padded
 ------------ ----------
 'ab' > 'aa' 'ab' > 'aa'

 'ab' > 'a ' 'ab' > 'a '

 'ab' > 'a' 'ab' > 'a'

 'ab' = 'ab' 'ab' = 'ab'

 'a ' = 'a' 'a ' > 'a'

BLANK-PADDED COMPARISON SEMANTICS:

        If the two values have different lengths, Oracle first adds blanks
        to the end of the shorter one so their lengths are equal.    Oracle
        then compares the values character by character up to the first
        character that differs.    The value with the greater character in the
        first differing position is considered greater.    If two values have
        no differing characters, then they are considered equal.    This rule
        means that two values are equal if they differ only in the number of
        trailing blanks.    Oracle uses blank-padded comparison semantics only
        when both values in the comparison have the datatype CHAR or are
        text literals.

NON-PADDED COMPARISON SEMANTICS:

        Oracle compares two values character by character up to the first
        character that differs.    The value with the greater character in
        that position is considered greater.    If two values of different
        length are identical up to the end of the shorter one, the longer
        value is considered greater.    If two values of equal length have no
        differing characters, then the values are considered equal.    Oracle
        uses non-padded comparison semantics whenever one or both values in
        the comparison have the datatype VARCHAR2.

SINGLE CHARACTERS:

        Oracle compares single characters according to their value in the
        collating sequence of the database character set.    One character is
        greater than another if it has a greater value than the other in the
        collating sequence.

        These are some common character sets:

        * 7-bit ASCII (American Standard Code for Information Interchange)
        * EBCDIC (Extended Binary Coded Decimal Interchange Code) Code Page
            500
        * ISO 8859/1 (International Standards Organization)
        * JEUC Japan Extended UNIX
        * SJIS Japan Shift JIS

        Portions of the ASCII and EBCDIC character sets appear in tables in
        their respective help screens.    Note that uppercase and lowercase
        letters are not equivalent.    Also, note that the collating sequence
        for a character set may not match the linguistic sequence for a
        particular language.

ASCII CHARACTER SET

        The following table shows the 7-bit ASCII character set.

 Decimal value Symbol Decimal value Symbol
 ------------- ------ ------------- ------
 32 blank 59 ;
 33 ! 60 <
 34 " 61 =
 35 # 62 >
 36 $ 63 ?
 37 % 64 @
 38 & 65 - 90 A - Z
 39 ' 91 [
 40 (92 \
 41) 93]
 42 * 94
 43 ++ 95 _

 Decimal value Symbol Decimal value Symbol
 ------------- ------ ------------- ------

 44 , 96 `
 45 - 97 - 122 a - z
 46 . 123 {
 47 / 124 |
 48 - 57 0 - 9 125 }
 58 : 126 ~

EBCDIC CHARACTER SET

        The following table shows a common portion of the EBCDIC character
        set.

 Decimal value Symbol Decimal value Symbol
 ------------- ------ ------------- ------
 64 blank 97 /
 74 ? 107 ,
 75 . 108 %
 76 < 109 _
 77 (110 >
 Decimal value Symbol Decimal value Symbol
 ------------- ------ ------------- ------
 78 ++ 111 ?
 79 | 122 :
 80 & 123 #
 90 ! 124 @
 91 $ 125 '
 92 * 126 =
 93) 127 "
 94 ; 129 - 169 a - z
 95 4 193 - 233 A - Z
 96 - 240 - 249 0 - 9

SEE:
 Comparison Operators

Data Conversion

        Generally an expression cannot contain values of different
        datatypes.    For example, an expression cannot multiply 5 by 10 and
        then add 'JAMES'.    However, Oracle supports both implicit and
        explicit conversion of values from one datatype to another.

IMPLICIT DATA CONVERSION:

        Oracle automatically converts a value from one datatype to another
        when such a conversion makes sense.    For example, although the
        literal string '10' has datatype CHAR, Oracle automatically converts
        it to the NUMBER datatype if it appears in a numeric expression.

        Conditions can also contain values of different datatypes.    In such
        cases, Oracle often implicitly converts values from one datatype to
        another.    In this statement, Oracle implicitly converts '7936' to
        7936:

 SELECT ename
 FROM emp
 WHERE empno = '7936'

        In this statement, Oracle implicitly converts '12-MAR-1993' to a
        DATE value using the default date format 'DD-MON-YYYY':

 SELECT ename
 FROM emp
 WHERE hiredate = '12-MAR-1993'

        In this statement, Oracle implicitly converts '00002514.0001.0001'
        to a ROWID value:

 SELECT ename
 FROM emp
 WHERE ROWID = '00002514.0001.0001'

EXPLICIT DATA CONVERSION:

        You can also explicitly specify datatype conversions using SQL
        conversion functions.    The following table shows common SQL
        functions that explicitly convert a value from one datatype to
        another.

 TO
 --
 CHAR NUMBER DATE RAW ROWID
FROM ---- ------ ---- --- -----

CHAR |unnec. TO_NUMBER TO_DATE HEXTORAW CHARTOROWID
 |
NUMBER |TO_CHAR unnec. TO_DATE
 | (number, 'J')
DATE |TO_CHAR TO_CHAR unnec.

 | (date, 'J')
RAW |RAWTOHEX unnec.
 |
ROWID |ROWIDTOCHAR unnec.

Note:    "unnec." means unnecessary

IMPLICIT VS. EXPLICIT DATA CONVERSION:

        Oracle Corporation recommends that you specify explicit conversions
        rather than rely on implicit or automatic conversions for these
        reasons:

        * SQL statements are easier to understand when you use explicit
            datatype conversions functions.
        * Automatic datatype conversion can have a negative impact on
            performance, especially if the datatype of a column value is
            converted to that of a constant rather than the other way around.
        * Implicit conversion depends on the context in which it occurs and
            may not work the same way in every case.
        * Algorithms for implicit conversion are subject to change across
            software releases and among Oracle products.    Behavior of explicit
            conversions is more predictable.

SEE:
 Conversion Functions, CHARTOROWID, CONVERT, HEXTORAW,
 RAWTOHEX, ROWIDTOCHAR, TO_CHAR (date conversion), TO_DATE, TO_MULTI_BYTE
 TO_NUMBER, TO_SINGLE_BYTE

Nulls

        If a row lacks a value for a particular column, that column is said
        to be null, or to contain a null.    Nulls can appear in columns of
        any datatype that are not restricted by NOT NULL or PRIMARY KEY
        integrity constraints.    Use a null when the actual value is unknown
        or when a value would not be meaningful.

        Oracle currently treats a character value with a length of zero as
        null.    However, this may not continue to be true in future versions
        of Oracle.

        Do not use null to represent a value of zero, because they are not
        equivalent.    Any arithmetic expression containing a null always
        evaluates to null.    For example, null added to 10 is null.    In fact,
        all operators (except concatenation) return null when given a null
        operand.

NULLS IN SQL functions:

        All scalar functions (except NVL and TRANSLATE) return null when
        given a null argument.    The NVL function can be used to return a
        value when a null occurs.    For example, the expression NVL(COMM,0)
        returns 0 if COMM is null or the value of COMM if it is not null.

        Most group functions ignore nulls.    For example, consider a query
        that averages the five values 1000, null, null, null, and 2000.
        Such a query ignores the nulls and calculates the average to be
        (1000+2000)/2 = 1500.

NULLS WITH COMPARISON OPERATORS:

        To test for nulls, only use the comparison operators IS NULL and IS
        NOT NULL.    If you use any other operator with nulls and the result
        depends on the value of the null, the result is unknown.    Because
        null represents a lack of data, a null cannot be equal or unequal to
        any value or to another null.    However, note that Oracle considers
        two nulls to be equal when evaluating a DECODE expression.

NULLS IN CONDITIONS:

        Oracle treats conditions evaluating to unknown values as FALSE.    For
        example, since the condition COMM = NULL is always unknown, a SELECT
        statement with this condition in its WHERE clause returns no rows.
        Note that Oracle returns no error message in this case.

        The following table summarizes results of conditions using nulls.

 If A is: Condition Evaluates to:

 10 a IS NULL FALSE
 10 a IS NOT NULL TRUE
 NULL a IS NULL TRUE
 NULL a IS NOT NULL FALSE
 10 a = NULL Unknown

 10 a != NULL Unknown
 NULL a = NULL Unknown
 NULL a != NULL Unknown

SEE:
 Arithmetic Operators, Comparison Operators, NVL

Pseudocolumns

        A pseudocolumn behaves like a table column, but is not actually
        stored in the table.    You can select from pseudocolumns, but you
        cannot insert, update, or delete their values.    This section
        describes these pseudocolumns:

        * CURRVAL
        * NEXTVAL
        * LEVEL
        * ROWID
        * ROWNUM

SEE:
 CURRVAL and NEXTVAL, LEVEL, ROWNUM, ROWID

CURRVAL and NEXTVAL

        A sequence is a schema object that can generate unique sequential
        values.    These values are often used for primary and unique keys.
        You can refer to sequence values in SQL statements with these
        pseudocolumns:

CURRVAL
        returns the current value of a sequence.

NEXTVAL
        increments the sequence and returns the next value.

        You must qualify CURRVAL and NEXTVAL with the name of the sequence:

        sequence.CURRVAL
        sequence.NEXTVAL

        To refer to the current or next value of a sequence in the schema of
        another user, you must have been granted either SELECT object
        privilege on the sequence or SELECT ANY SEQUENCE system privilege
        and you must qualify the sequence with the schema containing it:

        schema.sequence.CURRVAL
        schema.sequence.NEXTVAL

        To refer to the value of a sequence on a remote database, you must
        qualify the sequence with a complete or partial name of a database
        link:

        schema.sequence.CURRVAL@dblink
        schema.sequence.NEXTVAL@dblink

        If you are using Trusted Oracle in DBMS MAC mode, you can only refer
        to a sequence if your DBMS label dominates the sequence's creation
        label or if one of these criteria is satisfied:

        * If the sequence's creation label is higher than your DBMS label,
            you must have READUP and WRITEUP system privileges.
        * If the sequence's creation label is lower than your DBMS label,
            you must have WRITEDOWN system privilege.
        * If the sequence's creation label and your DBMS label are
            noncomparable, you must have READUP, WRITEUP, and WRITEDOWN system
            privileges.

        If you are using Trusted Oracle in OS MAC mode, you cannot refer to
        a sequence with a lower creation label than your DBMS label.

USING SEQUENCE VALUES:

        You can use CURRVAL and NEXTVAL in these places:

        * the SELECT list of a SELECT statement
        * the VALUES clause of an INSERT statement
        * the SET clause of an UPDATE statement

        You cannot use CURRVAL and NEXTVAL in these places:

        * a subquery
        * a view's query or snapshot's query
        * a SELECT statement with the DISTINCT operator
        * a SELECT statement with a GROUP BY or ORDER BY clause
        * a SELECT statement that is combined with another SELECT statement
            with the UNION, INTERSECT, or MINUS set operator
        * the WHERE clause of a SELECT statement
        * DEFAULT value of a column in a CREATE TABLE or ALTER TABLE
            statement
        * the condition of a CHECK constraint

        Also, within a single SQL statement, all referenced sequences, LONG
        columns, updated tables, and locked tables must be located on the
        same database.

        When you create a sequence, you can define its initial value and the
        increment between its values.    The first reference to NEXTVAL
        returns the sequence's initial value.    Subsequent references to
        NEXTVAL increment the sequence value by the defined increment and
        return the new value.    Any reference to CURRVAL always returns the
        sequence's current value, which is the value returned by the last
        reference to NEXTVAL.    Note that before you use CURRVAL for a
        sequence in your session, you must first increment the sequence with
        NEXTVAL.

        You can only increment a sequence once in a single SQL statement.
        If a statement contains more than one reference to NEXTVAL for a
        sequence, Oracle increments the sequence once and returns the same
        value for all occurrences of NEXTVAL.    If a statement contains
        references to both CURRVAL and NEXTVAL, Oracle increments the
        sequence and returns the same value for both CURRVAL and NEXTVAL
        regardless of their order within the statement.

        A sequence can be accessed by many users concurrently with no
        waiting or locking.

Example I:

        This example selects the current value of the employee sequence:

 SELECT empseq.currval
 FROM DUAL

Example II:

        This example increments the employee sequence and uses its value for
        a new employee inserted into the employee table:

 INSERT INTO emp
 VALUES (empseq.nextval, 'LEWIS', 'CLERK',
 7902, SYSDATE, 1200, NULL, 20)

Example III:

        This example adds a new order with the next order number to the
        master order table and then adds suborders with this number to the
        detail order table:

 INSERT INTO master_order(orderno, customer, orderdate)
 VALUES (orderseq.nextval, 'Al''s Auto Shop', SYSDATE)
 INSERT INTO detail_order (orderno, part, quantity)
 VALUES (orderseq.currval, 'SPARKPLUG', 4)
 INSERT INTO detail_order (orderno, part, quantity)
 VALUES (orderseq.currval, 'FUEL PUMP', 1)
 INSERT INTO detail_order (orderno, part, quantity)
 VALUES (orderseq.currval, 'TAILPIPE', 2)

SEE:
 INSERT, Pseudocolumns, SELECT, UPDATE

LEVEL

        For each row returned by a hierarchical query, the LEVEL
        pseudocolumn returns 1 for a root node, 2 for a child of a root, and
        so on.    A root node is the highest node within an inverted tree. A
        child node is any non-root node.    A parent node is any row that has
        children.    A leaf node is any row without children.

        To define a hierarchical relationship in a query, you must use the
        START WITH and CONNECT BY clauses.    For more information on using
        the LEVEL pseudocolumn, see the SELECT command.

SEE:
 Pseudocolumns, SELECT

ROWID

        For each row in the database, the ROWID pseudocolumn returns a row's
        address.    ROWID values contain information necessary to locate a
        row:

        * which data block in the data file
        * which row in the data block (first row is 0)
        * which data file (first file is 1)

        In most cases, a ROWID value uniquely identifies a row in the
        database.    However, rows in different tables that are stored
        together in the same cluster can have the same ROWID.

        Values of the ROWID pseudocolumn have the datatype ROWID.

        ROWID values have several important uses:

        * They are the fastest means of accessing a single row.
        * They can show you how a table's rows are stored.
        * They are unique identifiers for rows in a table.

        A ROWID does not change during the lifetime of its row.    However,
        you should not use ROWID as a table's primary key.    If you delete
        and reinsert a row with the Import and Export utilities, for
        example, its ROWID may change.    If you delete a row, Oracle may
        reassign its ROWID to a new row inserted later.

        Although you can use the ROWID pseudocolumn in the SELECT and WHERE
        clauses of a query, these pseudocolumn values are not actually
        stored in the database.    You cannot insert, update, or delete a
        value of the ROWID pseudocolumn.

EXAMPLE:

        This statement selects the address of all rows that contain data for
        employees in department 20:

 SELECT ROWID, ename
 FROM emp
 WHERE deptno = 20

 ROWID ENAME
 ----------------- ----------
 0000000F.0000.0002 SMITH
 0000000F.0003.0002 JONES
 0000000F.0007.0002 SCOTT
 0000000F.000A.0002 ADAMS
 0000000F.000C.0002 FORD

SEE:
 Pseudocolumns, ROWNUM

ROWNUM

        For each row returned by a query, the ROWNUM pseudocolumn returns a
        number indicating the order in which Oracle selects the row from a
        table or set of joined rows.    The first row selected has a ROWNUM of
        1, the second has 2, and so on.

        You can use ROWNUM to limit the number of rows returned by a query,
        as in this example:

 SELECT *
 FROM emp
 WHERE ROWNUM < 10

        You can also use ROWNUM to assign unique values to each row of a
        table, as in this example:

 UPDATE tabx
 SET col1 = ROWNUM

        Oracle assigns a ROWNUM value to each row as it is retrieved, before
        rows are sorted for an ORDER BY clause, so an ORDER BY clause
        normally does not affect the ROWNUM of each row.    However, if an
        ORDER BY clause causes Oracle to use an index to access the data,
        Oracle may retrieve the rows in a different order than without the
        index, so the ROWNUMs may be different than without the ORDER BY
        clause.

        Note that conditions testing for ROWNUM values greater than a
        positive integer are always false.    For example, this query returns
        no rows:

 SELECT * FROM emp
 WHERE ROWNUM > 1

        The first row fetched is assigned a ROWNUM of 1 and makes the
        condition false.    The second row to be fetched is now the first row
        and is also assigned a ROWNUM of 1 and also makes the condition
        false.    All rows subsequently fail to satisfy the condition, so no
        rows are returned.

SEE:
 Pseudocolumns, ROWID

Comments (SQL)

        You can associate comments with SQL statements and schema objects.

COMMENTS WITHIN SQL STATEMENTS:

        Comments within SQL statements do not affect the statement
        execution, but they may make your application easier for you to read
        and maintain.    You may want to include a comment in a statement that
        describes the statement's purpose within your application.

        A comment can appear between any keywords, parameters or punctuation
        marks in a statement.    You can include a comment in a statement
        using either of these means:

        * Begin the comment with /*.    Proceed with the text of the comment.
            This text can span multiple lines.    End the comment with */.    The
            opening and terminating characters need not be separated from the
            text by a space or a line break.
        * Begin the comment with -- (two hyphens).    Proceed with the text of
            the comment.    This text cannot extend to a new line.    End the
            comment with a line break.

        A SQL statement can contain multiple comments of both styles.    The
        text of a comment can contain any printable characters in your
        database character set.

        You can use comments in a SQL statement to pass instructions, or
        hints, to the Oracle optimizer.    The optimizer uses these hints to
        choose an execution plan for the statement.

        Note that you cannot use these styles of comments between SQL
        statements in a SQL script.    You can use the SQL*DBA or SQL*Plus
        REMARK command for this purpose.

EXAMPLE:

        These statements contain many comments:

 SELECT ename, sal + NVL(comm, 0), job, loc
 /* Select all employees whose compensation is
 greater than that of Jones.*/
 FROM emp, dept
 /*The DEPT table is used to get the department name.*/
 WHERE emp.deptno = dept.deptno
 AND sal + NVL(comm,0) > /* Subquery: */
 (SELECT sal + NVL(comm,0)/* total compensation is sal + comm */
 FROM emp
 WHERE ename = 'JONES')

 SELECT ename, -- select the name
 sal + NVL(comm, 0) -- total compensation
 job -- job
 loc -- and city containing the office

 FROM emp, -- of all employees
 dept
 WHERE emp.deptno = dept.deptno
 AND sal + NVL(comm, 0) > -- whose compensation is greater than
 (SELECT sal + NVL(comm,0) -- the compensation
 FROM emp
 WHERE ename = 'JONES') -- of Jones.

COMMENTS ON SCHEMA OBJECTS:

        You can associate a comment with a table, view, snapshot, or column
        using the COMMENT command.    Comments associated with schema objects
        are stored in the data dictionary.

Operators

        An operator is used to manipulate individual data items and return a
        result.    These items are called operands or arguments.    Operators
        are represented by special characters or by keywords.    For example,
        the multiplication operator is represented by an asterisk (*) and
        the operator that tests for nulls is represented by the keywords IS
        NULL.

SEE:
 Arithmetic Operators, Character Operators, Comparison Operators
 Logical Operators, Precedence, Set Operators, Other Operators

Precedence

        An important property of an operator is its precedence.    Precedence
        is the order in which Oracle evaluates different operators in the
        same expression.    When evaluating an expression containing multiple
        operators, Oracle evaluates operators with higher precedence before
        evaluating those with lower precedence.    Oracle evaluates operators
        with equal precedence from left to right within an expression.

        The following table lists the levels of precedence among SQL
        operators from high to low.    Operators listed on the same line have
        the same precedence.

  Highest Precedence

        Unary + - arithmetic operators                PRIOR operator

        * / arithmetic operators,

        Binary + - arithmetic operators              || character operators

        All comparison operators,

        NOT logical operator,

        AND logical operator,

        OR logical operator,

  Lowest Precedence

SQL OPERATOR PRECEDENCE:

Operator Purpose Example
-------- ------- -------
+ - Denotes a positive or negative SELECT *
 expression. These are unary FROM orders
 operators. WHERE qtysold = -1

 SELECT *
 FROM emp
 WHERE -sal < 0

* / Multiplies, divides. These are UPDATE emp
 binary operators. SET sal = sal * 1.1

+ - Adds, subtracts. These are SELECT sal + comm
 binary operators. FROM emp
 WHERE sysdate - hiredate
 > 365

        You can use parentheses in an expression to override operator
        precedence.    Oracle evaluates expressions inside parentheses before
        evaluating those outside.

        SQL also supports set operators (UNION, UNION ALL, INTERSECT, and
        MINUS) which combine sets of rows returned by queries, rather than
        individual data items.    All set operators have equal precedence.

EXAMPLE:

        Consider this expression:

 1+2*3

        Because multiplication has a higher precedence than addition, Oracle
        first multiplies 2 by 3 and then adds the result to 1.

Arithmetic Operators

        You can use an arithmetic operator in an expression to negate, add,
        subtract, multiply, and divide numeric values.    The result of the
        operation is also a numeric value.    Some of these operators are also
        used in date arithmetic.    The following table lists arithmetic
        operators.

Operator Purpose Example
-------- ------- -------
+ - Denotes a positive or SELECT *
 negative expression. FROM orders
 These are unary operators. WHERE qtysold = -1

 SELECT *
 FROM emp
 WHERE -sal < 0

* / Multiplies, divides. UPDATE emp
 These are binary operators. SET sal = sal * 1.1
Operator Purpose Example
-------- ------- -------

+ - Adds, subtracts. SELECT sal + comm
 These are binary operators. FROM emp
 WHERE sysdate - hiredate
 > 365

        Do not use consecutive minus signs with no separation (--) in
        arithmetic expressions to indicate double negation or the
        subtraction of a negative value.    The characters -- are used to
        begin comments within SQL statements.    You should separate
        consecutive minus signs with a space or a parenthesis.

SEE:
 Datatype Comparison Rules, NUMBER Datatype, DATE Datatype

Character Operators

        Character operators are used in expressions to manipulate character
        strings.    The following table lists the single character operator.

        The result of concatenating two character strings is another
        character string.    If both character strings are of datatype CHAR,
        the result has datatype CHAR and is limited to 255 characters.    If
        either string is of datatype VARCHAR2, the result has datatype
        VARCHAR2 and is limited to 2000 characters.    Trailing blanks in
        character strings are preserved by concatenation, regardless of the
        strings' datatypes.    For more information on the differences between
        the CHAR and VARCHAR2 datatypes, see the Character Datatypes
        section.

        On most platforms, the concatenation operator is two solid vertical
        bars, as shown in the following table.    However, some IBM platforms
        use broken vertical bars for this operator.    Also, you can
        concatenate character strings with the CONCAT character function.

Operator Purpose Example
-------- ------- -------
|| Concatenates character strings. SELECT 'Name is ' || ename
 FROM emp

        Although Oracle treats zero-length character strings as nulls,
        concatenating a zero-length character string with another operand
        always results in the other operand, rather than a null.    However,
        this may not continue to be true in future versions of Oracle.    To
        concatenate an expression that might be null, use the NVL function
        to explicitly convert the expression to a zero-length string.

EXAMPLE:

        This example creates a table with both CHAR and VARCHAR2 columns,
        inserts values both with and without trailing blanks, and then
        selects these values, concatenating them.    Note that for both CHAR
        and VARCHAR2 columns, the trailing blanks are preserved.

 CREATE TABLE tab1 (col1 VARCHAR2(6), col2 CHAR(6),
 col3 VARCHAR2(6), col4 CHAR(6))

 INSERT INTO tab1(col1, col2, col3, col4)
 VALUES ('abc', 'def ', 'ghi ', 'jkl')

 SELECT col1||col2||col3||col4 "Concatenation"
 FROM tab1

 Concatenation

 bcdef ghi jkl

Comparison Operators (SQL)

        Comparison operators are used in conditions that compare one
        expression to another.    The result of comparing one expression to
        another can be TRUE, FALSE, or unknown.

Operator Purpose Example
-------- ------- -------
= Equality test. SELECT *
 FROM emp
 WHERE sal = 1500

!=,
>=, <> inequality operator may not be FROM emp
 available on all platforms. WHERE SAL != 1500

Operator Purpose Example
-------- ------- -------
>, < Greater than and less than tests SELECT *
 FROM emp
 WHERE SAL > 1500

 SELECT * FROM emp
 WHERE sal < 1500

>=, <= Greater than or equal to, and SELECT *
 less than or equal to, tests. FROM emp
 WHERE sal >= 1500

 SELECT * FROM emp
 WHERE sal <= 1500

IN Equal to any member of test. SELECT *
 Equivalent to = ANY FROM emp
 WHERE job IN
 ('CLERK','ANALYST')
Operator Purpose Example
-------- ------- -------
 SELECT *
 FROM emp
 WHERE sal IN
 (SELECT sal
 FROM emp
 WHERE deptno = 30)

NOT IN Equivalent to != ALL. Evaluates SELECT *
 to FALSE if any member of the set is FROM emp
 NULL. WHERE sal NOT IN
 (SELECT sal

 FROM emp
 WHERE deptno = 30)

 SELECT *
 FROM emp
 WHERE job NOT IN
 ('CLERK','ANALYST')
Operator Purpose Example
-------- ------- -------
ANY, Compares a value to each value in a SELECT *
SOME list or returned by a query. Must FROM emp
 be preceded by =, !=, >, <, <=, WHERE sal = ANY
 or >=. Evaluates to FALSE if the (SELECT sal FROM emp
 query returns no rows. WHERE deptno = 30)

ALL Compares a value to every value in a SELECT *
 list or returned by a query. Must be FROM emp
 preceded by =, !=, >, <, <=, or >=. WHERE sal >=
 Evaluates to TRUE if the query ALL (1400, 3000)
 returns no rows.

[NOT] [Not] greater than or equal to x SELECT *
BETWEEN and less than or equal to y. FROM emp
x AND y WHERE sal
 BETWEEN 2000 AND 3000

Operator Purpose Example
-------- ------- -------
EXISTS TRUE if a subquery returns at least SELECT dname, deptno
 one row. FROM dept
 WHERE EXISTS
 (SELECT *
 FROM emp
 WHERE dept.deptno =
 emp.deptno)

x [NOT] TRUE if x does [not] match the See LIKE Operator
LIKE y pattern y. Within y, the character
[ESCAPE z] % matches any string of zero or more
 characters except null. The character
 matches any single character.

IS [NOT] Tests for nulls. This is the only SELECT *
NULL operator that should be used to test FROM emp
 for NULLS. See Nulls WHERE comm IS NULL

SEE:
 Datatype Comparison Rules, Nulls

NOT IN Operator

        All rows evaluate to false (and no rows are returned) if any item in
        the list following a NOT IN operation is null. For example, this
        statement returns 'TRUE':

 SELECT 'TRUE'
 FROM emp
 WHERE deptno NOT IN (5,15)

        However, this statement returns no rows:

 SELECT 'TRUE'
 FROM emp
 WHERE deptno NOT IN (5,15,null)

        This example returns no rows because the WHERE clause condition
        evaluates to:

 deptno != 5 AND deptno != 15 AND deptno != null

        Because all conditions that compare a null result in null, the
        entire expression results in a null.    This behavior can easily be
        overlooked, especially when the NOT IN operator references a
        subquery.

LIKE Operator

        The LIKE operator is used in character string comparisons with
        pattern matching.    The syntax for a condition using the LIKE
        operator is shown in this diagram:

SYNTAX:

char1 [NOT] LIKE char2 [ESCAPE 'c']

where:

char1
        is a value to be compared with a pattern.    This value can have
        datatype CHAR or VARCHAR2.

NOT
        logically inverts the result of the condition, returning FALSE if
        the condition evaluates to TRUE and TRUE if it evaluates to FALSE.

char2
        is the pattern to which char1 is compared.    The pattern is a value
        of datatype CHAR or VARCHAR2 and can contain the special pattern
        matching characters % and _.

ESCAPE
        identifies a single character as the escape character.    The escape
        character can be used to cause Oracle to interpret % or _ literally,
        rather than as a special character, in the pattern.
        If you wish to search for strings containing an escape character, you
        must specify this character twice.    For example, if the escape
        character is '/', to search for the string 'client/server', you must
        specify, 'client//server'.

        While the equal (=) operator exactly matches one character value to
        another, the LIKE operator matches a portion of one character value
        to another by searching the first value for the pattern specified by
        the second.

        With the LIKE operator, you can compare a value to a pattern rather
        than to a constant.    The pattern can only appear after the LIKE
        keyword.    For example, you can issue the following query to find the
        salaries of all employees with names beginning with 'SM':

 SELECT sal
 FROM emp
 WHERE ename LIKE 'SM%'

        The following query finds the salaries of all employees with the
        name 'SM%', since the query uses the equality operator instead of
        the LIKE operator:

 SELECT sal
 FROM emp
 WHERE ename = 'SM%'

        The following query finds the salaries of all employees with the
        name 'SM%'.    Oracle interprets 'SM%' as a text literal, rather than
        as a pattern, because it precedes the LIKE operator:

 SELECT sal
 FROM emp
 WHERE 'SM%' LIKE ename

        Patterns often use special characters that Oracle matches with
        different characters in the value:

        * An underscore (_) in the pattern matches exactly one character (as
            opposed to one byte in a multi-byte character set) in the value.
        * A percent sign (%) in the pattern can match zero or more
            characters (as opposed to bytes in a multi-byte character set) in
            the value.    Note that the pattern '%' cannot match a null.

        Case is significant in all conditions comparing character
        expressions including the LIKE and equality (=) operators.    You can
        use the UPPER() function to perform a case insensitive match, as in
        this condition:

 UPPER(ename) LIKE 'SM%'

        When LIKE is used to search an indexed column for a pattern, the
        performance benefit associated with the index is lost if the first
        character in the pattern is % or _.    If the leading character in the
        pattern is not % or _, there is some performance benefit to the
        index because Oracle can restrict the comparison to rows known to
        begin with the specified first character.

EXAMPLE I:

        This condition is true for all ENAME values beginning with MA:

 ename LIKE 'MA%'

        All of these ENAME values make the condition TRUE:

 MARTIN, MA, MARK, MARY

        Since case is significant, ENAME values beginning with Ma, ma, and
        mA make the condition FALSE.

EXAMPLE II:

        Consider this condition:

 ename LIKE 'SMITH_'

        This condition is true for these ENAME values:

 SMITHE, SMITHY, SMITHS

        This condition is false for 'SMITH', since the special character _
        must match exactly one character of the ENAME value.

THE ESCAPE OPTION:

        You can include the actual characters % or _ in the pattern by using
        the ESCAPE option.    The ESCAPE option identifies the escape
        character.    If the escape character appears in the pattern before
        the character % or _, Oracle interprets this character literally in
        the pattern, rather than as a special pattern matching character.

EXAMPLE III:

        To search for any employees with the character string 'A_B' in their
        name:

 SELECT ename
 FROM emp
 WHERE ename LIKE '%A_B%' ESCAPE '\'

        The ESCAPE option identifies the backslash (\) as the escape
        character.    In the pattern, the escape character precedes the
        underscore (_).    This causes Oracle to interpret the underscore
        literally, rather than as a special pattern matching character.

Logical Operators (SQL)

        A logical operator is used to combine the results of two component
        conditions to produce a single result based on them or to invert the
        result of a single condition.    The following table lists logical
        operators.

Operator Function Example
-------- -------- -------
NOT Returns TRUE if the following SELECT *
 condition is FALSE; otherwise FROM emp
 returns FALSE. WHERE NOT (job IS NULL)

 SELECT *
 FROM emp
 WHERE NOT
 (sal BETWEEN 1000
 AND 2000)

Operator Function Example
-------- -------- -------
AND Returns TRUE if both component SELECT *
 conditions are TRUE; otherwise FROM emp
 returns FALSE. WHERE job = 'CLERK'
 AND deptno = 10

OR Returns TRUE if either component SELECT *
 conditions are either TRUE or FROM emp
 unknown; otherwise returns FALSE. WHERE job = 'CLERK'
 OR deptno = 10

        For example, in the WHERE clause of the following SELECT statement,
        the AND logical operator is used to ensure that only those hired
        before 1984 and also earning more than $1000 a month are returned:

 SELECT *
 FROM emp
 WHERE hiredate < TO_DATE('01-JAN-1984', 'DD-MON-YYYY')
 AND sal > 1000

SEE:
 AND Operator, NOT Operator, OR Operator

NOT Operator

        The following table shows the result of applying the NOT operator to
        an expression.

 NOT TRUE FALSE NULL
 FALSE TRUE NULL

SEE:
 Logical Operators, AND Operator, OR Operator

AND Operator

        The following table shows the results of combining two expressions
        with the AND operator.

 AND TRUE FALSE NULL
 TRUE TRUE FALSE NULL
 FALSE FALSE FALSE FALSE
 NULL NULL FALSE NULL

SEE:
 Logical Operators, OR Operator, NOT Operator

OR Operator

        The following table shows the results of combining two logical
        expressions with the OR operator.

 OR TRUE FALSE NULL
 TRUE TRUE TRUE TRUE
 FALSE TRUE FALSE NULL
 NULL TRUE NULL NULL

SEE:
 Logical Operators, AND Operator, NOT Operator

Set Operators

        Set operators combines the results of two queries into a single
        result.    The following table lists SQL set operators.

Operator Returns
-------- -------
UNION All distinct rows selected by either query.

UNION ALL All rows selected by either query, including all duplicates.

INTERSECT All distinct rows selected by both queries.

MINUS All distinct rows selected by the first query but not the
 second.

        All set operators have equal precedence.    If a SQL statement
        contains multiple set operators, Oracle evaluates them from the left
        to right if no parentheses explicitly specify another order.    To
        comply with emerging SQL standards, a future version of Oracle will
        give the INTERSECT operator greater precedence than the other set
        operators, so you should use parentheses to explicitly specify order
        of evaluation in queries that use the INTERSECT operator with other
        set operators.

        If two queries combined by a set operator select character data, the
        datatype of the return values are determined as follows:

        * If both queries select values of datatype CHAR, the returned
            values have datatype CHAR.
        * If either or both of the queries select values of datatype
            VARCHAR2, the returned values have datatype VARCHAR2.

        Consider these two queries and their results:

 SELECT part
 FROM orders_list1

 PART

 SPARKPLUG
 FUEL PUMP
 FUEL PUMP
 TAILPIPE

 SELECT part
 FROM orders_list2

 PART

 CRANKSHAFT
 TAILPIPE
 TAILPIPE

SEE:
 INTERSECT Operator, MINUS Operator, UNION ALL Operator, UNION
 OPERATOR

UNION Operator

EXAMPLE:

        This statement combines the results with the UNION operator, which
        eliminates duplicate selected rows:

 SELECT part FROM orders_list1
 UNION
 SELECT part FROM orders_list2

 PART

 SPARKPLUG
 FUEL PUMP
 TAILPIPE
 CRANKSHAFT

SEE:
 INTERSECT Operator, MINUS Operator, Set Operators, UNION ALL
 OPERATOR

UNION ALL Operator

EXAMPLE:

        This statement combines the results with the UNION ALL operator
        which does not eliminate duplicate selected rows:

 SELECT part FROM orders_list1
 UNION ALL
 SELECT part FROM orders_list2

 PART

 SPARKPLUG
 FUEL PUMP
 FUEL PUMP
 TAILPIPE
 CRANKSHAFT
 TAILPIPE
 TAILPIPE

        Note that the UNION operator returns only distinct rows that appear
        in either result, while the UNION ALL operator returns all rows.    A
        PART value that appears multiple times in either or both queries
        (such as 'FUEL PUMP') is returned only once by the UNION operator,
        but multiple times by the UNION ALL operator.

SEE:
 INTERSECT Operator, MINUS Operator, Set Operators, UNION Operator

INTERSECT Operator

EXAMPLE:

        This statement combines the results with the INTERSECT operator
        which returns only those rows returned by both queries:

 SELECT part FROM orders_list1
 INTERSECT
 SELECT part FROM orders_list2

 PART

 TAILPIPE

SEE:
 MINUS Operator, Set Operators, UNION ALL Operator, UNION Operator

MINUS Operator

EXAMPLE:

        This statement combines the results with the MINUS operator which
        returns only those rows returned by the first query but not in the
        second:

 SELECT part FROM orders_list1
 MINUS
 SELECT part FROM orders_list2

 PART

 SPARKPLUG
 FUEL PUMP

SEE:
 INTERSECT Operator, Set Operators, UNION ALL Operator, UNION
 OPERATOR

Other Operators

The following table lists other SQL operators.

(+), Indicates that the preceding column SELECT ename, dname
 is the outer join column FROM emp, dept
 in a join. WHERE dept.deptno =
 emp.deptno (+)

PRIOR Evaluates the following expression SELECT empno, ename, mgr
 for the parent row of the current FROM emp
 row in a hierarchical, or CONNECT BY
 tree-structured, query. In such a PRIOR empno = mgr
 query, you must use this operator
 in the CONNECT BY clause to define
 the relationship between parent and
 child rows. You can also use
 this operator in other parts of a
 SELECT statement that performs a
 hierarchical query. The PRIOR
 operator is a unary operator and
 has the same precedence as the
 unary + and - arithmetic operators.

Functions (SQL)

A SQL function is similar to an operator in that it manipulates data
        items and returns a result.    Functions differ from operators in the
        format in which they appear with their arguments.    This format
        allows them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

        If you call a function with an argument of a datatype other than the
        datatype expected by the function, Oracle implicitly converts the
        argument to the expected datatype before performing the function.

        If you call a function with a null argument, the function
        automatically returns null.    The only functions that do not follow
        this rule are CONCAT, REPLACE, DUMP. and NVL.

        Do not design your applications to rely on Oracle either to evaluate
        or to not evaluate all arguments to a function.

        Note:    You can call a Stored PL/SQL function anywhere that you
        can call a SQL function.    Refer to your PL/SQL documentation for
        information on how to construct a Stored PL/SQL function for use
        in a SQL statement.

        Functions are of these general types:

        * single row (or scalar) functions
        * group functions (or aggregate) functions

        These functions differ in the number of rows upon which they act.    A
        single row function returns a single result row for every row of a
        queried table or view, while a group function returns a single
        result row for a group of queried rows.

        Single row functions can appear in select lists (provided the SELECT
        statement does not contain a GROUP BY clause), WHERE clauses, START
        WITH clauses, and CONNECT BY clauses.

        Group functions can appear in select lists and HAVING clauses.    If
        you use the GROUP BY clause in a SELECT statement, Oracle divides
        the rows of a queried table or view into groups.    In a query
        containing a GROUP BY clause, all elements of the select list must
        be either expressions from the GROUP BY clause, expressions
        containing group functions, or constants.    Oracle applies the group
        functions in the select list to each group of rows and returns a
        single result row for each group.    If you omit the GROUP BY clause,
        Oracle applies group functions in the select list to all the rows in
        the queried table or view.    You can also use group functions in a
        HAVING clause in the statement to restrict the result rows returned.

SEE:
 Single Row Functions, Number Functions, Character Functions, Date
 Functions, Conversion Functions, Other Functions, Group Functions

Single Row Functions

        Single row functions grouped together by the datatypes of their
        arguments and return values.

SEE:
 Number Functions, Character Functions, Date Functions, OTHER
 FUNCTIONS

Number Functions:
        Number functions accept numeric input and return numeric values.
        Most of these functions return values that are accurate to 38
        decimal digits.    The transcendental functions (COS, COSH, EXP, LN,
        LOG, SIN, SINH, SQRT, TAN, TANH) are accurate to 36 decimal digits.

SEE:
 ABS, CEIL, COS, COSH, EXP, FLOOR, LN, LOG, MOD, POWER, ROUND, SIGN,
 SIN, Single Row Functions, SINH, SQRT, TAN, TANH, TRUNC

ABS

SYNTAX:

 ABS(n)

PURPOSE:

        Returns the absolute value of n.

EXAMPLE:

 SELECT ABS(-15) "Absolute"
 FROM DUAL

 Absolute

 15

SEE:
 SIGN

CEIL

SYNTAX:

 CEIL(n)

PURPOSE:

        Returns smallest integer greater than or equal to n.

EXAMPLE:

 SELECT CEIL(15.7) "Ceiling"
 FROM DUAL

 Ceiling

 16

SEE:
 FLOOR

COS

SYNTAX:

 COS(n)

PURPOSE:

        Returns the cosine of n (an angle expressed in radians).

EXAMPLE:

 SELECT COS(180 * 3.14159265359/180)
 "Cosine of 180 degrees"
 FROM DUAL

 Cosine of 180 degrees

 -1

SEE:
 COSH, SIN, SINH, TAN, TANH

COSH

SYNTAX:

 COSH(n)

PURPOSE:

        Returns the hyperbolic cosine of n.

EXAMPLE:

 SELECT COSH(0) "Hyperbolic cosine of 0"
 FROM DUAL

 Hyperbolic cosine of 0

 1

SEE:
 COS, SIN, SINH, TAN, TANH

EXP

SYNTAX:

 EXP(n)

PURPOSE:

        Returns e raised to the nth power;    e = 2.71828183 ...

EXAMPLE:

 SELECT EXP(4) "e to the 4th power"
 FROM DUAL

 e to the 4th power

 54.59815

SEE:
 LN, LOG, POWER, SQRT

FLOOR

SYNTAX:

 FLOOR(n)

PURPOSE:

        Returns largest integer equal to or less than n.

EXAMPLE:

 SELECT FLOOR(15.7) "Floor"
 FROM DUAL

 Floor

 15

SEE:
 CEIL

LN

SYNTAX:

 LN(n)

PURPOSE:

        Returns the natural logarithm of n, where n is greater than 0.

EXAMPLE:

 SELECT LN(95) "Natural log of 95"
 FROM DUAL

 Natural log of 95

 4.55387689

SEE:
 EXP, LOG, POWER, SQRT

LOG

SYNTAX:

 LOG(m,n)

PURPOSE:

        Returns the logarithm, base m, of n.    The base m can be any positive
        number other than 0 or 1 and n can be any positive number.

EXAMPLE:

 SELECT LOG(10,100) "Log base 10 of 100"
 FROM DUAL

 Log base 10 of 100

 2

SEE:
 EXP, LN, POWER, SQRT

MOD

SYNTAX:

 MOD(m,n)

PURPOSE:

        Returns remainder of m divided by n.    Returns m if n is 0.

EXAMPLE:

 SELECT MOD(11,4) "Modulus"
 FROM DUAL

 Modulus

 3

Note:
        This function behaves differently from the classical mathematical
        modulus function when m is negative.    The classical modulus can be
        expressed in terms of the MOD function with this formula:

 m - n * FLOOR(m/n)

EXAMPLE:

        This statement illustrates the difference between the MOD function
        and the classical modulus:

 SELECT m, n, MOD(m,n),
 m - n * FLOOR(m/n) "Classical Modulus"
 FROM test_mod_table

 M N MOD(M,N) Classical Modulus
 --- ---- -------- -----------------
 11 4 3 3
 -11 4 -3 1
 11 -4 3 -1
 -11 -4 -3 -3

SEE:
 ROUND, TRUNC

POWER

SYNTAX:

 POWER(m,n)

PURPOSE:

        Returns m raised to the nth power.    The base m and the exponent n
        can be any numbers, but if m is negative, n must be an integer.

EXAMPLE:

 SELECT POWER(3,2) "Raised"
 FROM DUAL

 Raised

 9

SEE:
 EXP, LN, LOG, SQRT

ROUND (NUMBER)

SYNTAX:

 ROUND(n[,m])

PURPOSE:

        Returns n rounded to m places right of the decimal point; if m is
        omitted, to 0 places. m can be negative to round off digits left of
        the decimal point. m must be an integer.

EXAMPLES:

 SELECT ROUND(15.193,1) "Round"
 FROM DUAL

 Round

 15.2

 SELECT ROUND(15.193,-1) "Round"
 FROM DUAL

 Round

 20

SEE:
 MOD, TRUNC

SIGN

SYNTAX:

 SIGN(n)

PURPOSE:

        If n<0, the function returns -1; if n=0, the function returns 0; if
        n>0, the function returns 1.

EXAMPLE:

 SELECT SIGN(-15) "Sign"
 FROM DUAL

 Sign

 -1

SEE:
 ABS

SIN

SYNTAX:

 SIN(n)

PURPOSE:

        Returns the sine of n (an angle expressed in radians).

EXAMPLE:

 SELECT SIN(30 * 3.14159265359/180)
 "Sine of 30 degrees"
 FROM DUAL

 Sine of 30 degrees

 .5

SEE:
 COS, COSH, SINH, TAN, TANH

SINH

SYNTAX:

 SINH(n)

PURPOSE:

        Returns the hyperbolic sine of n.

EXAMPLE:

 SELECT SINH(1) "Hyperbolic sine of 1"
 FROM DUAL

 Hyperbolic sine of 1

 1.17520119

SEE:
 COS, COSH, SIN, TAN, TANH

SQRT

SYNTAX:

 SQRT(n)

PURPOSE:

        Returns square root of n.    The value n cannot be negative.    SQRT
        returns a "real" result.

EXAMPLE:

 SELECT SQRT(26) "Square root"
 FROM DUAL

 Square root

 5.09901951

SEE:
 EXP, LOG, LN, POWER

TAN

SYNTAX:

 TAN(n)

PURPOSE:

        Returns the tangent of n (an angle expressed in radians).

EXAMPLE:

 SELECT TAN(135 * 3.14159265359/180)
 "Tangent of 135 degrees"
 FROM DUAL

 Tangent of 135 degrees

 -1

SEE:
 COS, COSH, SIN, SINH, TANH

TANH

SYNTAX:

 TANH(n)

PURPOSE:

        Returns the hyperbolic tangent of n.

EXAMPLE:

 SELECT TANH(.5) "Hyperbolic tangent of .5"
 FROM DUAL

 Hyperbolic tangent of .5

 .462117157

SEE:
 COS, COSH, SIN, SINH, TAN

TRUNC (NUMBER)

SYNTAX:

 TRUNC(n[,m])

PURPOSE:

        Returns n truncated to m decimal places; if m is omitted, to 0
        places.    m can be negative to truncate (make zero) m digits left of
        the decimal point.

EXAMPLES:

 SELECT TRUNC(15.79,1) "Truncate"
 FROM DUAL

 Truncate

 15.7

 SELECT TRUNC(15.79,-1) "Truncate"
 FROM DUAL

 Truncate

 10

SEE:
 MOD, ROUND

Character Functions

        Single row character functions accept character input and can return
        both character and number values.

SEE:
 Character Functions Returning Character Values, Character Functions
 Returning Number Values

Character Functions Returning Character Values

        Unless otherwise noted, these functions all return values with the
        datatype VARCHAR2 and are limited in length to 2000 bytes.
        Functions that return values of datatype CHAR are limited in length
        to 255 bytes.    If the length of the return value exceeds the limit,
        Oracle truncates it and returns the result without an error.

SEE:
 CHR, CONCAT, INITCAP, LOWER, LPAD, LTRIM, NLS_INITCAP,
 NLS_LOWER, NLS_UPPER, REPLACE, RPAD, RTRIM, SOUNDEX, SUBSTR,
 SUBSTRB, TRANSLATE, UPPER

CHR

SYNTAX:

 CHR(n)

PURPOSE:

        Returns the character having the binary equivalent to n in the
        database character set.

EXAMPLE:

 SELECT CHR(75) "Character"
 FROM DUAL

 Character

 K

SEE:
 ASCII

CONCAT

SYNTAX:

 CONCAT(char1, char2)

PURPOSE:

        Returns char1 concatenated with char2.    This function is
        equivalent to the concatenation operator (||).

EXAMPLE:

        This example uses nesting to concatenate three character strings:

 SELECT CONCAT(CONCAT(ename, ' is a '), job) "Job"
 FROM emp
 WHERE empno = 7900

 Job

 JAMES is a CLERK

INITCAP

SYNTAX:

 INITCAP(char)

PURPOSE:

        Returns char, with the first letter of each word in uppercase, all
        other letters in lowercase.    Words are delimited by white space or
        characters that are not alphanumeric.

EXAMPLE:

 SELECT INITCAP('the soap') "Capitalized"
 FROM DUAL

 Capitalized

 The Soap

SEE:
 LOWER, NLS_INITCAP, NLS_LOWER, NLS_UPPER, UPPER

LOWER

SYNTAX:

 LOWER(char)

PURPOSE:

        Returns char, with all letters lowercase.    The return value has the
        same datatype as the argument char (CHAR or VARCHAR2).

EXAMPLE:

 SELECT LOWER('MR. SAMUEL HILLHOUSE') "Lowercase"
 FROM DUAL

 Lowercase

 mr. samuel hillhouse

SEE:
 INITCAP, NLS_INITCAP, NLS_LOWER, NLS_UPPER, UPPER

LPAD

SYNTAX:

 LPAD(char1,n [,char2])

PURPOSE:

        Returns char1, left-padded to length n with the sequence of
        characters in char2; char2 defaults to ' ', a single blank.    If
        char1 is longer than n, this function returns the portion of char1
        that fits in n.

        The argument n is the total length of the return value as it is
        displayed on your terminal screen.    In most character sets, this is
        also the number of characters in the return value.    However, in some
        multi-byte character sets, the display length of a character string
        can differ from the number of characters in the string.

EXAMPLE:

 SELECT LPAD('Page 1',15,'*.') "LPAD example"
 FROM DUAL

 LPAD example

 ..*.*.*Page 1

SEE:
 LTRIM, RPAD, RTRIM

LTRIM

SYNTAX:

 LTRIM(char[,set])

PURPOSE:

        Removes characters from the left of char, with initial characters
        removed up to the first character not in set; set defaults to ' ', a
        single blank.

EXAMPLE:

 SELECT LTRIM('xyxXxyLAST WORD','xy')
 "Left trim example"
 FROM DUAL

 Left trim example

 XxyLAST WORD

SEE:
 LPAD, RPAD, RTRIM

NLS_INITCAP

SYNTAX:

 NLS_INITCAP(char [, 'nlsparams'])

PURPOSE:

        Returns char, with the first letter of each word in uppercase, all
        other letters in lowercase.    Words are delimited by white space or
        characters that are not alphanumeric.    The value of 'nlsparams' can
        have this form:

'NLS_SORT = sort'

        where sort is either a linguistic sort sequence or BINARY.    The
        linguistic sort sequence handles special linguistic requirements for
        case conversions.    Note that these requirements can result in a
        return value of a different length than the char.    If you omit
        'nlsparams', this function uses the default sort sequence for your
        session.

EXAMPLE:

 SELECT NLS_INITCAP('ijsland', 'NLS_SORT = XDutch') "Capitalized"
 FROM DUAL

 Capitalized

 IJsland

SEE:
 INITCAP, LOWER, NLS_LOWER, NLS_UPPER, UPPER

NLS_LOWER

SYNTAX:

 NLS_LOWER(char [, 'nlsparams'])

PURPOSE:

        Returns char, with all letters lowercase.    The 'nlsparams' can have
        the same form and serve the same purpose as in the NLS_INITCAP
        function.

EXAMPLE:

 SELECT NLS_LOWER('CITTA''', 'NLS_SORT = XItalian') "Lowercase"
 FROM DUAL

 Lowercase

 citta

SEE:
 INITCAP, LOWER, NLS_INITCAP, NLS_UPPER, UPPER

NLS_UPPER

SYNTAX:

 NLS_UPPER(char [, 'nlsparams'])

PURPOSE:

        Returns char, with all letters uppercase.    The 'nlsparams' can have
        the same form and serve the same purpose as in the NLS_INITCAP
        function.

EXAMPLE:

 SELECT NLS_UPPER('grob', 'NLS_SORT = XGerman') "Uppercase"
 FROM DUAL

 Uppercase

 GROSS

SEE:
 INITCAP, LOWER, NLS_INITCAP, NLS_LOWER, UPPER

REPLACE

SYNTAX:

 REPLACE(char, search_string [,replacement_string])

PURPOSE:

        Returns char with every occurrence of search_string replaced with
        replacement_string.    If replacement_string is omitted or null, all
        occurrences of search_string are removed.    If search_string is null,
        char is returned.    This function provides a superset of the
        functionality provided by the TRANSLATE function.    TRANSLATE
        provides single character, one to one, substitution.    REPLACE allows
        you to substitute one string for another as well as to remove
        character strings.

EXAMPLE:

 SELECT REPLACE('JACK and JUE','J','BL') "Changes"
 FROM DUAL

 Changes

 BLACK and BLUE

SEE:
 SOUNDEX, SUBSTR, SUBSTRB, TRANSLATE

RPAD

SYNTAX:

 RPAD(char1, n [,char2])

PURPOSE:

        Returns char1, right-padded to length n with char2, replicated as
        any times as necessary; char2 defaults to ' ', a single blank.    If
        char1 is longer than n, this function returns the portion of char1
        that fits in n.

        The argument n is the total length of the return value as it is
        displayed on your terminal screen.    In most character sets, this is
        also the number of characters in the return value.    However, in some
        multi-byte character sets, the display length of a character string
        can differ from the number of characters in the string.

EXAMPLE:

 SELECT RPAD(ename,11,'ab') "RPAD example"
 FROM emp
 WHERE ename = 'TURNER'

 RPAD example

 TURNERababa

SEE:
 LPAD, LTRIM, RTRIM

RTRIM

SYNTAX:

 RTRIM(char [,set])

PURPOSE:

        Returns char, with final characters removed after the last character
        not in set; set defaults to ' ', a single blank.

EXAMPLE:

 SELECT RTRIM('TURNERyxXxy','xy')
 "Right trim example"
 FROM DUAL

 Right trim example

 TURNERyxX

SEE:
 LPAD, LTRIM, RPAD

SOUNDEX

SYNTAX:

 SOUNDEX(char)

PURPOSE:

        Returns a character string containing the phonetic representation of
        char.    This function allows you to compare words that are spelled
        differently, but sound alike in English.

        The phonetic representation is defined in The Art of Computer
        Programming, Volume 3: Sorting and Searching, by Donald E. Knuth.

EXAMPLE:

 SELECT ename
 FROM emp
 WHERE SOUNDEX(ename) =
 SOUNDEX('SMYTHE')

 ENAME

 SMITH

SEE:
 REPLACE, SUBSTR, SUBSTRB, TRANSLATE

SUBSTR

SYNTAX:

 SUBSTR(char,m [,n])

PURPOSE:

        Returns a portion of char, beginning at character m, n characters
        long.    If m is positive, Oracle counts from the beginning of char to
        find the first character.    If m is negative, Oracle counts backwards
        from the end of char.    The value m cannot be 0.    If n is omitted,
        Oracle returns all characters to the end of char.    The value n
        cannot be less than 1.

EXAMPLES:

 SELECT SUBSTR('ABCDEFG',3,2) "Substring"
 FROM DUAL

 Substring

 CD

 SELECT SUBSTR('ABCDEFG',-3,2) "Reversed Substring"
 FROM DUAL

 Reversed Substring

 EF

SEE:
 REPLACE, SOUNDEX, SUBSTRB, TRANSLATE

SUBSTRB

SYNTAX:

 SUBSTRB(char,m [,n])

PURPOSE:

        The same as SUBSTR, except that the arguments m and n are expressed
        in bytes, rather than in characters.    For a single-byte database
        character set, SUBSTRB is equivalent to SUBSTR.

EXAMPLE:

        Assume a double-byte database character set:

 SELECT SUBSTRB('ABCDEFG',5,4) "Substring with bytes"
 FROM DUAL

 Substring with bytes

 CD

SEE:
 REPLACE, SOUNDEX, SUBSTR, TRANSLATE

TRANSLATE

SYNTAX:

 TRANSLATE(char,from,to)

PURPOSE:

        Returns char with all occurrences of each character in from replaced
        by its corresponding character in to.    Characters in char that are
        not in from are not replaced.    The argument from can contain more
        characters than to.    In this case, the extra characters at the end
        of from have no corresponding characters in to.    If these extra
        characters appear in char, they are removed from the return value.
        You cannot use empty string for to in order to remove all characters
        in from the return value.    Oracle interprets the empty string
        as null, and if this function has a null argument, it returns null.

EXAMPLES:

        This statement translates a license number.    All letters 'ABC...Z'
        are translated to 'X' and all digits '012...9' are translated to
        '9':

 SELECT TRANSLATE('2KRW229', '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',
 '9999999999XXXXXXXXXXXXXXXXXXXXXXXXXX')
 "Translate example"
 FROM DUAL

 Translate example

 9XXX999

        This statement returns a license number with the characters removed
        and the digits remaining:

 SELECT TRANSLATE('2KRW229', '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',
 '0123456789')
 "Translate example"
 FROM DUAL

 Translate example

 2229

SEE:
 REPLACE, SOUNDEX, SUBSTR, SUBSTRB

UPPER

SYNTAX:

 UPPER(char)

PURPOSE:

        Returns char, with all letters uppercase.    The return value
        has the same datatype as the argument char.

EXAMPLE:

 SELECT UPPER('Large') "Uppercase"
 FROM DUAL

 Uppercase

 LARGE

SEE:
 INITCAP, LOWER, NLS_INITCAP, NLS_LOWER, NLS_UPPER

Character Functions Returning Number Values

SEE:
 ASCII, INSTR, INSTRB, LENGTH, LENGTHB, NLSSORT

ASCII
SYNTAX:

 ASCII(char)

PURPOSE:

        Returns the decimal representation in the database character set of
        the first byte of char.    If your database character set is 7-bit
        ASCII, this function returns an ASCII value.    If your database
        character set is EBCDIC Code Page 500, this function returns an
        EBCDIC value.    Note that there is not a similar EBCDIC character
        function.

EXAMPLE:

 SELECT ASCII('Q')
 FROM DUAL

 ASCII('Q')

 81

SEE:
 CHR

INSTR

SYNTAX:

 INSTR(char1,char2[,n[,m]])

PURPOSE:

        Searches char1 beginning with its nth character for the mth
        occurrence of char2 and returns the position of the character in
        char1 that is the first character of this occurrence.    If n is
        negative, Oracle counts and searches backward from the end of char1.
        The value of m must be positive.    The default values of both n and m
        are 1, meaning Oracle begins searching at the first character of
        char1 for the first occurrence of char2.    The return value is
        relative to the beginning of char1, regardless of the value of n,
        and is expressed in characters.    If the search is unsuccessful (if
        char2 does not appear m times after the nth character of char1) the
        return value is 0.

EXAMPLES:

 SELECT INSTR('CORPORATE FLOOR','OR', 3, 2) "Instring"
 FROM DUAL

 Instring

 14

 SELECT INSTR('CORPORATE FLOOR','OR', -3, 2)
 "Reversed Instring"
 FROM DUAL

 Reversed Instring

 2

SEE:
 INSTRB, LENGTH, LENGTHB, NLSSORT, SUBSTR, SUBSTRB

INSTRB

SYNTAX:

 INSTRB(char1,char2[,n[,m]])

PURPOSE:

        The same as INSTR, except that n and the return value are expressed
        in bytes, rather than in characters.    For a single-byte database
        character set, INSTRB is equivalent to INSTR.

EXAMPLE:

        Assume a double-byte database character set:

 SELECT INSTRB('CORPORATE FLOOR','OR',5,2)
 "Instring in bytes"
 FROM DUAL

 Instring in bytes

 27

SEE:
 INSTR, LENGTH, LENGTHB, NLSSORT, SUBSTR, SUBSTRB

LENGTH

SYNTAX:

 LENGTH(char)

PURPOSE:

        Returns the length of char in characters.    If char has datatype
        CHAR, the length includes all trailing blanks.    If char is null,
        this function returns null.

EXAMPLE:

 SELECT LENGTH('CANDIDE') "Length in characters"
 FROM DUAL

 Length in characters

 7

SEE:
 INSTR, INSTRB, LENGTHB, NLSSORT, SUBSTR, SUBSTRB

LENGTHB

SYNTAX:

 LENGTHB(char)

PURPOSE:

        Returns the length of char in bytes.    If char is null, this function
        returns null.    For a single-byte database character set, LENGTHB is
        equivalent to LENGTH.

EXAMPLE:

        Assume a double-byte database character set:

 SELECT LENGTH('CANDIDE') "Length in bytes"
 FROM DUAL

 Length in bytes

 14

SEE:
 INSTR, INSTRB, LENGTH, NLSSORT, SUBSTR, SUBSTRB

NLSSORT

SYNTAX:

 NLSSORT(char [, 'nlsparams'])

PURPOSE:

        Returns the string of bytes used to sort char.    The value of
        'nlsparams' can have the form

'NLS_SORT = sort'

        where sort is a linguistic sort sequence or BINARY.    If you omit
        'nlsparams', this function uses the default sort sequence for your
        session.    If you specify BINARY, this function returns char.

EXAMPLE:

        This function can be used to specify comparisons based on a
        linguistic sort sequence rather on the binary value of a string:

 SELECT * FROM emp
 WHERE NLSSORT(ename, 'NLS_SORT = German') >
 NLSSORT('B', 'NLS_SORT = German')

SEE:
 INSTR, INSTRB, LENGTH, LENGTHB, SUBSTR, SUBSTRB

Date Functions

        Date functions operate on values of the DATE datatype.    All date
        functions return a value of DATE datatype, except the MONTHS_BETWEEN
        function, which returns a number.

SEE:
 ADD_MONTHS, LAST_DAY, MONTHS_BETWEEN, NEW_TIME,
 NEXT_DAY, ROUND, SYSDATE, TRUNC, ROUND and TRUNC

ADD_MONTHS

SYNTAX:

 ADD_MONTHS(d,n)

PURPOSE:

        Returns the date d plus n months.    The argument n can be any
        integer.    If d is the last day of the month or if the resulting
        month has fewer days than the day component of d, then the result is
        the last day of the resulting month.    Otherwise, the result has the
        same day component as d.

EXAMPLE:

 SELECT TO_CHAR(ADD_MONTHS(hiredate,1),
 'DD-MON-YYYY') "Next month"
 FROM emp
 WHERE ename = 'SMITH'

 Next month

 17-JAN-1981

SEE:
 MONTHS_BETWEEN

LAST_DAY

SYNTAX:

 LAST_DAY(d)

PURPOSE:

        Returns the date of the last day of the month that contains d. You
        might use this function to determine how many days are left in the
        current month.

EXAMPLES:

 SELECT SYSDATE, LAST_DAY(SYSDATE) "Last",
 LAST_DAY(SYSDATE) - SYSDATE "Days Left"
 FROM DUAL

 SYSDATE Last Days Left
 --------- --------- ---------
 18-NOV-92 30-NOV-92 12

 SELECT TO_CHAR(ADD_MONTHS(LAST_DAY(hiredate),5),
 'DD-MON-YYYY') "Five months"
 FROM emp
 WHERE ename = 'MARTIN'

 Five months

 28-FEB-1992

SEE:
 NEXT_DAY

MONTHS_BETWEEN

SYNTAX:

 MONTHS_BETWEEN(d1,d2)

PURPOSE:

        Returns number of months between dates d1 and d2.    If d1 is later
        than d2, result is positive; if earlier, negative.    If d1 and d2 are
        either the same days of the month or both last days of months, the
        result is always an integer; otherwise Oracle calculates the
        fractional portion of the result based on a 31-day month and also
        considers the difference in time components of d1 and d2.

EXAMPLE:

 SELECT MONTHS_BETWEEN(TO_DATE('02-02-1992', 'MM-DD-YYYY'),
 TO_DATE('01-01-1992', 'MM-DD-YYYY'))
 "Months"
 FROM DUAL

 Months

 1.03225806

SEE:
 ADD_MONTHS

NEW_TIME

SYNTAX:

 NEW_TIME(d,z1,z2)

PURPOSE:

        Returns the date and time in time zone z2 when date and time in time
        zone z1 are d.    The arguments z1 and z2 can be any of these text
        strings:

 'AST' or 'ADT' Atlantic Standard or Daylight Time
 'BST' or 'BDT' Bering Standard or Daylight Time
 'CST' or 'CDT' Central Standard or Daylight Time
 'EST' or 'EDT' Eastern Standard or Daylight Time
 'GMT' Greenwich Mean Time
 'HST' or 'HDT' Alaska-Hawaii Standard Time or Daylight Time.
 'MST' or 'MDT' Mountain Standard or Daylight Time
 'NST' Newfoundland Standard Time
 'PST' or 'PDT' Pacific Standard or Daylight Time
 'YST' or 'YDT' Yukon Standard or Daylight Time

NEXT_DAY

SYNTAX:

 NEXT_DAY(d,char)

PURPOSE:

        Returns the date of the first weekday named by char that is later
        than the date d.    The argument char must be a day of the week in
        your session's date language.    The return value has the same hours,
        minutes, and seconds component as the argument d.

EXAMPLE:

        This example returns the date of the next Tuesday after March 15,
        1992.

 SELECT NEXT_DAY('15-MAR-92','TUESDAY') "NEXT DAY"
 FROM DUAL

 NEXT DAY

 17-MAR-92

SEE:
 LAST_DAY

ROUND (DATE)

SYNTAX:

 ROUND(d[,fmt])

PURPOSE:

        Returns d rounded to the unit specified by the format model fmt.    If
        you omit fmt, d is rounded to the nearest day.

EXAMPLE:

 SELECT ROUND(TO_DATE('27-OCT-92'),'YEAR')
 "FIRST OF THE YEAR"
 FROM DUAL

 FIRST OF THE YEAR

 01-JAN-93

SEE:
 ROUND and TRUNC, TRUNC

SYSDATE

SYNTAX:

 SYSDATE

PURPOSE:

        Returns the current date and time.    Requires no arguments.    In
        distributed SQL statements, this function returns the date and time
        on your local database.    You cannot use this function in the
        condition of a CHECK constraint.

EXAMPLE:

 SELECT TO_CHAR(SYSDATE, 'MM-DD-YYYY HH24:MI:SS') NOW
 FROM DUAL

 NOW

 10-29-1993 20:27:11

SEE:
 Pseudocolumns

TRUNC (DATE)

SYNTAX:

 TRUNC(d,[fmt])

PURPOSE:

        Returns d with the time portion of the day truncated to the unit
        specified by the format model fmt.    If you omit fmt, d is truncated
        to the nearest day.

EXAMPLE:

 SELECT TRUNC(TO_DATE('27-OCT-92', 'DD-MON-YY'), 'YEAR')
 "First Of The Year"
 FROM DUAL

 FIRST OF THE YEAR

 01-JAN-92

SEE:
 ROUND, ROUND and TRUNC

ROUND and TRUNC

        The following table lists the format models to be used with the
        ROUND and TRUNC date functions and the units to which they round and
        truncate dates.    The default model, 'DD', returns the date rounded
        or truncated to the day with a time of midnight.

        The starting day of the week used by the format models DAY, DY, and
        D is specified implicitly by the initialization parameter
        NLS_TERRITORY.

Format Model Rounding or Truncating Unit
------------ ---------------------------

CC, SCC, Century

SYYYY, YYYY Year (rounds up on July 1)
YEAR, SYEAR
YYY, YY, Y

Format Model Rounding or Truncating Unit
------------ ---------------------------
IYYY, IYY, IY, I, ISO Year

Q Quarter (rounds up on the sixteenth day of the
 second month of the quarter)

MONTH, MON, MM, RM Month (rounds up on the sixteenth day)

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the ISO
 year

W Same day of the week as the first day of the month

DDD, DD, J Day

DAY, DY, D Starting day of the week

Format Model Rounding or Truncating Unit
------------ ---------------------------
HH, HH12, HH24 Hour

MI Minute

SEE:
 ROUND, TRUNC

Conversion Functions

        Conversion functions convert a value from one datatype to another.
        Generally, the form of the function names follows the convention
        datatype TO datatype.    The first datatype is the input datatype; the
        last datatype is the output datatype.

SEE:
 CHARTOROWID, CONVERT, HEXTORAW, RAWTOHEX, ROWIDTOCHAR,
 TO_CHAR (date conversion), TO_CHAR (label conversion),
 TO_CHAR (number conversion), TO_DATE, TO_LABEL, TO_MULTI_BYTE,
 TO_NUMBER, TO_SINGLE_BYTE

CHARTOROWID

SYNTAX:

 CHARTOROWID(char)

PURPOSE:

        Converts a value from CHAR or VARCHAR2 datatype to ROWID datatype.

EXAMPLE:

 SELECT ename
 FROM emp
 WHERE ROWID = CHARTOROWID('0000000F.0003.0002')

 ENAME

 SMITH

SEE:
 CHAR Datatype, VARCHAR2 Datatype, ROWID Datatype

CONVERT

SYNTAX:

 CONVERT(char, dest_char_set [,source_char_set])

PURPOSE:

        Converts a character string from one character set to another.

        The char argument is the value to be converted.

        The dest_char_set argument is the name of the character set to which
        char is converted.

        The source_char_set argument is the name of the character set in
        which char is stored in the database.    The default value is the
        database character set.

        Both the destination and source character set arguments can be
        either literals or columns containing the name of the character set.

        For complete correspondence in character conversion, it is essential
        that the destination character set contains a representation of all
        the characters defined in the source character set.    Where a
        character does not exist in the destination character set, a
        replacement character appears.    Replacement characters can be
        defined as part of a character set definition.

Common character sets include:

US7ASCII
        US 7-bit ASCII character set
WE8DEC
        DEC West European 8-bit character set
WE8HP
        HP West European Laserjet 8-bit character set
F7DEC
        DEC French 7-bit character set
WE8EBCDIC500
        IBM West European EBCDIC Code Page 500
WE8PC850
        IBM PC Code Page 850
WE8ISO8859P1
        ISO 8859-1 West European 8-bit character set

EXAMPLE:

 SELECT CONVERT('Grob','WE8HP','WE8DEC') "Conversion"
 FROM DUAL

 Conversion

 Grob

HEXTORAW

SYNTAX:

 HEXTORAW(char)

PURPOSE:

        Converts char containing hexadecimal digits to a raw value.

EXAMPLE:

 INSERT INTO graphics (raw_column)
 SELECT HEXTORAW('7D')
 FROM DUAL

SEE:
 RAW and LONG RAW Datatypes, RAWTOHEX

RAWTOHEX

SYNTAX:

 RAWTOHEX(raw)

PURPOSE:

        Converts raw to a character value containing its hexadecimal
        equivalent.

EXAMPLE:

 SELECT RAWTOHEX(raw_column) "Graphics"
 FROM graphics

 Graphics

 7D

SEE:
 HEXTORAW, RAW and LONG RAW Datatypes

ROWIDTOCHAR

SYNTAX:

 ROWIDTOCHAR(rowid)

PURPOSE:

        Converts a ROWID value to VARCHAR2 datatype.    The result of this
        conversion is always 18 characters long.

EXAMPLE:

 SELECT ROWID FROM graphics
 WHERE ROWIDTOCHAR(ROWID) LIKE '%F38%'

 ROWID

 00000F38.0001.0001

SEE:
 ROWID Datatype, VARCHAR2 Datatype

TO_CHAR (date conversion)

SYNTAX:

 TO_CHAR(d [, fmt [, 'nlsparams']])

PURPOSE:

        Converts d of DATE datatype to a value of VARCHAR2 datatype in the
        format specified by the date format fmt.    If you omit fmt, d is
        converted to a VARCHAR2 value in the default date format.

        The 'nlsparams' specifies the language in which month and day names
        and abbreviations are returned.    This argument can have this form:

        'NLS_DATE_LANGUAGE = language'

        If you omit nlsparams, this function uses the default date language
        for your session.

EXAMPLE:

 SELECT TO_CHAR(HIREDATE,'Month DD, YYYY')
 "New date format"
 FROM emp
 WHERE ename = 'SMITH'

 New date format

 December 17, 1980

SEE:
 TO_CHAR (label conversion), TO_CHAR (number conversion), TO_DATE

TO_CHAR (label conversion)

SYNTAX:

 TO_CHAR(label [, fmt])

PURPOSE:

        Converts label of MLSLABEL datatype to a value of VARCHAR2 datatype,
        using the optional label format fmt.    If you omit fmt, label is
        converted to a VARCHAR2 value in the default label format.

SEE:
 MLSLABEL Datatype, TO_CHAR (date conversion), TO_CHAR (number
 conversion), TO_LABEL

TO_CHAR (number conversion)

SYNTAX:

 TO_CHAR(n [, fmt [, 'nlsparams']])

PURPOSE:

        Converts n of NUMBER datatype to a value of VARCHAR2 datatype, using
        the optional number format fmt.    If you omit fmt, n is converted to
        a VARCHAR2 value exactly long enough to hold its significant digits.

        The 'nlsparams' specifies these characters that are returned by
              number format elements:

        * decimal character
        * group separator
        * local currency symbol
        * international currency symbol

        This argument can have this form:

        'NLS_NUMERIC_CHARACTERS = ''dg''
          NLS_CURRENCY = ''text''
          NLS_ISO_CURRENCY = ''text'' '

        The characters d and g represent the decimal character and group
        separator, respectively.    They must be different single-byte
        characters.    Note that within the quoted string, you must use two
        single-quotes to represent one around the parameter values.

        If you omit 'nlsparams' or any one of the parameters, this function
        uses the default parameter values for your session.

EXAMPLE:

 SELECT TO_CHAR(17145,'L099G999',
 'NLS_NUMERIC_CHARACTERS = ''.,''
 NLS_CURRENCY = ''AUD'' ') "Char"
 FROM DUAL

 Char

 AUD017,145

SEE:
 NUMBER Datatype, TO_CHAR (date conversion), TO_CHAR (label
 conversion), VARCHAR2 Datatype

TO_DATE

SYNTAX:

 TO_DATE(char [, fmt [, 'nlsparams']])

PURPOSE:

        Converts char of CHAR or VARCHAR2 datatype to a value of DATE
        datatype.    The fmt is a date format specifying the format of char.
        If you omit fmt, char must be in the default date format.    If fmt is
        'J', for Julian, then char must be a number.

        The 'nlsparams' has the same purpose in this function as in the
        TO_CHAR function for date conversion.

        Do not use the TO_DATE function with a DATE value for the char
        argument.    The returned DATE value can have a different century
        value than the original char, depending on fmt or the default date
        format.

EXAMPLE:

 INSERT INTO bonus (bonus_date)
 SELECT TO_DATE('January 15, 1989, 11:00 A.M.',
 'Month dd, YYYY, HH:MI A.M.',
 'NLS_DATE_LANGUAGE = American')
 FROM DUAL

SEE:
 CHAR Datatype, DATE Datatype, VARCHAR2 Datatype

TO_LABEL

SYNTAX:

 TO_LABEL(char [,fmt])

PURPOSE:

        Converts char, a value of datatype CHAR or VARCHAR2 containing a
        label in the format specified by the optional parameter fmt, to a
        value of MLSLABEL datatype.    If you omit fmt, char must be in the
        default label format.

SEE:
 CHAR Datatype, MLSLABEL Datatype, VARCHAR2 Datatype

TO_MULTI_BYTE

SYNTAX:

 TO_MULTI_BYTE(char)

PURPOSE:

        Returns char with all of its single-byte characters converted to
        their corresponding multi-byte characters.    Any single-byte
        characters in char that have no multi-byte equivalents appear in the
        output string as single-byte characters.    This function is only
        useful if your database character set contains both single-byte and
        multi-byte characters.

TO_NUMBER

SYNTAX:

 TO_NUMBER(char [,fmt [, 'nlsparams']])

PURPOSE:

        Converts char, a value of CHAR or VARCHAR2 datatype containing a
        number in the format specified by the optional format model fmt, to
        a value of NUMBER datatype.

        The 'nlsparams' has the same purpose in this function as in the
        TO_CHAR function for number conversion.

EXAMPLE:

 UPDATE emp
 SET sal = sal +
 TO_NUMBER('AUD100.00', 'L999D99'
 'NLS_NUMERIC_CHARACTERS = ''.,'',
 NLS_CURRENCY = ''AUD'' ')
 WHERE ename = 'BLAKE'

SEE:
 CHAR Datatype, NUMBER Datatype, VARCHAR2 Datatype

TO_SINGLE_BYTE

SYNTAX:

 TO_SINGLE_BYTE(char)

PURPOSE:

        Returns char with all of its multi-byte characters converted to
        their corresponding single-byte characters.    Any multi-byte
        characters in char that have no single-byte equivalents appear in
        the output as multi-byte characters.    This function is only useful
        if your database character set contains both single-byte and multi-
        byte characters.

EXAMPLE:

 SELECT TO_CHAR(NEW_TIME(TO_DATE('17:47','hh24:mi'),
 'PST','GMT'), 'hh24:mi') "GREENWICH TIME"
 FROM DUAL

 GREENWICH TIME

 01:47

Other Functions

SEE:
 DUMP, GREATEST, GREATEST_LB, LEAST, LEAST_UB, NVL, UID, USER,
 USERENV, VSIZE

DUMP

SYNTAX:

 DUMP(expr [,return_format
                [, start_position [, length]]])

PURPOSE:

        Returns a VARCHAR2 value containing the datatype code, length in
        bytes, and internal representation of expr.    The argument
        return_format specifies the format of the return value and can have
        any of these values:

                        8            returns result in octal notation.
                        10          returns result in decimal notation.
                        16          returns result in hexadecimal notation.
                        17          returns result as single characters.

        The arguments start_position and length combine to determine which
        portion of the internal representation to return.    The default is to
        return the entire internal representation in decimal notation.

        If expr is null, this function returns 'NULL'.

EXAMPLES:

 SELECT DUMP(ename, 8, 3, 2) "OCTAL"
 FROM emp
 WHERE ename = 'SCOTT'

 OCTAL

 Type=1 Len=5: 117,124

 SELECT DUMP(ename, 10, 3, 2) "ASCII" FROM emp
 WHERE ename = 'SCOTT'

 ASCII

 Type=1 Len=5: 79,84

 SELECT DUMP(ename, 16, 3, 2) "HEX" FROM emp
 WHERE ename = 'SCOTT'

 HEX

 Type=1 Len=5: 4f,54

 SELECT DUMP(ename, 17, 3, 2) "CHAR" FROM emp
 WHERE ename = 'SCOTT'

 CHAR

 Type=1 Len=5: O,T

SEE:
 VARCHAR2 Datatype

GREATEST

SYNTAX:

 GREATEST(expr [,expr] ...)

PURPOSE:

        Returns the greatest of the list of exprs.    All exprs after the
        first are implicitly converted to the datatype of the first prior to
        the comparison.    Oracle compares the exprs using non-padded
        comparison semantics.    Character comparison is based on the value of
        the character in the database character set.    One character is
        greater than another if it has a higher value.    If the value
        returned by this function is character data, its datatype is always
        VARCHAR2.

EXAMPLE:

 SELECT GREATEST('HARRY','HARRIOT','HAROLD') "GREATEST"
 FROM DUAL

 GREATEST

 HARRY

SEE:
 GREATEST_LB, LEAST, LEAST_UB

GREATEST_LB

SYNTAX:

 GREATEST_LB(label [,label] ...)

PURPOSE:

        Returns the greatest lower bound of the list of labels.    Each label
        must either have datatype MLSLABEL or RAW MLSLABEL or be a quoted
        literal in the default label format.    The return value has datatype
        RAW MLSLABEL.

SEE:
 GREATEST, LEAST, LEAST_UB

LEAST

SYNTAX:

 LEAST(expr [,expr] ...)

PURPOSE:

        Returns the least of the list of exprs.    All exprs after the first
        are implicitly converted to the datatype of the first prior to the
        comparison.    Oracle compares the exprs using non-padded comparison
        semantics.    If the value returned by this function is character
        data, its datatype is always VARCHAR2.

EXAMPLE:

 SELECT LEAST('HARRY','HARRIOT','HAROLD')
 "LEAST"
 FROM DUAL

 LEAST

 HAROLD

SEE:
 GREATEST, GREATEST_LB, LEAST_UB

LEAST_UB

SYNTAX:

 LEAST_UB(label [,label] ...)

PURPOSE:

        Returns the least upper bound of the list of labels. Each label must
        have datatype MLSLABEL or be a quoted literal in the default label
        format.    The return value has datatype RAW MLSLABEL.

SEE:
 GREATEST, GREATEST_LB, LEAST

NVL

SYNTAX:

 NVL(expr1, expr2)

PURPOSE:

        If expr1 is null, returns expr2; if expr1 is not null, returns
        expr1.    The arguments expr1 and expr2 can have any datatype.    If
        their datatypes are different, Oracle converts expr2 to the datatype
        of expr1 before comparing them.    The datatype of the return value is
        always the same as the datatype of expr1, unless expr1 is character
        data in which case the return value's datatype is VARCHAR2.

EXAMPLE:

 SELECT ename,
 NVL(TO_CHAR(COMM),'NOT APPLICABLE') "COMMISSION"
 FROM emp
 WHERE deptno = 30

 ENAME COMMISSION
 --------- -----------
 ALLEN 300
 WARD 500
 MARTIN 1400
 BLAKE NOT APPLICABLE
 TURNER 0
 JAMES NOT APPLICABLE

SEE:
 Nulls

UID

SYNTAX:

 UID

PURPOSE:

        Returns an integer that uniquely identifies the current user.

SEE:
 USER

USER

SYNTAX:

 USER

PURPOSE:

        Returns the current Oracle user with the datatype VARCHAR2.

        In a distributed SQL statement, the UID and USER functions identify
        the user on your local database.    You cannot use these functions in
        the condition of a CHECK constraint.

EXAMPLE:

 SELECT USER, UID
 FROM DUAL

 USER UID
 --------- -------
 OPS$KING 9

SEE:
 UID

USERENV

SYNTAX:

 USERENV(option)

PURPOSE:

        Returns information of VARCHAR2 datatype about the current session.
        This information can be useful for writing an application-specific
        audit trail table or for determining the language-specific
        characters currently used by your session.    You cannot use this
        function in the condition of a CHECK constraint.    The argument
        option can have any of these values:

                        'ENTRYID'
                                      returns available auditing entry identifier.    You
                                      cannot use this option in distributed SQL statements.
                        'LABEL'
                                      returns your current session label.    This option is
                                      only applicable for Trusted Oracle.
                        'LANGUAGE'
                                      returns the language and territory currently used by
                                      your session along with the database character set in
                                      this form:

                                      language_territory.characterset

                        'SESSIONID'
                                      returns your auditing session identifier.    You cannot
                                      use this option in distributed SQL statements.
                        'TERMINAL'
                                      returns the operating system identifier for your
                                      current session's terminal.    In distributed SQL
                                      statements, this option returns the identifier for
                                      your local session.

EXAMPLE:

 SELECT USERENV('LANGUAGE') "Language"
 FROM DUAL;

 Language

 AMERICAN_AMERICA.US7ASCII

VSIZE

SYNTAX:

 VSIZE(expr)

PURPOSE:

        Returns the number of bytes in the internal representation of expr.
        If expr is null, this function returns null.

EXAMPLE:

 SELECT ename, VSIZE(ename) "BYTES"
 FROM emp
 WHERE deptno = 10

 ENAME BYTES
 ---------- ---------
 CLARK 5
 KING 4
 MILLER 6

Group Functions

        Group functions return results based on groups of rows, rather than
        on single rows.    In this way, group functions are different from
        single row functions.

        Many group functions accept these options:

DISTINCT
        This option causes a group function to consider only distinct values
        of the argument expression.

ALL
        This option causes a group function to consider all values including
        all duplicates. For example, the DISTINCT average of 1, 1, 1, and 3
        is 2; the ALL average is 1.5.    If neither option is specified, the
        default is ALL.

        If you use the DISTINCT option with a group function, the size of
        the function's argument is limited to the size of a data block minus
        some overhead.    This size is specified by the initialization
        parameter DB_BLOCK_SIZE.

        All group functions except COUNT(*) ignore nulls.    You can use the
        NVL in the argument to a group function to substitute a value for a
        null.

        If a query with a group function returns no rows or only rows with
        nulls for the argument to the group function, the group function
        returns null.

SEE:
 AVG, COUNT, GLB, LUB, MAX, MIN, STDDEV, SUM, VARIANCE

AVG

SYNTAX:

 AVG([DISTINCT|ALL] n)

PURPOSE:

        Returns average value of n.

EXAMPLE:

 SELECT AVG(sal) "Average"
 FROM emp

 Average

 2073.21429

SEE:
 MAX, MIN, SUM

COUNT

SYNTAX:

 COUNT({* | [DISTINCT|ALL] expr})

PURPOSE:

        Returns the number of rows in the query.

        If you specify expr, this function returns rows where expr is not
        null.    You can count either all rows, or only distinct values of
        expr.

        If you specify the asterisk (*), this function returns all rows,
        including duplicates and nulls.

EXAMPLES:

 SELECT COUNT(*) "Total"
 FROM emp

 Total

 14

 SELECT COUNT(job) "Count"
 FROM emp

 Count

 14

 SELECT COUNT(DISTINCT job) "Jobs"
 FROM emp

 Jobs

 5

GLB

SYNTAX:

 GLB([DISTINCT|ALL] label)

PURPOSE:

        Returns the greatest lower bound of label.

SEE:
 LUB

LUB

SYNTAX:

 LUB([DISTINCT|ALL] label)

PURPOSE:

        Returns the least upper bound of label.

        The return values have datatype MLSLABEL.

SEE:
 GLB

MAX

SYNTAX:

 MAX([DISTINCT|ALL] expr)

PURPOSE:

        Returns maximum value of expr.

EXAMPLE:

 SELECT MAX(sal) "Maximum"
 FROM emp

 Maximum

 5000

SEE:
 AVG, MIN, SUM

MIN

SYNTAX:

 MIN([DISTINCT|ALL] expr)

PURPOSE:

        Returns minimum value of expr.

EXAMPLE:

 SELECT MIN(hiredate) "Minimum Date"
 FROM emp

 Minimum Date

 17-DEC-80

Note:
        The DISTINCT and ALL options have no effect on the MAX and MIN
        functions.

SEE:
 AVG, MAX, SUM

STDDEV

SYNTAX:

 STDDEV([DISTINCT|ALL] x)

PURPOSE:

        Returns standard deviation of x, a number.    Oracle calculates the
        standard deviation as the square root of the variance defined for
        the VARIANCE group function.

EXAMPLE:

 SELECT STDDEV(sal) "Deviation"
 FROM emp

 Deviation

 1182.50322

SEE:
 VARIANCE

SUM

SYNTAX:

 SUM([DISTINCT|ALL] n)

PURPOSE:

        Returns sum of values of n.

EXAMPLE:

 SELECT SUM(sal) "Total"
 FROM emp

 Total

 29025

SEE:
 AVG, MAX, MIN

VARIANCE

SYNTAX:

 VARIANCE([DISTINCT|ALL]x)

PURPOSE:

        Returns variance of x, a number.    Oracle calculates the variance of
        x using this formula:

              where:
                        xi
                                      is one of the elements of x.
                        n
                                      is the number of elements in the set x.    If n is 1,
                                      the variance is defined to be 0.

EXAMPLE:

 SELECT VARIANCE(sal) "Variance"
 FROM emp

 Variance

 1389313.87

SEE:
 STDDEV

Reserved Words (SQL)

        A name cannot be an Oracle reserved word.    The following list
        contains these reserved words.    Words followed by an asterisk (*)
        are also ANSI reserved words.

 ACCESS COLUMN EXCLUSIVE
 ADD COMMENT EXISTS*
 ALL* COMPRESS FILE
 ALTER CONNECT FLOAT*
 AND* CREATE* FOR*
 ANY* CURRENT* FROM*
 AS* DATE GRANT*
 ASC* DECIMAL* GROUP*
 AUDIT DEFAULT* HAVING*
 BETWEEN* DELETE* IDENTIFIED
 BY* DESC* IMMEDIATE
 CHAR* DISTINCT* IN*
 CHECK* DROP INCREMENT
 CLUSTER ELSE INDEX
 INITIAL OF* SELECT*
 INSERT* OFFLINE SESSION
 INTEGER* ON* SET*
 INTERSECT ONLINE SHARE
 INTO* OPTION* SIZE
 IS* OR* SMALLINT*
 LEVEL ORDER* START
 LIKE* PCTFREE SUCCESSFUL
 LOCK PRIOR SYNONYM
 LONG PRIVILEGES* SYSDATE
 MAXEXTENTS PUBLIC* TABLE*
 MINUS RAW THEN
 MODE RENAME TO*
 MODIFY RESOURCE TRIGGER
 NOAUDIT REVOKE UID
 NOCOMPRESS ROW UNION*
 NOT* ROWID UNIQUE*
 NOWAIT ROWLABEL UPDATE*
 NULL* ROWNUM USER*
 NUMBER ROWS VALIDATE
 VALUES* VIEW* WITH*
 VARCHAR WHENEVER*
 VARCHAR2 WHERE*

        Depending on the Oracle product you plan to use to access the
        object, names might be further restricted by other product-specific
        reserved words.    For a list of a product's reserved words, see the
        manual for the specific product, such as the PL/SQL User's Guide and
        Reference.

Format Models

        A format model is a character literal that describes the format of
        DATE or NUMBER data stored in a character string.    You can use a
        format model as an argument of the TO_CHAR or TO_DATE function for
        these purposes:

        * to specify the format for Oracle to use to return a value from the
            database to you
        * to specify the format for a value you have specified for Oracle to
            store in the database

        Note that a format model does not change the internal representation
        of the value in the database.

SEE:
 Changing the Return Format, Supplying the Correct Format,
 Date Format Models, Format Model Modifiers, Number Format Models

Changing the Return Format

        You can use a format model to specify the format for Oracle to use
        to return values from the database to you.

Example I:

        This statement selects the commission values of the employees in
        department 30 and uses the TO_CHAR function to convert these
        commissions into character values with the format specified by the
        number format model '$9,990.99':

 SELECT ename employee, TO_CHAR(comm,'$9,990.99') commission
 FROM emp
 WHERE deptno = 30

 EMPLOYEE COMMISSION
 -------- ----------
 ALLEN $300.00
 WARD $500.00
 MARTIN $1,400.00
 BLAKE
 TURNER $0.00
 JAMES

        Because of this format model, Oracle returns the commissions with
        leading dollar signs, commas every three digits, and two decimal
        employees with null in the COMM column.

EXAMPLE II:

        This statement selects the dates that each employee from department
        20 was hired and uses the TO_CHAR function to convert these dates to
        character strings with the format specified by the date format model
        'fmMonth DD, YYYY':

 SELECT ename, TO_CHAR(Hiredate,'fmMonth DD, YYYY') hiredate
 FROM emp
 WHERE deptno = 20

 ENAME HIREDATE
 ---------- --------------------
 SMITH December 17, 1980
 JONES April 2, 1981
 SCOTT April 19, 1987
 ADAMS May 23, 1987
 FORD December 3, 1981

        With this format model, Oracle returns the hire dates with the month
        spelled out, two digits for the day, and the century included in the
        year.

Supplying the Correct Format

        You can use format models to specify the format of a value that you
        are converting from one datatype to another datatype required for a
        column.    When you insert or update a column value, the datatype of
        the value that you specify must correspond to the column's datatype.
        For example, a value that you insert into a DATE column must be a
        value of the DATE datatype or a character string in the default date
        format (Oracle implicitly converts character strings in the default
        date format to the DATE datatype).    If the value is in another
        format, you must use the TO_DATE function to convert the value to
        the DATE datatype.    You must also use a format model to specify the
        format of the character string.

EXAMPLE:

        This statement updates JONES' hire date using the TO_DATE function
        with the format mask 'YYYY MM DD' to convert the character string
        '1992 05 20' to a DATE value:

 UPDATE emp
 SET hiredate = TO_DATE('1992 05 20','YYYY MM DD')
 WHERE ename = 'JONES'

Number Format Models

        You can use number format models in these places:

        * in the TO_CHAR function to translate a value of NUMBER datatype to
            VARCHAR2 datatype
        * in the TO_NUMBER function to translate a value of CHAR or VARCHAR2
            datatype to NUMBER datatype

        All number format models cause the number to be rounded to the
        specified number of significant digits.    If a value has more
        significant digits to the left of the decimal place than are
        specified in the format, pound signs (#) replace the value.

Number Format Elements

        A number format model is composed of one or more number format
        elements.    The table below lists the elements of a number format
        model.

Element Example Description
------- ------- -----------

9 9999 Number of "9"s specifies number of significant
 digits returned. Blanks are returned for leading
 zeroes.
0 0999 Returns a leading zero in this position as a
 9990 zero, rather than as a blank.
$ $9999 Prefixes value with a dollar sign.
B B9999 Returns zero value as blank, regardless of "0"s
 in the format model.
MI 9999MI Returns "-" after negative values. For positive
 values, a trailing space is returned.

Element Example Description
------- ------- -----------

S S9999 Returns "+" after positive values and "-" for
 negative values in this position.
PR 9999PR Returns negative values in <angle brackets>. For
 positive values, a leading and trailing space is
 returned.
D 99D99 Returns the decimal character in this position,
 separating the integral and fractional parts of a
 number. Specified by the NLS_NUMERIC_CHARACTERS
 initialization parameter.
G 9G999 Returns the group separator in this position.
 Specified by the NLS_NUMERIC_CHARACTERS
 initialization parameter.
C C999 Returns the ISO currency symbol in this position.
 Specified by the NLS_ISO_CURRENCY
 initialization parameter.

Element Example Description
------- ------- -----------

L L999 Returns the local currency symbol in this
 position. Specified by the NLS_CURRENCY
 initialization parameter.
, (comma) 9,999 Returns a comma in this position.
. (period) 99.99 Returns a period in this position, separating the
 integral and fractional parts of a number.
V 999V99 Multiplies value by 10 to the power n
 where n is the number of "9"s after the "V".
EEEE 9.999EEEE Returns value in scientific notation.
RN rn RN Returns upper- and lower-case Roman numerals.

 Value can be an integer between 1 and 3999.

        The MI and PR format elements can only appear in the last position
        of a number format model.    The S format element can only appear in
        the first or last position.

        If a number format model does not contain the MI, S, or PR format
        elements, negative return values automatically contain a leading
        negative sign and positive values automatically contain a leading
        space.

        A number format model can contain only a single decimal character
        (D) or period (.), but it can contain multiple group separators (G)
        or commas (,).    A group separator or comma cannot appear to the
        right of a decimal character or period in a number format model.

        The characters returned by some of these format elements are
        specified by initialization parameters.    The table above lists these
        elements and parameters.

        The characters returned by these format elements can also be
        implicitly specified by the initialization parameter NLS_TERRITORY.
        For more information on these parameters, see the ALTER SESSION command.
        You can also change the characters returned by these format elements for
        your session with the ALTER SESSION command.

SEE:
 ALTER SESSION

Date Format Models

        You can use date format models in these places:

        * in the TO_CHAR function to translate a DATE value that is in a
            format other than the default date format
        * in the TO_DATE function to translate a character value that is in
            a format other than the default date format

SEE:
 TO_CHAR (date conversion), TO_DATE

Default Date Format

        The default date format is specified either explicitly with the
        initialization parameter NLS_DATE_FORMAT or implicitly with the
        initialization parameter NLS_TERRITORY.    You can also change the
        default date format for your session with the ALTER SESSION command.

SEE:
 ALTER SESSION

Date Format Elements

        A date format model is composed of one or more date format elements.
        The table below lists the date format model elements.

Element Meaning
------- -------

SCC or CC Century, "S" prefixes BC dates with "-".
YYYY or SCCCC 4-digit year; "S" prefixes BC dates with "-".
IYYY 4-digit year based on the ISO standard.
YYY or YY or Y Last 3, 2, or 1 digit(s) of year.
IYY or IY or I Last 3, 2, or 1 digit(s) of ISO year.
Y,YYY Year with comma in this position.
SYEAR or YEAR Year, spelled out; "S" prefixes BC dates with "-".
RR Last 2 digits of year; for years in other centuries.
BC or AD BC/AD indicator.
B.C. or A.D. BC/AD indicator with periods.
Q Quarter of year (1, 2, 3, 4; JAN-MAR = 1).
MM Month (01-12; JAN = 01).

Element Meaning
------- -------

RM Roman numeral month (I-XII; JAN = I).
MONTH Name of month, padded with blanks to length of 9
 characters.
MON Abbreviated name of month.
WW Week of year (1-53) where week 1 starts on the first
 day of the year and continues to the seventh day of
 the year.
IW Week of year (1-52 or 1-53) based on the ISO
 standard.
W Week of month (1-5) where week 1 starts on the first
 day of the month and ends on the seventh.
DDD Day of year (1-366).
DD Day of month (1-31).
D Day of week (1-7).
DAY Name of day, padded with blanks to length of 9
 characters.
DY Abbreviated name of day.

Element Meaning
------- -------

J Julian day; the number of days since January 1, 4712
 BC. Numbers specified with 'J' must be integers.
AM or PM Meridian indicator.
A.M. or P.M. Meridian indicator with periods.
HH or HH12 Hour of day (1-12).
HH24 Hour of day (0-23).
MI Minute (0-59).
SS Second (0-59).

SSSSS Seconds past midnight (0-86399).
- / , . : ; "text" Punctuation and quoted text is reproduced in the
 result.

SEE:
 Date Format Models

Date Format Elements and National Language Support

        The functionality of some date format elements depends on the
        country and language in which you are using Oracle.    For example,
        these date format elements return spelled values:

        * MONTH
        * MON
        * DAY
        * DY
        * BC or AD or B.C. or A.D.
        * AM or PM or A.M. or P.M.

        The language in which these values are returned is specified either
        explicitly with the initialization parameter NLS_DATE_LANGUAGE or
        implicitly with the initialization parameter NLS_LANGUAGE.    The
        values returned by the YEAR and SYEAR date format elements are
        always in English.

        The date format element D returns the number of the day of the week
        (1-7).    The day of the week that is numbered 1 is specified
        implicitly by the initialization parameter NLS_TERRITORY.

ISO Standard Date Format Elements

        Oracle calculates the values returned by the date format elements
        IYYY, IYY, IY, I, and IW according to the ISO standard.

RR Date Format Element

        The RR date format element is similar to the YY date format element,
        but it provides additional flexibility for storing date values in
        other centuries.    The RR date format element allows you to store
        twenty-first century dates in the twentieth century by specifying
        only the last two digits of the year.    It will also allow you to
        store twentieth century dates in the twenty-first century in the
        same way if necessary.

        If you use the TO_DATE function with the YY date format element, the
        date value returned is always in the current century.    If you use
        the RR date format element instead, the century of the return value
        varies according to the specified two-digit year and the last two
        digits of the current year.    The following table summarizes the
        behavior of the RR date format element.

 If the specified two-digit year is:
 0-49 | 50-99
 ------------------------------|-----------------------
If the 0 | | The return date is in
last two - | The return date is in the | the century before the
digits 49 | current century. | current one.
of the | |
current 50 | The return date is in the | The return date is
year - | century after the current | in the current
are: 99 | one. | century.

        The following examples demonstrate the behavior of the RR date
        format element.

EXAMPLES:

        Assume these queries are issued prior to the year 2000:

 SELECT TO_CHAR(TO_DATE('27-OCT-95', 'DD-MON-RR') ,'YYYY')
 "4-digit year"
 FROM DUAL

 4-digit year

 1995

 SELECT TO_CHAR(TO_DATE('27-OCT-17', 'DD-MON-RR') ,'YYYY')
 "4-digit year"
 FROM DUAL

 4-digit year

 2017

        Assume these queries are issued in the year 2000 or after:

 SELECT TO_CHAR(TO_DATE('27-OCT-95', 'DD-MON-RR') ,'YYYY')
 "4-digit year"
 FROM DUAL

 4-digit year

 1995

 SELECT TO_CHAR(TO_DATE('27-OCT-17', 'DD-MON-RR') ,'YYYY')
 "4-digit year"
 FROM DUAL

 4-digit year

 2017

        Note that the queries return the same values regardless of whether
        they are issued before or after the year 2000.    The RR date format
        element allows you to write SQL statements that will return the same
        values after the turn of the century.

Date Format Element Suffixes

        The following table lists suffixes that can be added to date format
        elements:

Suffix Meaning Example
------ ------- -------
TH Ordinal number DDTH 4TH
SP Spelled number DDSP FOUR
SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

        When you add one of these suffixes to a date format element, the
        return value is always in English.

Capitalization of Date Format Elements

        Capitalization in a spelled-out word, abbreviation, or Roman numeral
        follows capitalization in the corresponding format element.    For
        example, the date format model 'DAY' produces capitalized words like
        'MONDAY'; 'Day' produces 'Monday'; and 'day' produces 'monday'.

Punctuation and Character Literals in Date Format Models

        You can also include these characters in a date format model:

        * punctuation such as hyphens, slashes, commas, periods, and colons
        * character literals

        These characters appear in the return value in the same location as
        they appear in the format model.    Note that character literals must
        be enclosed in quotation marks (double quotes).

Format Model Modifiers

        You can use the FM and FX modifiers in format models for the TO_CHAR
        function to control blank padding and exact format checking.

        A modifier can appear in a format model more than once.    In such
        case, each subsequent occurrence toggles the effects of the
        modifier.    Its effects are enabled for the portion of the model
        following its first occurrence, and then disabled for the portion
        following its second, and then reenabled for the portion following
        its third, and so on.

SEE:
 FM, FX

FM (Fill Mode)

        This modifier suppresses blank padding in the return
        value of the TO_CHAR function:

        * In a date format element of a TO_CHAR function, this modifier
            suppresses blanks in subsequent character elements (such as MONTH)
            and suppresses leading zeroes for subsequent number elements (such
            as MI) in a date format model.    Since there is no blank padding,
            the length of the return value may vary.    Without FM, the result
            of a character element is always right padded with blanks to a
            fixed length and the leading zeros are always returned for a
            number element.

        * In a number format element of a TO_CHAR function, this modifier
            suppresses blanks added to the left of the number in the result to
            right-justify it in the output buffer.    Without FM, the result is
            always right-justified in the buffer, resulting in blank-padding
            to the left of the number.

EXAMPLE V:
        This statement uses a date format model to return a character
        expression that contains the character literal the and a comma.

 SELECT TO_CHAR(SYSDATE, 'fmDDTH "of" Month, YYYY') Ides
 FROM DUAL

 Ides

 3RD of April, 1992

        Note that this statement also uses the FM modifier.    If FM is
        omitted, the month is blank-padded to nine characters:

 SELECT TO_CHAR(SYSDATE, 'DDTH "of" Month, YYYY') Ides
 FROM DUAL

 Ides

 03RD of April , 1992

        You can include a single quote in the return value by placing two
        consecutive single quotes in the format mode

EXAMPLE VI:
        This statement places a single quote in the return value by using a
              date format model that includes two consecutive single quotes:

 SELECT TO_CHAR(SYSDATE, 'fmDay''"s Special"') Menu
 FROM DUAL

 Menu

 Tuesday's Special

        Two consecutive single quotes can also be used for the same purpose
        within a character literal in a format model.

SEE:
 FX, FORMAT MODEL MODIFIERS

FX (Format Exact)

        This modifier specifies exact matching for the character argument
        and date format model of a TO_DATE function:

        * Punctuation and quoted text in the character argument must exactly
            match (except for case) the corresponding parts of the format
            model. Without FX, punctuation and quoted text in the character
            argument need only match the length and position of the
            corresponding parts of the format model.
        * The character argument cannot have extra blanks.    Without FX,
            Oracle ignores extra blanks.
        * Numeric data in the character argument must have the same number
            of digits as the corresponding element in the format model.

        Without FX, numbers in the character argument can omit leading
        zeroes. When FX is enabled, you can disable this check for leading
          zeroes by using the FM modifier as well.

        If any portion of the character argument violates any of these
        conditions, Oracle returns an error.

SEE:
 FM, FORMAT MODEL MODIFIERS

Expr

PURPOSE:

        To specify an expression of any datatype.    You must use this
        notation whenever expr appears in conditions, SQL functions, or SQL
        commands in other parts of this Manual.

SYNTAX:

        Expressions have several forms.    Oracle does not accept all forms of
        expressions in all parts of all SQL commands.    The description of
        each command documents the restrictions on the expressions in the
        command.

FORM I:

        A column, pseudocolumn, constant, sequence number, or NULL.

        The pseudocolumn can be either LEVEL, ROWID, or ROWNUM.    You can
        only use a pseudocolumn with a table, rather than with a view or
        snapshot.

        ROWLABEL is a column automatically created by Trusted Oracle in
        every table in the database.    If you are using Trusted Oracle, the
        expression ROWLABEL returns the row's label.    If you are not using
        Trusted Oracle, the expression ROWLABEL always returns NULL.

SYNTAX:

{ [[schema.]{table | view | snapshot} .] {column|pseudo-column|ROWLABEL}
| 'text'
| number
| sequence.{CURRVAL | NEXTVAL}
| NULL }

EXAMPLES:

 emp.ename
 this is a text string'
 10

FORM II:

        A host variable with an optional indicator variable.    Note that this
        form of expression can only appear in embedded SQL statements or SQL
        statements processed in an Oracle Call Interfaces program.

SYNTAX:

 :host_variable [[INDICATOR] :indicator_variable]

EXAMPLES:

 :employee_name INDICATOR :employee_name_indicator_var
 :department_location

FORM III:

        A call to a SQL or PL/SQL function.

SYNTAX:

 function_name [([DISTINCT | ALL] expr [, expr] ...)]

EXAMPLES:

 LENGTH('BLAKE')
 ROUND(1234.567*43)
 SYSDATE

FORM IV:

        A combination of other expressions.

SYNTAX:

 { (expr) | +expr | -expr | PRIOR expr
 | expr * expr | expr / expr
 | expr + expr | expr - expr | expr || expr }

EXAMPLES:

 ('CLARK' || 'SMITH')
 LENGTH('MOOSE') * 57
 SQRT(144) + 72

SEE:
 DECODED EXPRESSION, List of Expressions

Decoded Expression

        An expression using the special DECODE syntax:

SYNTAX:

 DECODE(expr, search, result [, search, result] ... [, default])

        To evaluate this expression, Oracle compares expr to each search
        value one by one.    If expr is equal to a search, Oracle returns the
        corresponding result.    If no match is found, Oracle returns default,
        or, if default is omitted, returns null.    If expr and search contain
        character data, Oracle compares them using non-padded comparison
        semantics.

        The search, result, and default values can be expressions.

        Oracle evaluates each search value only before comparing it to expr,
        rather than evaluating all search values before comparing any of
        them with expr.    Consequently, Oracle never evaluates a search if a
        previous search is equal to expr.

        Oracle automatically converts expr and each search value to the
        datatype of the first search value before comparing.    Oracle
        automatically converts the return value to the same datatype as the
        first result.    If the first result has the datatype CHAR or if the
        first result is null, then Oracle converts the return value to the
        datatype VARCHAR2.

        In a DECODE expression, Oracle considers two nulls to be equivalent.
        If expr is null, Oracle returns the result of the first search that
        is also null.

        The maximum number of components in the DECODE expression, including
        expr, searches, results, and default is 255.

EXAMPLE:

        This expression decodes the value DEPTNO.    If DEPTNO is 10, the
        expression evaluates to 'ACCOUNTING'; if DEPTNO is 20, it evaluates
        to 'RESEARCH'; etc.    If DEPTNO is not 10, 20, 30, or 40, the
        expression returns 'NONE'.

 DECODE (deptno, 10, 'ACCOUNTING',
 20, 'RESEARCH',
 30, 'SALES',
 40, 'OPERATION',
 'NONE')

List of Expressions

        A parenthesized list of expressions.

SYNTAX:

 (expr [, expr] ...)

EXAMPLES:

 (10, 20, 40)
 ('SCOTT', 'BLAKE', 'TAYLOR')
 (LENGTH('MOOSE') * 57, -SQRT(144) + 72, 69)

Condition

PURPOSE:

        To specify a combination of one or more expressions and logical
        operators that evaluates to either TRUE, FALSE, or unknown.    You
        must use this syntax whenever condition appears in SQL commands.

SYNTAX:

        Conditions can have several forms.    The description of each command
        documents the restrictions on the conditions in the command.

FORM I:

        A comparison with expressions or subquery results.

SYNTAX:

 { expr {= | != |
 | expr_list {= | != |

FORM II:

        A comparison with any or all members in a list or subquery.
        For the syntax description of subquery, see the SELECT command.

SYNTAX:

 { expr {= | != |
 {ANY | SOME | ALL} {expr_list | subquery}
 | expr_list {= | != |
 {ANY | SOME | ALL} { (expr_list [, expr_list] ...) | subquery} }

FORM III:

        A test for membership in a list or subquery.

SYNTAX:

 { expr [NOT] IN {expr_list | subquery}
 | expr_list [NOT] IN { (expr_list [, expr_list]...) | subquery} }

FORM IV:

        A test for inclusion in a range.

SYNTAX:

 expr [NOT] BETWEEN expr AND expr

FORM V:

        A test for nulls.

SYNTAX:

 expr IS [NOT] NULL

FORM VI:

        A test for existence of rows in a subquery.

SYNTAX:

 EXISTS subquery

FORM VII:

        A test involving pattern matching.

SYNTAX:

 char1 [NOT] LIKE char2 [ESCAPE 'c']

FORM VIII:

        A combination of other conditions.

SYNTAX:

 { (condition)
 | NOT condition
 | condition AND condition
 | condition OR condition }

SEE:
      DELETE, SELECT, UPDATE

Literals (SQL)

        The terms literal and constant value are synonymous here and refer
        to a fixed data value.    For example, 'JACK', 'BLUE ISLAND', and
        '101' are all character literals.    5001 is a numeric literal.    Note
        that character literals are enclosed in single quotes.    The quotes
        allow Oracle to distinguish them from schema object names.

        Many SQL statements and functions require you to specify character
        and numeric literal values.    You can also specify literals as part
        of expressions and conditions.    You can specify character literals
        with the 'text' notation and numeric literals with the integer or
        number notation, depending on the context of the literal.

        Literals include the following:

        * Text
        * Integer
        * Numbers

SEE:
 Text, Integer, Number

Text

PURPOSE:

        To specify a text or character string literal.    You must use this
        notation to specify values whenever 'text' or char appear in
        expressions, conditions, SQL functions, and SQL commands.

SYNTAX:

 '[c | '']...'

where:

c
        is any member of the user's character set, except a single quote
        (').

''
        are two single quotes.    Because a single quote is used to begin and
        end character literals, you must use two single quotes to represent
        one single quote within a literal.

SEE:
 Literals, Integer, Number

Integer

PURPOSE:

        To specify a positive integer.    You must use this notation to
        specify values whenever integer appears in expressions, conditions,
        SQL functions, and SQL commands.

SYNTAX:

 digit[digit]...

where:

digit
        is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

EXAMPLES:

 7
 255

SEE:
 Literals, Number, Text

Number

PURPOSE:

        To specify an integer or a real number.    You must use this notation
        to specify values whenever number appears in expressions,
        conditions, SQL functions, and SQL commands.

SYNTAX:

 [+|-]{digit[digit]...[.][digit]...
 |.digit[digit]...}[{e|E}[+|-]digit[digit]...]

where:

+
-
        indicates a positive or negative value.    If you omit the sign, a
        positive value is the default.

digit
        is one of 0,1,2,3,4,5,6,7,8 or 9.

e
E
        indicates that the number is specified in scientific notation.    The
        digits after the E specify the exponent.    The exponent can range
        between -130 and 125.

SEE:
 Integer, Literals, Number

