
OOWL BOUND WIDGET LIBRARY

This file documents the OOWL library provided with the Oracle Objects for OLE C++ Class
Library. The OOWL library of classes are used to build GUI programs using Borland's OWL
framework. These classes have been built using Borland C++ 4.0 and 4.5.

Differences between Borland C++ 4.0 and 4.5

With the release of version 4.5, Borland made some minor changes to the implementation of
OWL. This problem manifests itself with an undefined symbol linker error when attempting to link
an application using Borland C++ 4.5 with the bound widget library (oowl.lib) created using
Borland C++ 4.0 that was part of the version 1.0 of Oracle Objects for OLE. This release contains
a second library called oowl45.lib that was created using Borland C++ 4.5. You will find it in the
same directory as the original oowl.lib ([ORACLE_HOME]\oo4o\cpp\owl\lib - where [ORACLE_HOME]
is the directory you have installed your Oracle products for Windows).

If you are using Borland C++ 4.5 and get the following Linker Error:
Undefined symbol v_U_U_W_Dispatch(GENERIC far&,void(GENERIC::*) (unsigned int,unsigned
int,const HWND__ near*),unsigned int,long);
You should edit the project (IDE) file and change the entry for oowl.lib to oowl45.lib. You may
also need to edit the project path information for the sample application (see below) in order to
make it compile and link correctly.

The Borland C++ 4.5 compiler also puts references into the Class Library DLL to redistributable
Borland DLL's that changed from version 4.0. For example, OWL200.DLL changed to
OWL250.DLL in version 4.5. If you have Borland C++ 4.5, you should use oraclb45.dll and the
import library oraclb45.lib. They are installed into the same directories as the original 4.0 versions
of these files.

How to build the sample program.

The sample program can be found in the [ORACLE_HOME]\oo4o\cpp\owl\samples\empedit directory
(where [ORACLE_HOME] is the directory your Oracle products are installed - usually c:\orawin). The
project file is bltest.ide and can be loaded by Borland C++ version 4.0 and 4.5. This project file
contains paths to the various header (*.h) and library (*.lib) files needed to compile and link the
sample program. Unfortunatly, you may have installed Borland C++ in a different directory (or
even a different drive) and the project path information will not be correct.
To change the path information, select Options from the IDE main menu. Select Project and then
select Directories from the topics list. The dialog will now show some edit controls containing the
include and library search paths. There are four components to the include path, separated by
semicolons. The first is for the current directory and can be ignored. The second is the Borland
C++ include files which is set to \bc4\include. You may need to change this to the directory in
which Borland C++ is actually installed - if you are using version 4.5, this will probably be \bc45\
include. The third and fourth components are relative paths to the Oracle Objects include files.
You should not need to change these unless you have moved any files from the original directory
tree. If you have moved the project or any header or library files, you will need to alter these
paths. Specifically, you will need to add references for the class library include files and the oowl
include files. These are installed into [ORACLE_HOME]\oo4o\cpp\include and [ORACLE_HOME]\oo4o\
cpp\owl\include respectively. The second edit field contains the library path and should be
modified to contain the paths to oraclb.lib and oowl.lib (or oraclb45.lib and oowl45.lib). These
are installed into [ORACLE_HOME]\oo4o\cpp\lib and [ORACLE_HOME]\oo4o\cpp\owl\lib respectively.

The library search path may also need to be changed to include the lib subdirectory of the
Borland C++ installation (e.g. d:\bc45\lib). Please remember you will need to specify the full path
(including the drive letter) for any component that is on another disk drive from the one you are

running the project from.

In order to run the sample (or any application you build), it will need to access the Class Library
runtime DLL - oraclb.dll (oraclb45.dll if you are using Borland C++ 4.5). The easiest way to do
this is to copy the DLL to a directory on your path (such as \orawin\bin) or your windows system
directory. The latter is recommended. You will also need to include the correct import library for
the Class Library DLL in your project. They are in [ORACLE_HOME]\oo4o\cpp\lib and are named
oraclb.lib and oraclb45.lib respectively. You can find the DLLs in [ORACLE_HOME]\oo4o\cpp\bin,
or if you want to debug in the class library, you should use the versions in [ORACLE_HOME]\oo4o\
cpp\bin\dbg. Debuggable versions of oowl.lib and oowl45.lib are also supplied in
[ORACLE_HOME]\oo4o\cpp\owl\lib\dbg. We have noticed that the integrated debugger cannot
always read the DLL's symbol table correctly unless the DLL you are debugging is in the current
directory. This is usually the same directory as the executable that calls the DLL.

The sample application uses an enhanced version of the emp table that is part of the
demonstration database. The enhanced table is called emp2 and can be created by running
demoemp.sql which is installed into [ORACLE_HOME]\oo4o\cpp.

What problem do these classes solve?

The basic classes of the Oracle Objects for OLE C++ Class Library enable you to access the data
in an Oracle database. You can fetch records, add records, edit records, execute arbitrary SQL
statements, and so forth. However, if you want to write a GUI program that displays the database
data, you are on your own. You must fetch the data, push the data into your GUI widgets, and
repeat whenever the dynaset moves to another record. If the widget is used to edit the data you
must execute a StartEdit, SetValue, Update cycle.

The OBinder and OBound classes make this work much easier. An OBinder instance manages
a dynaset. OBound instances are attached to fields in the OBinder's dynaset and "bound" to the
OBinder instance. From then on the OBinder and OBound code do most of the tedious
bookkeeping for you: the OBound instance values are changed when needed, and when edits
are made through the OBound instances they are saved to the Oracle database.

The C++ Class Library provides an implementation of OBinder. However, it provides only a pure
virtual OBound class. To make use of the convenience of OBinder, you need subclasses of
OBound that implement the OBound functionality.

The classes in this OOWL library are subclasses of OBound. They provide GUI widget
implementations of the OBound functionality. As a result you can create a form using Borland C+
+'s Resource Workshop resource editor and, with very few lines of code, you can hook those
widgets to database fields. You then have a working application.

Please see the Oracle Objects for OLE C++ online help system for more discussion of OBinder
and OBound.

Note to Visual Basic users: An OBinder object works like a data control (it has no user interface
but it performs all the bookkeeping). OBound objects work like bound controls.

What kind of objects are available?

There are classes for the following kinds of user interface widgets:

edit controls: display (and edit) values as strings
static text controls: display values as strings

check box: display (and edit) values as "on" or "off"
radio button: display (and edit) values as a radio button
slider: a combination slider and text display that graphically displays

and edits a numeric value, either horizontal or vertical
gauge: graphic display of a numeric value (read-only)

How are these objects used?

This library (and in fact the entire C++ Class Library) is used to build large model programs.

To make and set up instances of any of these classes, you must go through several steps:

1. First, you must create the user interface widget. In Borland C++ this is easiest to do
using Borland's Resource Workshop resource editor. You can also create the widget
programmatically (constructors are provided for this purpose).

2. Next, you must declare an OBinder instance in your application, typically in the view
class for the window where the database form resides.

3. You must declare an OBound subclass instance for each widget. These instances are
usually members of the view class for the window where the database form resides.
Usually your instance variables are pointers to widget objects. You call new and
construct the instances in the view's constructor.

4. You must call the "BindToBinder" method on each of the OBound subclass instances.
You can do this multiple times, but normally you do it just once (for example, in the
"SetupWindow" method of your view). The BindToBinder method tells the instance
variable what OBinder to get its data from and what field it should access in the
OBinder's dynaset.

5. The final step in setting up the instance is to open the OBinder. This creates a dynaset
and fetches records from the database.

Your application can now run. You need to implement some way for the user to navigate
through the records of the dynaset. For example, you can create a button with the label
"Next" that calls OBinder::MoveNext. The user can make changes in the widgets. Just
before the dynaset is navigated to another record (for example, in response to a
MoveNext call), all changes on the current record are saved.

7. Finally, when the program is exiting, it is a good idea to call OBinder::Close explicitly
This is not strictly necessary, but is good form. See OBinder::Close in the Oracle
Objects for OLE C++ online help system.

An example

An example that uses the OOWL classes is provided. When you installed Oracle Objects for OLE,
the sample was placed in the Samples subdirectory of the OOWL directory (if you asked to install
sample code). The example allows the user to edit the emp2 table (which can be created with
the DEMOEMP.SQL script), which is an extended version of the sample emp table provided with
Oracle databases. The interesting files are BLTSTDLG.H (which declares the bound control
variables for the dialog) and BLTSTDLG.CPP (which uses the bound controls).

Methods of all the classes

The methods described below are available in all the classes. The methods that are inherited
from OBound are not documented here (BindToBinder in particular). Please see the Oracle
Objects for OLE C++ online help system for more information on OBound and its methods.

operator= and copy constructor

All of these classes define the assignment operator and copy constructor in the class definition
but do not implement them. This prevents the use of the compiler's default assignment operator
(or copy constructor), which would be wrong. Neither the assignment operation nor construction
by copy is defined for any of these classes. If you inadvertently use assignment or copy
construction on one of these objects, you get a link error.

The individual classes

OBoundEdit
This is the class you will most often use. It displays the database value in a text Edit control. It
has the additional method:

OBoundEdit

Usage: OBoundEdit(TWindow* parent, int Id, const char far* text, int x, int y, int w, int h, UINT
textLen = 0, BOOL multiline = TRUE, TModule* module = 0)

OBoundEdit(TWindow* parent, int resourceID, UINT textLen = 0, TModule* module = 0)

The arguments to the constructors are the same as for the TEdit constructor.

SetProperty

This method specifies whether the control is read-only or read-write.

Usage: oresult SetProperty(bool mode=OBOUND_READWRITE);

mode a flag indicating whether the control is read-only or read-write. It can be either:
OBOUND_READWRITE
OBOUND_READONLY

OBoundStatic

OBoundStatic

usage: OBoundStatic(TWindow* parent, int Id, const char far* title, int x, int y, int w, int h,
UINT textLen = 0, TModule* module = 0);
OBoundStatic(TWindow* parent, int resourceId, UINT textLen = 0, TModule*
module = 0);

The arguments to the constructor are the same as for the TStatic class. Widgets of this class are
always read-only.

OBoundCheckBox

This class allows you to display and edit database values as a checkbox. It is of greatest value
for a database field that only has two possible values, such as TRUE and FALSE. The
SetProperty method enables you to specify what value will be considered "on" and what value
will be considered "off". When the user checks the checkbox, the field data is set to the "on"
value. When the user unchecks the checkbox, the field data is set to the "off" value.
If the field value is neither "off" nor "on", the checkbox behaves as follows:

If the checkbox is tristate, it is placed into the "grayed-out" state.
If the checkbox is not tristate, it is off.

OBoundCheckBox

Usage: OBoundCheckBox(TWindow* parent, int Id, const char far* title, int x, int y, int w,
int h, TGroupBox *group = 0, TModule* module = 0)
OBoundCheckBox(TWindow* parent, int resourceID, TGroupBox *group = 0,
TModule* module = 0)

SetProperty

This method specifies whether the control is read-only or read-write, and what the "on" and "off"
values are for the checkbox.

Usage: oresult SetProperty(const OValue onvalue, const OValue offvalue, bool
mode=OBOUND_READWRITE)

onvalue the value corresponding to the checkbox being checked
offvalue the value corresponding to the checkbox being unchecked
mode a flag indicating whether the control is read-only or read-write. It can be either:

OBOUND_READWRITE
OBOUND_READONLY

OBoundRadioButton

A single radio button cannot represent a database field value. A group of radio buttons can
represent a value. Each radio button corresponds to a single possible value, and the single radio
button that is on indicates the actual database field value. Choosing a different radio button
changes the field value.

Before constructing the OBoundRadioButton, you may need to construct a TGroupBox object
to group the radio buttons. This works the way the TRadioButton class works.

If the current field value does not correspond to the value of any of the radio buttons in the group,
none of the radio buttons are selected.

OBoundRadioButton

Usage: OBoundRadioButton(TWindow* parent, int Id, const char far* title, int x, int y, int w, int h,
TGroupBox *group = 0, TModule* module = 0)
OBoundRadioButton(TWindow* parent, int resourceID, TGroupBox *group = 0, TModule*
module = 0)

The arguments to these constructors are the same as for TRadioButton.

SetProperty

This method specifies whether the control is read-only or read-write, and what value this radio
button represents.

Usage: oresult SetProperty(const OValue value, bool mode=OBOUND_READWRITE)

value the value that this radio button represents
mode a flag indicating whether the control is read-only or read-write. It can be either:

OBOUND_READWRITE
OBOUND_READONLY

OBoundHSlider

A slider is a combination of a scroll bar. It is suitable for displaying and editing numeric data that
has a known range. The data is displayed and edited using the scroll bar.

You must create OBoundHSliders programmatically.

OBoundHSlider

Usage: OBoundHSlider(TWindow* parent, int Id, int x, int y, int w, int h, TResId thumbResId =
IDB_HSLIDERTHUMB, TModule* module = 0);

The arguments to this constructor are the same as for THSlider.

SetProperty

This method specifies whether the control is read-only or read-write, sets the range of the scroll
bar.

Usage: oresult SetProperty(const OValue &minvalue, const OValue &maxvalue, bool
mode=OBOUND_READWRITE)

minvalue the minimum value of the scroll bar
maxvalue the maximum value of the scroll bar
mode a flag indicating whether the control is read-only or read-write. It

can be either:
OBOUND_READWRITE
OBOUND_READONLY

OBoundVSlider

This class is the same as OBoundHSlider, except that it is vertical instead of horizontal. See the
OBoundHSlider documentation above.

OBoundGauge

This class provides you with a gauge display of a database field value. It is suitable for displaying
numeric data with a known range. It is always read-only. You must create OBoundGauge
programmatically.

OBoundGauge

Usage: OBoundGauge(TWindow* parent, const char far* title, int Id, int x, int y, int w, int h, BOOL
isHorizontal = TRUE, int margin = 0, TModule*module = 0)

The arguments to this constructor are the same as for TGauge.

SetProperty

This method sets the range of the gauge.

Usage: oresult SetProperty(const OValue &minvalue, const OValue &maxvalue)

minvalue the minimum value of the scroll bar
maxvalue the maximum value of the scroll bar

