
 PL/SQL Programming Language

The intended use of this help manual is as a quick reference guide as
it is not fully inclusive of all elements of the PL/SQL Programming
Language.    Please refer to the PL/SQL User's Guide and Reference for
more information.

Fundamentals

 Syntax Notation %ROWTYPE Attribute
 Character Set Naming Conventions
 Lexical Units Scope and Visibility
 Delimiters Assignments
 Identifiers Expressions
 Reserved Words Operator Precedence
 Literals Logical Operators
 Comments Comparison Operators
 Datatypes Concatenation Operator
 Datatype Conversion Boolean Expressions
 Subtypes Handling Nulls
 PL/SQL Blocks Built-in Functions
 Variables and Constants PL/SQL Tables
 %TYPE Attribute Records

Control Structures

 Structure Theorem
 IF Statement
 LOOP Statement
 EXIT Statement
 Loop Label
 GOTO Statement
 NULL Statement

Interaction with Oracle

 SQL Support Packaged Cursors
 Optimizer Hints Cursor FOR Loop
 National Language Support ORDER BY Aliases
 Remote Access Transaction Processing
 Location Transparency Using COMMIT
 Global Names Using ROLLBACK
 Cursors Using SAVEPOINT
 OPEN Statement Implicit Rollbacks
 FETCH Statement Using SET TRANSACTION
 CLOSE Statement FOR UPDATE Clause
 %NOTFOUND Attribute Using LOCK TABLE
 %FOUND Attribute Using DDL and Dynamic SQL
 %ROWCOUNT Attribute Ending Transactions

 %ISOPEN Attribute Database Triggers

Error Handling

 Exceptions
 Exception Handlers
 Predefined Exceptions
 EXCEPTION_INIT Pragma
 RAISE Statement
 How Exceptions Propagate
 Reraising an Exception
 SQLCODE and SQLERRM Functions
 Unhandled Exceptions

Subprograms

 Subprograms Aliasing
 Procedures Overloading
 Functions Recursion
 RETURN Statement Mutual Recursion
 Forward Declarations Recursion vs Iteration
 Packaged Subprograms Stored Subprograms
 Actual vs Formal Parameters Creating Stored Subprograms
 Positional and Named Notation Calling Stored Subprograms
 Parameter Modes Calling Stored Functions from SQL
 Parameter Default Values

Packages

 Packages
 Package Specification
 Package Body
 Referencing Package Contents
 Private vs Public Objects
 Calling Packaged Subprograms
 Package State and Depedency
 Package STANDARD
 Product-specific Packages

Syntax Notation

The following notation is used in code fragments and program examples:

 < > Angle brackets enclose the name of a syntactic element.

 -- Two hyphens begin a single-line comment, which extends to
 the end of a line.

 /* A slash-asterisk begins a multiline comment, which can extend
 from one line to another.

 */ An asterisk-slash ends a multiline comment.

 . A dot separates an object name from a component name and so
 qualifies a reference. For example, dot notation is used to
 select fields in a record and to specify declarations within
 a package.

 .. Two dots separate the lowest and highest values in a range.

 ... An ellipsis shows that statements or clauses irrelevant to
 the discussion were left out.

PL/SQL syntax is described using a variant of Backus-Naur Form (BNF),
which includes the following symbols:

 [] Square brackets enclose optional items.

 { 'D Braces enclose items only one of which is required.

 | A vertical bar separates alternatives within brackets or
 braces.

 ... An ellipsis shows that the preceding parameter can be repeated.

Character Set

You write a PL/SQL program as lines of text using a specific set of
characters.    The PL/SQL character set includes

 * the upper- and lower-case letters A .. Z, a .. z
 * the numerals 0 .. 9
 * tabs, spaces, and carriage returns
 * the symbols () + - * / < > = ! ~ ; : . '
 @ % , " # $ ^ & | _ { 'D ? []

PL/SQL is not case-sensitive, so lower-case letters are equivalent to
corresponding upper-case letters except within string and character
literals.

Lexical Units

A line of PL/SQL text contains groups of characters known as lexical
units, which can be classified as follows:

 * delimiters (simple and compound symbols)
 * identifiers, which include reserved words
 * literals
 * comments

For example, the following line contains two identifiers, a compound
symbol, two simple symbols, a numeric literal, and a comment:

 bonus := salary * 0.10; -- compute bonus

To improve readability, you can separate lexical units by spaces.    In
fact, you must separate adjacent identifiers by a space or punctuation.
However, you cannot embed spaces in lexical units except for string
literals and comments.

See also: Comments, Delimiters, Identifiers, Literals,
 Reserved Words

Delimiters

A delimiter is a simple or compound symbol that has a special meaning
to PL/SQL.    For example, you use delimiters to represent arithmetic
operations such as addition and subtraction.    Simple symbols consist
of one character; compound symbols consist of two characters.

 Simple Symbols Compound Symbols
 -------------------------------- ---------------------------------
 + addition operator ** exponentiation operator
 - subtraction/negation operator <> relational operator
 * multiplication operator != relational operator
 / division operator ~= relational operator
 = relational operator ^= relational operator
 < relational operator <= relational operator
 > relational operator >= relational operator
 (expression or list delimiter := assignment operator
) expression or list delimiter => association operator
 ; statement terminator .. range operator
 % attribute indicator || concatenation operator
 , item separator << label delimiter
 . component selector >> label delimiter
 @ remote access indicator -- single-line comment indicator
 ' character string delimiter /* multiline comment delimiter
 " quoted identifier delimiter */ multiline comment delimiter
 : host variable indicator

See also: Lexical Units

Identifiers

You use identifiers to name PL/SQL program objects and units, which
include constants, variables, exceptions, cursors, subprograms, and
packages.    Some examples of identifiers follow:

 X
 t2
 phone#
 credit_limit
 LastName
 oracle$number

An identifier consists of a letter optionally followed by more letters,
numerals, dollar signs, underscores, and number signs.    Other characters
such as hyphens, slashes, and spaces are illegal, as the following
examples show:

 mine&yours -- illegal ampersand
 debit-amount -- illegal hyphen
 on/off -- illegal slash
 user id -- illegal space

The next examples show that adjoining and trailing dollar signs,
underscores, and number signs are legal:

 money$$$tree -- legal
 SN## -- legal
 try_again_ -- legal

You can use upper, lower, or mixed case to write identifiers.    PL/SQL is
not case-sensitive except within string and character literals.    So, if
the only difference between identifiers is the case of corresponding
letters, PL/SQL considers the identifiers to be the same, as the
following example shows:

 lastname
 LastName -- same as lastname
 LASTNAME -- same as lastname and LastName

The length of an identifier cannot exceed 30 characters.    But, every
character, including dollar signs, underscores, and number signs, is
significant.    For example, PL/SQL considers the following identifiers
to be different:

 lastname
 last_name

Quoted Identifiers

For flexibility, PL/SQL lets you enclose identifiers within double
quotes.    Quoted identifiers are seldom needed, but occasionally they
can be useful.    They can contain any sequence of printable characters

including spaces but excluding double quotes.    Hence, the following
identifiers are legal:

 "X+Y"
 "last name"
 "on/off switch"
 "employee(s)"

The maximum length of a quoted identifier is 30 characters not counting
the double quotes.

Using PL/SQL reserved words as quoted identifiers is allowed but not
recommended.    It is poor programming practice to reuse reserved words.
However, some PL/SQL reserved words are not reserved by SQL.    For
example, the PL/SQL reserved word TYPE can be used in a CREATE TABLE
statement to name a database column.    But, if a SQL statement in your
PL/SQL program refers to that column, you get a compilation error, as
the following example shows:

 SELECT acct, type, bal INTO ... -- causes compilation error

To prevent the error, enclose the upper-case column name in double
quotes as follows:

 SELECT acct, "TYPE", bal INTO ...

The column name cannot appear in lower or mixed case (unless it was
defined that way in the CREATE TABLE statement).    For example, the
following statement is invalid:

 SELECT acct, "type", bal INTO ... -- causes compilation error

See also: Lexical Units, Variables and Constants,
 Reserved Words

Reserved Words (PL/SQL)

Some identifiers, called "reserved words," have a special syntactic
meaning to PL/SQL and so cannot be redefined.    For example, the words
BEGIN and END, which bracket the executable part of a block or
subprogram, are reserved.    As the next example shows, if you try
to redefine a reserved word, you get a compilation error:

 DECLARE
 end BOOLEAN; -- illegal; causes compilation error

However, you can embed reserved words in an identifier, as the
following example shows:

 DECLARE
 end_of_game BOOLEAN; -- legal

Typically, reserved words are written in upper case to promote
readability.    However, like other PL/SQL identifiers, reserved words
can be written in lower or mixed case.

Following is a list of the reserved words:

 ABORT AUTHORIZATION CLUSTERS DATE DO
 ACCEPT AVG COLAUTH DBA DROP
 ACCESS BASE_TABLE COLUMNS DEBUGOFF ELSE
 ADD BEGIN COMMIT DEBUGON ELSIF
 ALL BETWEEN COMPRESS DECLARE END
 ALTER BINARY_INTEGER CONNECT DECIMAL ENTRY
 AND BODY CONSTANT DEFAULT EXCEPTION
 ANY BOOLEAN COUNT DEFINITION EXCEPTION_INIT
 ARRAY BY CRASH DELAY EXISTS
 ARRAYLEN CASE CREATE DELETE EXIT
 AS CHAR CURRENT DELTA FALSE
 ASC CHAR_BASE CURRVAL DESC FETCH
 ASSERT CHECK CURSOR DIGITS FLOAT
 ASSIGN CLOSE DATABASE DISPOSE FOR
 AT CLUSTER DATA_BASE DISTINCT FORM

 FROM MIN PARTITION ROWNUM TASK
 FUNCTION MINUS PCTFREE ROWTYPE TERMINATE
 GENERIC MLSLABEL POSITIVE RUN THEN
 GOTO MOD PRAGMA SAVEPOINT TO
 GRANT MODE PRIOR SCHEMA TRUE
 GROUP NATURAL PRIVATE SELECT TYPE
 HAVING NEW PROCEDURE SEPARATE UNION
 IDENTIFIED NEXTVAL PUBLIC SET UNIQUE
 IF NOCOMPRESS RAISE SIZE UPDATE
 IN NOT RANGE SMALLINT USE
 INDEX NULL REAL SPACE VALUES
 INDEXES NUMBER RECORD SQL VARCHAR
 INDICATOR NUMBER_BASE RELEASE SQLCODE VARCHAR2

 INSERT OF REM SQLERRM VARIANCE
 INTEGER ON RENAME START VIEW
 INTERSECT OPEN RESOURCE STATEMENT VIEWS
 INTO OPTION RETURN STDDEV WHEN
 IS OR REVERSE SUBTYPE WHERE
 LEVEL ORDER REVOKE SUM WHILE
 LIKE OTHERS ROLLBACK TABAUTH WITH
 LIMITED OUT ROWID TABLE WORK
 LOOP PACKAGE ROWLABEL TABLES XOR
 MAX

See also: Lexical Units, Identifiers

Literals (PL/SQL)

A literal is an explicit numeric, character, string, or Boolean value
not represented by an identifier.    The numeric literal 147 and the
Boolean literal FALSE are examples.

Numeric Literals

You can use two kinds of numeric literals in arithmetic expressions:
integers and reals.    An integer literal is an optionally signed whole
number without a decimal point.    Some examples follow:

 030 6 -14 0 +32767

A real literal is an optionally signed whole or fractional number with
a decimal point.    Several examples follow:

 6.6667 0.0 -12.0 3.14159 +8300.00 .5 25.

PL/SQL considers numbers such as -12.0 and 25. to be reals even though
they have integral values.

Numeric literals cannot contain dollar signs or commas but can be
written using scientific notation.    Simply suffix the number with
an E (or e) followed by an optionally signed integer.    A few examples
follow:

 2E5 1.0E-7 3.14159e0 -1E38 -9.5e-3

E stands for "times ten to the power of."    As the next example shows,
the number after E is the power of ten by which the number before E
must be multiplied:

 5E3 = 5 x 10**3 = 5 x 1000 = 5000

The number after E also corresponds to the number of places the decimal
point shifts.    In the last example, the implicit decimal point shifted
three places to the right.

Character Literals

A character literal is an individual character enclosed by single
quotes (apostrophes).    Several examples follow:

 'Z' '%' '7' ' ' 'z' '('

Character literals include all the printable characters in the PL/SQL
character set: letters, numerals, spaces, and special symbols such as
underscores and number signs.    PL/SQL is case-sensitive within character
literals.    For example, PL/SQL considers the literals 'Z' and 'z' to be
different.

Do not confuse the character literals '0' .. '9' with integer literals.

Character literals cannot be used in arithmetic expressions.

String Literals

A character value can be represented by an identifier or explicitly
written as a string literal, which is a sequence of zero or more
characters enclosed by single quotes.    Several examples follow:

 'Hello, world!'
 'XYZ Corporation'
 '10-NOV-91'
 'He said "Life is like licking honey from a thorn."'
 '$1,000,000'

PL/SQL is case-sensitive within string literals.    For example, PL/SQL
considers the following literals to be different:

 'baker'
 'Baker'

Given that apostrophes (single quotes) delimit string literals, how
do you represent an apostrophe within a string?    As the next example
shows, you write two single quotes, which is not the same as writing a
double quote:

 'Don''t leave without saving your work.'

All string literals except the null string ('') belong to type CHAR.

Boolean Literals

Boolean literals are the predefined values TRUE and FALSE and the
non-value NULL, which stands for a missing, unknown, or inapplicable
value.    Keep in mind, Boolean literals are not strings.    For example,
TRUE is no less a value than the number 25.

See also: Lexical Units

Comments (PL/SQL)

The PL/SQL compiler ignores comments.    However, adding comments to
your program promotes readability and aids understanding.    Generally,
you use comments to describe the purpose and use of each code segment.
PL/SQL supports two comment styles: single-line and multiline.

Single-line Comments

Single-line comments begin with a double hyphen (--) anywhere on a
line and extend to the end of the line.    A few examples follow:

 -- begin processing
 SELECT sal INTO salary FROM emp -- get current salary
 WHERE empno = emp_id;
 bonus := salary * 0.15; -- compute bonus amount

Multiline Comments

Multiline comments begin with a slash-asterisk (/*), end with an
asterisk-slash (*/), and can span multiple lines.    An example follows:

 IF rating > 90 THEN /* Compute a 15% bonus for
 top-rated employees. */
 bonus := salary * 0.15;
 END IF;

Disabling Code

While testing or debugging a program, you might want to disable some
code.    The following example shows how you can "comment-out" a single
line or a whole section:

 -- DELETE FROM emp WHERE comm IS NULL;
 ...
 /* OPEN c1;
 LOOP
 FETCH c1 INTO my_empno, my_ename, my_sal;
 EXIT WHEN c1%NOTFOUND;
 ...
 END LOOP;
 CLOSE c1; */

See also: Lexical Units

Datatypes (PL/SQL)

Every constant and variable has a datatype, which specifies a storage
format, constraints, and valid range of values.    PL/SQL provides a
variety of predefined scalar and composite datatypes.    A scalar type
has no internal components.    A composite type has internal components
that can be manipulated individually.

The predefined types available for your use are shown below.    An
additional scalar type, MLSLABEL is available with Trusted Oracle, a
specially secured version of Oracle.    The scalar types fall into four
families, which store number, character, date/time, or Boolean data,
respectively.

 Scalar Types Composite Types
 ----------------------------- ---------------
 BINARY_INTEGER CHAR RECORD TABLE
 DEC CHARACTER
 DECIMAL LONG
 DOUBLE PRECISION LONG RAW
 FLOAT RAW
 INT ROWID
 INTEGER STRING
 NATURAL VARCHAR
 NUMBER VARCHAR2
 NUMERIC
 POSITIVE DATE
 REAL
 SMALLINT BOOLEAN

BINARY_INTEGER Type

You use the BINARY_INTEGER datatype to store signed integers.    The
magnitude range of a BINARY_INTEGER value is -2147483647 .. 2147483647.
PL/SQL represents BINARY_INTEGER values as signed binary numbers, which,
unlike NUMBER values, can be used in calculations without conversion.

For convenience, PL/SQL predefines the following BINARY_INTEGER
subtypes:

 NATURAL (0 .. 2147483647)
 POSITIVE (1 .. 2147483647)

You can use the NATURAL or POSITIVE subtype when you want to restrict
a variable to non-negative integer values.

NUMBER Type

You use the NUMBER datatype to store fixed or floating point numbers
of virtually any size.    You can specify precision, which is the total
number of digits, and scale, which determines where rounding occurs.
The syntax follows:

 NUMBER[(precision, scale)]

You cannot use constants or variables to specify precision and scale;
you must use integer literals.    The maximum precision of a NUMBER value
is 38; the magnitude range is 1.0E-129 .. 9.99E125.    If you do not
specify the precision, it defaults to the maximum value supported by
your system.

Scale can range from -84 to 127.    For instance, a scale of 2 rounds to
the nearest hundredth (3.456 becomes 3.46).    Scale can be negative,
which causes rounding to the left of the decimal point.    For example,
a scale of -3 rounds to the nearest thousand (3456 becomes 3000).    A
scale of zero rounds to the nearest whole number.    If you do not specify
the scale, it defaults to zero.

The NUMBER subtypes below have the same range of values as their base
type.    For example, FLOAT is just another name for NUMBER.

 DEC
 DECIMAL
 DOUBLE PRECISION
 FLOAT
 INTEGER
 INT
 NUMERIC
 REAL
 SMALLINT

You can use these subtypes for compatibility or when you want an
identifier more descriptive than NUMBER.

CHAR Type

You use the CHAR datatype to store fixed-length character data.    How
the data is represented internally depends on the database character
set, which might be 7-bit ASCII or EBCDIC Code Page 500 for example.

The CHAR datatype takes an optional parameter that lets you specify a
maximum length up to 32767 bytes.    The syntax follows:

 CHAR[(maximum_length)]

You cannot use a constant or variable to specify the maximum length;
you must use an integer literal.    If you do not specify the maximum
length, it defaults to 1.

The CHAR subtypes below have the same range of values as their base
type.    For example, STRING is just another name for CHAR.

 CHARACTER
 STRING

You can use these subtypes for compatibility or when you want an
identifier more descriptive than CHAR.

VARCHAR2 Type

You use the VARCHAR2 datatype to store variable-length character data.
The VARCHAR2 datatype takes a required parameter that lets you specify
a maximum length up to 32767 bytes.    The syntax follows:

 VARCHAR2(maximum_length)

You cannot use a constant or variable to specify the maximum length;
you must use an integer literal.

The VARCHAR subtype has the same range of values as its base type.
That is, VARCHAR is just another name for VARCHAR2.    You can use this
subtype for compatibility.    However, the VARCHAR datatype might change
to accommodate emerging SQL standards.    So, it is a good idea to use
VARCHAR2 rather than VARCHAR.

LONG Type

You use the LONG datatype to store variable-length character strings.
The LONG datatype is like the VARCHAR2 datatype, except that the maximum
length of a LONG value is 32760 bytes.

LONG columns can store text, arrays of characters, or even short
documents.    You can reference LONG columns in UPDATE, INSERT, and
(most) SELECT statements, but not in expressions, SQL function calls, or
certain SQL clauses such as WHERE, GROUP BY, and CONNECT BY.

RAW Type

You use the RAW datatype to store binary data or byte strings.    For
example, a RAW variable might store a sequence of graphics characters
or a digitized picture.    Raw data is like character data, except that
PL/SQL does not interpret raw data.    Likewise, Oracle does no character
set conversions (from 7-bit ASCII to EBCDIC Code Page 500 for example)
when you transmit raw data from one system to another.

The RAW datatype takes a required parameter that lets you specify a
maximum length up to 32767 bytes.    The syntax follows:

 RAW(maximum_length)

You cannot use a constant or variable to specify the maximum length;
you must use an integer literal.

LONG RAW Type

You use the LONG RAW datatype to store binary data or byte strings.

LONG RAW data is like LONG data, except that LONG RAW data is not
interpreted by PL/SQL.    The maximum length of a LONG RAW value is
32760 bytes.

BOOLEAN Type

You use the BOOLEAN datatype to store the values TRUE and FALSE and
the non-value NULL.    NULL stands for a missing, unknown, or inapplicable
value.

The BOOLEAN datatype takes no parameters.    Only the values TRUE and
FALSE and the non-value NULL can be assigned to a BOOLEAN variable.
You cannot insert the values TRUE and FALSE into a database column.
Furthermore, you cannot select or fetch column values into a BOOLEAN
variable.

DATE Type

You use the DATE datatype to store fixed-length date values.    The DATE
datatype takes no parameters.    Valid dates for DATE variables include
January 1, 4712 BC to December 31, 4712 AD.

When stored in a database column, date values include the time of day in
seconds since midnight.    The date portion defaults to the first day of
the current month; the time portion defaults to midnight.

ROWID Type

Internally, every table in an Oracle database has a ROWID pseudocolumn,
which stores 6-byte binary values called "rowids."    Rowids uniquely
identify rows and provide the fastest way to access particular rows.
You use the ROWID datatype to store rowids in a readable format.    When
you select or fetch a rowid into a ROWID variable, you can use the
function ROWIDTOCHAR, which converts the binary value to an 18-byte
character string and returns it in the format

 BBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in
the block (the first row is 0), and FFFF is the database file.    These
numbers are hexadecimal.    For example, the rowid

 0000000E.000A.0007

points to the 11th row in the 15th block in the 7th database file.

Typically, ROWID variables are compared to the ROWID pseudocolumn in
the WHERE clause of an UPDATE or DELETE statement to identify the latest
row fetched by a cursor.

MLSLABEL Type

With Trusted Oracle, you use the MLSLABEL datatype to store variable-
length, binary operating system labels.    Trusted Oracle uses labels to
control access to data.

You can use the MLSLABEL datatype to define a database column.    And,
you can use the %TYPE and %ROWTYPE attributes to reference the column.
However, with standard Oracle, such columns can store only nulls.

With Trusted Oracle, you can insert any valid operating system label
into a column of type MLSLABEL.    If the label is in text format, Trusted
Oracle converts it to a binary value automatically.    The text string can
be up to 255 bytes long.    However, the internal length of an MLSLABEL
value is between 2 and 5 bytes.    You can also select values from a
MLSLABEL column into a character variable.    Trusted Oracle converts
the internal binary value to a VARCHAR2 value automatically.

See also: Datatype Conversion, Datatype Comparison Rules

Datatype Conversion

Sometimes it is necessary to convert a value from one datatype to
another.    For example, if you want to examine a rowid, you must convert
it to a character string.    PL/SQL supports both explicit and implicit
(automatic) datatype conversion.

Explicit Conversion

To specify conversions explicitly, you use built-in functions that
convert values from one datatype to another.    The table below shows
which function to use in a given situation.    For example, to convert
a CHAR value to a NUMBER value, you use the function TO_NUMBER.

 To |
From	CHAR DATE NUMBER RAW ROWID
 CHAR | TO_DATE TO_NUMBER HEXTORAW CHARTOROWID
 DATE | TO_CHAR
 NUMBER | TO_CHAR TO_DATE
 RAW | RAWTOHEX
 ROWID | ROWIDTOCHAR

Implicit Conversion

When it makes sense, PL/SQL can convert the datatype of a value
implicitly.    This allows you to use literals, variables, and parameters
of one type where another type is expected.    In the example below,
the CHAR variables "start_time" and "finish_time" hold string values
representing the number of seconds past midnight.    The difference
between those values must be assigned to the NUMBER variable
"elapsed_time."    So, PL/SQL converts the CHAR values to NUMBER
values implicitly.

 DECLARE
 start_time CHAR(5);
 finish_time CHAR(5);
 elapsed_time NUMBER(5);
 BEGIN
 SELECT TO_CHAR(SYSDATE,'SSSSS') INTO start_time FROM sys.dual;
 -- do something
 SELECT TO_CHAR(SYSDATE,'SSSSS') INTO finish_time FROM sys.dual;
 elapsed_time := finish_time - start_time;
 ...
 END;

The table below shows the implicit conversions PL/SQL can do.    If
PL/SQL cannot determine which implicit conversion is needed, you get
a compilation error.    In such cases, use datatype conversion functions.

 To |
 From | CHAR DATE LONG NUMBER RAW ROWID VARCHAR2

 ---------|---
 CHAR | yes yes yes yes yes yes
 DATE | yes yes yes
 LONG | yes yes yes
 NUMBER | yes yes yes
 RAW | yes yes yes
 ROWID | yes yes
 VARCHAR2 | yes yes yes yes yes yes

It is your responsibility to ensure that values are convertible.    For
instance, PL/SQL can convert the CHAR value '02-JUN-92' to a DATE value,
but PL/SQL cannot convert the CHAR value 'YESTERDAY' to a DATE value.
Similarly, PL/SQL cannot convert a CHAR value containing alphabetic
characters to a NUMBER value.

See also: Datatypes, Datatype Comparison Rules

Subtypes

Each PL/SQL datatype specifies a set of values and a set of operations
applicable to objects of that type.    Subtypes specify the same set of
operations as their base type but only a subset of its values.    Thus, a
subtype does not introduce a new type; it merely places an optional
constraint on its base type.

Kinds of Subtypes

PL/SQL predefines several subtypes in package STANDARD.    For example,
the subtype NATURAL is defined as follows:

 SUBTYPE NATURAL IS BINARY_INTEGER RANGE 0..2147483647;

The RANGE constraint restricts objects of type NATURAL to the subset
of BINARY_INTEGER values in the range 0..2147483647.    Thus, NATURAL is
a "constrained" subtype.    Constrained subtypes can increase reliability
by detecting nulls or out-of-range values.    For example, if you try to
store a negative value in a NATURAL variable, PL/SQL raises the
predefined exception VALUE_ERROR.

Every set is a subset of itself.    So, any type can be a subtype of
itself.    For instance, PL/SQL predefines the subtype CHARACTER in
package STANDARD as follows:

 SUBTYPE CHARACTER IS CHAR;

The subtype CHARACTER specifies the same set of values as its base type
CHAR.    Thus, CHARACTER is an "unconstrained" subtype.    Unconstrained
subtypes can provide compatibility with ANSI/ISO and IBM types.
Also, they can improve readability by indicating the intended use
of constants and variables.

The current release of PL/SQL lets you define your own unconstrained
subtypes.    Future releases of PL/SQL will let you define constrained
subtypes as well.

Declaring Subtypes

You can declare unconstrained subtypes in the declarative part of
any PL/SQL block, subprogram, or package using the syntax

 SUBTYPE subtype_name IS base_type;

where "subtype_name" is a type specifier used in subsequent
declarations and "base_type" stands for the following syntax:

 {type_name | subtype_name | variable%TYPE |
 table.column%TYPE | table%ROWTYPE'D

The base type can be a predefined type, a user-defined RECORD or
TABLE type, a predefined subtype, or a user-defined subtype.    For

example, all of the following declarations are legal:

 DECLARE
 SUBTYPE EmpDate IS DATE; -- based on predefined type
 TYPE NameTab IS TABLE OF CHAR(10)
 INDEX BY BINARY_INTEGER;
 SUBTYPE EnameTab IS NameTab; -- based on user-defined type
 SUBTYPE Counter IS NATURAL; -- based on predefined subtype
 SUBTYPE Totalizer IS Counter; -- based on user-defined subtype
 ...

The base type cannot be constrained.    For example, the following
declarations are illegal:

 DECLARE
 SUBTYPE Accumulator IS NUMBER(9,2); -- illegal; must be NUMBER
 SUBTYPE Delimiter IS CHAR(1); -- illegal; must be CHAR
 SUBTYPE Text IS VARCHAR2(n); -- illegal
 ...

Using Subtypes

Once you define a subtype, you can declare objects of that type.    In
the next example, you declare two variables of type "Counter":

 DECLARE
 SUBTYPE Counter IS NATURAL;
 rows Counter;
 employees Counter;
 ...

Notice how the subtype name indicates the intended use of the variables.

Type Compatibility

Objects of a subtype are always compatible with objects of its base
type.    For example, given the following declarations, the value of
"salary" can be assigned to "total" without conversion:

 DECLARE
 SUBTYPE Accumulator IS NUMBER;
 salary NUMBER(7,2);
 total Accumulator;
 ...

Objects of different subtypes are compatible if the subtypes have
the same base type.    For instance, given the following declarations,
the value of "finished" can be assigned to "debugging":

 DECLARE
 SUBTYPE Sentinel IS BOOLEAN;
 SUBTYPE Switch IS BOOLEAN;

 finished Sentinel;
 debugging Switch;
 ...

Objects of different subtypes are also compatible if their base types
belong to the same datatype family.    For example, given the following
declarations, the value of "comma" can be assigned to "line":

 DECLARE
 SUBTYPE Delimiter IS CHAR;
 SUBTYPE Text IS LONG;
 comma Delimiter;
 line Text;
 ...

Overloading

You cannot overload two subprograms if their formal parameters differ
only in subtype and the different subtypes are based on types in the
same family.    For example, you cannot overload the following procedures
because the base types CHAR and LONG are in the same family:

 DECLARE
 SUBTYPE Delimiter IS CHAR;
 SUBTYPE Text IS LONG;
 ...
 PROCEDURE scan (x Delimiter) IS
 BEGIN ... END;
 PROCEDURE scan (x Text) IS
 BEGIN ... END;
 BEGIN

See also: Datatypes, Datatype Comparison Rules, Datatype
 Conversion

PL/SQL Blocks

PL/SQL is a block-structured language.    That is, the basic units
that make up a PL/SQL program are logical blocks, which can contain
any number of nested sub-blocks.    Typically, each logical block
corresponds to a problem or subproblem to be solved.

A block (or sub-block) lets you group logically related declarations
and statements.    That way, you can place declarations close to where
they are used.    The declarations are local to the block and cease to
exist when the block completes.

As the following syntax shows, a PL/SQL block has three parts: an
optional declarative part, an executable part, and an optional
exception-handling part:

 [DECLARE
 -- declarations]
 BEGIN
 -- statements
 [EXCEPTION
 -- handlers]
 END;

The order of the parts is logical.    First comes the declarative
part in which objects can be declared.    Once declared, objects can
be manipulated in the executable part.    Exceptions raised during
execution can be dealt with in the exception-handling part.

You can nest sub-blocks in the executable and exception-handling
parts of a PL/SQL block or subprogram but not in the declarative
part.

See also: Variables and Constants, Exceptions, Subprograms, Block Label

Block Label
A block label is an undeclared identifier that labels a PL/SQL block.
It must be enclosed by double angle brackets and must appear at the
beginning of the block.    (However, in the SQL*Plus environment, the
first line you input cannot start with a block label.)    Optionally, a
block label can also appear at the end of the block.

A global identifier declared in an enclosing block can be redeclared
in a sub-block, in which case the local declaration prevails and the
sub-block cannot reference the global identifier.    To reference the
global identifier, you must use a block label to qualify the reference,
as follows:

 block_label.global_identifier

In the following example, you compare two INTEGER variables declared
with the same name, one in an enclosing block, the other in a sub-block:

 <<outer>>
 DECLARE
 x INTEGER;
 BEGIN
 ...
 DECLARE
 x INTEGER;
 BEGIN
 ...
 IF x = outer.x THEN
 ...
 END IF;
 END;
 END outer;

See also: PL/SQL Blocks, Loop Label

Variables and Constants

Your program stores values in variables and constants.    As the
program executes, the values of variables can change, but the values
of constants cannot.

You can declare variables and constants in the declarative part of any
PL/SQL block, subprogram, or package.    Declarations allocate storage
space for a value, specify its datatype, and name the storage location
so that the value can be referenced.    They can also assign an initial
value and specify the NOT NULL constraint.    A few examples follow:

 birthdate DATE;
 emp_count SMALLINT := 0;
 acct_id VARCHAR2(5) NOT NULL := 'AP001';

The first declaration names a variable of type DATE.    The second
declaration names a variable of type SMALLINT and uses the assignment
operator (:=) to assign an initial value of zero to the variable.    The
third declaration names a variable of type VARCHAR2, specifies the
NOT NULL constraint, and assigns an initial value of 'AP001' to the
variable.

You cannot assign nulls to a variable or constant defined as NOT NULL.
If you try, the predefined exception VALUE_ERROR is raised.    The NOT
NULL constraint must be followed by an initialization clause; otherwise,
you get a compilation error.    For example, the following declaration is
illegal:

 acct_id VARCHAR2(5) NOT NULL; -- illegal; not initialized

The next examples show that the expression following the assignment
operator can be arbitrarily complex and can refer to previously
initialized variables and constants:

 pi CONSTANT REAL := 3.14159;
 radius REAL := 1;
 area REAL := pi * radius**2;

In constant declarations, the reserved word CONSTANT must precede the
type specifier, as the following example shows:

 credit_limit CONSTANT REAL := 5000.00;

This declaration names a constant of type REAL and assigns an initial
(also final) value of 5000 to the constant.    A constant must be
initialized in its declaration; otherwise, you get a compilation error.

Within the same scope, all declared identifiers must be unique.    So,
even if their datatypes differ, variables and parameters cannot share
the same name.    For example, two of the following declarations are
illegal:

 DECLARE

 valid_id BOOLEAN;
 valid_id VARCHAR2(5); -- illegal duplicate identifier
 valid_id INTEGER; -- illegal triplicate identifier
 ...

PL/SQL does not allow forward references.    You must declare a variable
or constant before referencing it in other statements, including other
declarative statements.    For example, the following declaration of
"maxi" is illegal:

 maxi INTEGER := 2 * mini;
 mini INTEGER := 15;

Some languages allow you to declare a list of variables belonging to
the same datatype.    PL/SQL does not allow this.    For example, the
following declaration is illegal:

 i, j, k SMALLINT; -- illegal

The legal version follows:

 i SMALLINT;
 j SMALLINT;
 k SMALLINT;

DEFAULT Keyword

If you prefer, you can use the reserved word DEFAULT instead of the
assignment operator to initialize variables and constants.    For example,
the declarations

 tax_year SMALLINT := 92;
 valid BOOLEAN := FALSE;

can be rewritten as follows:

 tax_year SMALLINT DEFAULT 92;
 valid BOOLEAN DEFAULT FALSE;

You can also use DEFAULT to initialize subprogram parameters, cursor
parameters, and fields in a user-defined record.

See also: Datatypes, %ROWTYPE Attribute, %TYPE Attribute

%TYPE Attribute

The %TYPE attribute provides the datatype of a variable, constant, or
database column.    In the following example, %TYPE provides the datatype
of a variable:

 credit REAL(7,2);
 debit credit%TYPE;

Variables and constants declared using %TYPE are treated like those
declared using a datatype name.    For example, given the previous
declarations, PL/SQL treats "debit" like a REAL(7,2) variable.
The next example shows that a %TYPE declaration can include an
initialization clause:

 balance NUMBER(7,2);
 minimum_balance balance%TYPE := 10.00;

The %TYPE attribute is particularly useful when declaring variables
that refer to database columns.    You can reference a table and column,
or you can reference a schema, table, and column, as the following
example shows:

 my_dname scott.dept.dname%TYPE;

Using %TYPE to declare "my_dname" has two advantages.    First, you
need not know the exact datatype of "dname."    Second, if the database
definition of "dname" changes, the datatype of "my_dname" changes
accordingly at run time.

Note, however, that a NOT NULL column constraint does not apply to
variables declared using %TYPE.    In the next example, even though the
database column "empno" is defined as NOT NULL, you can assign a null
to the variable "my_empno":

 DECLARE
 my_empno emp.empno%TYPE;
 ...
 BEGIN
 my_empno := NULL; -- this works
 ...
 END;

See also: Datatypes, Variables and Constants,
 %ROWTYPE Attribute

%ROWTYPE Attribute

The %ROWTYPE attribute provides a record type that represents a row
in a table (or view).    The record can store an entire row of data
selected from the table or fetched by a cursor.    In the example below,
you declare two records.    The first record stores a row selected from
the "emp" table.    The second record stores a row fetched by the "c1"
cursor.

 DECLARE
 emp_rec emp%ROWTYPE;
 CURSOR c1 IS SELECT deptno, dname, loc FROM dept;
 dept_rec c1%ROWTYPE;
 ...

Columns in a row and corresponding fields in a record have the same
names and datatypes.    In the following example, you select column
values into a record named "emp_rec":

 DECLARE
 emp_rec emp%ROWTYPE;
 ...
 BEGIN
 SELECT * INTO emp_rec FROM emp WHERE ...
 ...
 END;

The column values returned by the SELECT statement are stored in
fields.    To reference a field, you use dot notation.    For example,
you might reference the "deptno" field as follows:

 IF emp_rec.deptno = 20 THEN ...

In addition, you can assign the value of an expression to a specific
field, as the following examples show:

 emp_rec.ename := 'JOHNSON';
 emp_rec.sal := emp_rec.sal * 1.05;

Aggregate Assignment

A %ROWTYPE declaration cannot include an initialization clause.
However, there are two ways to assign values to all fields in a record
at once.    First, PL/SQL allows aggregate assignment between entire
records if their declarations refer to the same table or cursor.
For example, the following assignments are legal:

 DECLARE
 dept_rec1 dept%ROWTYPE;
 dept_rec2 dept%ROWTYPE;
 CURSOR c1 IS SELECT deptno, dname, loc FROM dept;
 dept_rec3 c1%ROWTYPE;
 dept_rec4 c1%ROWTYPE;

 BEGIN
 ...
 dept_rec1 := dept_rec2;
 dept_rec4 := dept_rec3;
 ...

But, because "dept_rec2" is based on a table and "dept_rec3" is based
on a cursor, the following assignment is illegal:

 dept_rec2 := dept_rec3; -- illegal

Second, you can assign a list of column values to a record by using the
SELECT or FETCH statement, as the example below shows.    The column names
must appear in the order in which they were defined by the CREATE TABLE
or CREATE VIEW statement.

 DECLARE
 dept_rec dept%ROWTYPE;
 ...
 BEGIN
 SELECT deptno, dname, loc INTO dept_rec FROM dept
 WHERE deptno = 30;
 ...
 END;

However, you cannot assign a list of column values to a record by using
an assignment statement.    So, the following syntax is illegal:

 record_name := (value1, value2, value3, ...); -- illegal

Although you can retrieve entire records, you cannot insert them.    For
example, the following statement is illegal:

 INSERT INTO dept VALUES (dept_rec1); -- illegal

Using Aliases

Select-items fetched by a cursor associated with %ROWTYPE must have
simple names or, if they are expressions, must have aliases.    In the
following example, you use an alias called "wages":

 DECLARE
 CURSOR my_cursor IS SELECT sal + NVL(comm, 0) wages, ename
 FROM emp;
 my_rec my_cursor%ROWTYPE;
 BEGIN
 OPEN my_cursor;
 LOOP
 FETCH my_cursor INTO my_rec;
 EXIT WHEN my_cursor%NOTFOUND;
 IF my_rec.wages > 2000 THEN
 INSERT INTO temp VALUES (NULL, my_rec.wages,
 my_rec.ename);

 END IF;
 END LOOP;
 CLOSE my_cursor;
 END;

See also: Datatypes, %TYPE Attribute, Records, Assignments

Naming Conventions

The same naming conventions apply to all PL/SQL program objects and
units including constants, variables, cursors, exceptions, procedures,
functions, and packages.    Names can be simple, qualified, remote, or
both qualified and remote.    For example, you might use the procedure
name "raise_salary" in any of the following ways:

 raise_salary(...); -- simple
 emp_actions.raise_salary(...); -- qualified
 raise_salary@newyork(...); -- remote
 emp_actions.raise_salary@newyork(...); -- qualified and remote

In the first case, you simply use the procedure name.    In the second
case, you must qualify the name using dot notation because the procedure
is stored in a package called "emp_actions."    In the third case, you
reference the database link "newyork" because the (standalone)
procedure is stored in a remote database.    In the fourth case, you
qualify the procedure name and reference a database link.

You can create synonyms to provide location transparency for remote
database objects such as tables, sequences, views, standalone
subprograms, and packages.    However, you cannot create synonyms for
objects declared within subprograms or packages.    That includes
constants, variables, cursors, exceptions, and packaged procedures.

See also: Global Names, Location Transparency, Remote Access

Scope and Visibility

References to an identifier are resolved according to its scope and
visibility.    The scope of an identifier is that region of a program
unit (block, subprogram, or package) from which you can reference the
identifier.    An identifier is visible only in the regions from which
you can reference the identifier using an unqualified name.

For example, identifiers declared in a PL/SQL block are considered
local to that block and global to all its sub-blocks.    If a global
identifier is redeclared in a sub-block, both identifiers remain in
scope.    Within the sub-block, however, only the local identifier is
visible because you must use a qualified name to reference the global
identifier.

Although you cannot declare an identifier twice in the same block, you
can declare the same identifier in two different blocks.    The two
objects represented by the identifier are distinct, and any change in
one does not affect the other.

However, a block cannot reference identifiers declared in other blocks
nested at the same level because those identifiers are neither local
nor global to the block.    The following example illustrates the scope
rules:

 DECLARE
 A CHAR;
 B REAL;
 BEGIN
 -- identifiers available here: A (CHAR), B

 DECLARE
 A INTEGER;
 C REAL;
 BEGIN
 -- identifiers available here: A (INTEGER), B, C
 END;

 DECLARE
 D REAL;
 BEGIN
 -- identifiers available here: A (CHAR), B, D
 END;

 -- identifiers available here: A (CHAR), B
 END;

Global identifiers can be redeclared in a sub-block, in which case the
local declaration prevails and the sub-block cannot reference the global
identifier unless you use a qualified name.    The qualifier can be the
label of an enclosing block as the following example shows:

 <<outer>>
 DECLARE

 birthdate DATE;
 BEGIN
 ...
 DECLARE
 birthdate DATE;
 BEGIN
 ...
 IF birthdate = outer.birthdate THEN
 ...
 END IF;
 END;
 END outer;

Or, as the next example shows, the qualifier can be the name of an
enclosing subprogram:

 PROCEDURE check_credit (...) IS
 rating NUMBER;
 ...
 FUNCTION valid (...) RETURN BOOLEAN IS
 rating NUMBER;
 BEGIN
 ...
 IF check_credit.rating < 3 THEN
 ...
 END valid;
 BEGIN
 ...
 END check_credit;

See also: Variables and Constants, PL/SQL Blocks, Overloading

Assignments

Variables and constants are initialized every time a block or subprogram
is entered.    By default, variables are initialized to NULL.    So, unless
you expressly initialize a variable, its value is undefined, as the
following example shows:

 DECLARE
 count INTEGER;
 ...
 BEGIN
 count := count + 1; -- assigns a null to count
 ...

Therefore, never reference a variable before you assign it a value.
You can use assignment statements to assign values to a variable.
For example, the following statement assigns a new value to the
variable "bonus," overwriting its old value:

 bonus := salary * 0.15;

The expression following the assignment operator can be arbitrarily
complex, but it must yield a datatype that is the same as or convertible
to the datatype of the variable.

Alternatively, you can use the SELECT or FETCH statement to have Oracle
assign values to a variable.    An example follows:

 SELECT ename, sal + comm INTO last_name, wages FROM emp
 WHERE empno = emp_id;

For each item in the SELECT list, there must be a corresponding
variable in the INTO list.    Also, each item must return a value that
is implicitly convertible to the datatype of its corresponding variable.

Boolean Variables

Only the values TRUE and FALSE and the non-value NULL can be assigned
to a Boolean variable.    For example, given the declaration

 DECLARE
 done BOOLEAN;
 ...

the following assignment statements are legal:

 BEGIN
 done := FALSE;
 WHILE NOT done LOOP
 ...
 done := (total > 500);
 END LOOP;
 END;

However, you cannot select or fetch column values into a Boolean
variable.

See also: Variables and Constants, FETCH Statement, SELECT

Expressions

Expressions are constructed using operands and operators.    An operand
is a variable, constant, literal, or function call that contributes a
value to an expression.    An example of a simple arithmetic expression
follows:

 -X / 2

Unary operators such as the negation operator (-) operate on one
operand; binary operators such as the division operator (/) operate
on two operands.    PL/SQL has no ternary operators.

The simplest expressions consist of a single variable, which yields a
value directly.    PL/SQL evaluates (finds the current value of) an
expression by combining the values of the operands in ways specified
by the operators.    This always yields a single value and datatype.
PL/SQL determines the datatype by examining the expression and the
context in which it appears.

See also: Boolean Expressions, Comparison Operators,
 Concatenation Operator, Logical Operators,
 Operator Precedence

Operator Precedence

The operations within an expression are done in a particular order
depending on their precedence (priority).    The following table shows
the default order of operations from first to last (top to bottom).

 Operator Operation

 **, NOT exponentiation, logical negation
 +, - identity, negation
 *, / multiplication, division
 +, - , || addition, subtraction, concatenation
 =, !=, <, >, <=, >=,
 IS NULL, LIKE, BETWEEN, IN comparison
 AND conjunction
 OR inclusion

Operators with higher precedence are applied first.    For example, both
of the following expressions evaluate to 8 because division has a higher
precedence than addition:

 5 + 12 / 4
 12 / 4 + 5

Operators with the same precedence are applied in no particular order.
You can use parentheses to control the order of evaluation.    For
example, the following expression evaluates to 7, not 11, because
parentheses override the default operator precedence:

 (8 + 6) / 2

In the next example, the subtraction is done before the division because
the most deeply nested subexpression is always evaluated first:

 100 + (20 / 5 + (7 - 3))

See also: Expressions, Comparison Operators, Literals
 Logical Operators

Logical Operators (PL/SQL)

The logical operators AND, OR, and NOT operate according to the
tri-state logic illustrated by the truth tables shown below.
AND and OR are binary operators; NOT is a unary operator.

 NOT | true false null
 ------|-------------------
 | false true null

 AND | true false null OR | true false null
 ------|-------------------- ------|-------------------
 true | true false null true | true true true
 false | false false false false | true false null
 null | null false null null | true null null

As the truth tables show, AND returns the value TRUE only if both its
operands are true.    On the other hand, OR returns the value TRUE if
either of its operands is true.    NOT returns the opposite value (logical
negation) of its operand.    For example, NOT TRUE returns FALSE.
NOT NULL returns NULL because nulls are indeterminate.

When you do not use parentheses to specify the order of evaluation,
operator precedence determines the order.

See also: Expressions, Comparison Operators, Handling Nulls

Comparison Operators (PL/SQL)

Comparison operators compare one expression to another.    The result
is always TRUE, FALSE, or NULL.    Typically, you use comparison
operators in the WHERE clause of SQL data manipulation statements
and in conditional control statements.

Relational Operators

The relational operators allow you to compare arbitrarily complex
expressions.    The following table gives the meaning of each operator:

 Operator Meaning

 = is equal to
 != is not equal to
 < is less than
 > is greater than
 <= is less than or equal to
 >= is greater than or equal to

IS NULL Operator

The IS NULL operator returns the Boolean value TRUE if its operand
is null, or FALSE if it is not null.    Comparisons involving nulls
always yield NULL.    So, to test whether a value is NULL, do not use
the statement

 IF variable = NULL THEN ...

Instead, use the following statement:

 IF variable IS NULL THEN ...

LIKE Operator

You use the LIKE operator to compare a character value to a pattern.
Case is significant.    LIKE returns the Boolean value TRUE if the
character patterns match or FALSE if they do not match.

The patterns matched by LIKE can include two special-purpose characters
called "wildcards."    An underscore (_) matches exactly one character;
a percent sign (%) matches zero or more characters.    For example, if
the value of "ename" is 'JOHNSON', the following expression evaluates
to TRUE:

 ename LIKE 'J%SON'

BETWEEN Operator

The BETWEEN operator tests whether a value lies in a specified range.
It means "greater than or equal to <low value> and less than or equal
to <high value>."    For example, the following expression evaluates
to FALSE:

 45 BETWEEN 38 AND 44

IN Operator

The IN operator tests set membership.    It means "equal to any
member of."    The set can contain nulls, but they are ignored.    For
example, the following statement does not delete rows in which
the "ename" column is null:

 DELETE FROM emp WHERE ename IN (NULL, 'KING', 'FORD');

Furthermore, expressions of the form

 value NOT IN set

evaluate to FALSE if the set contains a null.    For example, instead
of deleting rows in which the "ename" column is not null and not
'KING', the following statement deletes no rows:

 DELETE FROM emp WHERE ename NOT IN (NULL, 'KING');

See also: Expressions, Logical Operators, Handling Nulls

Concatenation Operator

The concatenation operator (||) appends one string to another.    For
example, the following expression returns the value 'suitcase':

 'suit' || 'case'

If both operands belong to type CHAR, the concatenation operator returns
a CHAR value.    Otherwise, it returns a VARCHAR2 value.

The concatenation operator ignores null operands.    For example, the
following expression returns the value 'applesauce':

 'apple' || NULL || NULL || 'sauce'

See also: Expressions, CONCAT

Boolean Expressions

PL/SQL lets you compare variables and constants in both SQL and
procedural statements.    These comparisons, called "Boolean expressions,"
consist of simple or complex expressions separated by relational
operators.    Often, Boolean expressions are connected by the logical
operators AND, OR, and NOT.    A Boolean expression always evaluates to
TRUE, FALSE, or NULL.

In a SQL statement, Boolean expressions let you specify the rows in a
table that are affected by the statement.    In a procedural statement,
Boolean expressions are the basis for conditional control.    There are
three kinds of Boolean expressions: arithmetic, character, and date.

Arithmetic Expressions

You can use the relational operators to compare numbers for equality
or inequality.    Comparisons are quantitative; that is, one number is
greater than another if it represents a larger quantity.    For example,
given the assignments

 number1 := 75;
 number2 := 70;

the following expression evaluates to TRUE:

 number1 > number2

Character Expressions

You can also compare character values for equality or inequality.
Comparisons are based on the collating sequence used for the database
character set.    A "collating sequence" is an internal ordering of the
database character set in which a range of numeric codes represent the
individual characters.    One character value is greater than another
if its internal numeric value is larger.    For example, given the
assignments

 string1 := 'Kathy';
 string2 := 'Kathleen';

the following expression evaluates to TRUE:

 string1 > string2

Date Expressions

You can also compare dates.    Comparisons are chronological; that is,
one date is greater than another if it is more recent.    For example,
given the assignments

 date1 := '01-JAN-91';

 date2 := '31-DEC-90';

the following expression evaluates to TRUE:

 date1 > date2

See also: Condition, Expressions, Comparison Operators,
 Logical Operators, Datatype Comparison Rules

Handling Nulls

Nulls can cause unexpected results.    You can avoid some common mistakes
by keeping the following rules in mind:

 * comparisons involving nulls always yield NULL
 * applying the logical operator NOT to a null yields NULL
 * in conditional control statements, if the condition evaluates
 to NULL, its associated sequence of statements is not executed

In the example below, you might expect the sequence of statements to
execute because "x" and "y" seem unequal.    But remember, nulls are
indeterminate.    Whether "x" is equal to "y" or not is unknown.
Therefore, the IF condition evaluates to NULL and the sequence of
statements is bypassed.

 x := 5;
 y := NULL;
 ...
 IF x != y THEN -- evaluates to NULL, not TRUE
 sequence_of_statements; -- not executed
 END IF;

In the next example, you might expect the sequence of statements to
execute because "a" and "b" seem equal.    But, again, that is unknown,
so the IF condition evaluates to NULL and the sequence of statements
is bypassed.

 a := NULL;
 b := NULL;
 ...
 IF a = b THEN -- evaluates to NULL, not TRUE
 sequence_of_statements; -- not executed

NOT Operator

Applying the logical operator NOT to a null yields NULL.    Thus, the
following two statements are not always equivalent:

 IF x > y THEN | IF NOT x > y THEN
 high := x; | high := y;
 ELSE | ELSE
 high := y; | high := x;
 END IF; | END IF;

The sequence of statements in the ELSE clause is executed when the IF
condition evaluates to FALSE or NULL.    So, if either or both "x" and "y"
are null, the first IF statement assigns the value of "y" to "high," but
the second IF statement assigns the value of "x" to "high."    If neither
"x" nor "y" is null, both IF statements assign the same value to "high."

Zero-Length Strings

PL/SQL treats any zero-length string like a null.    This includes values
returned by character functions and Boolean expressions.    For example,
the following statements assign nulls to the target variables:

 null_string := TO_VARCHAR2('');
 zip_code := SUBSTR(address, 25, 0);
 valid := (name != '');

So, use the IS NULL operator to test for null strings, as follows:

 IF my_string IS NULL THEN ...

See also: Condition, Boolean Expressions, Comparison Operators,
 Logical Operators

Built-in Functions

PL/SQL provides more than 70 powerful functions to help you manipulate
data.    You can use them wherever expressions of the same type are
allowed.    Furthermore, you can nest them.    The built-in functions fall
into the following categories:

 * error-reporting functions
 * number functions
 * character functions
 * conversion functions
 * date functions
 * miscellaneous functions

You can use all the built-in functions in SQL statements except the
error-reporting functions SQLCODE and SQLERRM.    In addition, you can
use all the functions in procedural statements except the miscellaneous
functions DECODE, DUMP, and VSIZE.

The SQL group functions AVG, MIN, MAX, COUNT, SUM, STDDEV, and
VARIANCE are not built into PL/SQL.    Nevertheless, you can use them
in SQL statements (but not in procedural statements).

See also: SQL Functions, SQLCODE and SQLERRM Functions, Group Functions,
 Datatype Conversion

PL/SQL Tables

Objects of type TABLE are called "PL/SQL tables," which are modelled
on (but not the same as) database tables.    PL/SQL tables use a primary
key to give you array-like access to rows.    The size of a PL/SQL table
is unconstrained.    That is, the number of rows in a PL/SQL table can
increase dynamically.

PL/SQL tables can have one column and a primary key, neither of which
can be named.    The column can belong to any scalar type, but the primary
key must belong to type BINARY_INTEGER.

Declaring PL/SQL Tables

PL/SQL tables must be declared in two steps.    First, you define a TABLE
type, then declare PL/SQL tables of that type.    You can declare TABLE
types in the declarative part of any block, subprogram, or package
using the syntax

 TYPE type_name IS TABLE OF
 { column_type | variable%TYPE | table.column%TYPE 'D [NOT NULL]
 INDEX BY BINARY_INTEGER;

where "type_name" is a type specifier used in subsequent declarations
of PL/SQL tables and "column_type" is any scalar datatype such as CHAR,
DATE, or NUMBER.    You can use the %TYPE attribute to specify a column
datatype.

In this example, you declare a TABLE type called "EnameTabTyp":

 DECLARE
 TYPE EnameTabTyp IS TABLE OF CHAR(10)
 INDEX BY BINARY_INTEGER;

You could have used %TYPE to provide the column datatype, as follows:

 DECLARE
 TYPE EnameTabTyp IS TABLE OF emp.ename%TYPE
 INDEX BY BINARY_INTEGER;

Once you define type "EnameTabTyp," you can declare PL/SQL tables of
that type, as follows:

 ename_tab EnameTabTyp;

The identifier "ename_tab" represents an entire PL/SQL table.

Like scalar variables, PL/SQL tables can be declared as the formal
parameters of procedures and functions.    Some packaged examples follow:

 PACKAGE emp_actions IS
 TYPE EnameTabTyp IS TABLE OF emp.ename%TYPE
 INDEX BY BINARY_INTEGER;

 TYPE SalTabTyp IS TABLE OF emp.sal%TYPE
 INDEX BY BINARY_INTEGER;
 ename_tab EnameTabTyp;
 sal_tab SalTabTyp;
 ...
 PROCEDURE hire_batch
 (ename_tab EnameTabTyp,
 sal_tab SalTabTyp,
 ...);
 PROCEDURE log_names
 (ename_tab EnameTabTyp,
 num BINARY_INTEGER);
 ...
 END emp_actions;

Referencing PL/SQL Tables

To reference rows in a PL/SQL table, you specify a primary key value
using the array-like syntax

 plsql_table_name(primary_key_value)

where "primary_key_value" belongs to type BINARY_INTEGER.    For example,
you reference the third row in PL/SQL table "ename_tab" as follows:

 ename_tab(3) ...

You can assign the value of a PL/SQL expression to a specific row using
the following syntax:

 plsql_table_name(primary_key_value) := plsql_expression;

In the next example, you assign the sum of variables "salary" and
"increase" to the fifth row in PL/SQL table "sal_tab":

 sal_tab(5) := salary + increase;

Until a row is assigned a value, it does not exist.    If you try to
reference an uninitialized row, PL/SQL raises the predefined exception
NO_DATA_FOUND.    Consider the following example:

 DECLARE
 TYPE JobTabTyp IS TABLE OF CHAR(14)
 INDEX BY BINARY_INTEGER;
 job_tab JobTabTyp;
 BEGIN
 job_tab(1) := 'CLERK';
 IF job_tab(2) = 'CLERK' THEN -- raises NO_DATA_FOUND
 ...
 END IF;
 ...
 EXCEPTION

 WHEN NO_DATA_FOUND THEN
 -- here because job_tab(2) does not exist
 ...
 END;

Inserting/Fetching Rows

You must use a loop to INSERT values from a PL/SQL table into a database
column.    Likewise, you must use a loop to FETCH values from a database
column into a PL/SQL table.    For example, given the declarations

 DECLARE
 TYPE EmpnoTabTyp IS TABLE OF NUMBER(4)
 INDEX BY BINARY_INTEGER;
 TYPE EnameTabTyp IS TABLE OF CHAR(10)
 INDEX BY BINARY_INTEGER;
 ...
 empno_tab EmpnoTabTyp;
 ename_tab EnameTabTyp;
 ...

you might use the following procedure to INSERT values from the PL/SQL
tables into the "emp" database table:

 PROCEDURE insert_emp_data
 (rows BINARY_INTEGER,
 empno_tab EmpnoTabTyp,
 ename_tab EnameTabTyp,
 ...) IS
 BEGIN
 FOR i IN 1..rows LOOP
 INSERT INTO emp (empno, ename, ...)
 VALUES (empno_tab(i), ename_tab(i), ...);
 END LOOP;
 END;

Conversely, you might use the next procedure to FETCH all rows from the
database table into PL/SQL tables "empno_tab" and "ename_tab":

 PROCEDURE fetch_emp_data
 (rows OUT BINARY_INTEGER,
 empno_tab OUT EmpnoTabTyp,
 ename_tab OUT EnameTabTyp,
 ...) IS
 BEGIN
 rows := 0;
 FOR emprec IN (SELECT * FROM emp) LOOP
 rows := rows + 1;
 empno_tab(rows) := emprec.empno;
 ename_tab(rows) := emprec.ename;
 ...
 END LOOP;

 END;

However, you cannot reference PL/SQL tables in the INTO clause.    For
example, the following SELECT statement is illegal:

 PROCEDURE fetch_emp_data
 (rows OUT BINARY_INTEGER,
 empno_tab OUT EmpnoTabTyp,
 ename_tab OUT EnameTabTyp,
 ...) IS
 BEGIN
 SELECT empno, ename
 INTO empno_tab, ename_tab -- illegal
 FROM emp;
 ...
 END;

Deleting Rows

You cannot delete individual rows from a PL/SQL table because the
DELETE statement cannot specify PL/SQL tables.    However, you can use
a simple workaround to delete entire PL/SQL tables.    When you want to
delete a PL/SQL table, simply assign a null to it, as shown in the
following example:

 DECLARE
 TYPE NumTabTyp IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;
 sal_tab NumTabTyp;
 ...
 BEGIN
 /* Load salary table. */
 FOR i IN 1..50 LOOP
 sal_tab(i) := i;
 END LOOP;
 ...
 /* Delete salary table. */
 sal_tab := NULL; -- releases all PL/SQL table resources
 ...
 END;

See also: Datatypes, Variables and Constants, Records,
 FETCH Statement, INSERT, DELETE

User-Defined Records

Objects of type RECORD are called "records."    They have uniquely named
fields, which can belong to different datatypes.    For example, suppose
you have different kinds of data about an employee such as name, salary,
hire date, and so on.    This data is dissimilar in type but logically
related.    A record that contains such fields as the name, salary, and
hire date of an employee would let you treat the data as a logical unit.

Declaring Records

Records must be declared in two steps.    First, you define a RECORD
type, then declare user-defined records of that type.    You can declare
RECORD types in the declarative part of any block, subprogram, or
package using the syntax

 TYPE type_name IS RECORD
 (field_name1 {field_type | variable%TYPE | table.column%TYPE
 | table%ROWTYPE'D [NOT NULL],
 field_name2 {field_type | variable%TYPE | table.column%TYPE
 | table%ROWTYPE'D [NOT NULL],
 ...);

where "type_name" is a type specifier used in subsequent declarations
of records and "field_type" is any datatype.    You can use the %TYPE or
%ROWTYPE attribute to specify a field datatype.    In the following
example, you declare a RECORD type named "DeptRecTyp":

 DECLARE
 TYPE DeptRecTyp IS RECORD
 (deptno NUMBER(2) NOT NULL := 20,
 dname dept.dname%TYPE,
 loc dept.loc%TYPE);
 ...

Notice that the field declarations are like variable declarations.
Each field has a unique name and specific datatype.    You can add the
NOT NULL constraint to any field declaration and so prevent the
assigning of nulls to that field.    Remember, fields declared as NOT NULL
must be initialized.

Once you define type "DeptRecTyp," you can declare records of that type,
as follows:

 dept_rec DeptRecTyp;

The identifier "dept_rec" represents an entire record.

A record can be initialized in its declaration, as this example shows:

 DECLARE
 TYPE TimeTyp IS RECORD
 (second SMALLINT := 0,

 minute SMALLINT := 0,
 hour SMALLINT := 0);
 ...

When you declare a record of type "TimeTyp," its three fields assume an
initial value of zero.

Like scalar variables, user-defined records can be declared as the
formal parameters of procedures and functions.    A packaged example
follows:

 PACKAGE emp_actions IS
 TYPE EmpRecTyp IS RECORD
 (empno NUMBER(4) NOT NULL := 1001,
 ename CHAR(10),
 job CHAR(14),
 mgr NUMBER(4),
 hiredate DATE
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(4));
 ...
 PROCEDURE hire_employee (emp_rec EmpRecTyp);
 ...
 END emp_actions;

Referencing Records

To reference individual fields in a record, you use dot notation and
the following syntax:

 record_name.field_name

For example, you reference the "ename" field in the "emp_rec" record
as follows:

 emp_rec.ename ...

You can assign the value of a PL/SQL expression to a specific field by
using the following syntax:

 record_name.field_name := plsql_expression;

In the next example, you convert an employee name to upper case:

 emp_rec.ename := UPPER(emp_rec.ename);

Instead of assigning values separately to each field in a record, you
can assign values to all fields at once.    This can be done in two ways.
First, you can assign one record to another if they belong to the same
datatype.    For example, given the declarations

 DECLARE

 TYPE DeptRecTyp IS RECORD (...);
 dept_rec1 DeptRecTyp;
 dept_rec2 DeptRecTyp;
 ...

the following assignment is legal:

 BEGIN
 ...
 dept_rec1 := dept_rec2;

Second, you can assign a list of column values to a record by using the
SELECT or FETCH statement, as the example below shows.    Just make sure
the column names appear in the same order as the fields in your record.

 DECLARE
 TYPE DeptRecTyp IS RECORD
 (deptno NUMBER(2),
 dname CHAR(14),
 loc CHAR(13));
 dept_rec DeptRecTyp;
 ...
 BEGIN
 SELECT deptno, dname, loc INTO dept_rec FROM dept
 WHERE deptno = 30;
 ...
 END;

Even if their fields match exactly, records of different types cannot
be assigned to each other.    Furthermore, a user-defined record and a
%ROWTYPE record always belong to different types, as the following
example shows:

 DECLARE
 TYPE DeptRecTyp IS RECORD
 (deptno NUMBER(2),
 dname CHAR(14),
 loc CHAR(13));
 dept_rec1 DeptRecTyp;
 dept_rec2 dept%ROWTYPE;
 ...
 BEGIN
 ...
 dept_rec1 := dept_rec2; -- illegal

Also, records cannot be tested for equality or inequality.    For
instance, the following IF condition is illegal:

 IF dept_rec1 = dept_rec2 THEN ... -- illegal

Nesting Records

PL/SQL lets you declare and reference nested records.    That is, a
record can be the component of another record, as this example shows:

 DECLARE
 TYPE TimeTyp IS RECORD
 (minute SMALLINT,
 hour SMALLINT);
 TYPE MeetingTyp IS RECORD
 (day DATE,
 time TimeTyp, -- nested record
 place CHAR(20),
 purpose CHAR(50));
 TYPE PartyTyp IS RECORD
 (day DATE,
 time TimeTyp, -- nested record
 loc CHAR(15));
 meeting MeetingTyp;
 seminar MeetingTyp;
 party PartyTyp;
 ...
 BEGIN
 meeting.day := '26-JUN-91';
 meeting.time.minute := 45;
 meeting.time.hour := 10;
 ...
 END;

The next example shows that you can assign one nested record to another
if they belong to the same datatype:

 seminar.time := meeting.time; -- legal

Such assignments are allowed even if the containing records belong to
different datatypes, as the following example shows:

 party.time := meeting.time; -- legal

See also: Datatypes, Variables and Constants, PL/SQL Tables,
 %TYPE Attribute, %ROWTYPE Attribute

Structure Theorem

In PL/SQL, statements are connected by simple but powerful control
structures that have a single entry and exit point.    Collectively,
these structures can handle any situation.    And, their proper use
leads naturally to a well-structured program.

According to the structure theorem, any computer program can be
written using the three basic control structures flow-charted below.
These structures can be combined in any way necessary to deal with a
given problem.

 SELECTION ITERATION SEQUENCE

 | | |
 | | |
 T / \ F / \ F +-----+
 +----< >----+ +---->< >----+ | |
 | \ / | | \ / | +-----+
 | | | | T | |
 +-----+ +-----+ | | | |
 | | | | | +-----+ | +-----+
 +-----+ +-----+ | | | | | |
 | | | +-----+ | +-----+
 | | | | | |
 +------()------+ +--------+ | |
 | | |

The selection structure tests a condition, then executes one sequence
of statements instead of another, depending on whether the condition is
true or false.    A condition is any variable or expression that returns a
Boolean value (TRUE, FALSE, or NULL).    The iteration structure executes
a sequence of statements repeatedly as long as a condition holds true.
The sequence structure simply executes a sequence of statements in the
order in which they occur.

See also: Condition, IF Statement, LOOP Statement, GOTO Statement,
 NULL Statement

IF Statement

Often, it is necessary to take alternative actions depending on
circumstances.    The IF statement lets you execute a sequence of
statements conditionally.    That is, whether the sequence is executed
or not depends on the value of a condition.    There are three forms of
IF statements: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSIF.

IF-THEN

The simplest form of IF statement associates a condition with a sequence
of statements enclosed by the keywords THEN and END IF (not ENDIF), as
follows:

 IF condition THEN
 sequence_of_statements;
 END IF;

The sequence of statements is executed only if the condition evaluates
to TRUE.    If the condition evaluates to FALSE or NULL, the IF statement
does nothing.    In either case, control passes to the next statement.
An example follows:

 IF sales > quota THEN
 compute_bonus(empid);
 UPDATE payroll SET pay = pay + bonus WHERE empno = emp_id;
 END IF;

IF-THEN-ELSE

The second form of IF statement adds the keyword ELSE followed by an
alternative sequence of statements, as follows:

 IF condition THEN
 sequence_of_statements1;
 ELSE
 sequence_of_statements2;
 END IF;

The sequence of statements in the ELSE clause is executed only if the
condition evaluates to FALSE or NULL.    Thus, the ELSE clause ensures
that a sequence of statements is executed.    In the following example,
the first or second UPDATE statement is executed when the condition
is true or false, respectively:

 IF trans_type = 'CR' THEN
 UPDATE accounts SET balance = balance + credit WHERE ...
 ELSE
 UPDATE accounts SET balance = balance - debit WHERE ...
 END IF;

The THEN and ELSE clauses can include IF statements.    That is,

IF statements can be nested, as the following example shows:

 IF trans_type = 'CR' THEN
 UPDATE accounts SET balance = balance + credit WHERE ...
 ELSE
 IF new_balance >= minimum_balance THEN
 UPDATE accounts SET balance = balance - debit WHERE ...
 ELSE
 RAISE insufficient_funds;
 END IF;
 END IF;

IF-THEN-ELSIF

Sometimes you want to select an action from several mutually exclusive
alternatives.    The third form of IF statement uses the keyword ELSIF
(not ELSEIF) to introduce additional conditions, as follows:

 IF condition1 THEN
 sequence_of_statements1;
 ELSIF condition2 THEN
 sequence_of_statements2;
 ELSE
 sequence_of_statements3;
 END IF;

If the first condition evaluates to FALSE or NULL, the ELSIF clause
tests another condition.    An IF statement can have any number of ELSIF
clauses; the final ELSE clause is optional.    Conditions are evaluated
one by one from top to bottom.    If any condition evaluates to TRUE, its
associated sequence of statements is executed and control passes to the
next statement.    If all conditions evaluate to FALSE or NULL, the
sequence in the ELSE clause is executed.    Consider the following
example:

 IF sales > 50000 THEN
 bonus := 1500;
 ELSIF sales > 35000 THEN
 bonus := 500;
 ELSE
 bonus := 100;
 END IF;
 INSERT INTO payroll VALUES (emp_id, bonus, ...);

If the value of "sales" is more than 50000, the first and second
conditions are true.    Nevertheless, "bonus" is assigned the proper
value of 1500 because the second condition is never tested.    When the
first condition evaluates to TRUE, its associated statement is executed
and control passes to the INSERT statement.

When possible, use the ELSIF clause instead of nested IF statements.
That way, your code will be easier to read and understand.    Compare the
following IF statements:

 IF condition1 THEN | IF condition1 THEN
 statement1; | statement1;
 ELSE | ELSIF condition2 THEN
 IF condition2 THEN | statement2;
 statement2; | ELSIF condition3 THEN
 ELSE | statement3;
 IF condition3 THEN | END IF;
 statement3; |
 END IF; |
 END IF; |
 END IF; |

These statements are logically equivalent, but the first statement
obscures the flow of logic, whereas the second statement reveals it.

See also: Condition, Structure Theorem, Boolean Expressions

LOOP Statement

LOOP statements let you execute a sequence of statements multiple
times.    There are three forms of LOOP statements: LOOP, WHILE-LOOP,
and FOR-LOOP.

LOOP

The simplest form of LOOP statement is the basic (or infinite) loop,
which encloses a sequence of statements between the keywords LOOP and
END LOOP, as follows:

 LOOP
 sequence_of_statements;
 END LOOP;

With each iteration of the loop, the sequence of statements is executed,
then control resumes at the top of the loop.    If further processing is
undesirable or impossible, you can use the EXIT statement to complete
the loop.    You can place one or more EXIT statements anywhere inside a
loop, but nowhere outside a loop.

WHILE-LOOP

The WHILE-LOOP statement associates a condition with a sequence of
statements enclosed by the keywords LOOP and END LOOP, as follows:

 WHILE condition LOOP
 sequence_of_statements;
 END LOOP;

Before each iteration of the loop, the condition is evaluated.    If the
condition evaluates to TRUE, the sequence of statements is executed,
then control resumes at the top of the loop.    If the condition evaluates
to FALSE or NULL, the loop is bypassed and control passes to the next
statement.    An example follows:

 WHILE total <= 25000 LOOP
 ...
 SELECT sal INTO salary FROM emp WHERE ...
 total := total + salary;
 END LOOP;

The number of iterations depends on the condition and is unknown until
the loop completes.    Since the condition is tested at the top of the
loop, the sequence might execute zero times.    In the last example, if
the initial value of "total" is greater than 25000, the condition
evaluates to FALSE and the loop is bypassed.

FOR-LOOP

Whereas the number of iterations through a WHILE loop is unknown until
the loop completes, the number of iterations through a FOR loop is known
before the loop is entered.    FOR loops iterate over a specified range of
integers.    The range is part of an "iteration scheme," which is enclosed
by the keywords FOR and LOOP.    The syntax follows:

 FOR counter IN [REVERSE] lower_bound..higher_bound LOOP
 sequence_of_statements;
 END LOOP;

The range is evaluated when the FOR loop is first entered and is never
reevaluated.    As the next example shows, the sequence of statements is
executed once for each integer in the range.    After each iteration, the
loop counter is incremented.

 FOR i IN 1..3 LOOP -- assign the values 1,2,3 to i
 sequence_of_statements; -- executes three times
 END LOOP;

If the lower bound equals the higher bound, the sequence of statements
is executed once.    If the lower bound is larger than the upper bound,
the sequence of statements is not executed and control passes to the
next statement.

By default, iteration proceeds upward from the lower bound to the
higher bound.    However, if you use the keyword REVERSE, iteration
proceeds downward from the higher bound to the lower bound, as the
example below shows.    After each iteration, the loop counter is
decremented.

 FOR i IN REVERSE 1..3 LOOP -- assign the values 3,2,1 to i
 sequence_of_statements; -- executes three times
 END LOOP;

Nevertheless, you write the range bounds in ascending (not descending)
order.

The bounds of a loop range can be literals, variables, or expressions,
but must evaluate to integers.    For example, the following iteration
schemes are legal:

 j IN -5..5
 k IN REVERSE first..last
 step IN 0..TRUNC(high/low) * 2
 code IN ASCII('A')..ASCII('J')

As you can see, the lower bound need not be 1.    However, the loop
counter increment (or decrement) must be 1.

PL/SQL lets you determine the loop range dynamically at run time, as
the following example shows:

 SELECT COUNT(empno) INTO emp_count FROM emp;
 FOR i IN 1..emp_count LOOP

 ...
 END LOOP;

The value of "emp_count" is unknown at compile time; the SELECT
statement returns the value at run time.

Inside a FOR loop, the loop counter can be referenced like a constant.
So, the loop counter can appear in expressions but cannot be assigned
values, as the following example shows:

 FOR ctr IN 1..10 LOOP
 ...
 IF NOT finished THEN
 INSERT INTO ... VALUES (ctr, ...); -- legal
 factor := ctr * 2; -- legal
 ...
 ELSE
 ctr := 10; -- illegal
 END IF;
 END LOOP;

The loop counter is defined only within the loop.    You cannot reference
it outside the loop.    After the loop is exited, the loop counter is
undefined, as the following example shows:

 FOR ctr IN 1..10 LOOP
 ...
 END LOOP;
 sum := ctr - 1; -- illegal

You need not declare the loop counter because it is declared implicitly
as a local variable of type INTEGER.

See also: Structure Theorem, Cursor FOR Loop, EXIT Statement,
 Loop Label

EXIT Statement

You use the EXIT statement to complete a loop when further processing
is undesirable or impossible.    You can place one or more EXIT statements
anywhere inside a loop, but nowhere outside a loop.    There are two forms
of EXIT statements: EXIT and EXIT-WHEN.

EXIT

The EXIT statement forces a loop to complete unconditionally.    When
an EXIT statement is encountered, the loop completes immediately and
control passes to the next statement.    An example follows:

 LOOP
 ...
 IF ... THEN
 ...
 EXIT; -- exit loop immediately
 END IF;
 END LOOP;
 -- control resumes here

The next example shows that you cannot use the EXIT statement to
complete a PL/SQL block:

 BEGIN
 ...
 IF ... THEN
 ...
 EXIT; -- illegal
 END IF;
 END;

Remember, the EXIT statement must be placed inside a loop.    To complete
a PL/SQL block before the normal end of the block is reached, you can
use the RETURN statement.

EXIT-WHEN

The EXIT-WHEN statement allows a loop to complete conditionally.    When
the EXIT statement is encountered, the condition in the WHEN clause is
evaluated.    If the condition evaluates to TRUE, the loop completes and
control passes to the next statement after the loop.    An example
follows:

 LOOP
 FETCH c1 INTO ...
 EXIT WHEN c1%NOTFOUND; -- exit loop if condition is true
 ...
 END LOOP;
 CLOSE c1;

Until the condition evaluates to TRUE, the loop cannot complete.    So,
statements within the loop must change the value of the condition.    In
the last example, if the FETCH statement returns a row, the condition
evaluates to FALSE.    When the FETCH statement fails to return a row, the
condition evaluates to TRUE, the loop completes, and control passes to
the CLOSE statement.

The EXIT-WHEN statement allows a FOR loop to complete prematurely.    For
example, the following loop normally executes ten times, but as soon as
the FETCH fails to return a row, the loop completes no matter how many
times it has executed.

 FOR j IN 1..10 LOOP
 FETCH c1 INTO emp_rec;
 EXIT WHEN c1%NOTFOUND;
 ...
 END LOOP;

See also: Condition, LOOP Statement, Cursor FOR Loop, Loop Label

Loop Label
Like PL/SQL blocks, loops can be labeled.    The label, an undeclared
identifier enclosed by double angle brackets, must appear at the
beginning of the LOOP statement, as follows:

 <<label_name>>
 LOOP
 sequence_of_statements;
 END LOOP;

Optionally, the label name can also appear at the end of the LOOP
statement, as the following example shows:

 <<my_loop>>
 LOOP
 ...
 END LOOP my_loop;

When you nest labeled loops, you can use ending label names to
improve readability.

With either form of EXIT statement, you can complete not only the
current loop, but any enclosing loop.    Simply label the enclosing loop
that you want to complete.    Then, use the label in an EXIT statement,
as follows:

 <<outer>>
 LOOP
 ...
 LOOP
 ...
 EXIT outer WHEN ... -- exit both loops
 END LOOP;
 ...
 END LOOP outer;

Every enclosing loop up to and including the labeled loop is exited.

Suppose you must exit from a nested FOR loop prematurely.    You can
complete not only the current loop, but any enclosing loop.    Simply
label the enclosing loop that you want to complete.    Then, use the label
in an EXIT statement to specify which FOR loop to exit, as follows:

 <<outer>>
 FOR i IN 1..5 LOOP
 ...
 FOR j IN 1..10 LOOP
 FETCH c1 INTO emp_rec;
 EXIT outer WHEN c1%NOTFOUND; -- exit both FOR loops
 ...
 END LOOP;
 END LOOP outer;

 -- control passes here

See also: EXIT Statement, LOOP Statement, Block Label

GOTO Statement

The structure of PL/SQL is such that the GOTO statement is seldom
needed.    But, occasionally, it can simplify logic enough to warrant
its use.

The GOTO statement branches to a label unconditionally.    The label must
be unique within its scope and must precede an executable statement or a
PL/SQL block.    When executed, the GOTO statement transfers control to
the labeled statement or block.    In the following example, you go to
an executable statement farther down in a sequence of statements:

 BEGIN
 ...
 GOTO insert_row;
 ...
 <<insert_row>>
 INSERT INTO emp VALUES ...
 END;

In the next example, you go to a PL/SQL block farther up in a sequence
of statements:

 BEGIN
 ...
 <<update_row>>
 BEGIN
 UPDATE emp SET ...
 ...
 END;
 ...
 GOTO update_row;
 ...
 END;

The label <<end_loop>> in the following example is illegal because it
does not precede an executable statement:

 DECLARE
 done BOOLEAN;
 BEGIN
 ...
 FOR i IN 1..50 LOOP
 IF done THEN
 GOTO end_loop;
 END IF;
 ...
 <<end_loop>> -- illegal
 END LOOP; -- not an executable statement
 END;

To debug the last example, simply add the NULL statement, as follows:

 DECLARE
 done BOOLEAN;
 BEGIN
 ...
 FOR i IN 1..50 LOOP
 IF done THEN
 GOTO end_loop;
 END IF;
 ...
 <<end_loop>>
 NULL; -- an executable statement
 END LOOP;
 END;

As the following example shows, a GOTO statement can branch to an
enclosing block from the current block:

 DECLARE
 my_ename CHAR(10);
 BEGIN
 ...
 <<get_name>>
 SELECT ename INTO my_ename FROM emp WHERE ...
 ...
 BEGIN
 ...
 GOTO get_name; -- branch to enclosing block
 END;
 END;

The GOTO statement branches to the first enclosing block in which the
referenced label appears.

However, some possible destinations of a GOTO statement are illegal.
Specifically, a GOTO statement cannot branch into an IF statement,
LOOP statement, or sub-block.    For example, the following GOTO
statement is illegal:

 BEGIN
 ...
 GOTO update_row; -- illegal branch into IF statement
 ...
 IF valid THEN
 ...
 <<update_row>>
 UPDATE emp SET ...
 END IF;
 END;

Also, a GOTO statement cannot branch from one IF statement clause to
another, as the following example shows:

 BEGIN

 ...
 IF valid THEN
 ...
 GOTO update_row; -- illegal branch into ELSE clause
 ELSE
 ...
 <<update_row>>
 UPDATE emp SET ...
 END IF;
 END;

The next example shows that a GOTO statement cannot branch from an
enclosing block into a sub-block:

 BEGIN
 ...
 IF status = 'OBSOLETE' THEN
 GOTO delete_part; -- illegal branch into sub-block
 END IF;
 ...
 BEGIN
 ...
 <<delete_part>>
 DELETE FROM parts WHERE ...
 END;
 END;

Also, a GOTO statement cannot branch out of a subprogram, as the
following example shows:

 DECLARE
 ...
 PROCEDURE compute_bonus (emp_id NUMBER) IS
 BEGIN
 ...
 GOTO update_row; -- illegal branch out of subprogram
 END;
 BEGIN
 ...
 <<update_row>>
 UPDATE emp SET ...
 END;

Finally, a GOTO statement cannot branch from an exception handler
into the current block.    For example, the following GOTO statement
is illegal:

 DECLARE
 ...
 pe_ratio REAL;
 BEGIN
 ...
 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM ...

 <<insert_row>>
 INSERT INTO stats VALUES (pe_ratio, ...);
 EXCEPTION
 WHEN ZERO_DIVIDE THEN
 pe_ratio := 0;
 GOTO insert_row; -- illegal branch into current block
 ...
 END;

However, a GOTO statement can branch from an exception handler into an
enclosing block.

Overuse of GOTO statements can result in complex, unstructured code that
is hard to understand and maintain.    So, use GOTO statements sparingly.

See also: Structure Theorem, EXIT Statement, Block Label

NULL Statement

The NULL statement explicitly specifies inaction; it does nothing
other than pass control to the next statement.    However, it can make
the meaning and action of conditional statements clear and so improve
readability.

In a construct allowing alternative actions, the NULL statement serves
as a placeholder.    It tells readers that the associated alternative has
not been overlooked, but that indeed no action is necessary.    In the
following example, the NULL statement shows that no action is taken for
unnamed exceptions:

 ...
 EXCEPTION
 WHEN ZERO_DIVIDE THEN
 ROLLBACK;
 WHEN VALUE_ERROR THEN
 INSERT INTO errors VALUES ...
 COMMIT;
 WHEN OTHERS THEN
 NULL;
 END;

Each clause in an IF statement must contain at least one executable
statement.    The NULL statement meets this requirement.    So, you can use
the NULL statement in clauses that correspond to circumstances in which
no action is taken.    In the following example, the NULL statement
emphasizes that only top-rated employees receive bonuses:

 IF rating > 90 THEN
 compute_bonus(emp_id);
 ELSE
 NULL;
 END IF;

Also, the NULL statement is a handy way to create stubs when designing
applications from the top down.    Stubs are dummy subprograms that allow
you to defer the definition of procedures and functions until you test
and debug the main program.    In the next example, the NULL statement
meets the requirement that at least one statement must appear in the
executable part of a subprogram:

 PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
 BEGIN
 NULL;
 END debit_account;

See also: IF Statement, Subprograms

SQL Support

By extending SQL, PL/SQL offers a unique combination of power and ease
of use.    You can manipulate Oracle data flexibly and safely because
PL/SQL supports all SQL data manipulation statements (except EXPLAIN
PLAN), transaction control statements, functions, pseudocolumns, and
operators.

PL/SQL does not allow SQL data definition statements such as CREATE,
session control statements such as SET ROLE, or the system control
statement ALTER SYSTEM.    However, a package named DBMS_SQL, which is
supplied with the Oracle Server, allows PL/SQL to execute SQL data
definition and data manipulation statements dynamically at run time.

SQL Functions

PL/SQL lets you use all the SQL functions including the following
group functions, which summarize entire columns of Oracle data:

 * AVG
 * COUNT
 * MAX
 * MIN
 * STDDEV
 * SUM
 * VARIANCE

You can use the group functions in SQL statements, but not in procedural
statements.    Group functions operate on entire columns unless you use
the SELECT GROUP BY statement to sort returned rows into subgroups.
If you omit the GROUP BY clause, the group function treats all returned
rows as a single group.

You call a group function using the syntax

 function_name([ALL | DISTINCT] expr)

where "expr" is an expression that refers to one or more database
columns.    If you specify the ALL option (the default), the group
function considers all column values including duplicates.    For example,
the following statement returns the sample standard deviation of all
values in the "comm" column:

 SELECT STDDEV(comm) INTO comm_sigma FROM emp;

If you specify the DISTINCT option, the group function considers only
distinct values.    For example, the following statement returns the
number of different job titles in the "emp" table:

 SELECT COUNT(DISTINCT job) INTO job_count FROM emp;

The COUNT function lets you specify the asterisk (*) option, which
returns the number of rows in a table.    For example, the following

statement returns the number of employees in the "emp" table:

 SELECT COUNT(*) INTO emp_count FROM emp;

Except for COUNT(*), all group functions ignore nulls.

SQL Pseudocolumns

PL/SQL recognizes the following SQL pseudocolumns, which return specific
data items:

 * CURRVAL
 * LEVEL
 * NEXTVAL
 * ROWID
 * ROWNUM

For example, NEXTVAL returns the next value in a database sequence.
They are called "pseudocolumns" because they are not actual columns
in a table but behave like columns.    For instance, you can reference
pseudocolumns in SQL statements.    Furthermore, you can select values
from a pseudocolumn.    However, you cannot insert values into, update
values in, or delete values from a pseudocolumn.

You can use pseudocolumns in SQL statements, but not in procedural
statements.    In the following example, you use the database sequence
"empno_seq" and the pseudocolumn NEXTVAL to insert a new employee number
into the "emp" table:

 INSERT INTO emp VALUES (empno_seq.NEXTVAL, new_ename, ...);

Sometimes, it is convenient to select pseudocolumn values from a dummy
table, as follows:

 DECLARE
 new_empno NUMBER(4);
 new_ename CHAR(10);
 ...
 BEGIN
 ...
 SELECT empno_seq.NEXTVAL INTO new_empno FROM dual;
 INSERT INTO emp VALUES (new_empno, new_ename, ...);
 END;

SQL Operators

PL/SQL lets you use all the SQL comparison, set, and row operators in
SQL statements.    Typically, you use comparison operators in the WHERE
clause of a data manipulation statement to form "predicates," which
compare one expression to another and always evaluate to TRUE, FALSE,
or NULL.    You can use all the comparison operators listed below to form
predicates.    Moreover, you can combine predicates using the logical

operators AND, OR, and NOT.

 ALL Compares a value to each value in a list or returned
 by a subquery and evaluates to TRUE if all of the
 individual comparisons yield a TRUE result.
 ANY, SOME Compares a value to each value in a list or returned by
 a subquery and evaluates to TRUE if any of the individual
 comparisons yields a TRUE result.
 BETWEEN Tests whether a value lies in a specified range.
 EXISTS Returns TRUE if a subquery returns at least one row.
 IN Tests for set membership.
 IS NULL Tests for nulls.
 LIKE Tests whether a character string matches a specified
 pattern, which can include wildcards.

Set operators combine the results of two queries into one result.    You
can use all the set operators, including INTERSECT, MINUS, UNION, and
UNION ALL.

 INTERSECT Returns all distinct rows selected by both queries.
 MINUS Returns all distinct rows selected by the first query
 but not by the second.
 UNION Returns all distinct rows selected by either query.
 UNION ALL Returns all rows selected by either query, including
 all duplicates.

Row operators return or reference particular rows.    You can use all the
row operators, including ALL, DISTINCT, and PRIOR.

 ALL Retains duplicate rows in the result of a query or in
 an aggregate expression.
 DISTINCT Eliminates duplicate rows from the result of a query or
 from an aggregate expression.
 PRIOR Refers to the parent row of the current row returned by
 a tree-structured query. You must use this operator in
 the CONNECT BY clause of such a query to define the
 parent-child relationship.

See also: SQL Commands, SQL Functions, Operators, Pseudocolumns,
 Product-specific Packages

Optimizer Hints

For every SQL statement, the Oracle optimizer generates an execution
plan, which is a series of steps that Oracle takes to execute the
statement.    In some cases, you can suggest to Oracle the way to
optimize a SQL statement.    These suggestions, called "hints," let
you influence decisions made by the optimizer.

Hints are not directives; they merely help the optimizer do its job.
Some hints limit the scope of information used to optimize a SQL
statement, while others suggest overall strategies.    You can use hints
to specify the

 * optimization approach for a SQL statement
 * access path for each referenced table
 * join order for a join
 * method used to join tables

Hence, hints fall into the following four categories:

 * Optimization Approach
 * Access Path
 * Join Order
 * Join Operation

For example, the two Optimization Approach hints COST and NOCOST tell
the optimizer to take a cost-based or rule-based approach, respectively.
You give hints to the optimizer by placing them in a comment immediately
after the verb in a SELECT, UPDATE, or DELETE statement.    For instance,
the optimizer uses the cost-based approach for the following statement:

 SELECT /*+ COST */ ename, job, sal INTO ...

See also: SQL Support, Comments (SQL), SELECT, UPDATE, DELETE

National Language Support

Although the widely-used 7- or 8-bit ASCII and EBCDIC character sets
are adequate to represent the Roman alphabet, some Asian languages, such
as Japanese, contain thousands of characters.    These languages require
16 bits (two bytes) to represent each character.    How does Oracle deal
with such dissimilar languages?

Oracle provides National Language Support (NLS), which lets you process
single-byte and multibyte character data and convert between character
sets.    It also lets your applications run in different language
environments.    With NLS, number and date formats adapt automatically
to the language conventions specified for a user session.    Thus, NLS
allows users around the world to interact with Oracle in their native
languages.

You control the operation of language-dependent features by specifying
various NLS parameters.    Default values for these parameters can be set
in the Oracle initialization file.    The following table shows what each
NLS parameter specifies.

 NLS Parameter Specifies

 NLS_LANGUAGE language-dependent conventions
 NLS_TERRITORY territory-dependent conventions
 NLS_DATE_FORMAT date format
 NLS_DATE_LANGUAGE language for day and month names
 NLS_NUMERIC_CHARACTERS decimal character and group separator
 NLS_CURRENCY local currency symbol
 NLS_ISO_CURRENCY ISO currency symbol
 NLS_SORT sort sequence

The main parameters are NLS_LANGUAGE and NLS_TERRITORY.    NLS_LANGUAGE
specifies the default values for language-dependent features, which
include

 * language for Oracle Server messages
 * language for day and month names
 * sort sequence

NLS_LANGUAGE specifies the default values for territory-dependent
features, which include

 * date format
 * decimal character
 * group separator
 * local currency symbol
 * ISO currency symbol

You can control the operation of language-dependent NLS features for a
user session by specifying the parameter NLS_LANG as follows

 NLS_LANG = <language>_<territory>.<character set>

where "language" specifies the value of NLS_LANGUAGE for the user
session, "territory" specifies the value of NLS_TERRITORY, and
"character set" specifies the encoding scheme used for the terminal.
An encoding scheme (usually called a character set or code page) is a
range of numeric codes that corresponds to the set of characters a
terminal can display.    It also includes codes that control communication
with the terminal.

You define NLS_LANG as an environment variable (or the equivalent on
your system).    For example, on UNIX using the C shell, you might define
NLS_LANG as follows:

 define NLS_LANG French_France.WE8DEC

PL/SQL fully supports all the NLS features that allow your applications
to process multilingual data stored in an Oracle database.    For example,
you can declare foreign-language character variables and pass them to
string functions such as INSTRB, LENGTHB, and SUBSTRB.    These functions
have the same syntax as the INSTR, LENGTH, and SUBSTR functions,
respectively, but operate on a per-byte basis rather than a
per-character basis.

You can use the functions NLS_INITCAP, NLS_LOWER, and NLS_UPPER to
handle special instances of case conversion.    And, you can use the
function NLSSORT to specify WHERE-clause comparisons based on linguistic
rather than binary ordering.    You can even pass NLS parameters to the
TO_CHAR, TO_DATE, and TO_NUMBER functions.

See also: SQL Support, ALTER SESSION

Remote Access

PL/SQL lets you access remote databases.    In the example below, you
query a remote database table in the "newyork" database via SQL*Net.
The query is submitted to your local Oracle Server, but is forwarded
to the remote database for execution.

 BEGIN
 SELECT ename, job INTO my_ename, my_job
 FROM emp@newyork
 WHERE empno = my_empno;
 ...

You can use the %TYPE attribute to provide the datatype of a column in a
remote database table.    Likewise, you can use the %ROWTYPE attribute to
declare a record that represents a row in a remote table.    Some examples
follow:

 DECLARE
 emp_id emp.empno@newyork%TYPE;
 dept_rec dept@newyork%ROWTYPE;
 ...

You can even call standalone and packaged subprograms stored in a
remote Oracle database.

See also: Naming Conventions, %TYPE Attribute, %ROWTYPE Attribute,
 Global Names, Location Transparency, CREATE DATABASE LINK,
 CREATE SYNONYM

Location Transparency

To provide location transparency for remote database objects such
as tables and views, you can create synonyms.    In the following
example, you create a synonym for the "emp" table in the "newyork"
database:

 CREATE SYNONYM emp2 FOR emp@newyork;

Then, as the next example shows, you can reference a remote object
using its synonym:

 BEGIN
 SELECT ename, job INTO my_ename, my_job
 FROM emp2 -- synonym for emp@newyork
 WHERE empno = my_empno;
 ...

Because they are database objects, you can also create synonyms for
packages and standalone subprograms.    However, you cannot create
synonyms for objects declared within packages or subprograms.    For
example, you cannot create synonyms for packaged procedures.

See also: Naming Conventions, Global Names, Remote Access,
 CREATE DATABASE LINK, CREATE SYNONYM

Global Names

A distributed database is a single logical database comprising multiple
physical databases at different nodes.    In a distributed database
system, each database is uniquely identified by a two-part global name.
The first part is a database name such as "sales"; the second part is a
network domain name.    The figure below shows a fictional network domain
that follows Internet conventions.    Internet is a worldwide system of
computer networks used by companies and schools to exchange information.

 com
 / | \
 / | \
 primus
 / \
 / \
 asia americas
 / | / \
 / | / \
 japan mexico us
 | | / \
 | | / \
 sales mfg sales acctg

To form network domain names, you use dot notation and follow a path
through the tree structure from leaf to root.    The domain name tells
you the name or location of a network host and the type of organization
it is.    In the following example, the trailing domain "com" tells you
that Primus is a company or other commercial institution:

 mfg.mexico.americas.primus.com

Every database object is uniquely identified by its global object name.
In the following example, you query a remote "emp" table:

 BEGIN
 SELECT ename, job INTO my_ename, my_job
 FROM emp@sales.japan.asia.primus.com
 WHERE empno = my_empno;
 ...

See also: Naming Conventions, Location Transparency, Remote Access

Cursors

Oracle uses work areas called "private SQL areas" to execute SQL
statements and store processing information.    A PL/SQL construct
called a "cursor" lets you name a private SQL area and access its
stored information.    There are two kinds of cursors: implicit and
explicit.

PL/SQL implicitly declares a cursor for all SQL data manipulation
statements, including queries that return only one row.    For queries
that return more than one row, you can explicitly declare a cursor
to process the rows individually.

Explicit Cursors

The set of rows returned by a multirow query is called the "active
set."    Its size is the number of rows that meet your search criteria.
An explicit cursor points to the current row in the active set.    This
allows your program to process the rows one at a time.

Multirow query processing is somewhat like file processing.    For
example, a COBOL program opens a file to process records, then closes
the file.    Likewise, a PL/SQL program opens a cursor to process rows
returned by a query, then closes the cursor.    Just as a file pointer
marks the current position in an open file, a cursor marks the current
position in an active set.

You use three commands to control the cursor: OPEN, FETCH, and CLOSE.
First, you initialize the cursor with the OPEN statement, which
identifies the active set.    Then, you use the FETCH statement to
retrieve the first row.    You can execute FETCH repeatedly until all
rows have been retrieved.    When the last row has been processed, you
release the cursor with the CLOSE statement.

Forward references are not allowed in PL/SQL.    So, you must declare a
cursor before referencing it in other statements.    You define a cursor
in the declarative part of a PL/SQL block, subprogram, or package by
naming it and specifying a query.    In the following example, you declare
a cursor named "c1":

 DECLARE
 CURSOR c1 IS SELECT ename, deptno FROM emp WHERE sal > 2000;
 ...

The cursor name is an undeclared identifier, not a PL/SQL variable; it
is used only to reference the query.    You cannot assign values to a
cursor name or use it in an expression.

Explicit cursors can take parameters, as the example below shows.
A cursor parameter can appear in a query wherever a constant can appear.

 CURSOR c1 (median IN NUMBER) IS
 SELECT job, ename FROM emp WHERE sal > median;

To declare formal cursor parameters, you use the syntax

 CURSOR name [(parameter [, parameter, ...])] IS
 SELECT ...

where "parameter" stands for the following syntax:

 variable_name [IN] datatype [{:= | DEFAULT'D value]

The formal parameters of a cursor must be IN parameters.    As the
example below shows, you can initialize cursor parameters to default
values.    That way, you can pass different numbers of actual parameters
to a cursor, accepting or overriding the default values as you please.
Moreover, you can add new formal parameters without having to change
every reference to the cursor.

 DECLARE
 CURSOR c1
 (low INTEGER DEFAULT 0,
 high INTEGER DEFAULT 99) IS SELECT ...

The scope of cursor parameters is local to the cursor, meaning that they
can be referenced only within the query used in the cursor declaration.
The values of cursor parameters are used by the associated query when
the cursor is OPENed.

Implicit Cursors

Oracle implicitly opens a cursor to process each SQL statement not
associated with an explicitly declared cursor.    PL/SQL lets you refer
to the most recent implicit cursor as the "SQL" cursor.    So, although
you cannot use the OPEN, FETCH, and CLOSE statements to control an
implicit cursor, you can still use cursor attributes to access
information about the most recently executed SQL statement.

The values of cursor attributes always refer to the most recently
executed SQL statement, wherever that statement appears.    It might be
in a different scope (for example, in a sub-block).    So, if you want to
save an attribute value for later use, assign it to a Boolean variable
immediately.    The following example shows how failing to save an
attribute value can result in a logic bug:

 UPDATE parts SET qty = qty - 1 WHERE partno = part_id;
 check_parts; -- procedure call
 IF SQL%NOTFOUND THEN -- dangerous!
 ...
 END IF;

In this example, it is dangerous to rely on the IF condition because the
procedure "check_parts" might have changed the value of %NOTFOUND.    You
can debug the code as follows:

 UPDATE parts SET qty = qty - 1 WHERE partno = part_id;

 sql_notfound := SQL%NOTFOUND;
 check_parts;
 IF sql_notfound THEN
 ...
 END IF;

Before Oracle opens the SQL cursor, the implicit cursor attributes
evaluate to NULL.

See also: OPEN Statement, FETCH Statement, CLOSE Statement,
 %NOTFOUND Attribute, %FOUND Attribute, %ROWCOUNT Attribute,
 %ISOPEN Attribute, Packaged Cursors, Cursor FOR Loop

OPEN Statement

The OPEN statement executes the query associated with an explicitly
declared cursor.    OPENing the cursor executes the query and identifies
the active set, which consists of all rows that meet the query search
criteria.    For cursors declared using the FOR UPDATE Clause, the OPEN
statement also locks those rows.    An example of the OPEN statement
follows:

 OPEN c1;

Rows in the active set are not retrieved when the OPEN statement is
executed.    Rather, the FETCH statement retrieves the rows.

Passing Parameters

You can pass parameters to a cursor.    For example, given the cursor
declaration

 CURSOR c1 (my_ename CHAR, my_comm NUMBER) IS SELECT ...

any of the following statements opens the cursor:

 OPEN c1('ATTLEY', 300);
 OPEN c1(employee_name, 150);
 OPEN c1('THURSTON', my_comm);

In the last example, the variable referenced in the OPEN statement
has the same name as the parameter in the cursor declaration.    When
"my_comm" is used in the cursor declaration, it refers to the formal
parameter "my_comm."    When it is used outside the declaration, it refers
to the PL/SQL variable "my_comm."    For clarity, use unique identifiers.

Unless you want to accept default values, each formal parameter in the
cursor declaration must have a corresponding actual parameter in the
OPEN statement.    Formal parameters declared with a default value need
not have a corresponding actual parameter.    They can simply assume their
default values when the OPEN statement is executed.

The formal parameters of a cursor must be IN parameters.    Therefore,
they cannot return values to actual parameters.    Each actual parameter
must belong to a datatype compatible with the datatype of its
corresponding formal parameter.

See also: Cursors, FETCH Statement, CLOSE Statement

FETCH Statement

The FETCH statement retrieves the rows in the active set one at a
time.    Each time FETCH is executed, the cursor advances to the next
row in the active set.    An example of the FETCH statement follows:

 FETCH c1 INTO my_empno, my_ename, my_deptno;

For each column value returned by the query associated with the cursor,
there must be a corresponding variable in the INTO list.    Also, their
datatypes must be compatible.    Typically, you use FETCH as follows:

 OPEN c1;
 LOOP
 FETCH c1 INTO my_record;
 EXIT WHEN c1%NOTFOUND;
 -- process retrieved data
 END LOOP;

Any variables in the WHERE clause of the query associated with the
cursor are evaluated only when the cursor is OPENed.    As the following
example shows, the query can reference PL/SQL variables within its
scope:

 DECLARE
 my_sal emp.sal%TYPE;
 my_job emp.job%TYPE;
 factor INTEGER := 2;
 CURSOR c1 IS
 SELECT factor*sal FROM emp WHERE job = my_job;
 BEGIN
 ...
 OPEN c1; -- here factor equals 2
 LOOP
 FETCH c1 INTO my_sal;
 EXIT WHEN c1%NOTFOUND;
 ...
 factor := factor + 1; -- does not affect FETCH
 END LOOP;
 END;

In this example, each retrieved salary is multiplied by 2, even though
"factor" is incremented after each FETCH.    To change the active set or
the values of variables in the query, you must CLOSE and reOPEN the
cursor with the input variables set to their new values.

However, you can use a different INTO list on separate FETCHes with
the same cursor.    Each FETCH retrieves another row and assigns values
to the INTO variables, as the following example shows:

 DECLARE
 CURSOR c1 IS SELECT ename FROM emp;
 name1 emp.ename%TYPE;

 name2 emp.ename%TYPE;
 name3 emp.ename%TYPE;
 BEGIN
 OPEN c1;
 FETCH c1 INTO name1; -- this fetches first row
 FETCH c1 INTO name2; -- this fetches second row
 FETCH c1 INTO name3; -- this fetches third row
 ...
 CLOSE c1;
 END;

If you execute a FETCH but there are no more rows left in the active
set, the values of the fetch-list variables are indeterminate.

See also: Cursors, OPEN Statement, CLOSE Statement

CLOSE Statement

The CLOSE statement disables the cursor, and the active set becomes
undefined.    An example of the CLOSE statement follows:

 CLOSE c1;

Once a cursor is CLOSEd, you can reOPEN it.    Any other operation on a
closed cursor raises the predefined exception INVALID_CURSOR.

See also: Cursors, OPEN Statement, FETCH Statement

%NOTFOUND Attribute

Each cursor that you explicitly define has four attributes: %NOTFOUND,
%FOUND, %ROWCOUNT, and %ISOPEN.    When appended to the cursor name, these
attributes let you access useful information about the execution of a
multirow query.

The SQL implicit cursor has the same four attributes.    When appended to
the cursor name (SQL), these attributes let you access information about
the most recently executed INSERT, UPDATE, DELETE, or SELECT INTO
statement.

You can use cursor attributes in procedural statements but not in SQL
statements.

Explicit Cursors

When a cursor is OPENed, the rows that satisfy the associated query
are identified and form the active set.    Before the first fetch,
%NOTFOUND evaluates to NULL.    Rows are FETCHed from the active set
one at a time.    If the last fetch returned a row, %NOTFOUND evaluates
to FALSE.    If the last fetch failed to return a row (because the active
set was empty), %NOTFOUND evaluates to TRUE.    FETCH is expected to fail
eventually, so when that happens, no exception is raised.

In the following example, you use %NOTFOUND to exit a loop when FETCH
fails to return a row:

 LOOP
 FETCH c1 INTO my_ename, my_deptno;
 EXIT WHEN c1%NOTFOUND;
 ...
 END LOOP;

You can open multiple cursors, then use %NOTFOUND to tell which cursors
have rows left to fetch.    If a cursor is not open, referencing it with
%NOTFOUND raises the predefined exception INVALID_CURSOR.

Implicit Cursors

%NOTFOUND evaluates to TRUE if an INSERT, UPDATE, or DELETE affected no
rows or a SELECT INTO returned no rows.    Otherwise, %NOTFOUND evaluates
to FALSE.    In the following example, you use %NOTFOUND to insert a new
row if an update fails:

 UPDATE emp SET sal = sal * 1.05 WHERE empno = my_empno;
 IF SQL%NOTFOUND THEN -- update failed
 INSERT INTO temp VALUES (...);
 END IF;

If a SELECT INTO fails to return a row, the predefined exception
NO_DATA_FOUND is raised whether you check %NOTFOUND on the next line

or not.    Consider the following example:

 DECLARE
 my_sal NUMBER(7,2);
 my_empno NUMBER(4);
 BEGIN
 ...
 SELECT sal INTO my_sal FROM emp WHERE empno = my_empno;
 -- might raise NO_DATA_FOUND
 IF SQL%NOTFOUND THEN -- condition tested only when false
 ... -- this action is never taken
 END IF;
 EXCEPTION
 ...
 END;

The check is useless because the IF condition is tested only when
%NOTFOUND is false.    When NO_DATA_FOUND is raised, normal execution
stops and control transfers to the exception-handling part of the block.
In this situation, %NOTFOUND is useful in the OTHERS exception handler,
as the example below shows.    Instead of coding a NO_DATA_FOUND handler,
you find out if that exception was raised by checking %NOTFOUND.

 DECLARE
 my_sal NUMBER(7,2);
 my_empno NUMBER(4);
 BEGIN
 ...
 SELECT sal INTO my_sal FROM emp WHERE empno =my_empno;
 -- might raise NO_DATA_FOUND
 EXCEPTION
 WHEN OTHERS THEN
 IF SQL%NOTFOUND THEN -- check for 'no data found'
 ...
 END IF;
 ...
 END;

However, a SELECT INTO that calls a SQL group function never raises the
exception NO_DATA_FOUND.    That is because group functions such as AVG
and SUM always return a value or a null.    In such cases, %NOTFOUND
always evaluates to FALSE.    Consider this example:

 DECLARE
 my_sal NUMBER(7,2);
 my_deptno NUMBER(2);
 BEGIN
 ...
 SELECT MAX(sal) INTO my_sal FROM emp WHERE deptno = my_deptno;
 -- never raises NO_DATA_FOUND
 IF SQL%NOTFOUND THEN -- always tested but never true
 ... -- this action is never taken
 END IF;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN -- never invoked
 ...
 END;

See also: Cursors, %FOUND Attribute, %ROWCOUNT Attribute,
 %ISOPEN Attribute

%FOUND Attribute

Each cursor that you explicitly define has four attributes: %NOTFOUND,
%FOUND, %ROWCOUNT, and %ISOPEN.    When appended to the cursor name, these
attributes let you access useful information about the execution of a
multirow query.

The SQL implicit cursor has the same four attributes.    When appended to
the cursor name (SQL), these attributes let you access information about
the most recently executed INSERT, UPDATE, DELETE, or SELECT INTO
statement.

You can use cursor attributes in procedural statements but not in SQL
statements.

Explicit Cursors

%FOUND is the logical opposite of %NOTFOUND.    After an explicit
cursor is open but before the first fetch, %FOUND evaluates to NULL.
Thereafter, it evaluates to TRUE if the last fetch returned a row or to
FALSE if no row was returned.

In the following example, you use %FOUND to select an action:

 LOOP
 FETCH c1 INTO my_ename, my_deptno;
 IF c1%FOUND THEN -- fetch succeeded
 INSERT INTO temp VALUES (...);
 ELSE -- fetch failed, so exit loop
 EXIT;
 END IF;
 ...
 END LOOP;

You can open multiple cursors, then use %FOUND to tell which cursors
have rows left to fetch.    If a cursor is not open, referencing it with
%FOUND raises INVALID_CURSOR.

Implicit Cursors

%FOUND is the logical opposite of %NOTFOUND.    Until a SQL data
manipulation statement is executed, %FOUND evaluates to NULL.
Thereafter, %FOUND evaluates to TRUE if an INSERT, UPDATE, or DELETE
affected one or more rows or a SELECT INTO returned one or more rows.
Otherwise, %FOUND evaluates to FALSE.    In the following example, you
use %FOUND to insert a row if a deletion succeeds:

 DELETE FROM temp_emp WHERE empno = my_empno;
 IF SQL%FOUND THEN -- delete succeeded
 INSERT INTO emp VALUES (my_empno, my_ename, ...);
 END IF;

See also: Cursors, %NOTFOUND Attribute, %ROWCOUNT Attribute,
 %ISOPEN Attribute

%ROWCOUNT Attribute

Each cursor that you explicitly define has four attributes: %NOTFOUND,
%FOUND, %ROWCOUNT, and %ISOPEN.    When appended to the cursor name, these
attributes let you access useful information about the execution of a
multirow query.

The SQL implicit cursor has the same four attributes.    When appended to
the cursor name (SQL), these attributes let you access information about
the most recently executed INSERT, UPDATE, DELETE, or SELECT INTO
statement.

You can use cursor attributes in procedural statements but not in SQL
statements.

Explicit Cursors

When you open its cursor, %ROWCOUNT is zeroed.    Before the first fetch,
%ROWCOUNT returns a zero.    Thereafter, it returns the number of rows
fetched so far.    The number is incremented if the latest fetch returned
a row.    In the next example, you use %ROWCOUNT to take action if more
than ten rows have been fetched:

 LOOP
 FETCH c1 INTO my_ename, my_deptno;
 IF c1%ROWCOUNT > 10 THEN
 ...
 END IF;
 ...
 END LOOP;

You can open multiple cursors, then use %ROWCOUNT to tell how many rows
have been fetched so far.    If a cursor is not open, referencing it with
%ROWCOUNT raises INVALID_CURSOR.

Implicit Cursors

%ROWCOUNT returns the number of rows affected by an INSERT, UPDATE, or
DELETE or returned by a SELECT INTO.    %ROWCOUNT returns a zero if an
INSERT, UPDATE, or DELETE affected no rows or a SELECT INTO returned no
rows.    In the following example, you use %ROWCOUNT to take action if
more than ten rows have been deleted:

 DELETE FROM emp WHERE ...
 IF SQL%ROWCOUNT > 10 THEN
 ...
 END IF;

If a SELECT INTO returns more than one row, the predefined exception
TOO_MANY_ROWS is raised and %ROWCOUNT is set to 1, not the actual
number of rows that satisfy the query.    In this situation, %ROWCOUNT
is useful in the OTHERS exception handler, as the example below shows.

Instead of coding a TOO_MANY_ROWS handler, you find out if the exception
TOO_MANY_ROWS was raised by checking %ROWCOUNT.

 DECLARE
 my_sal NUMBER(7,2);
 my_ename CHAR(10);
 BEGIN
 ...
 SELECT sal INTO my_sal FROM emp WHERE ename = my_ename;
 -- might raise TOO_MANY_ROWS
 ...
 EXCEPTION
 WHEN OTHERS THEN
 IF SQL%ROWCOUNT > 0 THEN -- check for 'too many rows'
 ...
 END IF;
 ...
 END;

See also: Cursors, %NOTFOUND Attribute, %FOUND Attribute,
 %ISOPEN Attribute

%ISOPEN Attribute

Each cursor that you explicitly define has four attributes: %NOTFOUND,
%FOUND, %ROWCOUNT, and %ISOPEN.    When appended to the cursor name, these
attributes let you access useful information about the execution of a
multirow query.

The SQL implicit cursor has the same four attributes.    When appended to
the cursor name (SQL), these attributes let you access information about
the most recently executed INSERT, UPDATE, DELETE, or SELECT INTO
statement.

You can use cursor attributes in procedural statements but not in SQL
statements.

Explicit Cursors

%ISOPEN evaluates to TRUE if its cursor is open; otherwise, %ISOPEN
evaluates to FALSE.    In the following example, you use %ISOPEN to
select an action:

 IF c1%ISOPEN THEN -- cursor is open
 ...
 ELSE -- cursor is closed, so open it
 OPEN c1;
 END IF;

Implicit Cursors

Oracle closes the SQL cursor automatically after executing its
associated SQL statement.    As a result, %ISOPEN always evaluates
to FALSE.

See also: Cursors, %NOTFOUND Attribute, %FOUND Attribute,
 %ROWCOUNT Attribute

Packaged Cursors

You can separate a cursor specification from its body for placement in
a package by using the RETURN clause, as the following example shows:

 CREATE PACKAGE emp_actions AS
 /* Declare cursor specification. */
 CURSOR c1 RETURN emp%ROWTYPE;
 ...
 END emp_actions;

 CREATE PACKAGE BODY emp_actions AS
 /* Define cursor body. */
 CURSOR c1 RETURN emp%ROWTYPE
 SELECT * FROM emp WHERE sal > 3000;
 ...
 END emp_actions;

That way, you can change the cursor body without changing the cursor
specification.    For instance, you might want to change the WHERE clause
in the last example, as follows:

 CURSOR c1 RETURN emp%ROWTYPE
 SELECT * FROM emp WHERE deptno = 20;

A cursor specification has no SELECT statement because the RETURN clause
defines the datatype of the result value.    You can use the %ROWTYPE
attribute in a RETURN clause to provide a record type that represents
a row in a database table.

A cursor body must have a SELECT statement and the same RETURN clause
as its corresponding cursor specification.    Furthermore, the number and
datatypes of select-items in the SELECT statement must match the RETURN
clause.

See also: Cursors, Packages, CREATE PACKAGE, CREATE PACKAGE BODY

Cursor FOR Loop

In most situations that require an explicit cursor, you can simplify
coding by using a cursor FOR loop instead of the OPEN, FETCH, and CLOSE
statements.    A cursor FOR loop implicitly declares its loop index as a
%ROWTYPE record, opens a cursor, repeatedly fetches rows of values from
the active set into fields in the record, and closes the cursor when all
rows have been processed.

In the example below, the FOR loop index "emp_rec" is implicitly
declared as a record.    Its fields store all the column values fetched
from the cursor "c1".    Dot notation is used to reference individual
fields.

 DECLARE
 salary_total REAL := 0.0;
 CURSOR c1 IS SELECT ename, sal, hiredate, deptno FROM emp;
 ...
 BEGIN
 FOR emp_rec IN c1 LOOP
 ...
 salary_total := salary_total + emp_rec.sal;
 END LOOP;
 ...
 END;

When the cursor FOR loop is entered, the cursor name cannot refer
to a cursor that was already opened (by an OPEN statement or by an
enclosing cursor FOR loop).

Before each iteration of the FOR loop, PL/SQL fetches into the
implicitly declared record, which is equivalent to a record explicitly
declared as follows:

 emp_rec c1%ROWTYPE;

The record is defined only inside the loop.    You cannot refer to its
fields outside the loop.    For example, the following reference is
illegal:

 BEGIN
 FOR emp_rec IN c1 LOOP
 ...
 END LOOP;
 IF emp_rec.deptno = 20 THEN ... -- illegal; outside loop
 ...
 END;

The sequence of statements inside the loop is executed once for each row
that satisfies the query associated with the cursor.    When you leave the
loop, the cursor is closed automatically.    This is true even if you use
an EXIT or GOTO statement to leave the loop prematurely or if an
exception is raised inside the loop.

Using Aliases

Fields in the implicitly declared record hold column values from the
most recently fetched row.    The fields have the same names as
corresponding columns in the query select list.    But, what happens if
a select-item is an expression?    Consider the following example:

 CURSOR c1 IS
 SELECT empno, sal+NVL(comm,0), job FROM ...

In such cases, you must include an alias for the select-item.    In the
following example, "wages" is an alias for "sal+NVL(comm,0)":

 CURSOR c1 IS
 SELECT empno, sal+NVL(comm,0) wages, job FROM ...

To reference the corresponding field, you use the alias instead of a
column name, as follows:

 IF emp_rec.wages < 1000 THEN ...

Passing Parameters

You can pass parameters to a cursor used in a cursor FOR loop.    In the
following example, you pass a department number:

 DECLARE
 CURSOR c1 (dnum NUMBER) IS
 SELECT sal, comm FROM emp WHERE deptno = dnum;
 ...
 BEGIN
 FOR emp_rec IN c1(20) LOOP
 ...
 END LOOP;
 ...
 END;

See also: Cursors, %ROWTYPE Attribute, LOOP Statement

ORDER BY Aliases

Conceptually, the rows returned by a multirow SELECT statement form
a result table.    Like the rows in a database table, the rows in a
result table are not arranged in any particular order.    However, you
can use the ORDER BY clause to sort the rows in a result table by
one or more columns.

If you want to sort the rows in a result table by a calculated
(and therefore nameless) column, you can specify the corresponding
select-item or its ordinal position.    In the following example, the
number 3 denotes the calculated column "sal+comm," which is the third
select-item:

DECLARE
 CURSOR c1 IS
 SELECT empno, ename, sal+comm
 FROM emp
 WHERE job = 'SALESPERSON'
 ORDER BY 3; -- or ORDER BY sal+comm
 ...

However, under SQL92, this method is a "deprecated feature"
retained only for compatibility with SQL89 and likely to be removed
from future versions of the standard.

A less error-prone method that ensures compliance with future SQL
standards is available.    You can specify a column alias for use in the
ORDER BY clause.    In the following example, the alias "wages" denotes
the calculated column "sal+comm":

 DECLARE
 CURSOR c1 IS
 SELECT empno, ename, sal+comm wages
 FROM emp
 WHERE job = 'SALESPERSON'
 ORDER BY wages;
 ...

Furthermore, you can use the optional keyword AS in the SELECT
clause to improve readability, as follows:

 DECLARE
 CURSOR c1 IS
 SELECT empno, ename, sal+comm AS wages
 FROM emp
 WHERE job = 'SALESPERSON'
 ORDER BY wages;
 ...

Name Resolution

Avoid using column names as aliases.    In the ORDER BY clause, an alias

takes precedence over a column name.    For example, the following
ORDER BY clause sorts rows by the calculated column "sal+comm," not
by the column "sal":

 DECLARE
 CURSOR c1 IS
 SELECT empno, ename, sal+comm AS sal
 FROM emp
 WHERE job = 'SALESPERSON'
 ORDER BY sal; -- sorts by sal+comm
 ...

If you use the name of a selected column as the alias of a calculated
column, the Oracle Server issues an error message.    An example of this
mistake follows:

 DECLARE
 CURSOR c1 IS
 SELECT empno, ename, sal, sal+comm AS sal
 FROM emp
 WHERE job = 'SALESPERSON'
 ORDER BY sal; -- causes execution error
 ...

See also: Cursors, Packaged Cursors

Transaction Processing

Oracle is transaction oriented; that is, Oracle uses transactions
to ensure data integrity.    A transaction is a series of SQL data
manipulation statements that does a logical unit of work.    For example,
two UPDATE statements might credit one bank account and debit another.

The first SQL statement in your program begins a transaction.    When
one transaction ends, the next SQL statement begins another transaction
automatically.    Thus, every SQL statement is part of a transaction.

You use the COMMIT, ROLLBACK, SAVEPOINT, and SET TRANSACTION statements
to control transactions.    COMMIT makes permanent any database changes
made during the current transaction.    Until you commit your changes,
other users cannot see them.    ROLLBACK ends the current transaction
and undoes any changes made since the transaction began.    SAVEPOINT
marks the current point in the processing of a transaction.    Used with
ROLLBACK, SAVEPOINT undoes part of a transaction.    SET TRANSACTION
establishes a read-only transaction.

Distributed Transactions

A distributed transaction includes at least one SQL statement that
updates data at multiple nodes in a distributed database.    If the update
affects only one node, the transaction is remote, not distributed.

If part of a distributed transaction fails, you must roll back the
whole transaction or roll back to a savepoint.    Oracle issues an error
message in this situation.    So, include a check for the error in every
application that does distributed transactions.    Note, however, that
a PL/SQL block or subprogram cannot catch exceptions raised by a
remote subprogram.

See also: COMMIT, LOCK TABLE, ROLLBACK, SAVEPOINT, SET TRANSACTION

Using COMMIT

The COMMIT statement ends the current transaction and makes permanent
any changes made during that transaction.    Until you commit the changes,
other users cannot access the changed data; they see the data as it was
before you made the changes.

Consider a simple transaction that transfers money from one bank account
to another.    The transaction requires two UPDATEs because it debits the
first account, then credits the second.    In the example below, after
crediting the second account, you issue a COMMIT, which makes the
changes permanent.    Only then do other users see the changes.

 BEGIN
 ...
 UPDATE accounts SET bal = my_bal - debit
 WHERE acctno = my_acctno;
 ...
 UPDATE accounts SET bal = my_bal + credit
 WHERE acctno = my_acctno;
 COMMIT;
 END;

The COMMIT statement releases all row and table locks.    It also erases
any savepoints marked since the last COMMIT or ROLLBACK.

See also: ROLLBACK, SAVEPOINT, SET TRANSACTION, Using ROLLBACK,
 Using SAVEPOINT, Using SET TRANSACTION,

Using ROLLBACK

The ROLLBACK statement is the inverse of COMMIT.    It ends the current
transaction and undoes any changes made during that transaction.
ROLLBACK is useful for two reasons.    First, if you make a mistake,
such as deleting the wrong row from a table, you can use ROLLBACK to
restore the original data.    ROLLBACK TO allows you to erase back to
an intermediate statement in the current transaction so that you do
not have to erase all your changes.

Second, ROLLBACK is useful when you start a transaction that you cannot
finish because an exception is raised or a SQL statement fails.    In such
cases, ROLLBACK lets you return to the starting point to take corrective
action and perhaps try again.

Consider the example below, in which you insert information about an
employee into three different database tables.    All three tables have a
column that holds employee numbers and is constrained by a unique index.
If an INSERT statement tries to store a duplicate employee number, the
predefined exception DUP_VAL_ON_INDEX is raised.    In that case, you want
to undo all changes.    So, you issue a ROLLBACK in the exception handler.

 DECLARE
 emp_id INTEGER;
 ...
 BEGIN
 SELECT empno, ... INTO emp_id, ... FROM new_emp WHERE ...
 ...
 INSERT INTO emp VALUES (emp_id, ...);
 INSERT INTO tax VALUES (emp_id, ...);
 INSERT INTO pay VALUES (emp_id, ...);
 ...
 EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK;
 ...
 END;

See also: COMMIT, SAVEPOINT, SET TRANSACTION, Using COMMIT,
 Using SAVEPOINT, Using SET TRANSACTION

Using SAVEPOINT

SAVEPOINT names and marks the current point in the processing of a
transaction.    Used with the ROLLBACK TO statement, savepoints let you
undo parts of a transaction instead of the whole transaction.    In the
example below, you mark a savepoint before doing an insert.    If the
INSERT statement tries to store a duplicate value in the "empno" column,
the predefined exception DUP_VAL_ON_INDEX is raised.    In that case, you
roll back to the savepoint, undoing just the insert.

 DECLARE
 emp_id emp.empno%TYPE;
 BEGIN
 ...
 UPDATE emp SET ... WHERE empno = emp_id;
 DELETE FROM emp WHERE ...
 ...
 SAVEPOINT do_insert;
 INSERT INTO emp VALUES (emp_id, ...);
 EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK TO do_insert;
 END;

When you roll back to a savepoint, any savepoints marked after that
savepoint are erased.    However, the savepoint to which you roll back is
not erased.    For example, if you mark five savepoints, then roll back to
the third, only the fourth and fifth are erased.    A simple ROLLBACK or
COMMIT erases all savepoints.

If you mark a savepoint within a recursive subprogram, new instances
of the SAVEPOINT statement are executed at each level in the recursive
descent.    However, you can only ROLLBACK TO the most recently marked
savepoint.

Savepoint names are undeclared identifiers and can be reused within a
transaction.    This moves the savepoint from its old position to the
current point in the transaction.    Thus, a rollback to the savepoint
affects only the current part of your transaction.    Consider the
following example:

 BEGIN
 ...
 SAVEPOINT my_point;
 UPDATE emp SET ... WHERE empno = emp_id;
 ...
 SAVEPOINT my_point; -- move my_point to current point
 INSERT INTO emp VALUES (emp_id, ...);
 ...
 EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK TO my_point;
 END;

By default, the number of active savepoints per session is limited to 5.
An active savepoint is one marked since the last commit or rollback.
You or your DBA can raise the limit (up to 255) by increasing the value
of the Oracle initialization parameter SAVEPOINTS.

See also: COMMIT, ROLLBACK, SET TRANSACTION, Using COMMIT,
 Using ROLLBACK, Using SET TRANSACTION

Implicit Rollbacks

Before executing an INSERT, UPDATE, or DELETE statement, Oracle marks
an implicit savepoint (unavailable to you).    If the statement fails,
Oracle rolls back to the savepoint.    For example, if an INSERT statement
raises an exception by trying to insert a duplicate value in a unique
index, the statement is rolled back.

Normally, just the failed SQL statement is rolled back, not the whole
transaction.    However, if the statement raises an unhandled exception,
the host environment determines what is rolled back.

If you exit a stored subprogram with an unhandled exception, PL/SQL
does not assign values to OUT parameters.    Also, PL/SQL does not roll
back database work done by the subprogram.

See also: COMMIT, ROLLBACK, Using COMMIT, Using ROLLBACK

Using SET TRANSACTION

The default state for all transactions is statement-level read
consistency.    This guarantees that a query sees only changes committed
before it began executing, plus any changes made by prior statements in
the current transaction.    If other users commit changes to the relevant
database tables, subsequent queries see those changes.

However, you can use the SET TRANSACTION statement to establish a read-
only transaction, which provides transaction-level read consistency.
This guarantees that a query sees only changes committed before the
current transaction began.    The SET TRANSACTION READ ONLY statement
takes no additional parameters. An example follows:

 SET TRANSACTION READ ONLY;

The SET TRANSACTION statement must be the first SQL statement in a
read-only transaction and can only appear once in a transaction.
Remember, if a transaction is set to READ ONLY, subsequent queries
see only changes committed before the transaction began.    The use of
READ ONLY does not affect other users or transactions.

Only the SELECT, COMMIT, and ROLLBACK statements are allowed in a
read-only transaction.    For example, including an INSERT or DELETE
statement raises an exception.

During a read-only transaction, all queries refer to the same snapshot
of the database, providing a multitable, multiquery, read-consistent
view.    Other users can continue to query or update data as usual.
A commit or rollback ends the transaction.    In the example below, as
a store manager, you use a read-only transaction to gather sales figures
for the day, the past week, and the past month.    The figures are
unaffected by other users updating the database during the transaction.

 DECLARE
 daily_sales REAL;
 weekly_sales REAL;
 monthly_sales REAL;
 BEGIN
 SET TRANSACTION READ ONLY;

 SELECT SUM(amt) INTO daily_sales FROM sales
 WHERE dte = SYSDATE;
 SELECT SUM(amt) INTO weekly_sales FROM sales
 WHERE dte > SYSDATE - 7;
 SELECT SUM(amt) INTO monthly_sales FROM sales
 WHERE dte > SYSDATE - 30;
 COMMIT; -- simply ends the transaction since there
 -- are no changes to make permanent
 ...
 END;

See also: SELECT, COMMIT, ROLLBACK, Using COMMIT, Using ROLLBACK

FOR UPDATE Clause

When declaring a cursor that will be referenced in the WHERE CURRENT OF
clause of an UPDATE or DELETE statement, you must use the FOR UPDATE
clause to acquire exclusive row locks.    If present, the FOR UPDATE
clause must appear at the end of the cursor declaration, as the
following example shows:

 DECLARE
 CURSOR c1 IS SELECT empno, sal FROM emp
 WHERE job = 'SALESMAN' AND comm > sal FOR UPDATE;

The FOR UPDATE clause indicates that rows will be updated or deleted and
locks all rows in the active set.    This is useful when you want to base
an update on the existing values in a row.    In that case, you must make
sure the row is not changed by another user before the update.    All rows
in the active set are locked when you OPEN the cursor.    The rows are
unlocked when you COMMIT the transaction.    So, you cannot FETCH from a
FOR UPDATE cursor after a COMMIT.

When querying multiple tables, you can use the FOR UPDATE OF clause to
confine row locking to particular tables.    Rows in a table are locked
only if the FOR UPDATE OF clause refers to a column in that table.
For example, the following query locks rows in the "emp" table but not
in the "dept" table:

 DECLARE
 CURSOR c1 IS SELECT ename, dname FROM emp, dept
 WHERE emp.deptno = dept.deptno AND job = 'MANAGER'
 FOR UPDATE OF sal;

You use the WHERE CURRENT OF clause in an UPDATE or DELETE statement
to refer to the latest row FETCHed from a cursor, as the following
example shows:

 DECLARE
 CURSOR c1 IS SELECT empno, job, sal FROM emp FOR UPDATE;
 ...
 BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO ...
 ...
 UPDATE emp SET sal = new_sal WHERE CURRENT OF c1;
 END LOOP;
 ...

See also: DELETE, UPDATE, LOCK TABLE

Using LOCK TABLE

The LOCK TABLE statement lets you lock entire database tables in a
specified lock mode so that you can share or deny access to tables
while maintaining their integrity.    For example, the statement below
locks the "emp" table in "row share" mode.    Row share locks allow
concurrent access to a table; they prevent other users from locking
the entire table for exclusive use.    Table locks are released when your
transaction issues a COMMIT or ROLLBACK.

 LOCK TABLE emp IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table.
For example, many users can acquire row share locks on a table at the
same time, but only one user at a time can acquire an "exclusive" lock.
While one user has an exclusive lock on a table, no other users can
INSERT, UPDATE, or DELETE rows in that table.

The optional keyword NOWAIT tells Oracle not to wait if the table has
been locked by another user.    Control is immediately returned to your
program so that it can do other work before trying again to acquire the
lock.    If you omit the keyword NOWAIT, Oracle waits until the table is
available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query
never acquires a table lock.    Only if two different transactions try to
modify the same row will one transaction wait for the other to complete.

See also: LOCK TABLE, FOR UPDATE Clause

Using DDL and Dynamic SQL

In this section, you learn why PL/SQL does not support SQL data
definition language (DDL) and how to solve the problem.

Efficiency vs Flexibility

Before a PL/SQL program can be executed, it must be compiled
(translated into machine language).    The PL/SQL compiler resolves
references to Oracle objects by looking up their definitions in the
data dictionary.    Then, the compiler assigns storage addresses to
program variables that will hold Oracle data so that Oracle can
look up the addresses at run time.    This process is called "binding."

How a database language implements binding affects runtime
efficiency and flexibility.    Binding at compile time, called "static"
or "early" binding, increases efficiency because the definitions of
database objects are looked up then, not at run time.    On the other
hand, binding at run time, called "dynamic" or "late" binding,
increases flexibility because the definitions of database objects
can remain unknown until then.

Designed primarily for high-speed transaction processing, PL/SQL
increases efficiency by bundling SQL statements and avoiding runtime
compilation.    Unlike SQL, which is compiled and executed statement-by-
statement at run time (late binding), PL/SQL is processed into
machine-readable "p-code" at compile time (early binding).    At run
time, the PL/SQL engine simply executes the p-code.

The Problem

However, this design imposes some limitations.    For example, the p-code
includes references to database objects such as tables and stored
procedures.    The PL/SQL compiler can resolve such references only if
the database objects are known at compile time.    In the following
example, the compiler cannot process the procedure until the table is
defined, but the table is undefined until the procedure is executed:

 CREATE PROCEDURE create_table AS
 BEGIN
 CREATE TABLE dept (deptno NUMBER(2), ...); -- illegal
 ...
 END create_table;

In the next example, the compiler cannot bind the table reference
in the DROP TABLE statement because the table name is unknown until
the procedure is executed:

 CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS
 BEGIN
 DROP TABLE table_name; -- illegal
 ...

 END drop_table;

The Solution

Help is available.    A package named DBMS_SQL, which is supplied with
the Oracle Server, allows PL/SQL to execute SQL data definition and
data manipulation statements dynamically at run time.

See also: Product-specific Packages

Ending Transactions

It is good programming practice to commit or roll back every transaction
explicitly.    Whether you issue the COMMIT or ROLLBACK in your PL/SQL
program or in the host environment depends on the flow of application
logic.    If you neglect to commit or roll back a transaction explicitly,
the host environment determines its final state.

For example, in the SQL*Plus environment, if your PL/SQL block does
not include a COMMIT or ROLLBACK statement, the final state of your
transaction depends on what you do after running the block.    If you
execute a data definition, data control, or COMMIT statement or if
you issue the EXIT, DISCONNECT, or QUIT command, Oracle commits the
transaction.    If you execute a ROLLBACK statement or abort the SQL*Plus
session, Oracle rolls back the transaction.

In the Oracle Precompiler environment, if your program does not
terminate normally, Oracle rolls back your transaction.    A program
terminates normally when it explicitly commits or rolls back work and
disconnects from Oracle using the RELEASE parameter, as follows:

 EXEC SQL COMMIT WORK RELEASE;

In the OCI environment, if you issue the OLOGOF call, Oracle commits
your transaction automatically.    Otherwise, Oracle rolls back the
transaction.

See also: Transaction Processing, COMMIT, ROLLBACK, Using COMMIT,
 Using ROLLBACK

Database Triggers

A database trigger is a stored PL/SQL program unit associated with a
specific database table.    Oracle executes (fires) the database trigger
automatically whenever a given SQL operation affects the table.    So,
unlike subprograms, which must be invoked explicitly, database triggers
are invoked implicitly.    Among other things, you can use database
triggers to

 * audit data modifications
 * log events transparently
 * enforce complex business rules
 * derive column values automatically
 * implement complex security authorizations
 * maintain replicate tables

You can associate up to 12 database triggers with a given table.    To
create a database trigger, you must have CREATE TRIGGER privileges and
either own the associated table, have ALTER privileges for the
associated table, or have ALTER ANY TABLE privileges.

A database trigger has three parts: a triggering event, an optional
trigger constraint, and a trigger action.    When the event occurs, the
database trigger fires and an anonymous PL/SQL block performs the
action.    Database triggers fire with the privileges of the owner, not
the current user.    So, the owner must have appropriate access to all
objects referenced by the trigger action.

The example below illustrates transparent event logging.    The database
trigger named "reorder" ensures that a part is reordered when its
quantity on hand drops below the reorder point.

 CREATE TRIGGER reorder
 /* triggering event */
 AFTER UPDATE OF qty_on_hand ON inventory -- table
 FOR EACH ROW
 /* trigger constraint */
 WHEN (new.reorderable = 'T')
 BEGIN
 /* trigger action */
 IF :new.qty_on_hand < :new.reorder_point THEN
 INSERT INTO pending_orders
 VALUES (:new.part_no, :new.reorder_qty, SYSDATE);
 END IF;
 END;

The name in the ON clause identifies the database table associated with
the database trigger.    The triggering event specifies the SQL data
manipulation statement that affects the table.    In this case, the
statement is UPDATE.    If the trigger statement fails, it is rolled back.
The keyword AFTER specifies that the database trigger fires after the
update is done.

By default, a database trigger fires once per table.    The FOR EACH ROW

option specifies that the trigger fires once per row.    For the trigger
to fire, however, the Boolean expression in the WHEN clause must
evaluate to TRUE.

The prefix ":new" is a correlation name that refers to the newly updated
column value.    Within a database trigger, you can reference ":new" and
":old" values of changing rows.    Notice that the colon is not used in
the WHEN clause.    You can use the REFERENCING clause (not shown) to
replace ":new" and ":old" with other correlation names.

Except for transaction control statements such as COMMIT and ROLLBACK,
any SQL or procedural statement, including subprogram calls, can appear
in the BEGIN ... END block.    A database trigger can also have DECLARE
and EXCEPTION sections.

The next example shows that the trigger action can include calls to
the built-in Oracle procedure "raise_application_error," which lets
you issue user-defined error messages:

 CREATE TRIGGER check_salary
 BEFORE INSERT OR UPDATE OF sal, job ON emp
 FOR EACH ROW
 WHEN (new.job != 'PRESIDENT')
 DECLARE
 minsal NUMBER;
 maxsal NUMBER;
 BEGIN
 /* Get salary range for a given job from table sals. */
 SELECT losal, hisal INTO minsal, maxsal FROM sals
 WHERE job = :new.job;
 /* If salary is out of range, increase is negative, *
 * or increase exceeds 10%, raise an exception. */
 IF (:new.sal < minsal OR :new.sal > maxsal) THEN
 raise_application_error(-20225, 'Salary out of range');
 ELSIF (:new.sal < :old.sal) THEN
 raise_application_error(-20230, 'Negative increase');
 ELSIF (:new.sal > 1.1 * :old.sal) THEN
 raise_application_error(-20235, 'Increase exceeds 10%');
 END IF;
 END;

See also: CREATE TRIGGER, Subprograms, raise_application_error Procedure

Exceptions

PL/SQL makes it easy to detect and process predefined and user-defined
error conditions called "exceptions."    When an error occurs, an
exception is raised.    That is, normal execution stops and control
transfers to the exception-handling part of your PL/SQL block or
subprogram.    To handle raised exceptions, you write separate routines
called "exception handlers."

Predefined exceptions are raised implicitly by the runtime system.    For
example, if you try to divide a number by zero, the predefined exception
ZERO_DIVIDE is raised automatically.    User-defined exceptions must be
raised explicitly by RAISE statements.

You can define exceptions of your own in the declarative part of any
PL/SQL block, subprogram, or database trigger.    In the executable part,
you check for the condition that needs special attention.    If you find
that the condition exists, you execute a RAISE statement.    In the
following example, if a salesperson's commission is null, you raise
an exception named "comm_missing":

 PROCEDURE calc_bonus (emp_id INTEGER, bonus OUT REAL) IS
 my_sal NUMBER(7,2);
 my_comm NUMBER(7,2);
 comm_missing EXCEPTION; -- declare exception
 BEGIN
 SELECT sal, comm INTO my_sal, my_comm FROM emp
 WHERE empno = emp_id;
 IF my_comm IS NULL THEN
 RAISE comm_missing; -- raise exception
 ELSE
 bonus := (my_sal * 0.05) + (my_comm * 0.15);
 END IF;
 EXCEPTION -- begin exception handlers
 WHEN comm_missing THEN
 -- process error
 WHEN OTHERS THEN -- handles all other errors
 ...
 END calc_bonus;

The optional OTHERS handler catches all exceptions that the procedure
does not name specifically.

Declaring Exceptions

You declare an exception by introducing its name, followed by the
keyword EXCEPTION.    In the following example, you declare an exception
named "past_due":

 DECLARE
 past_due EXCEPTION;
 acct_num NUMBER(5);
 BEGIN

 ...

Exception and variable declarations are similar.    But, an exception
is an error condition, not an object.    Unlike variables, exceptions
cannot appear in assignment statements or SQL statements.    However,
the same scope rules apply to variables and exceptions.

Scope Rules

You cannot declare an exception twice in the same block.    You can,
however, declare the same exception in two different blocks.

Exceptions declared in a block are considered local to that block and
global to all its sub-blocks.    Because a block can reference only local
or global exceptions, enclosing blocks cannot reference exceptions
declared in a sub-block.

If you redeclare a global exception in a sub-block, the local
declaration prevails.    So, the sub-block cannot reference the global
exception unless it was declared in a labeled block, in which case the
following syntax is valid:

 block_label.exception_name

The next example illustrates the scope rules:

 DECLARE
 past_due EXCEPTION;
 acct_num NUMBER;
 BEGIN
 ...
 ---------------- beginning of sub-block ----------------
 DECLARE
 past_due EXCEPTION; -- this declaration prevails
 acct_num NUMBER;
 BEGIN
 ...
 IF ... THEN
 RAISE past_due; -- this is not handled
 END IF;
 ...
 END;
 ------------------- end of sub-block -------------------
 EXCEPTION
 WHEN past_due THEN -- does not handle RAISEd exception
 ...
 END;

The enclosing block does not handle the RAISEd exception because the
declaration of "past_due" in the sub-block prevails.    Though they share
the same name, the two "past_due" exceptions are different, just as
the two "acct_num" variables share the same name but are different
variables.    Therefore, the RAISE statement and the WHEN clause refer

to different exceptions.    To have the enclosing block handle the RAISEd
exception, you must remove its declaration from the sub-block or define
an OTHERS handler.

See also: Exception Handlers, Predefined Exceptions, RAISE Statement

Exception Handlers

When an exception is raised, normal execution of your PL/SQL block or
subprogram stops and control transfers to its exception-handling part,
which is formatted as follows:

 ...
 EXCEPTION
 WHEN exception_name1 THEN -- handler
 sequence_of_statements1
 WHEN exception_name2 THEN -- another handler
 sequence_of_statements2
 ...
 WHEN OTHERS THEN -- optional handler
 sequence_of_statements3
 END;

To catch raised exceptions, you must write exception handlers.
Each handler consists of a WHEN clause, which specifies an exception,
followed by a sequence of statements to be executed when that exception
is raised.    These statements complete execution of the block or
subprogram; control does not return to where the exception was raised.
In other words, you cannot resume processing where you left off.

The optional OTHERS exception handler, which is always the last handler
in a block or subprogram, acts as the handler for all exceptions not
named specifically.    Thus, a block or subprogram can have only one
OTHERS handler.    Consider the following example:

 ...
 EXCEPTION
 WHEN ... THEN
 -- handle the error
 WHEN ... THEN
 -- handle the error
 ...
 WHEN OTHERS THEN
 -- handle all other errors
 END;

Using the OTHERS handler guarantees that no exception will go unhandled.

If you want two or more exceptions to execute the same sequence of
statements, list the exception names in the WHEN clause, separating them
by the keyword OR, as follows:

 EXCEPTION
 WHEN over_limit OR under_limit OR VALUE_ERROR THEN
 -- handle the error
 ...

If any of the exceptions in the list is raised, the associated sequence
of statements is executed.    The keyword OTHERS cannot appear in the list
of exception names; it must appear by itself. You can have any number of

exception handlers, and each handler can associate a list of exceptions
with a sequence of statements.    However, an exception name can appear
only once in the exception-handling part of a PL/SQL block or
subprogram.

The usual scope rules for PL/SQL variables apply, so only local and
global variables can be referenced in an exception handler.    However,
when an exception is raised inside a cursor FOR loop, the cursor is
closed implicitly before the handler is invoked.    So, the values of
explicit cursor attributes are not available in the handler.

See also: Exceptions, Predefined Exceptions, RAISE Statement

Predefined Exceptions

An internal exception is raised implicitly whenever a PL/SQL program
violates an Oracle rule or exceeds a system-dependent limit.    Every
Oracle error has a number, but exceptions must be handled by name.
So, PL/SQL predefines some common Oracle errors as exceptions.
For example, the predefined exception NO_DATA_FOUND is raised if a
SELECT INTO statement returns no rows.

PL/SQL declares predefined exceptions globally in package STANDARD,
which defines the PL/SQL environment.    So, you need not declare them
yourself.    You can write handlers for predefined exceptions using the
names shown in the table below.    Also shown are the corresponding
Oracle error codes.

 Exception Error Raised if ...

 CURSOR_ALREADY_OPEN ORA-06511 you try to OPEN an already open
 cursor; you must CLOSE a cursor
 before you can reOPEN it
 DUP_VAL_ON_INDEX ORA-00001 you try to INSERT or UPDATE
 duplicate values in a UNIQUE
 database column
 INVALID_CURSOR ORA-01001 you try an illegal cursor
 operation such as closing an
 unopened cursor
 INVALID_NUMBER ORA-01722 the conversion of a character
 string to a number fails in a
 SQL statement
 LOGIN_DENIED ORA-01017 you log on to Oracle with an
 invalid username/password
 NO_DATA_FOUND ORA-01403 a SELECT INTO returns no rows,
 or you refer to an uninitialized
 row in a PL/SQL table
 NOT_LOGGED_ON ORA-01012 your PL/SQL program issues a
 database call without being
 logged on to Oracle
 PROGRAM_ERROR ORA-06501 PL/SQL has an internal problem
 such as exiting a function that
 has no RETURN statement
 STORAGE_ERROR ORA-06500 PL/SQL runs out of memory or
 memory is corrupted
 TIMEOUT_ON_RESOURCE ORA-00051 a timeout occurs while Oracle
 is waiting for a resource
 TOO_MANY_ROWS ORA-01422 a SELECT INTO returns more than
 one row
 TRANSACTION_BACKED_OUT ORA-00061 the remote part of a transaction
 is rolled back because Oracle
 data might be inconsistent at
 some nodes
 VALUE_ERROR ORA-06502 the conversion of a character
 string to a number fails in a
 procedural statement, or an

 arithmetic, conversion,
 truncation, or constraint
 error occurs
 ZERO_DIVIDE ORA-01476 you try to divide a number
 by zero

Redeclaring Predefined Exceptions

Remember, PL/SQL declares predefined exceptions globally in package
STANDARD, so you need not declare them yourself.    Redeclaring predefined
exceptions is error-prone because your local declaration overrides the
global declaration.    For example, if you declare an exception named
"invalid_number" and then PL/SQL raises the predefined exception
INVALID_NUMBER internally, a handler written for INVALID_NUMBER will
not catch the internal exception.    In such cases, you must use dot
notation to specify the predefined exception, as follows:

 ...
 EXCEPTION
 WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN
 -- handle the error
 ...
 END;

See also: Exceptions, EXCEPTION_INIT Pragma, Exception Handlers,
 RAISE Statement, Package STANDARD

EXCEPTION_INIT Pragma

To handle unnamed internal exceptions, you must use the OTHERS handler
or the pragma EXCEPTION_INIT.    A "pragma" is a compiler directive, which
can be thought of as a parenthetical remark to the compiler.    Pragmas
(also called "pseudoinstructions") are processed at compile time, not at
run time.    They do not affect the meaning of a program; they simply
convey information to the compiler.

The predefined pragma EXCEPTION_INIT tells the PL/SQL compiler to
associate an exception name with an Oracle error number.    That allows
you to refer to any internal exception by name and to write a specific
handler for it.    You code the pragma EXCEPTION_INIT in the declarative
part of a PL/SQL block, subprogram, or package using the syntax

 PRAGMA EXCEPTION_INIT(exception_name, Oracle_error_number);

where "exception_name" is the name of a previously declared exception.
The pragma must appear somewhere after the exception declaration in the
same declarative part, as shown in the following example:

 DECLARE
 insufficient_privileges EXCEPTION;
 PRAGMA EXCEPTION_INIT(insufficient_privileges, -1031);

 -- Oracle returns error number -1031 if, for example,
 -- you try to UPDATE a table for which you have
 -- only SELECT privileges

 BEGIN
 ...
 EXCEPTION
 WHEN insufficient_privileges THEN
 -- handle the error
 ...
 END;

See also: Exceptions, Exception Handlers, RAISE Statement,

RAISE Statement

PL/SQL blocks and subprograms should RAISE an exception only when an
error makes it undesirable or impossible to finish processing.    You can
code a RAISE statement for a given exception anywhere within the scope
of that exception.    In the following example, you alert your PL/SQL
block to a user-defined exception named "out_of_stock":

 DECLARE
 out_of_stock EXCEPTION;
 number_on_hand NUMBER(4);
 BEGIN
 ...
 IF number_on_hand < 1 THEN
 RAISE out_of_stock;
 END IF;
 ...
 EXCEPTION
 WHEN out_of_stock THEN
 -- handle the error
 END;

As the following example shows, you can also raise a predefined
exception explicitly:

 RAISE INVALID_NUMBER;

That way, you can use an exception handler written for the predefined
exception to process other errors, as the next example shows:

 DECLARE
 acct_type INTEGER;
 ...
 BEGIN
 ...
 IF acct_type NOT IN (1, 2, 3) THEN
 RAISE INVALID_NUMBER;
 END IF;
 ...
 EXCEPTION
 WHEN INVALID_NUMBER THEN
 ROLLBACK;
 ...
 END;

See also: Exceptions, Exception Handlers, Predefined Exceptions

How Exceptions Propagate

When an exception is raised, if PL/SQL cannot find a handler for it
in the current block or subprogram, the exception propagates.    That is,
the exception reproduces itself in successive enclosing blocks until
a handler is found or there are no more blocks to search.    In the
latter case, PL/SQL returns an unhandled exception error to the host
environment.

An exception can propagate beyond its scope, that is, beyond the block
in which it was declared.    Consider the following example:

 DECLARE
 ...
 BEGIN
 ...
 ---------------- beginning of sub-block ----------------
 DECLARE
 past_due EXCEPTION;
 BEGIN
 ...
 IF ... THEN
 RAISE past_due;
 END IF;
 ...
 END;
 ------------------- end of sub-block -------------------
 ...
 EXCEPTION
 ...
 WHEN OTHERS THEN
 ROLLBACK;
 END;

Because the block in which it was declared has no handler for the
exception named "past_due," it propagates to the enclosing block.
But, according to the scope rules, enclosing blocks cannot reference
exceptions declared in a sub-block.    So, only an OTHERS handler can
catch the exception.

Exceptions Raised in Declarations

Exceptions can be raised in declarations by a faulty initialization
expression.    For example, the following declaration implicitly raises
the predefined exception VALUE_ERROR because "limit" cannot store
numbers larger than 999:

 DECLARE
 limit CONSTANT NUMBER(3) := 5000; -- raises VALUE_ERROR
 BEGIN
 ...
 EXCEPTION

 WHEN VALUE_ERROR THEN -- cannot catch the exception
 ...
 END;

Handlers in the current block cannot catch the raised exception because
an exception raised in a declaration propagates immediately to the
enclosing block.

Exceptions Raised in Handlers

Only one exception at a time can be active in the exception-handling
part of a block or subprogram.    So, an exception raised inside a handler
immediately propagates to the enclosing block, which is searched to find
a handler for the newly raised exception.    From there on, the exception
propagates normally.

See also: Exceptions, Exception Handlers, Predefined Exceptions,
 RAISE Statement

Reraising an Exception

Sometimes, you want to "reraise" an exception, that is, handle it
locally, then pass it to an enclosing block.    For example, you might
want to roll back a transaction in the current block, then log the
error in an enclosing block.

To reraise an exception, simply place a RAISE statement in the local
handler, as shown in the following example:

 DECLARE
 out_of_balance EXCEPTION;
 BEGIN
 ...
 ---------------- beginning of sub-block ----------------
 BEGIN
 ...
 IF ... THEN
 RAISE out_of_balance; -- raise the exception
 END IF;
 ...
 EXCEPTION
 WHEN out_of_balance THEN
 -- handle the error
 RAISE; -- reraise the current exception
 ...
 END;
 ------------------- end of sub-block -------------------
 EXCEPTION
 WHEN out_of_balance THEN
 -- handle the error differently
 ...
 END;

Omitting the exception name in a RAISE statement, which is allowed only
in an exception handler, reraises the current exception.

See also: Exceptions, Exception Handlers, Predefined Exceptions,
 RAISE Statement

Using SQLCODE and SQLERRM

In an exception handler, you can use the functions SQLCODE and SQLERRM
to find out which error occurred and to get the error message.

For internal exceptions, SQLCODE returns the number of the associated
Oracle error.    The number that SQLCODE returns is negative unless the
Oracle error is "no data found," in which case SQLCODE returns +100.
SQLERRM returns the message associated with the Oracle error that
occurred.    The message begins with the Oracle error code.

For user-defined exceptions, SQLCODE returns +1 and SQLERRM returns
the message

 User-Defined Exception

unless you used the pragma EXCEPTION_INIT to associate the exception
name with an Oracle error number, in which case SQLCODE returns that
error number and SQLERRM returns the corresponding error message.    The
maximum length of an Oracle error message is 512 characters including
the error code, nested messages, and message inserts such as table and
column names.

If no exception has been raised, SQLCODE returns zero and SQLERRM
returns the following message:

 ORA-0000: normal, successful completion

You can pass an error number to SQLERRM, in which case SQLERRM returns
the message associated with that error number.    The error number passed
to SQLERRM should be negative.    Passing a zero to SQLERRM always returns
the following message:

 ORA-0000: normal, successful completion

Passing a positive number to SQLERRM always returns the message

 User-Defined Exception

unless you pass +100, in which case SQLERRM returns this message:

 ORA-01403: no data found

In the following example, SQLERRM gives unwanted results because it is
passed positive rather than negative numbers:

 DECLARE
 msg CHAR(100);
 BEGIN
 FOR num IN 1..9999 LOOP
 msg := SQLERRM(num); -- should be SQLERRM(-num)
 INSERT INTO errors VALUES (msg);
 END LOOP;
 END;

You cannot use SQLCODE or SQLERRM directly in a SQL statement. For
example, the following statement is illegal:

 INSERT INTO errors VALUES (SQLCODE, SQLERRM);

Instead, you must assign their values to local variables, then use the
variables in the SQL statement, as the following example shows:

 DECLARE
 err_num NUMBER;
 err_msg CHAR(100);
 BEGIN
 ...
 EXCEPTION
 ...
 WHEN OTHERS THEN
 err_num := SQLCODE;
 err_msg := SUBSTR(SQLERRM, 1, 100);
 INSERT INTO errors VALUES (err_num, err_msg);
 END;

The string function SUBSTR ensures that a VALUE_ERROR exception (for
truncation) is not raised when you assign the value of SQLERRM to
"err_msg."    SQLCODE and SQLERRM are especially useful in the OTHERS
exception handler because they tell you which internal exception was
raised.

See also: Exceptions, EXCEPTION_INIT Pragma, Exception Handlers

Unhandled Exceptions

If it cannot find a handler for a raised exception, PL/SQL returns an
unhandled exception error to the host environment, which determines the
outcome.    For example, in the Oracle Precompilers environment, any
database changes made by a failed SQL statement or PL/SQL block are
rolled back.

Unhandled exceptions can affect stored subprograms.    If you exit a
subprogram successfully, PL/SQL assigns values to OUT parameters.
However, if you exit with an unhandled exception, PL/SQL does not
assign values to OUT parameters.    Also, PL/SQL does not roll back
database work done by the subprogram.

You can avoid unhandled exceptions by coding an OTHERS handler at the
topmost level of every PL/SQL program.

See also: Exceptions, Exception Handlers

Subprograms

Subprograms are named PL/SQL blocks that can take parameters and be
invoked.    PL/SQL has two types of subprograms called "procedures" and
"functions."    Generally, you use a procedure to perform an action and a
function to compute a value.

Like unnamed or anonymous PL/SQL blocks, subprograms have a declarative
part, an executable part, and an optional exception-handling part.
The declarative part contains declarations of types, cursors, constants,
variables, exceptions, and nested subprograms.    These objects are local
and cease to exist when you exit the subprogram.    The executable part
contains statements that assign values, control execution, and
manipulate Oracle data.    The exception-handling part contains exception
handlers, which deal with exceptions raised during execution.

Consider the following procedure named "debit_account," which debits a
bank account:

 PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
 old_balance REAL;
 new_balance REAL;
 overdrawn EXCEPTION;
 BEGIN
 SELECT bal INTO old_balance FROM accts
 WHERE acctno = acct_id;
 new_balance := old_balance - amount;
 IF new_balance < 0 THEN
 RAISE overdrawn;
 ELSE
 UPDATE accts SET bal = new_balance
 WHERE acctno = acct_id;
 END IF;
 EXCEPTION
 WHEN overdrawn THEN
 ...
 END debit_account;

When invoked or "called," this procedure accepts an account number and a
debit amount.    It uses the account number to select the account balance
from the "accts" database table.    Then, it uses the debit amount to
compute a new balance.    If the new balance is less than zero, an
exception is raised; otherwise, the bank account is updated.

Subprograms can be defined using any Oracle tool that supports PL/SQL.
They can be declared in PL/SQL blocks, procedures, functions, and
packages.    However, subprograms must be declared at the end of a
declarative section after all other program objects.    For example,
the following procedure declaration is misplaced:

 DECLARE
 PROCEDURE award_bonus (...) IS -- misplaced; must come last
 BEGIN ... END;
 rating NUMBER;

 ...

Generally, tools such as Oracle Forms that incorporate the PL/SQL engine
can store subprograms locally for later, strictly local execution.
However, to become available for general use by all tools, subprograms
must be stored in an Oracle database.

See also: Procedures, Functions, Stored Subprograms

Procedures

A procedure is a subprogram that performs a specific action.    You write
procedures using the syntax

 PROCEDURE name [(parameter [, parameter, ...])] IS
 [local declarations]
 BEGIN
 executable statements
 [EXCEPTION
 exception handlers]
 END [name];

where "parameter" stands for the following syntax:

 var_name [IN | OUT | IN OUT] datatype [{:= | DEFAULT'D value]

Unlike the datatype specifier in a variable declaration, the datatype
specifier in a parameter declaration must be unconstrained.    For
example, the following declaration of "name" is illegal:

 PROCEDURE ... (name CHAR(20)) IS -- illegal; should be CHAR
 BEGIN ... END;

A procedure has two parts: the specification and the body.    The
procedure specification begins with the keyword PROCEDURE and ends
with the procedure name or a parameter list.    Parameter declarations
are optional.    Procedures that take no parameters are written without
parentheses.

The procedure body begins with the keyword IS and ends with the
keyword END followed by an optional procedure name.    The procedure body
has three parts: a declarative part, an executable part, and an optional
exception-handling part.

The declarative part contains local declarations, which are placed
between the keywords IS and BEGIN.    The keyword DECLARE, which
introduces declarations in an anonymous PL/SQL block, is not used.
The executable part contains statements, which are placed between the
keywords BEGIN and EXCEPTION (or END).    At least one statement must
appear in the executable part of a procedure.    The NULL statement meets
this requirement.    The exception-handling part contains exception
handlers, which are placed between the keywords EXCEPTION and END.

Consider the procedure "raise_salary," which increases the salary of
an employee:

 PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS
 current_salary REAL;
 salary_missing EXCEPTION;
 BEGIN
 SELECT sal INTO current_salary FROM emp
 WHERE empno = emp_id;
 IF current_salary IS NULL THEN

 RAISE salary_missing;
 ELSE
 UPDATE emp SET sal = sal + increase
 WHERE empno = emp_id;
 END IF;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO emp_audit VALUES (emp_id, 'No such number');
 WHEN salary_missing THEN
 INSERT INTO emp_audit VALUES (emp_id, 'Salary is null');
 END raise_salary;

When called, this procedure accepts an employee number and a salary
increase amount.    It uses the employee number to select the current
salary from the "emp" database table.    If the employee number is not
found or if the current salary is null, an exception is raised.
Otherwise, the salary is updated.

A procedure is called as a PL/SQL statement.    For example, the procedure
"raise_salary" might be called as follows:

 raise_salary(emp_num, amount);

See also: Functions, Subprograms, Stored Subprograms

Functions

A function is a subprogram that computes a value.    Functions and
procedures are structured alike, except that functions have a RETURN
clause.    You write functions using the syntax

 FUNCTION name [(parameter [, parameter, ...])] RETURN datatype IS
 [local declarations]
 BEGIN
 executable statements
 [EXCEPTION
 exception handlers]
 END [name];

where "parameter" stands for the following syntax:

 var_name [IN | OUT | IN OUT] datatype [{:= | DEFAULT'D value]

The datatype specifier in a parameter declaration must be unconstrained.

Like a procedure, a function has two parts: the specification and the
body.    The function specification begins with the keyword FUNCTION and
ends with the RETURN clause, which specifies the datatype of the result
value.    Parameter declarations are optional.    Functions that take no
parameters are written without parentheses.

The function body begins with the keyword IS and ends with the keyword
END followed by an optional function name.    The function body has three
parts: a declarative part, an executable part, and an optional
exception-handling part.

The declarative part contains local declarations, which are placed
between the keywords IS and BEGIN.    The keyword DECLARE is not used.
The executable part contains statements, which are placed between the
keywords BEGIN and EXCEPTION (or END).    One or more RETURN statements
must appear in the executable part of a function.    The exception-
handling part contains exception handlers, which are placed between
the keywords EXCEPTION and END.

Consider the function "sal_ok," which determines if an employee salary
is out of range:

 FUNCTION sal_ok (salary REAL, title REAL)
 RETURN BOOLEAN IS
 min_sal REAL;
 max_sal REAL;
 BEGIN
 SELECT losal, hisal INTO min_sal, max_sal FROM sals
 WHERE job = title;
 RETURN (salary >= min_sal) AND (salary <= max_sal);
 END sal_ok;

When called, this function accepts an employee salary and job title.
It uses the job title to select range limits from the "sals" database

table.    The function identifier, "sal_ok," is set to a Boolean value
by the RETURN statement.    If the salary is out of range, "sal_ok" is set
to FALSE; otherwise, "sal_ok" is set to TRUE.

A function is called as part of an expression.    For example, the
function "sal_ok" might be called as follows:

 IF sal_ok(new_sal, new_title) THEN
 ...
 END IF;
 ...
 promotable := sal_ok(new_sal, new_title) AND (rating > 3);

In both cases, the function identifier is an expression that yields a
result.

Calls to functions defined within a PL/SQL block or subprogram can
appear in procedural statements, but not in SQL statements.    For
example, the following INSERT statement is illegal:

 DECLARE
 empnum INTEGER;
 ...
 FUNCTION bonus (emp_id INTEGER) RETURN REAL IS
 BEGIN ... END bonus;
 BEGIN
 ...
 INSERT INTO payroll
 VALUES (empnum, ..., bonus(empnum)); -- illegal call
 END;

However, calls to a stored function can appear in SQL statements if the
function meets certain requirements.

See also: Procedures, Subprograms, Stored Subprograms, Calling Stored
 Subprograms, Calling Stored Functions from SQL

RETURN Statement

The RETURN statement immediately completes the execution of a subprogram
and returns control to the caller.    Execution then resumes with the
statement following the subprogram call.    Do not confuse the RETURN
statement with the RETURN clause, which specifies the datatype of the
result value in a function specification.

A subprogram can contain several RETURN statements, none of which need
be the last lexical statement.    Executing any of them completes the
subprogram immediately.    However, it is poor programming practice to
have multiple exit points in a subprogram.

In procedures, a RETURN statement cannot contain an expression.    The
statement simply returns control to the caller before the normal end of
the procedure is reached.

However, in functions, a RETURN statement must contain an expression,
which is evaluated when the statement is executed.    The resulting
value is assigned to the function identifier.    Observe how the
function "balance" RETURNs the balance of a specified bank account:

 FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 acct_bal REAL;
 BEGIN
 SELECT bal INTO acct_bal FROM accts WHERE acctno = acct_id;
 RETURN acct_bal;
 END balance;

A function must contain at least one RETURN statement.    Otherwise,
PL/SQL raises the predefined exception PROGRAM_ERROR at run time.

See also: Procedures, Functions, EXIT Statement

Forward Declarations

PL/SQL requires that you declare an identifier before using it.
Therefore, you must declare a subprogram before calling it.    For
example, the following declaration of procedure "award_bonus" is illegal
because "award_bonus" calls procedure "calc_rating," which is not yet
declared when the call is made:

 DECLARE
 PROCEDURE award_bonus (...) IS
 BEGIN
 calc_rating(...); -- undeclared identifier
 ...
 END;

 PROCEDURE calc_rating (...) IS
 BEGIN
 ...
 END;
 ...

In this case, you can solve the problem easily by placing procedure
"calc_rating" before procedure "award_bonus."    However, the easy
solution does not always work.    For example, suppose the procedures
are mutually recursive (call each other) or you want to define them in
alphabetical order.

PL/SQL solves this problem by providing a special subprogram declaration
called a "forward declaration."    You can use forward declarations to

 * define subprograms in logical or alphabetical order
 * define mutually recursive subprograms
 * group subprograms in a package

A forward declaration consists of a subprogram specification terminated
by a semicolon.    In the next example, the forward declaration advises
PL/SQL that the body of procedure "calc_rating" can be found later in
the block.

 DECLARE
 PROCEDURE calc_rating (...); -- forward declaration

 /* Define subprograms in alphabetical order. */

 PROCEDURE award_bonus (...) IS
 BEGIN
 calc_rating(...);
 ...
 END;

 PROCEDURE calc_rating (...) IS
 BEGIN
 ...

 END;
 ...

Although the formal parameter list appears in the forward declaration,
it must also appear in the subprogram body.    You can place the
subprogram body anywhere after the forward declaration, but they must
appear in the same block, subprogram, or package.

See also: Subprograms, Packaged Subprograms, Recursion

Packaged Subprograms

Forward declarations let you group logically related subprograms in a
package.    The subprogram specifications go in the package specification,
and the subprogram bodies go in the package body, where they are
invisible to applications.    Thus, packages allow you to hide
implementation details.    An example follows:

 PACKAGE emp_actions IS -- package specification
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
 PROCEDURE fire_employee (emp_id NUMBER);
 END emp_actions;

 PACKAGE BODY emp_actions IS -- package body
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
 BEGIN
 INSERT INTO emp VALUES (empno, ename, ...);
 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
 END emp_actions;

You can define subprograms in a package body without declaring their
specifications in the package specification.    However, such subprograms
can be called only from inside the package.

See also: Subprograms, Packages, CREATE PACKAGE, CREATE PACKAGE BODY

Actual vs Formal Parameters

Subprograms pass information using parameters.    The variables or
expressions referenced in the parameter list of a subprogram call are
"actual" parameters.    For example, the following procedure call lists
two actual parameters named "emp_num" and "amount":

 raise_salary(emp_num, amount);

The next procedure call shows that in some cases, expressions can be
used as actual parameters:

 raise_salary(emp_num, merit + cola);

The variables declared in a subprogram specification and referenced in
the subprogram body are "formal" parameters.    For example, the following
procedure declares two formal parameters named "emp_id" and "increase":

 PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS
 current_salary REAL;
 ...
 BEGIN
 SELECT sal INTO current_salary FROM emp WHERE empno = emp_id;
 ...
 UPDATE emp SET sal = sal + increase WHERE empno = emp_id;
 END raise_salary;

Though not necessary, it is good programming practice to use different
names for actual and formal parameters.

When you call procedure "raise_salary," the actual parameters are
evaluated and the result values are assigned to the corresponding
formal parameters.    Before assigning the value of an actual parameter
to a formal parameter, PL/SQL converts the datatype of the value if
necessary.    For example, the following call to "raise_salary" is legal:

 raise_salary(emp_num, '2500');

The actual parameter and its corresponding formal parameter must belong
to compatible datatypes.    For instance, PL/SQL cannot convert between
the DATE and REAL datatypes.    Also, the result value must be convertible
to the new datatype.    The following procedure call raises the predefined
exception VALUE_ERROR because PL/SQL cannot convert the second actual
parameter to a number:

 raise_salary(emp_num, '$2500'); -- note the dollar sign

See also: Procedures, Functions, Parameter Modes, Parameter Default
 Values

Positional and Named Notation

When calling a subprogram, you can write the actual parameters using
either positional or named notation.    That is, you can indicate the
association between an actual and formal parameter by position or name.
For example, given the declarations

 DECLARE
 acct INTEGER;
 amt REAL;
 PROCEDURE credit (acctno INTEGER, amount REAL) IS ...
 ...

you can call the procedure "credit" in four logically equivalent ways:

 BEGIN
 credit(acct, amt); -- positional notation
 credit(amount => amt, acctno => acct); -- named notation
 credit(acctno => acct, amount => amt); -- named notation
 credit(acct, amount => amt); -- mixed notation
 ...
 END;

The first procedure call uses positional notation.    The PL/SQL compiler
associates the first actual parameter, "acct," with the first formal
parameter, "acctno."    And, the compiler associates the second actual
parameter, "amt," with the second formal parameter, "amount."

The second procedure call uses named notation.    The arrow associates
the formal parameter to the left of the arrow with the actual parameter
to the right of the arrow.

The third procedure call also uses named notation and shows that you can
list the parameter pairs in any order.    So, you need not know the order
in which the formal parameters are listed.

The fourth procedure call shows that you can mix positional and named
notation.    In this case, the first parameter uses positional notation,
and the second parameter uses named notation.    Positional notation must
precede named notation.    The reverse is not allowed.    For example, the
following procedure call is illegal:

 credit(acctno => acct, amt); -- illegal

See also: Procedures, Functions, Parameter Modes, Parameter Default
 Values

Parameter Modes

You use parameter modes to define the behavior of formal parameters.
The three parameter modes, IN (the default), OUT, and IN OUT, can be
used with any subprogram.    However, avoid using the OUT and IN OUT modes
with functions.    The purpose of a function is to take zero or more
parameters and return a single value.    It is poor programming practice to
have a function return multiple values.    Also, functions should be free
of side effects, which change the values of variables not local to the
subprogram.

IN Mode

An IN parameter lets you pass values to the subprogram being called.
Inside the subprogram, an IN parameter acts like a constant.    Therefore,
it cannot be assigned a value.    For example, the following assignment
statement causes a compilation error:

 PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
 minimum_purchase CONSTANT REAL := 10.0;
 service_charge CONSTANT REAL := 0.50;
 BEGIN
 IF amount < minimum_purchase THEN
 amount := amount + service_charge; -- illegal
 END IF;
 ...

The actual parameter that corresponds to an IN formal parameter can be
a constant, literal, initialized variable, or expression.

Unlike OUT and IN OUT parameters, IN parameters can be initialized to
default values.

OUT Mode

An OUT parameter lets you return values to the caller of a subprogram.
Inside the subprogram, an OUT parameter acts like an uninitialized
variable.    Therefore, its value cannot be assigned to another variable
or reassigned to itself.    For instance, the following assignment
statement causes a compilation error:

 PROCEDURE calc_bonus (emp_id INTEGER, bonus OUT REAL) IS
 hire_date DATE;
 BEGIN
 SELECT sal * 0.10, hiredate INTO bonus, hire_date FROM emp
 WHERE empno = emp_id;
 IF MONTHS_BETWEEN(SYSDATE, hire_date) > 60 THEN
 bonus := bonus + 500; -- syntax error
 END IF;
 ...
The actual parameter that corresponds to an OUT formal parameter must be
a variable; it cannot be a constant or expression.    For example, the

following procedure call is illegal:

 calc_bonus(7499, salary + commission); -- syntax error

PL/SQL checks for this syntax error at compile time to prevent the
overwriting of constants and expressions.

An OUT actual parameter can (but need not) have a value before the
subprogram is called.    However, the value is lost when you call the
subprogram.    Inside the subprogram, an OUT formal parameter cannot be
used in an expression; the only operation allowed on the parameter is
to assign it a value.

Before exiting a subprogram, explicitly assign values to all OUT formal
parameters.    Otherwise, the values of corresponding actual parameters
are indeterminate.    If you exit successfully, PL/SQL assigns values
to the actual parameters.    However, if you exit with an unhandled
exception, PL/SQL does not assign values to the actual parameters.

IN OUT Mode

An IN OUT parameter lets you pass initial values to the subprogram being
called and return updated values to the caller.    Inside the subprogram,
an IN OUT parameter acts like an initialized variable.    Therefore, it
can be assigned a value and its value can be assigned to another
variable.    That means you can use an IN OUT formal parameter as if
it were a normal variable.    You can change its value or reference the
value in any way, as the following example shows:

 PROCEDURE calc_bonus (emp_id INTEGER, bonus IN OUT REAL) IS
 hire_date DATE;
 bonus_missing EXCEPTION;
 BEGIN
 SELECT sal * 0.10, hiredate INTO bonus, hire_date FROM emp
 WHERE empno = emp_id;
 IF bonus IS NULL THEN
 RAISE bonus_missing;
 END IF;
 IF MONTHS_BETWEEN(SYSDATE, hire_date) > 60 THEN
 bonus := bonus + 500;
 END IF;
 ...
 EXCEPTION
 WHEN bonus_missing THEN
 ...
 END calc_bonus;

The actual parameter that corresponds to an IN OUT formal parameter must
be a variable; it cannot be a constant or expression.

See also: Procedures, Functions, Actual vs Formal Parameters,
 Parameter Default Values

Parameter Default Values

As the example below shows, you can initialize IN parameters to default
values.    That way, you can pass different numbers of actual parameters
to a subprogram, accepting or overriding the default values as you
please.    Moreover, you can add new formal parameters without having to
change every call to the subprogram.

 PROCEDURE create_dept
 (new_dname CHAR DEFAULT 'TEMP',
 new_loc CHAR DEFAULT 'TEMP') IS
 BEGIN
 INSERT INTO dept
 VALUES (deptno_seq.NEXTVAL, new_dname, new_loc);
 END create_dept;

If an actual parameter is not passed, the default value of its
corresponding formal parameter is used.    Consider the following calls
to "create_dept":

 BEGIN
 ...
 create_dept;
 create_dept('MARKETING');
 create_dept('MARKETING', 'NEW YORK');
 ...
 END;

The first call passes no actual parameters, so both default values are
used.    The second call passes one actual parameter, so the default value
for "new_loc" is used.    The third call passes two actual parameters, so
neither default value is used.

In most cases, you can use positional notation to override the default
values of formal parameters.    However, you cannot skip a formal
parameter by leaving out its actual parameter.    For example, the
following call incorrectly associates the actual parameter 'NEW YORK'
with the formal parameter "new_dname":

 create_dept('NEW YORK'); -- incorrect

You cannot solve the problem by leaving a placeholder for the actual
parameter.    For example, the following call is illegal:

 create_dept(, 'NEW YORK'); -- illegal

In such cases, you must use named notation, as follows:

 create_dept(new_loc => 'NEW YORK');

See also: Procedures, Functions, Actual vs Formal Parameters,
 Positional and Named Notation

Aliasing

To optimize execution, the PL/SQL compiler can choose different methods
of parameter passing (copy or reference) for a subprogram call.    The
easy-to-avoid problem of aliasing occurs when the same actual parameter
appears twice in a procedure call.    Unless both formal parameters are
IN parameters, the result is indeterminate because it depends on the
methods of parameter passing chosen by the compiler.    An example
follows:

 DECLARE
 str CHAR(10);
 PROCEDURE reverse (in_str CHAR, out_str OUT CHAR) IS
 ...
 BEGIN
 -- reverse order of characters in string
 ...
 /* At this point, whether the value of in_str *
 * is 'ABCD' or 'DCBA' depends on the methods of *
 * parameter passing used by the PL/SQL compiler. */
 END reverse;
 ...
 BEGIN
 str := 'ABCD';
 reverse(str, str); -- indeterminate
 ...
 END;

Aliasing also occurs when a global variable appears in a procedure call
and then is referenced within the procedure.    Consider the following
example:

 DECLARE
 rent REAL;
 PROCEDURE raise_rent (increase IN OUT REAL) IS
 ...
 BEGIN
 rent := rent + increase;
 ...
 END raise_rent;
 ...
 BEGIN
 ...
 raise_rent(rent); -- indeterminate
 END;

Again, the result is indeterminate.

See also: Procedures, Functions, Actual vs Formal Parameters

Overloading

PL/SQL lets you overload subprogram names.    That is, you can use the
same name for several different subprograms as long as their formal
parameters differ in number, order, or datatype family.

Suppose you want to initialize the first "n" rows in two PL/SQL tables
that were declared as follows:

 DECLARE
 TYPE DateTabTyp IS TABLE OF DATE
 INDEX BY BINARY_INTEGER;
 TYPE RealTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 hiredate_tab DateTabTyp;
 sal_tab RealTabTyp;
 ...

You might write the following procedure to initialize the PL/SQL table
named "hiredate_tab":

 PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS
 BEGIN
 FOR i IN 1..n LOOP
 tab(i) := SYSDATE;
 END LOOP;
 END initialize;

And, you might write the next procedure to initialize the PL/SQL table
named "sal_tab":

 PROCEDURE initialize (tab OUT RealTabTyp, n INTEGER) IS
 BEGIN
 FOR i IN 1..n LOOP
 tab(i) := 0.0;
 END LOOP;
 END initialize;

Because the processing in these two procedures is the same, it is
logical to give them the same name.

You can place the two overloaded "initialize" procedures in the same
block, subprogram, or package.    PL/SQL determines which of the two
procedures is being called by checking their formal parameters.
Consider the example below.    If you call "initialize" with a
"DateTabTyp" parameter, PL/SQL uses the first version of "initialize."
But, if you call "initialize" with a "RealTabTyp" parameter, PL/SQL uses
the second version.

 DECLARE
 TYPE DateTabTyp IS TABLE OF DATE
 INDEX BY BINARY_INTEGER;
 TYPE RealTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;

 hiredate_tab DateTabTyp;
 comm_tab RealTabTyp;
 indx BINARY_INTEGER;
 ...
 BEGIN
 indx := 50;
 initialize(hiredate_tab, indx); -- calls first version
 initialize(comm_tab, indx); -- calls second version
 ...
 END;

Restrictions

Only local or packaged subprograms can be overloaded. So, you cannot
overload standalone subprograms.    Also, you cannot overload two
subprograms if their formal parameters differ only in name or parameter
mode.    For example, you cannot overload the following procedures:

 PROCEDURE reconcile (acctno IN INTEGER) IS
 BEGIN
 ...
 END reconcile;

 PROCEDURE reconcile (acctno OUT INTEGER) IS
 BEGIN
 ...
 END reconcile;

Furthermore, you cannot overload two subprograms if their formal
parameters differ only in datatype and the different datatypes are in
the same family.    For instance, you cannot overload the following
procedures because the datatypes INTEGER and REAL are in the same
family:

 PROCEDURE charge_back (amount INTEGER) IS
 BEGIN
 ...
 END charge_back;

 PROCEDURE charge_back (amount REAL) IS
 BEGIN
 ...
 END charge_back;

Finally, you cannot overload two functions that differ only in return
type (the datatype of the result value) even if the types are in
different families.    For example, you cannot overload the following
functions:

 FUNCTION acct_ok (acctno INTEGER) RETURN BOOLEAN IS
 BEGIN
 ...

 END acct_ok;

 FUNCTION acct_ok (acctno INTEGER) RETURN INTEGER IS
 BEGIN
 ...
 END acct_ok;

See also: Subprograms, Actual vs Formal Parameters, Scope and Visibility

Recursion

Recursion is a powerful technique for simplifying the design of
algorithms.    Basically, recursion means self-reference.    In a recursive
mathematical sequence, each term is derived by applying a formula to
preceding terms.    The Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ...) is
an example.    Each term in the sequence (after the second) is the sum of
the two terms that immediately precede it.

In a recursive definition, something is defined in terms of simpler
versions of itself.    Consider the definition of "n" factorial (the
product of all integers from 1 to "n"):

 n! = n * (n - 1)!

A recursive subprogram is one that calls itself.    Think of a recursive
call as a call to some other subprogram that does the same task as your
subprogram.    Each recursive call creates a new instance of any objects
declared in the subprogram, including parameters, variables, cursors,
and exceptions.    Likewise, new instances of SQL statements are created
at each level in the recursive descent.

There must be at least two paths through a recursive subprogram: one
that leads to the recursive call and one that does not.    That is, at
least one path must lead to a terminating condition.    Otherwise, the
recursion would (theoretically) go on forever.    In practice, if a
recursive subprogram strays into infinite regress, PL/SQL eventually
runs out of memory and raises the predefined exception STORAGE_ERROR.

To solve some programming problems, you must repeat a sequence of
statements until a condition is met.    You can use iteration or recursion
to solve such problems.    Recursion is appropriate when the problem can
be broken down into simpler versions of itself.    For example, you can
evaluate 3! as follows:

 0! = 1
 1! = 1 * 0! = 1 * 1 = 1
 2! = 2 * 1! = 2 * 1 = 2
 3! = 3 * 2! = 3 * 2 = 6

To implement this algorithm, you might write the following recursive
function, which returns the factorial of a positive integer:

 FUNCTION fac (n POSITIVE) RETURN INTEGER IS -- returns n!
 BEGIN
 IF n = 1 THEN -- terminating condition
 RETURN 1;
 ELSE
 RETURN n * fac(n - 1); -- recursive call
 END IF;
 END fac;

At each recursive call, "n" is decremented.    Eventually, "n" becomes 1
and the recursion stops.

See also: Subprograms, Mutual Recursion, Recursion vs Iteration

Mutual Recursion

Subprograms are mutually recursive if they directly or indirectly call
each other.    In the example below, the Boolean functions "odd" and
"even," which determine whether a number is odd or even, call each
other directly.    The forward declaration of "odd" is necessary because
"even" calls "odd," which is not yet declared when the call is made.

 FUNCTION odd (n NATURAL) RETURN BOOLEAN; -- forward declaration

 FUNCTION even (n NATURAL) RETURN BOOLEAN IS
 BEGIN
 IF n = 0 THEN
 RETURN TRUE;
 ELSE
 RETURN odd(n - 1); -- mutually recursive call
 END IF;
 END even;

 FUNCTION odd (n NATURAL) RETURN BOOLEAN IS
 BEGIN
 IF n = 0 THEN
 RETURN FALSE;
 ELSE
 RETURN even(n - 1); -- mutually recursive call
 END IF;
 END odd;

When a positive integer "n" is passed to "odd" or "even", the
functions call each other by turns.    At each call, "n" is decremented.
Ultimately, "n" becomes zero and the final call returns TRUE or FALSE.
For instance, passing the number 4 to "odd" results in this sequence
of calls:

 odd(4)
 even(3)
 odd(2)
 even(1)
 odd(0) -- returns FALSE

On the other hand, passing the number 4 to "even" results in the
following sequence of calls:

 even(4)
 odd(3)
 even(2)
 odd(1)
 even(0) -- returns TRUE

See also: Subprograms, Recursion, Recursion vs Iteration

Recursion vs Iteration

Unlike iteration, recursion is not essential to PL/SQL programming.
Any problem that can be solved using recursion can be solved using
iteration.    Furthermore, the concept of iteration is easier to grasp
because examples of recursion are uncommon in everyday life.
Consequently, the iterative version of a subprogram is usually easier
to design than the recursive version.    However, the recursive version
is usually simpler, smaller, and therefore easier to debug.    Compare
the following functions, which compute the "n"th number in the
Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, ...):

 -- recursive version
 FUNCTION fib (n POSITIVE) RETURN INTEGER IS
 BEGIN
 IF (n = 1) OR (n = 2) THEN
 RETURN 1;
 ELSE
 RETURN fib(n - 1) + fib(n - 2);
 END IF;
 END fib;

 -- iterative version
 FUNCTION fib (n POSITIVE) RETURN INTEGER IS
 pos1 INTEGER := 1;
 pos2 INTEGER := 0;
 cum INTEGER;
 BEGIN
 IF (n = 1) OR (n = 2) THEN
 RETURN 1;
 ELSE
 cum := pos1 + pos2;
 FOR i IN 3..n LOOP
 pos2 := pos1;
 pos1 := cum;
 cum := pos1 + pos2;
 END LOOP;
 RETURN cum;
 END IF;
 END fib;

The recursive version of "fib" is more elegant than the iterative
version.    However, the iterative version is more efficient; it runs
faster and uses less storage.    That is because each recursive call
requires additional time and memory.    As the number of recursive calls
gets larger, so does the difference in efficiency.    Still, if you expect
the number of recursive calls to be small, you might choose the
recursive version for its readability.

See also: Subprograms, Recursion, Mutual Recursion

Stored Subprograms

Subprograms (procedures and functions) can be compiled separately and
stored permanently in an Oracle database, ready to be executed.    A
subprogram explicitly CREATEd using an Oracle tool is called a "stored
subprogram."

You can issue the CREATE PROCEDURE and CREATE FUNCTION statements
interactively from SQL*Plus or SQL*DBA.    For example, you might
create a procedure named "fire_employee" as follows:

 CREATE PROCEDURE fire_employee (emp_id NUMBER) AS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END;

Once compiled and stored in the data dictionary, a subprogram is a
database object, which can be referenced by any number of applications
connected to that database.

Stored subprograms defined within a package are called "packaged"
subprograms; those defined independently are called "standalone"
subprograms.

You can call stored subprograms from a database trigger, another stored
subprogram, an Oracle Precompiler application, an OCI application, or
interactively from SQL*Plus or SQL*DBA.    For example, you might call
the standalone procedure "fire_employee" from SQL*Plus, as follows:

 SQL> EXECUTE fire_employee(7499);

Subprograms are stored in parsed, compiled form.    So, when called,
they are loaded and passed to the PL/SQL engine immediately.    Also,
stored subprograms take advantage of the Oracle shared memory
capability.    Only one copy of a subprogram need be loaded into
memory for execution by many users.

See also: Subprograms, Creating Stored Subprograms, Calling Stored
 Subprograms, Calling Stored Functions from SQL, CREATE FUNCTION,
 CREATE PROCEDURE

Creating Stored Subprograms

You can CREATE subprograms and store them permanently in an Oracle
database for general use.    You can issue the CREATE PROCEDURE and
CREATE FUNCTION statements interactively from SQL*Plus or SQL*DBA.
For example, you might CREATE the procedure "fire_employee" as follows:

 CREATE PROCEDURE fire_employee (emp_id NUMBER) AS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END;

Furthermore, you can embed the SQL statements CREATE FUNCTION and
CREATE PROCEDURE in a host program, as the following example shows:

 EXEC SQL CREATE OR REPLACE
 FUNCTION sal_ok (salary REAL, title CHAR) RETURN BOOLEAN AS
 min_sal REAL;
 max_sal REAL;
 BEGIN
 SELECT losal, hisal INTO min_sal, max_sal FROM sals
 WHERE job = title;
 RETURN (salary >= min_sal) AND (salary <= max_sal);
 END sal_ok;
 END-EXEC;

The embedded CREATE FUNCTION and CREATE PROCEDURE statements are
hybrids.    Like all other embedded CREATE statements, they begin with
the keywords EXEC SQL.    But, unlike other embedded CREATE statements,
they end with the PL/SQL terminator END-EXEC.

You specify the REPLACE clause in the CREATE statement to redefine an
existing subprogram without having to drop the subprogram, recreate it,
and regrant privileges on it.    Note, however, that privileges granted
to roles cannot be used to create stored subprograms.

When you CREATE a subprogram for storage in the database, Oracle
automatically compiles the source code, caches the object code in a
"shared SQL area" in the System Global Area (SGA), and stores the source
and object code in the data dictionary.    The object code stays cached in
the SGA, where it can be executed quickly.    When necessary, Oracle
applies a least-recently-used algorithm that selects shared SQL areas
to be flushed from the SGA to make room for others.

See also: Subprograms, Stored Subprograms, Calling Stored Subprograms,
 CREATE FUNCTION, CREATE PROCEDURE

Calling Stored Subprograms

You can call stored subprograms from a database trigger, another stored
subprogram, an Oracle Precompiler application, an OCI application, or an
Oracle tool such as SQL*Plus.    Some examples follow.

A stored subprogram can call another stored subprogram.    For instance,
the following call to the standalone procedure "create_dept" might
appear in the body of a packaged subprogram:

 create_dept(name, location);

An Oracle Precompiler or OCI application can call stored subprograms
using anonymous PL/SQL blocks.    In the following example, you call the
standalone procedure "create_dept" from an Oracle Precompiler program:

 EXEC SQL EXECUTE
 BEGIN
 create_dept(:name, :location);
 END;
 END-EXEC;

The actual parameters "name" and "location" are host variables.
In the next example, the procedure "create_dept" is part of a package
named "emp_actions," so you must use dot notation to qualify the
procedure call:

 EXEC SQL EXECUTE
 BEGIN
 emp_actions.create_dept(:name, :location);
 END;
 END-EXEC;

You can call stored subprograms interactively from Oracle tools such
as SQL*Plus and SQL*DBA.    For example, you might call the standalone
procedure "create_dept" from SQL*Plus as follows:

 SQL> EXECUTE create_dept('MARKETING', 'NEW YORK');

This call is equivalent to the following call issued from an anonymous
PL/SQL block:

 SQL> BEGIN create_dept('MARKETING', 'NEW YORK'); END;

Remote Access

You can use the following syntax to call standalone and packaged
subprograms stored in a remote Oracle database:

 procedure_name@db_link(param1, param2, ...);
 package_name.procedure_name@db_link(param1, param2, ...);

In the next example, you call the stored procedure "raise_salary," which

is defined in the package "emp_actions" in the "newyork" database:

 BEGIN
 emp_actions.raise_salary@newyork(emp_num, amount);

You can create synonyms to provide location transparency for remote
standalone (but not packaged) subprograms, as the following
example shows:

 CREATE SYNONYM create_dept FOR create_dept@newyork;

See also: Subprograms, Stored Subprograms, Creating Stored Subprograms,
 Calling Stored Functions from SQL, CREATE SYNONYM

Calling Stored Functions from SQL

A stored function is a user-defined PL/SQL function created with
an Oracle tool and stored in the data dictionary.    It is a database
object, which can be referenced by any number of applications connected
to that database.    There are two types of stored functions: packaged
and standalone.    Packaged functions are defined within a PL/SQL package;
standalone functions are defined independently.

Unlike functions, which are called as part    of an expression, procedures
are called as statements.    Therefore, procedures cannot be called
directly from SQL expressions.    However, you can call stored functions
from the SELECT, VALUES, SET, WHERE, START WITH, GROUP BY, HAVING, and
ORDER BY clauses--wherever expressions are allowed in a SQL statement.

Calling Syntax

To call a stored function from a SQL expression, you use the
following syntax:

 [schema.][package.]function[@dblink][(arg[, arg] ...)]

You must write the arguments (actual parameters) using positional
notation; you cannot use named or mixed notation.    In the following
example, you call the standalone function "gross_pay," which is
stored in a remote Oracle database:

 SELECT gross_pay@newyork(eenum,stime,otime) INTO pay FROM dual;

Using Default Values

The stored function "gross_pay" initializes two of its the formal
parameters to default values using the DEFAULT clause, as follows:

 CREATE FUNCTION gross_pay
 (emp_id IN NUMBER,
 st_hrs IN NUMBER DEFAULT 40,
 ot_hrs IN NUMBER DEFAULT 0) RETURN NUMBER AS
 ...

When calling "gross_pay" from a procedural statement,    you can
always accept the default value of "st_hrs."    That is because you
can use named notation, which lets you skip parameters, as in

 IF gross_pay(eenum,ot_hrs => otime) > pay_limit THEN ...

However, when calling "gross_pay" from a SQL expression, you cannot
accept the default value of "st_hrs" unless you accept the default
value of "ot_hrs."    That is because you cannot use named notation.

Meeting Basic Requirements

To be callable from SQL expressions, a user-defined PL/SQL function
must meet the following basic requirements:

 * It must be a stored function, not a function defined within
 a PL/SQL block or subprogram.

 * It must be a row function, not a column (group) function;
 that is, it cannot take an entire column of data as its
 argument.

 * All its formal parameters must be IN parameters; none can be
 an OUT or IN OUT parameter.

 * The datatypes of its formal parameters must be Oracle Server
 internal types such as CHAR, DATE, or NUMBER, not PL/SQL
 types such as BOOLEAN, RECORD, or TABLE.

 * Its return type (the datatype of its result value) must
 be an Oracle Server internal type.

For example, the following stored function meets the basic requirements:

 CREATE FUNCTION gross_pay
 (emp_id IN NUMBER,
 st_hrs IN NUMBER DEFAULT 40,
 ot_hrs IN NUMBER DEFAULT 0) RETURN NUMBER AS
 st_rate NUMBER;
 ot_rate NUMBER;
 BEGIN
 SELECT srate, orate INTO st_rate, ot_rate FROM payroll
 WHERE acctno = emp_id;
 RETURN st_hrs * st_rate + ot_hrs * ot_rate;
 END gross_pay;

Controlling Side Effects

To execute a SQL statement that calls a stored function, the Oracle
Server must know the "purity level" of the function.    That is, the
extent to which the function is free of side effects.    In this
context, "side effects" are references to database tables or packaged
variables.

Side effects can prevent the parallelization of a query, yield order-
dependent (and therefore indeterminate) results, or require that
package state be maintained across user sessions (which is not allowed).
Therefore,    the following rules apply to stored functions called from
SQL expressions:

 * The function cannot modify database tables; therefore, it
 cannot execute an INSERT, UPDATE, or DELETE statement.

 * Remote or parallelized functions cannot read or write the

 values of packaged variables.

 * Only functions called from a SELECT, VALUES, or SET clause
 can write the values of packaged variables.

 * The function cannot call another subprogram that breaks
 one of the foregoing rules. Also, the function cannot reference
 a database view that breaks one of the foregoing rules. (Oracle
 replaces references to a view with a stored SELECT operation,
 which can include function calls.)

For standalone functions, Oracle can enforce these rules by checking the
function body.    However, the body of a packaged function is hidden; only
its specification is visible.    So, for packaged functions, you    must use
the pragma (compiler directive) RESTRICT_REFERENCES to enforce the rules.

The pragma tells the PL/SQL compiler to deny the packaged function
read/write access to database tables, packaged variables, or both.    If
you compile a function body that violates the pragma, you get a
compilation error.

Calling Packaged Functions

To call a packaged function from SQL expressions, you must assert its
purity level by coding the pragma RESTRICT_REFERENCES in the package
specification (not in the package body).    The pragma must follow the
function declaration but need not follow it immediately.    Only one
pragma can reference a given function declaration.

To code the pragma RESTRICT_REFERENCES, you use the syntax

 PRAGMA RESTRICT_REFERENCES (
 function_name, WNDS [, WNPS] [, RNDS] [, RNPS]);

where:

 WNDS means "writes no database state" (does not modify
 database tables).

 WNPS means "writes no package state" (does not change the
 values of packaged variables).

 RNDS means "reads no database state" (does not query database
 tables).

 RNPS means "reads no package state" (does not reference the
 values of packaged variables).

You can pass the arguments in any order but you must pass the
argument WNDS.    No argument implies another.    For instance, RNPS
does not imply WNPS.

In the example below, the function "compound" neither reads nor writes

database or package state, so you can assert the maximum purity level.
Always assert the highest purity level that a function allows.    That
way, the PL/SQL compiler will never reject the function unnecessarily.

 CREATE PACKAGE finance AS -- package specification
 interest REAL; -- public packaged variable
 ...
 FUNCTION compound
 (years IN NUMBER,
 amount IN NUMBER,
 rate IN NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (compound, WNDS, WNPS, RNDS, RNPS);
 END finance;

 CREATE PACKAGE BODY finance AS --package body
 FUNCTION compound
 (years IN NUMBER,
 amount IN NUMBER,
 rate IN NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN amount * POWER((rate / 100) + 1, years);
 END compound;
 ... -- no pragma in package body
 END finance;

Referencing Packages with an Initialization Part

Packages can have an initialization part, which is hidden in the
package body.    Typically, the initialization part holds statements that
initialize public variables.    In the following example, the SELECT
statement initializes the public variable "prime_rate":

 CREATE PACKAGE loans AS
 prime_rate REAL;
 ...
 END loans;

 CREATE PACKAGE BODY loans AS
 ...
 BEGIN -- initialization part
 SELECT prime INTO prime_rate FROM rates;
 END loans;

The initialization code is run only once--the first time the package
is referenced.    If the code reads or writes database state or package
state other than its own, it can cause side effects.    Moreover, a
stored function that references the package (and thereby runs the
initialization code) can cause side effects indirectly.    So, to call
the function from SQL expressions, you must use the pragma
RESTRICT_REFERENCES to assert or imply the purity level of the
initialization code.

To assert the purity level of the initialization code, you use a

variant of the pragma RESTRICT_REFERENCES, in which the function name is
replaced by a package name.    You code the pragma in the package
specification, where it is visible to other users.    That way, anyone
referencing the package can see the restrictions and conform to them.

To code the variant pragma RESTRICT_REFERENCES, you use the syntax

 PRAGMA RESTRICT_REFERENCES (
 package_name, WNDS [, WNPS] [, RNDS] [, RNPS]);

where the arguments WNDS, WNPS, RNDS, and RNPS have the usual meaning.
In the example below, the initialization code reads database state and
writes package state.    However, you can assert WNPS because the code is
writing the state of its own package, which is permitted.    So, you
assert WNDS, WNPS, RNPS--the highest purity level the function allows.
(If the public variable "prime_rate" were in another package, you could
not assert WNPS.)

 CREATE PACKAGE loans AS
 PRAGMA RESTRICT_REFERENCES (loans, WNDS, WNPS, RNPS);
 prime_rate REAL;
 ...
 END loans;
 ...
 CREATE PACKAGE BODY loans AS
 ...
 BEGIN -- initialization part
 SELECT prime INTO prime_rate FROM rates;
 END loans;

You can place the pragma anywhere in the package specification, but
placing it at the top (where it stands out) is a good idea.

To imply the purity level of the initialization code, your package must
have a RESTRICT_REFERENCES pragma for one of the functions it declares.
From the pragma, Oracle can infer the purity level of the initialization
code (because the code cannot break any rule enforced by a pragma).    In
the next example, the pragma for the function "discount" implies that the
purity level of the initialization code is at least WNDS:

 CREATE PACKAGE loans AS
 ...
 FUNCTION discount (...) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (discount, WNDS);
 END loans;
 ...

To draw an inference, Oracle can combine the assertions of all
RESTRICT_REFERENCES pragmas.    For example, the following pragmas
(combined) imply that the purity level of the initialization code is
at least WNDS, RNDS:

 CREATE PACKAGE loans AS
 ...

 FUNCTION discount (...) RETURN NUMBER;
 FUNCTION credit_ok (...) RETURN CHAR;
 PRAGMA RESTRICT_REFERENCES (discount, WNDS);
 PRAGMA RESTRICT_REFERENCES (credit_ok, RNDS);
 END loans;
 ...

Avoiding Problems

To call a packaged function from SQL expressions, you must assert
its purity level using the pragma RESTRICT_REFERENCES.    However, if
the package has an initialization part, the PL/SQL compiler might not
let you assert the highest purity level the function allows.    As a
result, you might be unable to call the function remotely, in parallel,
or from certain SQL clauses.

This happens when a packaged function is purer than the package
initialization code.    Remember, the first time a package is referenced,
its initialization code is run.    If that reference is a function call,
any additional side effects caused by the initialization code occur
during the call.    So, in effect, the initialization code lowers the
purity level of the function.

To avoid this problem, move the package initialization code into a
subprogram.    That way, your application can run the code explicitly
(rather than implicitly during package instantiation) without affecting
your packaged functions.

Name Precedence

In SQL statements, the names of database columns take precedence over
the names of parameterless functions.    For example, if user "scott"
executes the statements

 CREATE TABLE stats (rand_num NUMBER, ...);
 CREATE FUNCTION rand_num RETURN NUMBER AS ...

then the following select-item refers to the column "rand_num":

 SELECT rand_num, ... INTO start_val, ...
 FROM stats WHERE ...

In this case, to call the stored function "rand_num," you must
specify the schema, as follows:

 SELECT scott.rand_num, ... INTO start_val, ...
 FROM stats WHERE ...

Overloading

PL/SQL lets you overload packaged (but not standalone) functions.

That is, you can use the same name for different functions if their
formal parameters differ in number, order, or datatype family.

However, a RESTRICT_REFERENCES pragma can apply to only one
function declaration.    So, a pragma that references the name of
overloaded functions always applies to the nearest foregoing
function declaration.    In the following example, the pragma applies
to the second declaration of "valid":

 CREATE PACKAGE tests AS
 -- these functions return 'T' or 'F' (for TRUE or FALSE)
 FUNCTION valid (x NUMBER) RETURN CHAR;
 FUNCTION valid (x DATE) RETURN CHAR;
 PRAGMA RESTRICT_REFERENCES (valid, WNDS);
 ...
 END tests;

See also: Subprograms, Stored Subprograms, Creating Stored Subprograms,
 Calling Stored Subprograms

Packages

A package is a database object that groups logically related PL/SQL
types, objects, and subprograms.    Packages usually have two parts, a
specification and a body, although sometimes the body is unnecessary.
The specification is the interface to your applications; it declares
the types, variables, constants, exceptions, cursors, and subprograms
available for use.    The body fully defines cursors and subprograms and
so implements the specification.

Unlike subprograms, packages cannot be called, passed parameters,
or nested.    Still, the format of a package is similar to that of a
subprogram:

 PACKAGE name IS -- specification (visible part)
 -- public type and object declarations
 -- subprogram specifications
 END [name];

 PACKAGE BODY name IS -- body (hidden part)
 -- private type and object declarations
 -- subprogram bodies
 [BEGIN
 -- initialization statements]
 END [name];

The specification holds public declarations, which are visible to your
application.    The body holds implementation details and private
declarations, which are hidden from your application.

You can debug, enhance, or replace a package body without changing the
interface (package specification) to the package body.

Packages can be created interactively with SQL*Plus or SQL*DBA using
the CREATE PACKAGE and CREATE PACKAGE BODY commands.    In the following
example, a record type, a cursor, and two employment procedures are
packaged:

 CREATE PACKAGE emp_actions AS -- specification
 TYPE EmpRecTyp IS RECORD (emp_id INTEGER, salary REAL);
 CURSOR desc_salary RETURN EmpRecTyp;

 PROCEDURE hire_employee
 (ename CHAR,
 job CHAR,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER);

 PROCEDURE fire_employee (emp_id NUMBER);
 END emp_actions;

 CREATE PACKAGE BODY emp_actions AS -- body

 CURSOR desc_salary RETURN EmpRecTyp IS
 SELECT empno, sal FROM emp ORDER BY sal DESC;

 PROCEDURE hire_employee
 (ename CHAR,
 job CHAR,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER) IS
 BEGIN
 INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename, job,
 mgr, SYSDATE, sal, comm, deptno);
 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
 END emp_actions;

Notice that the procedure "hire_employee" uses the database sequence
"empno_seq" and the function SYSDATE to INSERT a new employee number
and hire date, respectively.

Only the declarations in the package specification are visible and
accessible to applications.    Implementation details in the package body
are hidden and inaccessible.    So, you can change the body without having
to recompile calling programs.

See also: Package Specification, Package Body, CREATE PACKAGE,
 CREATE PACKAGE BODY

Package Specification

The package specification contains public declarations.    The scope of
these declarations is local to your database schema and global to the
package.    So, the declared objects are accessible from your application
and from anywhere in the package.

The specification lists the package resources available to applications.
All the information your application needs to use the resources is in
the specification.    For example, the following declaration shows that
the function named "factorial" takes one parameter of type INTEGER and
returns a value of type INTEGER:

 FUNCTION factorial (n INTEGER) RETURN INTEGER; -- returns n!

That is all the information you need to call the function.    You need not
consider the underlying implementation of "factorial" (whether it is
iterative or recursive, for example).

Only subprograms and cursors have an underlying implementation or
"definition."    So, if a specification declares only types, constants,
variables, and exceptions, the package body is unnecessary.    An example
of such a package follows:

 -- package consisting of a specification only
 PACKAGE trans_data IS
 TYPE TimeTyp IS RECORD
 (minute SMALLINT,
 hour SMALLINT);
 TYPE TransTyp IS RECORD
 (category VARCHAR2,
 account INTEGER,
 amount REAL,
 time TimeTyp);
 minimum_balance CONSTANT REAL := 10.00;
 number_processed INTEGER;
 insufficient_funds EXCEPTION;
 END trans_data;

The package "trans_data" needs no body because types, constants,
variables, and exceptions do not have an underlying implementation.
Such packages let you define global variables (usable by subprograms and
triggers) that persist throughout a session.

See also: Packages, Package Body, CREATE PACKAGE

Package Body

The package body implements the package specification.    That is, the
package body contains the definition of every cursor and subprogram
declared in the package specification.    Keep in mind that subprograms
defined in a package body are accessible outside the package only if
their specifications also appear in the package specification.

The package body can also contain private declarations, which define
types and objects necessary for the internal workings of the package.
The scope of these declarations is local to the package body.
Therefore, the declared types and objects are inaccessible except
from within the package body.    Unlike a package specification, the
declarative part of a package body can contain subprogram bodies.

Following the declarative part of a package body is the optional
initialization part, which typically holds statements that initialize
some of the variables previously declared in the package.    The
initialization part of a package plays a minor role because, unlike
subprograms, a package cannot be called or passed parameters.    As a
result, the initialization part of a package is run only once, the
first time you reference the package.

Consider the package below named "emp_actions."    After writing the
package, you can develop applications that reference its types, call its
subprograms, use its cursor, or raise its exception.    When you CREATE
the package, it is stored in an Oracle database for general use.

 PACKAGE emp_actions IS
 /* Declare externally visible types, cursor, exception. */
 TYPE EmpRecTyp IS RECORD (emp_id INTEGER, salary REAL);
 TYPE DeptRecTyp IS RECORD (dept_id INTEGER, location CHAR);
 CURSOR desc_salary RETURN EmpRecTyp;
 salary_missing EXCEPTION;
 /* Declare externally callable subprograms. */
 FUNCTION hire_employee
 (ename CHAR,
 job CHAR,
 mgr INTEGER,
 sal NUMBER,
 comm NUMBER,
 deptno INTEGER) RETURN INTEGER;
 PROCEDURE fire_employee (emp_id INTEGER);
 PROCEDURE raise_salary (emp_id INTEGER, increase NUMBER);
 FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecTyp;
 END emp_actions;

 PACKAGE BODY emp_actions IS
 number_hired INTEGER; -- visible only in this package

 /* Fully define cursor specified in package. */
 CURSOR desc_salary RETURN EmpRecTyp IS
 SELECT empno, sal FROM emp ORDER BY sal DESC;

 /* Fully define subprograms specified in package. */

 FUNCTION hire_employee
 (ename CHAR,
 job CHAR,
 mgr INTEGER,
 sal NUMBER,
 comm NUMBER,
 deptno INTEGER) RETURN INTEGER IS
 new_empno INTEGER;
 BEGIN
 SELECT empno_seq.NEXTVAL INTO new_empno FROM DUAL;
 INSERT INTO emp VALUES (new_empno, ename, job,
 mgr, SYSDATE, sal, comm, deptno);
 number_hired := number_hired + 1;
 RETURN new_empno;
 END hire_employee;

 PROCEDURE fire_employee (emp_id INTEGER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;

 PROCEDURE raise_salary (emp_id INTEGER, increase NUMBER) IS
 current_salary NUMBER;
 BEGIN
 SELECT sal INTO current_salary FROM emp
 WHERE empno = emp_id;
 IF current_salary IS NULL THEN
 RAISE salary_missing;
 ELSE
 UPDATE emp SET sal = sal + increase
 WHERE empno = emp_id;
 END IF;
 END raise_salary;

 FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecTyp IS
 emp_rec EmpRecTyp;
 BEGIN
 OPEN desc_salary;
 FOR i IN 1..n LOOP
 FETCH desc_salary INTO emp_rec;
 END LOOP;
 CLOSE desc_salary;
 RETURN emp_rec;
 END nth_highest_salary;

 /* Define local function, available only in package. */
 FUNCTION rank (emp_id INTEGER, job_title CHAR)
 RETURN INTEGER IS
 /* Return rank (highest = 1) of employee in a given *
 * job classification based on performance rating. */

 head_count INTEGER;
 score NUMBER;
 BEGIN
 SELECT COUNT(*) INTO head_count FROM emp
 WHERE job = job_title;
 SELECT rating INTO score FROM reviews
 WHERE empno = emp_id;
 score := score / 100; -- maximum score is 100
 RETURN (head_count + 1) - ROUND(head_count * score);
 END rank;
 BEGIN -- initialization part starts here
 INSERT INTO emp_audit VALUES (SYSDATE, USER, 'EMP_ACTIONS');
 number_hired := 0;
 END emp_actions;

Remember, the initialization part of a package is run just once, the
first time you reference the package.    So, in the last example, only
one row is inserted into the database table "emp_audit."    Likewise,
the variable "number_hired" is initialized only once.    Every time the
procedure "hire_employee" is called, the variable "number_hired" is
updated.    However, the count kept by "number_hired" is session-specific.
That is, the count reflects the number of new employees processed by
one user, not the number processed by all users.

See also: Packages, Package Specification, CREATE PACKAGE BODY

Referencing Package Contents

To reference the types, objects, and subprograms declared within a
package specification, you use dot notation as follows:

 package_name.type_name
 package_name.object_name
 package_name.subprogram_name

You can reference package contents from database triggers, stored
subprograms, embedded PL/SQL blocks, and anonymous PL/SQL blocks sent
to Oracle interactively by SQL*Plus or SQL*DBA.    In the following
example, you reference the packaged variable "minimum_balance," which
is declared in the package "trans_data":

 DECLARE
 new_balance REAL;
 ...
 BEGIN
 ...
 IF new_balance < trans_data.minimum_balance THEN
 ...
 END IF;
 ...

See also: Packages, Package Specification

Private vs Public Objects

Unlike items declared in the package specification, items declared in
the body are restricted to use within the package.    PL/SQL code outside
the package cannot reference such items, so they are termed "private."
However, items declared in the package specification are visible
outside the package.    Any PL/SQL code can reference such items, so
they are termed "public."

When you must maintain items throughout a session or across
transactions, place them in the declarative part of the package body.
Remember, however, that the values of such items are session-specific.
If, in addition, you must make the items public, place them in the
package specification, where they are available for general use.

See also: Packages, Package Specification, Package Body

Calling Packaged Subprograms

Packaged subprograms must be referenced using dot notation, as the
following example shows:

 emp_actions.hire_employee(name, title, ...);

This tells the PL/SQL compiler that the procedure "hire_employee" is
found in the package "emp_actions."

You can call packaged subprograms from a database trigger, another
stored subprogram, an Oracle Precompiler application, an OCI
application, or an Oracle tool such as SQL*Plus.    Some examples follow.

A stored subprogram can call a packaged subprogram.    For instance, the
following call to the packaged procedure "hire_employee" might appear
in a standalone subprogram:

 emp_actions.hire_employee(name, title, ...);

An Oracle Precompiler or OCI application can call packaged subprograms
using anonymous PL/SQL blocks.    In the following example, you call the
packaged procedure "hire_employee" from an Oracle Precompiler program:

 EXEC SQL EXECUTE
 BEGIN
 emp_actions.hire_employee(:name, :title, ...);
 END;
 END-EXEC;

The actual parameters "name" and "title" are host variables.

You can call packaged subprograms interactively from Oracle tools such
as SQL*Plus and SQL*DBA.    For example, you might call the packaged
procedure "hire_employee" from SQL*Plus as follows:

 SQL> EXECUTE emp.actions.hire_employee('TATE', 'CLERK', ...);

Remote Access

You can use the following syntax to call packaged subprograms stored
in a remote Oracle database:

 package_name.subprogram_name@db_link(param1, param2, ...);

In the following example, you call the packaged procedure
"hire_employee" in the "newyork" database:

 emp_actions.hire_employee@newyork(name, title, ...);

See also: Packages, Subprograms, Stored Subprograms

Package State and Dependency

A package specification is always in one of two states: valid or
invalid.    A package specification is valid if neither its source code
nor any object it references has been DROPped, REPLACEd, or ALTERed
since the package specification was last compiled.

On the other hand, a package specification is invalid if its source code
or any object it references has been DROPped, REPLACEd, or ALTERed since
the package specification was last compiled.    When it invalidates a
package specification, Oracle also invalidates any objects that
reference the package.

A package body is subject to the same rules, except that Oracle can
recompile a package body without invalidating its corresponding package
specification.    This feature limits the extent to which invalidations
result in cascading recompilations.

Session Characteristics

Variables, constants, and cursors declared in a package have the
following unique characteristics:

 * Every session has its own set of packaged variables,
 constants, and cursors.
 * In a session, the first time you reference a package, its
 variables and cursor parameters are null unless you initialize
 them.
 * During a session, the package user can change the values of
 packaged variables and cursor parameters. When a session ends,
 the values are lost and must be reinitialized when the next
 session begins.

Declare variables and cursors in a package only when you want them to
persist throughout a session.

Dependency

When a package specification is recompiled, Oracle invalidates dependent
objects.    These include standalone or packaged subprograms that call or
reference objects declared in the recompiled package specification.    If
you call or reference a dependent object before it is recompiled, Oracle
automatically recompiles it at run time.

When a package body is recompiled, Oracle determines if objects on
which the package body depends are valid.    These include standalone
subprograms and package specifications called or referenced by a
procedure or cursor defined in the recompiled package body.    If any
of these objects are invalid, Oracle recompiles them before recompiling
the package body.    If Oracle can recompile it successfully, the package
body becomes valid.    Otherwise, Oracle returns a runtime error and the
package body remains invalid.    Compilation errors are stored in the data

dictionary with the package.

Oracle stores the package specification and body separately in the data
dictionary.    Other objects that call or reference global package objects
depend only on the package specification.    Therefore, you can redefine
objects in the package body (which causes the body to be recompiled)
without causing Oracle to invalidate their dependent objects.

See also: Packages, Package Specification, Package Body

Package STANDARD

A package named STANDARD defines the PL/SQL environment.    The package
specification globally declares types, exceptions, and subprograms,
which are available automatically to every PL/SQL program.    For example,
package STANDARD declares the following built-in function named ABS,
which returns the absolute value of its argument:

 FUNCTION ABS (n NUMBER) RETURN NUMBER;

The contents of package STANDARD are directly visible to applications.
So, you can call ABS from a database trigger, a stored subprogram, an
Oracle Precompiler application, an OCI application, and a variety of
Oracle tools including SQL*Plus, SQL*DBA, Oracle Forms, and Oracle
Reports.

If you redeclare ABS in a PL/SQL program, your local declaration
overrides the global declaration.    However, you can still call the
built-in function by using dot notation, as follows:

 ... STANDARD.ABS(x) ...

Most built-in functions are overloaded.    For example, package STANDARD
contains the following declarations:

 FUNCTION TO_CHAR (right DATE) RETURN VARCHAR2;
 FUNCTION TO_CHAR (left NUMBER) RETURN VARCHAR2;
 FUNCTION TO_CHAR (left DATE, right VARCHAR2) RETURN VARCHAR2;
 FUNCTION TO_CHAR (left NUMBER, right VARCHAR2) RETURN VARCHAR2;

PL/SQL resolves a call to TO_CHAR by matching the number and datatypes
of the formal and actual parameters.

See also: Packages, Product-specific Packages, Overloading

Product-specific Packages

To help you build PL/SQL-based applications, the Oracle Server and
several Oracle tools supply packages containing product-specific
subprograms.    For instance, the Oracle Server supplies (among others)
the packages DBMS_STANDARD and DBMS_SQL.

Package DBMS_STANDARD provides language facilities that help your
application interact with Oracle.    For example, this package provides
a procedure named "raise_application_error," which lets you issue
user-defined error messages.    That way, you can report errors to an
application and avoid returning unhandled exceptions.

Package DBMS_SQL allows PL/SQL to execute SQL data definition and
data manipulation statements dynamically at run time.    For example,
when called, the following stored procedure drops a specified
database table:

CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS
 cid INTEGER;
BEGIN
 /* Open new cursor and return cursor ID. */
 cid := dbms_sql.open_cursor;
 /* Parse and immediately execute dynamic SQL statement built by
 concatenating table name to DROP TABLE command. (Unlike DML
 statements, DDL statements are executed at parse time.) */
 dbms_sql.parse(cid, 'DROP TABLE ' || table_name, dbms_sql.v7);
 /* Close cursor. */
 dbms_sql.close_cursor(cid);
EXCEPTION
 /* If an exception is raised, close cursor before exiting. */
 WHEN OTHERS THEN
 dbms_sql.close_cursor(cid);
END drop_table;

See also: Packages, Package STANDARD, raise_application_error Procedure

raise_application_error Procedure

A package named DBMS_STANDARD provides language facilities that
help your application interact with Oracle.    This package provides
a procedure named "raise_application_error," which lets you issue
user-defined error messages.    That way, you can report errors to an
application and avoid returning unhandled exceptions.    The calling
syntax is

 raise_application_error(error_number, message [, TRUE | FALSE]);

where "error_number" is a negative integer in the range -20000 .. -20999
and "message" is a character string up to 2048 bytes in length. If the
optional third parameter is TRUE, the error is placed on the stack of
previous errors.    If the parameter is FALSE (the default), the error
replaces all previous errors.

Package DBMS_STANDARD is an extension of package STANDARD, so you need
not qualify references to it.

An application can call "raise_application_error" only from an
executing stored subprogram.    When called, "raise_application_error"
ends the subprogram, rolls back any database changes it made, and
returns a user-defined error number and message to the application.
The error number and message can be trapped like any Oracle error.
An example follows:

 PROCEDURE raise_salary (emp_id NUMBER, increase NUMBER) IS
 current_salary NUMBER;
 BEGIN
 SELECT sal INTO current_salary FROM emp
 WHERE empno = emp_id;
 IF current_salary IS NULL THEN
 raise_application_error(-20101, 'Salary is missing');
 ELSE
 UPDATE emp SET sal = current_salary + increase
 WHERE empno = emp_id;
 END IF;
 END raise_salary;

The calling application gets a PL/SQL exception, which it can process
using the error-reporting functions SQLCODE and SQLERRM in an OTHERS
handler.    Furthermore, it can use EXCEPTION_INIT to map specific error
numbers returned by "raise_application_error" to exceptions of its own,
as follows:

 EXEC SQL EXECUTE
 DECLARE
 ...
 null_salary EXCEPTION;
 PRAGMA EXCEPTION_INIT(null_salary, -20101);
 BEGIN
 ...
 raise_salary(:emp_number, :amount);

 EXCEPTION
 WHEN null_salary THEN
 INSERT INTO emp_audit VALUES (:emp_number, ...);
 ...
 END;
 END-EXEC;

This technique allows the calling application to handle error conditions
in specific exception handlers.    Typically, "raise_application_error" is
used in database triggers.

See also: Procedures, Database Triggers, Packages, Package STANDARD

