
 Oracle Objects for OLE
Copyright Other Information Sources

Requirements

Overview
Object
Relationships

Getting Started Error Handling

The OLE Server
Objects Methods Properties

The Data Control
Properties Methods Events

Oracle-Specific Notes On:
Locks and Editing
Long and Long Raw Columns

Transactions
''SELECT ... FOR UPDATE''

Technical Notes On:
Tuning and Customization
Sample Code Conventions
Redistributable Files
Coding Techniques

Method And Property Name
Conflicts
Troubleshooting
Data Aware Controls
Oracle Objects for OLE and Visual
Basic

For Help on Help, Press F1

Modification History
Version 1.0.42.0 December 1994
Finalized Oracle Objects for OLE
Version 1.0.53.0 (Internal) March 27, 1995
Added Modification History Topic
Fixed references to COUNT property of the OraParameters Collection
Modified Troubleshooting Topic and added section about duplicate DLLs
Added Copyright Topic
Removed Add/Remove methods from OraParameter Object since these are only valid

for the OraParameters Collection
Fixed typos in the OraSession Remarks section
Fixed underline typo at the end of the Transactions topic
Fixed typo in the Redistributable file topic
Changed    reference of method to property in the RecordCount property
Fixed GetChunk Link in See Also of Error Handling Topic
Fixed all See Also/Properties/Methods in OLESERV.DOC to be consistent as far as not

repeating the words property/method, etc.
Fixed alpha ordering of See Also in FieldSize Method
Fixed alpha ordering of See Also in Move Methods
Changed CreateNameSession to CreateNamedSession
Added code to the CreateNamedSession Example
Changed code samples to use DbOpenDatabase instead of OpenDatabase
Added See Also to the following Data Control properties: BackColor, DragIcon,

DragMode, Enabled, FontBold, FontItalics, FontName, FontSize, FontStrikethru,
FontUnderline, ForeColor, Height, Index, Left, MousePointer, Top, Visible, Width

Added See Also to the following Data Control Methods: Drag, Move
Added See Also to the following Data Control Events: DragDrop, DragOver, Error,

MouseDown, MouseMove, MouseUp, Reposition, Validate
Added extra information to the RecordCount property about nocache
Added ORADYN_NOMOVEFIRST option to CreateDynaset
Fixed ConnectSession & Example, CreateNamedSession & Example and

CreateSession about no cross application session sharing
Added version numbers for C++ compilers to the Requirements topic.
Updated Copyright topic.
Added the return value to ExecuteSQL
Added some clarification to the Data Aware Controls section
Updated the "OO4O and VB" section
Version 1.0.55.0 April 1995
Added new values to the Type property and rearranged the table
Added more information to Data Aware Controls
Added Standard/Pro to Requirements for VB3
Added information to AddNew/Edit/Delete about canceling each other
Removed NoMoveFirst option of CreateDynaset
Rephrased the AddNew/Delete/Edit canceling each other sentences in each of those

topics
Updated Add, Remove, and ExecuteSQL methods, and ServerType property examples

to show how a stored function would be called.

Copyright
Oracle Objects for OLE,    Version 1.0

Release 1.0.55.0

Copyright (c) Oracle Corporation    1994-1995

Primary Authors:    Keith Majkut, Kevin Whitley
Contributors: Jia-Der Day, Geraldine Kuo, Diana Lorentz, Paul Richard, Bill
Sisson

This software was not developed for use in any nuclear, aviation, mass transit,
medical, or other inherently dangerous applications. It is the customer's
responsibility to take all appropriate measures to ensure the safe use of such
applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions
on use and disclosure and is also protected by copyright law.    Reverse
engineering of the software is prohibited. If this software/documentation is
delivered to a U.S. Government Agency of the Department of Defense, then it
is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-
7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA    94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with "Restricted Rights,"
as defined in FAR 52.227-14, Rights in Data - General, including Alternate III
(June 1987).

The information in this document is subject to change without notice.    If you
find any problems in the documentation, please report them to us in writing.   
Oracle Corporation does not warrant that this document is error-free.

Other Information Sources

The following Oracle publications contain more information about various topics
mentioned here:

Oracle7 Server Application Developer's Guide
Oracle7 Server Concepts Manual
Oracle7 Server SQL Language Quick Reference
Oracle7 Server SQL Language Reference Manual
PL/SQL User's Guide and Reference
PL/SQL V2.1 and Precompiler's V1.6 Addendum
Oracle7 Server Documentation Addendum

Requirements
See Also
Design Time

The Oracle Object Server requires an application that supports OLE Automation, such
as Visual Basic 3.0 (Standard or Professional), Excel 5.0, or Access 2.0.

The Oracle Data Control requires Visual Basic 3.0 (Standard or Professional).
The Oracle Objects for OLE C++ Class Library requires either Microsoft Visual C++

Version 1.5 (16 bit) or Borland C++ Version 4.0/4.5 (16 bit).    Neither the OLE SDK nor OLE
development knowledge is necessary.

Run Time
Windows 3.1 or an equivalent environment capable of running 16 bit Windows

applications such as Windows NT (using WOW) or OS/2 (using Win-OS/2).
A local or remote Oracle7 database.
Oracle SQL*Net Version 1.x or 2.x if connecting to a remote Oracle7 database.
Microsoft OLE 2.0.1 or greater run time files (included with the Oracle Objects for OLE

installation).

See Also
Oracle Data Control
Oracle Object Server
Redistributable Files

Overview
See Also
Oracle Objects for OLE

Oracle Objects for OLE is a collection of programmable objects that simplifies
the development of applications designed to communicate with an Oracle7
database. Oracle Objects for OLE is particularly well suited for any
programming environment that supports Visual Basic custom controls (VBX) or
OLE Automation.    Oracle Objects for OLE consists of three principle
components: the Oracle Object Server, the Oracle Data Control, and the
Oracle Objects for OLE C++ Class Library.

The Oracle Object Server
The Oracle Object Server is an OLE In Process server that supports a collection
of programmable objects for Oracle7 databases running either locally or
remotely.    An OLE In Process server is a special kind of OLE server, running in
a Windows DLL, that supports the OLE Automation interface. An OLE In
Process server has no user interface and is not embeddable.    You can access
the Oracle Object Server through the Oracle Data Control, through any
application that supports OLE Automation (such as in Visual Basic for
Applications, in applications such as Microsoft Excel Version 5.0 and Access
2.0), and through the Oracle Objects for OLE C++ Class Library.

The Oracle Data Control
The Oracle Data Control is a Visual Basic custom control for use with
development tools that support custom controls.    The Oracle Data Control is
compatible with the Microsoft data control included with Visual Basic.    If you
are familiar with that data control, learning to use the Oracle Data Control is
quick and easy.

The Oracle Objects for OLE C++ Class Library
The Oracle Objects for OLE C++ Class Library is a collection of C++ classes
that provide programmatic access to the Oracle Object Server.    Although the
class library is implemented using OLE Automation, neither the OLE
development kit nor any OLE development knowledge is necessary to use it.   
In addition to the object classes, the class library provides a bound class,
which allows controls such as text and list boxes to be linked directly to a field
of a dynaset (columns in the database).    The bound class supports late,
runtime binding, as is available in Visual Basic.    The Oracle Objects for OLE
C++ Class Library is supported for Microsoft Visual C++ and (for the bound
class) the Microsoft Foundation Classes as well as Borland C++ and (for the
bound class) the Object Windows Library.

Available Objects
OraClient
An OraClient object defines a workstation domain and manages collections of

OraSession objects.
OraSession
An OraSession object manages collections of OraDatabase objects and provides

connection sharing and transactional control.
OraConnection
An OraConnection object represents a single connection to an Oracle database.
OraDatabase
An OraDatabase object represents a single virtual login to an Oracle database.

OraParameter
An OraParameter object represents a bind variable in a SQL statement or PL/SQL

block.
OraDynaset
An OraDynaset object represents the rows and columns returned from a SQL

SELECT statement.
OraField
An OraField object represents a single column within a row of an OraDynaset

object.

In addition, there exist objects that represent collections of OraSession,
OraConnection, OraParameter, and OraField objects.

Oracle Objects for OLE, OLE, and the Oracle Database
Figure 1 shows the high-level relationship between the Oracle Data Control,
the Oracle Objects for OLE C++ Class Library, the Oracle Object Server, OLE,
and the Oracle7 database.

See Also
Oracle Data Control
Oracle Object Server
OraConnection Object
OraConnections Collection
OraClient Object
OraDatabase Object
OraDynaset Object
OraField Object
OraFields Collection
OraParameter Object
OraParameters Collection
OraSession Object
OraSessions Collection

Figure 1 Relationships

Object Relationships
See Also

An operational hierarchy of the objects expresses has-a and "belongs-to"
relationships. This hierarchy can be drawn as follows:

The "crow's feet" indicate the many ends of one-to-many or many-to-one
relationships.

Each OraClient object can have many OraSession objects.
Each OraSession object can be associated with only one OraClient object.

Each OraSession object can have many OraConnection objects.
Each OraConnection object can be shared by many OraDatabase objects, although
these OraDatabase objects must be within the same OraSession object.

Each OraDatabase object belongs to only one OraSession object.
Each OraDynaset object belongs to only one OraDatabase object.

Each OraField object belongs to only one OraDynaset object.
Each OraParameter object belongs to only one OraDatabase object.

You can create the OraSession, OraDatabase, OraDynaset, and OraParameter
objects explicitly; the OraClient, OraConnection, and OraFields objects are
created implicitly when necessary.

One OraClient object exists per workstation.    This object is created when the first
OraSession object is created.    An OraConnection object may be created when an
OraDatabase is created if that OraDatabase is not sharing a previously created
connection.    One OraField object is created per database column of your SQL
SELECT statement when an OraDynaset is created.    OraParameter objects are
user created.

See Also
OraClient Object
OraConnection Object
OraDatabase Object
OraDynaset Object
OraField Object
OraParameter Object
OraSession Object

Getting Started
See Also

Oracle Objects for OLE is designed to provide access to the data of an Oracle
database using the dynaset object.    The dynaset object is not the topmost
object according to the Object Relationship diagram of Oracle Objects for OLE. 
This means that you must create or instantiate all of the objects a dynaset
depends on (client, session, connection, and database)

Using OLE Automation
When accessing the Oracle Object Server using the OLE Automation interface,
you must create each object explicitly (except for the client object, which is
always created automatically). The following code fragment demonstrates
how to create first all of the objects required by a dynaset and then the
dynaset itself.

...
'Declare variables as OLE Objects.
Dim OraSession As Object
Dim OraDatabase As Object
Dim OraDynaset As Object

'Create the OraSession Object. Notice that this is the
'only object created via the CreateObject method. The
'argument to CreateObject is the name by which the
'OraSession object is known to the OLE system.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a
'connection to Oracle.
Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb",
"scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp",
0&)

'You can now display or manipulate the data in the dynaset
'named 'OraDynaset'.
...

Using the Oracle Data Control
If you want to use the Oracle Data Control with Visual Basic 3.0, you should
create a new project and then use the "Add File" option of the File menu to
add the file ORADC.VBX to your project.    The Oracle Data Control will be
added to your Visual Basic tool palette and will look like this:

The Oracle Data Control makes creating a dynaset easier, because it does not
require you to create the underlying objects.    When the Oracle Data Control is
refreshed, a client (if needed), session, database, and dynaset are created
automatically.    The following code fragment demonstrates how to
programmatically set the properties of the Oracle Data Control required to

create a dynaset. Alternatively, you could set these properties by way of the
properties window of Visual Basic.

...
 'Set the username and password.
 oradata1.Connect = "scott/tiger"

 'Set the databasename.
 oradata1.DatabaseName = "ExampleDb"

 'Set the recordsource.
 oradata1.RecordSource = "select * from emp"

 'Refresh the data control.
 oradata1.Refresh
...

You now have a valid client, session, database, and dynaset.    The client,
session, database, and dynaset are referenced using
oradata1.database.session.client, oradata1.database.session,
oradata1.database, and oradata1.recordset, respectively.

Using Microsoft C++ or Borland C++
Please read the Oracle Objects for OLE C++ Class Library documentation for
further details of using C++ with Oracle Objects for OLE.

See Also
Object Relationships
Oracle Data Control
OraClient Object
OraConnection Object
OraDatabase Object
OraDynaset Object
OraField Object
OraSession Object

Error Handling
See Also

OLE Automation Errors
The programmatic interface of the Oracle Object Server is OLE Automation.
Therefore, errors that occur during execution of methods are frequently
reported simply as an OLE Automation Error (ERR = 440, ERROR$ = OLE
Automation Error).    If such an error occurs, you should check the
LastServerErr property of the OraSession and OraDatabase objects to
determine whether an Oracle database error has occurred.    If LastServerErr
is non-zero, then an error has been raised by the Oracle Object Server.    To
find the Oracle Object Server Error, scan the string returned by the ERROR$
function for the string "OIP-NNNN" where NNNN is some error number included
in the table below.

Constant Value Description
OERROR_ADVISEULINK 4096 Internal Error.
OERROR_POSITION 4098 An attempt was made to retrieve a field value

from an empty dynaset.
OERROR_NOFIELDNAME 4099 An invalid field name was specified.
OERROR_TRANSIP 4101 A BeginTrans was specified while a transaction

is already in progress
OERROR_TRANSNIPC 4104 A CommitTrans was specified without first

executing BeginTrans.
OERROR_TRANSNIPR 4105 A Rollback was specified without first executing

BeginTrans.
OERROR_NODSET 4106 Internal Error.
OERROR_INVROWNUM 4108 An attempt was made to reference an invalid row. 

This will happen when EOF or BOF is True or
when the current row has been deleted and no
record movement has occurred.

OERROR_TEMPFILE 4109 An error occurred while trying to create a
temporary file for data caching.

OERROR_DUPSESSION 4110 An attempt was made to create a named session
using CreateSession or CreateNamedSession
that already exists.

OERROR_NOSESSION 4111 Internal Error.
OERROR_NOOBJECTN 4112 An attempt was made to reference a named

object of a collection (other than the fields
collection) that does not exist.

OERROR_DUPCONN 4113 Internal Error.
OERROR_NOCONN 4114 Internal Error.
OERROR_BFINDEX 4115 An invalid field index was specified.    The range of

indices is 0 to Count -1.
OERROR_CURNREADY 4116 Internal Error.
OERROR_NOUPDATES 4117 An attempt was made to change the data of a

nonupdatable dynaset.
OERROR_NOTEDITING 4118 An attempt was made to change a fields value

without first executing Edit.
OERROR_DATACHANGE 4119 An attempt was made to Edit data in the local

cache, but the data on the Oracle server has
been changed.

OERROR_NOBUFMEM 4120 Out of memory for data binding buffers.

OERROR_INVBKMRK 4121 An invalid bookmark was specified.
OERROR_BNDVNOEN 4122 Internal Error.
OERROR_DUPPARAM 4123 An attempt was made to create a named

parameter using Add, but that name already
exists.

OERROR_INVARGVAL 4124 An invalid offset or length parameters was passed
to GetChunk or an internal error has occurred
using AppendChunk.

OERROR_INVFLDTYPE 4125 An attempt was made to use GetChunk or
Append Chunk on a field that was not of the
type Long or Long Raw.

OERROR_TRANSFORUP 4127 A SELECT ... FOR UPDATE was specified without
first executing BeginTrans

OERROR_NOTUPFORUP 4128 A SELECT ... FOR UPDATE was specified but the
query is non-updatable.

OERROR_TRANSLOCK 4129 A Commit or Rollback was executed while a
SELECT ... FOR UPDATE is in progress.

OERROR_CACHEPARM 4130 An invalid cache parameter was specified.
OERROR_FLDRQROWID 4131 An attempt was made to reference a field that

requires a ROWID (Long or Long Raw), but the
ROWID was not available.

These values can be found in the file ORACONST.TXT.

Oracle Errors
The most recent Oracle database error and error text is available from the
OraSession or OraDatabase object properties LastServerErr and
LastServerErrText.

The LastServerErr and LastServerErrText properties of the OraSession
object return all errors related to connections, such as errors on
OpenDatabase.

The LastServerErr and LastServerErrText properties of the OraDatabase
object return all errors related to an Oracle cursor, such as errors on
CreateDynaset and ExecuteSQL.

See Also
Add Method
AppendChunk Method
BeginTrans Method
BOF Property
CommitTrans Method
CreateNameSession Method.
CreateSession Method
Edit Method
EOF Property
ExecuteSQL Method
GetChunk Method
LastServerErr Property
LastServerErrPos Property
LastServerErrText Property
Locks and Editing
Long and Long Raw Columns
OpenDatabase Method
OraDatabase Object
OraSession Object
Rollback Method
SELECT ... FOR UPDATE

Locks and Editing
See Also

One of the defining features of client-server computing is that many clients may be
accessing the server simultaneously.    This feature means that several clients may
access the same table or record simultaneously.    In Oracle7 this issue is generally
resolved using locks.    Locks allow one client to restrict other clients use of a table or
record.    Locks are placed temporarily on database entities to prevent confusion and
data corruption.

When you use Oracle Objects for OLE, locks are not placed on data until an Edit
method is executed.    The Edit method attempts to obtain a lock (using "SELECT ...
FOR UPDATE") on the current record of the dynaset.    This is done as late as possible
to minimize the time that locks are placed on the records.    The Edit method can fail
for several reasons:

The SQL query violates the Oracle SQL updatability rules, for instance, by using
calculated columns or table joins.

The user does not have the privileges needed to obtain a lock.
The record has been locked already by another user.    The OpenDatabase method

has an option so that you can decide whether to wait on locks.

See Also
Edit Method
OpenDatabase Method
Using "SELECT ... FOR UPDATE"

Transactions
See Also

A transaction is a logical unit of work that comprises one or more SQL statements
executed by a single user.    A typical example is transferring money from one bank
account to another.    Two operations take place:

1. Money is taken out of one account.
2. Money is put into the other account.

These operations need to be performed together.    If one were to be done and the
other not done (for example, if the network connection went down), the banks books
would not balance correctly.

Normally, when you execute an Update method on a dynaset, the changes are
committed to the database immediately.    Each operation is treated as a distinct
transaction.    Using the BeginTrans, CommitTrans, and Rollback transactional
control methods of the OraSession object allows operations to be grouped into
larger transactions.    BeginTrans tells the session that you are starting a group of
operations.    CommitTrans makes the entire group of operations permanent.   
Rollback cancels the entire group.    CommitTrans and Rollback end the
transaction and the program returns to normal operation: one transaction per
operation.    Experienced Oracle users should note the following differences between
the operation of Oracle Objects for OLE and many Oracle tools:

Oracle tools such as SQL*Plus execute as if the BeginTrans method was called when
the tool was started.    This means that updates are not committed immediately, but are held
until a commit or rollback is executed.

SQL*Plus always starts a new transaction every time a commit or rollback is
executed.

The autocommit setting in SQL*Plus results in behavior similar to the default of the
Oracle Objects for OLE.

If you are connected to more than one database and use the transaction methods,
you should understand that Oracle Objects for OLE commits each database
separately.    This is not the same as the two-phase commit that Oracle7 provides.    If
your application needs to guarantee data integrity across databases, you should
connect to a single database and then access additional databases by way of the
Oracle7 database link feature.    This method gives you the benefit of Oracle7s two-
phase commit.    Consult your Oracle7 documentation for more information about two-
phase commit, database links, and distributed transactions.

Transactions apply only to the Data Manipulation Language (DML) portion of the SQL
language (such as    INSERT, UPDATE, and DELETE).    Transactions do not apply to the
Data Control Language (DCL) or Data Definition Language (DDL) portions (such as
CREATE, DROP, ALTER, etc.) of the SQL language.    DCL and DDL commands always
force a commit, which in turn commits everything done before them.

See Also
BeginTrans Method
CommitTrans Method
OraConnection Object
OraSession Object
ResetTrans Method
Rollback Method

Long and Long Raw Columns
See Also
Putting

Long and long raw columns of an Oracle database can contain up to 2
gigabytes of data.    Data of less than 64K bytes can be put into the database
using simple assignment, but data exceeding 64K bytes must be put into the
database using AppendChunk.    The Oracle database libraries do not allow
putting of data in multiple pieces, so the data is held internally and put in one
piece upon an Update.

Fetching
Long and long raw columns of an Oracle database can contain up to 2
gigabytes of data.    This makes it impractical to retrieve all data from a long or
long raw column automatically when it is selected.    Instead, the first 64K
bytes is retrieved and the Oracle ROWID is cached locally so that the row
containing the long or long raw column can be located and then retrieved
when using the GetChunk method.    If the Oracle ROWIDs cannot be obtained
on a query with a long or long raw column, then the long or long raw column
will not be accessible and an error will be generated if field access is
attempted.

Editing
Before an Edit can be started, a column's locally cached value is compared
with its current database value.    If the values match, the edit proceeds;
otherwise an error is generated.    Since long and long raw columns may
contain up to 2 gigabytes of data, no comparison is done before an Edit is
started.

See Also
AppendChunk Method
FieldSize Method
Edit Method
GetChunk Method
OraDynaset Object
Update Method

"SELECT ... FOR UPDATE"
See Also Example

Normally, when a dynaset is created, rows are not locked in the database until Edit is
invoked.    If this is not desirable, you might include the FOR UPDATE construct in the
SQL SELECT statement.    Unfortunately, the FOR UPDATE construct undermines
normal dynaset operations, so Oracle does not recommend its use.

Dynasets created with FOR UPDATE are handled correctly in most cases by scanning
the SQL statement for the FOR UPDATE construct (This is necessary because the
Oracle database functions do not distinguish between SELECT and SELECT FOR
UPDATE SQL statements.)    It is possible that some exotic FOR UPDATE SQL statement
will be treated as "not FOR UPDATE"meaning that rows are not locked during the
lifetime of the dynaset.    If the FOR UPDATE is not recognized, rows are locked only
during an Edit/Update sequence.    However, during the Edit/Update sequence, the
row is verified as unchanged before the Edit is permitted.

The use of FOR UPDATE on dynasets requires that a session level transaction be in
progress at the time the dynaset is created.    Further, before the session can be
committed or rolled back, all objects which reference the dynaset must be set to
"Nothing" or an error is returned.    In the case of a data control, change the record
source and Refresh the data control or Recordset.

Note that if an error results and the application terminates, uncommitted data is
rolled back, including pending FOR UPDATE dynasets.

See Also
Edit Method
Locks and Editing
Refresh Method
Recordset Property
Update Method

''SELECT ... FOR UPDATE'' Example

This example demonstrates the use of SELECT ... FOR UPDATE to lock all the rows of a
dynaset while it is being updated.    Copy this code into the definition section of a form.   
Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object
 Dim fld As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Start Transaction processing before creating the dynaset
 'with FOR UPDATE, or an error will occur.
 OraSession.DbBeginTrans

 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp FOR UPDATE",
0&)

 ' Create a field object for faster access.
 ' This will cause a reference to the Dynaset to be held.
 Set fld = OraDynaset.Fields("sal")

 'Traverse until EOF is reached, setting
 'each employee's salary to zero.
 Do Until OraDynaset.EOF
 OraDynaset.DbEdit
 fld.value = 0
 OraDynaset.DbUpdate
 OraDynaset.DbMoveNext
 Loop
 MsgBox "All salaries set to ZERO."

 'When using FOR UPDATE, you must close (reduce the
 ' reference count to zero) the dynaset by setting it to
 ' Nothing, or an error will occur.
 Set OraDynaset = Nothing

 'You must also set fld to Nothing since it contains a
 ' reference to the dynaset.
 Set fld = Nothing

 'End Transaction processing

 OraSession.DbCommitTrans

End Sub

Tuning and Customization
See Also

A number of working parameters of Oracle Objects for OLE can be customized.   
Access to these parameters is provided through the Oracle initialization file, by
default named ORAOLE.INI.    Each entry currently available in that file is described
below.    The location of the ORAOLE.INI file is specified by the ORAOLE environment
variable.    Note that this variable should specify a full pathname to the Oracle
initialization file, which is not necessarily named ORAOLE.INI.    If this environment
variable is not set, or does not specify a valid file entry, then Oracle Objects for OLE
looks for a file named ORAOLE.INI in the Windows directory.    If this file does not exist,
all of the default values listed will apply.

You can customize the following sections of the ORAOLE.INI file:

[Cache Parameters]

A cache consisting of temporary data files is created to manage amounts of
data too large to be maintained exclusively in memory.    This cache is needed
primarily for dynaset objects, where, for example, a single LONG RAW column
can contain more data than exists in physical (and virtual) memory.

The default values have been chosen for simple test cases, running on a
machine with limited Windows resources.    Tuning with respect to your
machine and applications is recommended.

Note that the values specified below are for a single cache, and that a
separate cache is allocated for each object that requires one.    For example, if
your application contains three dynaset objects, three independent data
caches are constructed, each using resources as described below.

SliceSize = 256 (default)
This entry specifies the minimum number of bytes used to store a piece of
data in the cache.    Items smaller than this value are allocated the full
SliceSize bytes for storage; items larger than this value are allocated an
integral multiple of this space value.    An example of an item to be stored is a
field value of a dynaset.

PerBlock = 16 (default)
This entry specifies the number of Slices (described in the preceding entry)
that are stored in a single block.    A block is the minimum unit of memory or
disk allocation used within the cache.    Blocks are read from and written to the
disk cache temporary file in their entirety.    Assuming a SliceSize of 256 and a
PerBlock value of 16, then the block size is 256 * 16 = 4096 bytes.

CacheBlocks = 20 (default)
This entry specifies the maximum number of blocks held in memory at any
one time.    As data is added to the cache, the number of used blocks grows
until the value of CacheBlocks is reached. Previous blocks are swapped from
memory to the cache temporary disk file to make room for more blocks.    The
blocks are swapped based upon recent usage.    The total amount of memory
used by the cache is calculated as the product of (SliceSize * PerBlock *
CacheBlocks).

Recommended Values: You may need to experiment to find optimal cache

parameter values for your applications and machine environment.    Here are
some guidelines to keep in mind when selecting different values:

The larger the (SliceSize * PerBlock) value, the more disk I/O is required for swapping
individual blocks.

The smaller the (SliceSize * PerBlock) value, the more likely it is that blocks will need
to be swapped to or from disk.

The larger the CacheBlocks value, the more memory is required, but the less likely it
is that swapping will be required.

A reasonable experiment for determining optimal performance might proceed
as follows:

Keep the SliceSize >= 128 and vary PerBlock to give a range of block sizes from 1K
through 8K.

Vary the CacheBlocks value based upon available memory.    Set it high enough to
avoid disk I/O, but not so high that Windows begins swapping memory to disk.

Gradually decrease the CacheBlocks value until performance degrades or you are
satisfied with the memory usage.    If performance drops off, increase the CacheBlocks value
once again as needed to restore performance.

[Fetch Parameters]

FetchLimit = 20 (default)
This entry specifies the number of elements of the array into which data is
fetched from Oracle.    If you change this value, all fetched values are
immediately placed into the cache, and all data is retrieved from the cache.   
Therefore, you should create cache parameters such that all of the data in the
fetch arrays can fit into cache memory. Otherwise, inefficiencies may result.

Increasing the FetchLimit value reduces the number of fetches (calls to the
database) calls and possibly the amount of network traffic.    However, with
each fetch, more rows must be processed before user operations can be
performed.    Increasing the FetchLimit increases memory requirements as
well.

FetchSize = 4096 (default)
This entry specifies the size, in bytes, of the buffer (string) used for retrieved
data.    This buffer is used whenever a long or long raw column is initially
retrieved.

[General]

TempFileDirectory = [Path]
This entry provides one method for specifying disk drive and directory location
for the temporary cache files.    The files are created in the first legal directory
path given by:

1. The drive and directory specified by the TMP environment variable (this
method takes precedence over all others);

2. The drive and directory specified by this entry (TempFileDirectory) in
the [general] section of the ORAOLE.INI file;

3. The drive and directory specified by the TEMP environment variable; or
4. The current working drive and directory.

HelpFile = [Path and File Name]
This entry specifies the full path (drive/path/filename) of the Oracle Objects for
OLE help file as needed by the Oracle Data Control.    If this entry cannot be
located, the file ORACLEO.HLP is assumed to be in the directory where
ORADC.VBX is located (normally \WINDOWS\SYSTEM).

See Also
CreateDynaset Method
Long and Long Raw Columns
OraDynaset Object

Coding Techniques
See Also
Avoiding Excessive Object References

Oracle Objects for OLE is based on OLE Automation.    While OLE Automation
provides an excellent method of extending applications, it is not without cost. 
Poor coding techniques can cause extra object references and result in poor
performance.

When using OLE Automation, it is preferable to reduce the number of object
references.    If you find you are frequently referencing a particular object (a
column for example), it is much faster to declare a second object and set it to
the value of the much-referenced object.    This is true for singular objects as
well as objects that are part of a collection.

Consider the following code fragment:
...
'Declare variables as OLE Objects.
Dim OraSession As Object
Dim OraDatabase As Object
Dim OraDynaset As Object

 'Create the OraSession Object
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb",
"scott/tiger", 0&)

 'Create the OraDynaset Object
 Set OraDynaset = OraSession.Database.DbCreateDynaset("select *
from emp", 0&)

The dynaset creation above is inefficient, because the Database property of
the OraSession object is used instead of using the OraDatabase object that
was already created.    That code results in one extra object reference.    The
correct code is:

 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp",
0&)

This example is only a small improvement and will not likely result in much
time saved.    Consider the following code fragment:
...
 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp",
0&)

'Traverse until EOF is reached, setting each employee's
 'salary and commission to zero.
 Do Until OraDynaset.EOF
 OraDynaset.DbEdit
 OraDynaset.Fields("sal").value = 0
 OraDynaset.Fields("comm").value = 0

 OraDynaset.DbUpdate
 OraDynaset.DbMoveNext
 Loop
...
The field references are inefficient, because the Fields property of the
OraDynaset object is referenced every time a field is needed.    The correct
code is:
...
Dim flds() As Object
Dim i,fldcount As Integer

 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp",
0&)

'Get the field count, and output the names
 fldcount = OraDynaset.Fields.Count

 ReDim flds(0 To fldcount - 1)
 For i = 0 To fldcount
 Set flds(i) = OraDynaset.Fields(i)
 Next I

 'Traverse until EOF is reached, setting each employee's
 'salary and commission to zero.
 Do Until OraDynaset.EOF
 OraDynaset.DbEdit
 flds(5).value = 0 'SAL is column 5 (zero based).
 flds(6).value = 0 'COMM is column 6 (zero based).
 OraDynaset.DbUpdate
 OraDynaset.DbMoveNext
 Loop
...
This examples shows how to reference fields through a field object and not
through the fields collection of the dynaset.    Testing proves that this small
amount of extra code greatly improves performance.

Any method or object that is referenced through more than one object is
potentially inefficient, but the extra coding is not always worth the time saved
(as in the first example above).    The best place to start is with field
references, because they are most likely to occur multiple times.

See Also
Database Property
Fields Property
OraDatabase Object
OraField Object
OraFields Collection
OraSession Object

Sample Code Conventions
See Also

The following conventions apply throughout the sample code included here and the
sample applications shipped with Oracle Objects for OLE:

The user scott with password tiger (scott/tiger) is used for the Connect property.
The SQL*Net alias ExampleDb is used for the DatabaseName property.
The data tables referenced are the standard Oracle demonstration tables. You can

create them with the script DEMOBLD7.SQL. (You can drop these tables and views with the
script DEMODRP7.SQL.)

You can create the stored procedures referenced with the script ORAEXAMP.SQL.
The file ORACONST.TXT contains constant values such as True and False (defined

as the corresponding values in Visual Basic), and other constants used for options flags and
property values.

If the Oracle Data Control is used, its name is "oradata1".

See Also
Connect Property
DatabaseName Property

Method And Property Name Conflicts
See Also

The Oracle Objects for OLE programmatic interface is provided via OLE Automation.   
In some cases, the method or property names used in Oracle Objects for OLE may
conflict with reserved words or built-in function names of some applications.    If this is
the case, you can prefix ANY Oracle Objects for OLE method or property name with
"Db".    All known application conflicts are listed below.

Visual Basic 3.0
The method names listed below are reserved words in Visual Basic 3.0.    When
Visual Basic 3.0 performs syntax checking, an error will be generated if these
methods are not being referenced using a standard data object (of type
"database" or "dynaset").    Therefore, in Visual Basic 3.0, these methods can
only be used with the "Db" prefix.

Method Applicable Object Example
AddNew OraDynaset oradyanset.DbAddNew
AppendChunk OraField orafield.DbAppendChunk
BeginTrans OraSession orasession.DbBeginTrans
Clone OraDynaset oradynaset.DbClone
CommitTrans OraConnection

OraSession
oraconnection.DbCommitTrans
orasession.DbCommitTrans

CreateDynaset OraDynaset oradynaset.DbCreateDynaset
Delete OraDynaset oradynaset.DbDelete
Edit OraDynaset oradynaset.DbEdit
ExecuteSQL OraDatabase oradynaset.DbExecuteSQL
FieldSize OraDynaset oradynaset.DbFieldSize
GetChunk OraField orafield.DbGetChunk
MoveFirst OraDynaset oradynaset.DbMoveFirst
MoveLast OraDynaset oradynaset.DbMoveLast
MoveNext OraDynaset oradynaset.DbMoveNext
MovePrevious OraDynaset oradynaset.DbMovePrevious
Refresh OraDynaset oradynaset.DbRefresh
Rollback OraConnection

OraSession
oraconnection.DbRollback
orasession.DbRollback

Update OraDynaset oradynaset.DbUpdate
UpdateControls Data Control

Recordset
oradata1.recordset.DbUpdateCon
trols

UpdateRecord Data Control
Recordset

oradata1.recordset.DbUpdateRec
ord

Access 2.0
The method names listed below are built-in function names in Access 2.0.   
When Access 2.0 compiles a module, an error will be generated if these
methods are not being referenced using a standard data object (of type
"database" or "dynaset").    Therefore, in Access 2.0, these methods can only
be used with the "Db" prefix.

Method Applicable Object Example
AddNew OraDynaset oradyanset.DbAddNew
AppendChunk OraField orafield.DbAppendChunk

BeginTrans OraSession orasession.DbBeginTrans
Clone OraDynaset oradynaset.DbClone
CommitTrans OraConnection

OraSession
oraconnection.DbCommitTrans
orasession.DbCommitTrans

CreateDynaset OraDynaset oradynaset.DbCreateDynaset
Delete OraDynaset oradynaset.DbDelete
Edit OraDynaset oradynaset.DbEdit
ExecuteSQL OraDatabase oradatabase.DbExecuteSQL
FieldSize OraDynaset oradynaset.DbFieldSize
GetChunk OraField orafield.DbGetChunk
MoveFirst OraDynaset oradynaset.DbMoveFirst
MoveLast OraDynaset oradynaset.DbMoveLast
MoveNext OraDynaset oradynaset.DbMoveNext
MovePrevious OraDynaset oradynaset.DbMovePrevious
OpenDatabase OraSession orasession.DbOpenDatabase
Refresh OraDynaset oradynaset.DbRefresh
Rollback OraConnection

OraSession
oraconnection.DbRollback
orasession.DbRollback

Update OraDynaset oradynaset.DbUpdate

See Also
AddNew Method
AppendChunk Method
BeginTrans Method
Clone Method
CommitTrans Method
CreateDynaset Method
Delete Method
Edit Method
ExecuteSQL Method
FieldSize Method
GetChunk Method
MoveFirst Method
MoveLast Method
MoveNext Method
MovePrevious Method
OpenDatabase Method
Refresh Method
Rollback Method
Update Method
UpdateControls Method
UpdateRecord Method

Redistributable Files

Oracle Objects for OLE
The following redistributable files are part of Oracle Objects for OLE and must
be distributed with your application developed using Oracle Objects for OLE:

ORAIPSRV.DLL
ORAIPSRV.REG
ORAIPSRV.TLB

These files should be installed in the \WINDOWS\SYSTEM directory.    In
addition to including these three files with your application, you must register
in the Windows registration database the information found in ORAIPSRV.REG. 
Use REGEDIT (included with Windows) to do this.

Finally, you must also distribute the file from the following list corresponding
to the development software you used to build your application:

ORACLB.DLL (for Borland C++ 4.0)
ORACLB45.DLL (for Borland C++ 4.5)
ORACLM.DLL (for Microsoft C++)
ORADC.VBX (for Visual Basic 3.0)

Microsoft OLE 2.0
The following files are part of Microsoft OLE 2.0 and are required by Oracle
Objects for OLE.    Please refer to the OLE 2 Programmer's Reference or the
Visual Basic documentation for details on installing and distributing these files.

COMPOBJ.DLL
OLE2.DLL
OLE2.REG
OLE2CONV.DLL
OLE2DISP.DLL
OLE2NLS.DLL
OLE2PROX.DLL
STDOLE.TLB
STORAGE.DLL
TYPELIB.DLL

Visual Basic 3.0
The following files are part of Visual Basic and are required by Oracle Objects
for OLE.    If you are shipping a Visual Basic application that uses Oracle
Objects for OLE, you should include at least the following files (in addition to
other Visual Basic runtime files that you may need).    Please refer to the Visual
Basic documentation for details on installing and distributing these files.

VBOA300.DLL
VBRUN300.DLL

Troubleshooting
See Also

OLE Initialization or OLE Automation Errors
The most frequent cause of OLE Initialization and Automation errors is missing
or incorrectly installed software.    Please ensure correct installation of the
software specified below.    Then make sure that you have specified method
and property names correctly and that you have declared all "Oracle objects"
as type "object".

Possible Cause Solution
Your system does not contain the
Microsoft OLE 2.0 runtime files or these
files are out of date.    Note that Visual
Basic 3.0 does not include the OLE file
TYPELIB.DLL.

Reinstall Oracle Objects for OLE and
select the "Microsoft OLE 2.0 Libraries"
option.

OLE 2.0 information was not registered
in the Windows registration database.

Run REGEDIT.EXE and merge the
information from the file OLE2.REG
(normally located in \WINDOWS\
SYSTEM).

The Oracle Objects for OLE object
information was not registered in the
Windows registration database.

Reinstall Oracle Objects for OLE and
select the "Oracle Objects Server"
option.

The Oracle Objects for OLE object
information was not registered in the
Windows registration database.

Run REGEDIT.EXE and merge the
information from the file ORAIPSRV.REG
(normally located in \WINDOWS\
SYSTEM).

Your system does not contain the Oracle
Required Support Files (ORA71WIN.DLL,
CORE3WIN.DLL, NLS23WIN.DLL, etc.) or
these files are not on the PATH.

Reinstall Oracle Objects and select the
"Oracle Required Support Files" option or
add to your PATH environment variable
the directory where these files are
located.

Your system does not contain Oracle
SQL*Net or its files are not on the PATH.

Install Oracle SQL*Net or add to your
PATH environment variable the directory
where these files are located.

You have misspelled a method or
property name.

Check the documentation to determine
the correct spelling.

You have referenced a method or
property from the wrong object.

Check the documentation to determine
the correct object.

Oracle SQL*Net Errors
The most frequent cause of Oracle SQL*Net errors is incorrectly specified
connection information.    The connection information for Oracle Objects for
OLE is specified differently than when using ODBC.    Please verify that you
have specified connection information correctly, and then make sure your
SQL*Net connection is working properly before using Oracle Objects for OLE.   
The appropriate Oracle SQL*Net documentation contains information about
testing your connection and about any Oracle SQL*Net error that you may

receive.

Possible Cause Solution
Incorrect Connect property or argument
to the OpenDatabase method.

See the topics on the Connect property
or the OpenDatabase method for
examples.

Incorrect DatabaseName property or
argument to the OpenDatabase
method.

See the topics on the DatabaseName
property or the OpenDatabase method
for examples.

Your system does not contain Oracle
SQL*Net.

Install Oracle SQL*Net.

General Protection Faults
The most frequent cause of GPFs is installing Oracle Objects for OLE while
other applications are running that require the Oracle Object Server, Oracle
Required Support Files or OLE 2.0.    To avoid this, install Oracle Objects for OLE
immediately after starting Windows and before running any other application.

Possible Cause Solution
Duplicate Oracle Objects for OLE files
exist in the \WINDOWS or \WINDOWS\
SYSTEM directories or along the PATH.

Remove any duplicate files.    The files
ORAIPSRV.DLL, ORAIPSRV.TLB, and
ORAIPSRV.REG should only be located
in \WINDOWS\SYSTEM.

Duplicate Oracle Required Support Files
DLLs exist in the \WINDOWS or \
WINDOWS\SYSTEM directories or along
the PATH.

Remove any duplicate files.    Typically,
the Oracle Required Support Files DLLs
(ORA7*.DLL, CORE*.DLL, and NLS*.DLL)
are located in \ORAWIN\BIN.

Duplicate OLE 2.0 DLLs exist in the \
WINDOWS or \WINDOWS\SYSTEM
directories or along the PATH.

Remove any duplicate files.    The OLE
2.0 DLLs (listed in the Redistributable
Files topic) should only be located in \
WINDOWS\SYSTEM.

See Also
Connect Property
DatabaseName Property
OpenDatabase Method
Redistributable Files

Data Aware Controls
See Also

The Oracle Data Control is a fully functional Visual Basic 3.0 level 3 Custom Control
and should be compatible with any data aware control that binds using the standard
VBM_DATA messages found in VBAPI.H (included with the VB Control Development
Kit).

In order to work properly with the Oracle Data Control, data aware controls should not
rely upon the Oracle Data Control being a built-in data control or should not assume
the window class name of the Oracle Data Control or that the properties can be
cloned and a VB data control used in place of the Oracle Data Control.
Binding Messages

In particular, the Oracle Data Control will respond to VBM_DATA_GET,
VBM_DATA_METHOD, VBM_DATA_SET, VBM_DATA_INITIATE and
VBM_DATA_TERMINATE messages and will generate VBM_DATA_AVAILABLE and
VBM_DATA_REQUEST messages.

If a bound control sends the VBM_DATA_GET message with sAction =
DATA_FIELDSIZE the Oracle Data Control will only return a size of up to 64KB.   
If the field is larger than 64KB, the size returned will be -1 (negative 1).   
Bound controls should then send VBM_DATA_GET with sAction =
DATA_FIELDCHUNK to retrieve chunks of the column.    When a returned chunk
size is smaller than the requested size and an error hasn't occurred, the field
has been fully transferred.    This behavior is similar to the implementation of
the GetChunk/AppendChunk methods.

The Oracle Data Control doesn't respond to the undocumented
VBM_DATA_FIND messages.

Picture Support
The Oracle Data Control responds to the VBM_DATA_GET message with sAction
= DATA_FIELDVALUE and usDataType = DT_PICTURE to support picture
controls that use this interface (most notably the VB picture and image
controls).    Note that not all picture controls work using this message.    Some
controls will fetch the data as a binary stream and manipulate it internally.

Field Types
It is important to note that certain bound controls expect a particular field
type (and may not work with any other) when binding to a database column.   
The Oracle Data Control maps column types to fields types as is listed under
the Type property.

Notes on Particular Data Aware Controls
The following data aware controls have been tested with the Oracle Data
Control and the following comments are available.    Testing may not have
been comprehensive and even though a control is listed here, Oracle does not
guarantee that it will work with the Oracle Data Control.    Other controls not
listed here should work with the Oracle Data Control as long as they follow the
guidelines listed above.

TrueGrid by Apex Software Corporation
Version 2.0 and 2.1 as well as the layout editor work properly with the Oracle
Data Control.

QuickPack Professional from Crescent Software
The Combo (CSCOMBO.VBX) and List box (CSVLIST.VBX) do not work with the
Oracle Data Control because they assume the window class name of the data
control they are bound to.    Also note that when comparing the DataSource
property of the combo or list box to the name of the data control, a case
sensitive comparison is done.

Search for the string ThunderData in cscombo.c (for the combo box) and ctl.c
(for the list box) to see where the window class name is assumed (The window
class name of the Oracle Data Control is OraData).    Search for _fstrcmp in
those same files to see where a case sensitive name comparison is done.

If the combo box is rebuilt with the above problems fixed it will not work
properly unless the Oracle Data Control named in the DataSourceList property
of the combo box is refreshed before the Oracle Data Control named in the
DataSource property.    The List box, even after fixing the above problems, still
does not work.

It appears that the code for both the combo and list box do not differentiate
between the DataSource and DataSourceList data controls and try to access
them in the incorrect order before they are refreshed.

The Picture control (CSPICTUR.VBX) does not work with images greater than
64KB for the reasons described in the Binding Messages section above.

Aware, Grid and Spread by Farpoint Technologies
The Aware Memo control (AWAREMM.VBX), according to it's documentation,
must be bound to a memo field.    This means that it must be bound to an
Oracle column of type LONG since that is the only type that maps to a memo
field.

Neither the Grid nor the Spread interface designers work with the Oracle Data
Control.    Please contact Farpoint Technologies for possible upgrade
information.

FX Tools by ImageFX
No comments available.

ImageKnife by Media Architects
Version 1.3 of this control does not work with images greater than 64KB for
the reasons described in the Binding Messages section above.    Please contact
Media Architects for possible upgrade information.

VBTools4 by Microhelp
Many of the controls provided attempt to update data even if no changes have
been made and therefore do not work when the ReadOnly property of the
Oracle Data Control is TRUE.    This behavior is not specific to the Oracle Data
Control.

The Combo (MHGCMB.VBX) and List box (MHGLBX.VBX) do not work with the
Oracle Data Control.

The Out of Bounds Control (MHGODB.VBX) does not work with the Oracle Data
Control.

Data Widgets by Sheridan Software Systems

You must upgrade to Version 1.0d of the Data Widgets to work properly with
the Oracle Data Control.

VBXTASY Volume 1 by Spinoza Limited
None of the Check controls work properly with the Oracle Data Control
because they are requesting a field type of DATA_VT_VAR_BYTE which does not
correspond to any column type to field type mapping made by Oracle Objects
(as listed in the Type property).

Formula One By Visual Tools
Columns of type DATE do not display correctly.

Image Stream By Visual Tools
This control does not work with the Oracle Data Control.

See Also
AppendChunk Method
GetChunk Method
Type Property

Oracle Objects for OLE and Visual Basic
See Also

Data Access Objects/Methods/Properties
This topic compares the objects, methods and properties of Oracle Objects for OLE to
the Data Access Objects (DAO) found in Visual Basic.    This section should not be
considered a replacement for the full reference, but rather a place to start when
trying to determine if a feature of DAO is available in Oracle Objects for OLE.

Objects OO VB Comments
Client YES NO OO: One client object exists per workstation.
Connection YES NO OO: Represents a single connection to the database
Database YES YES
Dynaset YES YES
Fields YES YES
Index N/A YES OO: Indexes are not required on tables.
Parameter YES NO OO: Provides SQL and PL/SQL bind variable support.
QueryDef NO YES OO: Queries are not saved in the database.    Views

should be used as an alternative.
Session YES NO OO: Used to manage collections of databases,

connections, and dynasets,
Snapshot NO YES

3
OO: Set the READONLY flag when creating a dynaset.

Table NO YES
3

OO: Tables are part of the data dictionary.

TableDef NO YES OO: Table definitions are part of the data dictionary.

NOTE: "Oracle objects" are declared as data type (OLE) "object", not as native data types.

Client Methods OO VB Comments
CreateSession YES N/A OO: Creates a named session that can be located by

name.

Client Properties OO VB Comments
Name YES N/A OO: Returns the name of the Client object.
Sessions YES N/A OO: Returns the associated Sessions collections.

Session Methods OO VB Comments
BeginTrans1 YES N/A OO: Begins a Session-wide transaction.
CreateNamedSessi
on

YES N/A OO: Same as Client.CreateSession.

ConnectSession YES N/A OO: Same as finding a session in the Client.Sessions
collection.

CommitTrans1 YES N/A
OpenDatabase YES N/A VB: OpenDatabase is a standalone method.
LastServerErrReset YES N/A OO: Clears the error in LastServerErr to zero and sets

LastServerErrText to NULL.
Rollback1 YES N/A OO: Rolls back a Session-wide transaction.
ResetTrans YES N/A OO: Unconditionally rolls back a Session-wide

transaction.

Session
Properties

OO VB Comments

Name YES N/A OO: Returns the Session name.
Client YES N/A OO: Returns the associated Client object.
Connections YES N/A OO: Returns the associated Connections collection.
LastServerErr YES N/A OO: Returns the connection related error.
LastServerErrText YES N/A OO: Returns the text of the last connection related

error.
OIPVersionNumber YES N/A OO: Returns the current internal version number.

Connection
Properties

OO VB Comments

Connect YES N/A OO: Returns the Connect property minus the
password.

DatabaseName YES N/A OO: Returns the DatabaseName property.
Session YES N/A OO: Returns the associated Session object.

Connection
Methods

OO VB Comments

CommitTrans YES
1

N/A OO: Commits transactions at the connection level.

Rollback YES
1

N/A OO: Rolls back transactions at the connection level.

Database
Properties

OO VB Comments

CollatingOrder NO YES VB: Determines the method for comparing text values.
OO: Use 'ALTER SESSION ... NLS_SORT ...

Connect YES N/A OO: Same as Connection.Connection.
Connection YES NO OO: Returns the Connection object.
DatabaseName YES NO OO: Same as Connection.DatabaseName.
Exclusive N/A YES OO: Clients generally have no control over database

access.
LastServerErr YES NO OO: Returns the number of the last cursor related

error.
LastServerErrPos YES NO OO: Returns the position in the SQL statement that a

parse error occurred.
LastServerErrText YES NO OO: Returns the text of the last cursor related error.
Name NO YES
Options YES NO OO: Returns the options flag originally passed to the

Session.OpenDatabase method.
Parameters YES N/A OO: Returns the associated parameters collection.
QueryDefs N/A YES
QueryTimeout NO YES VB: Determines the number of seconds Visual Basic

waits before a timeout error occurs when executing a
query on an ODBC database.
OO: See the Lock Wait option of the OpenDatabase
method.

Session YES N/A OO: Returns the associated Session object.
Transactions NO YES OO: This flag is available through the Dynaset Object.
Updatable NO YES OO: This flag is available through the Dynaset Object.

Database
Methods

OO VB Comments

BeginTrans NO YES
3

OO: This method is available via the Session Object.

Close N/A YES OO: Once the database has gone out of scope and

there are no references to it, it closes automatically.
CommitTrans NO YES

3
OO: This method is available via the Session Object.

CreateDynaset YES
1

YES
3

The options flags for Oracle and VB CreateDynaset
methods are significantly different. Please consult the
respective documentation for details.

CreateQueryDef N/A YES
CreateSnapshot N/A YES OO: Set the READONLY property when creating the

dynaset.
DeleteQueryDef N/A YES
Execute N/A YES OO: Use ExecuteSQL.
ExecuteSQL YES

1
YES

LastServerErrReset YES N/A OO: Clears the error in LastServerErr to zero and sets
LastServerErrText to NULL.

ListFields NO YES
ListTables NO YES
OpenQueryDef N/A YES
OpenTable N/A YES
Rollback NO YES

2
OO: This method is available through the Session
Object.

Parameter
Properties

OO VB Comments

MinimumSize YES N/A OO: Minimum size of a parameter (for binding).
Name YES N/A OO: Name of the parameter.
ServerType YES N/A OO: Specifies the Oracle Data Type.
Status YES N/A OO: Bit flag to indicate state

(Input/Output/AutoBound/Enabled).
Type YES N/A OO: Indicates the variant data type that is actually

bound to the SQL statement.
Value YES N/A OO: Parameter value.

Parameter
Methods

OO VB Comments

Add YES N/A OO: Add to the Parameter collection.
AutoBindEnable YES N/A OO: Bind on Dynaset Create/Refresh.
AutoBindDisable YES N/A OO: Do Not Bind on Dynaset Create/Refresh.
Remove YES N/A OO: Remove from the Parameter collection.

Dynaset Methods OO VB Comments
AddNew YES

1
YES

Clone YES
1

YES
3

Close N/A YES OO: Once the dynaset has gone out of scope and there
are no references to it, it will be closed automatically.

Delete YES
1

YES

Edit YES
1

YES

FindFirst NO YES
FindLast NO YES
FindNext NO YES
FindPrevious NO YES

ListFields NO YES
1

VB: Suggests that this method should not be used.

ListIndexes NO YES
3

VB: Suggests that this method should not be used.

MoveFirst YES
1

YES

MoveLast YES
1

YES

MoveNext YES
1

YES

MovePrevious YES
1

YES

Refresh YES
1

NO OO: Cancels all edit operations, executes the current
contents of the SQL statement buffer, and moves to
the first row of the resulting dynaset.    Used to re-
execute a SQL statement where only a parameter
value has changed.

Update YES
1

YES

UpdateControls YES
1

NO VB: Implemented as a Data Control method.

UpdateRecord YES
1

NO VB: Implemented as a Data Control method.

Dynaset
Properties

OO VB Comments

BOF YES YES
Bookmark YES YES
Bookmarkable YES YES OO: All dynasets are bookmarkable except if created

with the NoCache option.
Connection YES N/A OO: Returns the associated Connection object.
Database YES NO OO: Returns the associated Database object.
DateCreated N/A YES OO: Check the Data Dictionary.
EOF YES YES
EditMode YES YES
Fields YES YES
Filter NO YES

3
OO: Use a WHERE clause.

Index NO YES
LastModified YES YES
LastUpdated N/A YES OO: Check the Data Dictionary.
LockEdits N/A YES OO: Rows are locked when updated or if the SQL

statement contains a 'FOR UPDATE' clause.
Name NO YES VB: The name of the Dynaset is either the Name

property of a Table or QueryDef used to create it, or
the SQL statement used to create it.

NoMatch N/A YES VB: Indicates whether any of the    "Find" methods
were successful in locating a record.

RecordCount YES YES
Session YES N/A OO: Returns the associated Session object.
SQL YES N/A OO: The SQL statement used to create the dynaset.
Sort NO YES

3
OO: Use an ORDER BY clause.

Transactions YES YES OO: Dynasets ALWAYS support Transactions.
Updatable YES YES

Field Properties OO VB Comments
Attributes NO YES OO: This is part of the Data Dictionary.
CollatingOrder NO YES OO: See the 'Alter Session' NLS_SORT option of the

Oracle database.
Name YES YES
OrdinalPosition NO YES
Size YES YES
SourceField NO YES OO: You must examine your SQL statement.
SourceTable NO YES OO: You must examine your SQL statement.
Truncated YES NO OO: Indicates a LONG or LONG RAW was truncated on

fetch.    This indicates that you need to use GetChunk
to retrieve the complete data.

Type YES YES
Value YES YES

Field Methods OO VB Comments
AppendChunk YES YES
FieldSize YES YES OO: Available for fields up to 64KB otherwise -1 is

returned.
Get Chunk YES YES

Data Control
Properties

OO VB Comments

AllowMoveLast YES NO OO: Allow user to press MoveLast button of the data
control?

AutoBinding YES N/A OO: Allow automatic binding of database Parameters?
BackColor YES YES
Caption YES YES
Connect YES YES
Database YES YES
DatabaseName YES YES
DragIcon YES YES
DragMode YES YES
EditMode YES YES
Enabled YES YES
Exclusive N/A YES OO: Clients generally have no control over database

access.
FontBold YES YES
FontItalics YES YES
FontName YES YES
FontSize YES YES
FontStrikeThru YES YES
FontUnderline YES YES
ForeColor YES YES
Height YES YES
HelpContextID YES NO OO: Help target number to jump to when F1 is pressed

and the data control has focus (in a running
application).

Index YES YES
Left YES YES
MousePointer YES YES
Name YES YES
Options YES YES The Options flags for Oracle and VB are significantly

different. Please consult the respective documentation

for details.
ReadOnly YES YES
RecordSet YES YES
RecordSource YES YES OO: The SQL statement may be any arbitrary SELECT

statement, including joins, references to views, nested
selects, or remote database references.

Session YES N/A OO: Returns the associated Session object.
Tag YES YES
Top YES YES
TrailingBlanks YES NO OO: Strip trailing blanks from text retrieved from the

database?
Visible YES YES
Width YES YES

Data Control
Methods

OO VB Comments

Drag YES YES
Move YES YES
Refresh YES YES
UpdateControls NO YES OO: Implemented as a dynaset method, due to a VB

limitation.
UpdateRecord NO YES OO: Implemented as a dynaset method, due to a VB

limitation.
ZOrder YES YES

Data Control
Events

OO VB Comments

DragDrop YES YES
DragOver YES YES
Error YES YES
MouseDown YES YES
MouseMove YES YES
MouseUp YES YES
Reposition YES YES
Validate YES YES

1: These Oracle Objects methods can be prefixed by "Db" if necessary since many of
these names are reserved words in Visual Basic 3.0 and Access 2.0.

2: Visual Basic documentation suggests that this method should not be used.
3: Only available with the Visual Basic Professional Edition.

See Also
Method And Property Name Conflicts
OraConnection Object
OraClient Object
OraDatabase Object
OraDynaset Object
OraField Object
OraParameter Object
OraSession Object

OLE Server
See Also Objects Methods Properties

Description
Implements, using OLE 2.0, the various Oracle objects and their programmatic
interfaces.

Remarks
The Oracle Object Server is an OLE In Process server that supports a collection
of programmable objects for Oracle7 databases running either locally or
remotely.    An OLE In Process supports the OLE Automation interface, has no
user interface and is not embeddable.

See Also
Getting Started
Overview
Requirements

Objects
OraClient
OraConnection
OraDatabase
OraDynaset
OraField
OraParameter
OraSession

OraConnections Collection
OraFields Collection
OraParameters Collection
OraSessions Collection

OLE Server Objects

OraClient
OraConnection
OraDatabase
OraDynaset
OraField
OraParameter
OraSession

OraConnections Collection
OraFields Collection
OraParameters Collection
OraSessions Collection

OLE Server Objects

OraClient
OraConnection
OraDatabase
OraDynaset
OraField
OraParameter
OraSession

OraConnections Collection
OraFields Collection
OraParameters Collection
OraSessions Collection

OraClient Object
See Also Properties Methods

Description
An OraClient object defines a workstation domain, and all of that
workstations OraSession objects are listed in the OraClient object's
OraSessions collection.

Remarks
Only one OraClient object can exist for each workstation, and it is created
automatically by the system when it is needed.

See Also
OraSession Object
OraSessions Collection

Properties
Name
Sessions

Methods
CreateSession

OraConnection Object
See Also Properties Methods

Description
An OraConnection object represents a single connection to an Oracle
database.

Remarks
An OraConnection object is created automatically whenever an
OraDatabase object is instantiated within the session, and is destroyed
automatically whenever all databases using the connection are discarded.   
Currently there is no way to create an OraConnection object explicitly, only
by creating an OraDatabase object that requires a connection.

See Also
OraConnections Collection
OraDatabase Object

Properties
Connect
DatabaseName
Session

Methods
CommitTrans
Rollback

OraDatabase Object
See Also Properties Methods

Description
An OraDatabase object represents a single virtual login to an Oracle
database.

Remarks
The OraDatabase object is created using a username, password, and
database name combination that establishes access and security.    An
OraDatabase object can establish a connection if one does not exist, or share
an existing connection if one does exist.    A connection is shared when the
current Connection and DatabaseName properties of an OraDatabase
object exactly match those properties of an existing OraDatabase object.

See Also
Connection Property
DatabaseName Property
OpenDatabase Method.

Properties
Connect
Connection
DatabaseName
LastServerErr
LastServerErrPos
LastServerErrText
Options
Parameters
Session

Methods
CreateDynaset
ExecuteSQL
LastServerErrReset

OraDynaset Object
See Also Properties Methods

Description
An OraDynaset object permits browsing and updating of data created from a
SQL SELECT statement.

Remarks
The OraDynaset object can be thought of as a cursor, although in actuality
several real cursors may be used to implement the OraDynaset's semantics. 
An OraDynaset automatically maintains a local cache of data fetched from
the server and transparently implements scrollable cursors within the browse
data.    Large queries may require significant local disk space; application
implementors are encouraged to refine queries to limit disk usage.   
Placement (temporary file storage) and tuning of the local cache is
accomplished through the ORAOLE.INI file

This object provides transparent mirroring of database operations, such as
updates.    When data is updated via the Update method, the local mirror
image of the query is updated so that the data appears to have been changed
without reevaluating the query. The same procedure is used automatically
when records are added to the dynaset.    Integrity checking is performed to
ensure that the mirrored image of the data always matches the actual data
present on the Oracle database.    This integrity checking is performed only
when necessary (such as just before updates occur).

During create and refresh, OraDynaset objects automatically bind all
relevant, enabled, input parameters to the specified SQL statement, using the
parameter names as placeholders in the SQL statement.    This can simplify
dynamic query building and increase the efficiency of multiple queries using
the same SQL statement with varying WHERE clauses.

See Also
CreateDynaset Method
ORAOLE.INI File
OraParameter Object
Update Method

Properties
BOF
Bookmark
Bookmarkable
Connection
Database
EditMode
EOF
Fields
LastModified
Options
RecordCount
Session
SQL
Transactions
Updatable

Methods
AddNew
Clone
Delete
Edit
MoveFirst
MoveLast
MoveNext
MovePrevious
Refresh
Update

OraField Object
See Also Properties Methods

Description
An OraField object represents a single column or data item within a row of a
dynaset.

Remarks
An OraField object is accessed indirectly by retrieving a field from the
OraFields collection of an OraDynaset object.

If the current row is being updated, then the OraField object represents the
currently updated value, although the value may not yet have been
committed to the database.
Assignment to the Value property of a field is permitted only if a record is
being edited (using Edit) or a new record is being added (using AddNew).   
Other attempts to assign data to a field's Value property results in an error.

See Also
AddNew Method
Edit Method
OraDynaset Object
OraFields Collection
Value Property

Properties
Name
Size
Truncated
Type
Value

Methods
AppendChunk
FieldSize
GetChunk

OraParameter Object
See Also Properties Methods

Description
An OraParameter object represents a bind variable in a SQL statement or
PL/SQL block.

Remarks
OraParameter objects are created, accessed, and removed indirectly through
the OraParameters collection of an OraDatabase object.    Each parameter
has an identifying name and an associated value. You can automatically bind a
parameter to SQL and PL/SQL statements of other objects (as noted in the
objects descriptions), by using the parameters name as a placeholder in the
SQL or PL/SQL statement.    Such use of parameters can simplify dynamic
queries and increase program performance.

Parameters are bound to SQL statements and PL/SQL blocks before execution. 
In the case of a SQL SELECT statement, binding occurs before dynaset
creation.

The OraParameters collection is part of the OraDatabase object so that all
parameters are available to any SQL statement or PL/SQL block executed
within the database (via CreateDynaset or ExecuteSQL).    Before a SQL
statement or PL/SQL block is executed an attempt is made to bind all
parameters of the associated OraDatabase object.    The bindings that fail
(because the parameter doesn't apply to that particular SQL statement or
PL/SQL block), are noted and no attempt is made to rebind them if the SQL
statement or PL/SQL block is re-executed but doesn't change.

Since neither SQL statements nor PL/SQL blocks are parsed locally (all parsing
is done by Oracle), any unnecessary binding results in performance
degradation.    To prevent unnecessary parameter binding, make use of the
AutoBindDisable and AutoBindEnable methods.

See Also
AutoBindDisable Method
AutoBindEnable Method
CreateDynaset Method
ExecuteSQL Method
Name Property
OraDatabase Object
OraParameters Collection
Value Property

Properties
MinimumSize
Name
ServerType
Status
Type
Value

Methods
AutoBindDisable
AutoBindEnable

OraSession Object
See Also Properties Methods

Description
An OraSession object manages collections of OraDatabase,
OraConnection, and OraDynaset objects used within an application.

Remarks
Typically, a single OraSession object is created for each application, but you
can create named OraSession objects for shared use within and between
applications.

The OraSession object is the top-most level object for an application.    It is the
only object created by the CreateObject VB/VBA API and not by an Oracle
Objects for OLE method.    The following code fragment shows how to create
an OraSession object.

Declare OraSession as Object
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

See Also
OraClient Object
OraConnection Object
OraDatabase Object
OraDynaset Object

Properties
Client
Connections
LastServerErr
LastServerErrText
Name
OIPVersionNumber

Methods
BeginTrans
CommitTrans
ConnectSession
CreateNamedSession
OpenDatabase
LastServerErrReset
ResetTrans
Rollback

OraConnections Collection
See Also Properties

Description
The OraConnections collection maintains a list of OraConnection objects.   
The list is not modifiable; you cannot add to or remove from this collection.

Remarks
You can access the OraConnection objects in this collection by subscripting
(using ordinal integers) or by using the name the object was given at its
creation.    You can obtain the number of OraConnection objects in the
collection by using the Count property.    Referencing a subscript that does not
lie within the collection (0 to Count-1) results in the return of a NULL
OraConnection object.

See Also
Count Property
OraConnection Object

Properties
Count

OraFields Collection
See Also Properties

Description
The OraFields collection maintains a list of OraField objects.    The list is not
modifiable; you cannot add to or remove from this collection.

Remarks
You can access the OraField objects in this collection by subscripting (using
ordinal integers) or by using the name the object was given at its creation.   
You can obtain the number of OraField objects in the collection by using the
Count property.    Referencing a subscript that does not lie within the
collection (0 to Count-1) results in the return of a NULL OraField object.

See Also
OraField Object

Properties
Count

OraParameters Collection
See Also Properties Methods

Description
The OraParameters collection maintains a list of OraParameter objects.   
Unlike the other collection objects, this list is modifiable; you can add to and
remove from the collection.

Remarks
You can access the OraParameter objects in this collection by subscripting
(using ordinal integers) or by using the name the object was given at its
creation.    You can obtain the number of OraParameter objects in the
collection by using the Count property.    Referencing a subscript that does not
lie within the collection (0 to Count-1) results in the return of a NULL
OraParameter object.   

In addition to accessing the OraParameter objects of the collection, you can
use the collection to create and destroy parameters by using the Add and
Remove methods, respectively.

See Also
Add Method
Count Property
OraParameter Object
Remove Method

Properties
Count

Methods
Add
Remove

OraSessions Collection
See Also Properties

Description
The OraSessions collection maintains a list of OraSession objects.    The list
is not modifiable; you cannot add to or remove from this collection.

Remarks
You can access the OraSession objects in this collection by subscripting
(using ordinal integers) or by using the name the object was given at its
creation.    You can obtain the number of OraSession objects in the collection
by using the Count property.    Referencing a subscript that does not lie within
the collection (0 to Count-1) results in the return of a NULL OraSession
object.

See Also
Count Property
OraSession Object

Properties
Count

Properties
BOF
Bookmark
Bookmarkable
Client
Connect
Connection
Count
Database
DatabaseName
EditMode
EOF
Fields
Filter
LastModified
LastServerErr
LastServerErrPos
LastServerErrText

MinimumSize
Name
OIPVersionNumber
Options
Parameters
RecordCount
ServerType
Session
Sessions
Size
Sort
SQL
Status
Transactions
Truncated
Type
Updatable
Value

OLE Server Properties

BOF
Bookmark
Bookmarkable
Client
Connect
Connection
Count
Database
DatabaseName
EditMode
EOF
Fields
Filter
LastModified
LastServerErr
LastServerErrPos
LastServerErrText

MinimumSize
Name
OIPVersionNumber
Options
Parameters
RecordCount
ServerType
Session
Sessions
Size
Sort
SQL
Status
Transactions
Truncated
Type
Updatable
Value

OLE Server Properties
BOF
Bookmark
Bookmarkable
Client
Connect
Connection
Count
Database
DatabaseName
EditMode
EOF
Fields
Filter
LastModified
LastServerErr
LastServerErrPos
LastServerErrText

MinimumSize
Name
OIPVersionNumber
Options
Parameter
RecordCount
ServerType
Session
Sessions
Size
Sort
SQL
Status
Transactions
Truncated
Type
Updatable
Value

BOF Property
See Also Example
Applies To

OraDynaset Object
Description

Returns whether the current record position in a dynaset is before the first
record.    Not available at design time and read-only at run time.

Usage
bof_status = oradynaset.BOF

Remarks
Returns True if an attempt has been made to move before the first record in
the dynaset using MovePrevious.    Returns False otherwise.

If a recordset is empty, both BOF and EOF return True.
Data Type

Integer (Boolean)

See Also
EOF Property
MoveFirst Method
MovePrevious Method
OraDynaset Object

BOF Property Example

This example demonstrates the use of the BOF and EOF properties to detect the limits of a
recordset.    Copy and paste this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As object
 Dim OraDatabase As object
 Dim OraDynaset As object

 'Create the OraSession Object
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.DbCreateDynaset("select empno, ename from emp",
0&)

 'Traverse until EOF is reached
 Do Until OraDynaset.EOF
 OraDynaset.DbMoveNext
 Loop
 MsgBox "Reached EOF"

 'When EOF is True there is no current record.
 'The current recordset position is now AFTER
 'the last record.
 OraDynaset.DbMoveLast

 Do Until OraDynaset.BOF
 OraDynaset.DbMovePrevious
 Loop
 MsgBox "Reached BOF"

 'When BOF is True there is no current record.
 'The current recordset position is now BEFORE
 'AFTER the last record.

 OraDynaset.DbMoveFirst
 'The recordset is now positioned at the first
 'record.

End Sub

Bookmark Property
See Also Example
Applies To

OraDynaset Object
Description

Determines the current record of a recordset.    Not available at design time
and read/write at run time.

Usage
row_bookmark = oradynaset.Bookmark
oradynaset.Bookmark = row_bookmark

Remarks
The first form returns a bookmark for the current row.    The second form
repositions the bookmark to refer to a specific record within the dynaset.

Bookmarks exist only for the life of the dynaset and are specific to a particular
dynaset (they cannot be shared among dynasets). (Note, however, that
bookmarks of a dynaset and its clone are interchangeable.)

Before attempting to use bookmarks, check the Bookmarkable property of
that dynaset to see if it supports bookmarks.

Data Type
The value is a string of binary data, but can be stored in a variable of String
or Variant data type.    The length of the string cannot be predicted, so do not
use a fixed-length string.

See Also
Bookmarkable Property
Clone Method
LastModified Property
OraDynaset Object

Bookmark Property Example

This example demonstrates the use of the Bookmark property to return to a previously
known record quickly.    Copy and paste this code into the definition section of a form.    Then
press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraClient As Object
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object
 Dim Bookmark2 As String

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Get the client object.
 Set OraClient = OraSession.Client

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 'Move to the second record and display empno.
 OraDynaset.DbMoveNext
 MsgBox "Second Record, Employee #" & OraDynaset.Fields("EMPNO").value
 Bookmark2 = OraDynaset.Bookmark

 'Move to the last record and display empno.
 OraDynaset.DbMoveLast
 MsgBox "Last Record, Employee #" & OraDynaset.Fields("EMPNO").value

 'Move back to the second record using the bookmark.
 OraDynaset.Bookmark = Bookmark2
 MsgBox "Second Record, Employee #" & OraDynaset.Fields("EMPNO").value

End Sub

BookMarkable Property
See Also
Applies To

OraDynaset Object
Description

Indicates whether the specified dynaset can supports bookmarks.    Not
available at design time and read-only at run time.

Usage
if_bookmarkable = oradynaset.Bookmarkable

Remarks
This property returns True unless the No Cache mode was set when the
specified dynaset was created, in which case it returns False.

Data Type
Integer (Boolean)

See Also
BookMark Property
CreateDynaset Method
OraDynaset Object

Client Property
See Also
Applies To

OraSession Object
Description

Returns the OraClient object associated with the specified session.    Not
available at design time and read-only at run time.

Usage
Set oraclient = orasession.Client

Remarks
Each machine has only one client object, so this property returns the same
object for all sessions on the same workstation.

Data Type
OLE Object (OraClient)

See Also
OraClient Object
OraSession Object

Connect Property
See Also Example
Applies To

OraConnection Object , OraDatabase Object
Description

Returns the username of the connect string associated with the connection.   
Not available at design time and read-only at run time.

Usage
connect_string = oraconnection.Connect
connect_string = oradatabase.Connect

Remarks
OraConnection.Connect returns the username of the connect string
associated with the connection.

OraDatabase.Connect returns the username of the connect string associated
with the specified database.    It is equivalent to referencing
OraDatabase.Connection.Connect.

The password associated with the username is never returned.
Data Type

String

See Also
OpenDatabase Method
OraConnection Object
OraDatabase Object
DatabaseName Property

Connect Property Example

This example demonstrates the use of the Connect and DatabaseName properties to
display the username and database name that have been connected to.    Copy and paste
this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Display the username and database to which we are connected.
 MsgBox "Connected to " & OraDatabase.Connect & "@" & OraDatabase.DatabaseName

End Sub

Connection Property
See Also
Applies To

OraDatabase Object , OraDynaset Object
Description

Returns the OraConnection object associated with the specified database or
dynaset.    Not available at design time and read-only at run time.

Usage
Set oraconnection = oradatabase.Connection
Set oraconnection = oradynaset.Connection

Remarks
OraDatabase.Connection returns the connection object associated with the
specified database.    Each database is associated with one connection object,
but many databases can share the same connection object.

OraDynaset.Connection returns the connection object associated with this
dynaset.    It is equivalent to referencing oradynaset.Database.Connection.

Data Type
OLE Object (OraConnection)

See Also
OraConnection Object
OraConnections Collection
OraDatabase Object
OraDynaset Object

Connections Property
See Also
Applies To

OraSession Object
Description

Returns the OraConnections collection of the specified session.    Not
available at design time and read-only at run time.

Usage
Set oraconnections_collection = orasession.Connections

Remarks
You can access the connections in this collection by subscripting (using ordinal
integer numbers).    You can obtain the number of connections in the collection
using the Count property of the returned collection.    Integer subscripts begin
with 0 and end with Count - 1.    Out-of-range indices and invalid names return
a NULL OraConnection object.

Data Type
OLE Object (OraParameters)

See Also
CountProperty
OraConnection Object
OraConnections Collection
OraSession Object

Count Property
See Also Example
Applies To

OraConnections Collection , OraFields Collection , OraParameters
Collection, OraSessions Collection .

Description
Returns the number of objects in the specified collection.    Not available at
design time and read-only at run time.

Usage
connection_count = oraconnections.Count
field_count = orafields.Count
parameter_count = oraparameters.Count
session_count = orasessions.Count

Remarks
Use this property to determine the number of objects in the specified
collection.

Data Type
Integer

See Also
OraConnection Object
OraConnections Collection
OraField Object
OraFields Collection
OraSession Object
OraSessions Collections

Count Property Example

This example demonstrates the use of the Count property to display the number of objects
in the OraSessions, OraConnections, and OraFields Collections.    Copy and paste this
code into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraClient As Object
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Get the client object.
 Set OraClient = OraSession.Client

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 MsgBox "You have " & OraClient.Sessions.Count & " OraSession Object(s)."
 MsgBox "You have " & OraSession.Connections.Count & " OraConnection
Object(s)."
 MsgBox "You have " & OraDynaset.Fields.Count & " OraField Object(s)."

End Sub

Database Property
See Also
Applies To

OraDynaset Object
Description

Returns the OraDatabase object associated with the specified dynaset.    Not
available at design time and read-only at run time.

Usage
Set oradatabase = oradynaset.Database

Remarks
This property returns the OraDatabase object from which the specified
dynaset was created.

Data Type
OLE Object (OraDatabase)

See Also
CreateDynaset Method
OraDatabase Object
OraDynaset Object

DatabaseName Property
See Also Example
Applies To

OraConnection Object , OraDatabase Object
Description

Returns the name of the database associated with the specified object.    Not
available at design time and read-only at run time.

Usage
database_name = oraconnection.DatabaseName
database_name = oradatabase.DatabaseName

Remarks
oraconnection.DatabaseName returns the name of the database, as
specified in the OpenDatabase method.

oradatabase.DatabaseName returns the database name associated with the
connection.    It is the same as the referencing
oradatabase.Connection.DatabaseName.

Data Type
String

See Also
Connect Property
OpenDatabase Method
OraConnection Object
OraDatabase Object

DatabaseName Property Example

This example demonstrates the use of the Connect and DatabaseName properties to
display the username and database to which you have connected.    Copy and paste this
code into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Display the username and database to which you have connected.
 MsgBox "Connected to " & OraDatabase.Connect & "@" & OraDatabase.DatabaseName

End Sub

EditMode Property
See Also
Applies To

OraDynaset Object
Description

Returns the current editing state for the current row.    Not available at design
time and read-only at run time.

Usage
edit_mode = oradynaset.EditMode

Remarks
The EditMode property values are:

Constant Value Description
ORADATA_EDITNONE 0 No editing in progress.
ORADATA_EDITMODE 1 Editing is in progress on an

existing row.
ORADATA_EDITADD 2 A new record is being added and

the copy buffer does not
currently represent an actual row
in the database.

These values are located in the file ORACONST.TXT and are intended to
match similar constants in the Visual Basic file CONSTANT.TXT.

This property is affected only by the Edit, AddNew, and Update methods.
Data Type

Integer

See Also
AddNew Method
Edit Method
OraDynaset Object
Update Method

EOF Property
See Also Example
Applies To

OraDynaset Object
Description

Returns whether the current record position in a dynaset is after the last
record.    Not available at design time and read-only at run time.

Usage
eof_status = oradynaset.EOF

Remarks
Returns True if an attempt has been made to move after the last record in the
dynaset using MoveNext.    Returns False otherwise.

If a recordset is empty, both BOF and EOF return True.
Data Type

Integer (Boolean)

See Also
BOF Property
MoveLast Method
MoveNext Method
OraDynaset Object

EOF Property Example

This example demonstrates the use of the BOF and EOF properties to detect the limits of a
recordset.    Copy and paste this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As object
 Dim OraDatabase As object
 Dim OraDynaset As object

 'Create the OraSession Object
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object
 Set OraDynaset = OraDatabase.DbCreateDynaset("select empno, ename from emp",
0&)

 'Traverse until EOF is reached
 Do Until OraDynaset.EOF
 OraDynaset.DbMoveNext
 Loop
 MsgBox "Reached EOF"

 'When EOF is True there is no current record.
 'The current recordset position is now AFTER
 'the last record.
 OraDynaset.DbMoveLast

 Do Until OraDynaset.BOF
 OraDynaset.DbMovePrevious
 Loop
 MsgBox "Reached BOF"

 'When BOF is True there is no current record.
 'The current recordset position is now BEFORE
 'AFTER the last record.

 OraDynaset.DbMoveFirst
 'The recordset is now positioned at the first
 'record.

End Sub

Fields Property
See Also
Applies To

OraDynaset Object
Description

Returns the collection of fields for the current row.    Not available at design
time and read-only at run time.

Usage
Set orafields_collection = oradynaset.Fields

Remarks
You can access the fields in this collection by subscripting (using ordinal
integer numbers) or by using a string denoting the field (column) name.    You
can obtain the count of the number of fields using the Count property on the
returned collection.    A subscript that does not lie within the collection (0 to
Count - 1) results in the return of a NULL OraField object.

Data Type
OLE Object (OraFields)

See Also
Count Property
OraDynaset Object

Filter Property
See Also
Remarks

The OraDynaset object does not support this property.    Refine your record
selection by using a SQL WHERE clause or by using SQL parameters.

See Also
CreateDynaset Method
OraDynaset Object
OraFields Collection
OraParameter Object

LastModified Property
See Also
Applies To

OraDynaset Object
Description

Returns the bookmark of the row that was last modified by an Edit or an
AddNew operation.    Not available at design time and read-only at run time.

Usage
last_modified_bookmark = oradynaset.LastModified

Remarks
Use this property to make the last modified record the current record.

Data Type
The value is a string of binary data, but can be stored in a variable of String
or Variant data type.    The length of the string cannot be predicted, so do not
use a fixed-length string.

See Also
AddNew Method
BookMark Property
Edit Method

LastServerErr Property
See Also Example
Applies To

OraDatabase Object , OraSession Object
Description

Returns the last non-zero error code generated by an Oracle database function
for the specified object.    Not available at design time and read-only at run
time.

Usage
error_number = oradatabase.LastServerErr
error_number = orasession.LastServerErr

Remarks
This property represents the last non-zero return value from an Oracle Call
Interface (OCI) database function, or 0 if no error has occurred since the last
LastServerErrReset request.    For efficiency, only non-zero return values are
returned; therefore, a non-zero value does not necessarily indicate that the
most recently called OCI database function generated the error (because zero
return values are not returned by way of LastServerErr).

Orasession.LastServerErr returns all errors related to connections, such as
errors on OpenDatabase, BeginTrans, CommitTrans, Rollback and
ResetTrans.

Oradatabase.LastServerErr returns all errors related to an Oracle cursor,
such as errors on dynasets and from ExecuteSQL.

Data Type
Long Integer

See Also
ExecuteSQL Method
LastServerErrReset Method
LastServerErrText Property
OpenDatabase Method
OraDatabase Object
OraSession Object

LastServerErr Property Example

This example demonstrates the use of the LastServerErr and LastServerErrText
properties to determine whether an Oracle error has occurred using CreateDynaset and to
display the error message, respectively.    Copy and paste this code into the definition section
of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Set up an error handler.
 On Error GoTo errhandler

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Attempt to Create the OraDynaset Object.
 'Notice that the FROM keyword is missing from the SQL statement.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * emp", 0&)

Exit Sub

errhandler:

 'Check to see if an Oracle error has occurred.
 If OraDatabase.LastServerErr <> 0 Then
 MsgBox OraDatabase.LastServerErrText
 Else 'Must be some non-Oracle error
 MsgBox "VB:" & Err & " " & Error(Err)
 End If

 Exit Sub

End Sub

LastServerErrPos Property
See Also
Applies To

OraDatabase Object
Description

Returns the position in a SQL statement at which a parse error occurred.    Not
available at design time and read-only at run time.

Usage
error_pos = oradatabase.LastServerErrPos

Remarks
LastServerErrPos returns 0 if no SQL statements have been parsed, -1 if the
last parse was successful, and >= 0 if the last parse failed.    Parsing is done
on SQL statements before execution (using CreateDynaset or ExecuteSQL).

Data Type
Integer

See Also
CreateDynaset Method
ExecuteSQL Method
LastServerErr Property
LastServerErrText Property
OraDatabase Object

LastServerErrText Property
See Also Example
Applies To

OraDatabase Object , OraSession Object
Description

Returns the textual message associated with the current LastServerErr of
the specified object.    Not available at design time and read-only at run time.

Usage
error_text = orasession.LastServerErrText
error_text = oradatabase.LastServerErrText

Remarks
The returned value indicates one of three possible states:
1. If NULL is returned, an Oracle Call Interface (OCI) database function has not

returned an error since the most recent LastServerErrReset.
2. If a non-NULL value is returned, an OCI function has returned an error code;

the returned string is the associated message.
3. If the message is empty, then additional information was not available.

Data Type
String

See Also
LastServerErr Property
LastServerErrReset Method
OraDatabase Object
OraSession Object

LastServerErrText Property Example

This example demonstrates the use of the LastServerErr and LastServerErrText
properties to determine whether an Oracle error has occurred using CreateDynaset and to
display the error message, respectively.    Copy and paste this code into the definition section
of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Set up an error handler.
 On Error GoTo errhandler

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Attempt to Create the OraDynaset Object.
 'Notice that the FROM keyword is missing from the SQL statement.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * emp", 0&)

Exit Sub

errhandler:

 'Check to see if an Oracle error has occurred.
 If OraDatabase.LastServerErr <> 0 Then
 MsgBox OraDatabase.LastServerErrText
 Else 'Must be some non-Oracle error.
 MsgBox "VB:" & Err & " " & Error(Err)
 End If

 Exit Sub

End Sub

MinimumSize Property
See Also
Applies To

OraParameter Object
Description

Specifies the minimum size of an OraParameter string buffer.    Read/write at
design time and run time.

Usage
oraparameter.MinimumSize = data_width

Remarks
Use this property to specify the minimum number of characters or bytes to be
allocated for the buffer used to bind parameters with the ExecuteSQL
method. The contents of the parameter remain unchanged.

Data Type
Integer

See Also
Add Method
ExecuteSQL Method
OraParameter Object

Name Property
See Also
Applies To

OraClient Object , OraField Object , OraParameter Object , OraSession
Object

Description
Returns the name used to identify the given object.    Not available at design
time and read-only at run time.

Usage
client_name = oraclient.Name
field_name = orafield.Name
parameter_name = oraparameter.Name
session_name = orasession.Name

Remarks
oraclient.Name returns the name of the specified OraClient object.    This
value is always "<local>".

orafield.Name returns the name of the specified OraField object.    If this is a
true database field (not an alias), this usage returns the name of the field as it
appears on the server.    If a SQL statement was executed that contains, for
example, calculated select list items or column aliases, then the name is the
actual text provided in the SELECT statement.

oraparameter.Name returns the name of the specified OraParameter object.
In addition to identifying the parameter within a parameters collection, the
parameter name is also used to match placeholders within SQL and PL/SQL
statements for the purposes of parameter binding.

orasession.Name returns the name of the specified OraSession object.    For
automatically created sessions, this is the name assigned by the system
(usually a hexadecimal number).    For user-created sessions, this is the name
originally provided in the CreateSession method.    Once created, a session
name cannot be changed.

Data Type
String

See Also
CreateSession Method
OraClient Object
OraField Object
OraParameter Object
OraSession Object

OIPVersionNumber Property
See Also
Applies To

OraSession Object
Description

Returns the version number of the Oracle Object Server.    Not available at
design time and read-only at run time.

Usage
version_number = orasession.OIPVersionNumber

Remarks
This property returns a unique identifier for each release of the Oracle Object
Server.

Data Type
String

See Also
OraSession Object

Options Property
See Also
Applies To

OraDatabase Object , OraDynaset Object
Description

Returns the options flag originally passed to the specified object. Not available
at design time and read-only at run time.

Usage
options = oradatabase.Options
options = oradynaset.Options

Remarks
Refer to the OpenDatabase method for a description of the possible values
of oradatabase.Options.
Refer to the CreateDynaset method for a description of the possible values
of oradynaset.Options.

Data Type
Long Integer

See Also
CreateDynaset Method
OpenDatabase Method
OraDatabase Object
OraDynaset Object

Parameters Property
See Also
Applies To

OraDatabase Object
Description

Returns the OraParameters collection of the specified database.    Not
available at design time and read-only at run time.

Usage
Set oraparameters_collection = oradatabase.Parameters

Remarks
You can access the parameters in this collection by subscripting (using ordinal
integer numbers) or by using the name the parameter was given at its
creation.    You can obtain the number of parameters in the collection using the
Count property of the returned collection.    Integer subscripts begin with 0
and end with Count-1.    Out-of-range indices and invalid names return a NULL
OraParameter object.

In addition to accessing the parameters of the collection, you can also use the
collection to create and destroy parameters using the Add and Remove
methods, respectively.

Data Type
OLE Object (OraParameters)

See Also
Add Method
Count Property
OraParameter Object
OraParameters Collection
Remove Method

RecordCount Property
See Also Example
Applies To

OraDynaset Object
Description

Returns the count of the total number of records in the dynaset.    Not
available at design time and read-only at run time.

Usage
record_count = oradynaset.RecordCount

Remarks
Referencing this property requires that the entire result table be fetched
immediately from Oracle in order to determine the count of records.    While it
would have been possible to execute a separate query (using COUNT(*)), the
consistency of the count could not be ensured since row locking is not done to
ensure repeatable reads.

Referencing this property while using the ORADYN_NOCACHE option of the
CreateDynaset method causes an implicit MoveLast and makes the current
record the last record in the dynaset.

Data Type
Long Integer

See Also
CreateDynaset Method
Locks and Editing
MoveLast Method
OraDynaset Object

RecordCount Property Example

This example demonstrates the use of the RecordCount property to determine the number
of records retrieved.    Copy and paste this code into the definition section of a form.    Then
press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the dynaset.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 'Display the number of records. Note that this causes
 'all records to be fetched to ensure an accurate count.

 MsgBox OraDynaset.RecordCount & " records retrieved."

End Sub

ServerType Property
See Also Example

Applies To
OraParameter Object

Description
Specifies the Oracle external type of SQL or PL/SQL bind variable.    Read/write
at design time and run time.

Usage
oraparamter.ServerType = oracle_type

Remarks
Used to specify the external data type of SQL or PL/SQL (in/out) bind variables.
This is necessary since no local parsing of the SQL statement or PL/SQL block
is done to match the data types of placeholders in the SQL statement or
PL/SQL block.

The following Oracle external data types are supported.

Constant Value External Data Type
ORATYPE_VARCHAR2 1 VARCHAR2
ORATYPE_NUMBER 2 NUMBER
ORATYPE_SINT 3 SIGNED INTEGER
ORATYPE_FLOAT 4 FLOAT
ORATYPE_STRING 5 Null Terminated STRING
ORATYPE_VARCHAR 9 VARCHAR
ORATYPE_DATE 12 DATE
ORATYPE_UINT 68 UNSIGNED INTEGER
ORATYPE_CHAR 96 CHAR
ORATYPE_CHARZ 97 Null Terminated CHAR

These values can be found in the file ORACONST.TXT.
Data Type

Integer

See Also
Add Method
OraParameter Object

ServerType Property Example

This example demonstrates the Add and Remove parameter methods, the ServerType
parameter property and the the ExecuteSQL database method to call a Stored Procedure
and Function (located in ORAEXAMP.SQL).    Copy and paste this code into the definition
section of a form. Then press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add EMPNO as an Input/Output parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
 OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER

 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2

 'Add SAL as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER

 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure can be found in the file ORAEXAMP.SQL.
 OraDatabase.DbExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
 'Display the employee number and name.

 'Execute the Stored Function Employee.GetSal to retrieve SAL.
 ' This Stored Function can be found in the file ORAEXAMP.SQL.
 OraDatabase.DbExecuteSQL ("declare SAL number(7,2);
Begin :SAL:=Employee.GetEmpSal (:EMPNO); end;")

 'Display the employee name, number and salary.
 MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" &
OraDatabase.Parameters("EMPNO").value & ",Salary=" &
OraDatabase.Parameters("SAL").value

 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"
 OraDatabase.Parameters.Remove "SAL"

End Sub

Session Property
See Also
Applies To

OraConnection Object , OraDatabase Object , OraDynaset Object
Description

Returns the OraSession object associated with the specified object.    Not
available at design time and read-only at run time.

Usage
Set orasession = oraconnection.Session
Set orasession = oradatabase.Session
Set orasession = oradynaset.Session

Remarks
oraconnection.Session returns the OraSession object in which this
OraConnection object resides.

oradatabase.Session returns the OraSession object associated with this
OraDatabase object.    Each database is a part of one and only one session,
which is by default the session associated with the application.

oradynaset.Session returns the OraSession object associated with this
OraDynaset object.

Data Type
OLE Object (OraSession)

See Also
OraConnection Object
OraDatabase Object
OraDynaset Object
OraSession Object
OraSessions Collection

Sessions Property
See Also
Applies To

OraClient Object
Description

Returns the collection of all sessions for the specified OraClient object.    Not
available at design time and read-only at run time.

Usage
Set orasessions_collection = oraclient.Sessions

Remarks
You can access a session in this collection by subscripting (using ordinal
numbers) or by using the name the session was given at its creation. You can
obtain the total number of sessions in the collection by using the Count
property of the returned collection. Integer subscripts begin with 0 and end
with Count-1. Out-of-range indices and invalid names return a NULL
OraSession object.

Data Type
OLE Object (OraSessions)

See Also
Count Property
OraSession Object
OraSessions Collection

Size Property
See Also
Applies To

OraField Object
Description

Returns the number of characters or bytes of the variant associated with the
returned value of this field.    Not available at design time and read-only at run
time.

Usage
field_size = orafield.Size

Remarks
This usage always returns 0 for LONG or LONG RAW fields.    Use the FieldSize
method to determine the length of LONG or LONG RAW fields.

Data Type
Long Integer

See Also
OraFields Collection
FieldSize Property
Long and Long Raw Columns
Type Property

Sort Property
See Also
Remarks

The OraDynaset object does not support this property.    Sort your recordset
by using a SQL ORDER BY clause.

See Also
CreateDynaset Method
OraDynaset Object

SQL Property
See Also Example
Applies To

OraDynaset Object
Description

Returns or sets the SQL statement used to create the specified dynaset.   
Read/write at design time and run time.

Usage
SQL_statement = oradynaset.SQL
oradynaset.SQL = SQL_statement

Remarks
The first form returns the contents of the SQL statement buffer.
The second form sets the contents of the SQL statement buffer.

The SQL statement buffer initially contains the SQL statement used to create
the dynaset.    The contents of the SQL statement buffer are executed
whenever the Refresh method is issued.

Data Type
String

See Also
OraDynaset Object
Refresh Method

SQL Property Example

This example demonstrates the use of parameters, the Refresh method and the SQL
property to restrict selected records.    Copy and paste this code into the definition section of
a form. Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create a parameter with an initial value.
 OraDatabase.Parameters.Add "job", "MANAGER", 1

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp where
job=:job", 0&)

 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL

 'Currently, OraDynaset only contains employees whose
 'job is MANAGER.

 'Change the value of the job parameter.
 OraDatabase.Parameters("job").Value = "SALESMAN"

 'Refresh the dynaset.
 OraDynaset.DbRefresh

 'Currently, OraDynaset only contains employees whose
 'job is SALESMAN.

 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL

 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")

 End Sub

Status Property
See Also Example
Applies To

OraParameter Object
Description

Returns an integer indicating the status of the specified parameter.    Not
available at design time and read-only at run time.

Usage
parameter_status = oraparameter.Status

Remarks
The Status property is interpreted as a series of bits, each providing
information about the parameter.    Parameters can be bound only if they are
enabled, and can be enabled only if they are autoenabled.

The parameter Status property bit values are:

Constant Value Description
ORAPSTAT_INPUT &H1& Parameter can be used for

input.
ORAPSTAT_OUTPUT &H2& Parameter can be used for

output.
ORAPSTAT_AUTOENABLE &H4& Parameter is AutoBindEnabled.
ORAPSTAT_ENABLE &H8& Parameter is Enabled.    This

bit is always set.

These values are located in the file ORACONST.TXT.
Data Type

Integer

See Also
Add Method
AutoBindDisable Method
AutoBindEnable Method
OraParameter Object
Remove Method

Status Property Example

This example demonstrates the use of parameters and ExecuteSQL to call a Stored
Procedure (located in ORAEXAMP.SQL).    After calling the Stored Procedure, the Status
property of each parameter is checked.    Copy and paste this code into the definition section
of a form. Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add EMPNO as an Input parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT

 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT

 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure is located in the file ORAEXAMP.SQL.
 OraDatabase.DbExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")

 If OraDatabase.Parameters("EMPNO").Status & ORAPSTAT_INPUT Then
 MsgBox "Parameter EMPNO used for input."
 End If

 If OraDatabase.Parameters("ENAME").Status & ORAPSTAT_OUTPUT Then
 MsgBox "Parameter ENAME used for output."
 End If

'Display the employee number and name.
 MsgBox OraDatabase.Parameters("EMPNO").value
 MsgBox OraDatabase.Parameters("ENAME").value

 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"

End Sub

Transactions Property
See Also
Applies To

OraDynaset Object
Description

Returns whether or not the given dynaset can support transaction processing. 
Not available at design time and read-only at run time.

Usage
if_transactions = oradynaset.Transactions

Remarks
This property never returns False and has only been implemented for
compatibility.

Data Type
Integer (Boolean)

See Also
BeginTrans Method
CommitTrans Method
OraDynaset Object
ResetTrans Method
Rollback Method

Truncated Property
See Also
Applies To

OraField Object
Description

Returns whether or not a field value was truncated when fetched.    Not
available at design time and read-only at run time.

Usage
field_status = orafield.Truncated

Remarks
This property returns True if truncated data will be returned and False
otherwise.    Truncation can only occur for LONG or LONG RAW fields.    Use this
property to decide whether more data needs to be retrieved from Oracle using
the GetChunk method.

Data Type
Integer (Boolean)

See Also
GetChunk Method
OraField Object
Type Property

Type Property
See Also
Applies To

OraField Object , OraParameter Object
Description

Returns the variant type of the specified object.    Not available at design time
and read-only at run time.

Usage
data_type = orafield.Type
data_type = oraparameter.Type

Remarks
orafield.Type returns the variant data type (see Visual Basic documentation)
associated with the returned value of this field.

Users can expect the following mapping from Oracle internal data types:
Oracle Data
Type

Constant Value Data Type

CHAR ORADB_TEXT 10 String
DATE ORADB_DATE 8 Variant
LONG ORADB_MEMO 12 String
LONG RAW ORADB_LONGBINARY 11 String
NUMBER (1-4,0) ORADB_INTEGER 3 Integer
NUMBER (5-9,0) ORADB_LONG 4 Long Integer
NUMBER (10-
15,0)

ORADB_DOUBLE 7 Double

NUMBER (16-
38,0)

ORADB_TEXT 10 Text

NUMBER (1-15,n) ORADB_DOUBLE 7 Double
NUMBER (16-
38,n)

ORADB_TEXT 10 Text

RAW ORADB_LONGBINARY 11 String
VARCHAR2 ORADB_TEXT 10 String

These values are located in the file ORACONST.TXT and are intended to
match similar constants in the Visual Basic file DATACONS.TXT.

oraparameter.Type returns an integer indicating the variant data type that is actually
bound to the SQL statement.    This may differ from the variant data type of
oraparameter.Value, because internal conversions may be necessary to obtain a
data type common to both Visual Basic and the Oracle database.

Note that fields of type DATE are returned in the default Visual Basic format of
"MM/DD/YY" even though the default Oracle date format is "DD-MMM-YY".

Data Type
Integer

See Also
OraField Object
OraParamter Object
Value Property

Updatable Property
See Also Example
Applies To

OraDynaset Object
Description

Returns whether or not the specified dynaset is updatable.    Not available at
design time and read-only at run time.

Usage
if_updatable = oradynaset.Updatable

Remarks
Returns True if the rows in the specified dynaset can be updated and False
otherwise.

The updatability of the resultant dynaset depends on the Oracle SQL rules of
updatability, on the access you have been granted, and on the read-only flag
of the CreateDynaset method.

In order to be updatable, three conditions must be met:
1. the SQL statement must refer to a simple column list or to the entire column

list (*),
2. the SQL statement must not set the read-only flag of the options argument,

and
3. Oracle must permit ROWID references to the selected rows of the query.
Any SQL statement that does not meet these criteria is processed, but the
results are not updatable and this property returns False.

Data Type
Integer (Boolean)

See Also
CreateDynaset Method
RecordSource Property
SQL Property

Updatable Property Example

This example demonstrates the use of Updatable.    Copy and paste this code into the
definition section of a form. Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create an updatable dynaset using a simple query.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)
 Call IsDynUpdatable(OraDynaset)

 'Create a nonupdatable dynaset using column aliases.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select ename EmployeeName,
empno EmployeeNumber, sal Salary from emp", 0&)
 Call IsDynUpdatable(OraDynaset)

 'Create a nonupdatable dynaset using a join.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select ename, emp.deptno, loc
from emp,dept where emp.deptno = dept.deptno", 0&)
 Call IsDynUpdatable(OraDynaset)

End Sub

Sub IsDynUpdatable (odyn As Object)

 'Check to see if the dynaset is updatable.
 If odyn.Updatable = True Then
 MsgBox "Created an UPDATABLE dynaset from: '" & odyn.SQL & "'"
 Else
 MsgBox "Created a READ-ONLY dynaset from: '" & odyn.SQL & "'"
 End If

End Sub

Value Property
See Also
Applies To

OraField Object , OraParameter Object
Description

Returns or sets the value of the given object.    Not available at design time
and read/write at run time.

Usage
orafield.Value = data_value
data_value = orafield.Value
oraparameter.Value = data_value
data_value = oraparameter.Value

Remarks
Orafield.Value returns the value of the field as a variant.    data_value =
orafield.Value sets the contents of the field. The variant type reflects the data
type as defined by the Type property.    Fields can contain NULL values.    You
can test the Value property with the Visual Basic function IsNull() to
determine whether the value is null upon return.    You can also assign NULL to
the Value property whenever the current record is editable.    Field values are
cached locally as the data is retrieved from the database.    However, in the
case of a LONG or LONG RAW fields, some data may not be retrieved and
stored locally.    In these cases, data is retrieved as required using the methods
described in the GetChunk field method.    The maximum size of a LONG or
LONG RAW field that can be retrieved directly through the Value property is
approximately 64KB.    You must retrieve data fields larger than 64KB
indirectly, using the GetChunk method.

OraParameter.Value returns the value of the parameter as a variant.   
data_value = oraparameter.Value sets the contents of the parameter. Note
that changing the variant data type of the value can have significant impact
on the processing of associated SQL and PL/SQL statements.

Note that fields of type DATE are returned in the default Visual Basic format of
"MM/DD/YY" even though the default Oracle date format is "DD-MMM-YY".

Data Type
Variant

See Also
GetChunk Method
OraField Object
OraParameter Object
Type Property

Methods
Add
AddNew
AppendChunk
AutoBindDisable
AutoBindEnable
BeginTrans
Clone
CommitTrans
ConnectSession
CreateDynaset
CreateNamedSession
CreateSession
Delete
Edit

ExecuteSQL
FieldSize
GetChunk
LastServerErrReset
MoveFirst
MoveLast
MoveNext
MovePrevious
OpenDatabase
Refresh
Remove
ResetTrans
Rollback
Update

OLE Server Methods

Add
AddNew
AppendChunk
AutoBindDisable
AutoBindEnable
BeginTrans
Clone
CommitTrans
ConnectSession
CreateDynaset
CreateNamedSession
CreateSession
Delete
Edit

ExecuteSQL
FieldSize
GetChunk
LastServerErrReset
MoveFirst
MoveLast
MoveNext
MovePrevious
OpenDatabase
Refresh
Remove
ResetTrans
Rollback
Update

OLE Server Methods
Add
AddNew
AppendChunk
AutoBindDisable
AutoBindEnable
BeginTrans
Clone
CommitTrans
ConnectSession
CreateDynaset
CreateNamedSession
CreateSession
Delete
Edit

ExecuteSQL
FieldSize
GetChunk
LastServerErrReset
MoveFirst
MoveLast
MoveNext
MovePrevious
OpenDatabase
Refresh
Remove
ResetTrans
Rollback
Update

Add Method
See Also Example

Applies To
OraParameters Collection

Description
Adds a parameter to the OraParameters collection.

Usage
oraparameters.Add Name, Value, IOType

Arguments
Name The name of the parameter to be added to the parameters collection.   

This name is used both for parameter identification and as the
placeholder in associated SQL and PL/SQL statements.

Value A variant specifying the initial value of the parameter.    The initial value
of the parameter is significant, as it defines the data type of the
parameter.

IOType An integer code specifying how the parameter is to be used in SQL
statements and PL/SQL blocks.

The IOType settings are:

Constant Value Description
ORAPARM_INPUT 1 Input variable.
ORAPARM_OUTPUT 2 Output variable.
ORAPARM_BOTH 3 Both an input and an output variable.
These values can be found in the file ORACONST.TXT.

Remarks
Use parameters to represent SQL bind variables (as opposed to rebuilding the
SQL statement).    SQL bind variables are especially useful because you can
change a parameter value without having to reparse the query.    Use SQL bind
variables only as input variables.

You can also use parameters to represent PL/SQL bind (in/out) variables.    You
can use PL/SQL bind variables as both input and output variables.

See Also
OraParameter Object
OraParameters Collection
Remove Method

Add Method Example

This example demonstrates the Add and Remove parameter methods, the ServerType
parameter property and the the ExecuteSQL database method to call a Stored Procedure
and Function (located in ORAEXAMP.SQL).    Copy and paste this code into the definition
section of a form. Then press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add EMPNO as an Input/Output parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
 OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER

 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2

 'Add SAL as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER

 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure can be found in the file ORAEXAMP.SQL.
 OraDatabase.DbExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
 'Display the employee number and name.

 'Execute the Stored Function Employee.GetSal to retrieve SAL.
 ' This Stored Function can be found in the file ORAEXAMP.SQL.
 OraDatabase.DbExecuteSQL ("declare SAL number(7,2);
Begin :SAL:=Employee.GetEmpSal (:EMPNO); end;")

 'Display the employee name, number and salary.
 MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" &
OraDatabase.Parameters("EMPNO").value & ",Salary=" &
OraDatabase.Parameters("SAL").value

 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"
 OraDatabase.Parameters.Remove "SAL"

End Sub

AddNew Method
See Also Example
Applies To

OraDynaset Object
Description

Clears the copy buffer and begins a record insertion operation into the
specified dynaset and associated database.

Usage
oradynaset.AddNew
oradynaset.DbAddNew (Required for Visual Basic 3.0 and Access 2.0 users)

Remarks
Upon initiation of a AddNew operation, values of fields present within the
dynaset are maintained in a copy buffer and do not yet reflect the actual
contents of the database.

The values of the fields are modified through the OraField object, and
committed with Update or when database movement occurs, which discards
the new row.    Field values that have not been explicitly assigned are either
set to NULL or allowed to default by way of the Oracle default mechanism,
depending on the Column Defaulting mode of the options flag used when the
OpenDatabase method was called.    In either case, fields that appear in the
database table but not in the dynaset are always defaulted by the Oracle
default mechanism.

Internally, records are inserted by AddNew using the INSERT into TABLE (...)
VALUES (...) SQL statement, and are therefore added to the end of the table.

Note: A call to Edit, AddNew, or Delete, will cancel any outstanding Edit or
AddNew calls before proceeding.    Any outstanding changes not saved using
Update will be lost during the cancellation.

See Also
Delete Method
Edit Method
EditMode Property
Long and Long Raw Columns
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
Update Method
Validate Event

AddNew Method Example

This example demonstrates the use of AddNew and Update to add a new record to a
dynaset.    Copy this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 'Begin an AddNew.
 OraDynaset.DbAddNew

 'Set the field(column) values.
 OraDynaset.Fields("EMPNO").Value = "1000"
 OraDynaset.Fields("ENAME").Value = "WILSON"
 OraDynaset.Fields("JOB").Value = "SALESMAN"
 OraDynaset.Fields("MGR").Value = "7698"
 OraDynaset.Fields("HIREDATE").Value = "19-SEP-92"
 OraDynaset.Fields("SAL").Value = 2000
 OraDynaset.Fields("COMM").Value = 500
 OraDynaset.Fields("DEPTNO").Value = 30

 'End the AddNew and Update the dynaset.
 OraDynaset.DbUpdate

 MsgBox "Added one new employee."

End Sub

AppendChunk Method
See Also Example
Applies To

OraField Object
Description

Appends data from a string to a LONG or LONG RAW field in the copy buffer.
Usage

orafield.AppendChunk(string)
orafield.DbAppendChunk(string) (Required for Visual Basic 3.0 and Access
2.0 users)

Arguments
string Data to append to the specified field.

Remarks
AppendChunk allows the manipulation of data fields that are larger than
64KB.

See Also
FieldSize Method
GetChunk Method
Long and Long Raw Columns
OraField Object
Type Property

AppendChunk Method Example

This example demonstrates the use of AppendChunk to read a file into a LONG RAW
column of a database.    This example expects a valid dynaset named OraDynaset
representing a table with a column named longraw.    Copy this code into the definition
section of a form.    Call this procedure with a valid filename.

Sub AppendChunkExample (FName As String)

 'Declare various variables.
 Dim NumChunks As Integer, RemChunkSize As Integer
 Dim TotalSize As Long, CurChunk As String
 Dim I As Integer, FNum As Integer, ChunkSize As Integer

 'Set the size of each chunk.
 ChunkSize = 10240

 frmChunk.MousePointer = HOURGLASS

 'Begin an add operation.
 OraDynaset.DbAddNew

 'Clear the LONGRAW field.
 OraDynaset.Fields("LONGRAW").Value = ""

 'Get a free file number.
 FNum = FreeFile

 'Open the file.
 Open FName For Binary As #FNum

 'Get the total size of the file.
 TotalSize = LOF(FNum)

 'Set number of chunks.
 NumChunks = TotalSize \ ChunkSize

 'Set number of remaining bytes.
 RemChunkSize = TotalSize Mod ChunkSize

 'Loop through the file.
 For I = 0 To NumChunks

 'Calculate the new chunk size.
 If I = NumChunks Then
 ChunkSize = RemChunkSize
 End If

 CurChunk = String$(ChunkSize, 32)

 'Read a chunk from the file.
 Get #FNum, , CurChunk

 'Append chunk to LONGRAW field.
 OraDynaset.Fields("LONGRAW").DbAppendChunk (CurChunk)
 Next I

'Complete the add operation and update the database.
OraDynaset.DbUpdate

 'Close the file.
 Close FNum

 frmChunk.MousePointer = DEFAULT

End Sub

AutoBindDisable Method
See Also Example
Applies To

OraParameter Object
Description

Resets the AutoBind status of a parameter.
Usage

oraparameter.AutoBindDisable
Remarks

If a parameter has AutoBindDisabled status, it is not automatically bound to
a SQL or PL/SQL statement.

See Also
AutoBindEnable Method
OraParameter Object

AutoBindDisable Method Example

This example demonstrates the use of AutoBindDisable and AutoBindEnable to prevent
unnecessary parameter binding    while creating various dynasets that use different
parameters.    Copy this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As object
 Dim OraDatabase As object
 Dim OraDynaset As object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add the job input parameter with initial value MANAGER.
 OraDatabase.Parameters.Add "job", "MANAGER", 1

 'Add the deptno input parameter with initial value 10.
 OraDatabase.Parameters.Add "deptno", 10, 1

 'Disable the deptno parameter for now.
 OraDatabase.Parameters("deptno").AutoBindDisable

 'Create the OraDynaset Object using the job parameter.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp where job
= :job", 0&)

 'Only employees with job=MANAGER will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", Job=" &
OraDynaset.Fields("job").value

 'Enable the deptno parameter and disable the job parameter.
 OraDatabase.Parameters("deptno").AutoBindEnable
 OraDatabase.Parameters("job").AutoBindDisable

 'Create the OraDynaset Object using the deptno parameter.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp where deptno
= :deptno", 0&)

 'Only employees with deptno=10 will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", DeptNo=" &
OraDynaset.Fields("deptno").value

End Sub

AutoBindEnable Method
See Also Example
Applies To

OraParameter Object
Description

Sets the AutoBind status of a parameter.
Usage

oraparameter.AutoBindEnable
Remarks

If a parameter has AutoBindEnabled status, it is automatically bound to a
SQL or PL/SQL statement.

See Also
AutoBindDisable Method
OraParameter Object

AutoBindEnable Method Example

This example demonstrates the use of AutoBindDisable and AutoBindEnable to prevent
unnecessary parameter binding    while creating various dynasets that use different
parameters.    Copy this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As object
 Dim OraDatabase As object
 Dim OraDynaset As object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add the job input parameter with initial value MANAGER.
 OraDatabase.Parameters.Add "job", "MANAGER", 1

 'Add the deptno input parameter with initial value 10.
 OraDatabase.Parameters.Add "deptno", 10, 1

 'Disable the deptno parameter for now.
 OraDatabase.Parameters("deptno").AutoBindDisable

 'Create the OraDynaset Object using the job parameter.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp where job
= :job", 0&)

 'Only employees with job=MANAGER will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", Job=" &
OraDynaset.Fields("job").value

 'Enable the deptno parameter and disable the job parameter.
 OraDatabase.Parameters("deptno").AutoBindEnable
 OraDatabase.Parameters("job").AutoBindDisable

 'Create the OraDynaset Object using the deptno parameter.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp where deptno
= :deptno", 0&)

 'Only employees with deptno=10 will be contained in the dynaset.
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", DeptNo=" &
OraDynaset.Fields("deptno").value

End Sub

BeginTrans Method
See Also Example
Applies To

OraSession Object
Description

Begins a database transaction within the specified session.
Usage

orasession.BeginTrans
orasession.DbBeginTrans (Required for Visual Basic 3.0 and Access 2.0
users)

Remarks
Once this method has been called, no database transactions are committed
until a CommitTrans is issued.    Alternatively, the session can be rolled back
using Rollback.    If a transaction has already been started, repeated use of
BeginTrans causes an error.

See Also
CommitTrans Method
OraSession Object
ResetTrans Method
Rollback Method

BeginTrans Method Example

This example demonstrates the use of BeginTrans to group a set of dynaset edits into a
single transaction and Rollback to cancel those changes.    Copy this code into the definition
section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object
 Dim fld As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 'Start Transaction processing.
 OraSession.DbBeginTrans

 'Setup a field object to save object references.
 Set fld = OraDynaset.Fields("sal")

 'Traverse until EOF is reached, setting
 'each employees salary to zero.
 Do Until OraDynaset.EOF = True
 OraDynaset.DbEdit
 fld.value = 0
 OraDynaset.DbUpdate
 OraDynaset.DbMoveNext
 Loop
 MsgBox "All salaries set to ZERO."

 'Currently, the changes have NOT been committed
 'to the database.

 'End Transaction processing.
 'Using RollbackTrans means the rollback can
 'be canceled in the Validate event.
 OraSession.DbRollback
 'MsgBox "Salary changes rolled back."

End Sub

Clone Method
See Also
Applies To

OraDynaset Object
Description

Returns a duplicate dynaset of the specified dynaset.
Usage

Set oradynaset2 = oradynaset1.Clone
Set oradynaset2 = oradynaset1.DbClone (Required for Visual Basic 3.0 and
Access 2.0 users)

Remarks
The method creates a duplicate dynaset of the one specified.    Each dynaset
has its own current record.    Using Clone has no effect on the original
dynaset.    You cannot add, update, or remove records from a dynaset clone.

Use Clone to perform an operation on a dynaset that requires multiple current
records.

Bookmarks of a dynaset and its clone are interchangeable; bookmarks of
dynasets created with separate CreateDynaset methods are not
interchangeable.

See Also
BookMark Property
CreateDynaset Method

Close Method
See Also
Remarks

Neither the OraDatabase nor the OraDynaset object supports this method.   
Once an OraDatabase or OraDynaset object has gone out of scope and
there are no references to it, it closes automatically.

See Also
CreateDynaset Method
OpenDatabase Method
OraDatabase Object
OraDynaset Object

CommitTrans Method
See Also Example
Applies To

OraConnection Object , OraSession Object
Description

Ends the current transaction and commits all pending changes to the
database.

Usage
oraconnection.CommitTrans
oraconnection.DbCommitTrans (Required for Visual Basic 3.0 and Access 2.0
users)
orasession.CommitTrans
orasession.DbCommitTrans (Required for Visual Basic 3.0 and Access 2.0
users)

Remarks
oraconnection.CommitTrans commits all pending transactions for the
specified connection.    If not participating in a session-wide transaction (by
using the session object's BeginTrans method) this method has no effect,
because all operations are autocommitted whenever they are performed.   
However, when a session-wide transaction is in progress, you can use this
method to commit the transactions for the specified connection prematurely.

Use this method with care. It undermines the normal operation of session-wide
transactions.    In many cases you can use the OraSession object's
transaction protocol instead.

orasession.CommitTrans commits all transactions present within the session. 
CommitTrans is valid only when a transaction has been started with
BeginTrans.    If a transaction has not been started, use of CommitTrans
causes an error.

Each connection within the session is committed separately, but no two-phase
commit is used.    This means that if one connection fails to commit, the
session may be partially committed.    However, the OraSession object is
designed to serve the purpose of a transaction manager object; in the future,
two-phase commit may be implemented among all connections within the
transaction.

If transaction integrity is necessary, the application developer should ensure
that all databases are opened using the same Connect and DatabaseName
properties and thus share only one connection.

See Also
BeginTrans Method
OraConnection Object
OraSession Object
ResetTrans Method
Rollback Method

CommitTrans Method Example

This example demonstrates the use of BeginTrans to group a set of dynaset edits into a
single transaction and ComitTrans to accept the changes..    Copy this code into the
definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object
 Dim fld As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession. DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 'Start Transaction processing.
 OraSession.DbBeginTrans

 'Setup a field object to save object references.
 Set fld = OraDynaset.Fields("sal")

 'Traverse until EOF is reached, setting
 'each employees salary to zero.
 Do Until OraDynaset.EOF = True
 OraDynaset.DbEdit
 fld.value = 0
 OraDynaset.DbUpdate
 OraDynaset.DbMoveNext
 Loop
 MsgBox "All salaries set to ZERO."

 'Currently, the changes have NOT been committed
 'to the database.

 'End Transaction processing.
 'Commit the changes to the database
 OraSession.DbCommitTrans
 MsgBox "Salary changes committed."

End Sub

ConnectSession Method
See Also Example
Applies To

OraSession Object
Description

Returns the OraSession object with the specified name that is associated
with the specified session's OraClient object.

Usage
Set orasession2 = orasession1.ConnectSession(session_name)

Arguments
session_name A string, specifying the name of the session.

Remarks
This method is provided for simplicity and is equivalent to iterating through
the OraSessions collection of the current session's OraClient object and
searching for a session named session_name.    The OraSessions collection
will contain only sessions created via the current application and no others.   
This means that it is not possible to share sessions across applications, only
within applications.

See Also
CreateSession Method
OraClient Object
OraSession Object
OraSessions Collection

ConnectSession Method Example

This example demonstrates the use of ConnectSession and CreateNamedSession to
allow an application to use a session it previously created, but did not save.    Copy this code
into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim dfltsess As object
 Dim OraSession As object

 'Create the default OraSession Object.
 Set dfltsess = CreateObject("OracleInProcServer.XOraSession")

 'Try to connect to "ExampleSession". If it does not exist
 'an error is generated.
 On Error GoTo SetName
 Set OraSession = dfltsess.ConnectSession("ExampleSession")
 On Error GoTo 0

 'You can specify other processing here, such as creating a
 ' database and/or dynaset.

Exit Sub

SetName:
'The session named "ExampleSession" was not found, so create it.
Set OraSession = dfltsess.Client.CreateSession("ExampleSession")
Resume Next

End Sub

CreateDynaset Method
See Also Example
Applies To

OraDatabase Object
Description

Creates an OraDynaset object from the specified SQL SELECT statement and
options.

Usage
Set oradynaset = oradatabase.CreateDynaset(sql_statement, options)
Set oradynaset = oradatabase.DbCreateDynaset(sql_statement, options)
(Required for Visual Basic 3.0 and Access 2.0 users)

Arguments
sql_statement Any valid Oracle SQL SELECT statement.
options A bit flag indicating the status of any optional states of the

dynaset.    You can combine one or more options by adding
their respective values.

The options flag values are:

Constant Value Description
ORADYN_DEFAULT &H0& Accept the default behavior.
ORADYN_NO_AUTOBIND &H1& Do not perform automatic binding of

database parameters.
ORADYN_NO_BLANKSTRIP &H2& Do not strip trailing blanks from

character string data retrieved from the
database.

ORADYN_READONLY &H4& Force dynaset to be read-only.
ORADYN_NOCACHE &H8& Do not create a local dynaset data

cache.    Without the local cache,
previous rows within a dynaset are
unavailable; however, increased
performance results during retrieval of
data from the database (move
operations) and from the rows (field
operations).    Use this option in
applications that make single passes
through the rows of a dynaset for
increased performance and decreased
resource usage.

These values can be found in the file ORACONST.TXT.
Remarks

The SQL statement must be a SELECT statement or an error is returned.
Features such as views, synonyms, column aliases, schema references, table
joins, nested selects and remote database references can be used freely.   
Object names are not modified in any way (standard Oracle rules on case
apply).

The updatability of the resultant dynaset depends on the Oracle SQL rules of
updatability, on the access you have been granted, and on the options flag.
For the dynaset to be updatable, three conditions must be met: (1) a SQL
statement must refer to a simple column list or to the entire column list (*),
the statement must not set the read-only flag of the options argument, and
(3) Oracle must permit ROWID references to the selected rows of the query.   
Any SQL statement that does not meet these criteria is processed, but the
results are not updatable and the dynasets Updatable property returns
False.

This method automatically moves to the first row of the created dynaset.

You can use SQL bind variables in conjunction with the OraParameters
collection.

See Also
Clone Method
Long and Long Raw Columns
MoveFirst Method
MovePrevious Method
OpenDatabase Method
OraDatabase Object
OraDynaset Object
OraParameter Object
OraParameters Collection
Updatable Property

CreateDynaset Method Example

This example demonstrates CreateObject, OpenDatabase and CreateDynaset.    Copy
and paste this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select empno, ename from emp",
0&)

 'Display the first record.
 MsgBox "Employee " & OraDynaset.Fields("empno").value & ", #" &
OraDynaset.Fields("ename").value

End Sub

CreateNamedSession Method
See Also Example
Applies To

OraSession Object
Description

Creates and returns a new named OraSession Object.
Usage

orasession = orasession.CreateNamedSession(session_name)
Arguments

session_name A string specifying the name of the session.

Remarks
Using this method, you can create named sessions that can be referenced
later in the same application without having to explicitly save the OraSession
object when it is created.    Once a session has been created, the application
can reference it by way of the ConnectSession method or the OraSessions
collection of their respective OraClient object.    The OraSessions collection
only contains sessions created within the current application.    This means
that it is not possible to share sessions across applications, only within
applications.

This method is provided for simplicity and is equivalent to the CreateSession
method of the OraClient object.

See Also
ConnectSession Method
CreateSession Method
OraClient Object
OraSession Object
OraSessions Collection

CreateNamedSession Method Example

This example demonstrates the use of ConnectSession and CreateNamedSession to
allow an application to use a session it previously created, but did not save.    Copy this code
into the definition section of a form.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim dfltsess As object
 Dim OraSession As object
 Dim OraDatabase As Object
Dim OraDynaset As Object

 'Create the default OraSession Object.
 Set dfltsess = CreateObject("OracleInProcServer.XOraSession")

 'Try to connect to "ExampleSession". If it does not exist
 'an error is generated.
 On Error GoTo SetName
 Set OraSession = dfltsess.ConnectSession("ExampleSession")
 On Error GoTo 0

'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 'Display or manipulate data here

Exit Sub

SetName:
'The session named "ExampleSession" was not found, so create it.
Set OraSession = dfltsess.CreateNamedSession("ExampleSession")
Resume Next

End Sub

CreateSession Method
See Also Example
Applies To

OraClient Object
Description

Creates a new named OraSession object.
Usage

orasession = oraclient.CreateSession(session_name)
Arguments

session_name A string specifying the name of the session.

Remarks
Using this method, you can create named sessions that can be referenced
later in the same application without having to explicitly save the OraSession
object when it is created.    Once a session has been created, the application
can reference it by way of the ConnectSession method or the OraSessions
collection of their respective OraClient object.    The OraSessions collection
only contains sessions created within the current application.    This means
that it is not possible to share sessions across applications, only within
applications.

See Also
OraClient Object
OraSession Object

CreateSession Method Example

This example demonstrates how to create an session object using the CreateSession method
of client object.    Copy and paste this code into the definition section of a form.    Then press
F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraClient As Object
 Dim OraSession As Object
 Dim NamedOraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Get the OraClient object.
 Set OraClient = OraSession.Client

 'Create a named OraSession Object
 'Alternatively, you could use the CreateNamedSession
 'method of the OraSession Object.
 Set NamedOraSession = OraClient.CreateSession("ExampleSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = NamedOraSession.OpenDatabase("ExampleDb", "scott/tiger",
0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

End Sub

Delete Method
See Also Example
Applies To

OraDynaset Object
Description

Deletes the current row of the specified dynaset.
Usage

oradynaset.Delete
oradynaset.DbDelete (Required for Visual Basic 3.0 and Access 2.0 users)

Remarks
A row must be current before you can use Delete; otherwise an error occurs.

Any references to the deleted row produce an error.    The deleted row, as well
as the next and previous rows, remain current until database movement
occurs (using the MoveFirst, MovePrevious, MoveNext, or MoveLast
methods).    Once such movement occurs, you cannot make the deleted row
current again.

You cannot restore deleted records except by using transactions.

Note: A call to Edit, AddNew, or Delete, will cancel any outstanding Edit or
AddNew calls before proceeding.    Any outstanding changes not saved using
Update will be lost during the cancellation.

See Also
AddNew Method
BeginTrans Method
CommitTrans Method
Edit Method
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
ResetTrans Method
Rollback Method

Delete Method Example

This example demonstrates the use of Delete to remove records from a database.    Copy
this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As Object
Dim OraDatabase As Object
Dim OraDynaset As Object

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.DbOpenDatabase("exampledb", "scott/tiger", 0&)

'Create the OraDynaset Object.
'Only select the employees in Department 10.
Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp where
deptno=10", 0&)

 Do Until OraDynaset.EOF
 OraDynaset.DbDelete
 OraDynaset.DbMoveNext
 Loop
 MsgBox "All employees from department 10 removed."

End Sub

Edit Method
See Also Example
Applies To

OraDynaset Object
Description

Begins an edit operation on the current row by copying the data to the copy
buffer.

Usage
oradynaset.Edit
oradynaset.DbEdit (Required for Visual Basic 3.0 and Access 2.0 users)

Remarks
Edit causes the locally cached data to be compared with the corresponding
row of the Oracle database. An error will be generated if the Oracle database
data is not the same as the data currently being browsed.    If this operation
succeeds, the row is locked using SELECT ... FOR UPDATE until the edit is
completed with Update or until database movement occurs, which discards
any edits in progress.    The behavior of the SELECT ... FOR UPDATE is affected
by the Lock Wait mode of the options flag used when the OpenDatabase
method was called.

During editing, changes made to fields are kept in a shadowed copy buffer
and do not yet reflect the actual contents of the database.    However, all
references to the row return the newly modified data as long as the edit
operation is still in progress.

When data is modified within a data control attached to this dynaset, the Edit
method is invoked automatically upon the next record movement.    Thus, this
method is required only when modifications are made to field data within
code.

Note: A call to Edit, AddNew, or Delete, will cancel any outstanding Edit or
AddNew calls before proceeding.    Any outstanding changes not saved using
Update will be lost during the cancellation.

See Also
AddNew Method
CreateDynaset Method
Delete Method
OpenDatabase Method
Locks and Editing
Long and Long Raw Columns
Update Method
Validate Event.

Edit Method Example

This example demonstrates the use of Edit and Update to update values in a database.   
Copy this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As Object
Dim OraDatabase As Object
Dim OraDynaset As Object

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 'Traverse until EOF is reached, setting
 'each employees salary to zero.
 Do Until OraDynaset.EOF
 OraDynaset.DbEdit
 OraDynaset.Fields("sal").value = 0
 OraDynaset.DbUpdate
 OraDynaset.DbMoveNext
 Loop
 MsgBox "All salaries set to ZERO."

End Sub

ExecuteSQL Method
See Also Example
Applies To

OraDatabase Object
Description

Executes a single non-SELECT SQL statement or a PL/SQL block.
Usage

rowcount = oradatabase.ExecuteSQL(sql_statement)
rowcount = oradatabase.DbExecuteSQL(sql_statement) (Required for Visual
Basic 3.0 and Access 2.0 users)

Arguments
sql_statement Any valid Oracle non-SELECT SQL statement.

Remarks
Executes a SQL statement and returns the number of rows processed by that
statement.

The sql_statement can be one continuous line with no breaks. If it is necessary
to break the line, be sure to use line feeds (ASCII 10). Do not use carriage
returns (ASCII 13), because the underlying Oracle database functions treat
carriage returns as null terminators.

You can use PL/SQL bind variables in conjunction with the OraParameters
collection.

When executing PL/SQL blocks or calling stored procedures, you must include
a BEGIN and END around your call as if you were executing an anonymous
PL/SQL block.    This is equivalent to the EXECUTE command of SQL*Plus and
SQL*DBA.

Note: ExecuteSQL should be used with care since any SQL statement or
PL/SQL block that is executed can adversely affect currently open dynasets.   
This is especially true if the OraDatabase object used for the ExecuteSQL
method is the same as the one that was used to create the dynaset.    Use a
different OraDatabase object if you are unsure.

Normal dynaset operations can be adversely affected, if in transactional
mode, a database commit is issued.    This can happen if either a SQL commit
command or a Data Control Language (DCL) or Data Definition Language
(DDL) command is issued.    DCL and DDL SQL commands, such as CREATE,
DROP, ALTER, GRANT and REVOKE always force a commit, which in turn
commits everything done before them.    Consult the Oracle7 Server SQL
Language Reference Manual for more details about DCL, DDL and
transactions.

Data Type
Long Integer

See Also
CreateDynaset Method
OraDatabase Object
OraParameters Collection
Transactions

ExecuteSQL Method Example

This example demonstrates the Add and Remove parameter methods, the ServerType
parameter property and the the ExecuteSQL database method to call a Stored Procedure
and Function (located in ORAEXAMP.SQL).    Copy and paste this code into the definition
section of a form. Then press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add EMPNO as an Input/Output parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
 OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER

 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2

 'Add SAL as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER

 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure can be found in the file ORAEXAMP.SQL.
 OraDatabase.DbExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
 'Display the employee number and name.

 'Execute the Stored Function Employee.GetSal to retrieve SAL.
 ' This Stored Function can be found in the file ORAEXAMP.SQL.
 OraDatabase.DbExecuteSQL ("declare SAL number(7,2);
Begin :SAL:=Employee.GetEmpSal (:EMPNO); end;")

 'Display the employee name, number and salary.
 MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" &
OraDatabase.Parameters("EMPNO").value & ",Salary=" &
OraDatabase.Parameters("SAL").value

 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"
 OraDatabase.Parameters.Remove "SAL"

End Sub

FieldSize Method
See Also
Applies To

OraField Object
Description

Returns the number of bytes stored in a LONG or LONG RAW field.    Not
available at design time and read-only at run time.

Usage
data_size = orafield.FieldSize()
data_size = orafield.DbFieldSize() (Required for Visual Basic 3.0 and Access
2.0 users)

Remarks
Returns the number of bytes stored in a LONG or LONG RAW field, up to a
value of around 64KB.    If the field contains more than 64KB, FieldSize
returns -1 (negative one).

Oracle does not return the length of columns that are greater than 64KB, so
the only way to determine the length is to retrieve the column.    To conserve
resources, columns of length greater than 64KB are not retrieved
automatically.

Data Type
Long Integer

See Also
AppendChunk Method
GetChunk Method
Long and Long Raw Columns
OraField Object
Type Property

FindFirst, FindLast, FindNext, FindPrevious Methods
See Also
Remarks

The OraDynaset object does not support these methods.

See Also
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
OraDatabase Object

GetChunk Method
See Also Example
Applies To

OraField Object
Description

Returns a string containing the bytes of all or a portion of a long or long raw
field.

Usage
data_string = orafield.GetChunk(offset, numbytes)
data_string = orafield.DbGetChunk(offset, numbytes) (Required for Visual
Basic 3.0 and Access 2.0 users)

Arguments
offset The number of bytes of the field to skip before copying

data.
numbytes The number of bytes to copy.

Remarks
When possible, GetChunk retrieves the specified bytes from the local cache.
However, to conserve resources, some of the data may not be stored locally.   
In these cases, GetChunk requests the necessary data from the database as
required.    As part of this process, data from all fields (except the Long or Long
Raw field) in the dynaset are retrieved and compared with the cached values
for consistency.    If any changes have occurred since the fetch of the original
partial data, then GetChunk aborts the operation with an error.    In the case
of an abort, the returned string is NULL.

If a long or long raw field is less than 64KB in size, it is quicker to retrieve the
data using the Value property than using GetChunk.

See Also
AppendChunk Method
FieldSize Method
Long and Long Raw Columns
OraField Object
Type Property
Value Property

GetChunk Method Example

This example demonstrates the use of GetChunk to retrieve a LONG RAW column of a
database and save it into a file.    This example expects a valid dynaset named OraDynaset
representing a table with a column named 'longraw'.    Copy and paste this code into the
definition section of a form.    Call this procedure with a valid filename.

Sub GetChunkExample (FName As String)

'Declare various variables
Dim CurSize As Integer, ChunkSize As Long
Dim I As Integer, FNum As Integer, CurChunk As String

'Set the size of each chunk
ChunkSize = 10240

frmChunk.MousePointer = HOURGLASS

'Get a free file number
FNum = FreeFile

'Open the file
Open FName For Binary As #FNum

 I = 0
'Loop through all of the chunks
'Oracle does not return the size of columns > 64KB.
'We should loop until the length of our block is
'less than we asked for.
Do
 CurChunk = OraDynaset.Fields("LONGRAW").DbGetChunk(I * ChunkSize, ChunkSize)
 CurSize = Len(CurChunk) 'Get the length of the current chunk.
 Put #FNum, , CurChunk 'Write chunk to file.
 I = I + 1
Loop Until CurSize < ChunkSize

'Close the file.
Close FNum

frmChunk.MousePointer = DEFAULT

End Sub

LastServerErrReset Method
See Also
Applies To

OraDatabase Object , OraSession Object
Description

Clears the LastServerErr to a zero value and sets LastServerErrText to
NULL for the specified object.

Usage
oradatabase.LastServerErrReset
orasession.LastServerErrReset

Remarks
This method allows user programs to better determine which program
requests generated the Oracle error.

See Also
LastServerErr Property
LastServerErrText Property
OraDatabase Object
OraSession Object

MoveFirst, MoveLast, MoveNext, MovePrevious Methods
See Also Example
Applies To

OraDynaset Object
Description

These methods change the cursor position to the first, last, next, or previous
row within the specified dynaset.

Usage
oradynaset.MoveFirst
oradynaset.DbMoveFirst (Required for Visual Basic 3.0 and Access 2.0 users)
oradynaset.MoveLast
oradynaset.DbMoveLast (Required for Visual Basic 3.0 and Access 2.0 users)
oradynaset.MovePrevious
oradynaset.DbMovePrevious (Required for Visual Basic 3.0 and Access 2.0
users)
oradynaset.MoveNext
oradynaset.DbMoveNext (Required for Visual Basic 3.0 and Access 2.0 users)

Remarks
The data control buttons map (from left to right or from top to bottom) to the
MoveFirst, MovePrevious, MoveNext, and MoveLast methods.    The BOF
and EOF properties are never True when using the data control buttons.

When the first or last record is current, record movement does not occur if you
use MoveFirst or MoveLast, respectively.

You force the query to completion if you use MoveLast on a dynaset.

If you use MovePrevious and the first record is current, there is no current
record and BOF is True.    Using MovePrevious again causes an error, though
BOF remains True.

If you use MoveNext and the last record is current, there is no current record
and EOF is True.    Using MoveNext again causes an error, though EOF
remains True.

When you open a dynaset, BOF is False and the first record is current.    If a
dynaset is empty, BOF and EOF are both True and there is no current record.

If an Edit or AddNew operation is pending and you use one of the Move
methods indirectly by way of the data control, then Update is invoked
automatically (although it may be stopped during the Validate event).

If an Edit or AddNew operation is pending and you use one of the Move
methods directly without the data control, pending Edit or AddNew
operations cause existing changes to be lost, though no error occurs.

Data is fetched from the database as necessary, so performing a MoveFirst
followed by MoveNext will incrementally build the mirrored (cached) local set
without requiring read-ahead of additional data.    However, executing a
MoveLast will require that the entire query be evaluated and stored locally.

When a dynaset is attached to a data control, these methods first notify the
data control's Validate event that record motion is about to occur.    The
Validate handler may deny the request for motion, in which case the request
is ignored.    If the record pointer is successfully moved, then all custom
controls attached to the data control are notified automatically of the new
record position.

See Also
AddNew Method
BOF Property
Edit Method
EditMode Property
EOF Property
RecordCount Property
Tuning and Customization
Update Method
Validate Event

MoveFirst, MoveLast, MoveNext, MovePrevious Methods
Example

This example demonstrates record movement within a dynaset using MoveFirst,
MoveNext, MoveLast, MovePrevious.    Copy and paste this code into the definition
section of a form..    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select empno, ename from emp",
0&)

MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " &
OraDynaset.Fields("ename").value

 'Move to the next record and display it.
 OraDynaset.DbMoveNext
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " &
OraDynaset.Fields("ename").value

 'Move to the last record and display it.
 OraDynaset.DbMoveLast
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " &
OraDynaset.Fields("ename").value

 'Move to the previous record and display it.
 OraDynaset.DbMovePrevious
 MsgBox "Employee #" & OraDynaset.Fields("empno").value & ", " &
OraDynaset.Fields("ename").value

End Sub

OpenDatabase Method
See Also Example
Applies To

OraSession Object
Description

Creates an OraDatabase object using the given database name and connect
string and reflecting the specified options.

Usage
Set oradatabase = orasession.OpenDatabase(database_name,
connect_string, options)
Set oradatabase = orasession.DbOpenDatabase(database_name,
connect_string, options) (Required for Access 2.0 users)

Arguments
database_name The Oracle SQL*Net specifier used when connecting

the data control to a database.
connect_string The username and password to be used when

connecting to    an Oracle database.
options A bit flag word used to set the optional modes of the

database.    If options = 0, the default mode settings
will apply.    The following modes are available:

Column Defaulting mode.
The default mode is called VB mode.    In VB mode,
field (column) values not explicitly set are set to NULL
when using    AddNew or Edit.
Optionally you can use Oracle mode.    Oracle mode
indicates that changes made to fields (columns) are
immediately reflected in the local mirror by retrieving
the changed row from the database, thus allowing
Oracle to set defaults for the columns and perform
required calculations.
Column Defaulting mode affects the behavior of the
AddNew and Edit methods.

Lock Wait mode.
The default mode is called Wait mode.    In Wait mode,
when dynaset rows are about to be modified (using
Edit), the existing row in the database is retrieved
using SELECT ... FOR UPDATE to lock the row in the
database.    If the row about to be changed has been
locked by another process (or user), the SELECT ...
FOR UPDATE, waits until the row is unlocked before
proceeding.
Optionally you may use NoWait mode.    NoWait mode
results in an immediate return of an error code,
indicating that the row about to be updated is locked.
Lock Wait mode also affects any SQL statements
processed using ExecuteSQL.

Examples of valid database_name arguments include:

"t:oracle:PROD"
"p:oracle7:demo"
"x:orasrv"
"mydbalias" (Where mydbalias represents t:mfg:prod)

Examples of valid connect_string arguments include:

"scott/tiger"
"system/manager"

The options flag values are:

Constant Value Description
ORADB_DEFAULT &H0& Accept the default behavior.
ORADB_ORAMODE &H1& Let Oracle set default field (column)

values.
ORADB_NOWAIT &H2& Do not wait on row locks when

executing a "SELECT ... FOR
UPDATE".

Options may be combined by adding their respective values.

These values can be found in the file ORACONST.TXT.
Remarks

If another connection exists within the same OraSession object with the
same connect_string and database_name arguments, it is automatically
shared, although each database object is distinct.    An OraConnection object
is created automatically and appears within the OraConnections collection of
the session. Opening a database has the effect of opening a connection (if it
does not already exist), but does not perform any SQL actions.

See Also
AddNew Method
Edit Method
ExecuteSQL Method
Locks and Editing
OraConnection Object
OraConnections Collection
OraDatabase Object
OraField Object
OraSession Object

OpenDatabase Method Example

This example demonstrates how to create a dynaset and all of the underlying objects
programmatically.    Copy and paste this code into the definition section of a form with
textboxes named txtEmpNo and txtEName.    Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select empno, ename from emp",
0&)

 'Display the first record.
 txtEmpNo = OraDynaset.Fields("empno").value
 txtEName = OraDynaset.Fields("ename").value

End Sub

Refresh Method
See Also Example
Applies To

OraDynaset Object
Description

Forces an immediate update of the dynaset given the current Connect,
DatabaseName, and SQL properties.

Usage
oradynaset.Refresh
oradynaset.DbRefresh (Required for Visual Basic 3.0 and Access 2.0 users)

Remarks
This method cancels all edit operations (Edit and AddNew), executes the
current contents of the SQL statement buffer, and moves to the first row of
the resulting dynaset.    Any dynaset objects created before issuing the
Refresh method, including bookmarks, record counts, and field collections,
are considered invalid.    The OraConnection and OraSession objects
associated with the previous dynaset remain unchanged.

Performing a refresh operation with this method can be more efficient than
refresh operations using a data control, and provides the added capability of
executing a modified SQL statement without creating a new dynaset.

Using oradynaset.Refresh is the preferred refresh method when changing
parameter values, because required database operations are minimized (SQL
parsing, binding, etc.).    This can lead to much improved performance when
only parameter values have changed.

If the SQL statement associated with the dynaset has been changed and a
following Refresh is issued, it is possible that the specified SQL statement
may not be valid.    In this case, the dynaset remains a valid object but does
not permit any row or field operations.    In this state, bound controls exhibit
unusual behaviors similar to those that occur when the standard Visual Basic
data control RecordSource is set to an invalid SQL statement at run time and
then Refreshed.    A NULL or empty SQL statement is considered invalid by
Refresh.

See Also
AddNew Method
Connect Property
CreateDynaset Method
DatabaseName Property
Edit Method
OraConnection Object
OraDynaset Object
OraSession Object
RecordSource Property
SQL Property

Refresh Method Example

This example demonstrates the use of parameters, the Refresh method, and the SQL
property to restrict selected records.    Copy and paste this code into the definition section of
a form. Then press F5.

Sub Form_Load ()

 'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object by opening a connection to Oracle.
 Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Create a parameter with an initial value.
 OraDatabase.Parameters.Add "job", "MANAGER", 1

 'Create the OraDynaset Object.
 Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp where
job=:job", 0&)

 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL

 'Currently, OraDynaset only contains employees whose
 'job is MANAGER.

 'Change the value of the job parameter.
 OraDatabase.Parameters("job").Value = "SALESMAN"

 'Refresh the dynaset.
 OraDynaset.DbRefresh

 'Currently, OraDynaset only contains employees whose
 'job is SALESMAN.

 'Notice that the SQL statement is NOT modified.
 MsgBox OraDynaset.SQL

 'Remove the parameter.
 OraDatabase.Parameters.Remove ("job")

 End Sub

Remove Method
See Also Example
Applies To

OraParameters Collection
Description

Removes a parameter from the OraParameters collection.
Usage

oraparameters.Remove(member_name)
Arguments

member_name A variant specifying an integer subscript from 0 to Count -
1, or the parameter name.

Remarks
Instead of repeatedly removing and adding unwanted parameters, use
AutoBindDisable and AutoBindEnable.

See Also
Add Method
AutoBindEnable Method
AutoBindDisable Method
OraDatabase Object
OraParameter Object
OraParameters Collection

Remove Method Example

This example demonstrates the Add and Remove parameter methods, the ServerType
parameter property and the the ExecuteSQL database method to call a Stored Procedure
and Function (located in ORAEXAMP.SQL).    Copy and paste this code into the definition
section of a form. Then press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
 Dim OraSession As Object
 Dim OraDatabase As Object
 Dim OraDynaset As Object

 'Create the OraSession Object.
 Set OraSession = CreateObject("OracleInProcServer.XOraSession")

 'Create the OraDatabase Object.
 Set OraDatabase = OraSession.OpenDatabase("ExampleDb", "scott/tiger", 0&)

 'Add EMPNO as an Input/Output parameter and set its initial value.
 OraDatabase.Parameters.Add "EMPNO", 7369, ORAPARM_INPUT
 OraDatabase.Parameters("EMPNO").ServerType = ORATYPE_NUMBER

 'Add ENAME as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "ENAME", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("ENAME").ServerType = ORATYPE_VARCHAR2

 'Add SAL as an Output parameter and set its initial value.
 OraDatabase.Parameters.Add "SAL", 0, ORAPARM_OUTPUT
 OraDatabase.Parameters("SAL").ServerType = ORATYPE_NUMBER

 'Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME.
 ' This Stored Procedure can be found in the file ORAEXAMP.SQL.
 OraDatabase.DbExecuteSQL ("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")
 'Display the employee number and name.

 'Execute the Stored Function Employee.GetSal to retrieve SAL.
 ' This Stored Function can be found in the file ORAEXAMP.SQL.
 OraDatabase.DbExecuteSQL ("declare SAL number(7,2);
Begin :SAL:=Employee.GetEmpSal (:EMPNO); end;")

 'Display the employee name, number and salary.
 MsgBox "Employee " & OraDatabase.Parameters("ENAME").value & ", #" &
OraDatabase.Parameters("EMPNO").value & ",Salary=" &
OraDatabase.Parameters("SAL").value

 'Remove the Parameters.
 OraDatabase.Parameters.Remove "EMPNO"
 OraDatabase.Parameters.Remove "ENAME"
 OraDatabase.Parameters.Remove "SAL"

End Sub

ResetTrans Method
See Also Example
Applies To

OraSession Object
Description

Unconditionally rolls back all transactions and clears the transaction mode
initiated by BeginTrans.

Usage
orasession.ResetTrans

Remarks
This method does not generate events or produce errors.    Since ResetTrans
does not generate events, you cannot cancel ResetTrans in a Validate
event, as you can RollBack or Commit.

See Also
BeginTrans Method
CommitTrans Method
OraSession Object
Rollback Method
Validate Event

ResetTrans Method Example

This example demonstrates the use of BeginTrans and ResetTrans to group a set of
dynaset edits into a single transaction.    Copy this code into the definition section of a form. 
Then press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As Object
Dim OraDatabase As Object
Dim OraDynaset As Object

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 'Start Transaction processing.
 OraDynaset.Session.DbBeginTrans

 'Traverse until EOF is reached, setting
 'each employees salary to zero.
 Do Until OraDynaset.EOF
 OraDynaset.DbEdit
 OraDynaset.Fields("sal").value = 0
 OraDynaset.DbUpdate
 OraDynaset.DbMoveNext
 Loop
 MsgBox "All salaries set to ZERO."

 'Currently, the changes have NOT been committed
 'to the database.

 'End Transaction processing.
 'Using ResetTrans means the rollback cannot
 'be canceled in the Validate event.
 OraDynaset.Session.DbResetTrans
 MsgBox "Salary changes rolled back."

End Sub

Rollback Method
See Also Example
Applies To

OraConnection Object , OraSession Object
Description

Ends the current transaction and rolls back all pending changes to the
database.

Usage
oraconnection.Rollback
oraconnection.DbRollback (Required for Visual Basic 3.0 and Access 2.0
users)
orasession.Rollback
orasession.DbRollback (Required for Visual Basic 3.0 and Access 2.0 users)

Remarks
When this method is invoked, all OraDynaset objects that share the specified
session or connection are given the opportunity to cancel the rollback request.
If they do not cancel the request, they are then advised when the rollback
succeeds.

This feature is useful primarily for dynasets that are created as part of an
Oracle Data Control's operation.    For such dynasets, the Validate event is
sent to allow them to cancel the rollback request.

OraConnection.Rollback rolls back all pending transactions within the
specified connection.    If not participating in a session-wide transaction (by
using the session object's BeginTrans method), this method has no effect,
because all operations are autocommitted whenever they are performed.   
However, when a session-wide transaction is in progress, you can use this call
to prematurely roll back the transactions for the specified connection.

Use this method with care. It undermines the normal operation of session-wide
transactions.    In many cases, you can use the OraSession object's
transaction protocol instead.

OraSession.Rollback rolls back all pending transactions within the specified
session.    Rollback is valid only when a transaction has been started using
BeginTrans.    Using Rollback without BeginTrans results in an error.

Transactions are rolled back by rolling back each connection separately.    If an
error occurs, some connections are rolled back and others are not. If the error
can be corrected, executing Rollback again rolls back the remaining
connections.

See Also
BeginTrans Method
CommitTrans Method
OraConnection Object
OraSession Object
ResetTrans Method
Validate Event

Rollback Method Example

This example demonstrates the use of BeginTrans and Rollback to group a set of dynaset
edits into a single transaction.    Copy this code into the definition section of a form.    Then
press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As Object
Dim OraDatabase As Object
Dim OraDynaset As Object

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

 'Start Transaction processing.
 OraDynaset.Session.DbBeginTrans

 'Traverse until EOF is reached, setting
 'each employees salary to zero.
 Do Until OraDynaset.EOF
 OraDynaset.DbEdit
 OraDynaset.Fields("sal").value = 0
 OraDynaset.DbUpdate
 OraDynaset.DbMoveNext
 Loop
 MsgBox "All salaries set to ZERO."

 'Currently, the changes have NOT been committed
 'to the database.

 'End Transaction processing.
 OraDynaset.Session.DbRollback
 MsgBox "Salary changes rolled back."

End Sub

Update Method
See Also Example
Applies To

OraDynaset Object
Description

Saves the copy buffer to the specified dynaset.
Usage

oradynaset.Update
oradynaset.DbUpdate (Required for Visual Basic 3.0 and Access 2.0 users)

Remarks
Update completes an AddNew or Edit operation and immediately commits
changes to the database unless BeginTrans is pending for the session.

The mirrored data image is also updated so that the query does not have to
be reevaluated to continue browsing and updating data.    The method used
for updating the mirror image is subject to the options flag that was passed to
the OpenDatabase that created this dynasets OraDatabase object.

If this dynaset is attached to a data control, then the data control's Validate
event code may optionally cancel the update request.    If the update
completes, then all bound controls associated with the dynaset are notified of
the update so they can reflect the data changes automatically.

See Also
AddNew Method
Edit Method
Long and Long Raw Columns
OpenDatabase Method
OraDatabase Object
Validate Event

Update Method Example

This example demonstrates the use of AddNew and Update to add a new record to a
dynaset.    Copy this code into the definition section of a form.    Then press F5.

Sub Form_Load ()

'Declare variables as OLE Objects.
Dim OraSession As Object
Dim OraDatabase As Object
Dim OraDynaset As Object

'Create the OraSession Object.
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

'Create the OraDatabase Object by opening a connection to Oracle.
Set OraDatabase = OraSession.DbOpenDatabase("ExampleDb", "scott/tiger", 0&)
'Create the OraDynaset Object.
Set OraDynaset = OraDatabase.DbCreateDynaset("select * from emp", 0&)

'Begin an AddNew.
OraDynaset.DbAddNew

'Set the field(column) values.
OraDynaset.Fields("EMPNO").Value = "1000"
OraDynaset.Fields("ENAME").Value = "WILSON"
OraDynaset.Fields("JOB").Value = "SALESMAN"
OraDynaset.Fields("MGR").Value = "7698"
OraDynaset.Fields("HIREDATE").Value = "19-SEP-92"
OraDynaset.Fields("SAL").Value = 2000
OraDynaset.Fields("COMM").Value = 500
OraDynaset.Fields("DEPTNO").Value = 30

'End the AddNew and Update the dynaset.
OraDynaset.DbUpdate

End Sub

Data Control
See Also Properties Methods Events
Description

A data control provides a programmatic representation of a database and a
graphical representation of the Move methods of the underlying dynaset
(MoveFirst, MovePrevious, MoveNext, and MoveLast).    You can bind
other controls to a data control.

Remarks
A data control allows you to bind to it other controls that display a field, a
record, or multiple records of the underlying dynaset.    When record
movement occurs, data in bound controls stays in sync with the current record
of the dynaset.

If a user changes that data in a control that is bound to a data control, the
changes are automatically reflected in the underlying dynaset and database.

A data control allows you to perform most data access operations without
writing any code at all. To create a dynaset with a data control, set the
Connect, DatabaseName, and RecordSource properties and execute
Refresh.

See Also
Connect Property
DatabaseName Property
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
OraDynaset Object
RecordSource Property
Refresh Method

Properties
AllowMoveLas
t
AutoBinding
BackColor
Caption
Connect
Database
DatabaseNam
e
DragIcon
DragMode
EditMode
Enabled
Exclusive

FontBold
FontItalics
FontName
FontSize
FontStrikethru
FontUnderline
ForeColor
HelpContextI
D
Height
Index
Left
MousePointer

Name
Options
ReadOnly
Recordset
RecordSource
Session
Tag
TrailingBlanks
Top
Visible
Width

Methods
Drag
Move
Refresh
UpdateControls
UpdateRecord
ZOrder

Events
DragDrop
DragOver
Error
MouseDown

MouseMove
MouseUp
Reposition
Validate

Data Control Properties

AllowMoveLas
t
AutoBinding
BackColor
Caption
Connect
Database
DatabaseNam
e
DragIcon
DragMode
EditMode
Enabled
Exclusive

FontBold
FontItalics
FontName
FontSize
FontStrikethru
FontUnderline
ForeColor
HelpContextI
D
Height
Index
Left
MousePointer

Name
Options
ReadOnly
Recordset
RecordSource
Session
Tag
TrailingBlanks
Top
Visible
Width

Data Control Properties
AllowMoveLas
t
AutoBinding
BackColor
Caption
Connect
Database
DatabaseNam
e
DragIcon
DragMode
EditMode
Enabled
Exclusive

FontBold
FontItalics
FontName
FontSize
FontStrikethru
FontUnderline
ForeColor
HelpContextI
D
Height
Index
Left
MousePointer

Name
Options
ReadOnly
Recordset
RecordSource
Session
Tag
TrailingBlanks
Top
Visible
Width

Data Control Methods

Drag
Move
Refresh
UpdateControls
UpdateRecord
ZOrder

Data Control Methods

Drag
Move
Refresh
UpdateControls
UpdateRecord
ZOrder

Data Control Events

DragDrop
DragOver
Error
MouseDown

MouseMove
MouseUp
Reposition
Validate

Data Control Events

DragDrop
DragOver
Error
MouseDown

MouseMove
MouseUp
Reposition
Validate

AllowMoveLast Property
See Also
Applies To

Oracle Data Control
Description

Determines whether the user can move to the last record using the Data
Control's MoveLast button.    Read/write at design time and run time.

Usage
oradata1.AllowMoveLast = [True | False]

Remarks
By default, AllowMoveLast is True, in which case the user has no restriction
upon record motion, even when moving to the last record may be very time
consuming.

When AllowMoveLast is False, the Data Controls MoveLast button is
grayed out and disabled. However, once the last record has been encountered
(either because the user has navigated to the end of the set, or because code
has positioned the record pointer to the last record), the button is enabled.   
This gives the user visual feedback about whether or not the entire query has
been fetched.    Setting this property to False does not prevent you from using
the MoveLast method.

Changing this property has no effect until a Refresh method is sent to the
data control.

Data Type
Integer (Boolean)

See Also
MoveLast Method
Refresh Method

AutoBinding Property
See Also Example
Applies To

Oracle Data Control.
Description

Determines whether the automatic binding of database object parameters will
occur.    Read/write at design time and run time.

Usage
oradata1.AutoBinding = [True | False]

Remarks
By default, AutoBinding is True, in which case the parameters in the
OraParameters collection are bound to the SQL statement of the
RecordSource property before data control refresh (before the SQL
statement is executed).    Technically speaking, the parameters are rebound
when the recordset is re-created.

Setting Autobinding to False takes effect only if the SQL statement of the
RecordSource property needs to be rebound and reexecuted.    This is not the
case when you simply change a parameter value and refresh the data control
or simply refresh the recordset (the SQL statement only needs to be
reexecuted).    This is the case if you alter the RecordSource property and
change the SQL statement.

Use this property to disable all parameter binding when executing a SQL
statement that does not contain any parameters (using CreateDynaset,
Refresh or ExecuteSQL).

Changing this property does not take effect until a Refresh method is sent to
the data control (and the appropriate conditions apply).    Changing this
property has no effect when a recordset.Refresh is executed.

Data Type
Integer (Boolean)

See Also
Add Method
AutoBindDisable Method
AutoBindEnable Method
CreateDynaset Method
ExecuteSQL Method
OraParameter Object
OraParameters Collection
RecordSource Property
Refresh Method

AutoBinding Property Example

This example demonstrates the use of AutoBinding to show how it affects data control and
recordset refresh.    Copy this code into the definition section of a new form, then press F5 to
run.

Sub Form_Load ()

 'Set the username and password.
 oradata1.Connect = "scott/tiger"

 'Set the databasename.
 oradata1.DatabaseName = "ExampleDb"

 'Refresh the data control without setting the
 'recordsource. This has the effect of creating
 'the underlying database object so that parameters
 'can be added.
 oradata1.Refresh

 'Set the recordsource and use a SQL parameter for job.
 oradata1.RecordSource = "select * from emp where job = :job"

 'Add the job input parameter with initial value MANAGER.
 oradata1.Database.Parameters.Add "job", "MANAGER", 1

 'Add the deptno input parameter with initial value 10.
 oradata1.Database.Parameters.Add "deptno", 10, 1

 'Refresh the data control.
 oradata1.Refresh

 MsgBox "Employee #" & oradata1.Recordset.fields("empno") & ", Job=" &
oradata1.Recordset.fields("job")

 'Only employees with job=MANAGER will be contained
 'in the dynaset.

'Turn off Automatic parameter binding.
 oradata1.AutoBinding = False

 'Change the value of the job parameter to SALESMAN.
 oradata1.Database.Parameters("job").Value = "SALESMAN"

 'Refresh ONLY the recordset.
 oradata1.Recordset.DbRefresh

 MsgBox "Employee #" & oradata1.Recordset.fields("empno") & ", Job=" &
oradata1.Recordset.fields("job")

 'The query will still execute even with AutoBinding=False
 'because the dynaset has not been re-created.

 'Set the recordsource and use a SQL parameter for deptno.
 oradata1.RecordSource = "select * from emp where deptno = :deptno"

 On Error GoTo paramerr
 'Attempt to refresh the data control.
 'An error should occur, because AutoBind=False, the SQL
 'statement contains a parameter, and the SQL statement
 'needs to be bound before execution.
 oradata1.Refresh

Exit Sub

paramerr:
 MsgBox oradata1.Database.Session.LastServerErrText
Exit Sub

End Sub

BackColor Property
See Also

Applies To
Oracle Data Control.

Description
Determines the background color of an object.

See Visual Basic Help for more information.

See Also
ForeColor Property

Caption Property
Applies To

Oracle Data Control.
Description

Determines the text displayed in or next to a control.

See Visual Basic Help for more information.

Connect Property
See Also
Applies To

Oracle Data Control.
Description

The username and password to be used when connecting the data control to
an Oracle database.    Read/write at design time and run time.

Usage
oradata1.Connect = [username/password]

Remarks
This string is passed to the OpenDatabase method of the OraSession object
when the control is refreshed.    Changing this property does not take effect
until a Refresh method is sent to the data control.

If the data control is refreshed and the Connect property has not been
specified, the refresh will fail.

Examples of valid Connect properties include:

"scott/tiger"
"system/manager"

Data Type
String

See Also
OpenDatabase Method
OraSession Object
Refresh Method

Database Property
See Also
Applies To

Oracle Data Control.
Description

Returns the OraDatabase object associated with the data control.    Not
available at design time and read-only at run time.

Usage
oradatabase = oradata1.Database

Remarks
If the data control has not been refreshed, any references to this property
results in an "Object variable not set" runtime error.

Changing this property has no effect until a Refresh method is sent to the
data control.

Data Type
OLE Object (OraDatabase)

See Also
OraDatabase Object
Refresh Method

DatabaseName Property
See Also
Applies To

Oracle Data Control.
Description

The Oracle SQL*Net specifier used when connecting the data control to an
Oracle database.    Read/write at design time and run time.

Usage
oradata1.DatabaseName = [DatabaseName]

Remarks
The Oracle SQL*Net specifier should include the Oracle SQL*Net protocol
identifier, Oracle database name, and optional database instance (SQL*Net
aliases can also be used).    This string is passed to the OpenDatabase
method of the OraSession object when the control is refreshed.    Changing
this property does not take effect until a Refresh method is sent to the data
control.

If the data control is refreshed and DatabaseName has not been specified,
the refresh fails.

Examples of valid DatabaseName properties include:

"t:oracle:PROD"
"p:oracle7:demo"
"x:orasrv"
"mydbalias" (Where mydbalias represents "t:mfg:prod")

Data Type
String

See Also
OpenDatabase Method
OraSession Object
Refresh Method

DragIcon Property
See Also

Applies To
Oracle Data Control.

Description
Determines the icon to be displayed as the pointer in a drag-and-drop
operation.

See Visual Basic Help for more information.

See Also
Drag Method
DragDrop Event
DragMode Property
DragOver Event

DragMode Property
See Also

Applies To
Oracle Data Control.

Description
Determines manual or automatic dragging mode for a drag-and-drop
operation.

See Visual Basic Help for more information.

See Also
Drag Method
DragDrop Event
DragIcon Property
DragOver Event

EditMode Property
See Also
Applies To

Oracle Data Control.
Description

Returns the current editing state for the current row.    Not available at design
time and read-only at run time.

Usage
edit_mode = oradata1.EditMode

Remarks
The EditMode property values are:

Constant Value Description
ORADATA_EDITNONE 0 No editing in progress
ORADATA_EDITMODE 1 Editing is in progress on an

existing row
ORADATA_EDITADD 2 A new record is being added and

the copy buffer does not
currently represent an actual row
in the database.

These values are located in the file ORACONST.TXT and are intended to
match similar constants in the Visual Basic file CONSTANT.TXT.

This property is affected only by the Edit, AddNew, and Update methods.
Data Type

Integer

See Also
AddNew Method
Edit Method
Update Method

Enabled Property
See Also

Applies To
Oracle Data Control.

Description
Determines whether the control can respond to user-generated events.

See Visual Basic Help for more information.

See Also
Visible Property

Exclusive Property
Remarks

The Oracle Data Control does not support this property.    Oracle clients
generally have no control over database access.

FontBold Property
See Also

Applies To
Oracle Data Control.

Description
Determines whether the text displayed in a control is boldfaced.

See Visual Basic Help for more information.

See Also
FontItalics Property
FontName Property
FontSize Property
FontStrikethru Property
FontUnderline Property

FontItalics Property
See Also

Applies To
Oracle Data Control.

Description
Determines whether the text displayed in a control is italicized.

See Visual Basic Help for more information.

See Also
FontBold Property
FontName Property
FontSize Property
FontStrikethru Property
FontUnderline Property

FontName Property
See Also

Applies To
Oracle Data Control.

Description
Determines the font used to display text in a control.

See Visual Basic Help for more information.

See Also
FontBold Property
FontItalics Property
FontSize Property
FontStrikethru Property
FontUnderline Property

FontSize Property
See Also

Applies To
Oracle Data Control.

Description
Determines the size of the font to be used for text displayed in a control.

See Visual Basic Help for more information.

See Also
FontBold Property
FontItalics Property
FontName Property
FontStrikethru Property
FontUnderline Property

FontStrikethru Property
See Also

Applies To
Oracle Data Control.

Description
Determines whether the text displayed in a control is struck through.

See Visual Basic Help for more information.

See Also
FontBold Property
FontItalics Property
FontName Property
FontSize Property
FontUnderline Property

FontUnderline Property
See Also

Applies To
Oracle Data Control.

Description
Determines whether the text displayed in a control is underlined.

See Visual Basic Help for more information.

See Also
FontBold Property
FontItalics Property
FontName Property
FontSize Property
FontStrikethru Property

ForeColor Property
See Also

Applies To
Oracle Data Control.

Description
Determines the foreground color used to display text and graphics in an
object.

See Visual Basic Help for more information.

See Also
BackColor Property

Height Property
See Also

Applies To
Oracle Data Control.

Description
Determines the height dimension of an object.

See Visual Basic Help for more information.

See Also
Left Property
Move Method
Top Property
Width Property

HelpContextID Property
Applies To

Oracle Data Control
Description

Sets the help context number for a control.
Usage

oradata1.HelpContextID = [numeric_expression]
Remarks

Although the Visual Basic data control does not support this property, the
Oracle Data Control does.

See Visual Basic Help for more information.

Index Property
See Also

Applies To
Oracle Data Control.

Description
Specifies the number that uniquely identifies a control in a control array.   
Available at design time only if the control is part of a control array; read-only
at run time.

See Visual Basic Help for more information.

See Also
Tag Property

Left Property
See Also

Applies To
Oracle Data Control.

Description
Determines the distance between the internal left edge of an object and the
left edge of its container.

See Visual Basic Help for more information.

See Also
Move Method
Top Property

MousePointer Property
See Also

Applies To
Oracle Data Control.

Description
Determines the type of mouse pointer displayed when the mouse is over a
particular part of a form or control at run time.

See Visual Basic Help for more information.

See Also
DragIcon Property
MouseMove Event

Name Property
Applies To

Oracle Data Control.
Description

Specifies the name used in code to identify a form, control, or data access
object.    Not available at run time.

See Visual Basic Help for more information.

Options Property
See Also
Applies To

Oracle Data Control.
Description

Determines one or more characteristics of the database and all dynasets
associated with the data control.    Read/write at design time and run time.

Usage
oradata1.Options = database_options
database_options = oradata1.Options

Remarks
This property is a bit flag word used to set the optional modes of the
database.    If options = 0, the default settings will apply.    The following modes
are available:

Column Defaulting mode.
The default mode is called VB mode.    In VB mode, field (column) values not
explicitly set are set to NULL when using    AddNew or Edit.
Optionally you can use Oracle mode.    Oracle mode indicates that changes
made to fields (columns) are immediately reflected in the local mirror by
retrieving the changed row from the database, thus allowing Oracle to set
defaults for the columns and perform required calculations.
Column Defaulting mode affects the behavior of the AddNew and Edit
methods.

Lock Wait mode.
The default mode is called Wait mode.    In Wait mode, when dynaset rows are
about to be modified (using Edit), the existing row in the database is retrieved
using SELECT ... FOR UPDATE to lock the row in the database.    If the row
about to be changed has been locked by another process (or user), the
SELECT ... FOR UPDATE, waits until the row is unlocked before proceeding.
Optionally you may use NoWait mode.    NoWait mode results in an immediate
return of an error code, indicating that the row about to be updated is locked.
Lock Wait mode also affects any SQL statements processed using
ExecuteSQL.

The options flag values are:

Constant Value Description
ORADB_DEFAULT &H0& Accept the default behavior.
ORADB_ORAMODE &H1& Let Oracle set default field (column)

values.
ORADB_NOWAIT &H2& Do not wait on row locks when

executing a "SELECT ... FOR
UPDATE".

Options may be combined by adding their respective values.

These values can be found in the file ORACONST.TXT.

This property is the same as the options passed to the OpenDatabase

method.    Just as with OpenDatabase, these options affect the
OraDatabase object and all associated dynasets created from that database.

Changing this property does not take effect until a Refresh method is sent to
the data control.

Data Type
Long Integer

See Also
AddNew Method
Edit Method
CreateDynaset Method
OpenDatabase Method
OraDatabase Object
OraDynaset Object
Refresh Method
Locks and Editing

ReadOnly Property
See Also
Applies To

Oracle Data Control.
Description

Determines whether the dynaset will be used for read-only operations.   
Read/write at design time and run time.

Usage
oradata1.ReadOnly = [True | False]

Remarks
By default, ReadOnly is False which means that an attempt will be made to
create an updatable dynaset by selecting ROWIDs from the database.    If
ReadOnly is set to True, a nonupdatable dynaset is created (ROWIDs are not
selected from the database and cached) and operations will be somewhat
faster.   

If the SELECT statement contains a LONG or LONG RAW column, ROWIDs are
needed whether the dynaset will be updatable or not.

Changing this property does not take effect until a Refresh method is sent to
the data control.

Data Type
Integer (Boolean)

See Also
CreateDynaset Method
Long and Long Raw Columns
Refresh Method

Recordset Property
See Also
Applies To

Oracle Data Control.
Description

Returns a dynaset defined by the data control's Connect, DatabaseName,
and RecordSource properties.    Not available at design time and read-only at
run time.

Usage
Set oradynaset = oradata1.RecordSet

Remarks
The properties and methods of this dynaset are the same as those of any
other dynaset object.

Data Type
OLE Object (OraDynaset)

See Also
Connect Property
DatabaseName Property
MoveFirst , MoveLast , MoveNext , MovePrevious Methods
OraDynaset Object
OraFields Collection
OraParameters Collection
RecordSource Property

RecordSource Property
See Also Example
Applies To

Oracle Data Control.
Description

The SQL select statement to be used to create the data controls RecordSet.   
Read/write at design time and run time.

Usage
oradata1.RecordSource = [SQL SELECT Statement]

Remarks
The SQL statement must be a SELECT statement; otherwise an error is
returned.    Features such as views, synonyms, column aliases, schema
references, table joins, nested selects, and remote database references can be
used freely; object names are not modified in any way.

The updatability of the resultant dynaset depends on the Oracle SQL rules of
updatability, on the access you have been granted, and on the ReadOnly
property. In order to be updatable, three conditions must be met:
1. the SQL statement must refer to a simple column list or to the entire column

list (*),
2. the SQL statement must not set the read-only flag of the options argument,

and
3. Oracle must permit ROWID references to the selected rows of the query.

Any SQL statement that does not meet these criteria is processed, but the
results are not updatable and the dynasets Updatable property returns
False.

Changing this property does not take effect until a Refresh method is sent to
the data control.

You can use SQL bind variables in conjunction with the OraParameters
collection.

If this property is NULL or empty, then an OraDynaset object is not created,
but OraSession, OraConnection, and OraDatabase objects are created for
the data control.    This behavior enables access to these objects prior to
creation of a dynaset.    For example, a NULL RecordSource might be used to
instantiate the database object for the purpose of adding parameters.   
RecordSource can then be set at run time, making use of the automatic
binding of database parameters.

Data Type
String

See Also
Connect Property
DatabaseName Property
OraConnection Object
OraDatabase Object
OraDynaset Object
OraParameters Collection
OraSession Object
RecordSet Property
Refresh Method
Updatable Property

RecordSource Property Example

This example demonstrates the use of SQL bind variables (parameters) in the
RecordSource property of the data control.    Copy this code into the definition section of a
form containing a data control named oradata1.    Then press F5.

Sub Form_Load ()

 'Set the username and password.
 oradata1.Connect = "scott/tiger"

 'Set the databasename.
 oradata1.DatabaseName = "ExampleDb"

 'Refresh the data control without setting the
 ' recordsource. This has the effect of creating
 ' the underlying database object so that parameters
 ' may be added.
 oradata1.Refresh

 'Set the recordsource and use a SQL parameter.
 oradata1.RecordSource = "select * from emp where job = :job"

 'Add the job input parameter with initial value MANAGER.
 oradata1.Database.Parameters.Add "job", "MANAGER", 1

 'Refresh the data control.
 'Only employees with the job MANAGER will be contained
 'in the dynaset.
 oradata1.Refresh

 'Change the value of the job parameter to SALESMAN.
 oradata1.Database.Parameters("job").Value = "SALESMAN"

 'Refresh ONLY the recordset.
 'Only employees with the job SALESMAN will be contained
 ' in the dynaset.
 oradata1.Recordset.DbRefresh

End Sub

Session Property
See Also
Applies To

Oracle Data Control.
Description

The session object associated with the data control.    Not available at design
time and read-only at run time.

Usage
orasession = oradata1.Session

Remarks
This property is equivalent to referencing oradata1.Database.Session.    If
the data control has not been refreshed, any references to this property result
in an "Object variable not set" runtime error.

Data Type
OLE Object (OraSession)

See Also
OraDatabase Object
OraSession Object
OraSessions Collection

Tag Property
Applies To

Oracle Data Control.
Description

Stores any extra data needed by your application.

See Visual Basic Help for more information.

Top Property
See Also

Applies To
Oracle Data Control.

Description
Determines the distance between the internal top edge of an object and the
top edge of its container.

See Visual Basic Help for more information.

See Also
Move Method
Left Property

TrailingBlanks Property
See Also
Applies To

Oracle Data Control.
Description

Determines whether trailing blanks should be stripped from character string
data retrieved from the database.    Read/write at design time and run time.

Usage
oradata1.TrailingBlanks = [True | False]

Remarks
By default, TrailingBlanks is False    This means that trailing blanks will be
stripped from character string data retrieved from the database.

Changing this property has no effect until a Refresh method is sent to the
data control.

Data Type
Integer (Boolean)

See Also
CreateDynaset Method
Refresh Method

Visible Property
See Also

Applies To
Oracle Data Control.

Description
Determines whether an object is visible or hidden.

See Visual Basic Help for more information.

See Also
Enabled Property

Width Property
See Also

Applies To
Oracle Data Control.

Description
Determines the width dimension of an object.

See Visual Basic Help for more information.

See Also
Height Property
Left Property
Move Method
Top Property

Drag Method
See Also

Applies To
Oracle Data Control.

Description
Begins, ends, or cancels dragging controls.

See Visual Basic Help for more information.

See Also
DragDrop Event
DragIcon Property
DragMode Property
DragOver Event
MousePointer Property

Move Method
See Also

Applies To
Oracle Data Control.

Description
Moves a form or control.

See Visual Basic Help for more information.

See Also
Height Property
Left Property
Top Property
Width Property

Refresh Method
See Also
Applies To

Oracle Data Control.
Description

This method re-creates the OraDatabase and OraDynaset objects
referenced within the data control and reestablishes a dynaset using    the SQL
statement from the RecordSource property and the connection information
from the Connect and DatabaseName properties.

Usage
oradata1.Refresh

Remarks
If an existing dynaset has been assigned to an object variable in Visual Basic,
then Refresh creates a new dynaset for the data control, but the old dynaset
continues to be available for use until all references to it are removed.

See Also
Connect Property
DatabaseName Property
OraDatabase Object
OraDynaset Object
RecordSource Property
SQL Property

UpdateControls Method
See Also Example
Applies To

Recordset property of the Oracle Data Control.
Description

Gets the current record from a data control's recordset and displays the
appropriate data in controls bound to that data control.

Usage
oradata1.Recordset.UpdateControls
oradata1.Recordset.DbUpdateControls (Required for Visual Basic 3.0 users)

Remarks
Use this method to allow the user to cancel changes made to bound controls
and restore the contents of those controls to their original values.

This method has the effect of making the current record current again, except
that no events occur.

Note: Due to limitations of Custom Controls under Visual Basic 3.0, this
method cannot be made available directly from the data control. Rather, it
must be provided as a method of the data control's Recordset.

See Also
Recordset Property
UpdateRecord Method

UpdateControls Method Example

This example cancels changes made to bound controls and restores the data to the original
values.    Copy this code into the definition section of a form that has a data control named
oradata1 (which has been successfully refreshed) and has the KeyPreview property set to
True.    Then press F5.

Sub Form_KeyDown (KeyCode As Integer, Shift As Integer)
Const KEY_ESCAPE = &H1B
If KeyCode = KEY_ESCAPE Then

oradata1.recordset.DbUpdateControls
End If

End Sub

UpdateRecord Method
See Also
Applies To

Recordset property of the Oracle Data Control.
Description

Saves the current values of bound controls.
Usage

oradata1.Recordset.UpdateRecord
oradata1.Recordset.DbUpdateRecord (Required for Visual Basic 3.0 users)

Remarks
This method allows you to save the current value of bound controls during a
Validate event without generating another Validate event.

This method has the effect of executing the Edit method, changing a field,
and executing the Update method, except that no events occur.

Note: Due to limitations of Custom Controls under Visual Basic 3.0, this
method cannot be made available directly from the data control. Rather, it
must be provided as a method of the data control's Recordset.

See Also
Edit Method
Recordset Property
Update Method
Validate Event

ZOrder Method
Applies To

Oracle Data Control.
Description

Places a specified form or control at the front or back of the z-order within its
graphical level.

See Visual Basic Help for more information.

DragDrop Event
See Also

Applies To
Oracle Data Control.

Description
Occurs when a drag-and-drop operation is completed as a result of either
dragging a control over a form or control and releasing the mouse button, or
using the Drag method with its action argument = 2 (Drop).

See Visual Basic Help for more information.

See Also
Drag Method
DragIcon Property
DragMode Property
DragOver Event
MouseDown Event
MouseMove Event
MouseUp Event

DragOver Event
See Also

Applies To
Oracle Data Control.

Description
Occurs when a drag-and-drop operation is in progress.    You can use this event
to monitor when the mouse pointer enters, leaves, or is directly over a valid
target.    The mouse pointer position determines which target object receives
this event.

See Visual Basic Help for more information.

See Also
Drag Method
DragDrop Event
DragIcon Property
DragMode Property
MouseDown Event
MouseMove Event
MouseUp Event

Error Event
See Also

Applies To
Oracle Data Control.

Description
This event is fired whenever an interactive operation causes an error.    You can
perform some operations directly with the data control, such as using the data
control buttons or when the data control refreshes automatically when the
form loads.    In these cases, the Error event is fired instead of causing a
normal runtime error.

See Visual Basic Help for more information.

See Also
AddNew Method
Delete Method
MoveFirst, MoveLast, MoveNext, MovePrevious Methods

MouseDown Event
See Also

Applies To
Oracle Data Control.

Description
This event is fired whenever a mouse button is pressed (MouseDown) and
the mouse pointer is over the data control, or has been captured by the data
control.    The mouse is captured if a mouse button has been pressed
previously over the data control until all corresponding MouseUp events have
been received.

See Visual Basic Help for more information.

See Also
MouseMove Event
MousePointer Property
MouseUp Event

MouseMove Event
See Also

Applies To
Oracle Data Control.

Description
This event is fired continuously whenever the mouse pointer moves across the
data control.    Unless another object has not captured the mouse, the data
control recognizes a MouseMove event whenever the mouse position is
within its borders.

See Visual Basic Help for more information.

See Also
MousePointer Property
MouseDown Event
MouseUp Event

MouseUp Event
See Also

Applies To
Oracle Data Control.

Description
This event is fired whenever a mouse button is released (MouseUp) and the
mouse pointer is over the data control, or has been captured by the data
control.    The mouse is captured if a mouse button has been pressed
previously over the data control until all corresponding MouseUp events have
been received.

See Visual Basic Help for more information.

See Also
MouseMove Event
MousePointer Property
MouseDown Event

Reposition Event
See Also

Applies To
Oracle Data Control.

Description
This event is fired whenever the database record pointer is successfully
repositioned to a new location.    The Validate event is always fired before
Reposition.

See Visual Basic Help for more information.

See Also
Error Event
FindFirst, FindLast, FindNext, FindPrevious Methods
MoveFirst, MoveLast, MoveNext, MovePrevious Methods
Validate Event

Validate Event
See Also

Applies To
Oracle Data Control.

Description
This method is called whenever a variety of circumstances occur.    It is sent
when an attempt is made to move to a new record position, to delete a record,
add a record, move to a bookmark, or to roll back the dynasets in the session. 
Validate is always called before the operation proceeds and any action is
taken.

See Visual Basic Help for more information.

See Also
AddNew Method
BookMark Property
Close Method
Delete Method
Edit Method
EditMode Property
FindFirst, FindLast, FindNext, FindPrevious Methods
MoveFirst, MoveLast, MoveNext, MovePrevious Methods
Update Method
UpdateRecord Method

