
DataDirect ODBC
dBASE Driver

About the dBASE Driver

Configuring dBASE Data Sources

Configuring FoxPro 3.0 DBC Data Sources

Defining Index Attributes

Connecting to dBASE Using a Connection String

Data Types

SQL Statements for dBASE

Locking

Isolation and Lock Levels Supported

ODBC Conformance Level

Number of Connections and Statements Supported

Copyright

Copyright 1996 INTERSOLV Inc. All rights reserved. INTERSOLV is a registered trademark, and
DataDirect is a trademark of INTERSOLV, Inc. Other company or product names mentioned herein may
be trademarks or registered trademarks of their respective companies.

About the dBASE Driver

The dBASE driver supports
dBASE III, dBASE IV and dBASE V files
Clipper files
FoxBASE tables and indexes
FoxPro 1.0, 2.5, and 3.0 tables and indexes, and FoxPro 3.0 database containers

The dBASE driver executes the SQL statements directly on dBASE-compatible files. You do not need to
own the dBASE product to access these files.

The driver filename is IVDBFnn.DLL.

Configuring Data Sources

To configure a data source using the dBASE driver, follow these steps. To configure a data source for
FoxPro 3.0 DBC tables, see Configuring FoxPro 3.0 DBC Data Sources.

1 Start the ODBC Administrator. A list of data sources appears.

2 If you are configuring a new data source, click Add. A list of installed drivers appears. Select
INTERSOLV dBASEFile and click OK.

If you are configuring an existing data source, select the data source name and click Setup.

The ODBC dBASE Driver Setup dialog box appears.

3 Specify a data source name and database directory. Specifying a database description and create
type is optional.

4 Click the Advanced button to configure optional data source settings, such as locking and file
caching information. The ODBC Advanced Driver Setup dialog box appears.

5 Click OK to write these settings you selected to ODBC.INI. These values are now the defaults when
you connect to the data source. You can change the defaults by configuring your data source again.
You can override the defaults by connecting to the data source using a connection string with
alternate values.

Configuring FoxPro 3.0 DBC Data Sources

To configure a data source for FoxPro 3.0 database containers, do the following:

1 Start the ODBC Administrator. A list of data sources appears.

2 If you are configuring a new data source, click Add. A list of installed drivers appears. Select
INTERSOLV FoxPro 3.0 DBC driver and click OK.

If you are configuring an existing data source, select the data source name and click Setup.

The ODBC FoxPro Database Driver Setup dialog box appears.

3 Specify a data source name and database directory. Specifying a database description is optional.
You cannot change the Create Type for the FoxPro 3.0 DBC driver.

4 Click the Advanced button to configure optional data source settings, such as locking and file
caching information. The ODBC Advanced Driver Setup dialog box appears.

5 Click OK to write these settings you selected to ODBC.INI. These values are now the defaults when
you connect to the data source. You can change the defaults by configuring your data source again.
You can override the defaults by connecting to the data source using a connection string with
alternate values.

Defining Index Attributes

Since dBASE lets you create index files that have different names than their corresponding data files, you
must tell the driver what index files are associated with the dBASE file. The driver updates the indexes
for you, which ensures that they match the records in the dBASE file. The driver also makes indexes
available for optimizing queries. It is not necessary to mark production .MDX files or structured .CDX
files as maintained, as the driver maintains them for you. However, you may wish to use this method to
mark a tag as unique.

To define the index files that are associated with a dBASE file, take the following steps:

1 Click Define in the dBASE setup dialog box, which you can access through the ODBC Administrator.
The Define File dialog box appears.

2 Select a dBASE file and click OK to define the special indexes using the Define Table dialog box.

3 The upper section of the dialog box displays the directory name and filename that contains the data
file. Under Windows, if this file is stored in the IBM PC character set, select the OEM to ANSI
Translation box.

4 The lower section of the dialog box displays the index information for the data file. The Index File
drop-down list lets you select any index file in the database directory. If the index file is in a different
directory, you must provide the full pathname.

Select the Maintain check box to associate this index file with your dBASE file.

To specify that an index file is unique, select the Unique check box that appears at the right of the
index filename.

5 If the selected index has an .MDX or .CDX extension, you cannot mark the index file as unique.
Instead, you may mark the tags within the index as unique. To do so, select the tag name in the Tag
drop-down list and select the Unique check box that appears at the right of the tag name.

6 Click OK to save this information, or press Cancel.

Connecting to dBASE Using a Connection String

If your application requires a connection string to connect to a data source, you must specify the data
source name that tells the driver which ODBC.INI section to use for the default connection information.
Optionally, you may specify attribute=value pairs in the connection string to override the default values
stored in ODBC.INI. These values are not written to the ODBC.INI file.

You can specify either long or short names in the connection string. The connection string has the form:
DSN=data_source_name[;attribute=value[;attribute=value]...]

An example of a connection string for dBASE is
DSN=DBASE FILES;LCK=NONE;IS=0

The following table gives the long and short names for each attribute, as well as a description.

The defaults listed in the table are initial defaults that apply when no value is specified in either the
connection string or in the data source definition in ODBC.INI. If you specified a value for the attribute
when configuring the data source, that value is your default.

Attribute Description

DataSourceName
(DSN)

String that identifies a dBASE data source
configuration in ODBC.INI. Examples include
"Accounting" or "dBASE Files."

Database (DB) Directory in which the dBASE files are stored.

CreateType (CT) CreateType={dBASE3 | dBASE4 | dBASE5 | Clipper |
FoxBASE | FoxPro1 | FoxPro25 | FoxPro30}. Type of
table or index to be created on a Create Table or
Create Index statement. dBASE5 is the initial default.

Note: If you are using the FoxPro 3.0 DBC driver,
you cannot change the CreateType attribute.

LockCompatibility
(LCOMP)

LockCompatibility={Q+E | Q+EVirtual | dBASE |
Clipper | Fox}. Locking schemes to be used in your
dBASE tables.

LockCompatibility=Q+E specifies that locks
be placed on the actual bytes occupied by the record.
Only applications that use the dBASE driver can read
and write to the database. Other applications are
locked out of the table completely (they cannot even
read other records). This locking is compatible with
earlier versions of Q+E products.

LockCompatibility=Q+EVirtual specifies that
locks be placed on bytes beyond the physical end-of-
file. Q+EVirtual is the same as Q+E except that
other applications can open the table and read the
data.

The advantage of using a Q+E locking
scheme over dBASE locking is that, on Inserts and
Updates, Q+E locks only individual index tags, while
dBASE locks the entire index.

LockCompatibility=dBASE specifies Borland-
compatible locking. This is the initial default.

LockCompatibility=Clipper specifies Clipper-
compatible locking.

LockCompatibility=Fox specifies FoxPro- and
FoxBASE-compatible locking.

If you are accessing a table with an application that
uses the dBASE driver, your locking scheme does
not have to match the Create Type. However, if you
are accessing a table with two applications, and only
one uses the dBASE driver, set your locking scheme
to match the other application. For example, you
don't have to set LCOMP=Fox to work with a FoxPro
table. But if you are using a FoxPro application
simultaneously with an application using the dBASE
driver on the same set of tables, set LCOMP=Fox to
ensure that your data does not get corrupted.

Locking (LCK) Locking={NONE | RECORD | FILE} Level of locking
for the database tables.

Locking=NONE offers the best performance but is
intended only for single-user environments..

Locking=RECORD locks only the records affected by
the statement. This is the initial default.

Locking=FILE locks all of the records in the table.

FileOpenCache
(FOC)

Maximum number of unused file opens to cache.
For example, when FileOpenCache=4, and a user
opens and closes four files, the files are not actually
closed. The driver keeps them open so that if
another query uses one of these files, the driver does
not have to perform another open, which is
expensive. The advantage of using file open
caching is increased performance. The
disadvantage is that a user who tries to open the file
exclusively may get a locking conflict even though no
one appears to have the file open. The initial default
is 0.

CacheSize (CSZ) The number of 64K blocks the driver uses to cache
database records. The higher the number, the
better the performance. The maximum number of
blocks you can set depends on the system memory
available. If the cache size is greater than 0, when
browsing backwards, you will not be able to see
updates made by other users until you reexecute the
Select statement. The default is 4.

IntlSort (IS) IntlSort={0 | 1}. A number that specifies the order that
records are retrieved when you issue a Select
statement with an Order By clause. If IntlSort=1, the
driver uses the international sort order as defined by
your operating system. The sort is case-insensitive
(a precedes B); the sorting of accented characters is
also affected (see your operating system
documentation). If IntlSort=0 (the initial default), the
driver uses the ASCII sort order, where uppercase
letters precede lowercase letters (B precedes a).

ModifySQL (MS) ModifySQL={0 | 1}. This attribute is provided for
backward compatibility with earlier versions of Q+E
products. It determines whether the driver modifies

SQL statements to conform to ODBC specifications
or passes the SQL statement directly to dBASE.
Specify ModifySQL=1 to have the driver modify the
SQL statement to conform to ODBC specifications.
Specify ModifySQL=0 to have the driver understand
SQL dialects found in earlier drivers. The default is
1.

Compatibility
(COMP)

Compatibility={0 | 1}. This attribute is provided for
backward compatibility with earlier versions of Q+E
products. Use Compatibility=DBASE for backward
compatibility; use Compatibility=ANSI for portability.
The default is ANSI.

UltraSafeCommit
(USF)

UltraSafeCommit={0 | 1}. A number that specifies
when the driver flushes the file cache. If
UltraSafeCommit=1, the driver updates directory
entries after each Commit. This decreases
performance. If UltraSafeCommit=0 (the default) the
driver updates the directory entry when the file is
closed. In this case, a machine "crash" before
closing the file causes newly inserted records to be
lost.

UseLongNames
(ULN)

UseLongNames={0 | 1}. This attribute specifies
whether the driver uses long filenames as table
names. The default is 0, do not use long filenames. If
UseLongNames=1, the driver uses long filenames.
The maximum table name length is specific to the
enviroment in which you are running (for example, in
Windows 95, the maximum table name length is 128.

UseLongQualifiers
(ULQ)

UseLongQualifiers={0 | 1}. This attribute specifies
whether the driver uses long pathnames as table
qualifiers. When you set this check box, pathnames
can be up to 255 characters. The default length for
pathnames is 128 characters.

AllowNull-
Constraints (ANC)

AllowNullConstraints={0 | 1}. (FoxPro 3.0 driver only.)
A number that determines how the _NullFlags bits (if
present) are interpreted. See Adding Null Support for
more information.

AlwaysApply-
Translation (AAT)

AlwaysApplyTranslation={0 | 1}. (FoxPro 3.0 driver
only.) A number that determines whether the
translation DLL is always applied to character
columns or if the driver determines whether it is
applied.

DataFileExtension
(DFE).

String of three or fewer characters that specifies the
file extension to use for data files. The default
DataFileExtension value is DBF. This value cannot
be an extension the driver already uses, such as
MDX or CDX. The DataFileExtension value is used
for all CREATE TABLE statements. Sending a
CREATE TABLE using an extension other than the
DataFileExtension value causes an error.

In other SQL statements such as SELECT or

INSERT, users can specify an extension other than
the DataFileExtension value. The DataFileExtension
value is used when no extension is specified.

Adding Null Support

FoxPro 3.0 has true null support. When creating a table in FoxPro, the user has the option to allow
columns to contain null values. Internally, FoxPro sets a bit in the oclumn header to specify that the
column allows null values. Another bit is allocated in the system column _NullFlags, which is set to True if
the column currently contains a null value.

To facilitate null support for FoxPro 3.0 tables in the dBASE driver, the AllowNullConstraints connection
string option determines how the _NullFlags bits, if present, are interpreted. This option is valid only when
connecting to FoxPro 3.0 and FoxPro 3.0 DBC data sources.

AllowNullContraints
= 1 (On)

AllowNullConstraints
= 0 (Off)

CREATE TABLE
. . . (column type)

Nullable flag is set in
column header, and bit
is allocated in system
column.

CREATE TABLE
. . . (column type NOT
NULL)

Nullable flag is not set
in column header.

Warning: null
constraint is ignored.

UPDATE/INSERT
setting column = NULL
with nullable flag set in
column header

System column null
value bit is set for
column, alpha
columns are set to
spaces, and binary
columns are set to 0.

System column null
value bit is set for
column, alpha
columns are set to
spaces, and binary
columns are set to 0.

UPDATE/INSERT
setting column=NULL
with nullable flag not
set in column header

Error: column cannot
contain NULL value.

SELECT column with
nullable flag set and
null value bit set

Returns NULL. Returns NULL.

SELECT column with
nullable flag set and
null value bit not set

Returns column value. Returns column value.

SELECT column with
nullable flag not set

Returns column value. Interprets all blanks as
NULL.

Data Types

The following table shows how dBASE data types map to the standard ODBC data types. These dBASE
data types can be used in a Create Table statement.

Note: A few products can create dBASE files with numbers that do not conform to the precision and
scale of the Number column. For example, these products can store 100000 in a column declared as
NUMBER(5,2). When this occurs, the dBASE driver displays error 1244, "Unsupported decimal format."
To remedy this situation, multiply the nonconforming column by 1, which converts it to the Float data type.
For example,
SELECT BADCOL * 1 FROM BADFILE

BADCOL * 1 is evaluated as an expression and is returned as a float value.
dBASE ODBC
Binary1

SQL_LONGVARBINARY
Char2

SQL_CHAR
Date3

SQL_DATE
Float4

SQL_DECIMAL
General5

SQL_LONGVARBINARY

Logical SQL_BIT
Memo3

SQL_LONGVARCHAR

Numeric SQL_DECIMAL
Picture6

SQL_LONGVARBINARY

1 dBASE V only

2 254 characters maximum (1024 for Clipper)

3 dBASE III, IV, FoxPro, FoxBASE, and Clipper

4 dBASE IV only

5 FoxPro 2.5 and dBASE V only

6 FoxPro, FoxBASE, and Clipper

FoxPro 3.0 Data Types
Data types in FoxPro 3.0 tables and database containers map to the ODBC data types as follows:

FoxPro 3.0 ODBC

Character
(binary)

SQL_CHAR

Currency SQL_DOUBLE

Datetime SQL_TIMESTAMP

Double SQL_DOUBLE

Integer SQL_INTEGER

Memo (binary) SQL_LONGVARBINARY

SQL Statements for dBASE

If you are using the dBASE driver, you can use SQL statements as described in SQL for Flat-File Drivers
to read, insert, update, and delete records from a database, create new tables, and drop existing tables.
In addition, you can use SQL statements and clauses that are specific to the dBASE driver. The dBASE-
specific SQL information is described in the following topics.

Select Statement

SQL Statements for FoxPro 3.0 Database Containers

Alter Table Statement

Create Index Statement

Drop Index Statement

Pack Statement

Select Statements

You use a SQL Select statement to specify the columns and records to be read. dBASE Select
statements support all of the Select statement clauses.

Column Names
The maximum length of a column name is 10 characters. A column name can contain alphanumeric
characters and the hyphen character (-). The first character must be a letter (a through z).

ROWID Pseudo-Column
Each dBASE record contains a special column named ROWID. This field contains a unique number that
indicates the record's sequence in the database. For example, a table that contains 50 records has
ROWID values from 1 to 50 (if no records are marked deleted). You can use ROWID in Where and
Select clauses.

ROWID is particularly useful when you are updating records. You can retrieve the ROWID of the records
in the database along with the other field values. For example,
SELECT last_name, first_name, salary, rowid FROM emp

Then you can use the ROWID of the record that you want to update to ensure that you are updating the
correct record and no other. For example,
UPDATE emp set salary = 40000 FROM emp WHERE rowid=21

The fastest way of updating a single row is to use a Where clause with the ROWID. You cannot update
the ROWID column.

SQL Statements for FoxPro 3.0 Database Containers

The FoxPro 3.0 DBC driver supports four additional SQL statements.

To create a new FoxPro 3.0 database container, use
CREATE DATABASE database_name

To add an existing table to the database container, use
ADD TABLE table_name

To remove a table from the database container (not delete the table, but unlink it from the database
container), use
REMOVE TABLE table_name

To set the current database container to an existing database container, use
USE database_name

To add or delete columns from a table in a database container, use the Alter Table statement.

Alter Table Statement

The dBASE driver supports the Alter Table statement to add one or more columns to the table, or to
delete (drop) a single column.

The Alter Table statement has the form:
ALTER TABLE table_name {ADD column_name data_type | ADD (column_name data_type [, column_name
data_type] . . .) |
DROP [COLUMN] column_name}

table_name is the name of the table for which you are adding or dropping columns.

column_name assigns a name to the column you are adding or specifies the column you are dropping.

data_type specifies the native data type of each column you add. See dBASE Data Types for more
information.

For example, to add two columns to the emp table,
ALTER TABLE emp {ADD startdate date, dept char 10)

You cannot add and drop columns in a single statement, and you can drop only one column at a time. For
example, to drop a column,
ALTER TABLE emp DROP startdate

The Alter Table statement fails when you attempt to drop a column upon which other objects, such as
indexes or views, are dependent.

Create Index Statement

The type of index you create is determined by the value of the CreateType attribute, which you set in the
setup dialog box or as a connection string option. The index can be

dBASE III (.NDX)
dBASE IV (.MDX)
Clipper (.NTX)
FoxBASE (.IDX)
FoxPro (.CDX)

The syntax for creating an index is
CREATE [UNIQUE] INDEX index_name ON base_table_name
(field_name [ASC | DESC] [,field_name [ASC | DESC]] ...)

index_name is the name of the index file. For FoxPro 2.5 and dBASE IV, this is a tag, which is required
to identify the indexes in an index file. Each index for a table must have a unique name.

UNIQUE means that the driver creates an ANSI-style unique index over the column and ensures
uniqueness of the keys. Use of unique indexes improves performance. ANSI-style unique indexes are
different from dBASE-style unique indexes. With ANSI-style unique indexes, you receive an error
message when you try to insert a duplicate value into an indexed field. With dBASE-style unique
indexes, you do not see an error message when you insert a duplicate value into an indexed field. This
is because only one key is inserted in the index file.

base_table_name is the name of the database file whose index is to be created. The .DBF extension is
not required, the driver automatically adds it if it is not present. By default, dBASE IV index files are
named base_table_name. MDX and FoxPro 2.5 indexes are named base_table_name.CDX.

field_name is a name of a column in the dBASE table. You can substitute a valid dBASE-style index
expression for the list of field names.

ASC tells dBASE to create the index in ascending order. DESC tells dBASE to create the index in
descending order. By default, indexes are created in ascending order. You cannot specify both ASC
and DESC orders within a single Create Index statement. For example, the following statement is
invalid:
CREATE INDEX emp_i ON emp (last_name ASC, emp_id DESC)

The following table shows the attributes of the different index files supported by the dBASE driver. For
each type supported, it provides the following details:

Whether dBASE-style unique indexes are supported
Whether descending order is supported
The maximum size supported for key columns
The maximum size supported for the column specification in the Create Index statement
Whether production/structural indexes are supported

Create
Type/Ext.

dBASE
UNIQUE DESC

Max Size of
Key

Column

Max Size
of Column

Spec.

Production/
Structural
Indexes

Supports
FOR

Expressions

dBASE
III .NDX

Yes No 100 219 No No

Clipper .NTX Yes Yes 250 255 No Yes

FoxBASE .ID
X*

Yes No 100 219 No Yes

dBASE IV
and V .MDX

Yes Yes 100 220 Yes Yes

FoxPro
2.5 .IDX**

Yes Yes 240 255 No Yes

FoxPro 2.5
and 3.0 .CDX

Yes Yes 240 255 Yes Yes

* These IDX indexes are also created as the default for FoxPro 1.0.

**Compact IDX indexes have the same internal structure as a tag in a CDX file. These indexes can be
created if the IDX extension is included with the index name in the Create Index statement.

Drop Index Statement

The syntax for dropping a dBASE index is as follows:
DROP INDEX table_name.index_name

table_name is the name of the dBASE file without the extension.

For FoxPro 2.5 and dBASE IV, index_name is the tag. Otherwise, index_name is the name of the index
file without the extension.

To drop the index EMPHIRE.NDX, issue the following statement:
DROP INDEX emp.emphire

Pack Statement

When records are deleted from a dBASE file, they are not removed from the file. Instead, they are
marked as having been deleted. Also, when memo fields are updated, space may be wasted in the files.
To remove the deleted records and free the unused space from updated memo fields, you must use the
Pack statement. It has the following form:
PACK filename

filename is the name of the dBASE file to be packed. The .DBF extension is not required; the driver
automatically adds the extension if it is not present. For example,
PACK emp

You cannot pack a file that is opened by another user, and you cannot use the Pack statement in manual
commit mode.

For the specified file, the Pack statement does the following:
Removes all deleted records from the file
Removes the entries for all deleted records from .CDX and .MDX files having the same name as

the file
Compresses unused space in the memo (.DBT or .FPT) file

Locking

With the dBASE driver, you can build and run applications that share dBASE database files on a network.
Whenever more than one user is running an application that accesses a shared database file, the
applications should lock the records that are being changed. Locking a record prevents other users from
locking, updating, or deleting the record.

Levels of Database Locking
The dBASE driver supports three levels of database locking: NONE, RECORD, and FILE. You can set
these levels in

The connection string (LCK=)
The setup dialog box

No locking offers the best performance but is intended only for single-user environments.

With record or file locking, the system locks the database tables during Insert, Update, Delete, or
Select...For Update statements. The locks are released when the user commits the transaction. The
locks prevent other users from modifying the locked objects, but they do not lock out readers.

With record locking, only records affected by the statement are locked. Record locking provides better
concurrency with other users who also want to modify the table.

With file locking, all the records in the table are locked. File locking has lower overhead and may work
better if records are modified infrequently, if records are modified primarily by one user, or if a large
number of records are modified.

Using Locks on Local Files
If you use database locking and are accessing files locally (not on a network), run the DOS utility
SHARE.EXE before running Windows. If you add SHARE.EXE to your AUTOEXEC.BAT file, it runs
automatically each time you boot your computer.

Limit on Number of Locks
There is a limit on the number of locks that can be placed on a file. If you are accessing a dBASE file
from a server, the limit depends on the server (see your server documentation). If you are accessing a
dBASE file locally, the limit depends on the buffer space allocated when SHARE.EXE was loaded (see
your DOS documentation). If you are exceeding the number of locks available, you may want to switch
to file locking.

How Transactions Affect Record Locks
When an Update or Delete statement is executed, the driver locks the records affected by that statement.
The locks are released after the driver commits the changes. Under manual commit mode, the locks are
held until the application commits the transaction. Under autocommit mode, the locks are held until the
statement is executed.

When a Select...For Update statement is executed, the driver locks a record only when the record is
fetched. If the record is updated, the driver holds the lock until the changes are committed. Otherwise,
the lock is released when the next record is fetched.

Isolation and Lock Levels Supported

dBASE supports isolation level 1. It supports both file- and record-level locking.

ODBC Conformance Level

The dBASE driver supports the Core, Level 1, and Level 2 API functions listed in Supported ODBC
Functions. The dBASE driver also supports backward and random fetching in SQLExtendedFetch.

The driver supports the minimum SQL grammar.

Number of Connections and Statements Supported

dBASE supports multiple connections and multiple statements per connection.

dBASE ODBC Setup Dialog

Use the dBASE ODBC Setup dialog to create new dBASE data sources or configure existing data
sources.

Data Source Name: A string that identifies this dBASE data source configuration in ODBC.INI.
Examples include "Accounting" or "dBASE Files."

Description: An optional long description of a data source name. For example, "My Accounting
Database" or "dBASE files in C:\ACCOUNTS."

Database Directory: A path specification to the directory that contains the database files. If none is
specified, the current working directory is used.

Create Type: The type of table or index to be created on a Create Table or Create Index statement.
Select dBASE III, dBASE IV, dBASE V, Clipper, FoxBASE, FoxPro1, FoxPro25, or FoxPro30. The default
is dBASE V.

Advanced: Displays the ODBC Advanced Driver Setup dialog box to configure optional data source
settings, such as locking and file caching.

OK
Creates or modifies the current data source using the options you specify.

Cancel
Exits the ODBC Setup dialog without creating or modifying a data source.

FoxPro 3.0 ODBC Setup Dialog

Use the FoxPro 3.0 ODBC Setup dialog to configure a data source for FoxPro 3.0 database containers.

Data Source Name: A string that identifies this dBASE data source configuration in ODBC.INI.
Examples include "Accounting" or "dBASE Files."

Description: An optional long description of a data source name. For example, "My Accounting
Database" or "dBASE files in C:\ACCOUNTS."

Database Directory: A path specification to the directory that contains the database files. If none is
specified, the current working directory is used.

Click Select to browse the available FoxPro 3.0 database containers.

Create Type: You cannot change the Create Type for the FoxPro 3.0 DBC driver.

Advanced: Displays the ODBC Advanced Driver Setup dialog box to configure optional data source
settings, such as locking and file caching.

OK
Creates or modifies the current data source using the options you specify.

Cancel
Exits the ODBC Setup dialog without creating or modifying a data source.

Advanced Dialog

To configure optional settings for a dBASE data source, specify values as follows:

Locking: The level of locking for the database file (FILE, RECORD, or NONE). FILE locks all of the
records in the table. RECORD (the default) locks only the records affected by the statement. NONE
offers the best performance but is intended only for single-user environments.

Lock Compatibility: The locking scheme the driver uses when locking records. Select dBASE, Q+E,
Q+EVirtual, Clipper, or Fox. The default is dBASE. These values determine locking support as follows:

dBASE specifies Borland-compatible locking.
Q+E specifies that locks be placed on the actual bytes occupied by the record. Only applications

that use the dBASE driver can read and write to the database. Other applications are locked out of the
table completely (they cannot even read other records). This locking is compatible with earlier versions
of Q+E products.

Q+EVirtual specifies that locks be placed on bytes beyond the physical end-of-file. Q+EVirtual is
the same as Q+E except that other applications can open the table and read the data.

The advantage of using a Q+E locking scheme over dBASE locking is that, on Inserts and Updates, Q+E
locks only individual index tags, while dBASE locks the entire index.

Clipper specifies Clipper-compatible locking.
Fox specifies FoxPro- and FoxBASE-compatible locking.

If you are accessing a table with an application that uses the dBASE driver, your locking scheme does not
have to match the Create Type. However, if you are accessing a table with two applications, and only
one uses the dBASE driver, set your locking scheme to match the other application. For example, you
do not have to set this value to Fox to work with a FoxPro table. But if you are using a FoxPro
application simultaneously with an application using the dBASE driver on the same set of tables, set this
value to Fox to ensure that your data does not get corrupted.

File Open Cache: An integer value to specify the maximum number of unused file opens to cache. For
example, the value 4 specifies that when a user opens and closes four tables, the tables are not actually
closed. The driver keeps them open so that if another query uses one of these tables, the driver does
not have to perform another open, which is expensive. The advantage of file open caching is increased
performance. The disadvantage is that a user who specifies file locking on open may get a locking
conflict even though no one appears to have the file open. The default is 0, which means no file open
caching.

Cache Size: The number of 64K blocks the driver uses to cache database records. The higher the
number, the better the performance. The maximum number of blocks you can set depends on the
system memory available. If the cache size is greater than 0, when browsing backwards, you will not be
able to see updates made by other users until you reexecute the Select statement. The default is 4.

Data File Extension: Specifies the file extension to use for data files. The default Data File Extension
setting is DBF. The Data File Extension setting cannot be greater than three characters, and it cannot be
one the driver already uses, such as MDX or CDX. The Data File Extension setting is used for all
CREATE TABLE statements. Sending a CREATE TABLE using an extension other than the Data File
Extension setting causes an error.

In other SQL statements such as SELECT or INSERT, users can specify an extension other than the Data
File Extension setting. The Data File Extension setting is used when no extension is specified.

International Sort: A setting to indicate the order in which records are retrieved when you issue a
Select statement with an Order By clause. Select this check box to use the international sort order as
defined by your operating system. International sort order is case-insensitive (a precedes B); the sorting
of accented characters is also affected (see your operating system documentation). Leave this box
blank to use the ASCII sort order. ASCII sort order is case-sensitive, where uppercase letters precede
lowercase letters (B precedes a).

Use Long Names: Set this check box to use long filenames as table names. The maximum table name

length is specific to the enviroment in which you are running (for example, in Windows 95, the maximum
table name length is 128 characters).

Use Long Qualifiers: Set this check box to use long pathnames as table qualifiers. When you set this
check box, pathnames can be up to 255 characters. The default length for pathnames is 128 characters.

Define
Displays the Define Index dialog box to define the index attributes for your data files. See Defining Index
Attributes for step-by-step instructions.

Note The Define button is unavailable if you are configuring advanced options for a FoxPro 3.0 DBC
data source.

Translate
Displays the Select Translator dialog box to perform a translation of your data from one character set to
another. INTERSOLV provides a translator named INTERSOLV OEM ANSI that translates your data from
the IBM PC character set to the ANSI character set.

The translators that are listed in the Select Translator dialog box are determined by the values listed in the
ODBC Translators section of your ODBCINST.INI file.

Click OK to leave this dialog box and perform the translation.

Close
Returns to the dBASE or FoxPro ODBC Setup dialog box, where you can click the OK button to write
these settings to the ODBC.INI file.

Defining dBASE Index Attributes

To define the index files that are associated with a dBASE file:

1 Click Define in the dBASE setup dialog box, which you can access through the ODBC Administrator.
The standard file open dialog box for your system appears.

2 Select a dBASE file and click OK to define the special indexes using the Define Table dialog box.

The upper section of the dialog box displays the directory name and filename that contains the data
file.

The lower section displays the index information for the data file. The Index File drop-down list lets
you select any index file in the database directory. If the index file is in a different directory, you must
provide the full pathname.

3 Select the Maintain check box to associate this index file with your dBASE file.

4 To specify that an index file is unique, select the Unique check box that appears at the right of the
index filename.

5 If the selected index has an .MDX or .CDX extension, you cannot mark the index file as unique.
Instead, you may mark the tags within the index as unique. To do so, select the tag name in the Tag
drop-down list and select the Unique check box that appears at the right of the tag name.

6 Click OK to save this information, or press Cancel.

