
Oracle Objects for OLE C++ Class Library
Copyright Other Information Sources

Requirements

Getting Started

Overview

The C++ Class Library
Introduction
Methods

Classes
Trigger Methods

 Oracle-Specific Notes On:
Locks and Editing
Long and Long Raw Columns

Transactions
''SELECT ... FOR UPDATE''

 Technical Notes On:
Tuning and Customization
Sample Code and
Applications
Redistributable Files

Troubleshooting
Object Relationships

For Help on Help, Press F1

Modification History
Version 1.0.42.0 December 1994
Finalized Oracle Objects for OLE
Version 1.0.53.0 (Internal) March 27,1995
Added Modification History Topic
Modified Troubleshooting Topic
Added Copyright Topic
Synchronized Tuning and Customization Topic with ORACLEO
Fixed underline typo at the end of the Transactions topic
Fixed typo in the Redistributable file topic
Removed "kswnotdone" from ExecuteSQL Method
Added descriptions for the Options argument to the ODynaset and ODatabase Open

Methods
Fixed spelling mistake (classess to classes)
Fixed return type of GetFieldServerType and GetParameter Methods
Added descriptions for the DynOpts arguments to the OBinder Open Method
Corrected the return value of the GetDynaset Method
Changed the return value of the GetErrorText Method
Updated Copyright
Added version numbers to the C++ part of the Requirements section
Updated Open(OSession) and GetNamed Session to mention that sessions are not

sharable across apps.
Added GetRowsProcessed attribute to ODatabase and updated

ExecuteSQL(ODatabase)
Altered code example for GetServerErrorText
Added OBinder class to IsOpen method
Removed references to non-existent attributes of OBinder
Added references to newly implemented methods of Obinder (error handling)
Added detail to BindToBinder, highlighting difference between binding controls first or

opening the Binder first,
Changed Usage notes for IsNullOK from IsNull to IsNullOK
Changed return type of GetErrorText and LookupErrorText to be (const char *)
Version 1.0.55.0 (Production) April 14,1995
Added IsFirst and IsLast methods to ODynaset and OBinder

Copyright
Oracle Objects for OLE,    Version 1.0

Release 1.0.55.0

Copyright (c) Oracle Corporation    1994-1995

Primary Authors:    Keith Majkut, Paul Richard, Kevin Whitley, Roy Woollard
Contributors: Jia-Der Day, Geraldine Kuo, Diana Lorentz, Bill Sisson

This software was not developed for use in any nuclear, aviation, mass transit,
medical, or other inherently dangerous applications. It is the customer's
responsibility to take all appropriate measures to ensure the safe use of such
applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions
on use and disclosure and is also protected by copyright law.    Reverse
engineering of the software is prohibited. If this software/documentation is
delivered to a U.S. Government Agency of the Department of Defense, then it
is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-
7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA    94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with "Restricted Rights,"
as defined in FAR 52.227-14, Rights in Data - General, including Alternate III
(June 1987).

The information in this document is subject to change without notice.    If you
find any problems in the documentation, please report them to us in writing.   
Oracle Corporation does not warrant that this document is error-free.

Other Information Sources

The following Oracle publications contain more information about various topics
mentioned here:

Oracle7 Server Application Developer's Guide
Oracle7 Server Concepts Manual
Oracle7 Server SQL Language Quick Reference
Oracle7 Server SQL Language Reference Manual
PL/SQL User's Guide and Reference
PL/SQL V2.1 and Precompiler's V1.6 Addendum
Oracle7 Server Documentation Addendum

Requirements

Design Time
The Oracle Object Server requires an application that supports OLE Automation, such

as Visual Basic 3.0 (Standard or Professional), Excel 5.0, or Access 2.0.
The Oracle Data Control requires Visual Basic 3.0 (Standard or Professional).
The Oracle Objects for OLE C++ Class Library requires either Microsoft Visual C++

Version 1.5 (16 bit) or Borland C++ Version 4.x (16 bit).    Neither the OLE SDK nor OLE
development knowledge is necessary.

Run Time
Windows 3.1 or an equivalent environment capable of running 16 bit Windows

applications such as Windows NT (using WOW) or OS/2 (using Win-OS/2).
A local or remote Oracle7 database.
Oracle SQL*Net Version 1.x or 2.x if connecting to a remote Oracle7 database.
Microsoft OLE 2.0.1 or greater run time files (included with the Oracle Objects for OLE

installation).

Getting Started

There are a few things you will need to do before you write a single line of C+
+ code.

First you will need to place all the Oracle Objects for OLE C++ DLLs, libraries
and headers in places that are convenient for you.    The Oracle Objects for
OLE installation procedure placed the DLLs for the main C++ classes in a
subdirectory called bin.    The DLL is called ORACLM.DLL for the version that
works with Microsoft's Visual C++.    The DLL for Borland is called ORACLB.DLL.
Debug versions are available in the dbg subdirectory of bin.    The .lib file for
the main class library was placed in a directory called lib.    The Borland
version of the lib file is called ORACLB.LIB.    The Microsoft version of the lib file
is called ORACLM.LIB.    The headers that you need are in a directory called
include.    The headers work with either Borland or Microsoft.    If you are using
the user-interface widget bound classes you will find the libraries, headers and
source in directories called OMFC (for Microsoft's MFC framework) or OOWL
(for Borland's OWL framework).

Source for the entire class library is provided.    It is provided for debugging
purposes only.    It can be found in the src    subdirectory.

The next thing you will need to do is to make sure that you have a good
connection to an Oracle database.    Please consult your Oracle documentation
on how to do this.    A working knowledge of the SQL language is important
because it is the way that you will be interacting with the Oracle database.

Then you are ready to start writing programs.    The Oracle Objects for OLE C+
+ Class Library will help you build large model programs.

In your program you will need to initialize the class library before using it and
uninitialize it before your program exits.    This initialization and uninitialization
must be done per application.    Normally the initialization is done when the
program starts (for instance in the application object initialization method)
and the uninitialization is done when the program exits (for instance in the
application object destructor).    Please see the documentation for the
OStartup and OShutdown methods.

The normal use of Oracle Objects for OLE is to obtain access to the data of an
Oracle database using a dynaset object.    If you consider the relations
between the objects in the class library (Object Relationship) you will see that
the dynaset is not the topmost object.    You will have to create or instantiate
some other objects that a dynaset is dependent on.      You typically will
construct an ODatabase object, which gives you a connection to the
database, and then construct an ODynaset object, which will give you access
to the data of the database.    The A Simple Example topic demonstrates this
kind of simple access to the database.

An alternative approach is to use managed dynasets.    In this case you use the
OBinder class to take care of the database connection and dynaset.    You will
use bound objects, objects that are instances of subclasses of OBound, to
access the data.    The Workbook document gives some examples of using the
class library this way.    It is particularly suitable for programs that provide a
user interface to the database's data.

This on-line help system contains a section called Introduction to Class Library
which contains introductory material on the class library, including
explanatory subtopics.    This system is also the reference manual for the class
library, documenting and explaining all the classes and methods.
In addition there is a Workbook document that provides some worked-through
examples of using the class library.    The user-interface widget libraries (OMFC
and OOWL) are documented in separate documents.

Using Oracle Objects for OLE with Visual Basic or VBA
Please see the Oracle Objects for OLE on-line help system for further details
on using Oracle Objects for with Visual Basic (including the Oracle data
control) and with other OLE Automation aware applications.

Overview

Oracle Objects for OLE
Oracle Objects for OLE is a collection of programmable objects that simplifies
the development of applications designed to communicate with an Oracle7
database. Oracle Objects for OLE is particularly well suited for any
programming environment that supports Visual Basic custom controls (VBX) or
OLE Automation.    Oracle Objects for OLE consists of three principle
components: the Oracle Object Server, the Oracle Data Control, and the
Oracle Objects for OLE C++ Class Library.

The Oracle Object Server
The Oracle Object Server is an OLE In Process server that supports a collection
of programmable objects for Oracle7 databases running either locally or
remotely.    An OLE In Process server is a special kind of OLE server, running in
a Windows DLL, that supports the OLE Automation interface. An OLE In
Process server has no user interface and is not embeddable.    You can access
the Oracle Object Server through the Oracle Data Control, through any
application that supports OLE Automation (such as in Visual Basic for
Applications, in applications such as Microsoft Excel Version 5.0 and Access
2.0) and through the Oracle Objects for OLE C++ Class Library.

The Oracle Data Control
The Oracle Data Control is a Visual Basic custom control for use with
development tools that support custom controls.    The Oracle Data Control is
compatible with the Microsoft data control included with Visual Basic.    If you
are familiar with that data control, learning to use the Oracle Data Control is
quick and easy.

The Oracle Objects for OLE C++ Class Library
The Oracle Objects for OLE C++ Class Library is a collection of C++ classes
that provide programmatic access to the Oracle Object Server.    Although the
class library is implemented using OLE Automation, neither the OLE
development kit nor any OLE development knowledge is necessary to use it.   
In addition to the object classes, the class library provides a bound class,
which allows controls such as text and list boxes to be linked directly to a field
of a dynaset (columns in the database).    The bound class supports late,
runtime binding, as is available in Visual Basic.    The Oracle Objects for OLE
C++ Class Library is supported for Microsoft Visual C++ and the Microsoft
Foundation Classes (for the bound class) as well as Borland C++ and the
Object Windows Library (for the bound class).

Oracle Objects for OLE, OLE and the Oracle Database
Figure 1 shows the high-level relationship between the Oracle Data Control,
the Oracle Objects for OLE C++ Class Library, the Oracle Object Server, OLE,
and the Oracle7 database.

Figure 1 Relationships

Introduction to the Class Library

The Oracle C++ Class Library enables developers writing C++ code to access
Oracle7 databases easily, quickly, and with a minimum of programming.    The current
release is compatible with Microsofts Visual C++ version 1.5 when creating 16-bit
applications on a Windows platform. Borland C++ 4.0 is also supported.

Users of this library should have some knowledge of C++ and their development
system.    Since Oracle7 is a relational database, access to the data in the database is
most easily accomplished using the SQL language.    Therefore, users of this class
library should also have some familiarity with SQL.    However, for simple use of the
classes, developers unfamiliar with SQL can learn enough from the examples in the
accompanying Workbook (in the file WORKBOOK.WRI) to get started.

This class library is designed to provide object-oriented access to a relational
database.    It is not intended to make the relational database appear as an object-
oriented database.    So, for instance, methods are provided for getting data from the
database according to a SQL query.    But no methods are provided for stashing C++
objects directly in the database.

In terms of data types, the level of this interface is low.    The data types supported
are the simplest C data types: int, long, double, and char *.    There is no explicit
support for higher-level data types, although you will not find it difficult to provide
this support for your own data types.    In terms of operations, the level is high.    You
can open a connection to an Oracle database simply by constructing an ODatabase
object.    You can obtain an entire set of record from the database by constructing an
ODynaset object.    You can navigate forward and backward through sets of records
returned from the query.    A high-level interface gives the Visual C++ programmer
much of the power of the Visual Basic programmer, with bound objects and an
interaction model.

The class library was designed to provide the most effortless possible connectivity to
an Oracle database.    The objects will handle most mundane tasks.    For instance, you
do not have to log off from the database, the ODatabase object destructor will do
that for you.    You will not have to manage memory; the only memory you need to
free is memory that you allocate.    You do not need to run any special tools to build
your code.

See the following topics:

A Simple Example
About Binding
Class Naming Conventions
Error Handling
Initializing and Uninitializing the Library
Layers of the Library
Memory Ownership Conventions
Objects as Handles
Supported Data Types

A Simple Example

Consider an application designed to access an Oracle7 database and look at a
personnel database.    The program is intended to perform some analysis on the
salaries of all the employees.    Here is what the code would look like:

// construct a database, obtaining a database connection
ODatabase odb("ExampleDB", "scott", "tiger");
// the ODatabase object allows you to connect to a database and
// to execute SQL statements. By constructing it with the
// connection information we immediately get our
// database connection.

// construct a dynaset, obtaining the data records
ODynaset odyn(odb, "select * from emp");
// a dynaset corresponds to a cursor. It gives you access to the
// rows that are obtained by an SQL select statement.

double salary; // will contain salary information

// now look at each record
while (!odyn.IsEOF())
{ // we haven't gotten to the end of the set yet...

 // get the salary for the current record
 odyn.GetFieldValue("sal", &salary);

 // do something with the salary
 Analyze(salary);

 // go to the next record (perhaps moving past last)
 odyn.MoveNext();
}

This example opens a database and selects records from an employee database.    It
then navigates through the result set of the query one record at a time.    On each
record it obtains the value of the salary column and processes it.    The navigation is
performed with the MoveNext method.    You    can tell that you have gone through
the entire set when the IsEOF method returns TRUE.

When the ODatabase and ODynaset objects go out of scope, all necessary cleanup
is performed.    That includes disconnecting from the database.    Note that the user of
the class library does not need to allocate any memory or free any memory.

More examples are presented in the Workbook.

About Binding

The Oracle C++ Class Library takes a somewhat different approach to binding than
most other C++ database classes.    Most classes favor an early binding approach.    In
this technique, you define classes that correspond to the query result set.    Different
columns in the result records are bound to data members of the class.    The class is
generally a subclass of a more general record class.    With this approach, you define
your data access when you are writing your code (often running a code-generating
tool that accesses the database).    As you navigate through the query result set, data
is placed in every column as each row becomes current - implying a constant moving
around of data, with data conversions from database types to native types.    All this
happens whether or not the code does, in fact, reference the data.

The lower levels of this library (ODatabase, ODynaset, OField) use a late binding
approach. You do not need a tool to create classes at the time you write your code.   
No data is moved out of the record cache until the code asks for it.    If a program
never asks for the value of the third field in the current record, it isnt translated from
the databases data type.    Data is obtained and set by method calls.

The difference between the two methods can be illustrated with an example like the
one in A Simple Example.    Here we expand that example: in addition to looking at
salary data, we set everybody's commission.

An early binding scheme would work like this:

// before compiling code, run a tool to create the employee class:
class employee : public records
{
public:
 double salary;
 double commission;
 char *name;
}

employee theEmp;
theEmp.Query(); // use records class method to get data
 // database connection and SQL query are implicit
theEmp.MoveFirst(); // navigate to first record
while (!theEmp.IsEOF())
{
 // we dont have to explicitly get the salary
 Analyze(theEmp.salary);
 theEmp.StartEdit(); // initiate editing
 theEmp.commission = 500.0; // directly change commission value
 theEmp.Update(); // save the changes
 theEmp.MoveNext();
}

Using just the ODynaset and ODatabase classes, we would have:

ODatabase theDB;
ODynaset theEmp;
double salary;

theDB.Open("ExampleDB", "scott", "tiger");

theEmp.Open(theDB, "select ename, sal, comm from employee");

while (!theEmp.IsEOF())
{
 GetFieldValue("sal", &salary); // fetch the data
 Analyze(salary);
 theEmp.StartEdit();
 SetFieldValue("comm", 500.0); // set the commission
 theEmp.Update();
 theEmp.MoveNext();
}

The difference is that the late binding case specifies neither the database connection
nor the query until run time (the argument strings could have been constructed by
the program). Instead, methods are called to connect to the database, to get values
and to set values.    At the same time, the work of binding the employee name (with
all the attendant memory management), which is never used, is avoided.   
Furthermore, when the update is executed, the late binding code needs to update
only the changed fields in the database, because it knows which fields have been
changed. The early binding case must update all the fields, because it does not know
which data members have been changed.

You can make the late binding code even more convenient by using OField objects:

ODatabase theDB("ExampleDB", "scott", "tiger");
ODynaset theEmp(theDB, "select ename, sal, comm from employee");
OField salary = theEmp.GetField("salary");
OField comm = theEmp.GetField("comm");

while (!theEmp.IsEOF())
{
 Analyze(salary); // implicit cast fetches data from OField
 theEmp.StartEdit();
 comm.SetValue(500.0); // set the bonus
 theEmp.Update();
 theEmp.MoveNext();
}

Because the setting of the commission calls a method the dynaset knows which fields
have been updated so that it can update only changed fields.

The OBinder and OBound classes provide support for more automatic binding.   
Use these classes to specify that an object is tied to a particular columns value.    You
then supply methods to be called when the value changes or when the bound object
changes the value.    Using these classes you could, for example, implement the
equivalent of the early binding code.    A very simple example follows:

// declarations
OBinder binder;
OBoundTextEdit ename;
OBoundTextEdit sal;

// set up binder object
binder.Open("ExampleDB", "scott", "tiger", "select * from emp");

// attach the bound edits to the user interface widgets

// wnd is a framework pointer to the widget's parent window
ename.BindToEdit(wnd, IDC_ENAME);
sal.BindToEdit(wnd, IDC_SAL);

// attach the bound edits to the binder
ename.BindToOBinder(&binder, "ename");
sal.BindToOBinder(&binder, "sal");

This works like early binding but the binding is not specified until runtime.    The
OBound subclass objects are attached to particular dynaset fields at runtime.    From
then on they will receive the current value of the field as the dynaset is navigated.
The binder object (m_binder) functions very much like the data control in Visual
Basic.    It is opened with the information needed to connect to a database (database
name, username, password) and a SQL statement that retrieves a set of records.   
The bound objects (m_ename and m_sal) function very much like bound controls in
Visual Basic.    In this case they are bound textedits.    Calls need to be made to
associate the bound textedit with an item in a window (the BindToEdit call) and to
associate the bound textedit with a field in a particular binder (BindToOBinder).   
For more information see the documentation for OBound and OBinder.

Class Naming Conventions

Each class of the Oracle Objects for OLE C++ Class Library is described separately,
along with its methods and defines, in this Help file. Please note the following
important conventions:

Class names all begin with the letter O.    For classes that are handles, the
implementation object (that is, the underlying object that the class object refers to) is
referred to in this documentation by the same name without the O.    For example, the
ODatabase instance refers to an underlying database instance. (See Objects as Handles for
more information on handles and underlying implementation objects.)

The class library contains ODatabase objects (handles), which refer to underlying
database objects (implementation objects).    In addition, there is the actual Oracle database,
typically a program that is running on a server machine that you connect to by way of some
network.    In this document the database server program is referred to as the Oracle
database to distinguish it from the database objects.

You open a handle to attach it to its reference. When you close the handle, it is no
longer associated with that reference.

Methods whose name is Open will create an underlying implementation object.    For
instance, Opening a database will actually create a connection to a database.    Methods
whose name begins with Get will return a handle object but will not be creating any new
underlying implementations.    For instance the method ODynaset::GetDatabase will
return an ODatabase object.    That object will be a handle on an already existing database
object.

Error Handling

The simplest kind of error handling is to know whether a method succeeded in its
operation or not.    This level of error handling is accomplished by looking at the
return value of the method.    Most methods in the library return a result of type
oresult.    An oresult will either have the value OSUCCESS, which indicates that the
method worked, or OFAILURE, which indicates that some error occurred during the
method's execution.

Once you have found out that something has gone wrong you will often want more
information about exactly what went wrong.    There are two broad categories of
problems:
1) Errors that occur in the server.    These are things like invalid SQL statements,
attempting to access records that are locked, etc.
2) Errors occurring in the class library.    These are things like improperly initialized
objects, invalid arguments, out of memory conditions and so on.
The two categories of problems are reported in different ways.

The Oracle errors are reported via the ServerErrorNumber and
GetServerErrorText methods of OSession and ODatabase.    Errors that occur
when connecting to the database, or in the execution of transaction operations, will
be reported via OSession.    Errors that occur while processing an SQL statement, for
instance when opening a dynaset or using ExecuteSQL, will be reported via
ODatabase. The number returned by ServerErrorNumber is a standard Oracle
error number.    An error number of 0 indicates no error.    The text returned by
GetServerErrorText is the standard Oracle error message.    For more information
about Oracle errors consult your Oracle documentation.

The class library errors are reported via the ErrorNumber and GetErrorText
methods that are supported by most of the objects (all those that inherit these
methods from OOracleObject).    Each object will have available the most recent
state of that object.    The object's error state is cleared at the beginning of executing
each method.    GetErrorText will not have explanatory text available for all errors.

Because error reporting is done via additional calls rather than through returns of
error codes it is possible to obtain error information about the execution of methods
that cannot have error return values such as constructors and overloaded assignment
operators.    After using a constructor, especially a "construct and open" constructor
or an assignment operator you should check an object's error state by calling
ErrorNumber.

Here is a list of all possible error codes returned by ErrorNumber and a brief
explanation of each:

Constant Value Description
OERROR_NONE 0 No error
OERROR_NOINTER 11 Internal Error
OERROR_MEMORY 12 Couldn't allocate necessary memory.
OERROR_BADERR 13 Internal Error
OERROR_INVPARENT 14 An attempt was made to get an object from an

unopened object.
OERROR_SYSTEM 15 Internal Error
OERROR_NOTOPEN 16 An attempt was made to use an unopened object
OERROR_BADARG 17 One of the arguments to the method is invalid.

OERROR_INVRECORD 18 The current record is not valid.
OERROR_ADVISEULINK 4096 Internal Error.
OERROR_POSITION 4098 An attempt was made to retrieve a field value

from an empty dynaset.
OERROR_NOFIELDNAME 4099 An invalid field name was specified.
OERROR_TRANSIP 4101 A BeginTransaction was specified while a

transaction is already in progress
OERROR_TRANSNIPC 4104 A Commit was specified without first executing

BeginTransaction.
OERROR_TRANSNIPR 4105 A Rollback was specified without first executing

BeginTransaction.
OERROR_NODSET 4106 Internal Error.
OERROR_INVROWNUM 4108 An attempt was made to reference an invalid row. 

This will happen when IsEOF or IsBOF is True or
when the current row has been deleted and no
record movement has occurred.

OERROR_TEMPFILE 4109 An error occurred while trying to create a
temporary file for data caching.

OERROR_DUPSESSION 4110 An attempt was made to create a named session
that already exists.

OERROR_NOSESSION 4111 Internal Error.
OERROR_NOOBJECTN 4112 An attempt was made to reference a named

object of a collection (other than the fields
collection) that does not exist.

OERROR_DUPCONN 4113 Internal Error.
OERROR_NOCONN 4114 Internal Error.
OERROR_BFINDEX 4115 An invalid field index was specified.    The range of

indices is 0 to Count -1.
OERROR_CURNREADY 4116 Internal Error.
OERROR_NOUPDATES 4117 An attempt was made to change the data of a

nonupdatable dynaset.
OERROR_NOTEDITING 4118 An attempt was made to change a fields value

without first executing StartEdit.
OERROR_DATACHANGE 4119 An attempt was made to edit data in the local

cache, but the data on the Oracle server has
been changed.

OERROR_NOBUFMEM 4120 Out of memory for data binding buffers.
OERROR_INVBKMRK 4121 An invalid dynaset mark was specified.
OERROR_BNDVNOEN 4122 Internal Error.
OERROR_DUPPARAM 4123 An attempt was made to create a named

parameter using Add, but that name already
exists.

OERROR_INVARGVAL 4124 An invalid offset or length parameters was passed
to GetChunk or an internal error has occurred
using AppendChunk.

OERROR_INVFLDTYPE 4125 An attempt was made to use GetChunk or
Append Chunk on a field that was not of the
type Long or Long Raw.

OERROR_TRANSFORUP 4127 A SELECT ... FOR UPDATE was specified without
first executing BeginTransaction

OERROR_NOTUPFORUP 4128 A SELECT ... FOR UPDATE was specified but the
query is non-updatable.

OERROR_TRANSLOCK 4129 A Commit or Rollback was executed while a
SELECT ... FOR UPDATE is in progress.

OERROR_CACHEPARM 4130 An invalid cache parameter was specified.

OERROR_FLDRQROWID 4131 An attempt was made to reference a field that
requires a ROWID (Long or Long Raw), but the
ROWID was not available.

Initializing and Uninitializing the Library

You must initialize the C++ Class Library before use and uninitialize it when you are
finished with it.    Normally the initialization is done at the beginning of your program
and the uninitialization is done at the end.

Use the OStartup routine to initialize the class library and OShutdown to
uninitialize it.    You must call these routines for every process.    They initialize per-
process state in the class library DLL.

OLE users: These routines call OleInitialize and OleUninitialize.    If OLE is already
running when OStartup is called, OShutdown does not call OleUninitialize.

Layers of the Library

The class library can be divided into several portions.

1. The ODatabase and ODynaset objects are low-level objects that provide the
minimum functionality you need to work with the database.

2. The OField, OValue, OParameter, ODynasetMark and OSession objects
are objects that you will often use.

3. The OClient, OConnection, OAdvise, and the collection classes
(OFieldCollection, OSessionCollection, OConnectionCollection and
OParameterCollection) are classes that you will rarely, if ever, use.

4. Built on top of the classes of the preceding three portions are the OBinder
and OBound classes.    These implement a mechanism that allows you to bind
objects of your design to database columns in a way similar to Visual Basics
binding of data-aware controls. These classes are more general (and more
powerful) than the lower level classes upon which they are built (ODynaset,
ODatabase, etc.).

5. Finally, a framework-specific layer implements GUI widgets that are data-
aware.    These classes implement text edits, checkboxes, and so forth; they
are built with OBound and the framework classes.      These are the OMFC and
OOWL libraries.

The first four portions are implemented in the main class library code, provided to
you in the oraclm or oraclb DLLs, and are documented in this on-line help system.   
The last layer is provided in the separate libraries omfc.lib and oowl.lib and are
documented separately in two Microsoft Write files: OMFC.WRI (for the Microsoft
development environment) and OOWL.WRI (for the Borland development
environment).

Memory Ownership Conventions

One reason the C++ Class Library is easy to use is that it relieves developers of
concerns about memory allocation.    All memory used by the objects themselves is
handled by their own methods.    Users of the classes never have to allocate or free
any pointers.

This design has two important consequences:

1. For all strings passed into objects as method arguments, the objects takes care of
managing the string.    If the object needs the string beyond the execution time of
the method it will make a copy of the string.    The caller is never responsible for
maintaining a copy of a passed-in string pointer.

2. All strings returned by methods are owned by the object that returned it.    Callers
do not have to free them (should not free them!) because the object destructors
will free them.    When the object is destroyed or closed, the strings are freed.   
Strings returned by methods may be freed at other times.    For instance when an
OField returns a database value as a string it owns the string.    Later, if you ask
the same OField object for the database values as a string again (perhaps the
dynaset has been navigated to another record) the old string will be freed.    The
OField only keeps the most current string.    The valid lifetimes of returned strings
is discussed in the documentation for each method that returns a string pointer.

Objects as Handles

All of the classes in the C++ Class Library that derive from OOracleObject (that is,
ODatabase, ODynaset, OSession, and so forth, but not OBound, OBinder, and
OValue) are implemented using handle-reference semantics.    This style is often
used to implement such things as strings, where the String class that you use is
actually a lightweight handle referencing another object that contains the actual
memory allocated string.    A reference count is kept on the object that contains the
actual string, and as long as there is at least one reference to it, it is kept.    Using
semantics like this allows you to copy String objects quickly (all that is copied is the
reference to the underlying object) and saves storage because multiple uses of the
same string all refer to a single store.

Each Oracle C++ class (named Oentity) is a handle referring to an underlying Oracle
Objects for OLE object (called entity    in this documentation), which is implemented in
the OLE in-process server. When you use the C++ Class Library, you have no access
to the underlying implementation objects.    In Windows the underlying objects are
implemented in OLE. Using the Class Library frees you from the details of OLE itself,
and from concerns about reference counting.

Consider an OSession object.    The OSession object itself is actually a handle
referring to an underlying session object.    Consequently, the OSession object is
lightweight.    It can be copied, assigned, passed back from routines, and so forth with
little concern for the cost.    A simple assignment results in two OSession objects,
each of which refers to the same underlying session object.    This is generally
desirable. Keep in mind, however, that the operations on the OSession, such as a
Commit, are actually taking place on the underlying session object.    As a result,
executing a Commit method on one OSession is the same as executing a Commit
on any of the OSessions that refer to the same session.

The ODatabase object is a more complicated case.    The ODatabase object refers
to an underlying database object.    But that implementation object is not the
database itself; it is actually a reference to the database.    This is what you would
probably expect.    Executing the ODatabase destructor decrements the reference
count on the database object, which can then be destroyed.    But destroying the
database object does not destroy the actual Oracle7 database!

The use of classes entails the concept of an open object or a closed object.    Open
objects have a current, valid reference to an underlying implementation object.   
Closed objects do not have a valid reference to an underlying implementation object. 
In addition, closed objects have freed any auxiliary storage, such as copies of strings
passed from callers or back to callers.    Closed objects cannot do very much except
be opened.

Supported Data Types

The Oracle Objects for OLE C++ Class Library supports the simplest types of C data
types: int, long, double, and char *. Two additional types are defined by the library:

oboolean, a standard TRUE or FALSE container, and
oresult, which contains result codes from methods.

In this release, the routines return oresults of either OSUCCESS or OFAILURE to indicate
whether the methods succeeded or not.    In cases of OFAILURE, other methods should be
called to determine the precise error.    See Error Handling for more information.

The Oracle database does not store values using C++ data types.    It has its own type
system.    The types that the database use are:
OTYPE_VARCHAR2 variable length character
OTYPE_NUMBER number (either integer or fixed point)
OTYPE_LONG a long piece of text
OTYPE_ROWID special record identifier
OTYPE_DATE a date
OTYPE_RAW short piece of raw bytes
OTYPE_LONGRAW a large blob or raw bytes

OTYPE_CHAR fixed length character
OTYPE_MSLABEL special type for secure databases

You should consult your Oracle documentation for more information about these
types.    The text types (varchar2, long and char) are special in that Oracle will
perform character set translation on them.    A number field may store an integer or a
fixed point number depending on its scale and precision.    It is important to note that
calculations that are done in the database are done with decimal (not binary)
rounding.

Locks and Editing

One of the defining features of client-server computing is that many clients may be
accessing the server simultaneously.    This feature means that several clients may
access the same table or record simultaneously.    In Oracle7 this issue is generally
resolved using locks.    Locks allow one client to restrict other clients use of a table or
record.    Locks are placed temporarily on database entities to prevent confusion and
data corruption.

When you use Oracle Objects for OLE, locks are not placed on data until an
ODynaset executes the StartEdit method.    The StartEdit method attempts to
obtain a lock (using "SELECT ... FOR UPDATE") on the current record of the dynaset.   
This is done as late as possible to minimize the time that locks are placed on the
records.    The StartEdit method can fail for several reasons:

The SQL query violates Oracle SQL updatability rules, for instance, by using
calculated columns or table joins.

The user does not have the privileges needed to obtain a lock.
Another user has already locked the record.    The ODatabase::Open method has an

option so that you can decide whether to wait on locks.

Transactions

A transaction is a logical unit of work that comprises one or more SQL statements
executed by a single user.    A typical example is transferring money from one bank
account to another.    Two operations take place:

1. Money is taken out of one account.
2. Money is put into the other account.

These operations need to be performed together.    If one were to be done and the
other not done (for example, if the network connection went down), the banks books
would not balance correctly.

Normally, when you execute an Update method on a dynaset, the changes are
committed to the database immediately.    Each operation is treated as a distinct
transaction.    Using the BeginTransaction, Commit, and Rollback transactional
control methods of the OSession object allow operations to be grouped into larger
transactions.    BeginTransaction tells the session that you are starting a group of
operations.    Commit makes the entire group of operations permanent.    Rollback
cancels the entire group.    Commit and Rollback end the transaction and the
program returns to normal operation: one transaction per operation.    Experienced
Oracle users should note the following differences between the operation of Oracle
Objects for OLE and many Oracle tools:

Oracle tools such as SQL*Plus execute as if the BeginTransaction method was
called when the tool was started.    This means that updates are not committed immediately,
but are held until a commit or rollback is executed.

SQL*Plus always starts a new transaction every time a commit or rollback is
executed.

The autocommit setting in SQL*Plus results in behavior similar to the default of the
Oracle Objects for OLE.

If you are connected to more than one database and use the transaction methods,
you should understand that Oracle Objects for OLE commits each database
separately.    This is not the same as the two-phase commit that Oracle7 provides.    If
your application needs to guarantee data integrity across databases, you should
connect to a single database and then access additional databases via the Oracle7
database link feature.    This method gives you the benefit of Oracle7s two-phase
commit.    Consult your Oracle7 documentation for more information about two-phase
commit, database links and distributed transactions.

Transactions apply only to the Data Manipulation Language (DML) portion of the SQL
language (such as    INSERT, UPDATE, and DELETE).    Transactions do not apply to the
Data Control Language (DCL) or Data Definition Language (DDL) portions (such as
CREATE, DROP, ALTER, etc.) of the SQL language.    DCL and DDL commands always
force a commit, which in turn commits everything done before them.

Long and Long Raw Columns

Putting data into the database
Long and long raw columns of an Oracle database may contain up to 2
gigabytes of data.    You can either put the data into the field piecewise (a
piece having a maximum size of 64K) by using
ODynaset::AppendFieldChunk or OField::AppendChunk, or you can put
the data into the field in one piece using the ODynaset::SetFieldValue or
OField::SetValue methods.    If the data's length is less than 64K you can use
the SetValue method which takes a const char * as an argument.    If the
data's length is greater than 64K you will need to use the special SetValue
methods for which you specify the data length.    See SetValue for more
information.

Fetching
Because these long columns can contain up to 2 gigabytes of data, it is
impractical to automatically retrieve all data from a long or long raw column
when it is selected.    Instead, the first 64K bytes is retrieved and the Oracle
ROWID is cached locally so that the row containing the long or long raw
column can be located and the long data retrieved using one of the methods
ODynaset::GetFieldChunk, ODynaset::GetFieldValue,
OField::GetChunk, OField::GetValue.    Oracle ROWIDs are only available
on rows which are updatable so any dynaset which contains a long or long raw
column greater than 64K bytes must be updatable.

Editing
When a StartEdit is executed, a column's locally cached    value is compared
to it's current database value.    If the values match, then the edit will proceed,
else an error is generated.    Since long and long raw columns may contain up
to 2 gigabytes of data, no comparison of the long and long raw columns is
done before an StartEdit is executed.

Select for Update

Normally, when a dynaset is created, rows are not locked in the database until
StartEdit is invoked.    If this is not desirable, the SQL SELECT statement could
include the FOR UPDATE construct.    Unfortunately, the FOR UPDATE construct
undermines the normal dynaset operations.    You may use FOR UPDATE , but it is not
recommended.

Dynasets created with FOR UPDATE are handled correctly in most cases by scanning
the SQL statement for the FOR UPDATE construct (This is necessary because the
Oracle database functions do not distinguish between SELECT and SELECT FOR
UPDATE SQL statements.    It is possible that some exotic FOR UPDATE SQL
statements will be treated as not FOR UPDATE - this means that rows are not locked
during the lifetime of the dynaset.    If the FOR UPDATE is not recognized, rows will be
locked only during an StartEdit/Update sequence.    However, during the
StartEdit/Update sequence, the row is verified as unchanged before the StartEdit
is permitted.

The use of FOR UPDATE on dynasets requires that a session transaction be in
progress at the time the dynaset is created.    Further, before the session can be
committed or rolled back, the dynaset must be closed or an error is returned.    The
dynaset is closed when all of the ODynaset objects that refer to it are closed or are
destroyed.

If an error results and the application terminates, uncommitted data is rolled back,
including pending FOR UPDATE dynasets.

Tuning and Customization

A number of working parameters of Oracle Objects for OLE can be customized.   
Access to these parameters is provided through the Oracle initialization file, by
default named ORAOLE.INI.    Each entry currently available in that file is described
below.    The location of the ORAOLE.INI file is specified by the ORAOLE environment
variable.    Note that this variable should specify a full pathname to the Oracle
initialization file, which is not necessarily named ORAOLE.INI.    If this environment
variable is not set, or does not specify a valid file entry, then Oracle Objects for OLE
looks for a file named ORAOLE.INI in the Windows directory.    If this file does not exist,
all of the default values listed will apply.

You can customize the following sections of the ORAOLE.INI file:

[Cache Parameters]

A cache consisting of temporary data files is created to manage amounts of
data too large to be maintained exclusively in memory.    This cache is needed
primarily for dynaset objects, where, for example, a single LONG RAW column
can contain more data than exists in physical (and virtual) memory.

The default values have been chosen for simple test cases, running on a
machine with limited Windows resources.    Tuning with respect to your
machine and applications is recommended.

Note that the values specified below are for a single cache, and that a
separate cache is allocated for each object that requires one.    For example, if
your application contains three dynaset objects, three independent data
caches are constructed, each using resources as described below.

SliceSize = 256 (default)
This entry specifies the minimum number of bytes used to store a piece of
data in the cache.    Items smaller than this value are allocated the full
SliceSize bytes for storage; items larger than this value are allocated an
integral multiple of this space value.    An example of an item to be stored is a
field value of a dynaset.

PerBlock = 16 (default)
This entry specifies the number of Slices (described in the preceding entry)
that are stored in a single block.    A block is the minimum unit of memory or
disk allocation used within the cache.    Blocks are read from and written to the
disk cache temporary file in their entirety.    Assuming a SliceSize of 256 and a
PerBlock value of 16, then the block size is 256 * 16 = 4096 bytes.

CacheBlocks = 20 (default)
This entry specifies the maximum number of blocks held in memory at any
one time.    As data is added to the cache, the number of used blocks grows
until the value of CacheBlocks is reached. Previous blocks are swapped from
memory to the cache temporary disk file to make room for more blocks.    The
blocks are swapped based upon recent usage.    The total amount of memory
used by the cache is calculated as the product of (SliceSize * PerBlock *
CacheBlocks).

Recommended Values: You may need to experiment to find optimal cache
parameter values for your applications and machine environment.    Here are

some guidelines to keep in mind when selecting different values:

The larger the (SliceSize * PerBlock) value, the more disk I/O is required for swapping
individual blocks.

The smaller the (SliceSize * PerBlock) value, the more likely it is that blocks will need
to be swapped to or from disk.

The larger the CacheBlocks value, the more memory is required, but the less likely it
is that swapping will be required.

A reasonable experiment for determining optimal performance might proceed
as follows:

Keep the SliceSize >= 128 and vary PerBlock to give a range of block sizes from 1K
through 8K.

Vary the CacheBlocks value based upon available memory.    Set it high enough to
avoid disk I/O, but not so high that Windows begins swapping memory to disk.

Gradually decrease the CacheBlocks value until performance degrades or you are
satisfied with the memory usage.    If performance drops off, increase the CacheBlocks value
once again as needed to restore performance.

[Fetch Parameters]

FetchLimit = 20 (default)
This entry specifies the number of elements of the array into which data is
fetched from Oracle.    If you change this value, all fetched values are
immediately placed into the cache, and all data is retrieved from the cache.   
Therefore, you should create cache parameters such that all of the data in the
fetch arrays can fit into cache memory. Otherwise, inefficiencies may result.

Increasing the FetchLimit value reduces the number of fetches (calls to the
database) calls and possibly the amount of network traffic.    However, with
each fetch, more rows must be processed before user operations can be
performed.    Increasing the FetchLimit increases memory requirements as
well.

FetchSize = 4096 (default)
This entry specifies the size, in bytes, of the buffer (string) used for retrieved
data.    This buffer is used whenever a long or long raw column is initially
retrieved.

[General]

TempFileDirectory = [Path]
This entry provides one method for specifying disk drive and directory location
for the temporary cache files.    The files are created in the first legal directory
path given by:

1. The drive and directory specified by the TMP environment variable (this
method takes precedence over all others);

2. The drive and directory specified by this entry (TempFileDirectory) in
the [general] section of the ORAOLE.INI file;

3. The drive and directory specified by the TEMP environment variable; or
4. The current working drive and directory.

HelpFile = [Path and File Name]
This entry specifies the full path (drive/path/filename) of the Oracle Objects for
OLE help file as needed by the Oracle Data Control.    If this entry cannot be
located, the file ORACLEO.HLP is assumed to be in the directory where
ORADC.VBX is located (normally \WINDOWS\SYSTEM).

About Sample Code and Applications

For the sample applications shipped with Oracle Objects for OLE and most of the
sample code in this file, the following rules apply:

The user scott with password tiger (scott/tiger) are used to connect to the database.
The SQL*Net alias ExampleDb is used as the database name.
The data tables referenced are the standard Oracle demonstration tables that can be

created by the script DEMOBLD7.SQL. (These tables and views can be dropped by the
script DEMODRP7.SQL.

The stored procedures referenced can be created by the script ORAEXAMP.SQL.

Those examples that do not use the ExampleDB database reference other databases,
for one illustrative purpose or another.

Redistributable Files

Oracle Objects for OLE
The following redistributable files are part of Oracle Objects for OLE and must
be distributed with your application developed using Oracle Objects for OLE:

ORAIPSRV.DLL
ORAIPSRV.REG
ORAIPSRV.TLB

These files should be installed in the \WINDOWS\SYSTEM directory.    In
addition to including these three files with your application, you must register
in the Windows registration database the information found in ORAIPSRV.REG.

Finally, you must also distribute the file from the following list corresponding
to the development software you used to build your application:

ORACLB.DLL (for Borland C++ 4.0)
ORACLB45.DLL (for Borland C++ 4.5)
ORACLM.DLL (for Microsoft C++)
ORADC.VBX (for Visual Basic 3.0)

Microsoft OLE 2.0
The following files are part of Microsoft OLE 2.0 and are required by Oracle
Objects for OLE.    Please refer to the OLE 2 Programmer's Reference or the
Visual Basic documentation for details on installing and distributing these files.

COMPOBJ.DLL
OLE2.DLL
OLE2.REG
OLE2CONV.DLL
OLE2DISP.DLL
OLE2NLS.DLL
OLE2PROX.DLL
STDOLE.TLB
STORAGE.DLL
TYPELIB.DLL

Visual Basic 3.0
The following files are part of Visual Basic and are required by Oracle Objects
for OLE.    If you are shipping a Visual Basic application that uses Oracle
Objects for OLE, you should include at least the following files (in addition to
other Visual Basic runtime files that you may need).    Please refer to the Visual
Basic documentation for details on installing and distributing these files.

VBOA300.DLL
VBRUN300.DLL

Troubleshooting

OLE Initialization or OLE Automation Errors
The most frequent cause of OLE Initialization and Automation errors is missing
or incorrectly installed software.    Please ensure correct installation of the
software specified below.    Then make sure that you have specified method
and property names correctly and that you have declared all "Oracle objects"
as type "object".

Possible Cause Solution
Your system does not contain the
Microsoft OLE 2.0 runtime files or these
files are out of date.    Note that Visual
Basic 3.0 does not include the OLE file
TYPELIB.DLL.

Reinstall Oracle Objects for OLE and
select the "Microsoft OLE 2.0 Libraries"
option.

OLE 2.0 information was not registered
in the Windows registration database.

Run REGEDIT.EXE and merge the
information from the file OLE2.REG
(normally located in \WINDOWS\
SYSTEM).

The Oracle Objects OLE object
information was not registered in the
Windows registration database.

Reinstall Oracle Objects for OLE and
select the "Oracle Objects Server"
option.

The Oracle Objects OLE object
information was not registered in the
Windows registration database.

Run REGEDIT.EXE and merge the
information from the file ORAIPSRV.REG
(normally located in \WINDOWS\
SYSTEM).

Your system does not contain the Oracle
Required Support Files (ORA71WIN.DLL,
CORE3WIN.DLL, NLS23WIN.DLL, etc.) or
these files are not on the PATH.

Reinstall Oracle Objects for OLE and
select the "Oracle Required Support
Files" option or add to your PATH
environment variable the directory
where these files are located.

Your system does not contain Oracle
SQL*Net or its file are not on the PATH..

Install Oracle SQL*Net or add to your
PATH environment variable the directory
where these files are located.

You have misspelled a method or
property name.

Check the documentation to determine
the correct spelling.

You have referenced a method or
property from the wrong object.

Check the documentation to determine
the correct object.

Oracle SQL*Net Errors
The most frequent cause of Oracle SQL*Net errors is incorrectly specified
connection information.    The connection information for Oracle Objects for
OLE is specified differently than when using ODBC.    Please verify that you
have specified connection information correctly, and then make sure your
SQL*Net connection is working properly before using Oracle Objects for OLE.   
The appropriate Oracle SQL*Net documentation contains information about
testing your connection and about any Oracle SQL*Net error that you may
receive.

Possible Cause Solution
Incorrect Connect property or argument
to the OpenDatabase method.

See the topics on the Connect property
or the OpenDatabase method for
examples.

Incorrect DatabaseName property or
argument to the OpenDatabase
method.

See the topics on the DatabaseName
property or the OpenDatabase method
for examples.

Your system does not contain Oracle
SQL*Net.

Install Oracle SQL*Net.

General Protection Faults
The most frequent cause of GPFs is installing Oracle Objects for OLE while
other applications are running that require the Oracle Object Server, Oracle
Required Support Files or OLE 2.0.    To avoid this, install Oracle Objects for OLE
immediately after starting Windows and before running any other application.

Possible Cause Solution
Duplicate Oracle Objects for OLE files
exist in the \WINDOWS or \WINDOWS\
SYSTEM directories or along the PATH.

Remove any duplicate files.    The files
ORAIPSRV.DLL, ORAIPSRV.TLB and
ORAIPSRV.REG should be located in \
WINDOWS\SYSTEM.

Duplicate Oracle Required Support Files
DLLs exist in the \WINDOWS or \
WINDOWS\SYSTEM directories or along
the PATH.

Remove any duplicate files.    Typically,
the Oracle Required Support Files DLLs
(ORA7*.DLL, CORE*.DLL, NLS*.DLL) are
located in \ORAWIN\BIN.

Duplicate OLE 2.0 DLLs exist in the \
WINDOWS or \WINDOWS\SYSTEM
directories or along the PATH.

Remove any duplicate files.    The OLE
2.0 DLLs (listed in the Redistributable
Files topic) should be located in \
WINDOWS\SYSTEM.

Object Relationships

An operational hierarchy of the objects expresses has-a and "belongs-to"
relationships. This hierarchy can be drawn as follows:

The "crows feet" indicate the many ends of one-to-many or many-to-one
relationships.

Each client object can have many session objects.
Each session object can only be associated with one client object.

Each session object can have many connection objects.
Each connection object may be shared by many database objects although these
must be within the same session object.

Each database object belongs to only one session object.
Each dynaset object belongs to only one database object.

Each field object belongs to only one dynaset object.
Each parameter object belongs to only one database object.

Some of these objects can be explicitly created (using Open methods) while others
are implicitly created as necessary. The session, database, and dynaset objects
can be explicitly created.

One client object exists per workstation.    This object is created when the first
session object is created.    A connection object may be created when a database
is created if that database is not sharing a previously created connection.

Classes

OAdvise
OBinder
OBound
OClient
OConnection
OConnectionCollectio

n
ODatabase
ODynaset
ODynasetMark

OField
OFieldCollection
OOracleCollection
OOracleObject
OParameter
OParameterCollection
OSession
OSessionCollection
OValue

Classes

OAdvise
OBinder
OBound
OClient
OConnection
OConnectionCollectio

n
ODatabase
ODynaset
ODynasetMark

OField
OFieldCollection
OOracleCollection
OOracleObject
OParameter
OParameterCollection
OSession
OSessionCollection
OValue

OAdvise

The OAdvise class enables you to set up callbacks that attach to a dynaset.    When
operations occur on the dynaset attached OAdvise instances are notified of the
operations.    You will not declare any instances of OAdvise yourself.    Instead, you
write a new class that is a subclass of OAdvise, and your subclass then receives calls
to its methods.    OAdvise is a subclass of OOracleObject.

When an operation occurs on a dynaset, the dynaset
1. calls all attached advisories before the operation occurs and allows them to

veto the operation; and
2. calls all attached advisories after the operation to tell them that it occurred.   

In addition, when the status of the dynaset changes, it notifies the advisory.    In this
release, the only dynaset status change is that which occurs when the dynaset has
found the last record.

The advisories are given a message that tells them what is happening.    These
messages are one of three types: navigational advisories, other advisories, and
status changes. The specific defines are as follows:

// navigation advisories
OADVISE_MOVE_FIRST
OADVISE_MOVE_PREV
OADVISE_MOVE_NEXT
OADVISE_MOVE_LAST
OADVISE_MOVE_TOMARK // move to mark

// other advisories
OADVISE_REFRESH // dynaset being refreshed
OADVISE_DELETE // record being deleted
OADVISE_ADDNEW // new record being added
OADVISE_UPDATE // dynaset being updated
OADVISE_ROLLBACK // session being rolled back
OADVISE_OTHER // undefined advisories

// status changes
OADVISE_FOUNDLAST // dynaset knows that the last record has been read

The ActionRequest method is called before the operation. The advisory can cancel
an operation by returning FALSE from the ActionRequest method; it must return
TRUE from ActionRequest to allow the operation. The ActionNotify method is
called after the operation.    The StatusChange method is called when the dynaset
status changes.

The OAdvise class does nothing.    Its ActionRequest method always returns TRUE.   
To obtain other behavior, create a subclass of OAdvise and override the
ActionRequest, ActionNotify, and StatusChange methods.    Declare an instance
of your subclass, and then open it to attach it to a dynaset.

It is often useful for your subclass to have its own members for reference to some
sort of application context.    You can add these, along with methods to set the
context, in your own class. An example of an OAdvise subclass is provided in the
Workbook.

The OAdvise class supports the following methods:

Construction and destruction:
OAdvise
~OAdvise
operator=

Attributes:
operator==
operator!=
IsOpen

Operations:
ActionNotify
ActionRequest
Close

GetDynaset
Open
StatusChange

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OBinder

Suppose you are writing an application that accesses data in an Oracle database.   
You have obtained a dynaset on a set of records and are writing a graphical user
interface program to access those records.    As you navigate through, add, or delete
records, you want the value of some column to be reflected in some object such as a
variable or, more typically, in an edit control user interface widget.    Much
bookkeeping is involved in such programming: when to get new values for the
column objects, when to clear them, when to put their changed values into the Oracle
database, and so forth.

The OBinder and OBound classes solve this problem.    An instance of the OBinder
class functions as the bookkeeper.    You tell it the SQL query and it manages the
dynaset.    If you want, it can also manage the database object.    Then, you bind
instances of OBound objects to the OBinder instance.    Each OBound object
becomes bound to a particular column in the query.    At appropriate times, the
OBound object is told its new value (for example, after navigation to a new record).   
The OBound object tells the OBinder when the value has been changed (for
example, when the text of a edit control has been modified). Later, again at the
appropriate time, the OBound object is told when to save the data to the Oracle
database.

OBound objects display data, allow changes to data, and note when changes are
made.    At the time the first change occurs, an ODynaset::StartEdit call is made to
begin editing the record.    This may fail (for example, for reasons of privilege; see the
StartEdit documentation).    If a record has been changed and the dynaset attempts
to move to another record, the values in the changed record are set, by way of calls
to OBound::SaveChange, and the record updated.

Users familiar with Visual Basic will notice that the OBinder instance functions as a
VB data control (though it has no user interface), and the OBound instances function
as VB bound controls.

You never actually declare instances of OBound objects.    OBound is always
subclassed. (See the OBound documentation for more information.)

Often you need to modify the specific behavior of the OBinder class. The power of
C++ virtual functions are valuable in such situations.    For most common operations,
a trigger function is called both before and after the operation is performed.    You can
change the behavior of the OBinder class by overriding various trigger functions.
The OBinder class and the OBound class have separate trigger functions, so that
behavior can be overridden at either the query level or at the individual bound object
level.    (Triggers will be familiar to users who have developed using Oracle Forms.   
The OBinder triggers correspond to block-level triggers; the OBound triggers
correspond to item-level triggers.)

Consider a typical example:
You have built a form in which each column in a table is represented by an edit
control - that is, each column is bound to a text widget subclass of OBound (such
subclasses of OBound are provided in the OMFC and OOWL libraries). When a new
record is added, you want a default value set for the color column.    You would make
your own subclass of the OBound class, overriding the PostAdd trigger method.   
You would then change your code so that the color column is bound to this new
subclass.    Then, after a new record is added, your method would be called. (More

concrete examples are provided in the Workbook.)

The times that the various trigger methods are called is documented in the section
OBinder Trigger Methods. OBinder trigger methods are always called before OBound
triggers.    Then, every OBound objects equivalent trigger is called.    The object that
was bound first has its trigger called first, the second object bound has its trigger
called second, and so on.    If at any time a trigger method returns an OFAILURE
return, no more triggers are called.    If this is a pretrigger, an OFAILURE return also
cancels the action.

There is no method in OBinder to bind OBound objects.    To bind OBound objects,
use the BindToBinder method of the OBound class.

The OBinder class supports the following methods:
Construction and destruction:

OBinder
~OBinder

Attributes:
GetChangedError
IsChanged

IsFirst
IsLast
IsOpen

Operations:
AddNewRecord
Changed
Close
DeleteRecord
DiscardChanges
DuplicateRecord
GetDatabase
GetDynaset
MoveFirst
MoveLast

MoveNext
MovePrev
MoveToMark
OnChangedError
Open
Refresh
RefreshQuery
SetSQL
UnbindObj
Update

Triggers:
PostAdd
PostDelete
PostMove
PostQuery
PostRollback
PostUpdate
PreAdd

PreDelete
PreMove
PreQuery
PreRollback
PreUpdate
Shutdown
Startup

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OBound

You use OBound objects in conjunction with an instance of the OBinder class.    (See
the description of the OBinder class for details on how these two classes are used,
including discussion of the trigger methods.)

OBound is an abstract class; you never declare any instances of it. This release
contains a set of OBound subclasses that implements data-aware user interface
widgets.    You can subclass those subclasses, or you can subclass OBound directly to
implement other bound objects.    The Workbook contains examples of creating
OBound subclasses, and how to use the provided subclasses.

OBound subclasses must implement two methods: Refresh and SaveChange.    The
Refresh method transfers a value from the dynaset to the OBound instance.    It is
called, for example, whenever the dynaset navigates to a new record.    The
SaveChange method is called when it is time to set the value in the Oracle
database, for example, after a change has been made and the dynaset is trying to
move to a different record.    It is usually implemented using the SetValue method of
OBound.

OBound subclasses may also override the default triggers. If you do this, you should
know that the overloaded trigger you write should call the default trigger in the
OBound class. This will cause the bound object to be refreshed (have its value
updated) when the database record is altered. Alternatively, the overloaded PostAdd,
PostMove, PostRollback and PostQuery triggers can call RefreshBound() directly. In
either case, the Refresh method you wrote above is called to refresh the bound
control.

OBound instances generally allow some form of editing of the data that they contain.
When a change is made, the OBound instance must call the Changed method to
inform the OBinder/OBound bookkeeping machinery that the object has been
changed.

The OBound class supports the following methods:
Construction and destruction:

OBound
~OBound
operator=

Attributes:
operator==
operator!=
Changed

IsChanged
IsOpen

Operations:
BindToBinder
Close
GetDatabase
GetDynaset
GetName

GetValue
Refresh
SaveChange
SetValue
Unbind

Triggers:
PostAdd PreDelete

PostDelete
PostMove
PostQuery
PostRollback
PostUpdate
PreAdd

PreMove
PreQuery
PreRollback
PreUpdate
Shutdown
Startup

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OClient

The client object is primarily an internal bookkeeper.    One client object is created
automatically for each workstation.    You may never need to declare an OClient
object.    You can use an OClient object to obtain a list of the sessions on the
workstation.    OClient is a subclass of OOracleObject.

You get OClient objects from an OSession object using the GetClient method.

The OClient class supports the following methods:
Construction and destruction:

OClient
~OClient
operator=

Attributes:
operator==
operator!=
IsOpen

Operations:
Close
GetName
GetSessions

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OConnection

A connection object is primarily an internal bookkeeper.    Multiple database objects
within the same session that use the same connection information (database name,
username, and password) share a single connection to the Oracle database.    You can
use an OConnection object to ask for the database name and connection string that
were used to start the connection.    OConnection is a subclass of OOracleObject.

You can get OConnection objects, using the GetConnection method, from an
OConnectionCollection object, an ODatabase object, or an ODynaset object.

The OConnection class supports the following methods:
Construction and destruction:

OConnection
~OConnection
operator=

Attributes:
operator==
operator!=
IsOpen

Operations:
Close
GetConnectString
GetDatabaseName
GetSession

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OConnectionCollection

This class is a convenient wrapper for a collection of OConnections.    It is a subclass
of OOracleCollection.

You can get OConnectionCollection objects from an OSession object with the
GetConnections method.    The OConnectionCollection is dynamic: it always
reflects the current set of connections of the session it came from, even if the
connections are added after you get the collection.    It is read-only.    You cannot add
OConnections through the collection.

You can get a particular OConnection object from the OConnectionCollection
using the GetConnection method.

The OConnectionCollection class supports the following methods:
Construction and destruction:

OConnectionCollection
~OConnectionCollection
operator=

Attributes:
operator==
operator!=
IsOpen

Operations:
Close
GetConnection
GetCount

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

ODatabase

A database object represents an Oracle database.    If more than one database is
opened on a single session with the same database name and connect information
(username and password), those database objects share a connection (see
OConnection).

Use ODatabase to log on to an Oracle database.    You can then execute SQL
statements directly with the ExecuteSQL method or you can get records from the
Oracle database by using the ODatabase object to create ODynaset objects (see
ODynaset).    ODatabase is a subclass of OOracleObject.

Two options are available for the ODatabase at the time it is opened.    These options
are ORed together on the Open method call.    They affect operations on dynasets
attached to this database.    The options are:   

ODATABASE_PARTIAL_INSERT // turn on requerying on insert
ODATABASE_EDIT_NOWAIT // turn on no waiting on StartEdit calls

By default these options are both off.    The default setting of the options are reflected
by:

ODATABASE_DEFAULT    // the default settings

ODATABASE_PARTIAL_INSERT affects the way that AddNew, Edit, and Update put
values into the Oracle database and how they change the values of the local data
cache.    (See ODynaset for a description of the local data cache.)    The "partial
insert" option of the database affects all dynasets that are created on the database.

If ODATABASE_PARTIAL_INSERT is off (the default), dynasets behave the way they do
in Visual Basic:

When adding a new record, all fields that were selected to create the dynaset are
inserted into the Oracle database.    Fields that have not been explicitly set by the user are
set to NULL.    Any fields that are actually in the table, but do not appear in the dynaset, are
set to the default values that Oracle would use for the column.

When updating a record, only fields that have been modified are updated.    The local
cache is set to the values that have been inserted into the Oracle database.

For both adding and updating, the local data cache is set to the values inserted into
the Oracle database (including the NULLs).

If ODATABASE_PARTIAL_INSERT is on, dynasets will behave slightly differently:

When adding new records, only fields that are NOT NULL are inserted into the Oracle
database.

After adding a new record or updating an existing record, the local cache is set by
requerying the Oracle database for that record after the add or update.    This allows the
Oracle database to set values for fields, perhaps by way of database triggers (which are a
kind of stored procedure).

If you are accessing tables that have default values for their fields, or that have
triggers that set values on Insert or Update, then you will probably want to user the
ODATABASE_PARTIAL_INSERT option.    This will cause the dynaset to refetch records
after it makes changes to the data, ensuring that the dynaset and the database will

always agree on the record's data.    Please see StartEdit for more information.

ODATABASE_EDIT_NOWAIT affects what happens when ODynaset::StartEdit
method is called.    When StartEdit is called, the dynaset attempts to obtain a lock
on the record that is being edited.    (See Locks and Editing).    It also affects
ExecuteSQL when the SQL statement being executed performs inserts, updates, or
deletes.

If ODATABASE_EDIT_NOWAIT is off and some other user has a lock on the record, your
process waits until the lock is removed.    This results in possible deadlock if the caller of
StartEdit has outstanding locks that are in turn holding up the user with a lock on the
record you want now.

If ODATABASE_EDIT_NOWAIT is on and another user has a lock on the record, the
StartEdit call fails.    It is up to the caller to handle the failure properly.

The ODatabase class supports the following methods:
Construction and destruction:

ODatabase
~ODatabase
operator=

Attributes:
operator==
operator!=
IsOpen

Operations:
Close
ExecuteSQL
GetConnection
GetConnectString
GetName
GetOptions

GetParameters
GetRowsProcesse
d
GetSession
Open

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
GetServerErrorText
LookupErrorText

ServerErrorNumbe
r
ServerErrorReset
ServerErrorSQLPo
s

ODynaset

The ODynaset class creates, manages, and accesses records of data from the
database.    It corresponds to a scrollable cursor.    ODynaset is a subclass of
OOracleObject.

An ODynaset is opened by executing a query against an Oracle database in the form
of a SQL select statement.    Any legal select statement is acceptable.    All the
database records that this query returns are referred to as the dynaset's result set.   
Records from the result set are fetched to the client as needed and cached locally.   
You then operate on the records of the dynaset one at a time.    The record you are
currently working with is referred to as the current record.

You can obtain field values from the current record (GetFieldValue), edit the current
record (StartEdit, SetFieldValue, Update), delete the current record
(DeleteRecord), or duplicate the current record (DuplicateRecord).

You can change the current record, navigating through the dynaset's result set, by
using one of the Move methods.    Execution of a Move method changes which record
is current. The records in a dynaset's result set will be in some order.    To specify a
particular order, use an order by clause in your SQL statement to order the results.   
Records that are not explicitly ordered may be returned in different order on different
queries.    Records that are added are added at the end of the result set.

Records that have been fetched from the Oracle database and placed in the local
cache do not reflect changes made to the data in the database until the dynaset is
refreshed.

When operations - either navigations or operations such as Updates - are properly
performed on the dynaset, messages are sent to any attached advisory objects.
These messages may cancel the operation.    (See the OAdvisory class for more
information.)    No advisories are attached to dynasets by default.

You can use the Clone method to open a separate dynaset (on the same record
cache) with an independent current record mark.    Cloned dynasets are read-only.

You can access data in the result set either directly (through ODynaset methods
such as SetFieldValue and GetFieldValue) or by getting an OField object and
using it to access the data.    The OField object always contains the data from the
current record.    Columns can be referred to either by name or by index.    The index
starts at 1 and is the position of the column in the select statement.    A column name
is either the database column name or an aliased name if the SQL select statement
aliases a column name.    For example:

select ename, emp.sal, nvl(comm,0) "commission" from emp

will result in three columns.    Column ename will have index 1, column sal will have
index 2, and column commission will have index 3.    It is more efficient to refer to
columns by index.    You can use the method GetFieldIndex to translate a field name
into its index.

It is often important to know whether the opening select statement will result in an
updatable dynaset.    In general, queries that perform joins, have aliased column
names, or have calculated columns are not updatable.    In addition, queries that

perform a select distinct are not updatable.    Dynasets based on nonupdatable
queries will fail the AddNew, Duplicate, StartEdit, and Update methods.

Several options are set for a dynaset at the time it is opened.    These options are
ORed together on the Open method call.    The options are:

ODYNASET_NOBIND // do not use bindable parameters
ODYNASET_KEEP_BLANKS // do not strip trailing blanks in values
ODYNASET_READONLY // make this dynaset nonupdatable
ODYNASET_NOCACHE // do not make a local record cache for this

dynaset

By default all the options are off.    This state is represented by:

ODYNASET_DEFAULT // the default settings

By default, a dynaset attempts to use any available bindable parameters when it is
being opened (see OParameter for more information on parameters).    Therefore,
when issuing a SQL statement that does not refer to any parameters, you can make it
more efficient by specifying nobind.

By default, values returned by a dynaset are stripped of trailing blanks.    You can
retain the trailing blanks by specifying keep_blanks.

By default, dynaset objects are updatable, which requires some processing overhead. 
Therefore, if you know that you will be using a dynaset only for reading data, you can
make it more efficient by specifying readonly.

By default, a local record cache is created for each dynaset to allow reverse scrolling. 
The record cache requires considerable overhead.    If you know that you will simply
be reading through the returned values of a dynaset, you can improve performance
by turning on the "nocache" option.    Dynasets without a record cache will not be
able to move backwards or move to a dynaset mark.

A dynaset is opened with a particular SQL statement, which specifies the values to
return from the Oracle database.    The Refresh method of ODynaset is handy for
reexecuting the SQL statement.    This is useful in two circumstances:

1. the values in the database are changing and you want to obtain the new
values, or

2. the SQL statement that you have used is parameterized (uses syntax of the
form :parameter) and the value of the parameter has changed.   

Refreshing a dynaset resets the local record cache and moves the current record to
the first record of the new result set.

The ODynaset class supports the following methods:
Construction and destruction:

ODynaset
~ODynaset
operator=

Attributes:
operator==
operator!=
CanMark

GetFieldServerTyp
e
GetFieldSize

CanRefresh
CanScroll
CanTransact
CanUpdate
GetEditMode
GetFieldCount
GetFieldIndex
GetFieldPrecision
GetFieldScale
GetFieldServerSize

GetOptions
GetRecordCount
GetSQL
IsBOF
IsEOF
IsFieldNullOK
IsFieldTruncated
IsFirst
IsLast
IsOpen
IsValidRecord

Operations:
AddNewRecord
AppendFieldChunk
CancelEdit
Clone
Close
DeleteRecord
DuplicateRecord
GetConnection
GetDatabase
GetField
GetFieldChunk
GetFields
GetFieldValue
GetLastModifiedMark

GetMark
GetSession
MoveFirst
MoveLast
MoveNext
MovePrev
MoveToMark
Open
Refresh
SetFieldValue
SetSQL
StartEdit
Update

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

ODynasetMark

Sometimes it is desirable to navigate directly back to some previously seen record.   
Dynaset marks provide you with this functionality.    You obtain a mark from a dynaset
and then later you can use the mark on the dynaset to reset the current record.   
ODynasetMarks can be used across ODynasets that refer to the same underlying
query result sets (that is, all ODynasets that are copies or clones of the ODynaset
that the mark was originally taken from).    ODynasetMark is a subclass of
OOracleObject.

See the ODynaset class methods GetMark and GetLastModifiedMark to learn
how to obtain an ODynasetMark.    See the ODynaset class method MoveToMark
to learn how to use an ODynasetMark to navigate to the marked record.

The ODynasetMark class supports the following methods:
Construction and destruction:

ODynasetMark
~ODynasetMark
operator=

Attributes:
operator==
operator!=
IsOpen

Operations:
Close

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OField

A field object represents a single column of data in a single record.    OField objects
are not independently opened; rather, you get them from an ODynaset.    When
navigation occurs on the dynaset, the OField objects value changes to the value of
the column in the new current record.    OFields are convenient because they always
reflect the value of the field in the current record. (In some cases, however, you may
find it more straightforward to manipulate field values directly from the ODynaset
using the GetFieldValue and SetFieldValue methods.)    OField is a subclass of
OOracleObject.

You can get OField objects from either an ODynaset or OFieldCollection object,
using the GetField method.

The OField class supports the following methods:
Construction and destruction:

OField
~OField
operator=

Attributes:
operator==
operator!=
GetName
GetPrecision
GetScale
GetServerSize

GetServerType
GetSize
IsNullOK
IsOpen
IsTruncated

Operations:
AppendChunk
Close
GetChunk
GetDynaset
GetValue

operator const
char *
operator double
operator int
operator long
SetValue

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OFieldCollection

The OFieldCollection object is the set of fields in a record in a dynaset query result
set. You can get OFieldCollection objects from an ODynaset object using the
GetFields method.    OFieldCollection is a subclass of OOracleCollection.

The OFieldCollection is dynamic: it always reflects the current set of fields of the
dynaset.    It is read-only.    You cannot add OFields through the collection.

You can get a particular field from the OFieldCollection with the GetField method.

The OFieldCollection class supports the following methods:
Construction and destruction:

OFieldCollection
~OFieldCollection
operator=

Attributes:
operator==
operator!=
GetCount
IsOpen

Operations:
Close
GetField

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OOracleCollection

OOracleCollection is a base class from which the collection classes are derived (see
OConnectionCollection).    You never declare an OOracleCollection instance;
rather, OOracleCollection supplies the GetCount method on collections.

OOracleObject

OOracleObject is a base class from which most of the l database classes are derived
(all except OValue, OBound and OBinder).    You never declare an OOracleObject
instance.    All OOracleObject instances support the error-reporting methods
ErrorNumber, LookupErrorText, GetErrorText, and ResetError.   
OOracleObject also supplies the IsOpen method.

OParameter

A parameter is an object that enables you to place variables within a SQL statement. 
The simplest use would be in the SQL statement that opens a dynaset:

select * from mytable where column = :pvalue

In this example :pvalue is a parameter.    (In SQL syntax, a parameter name is
prefixed with a colon.)    When the SQL statement is used, the current value of the
parameter is substituted for :pvalue.    Such a parameter can be used wherever a
literal value can be placed: values within update and insert statements and values
that are part of where clauses.

Parameters are also used to represent arguments in calls to stored procedures.    A
stored procedure is a PL/SQL program that is stored in the Oracle database.   
Parameters can be used both as input and as output variables.    See the example in
ExecuteSQL for a sample of calling a stored procedure.

Parameters are managed as OParameter objects.    OParameter objects are
managed by way of an OParameterCollection that exists for every database object.
You attach parameter objects to databases by using the Add method of the
OParameterCollection class.    OParameter is a subclass of OOracleObject.

The primary benefit of using OParameter is efficiency.    The Oracle database knows
how its records are to be fetched by remembering each SQL statement. When a
precisely equal SQL statement is handed to the server, it can be processed quickly,
because the database simply reuses the existing information.    By using parameters
instead of explicit values, you do not have to change the SQL statement when the
database values change.    Therefore, the SQL statement can be reused.    This reuse
is also convenient for you, because you also can modify the SQL statement without
having to retain the entire string.

Parameters are attached to an ODatabase object.    By default, whenever an
ODynaset is opened or refreshed with a new SQL statement, all parameters that are
attached to the parent ODatabase (the ODatabase on which the ODynaset is
being opened) are bound to the ODynaset.    A bound OParameter is said to be
enabled. By default OParameters are autoenabled.    This means that they can bind
to any ODynasets.    By using the AutoEnable method, you can turn this default
behavior off and on. This can be useful if there are a large number of OParameter
objects, which could result in many parameters being unnecessarily bound.    Such a
condition does not cause errors, but may be inefficient.

When the parameter is created (using the OParameterCollection::Add method)
you need to specify whether the parameter is used for input, output or both. Use one
of the following defines:

OPARAMETER_INVAR // input variable
OPARAMETER_OUTVAR // output variable
OPARAMETER_INOUTVAR // input and output variable

You can query the status of a parameter, in which case the parameter returns a long
that contains bits set to indicate the status.    The bits are defined as:

OPARAMETER_STATUS_IN // this is an input variable

OPARAMETER_STATUS_OUT // this is an output variable
OPARAMETER_AUTOENABLED // this parameter is bound automatically
OPARAMETER_ENABLED // this parameter is ready to be bound

When the parameter is created you also need to specify the server type of the
parameter.    The server type is one of the following Oracle types:

OTYPE_VARCHAR2
OTYPE_NUMBER
OTYPE_LONG
OTYPE_ROWID
OTYPE_DATE
OTYPE_RAW
OTYPE_LONGRAW
OTYPE_CHAR
OTYPE_MSLABEL

Please consult the Oracle SQL Language Reference Manual for more information
about these types.    In general you can use OTYPE_VARCHAR2 for strings and
OTYPE_NUMBER for numbers.

The OParameter class supports the following methods:
Construction and destruction:

OParameter
~OParameter
operator=

Attributes:
operator==
operator!=
GetName

GetServerType
GetStatus
IsOpen

Operations:
AutoEnable
Clear
Close
GetValue
operator const char
*

operator double
operator int
operator long
SetValue

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OParameterCollection

An OParameterCollection object represents the set of parameters currently
attached to a database.    You can use an OParameterCollection object to add a
parameter to a database by using the Add method.    The collection object is
dynamic: it always reflects the current state of the database, which is not necessarily
the state of the database at the time you got the OParameterCollection.
OParameterCollection is a subclass of OOracleObject.

You get an OParameterCollection instance from an ODatabase instance by using
the GetParameters method.    Use the Add method to add parameters and the
Remove method to remove parameters.

The OParameterCollection class supports the following methods:
Construction and destruction:

OParameterCollection
~OParameterCollection
operator=

Attributes:
operator==
operator!=
GetCount
IsOpen

Operations:
Add
Close
GetParameter
Remove

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OSession

The OSession object controls the behavior of an entire database session.    You can
access more than one database in a session.    Typically an application has a single
session, but applications can have more.    A session is the unit on which transactions
occur.

Please see Transactions for more complete information on transactions.

Database objects share the connection to the database if they are created on the
same session (by using the same session as an argument in the ODatabase::Open
method), and if they have the same connection information (database name,
username, and password).

You can get OSession objects from OConnection, ODatabase, ODynaset, or
OSessionCollection objects using the GetSession method.

Normally you will use the default session, for which you provide no name.    You can
also open sessions with specific names.    Later you can get a list of sessions from the
client object and identify sessions by name.

The OSession class supports the following methods:
Construction and destruction:

OSession
~OSession
operator=

Attributes:
operator==
operator!=
GetName
GetVersion
IsOpen

Operations:
BeginTransaction
Close
Commit
GetClient
GetConnections

GetNamedSession
Open
ResetTransaction
Rollback

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
GetServerErrorText

LookupErrorText
ServerErrorNumbe
r
ServerErrorReset

OSessionCollection

The OSessionCollection object is the set of sessions that exists for a given client.
You can get OSessionCollection objects from an OClient object using the
GetSessions method. OSessionCollection is a subclass of OOracleCollection.

The OSessionCollection is dynamic: it always reflects the current set of sessions of
the client it came from, even if the sessions are added after you get the collection.    It
is read-only.    You cannot add sessions through the collection.

You can obtain individual OSessions from an OSessionCollection using the
GetSession method.

The OSessionCollection class supports the following methods:
Construction and destruction:

OSessionCollection
~OSessionCollection
operator=

Attributes:
operator==
operator!=
GetCount
IsOpen

Operations:
Close
GetSession

ErrorHandling:
ErrorNumber
ErrorReset
GetErrorText
LookupErrorText

OValue

An OValue object is a convenient place to store data of a variety of different types. It
is also useful as a way to convert between different types.    You can use OValues to
get and set field values in a type-independent fashion.    OValue is a subclass of
OOracleObject.

OValue has a rich set of constructors and SetValue methods to set values using
different types and cast operators to obtain the value from an OValue instance.    The
Clear method sets the value to a database NULL value (which is not the same as a
C++ NULL).    The IsNull method checks to see whether the current value is NULL.

The OValue class supports the following methods:
Construction and destruction:

OValue
~OValue
operator=

Attributes:
operator==
operator!=
IsNull
IsOpen

Operations:
operator const char
*
operator double
operator int

operator long
Clear
SetValue

Methods

ActionNotify
ActionRequest
Add
AddNewRecord
AppendChunk
AppendFieldChunk
AutoEnable
BeginTransaction
BindToBinder
CancelEdit
CanMark
CanRefresh
CanScroll
CanTransact
CanUpdate
Changed
Clear
Clone
Close
Close(OBinder)
Commit
DeleteRecord
DiscardChanges
DuplicateRecord
ErrorNumber
ErrorReset
ExecuteSQL
GetChangedError
GetChunk
GetClient
GetConnection
GetConnection(Collection)
GetConnections
GetConnectString
GetCount
GetDatabase
GetDatabaseName
GetDynaset
GetEditMode
GetErrorText
GetField
GetFieldChunk
GetFieldCount
GetFieldIndex
GetFieldPrecision
GetFields
GetFieldScale
GetFieldServerSize
GetFieldServerType
GetFieldSize

GetMark
GetName
GetNamedSession
GetOptions
GetParameter
GetParameters
GetPrecision
GetRecordCount
GetRowsProcessed
GetScale
GetServerErrorText
GetServerSize
GetServerType
GetSession
GetSession(Collection)
GetSessions
GetSize
GetSQL
GetStatus
GetValue
GetValue(OBound)
IsBOF
IsChanged
IsEOF
IsFieldNullOK
IsFieldTruncated
IsFirst
IsLast
IsNull
IsNullOK
IsOpen
IsTruncated
IsValidRecord
LookupErrorText
MoveFirst
MoveLast
MoveNext
MovePrev
MoveToMark
OAdvise
~OAdvise
OBinder
~OBinder
OBound
~OBound
OClient
~OClient
OConnection
~OConnection
OConnectionCollection

ODynaset
~ODynaset
ODynasetMark
~ODynasetMark
OField
~OField
OFieldCollection
~OFieldCollection
OnChangedError
OParameter
~OParameter
OParameterCollection
~OParameterCollection
Open(OAdvise)
Open(OBinder)
Open(ODatabase)
Open(ODynaset)
Open(OSession)
operator const char *
operator double
operator int
operator long
operator=
operator==
operator!=
OSession
~OSession
OSessionCollection
~OSessionCollection
OShutdown
OStartup
OValue
~OValue
Refresh(OBinder)
Refresh(OBound)
Refresh(ODynaset)
RefreshQuery
Remove
ResetTransaction
Rollback
SaveChange
ServerErrorNumber
ServerErrorReset
ServerErrorSQLPos
SetFieldValue
SetSQL
SetValue
SetValue(OBound)
StartEdit
StatusChange

GetFieldValue
GetLastModifiedMark

~OConnectionCollection
ODatabase
~ODatabase

Unbind
UnbindObj
Update

Trigger Methods

PostAdd
PostDelete
PostMove
PostQuery
PostRollback
PostUpdate
PreAdd

PreDelete
PreMove
PreQuery
PreRollback
PreUpdate
Shutdown
Startup

Methods

ActionNotify
ActionRequest
Add
AddNewRecord
AppendChunk
AppendFieldChunk
AutoEnable
BeginTransaction
BindToBinder
CancelEdit
CanMark
CanRefresh
CanScroll
CanTransact
CanUpdate
Changed
Clear
Clone
Close
Close(OBinder)
Commit
DeleteRecord
DiscardChanges
DuplicateRecord
ErrorNumber
ErrorReset
ExecuteSQL
GetChangedError
GetChunk
GetClient
GetConnection
GetConnection(Collection)
GetConnections
GetConnectString
GetCount
GetDatabase
GetDatabaseName
GetDynaset
GetEditMode
GetErrorText
GetField
GetFieldChunk
GetFieldCount
GetFieldIndex
GetFieldPrecision
GetFields
GetFieldScale
GetFieldServerSize
GetFieldServerType
GetFieldSize
GetFieldValue
GetLastModifiedMark

GetMark
GetName
GetNamedSession
GetOptions
GetParameter
GetParameters
GetPrecision
GetRecordCount
GetRowsProcessed
GetScale
GetServerErrorText
GetServerSize
GetServerType
GetSession
GetSession(Collection)
GetSessions
GetSize
GetSQL
GetStatus
GetValue
GetValue(OBound)
IsBOF
IsChanged
IsEOF
IsFieldNullOK
IsFieldTruncated
IsFirst
IsLast
IsNull
IsNullOK
IsOpen
IsTruncated
IsValidRecord
LookupErrorText
MoveFirst
MoveLast
MoveNext
MovePrev
MoveToMark
OAdvise
~OAdvise
OBinder
~OBinder
OBound
~OBound
OClient
~OClient
OConnection
~OConnection
OConnectionCollection
~OConnectionCollection
ODatabase

ODynaset
~ODynaset
ODynasetMark
~ODynasetMark
OField
~OField
OFieldCollection
~OFieldCollection
OnChangedError
OParameter
~OParameter
OParameterCollection
~OParameterCollection
Open(OAdvise)
Open(OBinder)
Open(ODatabase)
Open(ODynaset)
Open(OSession)
operator const char *
operator double
operator int
operator long
operator=
operator==
operator!=
OSession
~OSession
OSessionCollection
~OSessionCollection
OShutdown
OStartup
OValue
~OValue
Refresh(OBinder)
Refresh(OBound)
Refresh(ODynaset)
RefreshQuery
Remove
ResetTransaction
Rollback
SaveChange
ServerErrorNumber
ServerErrorReset
ServerErrorSQLPos
SetFieldValue
SetSQL
SetValue
SetValue(OBound)
StartEdit
StatusChange
Unbind
UnbindObj

~ODatabase Update

Trigger Methods

PostAdd
PostDelete
PostMove
PostQuery
PostRollback
PostUpdate
PreAdd

PreDelete
PreMove
PreQuery
PreRollback
PreUpdate
Shutdown
Startup

ActionNotify Method
Applies To

OAdvise
Description

The ActionNotify method is called by a dynaset when that dynaset has performed an
operation. You do not call ActionNotify; the ActionNotify method of your OAdvise
subclass is called by the dynaset.

Usage
void ActionNotify(int actiontype)

Arguments
actiontype
actiontype will have one of the following values:

OADVISE_MOVE_FIRST // dynaset moving to first record
OADVISE_MOVE_PREV // dynaset moving to previous record
OADVISE_MOVE_NEXT // dynaset moving to next record
OADVISE_MOVE_LAST // dynaset moving to last record
OADVISE_MOVE_TOMARK // dynaset moving to dynaset mark
OADVISE_REFRESH // dynaset refreshing
OADVISE_DELETE // dynaset deleting current record
OADVISE_ADDNEW // dynaset adding a new record
OADVISE_UPDATE // dynaset updating
OADVISE_ROLLBACK // session (that dynaset is part of) is rolling back

Remarks
When you subclass OAdvise, you can override the ActionNotify method.    After an
instance of your OAdvise subclass is attached to a dynaset (by way of the
OAdvise::Open method) your instance receives calls to its ActionNotify method.    Use
an ActionNotify method to perform processing after a dynaset has performed an action.
The unoverridden ActionNotify method of OAdvise does nothing.

Example
This example puts up a notification dialog whenever a record is updated.
void YourOAdvise::ActionRequest(int actiontype)
{
 if (actiontype == OADVISE_UPDATE)
 {
 NotifyDialog("Record has been updated");
 }
 return;
}

ActionRequest Method
Applies To

OAdvise
Description

The ActionRequest method is called by a dynaset when that dynaset is about to start
an operation. You do not call ActionRequest; the ActionRequest method of your
OAdvise subclass is called by the dynaset.

Usage
oboolean ActionRequest(int actiontype)

Arguments
actiontype
actiontype will have one of the following values:

OADVISE_MOVE_FIRST // dynaset moving to first record
OADVISE_MOVE_PREV // dynaset moving to previous record
OADVISE_MOVE_NEXT // dynaset moving to next record
OADVISE_MOVE_LAST // dynaset moving to last record
OADVISE_MOVE_TOMARK // dynaset moving to dynaset mark
OADVISE_REFRESH // dynaset refreshing
OADVISE_DELETE // dynaset deleting current record
OADVISE_ADDNEW // dynaset adding a new record
OADVISE_UPDATE // dynaset updating
OADVISE_ROLLBACK // session (that dynaset is part of) is rolling back

Remarks
When you subclass OAdvise, you can override the ActionRequest method.    After an
instance of your OAdvise subclass is attached to a dynaset (by way of the
OAdvise::Open method), your instance receives calls to its ActionRequest method.   
Use an ActionRequest method to control whether certain dynaset actions should be
allowed to proceed, or to do your own processing before dynaset actions occur.
The unoverridden ActionRequest method of OAdvise always returns TRUE, allowing all
dynaset operations to proceed immediately.

Return value
TRUE tells the dynaset that the action can proceed
FALSE tells the dynaset to cancel the action

 Example
This example attempts to save a change to the current record if there is one.    This is an
action that needs to be taken before the dynaset does an operation.
oboolean YourOAdvise::ActionRequest(int actiontype)
{
 // check whether we have an unsaved change in this record
 int error;

 if (m_havechange)
 { // we have a change, try to save it
 error = m_context->SaveTheChange();
 if (error != 0)
 { // some problem - cancel the action
 return(FALSE);
 }
 }

 // everything is fine, allow the action
 return(TRUE);
}

Add Method
Applies To

OParameterCollection
Description

This method adds a parameter to a database.
Usage

OParameter Add(const char *name, const char *value, int iotype, int servertype)
OParameter Add(const char *name, double value, int iotype, int servertype)
OParameter Add(const char *name, int value, int iotype, int servertype)
OParameter Add(const char *name, long value, int iotype, int servertype)

Arguments
name the name to be given to the parameter
value the initial value of the parameter
iotype specifies whether this parameter is an input variable, an output variable,

or both. The value should be one of:

OPARAMETER_INVAR // in parameter
OPARAMETER_OUTVAR // out parameter

OPARAMETER_INOUTVAR // in/out parameter
servertypethe Oracle type of the parameter.    The value should be one of:

OTYPE_VARCHAR2
OTYPE_NUMBER
OTYPE_LONG
OTYPE_ROWID
OTYPE_DATE
OTYPE_RAW
OTYPE_LONGRAW
OTYPE_CHAR
OTYPE_MSLABEL

Remarks
These methods attach an OParameter to an ODatabase. The name argument
specifies the name of the parameter.    To refer to the value of the OParameter within
SQL statements, use :name. The value argument is the initial value of the OParameter.
The data type of the parameter is set to be the type of the initial value.
The parameter that is created is referenced by the returned OParameter object.

Return Value
An OParameter, which will be open on success, closed on failure.

Example
This example adds a parameter to an existing ODatabase (odb) and uses it to open an
ODynaset:
// open an ODatabase called odb
ODatabase odb("ExampleDB", "scott", "tiger");

// now add a parameter named ourdeptno to the database
OParameterCollection params = odb.GetParameters();
params.Add("ourdeptno ", 20, OPARAMETER_INVAR, OTYPE_NUMBER);

// now create and open a dynaset using that parameter
ODynaset dyn(odb, "select * from emp where deptno = :ourdeptno");

AddNewRecord Method
Applies To

OBinder, ODynaset
Description

This method adds a new record to the dynaset result set.
Usage

oresult AddNewRecord(void)
Remarks

This method adds a new record to the dynaset. OBinder::AddNewRecord adds a new
record to the dynaset that it is managing.    The added record becomes the current
record.    Execution of this method sends OADVISE_ADDNEW messages to all attached
advisories.
To add a record to a dynaset, first call ODynaset::AddNewRecord, then set the values
of whatever fields you wish, then call ODynaset::Update.
To add a record to a managed dynaset (an OBinder instance) call AddNewRecord.   
The OBinder instance takes care of the rest.
Depending on the options that were used to create the database to which this dynaset is
attached, the Oracle database may or may not be called to fill values into some of the
fields.    See the ODATABASE_PARTIAL_INSERT under ODatabase.
Note: A call to StartEdit, AddNewRecord, DuplicateRecord, or DeleteRecord, will
cancel any outstanding StartEdit, AddNewRecord or DuplicateRecord calls before
proceeding.    Any outstanding changes not saved using Update will be lost during the
cancellation.
When used with OBinder, the method also calls the PreAdd and PostAdd triggers.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example adds a new record to the emp table.    We assume an already open dynaset
named empdyn.
// add a record to empdyn
empdyn.AddNewRecord();

// set the values of important fields
empdyn.SetFieldValue("empno", 4512);
empdyn.SetFieldValue("ename", "Scott Feline");
empdyn.SetFieldValue("sal", 1000.45);

// save the change to the Oracle database
empdyn.Update();

AppendChunk Method
Applies To

OField
Description

This method appends data to a long or long raw field.
Usage

oresult AppendChunk(const void *chunkp, unsigned short numbytes)
Arguments

chunkp a pointer to the data to be appended
numbytes the number of bytes from chunkp to be appended

Remarks
Long and long raw columns in an Oracle7 database can hold large amounts of data.    The
AppendChunk method enables you to add data to a long field piecewise.    You can add
a maximum of 64K at once.    Each call to AppendChunk adds data following any other
calls.    AppendChunk calls must be made while the dynaset is in an editing mode
started by either StartEdit, AddNewRecord, or DuplicateRecord.    This method is
valid only for fields with server types of OTYPE_LONG or OTYPE_LONGRAW.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example adds take an image segmented into several chunks and stores it in the
database.
// we have an open dynaset pictdyn
// get an OField on the "picture" field of the dynaset
OField pictfield = pictdyn.GetField();

// now start editing
pictdyn.StartEdit();

// and loop through the chunks of the picture
int ii;
for (ii=0; ii<nchunks; ii++)
 pictfield.AppendChunk((const void *) picture[ii], plen[ii]);

// and save it to the database
pictdyn.Update();

AppendFieldChunk Method
Applies To

ODynaset
Description

This method appends data to a long or long raw field.
Usage

oresult AppendFieldChunk(int index, const void *chunkp, unsigned short numbytes)
oresult AppendFieldChunk(const char *fieldname, const void *chunkp,

unsigned short numbytes)

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query
chunkp a pointer to the data to be appended
numbytes the number of bytes from chunkp to be appended

Remarks
Long and long raw columns in an Oracle7 database can hold large amounts of data.    The
AppendFieldChunk method enables you to add data to a long field piecewise.    You can
add a maximum of 64K at once.    Each call to AppendFieldChunk adds data following
any other calls. AppendFieldChunk calls must be made while the dynaset is in an
editing mode started by either StartEdit, AddNewRecord, or DuplicateRecord. This
method is valid only for fields with server types of OTYPE_LONG or OTYPE_LONGRAW.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example adds take an image segmented into several chunks and stores it in the
database.
// we have an open dynaset pictdyn

// now start editing
pictdyn.StartEdit();

// and loop through the chunks of the picture
int ii;
for (ii=0; ii<nchunks; ii++)
 pictdyn.AppendFieldChunk("pfield", (const void *) picture[ii],
plen[ii]);

// and save it to the database
pictdyn.Update();

AutoEnable Method
Applies To

OParameter
Description

This method turns the AutoEnable status for a parameter on or off.
Usage

oresult AutoEnable(oboolean enable)
Arguments

enable If TRUE, enables the parameter.    If FALSE, disables the parameter.
Remarks

Parameters can have autoenabling turned on or off.    Only parameters that have
autoenabling turned on can be bound to newly executed SQL statements.    Disabling a
parameter does not change its use in an already executed SQL statement.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example adds, enables, and disables a parameter.
// add a parameter to an existing ODatabase: odb
OParameterCollection params = odb.GetParameters();
OParameter deptp;

// initial value of 20
deptp = params.Add("dno", 20, OPARAMETER_INVAR, OTYPE_NUMBER);

// disable it
deptp.AutoEnable(FALSE);

// try to use it
ODynaset empdyn;
oresult ores;
ores = empdyn.Open(odb, "select * from emp where deptno = :dno");
// that failed: ores == OFAILURE

// enable the parameter and try again
deptp.AutoEnable(TRUE);
ores = empdyn.Open(odb, "select * from emp where deptno = :dno");
// now ores == OSUCCESS

BeginTransaction Method
Applies To

OSession
Description

This method begins a database transaction.
Usage

oresult BeginTransaction(void)
Remarks

A database transaction is a way to group database operations so that they all either
succeed or fail together.    Please see Transactions for more information.    You start a
transaction with BeginTransaction. You terminate a transaction either with a Commit
or a Rollback.    It is an error to call BeginTransaction when a transaction is already in
progress.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example starts a transaction and begins a long sequence of operations.    If an error
occurs along the way, all the changes are discarded with a Rollback.    If they all
succeed, all the changes are made permanent with a Commit.
// routine to give all employees the same bonus
void Transfer(ODynaset empdyn, double bonus)
{
 // get the session of this dynaset
 OSession empsess = empdyn.GetSession();

 // start a transaction
 empsess.BeginTransaction();

 // edit every record (with StartEdit, SetFieldValue, Update)
 empdyn.MoveFirst();
 while (!empdyn.IsEOF())
 {
 if (empdyn.StartEdit() != OSUCCESS)
 break;
 if (empdyn.SetFieldValue("bonus", bonus) != OSUCCESS)
 break;
 if (empdyn.Update() != OSUCCESS)
 break;

 empdyn.MoveNext(); // go to the next record
 }

 if (!empdyn.IsEOF())
 { // we got out of the loop early. Get rid of any changes we made
 empsess.Rollback();
 }
 else
 { // everything worked. Make it all permanent

 empsess.Commit();
 }
 return;
}

BindToBinder Method
Applies To

OBound
Description

This method binds the OBound object to a particular OBinder object.
Usage

oresult BindToBinder(OBinder *binder, const char *fieldname)
Arguments

binder A pointer to the OBinder object to which this OBound should be bound.
fieldname The name of the field in the query to which this OBound should be bound.

Remarks
Before an OBound object is associated with an OBinder (a managed dynaset), it is
inert.    BindToBinder sets up the relationship between the OBound object and the
OBinder object that makes the OBound machinery work.
This method calls the Startup trigger for the OBound object and the OBinder Startup
trigger if this is the first object to be bound.
If the OBinder object is already open, BindToBinder verifies that the fieldname is valid
and returns OFAILURE if the fieldname does not belong to the bound dynaset. However,
your Bound Controls will not receive their values until they are refreshed, either by using
the OBinder::Refresh method or one of the Move methods.(such as MoveFirst) It is
also possible to bind all the OBound objects before opening the OBinder. In this
situation, OBinder Open fails if there are any OBound objects referring to an invalid
fieldname.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example does all the work needed to set up several OBoundVal objects that will be
bound to several fields in the emp table.    OBoundVal is a subclass of OBound that is
discussed in the Workbook.
// open a database object
ODatabase odb("ExampleDB", "scott", "tiger");

// open the managed dynaset
OBinder empblock;
empblock.Open(odb, "select ename, sal, empno from emp");

// declare some OBoundVal objects
OBoundVal ename;
OBoundVal sal;
OBoundVal empno;

// bind the OBoundVals
ename.BindToBinder(&empblock, "ename");
sal.BindToBinder(&empblock, "sal");
empno.BindToBinder(&empbloc, "empno");

// now we're all set up

CancelEdit Method
Applies To

ODynaset
Description

This method cancels the edits made to the current record.
Usage

oboolean CancelEdit(void)
Remarks

Editing of the current record is begun with the StartEdit method.    If you have called
StartEdit and then decide to discard any changes you have made, call CancelEdit.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example gives everybody a raise, except for managers.
// open a database object
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset on the employee table
ODynaset empdyn(odb, "select * from emp");

OField salf = empdyn.GetField("sal"); // the salary
OField jobf = empdyn.GetField("job"); // the job

// go through all the records
empdyn.MoveFirst();
while (!empdyn.IsEOF())
{
 // start editing
 empdyn.StartEdit();
 // give a raise
 salf.SetValue(1000.0 + (double) salf);

 // wait a minute, what position does this person have?
 if (0 == strcmp("MANAGER", (const char *) jobf))
 { // forget the raise!
 empdyn.CancelEdit();
 }
 else
 { // go ahead and save the raise
 empdyn.Update();
 }

 empdyn.MoveNext();
}

CanMark Method
Applies To

ODynaset
Description

This method returns TRUE if you can obtain marks on this dynaset.
Usage

oboolean CanMark(void) const
Remarks

Normal dynasets support the GetMark and GetLastModifiedMark methods.    However,
dynasets created with the ODYNASET_NOCACHE option do not. Use this method to
determine whether you can get dynaset marks on this dynaset.

Return Value
TRUE if you can obtain a mark on this dynaset; FALSE if not.

CanRefresh Method
Applies To

ODynaset
Description

This method returns TRUE if you can call the Refresh method on this ODynaset.
Usage

oboolean CanRefresh(void) const
Remarks

In this release, the method always returns TRUE.
Return Value

TRUE if the dynaset is refreshable; FALSE if it is not.

CanScroll Method
Applies To

ODynaset
Description

This method returns TRUE if you can move backwards and navigate to a mark.
Usage

oboolean CanScroll(void) const
Remarks

ODynasets that return FALSE on CanScroll do not maintain a local record cache; they
keep the data only for the current record.    By default dynasets are created with local
record caches.    Only dynasets created with the ODYNASET_NOCACHE option are not
scrollable. Use this method to determine whether the dynaset is scrollable.

Return Value
TRUE if the dynaset can scroll backwards; FALSE if not.

CanTransact Method
Applies To

ODynaset
Description

This method returns TRUE if the session to which this ODynaset is attached supports
transactions.

Usage
oboolean CanTransact(void) const

Remarks
See OSession for more information about transactions.    In the current release, all
sessions support transactions.

Return Value
TRUE if the dynaset's session supports transactions; FALSE if not.

CanUpdate Method
Applies To

ODynaset
Description

This method returns TRUE if the ODynaset is updatable.
Usage

oboolean CanUpdate(void) const
Remarks

Depending on the SQL statement that is used to Open or Refresh the ODynaset, it may
or may not be possible to make changes to the dynaset.    Several factors can make a
dynaset non-updatable:

The SQL statement may contain fields that are not database table columns (for
example, computed fields or fields whose names have been aliased).

The SQL statement may reference columns in more than one database field (a join).   
The user may not have privileges to update the table the dynaset is on.
The dynaset may have been opened with the ODYNASET_READONLY option.

Note that even if the SQL statement references only a single view, the dynaset will not
be updatable if that view is created by way of a join, computed columns, or aliased
columns.

Return Value
TRUE if the dynaset is updatable; FALSE if not.

Example
Here are examples of dynaset updatability.
// we assume the existence of an open ODatabase named odb
ODynaset dyn; // construct an ODynaset

// now open the ODynaset with various SQL statements
dyn.Open(odb, "select * from emp");
if (dyn.CanUpdate()) ; // is TRUE

dyn.Open(odb, "select sal*1.1 from emp");
if (dyn.CanUpdate()) ; // FALSE because of computed field

dyn.Open(odb, "select emp.ename, dept.dname from emp, dept \
 where emp.deptno = dept.deptno");
if (dyn.CanUpdate()) ; // FALSE because of join

Changed Method
Applies To

OBound, OBinder
Description

This method tells the object that the value for the current record has (or has not) been
changed.    Normally only OBound or OBinder subclasses call this method.

Usage
oresult Changed(oboolean changed = TRUE)

Arguments
changed if TRUE (the default), tells the object that it has been changed

if FALSE, tells the object that it has not been changed (rarely used)
Remarks

When you subclass OBound and OBinder, you generally create objects that allow field
values to be edited in some convenient fashion.    In order for OBinder and OBound to
know when to update the database with edited field values, they need to know when
values have been changed.    Calling this method is how you inform OBinder and
OBound objects that a change has occurred.
Normally the OBound subclass calls Changed in some routine that notices that the
value has been changed.    For example, where the OBound subclass is a text editing
control, Changed should be called when the user enters a key in the control.    Users of
OBound and OBinder classes and subclasses normally do not call Changed.
Calling Changed on an OBound means that the field value of that OBound has been
changed in the current record.    Calling Changed on an OBinder means that the current
record has been changed.
Marking an OBound as changed means that eventually the OBound's SaveChange
method will be called to save the change to the database.
The first time that something in the current record is marked as changed, either some
OBound in the record or the whole record, StartEdit is called on the dynaset being
managed by the OBinder.    This can fail, for all the reasons StartEdit might fail.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).   
Failure typically means that the dynaset that OBinder is managing is not updatable.

Example
Please see the Workbook for the example "OBound of a variable."    That example works
through the implementation of a subclass of OBound.    That subclass calls Changed.

Clear Method
Applies To

OValue, OParameter
Description

This method clears the value stored in the object, leaving a value of NULL.
Usage

oresult Clear(void)
Remarks

Oracle database columns may have a value of NULL.    This database NULL means "no
value specified", rather than the NULL pointer of C++.    Sometimes it is desirable to
generate a NULL value.    The Clear method makes the OValue or OParameter object
hold a NULL value.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example gets a value from a dynaset and then sets it to NULL.
// we have a dynaset named empdyn

// get the current commission value
OValue commission;
empdyn.GetFieldValue("comm", &commission);

// if the commission has a value, change it to NULL
if (!commission.IsNull())
{ // make the commission NULL
 commission.Clear();
 empdyn.StartEdit();
 empdyn.SetFieldValue("comm", commission);
 empdyn.Update();
}

Clone Method
Applies To

ODynaset
Description

This method returns a clone of the ODynaset.
Usage

ODynaset Clone(void)
Remarks

A clone of a parent dynaset is a read-only dynaset that refers to the same local data
cache as the parent.    It is possible to navigate through the clone dynaset, and read from
the clone dynaset, without having any side effects on the parent dynaset.    If a dynaset
has advisories attached to it or is the dynaset of an OBinder object (which has
advisories placed by the OBinder), moving from record to record could be expensive and
can even be canceled by an advisory.    Cloning the dynaset allows you to look at the data
without these side effects.
An ODynaset and its clone can share dynaset marks.
Note that two separate ODynaset objects can refer to the same underlying dynaset.   
For example, one dynaset can be assigned (using the = operator) to the other.    Then,
changing the current record in one changes the current record in the other: the current
record is changed in the dynaset and the ODynasets are just handles to the dynaset.    A
Clone is an actual different underlying dynaset, but it observes the same data cache as
another dynaset.

Return Value
Returns an ODynaset.    If the returned ODynaset is Open (check with the IsOpen
method), the Clone was successful.    If the returned ODynaset is not Open, the
operation failed.

Example
This example creates several ODynaset objects to illustrate relationships between them.
// open the database
ODatabase odb("ExampleDB", "scott/tiger", 0);

// Create some ODynasets.

// ODynaset dyn1 and dyn2 are completely separate
ODynaset dyn1(odb, "select * from emp");
dyn1.MoveFirst();

ODynaset dyn2(odb, "select * from emp");

// ODynaset dyn1copy looks at the same dynaset as dyn1
ODynaset dyn1copy;
dyn1copy = dyn1;

// ODynaset dyn1clone is a clone of dyn1 ...
ODynaset dyn1clone;
// ...which is the same as dyn1copy.Clone()

dyn1clone = dyn1.Clone();

// now dyn1, dyn1copy and dyn1clone are all at the first record
// so now...
dyn1.MoveLast();
// ...dyn1copy is at its last record
// ...but dyn1clone is still at the first

// if we add a record...
dyn1.AddRecord();
/*
Dyn1copy is now current on the new record along with dyn1. dyn1clone is
still at the first record.
*/

dyn1.Update(); // add that new record
/*
If we navigate around in dyn1clone we will see the new record, but
navigating around in dyn2 we will not see the new record until dyn2 is
refreshed.
*/

Close Method
Applies To

OAdvise, OClient, OConnection, OConnectionCollection, ODatabase, ODynaset,
ODynasetMark, OField, OFieldCollection, OParameter, OParameterCollection,
OSession, OSessionCollection

Description
This method closes the object, freeing the connection with the underlying
implementation object.

Usage
oresult Close(void)

Remarks
All objects that are instances of subclasses of OOracleObject are handles that reference
some implementations object.    This architecture allows the class objects to be very
lightweight and easy to use.    The relationship between an object and its implementation
is established when the object is opened, either explicitly with an Open method or
implicitly with some constructors or the assignment operator.    Normally the relationship
between the object and its implementation is dropped when the object is destroyed.    It
can also be dropped if the object is reopened.    It can also be dropped explicitly by using
the Close method.
Once all handles for an implementation object are closed (or destroyed), the
implementation object will be destroyed.    Because certain objects consume considerable
resource when they are open (databases consume connections and dynasets consume a
great deal for their local data cache), it is sometimes desirable to close handle objects
(with the Close method) before they are destroyed.    Use Close also if the
OOracleObject is be a member of some class that you do not want to destroy, but you
do want to free the implementation object.
Closed objects generally fail all operations, with the obvious exception of Open.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example demonstrates when a database object is released.
// open an ODatabase. This creates an underlying database object
ODatabase odb("ExampleDB", "scott", "tiger");

// now we can do operations with this database object
odb.ExecuteSQL("drop table dontwantit");

// get another handle (ODatabase) on the same database
ODatabase odb2 = odb;

// now we close odb
odb.Close(); // that works

// try to use the database object (with a closed ODatabase)
odb.ExecuteSQL("drop table fooey"); // fails because odb is Closed

// now use an open ODatabase on the database object
// that odb referenced
odb2.ExecuteSQL("drop table fooey");
// that succeeded because odb2 is Open

// now close odb2
odb2.Close();
// that dropped odb2. Now the database connection is dropped because
// now all the handles on the database object have been closed.

Close (OBinder) Method
Applies To

OBinder
Description

This method closes the object.
Usage

oresult Close(oboolean doShutdown = TRUE)
Arguments

doShutdown if TRUE (the default), the Shutdown triggers are called
if FALSE, the Shutdown triggers are not called

Remarks
Closing an OBinder object frees all its resources and makes it unusable (until it is
reopened).    You might want to do this if the OBinder is a member variable of an object
that you do not want to destroy yet, but you do not need the OBinder anymore.
Normally when you close an OBinder object you should let doShutdown be TRUE and
call the Shutdown triggers (both the OBinder trigger and the triggers for all OBound
objects bound to this OBinder).    Depending on the circumstances and precisely what
your OBound objects do on the Shutdown trigger, this can fail.    Calling Close with
doShutdown FALSE will not call the Shutdown triggers, but it also does not fail.
Note that once the OBinder object has been Closed, all of the OBound objects that
were bound to the OBinder are unbound - just as if each had called the
OBound::Unbind method.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example shows the closing of an OBinder
// we have an OBinder object called empblock

// bind an OBoundVal object to it (see the Workbook)
OBoundVal sal;
sal.BindToBinder(&empblock, "sal");

// now close the OBinder
empblock.Close();
// that called OBoundVal.Shutdown()

salary = (int) sal;
// salary is always 0 now because sal is unbound

ODynaset empdyn = empblock.GetDynaset();
// empdyn is closed and empdyn.IsOpen() is FALSE,
// because empblock is Closed

Commit Method
Applies To

OSession
Description

This method commits the current transaction.
Usage

oresult Commit(oboolean startnew = FALSE)
Arguments

startnew If TRUE a new transaction is begun (as if BeginTransaction had been called).
If FALSE, no additional work is done after the transaction is committed.

Remarks
A database transaction is a way to group database operations so that they all either
succeed or fail together.    Please see Transactions for more details.    You start a
transaction with BeginTransaction.    You terminate the transaction either with a
Commit or a Rollback.    It is an error to call Commit when no transaction is in progress.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example starts a transaction and begins a long sequence of operations.    If an error
occurs along the way, all the changes are discarded with a Rollback.    If they all
succeed, all the changes are made permanent with a Commit.
// routine to give all employees the same salary
void Transfer(ODynaset empdyn, double salary)
{
 // get the session of this dynaset
 OSession empsess = empdyn.GetSession();

 // start a transaction
 empsess.BeginTransaction();

 // edit every record (with StartEdit, SetFieldValue, Update)
 empdyn.MoveFirst();
 while (!empdyn.IsEOF())
 {
 if (empdyn.StartEdit() != OSUCCESS)
 break;
 if (empdyn.SetFieldValue("sal", salary) != OSUCCESS)
 break;
 if (empdyn.Update() != OSUCCESS)
 break;

 empdyn.MoveNext(); // go to the next record
 }

 if (!empdyn.IsEOF())
 { // we got out of the loop early. There must be a problem.

 // Get rid of any changes we made
 empsess.Rollback();
 }
 else
 { // everything worked, so make it all permanent
 empsess.Commit();
 }
 return;
}

DeleteRecord Method
Applies To

OBinder, ODynaset
Description

This method deletes the current record from the dynaset result set.
Usage

oresult DeleteRecord(void)
Remarks

This method deletes the current record from the dynaset. Execution of this method sends
OADVISE_DELETE messages to all attached advisories.    It is not necessary to call
StartEdit or Update to delete a record.
After the record has been deleted, the current record will not be valid (it has been
deleted).    If the deletion was from a dynaset, you must navigate yourself to a valid
record.    The OBinder class will attempt to move to an adjacent valid record by itself.
Note: A call to StartEdit, AddNewRecord, DuplicateRecord, or DeleteRecord, will
cancel any outstanding StartEdit, AddNewRecord or DuplicateRecord calls before
proceeding.    Any outstanding changes not saved using Update will be lost during the
cancellation.
OBinder calls the PreDelete and PostDelete triggers when this method is called.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example deletes all managers.
// open the database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset on the employee table
ODynaset empdyn(odb, "select * from emp");

// get an OField object for looking at the job field
OField job = empdyn.GetField("job");

// look through all the employees
while (!empdyn.IsEOF())
{
 if (0 == strcmp((const char *) job, "MANAGER"))
 { // we found a manager; delete that employee
 empdyn.DeleteRecord();
 }

 // go to next record (gets us to valid record)
 // or past EOF if there are no more records
 empdyn.MoveNext();
}

DiscardChanges Method
Applies To

OBinder
Description

This method discards the changes made to the current record.
Usage

oresult DiscardChanges(void)
Remarks

OBound subclass instances allow changes to be made to field values.    When those
changes are made, the subclass code marks itself as changed with the
OBound::Changed method, which in turn marks the current record (of the dynaset that
the attached OBinder is managing) as changed with OBinder::Changed.
Sometimes you need to discard changes that have been made.    To do this, call
DiscardChanges.
After the changes are discarded, all attached bound objects are refreshed with correct
values.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example considers handling an OBinder when it is about to be closed.
// Here's an OBinder that we are using to edit a table
OBinder tableedit;
// setup of tableedit goes here (see Workbook for a sample).

// now the user is closing the window. Deal with any changes.
if (tableedit.IsChanged())
{ // the current record has a change in it
 // ask the user if they want to save the change
 int yesno = Message("Do you want to save the change?");
 if (yesno == YES_ANSWER)
 tableedit.Update();
 else
 tableedit.DiscardChanges();
}
/*
Now we can close the window.
By the way, the default behavior when an OBinder is destroyed is for it to
Update().
*/

DuplicateRecord Method
Applies To

OBinder, ODynaset
Description

This method creates a new record that is a duplicate of the current record.    The current
record must be valid.

Usage
oresult DuplicateRecord(void)

Remarks
This method works the same way that AddNewRecord does, and has the same side
effects.    OADVISE_ADDNEW messages are sent to all attached advisories and, for
OBinders, the PreAdd and PostAdd triggers are called.    The only difference is that
after the record has been added, the values of the previously current record are used to
fill the fields of the new record.
To use this method with an ODynaset, you must call AddNewRecord and then Update
to save the changes.    When you use OBinder you do not need to call Update; the
OBinder machinery does that for you.
Depending on the options that were used to create the database to which this dynaset is
attached, the Oracle database may or may not be called to fill values into some of the
fields.    See the ODATABASE_PARTIAL_INSERT under ODatabase.
Note: A call to StartEdit, AddNewRecord, DuplicateRecord, or DeleteRecord, will
cancel any outstanding StartEdit, AddNewRecord or DuplicateRecord calls before
proceeding.    Any outstanding changes not saved using Update will be lost during the
cancellation.
When duplicating records, the order of events is as follows:

1. ActionRequest on advisories for add and PreAdd trigger (for OBinders) in
undefined order.

2. Then the new record is added.
3. Then the ActionNotify advisory is called.
4. Then the values are copied.
5. Then the PostAdd trigger (for OBinders) is called.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example duplicates an order.
// open the database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset on the orders table
ODynaset orderdyn(odb, "select * from ord");

// navigate somewhere in the orders dynaset
MoveToInterestingOrder(orderdyn);
/*

Note that although we are passing the orderdyn by value, when
the routine MoveToInterestingOrder navigates the dynaset, the
current record that we see will be changed.
*/

// duplicate the current order record
orderdyn.DuplicateRecord();

// we need to set a new id (because it must be unique)
orderdyn.SetFieldValue("ordid", orderidseed++);

// save the new record
orderdyn.Update();

ErrorNumber Method
Applies To

OAdvise, OBinder, OClient, OConnection, OConnectionCollection, ODatabase,
ODynaset, ODynasetMark, OField, OFieldCollection, OParameter,
OParameterCollection, OSession, OSessionCollection

Description
This method returns an internal class library error number.

Usage
long ErrorNumber(void) const

Remarks
This method reports class library error numbers.    If there is no error the result will be
OERROR_NONE.    Otherwise the result will be one of the other OERROR error codes
defined in the ORACL.H header file.      These error numbers are discussed in the Error
Handling section.    Depending on the error, there may be more information available
using the GetErrorText function.
Oracle database errors (as distinct from error that occur in the use of the class library)
are reported through the OSession and ODatabase methods ServerErrorNumber and
GetServerErrorText.

Return Value
The internal class library error number.

Example
This example shows two different kinds of errors and how they are reported
// construct but do not open an ODatabase
OSession sess(0); // get default session
ODatabase odb; // construct an unopened ODatabase

// now try to open a dynaset with that
ODynaset empdyn(odb, "select * from emp");
// that failed, so the dynaset is not open

if (!empdyn.IsOpen())
{ // we'll always get here
 long errno = empdyn.ErrorNumber();
 // errno will be OERROR_INVPARENT
 // because the database was closed
}

// now let's open the database incorrectly
oresult ores = odb.Open(sess, "ExampleDB", "scott", "nottiger");
// the database isn't open because of the bad password

if (ores != OSUCCESS)
{ // we'll always get here
 long errno = sess.ServerErrorNumber();
 // errno will be 1017: invalid username/password
}

ErrorReset Method
Applies To

OAdvise, OBinder, OClient, OConnection, OConnectionCollection, ODatabase,
ODynaset, ODynasetMark, OField, OFieldCollection, OParameter,
OParameterCollection, OSession, OSessionCollection

Description
This method resets the internal error state of the object to no error.

Usage
void ErrorReset(void) const

Remarks
This method resets the internal error state of the object.    The error reset is the one that
reports errors in the use of the class library, not Oracle database errors.    After calling
this method ErrorNumber will return OERROR_NONE.

ExecuteSQL Method
Applies To

ODatabase
Description

This method sends a SQL statement to the Oracle database to be executed.
Usage

oresult ExecuteSQL(const char *sqlstmt) const
Arguments

sqlstmt the SQL statement to be executed.
Remarks

This method executes an arbitrary SQL statement specified in the sqlstmt argument.   
The sqlstmt should not be a query, but can use select clauses in some other kind of
statement.    If the SQL statement modifies the data accessed by an open dynaset, the
dynaset is not guaranteed to see the change until it is Refreshed.   
Note: Some kinds of SQL statements result in an implicit commit.    Consult your Oracle
documentation.
You can also use the ExecuteSQL method to call stored PL/SQL procedures and
functions.    Any parameters to the procedure or function should be provided with
parameter objects.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Several examples follow.    They all assume the existence of an open ODatabase named
odb.

This example executes a very simple statement.    It drops a table.

odb.ExecuteSQL("drop table dontwantit");

This example gives everybody in Department 20 a 10% raise in their salary by using a
SQL statement that updates multiple records. Note that you can obtain the number of
rows actually processed with the GetRowsProcessed attribute.

odb.ExecuteSQL("update emp set sal = sal * 1.1 where deptno = 20");
long numrows = odb.getRowsProcessed();

This example calls a stored procedure.

// Create a database object
ODatabase odb("ExampleDB", "scott", "tiger");

// Add EMPNO as an Input parameter and set it's initial value

odb.GetParameters().Add("EMPNO", 7369,
 OPARAMETER_INVAR, OTYPE_NUMBER);

// Add ENAME as an Output parameter and set it's initial value
odb.GetParameters().Add("ENAME", 0,

 OPARAMETER_OUTVAR, OTYPE_VARCHAR2);

/*
Execute the Stored Procedure Employee.GetEmpName to retrieve ENAME. This
Stored Procedure can be found in the file ORAEXAMP.SQL
*/

odb.ExecuteSQL("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")

GetChangedError Method
Applies To

OBinder
Description

This method retrieves the last error that occurred when processing a changed message.
Usage

oboolean GetChangedError(long *serr, long *cerr) const
Arguments

serr pointer to variable to be set to the server error.
cerr pointer to variable to be set to the class library error.

Remarks
When an OBound subclass instance notifies its OBinder instance that it has changed its
value (by calling OBound::Changed) the OBinder will call StartEdit on its dynaset.   
This may fail for a variety of reasons.    The most common are that another user has a
lock on the row, or the current user doesn't have permission to edit the row, or that the
data in the database has changed.    If the StartEdit call fails OBinder will call
OnChangedError to save the error information.    That error information can then be
retrieved later by calling GetChangedError.
A separate routine is needed to check for errors because the changed message is
normally sent to the OBinder by some indirect process, such as assignment to a variable
or a keystroke to a user-interface widget, that does not allow a success return value to be
passed up to client code.

Return Value
TRUE if there was an error, FALSE if there was not.

Example
This example sets up a managed dynaset (OBinder) and shows changed error handling.
// construct the OBinder
OBinder empblock;

// here we have several OBoundVal objects (see the Workbook)
OBoundVal salary;
OBoundVal ename;

// bind the OBoundVal objects to the OBinder
salary.BindToBinder(&empblock, "sal");
ename.BindToBinder(&empblock, "ename");

// now open the OBinder
ODatabase odb("ExampleDB", "scott", "tiger"); // open the database
empblock.Open(odb, "select * from emp order by ename");

/*
At this point the OBinder and OBound subclass instances are all set up.
The first record of the dynaset is current. Now we can try to change a
value.

*/

salary = 3499.99;
/*
That tried to initiate a database change. Note that there was no return
value for us to check for success. We need to call GetChangedError to find
out if that worked.
*/

long servererr;
long classerr;
if (empblock.GetChangedError(&servererr, &classerr))
{
 // error processing here
}

GetChunk Method
Applies To

OField
Description

This method fetches a piece of a long or long raw field.
Usage

oresult GetChunk(const char **chunkp, long offset, unsigned short numbytes) const
Arguments

chunkp address of a pointer to be set to point at the resulting data
offset offset into the long field
numbytes the number of bytes to get out of the long field

Remarks
Long and long raw fields in an Oracle database can hold a very large amount of
information.    You may not want to download all of the data from such a field to your
client workstation.    It is more efficient to simply get the piece that you need (if you only
need a piece).    GetChunk allows you to fetch only a portion of a long field.
The data is read into a memory buffer that is owned by the OField object.    Chunkp is
set to point at that memory buffer.    The caller should not free what chunkp is pointing
at; OField manages the memory.    The memory will be freed when the OField object is
destroyed, when another GetChunk call is made to the same OField object, or when a
character string is returned by way of a (const char *) cast of the OField object.
This method is valid only on fields whose server type is OTYPE_LONG or
OTYPE_LONGRAW.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Consider an application where large documents are stored in long fields in an Oracle
database.    The documents may have excerpts marked on them that are interesting.   
This example retrieves a single clause from a contract that is stored in a long field.
// open the contracts database
ODatabase contrdb("p:legalserver", "solicitor", "murbles");

// get a dynaset on the clause information for clause "a1"
ODynaset clausedyn; // construct unopened dynaset
// now open it
clausedyn.Open(contrdb, "select * from clauses where cname = "a1");

// what's the contract number for that?
int contractnum;
clausedyn.GetFieldValue("cnumber", &contractnum);

/*

Set up a parameter on the database. Give it the value of the contract
number we want. (In a real application this parameter would already be
around).
*/
contrdb.GetParameters().Add("cnum", contractnum,

 OPARAMETER_INVAR, OTYPE_NUMBER);

// get a dynaset on the contracts, selecting the contract we want
ODynaset cdyn(contrdb, "select * from contracts where cnumber = :cnum");
// and an OField on the contract text field
OField contractf = cdyn.GetField("ctext");

// what's the offset and length of that contract clause?
long clauseoffset;
long clauselen;
clausedyn.GetFieldValue("coffset", &clauseoffset);
claysedyn.GetFieldValue("clen", &clauselen);

// get the text
const char *clausetext;
contractf.GetChunk(&clausetext, clauseoffset, clauselen);

GetClient Method
Applies To

OSession
Description

This method returns the associated client object by way of an OClient handle.
Usage

OClient GetClient(void) const
Remarks

Given an OSession, you can obtain an OClient object, which you can then use to access
the client object.    Note that this does not create another client object; rather it returns
another OClient that is a handle for an already existing client object.

Return Value
An OClient, which will be open on success, closed on failure.

Example
This example gets a list of the sessions on the workstation.
// construct and open an OSession on the default session
OSession defsess(0);

// get the client object
OClient theclient = defsess.GetClient();

// now get the list of sessions
OSessionCollection sessset = theclient.GetSessions();

GetConnection
Applies To

ODatabase, ODynaset
Description

This method returns the associated connection object by way of an OConnection
handle.

Usage
OConnection GetConnection(void) const

Remarks
This method returns an OConnection on the connection that is associated with the
object.    Note that this does not create another connection object; rather, it returns
another OConnection that is a handle for an already existing connection object.

Return Value
An OConnection, which will be open on success, closed on failure.

GetConnection (OConnectionCollection)
Applies To

OConnectionCollection
Description

This method returns a specified OConnection object.
Usage

OConnection GetConnection(int index) const
Arguments

index an index from 0 to OConnectionCollection.GetCount()-1
Remarks

This method returns the indexed connection in the collection.
Return Value

An OConnection, which will be open on success, closed on failure.

GetConnections Method
Applies To

OSession
Description

This method returns an OConnectionCollection object that contains the connections of
the session.

Usage
OConnectionCollection GetConnections(void) const

Remarks
A session can have multiple connections associated with it.    If you are interested in
finding out about the connections of a session as a group, call GetConnections.

Return Value
An OConnectionCollection, which will be open on success, closed on failure.

Example
This example prints out to a file all the database names in the current session.
// we assume an already open FILE * named ofile

// construct and open an OSession on the default session
OSession defsess(0);

// get the connections
OConnectionCollection ccoll = defsess.GetConnections();

// look through all of them
int ii;
for (ii=0; ii<ccoll.GetCount(); ii++)
{ // for each connection, print the database name
 fprintf(ofile, "%s\n", ccoll.GetConnection(ii).GetDatabaseName());
}

GetConnectString Method
Applies To

OConnection, ODatabase
Description

This method returns the username that was used to connect to the Oracle database.
Usage

const char *GetConnectString(void) const
Remarks

You need three things to connect to an Oracle database: the database name, the
username, and the password.    GetConnectString returns the username.    The
password is not available because, for security reasons, the class library (and its
implementation objects) do not keep the password.   
OConnection::GetDatabaseName and ODatabase::GetName return the database
name.
The string that is returned is owned by the object. The caller should not free it; it will be
freed when the object is destroyed.    On error, a NULL is returned.

Return Value
A valid, null terminated const char pointer on success; NULL on failure.

Example
This example opens the database and then looks at the connect string.
// construct & open a database object
ODatabase odb("ExampleDB", "scott/tiger", 0);

if (odb.IsOpen())
{ // let's look at the connect string
 const char *cstring = odb.GetConnectString();
 // cstring should be "scott"
}

GetCount Method
Applies To

OConnectionCollection, OFieldCollection, OParameterCollection,
OSessionCollection

Description
This method returns the number of items in the collection.

Usage
long GetCount(void) const

Remarks
The various Collection classes inherit the GetCount method from their parent
OOracleCollection.    The GetCount method returns the number of items in the
collection.      The collection is dynamic; the number of items in the collection reflects the
current conditions, not the conditions when the Collection object was created.
A closed collection will return 0 items.

Return Value
The number of items in the collection.

Example
This example looks at the number of connections in the current session.
// construct and open an OSession on the default session
OSession defsess(0);

// get the connection collection
OConnectionCollection connc = defsess.GetConnections();

// how many connections are there now?
int nconn = connc.GetCount();

// now add a connection by creating a new database object
ODatabase odb("ExampleDB", "scott/tiger", 0);

// how many connections are there now?
int nconn2 = connc.GetCount();
// nconn2 will equal nconn + 1 because of the new connection
/*
Actually, nconn2 == nconn + 1 only if a previous connection was
not shared. Connection sharing would have occurred if there was
a previous connection, within the same session, that used the
same connection information (database name, user name, password).
*/

GetDatabase Method
Applies To

OBinder, ODynaset
Description

This method returns the associated database object by way of an ODatabase handle.
Usage

ODatabase GetDatabase(void) const
Remarks

Given an ODynaset or OBinder object, you can obtain an ODatabase object, which
you can then use to access the ODynaset's or OBinder's database.    Note that this does
not create another database object; rather, it returns another ODatabase that is a
handle for an already existing database object.

Return Value
An ODatabase, which will be open on success, closed on failure.

Example
This example assumes that we have been working with an ODynaset object and now we
want to execute a general SQL statement on the database.
// we've got an open ODynaset named workdyn

// get an ODatabase from workdyn
ODatabase workdb = workdyn.GetDatabase();

// now execute an SQL statement
workdb.ExecuteSQL("drop table tempwork");

// to do just one thing, we don't even need an ODatabase instance
// so we could have said
workdyn.GetDatabase().ExecuteSQL("drop table tempwork");

GetDatabaseName Method
Applies To

OConnection
Description

This method returns the name of the database to which this connection is connected.
Usage

const char    *GetDatabaseName(void) const
Remarks

You need three things to connect to an Oracle database: the database name, the
username, and the password.    GetConnectString returns the username.    The
password is not available because, for security reasons, the class library (and its
implementation objects) do not keep the password.   
OConnection::GetDatabaseName and ODatabase::GetName return a pointer to the
database name.
It is possible for several database objects to share a connection. However, they will not
share a connection unless they have the same database name.
The actual memory that the pointer points to is managed by the object.    It should not be
freed by the caller.    It will be freed when the object is destroyed or closed.

Return Value
A valid, null terminated const char pointer on success; NULL on failure.

Example
This example gets the database name.
// we start with a dynaset named empdyn (which is open)

// get the dynaset's connection
OConnection tempconn = empdyn.GetConnection();

// now get the database name
const char *dbname = tempconn.GetDatabaseName();
/*
Note that we must use dbname (or copy it) before tempcon goes out of scope,
because tempconn's destructor will free the string.
*/

GetDynaset Method
Applies To

OBinder, OAdvise
Description

This method returns the associated dynaset object by way of an ODynaset handle.
Usage

ODynaset GetDynaset(void)
Remarks

When used with OBinder, this method returns an ODynaset object corresponding to the
dynaset that the OBinder object is managing.    If the OBinder has not successfully
executed a SQL query, this method returns a closed ODynaset object.
When used with OAdvise, this method returns the dynaset that the advisory is on. If the
advisory is closed, it returns a closed dynaset.

Return Value
An ODynaset, which will be open on success, closed on failure.

GetEditMode
Applies To

ODynaset
Description

This method returns the edit mode of the current record.
Usage

int GetEditMode(void) const
Remarks

The edit mode of the current record can be one of the following forms:
ODYNASET_EDIT_NOEDIT // the current record is not being edited
ODYNASET_EDIT_EDITING // the current record is being edited
ODYNASET_EDIT_NEWRECORD // the current record was added, either with AddNewRecord

or DuplicateRecord
If there is no current record, or the ODynaset is not open, or there is some other error,
ODYNASET_EDIT_NOEDIT is returned.

Return Value
One of the ODYNASET_EDIT_* defines; ODYNASET_EDIT_NOEDIT on error.

Example
This example shows how each of the different edit modes can occur.
// construct and open an ODatabase
ODatabase odb("ExampleDB", "scott", "tiger");

// construct an ODynaset but don't open it
ODynaset dyn;

int editmode;
editmode = dyn.GetEditMode();
// editmode is ODYNASET_EDIT_NOEDIT because the dynaset is not open

// now open the dynaset
dyn.Open(odb, "select * from emp");
dyn.MoveFirst();

// What is the edit mode when we're just looking at data?
editmode = dyn.GetEditMode();
// editmode is ODYNASET_EDIT_NOEDIT because the current record has
// not been changed or added

// What's the edit mode when we're editing?
dyn.StartEdit(); // start editing
editmode = dyn.GetEditMode();
// now editmode is ODYNASET_EDIT_EDITING
dyn.SetFieldValue("sal", 8000); // set some data
dyn.Update();
// the edit mode is back to ODYNASET_EDIT_NOEDIT after the Update

// now add a record
dyn.AddNewRecord();
editmode = dyn.GetEditMode();
// now editmode is ODYNASET_EDIT_NEWRECORD
dyn.Update(); // save the new record
// edit mode is back to ODYNASET_EDIT_NOEDIT again
/*
By the way, dyn.ErrorNumber() would now report an error because the
update didn't occur. That's because the emp table requires some
fields to have non-NULL values and we didn't set them.
*/

GetErrorText Method
Applies To

OAdvise, OBinder, OClient, OConnection, OConnectionCollection, ODatabase,
ODynaset, ODynasetMark, OField, OFieldCollection, OParameter,
OParameterCollection, OSession, OSessionCollection

Description
This method returns a text description (if one is available) of the current internal class
library error.

Usage
const char *GetErrorText(void) const

Remarks
This method returns a text description of the most recent internal error on this object.    If
no error condition exists, or if no text is available for the most recent error, the method
returns a NULL. Calling ErrorNumber gives you the error number even if no text is
available.
The string returned is owned by the object. The caller should not free it;    it will be freed
when the object is destroyed, closed, or the next time the error is reset. The error is reset
whenever you call a method.
Oracle database errors (as distinct from error that occur in the use of the class library)
are reported through the OSession and ODatabase methods ServerErrorNumber and
GetServerErrorText.

Return Value
A test description (if one is available) of the current internal class library error.

GetField Method
Applies To

ODynaset, OFieldCollection
Description

This method returns one of the associated field objects by way of an OField handle.
Usage

OField GetField(int index) const
OField GetField(const char *fieldname) const (for ODynaset only)

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query

Remarks
This method returns an OField object on the indicated field.    The field object remains
valid until the dynaset is refreshed or destroyed.
When getting a field from an OFieldCollection, the 0-based index still refers to a SQL
query.    Specifically, it refers to the SQL query of the dynaset that the OFieldCollection
was gotten from.

Return Value
An OField, which will be open on success, closed on failure.

Example
This example demonstrates getting fields.
// open an ODatabase
ODatabase odb("ExampleDB", "scott/tiger", 0);

// open an ODynaset
ODynaset dyn;
dyn.Open(odb, "select empno, ename, nvl(comm,0), hiredate date \
 from emp");

// get a field by index
OField empnofield = dyn.GetField(0);

// get a field by name
OField namefield = dyn.GetField("ename");

// get a computed field by name
// we use the expression (which is the column name)
OField commfield = dyn.GetField("nvl(comm,0)");

// get a field that has been aliased - the column name is the alias
OField datefield = dyn.GetField("date");

GetFieldChunk Method
Applies To

ODynaset
Description

This method fetches a piece of a long or long raw field.
Usage

oresult GetFieldChunk(int index, void *chunkp, long offset, unsigned short numbytes)
const
oresult GetFieldChunk(const char *fieldname, void *chunkp, long offset, unsigned short

numbytes) const
Arguments

index the 0-based index of the field.    The index is the position of the field in the SQL
query that created the current record set.

fieldname the name of the field, as expressed in the SQL query
chunkp pointer to buffer to be filled with data
offset offset into the long field
numbytes the number of bytes to get out of the long field

Remarks
Long and long raw fields in an Oracle database can hold a very large amount of
information.    You may not want to download all of the data from such a field to your
client workstation.    It is more efficient to get the piece that you need (if you only need a
piece).    GetFieldChunk enables you to fetch only a portion of a long field.
The data is read into a memory buffer that is provided by the caller.    The caller is
responsible for ensuring that the buffer is long enough to hold the number of bytes that
is asked for.    GetFieldChunk does not null-terminate the returned data (it is possible
that the data is not text).
This method is valid only on fields whose server type is OTYPE_LONG or
OTYPE_LONGRAW.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Consider an application where large documents are stored in long fields in an Oracle
database.    The documents may have excerpts marked on them that are interesting.   
This example retrieves a single clause from a contract that is stored in a long field.
// open the contracts database
ODatabase contrdb("p:legalserver", "solicitor", "murbles");

// get a dynaset on the clause information for clause "a1"
ODynaset clausedyn; // construct unopened dynaset
// now open it
clausedyn.Open(contrdb, "select * from clauses where cname = "a1");

// what's the contract number for that?
int contractnum;
clausedyn.GetFieldValue("cnumber", &contractnum);

/*
Set up a parameter on the database. Give it the value of the contract
number we want. (In a real application this parameter would already be
around).
*/
contrdb.GetParameters().Add("cnum", contractnum,

 OPARAMETER_INVAR, OTYPE_NUMBER);

// get a dynaset on the contracts, selecting the contract we want
ODynaset cdyn(contrdb, "select * from contracts where cnumber = :cnum");
// and an OField on the contract text field
OField contractf = cdyn.GetField("ctext");

// what's the offset and length of that contract clause?
long clauseoffset;
long clauselen;
clausedyn.GetFieldValue("coffset", &clauseoffset);
claysedyn.GetFieldValue("clen", &clauselen);

// get the text
const char *clausetext;
contractf.GetChunk(&clausetext, clauseoffset, clauselen);

GetFieldCount Method
Applies To

ODynaset
Description

This method returns the number of fields in each record.
Usage

int GetFieldCount(void) const
Return Value

The number of fields in each record; 0 on error.
Example

This example demonstrates GetFieldCount.
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset
ODynaset dyn(odb, "select empno, ename, sal, comm from datatable");

// how many fields was that?
int nfields = dyn.GetFieldCount();
// nfields is 4

GetFieldIndex Method
Applies To

ODynaset
Description

This method returns the index of the field indicated by fieldname.
Usage

int GetFieldIndex(const char *fieldname) const
Arguments

fieldname the name of the field as it appears in the SQL statement that the dynaset
most recently used

Remarks
Accessing fields of a dynaset by index is more efficient than accessing them by name.
Therefore, if you need to access a particular field many times, use this method to
translate its name into its index.

Return Value
The 0-based index of the field; -1 on error.

Example
This example looks at the salaries of many employees.
// open up the employee database
ODatabase empdb("ExampleDB", "scott", "tiger");

// get the main employee table
ODynaset emps(empdb, "select * from emp");

// now look at all their salaries

// let's get the index of the salary field for speed
int salind = emps.GetFieldIndex("sal");

double salary; // variable we'll use to get the salary
while (!emps.IsEOF())
{
 emps.GetFieldValue(salind, &salary);
 // do some processing
 emps.MoveNext();
}

GetFieldPrecision Method
Applies To

ODynaset
Description

This method returns the precision of the number field.
Usage

int GetFieldPrecision(int index) const
int GetFieldPrecision(const char *fieldname) const

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query

Remarks
In an Oracle database, one column data type is number.    If a field has a data type of
number, it has two additional attributes: scale and precision.    The precision is the total
number of decimal digits.    In Oracle7 this can range from 1 to 38.
Precision has no meaning for non-number fields.

Return Value
The precision of the number field.    On error (which includes calling this method on a
non-number field) a 0 is returned.

GetFields Method
Applies To

ODynaset
Description

This method returns an OFieldCollection object that contains the fields in the dynaset.
Usage

OFieldCollection GetFields(void) const
Remarks

An OFieldCollection object is a dynamic collection of the fields contained within a
single dynaset.

Return Value
An OFieldCollection, which will be open on success, closed on failure.

GetFieldScale Method
Applies To

ODynaset
Description

This method returns the scale of the number field.
Usage

int GetFieldScale(int index) const
int GetFieldScale(const char *fieldname) const

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query

Remarks
In an Oracle database, one column data type is number.    If a field has a data type of
number, it has two additional attributes: scale and precision.    The scale is the number of
decimal digits to the right of the decimal point.    It can range (in Oracle7) from -84 to
127.
Scale has no meaning for non-number fields.

Return Value
The scale of the number field.    On error (which includes calling this method on a non-
number field) a 0 is returned.

GetFieldServerSize Method
Applies To

ODynaset
Description

This method returns the length of a long or long raw field as stored on the server.
Usage

long GetFieldServerSize(int index) const
long GetFieldServerSize(const char *fieldname) const

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query

Remarks
This routine is used to obtain the size of long (server type OTYPE_LONG) and long raw
(server type OTYPE_LONGRAW) fields as stored on the server.
If this is a long field and the size is larger than 64K, this routine returns -1.
For fields that are neither long nor long raw, this routine will return a 0.    To get the size
of these fields as stored on the client, use GetFieldSize.

Return Value
The size of the field; 0 on error.

GetFieldServerType Method
Applies To

ODynaset
Description

This method returns the Oracle type of the specified field in the database.
Usage

int GetFieldServerType(int index) const
int GetFieldServerType(const char *fieldname) const

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query

Remarks
Every column in an Oracle database and every column computed in a SQL statement has
a type.    This method returns the type of the specified field.    It will have one of the
following values:
OTYPE_VARCHAR2 varchar2, variable length character
OTYPE_NUMBER numeric field
OTYPE_LONG long text (> 2000 bytes)
OTYPE_ROWID Oracle rowid
OTYPE_DATE a date
OTYPE_RAW raw bytes
OTYPE_LONGRAW long blob of bytes (generally > 255 bytes)
OTYPE_CHAR fixed-length text
OTYPE_MSLABEL special type for Trusted Oracle
For more information on these types consult the Oracle SQL Language Reference Manual.

Return Value
An integer which identifies the type of the specified field.

GetFieldSize Method
Applies To

ODynaset
Description

This method returns the length of the field as stored locally on the client.
Usage

long GetFieldSize(int index) const
long GetFieldSize(const char *fieldname) const

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query

Remarks
This method will return turn number of bytes used to store the field on the client.    It will
always return a 0 for long or long raw fields.
To get the size of a long or long raw field as stored on the server, use
GetFieldServerSize.

Return Value
The size of the field; 0 on error.

GetFieldValue Method
Applies To

ODynaset
Description

This method obtains the value of a field in the current record of the dynaset.
Usage

oresult GetFieldValue(int index, OValue *val) const
oresult GetFieldValue(const char *fieldname, OValue *val) const
oresult GetFieldValue(int index, int *val) const
oresult GetFieldValue(const char *fieldname, int *val) const
oresult GetFieldValue(int index, long *val) const
oresult GetFieldValue(const char *fieldname, long *val) const
oresult GetFieldValue(int index, double *val) const
oresult GetFieldValue(const char *fieldname, double *val) const
oresult GetFieldValue(int index, char *buffer, unsigned short maxlen) const
oresult GetFieldValue(const char *fieldname, char *buffer, unsigned short maxlen)
const
oresult GetFieldValue(int index, void __huge *blobp, long bloblen, long * blobread)
const
oresult GetFieldValue(const char *fieldname, void __huge * blobp, long bloblen, long

*blobread) const
Arguments

index the 0-based index of the field.    The index is the position of the field in the SQL
query that created the current record set.

fieldname the name of the field, as expressed in the SQL query
val a variable, of one of a number of types, that will receive the value
buffer a caller-provided buffer that will be filled with a text value
maxlen the maximum number of bytes that can be place in the buffer
blobp a caller-provided buffer that will be filled with data from a long or long raw

field
bloblen the number of bytes to be read into blobp
blobread to be set to the number of bytes that were read into blobp

Remarks
These methods get the value of a particular field specified by index (position in the SQL
query) or by fieldname.    Simple data can be extracted into any of the following types:
int, long, double, and OValue.
If you need to get the value as a string, pass in a pointer to a character buffer. In this
case, the length indicated by maxlen should include space for a null terminator, which
will be added.    Alternatively, you can get the string as an OValue and then cast the

OValue to const char *.    (See OValue for more information).
You should read data from a raw field into a string.    Embedded nulls will be preserved (a
null terminator will be added).
You can read data from a long or long raw field as a string if the length is less than 64K.   
If the length is greater than 64K (or simply if you want to), you can read the field into a
buffer that you provide.    The number of bytes that is actually read from the database is
returned in the blobread argument.    You can use the forms of GetFieldValue that read
blobs only on fields whose server type is OTYPE_LONGRAW or OTYPE_LONG.
The method attempts to convert from one type to another.    For example, asking for the
field value as an integer when it is a character string with the value "23" will return the
integer 23.
The method returns OSUCCESS if the value could be obtained in the desired type.    It
fails, and returns OFAILURE, if the current record is invalid, or the indicated field does not
exist, or the data cannot be coerced into the desired type.
It is more efficient to ask for the field's value using the index argument than using the
fieldname argument.    Use the GetFieldIndex method to convert a field name to an
index.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
An example of a variety of GetFieldValue calls:
// open a database object
ODatabase odb("t:123.45.987.06", "scott", "feline");

// open a dynaset on a table with several field types
ODynaset dyn(odb, "select fchar, fnumber, flong from data");
dyn.MoveFirst();

// declare variables to hold data
int ival; // integer value
char cval[30]; // character string value
char *blobbuff = new char[80000]; // space for a whole document

// now read some data
dyn.GetFieldValue("fnumber", &ival); // returns 23
dyn.GetFieldValue("fnumber", cval, 30); // returns "23"
dyn.GetFieldValue("fchar", cval, 30); // returns the string in fchar
dyn.GetFieldValue("fchar", &ival); // puts a number in ival, if it can

// get the long piece of text
long nread; // number of bytes actually read
dyn.GetFieldValue("flong", (void *) blobbuff, 80000, &nread);

GetLastModifiedMark Method
Applies To

ODynaset
Description

This method returns an ODynasetMark on the record that was changed most recently.
Usage

ODynasetMark GetLastModifiedMark(void) const
Remarks

This method returns an ODynasetMark object referring to the last record modified.   
The last record modified is the last record that was edited or added.
See ODynasetMark for more information on marks.
You can use the mark with the MoveToMark method to set the current record back to
the marked record.

Return Value
An ODynasetMark, which will be open on success, closed on failure.

Example
This example demonstrates GetLastModifiedMark.
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset
ODynaset empdyn(odb, "select * from emp");

// add a new record
empdyn.AddNewRecord();
empdyn.SetFieldValue("empno", 9991);
empdyn.SetFieldValue("deptno", 10);
empdyn.SetFieldValue("sal", 2500);
empdyn.SetFieldValue("job", "CLERK");
empdyn.Update();

// go to the first record
empdyn.MoveFirst();

// get a mark on the last modified record
ODynasetMark markadd = empdyn.GetLastModifiedMark();

// navigate some more
empdyn.MoveNext();
empdyn.MoveNext();

// now go to the mark
empdyn.MoveToMark(markadd);
// the current record is now the record we added

GetMark Method
Applies To

ODynaset
Description

This method returns an ODynasetMark on the current record.
Usage

ODynasetMark GetMark(void) const
Remarks

This method returns an ODynasetMark object referring to the current record.    The
current record must be valid; you cannot get a mark on a deleted record or when the
dynaset is after the last record (IsEOF is TRUE) or before the first record (IsBOF is TRUE).
See ODynasetMark for more information on marks.
You can use the mark with the MoveToMark method to set the current record back to
the marked record.

Return Value
An ODynasetMark, which will be open on success, closed on failure.

Example
This example demonstrates GetMark.
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset
ODynaset empdyn(odb, "select * from emp");

// navigate to an interesting record
empdyn.MoveNext();

// get a mark on this record
ODynasetMark record1 = GetMark();

// go somewhere else
empdyn.MoveLast();
empdyn.MovePrev();

// return to where we were
empdyn.MoveToMark(record1);

GetName Method
Applies To

ODatabase, OField, OParameter, OSession
Description

This method returns the object's name.
Usage

const char *GetName(void) const
Remarks

Various objects can be referred to, in one context or another, by name.   
The name of a database object is the database name used for connecting to an

Oracle database.   
The name of a field is the field name in the SQL query that created the dynaset to

which the field is attached.   
The parameter name is the name that is used (with the ":name" syntax) in SQL

statements; it is specified when the parameter is created by way of
OParameterCollection::Add.   

The session name is either an internally generated string (for a default session) or
the name specified by the user when the session is created.

GetName returns a pointer to a null-terminated string containing the name.
The actual memory that the pointer points to is managed by the object.    It should not be
freed by the caller; it will be freed when the object is destroyed or closed.

Return Value
A pointer to a string if successful; NULL if not.

Example
An example of the uses and pitfalls of GetName:
// we have connection information from a caller:
// dname - database name
// connect - username/password
ODatabase odb;
odb.Open(dname, connect);
if (!odb.IsOpen())
 return; // the user gave us a bad connect
// odb.GetName will equal dname

// we also have an SQL statement called sqlstmt
// open a dynaset with it
ODynaset dyn(odb, sqlstmt);
if (!dyn.IsOpen())
 return; // user gave us a bad SQL statement

// What is the name of the first field in the dynaset?
OField f1 = dyn.GetField(0);
const char *fieldname = f1.GetName();
// that works fine

// what if we skipped the declaration of f1?
const char *fname2 = dyn.GetField(0).GetName();
/*
What object is GetName run on? The temporary OField object returned by
dyn.GetField(0). It will successfully return a name with GetName() and
then go out of scope. So GetName() will return a non-NULL pointer that is
pointing to freed memory. Watch out!
*/

GetNamedSession Method
Applies To

OSession
Description

This method returns the session with the specified name by way of an OSession handle.
Usage

static OSession GetNamedSession(const char *sname)
Arguments

sname the name of the desired session
Remarks

When sessions are created they are given a name.    The GetNamedSession enables
you to get a session based on that name.    It is not possible to share sessions across
applications, only within applications.
This routine is static, so it does not have to be invoked on an OSession object.    It can
be invoked as "OSession::GetNamedSession".
You can obtain the applications default session by passing a NULL for sname.

Return Value
An OSession, which will be open on success, closed on failure.

Example
Getting sessions by name:
// we can obtain the default session:
OSession defsess = OSession::GetNamedSession(0);

// or we can get a session by name.
// Lets create a session by name:
OSession newsess;
newsess.Open("sessname");

// now go get that session
OSession newscopy = OSession::GetNamedSession("sessname");

// by the way
oboolen isequal = (newscopy == newsess);
// isequal is TRUE

GetOptions Method
Applies To

ODatabase, ODynaset
Description

This method returns the options that were set on the database or dynaset at the time it
was opened.

Usage
long GetOptions(void) const

Remarks
Database: When a database is created using ODatabase::Open, or using one of the
construct and open constructors, some options are specified.    This method returns those
options.    The options are a set of flags that are ORed together:
ODATABASE_PARTIAL_INSERT
ODATABASE_EDIT_NOWAIT
If no options have been set the return value is:
ODATABASE_DEFAULT
See the ODatabase section for more information on these flags.
Dynaset: When a dynaset is created using ODynaset::Open or the construct and open
constructor, some options are specified.    This method returns those options.    The
options are a set of flags that are ORed together:
ODYNASET_NOBIND
ODYNASET_KEEP_BLANKS
ODYNASET_READONLY
ODYNASET_NOCACHE
If no options have been set, the return value is:
ODYNSET_DEFAULT
See the ODynaset section for more information on these flags.

Return Value
The objects options; 0 on error.

GetParameter Method
Applies To

OParameterCollection
Description

This method returns a specified OParameter object.
Usage

OParameter GetParameter(int index) const
OParameter GetParameter(const char *pname) const

Arguments
index An index from 0 to OParameterCollection.GetCount()-1
pname the name of the parameter, as stated when the parameter was created with

Add
Remarks

OParameter objects are obtained either by name or index from an
OParameterCollection object.    The OParameterCollection object is obtained from
an ODatabase with the GetParameters method.

Return Value
An OParameter object which will be open on success, closed on failure.

Example
This example checks the status of the "deptno" parameter.
// we have an open ODatabase named odb
OParameterCollection params = odb.GetParameters();
OParameter pdeptno = params.GetParameter("deptno");
pstatus = pdeptno.GetStatus();

GetParameters Method
Applies To

ODatabase
Description

This method returns an OParameterCollection object that contains the parameters of
the database.

Usage
OParameterCollection GetParameters(void) const

Remarks
To add or remove parameters from a database, for use with dynasets on that database,
you must use an OParameterCollection.

Return Value
An OConnectionCollection, which will be open on success, closed on failure.

Example
This example adds a parameter to an existing ODatabase (odb) and uses it to open an
ODynaset:
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// now add a parameter named ourdeptno to the database
OParameterCollection params = odb.GetParameters();
params.Add("ourdeptno ", 20, OPARAMETER_INVAR, OTYPE_NUMBER);

// now create and open a dynaset using that parameter
ODynaset dyn(odb, "select * from emp where deptno = :ourdeptno");

GetPrecision Method
Applies To

OField
Description

This method returns the precision of the field.
Usage

int GetPrecision(void) const
Remarks

In an Oracle database, one column data type is number.    If a field has a data type of
number it has two additional attributes: scale and precision.    The precision is the total
number of decimal digits.    In Oracle7 this can range from 1 to 38.
Precision has no meaning for non-number fields.

Return Value
The precision of the number field.    On error (which includes calling this method on a
non-number field) a 0 is returned.

GetRecordCount Method
Applies To

ODynaset
Description

This method returns the total number of records in the dynaset's result set.
Usage

long GetRecordCount(void) const
Remarks

This method returns the total number of records that the ODynasets query returns.    On
error, this method returns 0 (zero).
Attention:    When working with a relational database, the only way to determine the
total number of records returned by a query is to actually fetch them from the server.   
Therefore, this method fetches the entire query result set to the local cache. If the result
set is large, this takes a long time and uses a large amount of disk space.    It is rare that
you really need to know the number of records in a dynaset.
Executing this method with an ODynaset that was opened with the
ODYNASET_NOCACHE option will cause an implicit MoveLast and will make the current
record the last record in the dynaset.

Return Value
The total number of records in the result set; 0 on error.

Example
An example of using GetRecordCount:
// open the employee database
ODatabase odb("p:us-postoffice", "sam", "uncle");

// get records on all the postal workers in the united states
ODynaset dyn(odb, "select * from employees");

// how many employees are there?
// DON'T DO THIS!!
dyn.GetRecordCount();
// that's just used up all your free disk space, and a lot of time

// do this instead:
ODynaset tempdyn(odb, "select count(*) from employees");
long nemployees;
tempdyn.GetFieldValue(0, &nemployees);
// now the number of records is in nemployees

// we can use the server program to do calculations for us.
// we don't always have to download the records to the client
// machine to calculate something

GetRowsProcessed Method
Applies To

ODatabase
Description

This method returns the number of rows that were processed by the last call to
ExecuteSQL.

Usage
long GetRowsProcessed(void) const

Remarks
This call is only valid following a call to ExecuteSQL. Furthermore, the result is only
valid if the SQL statement was an insert, delete, or update. Although you can use
ExecuteSQL to run a select statement, you cannot use GetRowsProcessed to obtain
the record count. This is because ExecuteSQL only executes the SQL statement, but
does not fetch any rows. Thus there will always be zero rows processed following
ExecuteSQL for a select statement.

Return Value
The number of rows processed by the last call to ExecuteSQL. If the SQL statement was
not Data Manipulation (for example update, insert, or delete), GetRowsProcessed
returns 0. If there has been no previous call to ExecuteSQL, the return value is -1.

GetScale Method
Applies To

OField
Description

This method returns the scale of the number field.
Usage

int GetScale(void) const
Remarks

In an Oracle database, one column data type is number.    If a field has a data type of
number, it has two additional attributes: scale and precision.    The scale is the number of
decimal digits to the right of the decimal point.    It can range (in Oracle7) from -84 to
127.
Scale has no meaning for non-number fields.

Return Value
The scale of the number field.    On error (which includes calling this method on a non-
number field) a 0 is returned.

GetServerErrorText Method
Applies To

OSession, ODatabase
Description

This method returns a text description of the most recent Oracle error in this session.
Usage

const char *GetServerErrorText(void) const
Remarks

This method returns the Oracle error message text for the most recent server error, if
available.    The error message contains an Oracle error number and may contain a brief
description of the problem.    Errors that occur while opening a database or in a
transactional method will be reported on the session.    Other errors are reported on the
database.
The string returned is owned by the object. The caller should not free it; it will be freed
when the object is destroyed, closed, the error is reset with ServerErrorReset, or
another call is made to GetServerErrorText.

Return Value
A valid, null terminated const char pointer on success; NULL on failure.

Example
An example of a server error:
// open an ODatabase object
ODatabase odb("ExampleDB", "scott", "tiger");
if (! odb.IsOpen())
{ // Failed to open the database
 OSession tempsess = odb.GetSession();
 ErrorMessage(tempsess.GetServerErrorText());
}
// try to open a dynaset with a bad column name
ODynaset dyn(odb, "select xx from emp");

// if that didn't work, get the error message
if (!dyn.IsOpen())
{ // give the user a message box explaining the error
 ErrorMessage(odb.GetServerErrorText());
}

GetServerSize Method
Applies To

OField
Description

This method returns the length of the field as stored on the server.
Usage

long GetServerSize(void) const
Remarks

The size of a field may be different on the client and the server.    This is most notable in
the case of long (server type OTYPE_LONG) and long raw (server type OTYPE_LONGRAW)
fields.
To get the size of the field as stored on the client, use GetSize.

Return Value
The size of the field; 0 on error.

GetServerType Method
Applies To

OField, OParameter
Description

This method returns the Oracle7 type of the database field or parameter.
Usage

short GetServerType(void) const
Remarks

Every column in an Oracle database and every column computed in a SQL statement has
a type.    This method returns the type of the field.    It will have one of the following
values:
OTYPE_VARCHAR2 varchar2, variable length character
OTYPE_NUMBER numeric field
OTYPE_LONG long text (> 2000 bytes)
OTYPE_ROWID Oracle rowid
OTYPE_DATE a date
OTYPE_RAW raw bytes
OTYPE_LONGRAW long blob of bytes (generally > 255 bytes)
OTYPE_CHAR fixed-length text
OTYPE_MSLABEL special type for Trusted Oracle
For more information on these types consult the Oracle SQL Language Reference Manual.

Return Value
The type of the field, or 0 on error.

GetSession Method
Applies To

OSession, ODatabase, ODynaset
Description

This method returns the associated session object by way of an OSession handle.
Usage

OSession GetSession(void) const
Remarks

This method returns on OSession on the session that is associated with the object.   
Note that this does not create another session object; rather, it returns another
OSession that is a handle for an already existing session object.

Return Value
An OSession, which will be open on success, closed on failure.

GetSession (OSessionCollection)
Applies To

OSessionCollection
Description

This method returns a specified OSession object
Usage

OSession GetSession(int index) const
Arguments

index an index from 0 to OSessionCollection.GetCount()-1
Remarks

This method returns the indexed session in the collection.
Return Value

An OSession, which will be open on success, closed on failure.

GetSessions Method
Applies To

OClient
Description

This method returns an OSession object containing the sessions of the client.
Usage

OSessionCollection GetSessions(void) const
Remarks

The session collection contains all the sessions of the client.    Because the client is a
workstation-wide object, the collection contains sessions for all the processes on this
workstation, not just those of the current application.

Return Value
An OSessionCollection, which will be open on success, closed on failure.

Example
This example gets a list of the sessions on the workstation.
// construct and open an OSession on the default session
OSession defsess(0);

// get the client object
OClient theclient = defsess.GetClient();

// now get the list of sessions
OSessionCollection sessset = theclient.GetSessions();

GetSize Method
Applies To

OField
Description

This method returns the length of the field as stored locally on the client.
Usage

long GetSize(void) const
Remarks

This method will return the number of bytes used to store the field on the client.    It will
always return a 0 for long or long raw fields.
To get the size of a long or long raw field as stored on the server, use GetServerSize.

Return Value
The size of the field; 0 on error.

GetSQL Method
Applies To

ODynaset
Description

This method returns the dynaset's SQL statement.
Usage

const char *GetSQL(void) const
Remarks

When an ODynaset is opened, creating a dynaset object, a SQL query is given.   
Subsequently, the SQL statement may be changed with the SetSQL method of
ODynaset.    This routine returns the most recent SQL statement given to the dynaset,
either through ODynaset::Open or ODynaset::SetSQL.
If SetSQL has been called and the dynaset has not been refreshed, then the SQL
statement returned by this method will not correspond to the SQL statement that gives
the current result set.
The pointer that is returned is managed by the object.    It should not be freed by the
caller; it will be freed when the object is destroyed or closed, or the next time SetSQL,
Open, or GetSQL is called.

Return Value
A valid, null terminated const char pointer on success; NULL on failure.

Example
An example showing the use of GetSQL:
// Open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset
ODynaset dyn(odb, "select * from emp");
const char *sql1 = dyn.GetSQL();
// sql1 is equal to "select * from emp"

// now set the SQL of the dynaset
dyn.SetSQL("select * from dept");
// now the sql1 pointer is invalid

// so get sql1 again
sql1 = dyn.GetSQL();
// sql1 is equal to "select * from dept"
// but the current result set is select * from emp

// now refresh the dynaset
dyn.Refresh();
// sql1 is still valid
// and now sql1 and the current result set are in synch

GetStatus Method
Applies To

OParameter
Description

This method returns a set of flags indicating the status of the OParameter.
Usage

int GetStatus(void) const
Remarks

You can use this method to query a parameter's state.    It reports the state by means of
a single integer which contain flags. These flags are ORed together, and can have the
following values:
OPARAMETER_STATUS_IN // on if the parameter is an in variable
OPARAMETER_STATUS_OUT // on if the parameter is an out variable
OPARAMETER_STATUS_AUTOENABLED // on if the parameter is autoenabled
OPARAMETER_STATUS_ENABLED // on if the parameter is enabled
Autoenabling is set with the AutoEnable method.    The in and out status of a parameter
is set when the parameter is created with OParameterSet::Add.    A parameter is
enabled if it is ready to be used as a parameter, which means that it is autoenabled, has
a name and a valid value.    If you have created the parameter with
OParameterSet::Add then it will be enable if it is autoenabled.

Return Value
An integer containing ORed flags, or 0 on error.

GetValue Method
Applies To

OField, OParameter
Description

This method gets the current value of the object.
Usage

oresult GetValue(OValue *val) const
oresult GetValue(int *val) const
oresult GetValue(long *val) const
oresult GetValue(double *val) const
oresult GetValue(const char **cvalp) const
oresult GetValue(void __huge *blobp, long bloblen, long *blobread) const    (for OField
only)

Arguments
val a variable of one of a number of types, which will receive the value
cvalp pointer that will be set to point at a text string
blobp a caller-provided buffer that will be filled with data from a long or long raw

field
bloblen the number of bytes to be read into blobp
blobread to be set to the number of bytes that were read into blobp

Remarks
These methods obtain the current value of the object.    Simple data can be extracted
into any of the following types: int, long, double, and OValue.
When the value is obtained as a const char *, the pointer cvalp is set to point at memory
that is managed by the object.    That memory should not be freed by the caller; it will be
freed when the object is destroyed, closed, or another GetValue call is made to get a
string.    The string is null-terminated.
You can read data from a long or long raw field as a string if the length is less than 64K.   
If the length is greater than 64K (or simply if you want to), you can read the field into a
buffer that you provide.    The number of bytes that is actually read from the database is
returned in the blobread argument. You can use the form of GetValue that read blobs
only on fields whose server type is OTYPE_LONGRAW or OTYPE_LONG.
The method attempts to convert from one type to another.    For example, asking for the
value as an integer when it is a character string with the value "23" will return the
integer 23.
The method fails if the data cannot be coerced into the desired type.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example is a routine that copies the values from one field (infield) to another

(outfield) for all the records in a dynaset.
// open the database
ODatabase odb("t:inetserver", "gopher", "web");

// open the dynaset
ODynaset odyn(odb, "select * from table1");

// Get OField variables on the two fields for transferring values
OField infield = odyn.GetField("infield");
OField outfield = odyn.GetField("outfield");

// declare an OValue variable to hold the values
OValue transferval;

// do the work
while (!odyn.IsEOF())
{ // for every record

 // get the value
 infield.GetValue(&transferval);

 // put the value in the other column
 odyn.StartEdit(); // edit this record
 outfield.SetValue(transferval);
 odyn.Update(); // save the change to the Oracle database

 // go to the next record
 odyn.MoveNext();
}
/*
Note that we didn't have to worry about the types of infield and outfield
(other than the fact that they can go from one to the other) because the
OValue variable can hold anything.
*/

GetValue (OBound) Method
Applies To

OBound
Description

This method gets the current value of the object.
Usage

oresult GetValue(OValue *val)
Arguments

val an OValue variable that will receive the value
Remarks

This is a protected OBound method.    It is called only by subclasses of the OBound
class.    It can be called at any time by a subclass method to obtain the current value of
the field to which the instance is bound.
The most common case when an instance needs a value is when it is being Refreshed.   
In this case the value is handed to it.    See Refresh (OBound).

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Please see the Workbook for the example "OBound of a variable."    That example works
through the implementation of a subclass of OBound.

GetVersion Method
Applies To

OSession
Description

This method returns a string indicating the version of the class library.
Usage

const char *GetVersion(void) const
Remarks

This method returns a string which changes for every version of the class library.
The actual memory that the pointer points to is managed by the object.    It should not be
freed by the caller; it will be freed when the object is destroyed or closed.

Return Value
A string indicating the class library's version, or NULL on error.

IsBOF Method
Applies To

ODynaset
Description

This routine returns TRUE if the current record is before the first record in the result set.
Usage

oboolean IsBOF(void) const
Remarks

This method returns TRUE if the current record is before the first record of the dynaset
result set.    This can happen if the MovePrev method is executed at the time that the
first record is current, or if there are no records in the result set.
The name means "Beginning of File" and is a relic from flat-file databases.

Return Value
TRUE if (1) the current record is before the first record, (2) the ODynaset is
closed, or (3) the dynaset has no records; FALSE otherwise.   

Example
This example traverses a dynaset record set from the last record to the first.
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// construct and open the ODynaset
ODynaset odyn(odb, "select * from emp order by empno");

// go to the end
odyn.MoveLast();

// and go through all the records
while (!odyn.IsBOF())
{
 // process the record

 // go to the previous record
 odyn.MovePrev();
}

IsChanged Method
Applies To

OBinder, OBound
Description

This method returns TRUE if a change has been noted on the object.
Usage

oboolean IsChanged(void)
Remarks

An OBinder instance keeps track of whether the current record has been marked as
changed.    This marking is done with the Changed method, which is normally called by
OBound subclass code rather than client code.
The OBound instance keeps track of whether its particular field has been marked as
changed.    This is marking is done with the Changed method, which is normally called
by the OBound subclass code that makes the change to the OBound instance value.
Use IsChanged to determine whether the record or field has been changed.

Return Value
TRUE if the object's value has been marked as changed; FALSE otherwise.

Example
This example considers handling an OBinder when it is about to be closed.
// Here's an OBinder that we are using to edit a table
OBinder tableedit;
// setup of tableedit goes here (see Workbook for a sample).

// now the user is closing the window. Deal with any changes.
if (tableedit.IsChanged())
{ // the current record has a change in it
 // ask the user if they want to save the change
 int yesno = Message("Do you want to save the change?");
 if (yesno == YES_ANSWER)
 tableedit.Update();
 else
 tableedit.DiscardChanges();
}
/*
Now we can close the window.
By the way, the default behavior when an OBinder is destroyed is for it to
Update().
*/

IsEOF Method
Applies To

ODynaset
Description

This routine returns TRUE if the current record is after the last record in the result set.
Usage

oboolean IsEOF(void) const
Remarks

This method returns TRUE if the current record is after the last record of the dynaset
result set.    This can happen if the MoveNext method is executed at the time that the
last record is current, if the current record is the last record and it is deleted, or if there
are no records in the result set.
The name means "End of File" and is a relic from flat-file databases.

Return Value
TRUE if (1) the current record is after the last record (2) the ODynaset is closed or (3)
the dynaset has no records; FALSE otherwise.

Example
This example deletes all the managers.
// open a database
ODatabase odb("ExampleDB", "scott/tiger", 0);

// open a dynaset
ODynaset odyn(odb, "select * from emp");

// get an OField object for looking at the job field
OField job = empdyn.GetField("job");

// look through all the employees
while (!empdyn.IsEOF())
{
 if (0 == strcmp((const char *) job, "MANAGER"))
 { // we found a manager - delete that employee
 empdyn.DeleteRecord();
 }

 // go to next record (gets us to valid record)
 // or past EOF if there are no more records
 empdyn.MoveNext();
}

IsFieldNullOK Method
Applies To

OValue
Description

This method returns TRUE if the field can accept NULL values.
Usage

oboolean IsFieldNullOK(int index) const
oboolean IsFieldNullOK(const char *fieldname) const

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query

Remarks
NULL is a possible value for Oracle database fields.    This database NULL is different from
a C++ NULL.    Database NULLs mean "no value set".    Some fields are not allowed to
contain NULLS.    This routine tells you whether the indicated field is allowed to have
NULL values.

Return Value
TRUE if the field can contain NULLs; FALSE otherwise.

IsFieldTruncated Method
Applies To

ODynaset
Description

This method returns TRUE if the contents of the specified field are not the complete
contents of the column in the database.

Usage
oboolean IsFieldTruncated(int index) const
oboolean IsFieldTruncated(const char *fieldname) const

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query

Remarks
Unlike most types of fields, the values of long and long raw fields may be only partially
fetched from the server.
This call is valid only on fields whose server type is OTYPE_LONGRAW or OTYPE_LONG.

Return Value
TRUE if the field's value is incomplete; FALSE otherwise.

IsFirst Method
Applies To

ODynaset, OBinder
Description

This method returns TRUE if the current record in a dynaset is the first record in that
dynaset. In the case of an OBinder object, the current record is in the bound dynaset.

Usage
oboolean IsFirst(void) const

Remarks
When a dynaset is opened; the current record is automatically the first record and IsFirst
will be TRUE.
If the current record is invalid, such as when BOF is TRUE; IsFirst will be FALSE. This
cannot occur in an OBinder as the underlying dynaset is bound between BOF and EOF.

Return Value
TRUE if the current record is the first; FALSE otherwise.

IsLast Method
Applies To

ODynaset, OBinder
Description

This method returns TRUE if the current record in a dynaset is the last record in that
dynaset. In the case of an OBinder object, the current record is in the bound dynaset.

Usage
oboolean IsFirst(void) const

Remarks
If the current record is invalid, such as when EOF is TRUE; IsLast will be FALSE. This
cannot occur in an OBinder as the underlying dynaset is bound between BOF and EOF.

Return Value
TRUE if the current record is the first; FALSE otherwise.

IsNull Method
Applies To

OValue
Description

This method returns TRUE if value of the variable is NULL.
Usage

oboolean IsNull(void) const
Remarks

NULL is a possible value for Oracle database fields.    This database NULL is different from
a C++ NULL.    Database NULLs mean "no value set".
An OValue can contain a value of NULL.    This routine tells you whether the OValue
contains a NULL.    Note that if you cast a NULL to (for example) an integer, you get a
result of 0.

Return Value
TRUE if the value is NULL; FALSE otherwise.

Example
NULL and not-NULL values in an OValue variable:
// construct an OValue with a value of 5
OValue val(5);

// is that NULL?
oboolean isnull = val.IsNull();
// isnull is FALSE

// make it NULL
val.Clear();

isnull = val.IsNull();
// now isnull is TRUE

IsNullOK Method
Applies To

OField
Description

This method returns TRUE if the field can accept NULL values.
Usage

oboolean IsNullOK(void) const
Remarks

NULL is a possible value for Oracle database fields.    This database NULL is different from
a C++ NULL.    Database NULLs mean "no value set".    Some fields are not allowed to
contain NULLS.    This routine tells you whether the indicated field is allowed to have
NULL values.

Return Value
TRUE if the field can contain NULLs; FALSE otherwise.

IsOpen Method
Applies To

OAdvise, OClient, OBinder, OConnection, OConnectionCollection, ODatabase,
ODynaset, ODynasetMark, OField, OFieldCollection, OParameter,
OParameterCollection, OSession, OSessionCollection

Description
This method returns TRUE if the object is open.

Usage
virtual oboolean IsOpen(void) const

Remarks
See Close for a discussion of what it means for an object to be open or closed.
The most common use for IsOpen is to check an object after construction or after it has
been returned from a routine.    Closed objects indicate that there was some problem
opening the object.

Return Value
TRUE if the object is open; FALSE otherwise.

Example
An example demonstrating when to use IsOpen:
// we construct and incorrectly open a database
ODatabase odb("p:ntserver", "user", "wrongpassword");
if (!odb.IsOpen())
{ // the database wasn't opened
 // error processing
}
else
{ // the database is open
 // use it
}

IsTruncated Method
Applies To

OField
Description

This method returns TRUE if the contents of the field are not the complete contents of
the column in the database.

Usage
oboolean IsTruncated(void) const

Remarks
Unlike most types of fields, the values of long and long raw fields may be only partially
fetched from the server.
This call is valid only on fields whose server type is OTYPE_LONGRAW or OTYPE_LONG.

Return Value
TRUE if the field's value is incomplete; FALSE otherwise.

IsValidRecord Method
Applies To

ODynaset
Description

This method returns TRUE if the current record is valid.
Usage

oboolean IsValidRecord(void) const
Remarks

If the current record was deleted, or if the current record is before the first record or after
the last record, then the current record is invalid and this method returns FALSE.    A
closed ODynaset also returns FALSE.
Otherwise the current record is valid and this routine returns TRUE.

Return Value
TRUE if the current record is valid; FALSE otherwise.

Example
An example showing invalid record:
// open a database
ODatabase odb;
odb.Open("ExampleDB", "scott", "tiger");

// open a dynaset
ODynaset odyn;
odyn.Open(odb, "select * from emp");

// go to the first record
odyn.MoveFirst();

oboolean isvalid = odyn.IsValidRecord();
// isvalid is TRUE, unless the dynaset has no records

// go before first record
odyn.MovePrev();

isvalid = odyn.IsValidRecord();
// isvalid is FALSE now

// delete a record
odyn.MoveFirst();
odyn.MoveNext();
odyn.DeleteRecord();
isvalid = odyn.IsValidRecord();
// isvalid is FALSE now, because the current record is deleted

LookupErrorText Method
Applies To

OAdvise, OBinder, OClient, OConnection, OConnectionCollection, ODatabase,
ODynaset, ODynasetMark, OField, OFieldCollection, OParameter,
OParameterCollection, OSession, OSessionCollection

Description
This method returns a text description (if one is available) for the internal class library
error corresponding to errno.

Usage
const char *LookupErrorText(long errno) const

Arguments
errno an error number that was returned by ErrorNumber

Remarks
This method returns a text string describing the error represented by errno.    If no text is
available for the this error code, the method returns a NULL.
The string returned is owned by the object. The caller should not free it; it will be freed
when the object is destroyed, closed, or the next time the error is reset. The error is reset
whenever you call a method.
Oracle database errors (as distinct from error that occur in the use of the class library)
are reported through the OSession and ODatabase methods ServerErrorNumber and
GetServerErrorText.

Return Value
A valid, null terminated const char pointer on success; NULL on failure.

MoveFirst Method
Applies To

OBinder, ODynaset
Description

This method changes the current record to be the first record in the dynaset's result set.
Usage

oresult MoveFirst(void)
Remarks

This method sets the current record of the dynaset (for OBinder, the dynaset being
managed by the OBinder object) to be the first record in the result set.
Execution of this method sends OADVISE_MOVE_FIRST messages to all attached
advisories.    One of the advisories could cancel the move, which would result in an
OFAILURE return.
If the dynaset is being managed by an OBinder object, this method causes PreMove
and PostMove triggers to be called.
By default, when a dynaset is created by opening an ODynaset, a MoveFirst is
performed automatically.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Move to the first record in a dynaset:
// we assume that we have an open dynaset named empdyn

// Move to the first record
oresult ores = empdyn.MoveFirst();
// if ores == OSUCCESS we got there

MoveLast Method
Applies To

OBinder, ODynaset
Description

This method changes the current record to be the last record in the dynaset's result set.
Usage

oresult MoveLast(void)
Remarks

This method sets the current record of the dynaset (for OBinder, the dynaset being
managed by the OBinder object) to be the last record in the result set.
Attention: This action requires that all the records in the query be downloaded from the
server, which can be expensive in time and disk space.
Execution of this method sends OADVISE_MOVE_LAST messages to all attached
advisories.    One of the advisories could cancel the move, which would result in an
OFAILURE return.
If the dynaset is being managed by an OBinder object, this method causes PreMove
and PostMove triggers to be called.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Move to the last record in a dynaset:
// we assume that we have an open dynaset named empdyn

// Move to the last record
oresult ores = empdyn.MoveLast();
// if ores == OSUCCESS we got there
// and we downloaded all the records too (!)

MoveNext Method
Applies To

OBinder, ODynaset
Description

This method changes the current record to be the next record in the dynaset's result set.
Usage

oresult OBinder::MoveNext(void)
oresult ODynaset::MoveNext(oboolean gopast = TRUE)

Arguments
gopast TRUE when we allow the current record mark to go past the last record in the

set
Remarks

This method sets the current record of the dynaset (for OBinder, the dynaset being
managed by the OBinder object) to be the next record in the result set.    It is the most
common routine used to navigate through the records of the database.
It is possible to MoveNext past the last record in the dynaset.    The current record then
becomes invalid and the IsEOF method returns TRUE.    This is the default behavior.    If
you want to restrict dynaset navigation to valid records, pass in a gopast argument of
FALSE.    OBinder::MoveNext always restricts navigation to valid records.
Execution of this method sends OADVISE_MOVE_NEXT messages to all attached
advisories.    One of the advisories could cancel the move, which would result in an
OFAILURE return.
If the dynaset is being managed by an OBinder object, this method causes PreMove
and PostMove triggers to be called.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example deletes all the managers.
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset
ODynaset empdyn(odb, "select * from emp");

// get an OField object for looking at the job field
OField job = empdyn.GetField("job");

// look through all the employees
while (!empdyn.IsEOF())
{
 if (0 == strcmp((const char *) job, "MANAGER"))
 { // we found a manager - delete that employee
 empdyn.DeleteRecord();
 }

 // go to next record (gets us to valid record)
 // or past EOF if there are no more records
 empdyn.MoveNext();
}

MovePrev Method
Applies To

OBinder, ODynaset
Description

This method changes the current record to be the previous record in the dynaset's result
set.

Usage
oresult OBinder::MovePrev(void)
oresult ODynaset::MovePrev(oboolean gopast = TRUE)

Arguments
gopast TRUE when we allow the current record mark to go before the first record in

the set
Remarks

This method sets the current record of the dynaset (for OBinder, the dynaset being
managed by the OBinder object) to be the previous record in the result set.
It is possible to MovePrev before the first record in the dynaset.    The current record
then becomes invalid and the IsBOF method returns TRUE.    This is the default behavior. 
If you want to restrict dynaset navigation to valid records, pass in a gopast argument of
FALSE.    OBinder::MovePrev always restricts navigation to valid records.
Execution of this method sends OADVISE_MOVE_PREV messages to all attached
advisories.    One of the advisories could cancel the move, which would result in an
OFAILURE return.
If the dynaset is being managed by an OBinder object, this method causes PreMove
and PostMove triggers to be called.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example traverses a dynaset record set from the last record to the first.
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// construct and open the ODynaset
ODynaset odyn(odb, "select * from emp order by empno");

// go to the end
odyn.MoveLast();

// and go through all the records
while (!odyn.IsBOF())
{
 // process the record

 // go to the previous record
 odyn.MovePrev();

}

MoveToMark Method
Applies To

ODynaset
Description

This method sets the current record to the record indicated by the ODynasetMark mark.
Usage

oresult MoveToMark(const ODynasetMark &mark)
Arguments

mark an ODynasetMark previously returned by GetMark or
GetLastModifiedMark

Remarks
An ODynasetMark is a way to remember a particular row and be able to get back to it
quickly.    An ODynasetMark is returned by the two ODynaset methods GetMark and
GetLastModifiedMark.
The mark being used must have come from an ODynaset that is a handle on the same
dynaset object, or a clone of that dynaset object.
Navigating to a marked record skips over any intervening records.    Execution of this
method sends OADVISE_MOVE_TOMARK messages to all attached advisories.    One of the
advisories could cancel the move, which would result in an OFAILURE return.
If the dynaset is being managed by an OBinder object, this method causes PreMove
and PostMove triggers to be called.    It is legal to call MoveToMark on the dynaset that
an OBinder is managing.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example uses a clone to figure out where to jump to in a dynaset.    If you have a
dynaset that has some overhead for moving (for example, one that has many advisories
or is being managed by an OBinder), it may be faster to navigate around in a clone.
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset
ODynaset empdyn(odb, "select * from emp");

double salary; // the employee's salary
int mgrid; // the employee's manager's id

// get the employee's salary
empdyn.GetFieldValue("sal", &salary);
if (salary < 1000.0)
{ // this employee is underpaid - let's take care of that
 // who is responsible for this?
 empdyn.GetFieldValue("manager", &mgrid);

 // let's go find that scoundrel

 ODynaset tempdyn = empdyn.Clone(); // clone the employees
 OField id = tempdyn.GetField("id"); // for speed
 tempdyn.MoveFirst();
 while (!tempdyn.IsEOF())
 {
 if (mgrid == (int) id)
 break; // we found the manager
 tempdyn.MoveNext();
 }
 // either we found the manager or...
 if (tempdyn.IsEOF())
 return; // we won't deal with this in an example

 // a mark on the manager
 ODynasetMark managerMark = tempdyn.GetMark();

 // a mark on the employee
 ODynasetMark empMark = empdyn.GetMark();

 // now penalize that manager
 empdyn.MoveToMark(managerMark); // go to manager record
 empdyn.StartEdit(); // we're going to change things here
 empdyn.SetFieldValue("sal", 700.0);
 empdyn.Update();

 // and give the employee a raise
 empdyn.MoveToMark(empMark); // go to employee record
 empdyn.StartEdit();
 empdyn.SetFieldValue("sal", 7000.0);
 empdyn.Update();

 // Now everybody is happy. Go process some more.
}

OAdvise Method
Applies To

OAdvise
Description

OAdvise constructor
Usage

OAdvise(void)
OAdvise(const OAdvise &otheradvise)
OAdvise(const ODynaset &dyn)

Arguments
otheradvise another OAdvise object that you are copying
dyn an ODynaset to which you will attach after construction

Remarks
These methods construct a new OAdvise instance.
The default constructor constructs an unopened OAdvise object.    It cannot fail.    You
must open the object before you can use it.
The copy constructor copies another advisory.    If that other advisory is open (attached to
a dynaset), the new OAdvise will be attached to the same dynaset object. The new
OAdvise object will be a separate advisory on the same dynaset object.    The copy
constructor allows OAdvise objects to be passed correctly as arguments to routines and
to be return values from routines.    The copy constructor can fail; check whether the new
OAdvise is open after the constructor call.
The constructor that takes an ODynaset as an argument constructs the OAdvise object
and attempts to open it with that dynaset.    This construct and open can fail; check
whether the new OAdvise is open after the constructor call.
Note that instances of the OAdvise class itself can be declared, but they do nothing.    To
have an interesting advisory you must subclass OAdvise.

Example
Construction of an OAdvise object:
// default constructor
OAdvise adv1;

// open that advisory
adv1.Open(thedynaset);

// construct two other advisories, attaching them to the same dynaset
OAdvise adv2(adv1); // copy constructor
if (!adv2.IsOpen())
{ // there was some error opening the advisory
 // error processing
}

OAdvise adv3(thedynaset);
if (!adv3.IsOpen())

{ // there was some error opening the advisory
 // error processing
}

~OAdvise Method
Applies To

OAdvise
Description

OAdvise destructor
Usage

~OAdvise(void)
Remarks

This method destroys the OAdvise and frees all its resources.    If the OAdvise object is
open, the attached dynaset is informed that this advisory should no longer receive
messages.

OBinder Method
Applies To

OBinder
Description

OBinder constructor
Usage

OBinder(void)
Remarks

This method constructs an unopened OBinder instance - one that is unconnected to a
database and has not executed a SQL query.
You must open an OBinder object with an Open call before you can use it.
The constructor cannot fail or cause any errors.
The copy constructor for OBinder is defined in the header but is not implemented.    This
is done so that the compiler's default implementation will not be used (it would be very
incorrect).    If you want an OBinder subclass copy constructor, you must implement it.

~OBinder Method
Applies To

OBinder
Description

OBinder destructor
Usage

~OBinder(void)
Remarks

This method destroys an OBinder object.
Destroying an OBinder object Unbinds all attached OBound objects.    The attached
OBound objects are not themselves destroyed.
Before the OBinder is destroyed - which often happens automatically when an OBinder
instance goes out of scope - you should call the Close method so that the Shutdown
triggers are called. The OBinder destructor does not invoke the Shutdown triggers.

OBound Method
Applies To

OBound
Description

OBound constructor
Usage

OBound(void)
Remarks

This constructor creates an unbound OBound object.    Because OBound is a pure virtual
class, you never declare any instances of OBound.    This constructor is called by the
subclass constructor.    OBound objects must be bound with a call to BindToBinder
before they are useful.
This constructor cannot fail or cause any errors.
The copy constructor for OBound is defined in the header but is not implemented.    This
is done so that the compiler's default implementation will not be used (it would be very
incorrect).    If you want an OBound subclass copy constructor, you must implement it.

~OBound Method
Applies To

OBound
Description

OBound destructor
Usage

OBound(void)
Remarks

The destructor frees all of the object's resources.    If it is bound to an OBinder object, it
informs that OBinder object that this OBound is no longer bound.
The OBound Shutdown trigger will be called.    Any OFAILURE return from the
Shutdown trigger is ignored.

OClient Method
Applies To

OClient
Description

OClient constructor
Usage

OClient(void)
OClient(const OClient &otherclient)

Arguments
otherclient another OClient object that you are copying

Remarks
These methods construct a new OClient instance.
The default constructor constructs an unopened OClient object.    It cannot fail.
The copy constructor copies another OClient object.    If that other OClient object is
open - which means it is a handle on an implementation client object - the new OClient
object becomes a handle to that same client object.    The copy constructor can fail;
check whether the new OClient is open after the constructor call.
There is no Open method for the OClient class.    To get an open OClient, call one of the
GetClient methods.

~OClient Method
Applies To

OClient
Description

OClient destructor
Usage

~OClient(void)
Remarks

This method destroys the OClient and frees its resources.    The underlying
implementation client object will be freed if this is the last object that is referring to it.

OConnection Method
Applies To

OConnection
Description

OConnection constructor
Usage

OConnection(void)
OConnection(const OConnection &otherconn)

Arguments
otherconn another OConnection object that you are copying

Remarks
These methods construct a new OConnection instance.
The default constructor constructs an unopened OConnection object.    It cannot fail.   
You must open the object before you can use it.
The copy constructor copies another OConnection object.    If that other OConnection
object is open - which means it is a handle on an implementation connection object - the
new OConnection object becomes a handle to that same connection object.    The copy
constructor copies the reference to the connection object but does not copy any strings
that the source OConnection may own.    The copy constructor can fail; check whether
the new OConnection is open after the constructor call.
There is no Open method for the OConnection class.    To get an open OConnection,
call one of the GetConnection methods.

~OConnection Method
Applies To

OConnection
Description

OConnection destructor
Usage

~OConnection(void)
Remarks

This method destroys the OConnection and frees its resources.    The underlying
implementation connection will be freed if this is the last object that is referring to it.
When the OConnection is destroyed, any strings that the OConnection owns (such as
database name or connection strings) are also freed.

OConnectionCollection Method
Applies To

OConnectionCollection
Description

OConnectionCollection constructor
Usage

OConnectionCollection(void)
OConnectionCollection(const OConnectionCollection &othercoll)

Arguments
othercoll another OConnectionCollection object that you are copying

Remarks
These methods construct a new OConnectionCollection instance.
Constructing an OConnectionCollection does not create any connections or
OConnection objects.
The default constructor constructs an unopened OConnectionCollection object.
The copy constructor copies another OConnectionCollection object.    If that other
OConnectionCollection object is open - which means it is a handle on an
implementation ConnectionCollection object - the new OConnectionCollection
object becomes a handle to that same ConnectionCollection object.    The copy
constructor can fail; check whether the new OConnectionCollection is open after the
constructor call.
There is no Open method for the OConnectionCollection class.    To get an open
OConnectionCollection, call one of the GetConnections methods.

~OConnectionCollection Method
Applies To

OConnectionCollection
Description

OConnectionCollection destructor
Usage

~OConnectionCollection(void)
Remarks

This method destroys the OConnectionCollection and frees its resources.    The
underlying implementation ConnectionCollection object will be freed if this is the last
object that is referring to it.
Destroying the OConnectionCollection object has no effect on any connections or
OConnection objects, even those gotten from the destroyed collection

ODatabase Method
Applies To

ODatabase
Description

ODatabase constructor
Usage

ODatabase(void)
ODatabase(const ODatabase &otherdb)
ODatabase(const OSession &dbsess, const char *dbname, const char *username, const

char *pwd, long options = ODATABASE_DEFAULT)
ODatabase(const char *dbname, const char *username, const char *pwd, long options

= ODATABASE_DEFAULT)
Arguments

otherdb another ODatabase object that you are copying
dbsess the session under which you want to open this database
dbname the name of the database you want to connect to
username the username you want to use to log into the database
pwd the database password for the user username
options options to be used to create the database object

Remarks
These methods construct a new ODatabase instance.
The default constructor constructs an unopened ODatabase object.    It cannot fail.    You
must open the object before you can use it.
The copy constructor copies another ODatabase object. If that other ODatabase object
is open - which means it is a handle on an implementation database object - the new
ODatabase object becomes a handle to that same database object.    The copy
constructor copies the reference to the database object but does not copy any strings
that the source ODatabase may own.    The copy constructor can fail; check whether the
new ODatabase is open after the constructor call.
The remaining two constructors both construct and attempt to open the ODatabase
object.    Opening an ODatabase object creates a new database object and may create
other resources such as sessions and connections.    Successful Opening of an
ODatabase results in a connection to the Oracle database.
Use the optional dbsess argument to choose the session under which this database
should opened.    The session under which the database is opened affects connection
sharing and transaction processing.    If you do not specify a session, the application's
default session is used.
Use the dbname, username, and pwd arguments to establish the connection to the
database.    The pwd argument is allowed to be NULL.    In that case it is expected that the
string passed to username will be of the form "username/password"; the "slash character
must be in the string.    The database name will either be a SQL*Net alias, such as
"ExampleDB" or a complete Oracle database name such as "p:namedpipe-server" or

"t:123.45.987.06:SID" (network protocol identifier, network address, option instance id).
The options affect various aspects of the database's behavior.    See ODatabase for more
information.
The constructors that construct and open an ODatabase can fail; check whether the
ODatabase object is open after the constructor call.

Example
An example of opening ODatabase objects:
// construct an unopened ODatabase
ODatabase odb;

// the simplest way to open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// now if we open another database similarly
ODatabase odb2("ExampleDB", "scott", "tiger", ODATABASE_EDIT_NOWAIT);
/*
We have two separate database objects on the same oracle database but
because odb2 and odb are in the same session and have the same connection
information they share a database connection. But because of different
options the two database objects will behave differently.
*/

// open a database on a named session
OSession msess("mysession");
ODatabase odb3(msess, "ExampleDB", "scott", "tiger");
// odb3 does not share a connection with odb, because it is on
// a different session

// call a routine to open a database for us
// see the implementation below
ODatabase mydb = OpenADatabase("ExampleDB", "scott", "tiger");
/*
mydb is being constructed with the copy constructor. It is copying
the temporary ODatabase that is the result of OpenADatabase
*/

if (!mydb.IsOpen())
{ // that didn't work
 return; // we give up
}
// etc...

// here's the routine OpenADatabase
ODatabase OpenADatabase(const char *db, const char *un,
 const char *pw)
{
 ODatabase tempdb;

 // get a handle on the default session
 // we need it for error handling later on
 OSession defsess(0);

 // attempt to open tempdb within the default session

 tempdb.Open(defsess, db, un, pw);

 if (!tempdb.IsOpen())
 { // some kind of error. Give the user a message
 const char *errmsg = defsess.GetServerErrorText();
 MessageBox(errmsg);
 }

 return(tempdb);
}
/*
We always return tempdb. Returning an object like this works because of
the copy constructor. The caller of OpenADatabase can tell if the routine
worked or not by checking whether or not the returned ODatabase is open.
*/

~ODatabase Method
Applies To

ODatabase
Description

ODatabase destructor
Usage

~ODatabase(void)
Remarks

This method destroys the ODatabase and frees its resources.    The underlying
implementation database will be freed if this is the last object that is referring to it.
When the ODatabase is destroyed, any strings that the ODatabase owns (such as
database name and connection strings) are also freed.
Destroying the ODatabase object takes care of logging off from the database.

ODynaset Method
Applies To

ODynaset
Description

ODynaset constructor
Usage

ODynaset(void)
ODynaset(const ODynaset &otherdyn)
ODynaset(const ODatabase &odb, const char *sqlstmt, long options =

ODYNASET_DEFAULT)
Arguments

otherdyn another ODynaset object that you are copying
odb the database on which you want to open this dynaset
sqlstmt a valid select SQL statement
options options to be used to create the dynaset

Remarks
These methods construct a new ODynaset instance.
The default constructor constructs an unopened ODynaset object.    It cannot fail.    You
must open the object before you can use it.
The copy constructor copies another ODynaset object. If that other ODynaset object is
open - which means it is a handle on an implementation dynaset object - the new
ODynaset object becomes a handle to that same dynaset object.    The copy constructor
copies the reference to the dynaset object but does not copy any strings that the source
ODynaset may own.    The copy constructor can fail; check whether the new ODynaset
is open after the constructor call.
The remaining constructor both constructs and attempts to open the ODynaset object.   
Opening a ODynaset object creates a new dynaset object.    An ODatabase and a SQL
statement must be given to open the ODynaset.    These specify which Oracle database
to get the records from and which records to get.    The options affect various aspects of
the dynaset's behavior; see ODynaset section for more information.    When the
ODynaset is opened, it moves to the first record automatically. The copy and open
constructor can fail; check whether the ODynaset object is open after the constructor
call.
Using a "FOR UPDATE" clause in the SQL statement that opens the dynaset requires
some special attention.    Please refer to Select for Update.

Example
Examples of opening ODynasets:
// first we need a database
ODatabase odb("ExampleDB", "scott", "tiger");

// default constructor
ODynaset odyn;
oboolean isopen = odyn.IsOpen();

// isopen is FALSE

// copy constructor
ODynaset odyn2(odyn);
isopen = odyn2.IsOpen();
// isopen is FALSE because odyn was not open

// create and open a dynaset
ODynaset odyn3(odb, "select * from emp");
isopen = odyn3.IsOpen();
// isopen is TRUE - the open was successful

// and now if we use a copy constructor
ODynaset odyn4(odyn3);
isopen = odyn4.IsOpen();
// isopen is TRUE

odyn4.MoveLast();
// now odyn3 also refers to the last record, because
// odyn3 and odyn4 are handles to the same dynaset

~ODynaset Method
Applies To

ODynaset
Description

ODynaset destructor
Usage

~ODynaset(void)
Remarks

This method destroys the ODynaset and frees its resources.    The underlying
implementation dynaset will be freed if this is the last object that is referring to it.
When the ODynaset is destroyed, any strings that the ODynaset owns (such as the SQL
statement) are also destroyed..
If a dynaset has advisories on it, destroying the ODynaset - even if it is the only
ODynaset that referred to that dynaset - will not destroy the dynaset, because the
advisories also refer to the dynaset.    The dynaset is destroyed only when all the objects
that refer to the dynaset are destroyed.

ODynasetMark Method
Applies To

ODynasetMark
Description

ODynasetMark constructor
Usage

ODynasetMark(void)
ODynasetMark(const ODynasetMark &othermark)

Arguments
othermark another ODynasetMark object that you are copying

Remarks
These methods construct a new ODynasetMark instance.
The default constructor constructs an unopened ODynasetMark object.    It cannot fail.
The copy constructor copies another ODynasetMark object.    If that other
ODynasetMark object is open - which means it contains a valid mark on a dynaset -
that mark will be copied.    The copy constructor can fail; check whether the new
ODynasetMark is open after the constructor call.
There is no Open method for the ODynasetMark class.    To get an open
ODynasetMark, call either GetMark or GetLastModifiedMark.

Example
This example finds the employee with the lowest salary and then gives that person a big
commission.
// open the employee database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset on the employee's table
ODynaset odyn(odb, "select sal, comm from emp");

// the low employee mark
ODynasetMark lowmark; // default constructor. lowmark is not open
double lowsalary = 100000.;

// find the lowest salary
OField salf = odyn.GetField(0); // salary is the 0th field
odyn.MoveFirst();
while (!odyn.IsEOF())
{
 if ((double) salf < lowsalary)
 { // the lowest we've seen yet
 // get a mark. odyn.GetMark returns an open ODynasetMark
 lowmark = odyn.GetMark();
 lowsalary = (double) salf;
 }
}
if (lowmark.IsOpen())
{ // we found a lowest - give them a big commission

 odyn.MoveToMark();
 odyn.StartEdit();
 odyn.SetFieldValue("comm", 2000.0);
 odyn.Update();
}

~ODynasetMark Method
Applies To

ODynasetMark
Description

ODynasetMark destructor
Usage

~ODynasetMark(void)
Remarks

This method destroys an ODynasetMark and frees its resources.

OField Method
Applies To

OField
Description

OField constructor
Usage

OField(void)
OField(const OField &otherfield)

Arguments
otherfield another OField object that you are copying

Remarks
These methods construct a new OField instance.
The default constructor constructs an unopened OField object.    It cannot fail.
The copy constructor copies another OField object.    If that other OField object is open -
which means it is a handle on an implementation field object - the new OField object
becomes a handle to that same field object.    The copy constructor copies the reference
to the field object but does not copy any strings that the source OField may own.    The
copy constructor can fail; check whether the new OField is open after the constructor
call.
There is no Open method for the OField class.    To get an open OField, call one of the
GetField methods.

Example
This method sums all the salaries of employees.
// open the employee database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset on the employee's table
ODynaset odyn(odb, "select sal, comm from employees");

// get a field on the salary for speed
OField salf = odyn.GetField("sal");
/*
By using the = operator in the declaration of salf we are invoking the copy
constructor. It is copying the temporary object that is returned by the
GetField method.
*/

// sum the salaries
double sumsal = 0.0;
odyn.MoveFirst();
while (!odyn.IsEOF())
{
 sumsal += (double) salf;
 odyn.MoveNext();
}

// of course, we could have done the same thing (faster) with:
ODatabase odb("ExampleDB", "scott", "tiger");
ODynaset odyn(odb, "select sum(sal) from employees");
odyn.GetFieldValue(0, &sumsal);
// the server is good at that kind of bulk calculation

~OField Method
Applies To

OField
Description

OField destructor
Usage

~OField(void)
Remarks

This method destroys the OField and frees its resources.    The underlying
implementation field will be freed if this is the last object that is referring to it.
When the OField is destroyed, any strings that the OField owns (such as field name) are
also freed.

OFieldCollection Method
Applies To

OFieldCollection
Description

OFieldCollection constructor
Usage

OFieldCollection(void)
OFieldCollection(const OField &othercoll)

Arguments
othercoll another OFieldCollection object that you are copying

Remarks
These methods construct a new OFieldCollection instance.
Constructing an OFieldCollection does not create any fields or OField objects.
The default constructor constructs an unopened OFieldCollection object.    It cannot fail.
The copy constructor copies another OFieldCollection object.    If that other
OFieldCollection object is open - which means it is a handle on an implementation
FieldCollection object - the new OFieldCollection object becomes a handle to that same
FieldCollection object.    The copy constructor can fail; check whether the new
OFieldCollection is open after the constructor call.
There is no Open method for the OFieldCollection class.    To get an open
OFieldCollection, call one of the GetFields methods.

~OFieldCollection Method
Applies To

OFieldCollection
Description

OFieldCollection destructor
Usage

~OFieldCollection(void)
Remarks

This method destroys the OFieldCollection and frees its resources.    The underlying
implementation fieldcollection object will be freed if this is the last object that is referring
to it.
Destroying the OFieldCollection object has no effect on any fields or OField objects,
even those gotten from the destroyed collection

OnChangedError Method
Applies To

OBinder
Description

This method is called by OBinder when there is an error processing a changed message.
Usage

virtual void OnChangedError(void) const
Remarks

When an OBound subclass instance notifies its OBinder instance that it has changed its
value (by calling OBound::Changed) the OBinder will call StartEdit on its dynaset.   
This may fail for a variety of reasons.    The most common are that another user has a
lock on the row, or the current user doesn't have permission to edit the row, or that the
data in the database has changed.    If the StartEdit call fails OBinder will call
OnChangedError.
This routine is supplied separately because often the call sequence that causes the error
is very indirect.    For instance the OBound instance may change the value when an
assignment operator is called, or when some user-interface widget is used.   
OnChangedError is a callback mechanism allowing your code to obtain control when an
error has occurred.
OnChangedError is a virtual function.    The implementation in OBinder saves the
current server error number and class library error number.    These are available using
the routine OBinder::GetChangedError.    You can subclass OBinder and override
GetChangedError with your own error handling method.    That overriding method
should call OBinder::OnChangedError so that the OBinder will be able to obtain the
server error numbers for use by GetChangedError.

Example
This example sets up a managed dynaset (OBinder) and shows changed error handling.
// construct the OBinder
OBinder empblock;

// here we have several OBoundVal objects (see the Workbook)
OBoundVal salary;
OBoundVal ename;

// bind the OBoundVal objects to the OBinder
salary.BindToBinder(&empblock, "sal");
ename.BindToBinder(&empblock, "ename");

// now open the OBinder
ODatabase odb("ExampleDB", "scott", "tiger"); // open the database
empblock.Open(odb, "select * from emp order by ename");

/*
At this point the OBinder and OBound subclass instances are all set up.
The first record of the dynaset is current. Now we can try to change a
value.
*/

salary = 3499.99;
/*
That tried to initiate a database change. Note that there was no return
value for us to check for success. We need to call GetChangedError to find
out if that worked.
*/

long servererr;
long classerr;
if (empblock.GetChangedError(&servererr, &classerr))
{
 // error processing here
}

OParameter Method
Applies To

OParameter
Description

OParameter constructor
Usage

OParameter(void)
OParameter(const OParameter &otherparam)

Arguments
otherparam another OParameter object that you are copying

Remarks
These methods construct a new OParameter instance.
The default constructor constructs an unopened OParameter object.    It cannot fail.
The copy constructor copies another OParameter object.    If that other OParameter
object is open - which means it is a handle on an implementation parameter object - the
new OParameter object becomes a handle to that same parameter object.    The copy
constructor copies the reference to the parameter object but does not copy any strings
that the source OParameter may own.    The copy constructor can fail; check whether
the new OParameter is open after the constructor call.
There is no Open method for the OParameter class.    To get an open OParameter, call
the GetParameter method of the OParameterCollection class.    The way that a
parameter is actually created is by the OParameterCollection::Add method.

Example
This example creates a parameter and constructs an OParameter object.
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

OParameterCollection params = odb.GetParameters();
OParameter deptp;
deptp = params.Add("dno", 20, OPARAMETER_INVAR, OTYPE_NUMBER);

/*
By using the = operator we are invoking the copy constructor. It is
copying the temporary object that is returned by the Add method.
*/

// use it
ODynaset empdyn;
empdyn.Open(odb, "select * from emp where deptno = :dno");

~OParameter Method
Applies To

OParameter
Description

OParameter destructor
Usage

~OParameter(void)
Remarks

This method destroys the OParameter and frees its resources.    The underlying
implementation field will be freed if this is the last object that is referring to it.
When the OParameter is destroyed, any strings that the OParameter owns (such as
parameter name) are also freed.

OParameterCollection
Applies To

OParameterCollection
Description

OParameterCollection constructor
Usage

OParameterCollection(void)
OParameterCollection(const OParameterCollection &othercoll)

Arguments
othercoll another OParameterCollection object that you are copying

Remarks
These methods construct a new OParameterCollection instance.
Constructing an OParameterCollection does not create any parameters, or
OParameter objects.
The default constructor constructs an unopened OParameterCollection object.    It
cannot fail.
The copy constructor copies another OParameterCollection object.    If that other
OParameterCollection object is open - which means that it is a handle on an
implementation parametercollection object - the new OParameterCollection object
becomes a handle to that same parametercollection object.    The copy constructor can
fail; check whether the new OParameterCollection is open after the constructor call.

There is no Open method for the OParameterCollection class.    To get an open
OParameterCollection, call the GetParameters method.

~OParameterCollection
Applies To

OParameterCollection
Description

OParameterCollection destructor
Usage

~OParameterCollection(void)
Remarks

This method destroys the OParameterCollection and frees its resources.    The
underlying implementation parametercollection object will be freed if this is the last
object that is referring to it.
Destroying the OParameterCollection object has no effect on any parameters or
OParameter objects, even those gotten from the destroyed collection

Open (OAdvise) Method
Applies To

OAdvise
Description

This method opens an OAdvise object, attaching it to a dynaset.
Usage

oresult Open(const ODynaset &odyn)
Arguments

odyn an ODynaset to which you attach
Remarks

This method attaches the advisory to the dynaset odyn.    After this call, the dynaset of
odyn delivers messages to this advisory.
It is legal to Open an already open OAdvise object.    The object is closed and then
opened again.
Note that the instances of the OAdvise class do nothing.    You will want to subclass
OAdvise to get behavior that you want.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Opening an OAdvise object:
// create a database
ODatabase odb("ExampleDB", "scott", "tiger");

// create a dynaset
ODynaset thedynaset(odb, "select * from emp");

// default constructor of OAdvise
OAdvise adv1;

// open that advisory, attaching it to dynaset
adv1.Open(thedynaset);

Open (OBinder) Method
Applies To

OBinder
Description

This method opens an OBinder object, making it useful.
Usage

OBinder: oresult Open(const char *dbname, const char *username, const char *pwd,
const char *sqls, long dynopts)

OBinder: oresult Open(const ODatabase &odb, const char *sqls, long dynopts)
Arguments

dbname the name of the database to which you want to connect
username the username you want to use to log into the database
pwd the database password for the user username
odb the database with which you want to open the OBinder's dynaset
sqls a valid select SQL statement
dynopts options to be used to create the dynaset

Remarks
To Open an OBinder object for work, you need to connect it to an Oracle database and
select a set of records.    Opening an OBinder object is like opening both an ODatabase
and an ODynaset.
The OBinder object needs to connect to a database.    You can supply the database
directly with an ODatabase argument, or you can give the connection information:
database name, username, and password.    If you choose the latter method, note that
the database will be created with ODATABASE_DEFAULT set for its options.
The OBinder object also needs a dynaset.    The dynaset is created using the database
specified by the arguments listed above, and by the sqlstmt and dynopts arguments.   
These arguments act identically as the arguments to an ODynaset Open.    Note that
whenever an OBinder opens a dynaset, it always moves immediately to the first record.
The dynopts argument can have the following values:
Constant Value Description
ODYNASET_DEFAULT 0 Accept the default behavior.
ODYNASET_NOBIND 1 Do not perform automatic binding of

database parameters.
ODYNASET_KEEP_BLANKS 2 Do not strip trailing blanks from character

string data retrieved from the database.
ODYNASET_READONLY 4 Force dynaset to be read-only.
ODYNASET_NOCACHE 8 Do not create a local dynaset data cache. 

Without the local cache, previous rows
within a dynaset are unavailable;
however, increased performance results
during retrieval of data from the database
(move operations) and from the rows

(field operations).    Use this option in
applications that make single passes
through the rows of a dynaset for
increased performance and decreased
resource usage.

Options may be combined by adding their respective values.
These values can be found in the file ORCL.H.
Open(OBinder) calls the PreQuery and PostQuery triggers.    The OBinder Startup
trigger will not be called until the first OBound object is bound to the OBinder.
It is legal (though unusual) to open an already open OBinder. The OBinder's dynaset is
closed, then reopened.    Note that this does not affect an OBinder's bound OBound
objects - they are still bound.
If OBound objects are already bound to an OBinder, but do not represent valid column
names in the SQL query, Open will fail.    This can happen when OBound objects are
bound prior to calling OBinder::Open or when opening an already open OBinder.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
An example of setting up an OBinder object:
// construct the OBinder
OBinder empblock;

// we normally then bind OBound objects to the OBinder

// here we have several OBoundVal objects (see the Workbook)
OBoundVal salary;
OBoundVal ename;

// bind them
salary.BindToBinder(&empblock, "sal");
/*
That is the first thing bound, so the OBinder::Startup trigger is called.
*/
ename.BindToBinder(&empblock, "ename");
/*
The OBound::Startup trigger is called on each OBound as it is bound.
*/

// now open the OBinder
ODatabase odb("ExampleDB", "scott", "tiger"); // open the database
empblock.Open(odb, "select * from emp order by ename");
// that calls all the PreQuery and PostQuery triggers

Open (ODatabase) Method
Applies To

ODatabase
Description

This method opens an ODatabase, making it useful.
Usage

oresult Open(const OSession &dbsess, const char *dbname, const char *username,
const char *pwd, long options = ODATABASE_DEFAULT)

oresult Open(const char *dbname, const char *username, const char *pwd, long options
= ODATABASE_DEFAULT)

Arguments
dbsess the session under which you want to open this database
dbname the name of the database to which you want to connect
username the username you wish to use to log into the database
pwd the database password for the user username
options options to be used to create the database object

Remarks
These methods open the ODatabase object.    Opening an ODatabase object
establishes a connection to an Oracle database and specifies certain kinds of behavior.
You can specify the session in which you want the database to work; if you do not specify
a session, the database works in the default session.    The session under which the
database is opened affects connection sharing and transaction processing.    Use dbsess
to specify the session.
Use the dbname, username, and pwd arguments to establish the connection to the
database.    The pwd argument is allowed to be NULL.    In that case it is expected that the
string passed to username will be of the form "username/password"; the "slash"
character must be in the string.    The database name will either be a SQL*Net alias, such
as "ExampleDB" or a complete Oracle database name such as "p:namedpipe-server" or
"t:123.45.987.06:SID" (network protocol identifier, network address, option instance id).
The options argument can have the following values:
Constant Value Description
ODATABASE_DEFAULT 0 Accept the default behavior.
ODATABASE_PARTIAL_INSERT 1 Let Oracle set default field (column)

values.
ODATABASE_EDIT_NOWAIT 2 Do not wait on row locks when

executing a "SELECT ... FOR UPDATE".
Options may be combined by adding their respective values.
These values can be found in the file ORCL.H.
Two separate database objects share an Oracle database connection if they are in the
same session and have the same connection information (database name, username,
and password).
The options affect various aspects of the database's behavior.    See ODatabase for more

information.
It is legal to Open an already open ODatabase.    The ODatabase is closed and then
opened with the new arguments.    Note that if you do this, any ODynasets that were
opened with the old ODatabase still work and are still connected to the old database
object. Only the ODatabase handle object is affected.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
An example of opening ODatabase objects:
// the simplest way to open a database
ODatabase odb;
odb.Open("ExampleDB", "scott", "tiger");

// now if we open another database similarly
ODatabase odb2;
odb2.Open("ExampleDB", "scott", "tiger", ODATABASE_EDIT_NOWAIT);
/*
We have two separate database objects on the same oracle database. But
because odb2 and odb are in the same session and have the same connection
information they share a database connection. But because of different
options the two database objects will behave differently.
*/

// open a database on a named session
OSession msess("mysession");
ODatabase odb3;
odb3.Open(msess, "ExampleDB", "scott", "tiger");
/*
odb3 does not share a connection with odb, because it is on a different
session.
*/

Open (ODynaset) Method
Applies To

ODynaset
Description

This method asks the Oracle database for a set of records and sets up a dynaset to
access them.

Usage
oresult Open(const ODatabase &odb, const char * sqlstmt, long options =

ODYNASET_DEFAULT)
Arguments

odb the database with which you want to open this dynaset
sqlstmt a valid select SQL statement
options options to be used to create the dynaset

Remarks
This method opens the ODynaset object, creating an underlying dynaset object.    The
dynaset is formed on records retrieved from the database represented by odb and the
SQL select statement in sqlstmt.    The ODynaset is automatically positioned at the first
record after opening. The ODynaset copies the SQL statement, so the caller does not
have to retain it.
The options argument can have the following values:
Constant Value Description
ODYNASET_DEFAULT 0 Accept the default behavior.
ODYNASET_NOBIND 1 Do not perform automatic binding of

database parameters.
ODYNASET_KEEP_BLANKS 2 Do not strip trailing blanks from

character string data retrieved from the
database.

ODYNASET_READONLY 4 Force dynaset to be read-only.
ODYNASET_NOCACHE 8 Do not create a local dynaset data

cache.    Without the local cache,
previous rows within a dynaset are
unavailable; however, increased
performance results during retrieval of
data from the database (move
operations) and from the rows (field
operations).    Use this option in
applications that make single passes
through the rows of a dynaset for
increased performance and decreased
resource usage.

Options may be combined by adding their respective values.

These values can be found in the file ORCL.H.

It is legal to Open an already open ODynaset.    The ODynaset is closed and then
opened with the new arguments.
Using a "FOR UPDATE" clause in the SQL statement that opens the dynaset requires
some special attention.    Please refer to Select for Update.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Examples of opening ODynasets:
// first, open an ODatabase
ODatabase odb("ExampleDB", "scott", "tiger");

// create and open a dynaset
ODynaset odyn;
odyn.Open(odb, "select * from emp");
isopen = odyn3.IsOpen();
// isopen is TRUE; the open was successful

Open (OSession) Method
Applies To

OSession
Description

This method sets up a session.
Usage

oresult Open(void);
oresult Open(const char *sessname)

Arguments
sessname The name to be given to the new session

Remarks
This method opens an OSession object.
Every application that uses Oracle Objects for OLE is assigned a default session.    The
name of the default session is internally generated.    By using the Open method with no
arguments, you open an OSession object that refers to the default session for your
application.    Open can be called multiple times with a void argument and each time it
gives you a handle of the default session.    This is the only case in the class library where
multiple Opens give you the same object.
To create another session, to have a separate transaction group, or to refer to a session
by name, open the session and specify its name with the sessname argument.    The
Open attempts to create a new session of that name.    To obtain an open OSession
object on an existing named session, get it from an OSessionCollection object.    It is
not possible to share sessions across applications, only within applications.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Open a session:
// open the default session
OSession defaultsess;
defaultsess.Open();

// and open a separate session
OSession sess2;
sess2.Open("session2");

// Now if we create databases on these . . .
ODatabase odb(defaultsess, "ExampleDB", "scott", "tiger");
ODatabase odb2(sess2, " ExampleDB", "scott", "tiger ");
// . . . performing transactions on odb will not affect odb2
// and vice versa, because they are in separate sessions.

operator const char *
Applies To

OField, OParameter, OValue
Description

This method returns the object's value as a string.
Usage

operator const char *() const
Remarks

This methods hands the value of the object back to the caller as a null-terminated string. 
If the object's current value is not a string, the method attempts to convert the value to a
string.    This can fail, resulting in the return of a NULL pointer.
The actual memory to which the returned pointer points is managed by the object.    It
should not be freed by the caller; it will be freed when the object is destroyed or closed
or when another const char * cast is made.

Return Value
A valid, null-terminated const char pointer on success; NULL on failure.

Example
This example deletes all managers.    We determine which employees are managers by
casting the job field to a string.
// open the database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset on the employee table
ODynaset empdyn(odb, "select * from emp");

// get an OField object for looking at the job field
OField job = empdyn.GetField("job");

// look through all the employees
while (!empdyn.IsEOF())
{
 if (0 == strcmp((const char *) job, "MANAGER"))
 { // we found a manager; delete that employee
 empdyn.DeleteRecord();
 }

 // go to next record (gets us to valid record)
 // or past EOF if there are no more records
 empdyn.MoveNext();
}

operator double
Applies To

OField, OParameter, OValue
Description

This method returns the object's value as a double.
Usage

operator double() const
Remarks

This method hands the value of the object back to the caller as a double.    If the object's
current value is not a double, the method attempts to convert the value.    This can fail.,
resulting in a return of the value 0.0.

Return Value
The value of the field as a double; 0.0 on failure.

Example
Sum all the salaries of employees:
// open the employee database
ODatabase odb("ExampleDB", "scott", "tiger");

// open a dynaset on the employee's table
ODynaset odyn(odb, "select sal, comm from employees");

// get a field on the salary for speed
OField salf = odyn.GetField("sal");
/*
By using the = operator in the declaration of salf we are invoking the copy
constructor. It is copying the temporary object that is returned by the
GetField method.
*/

// sum the salaries
double sumsal = 0.0;
odyn.MoveFirst();
while (!odyn.IsEOF())
{
 sumsal += (double) salf;
 odyn.MoveNext();
}

// of course, we could have done the same thing (faster) with:
ODatabase odb("ExampleDB", "scott", "tiger");
ODynaset odyn(odb, "select sum(sal) from employees");
odyn.GetFieldValue(0, &sumsal);
// the server is good at that kind of bulk calculation

operator int
Applies To

OField, OParameter, OValue
Description

This method returns the object's value as an int.
Usage

operator int() const
Remarks

This method hands the value of the object back to the caller as an int.    If the object's
current value is not an int, the method attempts to convert the value.    This can fail,
resulting in a return of the value 0.

Return Value
The value of the field as an int; 0 on failure.

Example
Look for the employee with a certain employee number:
// open the ODatabase
ODatabase odb("ExampleDB", "scott", "tiger")

// open the dynaset
ODynaset odyn(odb, "select * from emp");

// get a field on the id
OField enof = odyn.GetField("empno");

// now look for the id we want
while (!odyn.IsEOF())
{
 // we'll examine the value of the id field in this record simply
 // by casting the enof OField variable
 if ((int) enof == targetid)
 break;
}

operator long
Applies To

OField, OParameter, OValue
Description

This method returns the object's value as a long.
Usage

operator long() const
Remarks

This method hands the value of the object back to the caller as a long.    If the object's
current value is not a long, the method attempts to convert the value.    This can fail,
resulting in the return of the value 0.

Return Value
The value of the field as a long; 0 on failure.

Example
Look for the employee with a certain employee ID:
// open the ODatabase
ODatabase odb("ExampleDB", "scott", "tiger")

// open the dynaset
ODynaset odyn(odb, "select * from emp");

// get a field on the id
OField enof = odyn.GetField("empno");

// now look for the id we want
while (!odyn.IsEOF())
{
 // we'll examine the value of the id field in this record simply
 // by casting the enof OField variable
 if ((long) enof == targetid)
 break;
}

operator=
Applies To

OAdvise, OClient, OConnection, OConnectionCollection, ODatabase, ODynaset,
ODynasetMark, OField, OFieldCollection, OParameter, OParameterCollection,
OSession, OSessionCollection, OValue

Description
This method assigns one object to another.

Usage
OAdvise &OAdvise::operator =(const OAdvise &other)
OClient &OClient::operator =(const OClient &other)
OConnection &OConnection::operator =(const OConnection &other)
OConnectionCollection &OConnectionCollection::operator =(const

OConnectionCollection &other)
ODatabase &ODatabase::operator =(const ODatabase &other)
ODynaset &ODynaset::operator =(const ODynaset &other)
ODynasetMark &ODynasetMark::operator =(const ODynasetMark &other)
OField &OField::operator =(const OField &other)
OFieldCollection &OFieldCollection::operator =(const OFieldCollection &other)
OParameter &OParameter::operator =(const OParameter &other)
OParameterCollection &OParameterCollection::operator =(const OParameterCollection

&other)
OSession &OSession::operator =(const OSession &other)
OSessionCollection &OSessionCollection::operator =(const OSessionCollection &other)
OValue &OValue::operator =(const OValue &other)

Arguments
other the object that is the source of the assignment

Remarks
The assignment operator makes the object a copy of another object.
For the classes OAdvise, OClient, OConnection, OConnectionCollection,
ODatabase, ODynaset, OField, OFieldCollection, OParameter,
OParameterCollection, OSession, and OSessionCollection, a copied object becomes
another handle that refers to the same underlying implementation object. Strings owned
by the source object are not copied to the destination object (although the same
information - such as database name and SQL statement - are available from the new
object).
Note: For OField, what is being copied is not the value of the field, but the OField
handle itself.
ODynasetMark and OValue are simpler objects.    The data of the source object is
simply copied.
If the object is already open, it is closed before the assignment.    As a result, if the

assignment fails, the return value of the operation will be a closed object.
The work that is done by assigning is the same as for a copy constructor.
OBinder and OBound have operator= defined in the header file, but the operator is
not implemented.    This is done so that the compiler's default implementation will not be
used (it would be incorrect).    If you want an assignment operator for your OBinder or
OBound subclass, you must implement it.

Return Value
The object that was assigned to.

Example
An illustration of the meaning of assignment:
// open an ODatabase
ODatabase odb("ExampleDB", "scott", "tiger");

// open an ODynaset
ODynaset odyn(odb, "select ename, sal, comm from employees");

// get a field on sal and commission
OField salfield = odyn.GetField("sal");
OField commfield = odyn.GetField("comm");

// declare some OValue variables
OValue salval;
OValue commval;

// now look at the values of the first record
odyn.GetFieldValue("sal", &salval);
odyn.GetFieldValue("comm", &commval);
// let us say that salval contains 5000 and commval contains 300

salval = bonusval; // assign commission value to salary
// now salval contains 300

// can we do the same with OFields? NO!
int isal = (int) salfield; // isal is now 5000
int ibonus = (int) commfield; // ibonus is now 300

salfield = commfield; // assign comm OField to salary OField
// NOTE: we have only assigned the OField variable
int isal2 = (int) salfield; // isal2 is 300
/*
isal2 is 300 because salfield is now referring to the field "comm" in the
record.
*/

// now update the record
odyn.StartEdit()
salfield.SetValue(4000);
odyn.Update();
// we have just set the "comm" field to 4000, not the "sal" field

operator==
Applies To

OAdvise, OClient, OConnection, OConnectionCollection, ODatabase, ODynaset,
ODynasetMark, OField, OFieldCollection, OParameter, OParameterCollection,
OSession, OSessionCollection, OValue

Description
Equivalence operator

Usage
int OOracleObject::operator==(const OOracleObject &other)
int ODynasetMark::operator==(const ODynasetMark &other)
int OValue::operator==(const OValue &other)

Arguments
other the other object to which this object is being compared

Remarks
For the subclasses of OOracleObject - namely OAdvise, OClient, OConnection,
OConnectionCollection, ODatabase, ODynaset, ODynasetMark, OField,
OFieldCollection, OParameter, OParameterCollection, OSession, and
OSessionCollection - two objects are the same if they refer to the same underlying
implementation object.    If one object was assigned from the other or copy constructed
from the other, or if they were both obtained from some other object in the same way,
they are equal.
If either of the objects is closed (and even if they are both closed), they are considered
unequal.
Two OValue objects are equal if their values are equal.    This equality crosses over type
boundaries: integer 34 equals double 34.0 equals string "34".

Return Value
1 if the objects are equal; 0 if they are not.

operator!=
Applies To

OAdvise, OClient, OConnection, OConnectionCollection, ODatabase, ODynaset,
ODynasetMark, OField, OFieldCollection, OParameter, OParameterCollection,
OSession, OSessionCollection, OValue

Description
Nonequivalence operator

Usage
int OOracleObject::operator!=(const OOracleObject &other)
int ODynasetMark::operator!=(const ODynasetMark &other)
int OValue::operator!=(const OValue &other)

Arguments
other the other object to which this object is being compared

Remarks
This routine returns the opposite of operator==.

Return Value
1 if the objects are not equal; 0 if they are equal.

OSession Method
Applies To

OSession
Description

OSession constructor
Usage

OSession(void)
OSession(const OSession &othersess)
OSession(const char *sname)

Arguments
othersess another OSession object that you are copying
sname the name you wish to give to this session

Remarks
These methods construct a new OSession instance.
The default constructor constructs an unopened OSession object.    It cannot fail.    You
must open the object before you can use it.
The copy constructor copies another OSession object. If that other OSession object is
open - which means that it is a handle on an implementation session object - the new
OSession object becomes a handle to that same session object.    The copy constructor
copies the reference to the session object but does not copy any strings that the source
OSession may own.    The copy constructor can fail; check whether the new OSession is
open after the constructor call.
The constructor that takes an argument of sname constructs the OSession and then
attempts to open it.    It will be opened with the name sname.    Sname can be NULL, in
which case the default OSession is returned.    This construct and open constructor can
fail; check whether the new OSession is open after the constructor call.

Example
Construct and open the application's default session:
OSession sess(0);

~OSession Method
Applies To

OSession
Description

OSession destructor
Usage

~OSession(void)
Remarks

This method destroys the OSession and frees its resources.    The underlying
implementation session will be freed if this is the last object that is referring to it.
When the OSession is destroyed any strings that the OSession owns (such as session
name) are also freed.

OSessionCollection
Applies To

OSessionCollection
Description

OSessionCollection constructor
Usage

OSessionCollection(void)
OSessionCollection(const OSessionCollection &othercoll)

Arguments
othercoll another OSessionCollection object that you are copying

Remarks
These methods construct a new OSessionCollection instance.
Constructing an OSessionCollection does not create any sessions or OSession objects.
The default constructor constructs an unopened OSessionCollection object.
The copy constructor copies another OSessionCollection object.    If that other
OSessionCollection object is open - which means it is a handle on an implementation
sessioncollection object - the new OSessionCollection object becomes a handle to that
same sessioncollection object.    The copy constructor can fail; check whether the new
OSessionCollection is open after the constructor call.
There is no Open method for the OSessionCollection class.    To get an open
OSessionCollection, call the GetSessions method.

~OSessionCollection
Applies To

OSessionCollection
Description

OSessionCollection destructor
Usage

~OSessionCollection(void)
Remarks

This method destroys the OSessionCollection and frees its resources.    The underlying
implementation sessioncollection object will be freed if this is the last object that is
referring to it.
Destroying the OSessionCollection object has no effect on any sessions or OSession
objects, even those gotten from the destroyed collection

OShutdown Method
Applies To

No class.    This is a standalone routine.
Description

This method cleans up and shuts down the C++ class library.
Usage

void OShutdown(void)
Remarks

Before your application exits it should call OShutdown to clean up the C++ class library.   
This routine performs the per-process cleanup.
OLE users: If OStartup successfully called OleInitialize, OShutdown will call
OleUninitialize.

OStartup Method
Applies To

No class.    This is a standalone routine.
Description

This method initializes the C++ class library
Usage

oboolean OStartup(void)
Remarks

This routine initializes the C++ class library for this process.    It must be called for every
process.
OLE users: OStartup calls OleInitialize.    It remembers whether OLE was already
running. OShutdown calls OleUnitialize only if OStartup was the call that started OLE.

Example
Start the C++ class library:
OStartup()

OValue Method
Applies To

OValue
Description

OValue constructor
Usage

OValue(void)
OValue(const OValue &otherval)
OValue(int val)
OValue(long val)
OValue(double val)
OValue(const char *val)

Arguments
otherval another OValue object whose value you are copying
val a value that you are placing into the OValue

Remarks
These methods construct OValue objects.
The default constructor method constructs an OValue with a value of NULL.
The copy constructor copies the value of the other OValue object.    The copy constructor
can fail, in which case the constructed OValue has a value of NULL.
The rest of the constructors allow the OValue to be initialized with values of various
types.    The initialization with a string value can fail (because of memory allocation
failure), in which case the OValue has a value of NULL.

Example
Construct several OValues:
OValue str45("45");
OValue int45(45);
OValue long45(45L);
OValue double45(45.0);
OValue val45(str45);
OValue valnull;

// str45, int45, long45, double45 and val45 are all
// equal according to operator==

~OValue Method
Applies To

OValue
Description

OValue destructor
Usage

~OValue(void)
Remarks

This method destroys the OValue and frees its resources.    When the OValue is
destroyed, any strings that it owns (such as strings that have been obtained by way of a
const char * cast) are also freed.

Refresh (OBinder) Method
Applies To

OBinder
Description

This method causes all the OBound objects to be given their values again.
Usage

oresult Refresh(void)
Remarks

The method calls the Refresh method on every bound OBound object.    This causes
them to get their values again.    In normal processing you do not need to call Refresh.
This Refresh method does not refresh the dynaset that is being managed by the
OBinder.    To refresh such a dynaset, use the RefreshQuery method.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Refresh (OBound) Method
Applies To

OBound
Description

This method sets the value of the OBound object with a new value from the database.
Usage

virtual oresult Refresh(const OValue &val)
Arguments

val the new value of the OBound object
Remarks

The OBinder (to which this OBound object is bound) calls this method whenever a
value needs to be transferred from the dynaset to the OBound object.    The val
argument contains the new value.
Refresh is not implemented in the base OBound class.    Your OBound subclass must
implement this method
Refresh is the inverse of OBound::SaveChange.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Please see the Workbook for the example "OBound of a variable."    That example works
through the implementation of a subclass of OBound.    That subclass implements
Refresh.

Refresh (ODynaset) Method
Applies To

ODynaset
Description

This method executes the dynaset's SQL statement and fetches a new set of records.
Usage

oresult Refresh(void)
Remarks

This method executes the current SQL statement, which is set by the Open method and
reset by the SetSQL method.    Execution of this method discards the current result set
and the current local cache and returns to the database to get new values.    After
refreshing, the current record becomes the first record in the result set (which may not
be the same as the first record of the previous result set). Execution of this method
sends an OADVISE_REFRESH message to all attached advisories.
If the dynaset is being managed by an OBinder, this method calls the PreQuery and
PostQuery triggers.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
A powerful use of Refresh is with parameters.    When the value of the parameter
changes, we can Refresh the dynaset and get a different set of records.
// open an ODatabase
ODatabase odb("ExampleDB", "scott", "tiger");

// get the parameter collection
OParameterCollection params = odb.GetParameters();

// add a parameter for department number
params.Add("dno", 10, OPARAMETER_INVAR, OTYPE_NUMBER);

// now set up a dynaset that uses that parameter
ODynaset odyn(odb, "select * from emp where deptno = :dno");

// do some processing with that dynaset

// now we want to look at records from another department

// get the parameter and set its value to 20
params.GetParameter("dno").SetValue(20);

// and refresh the dynaset to get the new records
odyn.Refresh();
/*
We can get different sets of records without manipulating SQL statements.
*/

RefreshQuery Method
Applies To

OBinder
Description

This method refreshes the dynaset that the OBinder is managing.
Usage

oresult RefreshQuery(void)
Remarks

This method calls the ODynaset::Refresh method on the dynaset that the OBinder is
managing.    See the description of ODynaset::Refresh for a description of the side
effects.
Execution of this method calls the PreQuery and PostQuery triggers.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Remove Method
Applies To

OParameterCollection
Description

This method removes a parameter from a database.
Usage

oresult Remove(int index) const
oresult Remove(const char *pname) const

Arguments
index An index from 0 to OParameterCollection.GetCount()-1
pname the name of the parameter, as stated when the parameter was created with

Add
Remarks

Parameters are attached to a database using OParameterCollection::Add.    Once
attached they will stay in existence.    When you no longer need a parameter you can
remove it using the Remove method.    This will reduce overhead in the processing of
SQL statements.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Adding and removing a parameter
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

OParameterCollection pcoll = odb.GetParameters();

// add a parameter
pcoll.Add("param1", 34, OPARAMETER_INVAR, OTYPE_NUMBER);

// now remove it
pcoll.Remove("param1");

ResetTransaction Method
Applies To

OSession
Description

This method rolls back the current transaction unconditionally.
Usage

oresult ResetTransaction(void)
Remarks

ResetTransaction is the same as Rollback, with the exception that no advisory
messages are issued.    As a result, ResetTransaction cannot be canceled by an
advisory.
Please see Rollback for more information.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Rollback Method
Applies To

OSession
Description

This method rolls back the current transaction.
Usage

oresult Rollback(oboolean startnew = FALSE)
Arguments

startnew If TRUE a new transaction is begun (as if BeginTransaction had been called).
If FALSE, no additional work is done after the transaction is committed.

Remarks
A database transaction is a way to group database operations so that they all either
succeed or fail together.    Please see "Transactions" for more details.   
BeginTransaction starts a transaction.    You can terminate the transaction either with a
Commit or a Rollback.    It is an error to call Rollback when no transaction is in
progress.
Calling Rollback results in OADVISE_ROLLBACK messages being sent to all advisories
attached to all dynasets within this session.    Any OBinder or OBound objects within the
session will have PreRollback and PostRollback triggers called.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example starts a transaction and begins a long sequence of operations.    If an error
occurs along the way, all changes are discarded with a Rollback.    If they all succeed,
the changes are made permanent with a Commit.
// routine to give all employees the same salary
void Transfer(ODynaset empdyn, double newsal)
{
 // get the session of this dynaset
 OSession empsess = empdyn.GetSession();

 // start a transaction
 empsess.BeginTransaction();

 // edit every record (with StartEdit, SetFieldValue, Update)
 empdyn.MoveFirst();
 while (!empdyn.IsEOF())
 {
 if (empdyn.StartEdit() != OSUCCESS)
 break;
 if (empdyn.SetFieldValue("sal", newsal) != OSUCCESS)
 break;
 if (empdyn.Update() != OSUCCESS)
 break;

 empdyn.MoveNext(); // go to the next record
 }

 if (!empdyn.IsEOF())
 { // we got out of the loop early. Get rid of
 // any changes we made
 empsess.Rollback();
 }
 else
 { // everything worked. Make it all permanent
 empsess.Commit();
 }
 return;
}

SaveChange Method
Applies To

OBound
Description

This method saves the value of the OBound object to the database.
Usage

virtual oresult SaveChange(void)
Remarks

The OBinder (to which this OBound object is bound) calls this method when it is time to
save the object's value to the database.    The OBinder object knows that the value
needs to be saved because of some previous call to Changed.
SaveChange is not implemented in the base OBound class.    Your OBound subclass
must implement this method.    Normally you can implement SaveChange by calling the
protected OBound::SetValue method.
The inverse of SaveChange is OBound::Refresh.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Please see the Workbook for the example "OBound of a variable."    That example works
through the implementation of a subclass of OBound.    That subclass implements
SaveChange.

ServerErrorNumber Method
Applies To

OSession, ODatabase
Description

This method returns the Oracle7 error number for the last database-related error in the
session.

Usage
long ServerErrorNumber(void) const;

Remarks
This method returns the Oracle7 error number for the most recent database-related
error, if there has been an error since the session was created or the server error was
reset with ServerErrorReset.    Errors that occur while opening a database or in a
transactional method will be reported on the session.    Other errors are reported on the
database.
A value of 0 means no error.

Return Value
Returns the Oracle error number.

Example
An example of a server error:
// open an ODatabase object
ODatabase odb("ExampleDB", "scott", "tiger");

// try to open a dynaset with a bad column name
ODynaset dyn(odb, "select xx from emp");

// if that didn't work, get the error number
if (!dyn.IsOpen())
{
 long errno = odb.ServerErrorNumber();
}

ServerErrorReset Method
Applies To

OSession, ODatabase
Description

This method clears the last remembered Oracle7 database-related error for the session.
Usage

oresult ServerErrorReset(void);
Remarks

After calling this method ServerErrorNumber will return 0 (indicating no error) until the
next database-related error occurs.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

ServerErrorSQLPos Method

Applies To
ODatabase

Description
When an error occurs during parsing of a SQL statement, this method returns the
position within the SQL statement where the error occurred.

Usage
int ServerErrorSQLPos(void) const;

Remarks
Whenever the server detects an error while parsing an SQL statement, for instance
during ODatabase::ExecuteSQL or ODynaset::Open, the position within the SQL
string where the error occurred is remembered and can be obtained using this method.   
The position is 0-based; the first character in the SQL statement is character 0.    If no
error has occurred, or no SQL statements have been parsed by this database or since the
last call to ServerErrorReset, then -1 is returned.

Return Value
Returns the character position of the SQL parse error (0 based) or -1 if there was no error.

Example
An example of a SQL parse error:
// open an ODatabase object
ODatabase odb("ExampleDB", "scott", "tiger");

// execute a bad SQL statement
odb.ExecuteSQL("xxzzz");

int sqlpos = odb.ServerErrorSQLPos();
// sqlpos will be 0

// execute another bad SQL statement
odb.ExecuteSQL("drop zzz");
// the zzz doesn't make sense
sqlpos = odb.ServerErrorSQLPos();
// sqlpos will be 5

SetFieldValue Method
Applies To

ODynaset
Description

This method sets the value of a field.
Usage

oresult SetFieldValue(int index, const OValue &val)
oresult SetFieldValue(const char *fieldname, const OValue &val)
oresult SetFieldValue(int index, int val)
oresult SetFieldValue(const char *fieldname, int val)
oresult SetFieldValue(int index, long val)
oresult SetFieldValue(const char *fieldname, long val)
oresult SetFieldValue(int index, double val)
oresult SetFieldValue(const char *fieldname, double val)
oresult SetFieldValue(int index, const char *val)
oresult SetFieldValue(const char *fieldname, const char *val)
oresult SetFieldValue(int index, const void __huge *blobp, long bloblen)
oresult SetFieldValue(const char *fieldname, const void __huge *blobp, long bloblen)

Arguments
index the 0-based index of the field.    The index is the position of the field in the SQL

query that created the current record set.
fieldname the name of the field, as expressed in the SQL query
val the new value for the field, in one of various types
blobp pointer to the long data to be placed in the field
bloblen the number of bytes from blobp to be placed into the field

Remarks
These methods set the values of fields of data in the query result set.    They change the
values in the current record.    You should call the StartEdit method on the record before
any SetFieldValue calls are made. The field is specified either by index (position in the
SQL query) or by fieldname.    The data values can be set using data of any of the
following types: OValue, int, long, double, and const char *.    Setting a fields value to an
empty string (namely "") sets the field to NULL.
The last two methods (the ones with the blobp arguments) are used to place more than
64K bytes of data into a long or long raw field.    They are valid only for fields with server
types of OTYPE_LONG or OTYPE_LONGRAW.    Such fields can also have their values set
with (const char *), but only up to 64K.
The SetFieldValue methods can fail under several conditions:

if the current record is not valid
if the indicated field does not exist
if StartEdit has not been called on the current record (or AddNewRecord, or

DuplicateRecord)
if the type of the data being set cannot be coerced into the type needed by the

database (for example trying to put a boring string into a number).

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
A snippet of code to give somebody a 7% raise:
// given an open ODynaset named empdyn that is on the right record

// get the current salary
double salary;
empdyn.GetFieldValue("sal", &salary);

// change it
empdyn.StartEdit();
empdyn.SetFieldValue("sal", salary*1.07);
empdyn.Update();

SetSQL Method
Applies To

OBinder, ODynaset
Description

This method sets the SQL statement that will be used the next time the dynaset is
refreshed.

Usage
oresult SetSQL(const char *sqls)

Arguments
sqls the new SQL statement

Remarks
OBinder: This method sets the SQL statement to be used the next time RefreshQuery is
called.
ODynaset: This method sets the SQL statement to be used on the next Refresh. The
ODynaset copies the SQL statement, so the calling routine does not have to retain it.
(See GetSQL for more discussion.)
The result set of a dynaset is determined by the SQL statement that is executed to fetch
the records.    This method enables you to reset the SQL statement of the dynaset.   
Resetting the SQL statement does not immediately change the dynaset's result set.
The dynaset's result set can be changed to correspond to the new SQL statement by
calling ODynaset::Refresh or OBinder::RefreshQuery.
Setting the SQL statement invalidates any pointers to previously returned SQL
statements (from GetSQL).

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Change the SQL statement of a dynaset:
// open an ODatabase object
ODatabase odb("ExampleDB", "scott", "tiger");

// open an ODynaset
ODynaset odyn(odb, "select * from emp order by ename");

// ... do some processing ...

// now get the records again, but in a different order
odyn.SetSQL("select * from emp order by empno");
odyn.Refresh();

SetValue Method
Applies To

OField, OParameter, OValue
Description

This method sets the value of the object.    Setting an OField value also sets a database
field value.

Usage
oresult SetValue(const OValue &val)
oresult SetValue(int val)
oresult SetValue(long val)
oresult SetValue(double val)
oresult SetValue(const char *val)
oresult SetValue(const void __huge *blobp, long bloblen) (OField only)

Arguments
val the new value, in one of a variety of types.
blobp pointer to the long data to be placed in the field
bloblen the number of bytes from blobp to be placed into the field

Remarks
These methods set the value of the object.
If the new value is passed in as a string, the object copies the string.    The caller does not
have to retain the string.
Setting the value invalidates any pointers returned from a previous (const char *) cast.
Setting the value of an OField is legal only when the related dynaset has an edit mode
of ODYNASET_EDIT_NEWRECORD (from an AddNewRecord or DuplicateRecord) or
ODYNASET_EDIT_EDITING (from StartEdit).    Setting the value of an OField sets the
value of the field the OField is on, in the current record, in the Oracle database.
The last method (the one with the blobp argument) is used to place more than 64K bytes
of data into a long or long raw field.    It is valid only for fields with server types of
OTYPE_LONG or OTYPE_LONGRAW.    Such fields can also have their values set with (const
char *), but only up to 64K.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Set the values of some objects:
// open a database
ODatabase odb("ExampleDB", "scott", "tiger");

// add a parameter to odb
OParameterCollection params = odb.GetParameters();
OParameter deptp;

deptp = params.Add("dno", 20, OPARAMETER_INVAR, OTYPE_NUMBER);

// set the parameter's value to 10 instead
deptp.SetValue(10);

// use it
ODynaset empdyn;
oresult ores;
empdyn.Open(odb, "select * from emp where deptno = :dno");

// get an OField on the salary field
OField salf = empdyn.GetField("sal");

// and change the salary of the current record
empdyn.StartEdit();
salf.SetValue(4500.0);
empdyn.Update();

SetValue (OBound) Method
Applies To

OBound
Description

This method sets the value of the database field to which this bound object is bound, in
the current record.

Usage
OBound: oresult SetValue(const OValue &val)

Arguments
val new value of the database field

Remarks
This protected method is provided as a convenience for OBound subclasses.    It is
normally used to implement the subclass's SaveChange method.
This method should be called only in response to a call to SaveChange.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
Please see the Workbook for the example "OBound of a variable."    That example works
through the implementation of a subclass of OBound.    That subclass uses SetValue in
its implementation of SaveChange.

StartEdit Method
Applies To

ODynaset
Description

This method begins the process of editing the current record.
Usage

oresult StartEdit(void)
Remarks

Editing an existing record in a dynaset consists of three steps:
1. Call StartEdit.
2. Change field values, either with SetFieldValue or SetValue.
3. Call Update.

Calling StartEdit informs the ODynaset that you are going to edit the values of the
current record.    The ODynaset attempts to obtain a lock on the record from the Oracle
database so that no other user can edit the record at the same time.    The precise
behavior depends on the database ODATABASE_EDIT_NOWAIT option (see ODatabase).
Once a lock is obtained the values of the record's fields in the database are compared to
the what the dynaset thinks the values are (with the exception of long fields).    If there is
a difference it is assumed that some other user has changed the data in the database
since the dynaset fetched the record.    If a difference is found StartEdit will fail with an
OERROR_DATACHANGE error.
This can be misleading.    Consider a table where some of the records have default values
set in the database or whose values are set by database triggers.    When the records of
such a table are updated to the database (after being added or edited by the dynaset)
the values of some records may change in the database.    If we then execute StartEdit
on this we will fail with OERROR_DATACHANGE because the database values do not
match the dynaset's values.    To avoid this problem use the ODATABASE_PARTIAL_INSERT
option on the database (see ODatabase).    With this option turned on the dynaset will
refetch the record after the database has had a chance to change it.
Note: A call to StartEdit, AddNewRecord, DuplicateRecord, or DeleteRecord, will
cancel any outstanding StartEdit, AddNewRecord or DuplicateRecord calls before
proceeding.    Any outstanding changes not saved using Update will be lost during the
cancellation.
If the current query for the database resulted in a nonupdatable dynaset, this method
fails.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example sets the salary in the current record to $9985.
// we have a dynaset named empdyn

// edit the salary
empdyn.StartEdit();
empdyn.SetFieldValue("sal", 9985.0);

empdyn.Update();

StatusChange Method
Applies To

OAdvise
Description

The StatusChange method is called by a dynaset when that dynaset's status changes.
Usage

void StatusChange(int statustype)
Arguments

statustype
statustype will have one of the values:

OADVISE_FOUNDLAST // dynaset has come to last record

Remarks
You do not call StatusChange; rather, the StatusChange method of your OAdvise
subclass is called.
When you subclass OAdvise, you can override the StatusChange method.    After an
instance of your OAdvise subclass is attached to a dynaset (by way of the
OAdvise::Open method), your instance receives calls to its StatusChange method.   
Use a StatusChange method to perform processing when a dynaset's status has
changed.
In the current release, the only status change is that which occurs when the dynaset
finds the last record. This can occur on a MoveLast or on a MoveNext that attempts to
move past the last record, or on a GetRecordCount.    The unoverridden StatusChange
method does nothing.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example notifies the application that the entire dynaset has been downloaded to the
client.
void YourOAdvise::StatusChange(int statustype)
{
 if (statustype == OADVISE_FOUNDLAST)
 m_appcontext->HaveAllRecords();
 return;
}

Unbind Method
Applies To

OBound
Description

This method breaks the connection between the OBound object and the OBinder to
which it has been bound.

Usage
oresult Unbind (void)

Remarks
This method unbinds the OBound object and calls its Shutdown trigger.    The
Shutdown trigger can return OFAILURE, in which case the Unbinding is canceled.
If the Unbinding is successful, neither the OBinder nor the OBound is destroyed.    Only
their relationship is terminated.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

UnbindObj Method
Applies To

OBinder
Description

This method breaks the connection between the OBinder and one of its OBound
objects.

Usage
oresult UnbindObj(OBound *bobj, oboolean nofail = FALSE)

Arguments
bobj the OBound object that is being unbound
nofail TRUE if you unbind despite Shutdown trigger failure; FALSE if you are willing

to have the Unbind fail.
Remarks

This method unbinds the OBound object *bobj and calls the Shutdown trigger on *bobj. 
If nofail is TRUE, this method unbinds the object even if the Shutdown trigger returns
OFAILURE - that is, the unbinding cannot fail.    If nofail is FALSE and the Shutdown
trigger returns OFAILURE, the object is not unbound.
If the Unbinding is successful, neither the OBinder nor the OBound is destroyed.    Only
their relationship is terminated.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Update Method
Applies To

ODynaset, OBinder
Description

This method saves dynaset changes to the Oracle database.
Usage

oresult Update(void)
Remarks

For ODynaset, Update is the end of the three-part record editing sequence:
1. Call StartEdit.
2. Change field values, either with SetFieldValue or SetValue.
3. Call Update.   

Calling Update saves to the Oracle database the changes that have been made. If you
are in the middle of a transaction (that is, your session had BeginTransaction called on
it), the changes are not made permanent until a Commit is done. Alternatively, the
changes can be canceled with a Rollback.
For OBinder, Update saves any changes that have been marked in the current record.   
This results in the same behavior as ODynaset::Update.
ODATABASE_PARTIAL_INSERT determines precisely what happens to values of fields that
have not been explicitly set.    See ODatabase for details.
Calling Update sends OADVISE_UPDATE messages to all advisories attached to the
dynaset.    If the dynaset is being managed by an OBinder object, PreUpdate and
PostUpdate triggers are called.

Return Value
An oresult indicating whether the operation succeeded (OSUCCESS) or not (OFAILURE).

Example
This example sets the salary in the current record to $9985.

// we have a dynaset named empdyn

// edit the salary
empdyn.StartEdit();
empdyn.SetFieldValue("salary", 9985.0);
empdyn.Update();

PostAdd Trigger Method
Applies To

OBinder, OBound
Description

Called after a new record is added
Usage

virtual oresult PostAdd(void)
Remarks

The default OBound PostAdd trigger will refresh the value of the OBound.
The default OBinder PostAdd trigger does nothing.
Adding a record may happen either because of AddNewRecord or DuplicateRecord.

PostDelete Trigger Method
Applies To

OBinder, OBound
Description

Called after a record is deleted
Usage

virtual oresult PostDelete(void)
Remarks

The default OBound PostDelete trigger does nothing.
The default OBinder PostDelete trigger does nothing.

PostMove Trigger Method
Applies To

OBinder, OBound
Description

Called after moving to a new record
Usage

virtual oresult PostMove(void)
Remarks

The default OBound PostMove trigger will refresh the value of the OBound.
The default OBinder PostMove trigger does nothing.

PostQuery Trigger Method
Applies To

OBinder, OBound
Description

Called after an SQL statement has been executed
Usage

virtual oresult PostQuery(void)
Remarks

The default OBound PostQuery trigger will refresh the value of the OBound.
The default OBinder PostQuery trigger does nothing.

PostRollback Trigger Method
Applies To

OBinder, OBound
Description

Called after a session rollback
Usage

virtual oresult PostRollback(void)
Remarks

The default OBound PostRollback will refresh the value of the OBound.
The default OBinder PostRollback trigger does nothing.

PostUpdate Trigger Method
Applies To

OBinder, OBound
Description

Called after the database is updated
Usage

virtual oresult PostUpdate(void)
Remarks

The default OBound PostUpdate trigger does nothing.
The default OBinder PostUpdate trigger does nothing.

PreAdd Trigger Method
Applies To

OBinder, OBound
Description

Called before a new record is added
OBinder: This trigger method is called before a new record is added. By default, if
changes have been made, the method saves them (by calling OBound::SaveChange
on every object) and updates the record (which as a side effect calls the update
triggers).
OBound: This trigger method is called before a new record is added.

Usage
virtual oresult PreAdd(void)

Remarks
The default OBound PreAdd trigger does nothing.
The default OBinder PreAdd trigger saves to the database any changes to the current
record.    If there were any changes that needed saving this will call the update triggers
as a side effect.
Adding a record my happen either because of AddNewRecord or DuplicateRecord.

PreDelete Trigger Method
Applies To

OBinder, OBound
Description

Called before a record is deleted.
Usage

virtual oresult PreDelete(void)
Remarks

The default OBound PreDelete trigger does nothing.
The default OBinder PreDelete trigger does nothing.

PreMove Trigger Method
Applies To

OBinder, OBound
Description

Called before moving to another record
Usage

virtual oresult PreMove(void)
Remarks

The default OBound PreMove trigger does nothing.
The default OBinder PreMove trigger saves to the database any changes to the current
record.    If there were any changes that needed saving this will call the update triggers
as a side effect.

PreQuery Trigger Method
Applies To

OBinder, OBound
Description

Called before an SQL statement is executed
Usage

virtual oresult PreQuery(void)
Remarks

The default OBound PreQuery trigger does nothing.
The default OBinder PreQuery trigger does nothing.

PreRollback Trigger Method
Applies To

OBinder, OBound
Description

Called before a session rollback
Usage

virtual oresult PreRollback(void)
Remarks

The default OBound PreRollback trigger does nothing.
The default OBinder PreRollback trigger does nothing.

PreUpdate Trigger Method
Applies To

OBinder, OBound
Description

Called before a record is saved to the database
Usage

virtual oresult PreUpdate(void)
Remarks

The default OBound PreUpdate trigger does nothing.
The default OBinder PreUpdate trigger does nothing.

Shutdown Trigger Method
Applies To

OBinder, OBound
Description

Called when the OBinder is closed, or on an OBound when it is unbound
Usage

virtual oresult Shutdown(void)
Remarks

The default OBound Shutdown trigger does nothing.
The default OBinder Shutdown trigger saves to the database any changes to the
current record.    If there were any changes that needed saving this will call the update
triggers as a side effect.

Startup Trigger Method
Applies To

OBinder, OBound
Description

Called when the object binding starts.
OBinder: This trigger method is called at the time the first bound object is added to the
binder. It is guaranteed only be called only once for the OBinder instance.
OBound: This trigger method is called immediately after a bound object is bound to a
binder.    If the binder has not been opened, then GetValue cannot be called by this
method.

Usage
virtual oresult Startup(void)

Remarks
For an OBinder object this method will be called the first time that a bound object is
successfully added to the OBinder.    It will only be called once.
For an OBound this method will be called when the object is bound to an OBinder.   
Note that if the OBinder object has not been opened yet (usually the case) then
GetValue cannot be called by this method.
The default OBound Startup trigger does nothing.
The default OBinder Startup trigger does nothing.

