
Oracle Power Objects™ User’s Guide

Version 1.0
Part No. A25660-5

July 1995

Oracle Power Objects User’s Guide, Version 1.0

Part No. A25660-5

Copyright © Oracle Corporation 1995

Contributing Authors: Thomas Grant, Jeff Levinger, Christopher Roberts

Contributors: Matthew Bennett, John Butcher, Paul Genteman, Adam Greenblatt, Tanya Jenkins, Jennifer Krauel,
Ronnie Lashaw, David Levine, Diana Lorentz, Steven McAdams, Michael Roberts, Ned Young

This software/documentation contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse engineering of
the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not within the Department of Defense, then it
is delivered with “Restricted Rights”, as defined in FARS 52.227-14, Rights in Data - General, including Alternate III
(June 1987).

The information in this document is subject to change without notice. If you find any problems in the documentation,
please report them to us in writing. Oracle Corporation does not warrant that this document is error-free.

Oracle and SQL*Net are registered trademarks and Oracle7, PL/SQL, and Oracle Power Objects are trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only, and may be trademarks of their respective
owners.

These programs were not developed for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It is the customer’s responsibility to take all appropriate measures to ensure the safe use of such applications if
the programs are used for such purposes.

P r e f a c e

Welcome to Oracle Power Objects, a powerful object-oriented, client/server
development tool. Oracle Power Objects is designed to help you develop both
simple and advanced applications quickly and easily.

This preface has the following sections:

Who Should Use This Manual?
Conventions Used in This Manual
The Oracle Power Objects Documentation Set
Getting Help
What Is Oracle Power Objects?

iv

Who Should Use This Manual?

This manual is designed for anyone using Oracle Power Objects, including the following:

■ Intermediate and advanced developers in a GUI environment.
■ Intermediate and advanced database application developers.

This manual assumes the following knowledge:

■ Familiarity with relational database system (RDBMS) concepts.
■ Familiarity with the operating system used on client systems.
■ General experience with development concepts and techniques.

Conventions Used in This Manual

Text Conventions

The following text conventions indicate special terms in this manual.

Convention Type of Term Examples

boldface button text labels the Cancel button

menu commands the File-Open... menu command

property and method names the RecordSource() property
the Validate() method

monospace text to be entered by the reader type the value Smith

variable names the variable vEmpName

ALL CAPS SQL keywords SELECT
COMMIT

table and column names the EMP table
the ENAME column

“in quotes” file names the “makedemo.sql” script

object names the “Total Salary” field
the “Departments” form

P R E F A C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

v

Keyboard

In this manual, the term “Return key” refers to the Return key on a Macintosh and to the Enter key
in Microsoft Windows.

Mice and Other Pointing Devices

Microsoft Windows and the Macintosh both support a wide array of mice and other pointing
devices. Usually, a Macintosh mouse has only one button, while a PC mouse has two. In this
manual, unless otherwise stated, the term “mouse button” refers to the standard mouse button on a
Macintosh, to the left mouse button in Microsoft Windows.

The Oracle Power Objects Documentation Set

The documentation accompanying Oracle Power objects includes the following:

■ Context-sensitive online help. The online help file, PWROBJX.HLP, includes a complete
language reference, descriptions of the objects used during development, and guidelines for
completing many common development tasks. For more complete information on many
important components of Oracle Power Objects, you should consult this User’s Guide.

■ Getting Started with Oracle Power Objects. This book provides a quick overview of Oracle Power
Objects, as well as a tutorial. The Getting Started manual uses one of the sample applications,
MLDEMO.POA, to illustrate how to perform many development tasks. The tutorial in the
User’s Guide provides a general introduction to Oracle Power Objects; for a more complete
grasp of many aspects of Oracle Power Objects, you should consult this User’s Guide.

■ Oracle Power Objects User’s Guide. The book you now hold explains all the important concepts
behind Oracle Power Objects, describes in depth the components of an Oracle Power Objects
database application, explains how to complete many important development tasks, and
provides many important kinds of reference material. For a quick introduction to Oracle Power
Objects, you should follow the tutorial in the Getting Started manual.

■ Sample Applications Guide. This reference describes the development tasks illustrated in the
sample applications provided with Oracle Power Objects.

vi

Getting Help

The online help file, PWROBJX.HLP, is context sensitive. In Windows, you can invoke context
sensitive help by pressing F1 while the focus is on a particular component of the Oracle Power
Objects desktop. The online help file opens and displays a relevant topic. In addition, you have
several other ways to reach the reference material provided in the online help file:

■ If you want to see the Table of Contents, choose the Help-Contents menu command.

You can then navigate through several lists of functionally related topics.

■ By entering a keyword in the top window, you then see a list of related topics appear in the
bottom window. You can jump to a topic by double-clicking on its title in the bottom window.

What Is Oracle Power Objects?

Oracle Power Objects is a software development tool that combines the database capabilities of
high-end tools with the ease of use of low-end tools. In addition, Oracle Power Objects is designed
for developing client/server applications, and it provides the benefits of an object-oriented
development model.

Object-Oriented Development

Object-oriented

development is

explained in Chapter

1, “Application

Development with

Oracle Power

Objects” and Chapter

3, “Objects”.

In Oracle Power Objects, every component of the application, from the database (or “back end”) to
the client interface (or “front end”) is an object that can be identified and manipulated using the
same techniques. All the objects with which you’ ll be working have properties and, in most cases,
methods, regardless of the type of object.

This object-oriented approach to development simplifies the task of creating applications, and it
reflects more closely than other development models how you think about the components of an
application. Generally, when you work with the definition of a form, a report, or a table, you think
about how to manipulate some aspect of the object. In the case of a form, for example, you try to
determine its proper height or width, or more importantly, what tables or views should be
represented on the form. By changing a property of a form, therefore, you set some significant
characteristic of it.

Similarly, you want objects to perform actions or respond to them. For example, you want the form
to do something when the user presses the OK button. By adding code to a method that is part of
the pushbutton, you can determine what happens when the user pushes the button.

In other words, instead of using a different kind of tool for each kind of object, you use the same
techniques and the same tool for all objects that are part of the database application.

P R E F A C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

vii

Local and Remote Database Capabilities

When you develop a database application, you do not want to be limited to a particular database
platform. In addition, you may want to run a prototype of your application on a local database
before tying up or modifying the remote server, which may be in use by many other clients. Once
you have finished prototyping the application, you can then export the definitions of all the tables,
views, sequences, and indexes to the remote server, minimizing the downtime needed to implement
a new client/server application.

Oracle Power Objects provides connections to many leading relational database engines, including
Oracle7, Microsoft SQL Server, and Sybase SQL Server. Additionally, on the client, Oracle Power
Objects provides connectivity to Personal Oracle7 and to Blaze, a local RDBMS engine provided
with Oracle Power Objects. Aside from providing an alternative to remote connectivity for many
applications, both Oracle7 and Blaze can be powerful prototyping aids.

In addition to this flexibility in database platform choices, Oracle Power Objects further helps you
develop applications by automating many aspects of database connectivity. By dragging the
description of a table onto a form, you automatically connect the form to that table. This feature
lets you focus on designing the application, instead of writing code to connect the front end to the
back end.

Familiar Programming Language

Oracle Power Objects uses Oracle Basic, a VBA-compliant programming language, for all the code
you write. Oracle Basic follows the conventions of Visual Basic for Applications, so if you have
programmed applications in Microsoft Visual Basic or Microsoft Access, you are already familiar
with Oracle Basic.

Rapid Application Development

All of the features described so far let you develop applications more quickly than has been possible
before. In addition, Oracle Power Object’s GUI-based interface makes it easy to manipulate the
objects that form your application.

Client/Server Architecture

Finally, while Oracle Power Objects gives you the flexibility to develop nearly any kind of
application, it is specifically designed for building database applications in a client/server
environment. You can select the database engine of your choice for its security, performance,

viii

scalability, and other important features, while still using the same front end on the client system.
Additionally, you can select the best way to enforce a particular business rule, from either the client
or the server.

T A B L E O F C O N T E N T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

ix

Table of Contents

Preface

1 Application Development with Oracle Power Objects
The Components of a Database Application .1.2

Object-Oriented Development .1.2
The Back End: Sessions and Databases .1.4
The Front End: Recordsets and Bound Containers 1.6
The Big Picture: The Front and Back Ends .1.7
Transaction Processing. .1.7

The Oracle Power Objects Approach to Development 1.8
Where Should I Start? .1.8
Starting with the Front End .1.9
Starting with the Back End. .1.10
How Should I Design My Classes and Libraries?.1.12

2 The Oracle Power Objects Environment
Overview .2.2
The Oracle Power Objects Desktop .2.2

Launching Oracle Power Objects .2.4
The Main Window. .2.5

Deleting a File Object .2.8
Application Windows .2.8
Designer Windows .2.13

Running Forms and Reports .2.16
The Database Session Window .2.18
Database Object Windows .2.20

The Table Editor window .2.20
The Table Browser Window .2.23
The View Editor window .2.24
The View Browser window .2.25

The Library Window .2.26
References to Library Bitmaps. .2.26

The Property Sheet .2.27
Sections of the Property Sheet .2.28
Properties .2.30
Methods. .2.33

The User Properties Window .2.34
The Object Palette .2.36

Moving and Resizing Objects .2.37

x

3 Objects
Overview . 3.2
Types of Objects. 3.2

File Objects. 3.3
Database Objects. 3.3
Application Objects . 3.4
Designer Objects . 3.4
In-Memory Objects . 3.7

Containers . 3.8
Applications . 3.9
Libraries . 3.9
Sessions . 3.10
Forms, Reports, and Classes . 3.10
Designer Objects . 3.11

Object Containment Hierarchy . 3.12
Object Characteristics (Properties and Methods) . 3.13

Properties . 3.14
Methods . 3.17

Object Names. 3.20
Naming Rules . 3.20
Renaming Objects . 3.22
Hierarchical Names . 3.23

Object References . 3.25
Object Datatype . 3.25
Relative References . 3.25
Restrictions on Object References . 3.28

Object Classes and Inheritance . 3.29

4 Oracle Basic
Overview . 4.2
Oracle Basic Language Components . 4.3

Values and Datatypes . 4.3
Literals . 4.4
Variables . 4.6
Symbolic Constants . 4.10
Operators . 4.12
Built-in Functions. 4.17
Commands. 4.21
Expressions . 4.22
Object Properties . 4.23
Object Methods . 4.23

T A B L E O F C O N T E N T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

xi

5 Methods and Method Code
Overview .5.2

Triggering Methods .5.2
Creating a Method .5.4
Writing Method Code .5.5
Methods, Default Processing, and Method Code.5.6
Overloading Method Declarations .5.7
Suggestions and Cautions .5.7

Debugging Method Code .5.9
The Run-Time Debugger .5.9
Setting a Breakpoint .5.12
Removing a Breakpoint .5.13
Setting a Watchpoint .5.13
Moving Execution to Any Point Within the Method 5.14

6 Databases
Overview .6.2
Database Sessions .6.3

Creating a Database Session .6.5
Connect Strings. .6.6
Activating and Deactivating a Database Session.6.10
The Default Session .6.12
Using Sessions in an Application .6.13
Example: Creating a Logon Dialog Box .6.15
Properties and Methods of Database Session Objects6.19

Blaze Databases .6.20
When Should I Use a Blaze Database? .6.20
When Should I Use an External Database? .6.21

Oracle7 Servers .6.21
Oracle7 Documentation .6.22

SQL Server Databases .6.22

7 Blaze Databases
Overview .7.2
Creating a Blaze Database .7.2
Schemas in a Blaze Database .7.3
Data Dictionary .7.4
SQL Language .7.5
Blaze Database Files .7.5

Structure of a Database File. .7.6
Sessions. .7.7

Read-Write Sessions. .7.7
Read-Only Sessions .7.8

Specifications .7.8

xii

8 Database Objects
Overview . 8.2
Tables . 8.6

Creating a Table . 8.8
Editing Table Definitions . 8.12
Editing the Contents of a Table . 8.14
Using Tables. 8.16

Views. 8.16
Creating a View . 8.18
Editing View Definitions . 8.21
Editing the Contents of a View . 8.23
Using Views . 8.23

Indexes . 8.24
Creating an Index . 8.24
Using Indexes . 8.25

Sequences . 8.26
Creating a Sequence . 8.26
Using Sequences in Applications . 8.28
Using Sequences in SQL Statements . 8.28

Synonyms . 8.29
Creating a Synonym . 8.29
Using Synonyms . 8.30

Copying a Database Object. 8.30
Deleting a Database Object. 8.31

9 Structured Query Language (SQL)
Overview . 9.2
SQL Language Components . 9.2

Values and Datatypes . 9.3
Objects . 9.7
Literals . 9.8
Operators . 9.10
Functions . 9.11
Expressions . 9.11
Conditions . 9.12
Commands. 9.13
Procedural Extensions . 9.14

Executing SQL Statements . 9.15
The EXEC SQL Command. 9.15
The SQLLOOKUP Function . 9.21

T A B L E O F C O N T E N T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

xiii

10 Applications and Application Objects
Overview .10.2

Applications and File Objects .10.2
Creating a New Application .10.3

Application Object Types .10.4
Containers .10.6
Bindable Containers .10.6

Types of Containers .10.7
Forms. .10.7
Reports. .10.8
Embedded Forms .10.8
Repeater Displays .10.9
Other Containers. .10.11

Controls and Static Objects .10.11
Bindable Controls .10.12
Control Values .10.12
Derived Values .10.13
Display Values and Internal Values .10.14
List Controls .10.15

Types of Controls .10.16
Chart Controls .10.16
Check Boxes .10.19
User-Defined Classes .10.20
Combo Boxes .10.22
Current Row Pointers .10.23
List Boxes .10.24
OLE Objects .10.24
Picture Controls. .10.25
Popup Lists .10.25
Pushbuttons .10.26
Radio Buttons .10.26
Radio Button Frames .10.28
Scrollbars. .10.28
Text Fields .10.29

Types of Static Objects .10.30
Lines. .10.30
Ovals .10.30
Rectangles .10.31
Static Text .10.31

Interacting with Application Objects .10.31
Format Masks .10.31
Tab Order .10.38
Validation. .10.39
Enabling and Disabling Controls .10.39

xiv

11 Forms
Overview . 11.2

What Is a Form?. 11.2
Developing Forms . 11.3

Creating a New Form . 11.3
Deleting a Form . 11.5
Copying a Form . 11.6
Cutting and Pasting a Form . 11.6
Adding Objects to a Form. 11.6

Testing a Form . 11.8
Forms in Design Mode . 11.8
Forms in Form Run-Time Mode . 11.9
Forms in Application Run-Time Mode . 11.10

Forms and Modality . 11.11
Dialog Boxes . 11.12

Forms and Window Styles . 11.13
Controlling the Behavior of Forms. 11.13

Printing a Form . 11.14
Query by Form . 11.14

Using Query By Form . 11.15
Entering Criteria. 11.16
Some Considerations When Entering Conditions 11.17
Clearing Query Conditions . 11.17
Using QBF with Master-Detail Relationships . 11.17
QBF Syntax . 11.18

Queries, Conditions, and Forms: A Summary. 11.19
The DefaultCondition property. 11.19
The QueryWhere() method . 11.19
Query by Form. 11.20

12 Reports
Overview . 12.2
The Areas of a Report . 12.2
Creating a Report. 12.3
Designing Areas of a Report . 12.4

Resizing Areas of a Report . 12.5
Adding Objects to a Report . 12.6

Reports and Recordsets . 12.7
Defining Filters for the Report . 12.7

Populating Controls on a Report . 12.7
Binding Controls to Columns . 12.8
Using Derived Values . 12.9
Using SQLLOOKUP . 12.10

Working with Report Groups . 12.10
Testing the Report . 12.12

T A B L E O F C O N T E N T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

xv

Printing a Report .12.13
Standard Methods for Printing a Report. .12.13
Previewing a Report .12.13
Starting a New Page .12.14
Printing Headers and Footers .12.14

Representing Master-Detail Relationships in a Report 12.15
Using SQLLOOKUP. .12.15
Using a Bound Container .12.16

Adding a Chart to a Report .12.17
Charts for Report Groups .12.18
Charts for the Entire Report .12.18
Charts for Individual Records .12.19

Other Report Considerations .12.19
Page Width .12.19
Fonts and Reports. .12.19
Graphics in Reports .12.20

13 Classes
Overview .13.2

Standard and User-Defined Classes .13.2
The Object Inheritance Hierarchy .13.3
Classes as Containers .13.8

Object References to Master Class Definitions .13.9
Developing Classes. .13.9

Creating User-Defined Classes .13.9
Adding Objects to a Class .13.10
Adding an Instance of a Class .13.10

A Sample User-Defined Class .13.10
Subclasses .13.12

14 Menus, Toolbars, and Status Lines
Overview .14.2
Menus .14.3

Creating a Menu Bar .14.5
Initializing a Menu Bar .14.5
Creating Custom Menus. .14.7
Adding Menus to a Menu Bar .14.12
Associating Menu Bars with Windows .14.13
Handling Menu Selections .14.14
Example: Creating a Menu Bar .14.18

Toolbars .14.20
Overview of Creating Toolbars .14.21
Creating a Toolbar. .14.22
Initializing a Toolbar .14.22

xvi

Adding Buttons to a Toolbar. 14.23
Associating Toolbars with Windows . 14.27
Handling Toolbar Clicks . 14.28
Example: Creating a Toolbar . 14.31

Status Lines . 14.34
Overview of Creating Status Lines. 14.34
Creating a Status Line . 14.35
Initializing a Status Line . 14.35
Adding Panels to a Status Line . 14.36
Associating Status Lines with Windows . 14.38
Updating Status Panels. 14.39
Example: Creating a Status Line . 14.42

Properties and Methods . 14.44
Menu-Related Properties and Methods. 14.44
Toolbar-Related Properties and Methods . 14.46
Status Line-Related Properties and Methods . 14.48

15 Oracle Power Objects Extensions
Overview . 15.2
OLE Data Objects and Controls . 15.2

OLE in Oracle Power Objects . 15.3
An Overview of OLE . 15.3
Linking and Embedding . 15.4
Classes of OLE Objects . 15.5
OLE Controls . 15.5
Binding OLE Controls . 15.8
OLE Data Objects and Files. 15.8
OLE Data Objects and the Clipboard . 15.9
Restrictions on OLE-Enabled Applications . 15.9

Dynamic Link Libraries . 15.10
Declaring DLL Procedures . 15.10
Sample Declarations . 15.11
Creating Flexibility in DLL Procedures. 15.12
Calling DLL Procedures. 15.12
Passing Arguments to a Procedure . 15.13
The Windows API . 15.13
Other Considerations . 15.14

OCX Controls . 15.14
Creating OCX Controls . 15.15
Importing an OCX into Oracle Power Objects 15.16
OCX Properties and Methods. 15.17
Restrictions on OCX-Enabled Applications . 15.18

T A B L E O F C O N T E N T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

xvii

16 Compiling the Executable Application
Overview .16.2

Compiling for More Efficient Execution .16.2
Compiling for Standalone Execution .16.2

Generating Application Files and Executables .16.3
Creating Run-Time Executable Files .16.4
Creating Standalone Executable Files. .16.4

17 Binding a Container to a Record Source
Overview .17.2

Relationship Between Containers and Record Sources 17.3
Relationship Between Controls and Record Sources 17.3
Other Ways to Connect Objects. .17.4

Binding Objects Graphically. .17.4
Binding Objects Manually by Setting Properties .17.8
Recordset Objects and Bound Containers .17.9

Structure of a Recordset. .17.10
Shared Recordsets .17.19
Requerying a Recordset .17.21
Making Changes to Data in a Recordset .17.23
Standalone Recordsets. .17.27
Properties and Methods of Recordsets and Bindable Objects17.31

18 Defining Master-Detail Relationships
Overview .18.2

Master-Detail Relationships and Joins .18.2
Automated Joins in Oracle Power Objects .18.2
Referential Integrity .18.3

Defining Master and Detail Containers .18.4
Setting the Primary Key .18.6

Integrity Checks. .18.6
LinkMasterUpd Property .18.6
LinkMasterDel Property .18.7

Options for Displaying Master and Detail Records 18.8
Placing the Detail Records on the Form .18.9
Placing Detail Records on a Separate Form .18.10
Creating a Drilldown Form. .18.10
Other Options for Displaying Master-Detail Relationships18.11

xviii

19 Using Constraints to Enforce Business Rules
Overview of Constraints . 19.2
Constraints in the Database . 19.2
Types of Database Constraints . 19.3

Not Null Constraints . 19.3
Unique Constraints . 19.3
Primary Key Constraints . 19.4
Foreign Key Constraints . 19.7
Check Constraints . 19.7
List of Supported Constraints. 19.8
Other Database Integrity Checks . 19.8

Defining Database Constraints . 19.9
Defining Constraints in the Table Editor Window. 19.9
Defining Constraints Using SQL Commands
or System Procedures. 19.10

Removing Database Constraints . 19.12
Dropping Constraints in the Table Editor Window 19.12
Dropping or Disabling Constraints Using SQL Commands
or System Procedures. 19.13

Constraints in the Application . 19.13
Control-Level Constraints . 19.14
Row-Level Constraints . 19.20
Master-Detail Constraints . 19.23
Session-Level Constraints . 19.26
Other Client-Enforced Constraints . 19.27

Using Database and Application Constraints Together 19.28
Server-Enforced Constraints. 19.28
Client-Enforced Constraints . 19.29

A Suggested Coding Standards

B List of Properties and Methods

C Constants and Reserved Words

Index

1
A p p l i c a t i o n D e v e l o p m e n t
w i t h O r a c l e P o w e r
O b j e c t s 1

This chapter covers the following topics:

The Components of a Database Application . 1.2
The Oracle Power Objects Approach to Development 1.8

1.2

The Components of a Database Application

Application development poses a number of challenges and choices for database application
developers of all types. Oracle Power Objects has been designed to address these challenges,
whether your application is designed to access data locally, from a database on the same PC or Mac
where the executable file is situated, or remotely, from a database platform like Oracle7 or SQL
Server. Oracle Power Objects can simplify client/server development in the following ways:

■ An object-oriented development model lets you apply the same methodology to working with
all objects, from tables and views on the “back end” , to forms, text fields, and bitmaps on the
“front end” .

■ Drag-and-drop features help you bind forms and reports to tables and views.
■ Automated transaction processing removes the need to write large amounts of code, or any

code at all in many cases, to manage transactions.

Before you use Oracle Power Objects, you should understand the nature of the object-oriented
model behind it, as well as the features that simplify database connectivity and transaction
management. This chapter provides an overview of how an Oracle Power Objects application is
constructed, and how to begin taking advantage of its object-oriented and automated features.

Object-Oriented Development

In the strictest object-oriented model, every component of an application is presented to the
developer as an object. In these terms, an object has two different sets of components:

■ Properties determine the appearance, behavior, and other features of the object. The
background color of a form, the string used to open a database session, and the main table for a
report are all properties of those objects.

During run time, the application can evaluate the value assigned to a property, and when
required, assign a new value to it. When you press a pushbutton on a dialog, for example, the
application checks to see if this button’s Enabled property is set to the Boolean value of True. If
so, then you can press the button; otherwise, nothing happens. At run time, the application can
disable the pushbutton by assigning the Boolean value of False to the pushbutton’s Enabled
property.

For more information

on writing method

code, see Chapter 5,

“Methods and

Method Code”.

■ Methods perform some processing related to the object. For example, if you want to open a
form when you press a pushbutton, you would add the necessary code to the Click() method
of the pushbutton. Method code is written in the Oracle Basic programming language, and is
added to the method itself through a window in the Property sheet.

Most standard methods (that is, those that are part of the object’s default definition) have
default processing associated with them. For example, the OpenWindow() method of a form
has default processing that loads the form into memory and displays it. When a standard

A P P L I C A T I O N D E V E L O P M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

1.3

method has default processing, you can add code that either replaces the default processing or
adds to it. As part of its default processing, one method often calls another. This means that if
you interrupt the default processing for one method, the next in the chain will not be called.

You can also create your own user-defined methods, which you then add to an object.

During development, therefore, you work with the properties and methods of objects in two ways:

■ Evaluating the current value assigned to a property, or assigning a new one to it.
■ Calling a method, or defining what the method does through method code.

 Development in an Object-Oriented Environment

In addition to changing the characteristics of individual objects, you also define the relationships
between objects. For example, when you bind a form to a table, you are defining the relationship
between an application object and a database object. When you reorder the data retrieved from the
table and displayed in the form, you are further defining the relationship between these two
objects. The same holds true of a pushbutton that, when pressed, opens the form: the method code
you add to the Click() method on the pushbutton defines a relationship between the pushbutton
and the form.

Each object has a large range of standard properties and methods; thus, the characteristic you want
to take, or the action you want to perform, is often already contained in a property or method. As
needed, however, you can also add new, user-defined properties and methods. You add a new
property to an object when you decide that it needs an added characteristic (for example, the
security level needed to open a form). You add a new method when you want to define a new
processing task not covered by the standard methods (for example, performing a tax calculation).

In essence, object-oriented development codifies how you already think about applications.
Generally, before doing the actual development work, you envision what objects you need, what
characteristics they have, and how an action taken on one object (for example, a pushbutton)
affects another (for example, a form). You then have a common methodology for working with
nearly every object in Oracle Power Objects. Regardless of whether the object is a database session
or a radio button, you evaluate or change one of its properties, or call one of the object’s methods
to perform a task.

Object-Oriented Development: Other Considerations

Object-oriented development has three other important features:

■ Modularity: In an object-oriented development environment, objects should include a
complete definition of their characteristics; nothing about their methods and properties should
be defined outside the object itself. This feature makes it possible to copy an object into other
forms, reports, user-defined classes, sessions, or applications without losing any aspect of its
behavior, appearance, or other important characteristics.

1.4

■ Hierarchical containment structure: In an object-oriented application, some classes of objects
can contain other objects. For example, a form can contain controls, static objects, and even
other containers (such as a repeater display). Object-oriented development tools let you define
how some objects contain other objects, and let you resolve the object containment hierarchy
from top (for example, an application) to bottom (for example, a pushbutton inside a form).

■ Reusability: As much as possible, you should design objects to be reusable. In Oracle Power
Objects, user-defined classes and bitmap objects are the most explicitly reusable kind of
application objects, though you can easily copy entire forms and reports between applications.
In the case of user-defined classes, you define a general type of control, and then instantiate it
throughout applications. The instances of the class can be exact copies, or they can include
modifications as needed. The important point, however, is that you can create the user-defined
class, and then reuse it in any number of places.

The Back End: Sessions and Databases

For more information

on sessions and sche-

mas, see Chapter 6,

“Databases”.

In Oracle Power Objects, the session object exists on the “back end” of the database application.
Sessions provide access to database objects (tables, views, sequences, and indexes) stored in a
database, as well as the data stored in tables and views. You can use multiple sessions in an
application; in fact, a single form, report, or user-defined class also can access multiple sessions.

For more information

on database objects,

see Chapter 8, “Data-

base Objects”.

Through the properties and methods of the session object, you control whether the connection to
the database is open or closed. Through the database schema defined for the session, you control
the range of database objects available through the session. Many database engines use schemas to
limit the database objects available to individual users. For example, a system administrator’s
schema will have access to all database objects, but average users might be able to edit only the data
from the tables and views needed to perform their jobs.

In Oracle Power Objects, the session is represented by a separate window, in which all the database
objects available through that session appear. By double-clicking on the session icon, you can
activate and deactivate the connection to the database. While the connection is active, the Database
Designer window displays all database objects available in that session. In addition, during
development, you can add new database objects and edit existing ones while the connection is
open.

Development Questions

When you develop the back end of a database application, you need to answer a number of
questions:

■ What information should be stored in the database?

In other words, what kinds of company data need to be stored and managed in the database, or
are already maintained there?

A P P L I C A T I O N D E V E L O P M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

1.5

■ How should I organize this information?

You arrange the data into logical groupings by creating tables. For example, you would want to
organize all global customer information in one table, while all orders made by these customers
would appear in a different table. The task of breaking down these logical groups is called
normalization, which is a vital procedure when working with relational databases. In an
RDMBS, the tables must be organized sensibly before you can relate the information stored in
separate tables. Normalization also prevents the duplication of the same data in separate tables.
You must have intelligently designed the tables holding customer information and orders, for
example, before you can view orders according to the customers who made them.

Normalization can be a complex process, well beyond the purview of this manual to describe.
For more information, consult one of many excellent textbooks on normalization and database
design.

As a database application developer, you also create views, which are virtual or logical tables that
combine information from several tables. A view does not actually store data; instead, it
provides a way to view related information from multiple tables.

■ Are unique ID numbers needed to sequence records?

A sequence is a database object that generates a new unique ID number whenever you insert a
new record into a table.

■ How can I fine tune the database to provide maximum performance?

Part of the reason you normalize databases is to increase performance, so that queries do not
have to sort through large amounts of irrelevant data. Additionally, by adding indexes to tables,
you increase the speed with which the database engine can query data.

■ How can I provide maximum flexibility for querying?

The most important reason to normalize information in a relational database is to provide a
great deal of flexibility when querying data. By breaking data down into the smallest functional
chunks possible, you make it easier to build queries connecting related information in countless
ways, without a great deal of elaborate SQL programming. Users of the database, then, can
easily examine relationships among different pieces of information as needed, without being
tied to a rigid organization of the data.

■ How should I enforce constraints on the server?

To ensure consistent application of a constraint, no matter who accesses the database, you
should define many constraints on the server itself.

■ How can I maintain system security?

As with constraints, consistent application of security rules is one of the important features of a
client/server system. In systems supporting schemas, you need to intelligently define the
schemas to include only the information needed in each schema, and no more. In many
database engines, you can use a variety of server-enforced measures to control access to sensitive
data.

1.6

The Front End: Recordsets and Bound Containers

On client systems, two different kinds of objects can interact with a database: recordsets and bound
containers.

What Is a Recordset?

A recordset is a set of rows, queried from a table or view, that is held in the client system’s memory.
Normally, to prevent large network traffic and client memory problems, the application populates
the recordset with only a subset of the entire recordset. When the application needs to display
further records, or when it has to perform some aggregate operation involving all records in a table
or view, it queries more records as needed.

When the user or the application makes changes to records, the changes are first recorded in the
recordset, not in the database. At some point, the application sends the changes to the database.
During this process, the application may have achieved a lock on the data, preventing other users
from editing the same record, or it may recognize changes made to the record since it was originally
queried.

Recordsets do not have to include all the columns from their associated table or view. In fact, in
most cases, when a recordset is associated with a bound container, the recordset includes only those
columns needed to display data within text fields and other controls in the container.

Most recordsets are associated with a bound container, though in Oracle Power Objects you can
also create unassociated recordsets.

What Is a Bound Container?

A bound container is an interface object that displays data queried from a table or view. After
querying records, controls in the container can then display values from the columns in the queried
recordset. In Oracle Power Objects, a bound container can be a form, a report, an embedded form,
a user-defined class, or a repeater display. Not all bindable containers need to be bound to a record
source: for example, many dialogs are forms that have no associated table or view. However, all
bound containers have associated recordsets, which are populated by database queries while the
container is loaded into memory.

Inside a bound container are bound controls, which are connected to columns within the
associated recordset. For example, within a form designed to display customer records, several text
fields display the customer’s name, address, phone number, and other important information. The
information in each text field comes from different columns in the recordset.

A container is one type of application object among many. The definitions of application objects
are stored in .POA files, and eventually compiled into an executable application. Other application
objects include controls (for example, pushbuttons), static objects (for example, lines), OLE
objects, imported bitmaps, and user-defined classes.

A P P L I C A T I O N D E V E L O P M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

1.7

The Big Picture: The Front and Back Ends

To summarize:

■ The database contains objects used to store and organize information.
■ A session provides access to the database, as well as to a collection of database objects

determined by the user schema on the database.
■ The front end of the application queries records as needed to populate recordsets.

Recordsets are normally associated with bound containers, which give the user an interface into
the data stored in the database.

The following diagram illustrates the layers of an Oracle Power Objects database application:

Transaction Processing

Based on this picture of an Oracle Power Objects application, any transaction must pass through
several layers, each of which has a different role in controlling transaction processing.

■ Containers. The container is where the user initiates both queries and changes to the recordset.
After adding, deleting, or modifying a record, the user must commit or roll back the transaction
(usually by pressing a button designed for this purpose) before closing the container. In
addition, client-enforced business rules are defined here, limiting the transactions that the user
can initiate. If the system needs to notify the user about the results of an attempted transaction,
the information appears here, in the user interface.

■ Recordsets. Before the user can enter changes to a recordset, the application performs
referential and entity integrity checks on the data. In addition, the application regulates the
amount of network traffic by selectively querying records to populate the recordset, as needed.

ID

Product
Price

Category

Form Recordset Database Session Database

1.8

■ Sessions. After passing through the application and recordset layers, the transaction must then
pass through the session. Several methods can be called on a session object to commit or roll
back all pending transactions associated with that session.

■ Databases Ultimately, a user-initiated transaction reaches the database itself, where the database
engine controls whether or not the transaction is completed. The database engine can enforce
business rules on the server, check to see if the attempted transaction violates security rules, and
perform other important transaction management functions. If the transaction is a query, the
database engine can then send the desired information to the client.

In controlling transactions within a client/server application, therefore, Oracle Power Objects gives
you the option of enforcing business rules, regulating network traffic, and maintaining the integrity
of data. For example, a particular business rule can be enforced as a constraint on the database or as
part of the client application.

The Oracle Power Objects Approach to Development

Good development requires that you make important decisions at the very beginning, so that you
do not have to redo a significant amount of work.

Where Should I Start?

During development, you generally start with the back end or the front end, depending on the
kind of application you are developing and the tool you are using. Desktop development tools let
you develop the user interface first, building forms, reports, and other portions of the client
application. After the user interface is completed, you then build the database objects if needed,
and then connect the interface components to their associated tables and views. Generally, if you
are working with a tool in which a significant amount of programming is needed to connect the
front end components to the back end, you write these procedures last, after you are satisfied that
the user interface is stable and your database objects have been defined. Otherwise, you will spend
a great deal of time rewriting code, as interface components or database objects are redefined.

In contrast, high-end client/server tools often demand that you design the database objects first and
then build the front end. Given the volume of database objects and the difficulty in managing the
relationships among them, the back end must take priority in these kinds of applications. In
addition, the tools themselves often make it difficult to redefine the front end, especially if you are
using some kind of automated system to build forms and reports.

In reality, developers often switch between the back end and front end, instead of exclusively
designing one or the other first. (However, normally one section of the database application gets
emphasis first, even if it does not receive exclusive attention.) Oracle Power Objects is designed to
simplify this kind of incremental development, as long as you have a clear picture of the kinds of
objects you want to create and as the relationships among them.

A P P L I C A T I O N D E V E L O P M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

1.9

Starting with the Front End

Generally, you start developing the front end first when. . .

■ You need to enforce standards, such as the FASB standards for financial applications, through
the client interface.

■ You need to focus your efforts on how the application fits or shapes the workflow process.
■ You have a short time for prototyping the application, placing a premium on developing the

portion users will see.
■ You are using database objects that have already been created, and you simply have to build a

front end for them. However, before you continue, you need to review whether the database
may need some slight modifications. For example, you may decide that the enforcement of a
particular business rule should occur on the client, rather then the server, obviating the need for
a stored procedure designed for this task.

■ The application does not depend a great deal on database access, so you can spend more time
on the user interface.

In these cases, Oracle Power Objects lets you design the different forms and reports that comprise
the user interface separately, and test them as you go. Therefore, application development that
starts with the front end can be highly incremental: you can finish one piece before moving on to
another, or you can work on several separate pieces simultaneously. Modifications are relatively easy
to make, because database connectivity is not yet fully implemented. After creating the separate
forms, reports, classes, and other application objects, you can then decide how the user will
navigate among them. You can also add code to enforce business rules (also known as constraints),
as well as perform important processing tasks, such as calculations.

As you develop the interface objects and their associated tables or views, you may find yourself
making regular adjustments to both, as needed. Tables and views are often designed to mirror the
forms and reports in which their records will appear.

When developing the front end first, ask yourself the following questions:

■ What are the major forms that will appear in the user interface? These will probably be the
first objects you design, along with their associated tables or views.

■ What workflow model will be imposed by the application? In other words, you need to
consider how easily the user can enter data, navigate between forms, and perform other
operations within the application. Additionally, you need to determine whether working with
your application organizes and paces tasks intelligently.

■ What objects need to be defined outside the Oracle Power Objects application and then
imported? For example, if you plan to add bitmap images or other OLE objects, you may need
to develop some of these application resources first.

■ Where is the proper place to enforce constraints, and how should they be enforced? For
example, if you want to ensure that a transaction entered into a purchase order application is
less than a certain amount, you may want to enforce this constraint on the client through

1.10

Oracle Basic code, instead of on the server through a trigger. To do so, you would add the
necessary Oracle Basic code to intercept the transaction before it is committed if it exceeds a
predefined amount.

■ How should you break up the presentation of a single “document”? In this sense, a document
is a distinct entity, such as a purchase order, which is represented in the application. It may seem
thorough to place every field that will contain data relevant to the purchase order on the same
form, but for readability, you may want to break up the mega-form into several smaller forms.

For more information

on classes, see Chap-

ter 13, “Classes”.

■ What interface components will be repeated throughout the application? When you have the
same objects appearing repeatedly throughout an application, you should probably design them
as user-defined classes, stored in either the application or a library. You can add instances of the
user-defined classes to forms and reports, instead of re-creating the same objects over and over
again. For example, if you design a custom set of database browsing controls, you should create
them as a class, so that instances of the same class can easily inherit changes to the master class.

The major disadvantage of developing the front end first is that database design is usually one of
the most important tasks in software development, but the user interface receives the greatest
attention. What is well represented on a single form may be difficult to represent in a table or view,
or even several related tables.

The major features of Oracle Power Objects that let you start development with the front end
include:

■ GUI tools for the rapid creation of new front-end objects.
■ Reusable application objects, created as user-defined classes or library objects.
■ The ability to test a single component of the user interface, such as the main form in the

application, before working with other application objects.
■ A run-time debugger that can interrogate properties, test the code entered for methods, and

perform other important tests.

Starting with the Back End

In this approach to development, you start with your data model (the design of all your tables and
views) before you build the interface. In this case, the database objects take precedence for one of
several possible reasons:

■ The application will be using a large number of tables and views, making it important to
define these first before continuing. As anyone who has worked with relational databases
knows, it is better to have a clear definition of the database objects and their relationships first,
to prevent problems caused by tinkering significantly with them later. If one table in a master-
detail relationship has the datatype for its key value changed, for example, it can wreck the
relationship between the master and detail tables.

A P P L I C A T I O N D E V E L O P M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

1.11

■ You choose to enforce many constraints on the server. In such cases, it makes sense to define
the database objects, as well as the triggers and stored procedures that protect them, before you
work on the user interface. You can then design the client to work with these server-enforced
constraints in several ways, such as capturing error codes generated from the server and
presenting them to the user in a meaningful way.

■ The user interface is effectively a window into the database. In cases where fields on a form are
most often simply representations of tables and views on the server, you can spend less time on
designing the user interface.

■ Server-enforced security is a high priority.
■ Performance requires that you begin working on many server components (for example,

indexes, normalized tables) before proceeding to other parts of the application.
■ Several different user interfaces will use the same tables and views.
■ The application will use complicated master-detail relationships or calculated values. In such

cases, you need to design your tables and views carefully so that you can easily represent one-to-
many relationships within the application. Additionally, an intelligent data model will save you
time otherwise spent revising equations using data queried from the database.

When designing the back end first, you build your data model to provide an efficient and secure
way to access information about “real world” topics. A real-world object can be any entity (for
example, an employee, a general ledger transaction, an inventory item, etc.) you wish to describe in
one or more tables.

When starting with the back end, ask yourself the following questions:

■ What database objects do I need? In essence, what is your data model?
■ How should I organize my data? Again, normalization is important here, as well as

performance.
■ What are the primary tables or views? In almost every data model, some tables are more central

than others. You should therefore consider what will happen when many users try to access this
table on a client/server network, a likely event in the case of important tables or views used by
many people in your organization. Additionally, you should consider how to protect some of
the data from destructive changes (for example, modifications to key values in a master-detail
relationship), as well as unauthorized access.

■ What is the best way to enforce security on the server? There are many ways to answer this
need, from defining schemas that limit user access to database objects, to writing triggers that
prevent changes to the database under certain conditions.

■ Which business rules should be enforced on the server? While you may not want to overload
the server with the job of enforcing every business rule, many constraints are important enough
to enforce on the server, to ensure their consistent application.

1.12

How Should I Design My Classes and Libraries?

Before you start designing your application, consider whether you will be using some objects or sets
of objects repeatedly throughout development. Some examples include:

■ A company logo that appears on many forms.
■ A set of controls used to navigate among records.
■ A set of controls used to filter and sort records.
■ A set of radio buttons used to provide the same set of options in several forms.
■ A series of text fields displaying customer, vendor, or company information in several forms.

Whether you are starting with the back end or front end first during development, these commonly
used application objects should suggest themselves to you as you begin work on the front end.

Creating these objects as user-defined classes, stored in the application or in a library, has the
following advantages:

■ Once you have designed them, adding them to a form or report is as easy as dragging and
dropping.

■ In Oracle Power Objects, instances of a user-defined class or a library object inherit the
properties and methods of the master class definition. So, too, do the instances inherit changes
to these master class definitions. Therefore, modifying frequently used application objects is
much faster when you create them as instances, since you need only modify the user-defined
class or library object to make the same changes to all instances.

The rationale for creating a reusable application object as a user-defined class is simple: Do I want
to use this object in this application only, or do I want to use it in multiple applications?

■ If you want to use the object in several applications, create it as a library object. When you need
to modify the object, it is separated into its own library, much like a dynamic link library in the
PC environment.

■ If you plan to use the object in one application only, create it as a user-defined class. By keeping
the user-defined class in the application, you reduce the number of file objects that you have to
maintain.

Currently, Oracle Power Objects lets you create user-defined classes and bitmaps as library objects.
User-defined classes are the most common library object, because they provide all the functionality
of both containers and controls.

2
T h e O r a c l e P o w e r O b j e c t s
E n v i r o n m e n t 2

This chapter covers the following topics:

Overview . 2.2
The Oracle Power Objects Desktop . 2.2
The Main Window. 2.5
Application Windows . 2.8
Designer Windows . 2.13
The Database Session Window . 2.18
Database Object Windows . 2.20
The Library Window . 2.26
The Property Sheet . 2.27
The User Properties Window . 2.34
The Object Palette . 2.36

2.2

Overview

The Oracle Power Objects user interface (or environment) is designed to display the objects used in
application development in a simple, logical, and useful way. Through a series of windows, you can
perform the following development tasks:

■ Add, modify, and delete objects in applications, libraries, and sessions.
■ Determine the structure of database objects.
■ Enter data into tables and views.
■ Edit the methods and properties of application objects.
■ Establish connections between application objects and database objects.
■ Test application objects to determine their appearance and behavior at run time.

The various windows, toolbars, and other components of the environment are designed to
represent the objects in a database application in a way that reinforces the object-oriented approach
to development. In addition, the interface clearly separates the objects on the back end of the
application (in the database) from those in the front end (in the application).

This chapter describes how the Oracle Power Objects environment is organized, and how to use its
components to design database applications.

Note: This chapter frequently refers to objects and procedures with which you may not be familiar,
if this is the first time you have read this manual. In these cases, the documentation refers you to a
later chapter for further explanation. You can return to this chapter later as a reference to the Oracle
Power Objects development environment.

The Oracle Power Objects Desktop

The Oracle Power Objects Desktop encompasses the entire Oracle Power Objects designer interface.
Several menus and toolbars appear at the top of the window. These menus and toolbars may
change, depending on the active window within the desktop.

Menus provide a set of menu commands for performing development tasks, such as opening an
existing application file object or running a form. Toolbars display a series of buttons that provide
shortcuts for many commonly used menu commands. The Status line at the bottom of the desktop
displays messages about the currently selected item and the status of Oracle Power Objects.

In addition, several types of windows and palettes appear in the desktop:

■ The Main window, which contains icons for applications, database sessions, and libraries.

Menus

Toolbar

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.3

■ Table Editor and Browser windows, used to define the structures of database objects as well as
edit the data stored within them.

■ Application, Session, and Library windows, which contains icons for several types of objects
whose descriptions are stored in the application, session, or library file object.

■ Designer windows, in which you design application and database objects.
■ The Object palette, which provides a set of drawing tools used to create and manipulate many

types of application objects. For example, by selecting one of the buttons on the Object palette,
you can draw a check box on a form.

■ The Property sheet, through which you can edit the properties and methods associated with an
object. The contents of the Property sheet change to display the properties and methods of the
currently selected object.

■ The Run-Time Debugger, used to interrogate values of properties and variables, as well as
perform other important tests.

In Windows, the Oracle Power Objects desktop appears as follows:

Toolbar
Menu bar

Main window

Status area

2.4

On the Macintosh, the Oracle Power Objects desktop appears as follows:

Several windows have their own toolbar and menu bar associated with them. For a complete listing
of menus and toolbars, consult the Getting Started manual, or the topics covering Desktop menus
and toolbars in the online help.

Launching Oracle Power Objects

To launch the Oracle Power Objects Designer application, locate and double-click its icon in your
Macintosh or Windows environment.

When you launch Oracle Power Objects, the Desktop window appears. In addition, the Main
window appears in the area immediately below the menu and toolbar.

Menu bar
Toolbar

Status area

Main window

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.5

To quit Oracle Power Objects, choose the File-Exit menu command in Microsoft windows, or File-
Quit on the Macintosh.

The Main Window

The Main window displays icons representing applications, sessions, or libraries that you have
previously opened or created.

Applications, libraries, and sessions are file objects, because they have a corresponding file in the
operating system. The icons appearing in the Main window for these objects include:

By double-clicking on these icons, you open the Application, Session, or Library window
corresponding to this file object. In these windows, you see other icons representing the contents of
the application, session, or library.

■ Applications can contain forms, reports, user-defined classes, bitmaps, and OLE objects.

Icon Object

Application

Session

Library

2.6

■ Libraries can contain user-defined classes and bitmaps.

■ Sessions can contain tables, views, sequences, and indexes.

You add objects to the Main window by creating new file objects or by opening existing file objects.
The icons representing these file objects appear in the Main window every time you launch Oracle
Power Objects. The file object names and their paths are stored in a file, PWROBJX.INI.

These file objects have the following extensions in Microsoft Windows:

Object Extension Example

Applications .POA MYAPP.POA

Sessions .POS SESS1.POS

Libraries .POL MYLIB.POL

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.7

For more information

on compiling applica-

tions, see Chapter 16,

“Compiling the Exe-

cutable Application”.

Eventually, the contents of these types of files are compiled into an executable file that defines the
run-time application. In the case of sessions, the mapping information describing the database
objects available in the session are compiled; the actual objects, as well as their data, exist within the
database itself. Oracle Power Objects compiles the application into portable code (called “P-code”)
that can be moved between operating systems.

Tasks in the Main Window

You can perform the following tasks in the Main window.

■ Create new file objects.
■ Add existing file objects to the Main window.
■ Remove file objects from the Main window.
■ Open the window for an Application, Library, or Session object.

To create a new file object:

1 With the Main window as the active window, choose the appropriate menu command or button:

For applications, click the New Application button or choose File-New Application.

-or-

For sessions, click the New Session button or choose File-New Session.

-or-

For libraries, click the New Library button or choose File-New Library.

The Create As dialog for the operating system then appears, prompting you to enter a name for the
new file object. In Microsoft Windows, Oracle Power Objects automatically appends the
appropriate extension to the filename.

2 After assigning a filename to the file object, click the OK button in this dialog.

The icon for the new object now appears in the Main window.

To add an existing file object to the Main window:

1 With the Main window as the active window, click the Open button or choose the File-Open
menu command.

2 Using the appropriate dialog from the operating system, select the file you wish to add to the Main
window.

3 After you have selected the file, click the OK button in the dialog.

 The icon for the object now appears in the Main window.

2.8

To remove an object from the Main window:

1 With the Main window as the active window, select the icon for the file object you wish to remove.

2 Click the Cut button from the toolbar.

The icon for the application, session, or library then disappears from the Main window. The file
itself is not deleted from the operating system.

To open a Designer window for an application, library, or session:

1 Make the Main window the active window.

2 Double-click on the icon representing the application, library, or session.

Deleting a File Object

To delete a file object, you must remove it from the operating system, using the DEL command in
DOS, the File Manager in Windows, or the Trash on the Macintosh.

If you delete a file object that is represented in the Main window of the Oracle Power Objects
desktop, Oracle Power Objects will display an error message the next time you launch it. To avoid
the error, cut the object from the Main window before deleting the file.

Application Windows

Oracle Power Objects displays an application window when:

■ You open an existing application in the Main window by double clicking on the icon
representing the application, clicking the Open button, or choosing the File-Open... menu
command.

■ You create a new application by clicking the New Application button or choosing the File-New
Application menu command.

Applications contain several varieties of application objects. For more information on each type of
object, see the chapters indicated below.

Object Type Chapter

Objects (general) Chapter 3, “Objects”

Forms Chapter 11, “Forms”

Reports Chapter 12, “Reports”

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.9

When you open an Application window, the Application Window toolbar appears in the Oracle
Power Objects desktop, providing shortcuts for several application-related tasks:

Tasks in the Application Window

You can perform the following tasks when the Application window is the active window:

■ Edit the properties and methods of the application.
■ Create or delete forms, reports, user-defined classes, and OLE objects.
■ Open these objects for further development. When you open a form, report, or user-defined

class, it appears in its own Designer window, as described later in this section.
■ Copy or move these objects between applications.
■ Import and delete bitmaps.
■ Export an application to a file.
■ Import an application from a file.

General Tasks

This section summarizes the general operations possible through an Application window.

To edit the properties and methods of the application:

1 Make the Application window the active window.

User-defined classes Chapter 13, “Classes”

Bitmaps Chapter 10, “Applications and Application Objects”

OLE objects Chapter 15, “Oracle Power Objects Extensions”

Object Type Chapter

New
Library

New
Session

New
Application

New Form

Save

Open

Show
Property Sheet

Delete

New Report Run
Application

New Class Run Form

Generate
Executable Application

2.10

2 If it is not open already, open the Property sheet for the application by clicking the Show Property
Sheet button.

3 Enter the changes to the application’s properties and methods through the Property sheet.

To create a new form, report, or user-defined class:

1 Click the button on the Application Designer toolbar for the kind of object you wish to create.

The Designer window for that application then appears.

To create a new OLE object as an application-level object:

1 Choose the Edit-Import Object menu command.

A special dialog for creating OLE objects appears.

2 In this dialog, select the kind of OLE object you wish to create.

The server application interface for the OLE object appears.

For more information

on OLE server appli-

cations, see Chapter

15, “Oracle Power

Objects Extensions”.

3 Save the OLE object as an embedded object in Oracle Power Objects, or as a linked object in the
server application.

4 Exit the server application to return to Oracle Power Objects.

To delete an object from the application:

1 Select the icon in the Application window for the object you wish to delete.

2 Click the Cut button.

Oracle Power Objects asks whether you wish to go ahead with the deletion.

3 Click Yes.

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.11

To open an object for further development:

1 Double-click on the icon for the object you wish to modify.

The Designer window for that object appears. In the case of bitmaps, you can preview the bitmap,
but you cannot edit it.

To copy an object between applications:

1 Select the object.

2 Holding down the Ctrl key in Microsoft Windows or the Option key on the Macintosh, drag the
object from one application to another.

Oracle Power Objects copies the icon for that object from the first Application window to the next.

Alternatively, you can follow this procedure to copy the object:

3 Select the icon for the object you wish to copy.

4 Click the Copy button, or choose the Edit-Copy menu command.

5 Open the Application window for the application into which you want to copy the object.

6 Click the Paste button or choose the Edit-Paste menu command.

To move an application object from one Application Window to

another:

1 Open both applications.

2 Select the object you want to move.

3 Drag the object into the open window for the other application.

Alternatively, you can follow this procedure to move an object between applications:

4 Select the icon for the object you want to move.

5 Click the Cut button or choose the Edit-Cut menu command.

6 Open the Application window for the application into which you wish to move the object.

7 Click the Paste button or choose the Edit-Paste menu command.

2.12

File-Related Tasks

You must often export applications to flat files or import them from earlier versions of Oracle
Power Objects. This flat file format cannot be edited through Oracle Power Objects; instead, it is
used to port application, library, and session file objects between versions of Oracle Power Objects.
This section summarizes the procedures for exporting and importing applications to and from files.

To export an application to a file:

1 Select the object you want to write to a file.

2 Choose the File-Write to File menu command.

3 In the dialog that appears, enter the name of the file to which the application will be written, and
select the directory in which it will appear.

Frequently, developers give exported files the .F extension (for example, MYAPP.F).

4 Click OK.

To read in an application from a file:

1 Choose the File-Read from File menu command.

2 In the dialog that appears, select the file from which you wish to import the application.

3 Click the OK button.

Bitmap-Related Tasks

To use bitmaps (.BMP files) as application resources in Oracle Power Objects, you first import the
bitmap into the application. You can then add it to picture boxes, pushbuttons, and various types
of containers. When added, the bitmap appears across the face of the object. This section
summarizes the procedures for working with bitmaps as application resources.

To import a bitmap:

1 Choose the File-Import BMP menu command.

2 In the dialog that appears, select the directory and filename of the bitmap you want to import.

3 Click the OK button.

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.13

The bitmap then appears in the Application window, as shown below:

To export a bitmap to a .BMP file:

1 Select the bitmap you want to export to a .BMP file in the operating system.

2 Choose the File-Export BMP menu command.

3 In the dialog that appears, select a filename and directory for the new .BMP file, then click OK.

To view a bitmap object:

1 In the Application window, double-click on the icon for the bitmap.

A copy of the bitmap appears. You can only view the imported bitmap through this window; you
cannot edit it.

Designer Windows

For each container (form, report, or user-defined class) within an application, there is a
corresponding Designer window. When this window is opened, you can perform the following
tasks:

For more information

about binding, see

Chapter 17, “Binding

a Container to a

Record Source”.

■ Edit the properties and methods of the container.
■ Add new objects to the container.
■ Bind the container to a record source (a table or view) using the drag-and-drop binding features

of Oracle Power Objects.

The bitmap is imported
into the application.

2.14

To open the Designer window for a container:

1 Open the Application window for the application in which the container appears.

2 Double-click on the icon for the container.

The Designer window for the form, report, or user-defined class appears, as shown below:

When you open a Designer window for a container, a new toolbar appears, replacing the
Application Window toolbar. This toolbar displays buttons that provide shortcuts for many
development tasks related to forms, reports, and user-defined classes.

Copy
New
Class Align Top

Vert. Center
in Container

Generate
Executable App.

Save
New
Form

Horizontally
Center

Vertically
Center Send to Back

Cut New
Report

Align Right Show
Property Sheet

Horiz. Center
in Container

Paste Align Left Align Bottom Bring to Front Run
Application

Run Form

Print

Print
Preview

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.15

The Form Designer Window

The Form Designer window displays a form, including all objects contained within it. Even if an
object is designed to be invisible at run time (because its Visible property is set to False), it appears
in the Form Designer window at design time. Controls bound to columns do not display data until
you run the form.

The Class Designer Window

For more information

about classes and

instances, see Chap-

ter 13, “Classes”.

The Class Designer window is identical to the Form Designer window, and objects on it appear
and behave identically. However, you cannot run the user-defined class on its own. You must first
create an instance of the class in a form or report to test it.

2.16

The Report Designer Window

The Report Designer window displays all of the areas of a report, as described in Chapter 12,

“Reports”. Each area has a header consisting of the title of the area, followed by a bar running
across the width of the form. You can add objects to all of these areas. However, keep in mind that
each area will appear in different location, and may be repeated many times when you run the
report.

Objects appearing within the Report Designer window obey the same rules as objects in the Form
and Class Designer windows.

Running Forms and Reports

When you run a form or report, one of two toolbars appears:

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.17

The Form Run-Time toolbar appears when you run a form. This toolbar displays several
standard controls used to query and edit records.

The Report Run-Time toolbar appears when you run a report. This toolbar displays several
standard controls used to preview and print a report.

You can replace the Form Run-time and Report Run-time toolbars with your own custom toolbar.

For information on creating custom toolbars, see Chapter 14, “Menus, Toolbars, and Status Lines”.

Insert
Row

Apply
Criteria

Query Rollback

Delete
Row

Commit

Query by
Form

Stop

Previous
Page Stop

View
Full Page

Next
Page

Print

2.18

The Database Session Window

Oracle Power Objects opens the Database Session window whenever you:

■ Open an existing session.
■ Create a new session.

For more information

on databases, ses-

sions, and schemas,

see Chapter 6, “Data-

bases”.

The Database Session window displays the Connector control, with which you can open or close a
connection to a database. More precisely, the session establishes a connection to a schema in a
database, through which you can view the database objects (tables, views, sequences, and indexes)
associated with that schema or user account.

While the Database Session window is the active window, the Session Window toolbar appears
beneath the menu bar in the Oracle Power Objects desktop. This toolbar displays buttons used as
shortcuts for several session-related tasks.

New
Library

New
Session

New
Application Save

Open

New
Sequence

New
Table

New
Index

New
Synonym

New
View

Show
Property Sheet

Delete

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.19

You use the Database Session window to perform the following development tasks:

■ Open a connection to a database to view all database objects associated with the session.
■ Close a connection to a database.
■ Identify the schema through which the session establishes the connection.
■ Add new tables, views, indexes, and sequences to a database accessed through the session.
■ Delete objects from the database.
■ Copy objects between sessions.

General Tasks

This section summarizes the general tasks performed through the Database Session window. For
more information on using Oracle Power Objects to modify database objects or edit data in a table
or view, see later sections in this chapter.

To activate a database session at design time:

1 In the Main window, open the database session object by double-clicking on its icon.

The Database Session window opens, along with the session’s Property sheet.

2 Double-click the Connector control to activate the session.

When the session becomes active, icons representing database objects appear in the Database
Session window. The Connector control changes to the “active” state.

To close a connection to a database:

1 While the connection is open, double-click on the Connector control.

To associate a session with a schema:

1 If it is not open already, open the Property sheet for the session by clicking the Show Property Sheet
button.

For information on

connect strings, see

the section “Connect

Strings” on page 6.6.

2 In the properties associated with establishing connections (for example, DesignRunConnect),
enter the connect string.

2.20

To create a new table or view:

1 Click the New Table or New View button.

For information on

designing tables and

views, see Chapter

8, “Database

Objects”.

2 In the Editor window that appears, define the structure of the table or view.

To copy a database object between sessions:

1 Open the Database Session window for both sessions.

2 Click and drag the icon for the object from one window into the other.

3 Release the mouse button.

Oracle Power Objects creates a duplicate of the database object. When you copy a table, you also
copy the data in the table to the other session.

Database Object Windows

The database object

windows are

described in Chapter

8, “Database

Objects”.

You can open other windows from the Database Session window, each representing a different type
of database object. These windows are:

■ The Table Editor window, used to build tables.
■ The View Editor window, used to build views from base tables.
■ The Table Browser window, used to edit data in a table.
■ The View Browser window, used to edit data in a view.

The Table Editor window

For information on

tables, see the sec-

tion “Tables” on

page 8.6.

The Table Editor window displays the structure of a table, including the characteristics of each
column in the table. Through this window, you enter a description of the table structure, which
Oracle Power Objects uses to create or alter the object within the database.

To use the Table Editor window, you must open a connection to a database, as described in Chapter

6, “Databases”.

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.21

The Table Editor window appears as shown below:

The Table Editor window includes the following components:

Component Description

Column Name field The name of the column.

Datatype field The datatype of the column.

Size field The number of bytes allocated to the column. This information is
required for some datatypes (for example, VARCHAR2).

Precision field The precision of the data in the column, if the datatype is Float.

Not Null field A flag indicating whether all values in this column must be non-null. If
checked, the database enforces the Not Null constraint on this column.

Unique field A flag indicating whether a value in this column must be unique. If
checked, the database engine enforces the Unique constraint on this
column.

Row Selector button A control used to select a row in the table. When selected, the row and its
contents are highlighted.

Primary Key tool A control used to set a column as a primary key in the table.

Primary Key
indicator

An icon indicating that a column is part of the primary key for a table.
This icon always appears on the Selector button for a column.

2.22

When you open the Table Editor window, you can also open the Property sheet for a table. The
Property sheet displays only one property, the name of the table. Once you save a table structure to
a database, you cannot change the name of the table.

To open the Table Editor window for an existing table:

1 In the Database Session window, double-click on the Connector control to establish a connection
to the database.

The icons for all database objects accessed through the session appear.

2 Double-click on the icon for the table.

To create a new table through the Table Editor window:

For more information

on creating a table,

see the section “Cre-

ating a Table” on

page 8.8.

1 Click the New Table button.

The Table Editor window appears.

2 Assign a name to the table through its Property sheet.

This name will be assigned to the new table when Oracle Power Objects builds the table in the
database.

3 Enter the characteristics of each column in the table.

4 Build the new table in the database by clicking the Save button.

Expand button A control to toggle between the expanded and contracted versions of the
Table Editor window. In the expanded view, all characteristics of columns
are displayed; in the contracted view, only the name and datatype are
visible.

Component Description

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.23

The Table Browser Window

You use the Table Browser window to view and edit data in an existing table, or populate a new
table with data.

The Table Browser window displays the data in a spreadsheet-like format, with a row for each
record and a column for each table column. When you edit a record in the Table Browser window,
Oracle Power Objects locks that row, and displays the Lock indicator in the margin of the window.
When you commit or roll back your changes to the database, the lock is released, and the indicator
disappears.

To open the Table Browser window:

1 With the Table Editor window for a table open, click the Run button.

The Table Browser window appears.

To edit data in the table:

1 Through the spreadsheet, add, delete, or modify rows in the table.

■ To add a row, begin typing in the empty row at the bottom of the window.
■ To delete a row, select the row by clicking on its Row Selector button and click the Delete key.
■ To modify a row, enter your changes in the columns you wish to change in that row.

Once you enter any changes, the Commit and Rollback buttons on the Table Browser toolbar
become enabled, giving a graphical indication that the contents of the table have been changed.

2 Click the Commit or Rollback button, depending on whether you want to commit or undo your
changes to the table.

2.24

For information on

server-enforced con-

straints, see the sec-

tion “Constraints in

the Database” on

page 19.2.

When you commit changes, the database engine enforces any constraints defined for the table.

Entering data through the Table Browser window has two disadvantages:

■ Oracle Power Objects does not create unique key values for data entered in a column that has a
sequence associated with it. You must enter the unique value for that column yourself when you
enter data through the window.

■ If you have defined referential integrity rules through forms displaying data from the table, the
Table Editor window does not enforce these constraints.

The View Editor window

For information on

views, see the sec-

tion “Views” on page

8.16.

The View Editor window displays the base tables underlying a view, as well as the joins between
columns in these base tables.

The components of the View Editor window are:

Component Description

Table List area A region containing a window for each base table in the view. Each of these
smaller windows contains a scrolling list of the columns in the base table.

Join line A line indicating a join between columns in separate base tables. Multiple
join lines can exist in a view.

Column List area A spreadsheet-like window containing all the columns in the view.

Table field A section in the Column List area indicating the table in which a column
appears.

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.25

To open the View Editor window for an existing view:

1 In the Database Session window, double-click on the Connector control to connect to the database.

Icons representing all objects accessed through the session appear in the window.

2 Double-click on the icon for an existing view.

To create a new view through the View Editor window:

1 In the Database Session window, double-click on the Connector control to connect to the database.

Icons representing all objects accessed through the session appear in the window.

2 Click the New View button.

3 In the View Editor window, enter the definition of the view.

The View Browser window

The View Browser window looks and behaves exactly like the Table Browser window, with the
following exceptions:

■ The View Browser displays only those columns from the base tables that are part of the view.
■ You cannot edit data in the view unless there is only one base table in the view.

To open the View Browser window:

1 With the View Editor window as the active window, click the Run button.

Column field A section in the Column List area indicating the name of the column.

Heading field A section in the Column List area assigning an optional name for the
column in the view.

Display field A section in the Column List area indicating whether the column can be
viewed and edited.

Condition field A section in the Column List area used to enter conditions applied to data
queried for the view.

Or field A section in the Column List area used to enter a secondary condition
applied to data queried from the view. The application applies the OR
operator to this condition and the one defined in the Condition field.

Component Description

2.26

The Library Window

Libraries contain bitmaps and user-defined classes designed to be used in more than one
application. When you create a new library or when you open an existing library, the Library
window appears. This window looks and behaves much like the Application Designer window, and
contains two of the same types of application objects.

You use the same techniques for working with bitmaps and user-defined classes appearing in the
Library window that you use for working with the same objects in the Application Designer
window. For a description of these procedures, see the discussion of the Application Designer
window earlier in this chapter.

References to Library Bitmaps

Through method code, you can refer to a bitmap, including a bitmap stored in a library. The
syntax for referring to a library bitmap is library_name.bitmap_name .

For more information on referring to objects in libraries, see the section “Object Names” on page

3.20.

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.27

The Property Sheet

A Property sheet displays the properties and methods associated with an object. When you select an
object, the contents of the Property sheet change to display the properties and methods of the
newly selected object.

During development, you use the Property sheet for many common tasks. Through the Property
sheet you can perform the following development tasks:

■ View the names and settings of a property.
■ View the name of a method and (through a secondary window in the Property sheet) the

method code associated with it.
■ Reorganize the properties and methods associated with an object to reflect one of several

criteria.
■ Edit a property.
■ Edit a method.

This section summarizes the organization of the Property sheet, as well as the procedures for
performing these development tasks through it.

2.28

Sections of the Property Sheet

The Property sheet is organized into the following sections:

■ A series of buttons used to organize, add, delete, and modify properties and methods.
■ Several rows representing the properties and methods of the object.

The buttons appearing at the top of the Property sheet include:

Button Description

Track Object Displays the properties and methods of the object selected when the
button was pressed, even if you select another object. When not
pressed, the Property sheet displays the properties and methods of
the currently selected object.

Group by Type Displays all properties first, then all methods. When not pressed, all
properties and methods appear as part of the same alphabetical list.

Group by Creator Displays user-defined properties and methods first, then all standard
properties and methods. When not pressed, displays all properties
and methods as part of the same list.

Property Sheet
Toolbar

List of Properties
and Methods

Code Editing Area

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.29

In the rest of the Property sheet, properties and methods are denoted by the following icons:

To view the Property sheet for an object:

1 Select the object whose properties and methods you wish to review.

2 Click the Show Property Sheet button.

To open multiple property sheets:

1 Click the Track Object button on the Property sheet.

This instance of the Property sheet will continue to display the properties and methods of the
selected object.

2 Select another object.

3 Click the Show Property Sheet button.

Add Property/Method Opens the User Properties window, where you create, modify, and
delete user-defined properties and methods. For more information
on this window, see later in this chapter.

Delete Property/Method Deletes the currently selected user-defined property and method.
Note that you cannot delete a standard property or method.

Reinherit For objects in an instance of a user-defined class, instructs Oracle
Power Objects to reinherit the original setting for the property or
method from the master class definition. Classes and inheritance are

described in Chapter 13, “Classes”.

Icon Description

Property

Method

Overridden Property

Overridden Method

Method Containing Method Code

User-Defined Property or Method

Button Description

2.30

Another copy of the Property sheet appears, displaying the properties and methods of the second
object.

Properties

You can view both a property and its current setting in the same row of the Property sheet.
Properties determine the appearance and behavior of objects, from their background color to the
database objects to which they are bound.

Each type of object has a different set of standard properties and methods. When you create a new
object, it has only the standard properties and methods for that type of object. You can add user-
defined methods and properties to the new object, which then appear on the Property sheet.

You can set a property in several ways, depending on the property itself.

To set a property:

1 Move the focus in the Property sheet to the property you wish to set.

When you select a property, it appears as the only depressed row within the Property sheet.

2 Do one of the following, depending on the property:

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.31

■ Enter a new setting for the property in the window appearing to the right of the property’s
name.

■ If a drop-down list of settings appears, select one of the settings from the list.

2.32

■ If the property has two settings (for example, True and False), click on the window to the right
of the property’s name to toggle between these two values.

You can also set the properties of several objects simultaneously. The objects must all appear within
the same container.

To set the same property in multiple objects:

1 Select the objects, either by clicking and dragging across the area encompassing the objects, or
holding down the Shift key while selecting each object in turn.

The Property sheet displays the properties and methods for all selected objects. If the selected
objects have different settings for the same property, <<< MULTIPLE >>> appears as the setting
for the property.

2 Enter the new setting for the property.

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.33

Methods

For more information

on methods and

method code, see

Chapter 5, “Methods

and Method Code”.

Each method has its own code window in the Property sheet, in which you enter method code.
Until you open the code window, you can view only the name of the method, not the code
associated with it.

When you first open the Property sheet, the code windows for all methods are closed.

To open and close the code window:

1 Select the method whose code window you wish to open.

2 Click on the name of the method.

3 To close the code window, click on the name again.

At the top of the code window is the method heading, a single line of text that declares the
characteristics of the method, including:

■ The type of method (Sub for subroutines, Function for functions)
■ The name of the method
■ The list of arguments passed to the method, including their datatype, enclosed in parentheses
■ The return value of the method, if the method is a function

2.34

Below the method heading is the code area, where you enter your own method code. Note that
standard methods often have default processing associated with them, but this default processing
does not appear in the code area. When you enter method code in the code area, you override this
default processing. The description of each standard method in the online help describes the
default processing, if any, performed by the method.

Note that you can cut, copy, and paste code using the keyboard accelerators Ctrl-X (cut), Ctrl-C
(copy), and Ctrl-V (paste).

For information on

the Debugger, see the

section “Debugging

Method Code” on

page 5.9.

When you run a form or report, or you run the entire application, you can use the Run-Time
Debugger to debug the method code you enter through the Property sheet.

The User Properties Window

For more information

on user-defined prop-

erties and methods,

see the section “Cre-

ating a Method” on

page 5.4.

The User Properties window lets you define your own properties and methods and then add them
to objects in an Oracle Power Objects application. These user-defined methods and properties add
to the functionality of an application while staying within the object-oriented paradigm.

To open the User Properties window:

1 Open an object’s Property sheet.

2 Click the Add Property/Method button from the Property sheet or choose the View-User
Properties menu command.

The User Properties window consists of the following sections:

Section Description

Name Sets the name of the user-defined property or method.

Type Identifies the item as either a property, a subroutine, or a function.

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.35

To create a user-defined property:

1 Open the User Properties window and select the blank row at the bottom of the window.

2 In the Name column, enter a name for the property.

3 In the Type column, choose Property .

4 In the Datatype column, enter the datatype of the property.

To create a user-defined method:

1 Open the User Properties window and select the blank row at the bottom of the window.

2 In the Name column, enter a name for the property.

3 In the Type column, choose Sub or Function .

4 In the Datatype column, enter the datatype of the return value, if any.

5 In the Arguments column, enter the arguments for the method, if any.

To add a user-defined method or property to an object:

1 Select the object.

2 Open the User Properties window and select the user-defined method or property.

To select the property or method, click on the Row Selector button at the left side of the row.

3 Holding down the mouse button, drag the mouse onto the object or its Property sheet.

4 Release the mouse button.

The method or property now appears on the object’s Property sheet, along with a graphic indicator
marking it as a user-defined method or property.

To delete a user-defined method or property from an object:

1 Select the object and open its Property sheet.

2 Select the user-defined method or property you wish to delete.

Datatype Determines the datatype of a property, or the datatype of the return value of
a method. Choices are Boolean, Long, Double, String, Date, or Object.

Arguments Lists the arguments passed to a method. The name of each argument must
be followed by its datatype, using the AS keyword (for example, Param1
As Long).

Section Description

2.36

3 Click the Delete Property/Method button on the property sheet.

To delete a user-defined method or property from the User Properties

window:

1 Delete the property or method from all objects to which it has been added.

Note: You cannot delete a user-defined method or property from the User Properties window until
you delete all instances of it.

2 Open the User Properties window and select the method or property.

3 Click the Delete key.

The Object Palette

The Object Palette, a floating toolbar, contains buttons that change the mouse cursor into different
tools for designing application objects. Except for the Arrow Pointer, all of the tools on the Object
palette change the cursor into a drawing tool used to create a particular kind of application object,
such as a check box or a repeater display.

All of the objects created with the Object palette (controls, static objects, and containers) must
appear within a form, report, or user-defined class.

Arrow Pointer

Text Field

Radio Button

Combo Box

List Box

Line

Oval

Horizontal Scrollbar

Report Group

Chart Control

Embedded Form

Static Text

Pushbutton

Check Box

Popup List

Radio Button Frame

Rectangle

Vertical Scrollbar

Current Row Pointer

OLE Control

Picture Control

Repeater Display

T H E O R A C L E P O W E R O B J E C T S E N V I R O N M E N T O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

2.37

The Arrow Pointer tool changes the cursor back into a normal selection tool, used to select, move,
and resize objects.

When you import an OCX control, the new custom control appears at the bottom of the Object

palette. For more information on OCX controls, see Chapter 15, “Oracle Power Objects

Extensions”.

The database object

windows are

described in the sec-

tion “Database

Object Windows” on

page 2.20.

When designing database objects, you do not use the Object Palette. Instead, you use a series of
windows to design tables, views, sequences, and indexes, and to set the properties of the database
itself.

To create an application object with the Object palette:

1 Open the Designer window for the container (form, report, or user-defined class) to which you
wish to add the object.

2 Click the button on the Object palette corresponding to the type of object you wish to create.

3 In the Designer window for the container, either click on the container to create the new object,
using a default size and position set by Oracle Power Objects,

-or-

Click within the container and drag across the area where you want the object to appear.

Moving and Resizing Objects

Once you have created an object, you can use the selection tool to resize and reposition it. When an
object is selected, “handles” appear around the object. By clicking and dragging these handles, you
can resize the object. By clicking on an object without selecting the handles, you can drag the
object across the container to a new position.

Normally, the edges of an object align with the grid in the background of the container. This
behavior is known as snap to grid, and occurs when you resize and reposition the object. You can
override the snap to grid behavior by holding down the Ctrl key in Windows, or the Option key in
Macintosh, while moving or resizing the object. While the Ctrl key is depressed, you can resize or
reposition the object in pixel increments, instead of increments of the grid.

2.38

3
O b j e c t s 3

This chapter covers the following topics:

Overview . 3.2
Types of Objects . 3.2
Containers . 3.8
Object Containment Hierarchy. 3.12
Object Characteristics (Properties and Methods) . 3.13
Object Names . 3.20
Object References . 3.25
Object Classes and Inheritance . 3.29

3.2

Overview

Objects are the building blocks of a database application. Objects represent discrete application
components that can be created, reused, customized, and linked.

This chapter introduces the basic types of objects in Oracle Power Objects and concepts for
working with them.

Types of Objects

The objects available in Oracle Power Objects can be divided into several broad categories. These
categories are mainly distinguished along functional lines: where the objects are located and how
they are used.

Category Examples Description

File Objects Applications
Libraries
Sessions

Container objects that group the components of a
database application into a single operating system
file.

Database Objects Tables
Views
Indexes
Sequences

Structures in a database that store, organize, and
provide fast access to information.

Application Objects Forms
Reports
Classes
Bitmaps

Documents and resources that form the major
building blocks of your application’s user interface.

Designer Objects

 Static Objects Rectangles
Ovals
Lines

Visual objects that add graphical appeal to a layout
and delineate sections of a form or report.

 Controls Pushbuttons
Text Fields
Scrolling Lists

Objects that display values or allow the user to take
some kind of programmatic action.

 Containers Embedded Forms
Repeater Displays

Contain other objects or controls.

In-Memory Objects Recordsets
Toolbars
Menus

Objects that are created at run time and have no
direct visual representation during design time.

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.3

The following sections list the objects in each category and describe where the objects can be used.
It also indicates whether each object is a container (can hold other objects) and whether it is
bindable (can be associated with a database table, view, or column). Object containment is

discussed in the section “Object Containment Hierarchy” on page 3.12. Binding objects is

discussed in Chapter 17, “Binding a Container to a Record Source”.

The following sections do not explain in detail how to use the objects in each category. However,
references are provided to complete information on each category of object.

File Objects

File objects are represented as icons in the Main window of the Oracle Power Objects desktop.
Each file object in the Main window corresponds to a file in your operating system.

Because file objects are actual files, they differ from other types of objects. The names of file objects

are restricted to legal names within your operating system, as described in the section “Naming

Rules” on page 3.20. You can copy, move, rename, and delete file objects using your operating
system.

Applications are discussed in Chapter 10, “Applications and Application Objects”. Sessions are

described in Chapter 6, “Databases”.

Database Objects

Database objects are represented as icons in a Database Session window. Database objects appear to
be “contained” within a session, but are actually stored in a database.

Database objects are created and maintained by a database engine, a component of the database in
which they are stored. Because database engines differ, database objects of the same type can vary
if they are stored in different databases. Oracle Power Objects provides a standard interface for
working with database objects and the data they contain.

Object Locations Cont Bind

Application Main window Yes No

Session Main window Yes No

Library Main window Yes No

Object Locations Cont Bind

Table Session window No No

View Session window No No

3.4

Database objects are discussed in Chapter 8, “Database Objects”.

Application Objects

Application objects are represented as icons in an Application or Library window. Application
objects are stored in the file object that contains them.

You modify the definitions of form, report, and class objects in the Form Designer, Report
Designer, and Class Designer windows.

Application objects are discussed in Chapter 10, “Applications and Application Objects”.

Designer Objects

Several different types of objects can appear on a form, report, or class. These objects are
collectively called designer objects because you work with them in the Form Designer, Report
Designer, and Class Designer windows.

Sequence Session window No No

Index Session window No No

Synonym Session window No No

Object Locations Cont Bind Notes

Form Application Yes Yes

Report Application Yes Yes

Class Application, library,
form, report, class

Yes Yes

Bitmap Application, library No No Can be associated with
pushbuttons, forms, reports,
classes, and embedded forms

OLE Object Application No No Can be associated with OLE
controls

Object Locations Cont Bind

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.5

Static Objects

Static objects are typically used to delineate areas of a form and to add visual appeal to the form’s
interface.

In this diagram, a static text object is used to provide a label on a form. Line objects are used to
delineate areas of the form, and a rectangle object is used for graphical appeal.

Static objects are discussed in the section “Types of Static Objects” on page 10.30.

Object Locations Cont Bind

Static Text Form, report, class No No

Rectangle Form, report, class Yes No

Oval Form, report, class Yes No

Line Form, report, class No No

3.6

Controls

Controls are objects that display values or enable the user to take some kind of programmatic
action.

In this diagram, a text field control displays a customer’s name. A scrolling list control allows the
user to select a product name. A pushbutton control allows the user to return to the main menu.

Object Locations Cont Bind Notes

Text Field Form, report, class No Yes

Popup List Form, report, class No Yes

Combo Box Form, report, class No Yes

List Box Form, report, class No Yes

Scrollbar Form, report, class No No

Radio Button Form, report, class No Yes Usually contained in a radio
button frame

Pushbutton Form, report, class No No

Check Box Form, report, class No Yes

OCX Control Form, report, class No Yes

OLE Control Form, report, class No Yes Can be associated with an OLE
Object

Chart Control Form, report, class No Yes

Picture Control Form, report, class No Yes Can be associated with a bitmap
object

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.7

Controls are discussed in the section “Controls and Static Objects” on page 10.11.

Containers

Forms, reports, and classes can contain objects that can, in turn, act as containers for other objects.

Containers are discussed in the section “Types of Containers” on page 10.7.

In-Memory Objects

In-memory objects are created only during run time. These objects do not appear directly on the
screen; instead, you manipulate them indirectly by associating them with other objects or by
executing properties and methods of the object.

Recordset Objects

For more information

about recordset

objects, see Chapter

17, “Binding a Con-

tainer to a Record

Source”.

A recordset object contains a local copy of a set of records queried from a database table or view. Like
a table, a recordset is organized into rows and columns.

Recordset objects manage the relationship between application objects and database objects. As the
user browses through rows of data on a form or report, the necessary information is fetched from
the database. As the user makes changes to the data, the recordset records the changes and writes
them to the database when appropriate.

For information on

creating recordsets,

see the section

“Standalone Record-

sets” on page 17.27.

You define a recordset’s structure implicitly by associating objects in your application (such as
forms, reports, and controls) with tables, views, and columns in a database. You can also create a
recordset explicitly using the NEW operator.

The user accesses a recordset indirectly by manipulating containers and controls that are bound to a
database object. You can access a recordset object directly in Oracle Basic code.

Current Row Pointer Form, report, class No No

Object Locations Cont Bind

Embedded Form Form, report, class Yes Yes

Repeater Display Form, report, class Yes Yes

Radio Button Frame Form, report, class Yes Yes

Repeater Panel Repeater display Yes No

Report Group Report Yes Yes

Object Locations Cont Bind Notes

3.8

Menus and Menu Bar Objects

Menus, Menu Bars,

Toolbars, and Status

Lines are described in

Chapter 14, “Menus,

Toolbars, and Status

Lines”.

A menu bar object contains one or more menu objects, each of which contains the definition of a
menu. Menu bar objects can be associated with forms and reports.

Toolbar Objects

A toolbar object contains the definition of a toolbar. Toolbar objects, like menu bar objects, can be
associated with forms and reports.

Status Line Objects

A status line object provides summary information to the user. Status line objects, like menu bar
and toolbar objects, can be associated with forms and reports.

Containers

Many types of objects can contain other objects. Containers provide logical groupings for the
objects they contain and allow you to manipulate a collection of objects as a unit. For example,
when you move or copy a form, you automatically move or copy the objects contained within the
form as well.

Not all objects can act as containers, and different types of containers can hold different types of
objects.

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.9

Applications

Applications can contain forms, reports, classes, bitmaps, and OLE objects. You can move and copy
objects in an application from one application to another.

To see the objects contained within an application, open the application by double-clicking on its
icon in the Main window.

Libraries

Libraries can contain classes and bitmaps, which can in turn be used in applications or other
libraries.

To see the objects contained within a library, open the library by double-clicking on its icon in the
Main window.

3.10

Sessions

Sessions are accessed as though they contain tables, views, indexes, and sequences. However,
database objects are actually stored within and maintained by the database.

To see the objects “contained” within a session, open the session by double-clicking on its icon in
the Main window. If the session is not currently active (connected to a database), you must also
activate the session by double-clicking on the Connector control.

Forms, Reports, and Classes

Forms, reports, and classes can contain a variety of objects. Objects on a form, report, or class
usually have some kind of visual representation during run time.

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.11

You edit the objects in a form, report, or class in the Form Designer, Report Designer, and Class
Designer windows. When you open a form, report, or class, the contained objects are displayed
automatically.

Reports can also contain report group objects, as described in Chapter 12, “Reports”.

Designer Objects

Some types of designer objects can contain other designer objects. For example, the following
figure shows a set of pushbutton objects contained within a rectangle object, and a set of text fields
contained within a repeater display object:

The form contains
an embedded form

and a repeater display
The repeater display
contains text fields

The embedded form
contains pushbuttons

3.12

You select objects in the Designer windows by clicking on them. To select an object contained
within another object, you click twice: once to select the container, and once to select the object.
Each successive click selects the next level of objects.

Object Containment Hierarchy

Objects contain one another in a hierarchy, called the object containment hierarchy. The object
containment hierarchy is like the structure of a file system.

At the top level of the hierarchy is always a file object (an application, library, or session).

The following terms are used to refer to the positions of objects within the hierarchy:

■ An object’s parent or container is the object that immediately contains it. In the above figure, the
form “Form1” is the parent of the pushbutton “Button1”.

■ All objects that share the same parent are called siblings. In the above figure, the pushbuttons
“Button1” and “Button2” are siblings.

■ An object’s children are the objects immediately contained by it. In the above figure, the
pushbutton “Button1” is a child of the form “Form1”.

■ A top-level object is an object that is not contained by any other object. A top-level object is
always a file object (an application, library, or session). In the above figure, the application
“App1” is the top-level object.

You can use the object containment hierarchy when referring to an object, as described in the

section “Relative References” on page 3.25.

App1

Form1 Form2 Report1

Button1 Button2 Field1

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.13

Object Characteristics (Properties and Methods)

Objects have characteristics that can be customized by the developer. These characteristics are an
intrinsic part of an object’s definition—they are automatically moved, copied, or deleted along with
the object.

Most objects have two types of characteristics: properties and methods.

Properties are object characteristics that contain values. Properties determine the appearance
and behavior of objects. In developing an application, you set property values during both
design time and run time.

Methods are procedural characteristics (subroutines and functions) that determine how the
object responds to events or calls to the object. In developing an application, you call methods
to accomplish various tasks, and add Oracle Basic code to methods to customize object
behavior.

Each type of object in Oracle Power Objects has a predefined list of standard properties and
methods that can be customized but cannot be removed. You can customize objects further by

adding user-defined properties and methods, as described in Chapter 5, “Methods and Method

Code”.

You can set object characteristics during design time using the Property sheet; these settings are
saved along with the application. Some properties can also be set during run time using Oracle
Basic method code. Changes made during run time last only as long as the application continues to
run.

To refer to an object characteristic, you typically append the property or method name to a
reference to the object. The syntax of a characteristic reference is as follows:

Syntax of Property and Method References

[object_reference .] characteristic_name [(argument
 [, argument ...])]

Object_reference is a reference to the object containing the property or method, as described in

the section “Syntax of Object References” on page 3.28. If you omit object_reference, the
property or method is assumed to belong to the object containing the reference.

Characteristic_name is the name of the property or method.

If the characteristic is a method that has arguments, the arguments must be specified in
parentheses following the property or method name.

For example, to refer to the Value property of a field object, you might use a reference like the
following one:

Form1.Field1.Value

3.14

To refer to the QueryWhere() method of a repeater display object, you might use a reference like
the following one:

Repeater1.QueryWhere("ENAME = 'KING'")

Properties

Properties control the appearance and behavior of an object. For example, some properties
determine the name, color, size, or position of an object. Other properties determine how an object
visible to the user (such as a text field) is linked to an object in a database (such as a column of a
table).

The following table lists major categories of properties:

Category of Properties Examples Description

Control Behavior DefaultButton
Enabled

Properties that determine how controls behave
in response to user actions.

Counter Generation CounterIncBy
CounterTiming

Properties that determine how unique values
(such as primary key values) are derived from
the database.

Internal Value DataType
Value

Properties related to the value stored in a control
at run time, such as the source of the value and
restrictions on the size or type of the value.

Miscellaneous Name
WindowStyle

Object Appearance ColorFill
FontName

Properties related to the appearance of the
object on screen, such as size, position, visibility,
color, or font for text.

Hierarchical Reference Container
Self

Properties that return references to other objects
in the object containment hierarchy, as

described in the section “Relative References”

on page 3.25.

Recordset DataSource
DefaultCondition
RecordSource

Properties of a bound container or control that
determine how the object’s values are derived
from values in the database.

Report FirstPgFtr
GroupCol

Properties related to how a report is displayed or
printed.

Session ConnectType
DesignConnect

Properties of a database session object.

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.15

For a full list of properties, see Appendix B, “List of Properties and Methods” or the topic
“Standard Properties” in the online help.

Property Datatypes

Each property has an associated datatype, which determines the type of value that can be stored in
the property. Properties can have the following datatypes:

Boolean - a true/false value. A Boolean value is actually a value of datatype Long Integer: False
corresponds to zero, True corresponds to -1.

Long Integer - a numeric value in the range -2147483648 to +2147483647.

Double - a floating-point value in the range +/- 2.2250738585072014e-308 to
+/- 1.7976931348623158e+308 and zero.

String - a string of text characters.

Date - a date and time value in the range Jan 1, 100 AD to Dec 31, 9999 AD.

Object - a pointer to an object

Some methods are limited to a predefined set of possible values. For example, Boolean methods are
limited to two values: true or false. Other properties, such as LinkMasterUpd, can only be set to
one of a list of values.

You change a property’s value using the Property sheet or an Oracle Basic program. During
development, you can also change a property’s value using the Debugger.

Setting a Property Using the Property Sheet

You can use the Property sheet to set or change a property’s value during design time. When run-
time mode is invoked, the property will initially contain the value you specify.

To change the value of a Boolean property, simply click in the area containing the word “True” or
“False”. Each time you click, the property is set to the opposite value.

Click here to
change the
property value

3.16

To set or change the value of a text-type property, you type directly in the area next to the property
name.

To set or change the value of a list-type property, click on the name of the property. A list of
possible values drops down beneath the property name. You set the property by clicking on the
desired value.

You can also use the arrow keys to select a value in the list. To accept the selection, press Return.

Setting a Property Using Oracle Basic

You can set the values of some properties during run time using the Oracle Basic assignment
operator (=). Only properties that are designated in the online help as “writable at run time” in the
property description can be modified through assignment.

To set the value of a Boolean property, you must assign it a numeric value: zero for False, any non-
zero number for True (-1 is used by convention). You can also use the constants TRUE and FALSE.

Button1.Enabled = TRUE
Button1.Enabled = -1

Type the new
property value
here

...then choose a value
in the list by clicking on it.

Click on the property
name to see the

list of values...

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.17

Field2.HasBorder = FALSE
Field2.HasBorder = 0

To set the value of a text-type property, you must assign it a string value, as in the following
examples:

Frame1.Label = "Select Color:"
Field1.FontName = "Palatino"
Field2.FontName = Font_Name$

To set the value of a list-type property, you must assign it an integer corresponding to the desired
value, as in the following example:

Field1.TextJustVert = 1

To improve the readability of this type of assignment, the Oracle Basic language includes a set of
predefined constants for the possible values of list-type properties. For example, the following
constants can be used to set the TextJustVert property:

TEXTJUSTVERT_TOP
TEXTJUSTVERT_CENTER
TEXTJUSTVERT_BOTTOM

To use the constant, you simply substitute it for the required value. For example, to set the
TextJustVert property to “Top”, you could use the following statement:

Field1.TextJustVert = TEXTJUSTVERT_TOP

The constants for setting list-type properties take the following form:

property _setting

property is the name of the property.

setting is the text of the setting. Spaces are replaced by underscores.

A list of predefined constants is provided in Appendix C, “Constants and Reserved Words”. The
specific constants corresponding to each property value are described in the Power Objects online
help topic for the property.

Setting a Property Using the Debugger

You can also set the value of a property at run time using the Debugger. For information about

using the Debugger, see the section “Debugging Method Code” on page 5.9.

Methods

Methods determine how an object acts in response to two types of actions: events and calls to the
object.

3.18

Events

An event is an occurrence or action that is recognized by the application. Events can be initiated
when the user takes an action (such as clicking on a pushbutton), or by some other means (such as
when the application loads a form into memory).

Examples of events:

■ The user clicks on a pushbutton object (the pushbutton’s Click() method is called).
■ A form is loaded into memory (the form’s OnLoad() method is called).
■ The user has just inserted a new row of data into a form (the form’s PostInsert() method is

called).

Calls to the Object

Not all methods are associated with events. Some methods are never executed unless the developer
specifically makes a call to the method through Oracle Basic code. Other methods do respond to
events, but might be called explicitly in certain situations.

Calling a method is

described in the sec-

tion “Calls to the

Object” on page 3.18.

You can make a call to an object to accomplish various development tasks. For example:

■ You can call the Connect() method of a session to activate the session.
■ You can call the OpenWindow() method of a form to open the form.
■ You can call the DeleteRow() method of a repeater display to delete a row of data from the

repeater display.

The following table lists major categories of methods:

Category of Methods Examples Description

Constraint/business rule RevertRow()
Validate()

Methods enabling you to validate data entered by
the user before accepting it.

Container CloseWindow()
RollbackForm()

Miscellaneous CloseApp()

Printing OpenPreview()
OpenPrint()

Methods enabling you to print or preview forms
and reports.

Recordset ChgCurrentRec()
GetColVal()
InsertRow()

Methods related to the recordset associated with a
bound container, called to modify the recordset or
to respond when the recordset is modified.

Session Connect()
RollbackWork()

Methods related to database session objects.

User action Click()
FocusEntering()

Methods called when the user takes an action in
the interface, or called to initiate such an action.

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.19

For a full list of methods, see Appendix B, “List of Properties and Methods” or the topic “Standard
Methods” in the online help.

Types of Methods

Methods can be either functions or subroutines.

■ A subroutine method is like a command. The subroutine can have one or more parameters.
■ A function method returns a value. Functions, like subroutines, can have one or more

parameters. The return value of a function can have any of the following datatypes:
• Long Integer - a numeric value in the range -2147483648 to +2147483647.
• Double - a floating-point value in the range +/- 2.2250738585072014e-308 to

+/- 1.7976931348623158e+308 and zero.
• String - a string of text characters.
• Date - a date and time value in the range Jan 1, 100 AD to Dec 31, 9999 AD.
• Object - a pointer to an object

A method’s response to an event or a call can be determined in one or both of the following ways:

Default processing. If you do not customize a method, the event’s default processing executes
when the method is invoked. The default processing that is executed varies from method to
method; some methods have no default processing, while others have extensive default
processing. The default processing associated with each method is described in the online help.

Method code. Method code is an Oracle Basic function or subroutine that you write. You
associate method code with a method by typing it directly into the Property sheet. Any method
code you associate with a method overrides the default processing, which is not executed unless
you specifically invoke it using the Inherited. method_name () syntax.

Sequence of Methods

Methods are sometimes executed in sequence when responding to an event or call. This sequence
can occur in two ways:

■ The default processing of a method can invoke another method. For example, the default
processing of the Click() method calls the ChildClick() method of the container of the clicked
object. If you suppress the default processing of the Click() method, ChildClick() is not
called.

■ Methods can be called in sequence by Oracle Power Objects. For example, if you edit a master
record in a master-detail relationship, Oracle Power Objects first calls the PostChange()
method of the master container, and then calls the LinkPostUpdate() method of the detail
container. LinkPostUpdate() is called even if the default processing of PostChange() is not
executed.

Some events in Oracle Power Objects have a long method sequence. In order to respond to events
correctly, you should understand the relevant method sequence.

3.20

Method sequences are described in the topic “Method Sequence” in the online help.

Calling a Method

You call methods in the same way that you call other functions and subroutines. For example, you
can invoke the Click() method of a pushbutton object with a statement like the following one:

Button1.Click()

You can call the IsConnected() method of a database session object with a statement like the
following one:

a = Session1.IsConnected()

Object Names

Most objects have a name, which is specified in the object’s Name property. You can use the name
to refer to the object in properties and in Oracle Basic method code.

Oracle Power Objects provides other techniques for referring to objects, which are discussed in the

section “Object Names” on page 3.20.

Default Names

When you create an object, the object is usually assigned a default name, which you can change if
you wish. The default name consists of the object type followed by an integer. For example, the first
form created in an application is named “Form1”. The next form to be created is named “Form2”,
and so on. If a default name is not available because an object already uses that name, Oracle Power
Objects uses the next available number.

Naming Rules

The following rules apply when assigning names to objects.

Database Object Names

Names for database objects must adhere to the object naming conventions for the database in
which they are stored. These conventions vary from database to database.

For information about the database object naming conventions for Blaze databases, see the topic
“Database Object Naming Conventions” in the online help. For the database object naming
conventions for any other database, see the documentation accompanying that database.

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.21

Application and Designer Object Names

Names for application objects and designer objects must adhere to the following rules:

■ An object name must be from 1 to 39 characters long.
■ An object name can contain letters, numbers, and the underscore character. Object names

cannot contain any other characters, such as spaces, tabs, or returns. Additionally, the object
name must begin with an alphabetic character or an underscore.

■ An object name cannot be a reserved word. The following types of words are reserved:
• The names of properties and methods, including user-defined properties and methods.

Standard properties and methods are listed in Appendix B, “List of Properties and

Methods”.
• All Oracle Basic reserved words (for example, commands, functions, and operators). Oracle

Basic reserved words are listed in Appendix C, “Constants and Reserved Words”.
• The word “inherited”
• The word “self”

■ A name cannot be shared by two sibling objects (objects that share the same parent).
■ Object names are not case sensitive, although case information is stored. The names “form1”,

“Form1”, and “FORM1” are all considered to be the same.

File Object Names

File objects have two names: the Name property of the object and the file name of the file in which
the object is stored. These names do not have to be the same, and you can change either name at
any time.

The Name property of a file object must adhere to the rules for naming application objects and
designer objects. This is the name that appears beneath the object’s icon in the Main window. You
use this name to refer to the file object in properties and methods.

The file name of a file object is the name of the operating system file that holds the application,
session, or library. This name does not have to adhere to the rules for naming application objects.
However, the file name must adhere to the file naming conventions of the host operating system:

■ In Windows, file names can have up to 8 characters, which can be letters, numbers, and the
following special characters:

! @ # $ % & () - _ { } ' ` ~

Windows file names also can have an extension of up to 3 characters. File objects in Windows
use the following extensions:

Object Extension

Application .POA

Library .POL

3.22

Windows file names are not case sensitive.

■ On the Macintosh, file names can be up to 30 characters, which can be letters, numbers, and
any symbols except a colon (:). Macintosh file names are not case sensitive, although case
information is stored.

When you create a file object, the Name property is initially set to the file name that you specify. If
the file name you specify does not follow the rules for naming application objects, Oracle Power
Objects displays a dialog box prompting you to enter a valid name.

If you change the file name of a file object, the Name property of the object does not change.
Similarly, changing the Name property of a file object does not change the file name of the object.

Note: If you change the file name of an object that is currently displayed in your Main window,
Oracle Power Objects will be unable to find the file. You can open the file with the new name by
clicking on the Open button.

Renaming Objects

You can change the names of some types of objects at design time. Object names cannot be
modified at run time.

If you rename an object by modifying its Name property, Oracle Power Objects cannot resolve
references to the old object name. Changing the name of an object might cause an error when your
application is compiled or run. You can correct this error by manually updating references to the
object.

To avoid problems created by renaming objects, you should set the object’s name as soon as you
create it and avoid subsequently changing it.

Session .POS

Object Extension

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.23

Hierarchical Names

You can refer to an object by specifying both its name and its location in the object containment
hierarchy. This is called the object’s hierarchical name. A hierarchical name consists of object names
separated by periods. In a hierarchical name, the object to the left of the period contains the object
to the right of the period.

For example, the button object “Button1” on the form “MyForm” could be described by the
following hierarchical name:

MyForm.Button1

Similarly, a field object “Field1” in the rectangle “Rect1” on the report “MyReport” could be
described by the following hierarchical name:

MyReport.Rect1.Field1

You can also use the keyword “Application” in a hierarchical name to refer to the application object
in which the other objects are contained.

For example, to refer to the repeater display object “Repeater1”, you could use the following
reference:

App1.MyForm.Repeater1

App1

MyForm MyReport

Button1

Field1

Rect1Repeater1

3.24

The formal syntax of a hierarchical name is as follows:

Syntax of Hierarchical Names

{ object_name [. object_name] ...
| APPLICATION [. object_name [. object_name] ...] }

Object_name is the Name property of an object.

Full Hierarchical Names

A reference that names all of the objects containing an object is called the object’s full hierarchical
name. The full hierarchical name always refers to the same object, even if there is another object
with the same Name property elsewhere in the application.

A full hierarchical name always begins with the name of the applicatio object or the identifier
“Application”, then includes the names of the objects in order of containment, separated by
periods.

For example, the full hierarchical name of an object “Button2” located on a form “Form1” in the
application “App1” is:

App1.Form1.Button2

Alternatively, the name can be written this way:

Application.Form1.Button2

Partial Hierarchical Names

When you refer to an object, it is not always necessary to specify its full hierarchical name. For
example, to refer to the report “Report1” from within method code associated with a property of
the form “Form1”, you could use the following reference:

Report1

Similarly, for any object contained within Report1, you do not have to specify its full hierarchical
name—you only have to specify its name beginning with the report. For example, to refer to the
field “Field1” on the report, you could use the following reference:

Report1.Field1

When you specify only part of the hierarchical name, Oracle Power Objects attempts to resolve the
name (find the object the name refers to) by comparing the name you specify to the names of other
objects in the application. References are resolved by examining objects beginning with the current
object (the object from which the reference is made).

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.25

Oracle Power Objects resolves name references by examining objects in the following order:

1 Each child of the current object

2 The children of each child of the current object

3 If the object is not a form, report, or class, the parent of the current object

4 The children of the parent of the current object

5 Repeat steps 3 and 4 at the next level of the hierarchy

Object References

You use an object reference when you need to identify an object in your application. For example,
you use object references to read or set object properties, or to execute object methods. You also use
object references to associate different types of objects with each other. For example, you use an
object reference in the ScrollObj property of a scrollbar object to identify the container whose
records can be scrolled through using the scrollbar.

You can specify an object reference in one of three ways:

■ You can specify the object’s full or partial hierarchical name, as described in the preceding
section

■ You can use an Oracle Basic variable of datatype Object
■ You can specify a property or method that returns a value of datatype Object

Object Datatype

Another way to refer to an object is to store in a variable or property a “handle” that refers to the
object. An object handle is stored in a variable or property of datatype Object.

The following example stores a reference to the object “Form1.Button1” in the variable vButton .
The variable is then used to execute the Click() method of the button.

Dim vButton as Object
vButton = Form1.Button1
vButton.Click()

The Object datatype is described in more detail in the section “Values and Datatypes” on page 4.3.

Relative References

You can refer to an object by its relative position in the object containment hierarchy. Instead of
specifying an object’s name, you can substitute a property or keyword that describes its relationship
to another object. This is called a relative reference.

3.26

You can use the following properties, methods, and keywords in a relative reference:

■ The GetContainer() method of an object refers to the object’s parent.
■ The “Container” keyword refers to the parent of the object preceding it in the reference.
■ The GetTopContainer() method refers to the top-level container of the object (the form,

report, or class where the object is located).
■ The “TopContainer” keyword refers to the top-level container of the object preceding it in the

reference.
■ The FirstChild property of a container object refers to the “first” child of the object. Oracle

Power Objects arbitrarily chooses the “first” child from among the object’s children.
■ The NextControl() method of a container object returns a reference to the “next” child of the

object. Each time NextControl() is evaluated, it returns a reference to another child object,
until all of the child objects have been returned. After the last child object has been returned,
NextControl() returns null.

■ The GetFirstForm() method of an application object returns a reference to the “first” child of
the application (a form or report). Oracle Power Objects arbitrarily chooses the “first” child
from among the forms and reports in the application.

■ The GetNextForm() method of an application object returns a reference to the “next” child of
the application (a form or report). Each time GetNextForm() is evaluated, it returns a
reference to another child object, until all of the child objects have been returned. After the last
child object has been returned, GetNextForm() returns null.

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.27

Consider the following object containment hierarchy:

The following table describes how relative references would be resolved within this hierarchy:

Reference Refers to This Object

Button1.Container Form1

Button1.GetContainer() Form1

Field1.GetContainer().GetContainer() Form1

Field1.TopContainer Form1

Field1.GetTopContainer() Form1

Rect1.Container.FirstChild Button1

Form1.FirstChild Button1

Form1.NextControl() * Rect1

Form1.NextControl() * Null

Application.GetFirstForm() Form1

App1

Form1 Report1

Button1

Field1

Rect1

3.28

* The results indicated apply only if references are evaluated in the order stated.

Syntax of Object References

The full syntax of object references is as follows:

{ hierarchical_name | object_variable | characteristic_name }
 [. characteristic_name [. characteristic_name] ...]

hierarchical_name is the full or partial hierarchical name of an object, as described in

the section “Syntax of Hierarchical Names” on page 3.24.

object_variable is an Oracle Basic variable of datatype Object.

characteristic_name is the name of a property of datatype Object (such as ScrollObj)
or of a method returning a value of datatype Object (such as NextControl()).

Restrictions on Object References

You use object references in two places: in Oracle Basic method code, and in property values of
datatype Object.

When you specify an Object property value at design time (such as when you enter the name of a
container in the ScrollObj property of a scrollbar), the reference cannot contain any properties or
methods. Because of this restriction, you cannot use relative references that contain properties or
methods.

You can, however, use the keywords “Container” and “TopContainer” in the reference. The
“Container” keyword is like the GetContainer() method: it returns a reference to the parent of the
object. The “TopContainer” keyword is like the GetTopContainer() method: it returns a reference
to the top-level container of the object.

For example, you could set the ScrollObj property of a scrollbar object to the following value:

Scroll1.Container

However, the following value is not valid, because it contains a reference to a property:

Form1.FirstChild

In a user-defined class, the “Container” and “TopContainer” keywords are evaluated differently
from GetContainer() and GetTopContainer(). “Container” and “TopContainer” cannot refer to
any object above the level of the class. However, the GetContainer() and GetTopContainer()
methods can be used to refer to objects above the level of the class—for example, you can use these
methods to refer to the form containing an instance of the class.

Application.GetNextForm() * Report1

Application.GetNextForm() * Null

Reference Refers to This Object

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.29

Object Classes and Inheritance

Class objects have a set of features that let you reuse and link components of your application. You
can use the definition of a class object, including its property settings, the objects it contains, and
its Oracle Basic method code, as a master for creating linked copies of the object called instances
and subclasses.

An instance is a linked copy of a class object that appears on a form, report, or class.

A subclass is a class object that is based on the definition of another class object. As with a class,
you can create an instance of a subclass.

Instances and subclasses inherit the features of the object from which they are created—they share
the same controls, property settings, and Oracle Basic method code as the master object. Any
changes you make to the master object are automatically reflected in all of the object instances and
subclasses, but you can also make local changes to an instance or subclass.

The following diagram shows the definition of a class called “clsMyNewClass”:

3.30

The following diagram shows an instance of the class “clsMyNewClass” on a form called
“frmMyNewForm”:

The following diagram shows how the instance inherits changes made to the class definition:

Normally, an instance or subclass inherits all of the features of the master object. If you make a
modification to an instance or subclass, the inheritance relationship for that feature is overridden.
Once a feature is overridden, changes to that feature of the master object are not reflected in the
instance or subclass.

A change made
to the master class...

...is automatically
inherited by all

instances of the class.

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.31

Overridden properties or methods are indicated by filled-in diamond or arrow symbols in the
property sheet.

It is possible to re-establish the inheritance relationship for properties and methods. To reinherit an
object characteristic, select the name in the property sheet of the instance or subclass and click on
the Reinherit button.

Some features that have been overridden in a subclass or instance cannot be reinherited. For
example, if you have deleted an object within a subclass or instance, the deleted object cannot be
restored.

Important: Do not delete a class object when instances or subclasses of the object still exist. After
the class object is deleted, you will be unable to open or run any object that contains instances of
the deleted class.

Object Inheritance Hierarchy

The relationships among classes, subclasses, and instances are described by the object inheritance
hierarchy. The object inheritance hierarchy is like a family tree—a single object definition can
inherit features from several different classes and subclasses.

The most simple type of object inheritance hierarchy is when an instance of a class inherits the
features of a single master class. For example, in the following diagram, the form “frm1” contains
an instance of the class “clsA”:

clsA

frm1

3.32

Instances of several different objects can appear in the same container. For example, in the
following diagram, the form “frm1” contains instances of two classes, “clsA” and “clsB”:

The inheritance hierarchy becomes extended when subclasses or classes containing instances of
other classes are introduced. For example, in the following diagram, the class “clsA” has a subclass
called “clsAsub1”, and the form “frm1” contains an instance of “clsAsub1”:

clsA clsB

frm1

clsA

frm1

clsAsub1

O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3.33

In the following diagram, the class “clsC” contains an instance of the class “clsA”. The form “frm1”
contains an instance of “clsC”.

clsA

frm1

clsC

3.34

The inheritance hierarchy becomes more complex when a class contains instances of multiple
master classes. For example, in the following diagram, the class “clsAB” contains instances of both
“clsA” and “clsB”. The form “frm1” contains an instance of “clsAB”.

clsA

clsAB

clsB

frm1

4
O r a c l e B a s i c 4

This chapter covers the following topics:

Overview . 4.2
Oracle Basic Language Components . 4.3
Values and Datatypes . 4.3
Literals . 4.4
Variables. 4.6
Symbolic Constants . 4.10
Operators . 4.12
Built-in Functions . 4.17
Commands . 4.21
Expressions . 4.22
Object Properties. 4.23
Object Methods . 4.23

4.2

Overview

Oracle Basic is a programming language that enables you to customize the existing capabilities of
Oracle Power Objects and to create new ones. This full-featured language is an integral part of
Oracle Power Objects, providing full support for its object-oriented features.

Oracle Basic commands enable you to define constants, variables, and procedures. They also make
it possible to control input-output operations and branching for all the paths needed during
execution to meet the needs of your applications and their users.

Oracle Power Objects incorporates most of the standard operations and procedures you need to
prototype and implement successful database applications. These built-in components comprise
the default processing for the standard Oracle Power Objects methods. You can then use Oracle
Basic to modify, supplement, or replace this default processing.

This chapter describes the built-in components of Oracle Basic. (More detailed explanations can be

found in the Oracle Power Objects online help). Chapter 5, “Methods and Method Code”,
describes how you associate Oracle Basic code objects you design and how you invoke the code.

The Oracle Basic language has the following essential language components, all of which are
described in this chapter:

■ Values. A value is a piece of information with an associated datatype. Other components of
Oracle Basic enable you to specify and manipulate values.

■ Literals. A literal is a fixed data value, such as 32 or 'SMITH' .
■ Variables. A variable is a name representing a value that can vary.
■ Symbolic constants. A constant is a name representing a fixed data value.
■ Operators. An operator manipulates individual values and returns a result.
■ Expressions. An expression represents a value. Expressions can consist of literals, object values,

and functions, singly or combined by operators.
■ Built-in functions. A function performs calculations and returns a result. Functions usually

operate on one or more arguments that you specify when you call the function, although some
functions have no arguments.

■ Commands. A command performs calculations or other operations. Commands and
subroutines frequently return information, but they do not return a result value in the same
way that functions do.

In addition, Oracle Basic provides support for the following object characteristics:

■ Object properties. A property is an object characteristic that stores a value.
■ Object methods. A method is a procedural characteristic of an object. Methods can be either

functions, which return a value, or subroutines, which do not.

These elements and conventions are described briefly in the sections that follow; a more complete
discussion appears in the online help.

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.3

Oracle Basic Language Components

Values and Datatypes

A value in Oracle Basic is a datum with a specific datatype. Commands, functions, and methods
use values as parameters; variables and object properties store values; and operators and functions
produce values as output.

Values are derived from expressions, which are discussed in the section “Expressions” on page 4.22.

For constants, the datatype is usually obvious: 3.14159265 is a noninteger numeric value; “Hello”
is a string value.

The datatype of a variable is less immediately apparent. You can append to variables predefined
suffixes (listed later in this chapter) to make their type instantly recognizable, but these are not
required. If you do not use suffixes, you can declare any valid variable name to be of any valid type.
If you make no declarations, Oracle Basic infers the appropriate type from the first context in
which you use each variable.

Oracle Basic uses data of the following types:

You cannot declare variables with the Null datatype, but a variable of any datatype can be assigned
a null value.

Datatype Description Range/Size

Null Indicates the absence of a value

Integer 16-bit signed integer -32,768 to +32,767

Long Integer 32-bit signed integer -2,147,483,648 to +2,147,483,647

Single 4-byte single-precision floating-
point value

+/- 1.401298E-45 to 3.402823E30; and zero

Double 8-byte double-precision floating-
point value

+/- 4.94066E-324 to
1.79763134862315E308; and zero

Date A value storing date and time
information

Jan 1, 100 AD to Dec 31, 9999 AD

String A value storing a string of text 1 to 32,767 characters (minus a small amount
for system overhead)

Object A reference to an object, such as a
container or control

Variant Can store values of any datatype

4.4

A variable of datatype Variant can store any value given to it at any time, without the limitations
imposed on variables specified as any other type. For example, a Variant variable can be assigned a
Date value, then an Object value, then a Long value. Variables with a datatype other than Variant
cannot store values of other datatypes (except Null, as described above). For example, once a
variable is typed as String, attempting to store a number in it generates an error message.

Technical note: All Oracle Basic values are stored internally as Variant values and interpreted by
Oracle Basic within the ranges of values appropriate to the declared datatype.

You can use the VARTYPE function to check the datatype of any value—the value to be checked is
included as the argument to the function. VARTYPE returns a Long Integer value that indicates the
datatype of the value to be checked. The values returned by VARTYPE are listed in the following
table:

Literals

A literal is a fixed data value. Each datatype has its own format for specifying literal values.

Numeric Literals

Numeric literals are composed of digits. For numbers with fractional parts, a decimal point is used
to separate the integer part from the fractional part. You can use a sign (+ or -) at the beginning of
the number. You can also use scientific notation, indicated by the character “e” or “E”.

The datatype of a literal value is derived from the magnitude and format of the value. Oracle Basic
generally assigns to a value the smallest datatype required to represent the value. The following
table shows how Oracle Basic assigns datatypes to several example literal values:

Value Type VARTYPE Value Notes

Null 1

Integer, Long 3 Integer and Long are the same internal type interpreted in
different ranges.

Single, Double 5 Single and Double are the same internal type interpreted in
different ranges.

Date 7

String 8

Object 9

Value Datatype

3 Integer

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.5

Text Literals

Text literals are strings of text that can include letters, numbers, spaces, tabs, and other special
characters. You must always delimit (surround) literal strings with double quotation marks. The
following values are text literals:

"Smith"
"The correct response is 42"
"Coming & Going"

To represent a double quote mark inside a literal, you can concatenate a double quote character
generated with the CHR built-in function, as in the following example:

"He asked, " & CHR(34) & "Why did you go?" & CHR(34)

The CHR function is described in the topic “CHR Function” in the online help.

Date and Time Literals

Date and time literals are text strings containing date and time information. You must delimit
(surround) literal date and time values with pound symbols (#). Oracle Power Objects allows you
to use most common date and time formats to specify date and time literals. The following values
are date and time literals:

#1/31/94#
#12:00 AM#
#January 31, 1994#
#01-JAN-94 12:00:01#

If you specify a text literal containing date and time information where a date value is required,
Oracle Basic will convert the text value to a date or time value, according to the following rules:

■ If the string contains only one number (N), the date interpretation is “January 1, N”.
■ A string of the form “A-B-C” is interpreted as “year-month-day” if A > 100. Therefore,

specifying a value above 12 for B or above 31 for C causes an error. If A < 100, Oracle Power
Objects uses the date format specified in your operating system to determine which value (B or
C) represents the month. The date format is specified in the “International” control panel in
Windows, in the “Date & Time” control panel on the Macintosh.

32763 Integer

32788 Long

3.1 Single

Value Datatype

4.6

■ If the string contains only two numbers (X Y), the date interpretation is for month and day, in
the current year defined by the system date. If either X or Y is greater than 12, it is taken as the
day, and the other as the month. If both are less than 12, the interpretation uses the control
panel format. If either is greater than 31 or if both are greater than 12, an error occurs.

■ If the string contains three numbers (X Y Z):
• Any values above 12 and 31 are taken as the month and year respectively, regardless of

position in the string.
• Two values above 31 or three between 12 and 31 cause an error.
• A two-digit year is always taken as the nearest four-digit year ending with those two digits.

For example, entering “8/19/21” during 1995 is interpreted as “August 19, 2021”. If the
year of the system date were 2072, “8/19/21” would be interpreted as “August 19, 2121”.

For explicit control over the format in which you enter date and time values, you can use the
CVDATE function. CVDATE is described in the online help.

Nulls

You can specify a null value explicitly by using the word NULL.

Variables

An Oracle Basic variable is a name representing a value that can vary. Variable names are
constructed according to specific rules.

Variable Names

A variable name must begin with a letter and can be up to 39 characters long. You can use any
letter, number, or the underscore (_) character. An underscore is often used to represent a space, as
in the following variable name:

client_invoice

All other characters are disallowed in variable names, including spaces, tabs, and line-break
characters (carriage returns and line feeds).

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.7

Declaring Variables

Variables can be declared either implicitly or explicitly.

You declare a variable implicitly by using a previously undeclared name as an output value (for
example, as the output operand to the assignment operator). If the last character of the declaration
is a variable type suffix, the variable’s datatype is determined by the suffix; otherwise, the variable is
of type Variant. Variable type suffixes are:

Note that these suffix characters are not part of the variable name.

You declare a variable explicitly using a DIM, GLOBAL, REDIM, or STATIC statement. These
statements have meanings as follows:

You can assign a datatype in an explicit declaration, either by specifying a type suffix or through the
AS clause. To specify a type suffix, simply add the appropriate suffix character to the name, as in the
following examples:

DIM vIntegerVar% 'Integer
DIM vLongArray&(100) 'Long Integer
DIM vDoubleVar# 'Double
GLOBAL gStringGlobal$ 'String

Datatype Suffix

Integer %

Long Integer &

Single !

Double #

String $

Statement Meaning

GLOBAL Declares array or nonarray variables that will be accessible from any method
anywhere in your application. You must declare global variables in the
(Declarations) section of an application.

DIM Declares array or nonarray variables that are local to the method (subroutine or
function) in which they are declared. Variables declared through DIM become
undefined as soon as the method finishes execution.

STATIC Declares array or nonarray variables that are local to the method (subroutine or
function) in which they are declared, but retain their values throughout an
application’s execution.

REDIM Declares local array variables and can redefine their dimension and extent.

4.8

When you specify the AS clause, you specify the name of the variable datatype, as in the following
examples:

DIM vIntegerVar AS Integer
DIM vLongArray(100) AS Long
DIM vObjectVar AS Object
GLOBAL gStringGlobal AS String

You cannot include both a type suffix and an AS clause in a variable declaration. For example, the
following declaration is invalid:

DIM vInteger% AS Integer 'Invalid declaration

If you do not include a type suffix or AS clause, the variable is automatically declared as type
Variant.

Certain variables are declared automatically by Oracle Power Objects in the body of a method
(subroutine or function): a variable is automatically declared for each method parameter. These
variables are always local in scope.

Whether a variable is declared implicitly or explicitly, the declaration establishes the name and
datatype of the variable. You must always refer to the variable in the same way after declaration,
including its type suffix (if specified at declaration).

Variable Initial Values

The initial value for each variable datatype is as follows:

Scope of Variables

The scope of a variable declaration determines where the variable can be referenced. The scope of a
variable is either global or local.

A variable of global scope is always available to any method in the application. You make a
variable global in scope by declaring it with the GLOBAL keyword. Global variables can only
be declared in the (Declarations) section of an application.

Datatype Default Initial Value

All Numeric Types Zero (0)

Date Null

String Zero-length string ("")

Object Null

Variant Null

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.9

A variable of local scope is available only to the method (subroutine or function) in which the
variable was declared. Variables you declare implicitly or with the DIM, STATIC, or REDIM
statements are local in scope.

Arrays

An array is a variable that can contain multiple values of the same datatype. Each value is stored in
a separate array element. The dimension of an array indicates how many separate values are required
to specify a unique element—in other words, the number of logical data axes of the array. For
example, an array of dimension 1 has one axis, while an array of dimension 3 has three axes.

Each dimension has an extent, a range of values that indicates which elements are defined along the
dimension. The extent represents the “size” of the dimension. For example, an extent of “0 to 10”
represents an 11-element dimension. An extent of “-30 to -10” represents a 21-element dimension.

To refer to an element of an array, you specify one or more index values in parentheses following the
array name. You specify one index value for each array dimension; each index value must fall within
the extent of its dimension. For example, the following reference specifies element 4 of the array
vArray_1D :

vArray_1D(4)

The following reference specifies the element at coordinates (3, 2) in the array vArray_2D— that
is, the third element along the first dimension, the second element along the second dimension:

vArray_2D(3,2)

You can use an array element anywhere you can use a nonarray variable—for example, to receive a
value from an assignment operation, or to provide an argument to a function.

To declare an array, you include parentheses following the variable name in a GLOBAL, DIM,
STATIC, or REDIM statement. You can also include values to specify the dimension of the array
and the extent of each dimension.

The full syntax of the DIM statement is as follows (GLOBAL, STATIC, and REDIM have similar
syntaxes):

DIM varname [([[lbound TO] ubound])] [AS datatype]
 [varname [([[lbound TO] ubound])] [AS datatype]]...

varname is the name of the variable.

lbound is an integer representing the lower bound of a dimension’s extent. lbound can be
negative; however, lbound must be less than ubound . If lbound is not specified, the lower
bound of the extent is zero.

ubound is an integer representing the upper bound of a dimension’s extent. ubound can be
negative only if a lower lbound value was specified. Each ubound value you specify
represents a different array dimension.

4.10

datatype is a keyword representing the variable’s datatype. If datatype is not specified,
the variable is of datatype Variant.

For example, the following statement declares an array vArray_1D that has a dimension of 1:

DIM vArray_1D(0 TO 10)

The following statement declares an array vArray_2D that has a dimension of 2:

DIM vArray_2D(0 TO 10, 0 TO 10)

You can create a dynamic array by declaring an array without specifying the dimension and extents
of the array. A dynamic array has a dimension of 1when first declared, but you can subsequently
modify the dimension and the extent of each dimension with a REDIM statement.

Symbolic Constants

Symbolic constants (also called constants) are names, constructed like variable names, that you can
use in place of specific constant values (such as numbers or strings). You define the value
represented by the constant when you declare the constant.

Constant Names

A constant name, like a variable name, must begin with a letter and can be up to 39 characters
long. You can use any letter, number, or the underscore (_) character. All other characters are
disallowed in constant names, including spaces, tabs, and line-break characters (carriage returns
and line feeds).

Declaring Constants

You declare a constant using the CONST statement, as in the following examples:

CONST BTN_OK = 1
CONST BTN_CANCEL = 2
CONST FIRST_STATE = "Delaware"
CONST MAX_WINDOWS% = 255

If the last character of the constant declaration is a variable type suffix, the constant’s datatype is
determined by the suffix; otherwise, the constant’s datatype is determined by the datatype of the
value assigned to it. Oracle Basic uses the simplest type that accurately represents the constant; for
example, Integer is used for whole numbers below 32,767, and Long for higher integral values.
Because a constant’s value does not change, constants cannot have datatype Variant.

A constant’s scope is determined by where the constant is declared. A constant declared in the
(Declarations) section of an application is global in scope. You do not need to use the GLOBAL
keyword in the declaration. A constant declared anywhere else is local in scope.

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.11

Using symbolic constants can make your code easier to read and understand, providing more
immediate significance than literal values and more inherent stability than variables. Your code
becomes less subject to inadvertent errors, easier for others to understand, and easier to modify.
When you modify the value assigned to a constant, you modify the value used wherever the
constant appears. This can also help you use the same code in different environments.

You can make your code more understandable by establishing a convention for all constants,
making them easy to recognize as one reads your program. For example, you could always use
underscores as the first and last characters of a constant.

Predefined Constants

Oracle Basic includes a number of predefined constants to help clarify your code. You can use these
constants anywhere in your application.

Boolean constants. Oracle Basic defines these constants to represent boolean (logical) values:

CONST TRUE = -1
CONST FALSE = 0

You can use these constants wherever a boolean value is required.

Note: In most cases, you can use any nonzero number to represent the Boolean value True, not just
-1. The value -1 is used for the True constant because of the operation of the bitwise NOT
operator: NOT(-1) = 0, and therefore NOT(TRUE) = FALSE.

Property value constants. For list-type properties, Oracle Basic includes a set of predefined
constants representing the possible values of the property. For example, the TextJustVert property
has three possible values, as shown in the following diagram:

The following predefined constants can be used to set the TextJustVert property:

TEXTJUSTVERT_TOP
TEXTJUSTVERT_CENTER
TEXTJUSTVERT_BOTTOM

4.12

You can then use the constant by substituting it for the required value. For example, to set the
TextJustVert property to “Top”, you could use the following statement:

Field1.TextJustVert = TEXTJUSTVERT_TOP

The constants for setting list-type properties take the following form:

property _setting

property is the name of the property.

setting is the text of the setting. Spaces are replaced by underscores.

The specific constants corresponding to each property value are described in the Oracle Power
Objects online help topic for the property.

Examples

You might define a set of constants corresponding to the output values of the VARTYPE function,
for use in checking the datatype of a value. The following code establishes a set of such constants,
which would be easier to read and understand quickly than the integers they represent:

CONST VAR_NULL = 1, &
 VAR_INTEGER = 3, &
 VAR_LONG = 3, &
 VAR_SINGLE = 5, &
 VAR_DOUBLE = 5, &
 VAR_DATE = 7, &
 VAR_STRING = 8, &
 VAR_OBJECT = 9

After declaring these constants, you can use them to check the datatype of a value, as in the
following example:

SELECT CASE VARTYPE(vReturnValue)
 CASE VAR_NULL
 MSGBOX "The return value is null."
 CASE VAR_OBJECT
 MSGBOX "The return value is an object."
 CASE ELSE
 MSGBOX "The return value is: " & vReturnValue
END SELECT

Operators

Oracle Basic provides several categories of operators for constructing or comparing arithmetic or
string expressions, relational expressions, and logical expressions. This section describes the
operators available in each category.

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.13

Operator Precedence

Operator precedence establishes the order in which operations are performed when an expression is
evaluated. Each category of operators is listed in order of relative precedence in an expression.
Operators appearing at the top of the list have the highest precedence (they are evaluated first);
operators appearing at the bottom of the list have the lowest precedence (they are evaluated last).
Operators of equal precedence are evaluated from left to right. In general, arithmetic operators are
evaluated before comparison operators, and comparison operators are evaluated before logical
operators.

You can use parentheses to group operations in an expression. Operations inside parentheses or
brackets are evaluated before operations outside parentheses.

For example, the numeric expression “2 * 8 + 4 / 2” can return different values depending on how
the operands are grouped, as shown in the following table:

Arithmetic Operators

Arithmetic operators manipulate numeric operands and return a numeric value.

As described in the section “Date Operators” on page 4.16, you can also use some arithmetic
operators with Date values.

Grouping Result

 2 * 8 + 4 / 2 18

 (2 * 8) + (4 / 2) 18

((2 * 8) + 4) / 2 10

 (2 * (8 + (4 / 2)) 20

 2 * ((8 + 4) / 2) 12

Operator Description Example Result

^ Exponentiation 2^3 8

- Negation -(2+5) -7

*, / Multiplication, division 3*12/4 9

\ Integer division 17.46\3 5

Mod Modulo arithmetic 17 mod 3 2

+,- Addition, subtraction 9 + 11 - 5 15

4.14

String Operators

String operators manipulate string operands and return a String value.

Comparison Operators

Comparison operators manipulate operands of many different datatypes and return a boolean value
represented as a Long Integer. A return value of -1 means True; a return value of 0 means False.

Logical Operators

Logical operators manipulate numeric operands and return a boolean value represented as a Long
Integer value. A return value of -1 means True; a return value of 0 means False.

Operator Description Example Result

& Concatenation—implicitly converts
operands of any datatype to string
values before concatenation.

"ant" & "hem"
"anthem" & 1
"anthem" & NULL

"anthem"
"anthem1"
"anthem"

+ Concatenation—performs no
implicit conversion of operands.

"writ" + "ten"
"written" + 1
"written" + NULL

"written"
Error
NULL

Operator Datatypes Supported Description Example Result

= All Equality (12/3 = 28/7) True

<> All Inequality (12/3 = 35/7) False

< All except Object Less than “b” < “bb” True

> All except Object Greater than “z” > “bb” True

<= All except Object Less than or equal 5 <= 119 False

>= All except Object Greater than or equal cos(1.6) >=2 False

Operator Description Example Result

NOT Logical negation NOT(1=2) True

AND Logical conjunction (2=18/9) AND (1=2) False

OR Logical disjunction (2=18/9) OR (1=2) True

XOR Exclusive disjunction (2=18/9) XOR (7=7) False

EQV Logical equivalence (6<2) EQV (2<3) False

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.15

Bitwise Operations

The Oracle Basic logical operators perform bitwise operations on their operands. Bitwise
operations compare individual digits of the binary representation of numbers.

When operating on logical values (-1 for True and 0 for False), these operators return the results
described in the previous section. However, you can use these operators with other numeric values,
as shown in the following table:

IMP Logical implication (6<2) IMP (2<3) True

Operator Example Bitwise Equivalent

AND 198
AND 173
 = 132

 1100 0110
AND 1010 1101
 = 1000 0100

 68
AND 0
 = 0

 1000 0100
AND 0000 0000
 = 0000 0000

EQV 87
EQV 205
 101

 0101 0111
EQV 1100 1101
 = 0110 0101

IMP 6
IMP 42
 = 251

 0000 0110
IMP 0010 1010
 = 1111 1011

OR 157
 OR 195
 = 223

 1001 1101
 OR 1100 0011
 = 1101 1111

 10
 OR 0
 = 10

 0000 1010
 OR 0000 0000
 0000 1010

XOR 95
XOR 150
 = 201

 0101 1111
XOR 1001 0110
 = 1100 1001

 0
XOR 0
 = -1

 0000 0000
XOR 0000 0000
 = 1111 1111

NOT NOT 56
 = 199

NOT 0011 1000
 = 1100 0111

Operator Description Example Result

4.16

Note: The exact bitwise representation of a numeric value is determined by the processor on which
Oracle Power Objects is running.

One useful application of the bitwise operators is to check the setting of a particular bit of a
numeric value using the AND operator. For example, the following method code checks the
setting of third bit of the value in the variable vNumber (the bit representing 2^2, that is, 4). The
code displays a dialog with the word “set” if the bit is set, “not set” if the bit is not set.

IF (vNumber AND 4)
 MSGBOX "Set"
ELSE
 MSGBOX "Not set"
END IF

If vNumber were set to the value 6 (binary 0000 0110), the preceding code would display “set”,
because the third bit of the value is set. If vNumber were set to the value 10 (binary 0000 1010),
the preceding code woud display “not set”, because the third bit of the value is not set.

Similarly, you can set the value of a particular bit using the OR operator. For example, the
following method code sets the fourth bit of the value in the variable vNumber (the bit
representing 2^4, that is, 8):

vNumber = vNumber OR 8

If the fourth bit of the value in vNumber is set, it remains set. If the fourth bit is not set, it
becomes set.

You check or set individual bits of numeric values when working with certain expressions, such as
the dlg_type argument to the MSGBOX command, or the Value property of a current row
pointer control. For more information, see the online help.

Date Operators

Date operators manipulate date and numeric operands and return a Date or numeric value.

NOT 0
 = -1

NOT 0000 0000
 = 1111 1111

Description Example Result

Date - Date 4/13/95 - 4/8/95 = 5 Yields the number of days between them. If the
time portion of the dates differ, the result includes
a fractional component indicating the difference in
time.

Date + Number 4/13/95 + 23 = 5/6/95 Yields a date later than original by the specified
number of days

Operator Example Bitwise Equivalent

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.17

Object Operators

Object operators return an Object value.

Only in-memory objects (recordsets, menu bars, menus, toolbars, and status lines) can be created
with the NEW operator.

Built-in Functions

A function performs calculations and returns a result. Built-in functions are part of the Oracle Basic
language; you cannot modify the behavior of built-in functions. Object methods can also be

defined as functions, as described in Chapter 5, “Methods and Method Code”; you can customize
object methods by adding method code to them.

You can use a function wherever a value is required by specifying the function name, followed by
the function arguments in parentheses. Thus you can use it in an assignment statement, either
alone or as part of a larger expression, or as an argument to some other function, either built-in or
user-defined.

For example, to call the built-in function SQR, you could use the following method code:

DIM vResult AS Double
vResult = SQR(2)

Built-in Functions

Built-in Oracle Basic functions have the following general categories:

Date - Number 4/13/95 - 312 = 6/5/94 Yields a date earlier than original by the specified
number of days.

Operator Description Example

NEW Object creation mbrMenuBar1 = NEW MenuBar

Category Description Examples

File Input/Output Enable you to read information from and
write information to operating system
files.

CURDIR
EOF
SEEK

General ASC
SPACE
ENVIRON

Description Example Result

4.18

For a complete reference to the built-in functions, see the topic “Oracle Basic Functions” in the
online help.

Aggregation Functions

An aggregation function is a built-in function that calculates a single value based on all the rows in a
recordset, such as the count of such rows or the sum of column values. The argument provided to
these functions is an expression that must include a reference to one or more bound controls from a
single container, such as a text field in a repeater panel or on a form.

The following aggregation functions are available:

Array/Subscript Return information about the lower and
upper bounds of array extents.

LBOUND
UBOUND

Selection Allow you to choose a value from multiple
alternatives

CHOOSE
IIF

Mathematical, Statistical,
and Trigonometric

Perform operations on numeric values. ABS
COS
SQR

SQL-related Allow you to execute custom SQL
statements and return error information
after execution of a SQL statement.

SQLROWCOUNT
SQLLOOKUP

String Manipulate string values. FORMAT
LEN
UCASE

Conversion Explicitly convert values to a specified
datatype or value format.

CINT
VAL
HEX

Aggregation Calculate values based on values in a set of
database rows. Aggregation functions are
described below.

AVG
COUNT

Date Return system date and time information,
and manipulate date and time values.

CVDATE
DATE
NOW

Financial Perform financial calculations. MIRR
PMT
RATE

Category Description Examples

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.19

The argument to any aggregation function is an expression including a reference to a bindable
control associated with a recordset. For example, the following function calculates the sum of
salaries displayed on the field “fldSal” on the form “frmEmp”:

vSalarySum% = SUM(frmEmp.fldSal.Value)

The following function calculates a count of all employees displayed on the field “fldEmp” on the
repeater display “rptEmpDetail”:

vEmployeeCount% = COUNT(rptEmpDetail.fldEmp.Value)

In control references, you do not have to specify the Value property explicitly—a reference to the
control object is assumed to refer to its Value property. For example, the following reference is
identical to the preceding one:

vEmployeeCount% = COUNT(rptEmpDetail.fldEmp)

Aggregation functions are useful both in method code and in derived values (calculations located in
the DataSource property of a control). For example, you could display a count of employees using
a field object with the following DataSource property:

=COUNT(rptEmpDetail.fldEmp.Value)

In either case, the aggregation function must be invoked from an object not contained by the
bindable container over which the aggregation is to be done—that is, not in the same container as
those controls. For example, an aggregation function that refers to a field in a repeater display must
be located outside the repeater display (on the form containing the repeater display, on another
container within the form, or on a different form). An aggregation function that refers to a control
on a form must be located on a different form.

You can specify compound expressions as the argument to an aggregation function. For example,
you can use the SUM aggregation function to calculate the sum of a complex expression, as shown
below:

vWithholdTax% = SUM((frmEmp.fldSal * .10) + (frmEmp.fldCom *
.25))

You can use an expression of any type in an aggregation function as long as all objects referenced in
the expression are bound controls located within a single bound container.

Function Description

MAX maximum value

MIN minimum value

COUNT number of non-null values

AVG mean average of all values

STDEV standard deviation of all values

SUM sum of all values

4.20

The expression argument to an aggregation function is subject to the following rules:

■ It must be of a datatype allowed by the function:

AVG, SUM, and STDEV require a numeric argument.
MIN and MAX require a numeric or string argument.
COUNT can operate on any datatype.

■ It must contain at least one reference to a bound control.
■ It cannot contain references to object properties (other than Value) or methods.
■ It cannot contain references to controls in multiple containers.

To illustrate the use of aggregation functions in an application, consider the following form, which
contains a button and two separate repeater display objects:

The following commands could be added to the Click() method of the button object:

MSGBOX ("The average is " & AVG(field1))
MSGBOX ("The average is " & AVG(field3))
MSGBOX ("The weighted average is " & AVG(field1+field2*2))
MSGBOX ("The average is " & AVG(field3))

However, the following command is invalid, because it attempts to aggregate values from fields in
different containers:

MSGBOX ("The average is " & AVG(field1+field3))

Similarly, the following commands are invalid for methods associated with any objects contained
by Repeater1, because they are not in a container separate from the fields being aggregated:

MSGBOX ("The average is " & AVG(field1))
MSGBOX ("The average is " & AVG(field2))

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.21

Commands

A command is an Oracle Basic keyword that performs an operation but does not return a value. To
use a command, you use its name on a line by itself. This usage is called invoking or calling the
command. You pass arguments to a command when required, often in parentheses. Some
commands require parentheses; others do not allow them. See the online help for the syntax of
individual commands.

For example, to call the MSGBOX command, you could use the following method code:

MSGBOX "There has been a serious error."

Commands

Oracle Basic commands have the general categories listed in the following table:

Category Description Examples

Database Management and
Interaction

Enable you to send custom SQL statements to a

database, as described in Chapter 9, “Structured

Query Language (SQL)”.

EXEC SQL

Execution Control Control the flow of command execution. Allow
you to define loops, jump to a specified code
line, and handle errors.

CALL
FOR
WHILE
IF

Variable and Constant
Definition and Control

Declare variables and constants. CONST
DIM
LET

Comments Enable you to define code comments, as

described in the section “Commenting Code”

on page 5.8.

REM

Procedure Definition Declare functions and subroutines. You do not
have to enter procedure definition commands
explicitly in Oracle Basic.

DECLARE
END

File Input/Output Allow you to read information from and write
information to operating system files.

CLOSE
PRINT#

Directory/File Management Allow you to create, delete, and navigate among
directories, and lock or rename files.

CHDIR
LOCK

Miscellaneous BEEP

4.22

For a complete reference to the built-in functions, see the topic “Oracle Basic Commands” in the
online help.

Expressions

An Oracle Basic expression can be formed by any of the following elements alone or combined with
appropriate operators:

■ Literals
■ Constants
■ Functions (both built-in functions and Object methods that are functions)
■ Object properties
■ Variables

The following values are expressions:

"Hello"
10
3.1415 * 2.71828
TRUE AND 4<3
SQRT(A^2 + B^2)
"Press the " & LABEL & " button to do it."
frmEmp.fldSal.Value * .25

Expression Evaluation

For the order in which

Oracle Basic evalu-

ates operators, see

the section “Opera-

tor Precedence” on

page 4.13.

An expression is evaluated to derive the value it represents. Expression evaluation involves
evaluating functions and performing operations specified by operators. When functions are
evaluated, the function is replaced by the return value of the function.

Datatype Conversions

Because an expression represents a value, every expression has a datatype. The individual elements
composing an expression also have datatypes. When elements of different types are combined in an
expression, Oracle Basic performs certain implicit datatype conversions to simplify the expression
and its result. The following guidelines further describe these operations.

Operator Conversions

The ampersand (&) concatenation operator implicitly converts operands of all datatypes to String
values before operating on them.

O R A C L E B A S I C O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

4.23

Numeric Conversions

Implicit numeric conversions are used when numeric values of different types are mixed together.

■ Numeric expressions perform their indicated operations using the highest precision or capacity
present in the values or variables that make up the expression. Thus, when adding an integer
value to a double-precision value, Oracle Basic first “promotes” the integer to a double-
precision value. Then the addition takes place, and a double-precision value is returned as the
expression result.

■ Integer division (\) and the MOD operator always return Long values.
■ When floating-point values (Single or Double) are implicitly converted to integer values (Integer

or Long), the fractional part is truncated. For example, MM% = 3.1415 would cause MM% to
hold the value 3.

■ If a floating-point value (Single or Double) is too large to be assigned to an integer variable or
property, an error occurs. For example, the statement MM% = 32777 causes an error because
the limit for Integer values is 32767. Similarly, if a Double value is too large to be assigned to the
Single datatype, an error occurs.

To convert a numeric datatype explicitly, you can use a conversion function provided by Oracle
Basic, such as CDBL, CSNG, CINT, CLNG, and CSTR.

Object Properties

Object properties are

described in the sec-

tion “Properties” on

page 3.14.

Object properties are characteristics of an object that store a value. Object properties behave like
Oracle Basic variables. For example, you can assign values to such a property or use the property to
represent a value in expressions.

Note that the scope of an object property or method is always global—it can be referenced from
anywhere in the application.

Object Methods

Object methods are

described in the sec-

tion “Methods” on

page 3.17.

Object methods are procedural characteristics associated with objects. Standard methods are
associated with objects by default; user-defined methods can be added after object creation. You can

customize methods by adding Oracle Basic code to them, as described in the section “Writing

Method Code” on page 5.5. Some methods also have default processing that executes if you do not
customize their behavior.

Methods can be either functions or subroutines. Function methods return a value, just as built-in
functions do, while subroutines do not.

A complete list of standard methods is included in Appendix B, “List of Properties and Methods”.
For a complete reference to each method, see its topic in the online help.

4.24

5
M e t h o d s a n d M e t h o d
C o d e 5

This chapter covers the following topics:

Overview . 5.2
Triggering Methods. 5.2
Creating a Method . 5.4
Writing Method Code . 5.5
Methods, Default Processing, and Method Code. 5.6
Overloading Method Declarations. 5.7
Suggestions and Cautions . 5.7
Debugging Method Code . 5.9
The Run-Time Debugger. 5.9
Setting a Breakpoint . 5.12
Removing a Breakpoint . 5.13
Setting a Watchpoint . 5.13
Moving Execution to Any Point Within the Method. 5.14

5.2

Overview

A method is a procedural characteristic of an object. For example, the OpenWindow() method of a
form loads the form into memory and displays it in the application interface. Methods are where
you write Oracle Basic code to customize your application’s behavior—all Oracle Basic code
appears in methods. This chapter describes how you invoke methods and how to add Oracle Basic
method code to them.

A method can be either a function or a subroutine. Both types of methods perform calculations;
however, functions return result values while subroutines do not. Methods may (but need not)
operate on one or more arguments.

Oracle Power Objects includes a set of predefined standard methods, most of which include default
processing that executes when the method is triggered. You can also add user-defined methods to
objects; user-defined methods have no default processing.

For more information

about default pro-

cessing, see the sec-

tion “Methods,

Default Processing,

and Method Code” on

page 5.6.

You can customize standard and user-defined methods by adding Oracle Basic method code. For
standard methods, you can either completely override the default processing or interpose your own
code before or after invoking that default processing.

Triggering Methods

When a method is triggered, the method code or default processing associated with the method is
executed. A method can be triggered in one of two ways:

Through an event. An event is an action that occurs in the application’s interface. Events occur
when a user takes an action (such as clicking on a control or closing the application), or in
response to system activity.

By calling the method. You can call a method explicitly through Oracle Basic code, as
described in the next section.

M E T H O D S A N D M E T H O D C O D E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

5.3

Calling a Method

To call a method (either standard or user-defined) in Oracle Basic method code, use the following
syntax:

[object_reference.] method_name [([argument
 [, argument] ...])]

object_reference is a reference to the object containing the property or method, as

described in the section “Object Names” on page 3.20. If you omit object_reference ,
the property or method is assumed to belong to the object containing the reference.

method_name is the name of the method.

If the characteristic is a method that has arguments , the arguments must be specified in
parentheses following the property or method name, as described in the next section.

For example, to refer to the QueryWhere() method of a repeater display object, you might use a
reference like the following one:

Repeater1.QueryWhere("ENAME = 'KING'")

If the method is a function, it can return a value that you can use directly in an expression or in an
assignment statement. A function method can be used like a built-in Oracle Basic function.

For example, the GetRecordset() method is a function. GetRecordset() returns a value of datatype
Object, which you can assign to a variable. You can then use the variable wherever an reference to
the recordset object is required. The following method code stores the return value of
GetRecordset() in the variable recVar , and then uses recVar to execute methods of the
recordset object:

DIM recVar AS Object
recVar = Form1.GetRecordset()
recVar.Connect()

If the method is a subroutine, its name is used like a command rather than like a function—that is,
alone on a line rather than in an expression or assignment statement. Subroutines do not return
values directly; however, a subroutine can modify an argument passed to it.

You can also call a subroutine by using a CALL statement. For example, the following method code
acts identically to the previous example:

CALL sesOracle.Connect()

Arguments

During execution, you pass arguments to a subroutine or function when required. These arguments
are specified in parentheses following the method name. Function arguments can be passed either
by reference (the default) or by value.

5.4

When you pass an argument by reference, you pass a “handle” to the memory space occupied by the
variable used to specify the argument. Only variables can be passed by reference; any other type of
expression is automatically passed by value. Any changes made to the argument while the function
is executing affect the variable in the calling method.

In contrast, when you pass an argument by value, you pass only the current value assigned to the
argument, not a reference to the argument itself. Any changes made to the argument have no effect
outside of the subroutine or function. All nonvariable expressions are automatically passed by
value; variables are passed by value only if the keyword BYVAL is used in the declaration of the
function.

Creating a Method

To create a user-defined function or subroutine, you must declare it and add it to an object in your
application. Frequently, you add a function or subroutine to the form, class, or report where you
will call it, but in fact you can add it to any application object.

Creating a user-defined method involves the following steps:

■ Declaring the user-defined method.
■ Adding the method to an application object.

To declare a new user-defined function or subroutine:

1 Open the User Properties window by clicking the Add Property/Method button on the Property
sheet or by choosing the View-User Properties menu command.

2 Scroll to the end of the list.

3 On the blank line at the end of the list, click in the Name field and enter the name of the new
function.

The name you enter must not be a reserved word. However, you are permitted to overload a method
by entering the name of an existing user-defined or standard method; method overloading is

described in the section “Overloading Method Declarations” on page 5.7.

4 Click under the Type heading and select Function or Sub from the dropdown list.

5 For a function, click in the Datatype field and select the datatype for the return value.

6 If your function or subroutine will have arguments, click in the Arguments field and enter the
arguments, specifying the datatype for each one.

M E T H O D S A N D M E T H O D C O D E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

5.5

To add a function or subroutine to an application object:

1 Open the User Properties window.

2 Click on the selection rectangle (the button to the left of the function or subroutine description) to
select the function or subroutine.

3 While holding the mouse button down, drag from the selection rectangle to the chosen application
object (or its property sheet) where you want to use the function or subroutine definition.

The function or subroutine appears as part of the Property sheet, where it becomes a user-defined
method.

4 The code window for this new method automatically opens when you complete the drag operation.
Type in the desired Oracle Basic code defining what the function or subroutine does.

Writing Method Code

To customize the behavior of a method, you add method code to it. Method code can be added to
any standard or user-defined Oracle Power Objects method.

You add method code through the Property Sheet. All methods on the Property Sheet are indicated
by arrow symbols. To open a method for editing, simply click on the method name, as shown in
the following example:

The first line directly under the method name contains the method declaration—a SUB or
FUNCTION statement. The declaration includes the name of the method, the method’s
arguments, and (for functions) the return value. You add method code in the area beneath the
method declaration.

Click on the method
name to open the

method for editing.

5.6

Note: Do not add an explicit END SUB or END FUNCTION statement to your method code.
Oracle Power Objects automatically appends the appropriate statement to your code. If you
include an END SUB or END FUCTION statement, Oracle Power Objects returns an error.

Oracle Power Objects implicitly declares a set of variables in any method. A variable is declared for
each argument in the method declaration; the variable is of the datatype indicated in the
declaration. You can use these variables in your code like any other values. Note that assigning
values to these variables is meaningful only if the argument was passed by reference; an argument
passed by value can be set, but the argument variable disappears when the method ends.

For function methods, you assign the function’s return value by assigning values to the name of the
function. This name is not actually a variable; it is simply a convention for representing the return
value. For example, to set the return value of the Validate() method, you assign a value to the name
Validate , as in the following example:

Sub Validate() AS Long
IF Self.Value < 0 THEN
 Validate = FALSE
ELSE
 Validate = TRUE
END IF

To terminate a method in the middle of execution, you can use the EXIT FUNCTION or EXIT
SUB command. Either command terminates method execution immediately, and the application
continues execution where the method was first called.

Methods, Default Processing, and Method Code

Whenever you enter Oracle Basic code into a method, you automatically override any default
processing normally performed by that method—the default processing is not executed. For a
description of the default processing executed by each method, see the method topic in the online
help.

You can, however, invoke that default processing by adding Inherited. method_name to
your method code. For example, to invoke the default processing for the Click() method, you
would include the following line in your method code:

Inherited.Click()

The default processing is executed at the point in the sequence of code where you call
Inherited. method_name . You can, therefore, precede or follow that default processing
with custom Oracle Basic code. If the standard method you are invoking takes arguments, then you
must pass appropriate arguments in your call to invoke the Inherited. method_name()

M E T H O D S A N D M E T H O D C O D E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

5.7

procedure. For example, the PreDelete() method takes the number of the row to be deleted as its
argument. To invoke the default processing for PreDelete(), you must include the row number as
an argument, as in the following example:

Sub PreDelete(rownum as Long)
MSGBOX "About to delete row " & rownum
Inherited.PreDelete(rownum)

The default processing for a method often includes the calling of a series of other methods in a
predefined order. In such cases, the series of other methods in the default processing executes
immediately after the Inherited. method_name statement, before the flow of control returns
to any method code you may have placed after that statement.

Overloading Method Declarations

Oracle Power Objects permits you to “overload” a method declaration by defining two methods
that share the same name but have a different number of arguments. For example, you might want
to create an “Add” function that behaves one way if it is passed two numeric values, another way if
it is passed three values.

Sub udmAdd(Num1 AS Double, Num2 AS Double) AS Double
udmAdd = Num1 + Num2

Sub udmAdd(Num1 AS Double, Num2 AS Double, Num3 AS Double) &
 AS Double
udmAdd = Num1 + Num2 + Num3

You could add both of these methods to the same object, because they have a different number of
arguments. Any subsequent call to the “udmAdd” method would be directed automatically to the
appropriate method, depending on the number of arguments specified.

Suggestions and Cautions

The following suggestions and cautions are provided to assist you in writing method code.

Line Continuation

To break a single line of method code over multiple lines, you use the line continuation character at
the end of a line to be continued on the next line. The line continuation character is an ampersand
(&). For example, you could break a call to the AppendMenuItem() method over multiple lines as
shown below:

mnuMail.AppendMenuItem("Move Message...", Cmd_MoveMessage, &
 0, "^M")

5.8

Note that this use of the ampersand is different from the ampersand concatenation operator—the
line continuation character does not perform any concatenation. If you need to use the
concatenation operator at the same location as the line continuation character, you specify two
consecutive ampersands, as in the following example:

vReturnVal = MSGBOX("There was a problem connecting. " & &
 "Do you want to try again?", 49)

Note also that you cannot break a line in the middle of a literal string. To break such a line, you
must divide it into two separate literal strings and concatenate them together, as in the previous
example.

Executing Multiple Statements on a Single Line

To execute more than one statement in a single line of code, you separate the statements with a
colon (:). For example, you could execute both an assignment and a MSGBOX command with the
following line of code:

varMessage = fldMessage.Value : MSGBOX fldMessage.Value

Commenting Code

Your code is easiest to modify, repair, enhance, and maintain when it contains comments explaining
what it is doing (and why and how). Oracle Power Objects provides two ways to comment your
code: using an apostrophe or the letters rem to separate the comment from Oracle Basic code you
want executed.

On any line, Oracle Basic ignores all characters to the right of an apostrophe or the keyword REM
(or rem). There must be white space preceding REM or rem. If REM is on the same line as other
text (for example, a command), it must be preceded by a colon (:).

The following examples demonstrate the use of code comments:

REM This text is ignored.
ON CHOICE GOTO 1,3,5 'Text after the apostrophe is ignored.
REM ON CHOICE GOTO 1,3,5 The ON CHOICE command is ignored.
ON CHOICE GOTO 1, 3, 5 rem Everything after "rem" is ignored.

Coding Standards

To simplify both writing and reading method code, and to increase the portability and usefulness of
your code, you should adopt a set of coding standards that determine naming and usage

conventions. A set of suggested standards are provided in Appendix A, “Suggested Coding

Standards”. These standards are used in the Oracle Power Objects documentation and sample
applications. You can use these conventions as written, or adapt them to suit your needs.

M E T H O D S A N D M E T H O D C O D E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

5.9

Creating a Repository for Methods

You can make a central repository for your functions and subroutines by creating a form that holds
nothing except the Oracle Basic code defining all functions and subroutines. Calling any method of
the form object automatically loads it into memory, but the form remains hidden. Alternatively,
you can make the function part of a library object, usable by multiple applications.

Cautions

When writing functions and subroutines, be careful to avoid the following errors:

Self-invoking (recursive) methods. A recursive method is one whose execution invokes itself
again in the process of performing its operations. Such a method can cause stack overflow if the
recursion does not lead to a final result quickly enough. For example, using a recursive method
to compute “N * (N-1) until N=2” might not cause a problem for N less than 25 or 250, but it
might cause stack overflow if N=25,000.

Self-modifying expressions. A self-modifying expression changes the value of a variable or
object property that is also used elsewhere in the same expression. The danger is the difficulty of
predicting the exact order of execution for every syntactic variation of using the method and the
changed or changing variable. Parentheses and placement alter the order of execution, and it is
safer to avoid self-modifying expressions so as to avoid unexpected results.

Debugging Method Code

Any code you add to a method may need adjustment. Procedures do not always implement your
initial design perfectly in the first few trials.

Debugging is that process of analyzing, fixing, and testing your code to make it produce your
intended results. When execution runs into problems, the Oracle Power Objects Debugger shows
you where the problem arises and enables you to examine values and step through code in order to
fix it. The sections that follow explain how these facilities work.

The Run-Time Debugger

The Debugger lets you debug your Oracle Basic code, interrogate the values assigned to variables
and properties, and control the execution of your application during testing.

5.10

When you run an Oracle Power Objects application, form, or report, the Debugger palette appears:

The debugger palette lets you halt and resume program execution, as well as open the Debugger
(Main) and Debugger (Expressions) windows.

The Debugger (Main) Window

By opening the Debugger (Main) window, you can view all of the properties and methods of
objects currently loaded into memory, including the method code added to a method. The
Debugger (Main) window components are shown in the following figure.

Open Debugger
Window

Halt
Execution

Resume
Execution

Open Expressions
Window

Currently
selected

object

Code stepping
controls

Code Area

Object List Property/Method List

M E T H O D S A N D M E T H O D C O D E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

5.11

To view the objects within a container, click the name of the container from the Object pane of
the Debugger (Main) window. The objects within the current application and container appear in a
hierarchical list, following the object containment hierarchy.

To view the properties and methods of an object, click the name of the object. The complete list
of its properties and methods, both standard and user-defined, then appear in the Properties pane
of the Debugger (Main) window. A method appears in this list only if you have added method code
to it.

To view the code for a method, click the method’s name in the properties pane: its code then
appears below, in the Code pane of the Debugger (Main) window. In this pane of the Debugger
(Main) window, you can set breakpoints, step through method code, and move execution to any
point within the code, as described in subsequent sections.

The Debugger (Expressions) Window

The Debugger (Expressions) window) lets you interrogate the values assigned to variables and
properties, as well as evaluate the result of an expression. This window opens with the Debugger
(Main) window if you click the Expressions button; otherwise it opens automatically when a
breakpoint is reached during execution.

Interrogating Values Through the Debugger

To interrogate values through the Debugger (Expressions) window, you enter an expression in the
Expression field.

For example, to evaluate the Enabled property of a control named Field1, you would enter the
following expression in the Expressions window:

Field1.Enabled

Expression field

Result field

5.12

After you press Return, the result of the expression appears in the Result field, immediately below
the Expression field. Note that the name of the control is needed as a qualifier:
Field1.Enabled , not simply Enabled .

Expressions entered in the Debugger (Expressions) window must follow these rules:

■ Expressions must use Oracle Basic operators and functions, with the exception of the EXEC
SQL command.

■ An expression can be no longer than 1024 characters.

Setting a Breakpoint

A breakpoint identifies where in the sequence of code you want execution to pause so that you can
investigate the state your code has reached.

To set a breakpoint:

1 Open the Debugger (Main) window.

2 Select an object, and then select a method you want to debug.

Its code will appear in the Code List area of the window.

3 Click to the left of the line of code at which you want to set the breakpoint.

A red stop symbol appears to the left of that line of code, indicating that a breakpoint has been set.

Click to set
a breakpoint

M E T H O D S A N D M E T H O D C O D E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

5.13

4 Resume program execution by pressing the Resume Execution button on the debugger palette.

The method code will halt execution when it reaches the breakpoint.

Once code has halted execution, you can display values in the Expressions window, as explained

above in the section “Interrogating Values Through the Debugger” on page 5.11. If you set
watchpoints (explained below), then the current value of each such variable or expression is
displayed each time the code stops for a breakpoint.

You can resume execution by pressing the Resume Execution button. You can also step through the
method code, using several buttons appearing in the Debugger (Main) window.

Removing a Breakpoint

You can remove a breakpoint in two ways:

1 Click on the red stop symbol to the left of the line of code where the breakpoint has been set.

The circle then disappears, indicating that the breakpoint has been removed.

-or-

2 Press the Clear All Breakpoints button on the Debugger (Main) window.

As its name implies, this button, when pressed, clears all breakpoints set in the applications method
code.

Setting a Watchpoint

A watchpoint is a variable or expression, which you specify in the Expressions window, whose
current value is updated whenever execution is interrupted.

Resume
Execution Call Chain

Step Over

Step Into Clear All
Breakpoints

Step to End

5.14

To set a watchpoint:

1 Open the Debugger (Main) window.

2 Select an object, and then select a method.

3 If desired, set breakpoints as described above.

4 If the Debugger (Expressions) window is not open, click the Expressions button on the Debugger
palette.

5 Click in the white Expression field, and enter the expression whose value you want to see during
execution of your code.

6 Press the Return key.

The item you entered appears on the list below, followed the current value of the expression.
During execution, the expression value will be updated.

7 Position the cursor to the left of the expression until the cursor changes to a triangle, then click the
mouse button.

The item is highlighted, and a yellow triangle appears to its left. This sets the watchpoint. The
current value of each item you set in this way will be displayed at every breakpoint. Execution will
continue when you explicitly instruct it to resume, by clicking the Resume Program Execution

button on the Debugger palette.

Moving Execution to Any Point Within the Method

The buttons labeled above let you move through code one line at a time. However, you can also
move execution to any line by dragging the highlight (a blue-green line) from the line currently
being executed up or down to the line you want executed next.

This technique lets you move the point of execution within a single method. You cannot move
execution to a different method, however.

6
D a t a b a s e s 6

This chapter covers the following topics:

Overview . 6.2
Database Sessions . 6.3
Blaze Databases . 6.20
Oracle7 Servers . 6.21
SQL Server Databases . 6.22

6.2

Overview

A database is a system that stores and organizes information. Oracle Power Objects enables you to
build applications that access information stored in a relational database, a collection of objects
(including tables, views, indexes, sequences, and synonyms) stored together in a file or a series of
files and treated as a single logical unit. A database engine coordinates user access to the information
in the database.

In Oracle Power Objects, you interact with a database through a database session, an object that
contains the information necessary to establish a connection to the database. This chapter describes
database session objects and general techniques for working with them.

This chapter then describes the types of databases supported by Oracle Power Objects: internal
databases (also called Blaze databases) and external databases.

Internal (Blaze) databases are created and maintained by Oracle Power Objects. Blaze databases are
compact and efficient, requiring few system resources to run. The objects in a Blaze database are
stored in a single file on your hard disk.

External databases are created and maintained by a database engine outside of Oracle Power
Objects, such as an Oracle7 Server. External databases can provide advanced security and reliability
features for large-scale, mission-critical applications.

This release of Oracle Power Objects supports the following external databases:

Oracle7 Servers. The Oracle7 Server is Oracle’s Relational Database Management System
(RDBMS) that runs on a wide variety of hardware and software platforms.

SQL Server Databases. SQL Server databases are available from Microsoft, Inc. and Sybase,
Inc. Oracle Power Objects provides access to SQL Server databases through the DBLIB driver.

Each type of database is described in a separate section of this chapter.

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.3

Database Sessions

A database session object (also called a session) is an object representing a connection between your
application and a database. The database session provides the communication between the “front
end” and “back end” portions of your application, as shown in the following diagram:

Each database session object is stored in its own disk file (this file has the extension .POS in
Windows). Database session objects are displayed in the Main window of the Oracle Power Objects
desktop, as shown in the following diagram:

A database session object can be in one of two states: inactive or active.

An inactive session is not currently connected to the database. An inactive session does not
display any database objects.

Application

(Front End)

Session

Database

(Back End)

6.4

An active session is currently connected to a database, and “contains” all of the database objects
that can be accessed through the connection.

You access a database session object as though it contained database objects. However, the session
object does not actually contain your application’s data. Instead, it contains information necessary
to establish a database connection—for example, it can contain the username, password, and
network address of an account on a server database. When your application requests information
from the database session, the session automatically sends the appropriate request to the database
and processes the result.

Each database session object provides access to a single schema or user account in a database. The
session provides full access to the objects and features of the account, although some database
features are available only through custom SQL code (for example, you must write custom SQL
code to create or access a snapshot object on an Oracle7 Server). At design time, the database
session shows icons representing database objects owned by the account. Only the most common
types of database objects are represented (tables, views, indexes, and sequences). The session does
not show database objects in other schemas or accounts to which the user has access.

Database session objects are independent from application objects. This independence provides
flexibility in configuring how your applications connect to databases. For example, multiple
applications can use the same database session, and a single application can use many different
sessions at once. You can also use the same database session to connect to different databases at

Inactive session

Active session

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.5

different times—for example, you might want the session to connect to a Blaze database while you
are designing your application, and to an Oracle7 Server when your finished application is
deployed.

Creating a Database Session

When you create a database session object, you create a separate file on your hard disk containing
information on how to connect to a database.

To create a database session:

1 In the Main window, click the New Session button or choose the File-New Session... menu
command.

The Create Session dialog box appears, as shown in the following figure:

2 From the “Database” popup list, choose the type of database to which the session will be
connected.

The database types listed correspond to the database driver files (.POD files) you have installed,

described in the section “Database Drivers” on page 6.9.

3 In the “Connect String” field, type the connect string for the database to which the session will be
connected. Do not enter a database type prefix.

Connect strings are described in the section “Connect Strings” on page 6.6. If you do not know the
correct connect string, you can leave this field blank and edit the connection information later.

4 Click the OK button.

6.6

The standard file dialog box appears for your operating system.

5 Specify the name and location of the session file, then click the Save button.

The name must be a valid filename in your operating system. In Windows, the file is automatically
given the extension “.POS”.

After you click Save, the dialog box disappears and a new session icon appears in the Main window.
The Database Session window and Property sheet of the session are automatically opened. The
DesignConnect property of the session is automatically set to match the values you entered in the
“Create Session” dialog box.

6 In the Property sheet, modify connection-related properties if necessary.

These properties are described in the section “Connect Strings” on page 6.6.

Connect Strings

A session establishes a database connection using a connect string that identifies the type and
location of the database. A connect string has the following form:

database_type: [username [/password] @] [address]

database_type is the type of database to which you are connecting. Valid
database_type values are “blaze”, “oracle”, and “sqlserver”.

username is the username for the account. For a local Oracle7 Server, you can also use the
keyword “INTERNAL” for username .

password is the account password.

address is the network address or file location of the database. The format of address
depends on the type of database to which you are connecting and the network software you are
using, as shown in the following table:

Database Type Address Syntax Examples

Blaze database file_path Blaze database in Windows:
C:\DATA\MLDB.BLZ
Blaze database on Macintosh:
Hard Disk:Data:MLDB.BLZ

Local Oracle7 Server not required —

Remote Oracle7
Server using
SQL*Net V1

{net_protocol:server
 [:instance] |
 server_alias}

Oracle7 Server on Netware:
x:Oracle_Server1
Oracle7 Server on TCP/IP:
t:Oracle_Server2:A

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.7

For information about the specific syntax to use with your database, contact your system
administrator.

Connect String Examples

The following table shows fully formed connect strings in various configurations:

Remote Oracle7
Server using
SQL*Net V2

server_alias Oracle_Server3

SQL Server database server:database Sql_Server1:pubs

Example Description

blaze:C:\DATA\MLDB.BLZ Connection to default account
on a Blaze database file in
Windows.

blaze:Hard Disk:Data:MLDB.BLZ Connection to default account
on a Blaze database file on
Macintosh.

blaze:dba/dba@C:\DATA\MLDB.BLZ Connection to “DBA” account
on a Blaze database file in
Windows.

blaze:dba/dba@Hard Disk:Data:MLDB.BLZ Connection to “DBA” account
on a Blaze database file on
Macintosh.

oracle:scott/tiger Connection to “SCOTT”
account on a local Oracle7
database (such as Personal
Oracle7).

oracle:scott/tiger@x:Oracle_Server1 Connection to “SCOTT”
account on a Netware account
using SQL*Net V1.

oracle:scott/tiger@t:Oracle_Server2:A Connection to “SCOTT”
account on a TCP/IP account
using SQL*Net V1.

oracle:scott@x:Oracle_Server1 Connection to “SCOTT”
account with no password.

Database Type Address Syntax Examples

6.8

The session object stores connect string information in three properties: DesignConnect,
DesignRunConnect, and RunConnect. Each of these properties is used in different situations, as
described below. By entering separate connect strings into each of these properties, you can
configure the session to connect automatically to one session while you are developing your
application, to another when you are testing your application, and to yet another when your
finished application is deployed.

The DesignConnect value is used when you activate the session at design time (by double-clicking
on the Connector control). When you create a database session, the connection information you
enter into the “Create Session” dialog is stored in the DesignConnect property.

The DesignRunConnect value is used when you are testing your application. This value is used in
the following situations:

■ When you run a single form by clicking on the Run Form button or choosing the Run-Run
Form menu command.

■ When you run the full application by clicking on the Run Application button or choosing the
Run-Run Application menu command.

The RunConnect property is used when the user runs a compiled application. This value is used in
the following situations:

■ When the user runs a compiled application with the Oracle Power Objects Run-time
application.

■ When the user runs a standalone compiled application.

If the DesignRunConnect or RunConnect property is left empty, the value in the DesignConnect
property is used in its place.

All of these properties can be modified at design time. However, only the RunConnect property
can be modified at run time, as described in the next section.

oracle:scott/tiger@Oracle_Server3 Connection to “SCOTT”
account using SQL*Net V2.

sqlserver:Albert/rock@SqlServer1:pubs Connection to “Albert” account
in “pubs” database.

sqlserver:maryd@SqlServer2:pubs Connection to “maryd” account
with no password in “pubs”
database.

Example Description

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.9

Prompting the User for Connection Information

For some applications, it is not desirable to have the connection information “hard coded” into the
database session object. For example, you might want to allow the user to specify at run time which
database account they want to use, or you might not want to hard-code the account password into
the session.

You can configure your application to prompt the user for connection information in two ways:
automatically or manually.

■ You prompt the user automatically by setting the RunConnect property of the session to a
question mark (?). At run time, Oracle Power Objects will automatically display a dialog box
prompting the user to enter connection information.

■ You prompt the user manually by setting the value of the RunConnect property at run time
through Oracle Basic method code. By changing the RunConnect value at run time, your
application can use connection information specified by the user—for example, you can
prompt the user to enter a database type, username and password. An example showing how to

create a custom logon dialog box is provided in the section “Example: Creating a Logon Dialog

Box” on page 6.15.

Database Drivers

All information necessary to connect to a particular type of external database is stored in a driver file
(in Windows, driver files have extension .POD). Driver files must be located in the same directory
as the Oracle Power Objects executable (the Designer or Run-time application).

Driver files provide modular access to external databases. You can add support for other types of
external databases simply by installing the appropriate driver file, along with any special
networking software required by the database.

6.10

No driver file is required for Blaze databases. Blaze database support is built directly into the Oracle
Power Objects Designer and Run-time applications.

Note: When you generate standalone executable applications, the necessary driver files are
automatically included in the executable file. Client users are not required to have the .POD file
installed on their system, although they must have any required networking software.

Activating and Deactivating a Database Session

In order to establish a database connection, you must activate a session; to disconnect from the
database, you must deactivate the session. You can activate and deactivate sessions both at design
time and at run time; however, you use different techniques to perform the task.

Activating a Session at Design Time

For information

about the Table Editor

and View Editor win-

dows, see Chapter 8,

“Database Objects”.

You activate a session at design time in order to see and work with icons representing database
objects. For example, you can double-click on the icon for a table or view to open the Table Editor
or View Editor window. You can also use the icons in a session to bind a container or control to a

database object, as described in Chapter 17, “Binding a Container to a Record Source”.

When you activate a session at design time, the value in the DesignConnect property of the session
object is used to connect to the database.

To activate a database session at design time:

1 In the Main window, open the database session object by double-clicking on its icon.

The Database Session window opens, along with the session’s Property sheet.

2 Double-click the Connector control to activate the session.

When the session becomes active, icons representing database objects appear in the Database
Session window. The Connector control changes to the “active” state.

Activating a Session at Run Time

You must activate session objects at run time so that your application’s containers and controls can
display values from the database. When you activate a session at run time, the value from the
DesignRunConnect or RunConnect property of the session is used as the database connect
string—the DesignRunConnect value is used at design run time, the RunConnect value at
standalone run time.

Session objects are activated at run time either automatically or manually.

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.11

You configure a session to activate automatically at run time by setting the ConnectType property
of the session object. The ConnectType property can have the following settings:

Connect on Startup. The session is activated automatically as soon as the application begins
execution. This is the default setting. You should use this setting when your application needs
to access the database immediately upon startup.

Connect on Demand. The session is activated automatically the first time it is referenced,
either by a bound object or by a custom SQL statement executed through EXEC SQL or
SQLLOOKUP. You should use this setting for sessions that do not need to be activated
immediately upon startup—for example, when the database connection might not be required
by the user.

Connect Manually. The session must be activated manually by executing the Connect()
method of the session, as described below. You should use this setting when you need explicit
control over when the connection is established—for example, when you need to prompt the
user to enter connection information, or when you have already deactivated the session by
executing the Disconnect() method.

To activate a session manually, you execute the Connect() method of the session object. For
example, the following method code activates the session “sesScott”:

sesScott.Connect()

For information about referring to database sessions in method code, see the section “Using a

Database Session Object in Oracle Basic” on page 6.13.

Deactivating Sessions

In many cases, you do not have to deactivate session objects explicitly—all sessions are deactivated
automatically when you quit the Oracle Power Objects Designer or Run-time application. Sessions
are also deactivated automatically when you remove the database session icon from the Main
window.

Deactivating a Session at Design Time

You deactivate a session at design time when you are finished working with the database, or if you
need to effect changes to the session object’s definition. For example, if you change the value in the
DesignConnect property of the session, you must deactivate and then reactivate the session to use
the updated connection information.

6.12

To deactivate a database session at design time:

1 In the Main window, double-click the active Connector control.

When the session becomes inactive, the database object icons disappear from the Database Session
window. The Connector control changes to the “inactive” state.

Deactivating a Session at Run Time

You deactivate a session at run time when your application needs to disconnect from the
database—for example, when an application has finished downloading information from a
network server.

For more information

about referring to

database sessions in

method code, see

the section “Using a

Database Session

Object in Oracle

Basic” on page 6.13.

To deactivate a session manually at run time, you execute the Disconnect() method of the session
object. For example, the following method code deactivates the session “sesScott”:

sesScott.Disconnect()

Before you call Disconnect(), you must close any forms or reports that are bound to the session, or
that contain objects that are bound to the session (such as a repeater display). The Disconnect()
method fails if you attempt to execute it when a form or report bound to the session is still open.

The Disconnect() method returns a value indicating whether it successfully deactivated the session
object. Disconnect() returns 0 if the session was deactivated; it returns -1 if the session was not
deactivated.

The Default Session

The default session is the session object used for database access when a session is not explicitly
specified. Each Oracle Power Objects application can have its own default session. You specify the
default session by setting the DefaultSession property of the application to the name of the session
object.

The default session is used in the following cases:

■ For bound containers whose RecSrcSession property is empty.
■ For EXEC SQL statements that do not include an AT clause.
■ For SQLLOOKUP functions that do not include the optional first parameter, which specifies

the session object used by the function.
■ For translation lists that do not include an AT clause in the Translation or ValueList property.

Designating a default session is optional. If your application does not have a default session, you
must explicitly specify a session name for all database access.

Once you have designated a default session, it is simple to switch the session your application uses
for database access. To use a different session, simply change the DefaultSession property of the
application to the name of the new session.

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.13

Using Sessions in an Application

Although session objects are separate from application objects, your database application will
contain references to session objects everywhere database access is required. This section describes
different ways you can use session objects in your application.

Using a Database Session Object in a Bindable Container

You use database session objects when binding a container (such as a form or report) to a table or

view in a database. As described in Chapter 17, “Binding a Container to a Record Source”, you can
use the icons in the database session window to bind objects graphically.

When you bind a container to a table or view, you specify the name of the database session object
that contains the table or view in the RecSrcSession property of the bindable container. If you do
not specify a session in the RecSrcSession property, the table or view is assumed to be associated
with the default session.

Using a Database Session Object in Oracle Basic

You can control the behavior of session objects explicitly through Oracle Basic method code. For
example, you can execute methods of the session object to activate or deactivate it, or to commit or
roll back transactions associated with the session.

You can refer to a database session object in two ways:

■ By supplying the Name property of the database session object.
■ By executing the GetSession() method of a recordset object, which returns a reference to the

associated database session object.

For example, you could issue the following statements to get a handle to the database session
associated with the form “Form1”:

DIM recSetObj, sesObj AS Object
recSetObj = Form1.GetRecordSet()
sesObj = recSetObj.GetSession()

You can use either type of reference to examine and set properties and methods of a session object.

For a list of session properties and methods, see the section “Properties and Methods of Database

Session Objects” on page 6.19.

For more information

about the EXEC SQL

command, see the

section “The EXEC

SQL Command” on

page 9.15.

When you execute an EXEC SQL statement, you can indicate the session to which the statement
should be sent in the optional AT clause of the statement. The AT clause can contain either the
Name property of the session object or a variable containing a reference to the session object (the
variable name is preceded with a colon). For example, the following method code directs an EXEC
SQL statement to the session “Session1”:

EXEC SQL AT Session1 DROP TABLE temp

6.14

The following method code uses a variable in the AT clause of an EXEC SQL statement to specify
the session:

DIM recSetObj, sesObj AS Object
recSetObj = Form1.GetRecordSet()
sesObj = recSetObj.GetSession()
EXEC SQL AT :sesObj DROP TABLE temp

For more information

about the SQL-

LOOKUP function, see

the section “The SQL-

LOOKUP Function”

on page 9.21.

Similarly, when you execute a SQLLOOKUP function, you can indicate the session to which the
SELECT statement should be sent in the optional first argument to the function. As with the AT
clause, the argument can be specified either as the Name property of the session object or as a
variable. For example, the following method code directs a SQLLOOKUP function to the session
“Session1”:

DIM empName AS String
empName = SQLLOOKUP(Session1, "SELECT ename FROM emp" &
 "WHERE sal = (SELECT MAX(sal) FROM emp)")

For more information

about translation

lists, see the section

“List Controls” on

page 10.15.

You can also specify a session object explicitly when setting up a translation list (a list box, popup
list, or combo box that “looks up” its values from a detail table). You specify the session object with
an AT clause in the TranslationList property of a list box or popup list, or in the ValueList property
of a combo box. The syntax of the AT clause is identical to that used with EXEC SQL. For
example, the following TranslationList value specifies that its values should be derived from the
session “Session1”:

AT Session1 SELECT ename, empno FROM emp WHERE" &
 "job = 'SALESMAN'

Tips and Techniques

By using session objects carefully, you can give your application a great deal of control over database
connections. This section describes techniques you can use to optimize how your application uses
sessions.

Use separate sessions for separate transactions. If your application allows independent
transactions to be used simultaneously, use a separate session object for each transaction. Doing
so allows each transaction to be committed separately, rather than requiring all transactions to
be committed together. For example, if your application includes a form that displays employee
information and a form that displays customer information, you might want to use a separate
session for each form. Because these two forms display unrelated information, they do not need
to be committed or rolled back together.

Use a separate session for lookup tables. Queries against locally stored tables are often faster
than queries transferred over a network, so you can often enhance the performance of your
application by storing tables that do not change much (such as lookup tables) in a local Blaze
database. You can then create a separate session to use when looking up information from these
tables. For example, you might store a detail table containing the names of countries or states in
a Blaze database and provide a separate session for that database.

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.15

Activate sessions only when needed. If your application contains references to sessions that
might not be required by the user, you can make your application’s startup faster by setting the
ConnectType property of those sessions to “Connect on Demand” or “Connect Manually”.

Example: Creating a Logon Dialog Box

This section describes how to create a custom logon dialog box that allows the user to specify
connection information when your application starts up. You can customize the code in this
example for use in your own applications.

This example provides functionality similar to that provided by setting the RunConnect property

of your database session object to a question mark (?), as described in the section “Prompting the

User for Connection Information” on page 6.9. However, by creating your own logon dialog box,
you can customize the appearance and behavior of your logon screen.

This example displays a logon dialog box when the application is first launched, as shown in the
following figure:

This example requires a session object called “Session1”. You must set the ConnectType property
of the session to “Connect on Demand”.

6.16

The example also requires a form called “frmLogon”, which contains the controls shown in the
following diagram:

You must set the following object properties:

The following method code appears in the (Declarations) section of the application:

CONST DBTYPE_BLAZE = 1
CONST DBTYPE_ORACLE = 2
CONST DBTYPE_SQLSERVER = 3
CONST BTN_OK = 1
CONST BTN_CANCEL = 2

Object Property Value

frmLogon WindowStyle Standard Dialog

popDBType Datatype Long

popDBType Translation "Blaze" = 1
"Oracle" = 2
"SQL Server" = 3

fldUserName Datatype String

fldPassword Datatype String

fldAddress Datatype String

(Declarations)

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.17

The following method code appears in the Initialize() method of the application:

DIM sesTheSession AS Object 'Reference to session object
DIM vReturnObj AS Object 'Return value of OpenModal
DIM vConnectString AS String 'User-defined connect string
DIM vReturnVal AS Long 'Return value of MSGBOX
DIM vQuit AS Long 'Did the user click Cancel?

'Get a reference to the session to which we will connect
'Here we use the session "Session1"
'You can substitute the name of a different session object
sesTheSession = Session1

vQuit = FALSE

'Repeat until the connection is established or the user
cancels
DO WHILE sesTheSession.IsConnected() = FALSE AND &
 vQuit = FALSE

'Display the logon dialog form and store the return value
'(the button clicked by the user) in vReturnObj
 vReturnObj = frmLogon.OpenModal(false)

'If the user clicked the OK button, build the connect
'string using the specified information
 IF vReturnObj = frmLogon.btnOK THEN

'Add the database type prefix
 SELECT CASE frmLogon.popDbType.Value
 CASE DBTYPE_BLAZE
 vConnectString = "Blaze:"
 CASE DBTYPE_ORACLE
 vConnectString = "Oracle:"
 CASE DBTYPE_SQLSERVER
 vConnectString = "SQLServer:"
 END SELECT

'Add the username, password, and database address
 vConnectString = vConnectString & &
 frmLogon.fldUserName.value & &
 "/" & frmLogon.fldPassword.value & "@" & &
 frmLogon.fldAddress.value

Sub Initialize()

6.18

'Set the RunConnect property of the session
'to the connect string we have constructed
 sesTheSession.RunConnect = vConnectString

'Activate the session
 sesTheSession.Connect()

'If there was a problem connecting, let the user know
'and allow them to try again or cancel.
 IF NOT sesTheSession.IsConnected() THEN
 vReturnVal = MSGBOX("There was a problem connecting. " &
&
 "Do you want to try again?", 49)
 IF vReturnVal = BTN_CANCEL THEN vQuit = TRUE
 END IF

'If the user clicked the Cancel button in the logon dialog
'box instead of OK, quit the application
 ELSE
 vQuit = TRUE
 END IF

'If the session is not yet active, redisplay the logon
'dialog box
LOOP

'If the user cancelled, quit the application
IF vQuit = TRUE THEN
 Application.CloseApp()

'If the session was successfully activated,
'we can open other forms--here we open "frmEmployees".
'You can substitute the name of a different form.
ELSE
 frmEmployees.OpenWindow()
END IF

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.19

Properties and Methods of Database Session Objects

This section lists the properties and methods associated with Database Session objects.

Properties of a Database Session Object

A database session object has the following properties:

Methods of a Database Session Object

A database session object has the following methods:

Property Description

ConnectType Determines how the session becomes active (automatically or manually).

DesignConnect Connect string used when session is activated by double-clicking on the
Connector control in the database session window.

DesignRunConnect Connect string used when session is activated from the design run-time
environment.

Name Name of the database session object.

RunConnect Connect string used when session is activated from the standalone run-
time environment.

Method Description

CommitWork() Commits all pending transactions associated with the session, first flushing
any recordset changes that have not yet been sent to the database.

Connect() Connects to the database and activates the session.

Disconnect() Disconnects from the database and deactivates the session.

IsConnected() Indicates whether the session is currently active (not visible in Property
sheet).

IsWorkPending() Indicates whether the Record Manager has stored changes to a recordset
that have not yet been flushed to the database (not visible in Property
sheet).

RollbackWork() Rolls back all pending transactions (that is, discards all uncommitted
changes) associated with the session.

6.20

Blaze Databases

A Blaze database is a compact and efficient relational database that is created and maintained by
Oracle Power Objects. Oracle Power Objects includes all of the tools you need to create and work
with Blaze databases.

Blaze databases support many of the features and capabilities of larger relational databases, but
require significantly fewer system resources to run. They can contain all of the basic database
objects: tables, views, indexes, sequences, and synonyms. As with most relational databases, they are
accessed through the SQL relational querying and programming language. The Blaze-supported
SQL language is a subset of the Oracle7 SQL language with a few added features. It is described in
the topic “SQL Language Reference” in the online help.

Each Blaze database is stored as a single disk file in your operating system (which has the extension
.BLZ in Windows). This file contains all user objects and data, as well as information necessary for
client applications to connect to and disconnect from the database. Each Blaze database can have
only one connection open to it at any time.

Unlike some other relational databases, a Blaze database has no server-based dedicated memory
structures or processes. All information about the database, including data locks and transaction
control information, is stored in the database file. All necessary in-memory operations (such as
interpreting SQL statements and reading or writing data) are performed by the Blaze database
engine, which is built into the Oracle Power Objects Designer and Oracle Power Objects Run-time
applications. When two different client applications connect to the same Blaze database, each client
uses its own copy of the database engine.

When Should I Use a Blaze Database?

Blaze databases are ideal for light to moderate data access situations, including the following uses:

■ Local lookup tables. If your application references external tables or views that remain relatively
constant, such as a list of departments or product categories, you can improve performance by
storing these tables locally in a Blaze database. Frequently updated tables can also be stored
locally, but you must then be careful to synchronize the contents of separate databases.

■ Prototyping. While developing an application that is designed to be run against an external
database, you can copy the definitions of the relevant database objects to a Blaze database for
testing purposes. This can ease the burden on shared resources, improve application
performance during development, and allow you to work while disconnected from your
network.

■ Small application deployment. For relatively small (under 4 GB), non-mission-critical
applications, a Blaze database can provide a compact, easily maintained data store that supports
access by one user at a time.

■ Disconnected client access. You can use a Blaze database to store information downloaded
from a large database system, which the user can then examine and modify off-line.

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.21

■ Read-only databases. A Blaze database can provide a structure for information on a read-only
device, such as a CD-ROM.

When Should I Use an External Database?

The following data access situations require the additional capabilities of an external database:

■ Large data storage requirements. Blaze databases are limited to the maximum available file size
on the host operating system. For Macintosh and Windows systems, the maximum file size is 4
GB.

■ Concurrent access. External databases are designed to handle efficiently large numbers of
concurrent sessions.

■ Mission-critical applications. External databases provide advanced database backup and
restoration features that are vital for mission-critical applications.

■ Strict security requirements. Though Blaze databases support password protection and data
encryption, they cannot offer the same level of protection as a secure database located on a
secure operating system. External databases also offer additional security and administration
features such as audits, roles, and protected schemas.

■ Access from other platforms and tools. Currently, you can access a Blaze database only from
Oracle Power Objects. If you need to use other database access tools, or you need access to the
database from an operating system platform not supported by Oracle Power Objects, you
should use an external database.

Oracle7 Servers

The Oracle7 Server is a Relational Database Management System (RDBMS) available on a large
number of operating system platforms. Oracle7 Servers provide efficient and effective solutions for
the major features required of a database, including:

■ Large databases and space management control
■ Many concurrent database users
■ High transaction processing performance
■ High availability
■ Industry accepted standards
■ Manageable security
■ Database enforced integrity
■ Client/server (distributed processing) environments
■ Distributed database systems
■ Portability
■ Compatibility
■ Connectability

6.22

Oracle Power Objects provides full support for the features and capabilities of Oracle7 Servers.
However, Oracle Power Objects does not provide tools to create or administrate Oracle7 Servers—
you must purchase and install the Oracle7 Server software separately.

As with most relational databases, Oracle7 Servers are accessed through the SQL relational
querying and programming language. You can access many features of the Oracle7 Server through
the Oracle Power Objects Record Manager and the properties, methods, and windows associated
with database access. You can access other Oracle7 Server features by executing custom SQL or PL/
SQL statements using the EXEC SQL command.

Oracle7 Documentation

For a full description of the features and capabilities of Oracle7 Servers, refer to the Oracle7 Server
Documentation set. The following manuals in particular are recommended:

For general information about the Oracle7 Server and how it works, see the Oracle7 Server
Concepts Manual.

For reference information about the SQL commands and functions supported by the Oracle7
Server, see the Oracle7 Server SQL Language Reference Manual.

For information about developing database applications within the Oracle7 Server, see the
Oracle7 Server Application Developer’s Manual.

For information about administering the Oracle7 Server, see the Oracle7 Server Administrator’s
Guide.

SQL Server Databases

A SQL Server database is a multiuser Relational Database Management System (RDBMS) available
from Microsoft, Inc. and Sybase, Inc. SQL Server is available on a wide range of platforms,
although the list of platforms and versions supported varies depending on the database provider.

Note: Certain configurations of Oracle Power Objects might not include support for SQL Server
databases. To see whether your version of Oracle Power Objects includes SQL Server support, see
the release notes accompanying the product.

SQL Server provides support for major features required of a database. For a full list of the features
supported by your version of SQL Server, see the accompanying documentation.

A typical SQL Server installation includes set of system databases and user databases. System databases
include the “master”, “model”, and “tempdb” databases. User databases are created and maintained
as needed by the SQL Server system administrator.

This manual uses the term “database” or “server” to refer to a specific installation of SQL Server,
including all databases within that installation.

D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

6.23

Supported SQL Server Databases

Oracle Power Objects currently supports any SQL Server database that can be accessed through the
DBLIB library. This includes SQL Server databases available from Microsoft, Inc. and Sybase, Inc.

Oracle Power Objects allows you to use all database features supported through the DBLIB driver.
Certain features of Sybase System 10 databases are not available through the DBLIB driver,
including support for cursors.

For a complete list of supported SQL Server databases and features, see the Release Notes
accompanying your version of Oracle Power Objects.

Defining Primary Keys

You should always define Primary Key constraints for tables to be used with Oracle Power Objects.
Oracle Power Objects uses primary key values to identify individual rows for database operations—
for example, when updating or deleting a specific row. Your application may behave unexpectedly if
it uses tables that do not include a Primary Key.

Incremental Fetching

The DBLIB driver does not include support for multiple simultaneous cursors. Therefore, only one
query result set can be processed at a time—all result rows from a query must be returned before a
second query can be executed.

As described in the section “Fetching Rows from the Database” on page 17.14, you can control
how result rows are fetched from the database by setting the RowFetchMode property of a bound
container. When the RowFetchMode property is set to “Fetch All Immediately”, your application
will behave the same way against all types of databases. However, when the RowFetchMode
property is set to “Fetch as Needed” or “Fetch Count First”, your application might run more
slowly against SQL Server databases. This is because all unfetched rows from a query must be
fetched from the database before any additional queries can be executed.

Bind Variables

For information

about bind variables,

see the section

“Using Bind Vari-

ables” on page 9.16.

The DBLIB driver does not include support for bind variables. To provide bind variable support,
Oracle Power Objects automatically replaces bind variable references in EXEC SQL statements
with literal data values.

6.24

Generating Unique Table Values

For information

about generating

unique values, see

the section “Counter

Fields” on page 19.17

SQL Server databases do not support sequence objects. Therefore, you must use an alternative
technique to generate unique table values (for example, values for a Primary Key column in a
table).

7
B l a z e D a t a b a s e s 7

This chapter covers the following topics:

Overview . 7.2
Creating a Blaze Database . 7.2
Schemas in a Blaze Database . 7.3
Data Dictionary . 7.4
SQL Language . 7.5
Blaze Database Files . 7.5
Sessions. 7.7
Specifications . 7.8

7.2

Overview

A Blaze database is a compact and efficient relational database that is created and maintained by
Oracle Power Objects. Oracle Power Objects includes all of the tools you need to work with Blaze
databases.

This chapter describes how to create Blaze databases. It also includes technical details about the
structure of a Blaze database.

Types of Blaze Databases

Every Blaze database is either read-write orread-only.

Read-write databases can be both examined and modified by clients. Blaze databases are read-
write by default, as this is the most common configuration.

Read-only databases can only be read by clients; they cannot be altered. You might choose to
make a database read-only if it will never be altered (for example, because it will be distributed
on a CD-ROM, or because it maintains company information that does not change). Access to
a read-only database can be faster because no data locking is required.

In this version of Oracle Power Objects, you can create only read-write databases. However, in a
future version of Oracle Power Objects, you will be able to convert a read-write database into a
read-only database.

Creating a Blaze Database

You create a Blaze database by creating a Blaze database file, which contains all of the object
definitions and data in the database. In Windows, this file has the extension “.BLZ”. Blaze database

files are described in the section “Blaze Database Files” on page 7.5.

To create a Blaze database:

1 In the Main window, choose the File-New Blaze Database... menu command.

The standard Create File dialog box for your operating system appears.

2 Enter the name and location for your Blaze database file.

In Windows, this file is automatically given the extension “.BLZ”.

3 Click the Save button or press Return.

A Blaze database file is created with the name and location you specify.

B L A Z E D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

7.3

Once you have created a Blaze database, you must create a Database Session object to connect to

the database. Creating a Database Session object is described in the section “Creating a Database

Session” on page 6.5.

Schemas in a Blaze Database

A schema is a logical grouping of database objects within a database. Each database user (account)
in the database has a schema, which must have the same name as the user. When you connect to an
account on a database, you normally see and have access to the objects in the account’s schema.

Blaze databases support multiple schemas: you can create, modify, and delete any number of
separate user accounts in the database. However, you do not need to create or manage any schemas
to use a Blaze database. If you do not specify a user name when you connect to a Blaze database,
you are automatically connected to the default schema (called the “DBA” schema).

Schemas in Blaze databases are unprotected: any user in the database can see and modify the objects
in any other schema. Therefore, Blaze databases do not require SQL commands that grant or
revoke object privileges.

When a Blaze database is created, it has the following default schemas:

You can create and delete schemas in a Blaze database by issuing SQL commands, as described in
the following table:

Schema Description

DBA Default location for user-created database objects. If a user name is not
specified when connecting to a Blaze database, the user is connected to the
DBA schema.

INDEXES Stores database objects used by the database engine to enforce some types of
constraints (such as Unique constraints and Primary Key constraints). Only
indexes created automatically by the database engine are stored in the
INDEXES schema; indexes created or named explicitly by the user are stored
in the schema where the index object is created.

SYS Stores data dictionary tables and data dictionary views that describe the
structure of the database. Database users should not alter any object contained
in the SYS schema, as doing so could permanently damage the database.

TEMP Used by the database engine for creation of temporary database objects, such as
temporary tables used while sorting data.

Command Description

CREATE USER Creates a database user and a schema for the user.

CREATE SCHEMA Creates a set of database objects within a schema in a single transaction.

7.4

For more information about these SQL commands, see the SQL Language Reference in the online
help.

Data Dictionary

Relational databases often contain a data dictionary, a set of read-only tables and views that provide
information about the database.

The tables in a data dictionary usually can be modified only by the database engine itself. Users
have access to read-only views on these tables. These data dictionary views also present the
information from the data dictionary tables in a more readable and useful format.

The Blaze database engine provides the following data dictionary views:

DROP USER Deletes a database user and the user’s schema, along with all objects
contained within the schema.

View Description

ALL_COLUMNS Lists all columns of all tables in the database

ALL_CONSTRAINTS Lists all table and column constraints in the database

ALL_IND_COLUMNS Lists all indexed table columns in the database

ALL_INDEXES Lists all indexes in the database

ALL_OBJECTS Lists all objects (tables, views, indexes, sequences, and synonyms) in
the database

ALL_SEQUENCES Lists all sequences in the database

ALL_SYNONYMS Lists all synonyms in the database

ALL_TABLES Lists all tables in the database

ALL_USERS Lists all users (schemas) in the database

ALL_VIEWS Lists all views in the database

CAT Synonym for ALL_OBJECTS

DUAL Contains one column and one row; used to guarantee a known result

USER _SEQUENCES Lists all sequences owned by the user

USER _SYNONYMS Lists all synonyms owned by the user

USER _TABLES Lists all tables owned by the user

Command Description

B L A Z E D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

7.5

Technical Note: Blaze data dictionary tables and views are owned by the SYS schema.

You can use the Blaze data dictionary tables to describe a table by issuing a SELECT statement like
the following one:

DIM vTableName AS String
DIM vColNames AS String
DIM vColTypes AS String
vTableName = "EMP"
EXEC SQL SELECT colname, ALL_COLUMNS.type &
 into :vColNames, :vColTypes &
 from ALL_TABLES, ALL_COLUMNS &
 WHERE UPPER(ALL_TABLES.name) = UPPER(:vTableName) &
 AND ALL_TABLES.objID = ALL_COLUMNS.objID

SQL Language

As with most relational databases, Blaze databases are accessed through the SQL relational querying
and programming language. The Blaze-supported SQL language is a subset of the Oracle7 SQL
language with a few added features. It is described in the topic “SQL Language Reference” in the
online help.

Blaze Database Files

A Blaze database consists of a single binary disk file. This file contains all user objects and data, as
well as information necessary for client applications to connect to and disconnect from the
database. Each Blaze database can have only one connection open to it at any time.

Unlike some other relational databases (such as Oracle7 Servers), a Blaze database has no dedicated
memory structures or processes. All information about the database, including data locks and
transaction control information, is stored in the database file. Any necessary in-memory operations
(such as interpreting SQL statements and reading or writing data) are performed by the Blaze
database engine, which is built into the Oracle Power Objects Designer and Oracle Power Objects
Run-Time applications. Each client application that connects to a Blaze database uses its own copy
of the database engine.

USER _VIEWS Lists all views owned by the user

USER_COLUMNS Lists all columns of all tables owned by the user

USER_INDEXES Lists all indexes owned by the user

VERSION Version of Blaze database engine that created the database file

View Description

7.6

The user data stored in the database has a logical structure that is distinct from the physical
structure of the database file. The logical structure represents the database as a collection of objects:
schemas, tables, views, indexes, sequences, and synonyms. When you use a Blaze database, you
interact only with the logical structure of the database. The Blaze database engine provides the
appropriate mapping between the logical and physical structures of the database.

Structure of a Database File

A Blaze database file consists of two sections: a header section and a data section.

The header section is defined when the database file is created and remains fixed in size. The
header section contains parameter information about the database, areas to store session-related
information, and encryption information. Some portions of the header section are modified as
the database changes; other portions do not change after creation.

The data section follows the header section and contains all of the user objects and data in the
database. The data section grows automatically as more storage space is required, until the file
reaches the capacity of its storage device or the maximum database size (2 PB). Unused space in
the data section can be reclaimed, but the database file never shrinks.

The basic unit of storage in a Blaze database file is the block. Information in both the header section
and the data section is stored in blocks. The block size of the database is specified when the
database is created, and remains fixed for the lifetime of the database. The block size is always a
multiple of the sector size, the smallest unit of information that can be read from or written to the
disk on which the database is stored.

The Header Section

The header section of the database file contains the following structures:

Parameter blocks - contain general information about the database file. The information in the
parameter blocks is determined when the database file is initialized and the information does
not change after that. This information includes:

• a unique database identifier
• the version number of the database
• size of logical sectors in the database
• size of blocks in the database
• maximum number of sessions allowed
• storage and space allocation parameters

Transaction control area - stores database information that is updated regularly. For example,
the transaction control area contains information used to allocate object ID numbers.

Session File Areas (SFAs) - maintain information about database sessions. Sessions are described

in the section “Sessions” on page 7.7.

B L A Z E D A T A B A S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

7.7

Lock areas - synchronize multisession access to the database file. Instead of reading and writing
information directly to the lock areas, clients record their locks by acquiring file system locks on
specific bytes of the database file. This system ensures that abnormally disconnecting clients do
not permanently tie up database resources.

The Data Section

The data section of the database file stores the definitions and data of all schema objects (tables,
views, indexes, sequences, and synonyms) within the database. A schema is a named collection of
database objects.

Most user data in a Blaze database is stored in tables. A table is an unordered set of data rows within
the database file. Each row in the database is identified by a unique ROWID, which is used
internally for all access to the row's data. This ROWID is constant for the lifetime of the row,
although it can be reused if the row is deleted.

Each row is logically subdivided into one or more columns, each of which contains a single piece of
data. A Blaze database row can have a maximum of 8192 columns.

Sessions

All interaction with a Blaze database takes place through a session, which represents a conversation
between a client process and the database. A session corresponds to an area in the database file,
which keeps track of the session's current state. Only one session can be open at any time.

Note: Sessions within a Blaze database are not the same as database session objects. A session
within a Blaze database is located on the server (inside the database), while a database session object
is located on the client (your database application).

Blaze databases support two types of sessions: read-write sessions and read-only sessions.

Read-Write Sessions

Normally, a Blaze database session is a read-write session, in which the client can both read and
modify the database file. A read-write session is always in one of three states: live, dead, or available.

■ A session becomes live when a client process connects to the database. A live session is indicated
by a file lock on a byte corresponding to the Session ID.

■ A session is dead when the process that was using it last disconnected abnormally. A dead
session can be detected by the fact that its file system lock has cleared. Dead sessions are
automatically “cleaned up” when necessary (for example, the session's current transaction is
rolled back). This converts the dead session to an available session.

■ A session is available when the process that was using it last disconnected normally. Available
sessions can be used immediately by another client process.

7.8

Information about each session's state is maintained in a Session File Area, or SFA. The SFA
performs a role similar to the System Global Area (SGA) in an Oracle7 Server. SFAs are stored in
dedicated regions of the header section of the database file.

Read-Only Sessions

In addition to read-write sessions, a Blaze database also supports read-only sessions, also called
viewer sessions. A read-only session can be initiated by a client that does not have write access to the
disk on which the database is stored. Read-only sessions have only two states: available or live.

A read-only session differs from a connection to a read-only database. A read-only database cannot
be modified, so the database does not store object locking information. Although a read-only
session is also incapable of modifying the database, locking information must be stored to ensure
data consistency.

Read-only sessions maintain read consistency by placing file system locks on areas of the database
file. Because file systems allow only a limited number of file system locks, read-only session are
limited to 10 concurrent object locks, which limits the number of objects that can be referenced in
a SQL statement.

Specifications

This section describes numeric parameters and limits associated with Blaze databases.

Parameter Value

Maximum concurrent sessions: 1

Maximum concurrent object locks for a read-only session: 10

Size of database sector: 512 bytes

Size of database block: 4 sectors (2 KB)

Maximum size of database file: 2 PB (or limit imposed by
operating system)

Maximum columns in a table: 8192

Maximum size of a short column: 32 KB

Maximum size of a long column: 4 GB

Maximum total size of all short columns in a table: 1 MB

8
D a t a b a s e O b j e c t s 8

This chapter covers the following topics:

Overview . 8.2
Tables . 8.6
Views . 8.16
Indexes. 8.24
Sequences . 8.26
Synonyms . 8.29
Copying a Database Object . 8.30
Deleting a Database Object . 8.31

8.2

Overview

Database objects store and organize information in relational databases. In Oracle Power Objects,
database objects are represented by icons in a database session window.

Database objects, unlike application objects, are not created and maintained directly by Oracle
Power Objects. Instead, these objects are created and maintained by a database engine, a component
of the database in which the objects are stored. Because relational database engines have different
capabilities, available object types and features vary from database to database.

Database objects form the “back end” of an Oracle Power Objects application. In developing
applications, you connect database objects to application objects (such as forms and reports). The
application objects provide a “window” onto the database objects by presenting the stored
information in a useful format. The process of connecting database objects to application objects is
called binding.

This chapter discusses how to design and modify database objects; using them is discussed in the
following chapters:

■ Binding application objects to database objects is described in Chapter 17, “Binding a

Container to a Record Source”.

■ Creating master-detail relationships is described in Chapter 18, “Defining Master-Detail

Relationships”.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.3

Database Objects and Sessions

Database objects appear to be contained within a session object. However, they are physically
stored in the database to which the session provides access. Each database session window shows the
database objects belonging to a single database user. The following diagram shows the relationship
between sessions and databases:

In some databases (such as Oracle7 Servers and Blaze databases), each user’s objects are stored in a
separate schema. A schema is simply a named collection of database objects within a database. Each
database user has a schema, which has the same name as the user. For example, the user SCOTT
has a schema named SCOTT. For databases that support schemas, each database session object
provides access to a single schema.

A database session window does not necessarily show all objects available to the user—it shows only
the objects that the user owns (objects created by that user). For example, the database session
window does not show public synonyms or objects belonging to other users for which the current
user has permissions.

Basic Database Object Types

The following types of database objects are common to most databases that Oracle Power Objects
can access:

Tables are the database objects that actually store data. A single table generally stores
information about a single topic (such as company employees or customer addresses). The
information in a table is organized into rows and columns.

Views are customized presentations of the data in one or more tables. A view is like a “virtual
table” that allows you to relate and combine data from multiple tables and views (called base
tables). Views, like tables, are organized into rows and columns; however, views contain no data
themselves. Views allow you to treat multiple tables or views as one database object.

Application

(Front End)

Session

Database

(Back End)

8.4

Indexes provide fast access to individual rows in a table. Indexes store “pointers” to each row in
the table in a format highly optimized for searching for and sorting data. Once you create an
index, the index is automatically maintained and used whenever you access the indexed
columns.

Sequences generate a series of integers, which can be used to provide unique identifiers for the
rows of a table. You can use values from a sequence to ensure that a column contains no
duplicate values (for example, a primary key column). Some databases, such as SQL Server, do
not support sequences; for these databases, Oracle Power Objects provides alternative
techniques for generating unique values.

Synonyms provide aliases to other database objects (tables, views, and sequences). Synonyms
can provide public access to commonly used objects, and can hide the location and owner of an
object.

Oracle Power Objects provides graphical interfaces for working with these basic database objects.

Other Database Object Types

For information

about EXEC SQL and

SQLLOOKUP, see

Chapter 9, “Struc-

tured Query Lan-

guage (SQL)”.

External databases (such as Oracle7 Servers) can contain many additional database objects (such as
clusters, packages, snapshots, and roles) which are frequently used to provide extra security or to
enhance performance. To access these objects, you must execute SQL commands using the Oracle
Basic EXEC SQL command or SQLLOOKUP function.

Properties and Methods of Database Objects

Database objects do not have properties and methods in the same way that application objects do
because they are not created through the Oracle Power Objects object model. Instead, database
objects are created and modified by the database engine of the database in which they are stored.

Database objects have an associated Property sheet, but you cannot add user-defined properties or
methods to them. Most database objects have a Name property, which is provided for developer
reference. The Name property can be changed using the Property sheet at design time and will
rename the object in the database, but this property cannot be read or changed through Oracle
Basic during run time.

Operations on Database Objects

You can perform two general types of operations on database objects: data definition operations and
data manipulation operations.

Data definition operations apply to the structure of a database object. They include creating,
deleting, and modifying the structure of database objects. These operations are generally
performed by the developer at design time.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.5

Data manipulation operations apply to the data stored in or accessible through the object.
They include querying, inserting, updating, and deleting data rows. Data manipulation
operations apply mainly to tables and views, although they are sometimes used with other
database objects such as sequences. These operations can be performed both by the developer at
design time and by the user at run time.

When you create, delete, or make changes to a database object from within Oracle Power Objects,
the changes you specify are automatically converted into Structured Query Language (SQL)
statements, which are then sent to the database engine for execution. Oracle Power Objects itself
does not execute the modifications you specify—instead, it passes them along to the database
engine.

For information

about SQL com-

mands, see the sec-

tion “Commands” on

page 9.13.

Each type of operation has an associated set of SQL commands: data definition operations use
Data Definition Language (DDL) commands, while data manipulation operations use Data
Manipulation Language (DML) commands.

Important: Executing any data definition operation (for example, creating a table) automatically
commits all transactions associated with the session to which the operation applies. Therefore, you
should avoid data definition operations when transactions are pending.

The types of operations you may perform on a database object are determined by the privileges you
have for that object. By default, the owner of the object (the user who created the object) has all
privileges for the object. For other users to access the object, the owner must grant privileges to
other users.

The types of object privileges available vary from database to database, as does the SQL syntax for
granting or revoking privileges. However, the following privilege types are common and apply to
Oracle7 Servers. Blaze databases do not have object privileges—all users in a Blaze database have
privileges for all objects in the database.

To grant or revoke privileges, you must issue SQL statements. For more information about
granting and revoking privileges, see the documentation accompanying your database.

Privilege Type Actions Allowed

ALTER Changing the object structure.

DELETE Removing data rows.

INSERT Inserting data rows.

SELECT Querying data rows.

UPDATE Changing data rows.

8.6

Database Object Names

Names for database objects must adhere to the object naming rules for the database in which they
are stored. These rules vary from database to database.

For information about the database object naming rules for Blaze databases, see the topic “Database
Object Naming Conventions” in the online help. For the database object naming rules for any
other database, see the documentation accompanying that database.

Tables

Tables are the fundamental data storage objects in a relational database. You store most of your
application’s data in tables.

A table has two components: the table structure and the table data.

Table Structure

You specify the table structure (also called the table definition) when you create the table. The table
structure is the portion of the table that you design before adding any data to the table—it defines
what kind of data the table will store and rules associated with entering, modifying, or deleting the
data.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.7

The table structure is visible in the Table Editor window. To open the Table Editor window for an
existing table, you double-click on the table icon in the database session window.

The table structure includes the following information:

■ Table Name. The name by which you refer to the table in properties, methods, and SQL
statements.

■ Table Columns. The categories of information stored in the table. Each column has a name
and a datatype. Some types of columns can also be given an explicit size (for example, you could
define a VARCHAR2 column to hold a maximum of 20 characters).

■ Table and Column Constraints. Integrity constraints defined at the table level or at the column

level. Integrity constraints are described in Chapter 19, “Using Constraints to Enforce Business

Rules”.

You use the Table Editor window both to define the table structure when you first create the table,
and to modify the table structure afterward. Both of these types of operations are discussed later in
this section.

Table Data

The table data is the information that is stored in the table. The table data is the portion of the
table to which your application’s users have access—for example, table data can be displayed in
controls located on forms and reports.

Double-click on
the table icon...

...to open the Table
Editor window.

8.8

All table data are stored in rows, each containing one piece of information for each column in the
table structure. Users can insert, update, and delete rows of table data.

Developers can see and edit table data in the Table Browser window. To open the Table Browser
window, you “run” the table when the Table Editor window is visible by clicking on the Run
button in the toolbar.

In the Table Browser window, each database column is represented by a vertical column of the
spreadsheet. Each row stored in the table is represented by a horizontal row of the spreadsheet. The
Table Browser window’s scrollbars give you access to any rows or columns that do not fit in the
window.

Creating a Table

Because tables are the objects that will store most of your application’s data, you should design your
table objects carefully. Correct table design involves many considerations, and it is not within the
scope of this chapter to present a complete discussion of this topic. However, the following basic
table design principles are offered:

Avoid duplicating information. Use a separate table for each category of information you want
to store. For example, you should not store department descriptions in a table that lists
employee information. The process of designing tables to avoid data duplication is called
normalization. You should normalize tables whenever possible to save space in your database
and help prevent errors that can arise when information is duplicated.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.9

Similarly, you should avoid storing values that can be calculated easily from existing values—for
example, you should not store the sum of all individual items in an order, because the sum can
be calculated using a simple formula.

Include a primary key for most tables. Almost every table you design should include a primary
key column or set of columns. Primary keys are necessary to establish master-detail
relationships between tables. Additionally, many databases enforce primary key constraints
using an index, which can significantly improve the speed of search and sort operations that
include the primary key column.

You should also include a primary key because Oracle Power Objects sometimes uses primary
key values to identify individual rows. If a table lacks a primary key, Oracle Power Objects
might be unable to perform certain table operations.

You might want to omit a primary key in special cases, such as tables for which an index would
slow the performance of updates unacceptably, or tables that perform many-to-many
relationships and so contain only foreign keys.

Consider where you want to enforce constraints. Many types of constraints are best enforced

in the database. Chapter 19, “Using Constraints to Enforce Business Rules” includes a
discussion of constraint types and the comparative advantages of enforcing constraints in the
database or in your application.

Once you have decided on your table design, you can create the table. To create a table, you:

■ Create a new table and specify the table name.
■ Define the names and attributes of the table’s columns.
■ Define the table’s primary key.
■ Save the table.

You can also create a table with the SQL command CREATE TABLE.

Creating a New Table

The first step in creating a table is to open a new, blank Table Editor window for the table. This
step does not save any information in the database—you do not save the table definition until you
have finished defining all of the table columns. However, it does create an Oracle Power Objects
table object icon you can work with.

To create a new table:

1 Activate the Database Session window of the database where you want to create the table.

If the database session is not currently active, double-click the Connector control.

2 Click the New Table button in the Desktop toolbar.

The Table Editor window appears on your screen, along with the table’s Property sheet.

8.10

3 If you wish, change the default table name in the Name property in the Property sheet.

The table name must adhere to the database object naming rules for your database.

Adding Columns to a Table

After creating a new table, you must add one or more columns to the table.

Although it is possible to add columns to a table after you have saved it for the first time, you
generally should finish adding columns to the table before saving it. In most databases, you cannot
drop a column after you have saved the table definition.

To add columns to the table:

1 Enter a name for the column in the Column Name field.

The column name must adhere to the database object naming rules for your database.

For information

about table

datatypes, see the

section “Values and

Datatypes” on page

9.3.

2 Select the column’s datatype in the Datatype field.

The list of available datatypes varies depending on the database in which the table will be stored.

3 If you wish to specify additional column information, enter or change the information in the
appropriate fields.

You can enter or change the information in the following fields:

4 Follow steps 1 through 3 to specify additional columns.

Field Description

Size Specifies the maximum length of values in the column. Required for string
columns. For Oracle7 Servers and Blaze Databases, the Size field corresponds
to the “Precision” value of a numeric datatype declaration.

Precision Specifies the numeric precision of floating-point or fixed-point numeric
columns. For most datatypes, this is specified as decimal precision; for
columns of datatype FLOAT, this is binary precision. For Oracle7 Servers
and Blaze Databases, the Precision field corresponds to the “Scale” value of a
numeric datatype declaration.

Not Null If true, specifies a Not Null constraint for the column, ensuring that a value
of null cannot be entered for the column.

Unique If true, specifies a Unique constraint for the column, ensuring that the
column has no duplicate values.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.11

Specifying a Primary Key

Primary key con-

straints are

described in the sec-

tion “Primary Key

Constraints” on page

19.4.

A table’s primary key is a specially designated column or set of columns that uniquely identifies each
row of data in the table. When you specify a primary key for a table, Oracle Power Objects creates
a Primary Key constraint on the column, which ensures that each primary key value is unique and
that there are no null values in the primary key.

You can define a primary key either for a single column or for a combination of columns. A
composite primary key constraint ensures that each row has a unique combination of values in its
key columns.

You can add or change a table’s primary key at any time. However, for Oracle7 Servers and SQL
Server databases, any change you make to a Primary Key constraint requires the database to create a
new index object, which can be a time-consuming process.

To specify a primary key:

1 In the Table Editor window, click on the name of the column you want to make a primary key.

2 Click the Primary Key tool icon.

A key icon appears in the area at the left of the column.

Clicking on the Primary Key tool a second time removes the Primary Key constraint from the
column.

Click on the
Primary Key tool

to enable a
Primary Key

constraint.

8.12

3 For composite keys, repeat steps 1 and 2 for additional columns in the primary key.

Saving the Table

Once you have finished defining the table’s columns, you must save the table to apply the
definition. You do so by clicking on the Save button or by choosing the File-Save menu command.
Oracle Power Objects executes an implicit CREATE TABLE statement when you save a newly
created table.

Editing Table Definitions

You can edit the definition of a table in the Table Editor window. You edit a table definition when
you want to add or delete a table column or when you want to change the names or attributes of
existing columns. However, there are some kinds of changes that you cannot make to a table that
has already been created. These restrictions depend on the type of database in which the table is
stored and whether the table already contains data. For a complete list of restrictions on altering an
existing table, see the documentation accompanying your database on the ALTER TABLE
command or its equivalent.

You can also edit a table definition with the SQL command ALTER TABLE.

Adding a Column to a Table

When you add a column to a table that contains data, the column value is set to null for all of the
rows currently in the table. Therefore, you cannot set a new column’s Not Null field to True if you
add it to a table that contains data.

Click on the
Primary Key tool

again to create
a composite key.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.13

To add a column to a table:

1 Open the Table Editor window of the table you want to change.

2 In the first blank cell of the Column Name field, enter the name of the new column.

3 In the Datatype field, choose the column’s datatype.

4 If you wish, specify additional column information in the other fields of the Table Editor window.

5 Save the table by clicking the Save button or by choosing the File-Save menu command.

Changing Column Attributes

You can change the attributes of existing columns on a limited basis. To change a column attribute,
simply change the value in the appropriate field of the Table Editor window.

Column Name Field

Blaze Database: You can change the name of a column at any time.

Oracle7 Server, SQL Server: You cannot change the name of a column after creation.

Datatype Field

Blaze Database: You can change the datatype of a column if the existing data in the column can
be converted to the new datatype.

Oracle7 Server: You can change the datatype of a column only if the column contains no data or
contains null in all rows.

SQL Server: You cannot change the datatype of a column after creation.

Size Field

Oracle7 Server, Blaze Database: You can always increase the size of a column, up to the size limit
for the column datatype. However, you can decrease a column’s size only if the column contains
no data or contains null in all rows.

SQL Server: You cannot change the size of a column after creation.

Precision Field

Blaze Database: You can change the precision value of a column at any time, since Blaze stores
the precision value you specify but does not enforce it.

Oracle7 Server: You can change the precision of a column only if the column contains no data
or contains null in all rows.

8.14

Not Null Field

Oracle7 Server, Blaze Database: You can set a column’s Not Null field to true only if the column
contains no null values. You can set a column’s Not Null field to false at any time.

SQL Server: You cannot change a column’s Not Null field after creation.

Unique Field

All databases: You can change a column’s Unique field at any time. For Oracle7 Servers and SQL
Server databases, setting the Unique field to true may require creating a new index object for
the column, which can be a time-consuming process.

Editing the Contents of a Table

You can edit table data in the Table Browser window, a spreadsheet-like representation of the rows
and columns in the table. You can insert, update, and delete data rows using the Table Browser
window.

The Table Browser window is intended primarily for developers as a quick and simple way to view
and edit table data. However, while constraints in the table definition are enforced, your
modifications can violate constraints that you have defined using application objects that are
bound to the table. Also, the Table Browser window does not provide any automatic way to
generate primary key values—you must enter such values manually.

The Table Browser window lets you make the following types of modifications to data:

■ Insert rows
■ Edit values
■ Delete rows

You can also edit data in a table with the SQL commands SELECT, INSERT, UPDATE, and
DELETE.

Inserting Rows into a Table

You insert a new row of data into the table by entering a set of values into the Table Browser.

To insert a row into a table:

1 In the Table Browser window, click the Insert Row button in the toolbar.

-or-

Click in any field in the first empty row.

2 Enter values in the fields of the row.

Make sure that you enter values for all of the mandatory (Not Null) columns in the table.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.15

Editing Values in a Table

To edit values in the table, simply type directly over the old value. The new values you enter must
obey any constraints you have included in the table definition. For example, you cannot enter a
duplicate value in a column with a Not Null or Primary Key constraint.

After you edit a table value, a lock indicator appears next to the row, indicating that a lock has been
acquired on the row’s data. The lock is not released until you commit or roll back your changes.

Deleting Rows from a Table

To delete a row from a table:

1 In the Table Browser window, click the Row Selector button next to the row you want to delete.

You can select multiple rows by Control-clicking (Option-clicking on Macintosh) additional Row
Selector buttons.

2 Press the Delete key or click the Delete button in the toolbar or choose the Edit-Cut menu
command.

The selected rows disappear from the Table Browser window.

Control-click on
Row Selector buttons

to select additional
rows.

8.16

Saving Changes

To save your changes, click the Commit button in the toolbar. To undo changes instead, click the
Rollback button. When you commit or roll back your changes, all data locks that have been
acquired on table data are released and the lock indicators are removed from the Table Browser
window.

If you have made any illegal changes to data (for example, inserted a row that is missing a value in a
column with a Not Null constraint), an error occurs when you attempt to save your changes. You
then cannot exit the Table Browser window until you either correct the problem or roll back your
changes.

Closing the Table Browser Window

When you have finished making changes to your data, you can close the Table Browser window by
clicking on the Close button in the window’s title bar. If you have made any changes that have not
been committed or rolled back, you cannot close the Table Browser window until you commit or
roll back your changes.

Using Tables

You can use the data in a table in several ways in your application. The following uses are the most
common:

Bind the table to a container object. You can associate a bindable container such as a form,
report, or repeater display with a table using the container’s RecordSource and RecSrcSession
properties. You can then bind controls in the container, such as fields, radio buttons, and check
boxes, to columns of the table.

Create a translation list. You can use the Translation property of popup lists and scrolling lists
to generate a list of values linked to the table’s rows. You can also set the ValueList property of a
combo box to display suggested values.

Issue a SQL statement. The Oracle Basic command EXEC SQL lets you issue a custom SQL
statement that refers to the table. SQL statements offer the most flexibility in accessing the
table’s values, but require knowledge of SQL and the specific feature set of the database
containing the table.

Views

A view can be thought of as a “stored query”, because it is defined as a query that accesses
information in one or more base tables or views. A views does not actually contain data, but acts as
a “virtual table” that can be examined and, in some cases, modified in the same manner as tables.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.17

Views are commonly used to provide the following features:

■ Hide data complexity by joining information from a number of tables into a single logical unit.
■ Perform calculations on data stored in tables to make information more meaningful.
■ Provide security by restricting access to a subset of a table’s rows and columns (not applicable to

Blaze databases, which lack protected schemas).

Like a table, a view has two components: the view structure and the view data.

View Structure

You specify the view structure (also called the view definition) when you create the view. The view
structure is essentially a query that selects information from one or more base tables or views. The
columns of the view correspond to the output list of the query.

The view structure is represented graphically in the View Editor window. To open the View Editor
window for an existing view, you double-click on the view icon in the database session window.

The view structure displayed above translates into a SQL query of the following form:

SELECT EMP.ENAME, EMP.JOB, EMP.MGR, EMP.SAL,
 EMP.COMM, DEPT.DNAME
 FROM EMP, DEPT
 WHERE EMP.DEPTNO = DEPT.DEPTNO
 AND EMP.JOB = 'SALESMAN'

Note: Oracle Power Objects cannot edit the structures of certain views (for example, views that
include an expression in the select list, or views containing GROUP BY or CONNECT BY
clauses). When you open these types of views, Oracle Power Objects displays the View Browser
window, described later in this chapter.

8.18

You use the View Editor window both to define the view structure when you first create the view,
and to modify the view structure afterward. Both of these types of operations are discussed later in
this section.

View Data

The view data is the information that is stored in the base tables of the view. As with table data,
view data is the portion of the view to which your application’s users have access, although views are
frequently used to display read-only information.

Developers can see and (if the view is read-write) edit view data in the View Browser window. To
open the View Browser window, you “run” the view when the View Editor window is visible by
clicking on the Run button in the toolbar.

As with table data, all view data are displayed as rows, each containing one piece of information per
view column. Users can select information from views just as with tables. However, the user can
update or delete rows from a view only if the following criteria are true:

■ The view has only one base table.
■ The view’s columns correspond directly to columns of the base table and include no

expressions.

If either of these criteria is false, then the view is a read-only view.

Creating a View

To create a view, you:

■ Create a new view and specify the view name.
■ Choose the base tables that provide the data underlying the view.
■ Specify the relationships that join the base tables together.
■ Select the table columns you want to appear in your view.
■ (optional) Specify additional conditions to restrict the values that appear in the view.
■ Save the view.

You can also create a view with the SQL command CREATE VIEW.

Creating a New View

To create a new view:

1 Activate the Database Session window of the session where you want to create the view.

If the database session is not currently active, double-click the Connector control.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.19

2 Click the New View button in the toolbar.

The View Editor window appears on your screen, along with the view’s Property sheet.

3 If you wish, change the default view name in the Name property in the Property sheet.

The view name must adhere to the database object naming rules.

Choosing Base Tables for a View

The view’s base tables appear in the Table List area of the View Editor window. You can use either a
table or another view as a base table.

To add a base table to a view:

1 Activate the Database Session window of the session that contains the base table you want to use.

2 Select the table (or view) icon of the base table, then drag the icon into the Table List area of the
View Editor window.

The definition of the table or view appears in the Table List area of the View Editor window.

To remove a base table from a view:

1 In the Table List area of the View Editor window, select the definition of the table or view.

2 Press the Delete key or click the Delete button in the toolbar or choose the Edit-Cut menu
command.

The table’s definition disappears from the Table List area.

Joining Base Tables in a View

Oracle Power Objects represents joins between the view’s base tables by lines that connect two
columns together.

To join base tables:

1 In the Table List area of the View Editor window, select the column name of one of the columns
you want to join.

2 Drag the selected column name onto the corresponding column in the other table’s definition.

A join line appears between the columns. In the SELECT statement that underlies the view, the
join line corresponds to a WHERE clause of the form “WHERE table1.col =

table2.col ”.

8.20

To remove a join between tables:

1 In the Table List area of the View Editor window, select the join line by clicking on it.

2 Press the Delete key or click the Delete button in the toolbar or choose the Edit-Cut menu
command.

The join line disappears.

Note: All of the base tables in your view should be linked together by joins. The view will contain
an unexpected set of data if it contains unjoined tables.

Adding Columns to a View

The view’s columns appear in the Column List area of the View Editor window. For each column
of the view, there is a base table column that provides the data source.

To add columns to the view:

1 In the View Editor window, double-click the desired column name or drag it from the Table List
area to the Column List area.

-or-

Enter a column name in the Column Name field and the name of the containing table in the Table
field.

2 Enter a name for the view column in the Heading field.

This is the name by which you refer to the view column in properties, methods, and SQL
statements. The column name must adhere to the object naming rules of your database.

3 Choose whether you want the column to be displayed.

Click on the Display field to toggle between True (the column is displayed) and False (the column
is not displayed). If the column is not displayed, you cannot use the column as a source of data (for
example, you cannot SELECT a value from the column). However, the values in the Condition
field and Or field values are still used in the view definition. Nondisplayed columns are typically
used to add conditions that restrict the rows in the view.

4 If you wish to restrict the values that appear in the view, add conditions to the Condition field and
Or field.

The condition you enter takes the form of a comparison operator followed by an expression (for
example, >1000 or LIKE 'SM*'). Only rows where the comparison evaluates to TRUE are
included in the view.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.21

If you enter values in both the Condition field and the Or field of the same column, the values are
joined with a logical OR (union). The conditions for separate view columns are joined together
with a logical AND (intersection).

Note that conditions in the Condition field and Or field are SQL conditions, not Oracle Basic
conditions.

Specifying Additional Conditions

You can specify additional conditions to restrict the view’s values by adding nondisplaying columns
to the view (columns whose Display field is set to False). You can add conditions in the Condition
field and the Or field of nondisplaying columns.

Saving the View

Once you have finished defining the view’s columns, you must save the view to apply the
definition. You do so by clicking the Save button in the toolbar or by choosing the File-Save menu
command. Oracle Power Objects executes an implicit CREATE VIEW statement when you save a
newly created view.

Editing View Definitions

You can edit the definition of a view in the View Editor window. You edit a view definition when
you want to add or delete a base table, add or delete a view column, or change the names or
attributes of existing columns. The view definition is dropped and re-created when you save your
changes.

You can also modify a view’s definition with the SQL command CREATE OR REPLACE VIEW.

Adding or Removing Base Tables

You can add or remove base tables from the view at any time by following the instructions in the

section “Choosing Base Tables for a View” on page 8.19. Whenever you add a base table, make sure
to join it to another base table in the view.

Adding Columns to a View

To add a column to a view from a base table:

1 Open the View Editor window of the view you want to modify.

2 In the Table List area, select the name of the column in the appropriate table definition.

8.22

3 Drag the column name into the Column List area.

-or-

Double-click on the column name in the Table List area.

The column you selected appears in the Column List area.

4 If you wish, add conditions for the column in the Condition field and Or field.

To add a nondisplaying condition column to a view:

1 Open the View Editor window of the view you want to modify.

2 In the Table List area, select the name of the column in the appropriate table definition.

3 Drag the column name into the Column List area.

-or-

Double-click on the column name in the Table List area.

The column you selected appears in the Column List area.

4 Set the Display field to FALSE by clicking on it.

The check mark disappears from the Display field.

In the Condition field, enter a condition value. The condition you enter takes the form of a
comparison operator followed by an expression (for example, >1000 or LIKE 'SM*'). Only
rows where the comparison evaluates to TRUE are included in the view.

Note that the condition in the Condition field is a SQL condition, not an Oracle Basic condition.

5 If you wish, add an additional condition value to the Or field.

A condition value added to the Or field is added to the condition in the Condition field with a
logical OR (union).

To delete a column or condition from a view:

1 Open the View Editor window of the view you want to modify.

2 In the Column List area, click on the Row Selector button next to the column or condition that
you want to delete.

You can select multiple columns or conditions by Control-clicking on additional Row Selector
buttons (Option-clicking on Macintosh).

3 Press the Delete key or click the Delete button in the toolbar or choose the Edit-Cut menu
command.

The column or condition is deleted from the view.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.23

Modifying a View Column or Condition

In general, you can modify any of the fields that define a view column or condition. Simply select
the old value, delete it, and type the new value.

Editing the Contents of a View

Views are either read-only or read-write. You can edit the data in a read-write view in the View
Browser window, a spreadsheet-like representation of the rows and columns in the view. For read-
only views, you can use the View Browser window to examine but not change the view data.

You edit data in the View Browser window in the same way as with the Table Browser window, as

described in the section “Editing the Contents of a Table” on page 8.14.

As with the Table Browser window, the View Browser window is intended primarily for developers
as a quick and simple way to view and edit table data. However, while constraints in the view
definition are enforced, your modifications can violate constraints that you have defined using
application objects that are bound to the view. Also, the View Browser window does not provide
any automatic way to generate primary key values—you must enter such values manually.

Using Views

You can use the data in a view in several ways in your application. In general, views can be used
anywhere you use a table, although many views are somewhat restricted because they are read-only.
The following uses are the most common:

Bind the view to a container object. You can associate a bindable container such as a form,
report, or repeater display with a view using the container’s RecordSource and RecSrcSession
properties. You can then bind controls in the container, such as fields, radio buttons, and check
boxes, to columns of the view.

Create a translation list. You can use the Translation property of popup lists and scrolling lists
to generate a list of values linked to the view’s rows. You can also set the ValueList property of a
combo box to display suggested values.

Issue a SQL statement. The Oracle Basic command EXEC SQL lets you issue a custom SQL
statement that refers to the view. SQL statements offer the most flexibility in accessing the
view’s values, but require knowledge of SQL and the specific feature set of the database
containing the view.

8.24

Indexes

Indexes are database objects that provide fast access to individual rows in a table. You create an
index to increase the performance of queries and sorting operations against the table’s data. Indexes
are also used to enforce some types of constraints on tables (for example, Unique and Primary Key
constraints); these indexes are frequently created automatically when the constraint is defined. An
index is an independent object that is logically separate from the table being indexed—creating or
deleting an index does not affect the definition or data of the indexed table.

An index stores highly optimized versions of all of the values in one or more of the table columns.
When a value is queried from an indexed column, the database engine uses the index to locate the
desired value quickly.

Indexes must be maintained constantly to reflect any changes to the indexed rows of the table. The
database engine automatically takes care of any necessary index maintenance when a value in an
indexed column is inserted, updated, or deleted. Although this maintenance does not require any
action on the user’s part, it does reduce the performance of some data manipulation operations
(except for queries). However, the reduced performance associated with maintaining the index is
frequently offset by the increased data access speed that the index provides.

Indexes provide the greatest benefits for tables that are frequently queried but infrequently
modified. Indexes are commonly used with the following types of columns:

Primary Key columns. Primary key columns are often used for searching and sorting, so an
index can improve the performance of many types of operations. In addition, some types of
databases automatically use an index to enforce a Primary Key constraint.

Foreign Key columns. Indexes can help improve the speed of joining two tables in a master-
detail relationship.

Frequently sorted columns. Indexes store information in a presorted format, which increases
the speed of sorting a table’s data by an indexed column.

Creating an Index

To create an index:

1 Activate the Database Session window of the database where you want to create the index.

If the database session is not currently active, double-click the Connector control.

2 Click the New Index button in the toolbar, or choose the File-New Index menu command.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.25

The Create Index dialog box appears on your screen.

3 Enter required index information.

4 Click the OK button.

The index is created. An index icon appears in the Database Session window.

For more information

about constraints,

see Chapter 19,

“Using Constraints to

Enforce Business

Rules”.

For some types of databases, index objects are created implicitly when you enable a Primary Key or
Unique constraint on a table column or set of columns. You can enable these constraints in the
Table Editor window.

Note: in a Blaze database, implicitly created indexes are stored in the INDEXES schema.

You can also create an index with the SQL command CREATE INDEX.

Using Indexes

Once an index is created, it is always used whenever possible. To take advantage of an index, ensure
that your queries use an indexed column or set of columns in the DefaultCondition,
QueryWhere(), and OrderBy properties and methods (in the Property sheet) or in the WHERE
and ORDER BY clauses (in an EXEC SQL statement).

Field Information

Index Name The index name. This must adhere to the database object naming
conventions for your database.

Table to Index The name of the table object for which the index is to be created.

Columns to Index The name of the column or columns for which the index is to be created.
For a multi-column index, separate column names by commas.

8.26

Sequences

Sequences are database objects that generate unique integers, which are typically used wherever
unique data values are required in the database. Most commonly, sequences are used to generate
values in a primary key column of a table. Whenever a value is selected from the sequence, the
sequence is automatically incremented or decremented.

A sequence can have the following characteristics:

■ Name—the name of the sequence.
■ Increment—the spacing between values generated by the sequence (this number can be

negative, but it cannot be zero).
■ Beginning number—the first value generated by the sequence. This value cannot be altered

after the sequence is created.
■ Minimum value—the lowest value that can be generated by the sequence.
■ Maximum value—the highest value that can be generated by the sequence.
■ Cycling—if the sequence reaches its maximum or minimum value, it can “wrap around” to

continue generating values.

Creating a Sequence

To create a sequence:

1 Activate the Database Session window of the database where you want to create the sequence.

If the database session is not currently active, double-click the Connector control.

2 Click the New Sequence button in the toolbar, or choose the File-New Sequence menu command.

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.27

The Create Sequence dialog box appears on your screen.

3 Enter required sequence information.

4 Enter optional sequence parameters, if desired.

Field Information

Sequence Name The sequence name. This must adhere to the database object naming
conventions for your database.

Starting Value The first value generated by the sequence. This value must be an integer.
It cannot be altered after the sequence is created.

Increment By The spacing between values generated by the sequence. This value must
be an integer. It can be negative, but it cannot be zero.

Field/Button Information

Maximum Value The highest value that can be generated by the sequence. This value must
be an integer.

Minimum Value The lowest value that can be generated by the sequence. This value must
be an integer.

Cycle button Indicates whether the sequence “wraps around” when it reaches its
maximum or minimum value. If the Cycle button is checked, the
sequence “wraps around”.

8.28

5 Click the OK button.

The sequence is created. A sequence icon appears in the Database Session window.

You can also create a sequence with the SQL command CREATE SEQUENCE.

Using Sequences in Applications

For information

about sequences and

other counters, see

the section “Counter

Fields” on page

19.17.

You can associate a sequence with a field or other control on a bound container (such as a form)
using the CounterType and CounterSeq properties of the control. When a new row is inserted, the
control’s value is automatically selected from the named sequence.

A typical use of a sequence is to create a dedicated sequence object for each column requiring a
unique value. The name of the sequence usually reflects the table and column name with which the
sequence is associated—for example, a sequence that generates values for the EMPNO column of
the EMP table might be named EMP_EMPNO_SEQ.

Note: Some databases, such as SQL Server, do not support sequence objects. Oracle Power Objects
provides alternative techniques for generating unique values for these databases.

Using Sequences in SQL Statements

You can use a sequence in a SQL statement by referring to the .CURRVAL and .NEXTVAL
pseudo-columns of the sequence.

You cannot select a value directly from a sequence, as with a table or view. Instead, you must
include the reference sequence_name .CURRVAL or sequence_name .NEXTVAL in a
statement such as SELECT, INSERT, or UPDATE.

For example, to select a new value from a sequence called “EMP_EMPNO_SEQ”, you could issue
a SELECT statement like the following one:

EXEC SQL SELECT emp_empno_seq.nextval FROM dual

You could use a sequence to insert an ID value into a table by issuing an INSERT statement like
the following one:

EXEC SQL INSERT INTO emp(empno, ename, mgr) &
 VALUES (emp_empno_seq.nextval, 'PARKER', 7902)

Column Meaning

.CURRVAL reads the current value of the sequence without incrementing it

.NEXTVAL increments the sequence and reads the new value

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.29

Synonyms

A synonym is a database object that provides an “alias” to another database object (a table, view, or
sequence). Instead of using the name of a database object, you can provide the name of a synonym
instead. Synonyms provide the following features:

Provide public access to objects—a synonym can provide all database users with access to
commonly used objects such as data dictionary views.

Hide information about objects—a synonym masks the location and owner of a database
object. Such a mask provides additional data security and simplifies commands that access the
object.

Creating a Synonym

To create a synonym:

1 Activate the Database Session window of the database where you want to create the synonym.

If the database session is not currently active, double-click the Connector control.

2 Click the New Synonym button in the toolbar, or choose the File-New Synonym menu command.

The Create Synonym dialog box appears on your screen.

3 Enter required synonym information.

Field/Button Information

Synonym Name The synonym name. This must adhere to the database object naming
conventions for your database.

For Object The name of the table, view, or sequence object for which the synonym is to
be created.

8.30

4 Click the OK button.

The synonym is created. A synonym icon appears in the Database Session window.

You can also create a synonym with the SQL command CREATE SYNONYM.

Using Synonyms

You use a synonym as though it were a table, view, or sequence. You can use the synonym to
perform DML (Data Manipulation Language) and DDL (Data Definition Language) operations
on the underlying object, as long as you have appropriate permissions.

In this release of Oracle Power Objects, you cannot see or work with synonyms in a Database
Session window. However, you can use a synonym as a record source for a bindable container, or
issue a SQL statement that refers to the synonym.

Copying a Database Object

When you copy a database object, you create a duplicate of the object that has the same definitions
and the same data. The duplicate object is not tied to the original object in any way.

You can copy a database object in two basic ways:

To a different session of the same database type. The copy duplicates most features of the
original object, including the name. For tables and views, only features visible in the Table
Editor window or View Editor window are copied—additional features (such as triggers or
Check constraints) are not duplicated.

To a session of a different database type. Oracle Power Objects might have to perform
conversions in order to copy the object. You cannot copy indexes or sequences to a different
database.

Oracle Power Objects does not provide a way to duplicate a database object within the same
database session.

Copying an object is equivalent to issuing a SQL CREATE TABLE, CREATE VIEW, CREATE
SEQUENCE, or CREATE INDEX statement.

When copying a table to a session of a different database type, Oracle Power Objects first creates a
table in the destination database that matches the definition of the source table. When an exactly
matching column datatype is not available, Oracle Power Objects chooses the closest match. Only
table definition elements visible in the Table Editor window are copied.

Public button Indicates whether the synonym is public (available to all users in the
database). If the Public button is checked, the synonym is public.

Field/Button Information

D A T A B A S E O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

8.31

Oracle Power Objects then copies the table data to the new table. It first selects values from the
source table and stores them in a temporary internal structure. It then inserts the values into the
destination table. Two data type conversions are performed: one from the source table to the
temporary internal structure, and one from the internal structure to the destination database.

To copy a database object:

1 Open the Database Session windows of the source and destination databases.

If the database sessions are not currently active, double-click the Connector control.

2 Select the icon of the object you want to copy.

3 Hold down the Alt key (Option on Macintosh), and drag the icon from the source Database
Session window to the destination Database Session window.

The object icon appears in the Database window of your destination database. If the object name is
already in use, Oracle Power Objects displays a dialog box prompting you to choose whether the
existing object should be replaced. If you click OK, the original object in the destination database is
dropped and a new object with the same name is created.

Deleting a Database Object

When you delete a database object, you permanently remove the object and the object’s contents
from the containing database.

You cannot delete a database object from a session unless the user account to which the session is
connected has the appropriate permissions. Otherwise, the operation fails and returns an error.

You can also delete a database object with the SQL commands DROP TABLE, DROP VIEW,
DROP SEQUENCE, DROP SYNONYM, and DROP INDEX.

Caution: Once you delete a database object, the object cannot be recovered.

To delete a database object:

1 Open the Database Session window of the session that contains the object you want to delete.

If the database session is not currently active, double-click the Connector control.

2 Select the icon of the database object.

3 Press the Delete key or click the Delete button in the Desktop toolbar or choose the Edit-Cut
menu command.

Oracle Power Objects displays a dialog box prompting you to confirm the action. To delete the
object, click Yes. To cancel the operation, click No.

Note: Dropping a table automatically drops all of its indexes.

8.32

9
S t r u c t u r e d Q u e r y
L a n g u a g e (S Q L) 9

This chapter covers the following topics:

Overview . 9.2
SQL Language Components . 9.2
Values and Datatypes . 9.3
Objects . 9.7
Literals . 9.8
Operators . 9.10
Functions . 9.11
Expressions . 9.11
Conditions . 9.12
Commands . 9.13
Procedural Extensions . 9.14
Executing SQL Statements. 9.15
The EXEC SQL Command . 9.15
The SQLLOOKUP Function. 9.21

9.2

Overview

Structured Query Language, usually abbreviated SQL, is a non-procedural database access language
used by most relational databases. Statements in the SQL language describe operations to be
performed on objects and sets of data in a database.

Oracle Power Objects uses SQL for all database access operations. In many cases, Oracle Power
Objects issues SQL statements implicitly, meaning that Oracle Power Objects creates and executes a
SQL statement “behind the scenes” so that you do not have to write SQL code to handle common
operations. For example, when you define or alter a table using the Table Editor window, Oracle
Power Objects automatically converts the information you specify into a SQL statement. The
Record Manager also issues implicit SQL statements when application objects are bound to

database objects, as described in Chapter 17, “Binding a Container to a Record Source”.

You use SQL explicitly in Oracle Power Objects in two ways:

■ You use fragments of SQL (expressions, conditions, operators, and clauses) in some object
properties and in some fields of the Table Editor and View Editor windows.

■ You use fully formed SQL statements with the Oracle Basic EXEC SQL command and
SQLLOOKUP function. These statements enable you to use database features that are not
supported directly by the Oracle Power Objects interface, or give you explicit control over
operations automated by Oracle Power Objects.

This chapter first describes the basic language components of SQL and then describes how to use
EXEC SQL and SQLLOOKUP to execute custom SQL statements from Oracle Basic method
code. However, this chapter does not provide a complete reference to the SQL language. Although
most databases support the ANSI specification for the SQL language, the exact implementation
and the language extensions provided vary from database to database. For a complete reference to
the SQL language supported by your database, see the documentation accompanying it.

The SQL language supported by Blaze databases is described in the topic “SQL Language
Reference” in the online help.

SQL Language Components

The SQL Language has the following basic components:

■ Values. A value is a piece of information with an associated datatype. Other components of
SQL enable you to specify and manipulate values.

■ Objects. An object is a named database structure that stores or organizes information. Database

objects are described in Chapter 8, “Database Objects”.
■ Literals. A literal (also called a constant) is a fixed data value, such as 32 or 'SMITH' .
■ Operators. An operator performs an operation on one or more values and returns a result.

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.3

■ Functions. A function performs calculations and returns a result. Functions usually operate on
one or more arguments that you specify when you call the function, although some functions
have no arguments.

■ Expressions. An expression represents a value. Expressions can consist of literals, object values,
and functions, singly or combined by operators.

■ Conditions. A condition (also called a search condition) is a combination of one or more
expressions and logical operators that evaluates to TRUE, FALSE, or unknown. In SQL,
conditions and expressions are separate concepts and are not interchangeable.

■ Commands. A command performs calculations or other operations. Commands frequently
return information, but they do not return a result value in the same way that functions do.

■ Procedural extensions. Extensions to basic SQL provide procedural capabilities, such as
variables and flow-of-control statements.

Each of these components is discussed briefly in the sections of this chapter that follow.

Values and Datatypes

A value is a piece of information with an associated datatype. Values are data such as numbers, text
strings, dates, and images; these data can be stored in the rows and columns of tables. Other
components of the SQL language enable you to specify and manipulate values.

Each database supports its own set of datatypes for values. These datatypes are used when defining
a table column (all values in the column must have the specified datatype). The datatypes
supported by Blaze databases, Oracle7 Servers, and SQL Server databases are listed in the following
tables.

Oracle7 Datatypes

The following datatypes are supported by Oracle7 Servers:

Datatype Type Range/Size Notes

CHAR(n) string 1 to 255 characters Fixed-length string

VARCHAR(n) string 1 to 32,000 characters Equal to VARCHAR2

VARCHAR2(n) string 1 to 2000 characters Variable-length string

LONG string 1 to 2 GB characters Only one LONG/LONG
RAW allowed per table

RAW(n) binary 1 to 255 bytes

LONG RAW binary 1 to 2 GB Only one LONG/LONG
RAW allowed per table

9.4

Blaze Datatypes

Blaze datatypes are very similar to Oracle7 Server datatypes, although there are a few minor
differences. The following datatypes are supported by Blaze databases:

NUMBER(p) integer 1 to 9e125, 0,
-1 to -9e125

NUMBER(p,s) fixed-
point

1e-130 to 9.99...9e125, 0,
 -1e-130 to -9.99...9e125

NUMBER float 1e-130 to 9.99...9e125, 0,
 -1e-130 to -9.99...9e125

DATE date Jan 1, 4712 BC to Dec 31, 4712 AD

ROWID string — Hexadecimal string
representing the unique
address of a row in its table

MLSLABEL — —

Datatype Type Range/Size Notes

CHAR(n) string 1 to 32K characters Fixed-length string

VARCHAR(n) string 1 to 32K characters Equal to VARCHAR2

VARCHAR2(n) string 1 to 32K characters Variable-length string

LONG string 1 to 4 GB characters Any number of LONG/
LONG RAW columns
allowed per table

RAW(n) binary 1 to 32K bytes

LONG RAW binary 1 to 4 GB

INTEGER integer 2^31-1 to -2^31 (4 bytes) Signed long integer

NUMBER(p) integer 2^31-1 to -2^31 (4 bytes) Precision ignored

NUMBER(p,s) float between +/-
1.79763134862315e308

Precision, scale ignored

NUMBER float between +/-
1.79763134862315e308

Datatype Type Range/Size Notes

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.5

SQL Server Datatypes

The following datatypes are supported by SQL Server databases:

DATE date Jan 1, 100 AD to Dec 31, 9999 AD Different range from
Oracle7

ROWID string — Hexadecimal string
representing the unique
address of a row in its table

MLSLABEL — —

Datatype Type Range/Size Notes

INT integer 2^31-1 to -2^31 (4 bytes)

SMALLINT integer 2^15-1 to -2^15 (2 bytes)

TINYINT integer 0 to 255 (1 byte)

FLOAT float 1.7e-308 to 1.7e308, 0,
-1.7e-308 to -1.7e308 (8 bytes)

REAL float 3.4e-38 to 3.4e38, 0,
-3.4e-38 to -3.4e38 (4 bytes)

MONEY — +922,337,203,685,477.5807 to
-922,337,203,685,477.5808 (8
bytes)

SMALLMONEY — 214,748.3647 to -214,748.3648 (4
bytes)

CHAR(n) string 1 to 255 characters Fixed-length string

VARCHAR(n) string 1 to 255 characters Variable-length string

TEXT string 1 to 2^31-1 characters

BINARY(n) binary 1 to 255 bytes

VARBINARY(n) binary 1 to 255 bytes Variable-length binary
data

IMAGE binary 1 to 2,147,483,647 bytes

DATETIME date Jan 1, 1753 AD to Dec 31, 9999 AD

Datatype Type Range/Size Notes

9.6

Datatype Equivalencies

The following table compares corresponding datatypes in each database with the ANSI datatype
specifications.

SMALLDATETIME date Jan 1, 1900 AD to June 6, 2079 AD

BIT binary 1 bit

TIMESTAMP — — Value equal to
VARBINARY(8) used
to track concurrency

SYSNAME — —

user-defined any range or size of underlying system
datatype

ANSI Datatype Oracle7 Datatype Blaze Datatype SQL Server Datatype

CHARACTER(n),
CHAR(n)

CHAR(n) CHAR(n) CHAR(n)

CHARACTER
VARYING(n), CHAR
VARYING(n)

VARCHAR(n),
VARCHAR2(n)

VARCHAR(n),
VARCHAR2(n)

VARCHAR(n)

NUMERIC(p,s),
DECIMAL(p,s), DEC(p,s)

NUMBER(p,s) NUMBER(p,s) —

INTEGER, INT,
SMALLINT

NUMBER(38) NUMBER(38),
INTEGER

INT, SMALLINT,
TINYINT

FLOAT(b), DOUBLE
PRECISION, REAL

NUMBER NUMBER FLOAT, REAL

— DATE DATE DATETIME,
SMALLDATETIME

— RAW(n) RAW(n) BINARY(n),
VARBINARY(n)

— LONG RAW LONG RAW IMAGE

— LONG LONG TEXT

— ROWID ROWID —

Datatype Type Range/Size Notes

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.7

Nulls

If a database row lacks a value for a particular column, that column is said to be null, or to contain
a null. Nulls are used in columns of any datatype when the actual value is unknown or when
another value would not be meaningful.

A null is not equivalent to zero. In many databases, nulls are also not equivalent to zero-length
strings, although Oracle7 Servers and Blaze databases currently treat zero-length strings as null.

Many other components of SQL, such as operators, functions, and conditions, have special rules
associated with nulls. In general, an operator or non-group function given a null argument returns
null (however, logical operators have special rules associated with nulls, as do special-purpose
operators and functions such as IS NULL or NVL()). When the test in a condition returns null,
the value of the condition is unknown, which is treated the same as FALSE.

For specific rules about how nulls are handled by your database, see the documentation
accompanying it.

Objects

Database objects are named structures within the database that store and organize information.
Common types of database objects are tables, views, indexes, sequences, and synonyms. Database

objects are described in Chapter 8, “Database Objects”.

You frequently refer to database objects and parts of database objects in the text of SQL statements.
For example, when updating a column value, you specify both the name of the table object and the
name of the column. In general, you refer to database objects and parts by specifying the object or
part name assigned at creation. Optionally, you can also specify the object’s location—the schema
(or, for SQL Server, the database and owner) containing the object.

For example, to specify the ENAME column in the EMP table, you could use the following
reference:

EMP.ENAME

— MLSLABEL MLSLABEL —

— — — TIMESTAMP

— — — BIT

— — — SYSNAME

— — — MONEY

ANSI Datatype Oracle7 Datatype Blaze Datatype SQL Server Datatype

9.8

The following table summarizes the syntax for referring to objects and parts in each type of
database supported by Oracle Power Objects:

In databases where object names can contain special characters (such as Oracle7 Servers and Blaze
databases), you must use double quotes to delimit object names containing special characters. You
must also use double quotes with these databases to preserve case information in object names.

For example, the following reference to the ENAME column in the “Employee_Names(1)” table
requires double quotes because it contains special characters:

"Employee_Names(1)".ENAME

Note that each individual object or part name must be enclosed in double quotes separately.

Literals

A literal (also called a constant) is a fixed data value. You can use literals to specify information to be
inserted into a table, or in arguments to operators, functions, or commands.

Numeric Literals

Numeric literals are composed of digits. For numbers with fractional parts, a decimal point is used
to separate the integer part from the fractional part. You can also use a sign (+ or -) at the beginning
of the number. Scientific notation—indicated by the character “e” or “E”—is also allowed by all
databases currently supported by Oracle Power Objects.

The following values are numeric literals:

42
3.14
-10
+25
3E10
2.8e-32

Database Type Syntax

Blaze [schema.]object[.part]

Oracle7 [schema.]object[.part][@dblink]

SQL Server [database.][owner.]object[.part]

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.9

Text Literals

Text literals are strings of text, which can include letters, numbers, spaces, tabs, and other special
characters. You must always delimit (surround) text literals with single quotation marks. The
following values are text literals:

'Smith'
'The correct response is 42'
'Coming & Going'

Note: The standard string delimiter for SQL is different from the string delimiter in Oracle Basic.
In Oracle Basic, literal strings are delimited by double quotation marks.

You must use a special convention to indicate single quote characters within text literals. For
Oracle7, Blaze, and SQL Server databases, you use two consecutive single quotes to represent a
single quotation mark inside a literal, as in the following example:

'She hasn''t yet arrived.'

Date and Time Literals

The databases supported by Oracle Power Objects do not have a separate convention for date and
time literals. However, these databases allow you to specify a date or time value using a text literal
containing information stored in one or more default formats. These databases also provide
additional ways to enter date values (for example, Oracle7 Servers and Blaze databases support the
TO_DATE function, which allows you to enter date values in a wide variety of formats).

For information about entering date and time literals in your database, see the documentation
accompanying it.

Nulls

Most databases let you explicitly specify a null value explicitly by using the word NULL.

Other Literals

Some databases support additional conventions for literal values associated with special datatypes.
For example, SQL Server databases allow you to specify monetary values by preceding a numeric
value with a dollar sign ($).

For information about other literals supported by your database, see the documentation
accompanying it.

9.10

Operators

Operators are perform operations on individual values and return a result. The values manipulated
by the operator are called operands. Operators fall into one of two general classes:

A unary operator operates on only one operand. A unary operator typically appears with its
operand in the following format:

operator operand

A binary operator operates on two operands. A binary operator appears with its operands in
this format:

operand1 operator operand2

Other operators with special formats accept more than two operands. Most operators return null
when given a null operand, although certain operators have special rules regarding nulls.

Precedence of Operators

When an expression contains multiple operators, the operators are evaluated in a fixed sequence
according to their precedence. For example, the multiplication and division operators (* and /) are
evaluated before the addition and subtraction operators (+ and -).

You can use parentheses in an expression to override operator precedence. Expressions inside
parentheses are evaluated before those outside parentheses.

Categories of Operators

The following table lists common categories of operators:

Category Description Examples Operation

Arithmetic Manipulate numeric
operands.

+
-
/
*

Addition
Subtraction
Division
Multiplication

Character Manipulate character string
operands.

|| Concatenation

Comparison Used in conditions that
compare one expression with
another.

=
!=
>
<
>=
<=
IS NULL

Equality test
Inequality test
“Greater than” test
“Less than” test
“Greater than or equal to” test
“Less than or equal to” test
Tests for nulls

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.11

Functions

A function performs calculations and returns a result. Functions usually operate on one or more
arguments that you specify when you call the function. Arguments are included in parentheses
following the function name.

For example, the ABS function returns the absolute value of its numeric argument. The function
and its argument can be specified as follows:

ABS(-10)

The list of available functions varies from database to database. For a list of functions supported by
your database, see the documentation accompanying it.

Expressions

Expressions represent values. Expressions can consist of the following language components, singly
or combined by operators:

■ Literals
■ Object values
■ Functions

Logical Manipulate comparisons or
other logical expressions.

NOT
AND
OR

Logical NOT (negation)
Logical AND (intersection)
Logical OR (union)

Set Combine the results of two
queries into a single result.

UNION Returns all distinct rows
selected by either query

INTERSECT Returns all distinct rows
selected by both queries

MINUS Returns all distinct rows
selected by the first query but
not the second

Other Some databases support
other categories of operators.
For example, SQL Server
databases support bitwise
operators.

Category Description Examples Operation

9.12

The following items are expressions:

42
ename
'SMITH'
12 * 12
NVL(sal, 0)
UPPER(ename) || ' works in department ' || TO_CHAR(deptno)

Conditions

A condition (also called a search condition) is a combination of one or more expressions and logical
operators that evaluates to TRUE, FALSE, or unknown. A condition could be said to be a value of
a Boolean (logical) datatype, although SQL does not formally support such a datatype.

A condition frequently includes an object value compared against another value with a relational
operator. For example, the following condition compares a value from the ENAME column against
a literal string:

ename = 'SMITH'

Another common condition tests whether the value in a column is null. The IS NULL and IS
NOT NULL operators perform this test. For example, the following condition tests whether the
value in the COMM column is null. It returns True if the value is null, False otherwise.

comm IS NULL

You use only IS NULL and IS NOT NULL to test for the presence of nulls, because most other
operators return Null when operating on a null operand. When the test in a condition returns null,
the value of the condition is unknown, which is treated the same as False. For example, the
following condition always evaluates to unknown:

comm = NULL

Conditions can be extended using Boolean operators such as AND, OR, and NOT. For example,
the following condition requires that two individual conditions be True to return True:

deptno = 10 AND sal > 2000

Conditions are typically used in the WHERE and HAVING clauses of DML statements (described
in the next section), although your database might support the use of conditions in additional
locations. For example, the following SELECT statement uses a condition in a WHERE clause to
specify that only employees having a job of “MANAGER” should be returned:

EXEC SQL SELECT ename, hiredate FROM emp WHERE job = 'MANAGER'

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.13

Commands

The most commonly executed types of commands can be grouped into these categories:

■ Data Definition Language (DDL) commands. Apply to the definition of a database object.
They include creating, deleting, and modifying the structure of database objects.

■ Data Manipulation Language (DML) commands. Apply to the data stored in or accessible
through a database object. They include querying, inserting, updating, and deleting data rows.
Data manipulation operations apply mainly to tables and views, although they are sometimes
used with other database objects such as sequences.

■ Transaction Processing Language (TPL) commands. Apply to the flow of a database
transaction, allowing data manipulation operations within a transaction to be committed
(made permanent) or rolled back (discarded).

Many databases support additional categories of commands. For more information about the
categories of command supported by your database, see the documentation accompanying it.

Data Definition Language Commands

The following DDL commands are used by most SQL databases:

Data Manipulation Language Commands

The following DML commands are used by most SQL databases:

Command Description

CREATE object Creates a database object such as a table, view, index, sequence, or synonym.

ALTER object Modifies the definition of a database object.

DROP object Removes a database object from the database.

GRANT Grants database privileges to a user.

REVOKE Revokes database privileges from a users.

Command Description

SELECT Retrieves data from one or more tables or views

INSERT Adds rows to a table or to a view’s base tables.

UPDATE Changes existing rows in a table or in a view’s base tables.

DELETE Removes rows from a table or from a view’s base tables.

9.14

Transaction Processing Language Commands

A transaction is a logical unit of work that is composed of one or more SQL statements. A
transaction is an atomic unit; that is, the effects of all the SQL statements that constitute a
transaction are treated as a unit and can either all be committed (applied to the database) or all rolled
back (undone from the database).

The following TPL commands are used by most SQL databases:

Procedural Extensions

Procedural extensions enhance SQL by providing procedural capabilities. These extensions typically
allow you to mix SQL statements with procedural constructs. Although some common
conventions exist, the types of procedural extensions available depend on the type of database you
are using.

PL/SQL is Oracle’s procedural language extension to SQL; it is available on Oracle7 Servers
that include the procedural option. (Blaze databases do not currently support PL/SQL). Using
PL/SQL, you can define and execute program units such as procedures, functions, and
packages. PL/SQL includes support for variables and constants, cursors, exception handling,
and flow-of-control statements such as loops.

Transact-SQL is an extended version of SQL available on SQL Server databases. Transact-SQL
includes support for triggers and stored procedures, error-handling capabilities, and a control-
of-flow language.

For a complete reference to the procedural extensions available for your database, see the
documentation accompanying it.

Oracle7 or
Blaze Command SQL Server Command Description

COMMIT COMMIT TRANSACTION Ends the current transaction, making
permanent all its changes to the
database.

ROLLBACK ROLLBACK TRANSACTION Discards work done in the current
transaction.

SAVEPOINT SAVE TRANSACTION Identifies a point in a transaction to
which you can later roll back.

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.15

Executing SQL Statements

You execute explicit SQL statements in order to take advantage of database features not supported
by the Oracle Power Objects interface. For example, you can execute SQL statements to create
database objects such as snapshots or roles.

You can execute a fully formed SQL statement using the Oracle Basic EXEC SQL command or
SQLLOOKUP function.

The EXEC SQL command sends a complete SQL statement to a database for execution. EXEC
SQL allows you to specify and return values using bind variables.

The SQLLOOKUP function sends a complete SQL query (a SELECT statement) to a
database for execution and returns a single value.

EXEC SQL and SQLLOOKUP are described below.

The EXEC SQL Command

The Oracle Basic EXEC SQL command sends a complete SQL statement to a database for
execution. EXEC SQL can also execute PL/SQL blocks (for Oracle7 Servers) and Transact-SQL
statements such as system procedures (for SQL Server databases).

EXEC SQL takes the SQL statement to execute as its single argument, which you can specify either
as an unquoted literal string or as a string variable that contains the SQL statement.

For example, you could issue a DELETE statement with the following command:

EXEC SQL DELETE FROM emp WHERE ename = 'SMITH'

The preceding command could be rewritten as follows:

DIM vSqlString AS String
vSqlString = "DELETE FROM emp WHERE ename = 'SMITH'"
EXEC SQL :vSqlString

To execute a SQL statement that continues over several lines, use an ampersand (&) at the end of a
line to indicate that the statement continues on the next line. For example, you could rewrite the
preceding statement as follows:

EXEC SQL DELETE FROM emp &
 WHERE ename = 'SMITH'

You cannot use an ampersand to break a line in the middle of a quoted string value.

9.16

Using Bind Variables

Bind variables enable you to provide input to or receive output from certain SQL statements. A
bind variable is simply an Oracle Basic variable referenced in a SQL statement. You refer to the
bind variable by preceding the variable name with a single colon (:). For example, the following
DELETE statement uses the bind variable vEmpName to provide an input value:

EXEC SQL DELETE FROM emp WHERE ename = :vEmpName

In the following SELECT statement, the bind variable vEmpNum receives an output value:

EXEC SQL SELECT empno INTO :vEmpNum FROM emp &
 WHERE ename = 'SMITH'

You cannot use bind variables when the SQL statement is specified as a string variable. To use a
bind variable, you must pass an unquoted literal string as the argument to EXEC SQL.

Technical Note: Bind variables are not allowed in string variable arguments to EXEC SQL because
Oracle Power Objects resolves bind variable references at compile time. As a result, Oracle Power
Objects must be able to examine the SQL statement when your application is compiled.

The following table shows examples of the most common locations where you can use bind
variables:

For Oracle7 Servers, you can use bind variables in any location listed in the “Embedded SQL”
command descriptions in the Oracle7 Server SQL Language Reference Manual. You can also use bind
variables in PL/SQL blocks.

Command Locations Example

DELETE WHERE clause EXEC SQL DELETE FROM emp &
 WHERE ename = :vEmpName

INSERT VALUES clause EXEC SQL INSERT INTO dept &
 (deptno, dname, loc) &
 VALUES (:vDeptNum, :vDeptName, &
 :vLocation)

SELECT INTO clause EXEC SQL SELECT ename INTO :vEmpName &
 FROM emp

WHERE clause EXEC SQL SELECT ename INTO :vEmpName &
 FROM emp WHERE empno = :vEmpNum

UPDATE SET clause EXEC SQL UPDATE emp &
 SET sal = sal + :vRaise

WHERE clause EXEC SQL UPDATE dept &
 SET loc = 'PHILADELPHIA' &
 WHERE deptno = :vDeptNum

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.17

You cannot use bind variables to specify the names of database objects or parts. For example, the
following method code is not valid:

DIM vColName AS String
vColName = "ENAME"
'The following statement is invalid
EXEC SQL SELECT :vColName INTO :vEmpName FROM EMP

A bind variable must be an Oracle Basic variable. You cannot use the Value property of an object as
a bind variable. To use the Value property (or another object property), first assign it to an Oracle
Basic variable, then use the Oracle Basic variable in the SQL statement. For example, the following
method code inserts values derived from text fields into the DEPT table:

vDeptNum = fldDeptno.Value
vDeptName = fldDname.Value
vDeptLoc = fldLoc.Value
EXEC SQL INSERT INTO dept VALUES (:vDeptNum, :vDeptName, &
 :vDeptLoc)

For output values, you can assign the value of an Oracle Basic variable to the Value property of a
control after executing the SQL statement. For example, the following method code selects values
from the DEPT table into text fields:

EXEC SQL SELECT dname, loc INTO :vDeptName, :vDeptLoc &
 FROM dept WHERE deptno = 10
fldDname.Value = vDeptName
fldLoc.Value = vDeptLoc

Oracle Power Objects lets you use bind variables with any supported database. For databases that
have native bind variables support (such as Oracle7 Servers and Blaze databases), Oracle Power
Objects uses the native support. For databases that do not support native bind variables (such as
SQL Server databases), Oracle Power Objects simulates the behavior of bind variables by replacing
bind variable references with literal values just before the statement is sent to the database.

Datatypes and Declaration of Bind Variables

A bind variable used for input must be declared (either implicitly or explicitly) in your method code
prior to being referenced. The variable must be of a datatype that can be converted to the required
datatype.

A bind variable used for output does not have to be declared prior to being referenced. If the
variable is already declared, it must be of a datatype that can receive the output data. If an
undeclared variable is used to receive output, Oracle Power Objects types the variable automatically
according to the kind of data it receives. However, if the variable has an explicit type suffix, the
variable’s datatype is determined by the suffix.

9.18

Using Bind Variable Arrays

You can use array variables to receive output from queries (SELECT statements). You must declare
the variable as an array before using it as a bind variable. For example, the following statements use
the variables vEmpNum and vEmpName to receive the result set of a query:

STATIC vEmpNum(14) AS Integer
STATIC vEmpName(14) AS String
EXEC SQL SELECT empno, ename INTO :vEmpNum, :vEmpName &
 FROM emp

When a query returns multiple rows, each element of the array receives a value from a different
database row: element 0 receives the value from the first row, element 1 receives the value from the
second row, and so on. Values returned beyond the last element in the array are discarded. If the
array’s dimension exceeds the number of values returned, array elements beyond the last value
returned are not modified. You can determine the number of values returned by a single query
using the Oracle Basic SQLROWCOUNT function.

You can use both array and non-array bind variables in the same EXEC SQL statement. You can
also use arrays of different sizes. Each bind variable will be filled with as many rows as it can hold.

You cannot use arrays to provide multiple input values to SQL statements. You can, however, use
an individual element of an array to provide an input value, as in the following example:

STATIC vEmpNum(14) AS Integer
STATIC vEmpName(14) AS String
vEmpNum(1) = 7369
vEmpName(1) = "STEVENS"
EXEC SQL UPDATE emp SET ENAME = :vEmpName(1) &
 WHERE EMPNO = :vEmpNum(1)

Directing a Statement to a Session

By default, an EXEC SQL command is directed to the default session. The default session is
designated by the DefaultSession property of the application object from which the EXEC SQL
command is executed. If no default session is defined, EXEC SQL returns an error when you
attempt to execute a statement directed to the default session.

You can indicate explicitly the session to which an EXEC SQL command is directed by including
the AT clause in the SQL statement, as shown in the following example:

EXEC SQL AT session1 DELETE FROM emp WHERE ename = 'SMITH'

The AT clause specifies either the name of the session object or a bind variable containing a
reference to the session object, as in the following example:

DIM sesForm1 AS Object
sesForm1 = Form1.GetRecordSet().GetSession()
EXEC SQL AT :sesForm1 DELETE FROM EMP WHERE ename = 'SMITH'

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.19

The variable must be of type Object and contain a reference to the session object - the variable
cannot contain the name of the session object.

Retrieving Result Information

Each EXEC SQL command you execute returns result information, which you can retrieve using
Oracle Basic functions. The following information is available:

Row Count. The number of database rows that were successfully processed by the SQL
statements. For example, after a SELECT statement, the row count indicates the number of
rows that were returned by the query.

Result Code. An integer indicating whether the SQL statement executed successfully. A result
code of zero indicates success; a nonzero result code indicates an error. Different error numbers
are returned for different types of errors. The exact number returned depends on the database
that processed the statement. Therefore, a database-independent application should not rely on
receiving a particular result code.

Result Message. A text string that accompanies the result code. In the case of an error, the result
message provides an explanation of the error encountered. The text of the message is derived
from the database that processed the statement. Therefore, a database-independent application
should not rely on receiving a particular result message.

Error Class Code. An integer representing a database-independent Oracle Power Objects error
classification. While result codes vary from database to database, the same error class code is
returned for the same type of error for all database types.

You can use the following Oracle Basic functions to retrieve this information:

By default, Oracle Power Objects does not provide any visual indication when an EXEC SQL
command encounters an execution error. To have Oracle Power Objects automatically display an
error dialog box when an EXEC SQL command encounters an error, you can execute the
WHENEVER command.

The following method code enables the automatic display of error dialog boxes:

EXEC SQL WHENEVER SQLERROR RAISE

The following method code disables the automatic display of error dialog boxes:

EXEC SQL WHENEVER SQLERROR CONTINUE

Type of Information Function

Row count SQLROWCOUNT

Result code SQLERRCODE

Result message SQLERRTEXT

Error class code SQLERRCLASS

9.20

The WHENEVER command applies to all EXEC SQL commands executed, regardless of database
session or type. Therefore, you do not specify an AT clause with the WHENEVER command.

Executing Procedural Extensions

You can use the EXEC SQL command to execute procedural extensions supported by your
database, such as stored procedures and functions. Any SQL statement you execute with EXEC

SQL is passed through to the database without modifications (except as noted in the section

“Evaluation of SQL Statements” on page 9.21). Therefore, you can execute any command or
statement that can be processed by your database.

For example, you could execute a PL/SQL block with the following method code:

EXEC SQL &
 BEGIN &
 CREATE TABLE temp (id NUMBER); &
 FOR i IN 1..100 LOOP &
 INSERT INTO temp(id) VALUES (i);&
 END LOOP; &
 COMMIT; &
 END;

You can also use PL/SQL to execute stored functions and procedures. For example, the following
method code creates and executes a stored procedure named CREDIT:

'Create the procedure
EXEC SQL CREATE OR REPLACE PROCEDURE credit &
 (acc_no IN NUMBER, amount IN NUMBER) AS &
 BEGIN &
 UPDATE accounts SET balance = balance + amount&
 WHERE account_id = acc_no; &
 END;
'Execute the procedure
EXEC SQL &
 BEGIN &
 credit(1, 100); &
 COMMIT; &
 END;

For SQL Server databases, you can use EXEC SQL to execute system procedures. For example, the
following method code executes the sp_primarykey procedure to define a primary key for the EMP
table:

EXEC SQL sp_primarykey EMP, EMPNO

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.21

You can also use EXEC SQL to execute Transact-SQL statements with procedural constructs, as in
the following example:

EXEC SQL IF EXISTS (SELECT zip FROM authors &
 WHERE zip = 94705) &
 INSERT INTO local_authors &
 SELECT * FROM AUTHORS WHERE zip = 94705

In many cases, you can execute procedural database operations without having to use procedural
SQL code. Oracle Power Objects enables you to execute many types of procedural operations by
mixing Oracle Basic code (such as FOR... NEXT loops) with EXEC SQL statements.

For example, the following method code inserts a set of sequential values into the ID column of a
table named TEMP:

EXEC SQL CREATE TABLE temp (id NUMBER)
FOR i = 1 TO 100
 EXEC SQL INSERT INTO temp(id) VALUES (:i)
NEXT i
EXEC SQL COMMIT

Evaluation of SQL Statements

Oracle Power Objects does not evaluate SQL statements—it simply sends them to the database for
execution. However, Oracle Power Objects does examine the text of SQL statements to perform the
following tasks:

■ Reassemble SQL statements that are broken over multiple lines of text.
■ Evaluate the AT clause to identify the database session object to which the statement should be

sent.
■ Evaluate bind variables.

The SQLLOOKUP Function

The Oracle Basic SQLLOOKUP function sends a complete SQL query (a SELECT statement) to
a database for execution. The first value returned by the query is the return value of SQLLOOKUP.
Any additional values are ignored.

SQLLOOKUP takes the SQL statement to be executed as its argument, which you can specify as a
normal string value. An optional first argument identifies the database session object to which the
SQL statement should be sent. If the first argument is omitted, the statement is sent to the default
session.

For example, the following statement determines the number of rows in the EMP table and stores
the value in the variable vNumRows:

vNumRows = SQLLOOKUP("SELECT COUNT(*) FROM emp")

9.22

The following statement executes the same query, but explicitly directs it to the session object
“Session1”:

vNumRows = SQLLOOKUP(Session1, "SELECT COUNT(*) FROM emp")

Derived Values and Lookup Fields

The SQLLOOKUP function is particularly useful in derived values (Oracle Basic expressions used
in the DataSource property of bindable control). SQLLOOKUP can “look up” a single value from
a detail table without requiring you to create a master-detail relationship between two containers.

For example, the following derived value “looks up” a department name value based on the
department number value displayed in the field “fldDeptNum”. This derived value appears in the
DataSource property of a text field object.

 =SQLLOOKUP("SELECT dname FROM dept WHERE deptno = " +
 STR(fldDeptNum.Value))

Note: The use of the + concatenation operator is explained below.

The return value of SQLLOOKUP is of a datatype determined by the information returned. The
appropriate datatype is chosen by the database driver (the .POD file) that provides connectivity to
the database executing the SQL statement.

You cannot use bind variables with the SQLLOOKUP function. To include input values, you must
concatenate the value into the SQL string to be executed. For example, the following method code
uses the variable vEmpNum to identify an employee number in the WHERE clause of a query:

DIM vEmpNum AS Integer
DIM vEmpName AS String
vEmpNum = 7788
vEmpName = SQLLOOKUP("SELECT ename FROM emp WHERE empno = " +&
 STR(vEmpNum))

When you construct a SQL statement by concatenating values, you must ensure that the resulting
SQL statement will be valid. For example, consider the following SQLLOOKUP statement:

vEmpNum = SQLLOOKUP("SELECT empno FROM emp WHERE ename = " &&
 vEmpName)

If vEmpName contains an unquoted value, an invalid SQL statement will result. For example, if
vEmpName contains “Bob Smith”, the following SQL statement will be sent to the database:

SELECT empno FROM emp WHERE ename = Bob Smith

The preceding statement is invalid because quotes are required around literal strings. Similarly, if
empName contains Null, the following SQL statement will be sent to the database:

SELECT empno FROM emp WHERE ename =

The preceding statement is invalid because the condition in the WHERE clause is improperly
terminated.

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L) O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9.23

For string values, you can ensure that the statement is valid by concatenating SQL string delimiter
characters (single quotation marks) around the values. For example, you could rewrite the
preceding SQLLOOKUP statement as follows:

vEmpNum = SQLLOOKUP("SELECT empno FROM emp WHERE ename = '" &&
 vEmpName & "'")

Note that if a value in vEmpName contained a single quote character, an invalid statement would
result. Single quote characters in SQL text literals must be represented with two consecutive quotes.

For values of other datatypes, and for single-word string values, you can ensure that Nulls are
handled correctly by using the + concatenation operator instead of the & operator. While the &
operator treats a null argument as a zero-length string, the + operator returns Null if one of its
arguments is Null. The following table demonstrates the difference between & and +:

If the SQL statement argument to SQLLOOKUP is Null, SQLLOOKUP returns Null and does
not send the SQL statement to the database. For example, in the following method code, if the
variable empNum is Null, the SQL statement is not executed:

vEmpName = SQLLOOKUP("SELECT ename FROM emp WHERE empno = " +&
 STR(vEmpNum))

You should always use this technique when using SQLLOOKUP in a derived value. Doing so
prevents errors from occurring due to null values.

Expression Value

"Hello" & NULL "HELLO"

"Hello" + NULL NULL

9.24

10
A p p l i c a t i o n s a n d
A p p l i c a t i o n O b j e c t s 1 0

This chapter covers the following topics:

Overview . 10.2
Application Object Types . 10.4
Types of Containers . 10.7
Controls and Static Objects . 10.11
Types of Controls . 10.16
Types of Static Objects . 10.30
Interacting with Application Objects . 10.31

10.2

Overview

As described in Chapter 1, “Application Development with Oracle Power Objects”, an application
provides the front end of your application, providing the means to query and enter data through
the user interface. Applications contain several kinds of application objects, all of which are
described in this chapter.

From an object-oriented standpoint, the application is itself a container object, with its own set of
properties and methods. You can use the Oracle Basic commands for navigating through the object
containment hierarchy to access the application at the top of this hierarchy.

Applications and File Objects

An application is a file object, in the sense that stores its description (and that of all the application
objects within it) in a file within the operating system. The file does not contain descriptions of
recordset objects, since these special types of front-end objects are instantiated at run time only.

During design time, the file has the extension .POA; however, you can later compile it into an
executable file. The compiled application file object then has a .PO or .EXE extension, depending
on the type of executable you create. During the compile, Oracle Power Objects includes objects
defined within libraries (.POL files) and sessions (.POS files) that the application uses. Note that
these extensions are required only in Windows; the Macintosh version of Oracle Power Objects
does not require filename extensions for applications, libraries, and sessions.

The application does contain binding information needed for database connectivity. These include
references to record sources (tables and views) as well as the sessions through which they are
accessed. Therefore, an application uses information defined in a session object to gain access to
database objects.

In addition, the application can contain objects defined in libraries, including user-defined classes
and bitmaps.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.3

For more information

on compiling an

application, see

Chapter 16, “Compil-

ing the Executable

Application”.

For an application to work effectively with library objects and database objects, the libraries and
sessions containing the descriptions of these objects must appear in the Main window during
development. When you compile an application, these components are then added to the
executable file.

Application Naming Rules

The Name property of an application must follow several rules. For a complete list of these naming

requirements, see the section “Naming Rules” on page 3.20.

Creating a New Application

To create a new application:

1 In the Main window, choose the File-New menu command, or by clicking the New Application
button.

The standard new file dialog box for your operating system appears.

2 Assign a new filename to the application file, which holds the complete description of the
application and click OK.

A window for the new application then appears. You can start defining the properties of the
application, as well as add new application objects to it.

10.4

Application Object Types

Applications contain many kinds of application objects. Some appear in the Application window,
while others can only appear within a container.

The following table summarizes all general types of application objects, and notes where they can
appear in the application:

Object Description

Containers Application objects that can contain other objects. Many containers are
bindable, meaning that they can display records queried from a database.
When a container is bound, it has an associated recordset object. Containers
include forms, reports, embedded forms, repeater displays, rectangles, and
ovals, as well as the application itself. Containers appear as icons in the
Application window.

Controls Objects designed to display data or give the user the ability to take actions
through the user interface. Controls include text fields, radio buttons, radio
button frames, pushbuttons, list boxes, combo boxes, popup lists, picture
objects, scrollbars, check boxes, and current row pointers. Controls appear only
within a container.

Static Objects Display-only objects designed to organize and highlight other application
objects appearing within a container. Static objects include lines, rectangles,
ovals, and static text. Static objects appear only within a container.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.5

The following sections describe each of these types of objects in detail. For more information on
the properties and methods associated with each kind of application object, consult the online help.

OLE Objects Objects defined through the object linking and embedding (OLE) technology
developed by Microsoft. Applications other than the Oracle Power Objects
application in which they appear provide the interface for viewing and editing
OLE objects. OLE objects can appear within the Application window, as well
as within a container. However, OLE objects within the Application window
can only be used within an application if they are dragged and dropped into a
container.

Bitmaps Graphic images imported into Oracle Power Objects as an application
resource, and capable of being displayed on different application objects. As
with OLE objects, bitmaps appear in the Application window, but they can
also be added to application objects (for example, forms, pushbuttons).

User-defined
classes

Sets of controls designed as reusable application objects. Once you create a
user-defined class, it appears in the Application window, available for use
within other containers. When you drag and drop a user-defined class into a
container, you create an instance of the class that inherits the properties and
methods of the master class definition. For more information on user-defined

classes, see Chapter 13, “Classes”.

Object Description

10.6

Containers

As described in Chapter 3, “Objects”, a container is an application object that can hold other
application objects within it, including other containers. For example, a form can contain a
repeater display, which in turn can contain text fields and other controls. Containers can be nested
within other containers: For example, a form can contain a repeater display, which itself can
contain a rectangle.

The relationship between containers and the objects within them is called the object containment
hierarchy. The lower levels of the hierarchy include objects contained within other objects; the
upper levels include forms, reports, and the application itself, all of which contain other objects.

For more information

on relative refer-

ences, see the sec-

tion “Relative

References” on page

3.25.

Oracle Power Objects includes several commands and object identifiers for gaining a reference to
objects within the object containment hierarchy (called relative references). These references can be
resolved “upwards”, to the containers in which an object appears, or “downwards”, to the objects
appearing within a container. These techniques are often needed to resolve properties of objects
within the containment hierarchy, or call methods on these objects.

Bindable Containers

For more information

on binding, see Chap-

ter 17, “Binding a

Container to a Record

Source”.

Some containers are bindable, meaning that they can display records queried from the database. In
some cases the user can enter changes to the recordset through the bound container. Bound
containers are connected to a record source (a table or view) accessed through a session object.

Rectangle contained
in repeater display

Repeater display
contained in form

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.7

After connecting (or binding) the container to a record source, you must add bound controls to the
container to display values, as well as give the user the opportunity to edit the contents of a record.
Controls are connected to a particular column in the container’s record source, identified through
the control’s DataSource property.

Types of Containers

The types of containers used in Oracle Power Objects applications include:

Forms

Forms commonly provide the core of the user interface in an application. Through standard forms
as well as dialogs (a kind of form), the user performs the following tasks:

■ View data. When a form is bound, the data can be queried from the database.
■ Enter data. The user can insert, delete, or update records in the form’s recordset.
■ Navigate to other parts of the application. The form can contain controls used to open or close

other forms or reports.
■ Set options applied to the entire application. For example, you might create a dialog allowing

the user to change the font used in the application.
■ Make links to other applications. OLE objects appearing in a form can launch the application

in which the OLE object’s data is defined. In addition, you can use a form to call procedures
defined in dynamic link libraries (DLLs), such as the Windows APIs.

A form can contain a wide variety of objects, including other containers, static objects, controls,
bitmaps, and OLE objects. In addition, a bitmap can appear as the background for the form, as
shown in the following figure:

10.8

During development, you often use several forms to represent the same set of data from different
perspectives, or at different levels of detail. For example, a human resources form may present the
same information about departments and employees in two different ways.

For more information

on modality and win-

dow styles, see Chap-

ter 11, “Forms”.

Intrinsic to any form is its window, the border appearing around all or part of the form. Windows
are often movable or resizable, depending on the modality or window style of the form.

Reports

For more information

on reports, see Chap-

ter 12, “Reports”.

Like a form, a report contains other application objects, many of which display data. Unlike a
form, you cannot interact with the controls appearing on the form, nor can you edit the data
appearing on the form. The report can display all or some of the data contained in the table or view
designated as the report’s record source, depending on the query conditions applied to report’s
recordset. When you preview or print the report, the application generates enough pages to display
all records queried.

Embedded Forms

An embedded form is a form-like application object placed within another container (normally, a
form) that has many of the same properties as a form. Like forms, embedded forms are bindable.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.9

As with forms, you cannot view multiple records in an embedded form at the same time, as you can
in a repeater display.

Embedded forms are useful in the following situations:

■ You want to review detail records one at a time, instead of viewing multiple detail records in a
repeater display.

■ You want to display a distinct set of information (for example, customer information) in one
section of the form, and all of this data is part of the same record (to continue our example, a
customer record from the CUSTOMER table).

Repeater Displays

A repeater display is a bindable container capable of showing the same set of controls and static
objects multiple times. When a repeater display is bound, it displays these sets of objects once per
record.

10.10

The repeater display consists of three parts:

Frame. The frame surrounding the entire control. When you first click on the repeater panel,
you select the frame.

Panel. The container displayed multiple times within the frame. To add objects to a repeater
display, you add them to the primary panel. At runtime, the panel is displayed as many times as
is needed to display all records in the repeater display’s recordset. The other, gray panels are
secondary panels, and are displayed only to show how the primary panel appears when
repeated.

Scrollbar. A control that lets the user navigate through the repeated instances of the panel. The
scrollbar is optional, and its presence or absence is determined by the HasScrollBar property.
The scrollbar appears on the right side of the repeater display, regardless of the number of
records appearing in the container.

Resizing and Positioning Repeater Displays

You have several options when sizing and positioning the contents of a repeater display.

■ To display more than one panel horizontally within the repeater display’s frame, shorten the
width of the primary panel until the desired number of panels appears in each row of the
display.

■ To change the vertical distance between panels, drag the gray panel directly beneath the
primary panel to create the desired distance between panels.

■ To change the horizontal distance between panels, drag the panel directly to the right of the
primary panel (if more than one panel appears in a given row) to create the desired horizontal
distance between panels.

Primary panel

Secondary panel

Frame

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.11

■ To create distance between the upper left-hand corner of the repeater display’s frame and the
upper left-hand corner of the topmost repeater panel, drag the primary repeater panel to the
desired position.

Repeater Displays and Aggregation Functions

You can use aggregation functions to calculate values based on controls within a repeater display.
For example, you can use the SUM() function to add a set of numeric values displayed in a text
field within the repeater display. You can use aggregation functions in two ways:

■ Calculated in Oracle Basic method code. In this case, you refer to the contents of a control
with the syntax control_name.Value . For example, to sum the contents of all instances
of the “UnitCost” text field within a repeater display, you would use the syntax
sum(UnitCost.Value) .

■ Set through the DataSource property. Here, you use an aggregate function as a derived value
for the control’s DataSource property. In this case, you refer to the name of the control, not its
Value property. In the case of the UnitCost field, you would set the DataSource property of a
control outside the repeater display to the following:
 =SUM(UnitCost)

Other Containers

Rectangles and ovals are also containers, in that they can contain lines, controls, and other

containers. For more information on rectangles and ovals, see the section “Types of Static Objects”

on page 10.30.

Controls and Static Objects

As described earlier in this chapter, a control is an application object that can store data or provide
the means for the user to take some action. In some cases, the control can perform both functions.

For example, a text field is a control because it can store and display data, and the user can type data
into it. Similarly, a pushbutton lets the user take an action (clicking the simulated button), but this
type of control does not store data.

10.12

A static object is also an application object. Unlike a control, it does not store data, and it is not
designed to give the user the means to take an action. Normally, a static object is designed for
display only, to help organize and highlight other application objects appearing within a form or
report. However, since static objects have several standard methods, you might design them to
behave as controls. For example, you could add method code to the Click() method of a rectangle,
so that it performs some action when the user clicks on it.

Bindable Controls

Many controls are bindable, meaning that they can read data from a column in a table or view. In
most cases, this column is part of the table or view specified as the record source for the container
in which the control appears. (The record source is set through the RecordSource property of the
container.)

In some types of objects, the value displayed is different from the value stored in the control. For
example, in the case of list controls (list boxes, popup lists, and combo boxes), the values used to
populate the list may come from a different table or view. When the list control stores a value, it is
stored in the record source specified for the container.

For more information

on SQLLOOKUP, see

the section “The SQL-

LOOKUP Function”

on page 9.21.

Another exception is cases when the control uses the SQLLOOKUP function to query values. In
these cases, the SQLLOOKUP bypasses the normal binding to the column, populating the control
directly through a query. In these cases, the control is unbound, in the sense that its values are not
part of the container’s recordset. Even if the container and other controls appearing on it are
bound, the control using SQLLOOKUP to populate it with values is not bound. Additionally,
since its values are not part of a recordset, you cannot move among them; the application populates
the control with the first value returned from the SQLLOOKUP query.

Control Values

You can populate a control’s value from a variety of sources, including:

■ Columns in a table - Bound controls can read their values from the table or view to which the
container holding the control is bound. You identify the column through the control’s
DataSource property.

■ User entry - In the case of both bound and unbound controls, the user can enter values into the
control.

■ Derived values - The control’s value is the result of some calculation, that can include values
read from the properties of other controls (such as the Value property). The derived value can
also use the SQLLOOKUP function to read a value from a table or view. You define this
calculation through the control’s DataSource property.

■ Default values - You can assign a default value to many controls through their DefaultValue
property.

■ Method code - Through method code, you can assign new values to controls.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.13

■ Coded lists - In the case of list controls, you can determine the internal and display values (see
below for an explanation) through their Translation and ValueList properties.

For a description of how to bind a record to a record source, see Chapter 17, “Binding a Container

to a Record Source”.

Derived Values

You can have a control's internal value set as the result of a calculation, using derived values, instead
of reading its values from a column in a table or view. After you set the DataSource property of the
control to Derived Value, you can type in the expression used to determine the control's value in
the DataSource section of the Property sheet.

The expression can use all Oracle Basic numeric functions. When referring to the internal value of
a control, use the control's Name property. Optionally, you can use the syntax
control_name .Value .

For example, to set the internal value of fldThree to the sum of the internal values of fldOne and
fldTwo, multiplied by two, you would enter the following for the control's derived value:

=(fldOne + fldTwo) * 2

-or-

=(fldOne.Value + fldTwo.Value) * 2

Using SQLLOOKUP in a Derived Value

You can also use the SQLLOOKUP command for the derived value calculation. This is especially
useful when the control needs to look up values in a foreign table (i.e., one other than the main
table for the form, as specified through the RecordSource property).

For example, to display the department name instead of the department number for an employee
record, you can enter the following expression for the DataSource property of the control:

=SQLLOOKUP(testsess, "SELECT dname FROM dept WHERE " "deptno
= " + fldDeptno.Value)

In this syntax, testsess is the name of a session, and fldDeptno is a text field displaying the
department number for an employee record.

Containers and Derived Values

When setting the derived value for a control, you can refer to any other controls on the same
container, or any appearing on another container within the container. For example, when setting a
derived value for a control appearing on a form that also has a repeater display, you can refer to the

10.14

internal values of any controls on the form, plus any controls in the repeater display. However,
controls on the repeater display cannot use controls on the main form as part of a derived value
calculation.

Aggregate Functions and Derived Values

Since controls in a repeater display appear multiple times (once for every record in the repeater),
you may wish to use aggregate functions on the internal values of these controls. For example, you
may want to sum all of the prices of line items within an invoice. In this case, the line items appear
in the repeater display, and the unit price of each item is represented by a text field in the repeater
display.

Aggregate values cannot be evaluated from within the container holding the controls whose
internal values are being aggregated. For example, if you apply an aggregate function to values
appearing in a repeater display, you must perform the calculation on the container holding the
repeater display, not within the repeater display itself.

When setting derived values, you can use all Oracle Basic aggregate functions. In the case of
summing prices for an invoice, you would create a text field on the main form that would use the
SUM function as part of its derived value calculation. When setting the DataSource property for
this text field, you would then enter something like the following:

=sum(repeater1.price)

Display Values and Internal Values

All controls that can hold data have two values, the internal value and the display value. The display
value is what appears in the control; the internal value is what is assigned to the control’s Value
property.

At times, the display value and the internal value will be different:

For more information

on list controls and

their values, see the

section “List Con-

trols” on page 10.15.

List controls - List boxes, combo boxes, and popup lists can translate the values assigned to
their Value property. These translations are specified through the Translation or ValueList
property of the control. For example, if you have a popup listing all customers, the display value
may be the customer names, but the internal value is the numeric ID assigned to each
customer. These values are queried from different columns in the same record source.

For more information

on validation, see

Chapter 19, “Using

Constraints to

Enforce Business

Rules”.

Failed validation - When the user enters a value in a control that fails to meet the business rule
applied to this control, the Validation() method (in which the business rule is defined) returns
FALSE, but the display value may not change. For example, if you enter a negative age for an
employee, method code in the Validate() method for the control may return FALSE,
preventing you from continuing further until you enter a valid age. In these cases, the control’s
display value is whatever the user entered, but the internal value is the original value assigned to

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.15

the control, before the user entered anything. This situation may also occur when the user tried
to save a record that did not meet the constraints defined through the ValidateRow() method,
which returned FALSE when the user tried to save the record to the database.

Note that in these cases, you can call the method RevertValue() to make the display value
match the internal value when Validate() returns FALSE.

For more information

on format masks, see

the section “Format

Masks” on page

10.31.

Format masks - When you apply a format mask to a text field or a combo box, you determine a
format for information displayed in the control. A format mask controls the display of data to
follow common conventions (for example, displaying a currency symbol before financial data).
Again, the display value and the internal value are different. The display value includes
formatting characters and often translates data (for example, showing the name of a month
instead of a numeric value). The internal value, however, includes none of the extra characters,
and the value is not translated.

For example, in the case of controls using the Date datatype, the underlying data is still a string
of numerals defining a date and time. However, the format mask may set the display value to
include colons to separate hours, minutes, and seconds, and it may display the names of
months and days instead of their numeric equivalents.

List Controls

Three controls in Oracle Power Objects can display a list of possible values as part of the control. In
the case of list boxes and popup lists, the user can choose one of the items in the list. Combo boxes
also allow the selection of a list item, but they also let the user enter a different value not on the list.

10.16

List controls are bindable, but the list of values appearing as part of the control are defined
separately. The Translation property specifies the contents of the list for list boxes or popup lists,
while the ValueList performs the same function for combo boxes. In both cases, you can “hard
code” the contents of the list, by simply entering a list of values that can appear for the property.
You can also query the values appearing in the list from a table or view.

As described earlier, the display value and internal value of list controls often vary, so the value
selected in the list may not be the value assigned to the Value property of the control. In this sense,
the display value is translated from the internal value of the control.

For more information on the Translation and ValueList properties, see their descriptions in the
online help.

Types of Controls

This section describes each kind of control in Oracle Power Objects, including suggestions on
when to use some types of controls. For the properties and methods of each type of control, see the
description of each control in the Oracle Power Objects online help.

Chart Controls

Chart controls are bindable controls that display a chart or graph, using data queried from the
database. Chart controls can bound to two columns or more from the same record source to display
data within a chart or graph. If the chart object is not properly bound, it appears as a blank
rectangle.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.17

The chart has two important properties determining the range of information displayed,
ChartXCol and ChartYCols. The ChartXCol property identifies the column used as the X-axis of
the chart, while ChartYCols identifies the columns used as the Y-axis. If you want to build a bar
chart depicting salaries and commissions for each employee, therefore, you would use EMP as the
chart’s RecordSource, ENAME for the ChartXCol, and SAL and COMM for its ChartYCol
properties.

Chart objects can display a variety of different chart and graph types, including the following:

Chart Type Example

Vertical bar

Horizontal bar

10.18

Chart controls can display legends, labels, and grid lines. You can have the application
automatically size the chart, and you can determine the number of records displayed in it. To
accomplish these tasks, chart controls have several unique properties

:

Line

Pie

Property Description

ChartAutoFormat Determines whether the application automatically sizes the chart.

ChartGap Determines the width between bars in a chart.

ChartLabelStyle Determines whether the chart displays labels, and the contents of these
labels.

ChartLegendHAlign Determines the horizontal position of the legend.

ChartLegendVAlign Determines the vertical position of the legend.

ChartLineStyle Determines the appearance of grid lines in the chart.

ChartMaxVal Sets the maximum value for the Y-axis of the chart.

Chart Type Example

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.19

Chart Controls and the Record Manager

Since charts query records from a table or view, you must set its RecordSource and RecSrcSession
properties to identify the record source and its session.

When the chart control performs a query, it fetches all records before drawing the chart or graph.
Therefore, its RowFetchMode property must always be set to Fetch All Immediately.

For more information

on OLE objects, see

Chapter 15, “Oracle

Power Objects Exten-

sions”.

Chart controls provide the means to display basic charts and graphs, using the Oracle Power
Objects object-oriented approach to development. As an alternative, you can create charts as OLE
objects, which can be added to an Oracle Power Objects applications. In these cases, the OLE
server application provides the interface for defining and updating the graph, not the Oracle Power
Objects application itself.

Check Boxes

A check box is a bindable control used to indicate a mutually exclusive yes or no choice. To make
the choice, you check or uncheck the box.

ChartMinVal Sets the minimum value for the X-axis of the chart.

ChartOverlap Determines the degree of overlap between bars in a bar chart.

ChartRowCount Sets the maximum number of records in the chart.

ChartShowGrid Determines whether the chart shows a grid.

ChartShowLegend Determines whether the chart has a legend.

ChartStacked Determines how the chart stacks different bars belonging to the same
record.

ChartStyle Determines the style of the chart (vertical bar, horizontal bar, pie, or line).

Property Description

10.20

The appearance of the check box is related to its current value. When the check box is checked, its
Value is the same as its ValueOn property. When unchecked, the control holds the value assigned
through the ValueOn property; when unchecked, it holds the value assigned through ValueOff or
null.

Although both check boxes and radio buttons provide mutually exclusive choices, radio buttons
force a choice among grouped radio button controls. For check boxes, the choice applies only to
one check box control, whose state (checked or unchecked) you determine.

Check Boxes and Null Values

A check box containing a Null value appears unchecked, meaning that it is indistinguishable from a
check box that the user has deliberately unchecked. When the user unchecks the check box,
however, the application assigns the value specified in the control’s ValueOff property to its Value
property, which is not necessarily Null. To ensure that a check box does not contain a Null value,
use the DefaultValue property to initialize the control to a non-Null value.

Check Boxes and Database Tables

Since a check box is a bindable control, you can connect the check box to a column in a database
table or view. The datatype of the check box (set through the Datatype property) must match the
datatype of the column. In addition, the column should hold only two values, and they must
correspond to the ValueOn and ValueOff properties of the check box.

User-Defined Classes

For more information

on user-defined

classes, see Chapter

13, “Classes”.

A user-defined class is a bindable container that can be reused throughout an application.When
you add an instance of the user-defined class, the instance inherits the class’ properties and
methods. Additionally, any controls or static objects added to the user-defined class (also called the
master class) also appear on its instance.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.21

User-defined classes normally consist of application components you plan to reuse in several places.
For example, you can create a class of OK and Cancel pushbuttons which you can then add to all
the dialogs in your application. After designing their default behavior (through the Click() method
on both pushbuttons), you can later modify each instance of this class to fit the dialog on which it
appears.

Some common uses of user-defined classes include the following:

■ Reusable application objects. You can define a class containing some application object that is
used frequently throughout the application. For example, if you often have a popup list
showing customer names, then you can create that popup as a class, and then add instances of it
to multiple forms.

■ Application customization. When building a form, you can increase the ease of customization
by adding an instance of a class instead of a normal control or static object. If you have a
commonly used application object, such as the popup list described above, then you can
customize all instances of the object by defining it as a class, then editing the class itself. The
customization is then reflected in all instances.

■ Custom controls. You can create a custom control such as a thermometer, a gauge, a calendar,
or a series of OK and Cancel buttons as a user-defined class, then reuse them throughout an
application.

User-defined class

Instance of class
on form

10.22

Combo Boxes

A combo box is a bindable list control that provides both a popup list of selectable items and a field
for entering data. You use a combo box instead of a popup list or list box when you want to display
a list of suggested values, but you also give the user the ability to enter a different value not
appearing on the list.

The value for the combo control is the same as the text of the combo box. If the user selects an item
from the list, the selected item replaces the contents of the text in the field.

Populating a Combo Box’s List

To populate the list section of the combo box, you must take the following steps:

1 Open the Property sheet for the combo box.

For more information

about the ValueList
property, see the

online help topic

“ValueList property”.

2 Enter an expression for the ValueList property to determine how the control displays values in its
list.

Combo Boxes and Foreign Tables

List boxes, combo boxes, and popup lists normally read their values from a different table than the
main table for the form (as set through the RecordSource property). You can set a combo box to
read its values from a foreign table through the ValueList property of the control.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.23

Current Row Pointers

A current row pointer indicates the current row in a repeater display. Additionally, this control
indicates the status of the currently selected record in any bound container.

When you display multiple records in a repeater display, a current row pointer sets the Record
Manager’s current row pointer to one of the records. You can click on the current row pointer
appearing to make its corresponding row the current row.

Finally, the current row pointer indicates that a particular record is locked by displaying a lock icon
next to the control.

The appearance of the current row pointer changes according to the status of the record to which it
corresponds:

Current row controls have a Value property that indicates the status of its associated row in the
recordset (not the actual table or view). The lower-order bits provide the same row status
information as the GetRowStat() method, while the remaining bits provide other information. To
access this information, you must use a bitwise operator, such as IMP and OR.

.

Appearance Meaning

Gray arrow Indicates the current row within the recordset, but the given recordset is not
current.

White arrow Indicates a row other than the current row.

Black arrow Indicates the current row in the current recordset.

Lock next to arrow The application has locked the current row in the database (normally
because the row has been edited). The lock remains until the row’s database
transaction has been committed or rolled back.

Value Description

Value and 255 Value returned from GetRowStat() for the associated row

Value and 256 256 if the row is the active row, 0 if not

Value and 512 512 if the row is the current row, 0 if not

Value and 1024 1024 if the row is locked, 0 if not

Current row pointer

10.24

List Boxes

A list box is a bindable control that presents a scrolling list of items for selection. Unlike a combo
box, a list box restricts the user’s selection to the items appearing in the list. You use a list box in
place of a popup list (which also restricts selection to listed items) when you want to keep the list’s
choices visible while the user edits other controls.

Again, since a list box is a list control, its internal value may not match its display value. List boxes
often read their values from a foreign table or view (that is, a different table or view than the record
source of the container in which the list box appears).

OLE Objects

For more information

on OLE, see the sec-

tion “OLE Data

Objects and Controls”

on page 15.2.

OLE objects are bindable controls built on the object embedding and linking (OLE) technology
developed by Microsoft. OLE objects can appear only in Windows versions of Oracle Power
Objects applications.

OLE objects are defined in a server application, and can appear in client applications for display and
editing. However, when you edit the OLE object, the server application provides the interface for
making any changes to its contents. For example, a Microsoft Word document or Microsoft Excel
spreadsheet can appear within an Oracle Power Objects application, with all the same functionality
as a document or spreadsheet originally defined in its native application. In these cases, Word and
Excel are server applications, while the Oracle Power Objects application is the client.

OLE objects that are embedded store their data either in the Oracle Power Objects application,
while linked objects store their data in the application that provides the interface for editing the
data

Value and 2048 2048 if the row is the phantom “empty row” added to the end of a
recordset, 0 if not

Value Description

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.25

Picture Controls

A picture control is a bindable control that displays a graphic. The user can cut, copy, or paste
picture values in this control. To add a new graphic, the user must define it in another application
and paste it into the picture control. If the picture control is then bound, its contents (that is, the
graphic) can be stored in and queried from a database.

Currently, picture controls can display graphics in the .BMP and PICT formats. In Microsoft
Windows, picture controls can only display 16 color graphics.

Picture controls must have the datatype Long to display a graphic. The graphic is stored using an
appropriate datatype for the database storing the picture (for example, a PICTURE column for
SQL Server, a LONG RAW column for a Blaze database or Oracle7 Server).

Graphics displayed in a picture object are not editable from within an Oracle Power Objects
application. If you want to give the user the ability to modify a graphic within an Oracle Power
Objects application, you should use an OLE control instead, linked to a drawing tool like
Microsoft Paintbrush.

Popup Lists

Popup lists are bindable control that presents a list of items for selection.

The list does not appear until you click on the popup list control. Once the list appears, you can
use the scrollbar that appears on the right side of the control to scroll through the available items.

Like a list box, a popup list restricts the user’s choices to only those items in the list. Often, a popup
list is often preferable to a list box when space is at a premium.

Since a popup list is a list control, the value displayed in the list may match its corresponding
internal value (the value actually assigned to the Value property of the control).

10.26

Pushbuttons

A pushbutton emulates a physical pushbutton. Clicking the button usually triggers some action, as
defined in the method code attached to the pushbutton’s Click() method.

Unlike most other controls, pushbuttons do not have a Value property.

Pushbuttons and Modal Dialog Boxes

If a pushbutton appears on a modal form, you can set it to dismiss the form without having to
write any method code. When the user clicks the pushbutton, the application automatically hides
the form if pushbutton’s IsDismissBtn property set to TRUE. Note that this is true only if the form
was opened using the OpenModal() method.

In this case, the form is hidden, not unloaded from memory (though it is effectively closed from
the user’s standpoint). To unload it from memory, you must use the CloseWindow() method.

The purpose of this behavior is to keep in memory a dialog box in which the user has entered some
settings. While the dialog box remains hidden, the application can continue to read these settings
from the controls appearing on the hidden form.

Radio Buttons

Radio buttons are bindable controls that present a mutually exclusive set of choices. Radio buttons
normally appear within a radio button frame, which groups the radio buttons and stores a value
corresponding to the currently selected radio button.

For information on database connectivity for radio buttons, see the following description of radio
button frames.

Radio Button Groups

To create a group of radio buttons, you first create a radio button frame, and then add radio
buttons to the frame. The radio button frame’s Value property matches the ValueOn property of
the currently selected radio button within the frame. Each radio button must therefore have a
unique ValueOn property, and the radio buttons must have the same Datatype property as the
radio button frame.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.27

To determine programmatically the value of the selected radio button within a group, you read the
Value property of the radio button frame, not from the radio buttons themselves. Similarly, to bind
radio buttons to a table or view, you set the DataSource property of the frame, not of the individual
radio buttons.

Radio buttons on a form that are not within a radio button frame are part of the same group; all
radio buttons within a radio button frame comprise a different group. Once radio buttons have
been grouped, the user can select only one button at a time from that group.

Radio Button Values within a Group

The value corresponding to each radio button is assigned through the ValueOn property of each
radio button. You can select any datatype, but you must use the same datatype for all radio buttons
in the group. The ValueOn for each radio button must be unique within that group.

If the radio buttons are bound, then you must set the ValueOn property of the radio buttons to
match the values stored in the corresponding column. For example, if you have two values in a
table, 0 and 1, and you want to reflect these values in two radio buttons, then set one radio buttons
ValueOn property to 0, and the other’s to 1. By default, the ValueOn property of a radio button is
its Label (a string value).

To create a radio button group:

1 Using the Radio Button Frame tool, create a radio button frame object.

2 Using the Radio Button tool, draw the radio buttons within the radio button frame.

3 Set the Datatype property of the radio button frame and the radio buttons.

4 Bind the radio button frame to a record source, if desired.

5 Set the ValueOn properties of the radio buttons to match the values stored in the corresponding
column, if the radio buttons are bound controls.

ValueOn = 1

ValueOn = 2

Value = 1

10.28

Radio Button Frames

Radio button frames group radio buttons, making the choice among them mutually exclusive. In
addition, the frame stores the value assigned to the currently selected radio button, and can store
this value in a column specified as the radio button frame’s DataSource.

For more information on radio button frames and radio buttons, including information on how to
group and bind these controls, see the description of radio buttons above.

Scrollbars

A scroll bar lets the user (1) scroll through records by moving a small rectangle (the thumb) across
the length of the scrollbar, or (2) take some action by manipulating the scroll bar.

Oracle Power Objects provides two kinds of scrollbars, vertical and horizontal.

Determining the Position of the Scrollbar’s Thumb

Scrollbars have three important properties that determine the location of the thumb:

Property Description

ScrollMin A minimum value assigned to the scrollbar. The control has this value when
you scroll all the way to the top for vertical scrollbars, or to the left for
horizontal scrollbars.

ScrollMax A maximum value for the scrollbar. The control has this value when you
scroll all the way to the bottom for vertical scrollbars, or to the right for
horizontal scrollbars.

ScrollPos The current position of the scrollbar thumb. This integer value always falls
between the values set for ScrollMax and ScrollMin.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.29

Scrollbars and Database Browsing

You can use a scrollbar to scroll through the records in a recordset. To make a scrollbar a recordset
browser, set the ScrollObj property of the scrollbar to the Name of the bound container associated
with the recordset. Note that when you add a scrollbar to a container, its ScrollObj property is set
by default to the Name of the container.

Scrollbars on Other Controls

Scrollbars (not scrollbar objects) can appear as part of other application objects. In these cases, the
scrollbars are not the same as scrollbar controls; they are simply part of the container (for example,
a repeater display) or control (for example, a text field). In some cases, you can use the
HasScrollBar property to add or remove the intrinsic scrollbar.

Text Fields

A text field is a bindable control used for displaying and entering data. Text fields can hold data
read from a database table, entered by a user, or resulting from a derived value calculation.

Text fields are also the default control type when you add database objects by dragging them from a
table or view onto a form, report, or class.

When the user enters data into the text field, the field’s Value property is not set until the focus
leaves the field. When the focus moves out of the field, the Validate() method is triggered,
applying any checks you want on the data entered.

After entering data into a text field, but before moving the focus out of it, the user can undo the
new text by pressing the Escape key.

Displaying Multiple Lines in a Text Field

To display multiple lines of text in a text field, you must have the control’s MultiLine property set
to true. In addition, if the control will be able to hold more lines of text than it can display at one
time, then you should set the text field’s HasScrollBar property to TRUE as well.

Currently, text fields do not have word wrap capabilities, so the user must manually enter line break
characters to “wrap” text in the field.

10.30

Types of Static Objects

This section describes each kind of static object in Oracle Power Objects. For the properties and
methods of each type of static object, see the description of each static object in the Oracle Power
Objects online help.

Lines

A line is a static object that displays a straight line.

Commonly, a line separates sections of a form or report. Lines have a Direction property that
indicate the slope of the line, as shown below.

Ovals

A static object that displays an oval. Ovals are containers in which you can place other objects.

Commonly, ovals surround objects you wish to group or highlight on a form or report.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.31

Rectangles

A static object that displays a square or rectangle. Rectangles are containers in which you can place
other objects.

Rectangles often surround objects grouped on a form or report.

To group radio buttons as bound controls, you use a radio button frame, not a rectangle. While a
rectangle can group radio buttons, it cannot store the value of the currently selected radio button.

Static Text

A static text object displays a line of text, normally used to label other objects.

You normally place static text to the left or immediately above the object you wish to label. Unlike
a text field, the user cannot enter a value into a static text object. Additionally, static text objects
cannot be bound to database objects and do not possess the Value property. However, you can
change the text displayed in it at run time by setting the Label property through Oracle Basic code.

Interacting with Application Objects

Format Masks

Frequently, you want to provide formatting for text appearing in a control. For example, if a text
field displays currency data, you want to add the appropriate currency symbol, commas, and
decimal point to any monetary amount appearing in the field. In these cases, you use a format mask
to determine the format and visual presentation of data in the control.

Format masks determine only how data is displayed, not how it is stored internally (that is, in the
application or in the database). In the case of currency values, for example, the data is stored as the
appropriate datatype (normally Float), without the formatting symbols.

10.32

In Oracle Power Objects, format masks are set through the FormatMask property of a control.
Format masks apply only to text fields and combo boxes, which are the only controls in which you
can type a value. To set this property, you enter a string of characters corresponding to the type of
format mask you wish to add. Several standard masks exist in Oracle Power Objects, but you can
enter your own mask as well.

Oracle Power Objects format masks are not identical to SQL format masks. However, they are
identical to the formats that can be passed to the FORMAT command in Oracle Basic. For more
information on SQL and Oracle Basic format masks, see the Oracle Power Objects online help.

Format masks do not constrain the user from entering certain types of data; instead, they only
determine how data appears in the control. To constrain the values entered by the user, you would
add method code to the Validate() method of the control.

Using Standard Format Masks

To assign a standard format mask to a text field or combo box, follow these steps:

1 Click on the FormatMask section of the Property sheet, on the actual name of the property (not
the window to the immediate right of the name).

A dropdown list of standard format masks appears.

2 Select the desired format mask from this list.

The following standard format masks are available through the Property sheet:

Format Mask Datatype Example

General Date Date 1/1/95 10:00:00 PM

Long Date Date Monday, JANUARY 1, 1995

Short Date Date 1/1/95

Oracle Date Date 1-Jan-95

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.33

Defining Your Own Format Masks

Optionally, you can define your own format mask through the Property sheet. For example, if you
wanted to display currency information formatted with a currency symbol, commas, and a period,
you would enter the following format mask:

$$###,###,###.##

In this mask, the double dollar sign ($$) ensures that the appropriate international currency symbol
used by the operating system appears at the beginning. The pound sign (#) instructs the application
to display numeric digits only. The period (.) adds a decimal point to the format mask.

To enter a format mask:

1 Check the Datatype property of the control to determine which format mask characters can be
used.

 See below for a table of all the format mask characters appropriate to each datatype.

Long Time Date 10:00:00 PM

Medium Time Date 10:00 AM

Short Time Date 22:00

All Caps String HELLO THERE

Init Cap String Hello There

All Lowercase String hello there

General Number Double, Long 1000.

Currency Double, Long $1,000.00

Fixed Double, Long 1000.00

Standard Double, Long 1,000.00

Percent Double, Long 100000.00%

Scientific Double, Long 1+E3

Yes/No Double, Long Yes

True/False Double, Long True

On/Off Double, Long On

Format Mask Datatype Example

10.34

2 Click on the window appearing next to the word FormatMask on the Property sheet.

The focus then moves to this small window, used for entering user-defined format masks.

3 Enter the text string defining the format mask.

Format Mask Characters

The following table summarizes format mask characters, organized by datatype:

Numbers

Symbol Meaning

0 Displays a digit (0 if none specified).

, Displays a thousand separator, and scales by 1,000 if at the end of a number.

Displays a digit, if possible; otherwise, displays nothing.

. Displays a decimal point.

.. Displays a decimal point, regardless of the environment’s control panel settings for
decimal values.

$ Displays local currency symbol.

$$ Displays international currency symbol for current locale.

% Converts the value to a percentage (that is, multiplies by 100) and displays the
percentage symbol following it.

8 Displays octal digits.

- + $ () space Displays a literal character. To force display of a character not included in this list,
precede the character with a backslash (\).

“x” ‘x’ Displays a literal string.

X Displays uppercase hexadecimal digits.

x Displays lowercase hexadecimal digits.

R Displays uppercase Roman numerals.

r Displays lowercase Roman numerals.

E+, E- Displays a value in exponential notation, with the exponential symbol (E) in
uppercase. E+ displays a plus sign when there is a positive exponent; E- does not.

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.35

Strings

Dates

e+, e- Displays a value in exponential notation, with the exponential symbol (e) in
lowercase. e+ displays a plus sign when there is a positive exponent; e- does not.

E? Displays the exponential notation only when the number is too large or too small
to fit in the space allocated.

/x Truncates the number if it is too long to the left of the decimal for the format.
Displays the literal character x in all digit positions if truncation occurs.

*x Fills the number if it is too short for the format. Filling in from the left, the
application adds the literal character x as needed to fill the space.

Symbol Meaning

@ Defines a character place holder. Displays a character or a space, if no character is
provided for the specified position in the string.

& Defines a character place holder. Displays a character or nothing, if no character is
provided for the specified position in the string.

! Fills string place holders from left to right rather than from right to left.

/ Truncates string if too long for mask. Truncates to the right, and fills from the left
until it runs out of place holders.

< Displays all subsequent characters in lowercase.

- Does not change case of subsequent characters.

> Displays all characters in uppercase.

Symbol Meaning

c Displays the date as ddddd and the time as ttttt, in that order. Only date
information is displayed if there is no fractional part in the date serial number;
only time information is displayed if there is no integer portion.

d Displays the day as a number without a leading zero (for example, 7).

dd Displays the day as a number with a leading zero (for example, 01).

ddd Displays the day as an abbreviation (for example, Mon.).

Symbol Meaning

10.36

dddd Displays the day as a full name (for example, Friday).

dddd Displays a date serial number as a complete date (dmy), formatted according to the
short date setting in the International section of the Windows Control Panel.

dddddd Displays a date serial number as a complete date, formatted according to the long
date setting in the International Section of the Windows Control Panel. The
default setting is mmmm dd, yyyy.

ww Displays the week of the year as a number (1 to 54).

mm Displays the month as a number with a leading zero (for example, 02). If m
immediately follows h or hh, the minute rather than the month is displayed.

mmmm Displays the month as a full name (for example, August).

y Displays the day of the year as a number (1 to 366).

yyyy Displays the year as a four-digit number, from AD 100 to AD 9999.

w Displays the day of the week as a number, from 1 for Sunday to 7 for Saturday.

m Displays the month as a number without a leading zero (for example, 3). If m
immediately follows h or hh, the minute rather than the month is displayed.

mmm Displays the month as an abbreviation (for example, Dec.).

q Displays the quarter of the year as a number, from 1 to 4.

yy Displays the year as a two-digit number, from 00 to 99.

h Displays the hour as a number without leading zeros, from 0 to 23.

hh Displays the hour as a number with leading zeros, from 00 to 23.

nn Displays the minute as a number with leading zeros, from 00 to 59.

ss Displays the second as a number with leading zeros, from 00 to 59.

AM/PM Uses the 12-hour clock and displays an uppercase AM or PM with every time.

A/P Uses the 12-hour clock and displays an uppercase A or P with every time.

AMPM Uses the 12-hour clock and displays the contents of the 1159 string (s1159) in the
WIN.INI file with any hour before noon; displays the contents of the 2359 string
(s2359) with any hour between noon and 11:59 PM. AMPM can be uppercase or
lowercase, but the case of the string displayed matches the string as it exists in the
WIN.INI file (default is uppercase).

n Displays the minute as a number without leading zeroes, from 0 to 59.

Symbol Meaning

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.37

Setting Format Masks through the Environment

The user can also set a format mask through the client operating system (Microsoft Windows,
Macintosh, or OS/2). Any application developed through Oracle Power Objects can use the format
mask for currency, time, and date information from the environment. In Microsoft Windows, these
environment-level format masks are set through the Control Panel; on the Macintosh, they are set
through the appropriate control panel.

Currently, the only elements read from the environment are separators and currency symbols. For
example, an Oracle Power Objects application may have a dollar sign ($) as part of a format mask.
However, if the user then changes the international currency setting to the British pound character
(£) through the operating system’s control panel, then the Oracle Power Objects application uses
the pound symbol instead of the dollar sign.

To read the environment settings, you must use specific format masks, as described below:

s Displays the second as a number without leading zeroes, from 0 to 59.

ttttt Displays the time serial number as a complete time (hms), formatted using the
time separator specified in the International section of the Windows Control
Panel. A leading zero is displayed if the Leading Zeros option is selected in the
Control Panel, and the time is before 10:00 AM or 10:00 PM. The default format
is h:mm:ss.

am/pm Uses the 12-hour clock and displays a lowercase am or pm with each value.

a/p Uses the 12-hour clock and displays a lowercase a or p with each value.

1123 Uses the 24-hour clock and displays the suffix for 24 hour time (for example, AM/
PM) read from the environment’s date and time settings.

0 Instructs the application to display midnight and noon as 0:00. This character
must follow one of the other format mask characters used to format time
information according to the 12-hour clock.

Format Mask Description

$$ Reads the international currency symbol from the environment.

dddd Displays a short date, using the date set in the environment.

ddddd Displays a short date, using the date format set in the environment.

ttttt Displays the time, using the hour/minute/second format set in the
environment.

Symbol Meaning

10.38

When displaying date and time values, the application retains the separators “/” and “:”, used to
divide sections (for example, hours, minutes, seconds) of the date or time. However, the application
rearranges this information to match the environment’s settings for date and time formats.

Tab Order

By specifying a tab order, you define the sequence of controls through which the focus moves when
the user presses the Tab key.

In Oracle Power Objects, the tab order is defined through the TabOrder property of controls. A
control that has a value assigned to this property is part of the tab order; otherwise, it is not.

Each item in the tab order must have a unique number (greater than zero) assigned to its TabOrder
property. When the user tabs, the focus moves from currently selected control to the control having
the next highest value assigned to its TabOrder property. For example, if the focus is in a text field
whose TabOrder property is set to 6, then the focus moves to the control having the TabOrder
property set to 7 when the user tabs.

Note that the TabOrder values do not have to be consecutive; the focus moves to the control
having next highest TabOrder value.

Once the focus moves to the control having the highest TabOrder value, the focus then moves to
the control with the lowest TabOrder value when the user tabs again.

Containers and the Tab Order

Unless a container appearing within a form is part of the tab order, the focus cannot move to any
controls within the container while the user tabs. This rule applies to any container that can appear
within another container, including embedded forms, repeater displays, rectangles, ovals, and user-
defined classes. As long as the container itself has any value assigned to its TabOrder property, the
focus can then extend into the container.

Embedded form

A P P L I C A T I O N S A N D A P P L I C A T I O N O B J E C T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

10.39

Validation

For more information

on enforcing business

rules, see Chapter 19,

“Using Constraints to

Enforce Business

Rules”.

When the user enters data, you often want to validate it, to enforce business rules (also termed
constraints). For example, in an invoice entry form, you want to make sure that the user cannot
enter an apply date earlier than the entry date.

These checks can occur when the user enters data into a control, or when the user attempts to write
changes to the database. Oracle Power Objects provides the means to enforce business rules at both
times, through two key methods, Validate() and ValidateRow().

Enabling and Disabling Controls

Often, you want to make it impossible for the user to change the contents of a control. For
example, when the user enters an invoice, you want the user to enter line items and other
information, but not necessarily edit the customer information displayed on the form. In these
cases, you need to disable some controls you do not want the user to edit, while enabling others.

In Oracle Power Objects, enabling and disabling controls is possible by assigning values to either
the Enabled or ReadOnly property. When Enabled is set to False, or ReadOnly is set to True, the
user cannot enter data into the control, or interact with it at all. However, in the case of the
Enabled property, a disabled control changes the color of text within it to gray, to give a visual cue
that the control is disabled. When the ReadOnly property is set to True, however, the text is not
“grayed”.

ReadOnly = TRUE

Enabled = FALSE

10.40

11
F o r m s 1 1

This chapter covers the following topics:

Overview . 11.2
Developing Forms. 11.3
Testing a Form. 11.8
Forms and Modality . 11.11
Forms and Window Styles . 11.13
Controlling the Behavior of Forms . 11.13
Query by Form . 11.14
Queries, Conditions, and Forms: A Summary . 11.19

11.2

Overview

Forms give the user the ability to view and enter data, navigate through the application interface,
and perform a variety of other tasks. Considerations when designing forms include:

■ Determining the behavior of a form, including setting the characteristics necessary to give a
form the behavior of a dialog box.

■ Creating, copying, and deleting forms.
■ Adding objects to a form.
■ Testing forms, both separately and as part of an application.
■ Giving the user the ability to filter the records displayed in a form.

Another important aspect of forms is binding them to record sources, as discussed in Chapter 17,

“Binding a Container to a Record Source”. This chapter discusses the other important
development concerns related to forms.

What Is a Form?

A form is a kind of application object whose description is stored as part of an application. A form is
also a container, in that it can contain other application objects. A form is also bindable, meaning
that it can be associated with a table or view. When the form is bound, controls on the form can
display information queried from a database. The user can then add, delete, or modify records with
these controls.

The form consists of two components:

■ The form itself, which can contain controls, static objects, and other containers.
■ The window, which surrounds all or some of the form. The window can be resizable, and it can

also allow the user to minimize the form to an icon. The window can also display a button that
lets the user resize the window or close the form. If the form can be resized, the form commonly
displays a scrollbar when the window displays only a part of the entire form.

F O R M S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11.3

The components of a form are shown below:

Developing Forms

Three basic procedures for working with forms include creating a form, deleting a form, and
copying a form between applications.

Creating a New Form

To create a new form:

1 With the Application window active, click the New Form button on the Application Designer
toolbar.

Form

Property Sheet of form

Form window

11.4

A new form now appears in the Form Designer window, as does the Property sheet for the form.
Additionally, an icon for the form appears in the Application window.

2 Assign a name to the form through its Name property.

Oracle Power Objects automatically assigns a default name to a form when you first create it (for
example, Form16). However, by giving your form a descriptive name (for example,
frmVoucherEntry), you can remember more easily its name and purpose.

F O R M S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11.5

Deleting a Form

To remove a form from an application:

1 Select the form icon in the Application window.

2 Click the Cut button in the Application Design toolbar, or choose the Edit-Cut menu command.

Oracle Power Objects then warns you that deleting the form is an irreversible action.

3 Click OK or press Return.

The form is now permanently deleted from the application.

Form selected

11.6

Copying a Form

To copy a form between applications:

1 In the Application window of one application, select the form.

2 Click the Copy button on the Form Designer toolbar, or choose the Edit-Copy menu command.

3 Open the window for the application into which you are copying the form.

4 Click the Paste button on the Form Designer toolbar, or choose the Edit-Paste menu command.

A copy of the form now appears in the second application.

For information on

classes, see Chapter

13, “Classes”.

Oracle Power Objects does not maintain any connection between these two copies of the form. If
you want to create copies of a bindable container that inherit the properties and methods of the
original version, you should instead create the form as a user-defined class.

Cutting and Pasting a Form

To cut a form from one application and paste it into another:

1 In the Application window, select the form you wish to cut.

2 Click the Cut button or choose the Edit-Cut menu command.

3 Open the Application window for the application into which you want to paste the form.

4 Click the Paste button or choose the Edit-Paste menu command.

The form now appears as part of the other application.

Adding Objects to a Form

Once you have created a new form, you can begin adding controls, static objects, and other
containers to it. These objects comprise the form’s interface—they display information, visually
delineate areas of the form, and provide controls for the user.

To add a new object to a form:

1 Open the Form Designer window for the form by double-clicking on the form’s icon.

2 Choose the appropriate drawing tool from the Object palette.

F O R M S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11.7

Each type of object that you can add to the form is represented by a different button. When you
select a button, the cursor then changes to indicate the type of object you are going to add to the
form.

3 Click on a region of the form to create an object with the default size

-or-

Click on a region of the form and drag the mouse across it to create an object with a custom size.

The new object now appears within the region of the form where you clicked and dragged. Oracle
Power objects assigns a default name to the object (for example, Field1).

4 If desired, assign a descriptive name to the object (for example, fldEmpName).

5 Add a descriptive label to appear on the title bar of the form by entering text for the form’s Label
property.

Click once to create
an object with the

default size.

Click and drag to
create an object

with a custom size.

11.8

Testing a Form

Testing a form is an important part of the development process. Before you compile the
application, you want to ensure that forms you have designed behave as expected.

In Oracle Power Objects, you can test forms individually (Form Run-Time mode), or you can test
them as part of the entire application (Application Run-Time mode). Forms appear and behave
differently in Design mode (when you are editing the form’s properties and methods), Form Run-
Time mode, and Application Run-Time mode.

Forms in Design Mode

At design time, the form displays all objects contained within it, including objects that are invisible
at run time (that is, whose Visible property is set to FALSE). You can add, move, resize, and delete
objects in the form. You can use the Property sheet to view and edit the properties and methods of
each object within the form, as well as the form itself.

If the form is bound to a table or view, any bound controls within the form do not display data
queried from the associated table or view. In fact, the form itself has no associated recordset at this
time, because the application only instantiates recordset objects at run time. However, through the
Property sheet, you can view and change the record source to which the table is bound, as well as
the session in which it appears. Additionally, you can use the Property sheet to view and change the
columns in the record source to which controls are bound.

When you make changes to objects during design mode, your changes are permanent. When you
customize objects by changing property values or adding method code, these changes are saved and
used whenever you examine or run the application.

You can use the Property Sheet
to examine and set properties
of the form.

F O R M S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11.9

Forms in Form Run-Time Mode

Once you have reached a point where you want to test a form, you can enter Form Run-Time
mode by clicking the Run Form button or choosing the Run-Run Form menu command. The
form then appears as it will at run time, including data queried from the database.

When the form appears in Form Run-Time mode, the Debugger palette appears. You can use this
palette to open the Debugger.

For information about the debugger, see the section “Debugging Method Code” on page 5.9.

When you run a form, you no longer have object design tools available to you. You can execute
Oracle Basic method code, but you cannot add new method code to objects. You can change
property values, but these changes are temporary—they are not stored after execution stops.

For forms that are bound to a table or view, a recordset object is created for the form at run time.
You can manipulate this recordset through certain properties and methods (for example,

SetCurRow() and GetColVal()). Recordsets are described in Chapter 17, “Binding a Container to

a Record Source”

When you view a form in Form Run-Time mode, Oracle Power Objects runs only that form, not
the entire application. Oracle Power Objects cannot resolve references to objects and variables
defined outside the form itself, including:

Debugger palette

11.10

■ Object references to other forms and reports, as well as other objects appearing on them.
When method code referencing these objects is executed, Oracle Power Objects displays an
error message and stops running the form.

■ References necessary for a shared recordset. If you have established a shared recordset that
refers to a container object outside the current form, Oracle Power Objects stops running the
form and displays an error message like the following one:

Shared recordsets are described in the section “Shared Recordsets” on page 17.19.

■ Declarations made in the application’s Property sheet. The form cannot resolve references to
any global variables or Dynamic Link Library (DLL) procedures declared in the (Declarations)
section of the application’s Property sheet.

Additionally, if you have added method code to the AppInit() or OnLoad() method of the
application, this code does not execute when you test the form alone.

However, if you run the form in Application Run-Time mode, Oracle Power Objects compiles the
entire application. You can then fully test the form, including components of the form that
reference other application objects.

Forms in Application Run-Time Mode

You can enter Application Run-Time Mode by clicking on the Run Application button or by
choosing the Run-Run Application menu command. When you enter Application Run-Time
mode, you run the entire application, not just the currently selected form. As with Form Run-Time
mode, the form appears as it will to the user, including any data queried from the database.
Additionally, the form can resolve all references to application objects outside the form itself, such
as other forms and reports.

F O R M S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11.11

Although Application Run-Time mode provides the most complete test of a form, it has some
disadvantages:

■ You must navigate to the form through the application. In some cases, this may require
opening other forms, or taking other steps, before accessing the form you want to test.

■ Problems with the form may arise from sources outside the form itself. If you want to isolate
a problem associated with a form, it is often simpler to run the form alone, not the entire
application. You can then eliminate the possibility that the problem arises from outside the
form.

■ It may take longer to perform the test. Since Oracle Power Objects compiles any form or
application you test, the compile will take longer when you test the entire application.

■ Unnecessary database connections may be established. Application objects other than the
form you wish to test may make database connections when you test the application, leading to
other possible complications.

For these reasons, you should test a form in Application Run-Time mode only when you need to
test the entire application, or you need to test the dependency between different forms.

Forms and Modality

The modality of a form determines whether you can access other parts of the application or the
environment while the form is open. Most forms are opened non-modally, which means that you
can freely access any other part of the application or environment. However, two other forms of
modality limit what the user can access:

The modality of the form can be determined by the method used to open it. In Oracle Power
Objects, the following two methods load the form into memory and set its modality:

Modality Description

Application-Modal The user cannot access any other part of the application before responding
to the form.

System-Modal The user cannot access anything else in the client operating system before
responding to the form.

Method Description

OpenWindow() Opens a form non-modally.

OpenModal() Opens a form modally. OpenModal() takes one argument, which
determines the type of modality (0 or FALSE for application-modal; any
nonzero, non-null value or TRUE for system-modal).

11.12

Dialog Boxes

You can use a form as a dialog box by opening it with the OpenModal() method instead of
OpenWindow(). The form then has the expected behavior of a dialog box, blocking access to the
application or the environment until the user responds to the dialog.

When you open a modal form, you must provide the user with the means to dismiss it. Normally,
you close the dialog through one or more pushbuttons appearing on it. In Oracle Power Objects,
you can designate a pushbutton on the modal form for this purpose through the pushbutton’s
IsDismissBtn property. When IsDismissBtn is set to TRUE, the form is hidden when the user
clicks the pushbutton (that is, its Visible property is set to FALSE).

In Windows, users can also dismiss a dialog box by double-clicking the System Command box in
the upper-left corner of the dialog box.

When dismissed, the form is not unloaded from memory, but hidden. The reason for this behavior
is that dialog boxes are commonly used to enter setup information used in other parts of an
application.

For example, in one dialog box the user might enter a user ID and password before accessing the
rest of the application. By hiding this dialog, the application can continue to reference the user ID
entered in a text field on this modal form.

If you want to close a modal form, you must call the CloseWindow() method on it, either before
or after it is hidden.

Note: You can also display simple dialog boxes using the Oracle Basic MSGBOX and INPUTBOX
statements. For information about these statements, see the topics “MSGBOX Command”,
“MSGBOX Function”, “INPUTBOX Command”, and “INPUTBOX Function” in the On-Line
Help.

A dialog box blocks
access to the rest of
the application until

the user responds.

F O R M S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11.13

Forms and Window Styles

You can determine other aspects of the appearance and behavior of a form through the form’s
WindowStyle property. The setting for this property determines:

■ The nature of the form’s window.
■ The user’s ability to move and resize the form.

In many cases, you apply a particular window style to modal forms only. For example, the Plain
Dialog window style is normally applied to a dialog, not a non-modal form.

The available window styles include:

Controlling the Behavior of Forms

Oracle Power Objects provides several ways to control the behavior of a form, through several
methods that open, close, or hide the form. The following table summarizes these methods and the
tasks they perform:

Format Description

Standard Document A form that the user can resize and reposition.

Fixed-Size Document A form that the user can reposition but not resize.

Document Without Maximize Identical to the Standard Document style, but the form does
not have a maximize button.

Standard Dialog A form that the user cannot resize or reposition. In Windows,
the dialog has a smaller border and no title bar; on the
Macintosh, it has a thick border.

Plain Dialog Like a Standard Dialog, except that it has a thick border
surrounding it (Macintosh only).

Alternate Dialog Like a Standard Dialog, except that it has a shadow beneath it
(Macintosh only).

Movable Dialog Like a Standard Dialog, except that the user can reposition it.

Palette A movable form that the user cannot resize (Macintosh only).

Palette Box Like Palette, except that the form has a Close pushbutton
(Macintosh only).

Method Description

OpenWindow() Loads a non-modal form into memory and displays it.

OpenModal() Loads a modal form into memory and displays it.

11.14

For a complete description of each method, see its description in the Oracle Power Objects online
help file.

Printing a Form

To print a form, you call either of two methods, OpenPrint() or OpenPreview(), both of which
are standard methods of forms. OpenPreview() opens the form in Print Preview mode, showing
the user how it will appear when printed. The application displays the Print Preview toolbar, giving
the user the ability to page through the printed version of the form, and ultimately print the form.

Optionally, you can print the form without previewing it, by calling the OpenPrint() method.
When you call this method, the application first displays the system dialog for printing options.

When the user clicks OK, the application prints the form.

When you print a form, the application prints one copy of the form for every record associated
with it, or just one copy if no records are currently displayed in it. The application starts a new page
for each copy of the form.

Query by Form

All applications you create with Oracle Power Objects give the user the ability to filter records
displayed on a bound form. By entering conditions into a copy of the form, the user can remove all
records that do not meet the specified conditions. For example, in a voucher entry form, the user
could limit the vouchers displayed in the form to only those entered after a certain date, or only
those whose dollar value exceeds a particular amount.

This capability is called Query by Form. Since Query by Form (QBF) is available only when the
form displays records queried from a database, you can only use it when testing the form (Form
Run-Time mode), testing the application (Application Run-Time mode), or running the compiled
application (Standalone Run-Time mode).

To use QBF, the user enters criteria in a copy of the form, opened by clicking the Query by Form
button on the Form Run-Time toolbar or choosing the Database-Query by Form menu
command. The user can enter a different condition in each bound control, using SQL syntax.
Effectively, the user is entering a collection of criteria that are linked together into a single WHERE

HideWindow() Hides a form but does not unload it from memory.

CloseWindow() Removes the form from the user interface and unloads it from memory.

OpenPreview() Opens a form in Print Preview mode (see below).

OpenPrint() Prints a form (see below).

Method Description

F O R M S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11.15

clause, which is used in the query that selects the form’s information from the database. These
criteria are linked together by logical AND operators—only rows that meet all specified criteria are
displayed.

By default, QBF is part of all applications created with Oracle Power Objects; you do not have to
do any development work to implement it. The user can use QBF on any bound container,
including containers that appear within forms (for example, a repeater display).

However, the developer can disable QBF by disabling or overriding the menu command and
toolbar buttons that provide access to QBF. For information on customizing menus and toolbars,

see Chapter 14, “Menus, Toolbars, and Status Lines”.

Using Query By Form

To use Query By Form:

1 Click the QBF button on the Form Run-Time toolbar, or choose the Database-Query By Form
menu command.

A duplicate form, the “Find What?” form, appears, displaying an empty control for every control
appearing in the original form.

2 In the “Find What?” form that appears, enter the desired conditions. To enter conditions, use the
QBF syntax described in the section “QBF Syntax” on page 11.18. You can add conditions in one
or several controls.

11.16

3 Click the Apply Criteria button, or choose the Database-Apply Query menu command.

Oracle Power Objects immediately requeries the recordsets displayed on the form, applying the
specified conditions. The results of your query are displayed in the original form.

The results of Query By Form apply to all recordsets displayed on the form, including recordsets in
a master-detail relationship.

Entering Criteria

You enter criteria by setting the values of bound controls in the “Find What?” form (unbound
controls are automatically disabled). You can enter criteria by setting the values in the following
types of controls:

■ Radio Button Groups, Check Boxes, Popup Lists, and List Boxes. If you select a value in one
of these control types, only rows that have the selected value are returned.

■ Text Fields and Combo Boxes. You can enter a criterion that is translated into a SQL
condition, as described below.

When you enter criteria, you use SQL-like syntax for entering conditions, with a few exceptions. As
part of this syntax, you can enter wildcards as well as literal strings. Wildcards are characters that
represent one or more unspecified characters—for example, the underscore wildcard (_) represents
any one character, while the percent wildcard (%) represents any number of characters.

The following table summarizes some common criteria.

Type of Criterion Examples

Simple value SMITH
32
01-JAN-90

String with wildcard SM_TH
SM%

Value preceded by operator >15.45
!= JONES
< 05-MAY-89
LIKE SM%

Null test IS NULL
IS NOT NULL

“in” test IN (1, 2, 3)
NOT IN (SMITH, JONES, KING)

“between” test BETWEEN 1000 AND 5000

F O R M S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11.17

Some Considerations When Entering Conditions

■ Do not specify the column name. It is automatically appended to the criterion you enter.
■ If you enter a simple value (without an operator), Oracle Power Objects performs an

equivalence (=) comparison, except for string values, for which Oracle Power Objects performs
a LIKE (wildcard) comparison.

■ Quotes are optional around literal values. However, if you use quotes, you must use single
quotes.

■ You can specify criteria in multiple bound controls. These criteria are joined into a single
condition by the AND operator (only rows that match all criteria are displayed).

■ You cannot include SQL functions or subqueries in your criteria.

Clearing Query Conditions

You can clear the query conditions from the original form by clicking on the Query button on the
Form Run-Time toolbar, or by choosing the Database-Query App menu command. The “Find
What?” form is not closed when you clear the query conditions; it remains visible until you close it.

The application also clears the query conditions entered by the user whenever the Query() or
QueryWhere() methods of the form are called programmatically.

Using QBF with Master-Detail Relationships

When a “Find What?” form is visible that contains both a master container and a detail container
joined by a master-detail relationship, you can use QBF to find all of the master records that match
criteria specified in the detail recordset. To use this feature, the primary key column in the master-
detail relationship must be located in the detail recordset (the LinkPrimaryKey property of the
detail container must be set to Here (on Detail)).

To find the master records associated with detail criteria, simply enter criteria in the detail container
as described above. For example, if you had an “Employees” form that contained a “Department”
detail embedded form, you could enter a department name of “OPER%” into the department
name field of the “Departments” embedded form. When you applied the criteria, all employees in
the “OPERATIONS” department would be displayed in the master form.

Compound criteria >10.0 AND <22.5
LIKE SM% OR LIKE SP%
SMITH or JONES or KING
=21 or (>=11 and <=15)

Type of Criterion Examples

11.18

When a “Find What?” form is visible that contains only a detail container, and the primary key
column in the master-detail relationship is located in the detail recordset, the link condition
between the master and detail containers is temporarily relaxed when you apply query criteria. The
detail recordset displays all rows that match the criteria you specified, not just the detail rows of the
currently displayed master row.

QBF Syntax

This section summarizes the syntax for specifying conditions in the “Find What?” form. This
syntax can be entered only in text fields and combo boxes; as described earlier in this chapter, you
use other techniques to specify conditions in radio buttons, check boxes, popup lists, and list boxes.

Syntax of expr

simple_expr [{AND | OR} expr] | (expr) [{AND | OR} expr]

Syntax of simple_expr

value [{ comp_op value | [IS] [NOT] NULL | special_op }]

Syntax of comp_op

= | != | <> | ^= | > | < | >= | <=

Syntax of special_op

[NOT] IN (value [, value ...])
| [NOT] BETWEEN value AND value
| [NOT] LIKE value

Syntax of value

value can be any string of characters surrounded by single quotes, or any string of characters
delimited by white space, close parenthesis, or (in the case of IN), a comma.

F O R M S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11.19

Queries, Conditions, and Forms: A Summary

For more about query-

ing records, see

Chapter 17, “Binding

a Container to a

Record Source”.

You can control the ways in which a form queries records through:

■ The DefaultCondition property
■ The QueryWhere() method
■ Query by Form

The DefaultCondition property

When the application calls the Query() method on a form or other bound container, it applies
whatever condition is specified in the DefaultCondition property of the container. You assign a
string to this property that determines the WHERE clause of the query, even though you do not
add the statement WHERE to the string. If no condition is specified for the DefaultCondition
property, the application queries all records from the record source to populate the form’s recordset.

For example, if you wanted to limit a query to employee records with an employee ID greater than
100, you would enter the following string for the DefaultCondition of the form displaying these
records:

ENAME > 100

Here, ENAME is the name of a column in the recordset, not the name of the corresponding bound
control on the form.

Note that you do not put quotes around the string when you enter a DefaultCondition through
the Property sheet. However, if you were to change the DefaultCondition property
programmatically, you would need to surround the string with quotes in the method code.

The QueryWhere() method

Instead of calling the Query() method on a container, you can call the QueryWhere() method.
This standard method of bindable containers takes one argument, a string specifying the contents
of the WHERE clause for the query. Again, you do not need to add the statement WHERE to this
string; the application adds it while building the SQL statement for the query.

The condition passed as an argument to QueryWhere() overrides any condition set through the
DefaultCondition property.

For example, to query only those invoice records whose total value is greater than $100, you might
enter the following method code:

frmInvoiceEntry.QueryWhere("TOTAL > 100")

The following table summarizes when the Query() and QueryWhere() methods are called.

11.20

For more information on these properties and methods, see the online help topics discussing each
one.

Query by Form

As described in the section “Query by Form” on page 11.14, the Query by Form feature of Oracle
Power Objects applications lets the user specify conditions. These conditions are added to the
condition set through the DefaultCondition property of the form. After entering conditions in the
“Find What?” form and clicking the Apply Criteria button, the application calls the Query()
method on the form. If conditions have been specified through DefaultCondition and the “Find
What?” form, the application applies both sets of conditions.

Similarly, if the QueryWhere() method has been called on the form, the application adds the
QueryWhere() condition to the conditions entered through the “Find What?” form.

Method When Called

Query() The user opens the form.

The user clicks the Query button on the Form Run-Time toolbar.

The user clicks the Apply Criteria button after entering QBF conditions.

Method code calls the Query() method.

QueryWhere() Method code calls the QueryWhere() method.

12
R e p o r t s 1 2

This chapter covers the following topics:

Overview . 12.2
The Areas of a Report . 12.2
Creating a Report . 12.3
Designing Areas of a Report . 12.4
Reports and Recordsets . 12.7
Populating Controls on a Report . 12.7
Working with Report Groups . 12.10
Testing the Report . 12.12
Printing a Report . 12.13
Representing Master-Detail Relationships in a Report 12.15
Adding a Chart to a Report . 12.17
Other Report Considerations . 12.19

12.2

Overview

For information on

binding, see Chapter

17, “Binding a Con-

tainer to a Record

Source”.

In Oracle Power Objects, reports are bindable containers that let you preview and print data queried
from a database. Therefore, you design reports using many of the same techniques used to design
forms, including the techniques for binding the container and its controls to a record source.

Report design has some special considerations for the following reasons:

■ Unlike forms, reports are divided into separate areas (report header, page footer, detail, etc.),
each of which has a different purpose.

■ Most of the areas of a report are repeated containers, much like the panels of a repeater display.
Therefore, you cannot write method code that attempts to deal with a single object within that
container. However, you can use aggregate functions on the controls within report areas.

■ Displaying master-detail relationships requires slightly different techniques than in forms.
■ Some controls do not work as expected on a report, though you can add them to the report for

display only.

This chapter describes how to create reports and summarizes some important options for report
design.

The Areas of a Report

Reports are divided into several functionally distinct areas, each of which performs a different task
within the report. Each area is itself a named container object into which you place other
application objects.

R E P O R T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

12.3

Reports consist of the following areas:

The bulk of information in a report appears in the Detail area, while the rest of the report consists
of different sorts of headers and footers. Some headers and footers display information relevant to
rows (specifically, the group headers and footers). Other areas mark different pages of the report, or
the beginning and end of the report.

The Group Header and Group Footer areas are extensions of a report group, a special feature of a
report. You create a report group to determine how the report will sort records, so that all records
having a matching value (such as department ID, salary grade, job classification) appear together.
The defining feature of a report group is the column used for sorting records, specified through
GroupCol property of the Group Header area. When you create a report group, Oracle Power
Objects adds the Group Header and Group Footer areas to the report. Additionally, you can
perform calculations on groups of records through controls appearing in the group header and
footer.

Creating a Report

Before setting up the individual areas of a report, you must create the report and bind it to a record
source.

Area Description

Report Header Printed at the beginning of a report. The report header appears once, at the
top of the report’s first page.

Page Header Contains all objects printed at the top of each page of the report. (The page
header may or may not appear on the first page of the report).

Group Header Printed at the beginning of each report group, and determines the column(s)
used to define the report group. The group header appears between the
Detail section and the page header. For more information on report groups,

see the section “Working with Report Groups” on page 12.10.

Detail Defines the body of the report, where the majority of information queried
from the database is displayed. Any objects appearing within the Detail area
repeat once for every record queried from the database.

Group Footer Contains all objects that are printed at the end of a report group. The group
footer appears between the Detail section and the page footer.

Page Footer Contains all objects printed at the bottom of each page of the report. (The
page footer may or may not appear on the last page of the report).

Report Footer Contains all objects displayed at the end of a report. The report footer
appears at the bottom of the report’s last page.

12.4

To create a new report:

1 With an Application window as the active window, click the New Report button.

A new report appears in the Oracle Power Objects desktop.

2 In the report’s Property sheet, enter a new name for the report through its Name property.

3 If desired, enter a title for the report through the report’s Label property.

The title appears on the title bar of the report.

To bind a report to a record source:

1 From the Session Designer window, select the table or view to be used as the report’s record source.

2 Bind the report to this record source in one of three ways:

■ Drag the icon for the table or view onto the Detail area of the report. Controls bound to the
columns in the record source appear in the Detail area.

■ Open the Table Designer or View Designer window for the record source and drag columns
from this window onto the Detail area of the report. Controls bound to the selected columns
appear in the Detail area.

■ In the report’s Property sheet, enter the name of the session for the RecSrcSession property, and
the name of the record source for the RecordSource property. Later, you can add the controls
bound to columns in this record source.

Commonly, you create a view for a report, to simplify the task of joining related information from
several tables in the report. The view lets you apply several SELECT criteria to rows queried for the
view, such as ORDER BY, UNION, CONNECT BY, and START WITH. For more information,
consult the SQL language reference manual for your database platform.

Designing Areas of a Report

This section summarizes the general techniques for working with the different areas of a report,
including:

■ Resizing an area of a report.
■ Adding objects to a report area.

R E P O R T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

12.5

Resizing Areas of a Report

You will often need to resize the areas of a report to fit the controls, static objects, and containers
displayed in that area. You can resize each area vertically, but not horizontally. Therefore, you can
change only the height of a report area, not its width (except by changing the width of the entire
report).

To resize an area of a report:

1 Open the Report Designer window.

2 Click on the title of the report area immediately beneath the area you wish to resize, or the
horizontal line appearing to the right of this title.

3 Holding down the mouse button, drag this title bar up or down until the report area has the desired
height.

4 Release the mouse button.

Note that a report area does not need to have any height at all. When resizing the report, you can
move the area’s title against the title of the area immediately beneath it, giving the area an effective
height of 0 pixels or inches. In this case, the area does not appear at all when the report is printed.

...click here and drag
upwards.

To resize this area...

12.6

All of the sections of the report are contained by the report; no section is contained within another
section, including nested report groups.

Adding Objects to a Report

You can add any kind of control, static object, or container to a report. However, the user cannot
interact with these controls, so they are often useless within a report. The following application
objects are of limited usefulness on a report:

You add objects to a report in the same way that you add objects to a form.

To add objects to a report:

For information on

populating controls

with data, see the

section “Creating a

Report” on page 12.3.

1 Select the drawing tool corresponding to the desired type of object (for example, text field, line)
from the Object palette.

2 Click on the report area where you wish the new object to appear,

-or-

Click and drag across the region of the report area where you wish the new object to appear.

To move an object between report areas:

1 Select the object by clicking on it.

2 While keeping the mouse button depressed, drag the object to a different report area.

3 Release the mouse button.

Object Description

Pushbuttons The user cannot click a pushbutton.

Scrollbars The user cannot move the thumb of a scrollbar.

List controls The user cannot select items in a list box, combo box, or popup list.
Generally, a text field is preferable to one of these controls in a report.

OLE objects If the OLE object requires a media player (for example, a .WAV file player),
then the user cannot review the data in the OLE object.

Repeater displays Because it cannot display a usable scrollbar, a repeater display may contain
more records than it can display in the space allotted on the report.

Embedded forms An embedded form cannot display more than one record at a time. However,
embedded forms can be useful when displaying a master-detail relationship
(more information is provided in later in this chapter).

R E P O R T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

12.7

Reports and Recordsets

Reports are bindable containers with many of the same recordset-related properties and methods as
forms. Therefore, you can use many of the same techniques for working with a form’s recordset
when designing reports. These include:

■ Defining conditions (filters) for the report to limit the records queried from its record source.
■ Intercepting methods related to recordset operations.
■ Displaying master-detail relationships on the report.

Defining Filters for the Report

You can define filters for the report through the DefaultCondition property and QueryWhere()
method of the report.

You use the DefaultCondition property to determine a default condition applied to the report’s
recordset. The application applies this condition when it opens the report and calls the Query()
method to populate its recordset. You assign a value to the DefaultCondition property through the
report’s Property sheet.

Alternatively, you can call the QueryWhere() method on the report to filter records. This method
takes a single argument—a string defining the SQL condition applied to the report’s recordset.
QueryWhere() requeries the report, overriding any condition set through DefaultCondition.

For more information

on OpenPreview()
and Print Preview

mode, see the section

“Testing the Report”

on page 12.12.

You can call QueryWhere() on reports in Print Preview mode only if they were opened with the
OpenPreview() method.

For more information on DefaultCondition and QueryWhere(), see the “DefaultValue property”
and “QueryWhere() method” topics in the online help.

Populating Controls on a Report

When you display controls on a report, you have three ways to populate them with values:

■ Bind the control to a column.
■ Use a derived value to populate the control with the result of an expression.

For information

about the SQL-

LOOKUP function, see

the section “The SQL-

LOOKUP Function”

on page 9.21

■ Use the SQLLOOKUP function to populate the control.

12.8

Binding Controls to Columns

You can bind controls in a report to columns in the report’s record source. You bind the control by
identifying the column to which it is bound through the DataSource property of the control, using
the techniques described earlier in this chapter.

You can also add bound controls to a bound container (embedded form, user-defined class, or
repeater display) appearing within the report. In these cases, the controls are bound to the
container’s record source, not the report’s. This technique is often necessary for displaying master-

detail relationships within the report, as described in the section “Testing the Report” on page

12.12.

For more information

on displaying data in

bound controls, see

Chapter 17, “Binding

a Container to a

Record Source”.

When displaying data in a control within a report, you must follow the same rules for displaying
data in various control types on forms. For example, to properly display values queried from the
database, a check box must have its ValueOn and ValueOff properties set to matching values found
in the column to which the control is bound. For a list box to display meaningful values, you must
set the Translation property of this control.

Embedded form

R E P O R T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

12.9

Using Derived Values

For more information

on derived values,

see the section “Con-

trol Values” on page

10.12.

You can also use derived values to populate controls, by entering an expression for the control’s
DataSource property. Derived values follow the same rules on reports as they do on forms.

Derived values that use aggregate functions impose a special limitation. A control using a derived
value aggregate function cannot contain a reference to another control at the same level of the
containment hierarchy. Instead, the control using the derived value must appear outside the
container where the aggregate value appears.

For example, if you want to have a text field display a grand total of all employee salaries for a
department, that field cannot appear within the Detail area of the report, where the individual
salary values appear. Instead, you can place this text field within the Group Header or Group
Footer, to ensure that the total appears for each department.

In the report shown below, the text field “fldTotalSalary” appears in the Group Footer area of the
report, where it totals the salaries for all employees in a given department.

In this case, the DataSource property of “fldTotalSalary” is set to the following expression:

=SUM(rptPersonnel.Detail.SAL.Value)

12.10

When this report is run, it displays the following results:

Using SQLLOOKUP

For more information

on SQLLOOKUP, see

the section “The SQL-

LOOKUP Function”

on page 9.21.

The third way to populate report controls is by using the SQLLOOKUP function for the
DataSource property of a control. In this case, the result of a SQL query populates the control.
Therefore, if the query is designed to return a value from a column, you want to write the query so
that it returns a value from no more than one row.

For example, in the case of a listing of employees by department, you may want to display the name
of the division in which they work, instead of the numeric department ID. In this case, you would
use SQLLOOKUP to display the text from the LOC column of the DEPT table, corresponding to
the DEPTNO value for each employee. When the report is printed, the name of the location (for
example, “DALLAS”) appears, instead of the numeric department ID (for example, 10).

Working with Report Groups

You organize information on a report through report groups. A report group separates information
according to the values in one column of the report’s record source, so that you can see records
grouped by that column. For example, you can view employee records from the EMP table grouped
by department, by defining a report group that uses the DEPTNO column for sorting records. The
report group adds two new areas, the group header and group footer, to the report.

The column used to organize records is called the group-by column. You specify this column
through the GroupCol property of a report group.

R E P O R T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

12.11

When you create a report group, the report displays all records belonging to one value in the
specified column before printing another group of records sharing the same value in the group-by
column. In our example, if you specify DEPTNO as the group-by column, the report prints all
employee records that have a DEPTNO value of 10 (that is, belonging to one department) before
printing employee records with a DEPTNO of 20.

To create a report group:

1 Open the Report Designer window for the report.

2 Choose the Report Group tool from the Object palette.

3 Click on the report.

A new report group header and footer appears in the report.

4 Set the GroupCol property of the report group to the name of the column you wish to use as the
group-by column.

Note that you can create nested report groups, by adding a new report group to an existing group
header or footer. Each report group sorts the records for the report group immediately beneath it;
the innermost report group then sorts records appearing within the Detail area of the report.

Report Groups and Recordsets

Each report group has its own recordset. Therefore, the group header and group footer, which
jointly represent the report group, share the same recordset. Additionally, you can share the
recordsets between these objects and some other object in the report, such as a chart control.

Report group header
and footer added

12.12

Testing the Report

If you have bound the report to a record source, and bound columns appear within the Detail area
of the report, you can test the report.

To test a report:

1 Open the Report Designer window for the report.

2 Click the Run Form button, or choose the Run-Run Form menu command.

The report now appears in Print Preview mode, described in the next section. You can now see how
the different areas of the report will appear, and then print a copy of the report.

If the only bound controls appear in the Detail area of the report, then the report prints a simple
listing of all queried records, listing in ascending order according to the field designated as the
primary key in the record source for the report. However, you can use report groups to better
organize this information, as described later in this chapter.

R E P O R T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

12.13

Printing a Report

When planning how to print a report, you have several options, including:

■ Whether to preview the report before printing it.
■ Whether to print a page break when the report reaches a new value for the group-by column in

a report group.
■ Whether to print headers and footers.

This section describes these options in detail, including the properties and methods related to
printing a report.

Standard Methods for Printing a Report

Reports have two standard methods for printing, OpenPrint() and OpenPreview(). OpenPrint()
prints the report immediately, while OpenPreview() gives the user the ability to view a copy of the
report before printing it. OpenPreview() displays the report in Print Preview mode, as described in
the next section.

In both cases, the application displays the printer options dialog for the environment before
printing the report. For example, in Windows, the dialog shown below appears when you print a
report:

At this point, you can print the report by clicking the OK button, or cancel the task by clicking the
Cancel button.

Previewing a Report

Oracle Power Objects gives you the option of viewing a report in Print Preview mode before
printing it. In this mode, you see a copy of the form as it will appear when printed.

12.14

You preview a report by clicking on the Run Form button or the Preview Report button, or by
choosing the Run-Run Form menu command. In Print Preview mode, you cannot interact with
the contents of the form. However, the Report Run-Time toolbar has several buttons for browsing
and printing the report, as shown in the following table:

Starting a New Page

When a report reaches the bottom of a printed page, the application starts a new page for the
report. You can also instruct the application to start a new page when it reaches a new value for the
group-by column in a report group. For example, in a report of employee records from the DEPT
table in which DEPTNO is the group-by column, you can begin a new page when the report
finishes printing records from one department and starts printing from another.

A property of the group header, PageOnBreak, determines whether the report begins a new page
when the value in the group-by column changes. If PageOnBreak is set to True, the report begins a
new page when it reaches a new value; if the property is set to False, the report continues printing
on the same page.

Printing Headers and Footers

If a header or footer has any height at all, it appears in the report when the application prints the
report. However, in some parts of the printed report, the header need not appear. For example, the
page header frequently does not appear on the first page of a report. You set one of the following
properties to determine whether the header or footer appears.

Button Name Description

Previous Page Moves to the previous page of the report. Available only if the report
has more than one page.

Next Page Moves to the next page of the report. Available only if the report has
more than one page.

View Full Page Sizes the report to display a full page on the screen.

Print Prints the report.

Property Applies To Description

FirstPgHdr Page Headers Determines whether the page header appears on the first page of
the report. If set to True, the page header does appear on the first
page; if set to False, it does not.

R E P O R T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

12.15

Representing Master-Detail Relationships in a Report

A report’s structure is different from that of a form, so you use slightly different techniques for
representing master-detail relationships within the report.

Commonly, you want to display the master records at the top of a page, with the details appearing
beneath the master record. To organize master and detail records in this fashion, the Detail area of
the report usually displays the detail records. You then have two options for displaying information
from master records in a group header, using SQLLOOKUP or a bound container.

Using SQLLOOKUP

You can use the SQLLOOKUP function to define the DataSource property of one or more
controls in the group header. Each of these control will then display information queried from a
column in the table or view that contains master records. The report fetches a new set of values
from the master record source every time it reaches a new primary key value.

FirstPgFtr Page Footers Determines whether the page footer appears on the first page of
the report. If set to True, the page footer does appear on the first
page; if set to False, it does not.

LastPgFtr Page Footers Determines whether the page footer appears on the last page of
the report. If set to True, the page footer does appear on the last
page; if set to False, it does not.

Property Applies To Description

12.16

For example, in the report shown below, information from DEPT appears in the group header,
while information from EMP appears in the Detail area. When the report is printed, each report
header prints the department number and location from the DEPT table, followed by the
employees working at that department.

In this example, the group-by column for the Group Header area of the report is DEPTNO, which
appears in both the DEPT and EMP tables. To print the location with the department number, the
developer has added a text field to the Group Header that uses the following expression for its
DataSource property:

=SQLLOOKUP(sesMySession, "select LOC from DEPT where LOC =" &
 repDepartments.GroupHeader.fldDeptNo)

In this code, fldDeptNo is the name of the text field displaying the department number in the
Group Header. Every time the report generates a new group header, the report displays the location
name (queried from the LOC column in DEPT) corresponding to the new value for the group-by
column, DEPTNO.

Using a Bound Container

Another way to display information from master records in a group header is to add a bound
container to the Group Header area. Effectively, the bound container (normally an embedded
form) is a detail of the Group Header area, though it displays master records. However, since the
Group Header appears above each group of records displayed in the Detail area, master and detail
records appear in their normal representation (master record first, followed by associated detail
records).

R E P O R T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

12.17

The advantage of this technique for displaying master-detail relationships is that you can easily
present bound controls representing several columns from the master recordset, using Oracle Power
Objects’ drag-and-drop binding capabilities. Otherwise, you would need to write several
SQLLOOKUP statements for the DataSource properties of these controls.

For more information

on master-detail rela-

tionship properties,

see Chapter 18,

“Defining Master-

Detail Relationships”.

To make this master-detail relationship work, you set three properties of the container added to the
Group Header area:

When you print or preview the report, the bound container in the Group Header area displays a
new master record every time the group-by column’s value changes to display a new group of detail
records.

Adding a Chart to a Report

For more information

on chart controls,

see the section

“Chart Controls” on

page 10.16.

Charts are a common feature of reports. Oracle Power Objects enables you to add a chart control to
a report to graphically display information relevant to all or part of a report.

The range of data you wish to portray in the chart determines where you place the chart control.

Property Setting

LinkDetailColumn The column specified as the group-by column for the report group. This
column is named in the GroupCol property of the Group Header, and is
the foreign key in the master-detail relationship.

LinkMasterColumn The column in the master recordset used as the primary key. This column
must exist in the table or view identified as this container’s record source,
but it does not have to be represented by a bound control in the report.

LinkMasterForm The name of the Group Header area of the report. The default name is
GroupHeader .

12.18

Charts for Report Groups

If you want to display a chart for each report group, you must add the chart to the Group Header
or Group Footer area of the report. The chart then becomes a detail of this report area.

To create a chart for a report group:

1 Choose the Chart tool from the Object palette.

2 Draw the chart within the Group Header or Group Footer area of the report.

3 Set the following properties of the chart control:

The chart then appears once for every report group, displaying information relevant only to that
group.

Charts for the Entire Report

If you want to create a chart that summarizes information from the entire report, you commonly
place the chart at the beginning or end of the report. In Oracle Power Objects, you place the chart
in the Report Header or Report Footer area of the report.

To create a chart for an entire report:

1 Choose the Chart tool from the Object palette.

2 Draw the chart within the Report Header or Report Footer area of the report.

3 Set the following properties of the chart control:

Property Setting

LinkDetailColumn The foreign key in the chart’s record source.

LinkMasterColumn A matching column in the record source for the report.

LinkMasterForm The name of the Group Header or Group Footer area of the report.

Property Setting

LinkDetailColumn The foreign key in the chart’s record source.

LinkMasterColumn A matching column in the record source for the report.

LinkMasterForm The name of the Report Header or Report Footer section of the report.

R E P O R T S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

12.19

Charts for Individual Records

If you want to display a chart relevant to a single record, add the chart to the Detail area of the
report. You must define the chart as a detail container of the Detail area of the report, so that the
information displayed in the chart is relevant only to the record loaded into the Detail area of the
report.

To create a chart for a single record:

1 Choose the Chart tool from the Object palette.

2 Draw the chart within the Detail area of the report.

3 Set the following properties of the chart control:

The chart then repeats once for every record displayed in the Detail area of the report, displaying
data relevant only to that record.

Other Report Considerations

When designing reports, you should take the following additional issues into consideration.

Page Width

On high-resolution monitors, a wide report that fits within the application window may not fit on
an 8.5” by 11” sheet of paper. Therefore, you should size your reports to fit within the printed
page, not within the interface space available to the application. By specifying the SizeX and SizeY
properties of the report in inches, you can easily size the report to fit within a printed page.

Fonts and Reports

As with forms, you should be sure that the client systems on which your application is installed
have the fonts used in your report. If the application looks for a font that is not installed, it will try
to use the substitute font defined for the environment. In this case, the report may appear quite
different from your original design. Whenever possible, you should use fonts that are common to

Property Setting

LinkDetailColumn The foreign key in the chart’s record source.

LinkMasterColumn A matching column in the record source for the report.

LinkMasterForm The name of the Detail section of the report (normally, Detail).

12.20

an operating system, such as Arial on Microsoft Windows, or Times on the Macintosh.
Additionally, you should choose a scalable font, such as a PostScript or TrueType font, for all
objects within a report.

Graphics in Reports

You can display graphics within reports, using picture objects and OLE objects. For example, you
may want to display an employee’s photograph as part of a report. When displaying graphics, you
should remember that:

■ Performance will suffer, because querying graphics slows down any database application.
■ The printer may not be able to print the graphics at the same resolution at which they are

displayed in the application.

13
C l a s s e s 1 3

This chapter covers the following topics:

Overview . 13.2
The Object Inheritance Hierarchy . 13.3
Classes as Containers . 13.8
Developing Classes. 13.9
A Sample User-Defined Class . 13.10
Subclasses . 13.12

13.2

Overview

In Oracle Power Objects, a class is any definition of an object used to create copies (or instances) of
that object. Making a copy of the class is often called instantiating the class. In object-oriented
terminology, the master class definition determines the characteristics and behavior of the object,
which are then inherited by all instances of the class.

For example, in Oracle Power Objects, a master class definition of pushbuttons determines the
appearance and behavior of all pushbuttons you create. When you add a pushbutton to a form, you
are creating an instance of the master class definition of pushbuttons.

Standard and User-Defined Classes

Pushbuttons are an example of a standard class, predefined within Oracle Power Objects. Each
pushbutton you add to a form inherits the standard properties and methods of pushbuttons, as well
as their standard appearance and behavior, from the master class definition. Other types of objects
that have properties and methods (forms, sessions, check boxes, recordsets, etc.) are also examples
of standard classes provided with Oracle Power Objects. You cannot change the list of properties
and methods assigned to standard classes by default, although you can add properties and methods
to individual instances of a standard class.

You can also create user-defined classes, a special kind of bindable container. You can add instances of
the user-defined class to other containers. The user-defined class can contain controls and static
objects, and it can be bound to a record source in the same fashion as other bindable containers.

For information

about the object

inheritance hierar-

chy, see the section

“Object Inheritance

Hierarchy” on page

3.31.

Unlike other bindable containers, however, you must first create the user-defined class (essentially, a
master class definition), and then add instances of it to other containers. These instances are part of
the object inheritance hierarchy. When you make a change to the master class definition, the
instances of the class inherit these changes.

User-defined classes simplify development by allowing you to create reusable application objects.
For example, you can create a set of OK and Cancel pushbuttons as a user-defined class. You can
add instances of this class to dialogs. Doing so eliminates the need to create the same set of
pushbuttons repeatedly, every time you create a dialog. When you make a change to the master
class, such as an improvement in the method code executed when the user clicks the OK
pushbutton, all instances of this user-defined class inherit the changes.

C L A S S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

13.3

Once created, user-defined classes appear in the Application window, along with forms, reports,
bitmaps, and OLE objects. You use a class in much the same way as a bitmap or OLE object,
adding these reusable application objects to forms, reports, and other user-defined classes.

This chapter describes how you can work with user-defined classes to define reusable application
objects.

The Object Inheritance Hierarchy

For more about the

object inheritance

hierarchy, see the

section “Object Inher-

itance Hierarchy” on

page 3.31.

To work with classes, you need to understand how inheritance works. The object inheritance
hierarchy determines how changes propagate from the master class definition to instances of the
class. The changes cascade down the object inheritance hierarchy, in a relationship called the chain
of propagation.

User-defined
class

13.4

To illustrate the object inheritance hierarchy, shown below are two user-defined classes and a form.
One class, displaying the company logo, appears within the other, the label for a particular
company location. The label class has been added to an order entry form used at that location.

The first class
contains the

company logo

The second class
contains an instance

of the first class

The form contains
an instance of the

second class

C L A S S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

13.5

The instance of the logo class normally inherits any changes made to the company logo. So, too,
does the instance of the logo class in the instance of the label class, appearing on the form.

A change made
to the first class...

...is inherited by
the instance on the

second class...

...and is inherited
in turn by the instance

of the second class
on the form.

13.6

To help you visualize this relationship, the diagram below illustrates the object inheritance
hierarchy in this example.

The hierarchy can have as many levels as you wish, with instances of several different classes
appearing within the same master class definition. For example, we could add an instance of a
another user-defined class, displaying the slogan of the company, in the company office label class.
The company office label would then include instances of two separate classes.

clsMoonlight

clsLogo

frmOrder

This class contains
instances of two

other classes.

C L A S S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

13.7

The diagram below illustrates the object inheritance hierarchy in this example.

Editing an Instance of a Class

Once you change a property or method in an instance, that instance no longer inherits subsequent
changes to the same property or method in the master class. Additionally, if the instance appears
within another class, the instance of the first class that is nested within the instance of the second
class does not inherit the changes.

■ You override a property when you enter a new setting for the property through the Property
sheet at design time, or when you change the setting programmatically at run time. When you
override a property, the diamond-shaped symbol next to its name is filled in.

clsMoonlight clsSlogan

clsLogo

clsA

frm1

clsC

clsA

frm1

clsC

The ColorFill
property of the oval
is overridden here.

If you change the
ColorFill property of

the object on the
master class...

...the change is not
inherited in this

instance of “clsA”...

...nor is the change
inherited in this

instance of “clsC”.

13.8

■ You override a method when you enter method code in the code window in the Property sheet.
Note that the code window in the instance appears empty—code from the master class
definition does not appear in the code window. Even if you paste into this window the exact
code from the master class definition, the appearance of any method code in the instance’s code
window breaks the chain of propagation. When you override a method, the arrow-shaped
symbol next to its name is filled in.

Reinheriting Properties and Methods

After you override a property or method in an instance, you can instruct an instance to reinherit
the current properties and methods of the master class definition, erasing the modifications. The
chain of propagation is no longer broken, and the instance then inherits subsequent changes to that
property or method in the master class.

To reinherit the property or method of the master class:

1 Select the overridden property or method on the instance’s Property sheet.

2 At the top of the Property sheet, click the Reinherit button.

The instance then reinherits the setting for that method or property from the master class.

Classes as Containers

User-defined classes are bindable containers, like forms and reports. However, unlike these
containers, they cannot appear on their own, within a window—instead, you add them to other
containers, just as you add embedded forms, repeater displays, rectangles, and ovals to containers.
Therefore, user-defined classes have none of the properties or methods associated with windows
(for example, OpenModal() and WindowStyle).

Overridden property
in instance of class

C L A S S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

13.9

For information

about the object con-

tainment hierarchy,

see the section

“Object Containment

Hierarchy” on page

3.12.

Because user-defined classes are containers, they and the objects appearing within them are part of
the object containment hierarchy.

You can get an object reference to the container in which an instance of the class appears using the
GetContainer() method in Oracle Basic. For example, if you want to trigger the ValidateRow()
method on the form in which a user-defined class appears when the user clicks a pushbutton, you
would add the following code to a method of the class instance:

GetContainer().GetContainer().ValidateRow()

In this case, you use the GetContainer() method first to identify the class instance in which the
pushbutton appears, and the second time to identify the form in which the instance appears.

Object References to Master Class Definitions

You cannot resolve object references to master class definitions through Oracle Basic. Therefore,
you cannot make run-time changes to a master class definition that its instances then inherit.

Developing Classes

This section summarizes the basic development tasks associated with user-defined classes.

Creating User-Defined Classes

To create a user-defined class:

1 Select the Application window.

2 Click the New Class button, or choose the File-New Class menu command.

A new user-defined class appears within its Class Designer window.

13.10

You can then begin adding objects to the user-defined class in the same fashion as you would add
application objects to any container.

Adding Objects to a Class

In addition to controls and static objects, you can also add other user-defined classes to a class. All
of these objects then appear on all instances of the class, inheriting the properties and methods
assigned to them through the master class definition.

Adding an Instance of a Class

Once you have created a user-defined class, you can add instances of it to forms, reports, and other
user-defined classes.

To add an instance of a class:

1 Open the Designer window for the object to which you wish to add the instance.

2 From the Application window, drag the icon for the user-defined class and drop it on the container.

3 Size and position the class, as desired.

4 Make any additional modifications to the instance.

When you make changes to a property or method of the instance or of any object contained by the
instance, the icon for the property or method becomes filled in.

A Sample User-Defined Class

To illustrate how to employ user-defined classes in an application, the following figure shows the
OK and Cancel button class described earlier in this chapter. The user-defined class is just large
enough to encompass the two pushbuttons.

Normally, OK and Cancel buttons have the following behavior when they appear on a dialog:

C L A S S E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

13.11

■ When the user clicks the Cancel button, the dialog disappears, and the application takes no
action.

■ When the user clicks the OK button, the dialog disappears. In this case, the application may
take an action, or it may save some setting entered through the dialog.

To simulate this behavior, the Cancel button has the following method code entered in its Click()
method, to respond when the user clicks the pushbutton:

Sub Click()
GetContainer.GetContainer.HideWindow()

For information

about working with

dialogs and forms,

see Chapter 11,

“Forms”.

In this case, the dialog is hidden, but no changes occur in the application. The HideWindow()
method hides the form but does not close it, so that the application can refer to settings entered in
them.

The OK pushbutton has no method code entered for it, since the behavior of this pushbutton
varies depending on the dialog on which it appears. In some cases, the application takes an action
when it is clicked; in others, it simply remembers a setting entered in the dialog. Although in both
cases the window is hidden, you should not enter the call to HideWindow(). Any code defining
the behavior of the pushbutton in an instance of the class would override the call to
HideWindow() in the Click() method of the master class. Therefore, you should simply add the
call to HideWindow() in the method code you add to the Click() method of the instance.

Once you have finished defining it, you can add instances of the OK and Cancel class to dialogs in
your application. After adding the instance, you then enter method code to the Click() method of
that instance’s OK pushbutton defining what happens when the user clicks this button.

Later, you may want to make modifications to the user-defined class, such as adding further code to
the Click() method of the Cancel pushbutton, or altering the appearance of the pushbuttons.
Every instance of the class then inherits these changes (unless you have already overridden
properties or methods of the Cancel pushbutton).

13.12

Subclasses

You can create a subclass of a user-defined class. The subclass acts as a user-defined class on its own,
but it is effectively a copy of the master class definition. The subclass contains all the objects
appearing within the master class definition, and it inherits the property and method settings of the
master class definition. As with an instance, you can break the chain of propagation by changing
the settings for properties and methods in the subclass.

Subclasses give you the ability to create modified versions of the same user-defined class that
continue to inherit changes to the master class definition. Instances of the subclass inherit changes
to the subclass and the master class definition, subject to the rules of the object inheritance
hierarchy.

To create a subclass:

1 Select the icon for a user-defined class in the Application window.

2 Choose the Edit-Create Subclass menu command.

The Class Designer window for the subclass then appears, displaying the new linked copy of the
master class definition.

14
M e n u s , To o l b a r s , a n d
S t a t u s L i n e s 1 4

This chapter covers the following topics:

Overview . 14.2
Menus . 14.3
Toolbars . 14.20
Status Lines . 14.34
Properties and Methods . 14.44

14.2

Overview

Menus, toolbars, and status lines are graphical components you can add to your application to
provide the user with commands, shortcuts, and status information.

Menus provide lists of commands that the user can select to execute an action.

Toolbars provide buttons that the user can click to execute an action. Toolbars typically provide
graphical shortcuts for commonly used menu commands.

Status Lines provide summary information to the user. For example, they can include nonmodal
messages to the user (such as indicating when an action has completed).

The objects described in this chapter are in-memory objects—they exist only at run time. You can
display them only when you invoke design run time by clicking the Run Form or Run Application
button, or when you run a compiled application in standalone run time.

Because menus, toolbars, and status line objects do not exist at design time, you do not create and
modify them as you do most other types of objects. Instead, you must execute Oracle Basic method
code the first time they are displayed, usually in the OnLoad() method of your application or the
InitializeWindow() method of a form or report. You also write method code to customize the
appearance and behavior of these objects, usually in the TestCommand() and DoCommand()
methods of your application or of individual forms or reports in your application.

You follow the same general steps to create menus, toolbars, and status lines in your application:

1 Create the object using the Oracle Basic NEW operator.

The NEW operator returns a reference to the newly created object, which you can store in a
variable or property of datatype Object.

2 Add items to the object.

For example, you must add menus to a menu bar object, menu items to a menu object, buttons to
a toolbar object, and panels to a status line object.

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.3

3 Associate the object with a form or report.

The object you create is not actually displayed unless you associate it with a form or report.

4 Add method code to handle user interaction with the object.

You update the status of the object’s items by adding method code to the TestCommand() method
of a form or application (for example, to determine whether menu items and toolbar buttons
appear enabled or disabled).

You respond to user actions by adding method code to the DoCommand() method of a form or
application (for example, to execute commands when the user chooses a menu item or clicks on a
toolbar button).

The specific steps you should follow to create each type of object are described in the following
sections.

Menus

Menus are contained in a menu bar, which is displayed at the top of the application window (in
Windows) or at the top of the screen (on Macintosh). Each window (form or report) in your
application can display its own menu bar; when the window is active, the associated menu bar
appears in the appropriate location.

By default, forms and reports in run-time mode display a menu bar that provides access to many
common commands. This section describes how to customize the default menu bars, either by
adding custom items to the menus that appear by default, by adding or by replacing them
altogether.

An Oracle Power Objects menu bar can contain three types of menus:

System default menus. These are standard menus for an application in the operating system
where your application is running. System default menus on the Macintosh are Apple, File, and
Edit. System default menus in Windows are File, Edit, Window, and Help.

Application default menus. These are standard menus for the type of Oracle Power Objects
window being displayed. Examples of application default menus are the Database and Preview
menus.

Custom menus. These are menus that you design yourself. You can add, modify, or delete
components of the system or application default menus, or you can create entirely new menus.

Menu Bar

Menu

14.4

You can control which of these types of menus appear in a menu bar that you create.

In the Oracle Power Objects object model, a menu consists of a menu bar object that displays one
or more menu objects. These menu objects are not actually contained within the menu bar
object—you can associate the same menu object with any number of menu bar objects. Each menu
has a set of associated menu items. These items are not separate objects; they are simply parts of the
menu object.

Besides the names of commands, menus also can display additional information:

Separator lines group related commands within the menu.

Keyboard equivalents (also called accelerators) are associated with commands in the menu. The
user can execute menu commands simply by typing the keyboard equivalent sequence.

Disabled commands are displayed in grayed-out text and indicate commands that the user
cannot select.

Check marks indicate commands that can be turned on or off.

You can control all of these features for menus that you create, both when you create the menu and
after creation.

To create a menu, you follow the general steps described below. Each step is described in more
detail in the sections of this chapter that follow.

1 Create a menu bar object using the NEW MenuBar statement.

2 Initialize the menu bar, if desired.

To initialize a menu bar with system default menus, call the SysDefaultMenuBar() method.

To initialize a menu bar with system default and application default menus, call the
DefaultMenuBar() method.

3 Create custom menus using the NEW Menu statement.

After creating the menu, set the menu’s Label property to the title you want the menu to display.

4 Add items to the custom menus.

To append an item to the end of the menu, call the AppendMenuItem() method.

To insert an item at a specified position, call the InsertMenuItem() method.

Check mark

Disabled item

Keyboard equivalent

Separator line

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.5

5 Add the custom menus to the menu bar.

To append a menu to the end of menu bar, call the AppendMenu() method.

To insert a menu at a specified position, call the InsertMenu() method.

6 Associate the menu bar with a form or report by calling the SetMenuBar() method.

You normally do this in the InitializeWindow() method of the form or report.

7 Add method code to control the appearance and behavior of menu items.

Add code to the TestCommand() method to handle enabling and disabling of menu items.

Add code to the DoCommand() method to perform a command when an enabled menu item is
selected.

Creating a Menu Bar

You create a menu bar object using the Oracle Basic NEW operator. Typically, you store a reference
to the newly created object in a variable of datatype Object.

For example, the following method code creates a menu bar object and stores a reference to it in the
variable mbrMenuBar1 :

DIM mbrMenuBar1 AS Object
mbrMenuBar1 = NEW MenuBar

You create menu bars in one of two locations, depending on when you want the object to be
created:

To create a menu bar when your application starts up, you add method code to the OnLoad()
method of your application. When you create a menu bar in OnLoad(), you should store a
reference to the menu bar in a global variable so it can be accessed from other methods in your
application.

To create a menu bar when a form or report is first displayed, you add method code to the
InitializeWindow() method of the form or report. If you do not add method code to
InitializeWindow(), this method installs the default menu bar (containing the system default
and application default menus).

Initializing a Menu Bar

You initialize a menu bar to add either the system default menus or the system default and
application default menus. You cannot add the application default menus without also adding the
system default menus.

14.6

System Default Menus

To initialize a menu bar with the system default menus, you call the SysDefaultMenuBar()
method of the menu bar object. This method deletes any existing menus before initializing the
menu bar.

For example, the following method code initializes the menu bar “MenuBar1” with the system
default menus:

MenuBar1.SysDefaultMenuBar()

The system default menus in Windows are:

■ File
■ Edit
■ Window
■ Help

The system default menus on the Macintosh are:

■ The Apple menu
■ File
■ Edit

The commands in the system default menus for Windows and Macintosh are described in the
online help.

Application Default Menus

To initialize a menu bar with the system default and application default menus, you call the
DefaultMenuBar() method of the form or report with which you want to associate the menu bar.
You pass a reference to the menu bar object as the argument to DefaultMenuBar(). This method
deletes any existing menus before initializing the menu bar.

For example, the following method code initializes the menu bar “MenuBar2” with the system
default and application default menus for the form “Form1”:

Form1.DefaultMenuBar(MenuBar2)

The DefaultMenuBar() method returns a different set of menus depending on whether you call it
for a form object or a report object.

For a form, DefaultMenuBar() returns the system default menus plus the Database menu.

For a report, DefaultMenuBar() returns the system default menus plus the Preview menu.

The commands in these menus are described in the online help.

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.7

Creating Custom Menus

You create a menu object using the Oracle Basic NEW operator. Typically, you store a reference to
the newly created object in a variable of datatype Object. For example, the following method code
creates a menu object and stores a reference to it in the variable CustomMenu1 :

DIM CustomMenu1 AS Object
CustomMenu1 = NEW Menu

After creating a menu object, you must set the Label property of the object. The Label property
determines the menu name that appears in the menu bar. If you do not set the Label property of
the menu, the user will be unable to see or choose items from the menu.

The following method code creates a menu object and sets its label to “Mail”:

DIM mnuMail AS Object
mnuMail = NEW Menu
mnuMail.Label = "Mail"

You can choose a letter of the menu label to act as a menu shortcut in Windows. The letter you
identify is marked with an underscore. The user can select the menu using the keyboard by pressing
the Alt key, then the letter you specify.

To mark a letter of the label as a menu shortcut, precede the letter with an ampersand (&). For
example, the following method code creates a menu object labeled “Mail” and specifies the letter
“M” as the menu shortcut:

DIM mnuMail AS Object
mnuMail = NEW Menu
mnuMail.Label = "&Mail"

The preceding method code creates a menu that appears as shown in the following diagram (after
the other steps of menu creation have been followed):

Menu shortcuts are not applicable for the Macintosh. If you specify a menu shortcut, the
Macintosh does not display an underscore (nor does it display the ampersand)—your menu will
appear correctly on both Macintosh and Windows.

Adding Items to a Menu

After creating a menu object, you add items to the menu by calling the AppendMenuItem() or
InsertMenuItem() method of the menu object.

AppendMenuItem() appends an item to the end of a menu.

InsertMenuItem() inserts a menu item at a specified location in a menu. You specify the
position where the item is to be inserted as the first parameter to InsertMenuItem().

14.8

When you call either AppendMenuItem() or InsertMenuItem(), you specify parameters that
contain the following information:

■ The position of the menu item (InsertMenuItem() only).
■ The label of the menu item.
■ The command code of the item, which is used elsewhere in your application to specify the

application’s response when the user selects the item.
■ A help context for the menu item, which can be used to create context-sensitive online help for

a Windows application.
■ A keyboard equivalent for the menu item.

The full syntax of these methods is:

Syntax of AppendMenuItem()

Sub AppendMenuItem(itemLabel as String, cmdCode as Integer,
 helpCtx as Integer, accel as String)

Syntax of InsertMenuItem()

Sub InsertMenuItem(pos as Integer, itemLabel as String,
 cmdCode as Integer, helpCtx as Integer, accel as String)

For example, the following method code appends the command item “Get New Mail” to the
“mnuMail” menu:

mnuMail.AppendMenuItem("Get New Mail", Cmd_GetNewMail, 0, &
 "^G")

The following method code inserts the command item “New Mail Alert” into the second position
in the “mnuMail” menu:

mnuMail.InsertMenuItem(2, "New Mail Alert", &
 Cmd_NewMailAlert, 0, NULL)

Label

The label is a string containing the text to appear in the menu. The label can contain only letters
and numbers.

As with the Label property of a menu object, you can choose a letter of the menu item label to act
as a menu shortcut for the item in Windows. To mark a letter of the label as a menu shortcut,
precede the letter with an ampersand (&).

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.9

To add a separator line instead of a command item, you specify a hyphen character (-) as the label
of the item and null values for the other parameters. For example, the following method code
appends a separator line item to the end of the “Mail” menu:

mnuMail.AppendMenuItem("-", NULL, NULL, NULL)

Command Code

The command code is an integer value identifying the menu command. You use this integer to
refer to the menu command in the TestCommand() and DoCommand() methods, as described

in the section “Handling Menu Selections” on page 14.14.

Command codes have two requirements:

■ You must define a unique command code for each custom menu command in your application.
■ Command codes you define cannot conflict with command codes that Oracle Power Objects

uses for items in default menus.

Note: Although two menu commands cannot share the same command code, a menu command
might use the same command code as a toolbar button that performs the same action as the menu
command.

To ensure that these requirements are met, you should define command codes in the following way:

■ Define a symbolic constant for each menu command. You should declare these constants in the
(Declarations) section of your application so they are globally available to all methods in your
application.

■ Define the value of each constant by adding a different value to the predefined integer constant
Cmd_FirstUserCommand . Doing so ensures that your command codes will not conflict
with the current any future version of Oracle Power Objects.

For example, the following method code defines a set of constants for items in the “Mail” menu:

CONST Cmd_GetNewMail = Cmd_FirstUserCommand + 1
CONST Cmd_NewMailAlert = Cmd_FirstUserCommand + 2
CONST Cmd_ReadMessage = Cmd_FirstUserCommand + 3
CONST Cmd_MoveMessage = Cmd_FirstUserCommand + 4
CONST Cmd_DeleteMessage = Cmd_FirstUserCommand + 5
CONST Cmd_Preferences = Cmd_FirstUserCommand + 6

The following method code uses the constant Cmd_GetNewMail to define the command code
for the “Get New Mail” menu item:

mnuMail.AppendMenuItem("Get New Mail", Cmd_GetNewMail, 0, &
 "^G")

14.10

Help Context

The help context is an integer that Oracle Power Objects passes to your help system when the user
invokes online help (for example, by pressing the F1 key in Windows while the menu item is
selected). This integer identifies the specific help topic that is to be displayed. For example, in
Windows, the help context is passed to the WinHelp function.

If you specify a null help context (or a help context of zero), the user cannot invoke online help for
the item.

Keyboard Equivalent

The keyboard equivalent is a string identifying a keyboard equivalent for the command (the
equivalent appears to the right of the menu item when the menu is displayed). The string you
specify uses the following syntax:

[^] [+] { char | fkey }

For example, the following method code specifies a keyboard equivalent of Control-G (Command-
G on Macintosh) for a menu item “Get New Mail”:

mnuMail.AppendMenuItem("Get New Mail", Cmd_GetNewMail, 0, &
 "^G")

When the preceding method code is executed, it creates a menu item with keyboard equivalents
appropriate to the platform on which Oracle Power Objects is running.

Element Description

^ Indicates that the System Command key is part of the keyboard equivalent.
The System Command key is the Control key in Windows, the Command
key on Macintosh.

+ Indicates that the Shift key is part of the keyboard equivalent (available only
in Windows).

char Specifies a standard alphabetic or numeric key equivalent in the range “A” to
“Z” (either upper- or lowercase; the case of the character does not matter).
An alphabetic key equivalent always includes the System Command key even
if you do not specify it—for example, the keyboard equivalents “A” and “^A”
are identical.

fkey Specifies a function key in the range “F1” to “F12” (available only in
Windows).

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.11

Examining, Modifying, and Deleting Menu Items

The following methods enable you to examine, modify, and delete items in an existing menu
object:

The GetItemCount() method returns the number of items in a menu object, including separator
lines. For example, the following method code displays a dialog box containing the number of
items in the “mnuMail” menu:

MSGBOX "There are " & mnuMail.GetItemCount() & " menu items."

The GetMenuItem() and SetMenuItem() methods enable you to examine and change the menu
item information specified in the AppendMenuItem() and InsertMenuItem() methods. These
methods return or modify a specified piece of information about a specified menu item.

The syntax of these methods is as follows:

Syntax of GetMenuItem()

Function GetMenuItem(pos as Integer, what as Integer) as
 Variant

Syntax of SetMenuItem()

Sub SetMenuItem(pos as Integer, what as Integer, val as
 Variant)

The pos parameter specifies the position of the item to set or get.

The what parameter specifies the type of information to get or set. The following table lists the
types of information you can get or set and the symbolic constant you use to specify each type of
information:

Method Description

GetItemCount() Returns the number of items in the menu, including separator lines.

GetMenuItem() Returns information about a specified menu item.

SetMenuItem() Updates information about a specified menu item.

DeleteMenuItem() Deletes a specified menu item.

Information Datatype Constant

Label String MenuPart_Label

Command Code Integer MenuPart_Command

Help Context Integer MenuPart_Help

14.12

For SetMenuItem(), the val parameter specifies the new value for the item.

You can delete an existing item from a menu by calling the DeleteMenuItem() method of the
menu object. You specify the position of the menu item to delete as the argument to
DeleteMenuItem().

For example, the following method code deletes the third item from the “Mail” menu:

mnuMail.DeleteMenuItem(3)

Adding Menus to a Menu Bar

After creating a custom menu, you add the menus to a menu bar object by calling the
AppendMenu() or InsertMenu() method of the menu bar object.

AppendMenu() appends a menu to the end of a menu bar. The menu is inserted before any
system default menus that traditionally appear at the end of the menu bar (such as the Help
menu in Windows).

InsertMenu() inserts a menu item at a specified location in a menu bar.

When you add a menu to a menu bar, the menu is associated with the menu bar but not contained
by it. If you delete a menu bar object, the associated custom menus are not deleted along with it.

The following method code appends the menu “mnuMail” to the end of the menu bar
“mbrMailForm”:

mbrMailForm.AppendMenu(mnuMail)

The following method code inserts the menu “mnuMail” at the third position in the menu bar
“mbrMailForm”:

mbrMailForm.InsertMenu(3, mnuMail)

Examining, Modifying, and Deleting Menus

The following methods enable you to examine, modify, and delete menus in an existing menu bar
object:

Keyboard Equivalent String MenuPart_Accel

Method Description

GetMenuBar() Returns a reference to the menu bar associated with the form or report.

GetMenu() Returns a reference to a specified menu object in the menu bar.

GetMenuCount() Returns a count of all menus in the menu bar.

Information Datatype Constant

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.13

The GetMenuBar() method returns a reference to the menu bar object associated with a form or
report. For example, the following method code stores a reference to the menu bar associated with
the form “Form1” in the variable mbrForm1 :

DIM mbrForm1 AS Object
mbrForm1 = Form1.GetMenuBar()

The GetMenu() method returns a reference to a specified menu object. For example, the following
method code stores a reference to the third menu of “mbrForm1” in the variable mnu1:

DIM mnu1 AS Object
mnu1 = mbrForm1.GetMenu(3)

The GetMenuCount() method returns the number of menu objects associated with a specified
menu bar. For example, the following method code displays a dialog box containing the number of
menus in the “mbrMailForm” menu bar:

MSGBOX "There are " & mbrMailForm.GetMenuCount() & " menus."

You can remove existing menus from a menu bar by calling the RemoveMenu() or
DeleteAllMenus() method of the menu bar object.

RemoveMenu() removes a menu from a specified location in the menu bar but does not delete
the menu object. You specify the location of the menu as the argument to RemoveMenu().

DeleteAllMenus() deletes all of the menu objects associated with a menu bar.

For example, the following method code removes the third menu from the menu bar “MenuBar1”:

MenuBar1.RemoveMenu(3)

The following method code deletes all menus associated with the menu bar “MenuBar2”:

MenuBar2.DeleteAllMenus()

Caution: Do not call DeleteAllMenus() if any of the menus in the menu bar are associated with
other menu bar objects.

Associating Menu Bars with Windows

After adding menus to a menu bar, you associate the menu bar with a window by calling the
SetMenuBar() method of the form or report that is displayed in the window. You specify the menu
bar object as the argument to SetMenuBar().

RemoveMenu() Removes a menu from a specified position in the menu bar. However, the
menu object is not deleted. You can delete menu objects with the Oracle
Basic DELETE statement or with the DeleteAllMenus() method.

DeleteAllMenus() Removes all menus from the menu bar and deletes the menu objects.

Method Description

14.14

To associate the menu bar with a window when the window is first displayed, you call
SetMenuBar() from within the InitializeWindow() method of the form or report. If you do not
create a custom menu bar within InitializeWindow(), the default menu bar object (containing the
system default and application default menus) is associated with the window instead.

Note: Entering method code usually overrides all of the default processing associated with that
method. However, unless you call SetMenuBar() from within InitializeWindow(), Oracle Power
Objects automatically installs the default menu bar object even if you do not include the
Inherited.InitializeWindow() statement in your method code.

For an extended

example of method

code in Initialize-
Window(), see the

section “Example:

Creating a Menu Bar”

on page 14.18.

For example, the following method code creates a menu bar called “mbrSysDefault” from within
the InitializeWindow() method:

DIM mbrSysDefault AS Object
mbrSysDefault = NEW MenuBar
mbrSysDefault.SysDefaultMenuBar()
Form1.SetMenuBar(mbrSysDefault)

You can also call the SetMenuBar() method after the window has already been displayed—for
example, to switch the menu bar associated with the form or report.

The InitializeWindow() method is also where you specify custom toolbars and status lines for a
window, as described later in this chapter.

Handling Menu Selections

When creating a custom menu, you must add method code to specify how the application responds
when the user selects a command. Your method code must handle two aspects of menu selections:
setting the status of menu items, and executing code when an item is selected.

You set the status of menu items to determine how they are displayed when the user “pulls
down” the menu to examine the items. Menu items can appear enabled or disabled, and can
also appear checked or unchecked.

You execute code when the user actually selects the item (only enabled items can be selected).

Setting the Status of Menu Items

You set the status of each menu item in a custom menu by adding method code to the
TestCommand() method. You can add method code either to the form or report object with
which the menu is associated or to the application object. Adding method code to the application
object allows you to respond to commands in a centralized location—for example, your method
code can respond the same way to commands in two different menu bars.

Sub InitializeWindow()

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.15

Oracle Power Objects calls TestCommand() whenever the user “pulls down” a menu to examine
the items. TestCommand() is actually called once for each item in the menu, each time with the
command code of a different menu item as the argument to the method. The return value of
TestCommand() determines the status of the item.

You specify the return value of TestCommand() using a predefined symbolic constant. The
following table summarizes the possible return values for TestCommand():

If you do not explicitly set the return value of TestCommand(), the default return value is equal to
zero. A return value of zero prompts Oracle Power Objects to check internally whether it handles
the command. If it does not handle the command, it disables the command (equivalent to
returning TestCommand_Disabled).

Method code added to TestCommand() generally takes the form of a SELECT CASE statement.
Each command code to be handled is a separate case in the statement. For example, the following
method code determines the status of two menu commands identified by the constants
Cmd_GetNewMail and Cmd_NewMailAlert . A global variable gNewMailAlert keeps
track of the status of a menu item that can appear checked.

CONST Cmd_GetNewMail = Cmd_FirstUserCommand + 1
CONST Cmd_NewMailAlert = Cmd_FirstUserCommand + 2
GLOBAL gNewMailAlert AS Integer

gNewMailAlert = TRUE 'Initialize New Mail Alert status

Constant Meaning Example

TestCommand_Enabled The command appears
enabled.

TestCommand_Checked The command appears
enabled with a check mark.

TestCommand_Disabled The command appears
disabled.

TestCommand_Disabled_Checked The command appears
disabled with a check mark.

(Declarations)

Sub Initialize()

14.16

SELECT CASE cmdCode
 CASE Cmd_GetNewMail
 TestCommand = TestCommand_Enabled
 CASE Cmd_NewMailAlert
 IF gNewMailAlert THEN
 TestCommand = TestCommand_Checked
 ELSE
 TestCommand = TestCommand_Enabled
 END IF
END SELECT

The TestCommand() method is also where you specify the status of toolbar buttons and status line
panels, as described elsewhere in this chapter.

Executing Code When a Menu Item is Selected

You specify the application’s response to a menu selection by adding method code to the
DoCommand() method. You can add method code either to the form or report object with which
the menu is associated or to the application object. As with TestCommand(), adding method code
to the application object allows you to respond to commands in a centralized location—for
example, your method code can respond the same way to commands in two different menu bars.

Oracle Objects calls DoCommand() whenever the user selects an item from a menu (or when the
user clicks on a toolbar button). The command code of the menu item is passed as the argument to
DoCommand(). The return value of DoCommand() indicates whether the command was
handled. By default, DoCommand() returns False (the command was not handled).

Oracle Power Objects calls DoCommand() at two levels:

1 The form or report with which the menu is associated.

2 The application containing the form or report.

If DoCommand() is not handled at either of these levels, it is then sent to Oracle Power Objects
itself, which checks internally to see if it handles the event. DoCommand() is passed along this
entire sequence unless DoCommand() returns True, at which point it is not passed along any
further.

Method code added to DoCommand() generally takes the form of a SELECT CASE statement.
Each command code to be handled is a separate case in the statement. For example, the following
method code responds to two menu commands identified by the constants Cmd_GetNewMail
and Cmd_NewMailAlert . A global variable gNewMailAlert keeps track of the status of a
menu item that can appear checked.

Function TestCommand(cmdCode as Integer) as Long

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.17

CONST Cmd_GetNewMail = Cmd_FirstUserCommand + 1
CONST Cmd_NewMailAlert = Cmd_FirstUserCommand + 2
GLOBAL gNewMailAlert AS Integer

gNewMailAlert = TRUE 'Initialize New Mail Alert status

SELECT CASE cmdCode
 CASE Cmd_GetNewMail
 Self.GetNewMail()
 DoCommand = TRUE
 CASE Cmd_NewMailAlert
 gNewMailAlert = NOT(gNewMailAlert)
 DoCommand = TRUE
END SELECT

For a complete list of

predefined command

code constants, see

Appendix C, “Con-

stants and Reserved

Words”.

You can also add method code to DoCommand() to override or supplement the way Oracle Power
Objects responds to items in the application or system default menus. Oracle Basic includes a set
of predefined constants corresponding to the command codes for items in the default menus.

For example, the following method code customizes the way that Oracle Power Objects responds to
the File-Quit menu command (File-Exit in Windows) by displaying a dialog box requesting
confirmation. If the user clicks the OK button, DoCommand() returns False and the normal
processing is executed. If the user clicks the Cancel button, DoCommand() returns True and the
application does not quit.

CONST BTN_OK = 1

SELECT CASE cmdCode
 CASE Cmd_Quit
 IF MSGBOX("Are you sure you want to quit?", 33, &
 "Confirm Action") = BTN_OK THEN
 DoCommand = FALSE
 ELSE
 DoCommand = TRUE
 END IF
END SELECT

To execute an existing menu item from method code, you can call the DoCommand() method
with the command code of the item to be called. For example, the following method code executes
the Database-Commit menu command:

DoCommand(Cmd_Commit)

(Declarations)

Sub Initialize()

Function DoCommand(cmdCode as Integer) as Long

Function DoCommand(cmdCode as Integer) as Long

14.18

Example: Creating a Menu Bar

This section provides a complete example of creating a custom menu in an application. The
method code listed below adds a menu called “Mail” to the default menu bar for a form. The
“Mail” menu appears as shown in the following diagram:

You can use this example in combination with the toolbar example described in the section

“Example: Creating a Toolbar” on page 14.31, which creates a toolbar containing many of the same
commands as the “Mail” menu.

The following method code appears in the (Declarations) section of the application:

'Declare constants for menu commands
CONST Cmd_GetNewMail = Cmd_FirstUserCommand + 1
CONST Cmd_NewMailAlert = Cmd_FirstUserCommand + 2
CONST Cmd_ReadMessage = Cmd_FirstUserCommand + 3
CONST Cmd_MoveMessage = Cmd_FirstUserCommand + 4
CONST Cmd_DeleteMessage = Cmd_FirstUserCommand + 5
CONST Cmd_Preferences = Cmd_FirstUserCommand + 6
GLOBAL gNewMailAlert AS Integer

The following method code appears in the Initialize() method of the application:

gNewMailAlert = TRUE 'Initialize New Mail Alert status

The following method code appears in the InitializeWindow() method of the form “frmMail”:

'Declare variables to hold menu bar and menu objects
DIM mbrMailForm AS Object
DIM mnuMail AS Object

(Declarations)

Sub Initialize()

Sub InitializeWindow()

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.19

'Create the menu bar object and initialize it with the system
'default and application default menus
mbrMailForm = NEW MenuBar
frmMail.DefaultMenuBar(mbrMailForm)

mnuMail = NEW Menu 'Create custom menu
mnuMail.Label = "&Mail" 'Add label to menu

'Add items to menu, including separator lines and keyboard
'equivalents
mnuMail.AppendMenuItem("&Get New Mail", Cmd_GetNewMail, 0, &
 "^G")
mnuMail.AppendMenuItem("New Mail &Alert", Cmd_NewMailAlert, &
 0, NULL)
mnuMail.AppendMenuItem("-", NULL, NULL, NULL)
mnuMail.AppendMenuItem("&Read Message", Cmd_ReadMessage, &
 0, "^R")
mnuMail.AppendMenuItem("&Move Message...", Cmd_MoveMessage, &
 0, "^M")
mnuMail.AppendMenuItem("&Delete Message...", &
 Cmd_DeleteMessage, 0, NULL)
mnuMail.AppendMenuItem("-", NULL, NULL, NULL)
mnuMail.AppendMenuItem("&Preferences...", Cmd_Preferences, &
 0, NULL)

mbrMailForm.AppendMenu(mnuMail) 'Append menu to menu bar

'Associate the menu bar object with the form
frmMail.SetMenuBar(mbrMailForm)

The following method code appears in the TestCommand() method of the form “frmMail”:

SELECT CASE cmdCode
 CASE Cmd_GetNewMail
 TestCommand = TestCommand_Enabled
 CASE Cmd_NewMailAlert
 IF gNewMailAlert THEN
 TestCommand = TestCommand_Checked
 ELSE
 TestCommand = TestCommand_Enabled
 END IF
 CASE Cmd_ReadMessage, Cmd_MoveMessage, Cmd_DeleteMessage
 IF ISNULL(lstMessageList.value) THEN
 TestCommand = TestCommand_Disabled
 ELSE

Function TestCommand(cmdCode as Integer) as Long

14.20

 TestCommand = TestCommand_Enabled
 END IF
 CASE Cmd_Preferences
 TestCommand = TestCommand_Enabled
END SELECT

The following method code appears in the DoCommand() method of the form “frmMail”:

SELECT CASE cmdCode
 CASE Cmd_GetNewMail
 Self.GetNewMail()
 DoCommand = TRUE
 CASE Cmd_NewMailAlert
 gNewMailAlert = NOT(gNewMailAlert)
 DoCommand = TRUE
 CASE Cmd_ReadMessage
 Self.ReadMessage(lstMessageList.value)
 DoCommand = TRUE
 CASE Cmd_MoveMessage
 Self.MoveMessage(lstMessageList.value)
 DoCommand = TRUE
 CASE Cmd_DeleteMessage
 Self.DeleteMessage(lstMessageList.value)
 DoCommand = TRUE
 CASE Cmd_Preferences
 frmPrefs.OpenModal(false)
 DoCommand = TRUE
END SELECT

Toolbars

Toolbars are displayed in an area directly beneath the menu bar (in this release of Oracle Power
Objects, you cannot customize the location of a toolbar). Each window (form or report) in your
application can display its own toolbar; when the window is active, the associated toolbar appears
beneath the menu bar for that window. Only one toolbar can be associated with a given window.

By default, forms and reports in run-time mode display a toolbar that provides shortcuts to
common commands. This section describes how to customize the default toolbars, either by adding
custom buttons to those that appear by default or by replacing them altogether.

Function DoCommand(cmdCode as Integer) as Long

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.21

An Oracle Power Objects toolbar can contain two types of toolbars:

Application default toolbars. These are standard toolbars for the type of Oracle Power Objects
window being displayed. The following diagram shows the application default buttons for
forms:

Custom toolbars. These are toolbars that you design yourself. If you wish, you can also create
custom versions of the application default toolbars instead of using those provided by Oracle
Power Objects.

Each toolbar object has a set of associated toolbar buttons. These buttons are not separate objects;
they are simply parts of the toolbar object.

Toolbars can have the following features:

Separator areas group related buttons within the toolbar.

Disabled buttons are displayed in a grayed-out bitmap and indicate buttons that the user
cannot click.

Toggle buttons indicate commands that can be turned on or off.

You can control all of these features for toolbars that you create, both when you create the toolbar
and after creation.

Overview of Creating Toolbars

To create a toolbar, you follow the general steps described below. Each step is described in more
detail in the sections of this chapter that follow.

1 Create a toolbar object using the NEW Toolbar statement.

2 Initialize the toolbar, if desired.

To initialize a toolbar with application default buttons, call the DefaultToolbar() method.

3 Add buttons to the toolbar.

To append a button to the end of toolbar, call the TBAppendButton() method.

To insert a button at a specified position, call the TBInsertButton() method.

Separator area

Toggle button

Disabled button

14.22

4 Associate the toolbar with a form or report by calling the SetToolbar() method.

You normally do this in the InitializeWindow() method of the form or report.

5 Add method code to control the appearance and behavior of buttons.

Add code to the TestCommand() method to handle enabling and disabling of buttons.

Add code to the DoCommand() method to perform a command when an enabled button is
clicked.

Creating a Toolbar

You create a toolbar object using the Oracle Basic NEW operator. Typically, you store a reference to
the newly created object in a variable of datatype Object.

For example, the following method code creates a toolbar object and stores a reference to it in the
variable Toolbar1 :

DIM Toolbar1 AS Object
Toolbar1 = NEW Toolbar

You create toolbars in one of two locations, depending on when you want the toolbar to be created:

To create a toolbar when your application starts up, you add method code to the OnLoad()
method of your application. When you create a toolbar in OnLoad(), you should store a
reference to the toolbar in a global variable so it can be accessed from other methods in your
application.

To create a toolbar when a form or report is first displayed, you add method code to the
InitializeWindow() method of the form or report. If you do not add method code to
InitializeWindow(), this method installs the default toolbar (containing the application
default buttons).

Initializing a Toolbar

You initialize a toolbar to add the application default buttons. To initialize the toolbar, you call the
DefaultToolbar() method of the form or report with which you will associate the toolbar. You pass
a reference to the toolbar object as the argument to DefaultToolbar(). This method deletes any
existing buttons before initializing the toolbar.

For example, the following method code initializes the toolbar “Toolbar2” with the application
default buttons for the form “Form1”:

Form1.DefaultToolbar(Toolbar2)

The DefaultToolbar() method returns a different set of buttons depending on whether you call it
for a form object or a report object.

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.23

For a form, DefaultToolbar() returns the following buttons:

For a report, DefaultMenuBar() returns the following buttons:

These toolbars are described in the online help.

Adding Buttons to a Toolbar

After creating a toolbar object, you add buttons to it by calling the TBAppendButton() or
TBInsertButton() method of the toolbar object.

TBAppendButton() appends a button to the end of a toolbar.

TBInsertButton() inserts a button at a specified location in a toolbar. You specify the position
where the item is to be inserted as the first parameter to TBInsertButton().

For example, the following method code appends a button to the “tbrMailForm” toolbar:

tbrMailForm.TBAppendButton(Cmd_GetNewMail, GetNewMl, &
 ToolbarStyle_PushBtn, 0)

The following method code inserts a button into the third position in the “tbrMailForm” toolbar:

tbrMailForm.TBInsertButton(3, Cmd_NewMailAlert, NwMlAlrt, &
 ToolbarStyle_Toggle, 0)

When you call either TBAppendButton() or TBInsertButton(), you specify parameters that
contain the following information:

■ The position of the button on the toolbar (TBInsertButton() only).
■ The command code of the button, which is used elsewhere in your application to specify the

application’s response when the user clicks the button.
■ A bitmap for the button, which contains the image displayed on the button’s face.
■ The style of the button, which indicates whether the button is a pushbutton, a toggle button, or a

separator area.
■ A help context for the button, which can be used to create context-sensitive online help for a

Windows application.

The full syntax of these methods is:

Syntax of TBAppendButton()

Sub TBAppendButton(cmdCode as Integer, bitmap as Object,
 style as Integer, helpContext as Integer)

14.24

Syntax of TBInsertButton()

Sub TBInsertButton(pos as Integer, cmdCode as Integer,
 bitmap as Object, style as Integer, helpContext as Integer)

Command Code

The command code is an integer identifying a toolbar button (separator areas always have the
command code zero). You use this integer to refer to the button in the TestCommand() and

DoCommand() methods, as described in the section “Handling Toolbar Clicks” on page 14.28.

Command codes have two requirements:

■ You must define a unique command code for each toolbar button in your application.
■ Command codes you define cannot conflict with command codes that Oracle Power Objects

uses for items in default toolbars.

Note: Although two toolbar buttons cannot share the same command code, a toolbar button might
use the same command code as a menu command that performs the same action as the toolbar
button.

To ensure that these requirements are met, you should define command codes in the following way:

■ Define a symbolic constant for each menu command. You should declare these constants in the
(Declarations) section of your application so they are globally available to all methods in your
application.

■ Define the value of each constant by adding a different value to the predefined integer constant
Cmd_FirstUserCommand . Doing so ensures that your command codes will not conflict
with the current any future version of Oracle Power Objects.

For example, the following method code defines a set of constants for items used in a toolbar:

CONST Cmd_GetNewMail = Cmd_FirstUserCommand + 1
CONST Cmd_NewMailAlert = Cmd_FirstUserCommand + 2
CONST Cmd_ReadMessage = Cmd_FirstUserCommand + 3
CONST Cmd_MoveMessage = Cmd_FirstUserCommand + 4
CONST Cmd_DeleteMessage = Cmd_FirstUserCommand + 5
CONST Cmd_Preferences = Cmd_FirstUserCommand + 6

The following method code uses the constant Cmd_GetNewMail to define the command code
for a toolbar button that gets new mail:

tbrMailForm.TBAppendButton(Cmd_GetNewMail, GetNewMl, &
 ToolbarStyle_PushBtn, 0)

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.25

Bitmap

The bitmap argument is a reference to a bitmap object in your application. The display area in a
toolbar button is 16 pixels by 16 pixels. A larger bitmap object will be cropped to fit the display
area.

Button Style

The button style determines the appearance and behavior of the button. The button style is usually
specified using a symbolic constant.

Help Context

The help context is an integer that Oracle Power Objects passes to your help system when the user
invokes online help. This integer identifies the specific help topic that is to be displayed. For
example, in Windows, the help context is passed to the WinHelp function.

If you specify a null help context (or a help context of zero), the user cannot invoke online help for
the button.

Examining, Modifying, and Deleting Buttons

The following methods enable you to examine, modify, and delete buttons in an existing toolbar
object:

Constant Meaning

ToolbarStyle_PushBtn The button is a standard pushbutton.

ToolbarStyle_Toggle The button is an on/off toggle button.

ToolbarStyle_Separator The button is a separator providing a 10-pixel-wide space between
the adjoining buttons.

Method Description

GetToolbar() Returns a reference to the toolbar associated with a form or report.

TBGetCount() Returns a count of all buttons in the toolbar, including separator areas.

TBGetButton() Returns a specified piece of information about a specified button in the
toolbar. You can get the button’s command code, the bitmap, the button
style, or the help context.

TBSetButton() Modifies a specified piece of information about a specified button in the
toolbar. You can set the button’s command code, the bitmap, the button
style, or the help context.

14.26

The GetToolbar() method returns a reference to the toolbar object associated with a form or
report. For example, the following method code stores a reference to the toolbar associated with the
form “Form1” in the variable tbrForm1 :

DIM tbrForm1 AS Object
tbrForm1 = Form1.GetToolbar()

The TBGetCount() method returns the number of buttons in a toolbar object, including
separator areas. For example, the following method code displays a dialog box containing the
number of buttons in the “tbrMailForm” toolbar:

MSGBOX "There are " & tbrMailForm.TBGetCount() & " buttons."

The TBGetButton() and TBSetButton() methods enable you to examine and change the button
information specified in the TBAppendButton() and TBInsertButton() methods. These methods
return or modify a specified piece of information about a specified toolbar button.

The syntax of these methods is as follows:

Syntax of TBGetButton()

Function TBGetButton(index as Integer, part as Integer) &
 as Variant

Syntax of TBSetButton()

Sub TBSetButton(index as Integer, part as Integer, &
 val as Variant)

The index parameter specifies the position of the button to set or get.

The part parameter specifies the type of information to get or set. The following table lists the
types of information you can get or set and the symbolic constant you use to specify each type of
information:

TBDeleteButton() Deletes a button from a specified position in the toolbar.

ClearToolbar() Deletes all buttons from the toolbar.

Information Datatype Constant Notes

Command Code Integer ToolbarPart_Command

Bitmap Object ToolbarPart_Bitmap You cannot set the bitmap of a
separator area.

Style Integer ToolbarPart_Style You cannot change the style of an
existing button.

Method Description

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.27

For TBSetButton(), the val parameter specifies the new value for the item.

You can delete an existing button from a toolbar by calling the TBDeleteButton() method of the
toolbar object. You specify the location of the button to delete as the argument to
TBDeleteButton(). For example, the following method code deletes the third button from the
“tbrMailForm” toolbar:

tbrMailForm.TBDeleteButton(3)

You can delete all buttons from a toolbar by calling the ClearToolbar() method of the toolbar
object. For example, the following method code deletes all buttons from the “tbrMailForm”
toolbar:

tbrMailForm.ClearToolbar()

Associating Toolbars with Windows

After creating a toolbar, you associate it with a window by calling the SetToolbar() method of the
form or report that is displayed in the window. You specify the toolbar object as the argument to
SetToolbar().

To associate the toolbar with a window when the window is first displayed, you call SetToolbar()
from within the InitializeWindow() method of the form or report. If you do not create a custom
toolbar within InitializeWindow(), the default toolbar object is associated with the window
instead.

Note: Entering method code usually overrides all of the default processing associated with that
method. However, unless you call SetToolbar() from within InitializeWindow(), Oracle Power
Objects automatically installs the default toolbar object even if you do not include the
Inherited.InitializeWindow() statement in your method code.

For an extended

example of method

code in Initialize-
Window(), see the

section “Example:

Creating a Toolbar”

on page 14.31.

For example, the following method code creates a toolbar called “tbrAppDefault” from within the
InitializeWindow() method:

DIM tbrAppDefault AS Object
tbrAppDefault = NEW Toolbar
Form1.DefaultToolbar(tbrAppDefault)
frmMail.SetToolbar(tbrAppDefault)

You can also call the SetToolbar() method after the window has already been displayed; for
example, to switch the toolbar associated with a form or report.

Help Context Integer ToolbarPart_Help

Sub InitializeWindow()

Information Datatype Constant Notes

14.28

If you do not want any toolbar to appear in the window, you must pass the value NULL as the
argument to SetToolbar(), as in the following example:

Form1.SetToolbar(NULL)

The InitializeWindow() method is also where you specify custom menu bars and status lines for a
window, as described elsewhere in this chapter.

Handling Toolbar Clicks

When creating a custom toolbar, you must add method code to specify how the application
responds when the user clicks on a button. As with menus, your method code must handle two
aspects of toolbar clicks: setting the status of toolbar buttons, and executing code when a button is
clicked.

You set the status of toolbar buttons to determine how they are displayed on screen. Toolbar
buttons can appear enabled or disabled, and can also appear toggled or untoggled.

You execute code when the user actually clicks the button (only enabled buttons can be
clicked).

Setting the Status of Toolbar Buttons

You set the status of each button in a custom toolbar by adding method code to the
TestCommand() method. You can add method code either to the form or report object with
which the toolbar is associated or to the application object. Adding method code to the application
object allows you to respond to commands in a centralized location—for example, your method
code can respond the same way to commands that appear both on a toolbar and in a menu bar.

Oracle Power Objects calls TestCommand() at regular intervals when it is not performing any
other actions (it is usually called several times each second). TestCommand() is also called when
the user clicks a toolbar button. When TestCommand() is called during system idle time, it is
actually called once for each button on the toolbar, each time with the command code of a different
toolbar button as the argument to the method. When TestCommand() is called by a user click, it
is called only for the toolbar button on which the user clicks. The return value of TestCommand()
determines the status of the button at that time.

You specify the return value of TestCommand() using a predefined symbolic constant. The
following table summarizes the possible return values for TestCommand():

Constant Meaning Example

TestCommand_Enabled The button appears enabled.

TestCommand_Checked The button appears enabled
and toggled.

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.29

If you do not explicitly set the return value of TestCommand(), the default return value is equal to
zero. A return value of zero prompts Oracle Power Objects to check internally whether it handles
the command—if it does not handle the command, it disables the command (equivalent to
returning TestCommand_Disabled).

Note: You can return a value of TestCommand_Checked for both pushbuttons and toggle
buttons. In both cases, the button appears appropriately toggled.

Method code added to TestCommand() generally takes the form of a SELECT CASE statement.
Each command code to be handled is a separate case in the statement. For example, the following
method code determines the status of two toolbar buttons identified by the constants
Cmd_GetNewMail and Cmd_NewMailAlert . A global variable gNewMailAlert keeps
track of the status of a toggle button.

CONST Cmd_GetNewMail = Cmd_FirstUserCommand + 1
CONST Cmd_NewMailAlert = Cmd_FirstUserCommand + 2
GLOBAL gNewMailAlert AS Integer

gNewMailAlert = TRUE 'Initialize New Mail Alert status

SELECT CASE cmdCode
 CASE Cmd_GetNewMail
 TestCommand = TestCommand_Enabled
 CASE Cmd_NewMailAlert
 IF gNewMailAlert THEN
 TestCommand = TestCommand_Checked
 ELSE
 TestCommand = TestCommand_Enabled
 END IF
END SELECT

The TestCommand() method is also where you specify the status of menu items and status line
panels, as described elsewhere in this chapter.

TestCommand_Disabled The button appears disabled.

TestCommand_Disabled_Checked The button appears disabled
and toggled.

(Declarations)

Sub Initialize()

Function TestCommand(cmdCode as Integer) as Long

Constant Meaning Example

14.30

Executing Code When a Button is Clicked

You specify the application’s response to a button click by adding method code to the
DoCommand() method. You can add method code either to the form or report object with which
the toolbar is associated or to the application object. As with TestCommand(), adding method
code to the application object allows you to respond to commands in a centralized location—for
example, your method code can respond the same way to commands that appear both on a toolbar
and in a menu bar.

Oracle Power Objects calls DoCommand() whenever the user clicks on a toolbar button (or when
the user selects an item from a menu). The command code of the button is passed as the argument
to DoCommand(). The return value of DoCommand() indicates whether the command was
handled. By default, DoCommand() returns False (the command was not handled).

Oracle Power Objects calls DoCommand() at two levels:

1 The form or report with which the toolbar is associated

2 The application containing the form or report.

If DoCommand() is not handled at either of these levels, it is then sent to Oracle Power Objects
itself, which checks internally to see if it handles the event. DoCommand() is passed along this
entire sequence unless DoCommand() returns True, at which time it is not passed any further.

Method code added to DoCommand() generally takes the form of a SELECT CASE statement.
Each command code to be handled is a separate case in the statement. For example, the following
method code executes code in response to two toolbar buttons identified by the constants
Cmd_GetNewMail and Cmd_NewMailAlert . A global variable gNewMailAlert keeps
track of the status of a toggle button.

CONST Cmd_GetNewMail = Cmd_FirstUserCommand + 1
CONST Cmd_NewMailAlert = Cmd_FirstUserCommand + 2
GLOBAL gNewMailAlert AS Integer

gNewMailAlert = TRUE 'Initialize New Mail Alert status

SELECT CASE cmdCode
 CASE Cmd_GetNewMail
 Self.GetNewMail()
 DoCommand = TRUE
 CASE Cmd_NewMailAlert
 gNewMailAlert = NOT(gNewMailAlert)
 DoCommand = TRUE
END SELECT

(Declarations)

Sub Initialize()

Function DoCommand(cmdCode as Integer) as Long

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.31

For a complete list of

predefined command

code constants, see

Appendix C, “Con-

stants and Reserved

Words”.

You can also add method code to DoCommand() to override or supplement the way Oracle Power
Objects responds to items in default toolbars. Oracle Basic includes a set of predefined constants
corresponding to the command codes for items in the default toolbars

For example, the following method code customizes the way that Oracle Power Objects responds to
the Rollback button by displaying a dialog box requesting confirmation. If the user clicks the OK
button, DoCommand() returns False and the normal processing is executed. If the user clicks the
Cancel button, DoCommand() returns True and the application does not roll back the current
transaction.

CONST BTN_OK = 1

SELECT CASE cmdCode
 CASE Cmd_Rollback
 IF MSGBOX("Are you sure you want to roll back?", 33, &
 "Confirm Action") = BTN_OK THEN
 DoCommand = FALSE
 ELSE
 DoCommand = TRUE
 END IF
END SELECT

To execute the code associated with an existing button, you can call the DoCommand() method
with the command code of the button. For example, the following method code executes the code
associated with the Commit button:

DoCommand(Cmd_Commit)

Example: Creating a Toolbar

This section provides a complete example of creating a custom toolbar in an application. The
method code listed below adds a custom toolbar to a form. The toolbar appears as shown in the
following diagram:

This example can be used in combination with the menu example described in the section

“Example: Creating a Menu Bar” on page 14.18, which creates a menu containing many of the
same commands.

Function DoCommand(cmdCode as Integer) as Long

14.32

The following method code appears in the (Declarations) section of the application:

'Declare constants for menu commands and toolbar buttons
CONST Cmd_GetNewMail = Cmd_FirstUserCommand + 1
CONST Cmd_NewMailAlert = Cmd_FirstUserCommand + 2
CONST Cmd_ReadMessage = Cmd_FirstUserCommand + 3
CONST Cmd_MoveMessage = Cmd_FirstUserCommand + 4
CONST Cmd_DeleteMessage = Cmd_FirstUserCommand + 5
CONST Cmd_Preferences = Cmd_FirstUserCommand + 6
GLOBAL gNewMailAlert AS Integer

The following method code appears in the Initialize() method of the application:

gNewMailAlert = TRUE 'Initialize New Mail Alert status

The following method code appears in the InitializeWindow() method of the form “frmMail”:

DIM tbrMailForm AS Object

tbrMailForm = NEW Toolbar

tbrMailForm.TBAppendButton(Cmd_GetNewMail, GetNewMl, &
 ToolbarStyle_PushBtn, 0)
tbrMailForm.TBAppendButton(0, NULL, ToolbarStyle_Separator, &
 0)
tbrMailForm.TBAppendButton(Cmd_NewMailAlert, NwMlAlrt, &
 ToolbarStyle_Toggle, 0)
tbrMailForm.TBAppendButton(0, NULL, ToolbarStyle_Separator, &
 0)
tbrMailForm.TBAppendButton(Cmd_ReadMessage, ReadMsg, &
 ToolbarStyle_PushBtn, 0)
tbrMailForm.TBAppendButton(Cmd_MoveMessage, MoveMsg, &
 ToolbarStyle_PushBtn, 0)
tbrMailForm.TBAppendButton(Cmd_DeleteMessage, DelMsg, &
 ToolbarStyle_PushBtn, 0)

'Associate the toolbar object with the form
frmMail.SetToolbar(tbrMailForm)

(Declarations)

Sub Initialize()

Sub InitializeWindow()

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.33

The following method code appears in the TestCommand() method of the form “frmMail”:

SELECT CASE cmdCode
 CASE Cmd_GetNewMail
 TestCommand = TestCommand_Enabled
 CASE Cmd_NewMailAlert
 IF gNewMailAlert THEN
 TestCommand = TestCommand_Checked
 ELSE
 TestCommand = TestCommand_Enabled
 END IF
 CASE Cmd_ReadMessage, Cmd_MoveMessage, Cmd_DeleteMessage
 IF ISNULL(lstMessageList.value) THEN
 TestCommand = TestCommand_Disabled
 ELSE
 TestCommand = TestCommand_Enabled
 END IF
 CASE Cmd_Preferences
 TestCommand = TestCommand_Enabled
END SELECT

The following method code appears in the DoCommand() method of the form “frmMail”:

SELECT CASE cmdCode
 CASE Cmd_GetNewMail
 Self.GetNewMail()
 DoCommand = TRUE
 CASE Cmd_NewMailAlert
 gNewMailAlert = NOT(gNewMailAlert)
 DoCommand = TRUE
 CASE Cmd_ReadMessage
 Self.ReadMessage(lstMessageList.value)
 DoCommand = TRUE
 CASE Cmd_MoveMessage
 Self.MoveMessage(lstMessageList.value)
 DoCommand = TRUE
 CASE Cmd_DeleteMessage
 Self.DeleteMessage(lstMessageList.value)
 DoCommand = TRUE
 CASE Cmd_Preferences
 frmPrefs.OpenModal(false)
 DoCommand = TRUE
END SELECT

Function TestCommand(cmdCode as Integer) as Long

Function DoCommand(cmdCode as Integer) as Long

14.34

Status Lines

Status lines are displayed at the bottom of the application window (in Windows) or directly under
the toolbar area (on Macintosh). In Windows, the location of the status line is fixed; on the
Macintosh, the user can drag the status line to a different location. Each window (form or report)
in your application can display its own status line—when the window is active, the associated status
line appears in the appropriate location.

Status lines display information in panels—rectangular areas within the status line. An Oracle
Power Objects status line can display three types of panels:

The Summary panel displays Summary help information when the user moves the cursor over
an object for which summary help has been defined. This panel is installed automatically when
the status line is created and cannot be deleted. You can, however, disable the display of
Summary help information.

System default panels are standard panels for an application in the operating system where
your application is running. System default panels on Windows are Caps Lock, Num Lock, and
Scroll Lock panels. There are no system default panels on Macintosh.

Custom panels are panels that you design yourself. Custom panels can display many different
types of information—for example, they can display page numbers, show the current system
time, or indicate editing modes in your application.

By default, forms and reports do not display a status line in run-time mode. To display a status line,
you must create the status line object yourself.

Overview of Creating Status Lines

To create a status line, you follow the general steps described below. Each step is described in more
detail in the sections of this chapter that follow.

1 Create a status line object using the NEW StatusLine statement.

2 Initialize the status line, if desired.

To initialize a status line with system default panels, call the SysDefaultStatusLine() method.

3 Add custom panels to the status line, if desired.

To insert a panel at a specified position, call the InsertStatusPanel() method.

4 Associate the status line with a form or report by calling the SetStatusLine() method.

You normally do this in the InitializeWindow() method of the form or report.

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.35

5 Add method code to control the appearance of status panels.

Call the SetStatusPanelMsg() method to set the text of a given status panel.

Call the SetStatDispList() method to enable automatic updating of a panel.

Add code to the TestCommand() method to handle automatic display of text in the panel.

Creating a Status Line

You create a status line object using the Oracle Basic NEW operator. Typically, you store a reference
to the newly created object in a variable of datatype Object.

For example, the following method code creates a status line object and stores a reference to it in
the variable StatusLine1 :

DIM StatusLine1 AS Object
StatusLine1 = NEW StatusLine

You create status lines in one of two locations, depending on when you want the status line to be
created:

To create a status line when your application starts up, you add method code to the OnLoad()
method of your application. When you create a status line in OnLoad(), you should store a
reference to the status line in a global variable so it can be accessed from other methods in your
application.

To create a status line when a form or report is first displayed, you add method code to the
InitializeWindow() method of the form or report. If you do not add method code to
InitializeWindow(), no status line is associated with the form or report.

When created, a status line automatically contains one panel (the Summary panel). This panel
cannot be deleted from the status line.

Initializing a Status Line

You initialize a status line to add the system default panels. To initialize the status line, you call the
SysDefaultStatusLine() method of the status line object. This method deletes any existing panels
before initializing the status line, except the Summary panel which cannot be deleted.

For example, the following method code initializes the status line “StatusLine1” with the system
default panels:

StatusLine1.SysDefaultStatusLine()

The system default panels on Windows are:

■ Caps Lock
■ Num Lock
■ Scroll Lock

14.36

There are no system default panels on the Macintosh.

Adding Panels to a Status Line

After creating a status line object, you add panels to it by calling the InsertStatusPanel() method of
the status line object. InsertStatusPanel() inserts a panel in a specified position on a status line.

You specify the position where the panel is to be inserted as the first parameter to
InsertStatusPanel(). Since the first panel of a status line object is always the Summary panel, you
must insert panels beginning at position 2.

For example, the following method code inserts a panel into the second position in the
“slnMailForm” status line:

slnMailForm.InsertStatusPanel(2, 400, 100)

When you call InsertStatusPanel(), you specify parameters that contain the following information:

■ The position to insert the panel, which must be 2 or higher.
■ The width of the panel specified in pixels.
■ The maximum message length for the panel. Text displayed in the panel exceeding the

maximum length is truncated to the maximum.

The full syntax of InsertStatusPanel() is:

Syntax of InsertStatusPanel()

Sub InsertStatusPanel(pos as Integer, wid as Integer,
 maxMsgLen as Integer)

Panels are inserted into the status line at the right edge of the status line. The Summary panel
occupies all of the area not covered by added panels.

If you want to designate the panel to be updated automatically, you must set additional

information using the SetStatDispList() method, as described in the section “Updating Status

Panels” on page 14.39.

Modifying and Deleting Panels

The following methods enable you to get information about and modify the panels in an existing
status line object:

Method Description

GetStatusLine() Returns a reference to the status line associated with the form or report.

GetStatCount() Returns a count of all panels in the status line.

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.37

The GetStatusLine() method returns a reference to the status line object associated with a form or
report. For example, the following method code stores a reference to the status line associated with
the form “Form1” in the variable slnForm1 :

DIM slnForm1 AS Object
slnForm1 = Form1.GetStatusLine()

The GetStatCount() method returns the number of panels in a status line object. For example, the
following method code displays a dialog box containing the number of panels in the
“slnMailForm” status line:

MSGBOX "There are " & slnMailForm.GetStatCount() & " panels."

The GetStatPanel() method allows you to examine and change the panel information specified in
the InsertStatusPanel() and SetStatDispList() methods. This method returns a specified piece of
information about a specified button. The syntax of GetStatPanel() is:

Syntax of GetStatPanel()

Function GetStatPanel(pos as Integer, what as Integer) &
 as Variant

The pos parameter specifies the position of the panel.

The what parameter specifies the type of information to get. The following table lists the types of
information you can get and the symbolic constant you use to specify each type of information:

GetStatPanel() Returns a specified piece of information about a specified panel in the
status line. You can get the text currently displayed in the panel, the panel’s
width, the command code, and the message strings associated with the
panel’s status.

DeleteStatusPanel() Deletes a panel from a specified position in the status line. The Summary
panel cannot be deleted.

ClearStatusLine() Deletes all panels from the status line except the Summary panel, which
cannot be deleted.

Information Datatype Constant

Panel Text String StatusLinePart_Text

Width Integer StatusLinePart_Width

Command Code Integer StatusLinePart_Command

“Enabled” Text String StatusLinePart_Msg_Enabled

“Checked” Text String StatusLinePart_Msg_Checked

Method Description

14.38

The information specified in the last four parameters is described in the section “Updating Status

Panels Automatically” on page 14.39.

You can delete an existing panel from a status line by calling the DeleteStatusPanel() method of
the status line object. You specify the position of the panel to delete as the argument to
DeleteStatusPanel(). You can delete any panel except the Summary panel (at position 1). For
example, the following method code deletes the third panel from the “slnMailForm” toolbar:

slnMailForm.DeleteStatusPanel(3)

You can delete all panels (except the Summary panel) from a status line by calling the
ClearStatusLine() method of the toolbar object. For example, the following method code deletes
all panels from the “slnMailForm” toolbar:

slnMailForm.ClearStatusLine()

Associating Status Lines with Windows

After creating a status line, you associate it with a window by calling the SetStatusLine() method
of the form or report that is displayed in the window. You specify the status line object as the
argument to SetStatusLine().

To associate the status line with a window when the window is first displayed, you call
SetStatusLine() from within the InitializeWindow() method of the form or report. If you do not
create a custom status line within InitializeWindow(), no status line is associated with the window.

For an extended

example of method

code in Initialize-
.Window(), see the

section “Example:

Creating a Status

Line” on page 14.42.

For example, the following method code creates a status line called “slnSysDefault” from within the
InitializeWindow() method:

DIM slnSysDefault AS Object
slnSysDefault = NEW StatusLine
slnSysDefault.SysDefaultStatusLine()
Form1.SetStatusLine(slnSysDefault)

You can also call the SetStatusLine() method after the window has already been displayed—for
example, to switch the status line associated with a form or report.

The InitializeWindow() method is also where you specify custom menu bars and toolbars, as
described earlier in this chapter.

“Disabled” Text String StatusLinePart_Msg_Disabled

“Disabled and Checked” Text String StatusLinePart_Msg_Disabled_Checked

Sub InitializeWindow()

Information Datatype Constant

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.39

Updating Status Panels

When creating a custom status line, you must add method code to update status panels. You can
update the text in status panels in the following ways:

You can update the text in a status panel manually by calling the SetStatusPanelMsg() method
of the status panel object. You pass the new text to be displayed as the argument to
SetStatusPanelMsg().

You can designate a panel to be updated automatically by calling the SetStatDispList() method
of the status panel object. You then add method code to the TestCommand() method of the
container or application to handle updating the status panel.

You can disable the automatic display of Summary help in the Summary panel by setting the
HelpTextVisible property of the status line to false.

Updating Status Panels Manually

You update the text in a status panel manually for messages that need to be updated only at specific
times—for example, a panel that displays system messages such as “File saved” or “Commit
complete”. You update the text in a status panel manually by calling the SetStatusPanelMsg()
method. For example, the following method code sets the text of panel 2 in the status line
“slnMailForm”:

slnMailForm.SetStatusPanelMsg(2, "Message Deleted")

Updating Status Panels Automatically

You update the text in a status panel automatically when you need to perform regular checks to
determine the panel’s text. For example, a panel that displays the current system time needs to be
updated constantly. To designate a panel for automatic update, you call the SetStatDispList()
method.

For example, the following method code designates panel 3 of the status line “slnMailForm” for
automatic update:

slnMailForm.SetStatDispList(3, Cmd_InsertModePanel, "INS", &
 "OVR", NULL, NULL)

Note: You cannot use the techniques described in this section with the Summary panel unless you

disable the automatic display of Summary help, as described in the section “Disabling the Display

of Summary Help” on page 14.42.

14.40

When you call SetStatDispList(), you specify parameters that contain the following information:

■ The position of the panel, which must be 2 or higher.
■ The command code of the panel, which is used in the TestCommand() method to check on

the panel’s status.
■ The string of text to display when the panel is enabled.
■ The string of text to display when the panel is disabled.
■ The string of text to display when the panel is enabled and checked.
■ The string of text to display when the panel is disabled and checked.

The full syntax of the SetStatDispList() method is:

Syntax of SetStatDispList()

Sub SetStatDispList(pos as Integer, cmdCode as Integer,
 enabled as String, disabled as String, checked as String,
 disabledChecked as String)

The command codes you specify must not conflict with command codes that Oracle Power
Objects uses for other items (for example, menu commands and toolbar buttons). To avoid
conflicts, you should define each command code by adding a different value to the constant
Cmd_FirstUserCommand . Doing so also ensures that your command codes will not conflict
with the current or any future version of Oracle Power Objects.

For example, the following method code defines a set of constants for items in a status panel:

CONST Cmd_StatusMessagePanel = Cmd_FirstUserCommand + 100
CONST Cmd_InsertModePanel = Cmd_FirstUserCommand + 101
CONST Cmd_SystemTimePanel = Cmd_FirstUserCommand + 102

The following method code uses the constant Cmd_InsertModePanel to define the
command code for an “Insert Mode” status panel:

slnMailForm.SetStatDispList(3, Cmd_InsertModePanel, "INS", &
 "OVR", NULL, NULL)

Once you have designated a panel for automatic update, you set the status of the panel by adding
method code to the TestCommand() method. You can add method code either to the form or
report object with which the status line is associated or to the application object. Adding method
code to the application object allows you to update panels in a centralized location—for example,
your method code can respond the same way to panels on two different status lines.

Oracle Power Objects calls TestCommand() at regular intervals when it is not performing any
other actions (it is usually called several times each second). TestCommand() is actually called
once for each panel in the status line, each time with the command code of a different panel as the
argument to the method. The return value of TestCommand() determines the status of the panel
(and thus the text that the panel displays).

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.41

You specify the return value of TestCommand() using a predefined symbolic constant. The
following table summarizes the possible return values for TestCommand():

If you do not explicitly set the return value of TestCommand(), the default return value is equal to
zero. A return value of zero prompts Oracle Power Objects to check internally whether it handles
the command—if it does not handle the command, it disables the command (equivalent to
returning TestCommand_Disabled).

Method code added to TestCommand() generally takes the form of a SELECT CASE statement.
Each command code to be handled is a separate case in the statement.

For example, the following method code determines the status of two status panels identified by the
constants Cmd_InsertModePanel and Cmd_SystemTimePanel . A global variable
gInsertMode keeps track of a text editing mode (“Insert” or “Overwrite”).

CONST Cmd_InsertModePanel = Cmd_FirstUserCommand + 101
CONST Cmd_SystemTimePanel = Cmd_FirstUserCommand + 102
GLOBAL gInsertMode AS Integer
GLOBAL gSystemTime AS String
GLOBAL gSystemTimeOld AS String

gInsertMode = TRUE 'Initialize Insert/Overwrite mode

SELECT CASE cmdCode
 CASE Cmd_InsertModePanel
 IF gInsertMode THEN
 TestCommand = TestCommand_Enabled
 ELSE
 TestCommand = TestCommand_Disabled
 END IF

Constant Meaning

TestCommand_Enabled The panel displays the “enabled” text string specified in
SetStatDispList().

TestCommand_Checked The panel displays the “checked” text string specified in
SetStatDispList().

TestCommand_Disabled The panel displays the “disabled” text string specified in
SetStatDispList().

TestCommand_Disabled_Checked The panel displays the “disabled and checked” text string
specified in SetStatDispList().

(Declarations)

Sub Initialize()

Function TestCommand(cmdCode as Integer) as Long

14.42

 CASE Cmd_SystemTimePanel
 gSystemTime = FORMAT(NOW(), "H:NN:SS AMPM")
 IF gSystemTime <> gSystemTimeOld THEN
 frmMail.GetStatusLine().SetStatDispList(4, &
 Cmd_SystemTimePanel, gSystemTime, NULL, &
 NULL, NULL)
 gSystemTimeOld = gSystemTime
 END IF
 TestCommand = TestCommand_Enabled
END SELECT

The TestCommand() method is also where you specify the status of menu items and toolbar
buttons, as described earlier in this chapter.

Disabling the Display of Summary Help

You can disable the automatic display of Summary help in the Summary panel by setting the
HelpTextVisible property of the status line to False, as shown in the following method code:

slnMailForm.HelpTextVisible = False

When you disable the automatic display of Summary help, you can use the Summary panel like any
other status line panel (however, you cannot delete it). You can re-enable the display of Summary
help by setting HelpTextVisible to True again.

Example: Creating a Status Line

This section provides a complete example of creating a status line in an application. The method
code listed below creates a status line containing panels that show summary help, a status message,
an Insert/Overwrite mode indicator, and the current system time. This status line appears as shown
in the following diagram:

The following method code appears in the (Declarations) section of the application:

'Declare constants for status line panels
CONST Cmd_StatusMessagePanel = Cmd_FirstUserCommand + 100
CONST Cmd_InsertModePanel = Cmd_FirstUserCommand + 101
CONST Cmd_SystemTimePanel = Cmd_FirstUserCommand + 102
GLOBAL gNewMailAlert AS Integer
GLOBAL gInsertMode AS Integer
GLOBAL gSystemTime AS String
GLOBAL gSystemTimeOld AS String

(Declarations)

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.43

The following method code appears in the Initialize() method of the application:

gNewMailAlert = TRUE 'Initialize New Mail Alert status
gInsertMode = TRUE 'Initialize Insert/Overwrite mode

The following method code appears in the InitializeWindow() method of the form “frmMail”:

'Declare variable to hold status line object
DIM slnMailForm AS Object

'Create the status line object
slnMailForm = NEW StatusLine

'Add panels to status line
slnMailForm.InsertStatusPanel(2, 300, 100)
slnMailForm.InsertStatusPanel(3, 80, 3)
slnMailForm.SetStatDispList(3, Cmd_InsertModePanel, "INS", &
 "OVR", NULL, NULL)
slnMailForm.InsertStatusPanel(4, 80, 12)
gSystemTime = FORMAT(NOW(), "H:NN:SS AMPM")
gSystemTimeOld = gSystemTime
slnMailForm.SetStatDispList(4, Cmd_SystemTimePanel, &
 gSystemTime, NULL, NULL, NULL)

'Associate the status line object with the form
frmMail.SetStatusLine(slnMailForm)

The following method code appears in the TestCommand() method of the form “frmMail”:

SELECT CASE cmdCode
 CASE Cmd_InsertModePanel
 IF gInsertMode THEN
 TestCommand = TestCommand_Enabled
 ELSE
 TestCommand = TestCommand_Disabled
 END IF
 CASE Cmd_SystemTimePanel
 gSystemTime = FORMAT(NOW(), "H:NN:SS AMPM")
 IF gSystemTime <> gSystemTimeOld THEN
 frmMail.GetStatusLine().SetStatDispList(4, &
 Cmd_SystemTimePanel, gSystemTime, NULL, &
 NULL, NULL)
 gSystemTimeOld = gSystemTime

Sub Initialize()

Sub InitializeWindow()

Function TestCommand(cmdCode as Integer) as Long

14.44

 END IF
 TestCommand = TestCommand_Enabled
END SELECT

The following method code appears in the DoCommand() method of the form “frmMail”:

SELECT CASE cmdCode
 CASE Cmd_NewMailAlert
 gNewMailAlert = NOT(gNewMailAlert)
 frmMail.GetStatusLine.SetStatusPanelMsg(2, &
 IIF(gNewMailAlert, "New Mail Alert Enabled", &
 "New Mail Alert Disabled"))
 DoCommand = TRUE
 CASE Cmd_DeleteMessage
 Self.DeleteMessage(lstMessageList.value)
 frmMail.GetStatusLine().SetStatusPanelMsg(2, &
 "Message Deleted")
 DoCommand = TRUE
END SELECT

Properties and Methods

This section lists all of the properties and methods you use to develop menu bars, toolbars, and
status lines.

Menu-Related Properties and Methods

Methods of Menu Bar Objects

Function DoCommand(cmdCode as Integer) as Long

Method Description

AppendMenu() Appends a menu to the end of the menu bar. The menu is inserted
before any system default menus that traditionally appear at the end of
the menu bar (such as the Help menu in Windows).

ClearMenuBar() Removes all menus from the menu bar. However, the menu objects are
not deleted from the system. You can delete menu objects with the
Oracle Basic DELETE statement or with the DeleteAllMenus()
method.

DeleteAllMenus() Removes all menus from the menu bar and deletes the menu objects.

GetMenu() Returns a reference to a specified menu object in the menu bar.

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.45

Properties of Menu Objects

Methods of Menu Objects

GetMenuCount() Returns a count of all menus in the menu bar.

InsertMenu() Inserts a menu at a specified position in the menu bar.

RemoveMenu() Removes a menu from a specified position in the menu bar. However,
the menu object is not deleted. You can delete menu objects with the
Oracle Basic DELETE statement or with the DeleteAllMenus()
method.

SysDefaultMenuBar() Initializes a menu bar with the system default menus. This method
deletes any existing menus before initializing the menu bar.

Property Description

Label The menu label displayed in the menu bar. To mark a letter of the label
as a menu shortcut in Windows, prefix the letter with an ampersand
(&).

Method Description

AppendMenuItem() Appends an item to the end of the menu. You must specify the item’s
label, a command code, a help context, and a keyboard equivalent.

DeleteMenuItem() Deletes an item from a specified position in the menu.

GetItemCount() Returns a count of all items in the menu, including separator lines.

GetMenuItem() Returns a specified piece of information about a specified item in the
menu. You can get the item’s label, the command code, the help
context, or the keyboard equivalent.

InsertMenuItem() Inserts an item at a specified position in the menu. You must specify the
item’s position, label, a command code, a help context, and a keyboard
equivalent.

SetMenuItem() Modifies a specified piece of information about a specified item in the
menu. You can set the item’s label, the command code, the help context,
or the keyboard equivalent.

Method Description

14.46

Methods of Form and Report Objects

Methods of Application Objects

Toolbar-Related Properties and Methods

Methods of Toolbar Objects

Method Description

InitializeWindow() Called when a form or report is first displayed. You generally customize
a window’s menu bar, toolbar, and status line using method code in
InitializeWindow().

DefaultMenuBar() Initializes a menu bar with the system default menus and application
default menus appropriate to the form or report. This method deletes
any existing menus before initializing the menu bar.

DoCommand() Called when the user selects an item from a menu or clicks on a toolbar
button. The command code of the item or button is passed as the
argument to DoCommand().

GetMenuBar() Returns a reference to the menu bar associated with the form or report.

SetMenuBar() Associates a menu bar with the form or report.

TestCommand() Called to determine the status of menu items, toolbar buttons, and
status panels. For menus, called for each item in a menu when the user
“pulls down” the menu to examine the items. Menu items can appear
enabled, disabled, checked, and unchecked.

Method Description

DoCommand() Called when the user selects an item from a menu or clicks on a toolbar
button. The command code of the item or button is passed as the
argument to DoCommand().

TestCommand() Called to determine the status of menu items, toolbar buttons, and
status panels. For menus, called for each item in a menu when the user
“pulls down” the menu to examine the items. Menu items can appear
enabled, disabled, checked, and unchecked.

Method Description

ClearToolbar() Deletes all buttons from the toolbar.

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.47

Methods of Form and Report Objects

TBAppendButton() Appends a button to the end of the toolbar. You must specify the
button’s command code, a bitmap, a button style, and a help context.

TBDeleteButton() Deletes a button from a specified position in the toolbar.

TBGetButton() Returns a specified piece of information about a specified button in the
toolbar. You can get the button’s command code, the bitmap, the
button style, or the help context.

TBGetCount() Returns a count of all buttons in the toolbar, including separator
buttons.

TBInsertButton() Inserts a button at a specified position in the toolbar. You must specify
the button’s position, command code, a bitmap, a button style, and a
help context.

TBSetButton() Modifies a specified piece of information about a specified button in the
toolbar. You can set the button’s command code, the bitmap, the button
style, or the help context.

Method Description

InitializeWindow() Called when a form or report is first displayed. You generally customize
a window’s menu bar, toolbar, and status line using method code in
InitializeWindow().

DefaultToolbar() Initializes a toolbar with the application default buttons appropriate to
the form or report. This method deletes any existing buttons before
initializing the toolbar.

DoCommand() Called when the user selects an item from a menu or clicks on a toolbar
button. The command code of the item or button is passed as the
argument to DoCommand().

GetToolbar() Returns a reference to the toolbar associated with a form or report.

SetToolbar() Associates a toolbar with the form or report.

TestCommand() Called to determine the status of menu items, toolbar buttons, and
status panels. For toolbars, called for each button at regular intervals
when Oracle Power Objects is not performing any other actions. Also
called when the user clicks a toolbar button. Toolbar buttons can appear
enabled, disabled, toggled, and untoggled.

Method Description

14.48

Methods of Application Objects

Status Line-Related Properties and Methods

Properties of Status Line Objects

Methods of Status Line Objects

Method Description

DoCommand() Called when the user selects an item from a menu or clicks on a toolbar
button. The command code of the item or button is passed as the
argument to DoCommand().

TestCommand() Called to determine the status of menu items, toolbar buttons, and
status panels. For toolbars, called for each button at regular intervals
when Oracle Power Objects is not performing any other actions. Also
called when the user clicks a toolbar button. Toolbar buttons can appear
enabled, disabled, toggled, and untoggled.

Property Description

HelpTextVisible Controls whether the system automatically displays Summary help
information in the Summary panel. HelpTextVisible is True by default;
to disable the display of Summary help, set HelpTextVisible to False.

Method Description

ClearStatusLine() Deletes all panels from the status line except the Summary panel,
which cannot be deleted.

DeleteStatusPanel() Deletes a panel from a specified position in the status line. The
Summary panel cannot be deleted.

GetStatCount() Returns a count of all panels in the status line.

GetStatPanel() Returns a specified piece of information about a specified panel in the
status line. You can get the text currently displayed in the panel, the
panel’s width, the command code, or the message strings associated
with the panel’s status.

InsertStatusPanel() Inserts a panel at a specified position in the status line. You must
specify the panel’s width and the maximum message length that can be
displayed in the panel.

M E N U S , TO O L B A R S , A N D S T A T U S L I N E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

14.49

Methods of Form and Report Objects

Methods of Application Objects

SetStatDispList() Designates a panel to be updated automatically. You must specify the
panel’s command code and the message strings associated with the
panel’s status.

SetStatusPanelMsg() Sets the text displayed in a specified panel of the status line.

SysDefaultStatusLine() Initializes a status line with the system default panels. This method
deletes any existing panels before initializing the status line.

Method Description

InitializeWindow() Called when a form or report is first displayed. You generally customize
a window’s menu bar, toolbar, and status line using method code in
InitializeWindow().

GetStatusLine() Returns a reference to the status line associated with the form or report.

SetStatusLine() Associates a status line with the form or report.

TestCommand() Called to determine the status of menu items, toolbar buttons, and
status panels. For status lines, called at regular intervals for each panel
that has been designated to be updated automatically. Setting the status
of the panel changes the text displayed in the panel.

Method Description

TestCommand() Called to determine the status of menu items, toolbar buttons, and
status panels. For status lines, called at regular intervals for each panel
that has been designated to be updated automatically. Setting the status
of the panel changes the text displayed in the panel.

Method Description

14.50

15
O r a c l e P o w e r O b j e c t s
E x t e n s i o n s 1 5

This chapter covers the following topics:

Overview . 15.2
OLE Data Objects and Controls . 15.2
Dynamic Link Libraries . 15.10
OCX Controls . 15.14

15.2

Overview

Oracle Power Objects is designed to be extensible, meaning that you can add custom controls,
shared data objects, and procedures defined outside Oracle Power Objects. In Microsoft Windows,
you can add three types of extension:

■ Object linking and embedding (OLE) shared data objects
■ Procedures defined in dynamic link libraries (DLLs), including the Windows DLLs.
■ OCX custom controls

This chapter summarize techniques for working with these extensions.

OLE Data Objects and Controls

Object Linking and Embedding (OLE) is a technology for sharing information across applications.
In this technology, one application provides the interface for editing this information, while the
data is actually stored in a second application. For example, you can display a Microsoft Word
document or an Excel spreadsheet in an Oracle Power Objects application. If the user chooses to
edit this object, the application displays the user interface from Word or Excel to edit the document
or spreadsheet.

OLE features in Oracle Power Objects are available on the Microsoft Windows platform only. To
use the OLE capabilities of Oracle Power Objects, you must have the appropriate OLE dynamic
link libraries (DLLs) installed on your system. These DLLs are provided with Oracle Power
Objects, and can be added to your WINDOWS\SYSTEM directory when you install Oracle Power
Objects. The versions of these OLE DLLs provided with Oracle Power Objects are compatible with

OCX custom controls, described in the section “Dynamic Link Libraries” on page 15.10. The
Oracle Power Objects Installer explains how to install these DLLs, and which versions of the
equivalent DLLs they might overwrite.

O R A C L E P O W E R O B J E C T S E X T E N S I O N S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

15.3

OLE in Oracle Power Objects

In Oracle Power Objects, an OLE control is a bindable control used to display an OLE data object.
You can store in a table OLE data from the control, including graphics, animation, spreadsheets,
word processing documents, charts, and a wide variety of other data.

Before you begin using OLE controls in your application, you should understand the special
features of OLE technology in general. This chapter first summarizes some of the basic features of
OLE technology, and then describes how to use these capabilities in an Oracle Power Objects
application.

An Overview of OLE

In OLE terminology, the client application is where data appear, while the server application
provides the interface for editing these data. For example, an Oracle Power Objects application in
which an Excel spreadsheet appears is the client, while Microsoft Excel itself is the server. This use
of the terms client and server is not analogous to the client and server components of a database
application.

15.4

The server application must be installed on the user’s system to be used as an interface for editing.
Without the server application, the object may display normally, but the user cannot edit it. For
example, if you add a Paintbrush picture to an application, the user can see the graphic whether or
not Paintbrush is installed on that client system. However, if Paintbrush is not installed, the user
cannot edit the picture.

In some cases, the user can neither view nor edit the OLE data object if the server application is not
installed. For example, in the case of QuickTime movies, the user cannot view a movie unless a
QuickTime viewer is installed on the client. Whether or not the user can view the data object
differs from one OLE object to another.

Linking and Embedding

When an OLE object appears in an application, it can either be linked or embedded.

 A linked object is stored in an operating system file, using the standard file format for that kind of
object. The Oracle Power Objects application stores only a reference to the linked object, including
the filename and path.

For example, a linked Microsoft Word document appearing in an Oracle Power Objects application
is stored in a Word .DOC file somewhere in the operating system. However, you can make changes
to the linked OLE object through either the client or server application.

Note: If you change the name or location of a linked file, Oracle Power Objects will no longer be
able to find it or display its data.

In contrast, the data for embedded objects are stored in the client application, not the operating
system. For example, the data for an embedded Microsoft Word document would be stored in the
Oracle Power Objects application where the document appears. You can make temporary changes
to an embedded object, but these changes are undone when you close the client application. For
example, if the user edits a Word document embedded in an Oracle Power Objects application, the
changes will last only until the user closes the application. This behavior is consistent with other
features of Oracle Power Objects: unless the user saves changes to a database or file, then the
changes are lost when the application closes down.

The important exception to this rule is embedded OLE objects that appear in a bound OLE
control. To save an OLE data object in a table, the OLE object must be embedded, not linked. In
this case, the user can save the edited OLE object to a table, and the changes will not be discarded
when the user closes the application.

O R A C L E P O W E R O B J E C T S E X T E N S I O N S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

15.5

Classes of OLE Objects

OLE data objects are formatted for a particular server application. Each type of data format defines
a separate class of OLE data objects. For example, Excel spreadsheets are an example of a class of
OLE data objects, designed to be viewed and edited through Excel as a server application. Each
class of OLE data objects stores information about the sever application that created it.

Several classes of OLE objects are commonly found in client systems running Microsoft Windows,
such as:

■ Microsoft Word for Windows documents
■ Microsoft Excel spreadsheets
■ Microsoft Paintbrush pictures
■ Sound (.WAV) files
■ QuickTime movies

When you install a new application that can act as an OLE server, Microsoft Windows adds this
application to its list of OLE object classes. When you create a new OLE data object, the name of
the application then appears in the special dialog for specifying the class of OLE data objects.

OLE Controls

To allow the user to view and edit an OLE data object, you must display it in an OLE control. You
create an OLE control in the same fashion as you create other controls, except that you can launch
the server application from the OLE control. You can then view the OLE data object stored in the
OLE control through the server application’s interface.

OLE controls in Oracle Power Objects are bindable, so you can save the contents of the OLE
control in a table. You can specify the class of OLE data object displayed in the OLE control when
you create the control. However, the control can display other classes of OLE data objects queried
from the same column in a record source. All columns containing OLE data objects must use the
LONG RAW datatype.

15.6

To create an unbound embedded OLE object through the Object palette:

1 Choose the OLE Control tool from the Object palette.

2 Draw the new control on a container.

3 In the dialog that appears, select the OLE object class.

This dialog displays an entry for every OLE server application that has been installed on the client
system. You must have the Create New option selected at this point.

4 Once you have selected the OLE object class, click OK.

The new OLE control now appears within the container, and the interface to the server application
appears.

New OLE control

O R A C L E P O W E R O B J E C T S E X T E N S I O N S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

15.7

5 Edit the new OLE data object, and save it through the server application.

Server applications differ on how to perform this step. In some cases, you need to import or paste
the contents of a file into the server application before you can edit it.

6 Choose File-Update or an equivalent menu command to save the new OLE data object and exit
the server application.

Frequently, a dialog asking if you want to return to Oracle Power Objects and update the OLE data
object appears.

7 Click the OK button to return to Oracle Power Objects.

Alternatively, you can paste an OLE object into an Oracle Power Objects application. A new OLE
control appears by default for the OLE data object.

To create an unbound embedded OLE object by pasting it into Oracle

Power Objects:

1 From the server application, copy information for a new OLE object to the Clipboard and choose
the Edit-Paste Special menu command

-or-

Choose the Edit-Insert Object menu command.

The server application for the OLE data object then appears.

If you were pasting the OLE object, the data appears in the server application. Otherwise, you can
enter the contents of the new OLE data object through the server application.

2 Choose File-Update or an equivalent menu command to save the new OLE data object and exit
the server application.

A dialog asking if you want to return to Oracle Power Objects and update the OLE data object
appears.

3 Click the OK button to return to Oracle Power Objects.

To create a linked OLE object:

1 Choose the OLE Control tool from the Object palette.

2 Draw the new control on a container.

3 In the dialog that then appears, select the Create from File option.

4 Click the Browse... button to view a directory of files, and select the file to which the OLE control
will be linked.

Alternatively, you can enter the filename and path in the window appearing next to the Browse...
button.

15.8

5 Check the Linked check box on the dialog.

6 Click OK.

The new OLE control displays data read from the linked file.

To run or edit the contents of an OLE control:

1 Double-click on the OLE control to launch the server application.

If you edit the object, an additional step is required when you are finished.

2 Choose the File-Update menu command or its equivalent from the server application to update the
OLE data object and return to the Oracle Power Objects application.

Binding OLE Controls

OLE controls can be bound to columns with the LONG RAW datatype on Oracle7 and Blaze, and
IMAGE on SQL Server. Bound OLE controls must be embedded, not linked.

For more information

on binding, see Chap-

ter 17, “Binding a

Container to a Record

Source”.

You use the same techniques for binding OLE controls that you use when you bind any other kind
of bindable control.

To bind an OLE control:

1 After creating the new control, enter the name of a column from the container’s record source in
the DataSource property of the control

-or-

With the Table or View Designer window open, select the desired column and drag it onto the
OLE control.

OLE Data Objects and Files

Linked OLE objects are always stored in files, using the file format appropriate to the class of data.
For example, when you save a linked Microsoft Word document in an Oracle Power Objects
application, the document is stored in a .DOC file in the operating system. The user can edit the
file containing the data through the server application, without having to run the Oracle Power
Objects application in which there is a link to the file.

Embedded objects behave differently. You can write the contents of an embedded OLE data object
to a file, but they are stored in a slightly different format than “native” files created in the server
application. However, you can read from and write to these files through Oracle Power Objects,
using the server application’s interface.

O R A C L E P O W E R O B J E C T S E X T E N S I O N S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

15.9

Files containing OLE data objects can store only one object. If you write to an existing file, you
overwrite its contents with the new OLE data object.

OLE controls have two methods that control file input and output for embedded OLE data
objects:

Both methods take one String argument, which specifies the path and filename of the file
containing the data object.

OLE Data Objects and the Clipboard

Three other methods let you copy OLE data objects between an OLE control and the Clipboard.

For more information on these methods, consult the online help.

Restrictions on OLE-Enabled Applications

You should note that if you create an application that uses OLE controls, and you then try to
modify or run the application on a Macintosh or a Windows system that does not have the proper
OLE DLLs installed, then the application will not open or run.

Method Description

WriteColToFile() Writes data from the OLE control to the file. The contents of the file
cannot be read from the server application. However, you can read the
contents of the file into an OLE control using the ReadColFromFile()
method.

ReadColFromFile() Reads data from the file to the OLE control. The OLE data object in the
file must have been written to the file with the WriteColToFile() method.

Method Description

CanPasteFromClipboard() Returns True if an OLE data object is in the Clipboard, or False if
there is not.

PasteFromClipboard() Pastes an OLE data object from the clipboard into the OLE
control.

CopyToClipboard() Copies the OLE data object stored in the OLE control to the
clipboard.

15.10

Dynamic Link Libraries

A dynamic link library (DLL) is a file object that stores procedures called from other applications.
DLLs are available only on the Microsoft Windows platform.

You can use two kinds of DLLs: your own, and the Windows DLLs included with the operating
system. By writing C code and compiling it, you define your own DLL. The basic system library
files behind Microsoft Windows include a wide array of predefined procedures that create and
manipulate objects and data in the Windows environment.

To use any DLL, you must declare it first in the (Declarations) section of your application’s
Property sheet, specifying the following DLL components:

■ The name of the procedure (used when calling it).
■ The type of the procedure (subroutine or function). If the procedure is a function, it has a

return value, which must be declared.
■ The DLL file in which the procedure is defined. This file must be in the same directory as the

Oracle Power Objects application, or in a directory included in the operating system’s path.
Alternatively, you can specify the path with the filename.

For more information

about arguments,

see the section

“Passing Arguments

to a Procedure” on

page 15.13.

■ The arguments passed to the procedure, including their datatype, as well as whether the
argument is passed by value or by reference.

■ For functions, the datatype of the return value.

Once you make the declaration, you can then call the procedure from any part of an Oracle Power
Objects application. This section summarizes the techniques for declaring and calling DLL
procedures.

This section does not instruct you on the methods for writing and compiling DLLs. For this
information, consult a C programmer’s manual.

Declaring DLL Procedures

All DLL procedures used within an application must be declared at the application level, even if
they are used only within a single form or report. All such declarations must occur in the
(Declarations) section of the application’s Property sheet.

Note: The (Declarations) section appears only in the Property sheet of an application object.

O R A C L E P O W E R O B J E C T S E X T E N S I O N S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

15.11

To declare a DLL procedure, use the following syntax:

DECLARE type name LIB " library " (arguments) AS return_type

Sample Declarations

Here is a sample declaration for a procedure:

DECLARE FUNCTION MyProc LIB "MYLIB.DLL" (ByVal Arg1 As &
 Integer) AS Long

This declaration identifies a procedure MyProc as a function defined in the file MYLIB.DLL. This
function takes a single argument, passed to the procedure by value, and returns a value of the Long
datatype. The ampersand (&) is a line concatenation character used only for displaying code within
a limited space; the symbol is necessary only if the procedure declaration extends over multiple lines
in the Property sheet’s code window.

The following declaration identifies a Windows API procedure used to play sound (.WAV) files.

Declare Function sndPlaySound Lib "MMSYSTEM.DLL" &
 (ByVal x$, ByVal Y%) As Integer

Item Description

type The type of procedure, either SUB for subroutines or FUNCTION for
functions.

name The name of the procedure as it appears in the library.

library The filename of the DLL. Frequently, the file has the extension .DLL,
though in the case of the Windows API, you do not enter a .DLL extension.

(For more information, see the section “The Windows API” on page 15.13)
If the DLL is not in the application directory or in the path, you must enter
the DLL’s path as part of the filename.

arguments The arguments passed to the DLL. Each argument must have a declared
datatype. In addition, if you pass the parameter variable for the argument by
value, you must use the ByVal keyword.

return_type The datatype of the return value.

15.12

Once you have declared a DLL procedure, it is global to the application: you can call it from any
object within the application.

Creating Flexibility in DLL Procedures

DLL procedures can be flexible in two ways:

1 The same procedure can take a variable number of arguments.

2 The same argument can accept values of multiple datatypes.

For information

about overloading

method declarations,

see the section

“Overloading

Method Declara-

tions” on page 5.7.

Procedures are commonly defined to accept a fixed number of arguments. If the call to a function
does not include a value for every argument in the argument list, then Oracle Power Objects fails to
make the call, and the application displays an error. However, some procedures can be designed to
treat some arguments as optional. In such cases, you can pass successfully only some of the
arguments in the argument list, without causing an error. For information on writing DLL
procedures with optional arguments, consult a programmer’s manual for the C language. Similarly,
you can “overload” a method, so that it can take a variable number of arguments.

You can also build flexibility into the datatype required for an argument. If you use the As Any
keyword for the datatype, the argument accepts any valid datatype in Oracle Basic. For example,
the following sample declaration indicates that the second argument can accept any datatype:

DECLARE SUB MySub LIB "MYLIB.DLL"(Arg1 As String, Arg2 As
Any)

Calling DLL Procedures

To call a DLL procedure, use the following syntax:

procedure_name(arguments)

O R A C L E P O W E R O B J E C T S E X T E N S I O N S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

15.13

If the procedure is a function, you must also capture the return value in a variable through Oracle
Basic. For example, the following call to a DLL procedure captures a return value in a Long
variable:

DIM vRetVal AS Long
vRetVal = MyProc(100)

Alternatively, you can capture the return value in a property, as shown in this example:

fldDateApplied.Value = MyProc(100)

You can use the CALL statement in Oracle Basic when calling a procedure, but use of this
statement is purely optional.

Passing Arguments to a Procedure

Arguments passed to a procedure can be values (such as 100, “Name”), variables (such as vArg1 ,
vApplyDate), or properties (such as fldUserName.Value).

Unless you use the ByVal keyword when naming the argument in the function declaration, you pass
an argument by reference to the procedure. The value of the variable or property passed by
reference can be changed within the procedure. Only variables and properties can be passed by
reference; all other values must be passed by value.

For example, the following procedure declaration includes a parameter called OldDate that is
passed by value:

DECLARE FUNCTION FixDate LIB "MYLIB.DLL"(OldDate As &
 Date)

When this procedure is called, the argument is supplied through a variable called
vDateApplied . The value of vDateApplied can be changed within the procedure, since this
variable is passed by reference:

fldDateApplied.Value = FixDate(vDateApplied)

When you pass an argument by reference, you pass the memory address of the variable or property,
instead of the value stored in that variable. In contrast, when you pass an argument by value, you
pass the value in that variable. Therefore, you can use this value in the DLL procedure, but you
cannot change the value assigned to the variable. You specify that you pass an argument by value in
the function declaration only, not in the actual call to the function.

The Windows API

Procedures in the Windows Application Programming Interface (API) provide powerful capabilities
for working with objects and data within the Windows environment. Windows includes API
procedures for a wide array of tasks, from allocating memory to displaying images. Descriptions of

(Declarations)

15.14

these procedures are widely available, including both third-party books and Microsoft publications.
For a complete listing of these procedures, including declarations and explanations of each of them,
consult those references.

The Windows API procedures are defined in several libraries, not all of which have the extension
.DLL as part of their filename. When you declare a Windows API procedure, you therefore use the
library file’s name without the extension. The major libraries for Microsoft Windows, as identified
in API procedure declarations, include:

■ USER
■ GDI
■ MMSYSTEM
■ KERNEL

Most declarations of a Windows API procedure will identify one of these libraries for the LIB
section of the declaration.

Other Considerations

As a developer, you do not need to know how the procedure is implemented in a DLL to call it. In
development terminology, the declaration of the procedure provides an interface to the procedure,
by providing the means to call the procedure, pass arguments to it, and capture a return value from
it. You can make effective use of a DLL procedure without knowing the means through which the
procedure interprets the arguments, performs processing, and returns a value.

However, the fact that a DLL is opaque to the developer calling procedures defined in it can be a
disadvantage. DLLs cannot use the object-oriented Oracle Basic language to manipulate objects
within Oracle Power Objects. Other developers working on the same application may find it more
difficult to understand and debug a procedure in a compiled DLL than its equivalent defined
through method code within Oracle Power Objects. Therefore, if there is not a pressing reason
(such as performance) for defining a procedure in a DLL, you should define it through method
code in Oracle Power Objects.

OCX Controls

OLE Control Extension (OCX) controls are custom controls that you can add to Oracle Power
Objects applications, as well as applications created for Visual Basic version 4.0. When you add a
new OCX custom control to Oracle Power Objects, a new button for its drawing tool appears on
the Object palette. You then add a control of this type to a container in the same fashion as you
would add a pushbutton, text field, repeater display, or any other application object appearing on
the Object palette.

O R A C L E P O W E R O B J E C T S E X T E N S I O N S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

15.15

Examples of possible OCX controls include:

■ A spin button control
■ A clock control
■ An animation control

Creating OCX Controls

OCX controls are defined through C code, then compiled into a file that normally has the .OCX
or .DLL extension. Microsoft Corporation has published the API for OCX controls, so that you
can designate components of the OCX as properties and methods. Oracle Power Objects
recognizes these components and interprets them as properties and methods, according to the
following rules:

■ If the name of the OCX feature matches the name of an Oracle Power Objects standard
property or method, then the OCX control’s Property sheet displays these features as standard
properties and methods. In the OCX, you should not define any processing or return value for
a standard method, because Oracle Power Objects already performs default processing when the
method is called (which includes the datatype of the return value). If Oracle Power Objects
interprets the feature as a standard property, then the OCX property should have the same
datatype as the standard property in Oracle Power Objects.

■ If the name of the OCX feature does not match the name of an Oracle Power Objects
standard property or method, then Oracle Power Objects identifies the feature as unique to
that OCX control. If the feature is a property, then you must give it a datatype that Oracle
Power Objects can interpret. If the feature is a method, then you must give it a datatype for the
return value that Oracle Power Objects can interpret. Additionally, you must define the default
processing for the method within the OCX.

OCX control on form

15.16

For a full description of the API for OCX controls, consult an OCX reference manual.

Importing an OCX into Oracle Power Objects

Before you can use an OCX control, you must import it into Oracle Power Objects.

To import an OCX custom control into Oracle Power Objects:

1 In the active Designer window for a form, report, or user-defined class selected, choose the File-
Load OLE Control menu command.

2 In the dialog that appears, select the path and filename of the custom control.

OCX controls generally have the .OCX or .DLL extension in their filenames.

3 Click OK to import the selected OCX.

The new OCX now appears at the bottom of the Object palette.

To add an OCX control to a container:

1 Select a Designer window for a form, report, or user-defined class.

2 Click on the button in the Object palette for the OCX’s drawing tool.

3 Draw the new OCX control on the container by clicking on the approximate location where you
want the control to appear, applying a default size to the OCX.

-or-

Click and drag across the region of the container where you want the control to appear, then release
the mouse button when it has approximately the dimensions you want to give it.

The OCX control is
added to the Object

palette

O R A C L E P O W E R O B J E C T S E X T E N S I O N S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

15.17

OCX Properties and Methods

You can add standard properties and methods to an OCX (for example, Click() and Value), as well
as properties and methods unique to the OCX. In the latter case, the property or method appears
on the Property sheet with a special symbol appearing near its name, designating it as an OCX-
specific property or method.

Some important considerations about OCX-specific properties and methods:

■ You can override the default processing for an OCX-specific method by adding method code to
it. Additionally, you can call the overridden processing with the
Inherited.method_name() statement.

■ OCX-specific methods cannot return object references.
■ OCX controls are not bindable. Even if you add RecordSource and RecSrcSession properties to

an OCX control, Oracle Power Objects will not be able to query records for the control.

OCX controls often have a built-in Property sheet that you can summon by doubleclicking on the
control at design time. These Property sheets display the Name property, as well as any properties
specific to that OCX. If you make changes through this Property sheet, they are reflected in the
standard Oracle Power Objects Property sheet.

OCX Method

OCX Property

15.18

Restrictions on OCX-Enabled Applications

Any application created with an OCX control must include the .DLL or .OCX file with it when
you distribute it.

If you create an application that uses OCX controls, and you then try to modify or run the
application on a Macintosh or a Windows system that does not have the proper OLE DLLs
installed, then the application will not open or run.

16
C o m p i l i n g t h e E x e c u t a b l e
A p p l i c a t i o n 1 6

This chapter covers the following topics:

Overview . 16.2
Generating Application Files and Executables . 16.3
Creating Run-Time Executable Files . 16.4
Creating Standalone Executable Files . 16.4

16.2

Overview

Compiling your application makes it execute more efficiently. Oracle Power Objects provides two
compilation techniques. One technique produces a file that requires the Oracle Power Objects
Run-Time application (called PWRRUN.EXE on Windows) to run it. The other technique
produces a standalone file that integrates your application with that run-time executable, enabling
standalone execution on comparable machines whether Oracle Power Objects is installed or not.

Compiling for More Efficient Execution

Once your application is fully tested, you can compile it to provide more efficient execution. The
result is a file that can be run directly by the Oracle Power Objects run-time executable. The
compiled file uses the same filename as the source, with an extension of .PO rather than .POA on
Windows. For example, the compiled version of MYAPP.POA is MYAPP.PO.

The Oracle Power Objects Run-Time application coordinates the execution, on any Macintosh or
Windows machine, of all the Oracle Power Objects features built into your application. All the
features it relies on are available, including session/database access, table/row/column control and
manipulation, and the user interface you created, without requiring additional resources from the
environment or the operating system. However, the Oracle Power Objects Run-Time application
does not include the database driver files (.POD files) required for database access. You must
include any required .POD files along with the Oracle Power Objects Run-Time application.

Compiling for Standalone Execution

You can also create a self-contained, standalone executable that combines the Oracle Power Objects
run-time executable with your application (this file has the extension .EXE on Windows). Being
self-contained, this file can run directly when launched on any Macintosh or Windows machine
(corresponding to the machine you compiled on), without the need to launch Oracle Power
Objects first.

Creating a standalone executable also enables you to distribute your application widely. Your users
need not have Oracle Power Objects or the Oracle Power Objects Run-Time application. However,
the standalone executable does not include the database driver files (.POD files) required for
database access. You must distribute any required .POD files along with your executable file.

C O M P I L I N G T H E E X E C U T A B L E A P P L I C A T I O N O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

16.3

Generating Application Files and Executables

You can use the toolbar or the Run menu to compile your application.

If you click the Generate Application button on the toolbar, the following dialog appears:

Clicking OK while the “Separate application file” radio button is selected causes Oracle Power
Objects to present a dialog enabling you to name the run-time executable file you want created,
such as MYAPP.PO.

If you click the “Standalone executable” radio button instead, Oracle Power Objects presents a
dialog enabling you to name the executable file you want created, such as MYAPP.EXE. On the
Macintosh, a standalone executable file is given a file type of APPL.

If you use the Run menu instead of the toolbar, choosing the Run-Compile Application menu
command displays the dialog for creating run-time executable (.PO) files, and choosing Run-
Generate Executable displays the dialog for creating standalone executable (.EXE) files.

Generated applications automatically include any bitmaps, user-defined classes, and Database
Session objects referenced by the application. Such references are in Oracle Basic scripts, referenced
by name such as lib_name.bitmap_name , where lib_name is the name of the library.

16.4

Creating Run-Time Executable Files

The dialog for creating run-time executable (.PO) files follows:

You can change the name, drive, and directory. When you click OK, Oracle Power Objects creates
your run-time executable file.

When you later run the Oracle Power Objects Run-Time application, it searches the current
directory for run-time executable files. When you choose one, Oracle Power Objects runs the
specified application.

Creating Standalone Executable Files

The dialog for creating standalone executable (.EXE) files follows:

C O M P I L I N G T H E E X E C U T A B L E A P P L I C A T I O N O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

16.5

Standalone executable files can be run anywhere other executable files can be run, such as from the
DOS prompt or through the Windows File-Run command. Similarly, executable applications on
the Macintosh can be launched directly without first launching Oracle Power Objects.

16.6

17
B i n d i n g a C o n t a i n e r t o a
R e c o r d S o u r c e 1 7

This chapter covers the following topics:

Overview . 17.2
Binding Objects Graphically. 17.4
Binding Objects Manually by Setting Properties . 17.8
Recordset Objects and Bound Containers . 17.9

17.2

Overview

Binding is the primary development technique for connecting application objects (containers and
controls) to database objects (tables and views). Once an application object has been bound to a
database object, the application object displays at run time data derived from the table or view.

For example, if you bind a form to a table, the form displays values from the rows of the table, as
shown in the following diagram:

Binding involves the following steps:

1 Binding a container (such as a form or report) to a record source (a table or view)

2 Binding controls within the container to columns of the record source

3 Determining how rows are derived from the record source by modifying properties of the bound
container

This chapter first describes two ways of binding application objects to database objects:

■ Graphically, using drag-and-drop functionality to automate the binding process.
■ Manually, by setting the values of several key properties of bound containers and controls.

The chapter then describes recordsets, the in-memory objects that mediate between bound
application objects and record source database objects.

Text field bound
to DEPTNO column

Form bound to
DEPT table

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.3

Relationship Between Containers and Record Sources

A container that can be bound to a record source is said to be bindable. For a container to be
bindable, it must have a set of properties that define its relationship to the record source. The most

important of these properties are described in the section “Binding Objects Manually by Setting

Properties” on page 17.8. A complete list of container properties related to binding is provided in

the section “Properties and Methods of Recordsets and Bindable Objects” on page 17.31.

The following types of containers are bindable:

■ Embedded forms
■ Forms
■ Repeater displays
■ Reports
■ User-defined classes

For information on

master-detail rela-

tionships, see Chap-

ter 18, “Defining

Master-Detail Rela-

tionships”.

The location of a bound container is not important—it operates the same way whether it is
contained within bindable or nonbindable containers. If a bound container is located inside
another bound container, each container operates independently unless the containers are
associated. To associate bound containers, you can establish a master-detail relationship.

Alternatively, you can use a shared recordset, as described in the section “Shared Recordsets” on page

17.19.

A container can be bound to only one record source at a time. For example, you cannot bind the
same form to two tables at once, although other containers on the form (such as repeater displays or
embedded forms) can be bound to other tables or views. To display information from multiple
tables or views in the same container, you can use the following techniques:

For information

about views, see the

section “Views” on

page 8.16.

For information

about translation

lists, see the section

“List Controls” on

page 10.15.

For information

about SQLLOOKUP,

see the section “The

SQLLOOKUP Func-

tion” on page 9.21.

■ Create a view that relates the objects and use the view as the record source. This technique
enables you to present complex data from several tables (however, the data in multi-table views
is read-only).

■ Use a translation list to display information from detail tables. This technique enables you to
display read-write values in scrolling lists, popup lists, and combo boxes.

■ Use the SQLLOOKUP function in the DataSource property of a field to display information
from a detail table. This technique enables you to display read-only values in derived fields.

Relationship Between Controls and Record Sources

A control that can be bound to a column of a record source is said to be bindable. For a control to
be bindable, it must have a DataSource property to define the column from which it derives its
value. A control cannot be bound unless it is contained in a bound container.

17.4

The following types of controls are bindable:

■ Chart controls
■ Check boxes
■ Combo Boxes
■ List Boxes
■ OLE controls
■ Picture controls
■ Popup Lists
■ Radio button frames
■ Radio buttons *
■ Text fields

* Radio button objects, while technically bindable, are not normally bound directly to a column.
Instead, the radio button frame object containing a group of radio buttons is bound to the column.

When a control is bound to a column, the control’s Value property is linked to the values in the
column. As the user scrolls through records (for example, using a scrollbar control), the Value
property of the control is automatically set to the column value for the displayed row.

Other Ways to Connect Objects

Aside from binding, two additional techniques allow you to connect application objects with
database objects:

For information

about SQLLOOKUP

and EXEC SQL, see

Chapter 9, “Struc-

tured Query Lan-

guage (SQL)”.

■ Use the SQLLOOKUP function to derive a single value from a database object.
■ Use the EXEC SQL command to execute any valid SQL command and transfer information

between the database and the interface.

Binding Objects Graphically

The simplest way to bind objects is to use drag-and-drop procedures to establish the relationship.
This involves dragging elements from a database window (a Database Session window, Table Editor
window, or View editor window) into a Designer window (a Form Designer window, Report
Designer window, or Class Designer window).

There are two ways to use drag-and-drop to bind objects:

■ Drag a table, view, or column onto a container. Doing so binds the container to the record
source and automatically creates controls that represent columns from the record source.

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.5

■ Drag a column onto a control. Doing so binds the control to the column and automatically
binds the control’s container to the column’s record source. Some properties of the control
(such as the Name and Datatype properties) are automatically updated.

These techniques are described below.

To bind a container to a table or view:

1 Open the Designer window of the form, report, or class of the container to be bound.

2 Without closing the designer window, open the Database Session window containing the record
source you want to bind to.

To open the database session window, activate the Main window by choosing the Window-Main
menu command, then double-click on the session icon.

3 If the session is not currently active, double-click on the Connector control to activate the session.

4 Click on the icon representing the table or view and drag the icon from the Database Session
window directly onto the container.

Drag the table icon
from the Database
Session window...

...onto the container
to be bound.

17.6

To bind a container to individual columns:

1 Open the Designer window of the form, report, or class of the container to be bound.

2 Without closing the designer window, open the Database Session window containing the record
source you want to bind to.

To open the database session window, activate the Main window by choosing the Window-Main
menu command, then double-click on the session icon.

3 Select the database columns you want by holding down the Control key (Command on
Macintosh) and clicking on the Row Selector button next to the spreadsheet row representing each
database column.

4 Click on one of the selected row selector buttons and drag the spreadsheet rows from the Database
Session window directly onto the container.

To bind a column to an existing control:

1 Open the Designer window of the form, report, or class of the control to be bound.

2 Without closing the designer window, open the Database Session window containing the record
source you want to bind to.

To open the database session window, activate the Main window by choosing the Window-Main
menu command, then double-click on the session icon.

Click on a row
selector button...

...and drag the rows
onto the container to

be bound.

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.7

3 Select the database column you want by clicking on the Row Selector button next to the
spreadsheet row representing the column.

4 Click on the row selector button and drag the spreadsheet row from the Database Session window
directly onto the control.

When you bind database objects graphically, the following container properties are automatically
set:

■ The RecordSource property is set to the name of the record source table or view.
■ The RecSrcSession property is set to the name of the session from which you dragged the

record source.

In addition, the following control properties are automatically set:

■ The DataSource property is set to the name of the column associated with the control.
■ The DataType property is set to a value appropriate for the datatype of the associated column.
■ If the column is a string-type column (for example, CHAR or VARCHAR2), the DataSize

property is set to the column size. For example, when you associate a VARCHAR2(100)
column with a field, the field’s DataSize property is set to 100.

■ The Name property of the control is set to the name of the column (upper-case letters are
used). If another object already exists with the column name, an integer is automatically
appended to the name.

■ The ScrollWithRow property of the control is set to True.

Click on the row
selector button...

...and drag the row
directly onto the

control to be bound.

17.8

Binding Objects Manually by Setting Properties

You can also bind a container manually by setting two specific properties of the container (these
properties are set automatically when you use drag-and-drop). To bind a container manually, you
set the following properties:

■ Set the RecordSource property of the container to the name of the record source table or view.
■ Set the RecSrcSession property of the container to the name of the database session object

containing the record source. If you do not specify a RecSrcSession, the default session is used
(the session specified by the DefaultSession property of the application, if defined).

Once you have bound the container, you can create controls within the container and bind those
controls to columns of the record source. To bind controls, you set the following properties:

■ Set the DataSource property of each control to the name of a column of the record source.
■ Set the DataType and DataSize property of each control to values appropriate to the data in the

column.

For example, to associate the form “Form1” with the EMP table in the “Scott” session, you would
set the following properties:

■ Set the RecordSource property to EMP.
■ Set the RecSrcSession property to Scott .

To associate a field on “Form1” with the ENAME column of the EMP table, you would set the
following properties:

■ Set the DataSource property to ENAME.
■ Set the DataType property to String .
■ Set the DataSize property to 10 .

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.9

Once you have bound the objects to the database, you can set additional properties of the bound
container to determine how rows are derived from the record source. Two commonly set properties
are OrderBy and DefaultCondition. These properties can be set both at design time and at run
time.

■ The OrderBy property specifies the name of the column or columns by which the rows in the
recordset should be ordered. Rows are retrieved in ascending order by default; you can specify
descending order by including the word “DESC” after the column names. If OrderBy is not
set, the rows in the recordset are unordered.

■ The DefaultCondition property specifies a SQL condition (a WHERE clause) used to restrict
the rows in the recordset. For example, to have the recordset contain only rows that have a SAL
column value exceeding 5000 , you could set the DefaultCondition property to SAL >

5000 .

Other container properties related to binding are described in the following sections of this chapter.

A complete list of container properties related to binding is provided in the section “Properties and

Methods of Recordsets and Bindable Objects” on page 17.31.

Recordset Objects and Bound Containers

Each bound container in your application has an associated recordset object. A recordset object
contains a local copy of a set of rows queried from a database table or view. As the user browses
through rows of data in a bound container, the necessary rows are fetched from the database. As the
user makes changes to the data, the recordset records the changes and writes them to the database
when appropriate.

17.10

A recordset is thus an intermediary between objects that the user can see and objects in the
database.

For information

about translation

lists, see the section

“List Controls” on

page 10.15.

Recordset objects are also associated with translation lists (Popup List and List Box controls whose
TranslationList property has been set).

Recordset objects that are associated with application objects are called container recordsets. You can
also create standalone recordsets by executing Oracle Basic code; these recordsets are not associated

with any application object. Standalone recordsets are described in the section “Standalone

Recordsets” on page 17.27.

Structure of a Recordset

A recordset, like a table or view, is organized into rows and columns. The rows and columns in the
recordset are derived from the structures of the database and application objects that are bound
together.

A recordset generally has one column for each bound control within the corresponding container.
However, if multiple controls are bound to the same column, the column appears only once in the
recordset.

Each recordset column has a datatype (an Oracle Basic datatype, not a SQL datatype). Oracle
Power Objects automatically determines the appropriate datatype to use to represent a particular
database column.

Table

Bound container

Recordset

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.11

You can add nondisplayed columns to a recordset by setting the RecSrcAddCols property of the
associated container. RecSrcAddCols can contain the names of one or more columns of the record
source, separated by commas. These columns can be accessed only by executing methods of the

recordset object itself, as described in the section “Accessing a Recordset Programmatically” on page

17.16.

The following diagram shows a recordset with columns derived from the RecSrcAddCols property:

For information on

master-detail rela-

tionships, see Chap-

ter 18, “Defining

Master-Detail Rela-

tionships”.

For recordsets in a master-detail relationship, the columns that are used to establish the relationship
are always included in the recordsets. Specifically, the column identified by the
LinkMasterColumn column is always included in the master recordset, and the column identified
by the LinkDetailColumn is always included in the detail recordset. If these columns are not
bound to controls or specified in RecSrcAddCols, they are included as nondisplayed columns.

For some database types, Oracle Power Objects automatically adds one or more particular
nondisplayed columns used internally for identification purposes. For example, a recordset bound
to a table in an Oracle7 Server always has a column corresponding to the ROWID column of the
table.

These recordset columns
are derived from controls
on the form.

These columns are
derived from the
RecSrcAddCols property.

17.12

A recordset also has unbound columns corresponding to unbound controls within the container.
Any unbound control whose ScrollWithRow property is set to True has a column in the recordset.
However, the data in these columns are not sent to the database.

The rows in a recordset are a subset of the rows in the record source. The total set of rows that
belong to the recordset are defined as the result set of a database query (a SQL SELECT statement).
This query is derived from the following elements:

■ The select list of the query is composed of all columns referenced in the DataSource properties
of bound controls within the container, as well as any columns referenced in the
RecSrcAddCols property of the container.

■ The WHERE clause of the query can come from the DefaultCondition property of the
container, or it can be explicitly specified as the argument to the QueryWhere() method. If the
container is the detail container in a master-detail relationship, the WHERE clause also
includes the conditions necessary to specify the join between master and detail containers.

■ The ORDER BY clause of the query comes from the OrderBy property of the container.

The following diagram shows how a set of properties are translated into a query:

SELECT ename, job, mg r

FROM emp

WHERE sal > 1000 0

ORDER BY ename

Properties of
text fields on form

Properties of
form

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.13

The Current Row

A recordset also maintains the concept of a current row. The current row is always visible on screen.
The values in the current row can be read and (if appropriate) modified, either by the user or by
method code.

When the recordset is queried (for example, when it is first displayed), the current row is
automatically set to the first row in the recordset. The current row can be changed in the following
ways:

Scrollbar objects are

described in the sec-

tion “Scrollbars” on

page 10.28.

■ The user manipulates a scrollbar object associated with the recordset.
■ In a repeater display, the user clicks on or begins editing a control in a different panel of the

repeater display.
■ A new row is inserted into the recordset, which can happen in the following ways:

• The user clicks on the Insert Row button in the Form Run-Time toolbar
• The user scrolls to the “blank row” at the end of the recordset and begins to enter values
• The InsertRow() method of the container associated with the recordset is executed

As soon as the new row is inserted, the current row is set to the new row.

■ A row is deleted from the recordset, which can happen in the following ways:
• The user clicks on the Delete Row button in the Form Run-Time toolbar
• The DeleteRow() method of the container associated with the recordset is executed

As soon as the row is deleted, the current row is set to the row immediately following the
deleted row. When the last row in the recordset is deleted, the current row is set to the new last
row.

■ The GoNxtLine(), GoPrvLine(), GoNxtPage(), GoPrvPage(), or GoPos() method of the
container associated with the recordset is executed.

■ The SetCurRow() method of the recordset is executed.

Current row pointer

17.14

The current row of a recordset can be indicated graphically with a current row pointer control
located on the bound container. Current row pointer controls are particularly useful when multiple
rows of a recordset are displayed on screen at the same time, as with the repeater display shown in
the following diagram:

Current row pointers also indicate whether a data lock has been acquired on the row’s data, as

described in the section “How Locked Rows Are Indicated” on page 17.27.

The Blank Row

When a recordset is displayed in a bound container on screen, the bound container by default
displays a “blank row” after the last row in the recordset. This blank row appears only when the
HasExtraRow property of the bound container is set to True.

Although the blank row behaves as though it is part of the recordset’s data, it is not. The blank row
provides a convenient way for a user to enter a new row of data into the recordset.

When the blank row is visible on the screen, the user can insert a new row simply by entering values
into any of the container’s controls (bound or unbound). To prevent the user from inserting new
rows using the blank row, set the HasExtraRow property of the container to False.

Fetching Rows from the Database

A recordset does not necessarily hold the entire result set at all times. The rows in the recordset
need to be fetched from the database after the query has been executed. In other words, the query
defines in the database the set of rows that will eventually be copied into the recordset, and a fetch
actually retrieves rows from the database into the recordset. Oracle Power Objects always fetches
rows automatically—you do not have to issue commands for rows to be fetched.

Selected row

Unselected row

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.15

The rows in a recordset are fetched according to the setting of the RowFetchMode property of the
container corresponding to the recordset. RowFetchMode can have the following settings:

Fetch All Immediately—All rows in the result set are fetched from the database as soon as a row
is accessed. For large recordsets, this setting can impose a high memory overhead and affect
performance significantly.

Fetch As Needed—A subset of rows is fetched when the recordset’s data are first displayed or
accessed. The subset displayed is 20 rows, or the least multiple of 20 required to show all rows
on screen in the case of a repeater display. When an unfetched row is accessed (for example, the
user scrolls to the row), additional rows are fetched in blocks of 20.

Fetch Count First—Behaves the same as “Fetch as Needed”, except a count of the rows in the
final query result set is determined when the first block of rows is fetched. This is done by
executing a separate SQL statement where “COUNT(*)” is substituted for the query’s select
list. The “Fetch Count First” setting can be used to ensure the correct appearance of user
interface components (such as scrollbars) that are tied to the number of rows in the query’s
result set.

Two recordset methods, GetRowCount() and GetRowCountAdvice(), enable you to determine
the number of rows in a recordset.

The GetRowCount() method returns the number of rows currently in the recordset. When the
RowFetchMode property of the corresponding container is set to “Fetch All Immediately”,
GetRowCount() always returns an accurate count of the rows in the final query result set.
When RowFetchMode is set to “Fetch as Needed” or “Fetch Count First”, GetRowCount()
returns only the number of rows that have already been fetched.

The GetRowCountAdvice() method returns a count of the rows in the final query result set,
using the same technique as the “Fetch Count First” setting of the RowFetchMode property.
GetRowCountAdvice() can be called only for recordsets whose RowFetchMode property is set
to “Fetch Count First.”

When RowFetchMode is set to “Fetch As Needed” or “Fetch Count First”, you can fetch recordset
rows explicitly using the FetchAllRows() or FetchToRow() method.

The FetchAllRows() method fetches all database rows that have not yet been fetched. If all
rows have already been fetched, FetchAllRows() has no effect.

The FetchToRow() method fetches all database rows up to and including a given row number,
which is specified as the argument to FetchToRow(). If all rows up to the specified row have
already been fetched, FetchToRow() has no effect.

17.16

Storage of Recordset Rows

The rows in a recordset are stored primarily in memory. However, if the amount of data in the
recordset exceeds a specified limit, additional rows are stored in a temporary file on the local hard
disk. This behavior ensures that memory remains available for other recordsets and other
operations that require memory.

The approximate amount of data stored in memory is determined by the RecSrcMaxMem
property of the bound container associated with the recordset. By default, RecSrcMaxMem is set to
the minimum value of 4 KB (data are written to disk as soon as the recordset occupies over 4 KB).
Increasing the RecSrcMaxMem can improve the speed of scrolling through rows, because more
rows are then stored in memory at one time. However, increasing RecSrcMaxMem reduces the
amount of memory available to other components of the application.

Tip: Do not increase the RecSrcMaxMem property unless you are certain that all systems running
your application will have enough memory to complete other operations.

Note that RecSrcMaxMem does not apply to data in columns of type LONG or LONG RAW.
Data in these types of columns are always stored in temporary disk files.

Accessing a Recordset Programmatically

A recordset object, like other types of objects, has methods that you can execute using Oracle Basic
code. Because recordset objects do not exist at design time, you cannot examine or customize these
characteristics using the Property sheet.

Recordset objects do not have Name properties. To execute a method of a recordset, you must
obtain a handle to the recordset object by executing the GetRecordset() method of the bound
container associated with the recordset.

For example, to execute the InsertRow() method of the recordset object associated with the form
“Form1”, you could execute the following method code:

Form1.GetRecordSet().InsertRow()

Often, it is convenient to store the reference to the recordset in a variable of datatype Object. You
can then use the variable to supply a reference to the recordset in subsequent method code. For
example, the following method code stores a reference to the recordset associated with “Form1” in
the variable RecSet :

DIM RecSet AS Object
RecSet = Form1.GetRecordSet()
RecSet.DeleteRow()
Ename$ = RecSet.GetColVal("ENAME")

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.17

The rows and columns in a recordset are identified numerically. Rows and columns are numbered
with integers beginning with 1.

You can use these numeric identifiers to refer to specific rows and columns of the recordset. For
example, the SetCurRow() method takes a row number as its argument, and the SetColVal()
method takes a column number as its first argument.

The following method code includes a row number as the argument to the SetCurRow() method,
which specifies the current row of the recordset:

RecSet.SetCurRow(10)

The following method code includes a column number as the first argument to the SetColVal()
method, which sets the value of a specified column in the current row:

RecSet.SetColVal(2, "SMITH")

The SetColVal() method can take the column name as its first argument instead of the column
number. However, using the column name takes longer for the system to execute. If you are going
to use SetColVal() more than once for the same column in a method, you should execute the
GetColNum() method first to speed program execution.

To determine the column number associated with a column name, you can execute the
GetColNum() method. For example, the following method code returns the column number of
the ENAME column into the variable ColNum:

Dim ColNum as Long
ColNum = RecSet.GetColNum("ENAME")

To determine the column name associated with a column number, you can execute the
GetColName() method. For example, the following method code returns the column name of
column 6 into the variable ColName:

Dim ColName as String
ColName = RecSet.GetColName(6)

To determine the row number of the current row, you can execute the GetCurRow() method. For
example, the following method code returns the row number of the current row into the variable
RowNum:

Dim RowNum as Long
RowNum = RecSet.GetCurRow()

17.18

To determine the column number associated with a given control object, you can execute the
GetBindColumn() method of the control. For example, the following method code returns the
column number of the column associated with the field “fldEmp” into the variable ColNum:

Dim ColNum as Long
ColNum = fldEmp.GetBindColumn()

Note that every control on a bound container has a recordset column unless the control’s
ScrollWithRow property is set to False. If the control is not associated with a recordset column,
GetBindColumn() returns Null.

Copying Values Between Recordsets

To copy a value directly from one recordset to another, you can execute the CopyColFrom()
method. CopyColFrom() is particularly useful when copying long values (such as values in a
LONG or LONG RAW column). The syntax of CopyColFrom() is:

Function CopyColFrom(dstCol as Variant, srcRec as Object,
 srcCol as Variant) as Integer

dstCol specifies the number or name of the destination recordset column (the column to
receive the value). The value is copied into the current row of the recordset.

srcRec specifies the source recordset object (the object from which the value is to be copied).

srcCol specifies the number or name of the source recordset column. The value is read from
the current row of the source recordset.

CopyColFrom() returns True if the value was copied successfully, False otherwise.

The following method code copies a value from the ENAME column of the “recEmp” recordset to
the EMPNAME column of the “recEmpCopy” recordset:

vReturnVal = recEmpCopy.CopyColFrom("EMPNAME", recEmp,
 "ENAME")

Transferring Data Between Recordsets and Files

The WriteColToFile() and ReadColFromFile() methods enable you to transfer data directly
between recordset objects and operating system files. These methods are useful for long data (such
as values in a LONG or LONG RAW column).

To write a value from a recordset into a file, you execute the WriteColToFile() method. The syntax
of WriteColToFile() is:

Function WriteColToFile(col as Variant, fileNumber as
 Integer) as Integer

Col specifies the number or name of the source column. The value is read from the current
row of the recordset.

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.19

For information

about opening files,

see the topic “OPEN

command” in the

online help.

FileNumber specifies the number of the file to receive the value, which must be open in
BINARY mode with write access.

WriteColToFile() returns True if the value was written successfully, False otherwise.

The following method code writes a value into the file “PictureFile” from the PICTURE column of
a recordset bound to the EMP_PICTURES table:

OPEN "PictureFile" FOR BINARY ACCESS WRITE AS 1
vReturnVal = recEmpPictures.WriteColToFile("PICTURE", 1)
CLOSE 1

To read a value into a recordset from a file, you execute the ReadColFromFile() method.
ReadColFromFile() can read a value of any datatype; however, the value must have been previously
written into the file using WriteColToFile(). The syntax of ReadColFromFile() is:

Function ReadColFromFile(col as Variant, fileNumber
 as Integer) as Integer

Col specifies the number or name of the destination column. The value is read into the current
row of the recordset.

For information

about opening files,

see the topic “OPEN

command” in the

online help.

FileNumber specifies the number of the source file, which must be open in BINARY mode
with read access and positioned at the beginning of the data to be read.

ReadColFromFile() returns True if the value was read successfully, False otherwise.

Note: You can read values of one datatype into a column of a different datatype; for example, you
can read a numeric value into a string column. However, you cannot read a long value (a value from
a LONG, LONG RAW, TEXT, or IMAGE column) into a non-long column; nor can you read a
non-long value into a long column.

The following method code reads a value from the file “PictureFile” into the PICTURE column of
a recordset bound to the EMP_PICTURES table:

OPEN "PictureFile" FOR BINARY ACCESS READ AS 2
SEEK 2, 1
vReturnVal = recEmpPictures.ReadColFromFile("PICTURE", 2)
CLOSE 2

Shared Recordsets

It is possible for two or more containers to be bound to the same recordset. This configuration is
called a shared recordset. In a shared recordset, one container is bound to the record source in the
normal way. Additional containers share the same recordset by using the following syntax in the
RecordSource property:

=container_reference

17.20

Where container_reference is a reference to the container object whose recordset is to be shared. For
example, to cause a recordset to be shared by a form “Form1” and a repeater display “Repeater1”,
you could set the RecordSource property of “Repeater1” to the following value:

=Form1

In a shared recordset, the columns of the recordset are determined by the controls and
RecSrcAddCols properties of both containers.

For more information

on validation meth-

ods, see Chapter 19,

“Using Constraints to

Enforce Business

Rules”.

Changes can be made to the recordset from any of the containers sharing the recordset—for
example, the recordset’s current row can be changed, or the values in the recordset can be modified.
Any such changes are reflected immediately in both bound containers, not just the one being
edited. Note that changes made to a recordset will trigger the validation methods only of the
container where the changes are made.

The RecordSource
property of Form1 is

set to “EMP”

The RecordSource
property of Form2
is set to “=Form1”

The columns of the
shared recordset

are determined by
the controls on

both forms.

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.21

When to Use a Shared Recordset

You should use a shared recordset whenever two containers display information from the same
record source. For example, your application might include a repeater display with a list of
employees and a window that shows employee details. Since both containers are bound to the EMP
table, using a shared recordset ensures that their contents always match. Performance is also
improved because the same database operations apply to both containers.

A shared recordset can be useful when the record source has too many columns to fit on a single
container. In this case, you can use two forms with shared recordsets, each of which displays a
portion of the columns from the record source.

Note: You cannot use a shared recordset in the RecordSource property of a form.

Requerying a Recordset

Because a recordset is a local copy of information stored in a database, it is possible for the
information in the recordset to become out of date. For example, other users could make changes
to the record source after the recordset was originally queried.

To keep the recordset’s information current, the database is periodically requeried. This requerying
happens in two ways: automatically and manually.

Automatic Requerying

The contents of a recordset are automatically requeried in the following circumstances:

■ The bound container is closed and reopened.
■ The current row of a master recordset changes (all detail recordsets are automatically requeried)

Manual Requerying

You can explicitly requery a recordset’s contents in the following ways:

■ Execute the Query() method of the bound container associated with the recordset.
■ Execute the QueryWhere() method of the bound container to apply a specified condition to

the query.
■ Modify the OrderBy property of the bound container.
■ Click on the Query button in the Form Run-Time toolbar.

For information on

Query By Form, see

the section “Query

by Form” on page

11.14.

■ Use Query By Form to apply a query condition.

When a recordset is requeried, the SELECT statement that determines the recordset’s contents is
re-executed, and rows are fetched from the database according to the setting of the RowFetchMode
property.

17.22

Note that when a recordset is requeried, the current record is automatically reset to the first row in
the recordset. If your application needs to maintain the current record when requerying, you must
store an identifier for the current row before the query is executed, then afterwards scroll the
recordset to the row.

The following example shows how you might maintain the current record for a form bound to the
EMP table. This method code appears in the Query() method of the form. Whenever the form is
requeried, the method code in the Query() method is executed and scrolls the new recordset to the
row previously displayed.

In this case, the EMP table’s primary key column (EMPNO) is used to supply the unique
identifier. To use this code with a different record source, you would have to use a key value
appropriate to that table or view.

DIM Empno AS long 'The employee number of the current row
DIM OldRow AS long 'Row number of previous row in loop
DIM RecSet AS object 'The form's recordset

'Get the form's recordset
RecSet = Self.GetRecordset()

'Get the value of EMPNO for the current row
Empno = VAL(RecSet.GetColVal("EMPNO"))

'Execute the default processing of the Query() method
Inherited.Query()

'Scroll the new recordset to the old current row
DO WHILE VAL(RecSet.GetColVal("EMPNO")) <> Empno
 OldRow = RecSet.GetCurRow()
 Self.GoNxtLine()

 'If we have reached the last record in the recordset,
 'exit the DO loop
 IF RecSet.GetCurRow() = OldRow THEN EXIT DO

LOOP

Sub Query()

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.23

Making Changes to Data in a Recordset

The data in a recordset can be changed in the following ways:

■ By editing existing data in bound controls
■ By inserting or deleting rows

These techniques are described below.

Editing Data in Bound Controls

A user can make changes to most types of bound controls if the control is visible and enabled. For
example, the user can:

■ Type in a field or combo box
■ Choose a value from a list box, popup list, or combo box
■ Cut a picture from or paste a picture into a picture control
■ Select a radio button in a radio button group
■ Click on a check box

For information

about validating

changes to data, see

Chapter 19, “Using

Constraints to

Enforce Business

Rules”.

When the user manipulates data in a bound control, your application can validate the changes
before they are written to the recordset.

You can also make changes to the values in controls programmatically by setting the Value property
of the control. For example, you could set the value of a field object “Field1” with the following
statement:

Field1.Value = "Green"

Programmatic changes to the Value property are subject to the same validation techniques as
changes made by a user to the control.

You can also modify the data in a recordset by executing the SetColVal() method of the recordset
to set the value of one column of the current row. Note that when you make changes directly to the
recordset object, the validation methods are not triggered.

Inserting or Deleting Rows

The user can insert or delete recordset rows using toolbar buttons or scrollbar controls. For
example, the user can:

■ Click the Insert Row button in the Form Run-Time toolbar to insert a row
■ Click the Delete Row button in the Form Run-Time toolbar to delete a row
■ Scroll to the “blank row” at the end of the recordset and begin to enter values to insert a new

row

When the user applies these techniques to insert or delete a row, your application can validate the
row before it is flushed to the database.

17.24

You can insert or delete rows programmatically by executing methods of the recordset object or of
the associated container. For example, you can:

■ Execute the InsertRow() method of the container or recordset to insert a new row
■ Execute the DeleteRow() method of the container or recordset to delete the current row

When you execute methods of the bound container, your application can validate the row before it
is sent to the database. However, when you make changes directly to the recordset object, the
validation methods are not triggered.

How Recordset Changes Are Sent to the Database

The changes you make to a recordset are not always sent to a database immediately. Instead, they
are stored in memory and periodically flushed (sent) to the database. This provides the following
advantages:

■ Reduces network traffic by sending related changes together, rather than individually. Network
traffic can be significantly reduced by using deferred flushing, as described below.

■ Avoids database errors by not sending incomplete operations to the database. For example, a
newly inserted row should not be sent to the database until the user has entered values for all of
the mandatory (NOT NULL) columns.

When changes are flushed to the database, the changes you have made to the recordset are
translated into SQL operations (INSERT, UPDATE, DELETE) that are sent to the database
engine for execution. The fact that changes have been sent to the database does not mean that the
changes have been made permanent—you must explicitly commit your changes to save them, or
roll them back to remove them.

When an update to a row is flushed to the database, all values in that row are flushed, including
values that have not been modified (except values from LONG or LONG RAW columns, which
are flushed only if they have changed). If the information in the recordset is out of date, this can
cause information entered by another user to be overwritten with older values. This problem can be
avoided by setting the CompareOnLock property of the bound controls in your container to True,

as described in the section “How Oracle Power Objects Acquires Locks” on page 17.26.

Technical Note: Oracle Power Objects flushes all column values at the same time for performance
reasons. In databases that support shared cursors (such as Oracle7 Servers), the database can use the
same UPDATE statement for each row in the recordset and each concurrent user without
reparsing.

Oracle Power Objects provides two transaction models for determining when changes you make to
a recordset are sent to the database: immediate flushing and deferred flushing.

Immediate Flushing — changes are sent to the database as soon as the row is no longer current,
which can happen in any of the following ways:

• The user scrolls to another row in the recordset
• In a repeater display, the user clicks on another row in the recordset

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.25

• The recordset is requeried (either automatically or manually)
• The user commits changes
• The focus moves to a container associated with a different recordset

Changes are not sent in the following circumstances:

• The user cancels the editing of a row
• The RevertRow() method is called
• The user rolls back changes

Immediate flushing is used by default.

Deferred Flushing — changes are sent to the database immediately prior to a Commit
operation, which can happen in any of the following ways:

• The user presses the Commit button
• The CommitForm() method is called
• The CommitWork() method of the session is called

When deferred flushing is enabled, it is possible that some changes cannot be flushed to the
database successfully. If changes cannot be flushed, Oracle Power Objects returns an error.

In this release of Oracle Power Objects, you cannot set the transaction model for container
recordsets. However, you can set the transaction model for standalone recordsets, as described in

the section “Standalone Recordsets” on page 17.27.

Data Consistency and Locking

If the database objects associated with the recordset are accessible to other users, it is important that
the consistency of the data in the recordset be maintained. Maintaining data consistency has several
components:

■ Ensure that the user does not try to edit a row that has been deleted by another user
■ Ensure that other users cannot modify a row that the user has edited but not committed

changes
■ Ensure that the user does not try to edit a row that has been modified after the recordset was

queried from the database

The primary means of ensuring data consistency in Oracle Power Objects is to acquire a data lock
on information that the user edits.

Relational databases generally lock a row automatically when the row is updated. However, Oracle
Power Objects acquires the data lock separately from the update operation because changes are not
sent to the database immediately after the user has made them. In the case of immediate flushing,
changes are not sent until the user has scrolled to a different row. In the case of deferred flushing,
changes are not sent until the user attempts to commit the transaction.

Oracle Power Objects provides two locking models that determine when a data lock is acquired:
pessimistic locking and optimistic locking.

17.26

Pessimistic Locking — a data lock is acquired as soon as the user begins to change data in a row
but before any changes are allowed. If the lock cannot be acquired, user changes are not
allowed. Pessimistic locking is used by default.

Optimistic Locking — data locks are not acquired until the user is about to commit changes to
the database. Optimistic locking is normally used in combination with deferred flushing to
reduce network traffic and to minimize access to heavily used shared resources.

No matter which locking model is currently used, you can explicitly request a lock on a row of data
by executing the LockRow() method of the recordset.

In this release of Oracle Power Objects, you cannot set the locking model for container recordsets.

However, you can set the locking model for standalone recordsets, as described in the section

“Standalone Recordsets” on page 17.27.

How Oracle Power Objects Acquires Locks

Oracle Power Objects attempts to acquire the least restrictive lock possible when locking a row. For
databases that support row-level locking (such as Blaze databases and Oracle7 Servers), Oracle
Power Objects acquires an exclusive row lock. For databases that do not support row-level locking
(such as Microsoft SQL Server or Sybase SQL Server), Oracle Power Objects acquires an exclusive
page or table lock. In either case, the lock is released only when the transaction is committed or
rolled back.

Before locking a row, Oracle Power Objects attempts to verify that the row in the recordset is
identical to the row in the database. To do so, Oracle Power Objects checks the contents of each
bound control whose CompareOnLock property is set to True. Nondisplayed columns of the
recordset are checked automatically.

If the contents of a row differ between the recordset and the database, Oracle Power Objects does
not attempt to acquire the lock and displays an error dialog box to the user.

Normally, the CompareOnLock property should be set to True for most types of controls.
However, if a read-only control displays a large amount of data (such as a picture control) and will
not change very often, you can enhance performance by setting CompareOnLock to False.

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.27

How Locked Rows Are Indicated

The recordset maintains information about which rows in the recordset have been locked. This
information can be indicated graphically with a current row pointer control placed on the bound
container. The current row pointer control displays a lock icon for each locked row.

For more information about current row pointer controls, see the section “Current Row Pointers”

on page 10.23

You can also determine programmatically the status of the current row of a recordset by calling the
GetRowStat() method of the container associated with the recordset. GetRowStat() returns an
integer with one of the following values:

Standalone Recordsets

A standalone recordset, unlike the container recordsets described earlier in this chapter, is not
associated with any application object. You create a standalone recordset through Oracle Basic
method code. You can use standalone recordsets to store data that the user does not need to view or
edit directly.

Value Meaning

0 The row is unlocked.

1 The row is newly inserted into the recordset, and the insertion has not been completed.

2 The row is locked but unchanged.

3 The row is locked and has been changed. Changes have not yet been flushed to the
database.

4 The row is locked and has been changed. Changes have been flushed to the database.

A lock icon indicates
a locked row.

17.28

There are two types of standalone recordsets: bound and unbound.

A bound recordset is linked to a record source table or view.

An unbound recordset is not linked to a record source. Oracle Power Objects does not
automatically transfer data between an unbound recordset and a database; you must perform
any such data transfers manually.

Note that a container recordset is automatically a bound recordset, as is the recordset associated
with a list box or popup list control whose TranslationList property has been set to a database
query, or a combo box control whose ValueList property has been set to a database query. You can
create an unbound recordset by defining a standalone recordset. An unbound recordset is also
associated with a list box, popup list, or combo box that contains a list of constants in the
TranslationList or ValueList property (rather than a query).

You create a standalone recordset using the Oracle Basic NEW operator. The NEW operator
returns a reference to the newly created recordset, which you can store in a variable or property of
datatype Object.

Creating an Unbound Recordset

To create an unbound recordset, you use the NEW Recordset syntax, which is:

NEW RECORDSET([inMemory [, maxMem]])

inMemory is a Boolean value (a Long Integer) specifying whether the recordset must always
be stored in memory. If inMemory is True, the recordset’s data are always stored entirely in
memory; if inMemory is False, the data may be swapped to disk when the recordset exceeds
the maximum size. inMemory is False by default.

maxMem is a Long Integer value specifying the maximum amount of data (in KB) that is stored
in memory when inMemory is False. If inMemory is True, maxMem is ignored. maxMem is
4 KB by default; it cannot be set to less than 4 KB.

The following method code creates an unbound recordset that must always be stored in memory:

DIM recRecordset1 AS Object
recRecordset1 = NEW Recordset(True)

The following method code creates an unbound recordset that is swapped to disk when its size
exceeds 10 KB:

DIM recRecordset2 AS Object
recRecordset2 = NEW Recordset(False, 10)

Once you have created the recordset, you add columns to it by executing the AddColumn()
method of the recordset (AddColumn() applies only to unbound recordsets).

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.29

The syntax of AddColumn() is:

SUB AddColumn(colname AS String, datatype AS Long)

colname is the name of the column, which you can use to refer to the column in some
methods.

datatype is an integer identifying the column datatype. You generally specify datatype
using a predefined symbolic constant. The following datatype constants are defined:

The following method code adds a “Name” column and a “Salary” column to the recordset object
“recEmployee”:

DIM recEmployee AS Object
recEmployee = NEW Recordset(False)
recEmployee.AddColumn("Name", RecDty_String)
recEmployee.AddColumn("Salary", RecDty_Double)

You cannot add columns to a recordset containing data. Therefore, you should call AddColumn()
immediately after creating a new recordset.

Creating a Bound Recordset

To create a bound recordset, you use the NEW DBRecordset syntax, which is:

NEW DBRECORDSET(session [, deferred [, optimistic
 [, inMemory [, maxMem]]]])

session is a reference to the database session object containing the record source.

deferred is a Boolean value (a Long Integer) specifying whether deferred flushing is used. If
deferred is True, deferred flushing is used; if deferred is False, immediate flushing is

used. deferred is False by default. Deferred flushing is described in the section “Data

Consistency and Locking” on page 17.25.

optimistic is a Boolean value (a Long Integer) specifying whether optimistic locking is
used. If optimistic is True, optimistic locking is used; if optimistic is False,
pessimistic locking is used. optimistic is False by default. Optimistic locking is described

in the section “Data Consistency and Locking” on page 17.25.

Constant Meaning

RecDty_String String

RecDty_Integer Integer

RecDty_Long Long Integer

RecDty_Double Double

RecDty_Date Date

17.30

inMemory is a Boolean value (a Long Integer) specifying whether the recordset must always
be stored in memory. If inMemory is True, the recordset’s data are always stored entirely in
memory; if inMemory is False, the data may be swapped to disk when the recordset exceeds
the maximum size. inMemory is False by default.

maxMem is a Long Integer value specifying the maximum amount of data (in KB) that is stored
in memory when inMemory is False. If inMemory is True, maxMem is ignored. maxMem is
4 KB by default; it cannot be set to less than 4 KB.

The following method code creates a recordset object associated with the database session object
“sesOracle”:

DIM recRecordset3 AS Object
recRecordset3 = NEW DBRecordset(sesOracle)

The following method code creates a recordset object associated with the database session object
“sesOracle”, specifying pessimistic locking and deferred flushing:

DIM recRecordset4 AS Object
recRecordset4 = NEW DBRecordset(sesOracle, FALSE, TRUE)

After creating the recordset, you bind it to an object in the associated session by executing the
SetQuery() method of the recordset object. The syntax of SetQuery() is:

SUB SetQuery(query AS String, updatable AS Long)

query is a SQL SELECT statement that determines how the recordset’s rows are derived from
the record source.

updatable indicates whether you can make changes to the recordset. If updatable is
False, the recordset is read-only. To set updatable to True, the query you specify must meet
the following criteria:

• It must select values only from a single record source
• If the record source is a view, the view must be a read-write view
• All columns with Primary Key or Not Null constraints must be included in the select list of

the query
• The select list of the query cannot be an asterisk (*), which represents all columns in the

record source in some databases

The following method code creates a recordset bound to the EMP table, containing columns for
the EMPNO and ENAME columns:

DIM recEmp AS Object
recEmp = NEW DBRecordset(sesOracle)
recEmp.SetQuery("SELECT empno, ename FROM emp", TRUE)

The SELECT statement can use any syntax supported by the database containing the record
source. For example, it can contain clauses such as WHERE and ORDER BY, as in the following
example:

recEmp.SetQuery("SELECT empno, ename FROM emp WHERE " &&
 "job = 'CLERK' ORDER BY sal", TRUE)

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.31

For a read-only recordset, you can include multiple tables in the select list, as in the following
example:

recEmpDept.SetQuery("SELECT emp.ename, dept.dname FROM " &&
 "emp, dept WHERE emp.deptno = dept.deptno", FALSE)

Deleting a Recordset

You delete a recordset using the Oracle Basic DELETE command. You specify the object to delete
as the argument to DELETE. For example, the following method code deletes the recordset
“recEmp”:

DELETE recEmp

You can delete more than one item in the same statement by specifying multiple objects separated
by commas, as in the following example:

DELETE recEmp, recDept

Properties and Methods of Recordsets and Bindable

Objects

This section provides a quick reference to object properties and methods related to recordsets and
binding. For syntax declarations and complete descriptions of these properties and methods, see the
online help.

Methods of Recordset Objects

Method Description

CopyColFrom() Copies a value into a specified column of the recordset from a
specified column of another recordset. The value in the current row
of the source recordset is copied; the current row of the destination
recordset receives the value. CopyColFrom() returns True if
successful, False otherwise.

DeleteRow() Deletes the current row from the recordset.

FetchAllRows() Fetches all rows that have not yet been fetched.

FetchToRow() Fetches all rows up to and including a specified row number.

GetColCount() Returns the number of columns in the recordset, including unbound
and system columns.

17.32

Recordset-Related Properties of Containers

GetColName() Returns the name of a column in a recordset, specified by column
number.

GetColNum() Returns the number of a column in the recordset, specified by
column name.

GetCurRow() Returns the row number of the current row in the recordset.

GetRowCount() Returns the number of rows in the recordset.

GetRowCountAdvice() For recordsets that use incremental fetching, returns the estimated
number of rows that will be in the recordset when all rows are
fetched. Applies only when the RowFetchMode property of the
bound container associated with the recordset is set to “Fetch Count
First”.

GetSession() Returns the session object associated with the recordset.

InsertRow() Inserts a new row into the recordset before the position of the current
row.

LockRow() Attempts to acquire a data lock on the current row.

ReadColFromFile() Reads a value into the recordset from a file.

SetColVal() Assigns a value to the specified column for the current row in the
recordset.

SetCurRow() Changes the current row to the specified row number in the
recordset.

WriteColToFile() Writes a value from the recordset into a file.

Property Description

DefaultCondition A SQL condition used to restrict the rows in the recordset. The
DefaultCondition is used whenever the recordset is requeried, except
when requeried using the QueryWhere() method.

HasExtraRow Determines whether a “blank row” is displayed after the last row in the
recordset. The blank row does not belong to the recordset—it simply
provides a convenient way for the user to enter a new row of data into the
recordset.

Method Description

B I N D I N G A C O N T A I N E R T O A R E C O R D S O U R C E O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

17.33

Recordset-Related Methods of Containers

OrderBy The name of the column or columns by which the rows in the recordset
should be ordered. Rows are retrieved in ascending order by default; you
can specify descending order by including the word “DESC” after the
column names.

RecordSource The name of the record source table or view.

RecSrcAddCols The names of additional database columns associated with the container
but not associated with controls in the container. Multiple columns are
separated by commas.

RecSrcMaxMem The maximum amount of record source data to be stored in local memory
before temporary disk files are created.

RecSrcSession The database session “containing” the record source.

RowFetchMode Determines how rows are fetched from the database into the recordset
when the recordset is requeried.

Method Description

CommitForm() Commits the current transaction for all bound containers located on the
same form as the container for which CommitForm() is called.

DeleteRow() Deletes the current row from the container’s recordset.

GetRecordset() Returns a handle to the recordset object associated with the container.

GetRowStat() Indicates the status of the current row of the recordset (whether the row is
locked and whether any of the row’s data have been changed).

GoNxtLine() Moves the current row of the container’s recordset forward one row.

GoNxtPage() Moves the current row of the container’s recordset forward one “page” of
rows. A page is the number of rows displayed on the container at one time.
For containers such as forms, embedded forms, and user-defined classes, a
page is one row.

GoPos() Moves the current row of the container’s recordset to a numerically
specified row.

GoPrvLine() Moves the current row of the container’s recordset back one row.

GoPrvPage() Moves the current row of the container’s recordset back one “page” of
rows.

Property Description

17.34

Recordset-Related Properties of Controls

Recordset-Related Methods of Controls

InsertRow() Inserts a new row into the container’s recordset before the position of the
current row.

OnQuery() Called after the container’s recordset is requeried.

Query() Requeries the container’s recordset.

QueryWhere() Requeries the container’s recordset with a specified SQL condition.

RevertRow() Discards changes made to the current row in the container’s recordset.
Only changes made since the row most recently became the current row
are discarded.

RollbackForm() Rolls back the current transaction for all bound containers located on the
same form as the container for which RollbackForm() is called.

Property Description

CompareOnLock Determines whether Oracle Power Objects checks the control’s value
against the database value it represents before locking the currently
displayed row.

DataSource The column of the record source table or view from which the control’s
value is derived.

ScrollWithRow For unbound controls, determines whether the control has a separate value
for each row of the recordset associated with the control’s container. If
ScrollWithRow is True, the control forms a “hidden” column of the
recordset.

Value The value of the control. If the control is bound to the database, the
control’s Value property is derived from the DataSource column of the
record source table or view.

Method Description

GetBindColumn() Returns the number of the recordset column associated with the control.

RevertValue() Discards changes made to the control that currently has the focus. Only
changes made since the control’s value was last set are discarded.

Method Description

18
D e f i n i n g M a s t e r - D e t a i l
R e l a t i o n s h i p s 1 8

This chapter covers the following topics:

Overview . 18.2
Defining Master and Detail Containers . 18.4
Integrity Checks. 18.6
Options for Displaying Master and Detail Records . 18.8

18.2

Overview

Oracle Power Objects is designed to simplify the task of creating master-detail relationships among
records. In this kind of relationship, rows in one recordset (details) are associated with rows in
another recordset (a master), so that rows appearing in the detail recordset only appear when there
are matching rows in the master recordset. To make a master-detail relationship work, columns in
the master and detail recordsets must contain matching values.

Master-detail relationships are also known as one-to-many relationships, although some master
records can have as few as one associated detail record, or none.

These relationships are not defined within the database. On the contrary, a properly normalized
relational database does not group records in this fashion, to avoid limiting your flexibility in
relating information from different tables and views.

Master-Detail Relationships and Joins

When the application queries master and detail records, the query is called a join. For the join to
work, the values in the column of one record source must match some values in a column in the
other record source. The column in the master recordset used for the join is the primary key; the
corresponding column in the detail recordset is the foreign key.

For example, the DEPT table has the column DEPTNO, as does the EMP table. To query
employee records by department, you would use DEPT as the master table, and EMP as the detail
table. DEPTNO would be the primary key in DEPT and the foreign key in EMP.

You can specify a join as part of an SQL query. For information on the syntax needed to perform

SQL queries, see Chapter 9, “Structured Query Language (SQL)”, as well as the online help topics
covering the SQL Language. Oracle Power Objects is designed to simplify this task by automating
many aspects of the master-detail join.

Automated Joins in Oracle Power Objects

When you write a SQL query, you must carefully enter the conditions for the join to ensure that
the query returns a set of master and detail records associated in the way you want to view them. In
many development environments, you would then write code to maintain the relationship, so that
detail records are always associated with their master records.

D E F I N I N G M A S T E R - D E T A I L R E L A T I O N S H I P S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

18.3

In Oracle Power Objects, you do not have to write any SQL code to create a join; instead, to create
the master-detail relationship, you set the properties of the containers holding master and detail
records. Behind the scenes, Oracle Power Objects builds a SQL query that specifies the join, and
then queries the master and detail records. These records are kept in separate recordsets, associated
with the containers designed to display master and detail records.

The primary key and foreign keys are defined by different properties of the container displaying
detail records, as are most other aspects of the join. As with other properties, you set the properties

relevant to master-detail relationships through the Property sheet. For more information, see the

section “Defining Master and Detail Containers” on page 18.4.

Referential Integrity

Maintaining the logical relationship between master and detail records is known as referential
integrity. There are many ways of enforcing referential integrity, and Oracle Power Objects gives you
the ability to define these different degrees of referential integrity when you define master and
detail containers.

For example, you can instruct Oracle Power Objects to prevent the user from deleting a master
record if it has any detail records associated with it. In the case of the DEPT and EMP recordsets,
you can prevent the user from deleting a department record as long as employees are assigned to the

Master recordset
(from DEPT table)

Detail recordset
(from EMP table)

18.4

department. Alternatively, you could immediately delete all employee records when the user deletes
the department record. To establish these types of referential integrity, you set a property on the
container displaying the detail records; Oracle Power Objects then takes care of the work of
enforcing this relationship at run time.

Defining Master and Detail Containers

After you define the record source (a table or view) for the containers displaying master and detail
records, you then set four properties to relate these recordsets. These properties are always set on
the container displaying the detail records, whether the container is part of the form displaying
master records, or is a separate form altogether.

The following table summarizes the properties needed to establish a master-detail relationship.

Property Description

LinkDetailColumn Defines the foreign key for the master-detail relationship (that is, the
column in the detail recordset used for the join).

LinkMasterColumn Defines the primary key for the master-detail relationship (that is, the
column in the master recordset used for the join).

LinkMasterForm Identifies the container displaying master records. The container can be
part of the same form displaying detail records, or it can be a separate form
altogether.

LinkPrimaryKey Identifies the container whose recordset contains the primary key for the

master-detail relationship. For more information on primary keys, see the

section “Setting the Primary Key” on page 18.6.

D E F I N I N G M A S T E R - D E T A I L R E L A T I O N S H I P S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

18.5

For example, the “Departments” form shown here displays records from the DEPT and EMP
tables. The record of each department is displayed in the main form; employee records associated
with each department are shown in a repeater display. Therefore, the container holding the master
records is the form, and the detail records are displayed in the repeater display.

Both the DEPT and EMP tables have DEPTNO columns in them, holding the department
number for each department and employee. Therefore, to establish the master-detail relationship,
the following properties are set on the repeater display:

In addition, the RecordSource property of the form is set to DEPT.

You can use any bound containers to establish a master-detail relationship, as long as it is possible

to create a join between the container’s recordsets. For more information, see the section “Other

Options for Displaying Master-Detail Relationships” on page 18.11.

Property Value

LinkDetailColumn DEPTNO

LinkMasterColumn DEPTNO

LinkMasterForm Departments

LinkPrimaryKey On Master

RecordSource EMP

18.6

Setting the Primary Key

The LinkPrimaryKey property identifies the container in which the primary key is set. As with
other properties relevant to master-detail relationships, you define this property for the container
displaying detail records.

Most commonly, you will set the primary key in the container displaying master records. However,
occasionally you may want to define the primary key value in the container displaying detail
records.

The LinkPrimaryKey property has two settings:

Integrity Checks

Referential integrity is the degree to which the application maintains the logical connection
between master and detail records. For example, to ensure that line items in an invoice are never left
in the system after the invoice itself is deleted, you must establish some kind of referential integrity
between the detail records (the line items) and the master record (the invoice).

When detail records are no longer associated with master records, they are orphaned. For example, if
you delete an invoice, but leave the line item records in the database, the line items become
orphaned.

Two further properties of the detail container, LinkMasterUpd and LinkMasterDel, determine the
degree of referential integrity enforced when the user modifies or deletes master records.

LinkMasterUpd Property

The LinkMasterUpd property enforces referential integrity when the user modifies the primary key
for a master record. You set this property on the container displaying detail records.

When the primary key changes, there is a risk that the foreign key value for the detail records will
no longer match it. Therefore, the LinkMasterUpd property has the following settings:

Value Description

Here (on detail) The control holding primary key values appears in the container displaying
detail records.

On Master The control holding primary key values appears in the container displaying
master records, as designated through the LinkMasterForm property.

Setting Description

Refuse When
Children Present

Prevents the user from changing the primary key value as long as associated
detail records exist.

D E F I N I N G M A S T E R - D E T A I L R E L A T I O N S H I P S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

18.7

The application enforces the type of referential integrity defined through the LinkMasterUpd
property when the user attempts to change the primary key value.

LinkMasterDel Property

The LinkMasterDel property enforces referential integrity when the user tries to delete a master
record. You set this property on the container displaying detail records, and it has the following
settings:

The application enforces the type of referential integrity defined through LinkMasterDel when the
user attempts to delete a record.

Update Cascade Modifies the foreign key value for all detail records before flushing changes
to the database.

Orphan Details Allows the detail records to be orphaned by not changing their foreign key
values.

Setting Description

Refuse When
Children Present

Prevents the user from deleting the master record as long as associated detail
records exist.

Delete Cascade Deletes all detail records associated with the master record.

Orphan Details Allows the detail records to be orphaned when the user deletes the master
record.

Setting Description

18.8

Options for Displaying Master and Detail Records

Oracle Power Objects affords great flexibility in defining the containers displaying master and
detail records. These containers can be part of the same form, as in the form shown below. In this
case, the master records from DEPT appear on the form, while the detail records from EMP appear
in the repeater display.

Alternatively, the master records from DEPT could appear in the repeater display, while the detail
records could appear on the form:

D E F I N I N G M A S T E R - D E T A I L R E L A T I O N S H I P S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

18.9

As a third option, you could display detail records on an entirely different form, as shown below. In
this case, the employee records are visible only when the user presses the Employees pushbutton on
the DEPT form, opening the separate EMP form:

Most commonly, detail records appear in either a repeater display or an embedded form within a
form, and the master records appear in the form itself. However, in some cases you might want to
reverse this situation, or place the detail records on a separate form. Additionally, you may also
want to create multiple levels of master-detail relationships through an Oracle Power Objects
application.

Placing the Detail Records on the Form

Sometimes, it makes sense to display master records in a repeater display or embedded form, and
display master records on the form itself. For example, because of the memory overhead required to
display graphics, you might want to create a graphics browser that places the categories of graphics
in a repeater display, while displaying the graphic on a form.

In this case, you must set the properties relevant to master-detail relationships on the form, not on
the repeater display. In the case of the graphics browser, you would set the following properties of
the form:

Property Setting

LinkDetailColumn PICTYPE

LinkMasterColumn PICTYPE

LinkMasterForm repPicTypes

LinkPrimaryKey On Master

18.10

In this example, the column PICTYPE appears in both the master and detail recordsets, where it
defines the type of graphic.

Placing Detail Records on a Separate Form

In some cases, you may not be able to fit both master and detail records easily on a form, or it may
not be necessary for the user to view master and detail records at the same time. In these cases, you
can create two forms, one for master records and the other for detail records.

In this case, you set the LinkMasterForm property of the form displaying detail records to the
name of the form displaying master records. You set the other relevant properties
(LinkDetailColumn and LinkMasterColumn) in the same way as in other cases, specifying the
primary and foreign keys for the master-detail relationship.

Creating a Drilldown Form

You can define several levels of a master-detail relationship on the same form or across multiple
forms. Commonly, developers create “drill-down” forms that let the user view a second set of detail
records determined by the first set of detail records. In such a case, the developer has created two
master-detail relationships, in which the first set of detail records are the masters for the second set
of details.

For example, suppose you want add a second repeater display to the DEPT/EMP form that lets
users view a selected employee’s history, as stored in the EMPHIST table:

D E F I N I N G M A S T E R - D E T A I L R E L A T I O N S H I P S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

18.11

In this case, the repeater holding the employee history records designates the other repeater display
(the one displaying employee records) as its master. To do this, you would set the following
properties on the second repeater display:

When the user selects an employee record from the first repeater, that employee’s record then
appears in the second repeater.

Other Options for Displaying Master-Detail Relationships

The techniques discussed in this chapter for displaying master-detail records are by no means the
only ones available to you. Both the object-oriented design and automated master-detail features of
Oracle Power Objects provide further options for displaying master-detail relationships. As long as
you set the LinkMasterForm, LinkMasterColumn, LinkDetailColumn, and LinkPrimaryKey
properties correctly, you can use any bound containers to define master-detail relationships,
including multilevel master-detail relationships.

Property Setting

LinkDetailColumn ENAME

LinkMasterColumn ENAME

LinkMasterForm repEmployees

RecordSource EMPHIST

18.12

19
U s i n g C o n s t r a i n t s t o
E n f o r c e B u s i n e s s R u l e s 1 9

This chapter covers the following topics:

Overview of Constraints . 19.2
Constraints in the Database . 19.2
Types of Database Constraints. 19.3
Defining Database Constraints . 19.9
Removing Database Constraints . 19.12
Constraints in the Application . 19.13
Using Database and Application Constraints Together 19.28

19.2

Overview of Constraints

Constraints (also called integrity constraints) restrict the ways in which users can add to, modify, or
delete your application’s data. Constraints are typically used to enforce business rules—guidelines
that your organization follows to protect and standardize information.

For example, you might use a constraint to ensure that every employee is assigned to a department,
or to ensure that users do not accidentally enter negative values for a product’s price.

You can define constraints in two locations:

In the database. Constraints in the database are associated with the definitions of table objects.
For example, a table can have a constraint that requires each value in a column to be unique.

In the application. Constraints in the application are associated with the application objects
that form the interface to the information. For example, a text field can have a constraint that
requires all values entered into it to be greater than 20.

This chapter describes the kinds of constraints you can enter in both locations. It also discusses the
comparative advantages of using different constraint locations. Since many applications will use
constraints in both locations, this chapter also provides an in-depth example that incorporates both
types of constraints.

Constraints in the Database

A database constraint is a declaratively defined rule restricting the values that can be entered into a
column or set of columns in a table. Database constraints are said to be declaratively defined because
you define constraints as part of the table structure when you create or modify it. Once you have
associated a constraint with a table, the constraint is always enforced unless you explicitly remove or
disable the constraint.

Constraints located in the database have the following advantages:

■ Centralization. A database constraint can be defined once and be used automatically by all
clients accessing the database. Defining the constraint in the database relieves you from having
to add the same constraints to every form that uses the information. Also, when you need to
update the constraint, you can make your changes in a single location.

■ Security. Database constraints always apply no matter what data access tool is used. In contrast,
constraints defined in your application could be violated by someone using a different
application or tool that can connect to the same tables (for example, Oracle SQL*Plus).

■ Simplicity. Database constraints are easy to define and require little or no coding.

Database constraints are associated only with tables. You cannot associate constraints directly with
views, but a view is subject to any constraints associated with its base tables. You associate
constraints with tables in two ways: with a single column or with the entire table.

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.3

Not all databases support table-level constraints (Oracle7 Servers and Blaze databases support table
constraints). Table constraints are more flexible than column constraints for the following reasons:

■ They can apply to multiple columns at once
■ They can be added after the table has been created

Types of Database Constraints

The types of constraints that you can associate with a table vary depending on the database in
which the table is stored. The constraint categories described in the following sections are
supported by most relational databases.

Not Null Constraints

A Not Null constraint prevents the user from entering a value of Null into a column of a table. A
Not Null constraint always applies to a single column.

You use Not Null constraints to ensure that values are always entered for important columns. For
example, you might use a Not Null constraint to ensure that every employee in your database has a
corresponding salary.

Unique Constraints

A Unique constraint prevents the user from entering duplicate values into a column or a set of
columns. A Unique constraint can be enabled for a single column or for a combination of columns.
A Unique constraint enabled for a combination of columns is sometimes called a composite Unique
constraint.

You use Unique constraints to ensure that column values are not duplicated in your table. For
example, you might use a Unique constraint to ensure that every product in your database has a
different part number.

A Unique constraint by itself does not prevent the user from entering multiple null values—a null
in a column always satisfies a Unique constraint. To prevent the entry of null values in a column
with a Unique constraint, you must also add a Not Null constraint to the column.

For information

about indexes, see

the section “Views”

on page 8.16.

Many databases (including Blaze databases, Oracle7 Servers, and SQL Server databases) enforce
Unique constraints using an index object. In some databases (such as Oracle7 Servers), the index
object is created automatically when you create the Unique constraint. In other databases (such as
SQL Server databases), you create the Unique constraint by creating the index.

Because Unique constraints are often enforced using indexes, Unique constraints are frequently
subject to the implementation-specific limitations of indexes. For example, composite Unique
constraints are limited to 16 columns on an Oracle7 Server.

19.4

Primary Key Constraints

A Primary Key constraint ensures that each row in the table is uniquely identified by the value in
the primary key column or set of columns. A primary key constraint combines the features of a
Unique constraint and a Not Null constraint.

Generally, you should include a Primary Key constraint in every table you create. Having a primary
key can significantly improve the speed of accessing rows of the table. For databases that do not
have automatic ROWIDs (such as SQL Server), Oracle Power Objects requires a primary key to
identify single rows for locking and updating purposes.

A Primary Key constraint is also used to enforce referential integrity when master-detail
relationships are defined in the database. Enforcing referential integrity entails maintaining the
correspondence between the master table and a detail table. To maintain referential integrity,
Primary Key constraints are often used in combination with Foreign Key constraints, described in

the section “Foreign Key Constraints” on page 19.7.

In a master-detail relationship, the primary key is the column in the master table that holds a
unique identifier for each row in the table. A foreign key column in a detail table uses the primary
key value to specify a join between the rows, as illustrated in the following figure:

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.5

The following rules are frequently used in maintaining referential integrity between a master table
and a detail table:

■ A detail row cannot be inserted until the master row exists.
■ A master row cannot be deleted without deleting all detail rows first.
■ If a primary key value in a master row is changed, all foreign key values that refer to that

primary key value must be updated as well.

For some databases (such as Oracle7 Servers), you can maintain full referential integrity by simply
creating Primary Key and Foreign Key constraints. In other databases (such as SQL Server), you
must define your referential integrity processing separately (typically in a trigger). However, in
either case, you must define Primary Key and Foreign Key constraints in order to enforce referential
integrity rules in the database.

Note: You can also enforce referential integrity rules in your application, as described in the section

“Dropping Constraints in the Table Editor Window” on page 19.12. Application-based referential
integrity does not require you to specify Primary Key and Foreign Key constraints, although it is
often useful to have this information stored in the database even if it is not used there. Regardless of
where you choose to enforce referential integrity, you should always define a Primary Key
constraint for every table in your database.

A Primary Key constraint can be enabled for a single column or for a combination of columns
(called a composite key, a multi-column key or a multi-segmented key). A composite key constraint
ensures that each row has a unique combination of values in its key columns.

For example, the following diagram shows a composite primary key constraint on the EMP table:

19.6

The following row cannot be added to the table, because it violates the Primary Key constraint:

However, the following row can be added to the table, because the combination of ENAME and
EMPNO is unique:

For information

about indexes, see

the section “Views”

on page 8.16.

Many databases (including Oracle7 Servers and SQL Server databases) enforce Primary Key
constraints using an index object. In some databases (such as Oracle7 Servers), the index object is
created automatically when you create the Primary Key constraint. In other databases (such as SQL
Server databases), you must create the index before you create the Primary Key constraint.

When Primary Key constraints are enforced using indexes, Primary Key constraints are subject to
the limitations of indexes. For example, composite Primary Key constraints are limited to 16
columns on an Oracle7 Server.

This row violates
the constraint

This row does not
violate the constraint

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.7

Foreign Key Constraints

A Foreign Key constraint ensures that each value entered into the column is already present in a
different column (usually in another table). Foreign Key constraints are typically used to maintain
referential integrity when master-detail relationships are defined in the database. Foreign Key
constraints are always used in conjunction with Primary Key constraints (described in the previous
section).

In a master-detail relationship, the foreign key is the column in the detail table that holds an
identifier for a row in the master table. A value in a foreign key column is equal to a value in a
primary key column in another table.

In a one-to-one relationship, each row in the detail table corresponds to a unique row in the master
table. In a one-to-many relationship, any number of rows in the detail table can correspond to the
same row in the master table.

For information about how Foreign Key constraints are used to enforce referential integrity in the

database, see the section “Primary Key Constraints” on page 19.4.

A Foreign Key constraint can be enabled for a single column or for a combination of columns
(called a composite key, a multi-column key or a multi-segmented key). A composite key constraint
allows you to specify a join to a composite Primary Key in another table.

Check Constraints

A Check constraint (also called a rule) ensures that only values matching specified criteria can be
entered in the column or set of columns. A Check constraint compares the values to be entered
with a specific condition.

You use a Check constraint to enforce business rules that require comparison or calculation. For
example, you might use a Check constraint to ensure that all salaries in your database are greater
than zero, or to ensure that all employee names are entered in upper case.

The capabilities of a Check constraint vary from database to database.

For an Oracle7 Server or a Blaze database, a Check constraint can refer to values in other columns.
For example, you can create an Oracle7 constraint ensuring that the value in one column does not
exceed a value in another column. However, a Check constraint cannot include a subquery or use
certain SQL functions (such as SYSDATE and USER). Oracle7 Servers and Blaze databases allow
you to associate Check constraints with both individual table columns and with entire table
objects.

For SQL Server, a Check constraint (a rule) can include operators and values, but cannot reference
any other column or database object. SQL Sever databases allow you to associate rules with
individual table columns and with user-defined datatypes (any column of that datatype in any
database object automatically uses the rule).

19.8

List of Supported Constraints

The following table indicates which types of constraints are supported by which types of databases:

Other Database Integrity Checks

Some databases provide additional techniques for ensuring data integrity and enforcing business
rules. Two common techniques use triggers and stored procedures.

Triggers are subprograms associated with database objects. Triggers can perform complex
processing when the table’s rows are inserted, deleted, or updated.

Stored procedures are subprograms that are stored in the database as separate objects. Unlike
triggers, stored procedures are not intrinsically associated with the definition of a table,
although many kinds of database objects can be accessed from within the procedure. Stored
procedures can perform complex tasks when specifically called. Stored procedures can be called
from application code or from another trigger or stored procedure.

Triggers and stored procedures are often used to enforce rules that cannot easily be defined in other
ways. For example, a trigger can automatically copy into an auditing table rows deleted from
another table. A stored procedure can perform queries and subqueries on other tables to enforce
complex relationships. Some databases use triggers and stored procedures to provide unique
column values or to enforce referential integrity between tables.

Triggers and stored procedures usually consist of SQL statements combined with additional
programming constructs (such as variables and flow-of-control statements). The specific syntax of
triggers and stored procedures varies greatly from database to database.

For information about defining and using triggers and stored procedures, see the documentation
accompanying your database.

Constraint Type Blaze Oracle7 Server SQL Server

Not Null Yes Yes Yes

Unique Yes Yes Yes

Primary Key Yes Yes Yes

Foreign Key Yes Yes Yes

Check Yes Yes Yes

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.9

Defining Database Constraints

You can specify a constraint in two ways:

■ By specifying values in the Table Editor window.
■ By issuing a SQL command (or, for SQL Server, executing a system procedure) with the

appropriate clauses.

These techniques are described below.

Defining Constraints in the Table Editor Window

You can define the following types of column constraints in the Table Editor window:

■ Not Null
■ Unique
■ Primary Key

To specify other types of constraints, you must use a SQL command (or a system procedure), as
described later in this chapter.

To define a Not Null constraint in the Table Editor window:

1 Click on the Not Null column so that a check mark appears.

2 Save the table definition by choosing the File-Save menu command or clicking on the Save button.

To define a Unique constraint in the Table Editor window:

1 Click on the Unique column so that a check mark appears.

2 Save the table definition by choosing the File-Save menu command or clicking on the Save button.

To define a Primary Key constraint in the Table Editor window:

1 Select the column for which you want to enable the constraint.

You can select the column by using the keyboard, or by clicking anywhere in the desired row.

2 Click on the Primary Key tool.

3 To define a composite primary key, repeat steps 1 and 2 for additional columns in the key.

4 Save the table definition by choosing the File-Save menu command or clicking on the Save button.

19.10

Defining Constraints Using SQL Commands or System

Procedures

You can define any type of constraint by issuing a SQL command (or, for SQL Server, executing a
system procedure). This section lists the commands used to define constraints, along with a simple
example of each command. For a complete reference to the commands described, see the SQL
language reference manual provided with your database.

Blaze Database Constraints

Oracle7 Server Constraints

Type of Constraint SQL Commands Example

Not Null CREATE TABLE EXEC SQL CREATE TABLE nn_tab &
 (id NUMBER NOT NULL)

ALTER TABLE EXEC SQL ALTER TABLE nn_tab2 &
 (id NUMBER NOT NULL)

Unique CREATE TABLE EXEC SQL CREATE TABLE unq_tab &
 (id NUMBER UNIQUE)

ALTER TABLE EXEC SQL ALTER TABLE unq_tab2 &
 ADD UNIQUE(id)

Primary Key CREATE TABLE EXEC SQL CREATE TABLE pk_tab &
 (id NUMBER PRIMARY KEY)

ALTER TABLE EXEC SQL ALTER TABLE pk_tab2 &
 ADD PRIMARY KEY (id)

Type of Constraint SQL Commands Example

Not Null CREATE TABLE EXEC SQL CREATE TABLE nn_tab &
 (id NUMBER NOT NULL)

ALTER TABLE EXEC SQL ALTER TABLE nn_tab2 &
 (id NUMBER NOT NULL)

Unique CREATE TABLE EXEC SQL CREATE TABLE unq_tab &
 (id NUMBER UNIQUE)

ALTER TABLE EXEC SQL ALTER TABLE unq_tab2 &
 ADD UNIQUE (id)

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.11

SQL Server Constraints

Primary Key CREATE TABLE EXEC SQL CREATE TABLE pk_tab &
 (id NUMBER PRIMARY KEY)

ALTER TABLE EXEC SQL ALTER TABLE pk_tab2 &
 ADD PRIMARY KEY (id)

Foreign Key CREATE TABLE EXEC SQL CREATE TABLE fk_tab &
 (id NUMBER PRIMARY KEY, &
 pk_tab_id NUMBER &
 REFERENCES pk_tab.id)

ALTER TABLE EXEC SQL ALTER TABLE fk_tab2 &
 ADD (FOREIGN KEY(pk_tab_id) &
 REFERENCES pk_tab.id)

Check CREATE TABLE EXEC SQL CREATE TABLE chk_tab &
 (id NUMBER CHECK (id > 0))

ALTER TABLE EXEC SQL ALTER TABLE chk_tab2 &
 ADD CHECK (id > 0)

Type of Constraint
SQL Commands/
System Procedures Example

Not Null CREATE TABLE EXEC SQL CREATE TABLE nn_tab &
 (id INT NOT NULL)

Unique CREATE INDEX EXEC SQL CREATE UNIQUE &
 INDEX unq_tab_id_index &
 ON unq_tab (id)

Primary Key CREATE INDEX +
sp_primarykey

EXEC SQL CREATE UNIQUE &
 CLUSTERED INDEX pk_tab_id_index &
 ON pk_tab (id)
EXEC SQL sp_primarykey pk_tab, id

Foreign Key sp_foreignkey EXEC SQL sp_foreignkey fk_tab, pk_tab_id

Check CREATE RULE +
sp_bindrule

EXEC SQL CREATE RULE &
 chk_tab_id_rule AS @id > 0
EXEC SQL sp_bindrule &
 chk_tab_id_rule, 'chk_tab.id'

Type of Constraint SQL Commands Example

19.12

Removing Database Constraints

You can remove a constraint in two ways: by disabling the constraint or by dropping it.

Disabling a constraint means that the constraint is still stored as part of the table’s definition,
but it is not enforced. Constraints are sometimes disabled to improve speed when importing a
large number of rows into a table. Support for disabling constraints varies from database to
database.

Dropping a constraint means that the constraint is permanently removed from the table’s
definition.

Once a constraint has been disabled or dropped, the constraint is no longer enforced. A constraint
can be re-enabled or re-created only if no rows have been added to the table that violate the
constraint.

You can remove a constraint in the following ways:

■ By specifying values in the Table Editor window.
■ By issuing a SQL command (or, for SQL Server, executing a system procedure) with the

appropriate clauses.

Dropping Constraints in the Table Editor Window

You can drop the following types of column constraints in the Table Editor window:

■ Not Null
■ Unique
■ Primary Key

To drop other types of constraints, or to disable any kind of constraint, you must use a SQL
command or a system procedure.

To drop a Not Null constraint in the Table Editor window:

1 Click on the Not Null column so that the check mark disappears.

2 Save the table definition by choosing the File-Save menu command or clicking on the Save button.

To drop a Unique constraint in the Table Editor window:

1 Click on the Unique column so that the check mark disappears.

2 Save the table definition by choosing the File-Save menu command or clicking on the Save button.

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.13

To drop a Primary Key constraint in the Table Editor window:

1 Select the column for which you want to drop the constraint.

You can select the column by using the keyboard, or by clicking anywhere in the desired row.

2 Click on the Primary Key tool to remove the key icon from the selected column.

3 To drop a composite primary key, repeat steps 1 and 2 for all additional columns in the key.

4 Save the table definition by choosing the File-Save menu command or clicking on the Save button.

Dropping or Disabling Constraints Using SQL Commands

or System Procedures

You can drop or disable any type of constraint by issuing a SQL command or (for SQL Server)
executing a system procedure. For a discussion of the appropriate commands and related issues, see
the SQL language reference manual provided with your database.

Constraints in the Application

Oracle Power Objects provides many ways to enforce business rules on the client (that is, within the
application). Some require method code, but many do not. You enforce constraints on the client in
the following cases:

■ Immediate Response - You want the application to respond immediately to changes entered by
the user.

■ Reduced Network Traffic - You want to relieve network traffic by performing as many checks
as possible on the client before flushing changes to the database.

■ Reduced Server Burden - You want to remove some of the server’s processing burdens by
moving some constraints to the client.

■ Interactivity - You can prompt the user to add or change data.
■ Multi-Database Constraints - Since recordsets can be queried from multiple databases,

represented by several different sessions, you can enforce the same business rules across all of
these databases.

Client-enforced constraints act on the beginning of a transaction, when it is initiated on the front
end of the database application. In Oracle Power Objects, a transaction spans several application
layers, from the user interface through the recordset, the session, and finally the database itself.
Therefore, you can intercept the transaction at several points, applying a constraint at the
appropriate time.

19.14

In this program architecture, you can enforce business rules from the client when:

■ The value in a control changes, either manually (by some action taken by the user) or
programmatically.

■ A row in a recordset is inserted, deleted, or updated.
■ Modifications are made to a master or detail recordset in a master-detail relationship.
■ The application tries to flush changes to the database.

Each of these types of constraints is described below.

Control-Level Constraints

An Oracle Power Objects application can enforce many types of business rules within an individual
control. For example, you can limit the text entered into a text field in several ways:

■ By constraining the length of strings entered in the control.
■ By applying a format mask to data entered in the control.
■ By performing a programmatic check on the data entered before the user moves the focus out of

the control.

This section summarizes the techniques for creating these control-level constraints. In some cases,
you create the constraint by setting a property of the control; in others, you must write method
code to enforce the business rule.

Constraints on Datatype and Datasize

Some of the simplest constraints can be created through the Datatype and DataSize properties of
the control. Datatype limits the kind of data (String, Date, Long, or Double) that can be entered or
displayed in the control.

DataSize limits the number of bytes allocated for holding a control’s data in memory. In addition,
DataSize commonly limits the number of characters that can appear in a control with the String
datatype. The number entered for this property is the number of characters that can appear in a
text string displayed in the control. If the control queries a string from a column in a table or view
that is longer than the DataSize property permits, the application truncates the end of string to fit
the specified DataSize.

To set the Datatype of a control:

1 From within the control’s Property sheet, click on the Datatype property.

2 From the scrolling list that appears, select the desired datatype.

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.15

To set the DataSize of the control:

1 From within the control’s Property sheet, click on the DataSize property.

2 Enter a non-negative numeric value for the DataSize of the control.

Read-Only Values

Often, you simply want to prevent the user from entering a value into a control. For example, in
the Order Entry form shown below, the entry date is generated automatically whenever the user
creates a new order, but you do not want the user to change this date. In the same form, though the
user can select a SHIP FROM location, the details of this shipping site are not editable.

In these cases, you can use the ReadOnly and Enabled properties of a control to limit user access.
When the ReadOnly property is set to TRUE, or when the Enabled property is set to FALSE, the
user cannot move the focus into the control, making it impossible for the user to interact with it.

The difference between controls disabled using the ReadOnly and Enabled properties is their
appearance. The text in a control whose ReadOnly property is set to TRUE appears normal.
However, the text in a control whose Enabled property is set to FALSE is gray. This is a common
graphical cue for a disabled control, and should be used when you want to inform the user that the
control is disabled.

19.16

Both the ReadOnly and Enabled properties can be set programmatically. For example, the
following method code disables a Save pushbutton, called btnSave, on a form if there is no value
entered in a key field:

IF ISNULL(fldItemCode.Value) THEN
 btnSave.Enabled = FALSE
END IF

Format Masks

For information

about format mask

characters, see the

section “Format

Masks” on page

10.31.

In Oracle Power Objects, a format mask determines how data are displayed, but does not constrain
the values that the user can enter. The format mask is a string of characters specifying the format
for displaying data. Each datatype has its own set of allowable format mask characters.

The format mask represents a constraint only in that it may suggest the format for entering data.
For example, when you apply the standard format mask Short Date, date information appears in the
m/d/y format (for example, 3/11/95). However, the user can still enter date information in other
formats (for example, 11-March-95); the control then translates the information to fit the format
mask.

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.17

Counter Fields

Text fields can be configured to produce a unique value, or counter, whenever the user inserts a new
record. This functionality duplicates on the front end what a sequence does in the database,
creating a unique value for a record’s primary key. If your Oracle Power Objects application is
running against a database that does not support sequences, counter fields provide the only
automated means for generating unique key values.

You can create three kinds of counters:

The best kind of counter depends on your database platform. For databases that support sequences,
a sequence-generated counter is preferred. For other databases, an automated counter is fast, but
less reliable than a user-defined counter. Additionally, the automated counter locks the table until
the end of the transaction, so other users cannot generate a key value until the transaction is
committed or rolled back. The disadvantage of a user-defined counter is that it can require
significant coding and custom database setup.

Four properties of a text field can be used to define a counter. The first, CounterType, determines
the way in which the counter is generated.

Counter Type Description

Sequence-
Generated

The application uses a sequence object in a database to generate a new value
for a counter. To use a sequence-generated counter, set the CounterType
property of the text field to “Sequence”, and identify the table used for
generating the counter in the CounterSeq property.

Automated After reading the highest value set for a counter in the column to which the
text field is bound, the application uses the value entered for the
CounterIncBy property to increment each new counter. The application
locks the table long enough to generate the new counter value.

User-Defined The developer enters an algorithm for defining a new counter as part of the
CounterGenKey() method (see below).

19.18

To set the CounterType property:

1 Click on the CounterType section of the text field’s Property sheet.

2 Select the type of counter from the scrolling list that then appears.

If you have the CounterType property set to User, the application calls the CounterGenKey()
method. Since this method has no default processing, you must add method code to
CounterGenKey() to define the algorithm for generating a new counter value.

The following table summarizes the other three important properties relevant to generating counter
values:

Counter Type Value for CounterType Property

No counter None

Sequence-Generated Sequence

Automated Table, MAX()+CounterIncBy

User-Defined User-Generated

Property Description

CounterIncBy Determines the increment between counters.

CounterSeq Identifies the sequence used for generating counters. This property
required when the CounterType is set to Sequence.

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.19

Validate() Method

The most important control-level constraints are normally defined through the Validate() method.
You enter method code to check whether data entered by the user meet your criteria. The
Validate() method is a function that can return TRUE or FALSE:

■ If the return value is TRUE, the value is accepted and the user can move the focus out of the
control.

■ If the return value is FALSE, the value is rejected, and the focus cannot leave the control until
the user enters a valid value.

Method code added to Validate() can have the method return TRUE, indicating that the
validation was successful. The user can continue working with other parts of the application.

If Validate() returns FALSE, the focus cannot leave the control until the user enters a valid value.
In addition, if an error message has been entered for the ValidateMsg property, this text appears in
a message box when the validation fails.

The application triggers Validate() on a control after (1) its Value property has changed, and (2)
one of the following events occurs:

■ The user tries to tab out of the control.
■ The user clicks anywhere outside the control.
■ The user presses the Enter key after editing the contents of a text field or combo box.
■ The user makes a new selection in a list box, combo box, or popup list.
■ The user selects the control, in the case of a radio button or check box.

The default processing of Validate() is for the method to return TRUE. Therefore, any method
code added to Validate() causes it to return 0 (that is, FALSE), unless you enter the following line
somewhere in the method code:

Validate = TRUE

If you call the method RevertValue() on the same control after Validate() returns FALSE, the
value displayed in the control reverts to the one displayed before the user entered a rejected value.
The call to RevertValue() must occur within the method code for Validate().

Oracle Power Objects also includes a row-level validation method, ValidateRow(), as a standard

method of bindable containers. For more information on ValidateRow(), see the section

“ValidateRow()” on page 19.20.

CounterTiming Determines when the counter is generated. Possible settings include
Immediate (when the user inserts a new record) and Deferred (when the
application flushes the new record to the database).

Property Description

19.20

To illustrate how to use Validate(), the following method code ensures that a discount is not a
negative number, and that it does not exceed 100% of the value of the item. The method code
would appear in the Validate() method of the control in which the user enters the discount
amount. Aside from performing the check, the code also modifies the ValidateMsg property to
display a different error message, depending on the reasons why the validation failed.

SELECT CASE Self.Value
 CASE 0 TO 100
 Validate = TRUE
 CASE IS > 100
 Validate = FALSE
 Self.ValidateMessage = "You entered a discount > 100%"
 CASE IS < 0
 Validate = FALSE
 Self.ValidateMessage = "You entered a negative discount"
END SELECT

For information

about SQLLOOKUP,

see the section “The

SQLLOOKUP Func-

tion” on page 9.21.

To illustrate further, the following method code checks to see if a user ID entered into a text field
exists in the USERS table. The method code uses the SQLLOOKUP function to perform this test.

IF NVL(SQLLOOKUP("select count(*) from USERS where" & &
 "USER_NAME like " + newval), 0 > 0 THEN
 Validate = TRUE
ELSE
 MSGBOX "User does not exist"
 Validate = FALSE
END IF

Row-Level Constraints

You can enforce constraints in several ways when the application tries to perform a row-level
operation (adding, deleting, or modifying a record). The following table summarizes the standard
methods of bound containers that you can use to enforce row-level constraints:

ValidateRow()

The ValidateRow() method is triggered whenever the user or the application tries to commit
changes, or when the user tries to move to another row. ValidateRow() is a standard property of a
bindable container, not of a control.

Method When to Use

ValidateRow() Inserting or modifying a row

InsertRow() Inserting a row

DeleteRow() Deleting a row

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.21

You use ValidateRow() instead of Validate() when you must check on dependencies between
values in the recordset, or when you want to make sure than some values in the record are not null.
For example, you may want to ensure that an employee’s commission is not larger than his or her
salary. In this case, the constraint is enforced at the level of the entire record, and should therefore
be enforced when the user tries to save modifications to it.

If ValidateRow() returns FALSE, the application displays whatever error message is defined for the
ValidateRowMsg property of the container.

The default processing of ValidateRow() returns TRUE. Therefore, any method code added to
ValidateRow() causes the method to return 0 (that is, FALSE), unless you add the following
statement to the code:

ValidateRow = TRUE

You can call the RevertRow() method when ValidateRow() returns FALSE, so that all controls
within the container display their original values, before the user entered changes.

To illustrate, the following method code checks to make sure that the entry date of an invoice is not
later than its apply date. The values for these two dates appear in the text fields fldEntryDate and
fldApplyDate. You would enter this code in the ValidateRow() method of the container in which
these text fields appear.

IF fldApplyDate.Value < fldEntryDate.Value THEN
 ValidateRow = FALSE
 Self.RevertRow()
ELSE
 ValidateRow = TRUE
END IF

InsertRow() and DeleteRow()

Although ValidateRow() is often used to enforce business rules at the row level, you can also use
DeleteRow() and InsertRow() for the same purpose when deleting or adding a row. Like
ValidateRow(), both methods are part of any bound container.

As their names imply, the default processing is inserting a new record in the recordset for
InsertRow(), and deleting a the current row for DeleteRow(). Therefore, any method code added
to these methods can override the insertion or deletion of the row. However, you can allow the
insertion or deletion by adding the statement Inherited.DeleteRow() or
Inherited.InsertRow() to the appropriate method. If you are using these methods to
perform these checks, you should add the Inherited. method_name() statement only if the
user has satisfied the necessary criteria.

19.22

For example, the following method code appears in DeleteRow(), and prevents the user from
deleting an customer record if the customer has an outstanding balance due.

IF fldBalanceDue.Value <> 0 THEN
 MSGBOX ("You cannot delete a customer with an " & &
 "outstanding balance", 16, "Error!")
ELSE
 Inherited.DeleteRow()
END IF

Any method code appearing before the Inherited.DeleteRow() statement executes before
the actual deletion, while method code appearing after the statement executes after the deletion.
Similarly, code appearing before the Inherited.InsertRow() statement executes before the
insertion, while code appearing after the statement executes after the insertion.

Other Methods

Three container-level methods are always triggered when you insert, delete, or modify a row. Two
of these methods are triggered immediately before the actual recordset operation, while the other is
triggered after the operation (add, delete, or update) has occurred.

The names of these three methods are PrexxxCheck(), Prexxx(), and Postxxx(), where xxx is the
name of the recordset operation (Insert, Delete, or Update). For example, inserting a record triggers
methods PreInsertCheck(), PreInsert(), and PostInsert().

The following table describes these three kinds of methods:

In the cases of insertions and deletions, InsertRow() and DeleteRow() execute first. Part of their
default processing is to call their corresponding PrexxxCheck(), Prexxx(), and Postxxx() methods.

Method Description

PrexxxCheck() Triggered before the application receives notification that the recordset
operation should proceed. PrexxxCheck() methods return either TRUE if
the operation should proceed, or FALSE if it should not. The default
processing of PrexxxCheck() methods returns TRUE, so any method code
that does not include an Inherited.Pre xxx Check() statement
prevents the recordset operation from occurring.

Prexxx() Triggered after the application receives notification that the recordset
operation should proceed, but immediately before the operation occurs.
Unlike PrexxxCheck(), Prexxx() methods cannot prevent the recordset
operation from occurring.

Postxxx() Triggered after the operation is completed.

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.23

When you delete a record, the following methods are called:

The purpose of this method calling sequence is to give you fine control over the timing of certain
tasks, including the enforcement of a constraint. To use our previous example, if you wanted to
prevent the user from deleting customer records with an outstanding balance, you could add the
necessary method code to either DeleteRow() or PreDeleteCheck(), depending on how close to
the actual deletion you wanted to place the validation routine.

Since DeleteRow() and InsertRow() call their associated PrexxxCheck(), Prexxx(), and
Postxxx() methods as part of their default processing, these three methods are triggered before the
application returns execution to DeleteRow(). This means, for example, that any method code
appearing after the statement Inherited.DeleteRow() in the DeleteRow() method
executes only after PreDeleteCheck(), PreDelete(), and PostDelete() have finished execution.

Master-Detail Constraints

For information

about properties

needed to establish

a master-detail rela-

tionship, see Chapter

18, “Defining Master-

Detail Relationships”.

In addition to constraints imposed on a single bound container, you can enforce constraints on
master and detail containers through several means. This chapter assumes that you are familiar with
these properties and with the common techniques for representing master-detail relationships in an
application.

As explained in Chapter 18, “Defining Master-Detail Relationships”, two properties of the
container holding detail records, LinkMasterColumn and LinkDetailColumn, specify the primary
key and foreign key columns, respectively. A third property of the container, LinkMasterForm,
identifies the bound container displaying the master records in the master-detail relationship.

Some techniques for enforcing master-detail constraints are automated in Oracle Power Objects
through the Record Manager. This portion of the application (1) maintains recordsets, and (2)
enforces both entity integrity and referential integrity.

■ Entity integrity is enforced through the assignment of a primary key to a record source.
Therefore, if the application queries records from the DEPT table, the Record Manager knows
that the DEPTNO column is the primary key column. When the user adds or modifies the
record, therefore, the application ensures that a non-null value is entered for DEPTNO.

Method Action

DeleteRow() If PreDeleteCheck() returns TRUE, deletes the row and calls PreDelete()
and PostDelete().

PreDeleteCheck() Determines whether the deletion should occur.

PreDelete() Performs any processing to occur immediately before the deletion, and calls
PostDelete().

PostDelete() Performs processing after the deletion. Execution then returns to
DeleteRow().

19.24

■ Referential integrity is enforced by specifying the primary key and foreign key columns for
joined recordsets. The properties LinkMasterUpd and LinkMasterDel determine the kind of
referential integrity maintained for a container.

Once you have specified these properties, the application automatically enforces referential
integrity whenever the user inserts, deletes, or modifies a master or detail row.

Master Rows

Three referential integrity concerns arise when the user edits a master recordset:

■ Inserting a row - Will associated detail rows have foreign key values that match the primary key
value for the master row?

■ Updating a row - If the user modifies the primary key value, will the detail rows have their
foreign key values similarly updated, or will they be orphaned (that is, no longer associated with
the master row)?

■ Deleting a row - If the user deletes a master row, will the associated detail records also be
deleted, or will they be orphaned?

Depending on the business rules you wish to apply to master and detail records, you may answer
these three questions differently. For example, if you want to prevent any detail records from being
orphaned, you may want to make it impossible to delete the master row as long as any
corresponding detail rows exist.

In Oracle Power Objects, the following properties determine the kind of referential integrity you
wish to enforce when the user inserts, deletes, or updates a master record.

Property Description

LinkMasterDel Determines whether the user can delete a master record, if associated detail
records exist. You set the LinkMasterDel property on the bound container
displaying detail records. Settings for this property include Refuse if Children
Present (prevent the deletion if there are detail records), Delete Cascade (delete
all detail records when the master record is deleted) and Orphan Details (let the
detail records be orphaned when the master record is deleted).

LinkMasterUpd Determines whether the user can update the primary key value of a master
record, if associated detail records exist. Again, you set this property on the
bound container displaying detail records. Settings for LinkMasterUpd include
Refuse if Children Present (prevent the update if there are detail records), Update
Cascade (update the foreign key values of all detail records to match the new
primary key) and Orphan Details (let the detail records be orphaned when the
primary key value changes).

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.25

For example, the following figure shows these two properties being set for a form that will enforce
referential integrity rules for a master-detail relationship:

Detail Rows

When the user edits a detail recordset, two concerns arise:

■ Inserting a new record - Will the new row have a foreign key value that corresponds to the
appropriate primary key value in the master recordset?

■ Updating the foreign key - If the user changes the foreign key value in a detail row, will the
record be orphaned?

In Oracle Power Objects, the application does not automatically prevent the second problem, in
the same way that you can prevent orphaning through the LinkMasterDel and LinkMasterUpd
properties. However, you can write method code associated with the Validate() method of the
control holding the foreign key value to prevent the detail record from being orphaned. An even
simpler solution is to disable this control, or not display it on the detail recordset’s associated
container.

When you insert a record, the application automatically assigns the correct foreign key value to a
new row, even if no control associated with that column appears in the detail recordset’s associated

container. As discussed in Chapter 17, “Binding a Container to a Record Source”, an application

19.26

always queries the columns needed for a join as part of the master and detail recordsets associated
with bound containers. For example, if you have a list of employees appearing in a repeater display,
each employee record needs a department number that corresponds to a department number in the
master recordset. However, in the form shown below, no bound control connected to the
DEPTNO column appears in the repeater display.

In this case, the application applies the proper DEPTNO value to the new employee record, even
though no control is bound to DEPTNO in the repeater display.

Behind the scenes, Oracle Power Objects maintains a column in the detail recordset for the foreign
key, even if it is not bound to a control appearing in the recordset’s associated container. In the
example, the DEPTNO column is always part of the repeater display’s recordset, even though no
associated bound control appears in this container. Although the user cannot access this additional
column, you can access it programmatically through several recordset methods (for example,
GetColVal(), GetColName(), etc.).

Session-Level Constraints

Earlier sections have described how to enforce constraints at the level of bound controls and bound
containers, where transactions are initiated. This section summarizes points where you can control
transactions at the level of a bound container or a session.

Using several standard methods, you can control whether the work pending within a particular
session is committed or rolled back. These methods can operate on an individual session, or on all
sessions represented within the same bound container.

Method Object Description

GetRecordset() Container Identifies the recordset of a bound container, using the syntax
container.GetRecordset() .

GetSession() Recordset Returns an object reference to a session. You must call this
method on a recordset object.

IsWorkPending() Session Indicates whether work is pending within a particular session
(that is, the session has an uncommitted transaction).

CommitWork() Session Flushes changes pending within a session to the database and
issues the SQL command COMMIT to commit the
transaction.

RollbackWork() Session Flushes any deferred database operations associated with the
session, and then issues the SQL command ROLLBACK.

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.27

To illustrate, the following code sample determines whether work is pending within a particular
session represented on a form, by calling the IsWorkPending() method. Additionally, if work is
pending within this session, the code then commits work pending in all sessions represented within
the form, by calling the CommitForm() method.

For example, the following method gives the user the option to roll back all work within a bound
container.

CONST BTN_OK = 1
IF MSGBOX("Roll back all work?", 33, "Attention") = BTN_OK
THEN
 Self.RollbackForm()
END IF

Note: In the current release of Oracle Power Objects, two-phase commit has not been
implemented. If you want to write all changes to the database, you should call CommitWork() on
each session, instead of CommitWork() on the bound container.

Other Client-Enforced Constraints

The list of client-enforced constraints described in this section is by no means comprehensive.
These are, however, the most common and important means for enforcing business rules on the
client. Whatever techniques you use to enforce constraints, keep the following in mind:

■ You can always interrupt the default processing of a standard method by adding method code
to it. For example, if you want to prevent certain users from opening a form, you can add the
necessary method code to the OpenWindow() method of the form. In this code, you would
then call the default processing (that is, opening the form) only if certain criteria are met.

■ Many methods call each other in a specific sequence. As described earlier in this chapter, the
DeleteRow() method calls PreDeleteCheck(), which in turn calls PreDelete(), which then
calls PostDelete(). By preventing any of these methods from being called, you also stop the
other methods later in the calling sequence from being triggered.

CommitForm() Container Flushes work pending in all sessions represented within the
same container to the database, then issues the SQL command
COMMIT to the database in each session. If other bound
containers appear within the container, CommitForm()
commits the work for all of them, even if they connect to
separate sessions.

RollbackForm() Container Issues the SQL command ROLLBACK through all these
sessions to the database.

Method Object Description

19.28

■ Remember the distinction between the local recordset and the records stored in the database.
Many operations can be performed within the local recordset, performing the necessary checks
before flushing the changes to the database.

■ You can add user-defined method and properties to enforce many constraints on the client. For
example, if you create a user-defined property for specifying a security level needed to open a
form, you can then control user access to forms by adding this property to all forms in an
application.

Using Database and Application Constraints Together

The Getting Started with Oracle Power Objects manual uses a demo application, “MoonLightDemo”
(called “MLDEMO” in Windows), and a sample Blaze Database, “MoonLight Database” (called
“MLDB” in Windows), to illustrate many development fundamentals. Among other things, the
“MoonLightDemo” application and “MoonLight Database” demonstrate how to use server-based
and client-based constraints in Oracle Power Objects.

This section describes how the demo application enforces constraints both in the application and in
the database, and explains why each constraint appears on the client or the server.

Server-Enforced Constraints

The following constraints are enforced within the tables defined in the “MoonLight Database”.

Creating Primary Keys

What: The primary key constraint appears on the ORDERS and ORDER_ITEMS tables.

Why: The developer wanted to prevent data duplication by generating a unique ID for every order,
and every line item in the order. When a column is designated as a primary key, data entered into it
must be both unique and not null.

In addition, using primary keys makes it easier for the developer to establish master-detail
relationships. Every detail record can be associated with only one master record, uniquely identified
by the value in its primary key column.

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.29

Ensuring that Values Always Appear in Some Columns

What: The NOT NULL constraint appears on several columns in the ORDERS table.

Why: The application also enforces this constraint, preventing the user from entering a new order
that does not include data for these columns. However, the developer wanted to ensure that every
row in ORDERS had data in these columns, regardless of the application used to add or update
records in ORDERS. For sake of consistency, therefore, the developer added the NOT NULL
constraint to these columns.

Ensuring a Unique Name for Each Country

What: The NAME column in the COUNTRIES table has the UNIQUE constraint.

Why: The developer added this constraint to ensure that every country had a unique name
associated with it in this table. Although each country has a unique numeric ID in the
COUNTRIES table, the UNIQUE constraint was necessary so that the same name would not be
accidentally entered for two countries. For example, if this UNIQUE constraint did not exist, users
could enter “China” for both Taiwan and the People’s Republic of China.

Client-Enforced Constraints

The follow constraints are enforced within the “MoonLightDemo” application.

Ensuring Values are Entered for Columns

What: In the frmOrders form, the user cannot save a new record until there are values entered for
the entry date, ship date, representative, and company.

Why: Although the NOT NULL constraint already exists for the corresponding columns in the
ORDERS table, the developer added this client-enforced constraint to ensure that the same
business rule was enforced on the client. This may seem like duplication, but if network or server
performance is an issue, it might be more efficient for the check to be performed once before
sending the transaction to the server.

The following code appears in the ValidateRow() method of the frmOrders form to perform this
check:

'Initialize the return value of ValidateRow()
ValidateRow = FALSE

'Determine whether any mandatory values were not entered
IF ISNULL(order_date.value) THEN
 MSGBOX "You must enter a valid order date."
ELSEIF ISNULL(ship_date.value) THEN

19.30

 MSGBOX "You must enter a valid ship date."
ELSEIF ISNULL(sales_rep.value) THEN
 MSGBOX "You must choose a sales representative."
ELSEIF ISNULL(company.value) THEN
 MSGBOX "You must identify the recipient company."

'Determine whether the ship date precedes the order date
ELSEIF ship_date.value < order_date.value THEN
 MSGBOX "The ship date cannot precede the order date."

'If the row met all the preceding criteria, it is valid
'and can be written to the recordset.
ELSE
 ValidateRow = TRUE
END IF

Preventing a Ship Date Earlier Than an Apply Date

What: In the same form, the user cannot enter a ship date earlier than an apply date.

Why: Unless you write a trigger to compare dates on the server, this constraint must be enforced on
the client. Again, it is more efficient from a client/server standpoint to perform this kind of
preliminary check on the client, before sending the transaction across the network to the server.

The following code also appears in the ValidateRow() method of the frmOrders form, and is
excerpted from the larger code sample shown above.

'Determine whether the ship date precedes the order date
ELSEIF ship_date.value < order_date.value THEN
 MSGBOX "The ship date cannot precede the order date."

Preventing the User from Entering a Negative Quantity

What: In the Quantity text field of the frmOrderItems form, the user cannot enter a negative
number for the quantity of an item.

Why: Again, it is more efficient to perform this check on the client, at the time the user enters the
data. Otherwise, the user would be forced to reenter the transaction after the server rejected it.

The following code appears in the Validate() method of the field, where it enforces the constraint:

'If the new value is negative, do not accept it.
IF newval < 0 THEN
 msgBox "You cannot enter a negative quantity."
 Validate = FALSE
ELSE
 Validate = TRUE
END IF

U S I N G C O N S T R A I N T S T O E N F O R C E B U S I N E S S R U L E S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

19.31

Preventing the User from Entering an Invalid Discount

What: In the Discount text field of the frmOrderItems form, the user cannot enter a negative
discount, or one larger than 100%.

Why: This example further illustrates how to use the Validate() method to enforce a business rule
as the user enters data, to improve the efficiency of the database application and the immediacy of
the response.

The following method code appears in the Validate() method of the text field, where it enforces
the constraint:

'If the new value is negative, do not accept it.
IF newval < 0 THEN
 msgBox "You cannot enter a negative discount."
 Validate = FALSE
ELSE

'If the user typed a value of 1 or greater, convert it into
'a percentage
 IF newval >= 1 THEN
 newval = newval/100
 self.value = newval
 END IF

'If the user entered a value over 100%, do not accept it.
 IF newval > 1 THEN
 MsgBox "You cannot have a discount over 100%."
 Validate = FALSE
 ELSE
 Validate = TRUE
 END IF
END IF

Managing Orders and Their Line Items

What: The application enforces referential integrity between order records and line item records in
the following ways:

■ If the user deletes an order, all of its associated line items are also deleted.
■ The application prevents the user from changing the order ID of an order if it has associated

line items.

19.32

Why: This kind of master-detail relationship is best maintained on the client, where the user will be
deleting or modifying records. To enforce this constraint, the developer has set two properties of
the frmOrders form to prevent the deletion:

Creating Unique IDs for Orders and Line Items

What: The application generates a unique ID for every order and every line item.

Why: The application automates the task of creating a unique identifier for each record, so that
problems do not later arise from data duplication or primary key/foreign key mismatches. The
developer has created an automated counter by setting the following properties:

For a complete explanation of these properties and of counters, see the section “Counter Fields” on

page 19.17.

Property Setting

LinkMasterDel Delete Cascade (delete all detail records when the master is deleted)

LinkMasterUpd Refuse If Children Present (no updates to the primary key are possible if
associated detail records exist)

Property Setting

CounterType Table, MAX()+CounterIncBy (specifies an automated counter)

CounterIncBy 1 (indicates that each new ID is one greater than the largest in use)

CounterTiming Immediate (directs the application to generate a counter when the user
creates a new record)

CounterSeq ORDER_ID_SEQ (identifies the sequence in the “MoonLight Database”
used for defining sequences).

A
S u g g e s t e d C o d i n g
S t a n d a r d s A

This Appendix covers the following topics:

Overview . A.2
Text Conventions. A.2
Commenting Code . A.3
Declaration and Initialization . A.4
Constants . A.5
Naming Conventions . A.5
Object References . A.8

A.2

Overview

This appendix presents a set of guidelines for use in developing Oracle Power Objects applications.
You can follow these coding standards as presented, or modify them to suit your needs.

Following these standards can help improve your application in the following areas:

■ Consistency
■ Readability
■ Usability

These guidelines are followed whenever possible in the code examples and sample applications that
accompany Oracle Power Objects.

Text Conventions

These text conventions can help improve the readability of your code.

Keywords

The following text conventions apply to keywords in Oracle Basic method code:

Type of keyword Convention Examples

Oracle Basic commands, functions,
and operators

Upper case DIM
MSGBOX
NEW

Oracle Basic constants Upper case TRUE

Properties Mixed case TextJustVert
ColorFill

Methods Mixed case, followed by
parentheses

Click()
OpenModal(TRUE)

Oracle Basic Datatypes Init cap Long
Object

Object Names Lower case prefix, followed by
mixed case

frmOrders
btnOK

S U G G E S T E D C O D I N G S T A N D A R D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

A.3

Indentation

Normally, you should indent each level of code with a tab. However, when the number of levels
makes it difficult to view the code within the code window, you can use space characters instead of
tab characters to indent code levels.

Line Length

Whenever possible, a line of method code should not exceed 60-80 characters. You can break up

long lines of code by using the line continuation character (&) as described in the section “Line

Continuation” on page 5.7.

Possible exceptions include:

■ Calls to methods or DLL procedures that have many arguments.
■ Declarations of DLL procedures that require a long line of text.
■ Lines of SQL text in an EXEC SQL command or SQLLOOKUP function.

Code Sections

Functionally distinct sections of code can be separated visually with a blank line.

Commenting Code

As described in the section “Commenting Code” on page 5.8, comments can help improve the
clarity and readability of your code. Comments can be included in two ways:

■ For short comments that apply only to a single line of code, you can include the text to the
right of the code to be commented.

■ For longer comments, or comments that apply to more than one line of code, you can include
the text on one or more separate lines above the code to be commented.

You should include code comments in the following locations:

■ At the beginning of the method to describe what the method does.
■ At the beginning of each functionally distinct section of code to describe what happens in the

section.
■ When declaring a variable or constant to describe its purpose, unless the purpose is

immediately obvious.
■ When referring to a user-defined property or method to describe the purpose of the property

or method.

A.4

Example

The following method code demonstrates the suggested use of comments:

DIM vNumRows AS Long ' The number of rows in the recordset

' Requery the container, applying the condition entered by
' the user in fldMyCond
Container.QueryWhere(fldMyCond.Value)

' Get the number of rows in the recordset
vNumRows = Container.GetRecordSet().GetRowCount()

' Loop through all the records in the recordset to build a
' string, which is then applied to the popEmpNameList's
' Translation property. The popup list then displays all the
' employee names queried for the form.
DIM vTransStr AS String ' The new contents of the popup list
DIM vNameStr AS String ' Holds the name of each employee
FOR x = 1 TO vNumRows

 ' Read the employee name into vNameStr
 vNameStr = Container.GetRecordSet().GetColVal("NAME")

 ' Add the employee name to vTransStr. Note that the name
 ' must be added twice, separated by an equal sign (=),
 ' to satisfy the conventions of the Translation property
 vTransStr = vTransStr & vNameStr & "=" & vNameStr

NEXT x

' Assign the string to the Translation property
' of popEmpNameList.
popEmpNameList.Translation = vTransStr

Declaration and Initialization

By declaring and initializing variables and constants in a consistent location, you make it easier for
readers to locate and, if necessary, modify this information. The following guidelines are suggested:

■ Global variables and constants should be declared in the (Declarations) section of the
application.

Global variables should be initialized in the Initialize() method of the application.

Sub Click()

S U G G E S T E D C O D I N G S T A N D A R D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

A.5

■ Local variables and constants should usually be declared explicitly at the top of the method
code.

For variables and constants that are used only in one section of method code, you can place the
variable declaration at the beginning of the section in which the variable is used.

Variables to be used as “counters” (for example, in a FOR... NEXT loop) do not need to be
explicitly declared.

Constants

When possible, you should use constants in place of numeric values.

Oracle Basic includes predefined constants, described in Appendix B. These constants are used to
represent the values of list-type properties, to represent the command codes of built-in menu
commands, and to represent possible values for the parameters of methods such as
TBInsertButton().

You should also use constants when you need to reference numeric values throughout method code.
For example, you could define the constants STANDARD_WIDTH and EXPANDED_WIDTH
to be two standard widths of a form, in pixels. You could then use one of these constants in a line of
code that sets the width of a form.

Naming Conventions

By using a set of standard naming conventions for objects, variables, and user-defined property and
method names, you improve the readability of your method code.

Object Names

The following table summarizes recommended prefixes for each type of object.

Object Type Prefix Example

Applications (variable names)* app appMyApp

Bitmaps bmp bmpCompanyHQ

Charts cht chtRevenue

Check boxes chk chkOnHold

Embedded forms emb embCustomerInfo

Forms frm frmMain

A.6

* In these cases, the prefix should be used only when assigning the application or session object to
an object-style variable. For example:

DIM sesMySession AS Object
sesMySession = TESTSESS

Horizontal scroll bars hsb hsbBrowser

Lines lin linClockHand

List boxes lst lstCountries

Menus mnu mnuEdit

Menu bars mbr mbrCustomMenu

OCX controls ocx ocxMediaControl

OLE objects ole oleWordDoc

Picture boxes pic picCompanyLogo

Popup lists pop popPaymentType

Pushbuttons btn btnCancel

Radio buttons rad radSendUSMail

Radio button frames rbf rbfShippingOptions

Recordsets rec recCustRecords

Repeater display rep repLineItems

Reports rpt rptWinners

Report groups grp grpDeptInfo

Static text objects lbl lblCustomerLabel

Status lines sln slnAppStatus

Text fields fld fldFirstName

Toolbars tbr tbrCustomToolbar

User-defined classes cls clsDBControls

Vertical scroll bars vsb vsbBrowser

Object Type Prefix Example

S U G G E S T E D C O D I N G S T A N D A R D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

A.7

Subclass Names

When naming a user-defined class that is a subclass of another user-defined class, it is often
desirable to indicate the relationship between master class and subclass in the object name.

To indicate this relationship, you can give the subclass the same name as the master class, adding a
suffix that indicates the specific purpose of the subclass. The suffix should be separated from the
rest of the name by an underscore character (_).

For example, you might have a master class “clsAddress” that displays a set of address fields. You
might then have several subclasses of this class that customize the label text to different languages.

You would give the subclass containing Spanish labels the following name:

clsAddress_Spanish

You would give the subclass containing Japanese labels the following name:

clsAddress_Japanese

Variable Names

Variable names should be descriptive of their function. An exception to this guideline is variables
used as counters, which are commonly given single-letter names such as x or i . (for example, FOR
x = 1 TO 100).

You can use single-letter prefixes to indicate the scope of a variable (global or local). The following
prefixes are recommended:

Note: Variables that store references to objects (such as recordsets, toolbars, and status lines) are

sometimes clearer if named using the object prefixes described the section “Object Names” on page

A.5. For example, a variable storing a reference to the “Edit” menu might be called mnuEdit
rather than vEditMenu .

If you want the names of your variables to contain information about their datatype, you can use
the native Oracle Basic datatype suffixes.

Type of variable Prefix Example

Global g gAppStatus

Local v vNumRows

A.8

User-Defined Property and Method Names

As with variable and constant names, the name of a user-defined property or method should be
descriptive of its function.

You can use a three-letter prefix to distinguish user-defined properties and methods from standard
properties and methods. The following prefixes are recommended:

You may want to use the letter “p” as a prefix for the parameters of a user-defined method. This
prefix will help distinguish parameter variables from other variables in the application. Using this
convention, a user-defined method in the property sheet may look like this:

Sub udmDoTaxCalc(pTaxType as Long, pGrossAmt as Long)

Object References

Relative References

Relative references

are described in the

section “Relative Ref-

erences” on page

3.25.

In many cases, a relative object reference is preferable to an absolute reference.

■ Your method code is less likely to break when you change the name of an object.
■ Relative references indicate the relationship between objects in the containment hierarchy.
■ Method code containing relative references is easier to reuse, because it does not have to be

customized for each location where it is used.

For example, the following line of method code refers to an object by name:

vNumRows = frmMainForm.GetRecordSet().GetRowCount()

You could make this line of code more generic by replacing it with the following method code:

vNumRows = Self.GetContainer().GetRecordSet().GetRowCount()

Recordsets

When referring to a recordset object, it is not always necessary to store a reference to the recordset
in an Oracle Basic variable. If the recordset is referenced only once from within the method code,
you can use the following syntax to refer to a characteristic of the recordset:

bound_container .GetRecordSet(). property_or_method

Type of characteristic Prefix Example

User-defined property udp udpSecurityLevel

User-defined method udm udmCalculateTax

S U G G E S T E D C O D I N G S T A N D A R D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

A.9

For example, the following two code fragments return the number of rows in a container. However,
the second code sample requires fewer lines of method code.

DIM recSet AS Object
DIM vNumRows AS Long
recSet = Self.GetContainer().GetRecordSet()
vNumRows = recSet.GetRowCount()

Alternative syntax:

DIM vNumRows AS Long
vNumRows = Self.GetContainer().GetRecordSet().GetRowCount()

A.10

B
L i s t o f P r o p e r t i e s a n d
M e t h o d s B

This Appendix covers the following topics:

Overview . B.2
Standard Properties . B.2
Standard Methods . B.9

B.2

Overview

This appendix lists all standard properties and methods in Oracle Power Objects. For a full
description of any property or method, see the item’s description in the On-Line Help.

Standard Properties

The following table lists all standard properties in Oracle Power Objects. Properties marked with an
“R” are readable at run time; properties marked with a “W” are writable at run time.

Property R W Description

Bitmap R W Determines which bitmap, if any, is displayed in an application
object capable of displaying bitmaps.

BitmapTiled R W Determines whether a bitmap displayed on an application object
is tiled or not across the face of the object in which it appears.

ChartAutoFormat R W Determines whether the chart control automatically sizes sections
of the chart.

ChartGap R W Determines the width (in pixels) between groups of bars in a
horizontal bar or vertical bar chart.

ChartLabelStyle R W Determines the labels appearing adjacent to each bar in a vertical
or horizontal bar chart.

ChartLegendHAlign R W Determines the horizontal position of the legend appearing for a
chart.

ChartLegendVAlign R W Determines the vertical position of the legend appearing for a
chart.

ChartLineStyle R W Determines the style of lines displayed in the chart control

ChartMaxVal R W Determines the maximum value for the Y axis of a vertical bar,
horizontal bar, or line graph.

ChartMinVal R W Determines the maximum value for the Y axis of a vertical bar,
horizontal bar, or line graph.

ChartOverlap R W Determines the amount of overlap (in pixels) between multiple
bars appearing for the same record in a vertical or horizontal bar
chart.

ChartPieCircle R W Determines whether a pie chart appears as a circle, or as an oval
sized to fit within the vertical and horizontal dimensions of the
chart control.

L I S T O F P R O P E R T I E S A N D M E T H O D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

B.3

ChartRowCount R — Determines the maximum number of records displays in a chart.

ChartShowGrid R W Determines whether a grid appears within a chart.

ChartShowLegend R W Determines whether a chart has a legend, providing a guide to
each component of the chart.

ChartStacked R W Determines whether a vertical or horizontal bar chart displays
different sets of associated information as stacked sections of the
same bar, or as separate bars.

ChartStyle R W Determines the type of chart or graph to be displayed in a chart
control.

ChartXCol R — Identifies the column used to plot the X coordinates of a chart or
graph.

ChartYCols R — Identifies the columns used to plot the Y coordinates of a chart or
graph. For vertical and horizontal bar charts, you can specify
multiple columns, each displayed as a separate bar.

ColorBrdr R W Determines the color of the border surrounding an object.

ColorFill R W Determines an object’s background color.

ColorText R W Determines the color of text that appears within an object.

CompareOnLock — — Determines whether the application checks to see if a record has
been changed between (1) the time it was queried and (2) the
time when the application attempts to lock the record.

ConnectType R — Specifies how and when a database session object becomes active
(establishes a connection to its database) during run time mode.

ControlType R — Determines the class of an application object other than a session,
recordset, or the application itself. In other words, ControlType
identifies the class of an object than can be visible within the
application (that is, containers, static objects, and controls).

CounterIncBy R — For a text field object whose CounterType property is set to
“Table, MAX()+CounterIncBy”, determines the amount added
to the current column maximum to generate the new value.

CounterSeq R — For a text field object whose CounterType property is set to
“Sequence”, designates the sequence object from which new
values are selected.

CounterTiming R — Determines when a new unique value is generated for a “counter”
text field object.

Property R W Description

B.4

CounterType R — Determines whether a text field object is a “counter” field, which
automatically receives a unique value when a new row is inserted
into the field’s container. This unique value can be generated by
one of several techniques:

DataSize R — Sets aside a number of bytes for the value held in a control, if the
control uses the string datatype.

DataSource R — Determines how the application populates a control with data.

Datatype R — Determines the type of data that can be stored in the control.

DefaultButton R — Indicates which pushbutton on a form or user-defined class is the
default button.

DefaultCondition R W Determines the range of records queried for a bound container, by
setting the WHERE clause of the query that fetches the
container’s recordset.

DefaultSession — — Identifies the default session for an application object.

DefaultValue R W Assigns a default value to a control.

DesignConnect R — Contains the connect string used to make a database session
object active when the developer double-clicks on the Connector
control in a Database Session window.

DesignRunConnect R — Contains the connect string used to make a database session
object active from design run time mode.

Direction R W Determines the direction of a line.

DrawStyle — — Determines whether the control uses the sculpted, 3-D look and
feel.

Enabled R W Determines whether the user can interact with the control.

FirstChild R — Indicates the first object contained by the current object.

FirstPgFtr — — Determines whether the page footer area should appear on the
first page of a report when the report is previewed or printed.

FirstPgHdr — — Indicates whether the page header area should appear on the first
page of a report when the report is previewed or printed.

FontBold R W Determines whether the text appearing in the control is
boldfaced.

FontItalic R W Determines whether the text appearing in the control is italic.

Property R W Description

L I S T O F P R O P E R T I E S A N D M E T H O D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

B.5

FontName R W Determines the font used for any text appearing within an object.

FontSize R W Determines the point size for any text that appears within the
control.

FontUnderline R W Determines whether the text appearing in the control is
underlined.

FormatMask R W Determines how data appears in a control is formatted when
displayed.

GroupCol — — Determines the database column used to group records in a
report.

HasBorder R W Indicates whether a control has a border.

HasExtraRow R W Determines whether a bound container displays a blank row for
data entry after the last row containing data.

HasScrollBar R — Determines whether the control has a vertical scroll bar on its
right side.

HelpText R W Defines the summary help associated with an object.

HelpTextVisible R W Controls whether the system automatically displays Summary
help information in the Summary panel. HelpTextVisible is True
by default; to disable the display of Summary help, set
HelpTextVisible to False.

IsDismissBtn R W Determines whether a pushbutton can, by default, close a modal
form or user-defined class.

Label R W Determines the label that appears on or next to a control, for a
particular menu or menu command, within a static text object, or
on the title bar of a form, report, or user-defined class.

LastPgFtr — — Indicates whether the page footer area should appear on the last
page of a report when the report is previewed or printed.

LinkDetailColumn R — Identifies the name of a column used to link a detail recordset to a
master recordset, when a master-detail relationship exists.

LinkMasterColumn R — Identifies a column used to link a master recordset to a detail
recordset.

LinkMasterDel R — Determines what happens to detail (foreign key) records when
you delete a master (primary key) record.

Property R W Description

B.6

LinkMasterForm R — Identifies the name of the form, class, report, or repeater display
that contains the master records in a master-detail relationship.

LinkMasterUpd R — Determines what happens to detail (foreign key) records when
you update a master (primary key) record in a master-detail
relationship.

LinkPrimaryKey R — Indicates whether the control holding primary key values is
located on the master container or the detail container in a
master-detail relationship.

MultiLine — — Controls whether a text field can display multiple lines of text.

Name R — Assigns a name to an object for later reference in properties and
methods. For database objects, defines the SQL name of the
object.

ObjectType R — Determines the class of an object.

OrderBy R W Determines the order of rows in a recordset when the rows are
queried from a database.

PageOnBreak — — Indicates whether the report should begin a new page whenever it
begins a new report group when the report is previewed or
printed.

PositionX R W Determines the horizontal position, measured in pixels, of an
object, from the left edge of its container.

PositionY R W Determines the vertical position, measured in pixels, of an object,
from the top edge of its container.

ReadOnly R W Determines whether the user can enter a value into a control.

RecordSource R — Names the record source (a table or view) for a bound container.
The RecordSource and RecSrcSession properties define a
recordset object, which maps to a table or view through a session.

RecSrcSession — — Names the session through which the bound container accesses its
record source (a table or view). The session must be defined as an
object in Oracle Power Objects.

RecSrcAddCols — — The names of additional database columns associated with the
container but not associated with controls in the container.
Multiple columns are separated by commas.

Property R W Description

L I S T O F P R O P E R T I E S A N D M E T H O D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

B.7

RecSrcMaxMem R — Sets the limit on the amount of memory available to a recordset
before the application writes it to a temporary file on the client
system.

RowFetchMode R W Determines the amount or records queried for a bound container,
and when the records are queried.

RunConnect R W Contains the connect string used to make a database session
object active from standalone run time mode.

ScrollAmtLine R W Determines the number of records the user moves through when
pressing the arrow at either end of a scroll bar set up as a database
navigation tool.

ScrollAmtPage R W Determines the number of records moved when the user clicks on
the body of a scroll bar, if the scroll bar is set up as a database
navigation tool.

ScrollMax R W Assigns a value to the top end of a scroll bar’s scroll range.

ScrollMin R W Assigns a value to the bottom end of a scroll bar’s scroll range.

ScrollObj R W Determines which container, if any, has its current record changed
when you use the scroll bar.

ScrollPos R W Indicates the current position of the thumb on a scroll bar.

ScrollWithRow R — Determines whether an unbound control in a bound container
holds one value for each row in the recordset, or contains a single
constant value for all rows in the recordset.

SizeX R W Sets the width of an object, as measured in pixels.

SizeY R W Sets the height of an object, as measured in pixels.

TabEnabled R W Determines whether the control is part of the tab order on a
container.

TabOrder R W Determines the position of the object in the tab order on a
container.

TextJustHoriz R W Determines the horizontal alignment of text within a control.

TextJustVert R W Determines the vertical alignment of text within a control.

Translation R W Determines the mapping between a control’s display value and its
internal value.

Property R W Description

B.8

ValidateRowMsg R W Sets the message to be displayed when the ValidateRow() method
returns False (that is, a row-level validation failed), indicating that
changes to the current record were not saved to the database.

ValidateMsg R W Sets the message to be displayed when the Validate() method
indicates that the validation fails by returning False.

Value R W The current value held in a control.

ValueList R W Determines the contents of the popup list appearing next to a
combo box.

ValueOff R W Assigns a value to a check box when it is unchecked, or a radio
button when it is not selected.

ValueOn R W Assigns a value to a check box when it is checked, or a radio
button when it is selected.

Visible R W Determines whether an object is visible at run time.

WinInitPos R W Determines the position of a window when first displayed.

WinPositionX R W Specifies the current horizontal position of a form.

WinPositionY R W Specifies the current vertical position of a form.

WinSizeX R W Determines the horizontal size of the window surrounding a form
or report.

WinSizeY R W Determines the vertical size of the window surrounding a form or
report.

WindowStyle R W Determines the appearance and behavior of the window
surrounding a form.

Property R W Description

L I S T O F P R O P E R T I E S A N D M E T H O D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

B.9

Standard Methods

Method Description

AddColumn() Adds a column to an unbound recordset.

AppendMenu() Appends a menu to the end of the menu bar. The menu is inserted
before any system default menus that appear on the menu bar (such
as the Help menu in Windows).

AppendMenuItem() Appends an item to the end of the menu. You must specify the item’s
label, a command code, a help context, and a keyboard equivalent.

CanPasteFromClipboard() Returns True if an OLE data object is in the Clipboard, or False if
there is not.

ChgCurrentRec() Called to move the pointer to a different record in a container’s
recordset.

ChildClick() Sent to a container when the user clicks on an object within that
container.

ChildDblClick() Triggered on a container when the user double-clicks on an object
within the container.

ChildPostChange() Triggered on a container when the internal value of any control
within the container changes.

ChildPreChange() Called before the user edits any control within a container.

ClearMenuBar() Removes all menus from the menu bar. However, the menu objects
are not deleted from the system.

ClearStatusLine() Deletes all panels from the status line except the Summary panel,
which cannot be deleted.

ClearToolbar() Deletes all buttons from the toolbar.

Click() Called when a user presses the mouse button (the left button, for
Windows) while the cursor is above an object.

CloseApp() Closes an application.

CloseWindow() Removes a form from memory. Called automatically when the user
closes the form.

CommitForm() Commits all pending transactions associated with a bound form,
including inserts, deletions, and updates. The transaction set
includes transactions entered in containers within the form, such as
repeater displays and embedded forms.

B.10

CommitWork() Commits the current transactions associated with an active database
session object.

Connect() Makes a database session object active by establishing a connection
to a database.

CopyColFrom() Copies the source column of the source recordset object to the
destination column in this recordset object.

CopyToClipboard() Copies the OLE data object stored in the OLE control to the
clipboard.

CounterGenKey() Determines how unique values are generated for a text field object
whose CounterType property is set to “User Generated”. This
determination is made through method code added to
CounterGenKey().

DefaultMenuBar() Initializes a menu bar with the system default menus and application
default menus appropriate to the form or report. This method
deletes any existing menus before initializing the menu bar.

DefaultToolbar() Initializes a toolbar with the application default buttons appropriate
to the form or report. This method deletes any existing buttons
before initializing the toolbar.

DeleteAllMenus() Removes all menus from the menu bar and deletes the menu objects.

DeleteMenuItem() Deletes an item from a specified position in the menu.

DeleteRow() Called to delete the current row in a container’s recordset.

DeleteStatusPanel() Deletes a panel from a specified position in the status line. The
Summary panel cannot be deleted.

Disconnect() Makes a database session object inactive by terminating the
connection to a database.

DismissModal() Called to dismiss an application-modal or system-modal form,
removing it from the screen (but not from memory).

DoCommand() Performs an action when the user clicks a toolbar button or selects a
menu command.

DoubleClick() Called when the user double-clicks on an object.

FetchAllRows() Fetches all rows in a database into a recordset.

FetchToRow() Fetches rows in a database, up to and including a specified row, and
includes them in a recordset.

Method Description

L I S T O F P R O P E R T I E S A N D M E T H O D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

B.11

FocusEntering() Called when the focus moves into a control.

FocusLeaving() Called when the focus moves out of a control.

ForceUpdate() Instructs the application to redraw a form or report.

GetBindColumn() Returns the column number in a bound container’s recordset of the
column to which a control is bound.

GetColCount() Returns the number of columns in the record set.

GetColName() Returns the name of the column in a recordset whose column
number is passed to the method. Columns are incremented from 1.

GetColNum() Returns the column number of a column in a recordset whose
column name is passed to the method. Column numbers are
incremented from 1.

GetColVal() Returns the value for the current record in the recordset held in the
specified column.

GetContainer() Returns an object reference to the container in which the application
object appears.

GetCurRow() Returns the current row in the record set.

GetFirstForm() Returns an object reference to the first form or report found in an
application.

GetFocus() Returns an object reference to the application object that currently
has the focus.

GetFormByName() Returns an object reference to a form or report, identified by name.

GetItemCount() Returns a count of all items in the menu, including both commands
and separator lines.

GetMenu() Returns a reference to a specified menu object in the menu bar.

GetMenuBar() Returns a reference to the menu bar associated with the form or
report.

GetMenuCount() Returns a count of all menus in the menu bar.

GetMenuItem() Returns a specified piece of information about a specified item in the
menu. You can get the item’s label, the command code, the help
context, or the keyboard equivalent.

Method Description

B.12

GetNextForm() Returns an object reference to the next form or report found in an
application.

GetRecordset() Identifies a recordset object associated with a bound container or
bound list control. After assigning the recordset to an object-type
variable, you can read and modify the contents of the recordset
programmatically, and you can access the session associated with the
recordset.

GetRowCount() Returns the number of rows in a recordset.

GetRowCountAdvice() Returns an estimated number of rows that the application will query
from the database.

GetRowStat() Called to detect the status of the current row in a recordset.

GetSession() Returns a reference to the database session object associated with a
recordset object (normally associated with a bound container).

GetStatCount() Returns a count of all panels in the status line.

GetStatPanel() Returns a specified piece of information about a specified panel in
the status line. You can get the text currently displayed in the panel,
the panel’s width, the command code, or the message strings
associated with the panel’s status.

GetStatusLine() Returns a reference to the status line associated with the form or
report.

GetToolbar() Returns a reference to the toolbar associated with a form or report.

GetTopContainer() Returns an object reference to the top-level container in the object
containment hierarchy (that is, the form, report, or user-defined
class in which the object resides).

GetWindowHandle() Returns an operating system handle to a window in an Oracle Power
Objects application.

GoNxtLine() Moves the current row of the container’s recordset forward one row.

GoNxtPage() Moves the current row of the container’s recordset forward one
“page” of rows. A page is the number of rows displayed on the
container at one time. For containers such as forms, embedded
forms, and user-defined classes, a page is one row.

GoPos() Moves the current row of the container’s recordset to a numerically
specified row.

GoPrvLine() Moves the current row of the container’s recordset back one row.

Method Description

L I S T O F P R O P E R T I E S A N D M E T H O D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

B.13

GoPrvPage() Moves the current row of the container’s recordset back one “page”
of rows.

HideWindow() Called to hide a form, but keep it in memory.

Initialize() Called when the application launches, as well as when a single form
or report runs in Design Run-time mode.

InitializeWindow() Called to create an associated menu bar, toolbar, and status line
when the form or report is loaded into memory.

InsertMenu() Inserts a menu at a specified position in the menu bar.

InsertMenuItem() Inserts an item at a specified position in the menu. You must specify
the item’s label, a command code, a help context, and a keyboard
equivalent.

InsertRow() Called to insert a new row into a recordset.

InsertStatusPanel() Inserts a panel at a specified position in the status line. You must
specify the panel’s width and the maximum message length that can
be displayed in the panel.

IsConnected() Indicates whether a database session object is currently active
(connected to a database).

IsWorkPending() Indicates whether any changes have been made to the recordset
objects associated with a database session since the recordsets were
fetched from the database.

LastWindowClosed() Called when the user closes the last form in the application, but
before the application itself closes.

LinkChgCurrentRec() Called when a linked master recordset changes its current record, to
update the rows appearing in the detail recordset. Triggered on the
bound container holding detail records.

LinkPostDelete() Called after you have deleted a master record in a master-detail
relationship.Triggered on the bound container holding detail
records.

LinkPostInsert() Called after you insert a new record in a master-detail relationship.
Triggered on the bound container holding detail records.

LinkPostUpdate() Called after you edit a master record in a master-detail relationship.
Triggered on the bound container holding detail records.

Method Description

B.14

LinkPreDelete() Called before you delete a master record in a master-detail
relationship. Triggered on the bound container holding detail
records.

LinkPreInsert() Called when the user inserts a master record in a master-detail
relationship. Triggered on the bound container holding detail
records.

LinkPreUpdate() Called when you edit a master record in a master-detail relationship.
Triggered on the bound container holding detail records.

LinkPreDeleteCheck() Called to perform a check before deleting a master record in a
master-detail relationship. Triggered on the bound container holding
detail records.

LinkPreInsertCheck() Called to perform a check before inserting a master record in a
master-detail relationship. Triggered on the bound container holding
detail records.

LinkPreUpdateCheck() Called to perform a check before updating a master record in a
master-detail relationship. Triggered on the bound container holding
detail records.

LockRow() Called to lock the current row.

MouseDown() Called when the user presses the mouse button within the area of an
object.

MouseMove() Called when the user moves the mouse while the mouse button is
depressed. MouseMove() is triggered every time the cursor moves
one pixel across the object where the method is triggered.

MouseUp() Called when the user releases the mouse button. This method is
triggered on the same object where MouseDown() was originally
triggered.

NextControl() Cycles programmatically though all the objects within a container.

OMAMsgRecvd() Called when the application receives a message from Oracle Mobile
Agents.

OMAShutdown() Called to shut down the Oracle Mobile Agents message manager.

OnLoad() Called when the application loads a form or report into memory, or
when the application opens. The OnLoad() method is triggered on
a container and all objects within it, when the container is loaded
into memory.

Method Description

L I S T O F P R O P E R T I E S A N D M E T H O D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

B.15

OnQuery() Called after the application performs a query for a bound container.
During OnQuery(), all bound controls on the container refresh to
reflect the new values returned from the query.

OpenModal() Called when opening a modal form.

OpenPreview() Called to open a form or report to see how it will look when printed
(that is, displays the container in Print Preview mode).

OpenPrint() Called to print a form or report.

OpenWindow() Called to load a form into memory and display it in the screen.

PasteFromClipboard() Pastes an OLE data object from the clipboard into the OLE control.

PostChange() Called when the user changes the value assigned to an application
object.

PostDelete() Called immediately after a record is deleted.

PostInsert() Called after a record is inserted.

PostUpdate() Called after a record is updated.

PreChange() Called before the user begins editing a record.

PreDelete() Called before a record is deleted, but after the decision to delete the
record has been made.

PreInsert() Called when a record is inserted.

PreUpdate() Called when a record is updated.

PreDeleteCheck() Called before the decision to delete a record has been made.

PreInsertCheck() Called before the decision to insert a record has been made.

PreUpdateCheck() Called before the decision to update a record has been made.

Query() Called to fetch records from the database to populate a recordset
object. Recordset objects are normally associated with a bound
container or a list control.

QueryWhere() Queries records for a bound container or translation control,
applying a condition to the query. The condition passed to
QueryWhere() replaces the DefaultCondition set for the container
or control.

QueryMasters() Recursively queries all containers holding master records.

Method Description

B.16

ReadColFromFile() Reads a value from a file and writes it into a recordset. The value can
be of any valid datatype.

RemoveMenu() Removes a menu from a specified position in the menu bar.
However, the menu object is not deleted.

RevertRow() When a validation fails, restores the original values for all columns
within a row before the record was updated.

RevertValue() When a validation fails, replaces the value entered with the original
value in the control.

RollbackForm() Called to roll back all pending transaction associated with a bound
container, including transactions initiated in other bound containers
within the container.

RollbackWork() Rolls back the current transaction associated with an active session
object, discarding any changes that have been made by the user since
the transaction began.

SetColVal() Assigns a new value to the specified column. The change is applied
to the current record in the recordset.

SetCurRow() Sets the current row within the recordset to a specified row number.

SetCursor() Changes the appearance of the cursor.

SetFocus() Moves the focus to a control.

SetMenuBar() Assigns a custom menu bar to a form or report.

SetMenuItem() Modifies a specified piece of information about a specified item in
the menu. You can set the item’s label, the command code, the help
context, or the keyboard equivalent.

SetQuery() Defines a query that binds a recordset to a record source (a table or
view).

SetStatDispList() Designates a status line panel to be updated automatically. You must
specify the panel’s command code and the message strings associated
with the panel’s status.

SetStatusPanelMsg() Sets the text displayed in a specified panel of the status line.

SetStatusLine() Assigns a custom status line to a form or report.

SetToolbar() Assigns a custom toolbar to a form or report.

Method Description

L I S T O F P R O P E R T I E S A N D M E T H O D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

B.17

ShowWindow() Called to display a hidden window (that is, a window held in
memory but not visible).

SysDefaultMenuBar() Initializes a menu bar with the system default menus. This method
deletes any existing menus before initializing the menu bar.

SysDefaultStatusLine() Initializes a status line with the system default panels. This method
deletes any existing panels before initializing the status line.

TBAppendButton() Appends a button to the end of the toolbar. You must specify the
button’s command code, a bitmap, a button style, and a help
context.

TBDeleteButton() Deletes a button from a specified position in the toolbar.

TBGetButton() Returns a specified piece of information about a specified button in
the toolbar. You can get the button’s command code, the bitmap, the
button style, or the help context.

TBGetCount() Returns a count of all buttons in the toolbar, including separator
buttons.

TBInsertButton() Inserts a button at a specified position in the toolbar. You must
specify the button’s command code, a bitmap, a button style, and a
help context.

TBSetButton() Modifies a specified piece of information about a specified button in
the toolbar. You can set the button’s command code, the bitmap, the
button style, or the help context.

TestCommand() Checks to see whether the user has selected a menu command or
pushed a toolbar button.

UpdateList() Called to refresh the contents of a list when the recordset of a list
box, combo box, or popup list changes.

Validate() Called to enforce business rules on data in a control.

ValidateRow() Called to enforce business rules on an inserted or updated record.

WriteColToFile() Writes a value to a file from a recordset. The value can be of any
valid datatype.

Method Description

B.18

C
C o n s t a n t s a n d R e s e r v e d
W o r d s C

This Appendix covers the following topics:

Oracle Basic Constants . C.2
Oracle Basic Reserved Words . C.4

C.2

Oracle Basic Constants

CMD_ABOUT
CMD_APPQUERY
CMD_CLEAR
CMD_CLOSE
CMD_COMMIT
CMD_COPY
CMD_CUT
CMD_DELETEROW
CMD_FIRSTUSERCOMMAND
CMD_FULLPAGE
CMD_HELP
CMD_HELPONHELP
CMD_INSERTOBJECT
CMD_INSERTROW
CMD_NEW
CMD_NEWWINDOW
CMD_NEXTPAGE
CMD_OPEN
CMD_PASTE
CMD_PASTESPECIAL
CMD_PREVPAGE
CMD_PRINT
CMD_PRINTPREVIEW
CMD_PRINTSETUP
CMD_QBF
CMD_QFFRUN
CMD_QUIT
CMD_REDO
CMD_ROLLBACK
CMD_RUNSTOP
CMD_SAVE
CMD_SAVEAS
CMD_UNDO
COUNTERTIMING_DEFERRED
COUNTERTIMING_IMMEDIATE
COUNTERTYPE_NONE
COUNTERTYPE_SEQUENCE
COUNTERTYPE_TABLE_MAX_COUNTERINCBY
COUNTERTYPE_USER_GENERATED

DATATYPE_DATE
DATATYPE_DOUBLE
DATATYPE_FLOAT
DATATYPE_INTEGER
DATATYPE_LONG_INTEGER
DATATYPE_STRING
DIRECTION_LOWER_LEFT_TO_UPPER_RIGHT
DIRECTION_UPPER_LEFT_TO_LOWER_RIGHT

FALSE

LINKMASTERDEL_CASCADE
LINKMASTERDEL_ORPHAN
LINKMASTERDEL_REFUSE
LINKMASTERUPD_CASCADE
LINKMASTERUPD_ORPHAN
LINKMASTERUPD_REFUSE

MENUPART_ACCEL
MENUPART_COMMAND
MENUPART_HELP
MENUPART_LABEL

PRIMARYKEY_HERE
PRIMARYKEY_ON_MASTER

RECDTY_DATE
RECDTY_DOUBLE
RECDTY_INTEGER
RECDTY_LONG
RECDTY_STRING
ROWFETCHMODE_FETCH_ALL_IMMEDIATELY
ROWFETCHMODE_FETCH_AS_NEEDED
ROWFETCHMODE_FETCH_COUNT_FIRST

STATUSLINEPART_COMMAND
STATUSLINEPART_MSG_CHECKED
STATUSLINEPART_MSG_DISABLED
STATUSLINEPART_MSG_DISABLED_CHECKED
STATUSLINEPART_MSG_ENABLED
STATUSLINEPART_TEXT
STATUSLINEPART_WIDTH

Continued on Next Page

C O N S T A N T S A N D R E S E R V E D W O R D S O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

C.3

TESTCOMMAND_CHECKED
TESTCOMMAND_DISABLED
TESTCOMMAND_DISABLED_CHECKED
TESTCOMMAND_ENABLED
TEXTJUSTHORIZ_CENTER
TEXTJUSTHORIZ_LEFT
TEXTJUSTHORIZ_RIGHT
TEXTJUSTVERT_BOTTOM
TEXTJUSTVERT_CENTER
TEXTJUSTVERT_TOP
TOOLBARPART_BITMAP
TOOLBARPART_COMMAND
TOOLBARPART_HELP
TOOLBARPART_STYLE
TOOLBARSTYLE_PUSHBTN
TOOLBARSTYLE_SEPARATOR
TOOLBARSTYLE_TOGGLE
TRUE

WINDOWSTYLE_ALTERNATE_DIALOG
WINDOWSTYLE_DOCUMENT_WITHOUT_MAXIMIZE
WINDOWSTYLE_FIXED
WINDOWSTYLE_MOVABLE_DIALOG
WINDOWSTYLE_PALETTE
WINDOWSTYLE_PALETTE_WITH_CLOSE_BOX
WINDOWSTYLE_PLAIN_DIALOG
WINDOWSTYLE_STANDARD_DIALOG
WINDOWSTYLE_STANDARD_DOCUMENT

C.4

ABS
ACCESS
ALIAS
AND
APPEND
AS
ASC
ATN

BEEP
BINARY
BYVAL

CALL
CASE
CDBL
CHDIR
CHDRIVE
CHOOSE
CHR
CINT
CLNG
CLOSE
CONST
COS
CSNG
CSTR
CURDIR
CURRENCY
CVDATE

DATE
DATEADD
DATEDIFF
DATEPART
DATESERIAL
DATEVALUE
DAY
DDB
DECLARE
DELETE
DIM
DO
DOUBLE

ELSE
ELSEIF
END
ENVIRON
EOF
EQV
ERASE
ERL
ERR
ERROR
EXEC
EXIT
EXP

FIX
FOR
FORMAT
FREEFILE
FUNCTION
FV

GET
GLOBAL
GO
GOSUB
GOTO

HEX
HOUR

IF
IIF
IMP
INPUTBOX
INSTR
INSTRB
INT
INTEGER
IPMT
IRR
IS
ISDATE
ISNULL
ISNUMERIC

KILL

LBOUND
LCASE
LEFT
LEFTB
LET
LIB
LINE
LOC
LOCK
LOF
LOG
LONG
LOOP
LTRIM

MID
MIDB
MINUTE
MIRR
MKDIR
MOD
MONTH
MSGBOX

NEW
NEXT
NOT
NOW
NPER
NPV
NULL
NVL

OBJECT
OCT
ON
OPEN
OR
OUTPUT

PAGENUM
PMT
PPMT
PRESERVE
PRINT
PRIVATE
PUT
PV

RANDOM
RANDOMIZE
RATE
READ
REDIM
RESET
RESUME
RETURN
RIGHT
RIGHTB
RMDIR
RND
RTRIM

SECOND
SELECT
SGN
SHARED
SIN
SINGLE
SLN
SPACE
SPC
SQLERRCLASS
SQLERRCODE
SQLERRTEXT
SQLLOOKUP
SQLROWCOUNT
SQR
STATIC
STEP
STOP
STR
SUB
SWITCH

SYD
SYSDATE
SYSTEMNAME

TAB
TAN
THEN
TIME
TIMER
TIMESERIAL
TIMEVALUE
TO
TRIM

UBOUND
UCASE
UNLOCK
UNTIL

VAL
VARIANT
VARTYPE

WEEKDAY
WEND
WHILE
WIDTH
WRITE

XOR

YEAR

Oracle Basic Reserved Words

I n d e x

2

A
Aggregation functions

using Oracle Basic 10.11
using the DataSource property 10.11

Alias 8.29
ALTER privilege 8.5
Application constraints. See Constraints, application
Application development 1.2, 1.4, 1.8 to 1.12
Application objects 3.2, 3.4, 10.1 to 10.39

binding 17.1 to 17.34
binding graphically 17.4
binding manually 17.8
bitmap 3.4, 10.5
categories of 2.8, 10.4
class 3.4
connecting to a database with EXEC SQL 17.4
connecting to a database with SQLLOOKUP 17.4
container 10.4
control 10.4
copying 2.11
creating 2.10, 2.37, 10.3
deleting 2.10
editing properties and methods 2.9
embedded form 10.8
form 3.4, 10.7, 11.1 to 11.20, 14.46, 14.47
limitations in reports 12.6
methods 14.46, 14.48
moving 2.11, 2.37
names 3.21
OLE data object 3.4, 10.5
opening 2.11
repeater display 10.9
report 3.4, 10.8, 12.1 to 12.20
report. See also Reports
resizing 2.37
static 10.4
user-defined class 10.5

Application window 2.3, 2.8 to 2.13
tasks performed in 2.9

Application-modal forms 11.11
Applications 3.3, 3.9

exporting to flat files 2.12
filenames 10.2
importing from earlier versions 2.12
naming rules 10.3
opening 3.9

Arguments
of methods 5.3, 5.7

Arithmetic operators 4.13
Arrays 4.9

B
Binary operators 9.10
Bind variable arrays 9.18
Bind variables 9.16

and the SQLLOOKUP function 9.22
datatypes 9.17
declaration of 9.17
where used 9.16

Bindable containers 1.6, 8.23
Bindable controls. See Controls, bindable
Binding 17.2

controls to columns in reports 12.8
Bitmaps 2.12, 3.4, 10.5

exporting to a .BMP file 2.13
importing to an application 2.12
viewing 2.13

Bitwise operations 4.15
Blaze databases 6.20 to 6.21, 7.1 to 7.8
Bound containers 1.6, 17.3

and recordsets 17.9
and report group headers 12.16
associating 17.3

Bound controls 1.6
Breakpoints

removing 5.13
setting 5.12

Browser window 2.2
Business rules. See Constraints
Buttons

See Pushbuttons
See Toolbar buttons

C
Calling methods 3.20
Chart controls 3.6, 10.16
Charts

in report groups 12.18
in report records 12.19
in reports 12.17

I N D E X O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

3

Check boxes 3.6, 10.19
and database tables 10.20
and null values 10.20

Check constraints. See Constraints, check
Class Designer window 2.15
Classes 1.12, 3.4, 3.10, 13.1 to 13.12

adding instances of 13.10
adding objects to 13.10
as containers 13.8
developing 13.9
editing an instance of 13.7
master. SeeMaster class
reinheriting properties and methods of 13.8
standard. See Standard classes
user-defined. See User-defined classes

Client constraints. See Constraints, application
Columns

binding to an existing control 17.6
changing attributes 8.13
constraints 8.7
Datatype field 8.13
foreign key 8.24
Name field 8.13
Not Null field 8.14
Precision field 8.13
primary key 8.24
Size field 8.13
Unique field 8.14

Combo boxes 3.6, 10.22
and foreign tables 10.22

Command code
for menu commands 14.9
for toolbar buttons 14.24

Commands 4.21, 9.13
categories of 4.21

Comments
in method code 5.8

Comparison operators.See Operators, comparison
Conditions 9.12
Connector control 2.19
Constants. See Symbolic constants
Constraints 8.9, 19.1 to 19.32

and format masks 19.16
and the InsertRow() and DeleteRow() methods 19.20
and the Validate() method 19.19
application 19.13, 19.27, 19.29 to 19.32

at the control level 19.14 to 19.20
at the row level 19.20 to 19.23
at the session level 19.26 to 19.27
check 19.7
database 19.2, 19.28
database and application together 19.28
database, defining 19.9 to 19.11
database, removing 19.12 to 19.13
datasize 19.14
datatype 19.14
foreign key 19.7
master-detail 18.6, 19.23
Not Null 19.3
primary key 19.4
read-only 19.15
server. See Constraints, database
stored procedures 19.8
triggers 19.8
unique 19.3

Containers 3.2, 3.7, 3.8 to 3.12, 10.4, 10.6
and record sources 17.3
and tab order 10.38
application 3.9
bindable 8.16, 10.6, 17.3
binding graphically 17.4
binding manually 17.8
binding to a record source 17.1 to 17.34
binding to a table or view 17.5
binding to individual columns 17.6
binding to multiple record sources 17.3
bound 1.6
categories of 10.7
class 3.10
defined 3.3
embedded form 3.7, 10.8
form 3.10, 10.7, 11.1 to 11.20
library 3.9
properties and methods of bindable 17.31 to 17.34
radio button frame 3.7
recordset-related methods of 17.33
recordset-related properties of 17.32
repeater display 3.7, 10.9
repeater panel 3.7
report 3.10, 10.8
report group 3.7
session 3.10

4

user-defined class 10.20
Containment hierarchy 1.4
Controls 3.2, 3.6, 10.4, 10.11 to 10.31

and format masks 10.31
and record sources 17.3
bindable 10.12, 17.4
categories of 10.16
chart 3.6, 10.16
check box 3.6, 10.19
combo box 3.6, 10.22
current row pointer 3.7, 10.23
display value 10.14
enabling and disabling 10.39
internal value 10.14
list 10.14, 10.15
list box 3.6, 10.24
OCX 3.6
OLE data objects 3.6, 10.24
picture 3.6, 10.25
popup list 3.6, 10.25
pushbutton 3.6, 10.26
radio button 3.6, 10.26
recordset-related methods of 17.34
recordset-related properties of 17.34
scrollbar 3.6, 10.28
sequence of 10.38
text field 3.6, 10.29
user-defined class 10.20

Conversions
datatype 4.22
numeric 4.23
operator 4.22

Counter fields. See Counters
Counters 19.17

and sequences. See also Sequences
Current row 17.13
Current row pointers 3.7, 10.23

D
Data

transferring 17.18
Data Definition Language (DDL) 8.5, 8.30

commands 9.13
Data definition operations 8.4
Data locks 17.25

Data Manipulation Language (DML) 8.5, 8.30
commands 9.13

Data manipulation operations 8.5
Data model 1.10
Data modeling. See Normalization
Database connection 1.4
Database Editor window 2.2
Database engine 8.2
Database objects 1.4, 3.2, 3.3, 8.1 to 8.32

categories of 8.3
copying 2.20, 8.30
deleting 8.31
index 3.4, 8.4
named in SQL statements 9.7
names 3.20
sequence 3.4, 8.4
session 8.3
synonym 3.4, 8.4
table 3.3, 8.3
view 1.5, 3.3, 8.3

Database Session window 2.18
tasks performed in 2.19

Database sessions. See Sessions
Database tables. See Tables
Database views. See Views
Databases 1.4 to 1.5, 6.1 to 6.24

external 8.4
fetching rows from 17.14
querying 17.14
requerying 17.21
See also Blaze databases
See also Oracle7 Servers
See also SQL Server databases

Datatype field 8.13
Datatypes 9.3

and suffixes 4.7
ANSI 9.6
Blaze 9.4
conversions 4.22
Date 4.3
Double 4.3
in different databases 9.6
in Oracle Basic 4.3
Integer 4.3
Long integer 4.3
null 4.3, 9.7

I N D E X O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

5

Object 4.3
of properties 3.15
of values 4.4
Oracle7 9.3
Single 4.3
SQL Server 9.5
String 4.3
Variant 4.3

Date and time literals 4.5, 9.9
Date datatype 4.3
Date operators. See Operators, date
Debugger (Expressions) window 5.11

interrogating values through 5.11
Debugger (Main) window 5.10
Debugging

interrogating values 5.11
moving to a point in method code 5.14
removing a breakpoint 5.13
reports 12.12
setting a breakpoint 5.12
setting a watchpoint 5.13

Default processing 1.2, 3.19
of methods 5.6

DELETE privilege 8.5
Designer objects 3.2, 3.4, 3.11

line 3.5
names 3.21
oval 3.5
rectangle 3.5
static 3.5
static text 3.5

Designer window 2.3
opening 2.8, 2.14

Detail rows 19.25
Development

application 1.2, 1.4, 1.8 to 1.12
object-oriented 1.2 to 1.4

Dialog boxes
modal 10.26, 11.12

Double datatype 4.3
Drill-down forms. See Master-detail relationships
Dynamic link libraries (DLLs) 15.2, 15.10 to 15.14

calling procedures 15.12
declaring procedures 15.10
development considerations 15.14
flexibility in 15.12

passing arguments 15.13

E
Embedded forms 3.7, 10.8
Events

defined 3.18
EXEC SQL command 9.15

and result information 9.19
and sessions 9.18

Expressions 4.22, 9.11
evaluation of 4.22
self-modifying 5.9

External databases 8.4

F
Fields (database). See Columns
File objects 3.2, 3.3

application 10.2
creating 2.7
deleting 2.8
names 3.21

Filename extensions 10.2
Filenames 3.21
Floating toolbar. See Object palette
Flushing. See Recordsets, sending changes to the database
Foreign Key columns 8.24
Foreign keys

and joins 18.3
Form Designer window 2.15
Form Run-Time toolbar 2.17
Format mask characters 10.34 to 10.37

dates 10.35
numbers 10.34
strings 10.35

Format masks 10.15, 10.31
and constraints 19.16
setting 10.37
standard 10.32
user-defined 10.33

Forms 3.4, 3.10, 10.7, 11.1 to 11.20
adding objects to 11.6
application-modal 11.11
behavior of 11.13, 11.19
copying 11.6

6

creating 11.3
cutting and pasting 11.6
deleting 11.5
methods 14.46, 14.47
modal 11.11, 11.12
printing 11.14
running 2.16
system-modal 11.11
testing 11.8 to 11.11
window styles of 11.13

Functions 3.19, 9.11
adding to an object 5.5
aggregation. See Aggregation functions.
built-in 4.17
user-defined, declaring 5.4

G
Graphics

See Charts
See OLE data objects
See Pictures

Graphs. See Charts

H
Hierarchical containment structure 1.4
Hierarchical names 3.23

full 3.24
partial 3.24
syntax 3.24

I
Indexes 3.4, 8.4, 8.24 to 8.25

creating 8.25
using 8.25

Inheritance 3.29
object hierarchy 3.31
reinheriting object characteristics 3.31

In-memory objects 3.2, 3.7
creating with the NEW operator 14.2
menus 14.2, 14.2 to 14.20
properties and methods of 14.44 to 14.49
status lines 14.2, 14.34 to 14.44

toolbars 14.2, 14.20 to 14.33
INSERT privilege 8.5
Instances

and inheritance 3.29
Integer datatype 4.3
Integrity checks. See Constraints
Integrity constraints. See Constraints
Interface

of Oracle Power Objects 2.1 to 2.37

J
Joins 18.2

automated 18.2
primary and foreign keys 18.3

K
Keywords. See Commands

L
Libraries 1.12, 3.3, 3.9

opening 3.9
Library window 2.3, 2.26

referring to bitmaps 2.26
Lines 3.5, 10.30
List boxes 3.6, 10.24
List controls 10.14, 10.15
Literals 4.4, 9.8, 9.9

date and time 4.5, 9.9
numeric 4.4, 9.8
text 4.5, 9.9

Logical operators. See Operators, logical
Long integer datatype 4.3

M
Main window 2.2, 2.5

adding file objects to 2.7
creating file objects in 2.7
removing file objects from 2.8
tasks performed in 2.7

Master class 13.2
object references to 13.9

I N D E X O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

7

reinheriting properties and methods of 13.8
Master objects 3.30
Master rows 19.24
Master-detail relationships 8.9, 18.1 to 18.11

and joins. See Joins
defining containers 18.4
displaying 18.11
displaying detail records 18.9, 18.10
displaying master records 18.9
drill-down forms 18.10
in reports 12.15
properties for defining 18.4

Menu bars 3.8
adding menus to 14.12
associating with windows 14.13
creating 14.5, 14.18
initializing 14.5
methods 14.44

Menu commands
checked 14.4
disabled 14.4
help context 14.10
IDs 14.9
keyboard equivalents 14.10

Menu items
deleting 14.11
examining 14.11
executing code for 14.16
keyboard equivalents 14.4
modifying 14.11
separator lines 14.4
setting status of 14.14

Menus 3.8, 14.2, 14.3 to 14.20
adding items to 14.7
adding to menu bars 14.12
application default 14.3, 14.6
custom 14.3, 14.7, 14.14
deleting 14.12
examining 14.12
labels 14.8
methods 14.45
modifying 14.12
properties 14.45
system default 14.3, 14.6

Method code 3.19, 5.1 to 5.14
and default processing 5.6

commenting 5.8
creating standards 5.8
debugging 5.9
debugging. See also Debugging
opening and closing the code window 2.33
viewing 5.11
writing 5.5, 5.7

Methods 2.33 to 2.34, 3.13, 3.17 to 3.20, 5.1 to 5.14
adding to an object 5.5
and default processing 5.6
as functions. See Functions
as subroutines. See Subroutines
calling 3.20, 5.3
categories of 3.18
code. See Method code
creating 5.4
defined 1.2, 3.13
of objects 4.23
of OCX controls 15.17
overridden 3.31
passing arguments to 5.3
reinheriting 13.8
self-invoking 5.9
standard 1.2
syntax 3.13
triggering, by calling 5.2
triggering, through an event 5.2
user-defined 5.4
with shared names 5.7

Modularity 1.3

N
Name Field 8.13
NEW operator 14.2
Normalization 1.5, 8.8
Not Null field 8.14
Null datatype 4.3
Nulls 4.6, 9.7, 9.9
Numeric literals 4.4, 9.8

O
Object classes 3.29
Object containment hierarchy 3.12

and object references 3.25

8

object names 3.23
Object datatype 4.3
Object inheritance hierarchy 3.31, 13.3
Object linking and embedding (OLE). See OLE data objects
Object methods. See Methods, of objects
Object names 3.20 to 3.25

applications 3.21
changing 3.22
default 3.20
designer objects 3.21
hierarchical 3.23
of database objects 3.20
of files 3.21
rules concerning 3.20

Object operators. See Operators, object
Object palette 2.3, 2.36

creating an object with 2.37
creating OLE data objects 15.6

Object privileges 8.5
Object properties. See Properties, of objects
Object references 3.25

by name 3.25
by object datatype 3.25
by relative position 3.25
relative 3.25
restrictions on 3.28
syntax 3.28

Object-oriented development 1.2 to 1.4
Objects 3.1 to 3.34

application 3.2, 3.3
categories of 3.2
container 3.2
controls 3.2
database 3.2, 3.3 to 3.4, 8.1 to 8.32
designer 3.2, 3.11
file 3.2, 3.3
in-memory 3.2, 3.7
library 3.3
menu bar 3.8
menus 3.8
recordset 3.7
references to. See Object references
renaming 3.22
session 3.3
static 3.2
status line 3.8

toolbar 3.8
top-level 3.12

OCX controls 3.6, 15.2, 15.14 to 15.18
adding to a container 15.16
creating 15.15
importing 15.16
methods 15.17
properties 15.17

OLE controls 3.6, 15.5
binding 15.8
editing 15.8
running 15.8

OLE data objects 3.4, 10.5, 10.24, 15.2, 15.2 to 15.9
and files 15.8
and OLE controls. See OLE controls
and the Clipboard 15.9
classes of 15.5
creating 2.10, 15.6
embedded 15.6
in Oracle Power Objects 15.3
in reports 12.20
linked, creating 15.7
linking and embedding 15.4
pasting 15.7
technology overview 15.3
unbound 15.6

One-to-many relationships. See Master-detail relationships
Operators 4.12, 9.10

arithmetic 4.13, 9.10
binary 9.10
bitwise 4.15, 9.11
categories of 9.10
character 9.10
comparison 4.14, 9.10
conversions 4.22
date 4.16
logical 4.14
object 4.17
precedence of 4.13, 9.10
set 9.11
string 4.14
unary 9.10

Oracle Basic 4.1 to 4.23
aggregation functions. See Aggregation functions
built-in functions. See Functions, built-in
commands. See Commands

I N D E X O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

9

components 4.2
datatypes 4.3
expressions 4.22
operators. See Operators
values 4.3
variables. See Variables

Oracle Power Objects
Application window. See Application window
Browser window. See Browser window
Database Editor windows. See Table Editor window
Designer windows. See Class Designer window
desktop 2.2
extensions 15.1 to 15.18
extensions. See also Dynamic link libraries (DLLs)
extensions. See also OCX controls
extensions. See also OLE data objects
interface 2.2
launching 2.4
Library window. See Library window
Main window. See Main window
Object palette. See Object palette
Property sheet. See Property sheet
Run-Time Debugger. See Run-Time Debugger
Session window. See Session window

Oracle7 Servers 6.21 to 6.22
Ovals 3.5, 10.30

P
Parent 3.12
Picture controls 3.6, 10.25
Pictures

in reports 12.20
PL/SQL 9.14
Popup lists 3.6, 10.25
Precision field 8.13
Primary Key columns 8.24
Primary Key constraint 8.11

counters 19.17
Primary key constraint

composite 8.11
Primary keys 8.9

and joins 18.3
creating 19.28
setting 18.6
specifying 8.11

Print preview. See Reports, previewing
Privileges

ALTER 8.5
DELETE 8.5
INSERT 8.5
SELECT 8.5
UPDATE 8.5

Procedural extensions 9.14
executing 9.20
PL/SQL 9.14
Transact-SQL 9.14

Processing
default 3.19

Properties 2.30 to 2.32, 3.14 to 3.17
categories of 3.14
datatypes of 3.15
defined 1.2, 3.13
of objects 4.23
of OCX controls 15.17
overridden 3.31
reinheriting 13.8
setting 2.30
setting in multiple objects 2.32
setting on the Property sheet 3.15
setting with Oracle Basic 3.16
setting with the Debugger 3.17
standard 3.13
syntax 3.13

Property sheet 2.3, 2.27
opening multiple 2.29
sections of 2.28
tasks performed through 2.27
viewing 2.29

Property sheet buttons
Add Property 2.29
Delete Property 2.29
Group by Creator 2.28
Group by Type 2.28
Reinherit 2.29
Track Object 2.28

Pushbuttons 3.6, 10.26
and modal dialog boxes 10.26

Q
Query by Form (QBF) 11.14 to 11.18, 11.20

10

and master-detail relationships 11.17
clearing conditions 11.17
entering conditions 11.16
syntax 11.18

R
Radio button frames. See Radio button groups
Radio button groups 3.7, 10.26, 10.28, 17.4

creating 10.27
values 10.27

Radio buttons 3.6, 10.26, 17.4
See also Radio button groups
values 10.27

Record sources
and containers 17.3
and controls 17.3
binding a container to 17.1 to 17.34
See also Tables

Record sources. See also Views
Records (database). See Rows
Recordsets 1.6, 3.7, 17.9 to 17.34

accessing programmatically 17.16
adding a new row 17.14, 17.23
and bound containers 17.9
and data transfer 17.18
and reports 12.7
bound 17.29
copying values between 17.18
current row 17.13
deleting 17.31
deleting a row 17.23
editing data in 17.23
fetching rows from 17.14
joining 18.2
master and detail 18.1 to 18.11
methods of 17.31 to 17.32
requerying 17.21
sending changes to the database 17.24
shared 17.19
standalone 17.27
storage of rows 17.16
structure 17.10
unbound 17.28

Rectangles 3.5, 10.31
Recursive methods. See Methods, self-invoking

Referential integrity. See Constraints
Reinheriting object characteristics 3.31
Relative reference 3.25
Repeater displays 3.7, 10.9

and aggregate values 10.11
current row pointer 10.23
repositioning 10.10
resizing 10.10

Repeater panels 3.7
Report Designer window 2.16
Report groups 3.7, 12.10

creating 12.11
defining 12.10
group-by column 12.10

Report Run-Time toolbar 2.17
Reports 3.4, 3.10, 10.8, 12.1 to 12.20

adding charts to 12.17
adding objects to 12.6
and recordsets 12.7
binding controls to columns 12.8
binding to a table or view 12.4
creating 12.3
defining filters 12.7
designing 12.4 to 12.6
detail 12.3
fonts 12.19
group footer 12.3
group header 12.3, 12.15
master-detail relationships in 12.15
methods 14.47
moving objects in 12.6
page footer 12.3
page header 12.3
page width 12.19
populating controls on 12.7
populating controls with derived values 12.9
populating controls with SQLLOOKUP 12.10
previewing 12.13
printing 12.13
printing headers and footers 12.14
printing, standard methods for 12.13
report footer 12.3
report groups 12.10
report header 12.3
resizing areas of 12.5
running 2.16

I N D E X O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

11

starting a new page 12.14
testing 12.12
using derived values in 12.9

Rows
detail 19.25
master 19.24

Run-Time Debugger 2.3, 5.9

S
Schemas 8.3
Scrollbars 3.6, 10.28

and database browsing 10.29
position of thumb 10.28

SELECT privilege 8.5
Sequences 1.5, 3.4, 8.4, 8.26 to 8.28

and counters. See Counters
associating with a bound container 8.28
beginning number 8.26
creating 8.28
cycling 8.26
in SQL statements 8.28
increment 8.26
maximum value 8.26
minimum value 8.26
name 8.26

Server constraints. See Constraints, database
Session objects 1.4
Session window 2.3
Sessions 1.4 to 1.5, 3.3, 3.10, 6.3 to 6.19, 8.3

activating at design time 2.19
associating with a schema 2.19
closing 2.19
directing statements to 9.18
opening 3.10

Siblings 3.12
Single datatype 4.3
Size field 8.13
SQL components

commands 9.3
conditions 9.3
expressions 9.3
functions 9.3
literals 9.2
objects 9.2
operators 9.2

procedural extensions 9.3
values 9.2

SQL Server databases 6.22 to 6.24
SQL statements

and tables 8.16
evaluation of 9.21

SQL. See Structured Query Language
SQLLOOKUP function 9.21, 10.12

and bind variables 9.22
and report group headers 12.15
derived values 9.22
lookup fields 9.22
to populate report controls 12.10

Standalone recordsets. See Recordsets, standalone
Standard classes 13.2
Standard methods 1.2

for printing reports 12.13
Static objects 3.2, 3.5, 10.4, 10.11, 10.30 to 10.31

line 10.30
oval 10.30
rectangle 10.31
static text 10.31

Static text 3.5, 10.31
Status lines 3.8, 14.2, 14.34 to 14.44

adding panels to 14.36
associating with windows 14.38
creating 14.35, 14.42
creating, overview 14.34
custom panels 14.34
deleting panels 14.36
initializing 14.35
methods 14.48
modifying panels 14.36
properties 14.48
summary panel 14.34
summary panel, disabling 14.42
system default panels 14.34
updating panels 14.39

Stored procedures 19.8
Stored queries. See Views
String datatype 4.3
String operators. See Operators, string
Structured Query Language (SQL) 9.1 to 9.23

bind variable arrays. See Bind variable arrays
bind variables. See Bind variables
categories of operators 9.10

12

commands 9.13
components. See SQL Components
conditions 9.12
EXEC SQL command. See EXEC SQL command
executing SQL statements 9.15
expressions 9.11
functions 9.11
SQLLOOKUP function. See SQLLOOKUP function
syntax for databases 9.8
values and datatypes 9.3

Subclasses 13.12
and inheritance 3.29
creating 13.12

Subroutines 3.19
adding to an object 5.5
user-defined, declaring 5.4

Summary help 14.34
Symbolic constants 4.10

Boolean 4.11
declaring 4.10
names 4.10
predefined 4.11
property value 4.11

Synonyms 3.4, 8.4, 8.29
and Data Definition Language (DDL) 8.30
and Data Manipulation Language (DML) 8.30
creating 8.30

Syntax
method references 3.13
property references 3.13

System-modal forms 11.11

T
Tab order 10.38
Table Browser window 2.23, 8.8, 8.14

opening 2.23
Table definition. See Tables, structure
Table Editor window 2.20

creating a new table through 2.22
Datatype field 2.21
editing data in 2.23
Expand button 2.22
Name field 2.21
Not Null field 2.21
opening 2.22

Precision field 2.21
Primary Key indicator 2.21
Primary Key tool 2.21
Selector button 2.21
Size field 2.21
Unique field 2.21

Tables 3.3, 8.3, 8.6 to 8.16
adding columns 8.10, 8.12
binding to a container object 8.16
constraints 8.7
creating 2.20, 2.22, 8.8 to 8.12
creating a translation list 8.16
data 8.7
deleting rows 8.15
editing 2.23
editing data 8.14, 8.15
editing structure 8.12
inserting rows 8.14
issuing a SQL statement 8.16
names 8.7
rows 8.8
saving 8.12, 8.16
structure 8.6

Text fields 3.6, 10.29
multiple lines 10.29

Text literals 4.5, 9.9
Toolbar buttons 14.21

bitmaps on 14.25
deleting 14.25
disabled 14.21
examining 14.25
executing code for 14.30
help context 14.25
IDs 14.24
method code for 14.28
modifying 14.25
setting status of 14.28
style 14.25
toggle 14.21

Toolbars 3.8, 14.2, 14.20 to 14.33
adding buttons to 14.23
application default 14.21
associating with windows 14.27
creating 14.21, 14.22, 14.31
custom 14.21
initializing 14.22

I N D E X O R A C L E P O W E R O B J E C T S U S E R ’ S G U I D E

13

methods 14.46
separator areas 14.21

Transaction processing 1.7
Transaction Processing Language (TPL)

commands 9.13, 9.14
Transact-SQL 9.14
Translation fields 8.23
Translation lists 8.16
Triggers 19.8

U
Unary operators 9.10
Unique field 8.14
UPDATE privilege 8.5
User Properties window 2.34

arguments 2.35
datatype 2.35
deleting user-defined methods and properties from 2.36
name 2.34
opening 2.34
type 2.34

User-defined classes 10.5, 10.20, 13.2, 13.10
creating 13.9

User-defined methods 2.34
adding to an object 2.35
creating 2.35
deleting from an object 2.35

User-defined properties 2.34
adding to an object 2.35
creating 2.35
deleting from an object 2.35

V
Validation 10.14, 10.39
Values 9.3
Variables

and symbolic constants. See Symbolic constants
arrays 4.9
declaring 4.7
default values 4.8
global 4.8
in Oracle Basic 4.6
local 4.9
names 4.6

scope of 4.8
Variant datatype 4.3
View Browser window 2.25

opening 2.25
View definition. See Views, structure
View Editor window 2.24, 8.17

Column List area 2.24
Condition field 2.25
creating a view through 2.25
Display field 2.25
Heading field 2.25
Join line 2.24
Name field 2.25
opening 2.25
Or field 2.25
Table field 2.24
Table List area 2.24

Views 1.5, 3.3, 8.3, 8.16 to 8.23
adding base tables 8.19, 8.21
adding columns 8.20, 8.21
binding to a container 8.23
choosing base tables for 8.19
creating 2.20, 8.18
creating a translation field 8.23
data 8.18
deleting columns 8.22
deleting conditions 8.22
editing columns 8.23
editing conditions 8.23
editing data 8.23
editing structure 8.21
issuing a SQL statement 8.23
joining base tables 8.19
removing base tables 8.19, 8.21
saving 8.21
structure 8.17

W
Watchpoints

setting 5.13
Windows API 15.13

14

Reader’s Comment Form

Oracle Power Objects User’s Guide
Part No. A25660-5
July 1995

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of
this publication. Your input is an important part of the information used for revision.

• Did you find any errors?
• Is the information clearly presented?
• Are the examples correct? Do you need more examples?
• What features did you like most about this manual?

If you find any errors or have any suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle Power Objects Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
(415) 506-7000
FAX: (415) 506-7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

	Preface
	Table of Contents
	Chapter 1: Application Development with Oracle Power Objects
	Chapter 2: The Oracle Power Objects Environment
	Chapter 3: Objects
	Chapter 4: Oracle Basic
	Chapter 5: Methods and Method Code
	Chapter 6: Databases
	Chapter 7: Blaze Databases
	Chapter 8: Database Objects
	Chapter 9: Structured Query Language (SQL)
	Chapter 10: Applications and Application Objects
	Chapter 11: Forms
	Chapter 12: Reports
	Chapter 13: Classes
	Chapter 14: Menus, Toolbars, and Status Lines
	Chapter 15: Oracle Power Objects Extensions
	Chapter 16: Compiling the Executable Application
	Chapter 17: Binding a Container to a Record Source
	Chapter 18: Defining Master-Detail Relationships
	Chapter 19: Using Constraints to Enforce Business Rules
	Appendix A: Suggested Coding Standards
	Appendix B: List of Properties and Methods
	Appendix C: Constants and Reserved Words
	Index
	Reader's Comment Form

