
Help is not available
The Help topic you selected is not available. Click Go Back to see the previously displayed Help topic, or click Help
Topics and then select a different Help topic.

Help is not available
The topic you selected is in a Help file that is not available.
To install additional Help files, run the Install program, select the Customize features - Manual install option, and
specify the Help file(s) you want to install.

Macro Help is not available
The topic you selected is in a Help file that is not installed by the Install program.
If you have the 1-2-3 97 or SmartSuite 97 CD-ROM, you can install macro Help from there. If not, you can download
macro Help from the World Wide Web or order a copy from Lotus Customer Support. For more information, see
"Installing Help on macro commands."

How do I call DLL functions?
When you create LotusScript applications for 1-2-3, you are not limited to calling LotusScript procedures. Your
LotusScript applications can call any procedures that are compiled in a dynamic-link library (DLL).
To call procedures in a DLL, you need to know the following:

• The name of the DLL
• The full path for the DLL (if it is not in your default path)
• The names and parameters for procedures that you want to call

The following example calls a Win32 API function named sndPlaySound that is stored in the DLL file C:\WINDOWS\
SYSTEM\WINMM.DLL.This function plays a Windows .WAV file. To use this function in a LotusScript application,
first declare the function and then call it from a script.
Note Enter the following statements in (Declarations) for (Globals) if you want to call .WAV files from any script in
your application.
' Runtime Dependencies:
' Files and paths: WINMM.DLL must be installed in C:\WINDOWS\SYSTEM
' or somewhere in your current path. The sound file
' OFF2RACE.WAV must be installed in the subdirectory
' C:\WINDOWS\MEDIA.
' Declare a return value to use when you call the DLL
' function in a script.
Dim SoundReturnValue As Integer
' Declare the DLL function as a public function in LotusScript.
Declare Public Function sndPlaySound Lib "winmm"_
 Alias "sndPlaySoundA" _
 (Byval WaveFile As String, Byval theFlags As Long) _
 As Integer

' Declare some of the constants used by parameters of the DLL function.
Public Const SND_SYNC = &H0000 ' play synchronously (default)
Public Const SND_ASYNC = &H0001 ' play asynchronously
Public Const SND_NODEFAULT = &H0002 ' silence (!default) if sound not found
Public Const SND_MEMORY = &H0004 ' pszSound points to a memory file
Public Const SND_LOOP = &H0008 ' loop the sound until next sndPlaySound
Public Const SND_NOSTOP = &H0010 ' don't stop any currently playing sound
 The following script calls the declared function and specifies a .WAV file to play.
Sub TestSoundFiles
 SoundReturnValue = sndPlaySound("C:\WINDOWS\MEDIA\OFF2RACE.WAV", SND_SYNC)
End Sub

How do I create a custom menu?
You can use LotusScript to customize 1-2-3 menus or to create your own menus and display them in the 1-2-3 menu
bar. You assign LotusScript procedures to your custom menu items. When users select a custom menu item, the
associated script runs. These examples show some of the ways you can use LotusScript to customize menus in 1-2-
3.

Adding a command to a pull-down menu
This example adds the command Payroll to the beginning of the 1-2-3 File menu. When the user chooses the Payroll
command, 1-2-3 runs the sub OpenPayroll.
Sub AddPayroll

Dim FileMenu As Menu
Set FileMenu = CurrentApplication.CurrentMenuBar.GetMenu(1)
FileMenu.AddItem 0, "&Payroll", "Open the Payroll template", ThisDocument,
"OpenPayroll"

End Sub
Sub OpenPayroll

MessageBox "You selected the Payroll command."
End Sub

Removing a command from a pull-down menu
This example removes the Payroll command that the previous example added to the 1-2-3 File menu.
Sub RemovePayroll

Dim FileMenu As Menu
Set FileMenu = CurrentApplication.CurrentMenuBar.GetMenu(1)
If FileMenu.GetItemText(1) = "&Payroll" Then
 FileMenu.RemoveItem(1)
End If

End Sub

Adding a pull-down menu
This example adds the menu Functions to the 1-2-3 main menu, after the Help menu.
Sub SetMenu

'Set Constants for menu and menu items.
Const M_Functions ="F&unctions"
Const M_IsOdd ="Is&Odd"
Const M_IsEven ="Is&Even"
' Set Constants for menu item descriptions.
Const P_Functions ="Select a custom @function"
Const P_IsOdd = "Returns True for an odd value"
Const P_IsEven ="Returns True for an even value"
' Set Constants for global function names
Const S_IsOdd ="PutIsOdd"
Const S_IsEven ="PutIsEven"
Dim FuncMenu As Menu
Dim MainMenu As MenuBar
Set MainMenu = CurrentApplication.CurrentMenuBar
Set FuncMenu = CurrentApplication.NewMenu
FuncMenu.MenuText = M_Functions
FuncMenu.MenuPrompt = P_Functions
'This statement prevents duplicate menus if the Functions menu is already in the
menu bar.
If MainMenu.GetItemText(-1) = "F&unctions" Then
 MainMenu.RemoveItem(-1)
End If
' Add FuncMenu to the end of the 1-2-3 Main menu

Call CurrentApplication.CurrentMenubar.AddMenu(-1, FuncMenu)
'Add the two menu items to FuncMenu
Call FuncMenu.AddItem(-1, M_IsOdd, P_IsOdd, ThisDocument, S_IsOdd)
Call FuncMenu.AddItem(-1, M_IsEven, P_IsEven, ThisDocument, S_IsEven)

End Sub
Sub PutIsOdd

'Enter the IsOdd function in the current cell
'and leave the product in Edit mode.
.UpdateSheetDisplay = False
Selection.Contents = "@ISODD(x)"
Sendkeys "{F2}"
.UpdateSheetDisplay = True

End SubEnd Sub
Sub PutIsEven

'Enter the IsEven function in the current cell
'and leave the product in Edit mode.
.UpdateSheetDisplay = False
Selection.Contents = "@ISEVEN(x)"
Sendkeys "{F2}"
.UpdateSheetDisplay = True

End Sub
'This function returns 1 for an odd number; 0 for any other value.
Function ISODD (x As Integer) As Integer

If x Mod 2 <> 0 Then
 ISODD = 1
Else
 ISODD = 0
End If

End Function
'This function returns 1 for an even number; 0 for any other value.
Function ISEVEN (x As Integer) As Integer

If x Mod 2 <> 0 Then
 ISEVEN = 0
Else
 ISEVEN = 1
End If

End Function

Removing a pull-down menu
This example removes the Functions command that the previous example added to the 1-2-3 main menu.
Sub ResetMenu

Dim MainMenu As MenuBar
Set MainMenu = CurrentApplication.CurrentMenuBar
If MainMenu.GetItemText(-1) = "F&unctions" Then
 MainMenu.RemoveItem(-1)
End If

End Sub

Disabling a menu item
This example disables the 1-2-3 Create - Object command. When a command is disabled, it is dimmed in the menu.
Sub GreyCreateObject

Dim CreateMenu As Menu
Set CreateMenu = CurrentApplication.CurrentMenuBar.GetMenu(4)
CreateMenu.DisableItem (-1)

End Sub

Enabling a menu item
This example enables the 1-2-3 Create - Object command after it was previously disabled.
Sub EnableCreateObject

Dim CreateMenu As Menu
Set CreateMenu = CurrentApplication.CurrentMenuBar.GetMenu(4)
CreateMenu.EnableItem (-1)

End Sub

Creating keyboard shortcuts
When you enter command names, & (ampersand) followed by a character creates a keyboard shortcut for a
command. The letter that follows the & (ampersand) appears underlined; the user can choose this command from the
keyboard by pressing ALT plus the underlined letter. For example, if you enter First&Quarter, 1-2-3 displays
FirstQuarter; the user can press ALT+Q to select the command. To display & (ampersand) in the command name,
enter && (two ampersands). For example, to display B&W, enter B&&W.

{button ,AL(`;H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See related topics

How do I call other Windows applications?
Use the LotusScript Shell command to call operating system services or utilities. The following example starts the
Microsoft Windows Help program and displays the 1-2-3 Help topic "Details: Recording a script."
Sub Click(Source As Button, X As Long, Y As Long, Flags As Long)
' Runtime dependencies
' Files: This example uses a help file and a help topic
' that was installed with 1-2-3
' SS1N60EN.HLP is the 1-2-3 main Help file.
' H_123_RECORDING_A_SCRIPT_DETAILS is
' the Help context ID of a topic in that file.
' Substitute the name of another help file and context ID
' to call your own Help topic.
' Platform: This script calls a Windows-specific service, WinHelp.
 ' Declare a variable to store the return value of the call to WinHelp.
 Dim HelpReturnValue As Integer
 ' Use the LotusScript Shell command to call WinHelp.
 ' The command line switch -I specifies a Help context ID.
 HelpReturnValue = Shell("WINHLP32.EXE -I H_123_RECORDING_A_SCRIPT_DETAILS _
 SS1N60EN.HLP", 1)
End Sub

How do I display dialog boxes?
You can create and display custom dialog boxes, as well as to display built-in LotusScript and 1-2-3 dialog boxes.

Creating a custom dialog box
To open the Dialog Editor in 1-2-3, select Edit - Scripts & Macros - Show Dialog Editor. 1-2-3 saves dialog boxes you
create in the Dialog Editor with the .123 file in which you created them.

Displaying a custom dialog box
You can use the LotusScript Dialog Editor to create and edit custom dialog boxes, and you can use the Show method
to display these dialog boxes in 1-2-3.
The following example displays a custom dialog box named EmpInfoDlg:
Sub GetInfo

EmpInfoDlg.Show
End Sub

Displaying built-in 1-2-3 dialog boxes and InfoBoxes
You can use the {Dialog?} macro command to display a number of 1-2-3 dialog boxes and InfoBoxes. The following
table lists the dialog boxes and InfoBoxes you can display and the {Dialog?} command you use to display them.

Dialog box {Dialog?} command
File - New Workbook {Dialog? "File-New"}
File - Open {Dialog? "Open"}
File - TeamMail {Dialog? "Send-Mail"}
File - Save As {Dialog? "Save-As"}
File - Save Copy As {Dialog? "Save-Copy-As"}
File - Workbook Properties {Dialog? "Doc-Info"}
File - Print {Dialog? "Print"}
File - Preview & Setup - Printer {Dialog? "Printer-Setup"}
File - User Setup - 1-2-3 Preferences {Dialog? "User-Setup"}
Edit - Clear {Dialog? "Clear"}
Edit - Paste Special {Dialog? "Paste-Special"}
Edit - Go To {Dialog? "Go-To"}
Edit - Find and Replace {Dialog? "Find-and-Replace"}
Edit - Check Spelling {Dialog? "Spell-Check"}
View - Set View Preferences {Dialog? "Set-View-Preferences"}
Range - Name {Dialog? "Range-Name"}
Range - Sort {Dialog? "Range - Sort"}
Range - Parse {Dialog? "Parse"}

Use the MacroRun or MacroRunText method to run a macro as part of a script.

Displaying built-in LotusScript dialog boxes
You might not always have time to create your own dialog boxes. When you only want to display a message or result,
use the LotusScript MessageBox function. When you only want to get simple data from users, use the LotusScript
InputBox function.
The following code displays a dialog box that prompts the user to enter an ID number and then converts the user's
input from a string to an integer:

Dim num As Integer
num% = CInt(InputBox$("Enter your ID number:","Login"))

The following code displays a message if the cell named COST is blank:

If [COST].Contents = "" Then
 MessageBox "You must enter a cost."
Else
 NextSub

How do I freeze the screen while a script is running?
Sheet updates that occur while a script is running can be distracting to users. The following code suppresses the
display of sheet updates while a script is running:

CurrentApplication.UpdateSheetDisplay = False
The following code restores normal display of sheet updating:

CurrentApplication.UpdateSheetDisplay = True

How do I hide and display parts of the 1-2-3 user interface?
You can write a script that hides or displays specific parts of the 1-2-3 user interface, such as sets of SmartIcons.
The following example sets the display of the 1-2-3 user interface.
Sub SetMyView

'Set View Preferences: Hide the sheet frame, grid lines, and sheet tabs.
CurrentDocument.ShowSheetFrame = False
CurrentDocument.ShowGridLines = False
CurrentDocument.ShowSheetTabs = False
'Set 1-2-3 Preferences: Maximize the 1-2-3 window, set the default font
'to TimesNewRoman 10 point.
CurrentApplication.ApplicationMaximized = True
CurrentApplication.DefaultFontName = "TimesNewRoman"
CurrentApplication.DefaultFontSize = 10
'Hide the status bar and all sets of SmartIcons.
.IconBarsVisible = False
.StatusBarVisible = False

End Sub

How do I write a script for an object not listed in the IDE?
Some objects you want to write scripts for cannot be selected in 1-2-3 and do not appear in the IDE Object drop-
down box. When you write scripts for these objects, you must manually create an object variable.
For example, suppose you write a script that you want to run when a particular DocWindow object gets the focus. You
cannot select a DocWindow object in 1-2-3 or from the Object drop-down box. To associate the event script named
MyGetFocusHandler with the event GetFocus of the first DocWindow object, you could use the following script in the
Opened event script.
Sub Opened(source As Document)

Dim myDW As DocWindow
Set myDW = ThisDocument.DocWindows(0)
On Event GetFocus From myDW Call MyGetFocusHandler

End Sub
You could then put your GetFocus event handler script in the (Globals) object in the IDE.

How do I reference objects in a script?
When you write scripts in 1-2-3, you can reference a 1-2-3 object by its name, provided you enclose the name in []
(square brackets). The following examples show several 1-2-3 objects referenced by name:
'Bold data in the range February
[February].Font.Bold = True
'Change the chart MyChart to a doughnut chart
[MyChart].Type = $Doughnut
'Protect all cells in the sheet Budget
[Budget].IsProtected = True
' Delete the version WorstCase for the range Q2Sales
[Q2Sales.WorstCase].DeleteVersion
You can also reference a range by its address enclosed in [] (square brackets):
'Add a border and border style to A:A1..A:B10
[A:A1..A:B10].OutlineBorder.Style = $SolidBorder
'Change the background color of sheet A to cornflower
[A].Background.BackColor.ColorName = "Cornflower"
By default, names within [] (square brackets) refer to objects in the current workbook. To reference objects in other
workbooks, use a file reference:
[<<filename>>objectname]
For example, the following statement references a range named MyRange in the workbook D:\LOTUS\WORK\123\
MYFILE:
[<<D:\Lotus\Work\123\Myfile>>MyRange].CopyToClipboard

Referencing collections
A collection is two or more ranges, selected at the same time, so that your next action affects all the ranges in the
collection at once. In the rare case that you want to reference a collection, the collection must be the current
selection:
'Create a collection and change its background color
[A:A2..A:A20].Select
[B:A2..B:A20].AddToSelection
[C:A2..C:A20].AddToSelection
Selection.Background.BackColor.ColorName = "parchment"
There is one exception to this rule. You can assign a print range to a collection:
Set .CurrentPrintSettings.PrintSelection = [A:B1..A:C25,B:B1..B:C25]

Type qualifiers
If multiple objects in a workbook share the same name, use a type qualifier to specify which object you want the script
to act on. The syntax for a reference that includes a type qualifier is:
[objectname:type]
For example, suppose a workbook contains a map named Sales and a chart named Sales. Use the following
reference for the map:
[Sales:Map]
Use the following reference for the chart:
[Sales:Chart]
If you do not include a type qualifier in a reference, 1-2-3 first looks for a range with the specified name, because
range objects have the highest order of precedence in a workbook. The order of precedence for all other objects
within a workbook is neither guaranteed nor consistent.
For example, if a workbook contains a range named Sales, a chart named Sales, and a map named Sales, the
following statement always selects the range:
[Sales].Select
If a workbook contains only a chart named Sales and a map named Sales, unexpected results occur. The statement
selects either the map or the chart, arbitrarily.

To avoid this situation, you should not assign the same name to two objects in the same workbook. However, if a
workbook contains multiple objects with the same name, always include type qualifiers in your references.
For more information about naming objects in 1-2-3, search on "Naming, conventions for" in the 1-2-3 Help Index.

How do I run scripts when 1-2-3 starts or I open a workbook?
You can make your scripts run when a user starts a 1-2-3 session or opens a particular workbook. To make sure
these types of scripts run when you expect them to, choose File - User Setup - 1-2-3 Preferences and select "Run file
Opened scripts, autoexecute macros."

Running a script when you open a document
To run a script whenever the user opens a particular .123 file, attach the script with to the file's Opened event:
1. Choose Edit - Scripts & Macros - Show Script Editor.

1-2-3 displays the Script Editor
2. Under Object, select the current file.
3. Under Script, select Opened.

1-2-3 displays the empty Opened sub in the Script Editor.
4. Enter statements in the sub that you want 1-2-3 to execute when the sub runs.
5. Save the script by saving the .123 file.
When you open the file, 1-2-3 automatically runs the script.

Example
The following example adds a custom menu item to the end of the 1-2-3 Edit menu when you open the file the script
is saved in:
Sub Opened(Source As Document)

Dim EditMenu As Menu
Set EditMenu = CurrentApplication.CurrentMenuBar.GetMenu(2)
EditMenu.AddItem -1, "&Payroll", "Perform payroll calculations", ThisDocument,
"PayCalc"

End Sub
Sub Paycalc

MessageBox "You selected PayCalc."
End Sub

Running a script at the start of a 1-2-3 session
Running a script at the start of a 1-2-3 session is similar to running a script when 1-2-3 opens a workbook. Attach the
script to the file's Opened event, then store the file in the "Automatically opened files" directory.
At the start of each session, 1-2-3 opens all the files in the "Automatically opened files" directory in alphabetical order,
words before numbers. Any scripts attached to the Opened event of a file run when 1-2-3 opens the file.

How do I use OLE objects?
New OLE 2 automation capabilities let you develop cross-product scripts that can interact with and control products
and their objects from outside. In other words, you can program other products to automate repetitive tasks.
You can use other products that support OLE automation to externally access and manipulate 1-2-3 and objects in it.
For example, you can create a script in a Notes document that uses OLE automation to perform calculations in 1-2-3
and then bring the data back into Notes.
It's just as easy to use 1-2-3 to control other products using OLE automation. For example, you can use 1-2-3 to
access Word Pro and Freelance Graphics, and then bring the text and graphics back into 1-2-3 where you can
consolidate them with your data for a monthly report.

Object names for applications
All SmartSuite object models have an Application object. From an Application object, you can traverse the hierarchy
to find all other objects. To create an OLE Automation object in a Lotus product that has LotusObjects, use your
scripting language's CreateObject method. Lotus products use the following object names when exposing their
objects for OLE Automation:

• Lotus123.Workbook
Note Note Unlike the other SmartSuite products, 1-2-3 returns an object of type Document, instead of an object
of type Application. To access the 1-2-3 Application object, once you have accessed the Document object, use
the Parent property of the Document object (Document.Parent).

• Approach.Application
• Freelance.Application
• WordPro.Application

Embedding OLE 2 objects in your document
The following example embeds a WordPro object in a 1-2-3 document and displays the object for editing or viewing:
Sub EmbedNew

'Embed a new, blank WordPro document.
[A].NewObject 4905,1350,6015,3345,"WordPro.Document",,,False,,,
[OLE 1].Select
Selection.Verb $OLEVerbShow

End Sub
Tip The names of the OLE servers that you can specify in a NewObject statement may be slightly different from the
names that appear in the "Object type" list in the Create Object dialog box. The specific names to specify in a
NewObject statement are available in the Windows Registry in HKEY_CLASSES_ROOT.

Embedding files as OLE objects
The following example embeds an existing WordPro file in a 1-2-3 document. In order to make this example work,
you must first create a WordPro document called C:\LOTUS\WORK\WORDPRO\MYDOC.LWP.
Sub EmbedFile

'Embed a copy of a WordPro document.
[A].NewObject 2475,2025,3855,3630,,"C:\LOTUS\WORK\WORDPRO\MYDOC.LWP",False,False,,,
[OLE 1].Select

End Sub
The following example creates a link to the contents of the file, rather than creating an embedded object containing a
copy of the whole file:
Sub EmbedFile

'Create a link to the contents of a WordPro document.
[A].NewObject 2475,2025,3855,3630,,"C:\LOTUS\WORK\WORDPRO\MYDOC.LWP",True,False,,,
[OLE 1].Select

End Sub

class
A data type that is a description or a definition of a part of 1-2-3 that you can manipulate, as an object, in a script. For
example, a Range object from the 1-2-3 Range class represents a range in a sheet.

current workbook
The workbook in which you are working. The current workbook contains either the cell pointer or a selected graphic
object.

drag
To press the mouse button and hold it while moving the mouse.

Event
An action to which an application responds. The action can be performed by a user, such as a mouse click, or
generated by the system, such as the elapsing of a set amount of time on the computer's clock. Each LotusObject
can respond to a set of events that are predefined for the class that the object is an instance of. Events are the
primary way to execute scripts. A script that is attached to an object event is executed when the event occurs. For
example, a script that is attached to a document's Open event executes when the user opens the document in 1-2-3.

file reference
A file name and extension, with or without a path, enclosed in << >> (double angle brackets); for example,
<<SALES.123>>@SUM(A10..B22). Use a file reference in formulas and commands to refer to data in a workbook
other than the current workbook.

Function
A named procedure that performs a specific task and returns a single value (unlike a sub, which does not return a
value). LotusScript provides a set of built-in functions that you can use to perform a variety of common numeric, date
and time, string, data-conversion, and value-testing operations. You can also write your own functions in the Script
Editor.
Functions are comprised of the following:

• The Function keyword followed by the name of the function
• A series of one or more statements that are executed as a block when you call the function
• The End Function statement which marks the end of the function's definition.

 For example:
Function CubeNumber (intArg%)

'Calculate the cube of intArg% and
'make it the return value of CubeNumber
CubeNumber = intArg% ^ 3

End Function

LotusScript Integrated Development Environment (IDE)
A set of tools for creating and debugging scripts in Lotus products. These tools include a script editor, a script
debugger, and a dialog editor.

macro
A set of instructions, called macro commands, that automate a 1-2-3 task. You can use a macro to enter data or to
perform a series of 1-2-3 commands to style sheets or workbooks, guide users through specific applications,
calculate complex formulas with variable data, extract records from a database table, and so on.

map data bin
A group of values or labels in a set of map data. 1-2-3 displays each bin as a color in the map. If you have two sets of
map data, 1-2-3 creates pattern bins as well as color bins.
In this map, 1-2-3 groups the sales data for 15 countries into 6 bins.

The legend labels indicate the upper limit of data in that bin. For example, each country that falls into the red bin has
sales less than or equal to 4,200.

map legend
Explains the meaning of the colors and patterns in a map. Values used as legend labels either exactly match values
in the range of map data, or they represent the upper limit of the values contained in the bin. Use Map - Color Bins or
Map - Pattern Bins to change the labels, the colors and patterns, and the values used to create bins.

Method
An action performed on or by an object. The action changes the object or gives you control over certain aspects of
the object's behavior. For example, the Document object has a NewSheet method that creates a new sheet in the file.

named print styles
Print options, such as margins, headers, and footers, that you name and save with File - Preview & Page Setup
(Named Style tab). When you save print styles, you can use them again.
Named print styles are stored in the workbook file. You can copy print styles among active workbooks.

Object
A component of LotusScript that you can manipulate, as you would a variable, in a script, using the properties,
methods, and events associated with that object. An object is an instance of a class; the properties, methods, and
events defined for that class can be applied to any object of that class.
For example, the Range object represents a range in a sheet. You might want to write a script that checks the data in
a range and performs actions based on the values in that range. To do this, you use the Range object, along with its
methods and properties.

OLE (Object Linking and Embedding)
A method for linking data between applications or embedding objects created with one application into files created
with another application.
Use Edit - Paste Link, Edit - Paste Special, or Create - Object to create a link or embed an object in a 1-2-3
workbook.

Property
Attributes that are associated with a class and that define the appearance and behavior of objects that are instances
of that class. For example, the Font property of the Range class determines the font for the data in a Range object.

quadmillipoint, defined
A unit of distance equal to 1/256 of a point (0.0000543 inch). Used to measure draw objects. For example,
rectangles.

range
A single cell, a rectangular block of adjoining cells, an entire sheet, or an entire workbook. A range is represented as
the addresses of its top left and bottom right cells, separated by two periods, for example, A:B2..A:C3.

A 3D range spans two or more contiguous sheets; for example, A:B1..B:B5.

Script Debugger
A window in which you can set, clear, disable, and enable breakpoints and step through scripts to locate the source of
problems that may occur while a script is running.

Script Editor
A window in which you can write and edit scripts, check script syntax, and set breakpoints for debugging scripts. The
Script Editor initially displays a script associated with the selected object.

Script
A sequence of one or more LotusScript statements. A script can be a complete application or part of an application.

Sub
A named procedure that performs a specific task without returning a value (unlike a function, which does return a
value).
Subs are comprised of the following:

• The Sub keyword followed by the name of the sub
• A series of one or more statements that are executed as a block
• The End Sub statement which marks the end of the sub's definition

For example:
Sub BlankCell ()

[A10].Clear $Contents
End Sub

text block
A graphic object, shaped as a rectangle or square, that contains text. Text blocks, like other graphic objects, can be
moved, copied, and sized. You can also edit, align, and change the font of the text in a text block.
Choose Create - Text to create a text block. Select the text block and use Drawing - Drawing Properties to change the
appearance of a text block.

twip, defined
A unit of distance equal to 1/20 of a point (1/1440 inch). Used to measure screen objects other than draw objects.
For example, window size.

version group
A named group of one or more versions. Each version in a version group must be associated with a different named
range.
In previous releases of 1-2-3, version groups were called scenarios.

version
Versions are sets of different data for the same named range. Each version has a name. 1-2-3 keeps track of the
date and time the version was created or modified, and the name of the person who created or modified it. You can
also assign styles to a version and attach a descriptive comment.

1-2-3 containment hierarchy
Like all SmartSuite product object models, the 1-2-3 object model is organized by containment hierarchies, which
describe the containment relationships of the 1-2-3 classes.

Converting macro buttons to script buttons
When you open a .WK4 file, 1-2-3 automatically converts macro buttons that you created with previous releases of 1-
2-3 into buttons that run scripts.

Macros stored in a sheet
If a button ran a macro stored in a sheet, 1-2-3 creates the following Click event script for the button:
Sub Click(Source As ButtonControl)

[file.range].MacroRun
End Sub
file is an optional file reference. You need to specify the file only if the macro is stored in a different file than the
button, for example, if the macro is stored in a macro library.
range is the name or address of the first cell in the macro.

Example
The following sub runs the macro named INTEREST stored in the active file D:\LOTUS\WORK\MYMACROS.WK4:
Sub Click()

[<<d:\lotus\work\mymacros>>.interest].MacroRun
End Sub

Macros stored with a button
If a button ran a macro stored with the button in the Assign Button dialog box, 1-2-3 creates the following Click event
script for the button:
Sub Click(Source As ButtonControl)

.MacroRunText("{macro_command}")
End Sub
Note If you open a .WK4 file that contains macros stored with buttons and then subsequently save the file as a .WK4
file, macros stored with buttons are preserved.

Example
The following sub runs a macro that enters the label "Weekly Status Report" in the current cell and changes the font
and column width:
Sub Click()

.MacroRunText(| _
{CELL-ENTER "Weekly Status Report"} _
{STYLE-FONT-ALL "Times New Roman"; 24} _
{COLUMN-WIDTH 30} _

|)
End Sub

{button ,AL(`H_123_CREATING_A_BUTTON_STEPS;H_123_MACRORUN_METHOD_MEMDEF;H_123_MACROR
UNTEXT_METHOD_MEMDEF',0)} See related topics

Creating a script button
You can create a button on a sheet and attach a script to it. When the user clicks the button, the script runs.
1. Choose Create - Button.

2. Position the mouse pointer in the sheet where you want the button to appear.
3. Do one of the following:

• To create a button in the default size, click the sheet.
• To size the button, drag across the sheet and release the mouse button when the button is the size you want.

1-2-3 selects the button and displays the Script Editor, which contains an empty script for the button's Click event.
4. Create a script that you want to run when a user clicks the button.
5. Choose File - Close Script Editor when you finish writing the script.

{button ,AL(`H_123_CREATING_A_BUTTON_DETAILS',1)} See details
{button ,AL(`H_123_CONVERTING_MACRO_BUTTONS_OVER;',0)} See related topics

Details: Creating a script button
Changing button text
To display a label on the button, other than the default label "Button," select the button and then choose Drawing -
Drawing Properties (Basics tab). Enter the new label in the "Text" box.

Anchoring buttons
By default, a button is fastened to the top left and bottom right underlying cells only. To change how a button is
fastened to the cells behind it, select the button and then choose Drawing - Drawing Properties (Basics tab).

Hiding and locking buttons
You can hide buttons when you do not want users to see them. You can also lock buttons so that users cannot
change their scripts or properties. To hide or lock a button, select the button and then choose Drawing - Drawing
Properties (Basics tab).

Running a macro from a button
You can run a macro from a button by using either the MacroRun or MacroRunText method in the script for the
button.

{button ,AL(`H_123_CREATING_A_BUTTON_STEPS',1)} Go to procedure
{button ,AL(`H_123_CREATING_A_BUTTON_DETAILS_RT;H_STYLING_GRAPHICS_OVER;H_MOVING_GRAPHI

CS_STEPS;H_NAMING_A_GRAPHIC_STEPS;H_SELECTING_GRAPHICS_STEPS;',0)} See related topics

1-2-3 Inheritance relationships
The following diagram illustrates the most important inheritance relationships in 1-2-3.

Installing the sample script files
The sample script files are not installed by the Install program. If you have the 1-2-3 97 or SmartSuite 97 CD-ROM,
you can install the sample script files from there.
Once the sample script files are copied to the correct location on your computer, you can access the sample scripts
by opening the file SCRIPTS.123.

Installing the sample script files from the CD-ROM
1. Create a folder named \SCRIPTS in your root folder. For example, C:\SCRIPTS.
2. Insert the CD-ROM in the appropriate drive.
3. Start the Windows Explorer.
4. Double-click the icon for the CD drive.
5. Open the EXTRA folder, the 123 folder, and then the SCRIPTS folder.
6. Select the files SCRIPTS.123 and CURRENCY.123 and choose Edit - Copy.
7. Open the folder you created in the first step and choose Edit - Paste.
8. Double-click the icon for the CD drive.
9. Open the EXTRA folder, the 123 folder, and then the SCRIPTS folder.
10. Select the file SCRIPTS.SMI and all the .BMP files and then choose Edit - Copy.
11. Open the 1-2-3 Icons folder (typically \LOTUS\123\ICONS), and choose Edit - Paste.

Setting up the Sample Scripts set of SmartIcons
1. Start 1-2-3.
2. Choose File - User Setup - SmartIcons Setup.
3. Under Bar to setup, choose Sample Scripts from the "Bar name" list.
4. Select the Always option from the "Bar can be displayed when context is" list.
5. Make sure "Bar is enabled to display during its context" is selected.
6. Click OK.
Note 1-2-3 will not automatically remove these files if you choose to uninstall 1-2-3. Instead, you will need to
manually delete these files.

Opening the Dialog Editor
To open the Dialog Editor in 1-2-3, choose Edit - Scripts & Macros - Show Dialog Editor.

{button ,AL(`H_123_OPENING_THE_DIALOG_EDITOR_DETAILS',1)} See details
{button ,AL(`H_LDE_OVERVIEW_THE_LOTUSSCRIPT_DIALOG_EDITOR_OVER',0)} See related topics

Details: Opening the Dialog Editor
Using custom dialog boxes created with previous releases
In previous releases of 1-2-3, after you created a dialog box in the Dialog Editor, you copied it to the Clipboard and
pasted it in a worksheet file so that you could use it in a macro. You can continue to run the macros that display these
dialog boxes, but you cannot upgrade them.

Related SmartIcons

Displays the Script Editor

{button ,AL(`H_123_OPENING_THE_DIALOG_EDITOR_STEPS',1)} Go to procedure

Overview: Working with the sample scripts
1-2-3 97 includes a collection of sample scripts that illustrate LotusScript application development concepts in 1-2-3.
These scripts are stored in the self-documented file SCRIPTS.123. For information about installing SCRIPTS.123 and
all other files associated with the sample scripts, see Installing the sample script files.

Opening the Script Editor
To open the Script Editor in 1-2-3, choose Edit - Scripts & Macros - Show Script Editor.

{button ,AL(`H_123_VIEWING_A_SCRIPT_DETAILS',1)} See details
{button ,AL(`H_IDE_THE_LOTUSSCRIPT_IDE_OVER',0)} See related topics

Details: Opening the Script Editor
Other ways to view a script
You can also display the Script Editor by selecting an object, right-clicking it, and then choosing Show Script from the
object's shortcut menu. The Script Editor displays the first script associated with the object.

Related SmartIcons

Displays the Dialog Editor

{button ,AL(`H_123_VIEWING_A_SCRIPT_STEPS',1)} Go to procedure

1-2-3: ClosePreview method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Closes the Preview window.

Syntax
application.ClosePreview

Parameters
None

Return values
None

1-2-3: GetRangeString method
{button ,AL(`H_123_RANGESELECTOR_CLASS',0)} See list of classes
{button ,AL(`H_123_GETRANGESTRING_METHOD_EXSCRIPT;',1)} See example
Allows the user to use the mouse to point to a range of cells in any open workbook. It returns a string.

Syntax
range = rangeselector.GetRangeString(document)

Parameters
document

Document. The document where GetRangeString is invoked this parameter allows the range names to be relative
to a particular file.

Return values
String. The range name or address of the range selected when 1-2-3 is in Point mode.

Usage
The string can be used as an input value for a text control or a cell. This parameter allows range names to be relative
to a particular file.

' Example: GetRangeString method
' Put range string into a variable.
Dim rs As RangeSelector
Dim r as String
Set rs = CurrentApplication.RangeSelector
r = rs.GetRangeString(CurrentDocument)
MessageBox "The selected range is" + r

1-2-3: GetRange method
{button ,AL(`H_123_RANGESELECTOR_CLASS',0)} See list of classes
{button ,AL(`H_123_GETRANGE_METHOD_EXSCRIPT;',1)} See example
Allows the user to use the mouse to point to a range of cells in any open workbook. It returns a Range object.

Syntax
range = rangeselector.GetRange()

Parameters
None

Return values
Range. The range selected when 1-2-3 is in Point mode.

Usage
When GetRange is called from a LotusScript routine, execution of the script halts, a Range Selector window opens,
and 1-2-3 changes to Point mode. The user can then use the mouse to select a range of cells. While the user is
dragging, the coordinates of the currently selected cells are displayed in the Range Selector window.
After selecting the range, a range object is returned, and execution of the script resumes.

' Example: GetRange method
' An example of changing 1-2-3 to Point mode and
' assiging the returned value to a variable.
Dim MyRange As Range
Set MyRange = CurrentApplication.RangeSelector.GetRange()

1-2-3: HelpContents method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Displays the Help topics browser for 1-2-3 help.

Syntax
application.HelpContents

Parameters
None

Return values
None

1-2-3: IsAddinLoaded method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Tests if the specified addin has been loaded into memory.

Syntax
boolean = application.IsAddinLoaded(addinname)

Parameters
AddinName

String. The name of the addin.

Return values
Variant (Boolean). Returns True if addinname is loaded, False if not.

1-2-3: Lock method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Locks the file's formats.

Syntax
document.Lock formatprotection, password

Parameters
formatprotection

Variant (Boolean). Specifies whether the file's formats are locked (value True) or not (value False).

Password
String. A password associated with the file.

Return values
None

Usage
If you want to lock a file the same way you would using the File - Workbook Properties (Security tab) command, then
you must first set the DataProtected property to True and then invoke this method.

1-2-3: LowerRightVisibleCell method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
Returns the cell address of the bottom right visible cell in the current sheet.

Syntax
Value = sheet.LowerRightVisibleCell

Parameters
None

Return values
Variant. The cell address of the bottom right visible cell in the current sheet.

1-2-3: MovePoint method
{button ,AL(`H_123_DRAWLINE_CLASS;H_123_FREEHAND_CLASS;H_123_POLYGON_CLASS;H_123_POLYLIN

E_CLASS',0)} See list of classes
Moves a vertex point in a polyline, polygon, or freehand drawing.

Syntax
object.MovePoint index, horizontal, vertical

Parameters
index

Long. Specifies a point of a polyline, polygon, or freehand drawing. Any long from 0 (zero) to the total number of
points minus one.

horizontal
Long. The number of units in twips to move a point left or right. Specify a positive integer to more the point to the
right; specify a negative integer to move the point to the left.

vertical
Long. The number of vertical units in twips to move a point up or down. Specify a positive integer to move the
point up; specify a negative integer to move the point down.

Return values
None

1-2-3: TopLeftVisibleCell method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_TOPLEFTVISIBLECELL_METHOD_EXSCRIPT;',1)} See example
Returns the cell address of the top left visible cell in the current sheet.

Syntax
variant = sheet.TopLeftVisibleCell

Parameters
None

Return values
Variant. Thecell address of the top left visible cell in the current sheet.

' Example: TopLeftVisibleCell method
' Display the address of the top left visible cell in a message box.
x = .TopLeftVisibleCell.Name
MessageBox x

1-2-3: AllFields property
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_ALLFIELDS_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the list of all available fields in the source database tables.

Data type
Strings

Syntax
value = query.AllFields

Legal values
The values for the AllFields property are the available fields in the source tables.

'Example: AllFields property
'Return the list of all available fields in the Output panel.

sub Printfields
Forall x in [Query1].AllFields
Print x," ";
end Forall
End sub

1-2-3: CellCommentsFont property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
{button ,AL(`H_123_CELLCOMMENTSFONT_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the font and the text styles used for printed cell commands.

Data type
Font

Syntax
printsettings.CellCommentsFont = font
font = printsettings.CellCommentsFont

Legal values
The available fonts are dependent on what you have installed on your system.

' Example: CellCommentsFont property
' Apply a font and other attributes to text.
Dim printstyle As PrintSettings
Set printstyle = CurrentDocument.CurrentPrintSettings
printstyle.CellCommentsFont.Fontname = "TimesNewRoman"
printstyle.CellCommentsFont.Bold = True
printstyle.CellCommentsFont.Italic = True
printstyle.CellCommentsFont.DoubleUnderline = True

1-2-3: CenterLatitude property
{button ,AL(`H_123_PLOT_CLASS',0)} See list of classes
Sets or returns the center latitude in degrees for the plot area of the map.

Data type
Double

Syntax
mapplot.CenterLatitude = value
value = MapPlot.CenterLatitude

Legal values
Any double from 0 - 90.

1-2-3: CenterLongitude property
{button ,AL(`H_123_PLOT_CLASS',0)} See list of classes
Sets or returns the center longitude in degrees for the plot area of the map.

Data type
Double

Syntax
mapplot.CenterLongitude = value
value = mapplot.CenterLongitude

Legal values
Any double from -180 - 180 degrees.

1-2-3: DefaultBackColor property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DEFAULTBACKCOLOR_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the default background color for new workbooks.

Data type
Color

Syntax
application.DefaultBackColor = color
color = application.DefaultBackColor

Legal values
For a list of legal values, see the Color palette.

Usage
The DefaultBackColor property is reset when you turn on the UseOSDefaultColors property.

Example: DefaultBackColor property
' Set the default cell background color for new workbooks.
CurrentApplication.UseOSDefaultColors = False
CurrentApplication.DefaultBackColor.ColorName = "red"

1-2-3: IsSheetHidden property
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
Sets or returns whether the sheet is hidden.

Data type
Variant (Boolean)

Syntax
sheet.IsSheetHidden = value
value = sheet.IsSheetHidden

Legal values
Value Description
TRUE The sheet is hidden.
FALSE (Default) The sheet is

displayed.

Usage
If there is only one sheet in the file and IsSheetHidden is set to TRUE, then 1-2-3 returns the error: "Cannot hide all
sheets."

1-2-3: Language property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_LANGUAGE_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the two character language identification ISO (International Standards Organization) code that
specifies the startup language of the application.

Data type
String

Syntax
value = application.Language

Legal values
Any valid two character ISO language code, such as EN for English or FR for French.

' Example: Language property
' Display the language ISO code that the application uses in a message box.
LangCode$ = CurrentApplication.Language
MsgBox("The ISO language code is " + LangCode$)

1-2-3: Lines property
{button ,AL(`H_123_MAPTITLE_CLASS',0)} See list of classes
(Read-only) Returns the lines of text of the map title.

Data type
MapTextEntries

Syntax
Set maptextentries = maptitle.Lines

Legal values
The value for the Lines property is a collection of strings containing the lines of text of the map title.

1-2-3: MenuText property
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
{button ,AL(`H_123_MENUTEXT_PROPERTY_EXSCRIPT;',1)} See example
Returns the text displayed for the menu. This property is read-write for menu commands you create with LotusScript,
and read-only for built-in 1-2-3 menus.

Data type
String

Syntax
object.MenuText = text
text = object.MenuText

Legal values
The value for the MenuText property is a string containing the text displayed for the menu.

Usage
When you enter command names, & (ampersand) followed by a character creates a keyboard shortcut for a
command. The letter that follows the & (ampersand) appears underlined; the user can choose this command from
the keyboard by pressing ALT plus the underlined letter. For example, if you enter First*Quarter, 1-2-3 displays
FirstQuarter; the user can press ALT+Q to select the command. To display & (ampersand) in the command name,
enter && (two ampersands). For example, to display B&W, enter B&&W.

' Example: MenuText property
' Set the text displayed for a menu.
' The & (ampersand) before the "S" displays as Some Menu (makes S a shortcut key).
object.MenuText = "&Some menu"

1-2-3: PaperSizeCustom property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
{button ,AL(`H_123_PAPERSIZECUSTOM_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Determines whether a custom paper size is specified for printing.

Data type
Variant (Boolean)

Syntax
value = printsettings.PaperSizeCustom

Legal values
Value Description
TRUE A custom paper size is

specified.
FALSE A custom paper size is not

specified.

' Example: PaperSizeCustom property
' Put up message box indicating that a custom
' paper size is specified for printing.
If CurrentDocument.CurrentPrintSettings.PaperSizeCustom = TRUE Then
MessageBox "Using custom paper size"
Else
MessageBox "Using standard paper size"
End If

1-2-3: PrintSelection property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the selection to be printed, for example, the line named Line1, or the chart named Chart1, or the
range A:A2...A:B5.

Data type
Variant (object)

Syntax
Set printsettings.PrintSelection = object
Set object = printsettings.PrintSelection

Legal values
A selectable object, such as a range or a graphic object. The object name is enclosed in brackets. For example,
[A:B2..A:C3], or [Line 1].

1-2-3: RangeSelector property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_FONT_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Returns a RangeSelector object.

Data type
RangeSelector

Syntax
rangeselector = application.RangeSelector

Legal values
The value for the RangeSelector property is a RangeSelector object.

Usage
Use the RangeSelector property to return a RangeSelector object and access the object's methods. These methods
that let you change 1-2-3 to Point mode and retrieve a range selection.

1-2-3: RowLevel property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
(Read-only) Returns the outline level for the first row in the outlined range.

Data type
Long

Syntax
value = range.RowLevel

Legal values
Any long from 0 - 8.

1-2-3: SendOutputToRange property
{button ,AL(`H_123_QUERYTABLE_CLASS',0)} See list of classes
{button ,AL(`H_123_SENDOUTPUTTORANGE_PROPERTY_EXSCRIPT;',1)} See example
Determines or returns whether the result of the query is copied to the range set using the OutputRange property.

Data type
Variant (Boolean)

Syntax
querytable.SendOutputToRange = value
value = querytable.SendOutputToRange

Legal values
Value Description
TRUE Place results of query in range

using the OutputRange
property.

FALSE Do not place results of query
in range specified using the
OutputRange property.

' Example: SendOutputToRange property
' Note that this example does not create the query table.

' Copies the results of a query table named Query Table 1
' to the output range A:C18..A:H47.
[Query Table 1].SendOutputToRange = True
[Query Table 1].RestrictOutput = False
Set [Query Table 1].OutputRange = [A:C18..A:H47]
[Query Table 1].RefreshOutput

1-2-3: ShowDesignerFrame property
{button ,AL(`;H_123_APPROACHCONNECTION_CLASS;H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CL

ASS;H_123_EDITTEXT_CLASS;H_123_GROUP_CLASS;H_123_MAP_CLASS;H_123_OLEOBJECT_CLASS;H_
123_PICTURE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_123_RECTANGLE_CLASS',0
)} See list of classes

Sets or returns whether to display the designer frame.

Data type
Variant (Boolean)

Syntax
object.ShowDesignerFrame = value
value = object.ShowDesignerFrame

Legal values
Value Description
TRUE (Default) Display the designer

frame.
FALSE Do not display the designer

frame.

1-2-3: Target property
{button ,AL(`H_123_DATALINK_CLASS',0)} See list of classes
{button ,AL(`H_123_TARGET_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the location of data from a source file in the destination file.

Data type
Object

Syntax
datalink.Target = value
value = datalink.Target

Legal values
The value for the Target property is a Range reference.

' Example: Target property
' To run this example, substitute a real WordPro filename and bookmark name
' for the filename (LnkTst.lwp) and itemname (test1) in this example.

' Set the datalink, get the range object, set it to G1,
' and go to the range containing the datalink.

Dim datLnk1 As DataLink
Set datLnk1 = CurrentDocument.NewDataLink("Datalink1", _
 "E:\LnkTst.lwp", "test1", $TextFormat, True)
Set datLnk1.Target = [G1]
Set x = [datLnk1].Target
x.Goto

1-2-3: TimeCycle property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_TIMECYCLE_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Specifies whether the operating system is set to display time in a 12- or 24-hour cycle.

Data type
Variant (TimeCycleEnum enumeration)

Syntax
value = application.TimeCycle

Legal values
Value Description
$TwelveHour Display time in 12-hour format.
$TwentyFourHour Display time in 24-hour format.

' Example: TimeCycle property
Dim ClockType As Variant
ClockType = CurrentApplication.TimeCycle
Msgbox(ClockType)

1-2-3: UnitsOfMeasure property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns the system of measurement that the operating system uses.

Data type
Variant (UnitsofMeasure enumeration)

Syntax
value = application.UnitsOfMeasure

Legal values
Value Description
$Metric Metric units
$Imperial Imperial units
$Points Units are measured in points
$Pica Units are measured in picas
$Twips Units are measured in twips

1-2-3: BreakLink method
{button ,AL(`H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;H_123_QUERY_CLASS;H_123_APPROACH

CONNECTION_CLASS',0)} See list of classes
Breaks the existing link, disconnecting the object from the link's source. Breaking the link converts the OLE object to
a Draw object. The object can no longer be edited by the server application.
There is no "undo" for BreakLink; the object is definitively converted to a Draw object.

Syntax
object.BreakLink

Parameters
None

Return values
None

Usage
The BreakLink method is equivalent to the Break Link button in the Edit dialog box.

1-2-3: CopyFill method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
Fills a range by copying the data in the range in the specified direction.

Syntax
range.CopyFill(direction)

Parameters
direction

Variant (CopyFillDir enumeration). Direction in which to copy the data. The following table lists the legal values for
this parameter.

Value Description
$Back Copy the data to the cells preceding

the current location.
$Down Copy the data to the cells below the

current location.
$Forwar
d

Copy the data to the cells after the
current location.

$Left Copy the data to the left.
$Right Copy the data to the right.
$Up Copy the data to the cells above the

current location.

Return values
None

Usage
The range you specify must include both the cells you want to copy and the cells that you want to fill.

1-2-3: DeleteCurrentVersion method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
Deletes the current version of the specified range.

Syntax
range.DeleteCurrentVersion

Parameters
None

Return values
None

1-2-3: GetActiveCell method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_GETACTIVECELL_METHOD_EXSCRIPT ',1)} See example
Returns a range whose top left cell is the active cell.

Syntax
range = sheet.GetActiveCell

Parameters
None

Return values
Variant. The range whose top left cell is the active cell.

' Example: GetActiveCell method
Dim RangeX As Range
Set RangeX = [A].GetActiveCell

1-2-3: GetItemText method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
(Read-only) Returns the name of the item at the specified menu position, without the keyboard shortcut. This
method returns a blank string as a separator.

Data type
String

Syntax
value = object.GetItemText(position)

Parameters
position

Long. The position in the menu of the item you want to return.

Value Description
Positive integer The item's position in the menu,

counting forward from the beginning.
The value 1 means the first position.
If the specified number exceeds the
number of menu positions, the
GetItemText method returns the last
menu item.

Negative integer The item's position in the menu,
counting backward from the end.
The value –1 means the last
position.
If the specified number exceeds the
number of menu positions, the
GetItemText method returns the first
menu item.

Return values
String. The name of the menu item at the specified position.

1-2-3: GetItemType method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
(Read-only) Returns the type of the item at the specified position in a menu.

Data type
Variant

Syntax
value = object.GetItemType(position)

Parameters
position

Long. The position of the item whose type you want to return.

Value Description
Positive integer The item's position in the menu,

counting forward from the beginning.
The value 1 means the first position.
If the specified number exceeds the
number of menu positions, the
GetItemType method returns the last
menu item.

Negative integer The item's position in the menu,
counting backward from the end.
The value –1 means the last
position.
If the specified number exceeds the
number of menu positions, the
GetItemType method returns the first
menu item.

Return values
Variant (GetItemType enumeration). The type of item at the specified menu position. The following table lists the
values for GetItemType.

Value Description
$Item Menu item.
$Separator Menu separator. Separators have no

text.
$Menu Cascade menu.

1-2-3: GotoCirc method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Goes to the first cell containing a circular reference, if there is one.

Syntax
application.GotoCirc

Parameters
None

Return values
None

1-2-3: PointX method
{button ,AL(`H_123_DRAWLINE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_FREEHAN

D_CLASS;',0)} See list of classes
Returns the X coordinate of the specified point of the line, freehand drawing, polyline, or polygon.

Syntax
value = object.PointX(which)

Parameters
which

Long. The point whose X coordinate is being returned.

Return values
Long. The X coordinate of the point specified in the which parameter.

1-2-3: PointY method
{button ,AL(`H_123_DRAWLINE_CLASS;H_123_FREEHAND_CLASS;H_123_POLYGON_CLASS;H_123_POLYLIN

E_CLASS',0)} See list of classes
Retuns the Y coordinate of the specified point of the line, freehand drawing, polyline, or polygon.

Syntax
value = object.PointY(which)

Parameters
which

Long. The point whose Y coordinate is being returned.

Return values
Long. The Y coordinate of the point specified in the which parameter.

1-2-3: RemoveAllVersions method
{button ,AL(`H_123_VERSIONGROUP_CLASS',0)} See list of classes
Removes all the versions from the specified version group.

Syntax
versiongroup.RemoveAllVersions

Parameters
None

Return values
None

1-2-3: ResetViewOverrides method
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
Resets the view properties for a sheet to the workbook defaults.

Syntax
sheet.ResetViewOverrides

Parameters
None

Return values
None

Usage
You can also set the view properties to the workbook defaults using the Sheet - Sheet Properties -View tab.

1-2-3: RestoreToOriginalSize method
{button ,AL(`H_123_PICTURE_CLASS',0)} See list of classes
Restores a picture to its original size.

Syntax
picture.RestoreToOriginalSize

Parameters
None

Return values
None

1-2-3: SetLinkSource method
{button ,AL(`H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;H_123_QUERY_CLASS;H_123_APPROACH

CONNECTION_CLASS',0)} See list of classes
Sets or returns the source specification for the link.

Syntax
object.SetLinkSource([filename],[item],[validatesource])

Parameters
filename

String. (Optional) Specifies the name of the file to use as the link source.
item

String. (Optional) Specifies the item within a file to use as the link source. The syntax for specifying the item
depends on the server application.

validatesource
Boolean. (Optional) Specifies whether to check the validity of the file or item. The following table describes the
settings for this parameter.

Value Description
TRUE Default. Checks the validity of the file or item.
FALSE Does not check the validity of the file or

item.

Return values
Long. The number of characters in the link source specification.

Usage
The SetLinkSource method is similar to the LinkSource property, except that it takes arguments. This allows you to
obtain individual parameters separately and to pass them separately. The parameters correspond to the File and Item
properties.

1-2-3: SmartSort method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
Sorts data in a range in the specified order.

Syntax
range.SmartSort(sortdirection)

Parameters
sortdirection

Variant (SortDir enumeration). Describes the direction in which to sort data. The following table shows the values
for this parameter.

Value Description
$Ascend Sorts from A - Z or from 0 (zero)

to the highest number.
$Descend Sorts from Z - A or from the

highest number to 0 (zero).

Return values
None

1-2-3: ToggleVersionBorder method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
Toggles between turning the border on and off for versions of the specified range.

Syntax
range.ToggleVersionBorder

Parameters
None

Return values
None

1-2-3: ColumnLevel property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
(Read-only) Returns the outline level for the first column in the range.

Data type
Long

Syntax
value = range.ColumnLevel

Legal values
The value of the ColumnLevel property is any Long from 0 (zero) to 8.

1-2-3: CurrentPrinter property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns the name of the currently selected printer.

Data type
String

Syntax
value = application.CurrentPrinter

Legal values
The value for the CurrentPrinter property is a string containing a printer name.

1-2-3: DateTo21stCentury property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns whether to use the 20th or 21st century in a date that has two digits between 00 - 49 for the year.

Data type
Variant (Boolean)

Syntax
application.DateTo21stCentury = value
value = application.DateTo21stCentury

Legal values
Value Description
TRUE The date is set to the 21st

century for year values 00 - 49,
so 20 is used for the first two year
numbers.

FALSE The date is set to the 20th
century for year values 00 - 49,
so 19 is used for the first two year
numbers.

1-2-3: DefaultPrintSettings property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns the application's default print settings.

Data type
PrintSettings

Syntax
application.DefaultPrintSettings = printsettings
printsettings = application.DefaultPrintSettings

Legal values
The DefaultPrintSettings property is determined by the print options found in its PrintSettings object.

1-2-3: Duplex property
{button ,AL(`H_123_PRINTSETTINGS_CLASS;',0)} See list of classes
Determines how the print selection should be printed.

Data type
Variant (DuplexOutput enumeration)

Syntax
printsettings.Duplex = value
value = printsettings.Duplex

Legal values
Value Description
$OneSided Print on one side of the paper.
$SideToSide Print on two sides of the

paper, with the tops of the
pages next to each other.

$EndToEnd Print on two sides of the
paper, with the tops of one
page next to the bottom of the
following page.

Usage
This property can only be used with printers that support two-sided printing.

1-2-3: FileName property
{button ,AL(`H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;H_123_QUERY_CLASS;H_123_APPROACH

CONNECTION_CLASS;',0)} See list of classes
(Read-only) Returns the filename portion of the current link source description.

Data type
String

Syntax
value = object.FileName

Legal values
The value for the FileName property is the filename part of the current link source.

1-2-3: FindTarget property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns what 1-2-3 searches when finding and replacing labels and values.

Data type
Variant (SpellFindTarget enumeration)

Syntax
application.FindTarget = value
value = application.FindTarget

Legal values
Value Description
$AllWorkbooks All workbooks
$CurrentWorkbook The current workbook
$CurrentSheet The current sheet
$SelectedRange The selected range

1-2-3: Hidden property
{button ,AL(`H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_DRAWLINE

_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHA
ND_CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPTITLE_CLASS
;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS
;H_123_QUERY_CLASS;H_123_RECTANGLE_CLASS;H_123_APPROACHCONNECTION_CLASS;H_123_DRA
WCOLLECTION_CLASS;H_123_QUERYTABLE_CLASS',0)} See list of classes

Sets or returns whether an object is hidden.

Data type
Variant (Boolean)

Syntax
object.Hidden = value
value = object.Hidden

Legal values
Value Description
TRUE The object is hidden.
FALSE (Default) The object is visible.

1-2-3: IsLinked property
{button ,AL(`H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;H_123_APPROACHCONNECTION_CLASS;

H_123_QUERYTABLE_CLASS',0)} See list of classes
(Read only) Returns whether the object is linked or embedded.

Data type
Variant (Boolean)

Syntax
value = object.IsLinked

Legal values
Value Description
TRUE The object is an OLE linked object.
FALSE The object is an OLE embedded object.

Usage
If the IsLinked property returns the value TRUE, the following methods and properties can be applied to the object:
BreakLink, SetLinkSource, Update, AutoUpdate, FileName, and ItemName.

1-2-3: ItemName property
{button ,AL(`H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;H_123_APPROACHCONNECTION_CLASS;

H_123_QUERYTABLE_CLASS',0)} See list of classes
(Read-only) Returns the item portion of the current link source description.

Data type
String

Syntax
value = object.String

Legal values
The value for the ItemName property is the item portion of the current link source. The syntax for the item depends on
the server application.

1-2-3: RowHeightUseFontSize property
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_ROWHEIGHTUSEFONTSIZE_PROPERTY_EXSCRIPT',1)} See example
Sets or returns whether to use the font size to determine the row height.

Data type
Variant (Boolean)

Syntax
sheet.RowHeightUseFontSize = value
value = sheet.RowHeightUseFontSize

Parameters
None

Legal values
Value Description
TRUE Use the font size to determine

the row height for the sheet.
FALSE Use the default row height for

the sheet.

Usage
The default row height does not adjust to a value that is smaller than the default font size.

'Example: DefaultRowHeight and RowHeightUseFontSize properties
Dim testsheet As Sheet
Set testsheet = CurrentDocument.CurrentSheet
testsheet.DefaultRowHeight = 24
testsheet.RowHeightUseFontSize = False
Msgbox "Default row height setting"
testsheet.RowHeightUseFontSize = True
Msgbox "Fit default font setting"

1-2-3: ScreenHeight property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns the height of the screen display in pixels.

Data type
Long

Syntax
value = application.ScreenHeight

Legal Values
The value for the ScreenHeight property is a long that represents the height of the screen display. The size of the
screen display depends on the display settings.

1-2-3: ScreenWidth property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns the width of the screen display in pixels.

Data type
Long

Syntax
value = application.ScreenWidth

Legal Values
The value for the ScreenWidth property is a long that represents the width of the screen display. The size of the
screen display depends on the display settings.

1-2-3: SheetName property
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
Sets or returns the name of the sheet in which a specified object is located.

Data type
String

Syntax
sheet.SheetName = value
value = sheet.SheetName

Legal values
The value for the SheetName property is a string that contains the name of a sheet.

Usage
The SheetName property is like the Name property. However, this property can be found from an object that is not the
sheet itself, but is located in the sheet. This provides access to the name of the sheet that provides the location for
an object.

1-2-3 ShowDataLossDialog property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns whether a dialog box appears when there is a potential data loss while saving a .WK3 or .WK4 file.

Data type
Variant (Boolean)

Syntax
application.ShowDataLossDialog = value
value = application.ShowDataLossDialog

Legal values
Value Description
TRUE Display a dialog box if there is a

potential data loss while saving
a .WK3 or .WK4 file.

FALSE Do not display a dialog box if
there is a potential data loss while
saving a .WK3 or .WK4 file.

1-2-3: ShowQueryNameAndBorder property
{button ,AL(`H_123_QUERYTABLE_CLASS',0)} See list of classes
Sets and returns whether to display the border and the name of the query table.

Data type
Variant (Boolean)

Syntax
querytable.ShowQueryNameAndBorder = value
value = querytable.ShowQueryNameAndBorder

Legal values
Value Description
TRUE (Default) Display the query

table name and border.
FALSE Do not display the query table

name and border.

1-2-3: SortBlanksLast property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets and returns whether 1-2-3 sorts blank cells last.

Data type
Variant (Boolean)

Syntax
application.SortBlanksLast = value
value = application.SortBlanksLast

Legal values
Value Description
TRUE (Default) 1-2-3 sorts blank cells last.
FALSE 1-2-3 does not sort blank cells last.

1-2-3: SortNumbersFirst property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns whether 1-2-3 sorts numbers before words.

Data type
Variant (Boolean)

Syntax
application.SortNumbersFirst = value
value = application.SortNumbersFirst

Legal values
Value Description
TRUE (Default) 1-2-3 sorts numbers before

words.
FALSE 1-2-3 does not sort numbers before

words.

1-2-3: UpdateSheetDisplay property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns whether 1-2-3 updates the sheet display as changes are made.

Data type
Variant (Boolean)

Syntax
application.UpdateSheetDisplay = value
value = application.UpdateSheetDisplay

Legal values
Value Description
TRUE 1-2-3 updates the sheet display as

changes are made.
FALSE 1-2-3 does not update the sheet

display as changes are made.

1-2-3 VersionName property
{button ,AL(`H_123_VERSION_CLASS',0)} See list of classes
Sets or returns the version part of a Name.

Data type
String

Syntax
version.VersionName = value
value = version.VersionName

Legal values
The value for the VersionName property is a string containing the version part of a Version's Name property.

Usage
You refer to a version using a name that is made up of two parts, the range name and the version name.
The Name property is read only and returns the entire name, for example, range1.version1. The VersionName
property sets or returns only the version part of the name, for example version.1.

Developing SmartSuite Applications
Developing SmartSuite Applications Using LotusScript is available in the SmartSuite CD package as an online book.
To install Developing SmartSuite Applications Using LotusScript, see the SmartSuite installation instructions.
To order a printed version of Developing SmartSuite Applications Using LotusScript and other LotusScript user
assistance in the SmartSuite 97 Application Developer's Documentation Set, complete the order form and return it to
Lotus.

Order Form for the SmartSuite 97 Application Developer's Documentation Set
These books are available in the CD-ROM version of your SmartSuite package as Online Books, available for
viewing on Lotus' World Wide Web site (http://www.lotus.com/smartsuite/sslotusscript.htm), and available in printed
form in the SmartSuite Application Developer's Documentation Set. These books are available only in English.

• Developing SmartSuite Applications Using LotusScript is a comprehensive introduction to developing applications
for SmartSuite 97. It offers chapters on key programming concepts, using LotusScript programming tools,
programming individual SmartSuite products, developing cross-product scripts, and integrating scripts with Notes.

• LotusScript Language Reference provides a comprehensive summary of conventions and basic commands for
the LotusScript language. LotusScript Language Reference provides the foundation for programming any product
that supports the LotusScript programming language.

• The LotusScript Programmer's Guide describes the basic building blocks for LotusScript applications and
provides many working examples.

You can receive one complimentary copy of the SmartSuite 97 Application Developer's Documentation Set. To take
advantage of this offer, fill out the form below and mail it to the appropriate office, postmarked no later than December
31, 1997. The only additional charge you are responsible for is the shipping and handling fee. US customers can pay
by check (payable to Lotus Development Corporation and drawn on a US bank), others must pay by credit card.
Please allow 4 - 6 weeks for delivery.
For details on mailing addresses and shipping and handling charges, see fulfillment information in Getting the Most
Out of LotusScript in SmartSuite 97 or on the Lotus World Wide Web home page,
http://www.lotus.com/smartsuite/sslotusscript.htm.

Name __

Company __

Address 1 (no PO boxes please) ___

Address 2 ___

City __________________________ State/Province _______________________________

Zip/Postal Code ____________ Phone (____) _____ - _________ ext. ______

Shipping and handling charge: ___________

Payment Method: Visa / Mastercard / Amex / Check (circle one)

Card Number ________________________ Exp Date ________ / _____

Signature ___

LotusScript Documentation as Online Books
If you have purchased the CD-ROM version of SmartSuite 97, you can use SmartSuite Install to install the following
Online Books about LotusScript:

• Getting the Most Out of LotusScript in SmartSuite 97
• Developing SmartSuite Applications Using LotusScript
• LotusScript Language Reference
• LotusScript Programmer's Guide

For more information about installing Online Books, see your SmartSuite 97 installation documentation.

LotusScript Documentation on the World Wide Web
You can view updated versions of LotusScript documentation or download updated sample applications or Help files
from the SmartSuite LotusScript home page.
Enter the following URL (Universal Resource Locator) in the location field in your browser and press ENTER:
http://www.lotus.com/smartsuite/sslotusscript.htm

Overview: Designing SmartSuite Applications
LotusScript provides a variety of tools and services to support you in developing applications for SmartSuite. Being
productive in a new programming environment often involves understanding how all the pieces work together -- the
tools, the language conventions, the object dependencies, and so on. Understanding how to approach the problem
and where to enter your script code is half the challenge in learning.

Choosing a place to begin
Lotus Notes, 1-2-3, Approach, Freelance Graphics, and Word Pro all use the same underlying LotusScript language.
Each product implements LotusObjects on top of the LotusScript language. To determine which product best supports
the goals for your script application, consider using each of the SmartSuite products and reviewing its features. Read
Developing SmartSuite Applications Using LotusScript for overviews of what each product can bring to your
programming effort. Implement a couple of simple procedures in each of the products to get a feel for its features and
objects. In the long run, you'll be better able to determine which product provides strengths where you need them
most and how you can develop cross-product applications that take advantage of the strengths of each product.

Working with the basics
LotusScript applications share the following common features:

• You run script applications in a Lotus product.
• You store scripts in a Lotus product document, such as a 1-2-3 workbook or Word Pro document.
• You use the Lotus Integrated Development Environment (IDE) to edit and debug scripts stored in a product

document.
• You use a separate IDE window for each product document containing scripts that you want to modify.

To write a basic script application, therefore, you must run a Lotus product and open a document in that product. You
can then write scripts for the product objects that you have created in your product.

Writing scripts in the Integrated Development Environment (IDE)
Your primary tool for developing script applications is the Lotus Integrated Development Environment (IDE). Beyond
providing the basic tools such as an editor, a debugger, a browser, and a dialog editor, the IDE provides a high
degree of integration with each Lotus product. It is easy to move between tasks that you perform in a product and
those that you perform in the IDE.

Writing global scripts
Global scripts make declarations, options, and procedures available to all scripts in your document. For example, to
write global scripts for a 1-2-3 document named LSAPP2.123, you must first start 1-2-3, open the document
LSAPP2.123, and then open an IDE window for that document. Choose Edit - Scripts & Macros - Show Script Editor
in the 1-2-3 menu to open an IDE window for your current document.
The IDE lists objects for which you can write a script in the Object list and scripts for each of those objects in the
Script list. You can add statements to predefined scripts in (Globals) such as (Options), (Declarations), Initialize, or
Terminate or you can create your own named procedures. You do not need to modify predefined scripts to write a
basic script application.
The following illustration shows how to select a particular script for (Globals).
Click any item in the following list to learn more about it.

 Product document

 (Options) scripts

 (Declarations) scripts

 Initialize and Terminate subs

 User-defined procedures

Writing scripts for product objects
You can also write scripts for product objects in your document. As with (Globals), you can add statements in the
predefined scripts for an object or create new procedures for that object. Unlike scripts that you write in (Globals), the
declarations, options statements, and procedures that you write for a product object are not generally available to
scripts attached to a different product object.
The predefined scripts for product objects include object event procedures. Script statements in an object event
procedure are executed when an object, such as a button, receives a particular event in your product, such as being
clicked, double-clicked, or moved. For example, if you have added a button named Button 5 to the 1-2-3 document
LSAPP2.123 and you want it to run some script when you click it, you must add script statements to the Click
procedure for Button 5. To create this event procedure, select the Button 5 object in the IDE Object list and select
Click in the Script list.
The following illustration shows how to select a predefined or user-defined script for a 1-2-3 product object named
Button 5.
Click any item in the following list to learn more about it.

 User-defined procedures

 (Options) scripts

 (Declarations) scripts

 Event procedures

 Initialize and Terminate subs

Working with external script files
In many cases, the one-application-per-document approach is sufficient for working with objects and data in isolated
documents. To develop more sophisticated applications that reuse important scripts or use multiple products, you
should consider using the following types of external script files:
LotusScript Script (LSS) files
LotusScript Object (LSO) files
LotusScript Extension (LSX) files
OLE Custom Control (OCX) files
Dynamic-link Library (DLL) files

Dynamic-link Library (DLL) files
If you have developed useful functions in C and compiled them in a Dynamic-link Library (DLL), you can call them
from your LotusScript application. For example, the following procedure declares and calls a LotusScript function
named SendDLL corresponding to a C function named _SendExportedRoutine in the DLL file named
MYEXPORTS.DLL.
Declare Function SendDLL Lib _
 "C:\LOTUS\ADDINS\MYEXPORTS.DLL" _
 Alias "_SendExportedRoutine" (i1 As Long, i2 As Long)
SendDLL(5, 10)
For more information on using Dynamic-link Libraries, see LotusScript Language Reference.

(Declarations) scripts in (Globals)
The (Declarations) script is designed to contain the following statements:

• Dim statements for variables that you want to be available to all scripts in your document
• Public, Private, Type, Class, and Declare Lib statements (external C calls)
• Const statements for those constants that you want to be available to all scripts in your document and are not

needed for Use or UseLSX statements in (Options)
By default the (Declarations) script is initially empty.
If you enter Type, Class, or Declare Lib statements in any other script in (Globals), the IDE moves them to
(Declarations) automatically. If you enter Dim, Public, Private, or Const statements outside the scope of a procedure
in another script, the IDE moves them to (Declarations) automatically. Const statements in (Options) are the
exception to this rule.

Initialize and Terminate subs in (Globals)
Initialize script
Use the Initialize sub in (Globals) to initialize variables that you have declared in (Declarations). The Initialize sub
executes before any of these variables are accessed and before any other scripts in (Globals) are executed. By
default, the Initialize script is empty.

Terminate script
Use the Terminate sub in (Globals) to clean up variables that you have declared in (Declarations) when you close
your document or when you modify a script and execute it again. For example, you might use an Open statement to
open a file containing data in Initialize and use a Close statement in Terminate to close it. By default, the Terminate
script is empty.

(Options) scripts in (Globals)
The (Options) script in (Globals) is designed to contain these the following statements:

• Option statements
Note (Options) contains the statement Option Public by default. This makes Const, Dim, Type, Class, Sub,
Function, and Property statements public by default. You can use the Public form of these statements to make
them public explicitly or the Private form to make them unavailable to other scripts outside (Globals).

• Deftype statements
• Use and UseLSX statements
• Const statements needed for Use and UseLSX statements

If you enter any of these statements, except for Const, in any other script in (Globals), the IDE automatically moves
them to (Options).
Option and Deftype statements that you enter in (Options) apply only to scripts for the current object. To make certain
that an option is applied consistently throughout your document, enter the appropriate statement in the (Options)
script for every object for which you are writing scripts.

User-defined procedures in (Globals)
While you are working in (Globals), you can add procedures to make them available throughout your document.
There are three ways to add procedures to (Globals) in the IDE:

• Using the IDE menu: Choose Create - New Sub or Create - New Function in the IDE menu to create new subs
and functions in (Globals). The IDE automatically adds the name of the new procedure to the Script list.

• Entering statements: Enter a sub, function, or property statement anywhere in (Globals) except within a class.
The IDE automatically adds the name of the new procedure to the Script list for (Globals).

• Importing procedures from a file: Use File - Import Script in the IDE menu to import scripts when you are working
in (Globals). These imported scripts will be available to all scripts in your document. The IDE automatically adds
the name of any new procedure in the imported script to the Script list.

LotusScript User Assistance for SmartSuite 97
To help you learn how to develop LotusScript applications for SmartSuite 97, Lotus provides a complete library of
user assistance. The following books are available in hardcopy, Adobe Acrobat, or HTML formats in your SmartSuite
97 package, in the SmartSuite Application Developer's Documentation Set, or on the World Wide Web.

Getting the Most Out of LotusScript in SmartSuite 97
This publication explains how SmartSuite 97 products use the LotusScript programming language and how your
business can take advantage of LotusScript in developing applications for SmartSuite.

Developing SmartSuite Applications Using LotusScript
This publication provides comprehensive information on key concepts and techniques for developing LotusScript
applications. Developing SmartSuite Applications Using LotusScript focuses on programming tools, cross-application
programming, Notes integration, and product-specific application development.

LotusScript Language Reference
This publication provides a comprehensive summary of conventions and basic commands for the LotusScript
language. LotusScript Language Reference provides the foundation for programming any product that supports the
LotusScript programming language.

LotusScript Programmer's Guide
This publication is a general introduction to LotusScript that describes basic building blocks in the language and
explains how to use them to create powerful applications.

Class Reference Help and Frequently asked Questions
Each product provides comprehensive Help on product classes, frequently asked questions about programming, and
code examples. All this is delivered in an innovative Help system designed to enhance your work as a programmer.
Class reference Help and frequently asked questions are available in Help format in your SmartSuite package and in
HTML format on the World Wide Web.

Example code and sample applications
Most products also provide working code to illustrate important programming techniques. You can reuse and modify
this code as you develop your own applications.
Example code is available in the SmartSuite package and on the World Wide Web.

LotusScript Object (LSO) files
LotusScript Object (LSO) files contain public definitions that you can use in your script applications. If you develop a
library of commonly used declarations or procedures that you want to reuse across multiple script applications, you
can collect them in a product document and use the File - Export Globals as LSO menu command to create a
compiled LotusScript Object file. If this file were named WKREPORT.LSO, you would make these public definitions
available to your script application by entering the following statement in the appropriate (Options) script:
Use "C:\LOTUS\ADDINS\WKREPORT.LSO"
For more information on using LotusScript Object files, see LotusScript Language Reference.

LotusScript Script (LSS) files
LotusScript Script (LSS) files are text files that contain LotusScript statements. You can create LSS files in any text
editor. Use the %Include directive anywhere in a script to reference the contents of an LSS file. For example, to
include the contents of a LotusScript Script file named STDSETUP.LSS in your application, enter the following
statement:
%Include "C:\MYSCRIPTS\STDSETUP.LSS"
By default, LotusScript assumes that the LotusScript Script files that you reference have an LSS file extension. You
can actually use any extension for your text file or no extension at all.
For more information on using LotusScript Script files, see LotusScript Language Reference.

LotusScript Extension (LSX) files
LotusScript Extension (LSX) files are Dynamic-link Libraries (DLLs) that contain public class definitions. LSX files are
developed using with the Lotus LSX Toolkit. To obtain a version of the LSX Toolkit for your operating system, connect
to the Lotus home page on the WorldWide Web. Lotus ships LSX files for Notes and Approach; other LSX files are
being developed for SmartSuite products by Lotus and by third-party developers. These extension files expand the
range of classes that you can use in your LotusScript applications.
Tip You can enter a UseLSX statement in any script; the IDE automatically moves it to (Options).

Loading and using class definitions in LSX files
There are two ways to load and use the public class definitions in an LSX file.

• If the LSX file that you want to load is not registered in the Windows Registry, you must refer to the LSX file
directly in your UseLSX statement.
UseLSX "C:\MYSCRIPTS\LSX4DB2.DLL"

• If an LSX is registered and you want to reference a class definition directly, you can enter the name of the class
definition.
UseLSX "ObjectName"

In this example, LotusScript searches all entries under "LotusScriptExtensions" in the Windows Registry for the
specified class definition and loads that definition.
Note If the LSX file you want to load is registered in the Windows Registry, you can reference its Registry name
and have Windows provide the appropriate DLL name and file path. SmartSuite 97 registers an LSX file that
contains Notes public class definitions. To use these Notes class definitions in your cross-product script
applications, enter the following statement:
UseLSX "*Notes"

Viewing class definitions
Once you have run a script containing a UseLSX statement and loaded an LSX file, you can browse its class
definitions in the IDE Browser panel.
For more information on using LotusScript Extension files, see LotusScript Language Reference.

(Declarations) scripts in object scripts
The (Declarations) script for an object is designed to contain the following statements:

• Dim statements for variables that you want to be available to all scripts for the current object
• Const statements for those constants that you want to be available to all scripts for the current object and that are

not needed for Use or UseLSX statements in (Options)
By default the (Declarations) script is initially empty.

Event procedures in object scripts
If you are writing a script for an object, the Script list displays default event procedures for the selected object. In the
IDE, you cannot create new event procedures for an existing product object because valid events for that object are
defined by the product.

Initialize and Terminate subs in object scripts
Initialize sub
Use the Initialize sub to set up variables declared in the object's (Declarations) script. The Initialize sub for an object
executes before any of its event procedures. By default, the Initialize script is empty.
Note Scripts for controls created in the Lotus Dialog Editor do not have Initialize subs.

Terminate sub
Use the Terminate sub to clean up variables that you have declared in the object's (Declarations) script. By default,
the Terminate script is empty.
Note Scripts for controls created in the Lotus Dialog Editor do not have Terminate subs.

(Options) scripts in object scripts
The (Options) script for an object is designed to contain these the following statements:

• Option statements
• Deftype statements
• Use and UseLSX statements
• Const statements needed for Use and UseLSX statements

User-defined procedures in object scripts
You can create other named subs, functions, and properties for objects in addition to the predefined scripts or event
procedures. Because these procedures are not in (Globals), they can be called only from other scripts for the object.
There are three ways to create object scripts in the IDE:

• Using the IDE menu: Use Create - New Sub and Create - New Function to create new subs and functions for an
object. The IDE automatically adds the name of the new procedure to the Script list for that object.

• Entering statements: Enter a Sub, Function, or Property statement anywhere in a script for the current object. The
IDE automatically adds the name of the new procedure to the Script list for that object.

• Importing procedures from a file: Use File - Import Script when you are working with object scripts to import
scripts for that object. The IDE automatically adds the name of any new procedures contained in the imported
script to the Script list.

OLE Custom Control (OCX) files
OLE Custom Controls extend the number of objects that you can script in Lotus products. For example, the Lotus
dialog controls listed under product classes in the IDE Browser panel are OCX controls that you can add to the Lotus
Dialog Editor.

Once you have added an OCX control to your product, you can script its properties, methods, and events in the IDE
Script Editor.
The following illustration shows how the properties, methods, and events of a Lotus CommandButton OCX named
Command4 are available to you in the IDE.

Tip You can add OCX controls registered on your system to the Lotus Dialog Editor Toolbox by choosing File -
Toolbox Setup in the Lotus Dialog Editor menu.

Product Document
To edit scripts in the IDE or to execute them in one or more products, you must create or use a document in your
product that contains the scripts. Lotus products supporting LotusScript use the following document extensions:

Lotus Product Document extension(s)
1-2-3 123
Approach APR
Freelance Graphics SMC
Notes NSF
Word Pro LWP

Using LotusScript examples
Code examples provide working models for the scripts that you write. Whether the example is listed in a Help
example or available as a product document on disk, you can copy statements or entire scripts from the examples
and use them in your own script applications.
The three types of LotusScript examples are described below. Each type is designed to illustrate a different aspect of
the LotusScript language or the classes available for each SmartSuite product.

Examples in reference Help
Most examples appear in reference Help for the LotusScript language and for product classes. These brief examples
focus on individual elements in the language or members of a product class. They illustrate how to use correct
syntax, how to enter appropriate values for parameters, and how dependencies between elements operate.
Note Although you can copy examples from reference Help and paste them into your scripts, most examples are not
designed to be self-contained. Sometimes there are dependencies between a piece of example code and the larger
sample application from which it is derived.

Examples in Frequently asked Questions (FAQs) Help
FAQs illustrate how to complete common programming tasks using LotusScript. Examples in FAQs not only show
how individual statements work but also how these statements form a complete application or procedure. Most
examples in FAQs are designed to be self-sufficient. You can copy one or more procedures from Help, paste them
into your own scripts in the Script Editor, and execute them.
Note When there are dependencies in an example that require you to modify the example to make it run, these
dependencies are documented in the Help topic or are noted in comments in the example.

Sample applications
The Developing SmartSuite Applications Using LotusScript book includes numerous sample applications for
SmartSuite and for individual products. These examples are designed to illustrate more sophisticated tasks for an
individual product or tasks that use more than one product. They illustrate how to develop script applications that take
advantage of embedded OLE objects, OLE automation, Notes, Visual Basic, the World Wide Web, and custom
Dynamic-link libraries (DLLs). Lotus develops new sample applications for SmartSuite on an ongoing basis. These
new samples and updated versions of the ones in Developing SmartSuite Applications Using LotusScript are
available on the World Wide Web.
To copy scripts from these sample applications and paste them into your own script applications, you must first open
the sample application document and then display its scripts by opening the Script Editor for that document.
Note All sample applications in Developing SmartSuite Applications Using LotusScript are designed to run without
modification.

Using LotusScript Help
The design for LotusScript Help supports three of the most frequent activities that you perform as a programmer:

• Searching for objects and elements to use in your scripts
• Writing scripts
• Debugging scripts

LotusScript Help uses different types of windows to display different types of information, so it is important to know
what each type of window contains and how to navigate between them.

Using Help to search for objects and elements
Information in Help is presented in different formats that are designed to assist you in finding general help or
information on specific objects and language elements.

• LotusScript Help Contents
You can use Contents in Help to examine the overall structure of Help and to browse for Help topics relevant to your
current script.

• LotusScript Index
Indexes are one of the most popular ways that programmers search for information. Topics in LotusScript Help are
indexed alphabetically so you can enter key phrases or keywords and navigate to the corresponding Help topics.

• LotusScript A-Z lists
LotusScript Help for each product provides A-Z lists of its classes, properties, methods, and events, including a
comprehensive list of all the elements in the product.

• IDE Browser Help
The Browser panel in the Integrated Development Environment (IDE) displays lists of LotusScript language elements
and classes for products. You can expand and collapse entries in the Browser to view the associated properties,
methods, and events for objects.

Highlight an element in the Browser panel and press F1 (HELP) to get context-sensitive Help on that element.

Using Help to write scripts
LotusScript product Help is designed with a focus on classes. As you write scripts, you explore the relationships
between product classes and the behaviors of objects in that product.
To support this exploration, Help separates information about classes into four topic types:

• Class definition topics define what a class does in a product and how it works in the product's containment
hierarchy. The class definition topic for the 1-2-3 Range object describes what ranges do in 1-2-3, how they are
contained by larger objects, and how they contain smaller objects.

• Class member list topics list all the properties, methods, and events that are members of a particular class.
• Class member topics focus on particular properties, methods, or events.
• Example topics contain one or more scripts for a particular property, method, or event. You can copy and paste

script statements from these example windows into the Script Editor.
To navigate among different types of LotusScript Help topics, use the buttons in Help topics and in the Help buttons
bar. The following illustration shows how to use buttons to display class member, class member list, and example
topics in Help.

The following illustration shows how to display class definition and class member list topics in Help.

Using Help to edit and debug scripts
You can also get context-sensitive Help about keywords and messages when you are editing or debugging your

scripts in the IDE.
• Context-sensitive Help in the Script Editor and Script Debugger

If you need help on a keyword while you are writing or debugging a script in the Script Editor and Script Debugger,
locate the keyboard in the Browser panel, highlight it, and press F1 (HELP) to get context-sensitive Help on that
keyword.

• Context-sensitive Help on messages
You can also get context-sensitive Help on two types of messages in the IDE. In the Script Editor, you can get
context-sensitive Help on syntax errors. Navigate to the statement that caused the error and press F1 (HELP). When
you are debugging your scripts and the IDE reports a run-time error, press F1 (HELP) to display information about that
error and suggestions about fixing it.

Overview: Fulfillment Information
Refer to the following table when ordering the Application Developer's Documentation Set for SmartSuite 97.

• Identify the fulfillment center/centre for your country
• Copy the mailing address to the front of the fulfillment coupon
• Use the appropriate shipping and handling charge for your country

Currency Countries Charge Mailing address

Australian Dollar Australia A$35 Lotus Development Pty Ltd
Customer Service Department
Level 12, 321 Kent Street
Sydney NSW 2000
Australia

Canadian Dollar Canada C$15
Lotus Development Corporation
SmartSuite Documentation
P.O. Box 670
Scarborough, Ontario M1K 5C5

Belgian Franc
French Franc
Lira
Guilder
Escudo
South African Rand
Peseta

Belgium
France
Italy
Netherlands
Portugal
South Africa
Spain

900BF
150F
L. 4500
F 50
4500 Esc.
R135
3500Pts

Lotus Assistance SARL
Parc Club Ariane
Bat. Neptune 5
Bld des Chenes, BP 219
78051 St. Quentin en Yvelines Cedex
FRANCE

Austrian Schilling
Deutchmark
Swiss Franc

Austria
Germany
Switzerland

300 OS
45 DM
SFr 35

Lotus Development Gmbh
Baierbrunnerstrasse 35
Postfach 70 12 20
81379 Muenchen GERMANY

New Zealand Dollar New Zealand NZ$40 Lotus Development New Zealand Ltd
Customer Service Dept
Level 20, ASB Bank Centre
Cnr Albert & Wellesley Sts
Auckland New Zealand

US Dollar United States $10 Lotus Development Corporation
SmartSuite Documentation
P.O. Box 25367
Rochester NY 14625-0367 USA

Danish Krone
Markka
Punt
Norwegian Krone
Krona
Sterling

Denmark
Finland
Ireland
Norway
Sweden
United Kingdom

Dkr 175
130 mk
IR£15
Nkr 190
200 Skr
£15

Lotus Development European Corporation
Lotus Park
The Causeway
Staines Middlesex TW18 9AG
ENGLAND

US Dollar Others US$30.00 Lotus Development Corporation
SmartSuite Documentation
P.O. Box 25367
Rochester NY 14625-0367 USA

Australia
Lotus Development Pty Ltd
Customer Service Department
Level 12, 321 Kent Street
Sydney NSW 2000
Australia

Canada
Lotus Development Corporation
SmartSuite Documentation
P.O. Box 670
Scarborough, Ontario M1K 5C5

France
Lotus Assistance SARL
Parc Club Ariane

Bat. Neptune 5
Bld des Chenes, BP 219
78051 St. Quentin en Yvelines Cedex
FRANCE

Germany
Lotus Development Gmbh
Baierbrunnerstrasse 35
Postfach 70 12 20
81379 Muenchen
GERMANY

New Zealand
Lotus Development New Zealand Ltd
Customer Service Dept
Level 20, ASB Bank Centre
Cnr Albert & Wellesley Sts
Auckland New Zealand

United Kingdom (U.K.)
Lotus Development European Corporation
Lotus Park
The Causeway
Staines Middlesex TW18 9AG
ENGLAND

United States
Lotus Development Corporation
SmartSuite Documentation
P.O. Box 25367
Rochester NY 14625-0367

Country Currency SHCharge Center

Australia Australian Dollar A$30.00 Australia

Austria Austrian Schilling 30.00 ÖS Germany

Belgium Belgian Franc 30.00 BF France

Canada Canadian Dollar C$10.00 Canada

Denmark Danish Krone Dkr 30.00 U.K.

Eastern Europe US Dollar $30.00

Finland Markka 30.00 mk U.K.

France French Franc 30.00 F France

Germany Deutschmark 30.00 DM Germany

Ireland Punt IR£30.00 U.K.

Italy Lira L. 30 France

Luxembourg Luxembourg Franc 30.00 LF France

Netherlands Guilder F 30.00 France

New Zealand New Zealand Dollar NZ$30.00 New Zealand

Norway Norwegian Krone Nkr 30.00 U.K.

Portugal Escudo 30.00 Esc. France

South Africa South African Rand R30.00 France

Spain Peseta 30 Pts France

Sweden Krona 30.00 Skr U.K.

Switzerland Swiss Franc SFr 30.00 Germany

United States US Dollar $10.00 United States

U.K. Sterling £30.00 U.K.

1-2-3: Application class
Controls the 1-2-3 session.

Base classes
BaseObject

Contained by
Class Property
All 1-2-3 classes that are not
collection classes

Application

Usage
The Application object maintains application-wide settings and user information for a 1-2-3 session. There is only one
Application object per running application, that is, one Application object per 1-2-3 executable running. There is a
single application window associated with each application. The application window can contain multiple document
windows (.123 files).
Use the Application class to perform tasks, such as the following:

• Determine which workbook is active
• Determine the path of the application.
• Set or retrieve the current menu bar

Use the predefined global variable CurrentApplication to refer to the 1-2-3 application in your 1-2-3 scripts. For
example, the following statement sets the default path for the 1-2-3 session:
CurrentApplication.DefaultPath = "c:\lotus\work\123\"

1-2-3: Application class members
Properties

ActiveDocument
ActiveDocWindow
Addins
Application
ApplicationMaximized
ApplicationWindow
ArgumentSeparator
AutoExecMacrosEnabled
AutoOpenPath
AvailableMemory
BeepsOnError
CalcIterations
CalcMode
CalcOrder
CenturyLongFormat
Class
ClassicMenuActivationKey
ClassicMenuEnabled
Colors
ConfirmDragAndDrop
CountryCode
CurrentDirectory
CurrentMenuBar
CurrentPrinter
DateOrder
DateSeparator
DateTo21stCentury
DayNames
DecimalSeparator
DefaultAddinPath
DefaultBackColor
DefaultDecimals
DefaultFileExtension
DefaultFontName
DefaultFontSize
DefaultNegCurrencyFormat
DefaultPath
DefaultPrintSettings
DefaultTextColor
Description
Display4DigitYear
Documents
DragAndDropEnabled
EveningString
FindTarget
FitRowHeightToFont
FullName
GridLineColor
InitialColWidth
InitialRowHeight
Interactive
IsDraggable
IsSelectable
Language
MacroStep

MacroTrace
MatchAccent
MatchKatakana
MatchPitch
MonthNames
Name
NotesPath
NumberOfMostRecentFiles
Parent
Path
PrinterName
PrinterQuality
ProductVersion
RangeSelector
RegisteredCompany
RegisteredUser
ReplaceString
ScreenHeight
ScreenWidth
SearchFormulas
SearchLabels
SearchString
SearchValues
Selection
ShortDayNames
ShortMonthNames
ShowAutomaticPageBreaks
ShowCellCommentMarkers
ShowDataLossDialog
ShowDrawLayer
ShowFormulaMarkers
ShowGridLines
ShowManualPageBreaks
ShowScrollBars
ShowSheetFrame
ShowSheetTabs
ShowVersionBorders
SmartMasterOn
SmartMasterPath
SortBlanksLast
SortDriver
SortNumbersFirst
TabReturnKeyMovement
TextCodepage
TextColumnParseOption
TextColumnParseUserDefined
ThousandsSeparator
TimeCycle
TimeSeparator
TotalMemory
UndoEnabled
UnitsOfMeasure
UpdateLinksOnOpenDoc
UpdateSheetDisplay
UseOSDefaultColors
UserName
UsingTotalToAutoSum
VersionId

Visible
WelcomeOn
Windows
ZoomScale

Methods
Calc
CloseAll
ClosePreview
ColorFromRGB
ExtendedName
FileAdminLinksRefresh
GetEnumString
GetKey
GetMenuPosition
Goto
GotoCirc
HelpContents
IsAddinLoaded
IsSameObject
LoadAddin
NewDocument
NewMenu
NewMenuBar
OpenDocument
OpenDocumentFromNotes
Preview
Print
PrintOut
PrintToFile
Quit
ResetMenuBar
RetrieveFileFromInternet
SendMail
SetInternetOptions
UnloadAddin
UserLogin

Events
Calculate
CancelPrint
DocumentOpened
EndPrint
MenuBarReset
MethodInvoked
NameChange
PropertySet
StartPrint

1-2-3: ApplicationWindow class
The 1-2-3 window. There is one ApplicationWindow object for each 1-2-3 session.

Base classes
Window

Contained by
Class Property
Application ApplicationWindow

Usage
The ApplicationWindow class is at the top of the window containment hierarchy for the application.
Use an ApplicationWindow object to perform tasks, such as the following:

• Minimize, maximize, or close the 1-2-3 window
• Hide or display sets of SmartIcons

1-2-3: ApplicationWindow class members
Properties

Active
Application
Caption
Class
Description
EditLineVisible
Height
HorizontalScrollBarVisible
IconBarNames
IconBarsVisible
IconSize
InternetIconsVisible
IsBubbleHelp
IsDraggable
IsSelectable
Left
LongPrompt
Name
Parent
StatusBarVisible
Top
VersionId
VerticalScrollBarVisible
Visible
Width

Methods
Activate
ArrangeIcons
Cascade
Close
ExtendedName
Goto
HideIconBar
IsIconBarShowing
IsSameObject
Maximize
Minimize
Move
Resize
Restore
ShowIconBar
Tile
TileHorizontal
TileVertical
Update

Events
DisplayInit
GetFocus
LostFocus
MethodInvoked
Moved
NameChange
PostClose
PreClose

PropertySet
Resized

1-2-3: ApproachConnection class
An OLE object that lets you access Approach query table, form, crosstab, report, form letter, and mailing label
functionality.

Base classes
OLEObject

Contained by
Class Property
Document OLEObjects

1-2-3: ApproachConnection class members
Properties

Anchor
Application
AutoUpdate
Background
Class
Description
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
File
FrameColor
Height
Hidden
IsDraggable
IsLinked
IsLocked
IsSelectable
IsSelected
Item
Left
LinkSource
Name
Object
Parent
ShowDesignerFrame
Size
Top
UserClassNameApplication
UserClassNameFull
UserClassNameShort
VersionId
Visible
Width

Methods
AddToSelection
Bounds
BreakLink
Clear
CopyToClipboard
Cut
ExtendedName
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
Select
SetLinkSource
ToBack
ToFront
Update
Verb

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Arc class
A graphic object in the shape of an arc.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
Use the Arc class to perform tasks, such as the following:

• Hide or lock the object
• Determine the object's edge color, edge style, and edge width
• Determine the object's background color and pattern.
• Add the object to or remove the object from the current selection

1-2-3: Arc class members
Properties

Anchor
Application
Arrow
Background
Class
Description
EdgeColor
EdgeDashStyle
EdgeLineWidth
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
Rotation
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
FlipLeftRight
FlipTopBottom
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
Selected
PropertySet

1-2-3: Background class
Properties, such as color and pattern, of the background of an object.

Base classes
BaseObject

Contained by
Class Property
ApproachConnection Background
Arc Background
Chart Background
DrawCollection Background
EditText Background
Ellipse Background
Freehand Background
Group Background
Legend Background
Map Background
MapPlot Background
MapTitle Background
OleObject Background
Picture Background
Polygon Background
Polyline Background
QueryTable Background
Range Background
Rectangle Background
Sheet Background

Usage
Use this class to modify the background of any object that has a Background property. A background object cannot
be displayed by itself; it is used as the Background property of another object.

1-2-3: Background class members
Properties

Application
BackColor
Class
Color
IsDraggable
IsSelectable
Name
Parent
Pattern
VersionId

Methods
ExtendedName
Goto
IsSameObject
RevertToStyle

Events
MethodInvoked
NameChange
PropertySet

1-2-3: BaseCollection class
The base class for all collection classes in 1-2-3.

Base classes
None

Contained by
None

Usage
The BaseCollection class is an abstract class. That is, you cannot create an instance of BaseCollection. You can,
however, represent all its derived classes with the BaseCollection class. For example, you can write a subroutine that
takes BaseCollection as a parameter. Then you can use any instance of a derived BaseCollection class in that
subroutine:

Dim x As BaseCollection
Set x = MyDocument.Ranges

1-2-3: BaseCollection class members
Properties

Count

Methods
Item
Next
Open

1-2-3: BaseObject class
The root base class for all classes in 1-2-3 that are not collection classes.BaseCollection is the root base class for all
collection classes in 1-2-3.

Base classes
None

Contained by
None.

Usage
The BaseObject class is an abstract class. That is, you cannot create an instance of BaseObject. You can, however,
represent all its derived classes with the BaseObject class.

1-2-3: BaseObject class members
Properties

Application
Class
IsDraggable
IsSelectable
Name
Parent
VersionId

Methods
ExtendedName
Goto
IsSameObject

Events
MethodInvoked
NameChange
PropertySet

1-2-3: ButtonControl class
A button that, when clicked, calls a LotusScript function or procedure.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
Buttons provide quick starts for LotusScript functions or procedures in 1-2-3.

1-2-3: ButtonControl class members
Properties

Anchor
Application
Class
Font
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
Text
TextHorizontalAlign
TextOrientation
TextRotation
TextVerticalAlign
TextWrapped
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Click
Deselected
MethodInvoked
NameChange
PropertySet
Selected
ValueChange

1-2-3: Chart class
A chart in 1-2-3.

Base classes
BaseObject

Contained by
Class Property
Document Charts

Usage
Information on individual Chart classes, properties, and methods is available in LotusChart LotusScript Help. To view
these Help topics, choose Help - Help Topics and Double-click the LotusScript book to see the Overview: Using
LotusScript in 1-2-3 topic. Double-click the topic to display it. Then choose Chart Classes, Chart Methods, or Chart
Properties.
The Charts collection class contains all charts in a workbook.

1-2-3: Chart class members
Properties

Anchor
Application
Background
Class
Description
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
FrameColor
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
ShowDesignerFrame
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Charts class
A collection of Chart objects.

Base classes
BaseCollection

Contained by
Class Property
Document Charts

Usage
Iteration is the process of stepping through a collection and acting on each element in the collection. Use the
LotusScript ForAll statement to iterate through a collection.
For example, the following statement makes all the charts in the current workbook pie charts:
ForAll x in CurrentDocument.Charts

x.Type = $Pie
End ForAll
Indexing is the process of using the Item method or the indexing syntax to access a specific object in the collection.
The Item method is a member of every collection class in 1-2-3.
For example, the following statement accesses the second chart in a collection:
CurrentDocument.Charts(1)

1-2-3: Charts class members
Properties

Count

Methods
Item
Next
Open

1-2-3: ClassInfo class members
Properties

Application
Class
ClassName
ClassVersionId
Events
IsDraggable
IsSelectable
Methods
Name
Parent
Properties
VersionId

Methods
ExtendedName
Goto
IsSameObject

Events
MethodInvoked
NameChange
PropertySet

1-2-3: ClassInfo class
Provides information about the properties, methods, and events available for instances of a class.

Base classes
BaseObject

Contained by
Class Property
All 1-2-3 LotusScript classes
that are not collection classes

Class

Usage
None of the properties described by ClassInfo can be changed by the user.

1-2-3: ClassInfos class members
This class is reserved by 1-2-3 for internal use.

1-2-3: ClassInfos class
This class is reserved by 1-2-3 for internal use.

1-2-3: Color class
A color assigned to objects that have a color property.

Base classes
BaseObject

Contained by
Class Property
Application DefaultBackColor,

DefaultTextColor,
GridLineColor

ApproachConnection EdgeColor, FrameColor
Arc EdgeColor
Background BackColor, Color
Chart EdgeColor, FrameColor
Document GridLineColor
DrawCollection EdgeColor, FrameColor
DrawLine EdgeColor
EditText EdgeColor, FrameColor
Ellipse EdgeColor
Font FontColor
Freehand EdgeColor
Group EdgeColor; FrameColor
Legend EdgeColor
Map EdgeColor; FrameColor
MapBin Color
MapPlot EdgeColor
MapTitle EdgeColor
OLEObject EdgeColor, FrameColor
Picture EdgeColor, FrameColor
Polygon EdgeColor
Polyline EdgeColor
QueryTable EdgeColor, FrameColor
Range FrameColor
RangeBorder Color
Rectangle EdgeColor, FrameColor
Sheet GridLineColor, TabColor

Usage
See the Color palette for a list of the color names in 1-2-3 and their index values.
Use a color object to determine the current levels of red, green, and blue (RGB) that contribute to a specific color.
This is useful if you need a precise color for a graphic object such as a corporate logo.
You cannot change the individual RGB components of an existing color, you have to create a new color object and
base its RGB settings on the original color.
A color object cannot be displayed; it can only be the Color property of another object. For example, the following
code sets the color for the bottom border of the currently selected range:

Dim y As Color
Set y = CurrentApplication.Colors("red")
Set [].BottomBorder.Color = y

1-2-3: Color class members
Properties

Application
Blue
Class
ColorIndex
ColorName
Green
IsDraggable
IsSelectable
Name
Parent
Red
RGB
VersionId

Methods
ExtendedName
GetRGB
Goto
IsSameObject
SameColor

Events
MethodInvoked
NameChange
PropertySet

1-2-3: Colors class
A collection of Color objects.

Base classes
BaseCollection

Contained by
Class Property
Application Colors

Usage
The Colors collection holds a collection of 240 color constants, representing all the colors in the palette.

1-2-3: Colors class members
Properties

Count

Methods
Item
Next
Open

1-2-3: DataLink class
An OLE link. A link is a channel through which data stored in a source file is displayed in a destination file. When you
update linked data in a destination file, the latest data from the source file is displayed. A link is not the same thing as
an embedded object.

Base classes
BaseObject

Contained by
Class Property
Document DataLinks

Usage
The DataLinks collection class contains all the DataLink objects in a workbook.

1-2-3: DataLink class members
Properties

Application
AutoUpdate
Class
Description
FileName
Format
IsDraggable
IsLinked
IsSelectable
ItemName
LinkSource
Name
Object
Parent
Size
Target
UserClassNameApplication
UserClassNameFull
UserClassNameShort
VersionId

Methods
BreakLink
ExtendedName
Goto
IsSameObject
SetLinkSource
Update
Verb

Events
MethodInvoked
NameChange
PropertySet

1-2-3: DataLinks class
A collection of DataLink objects.

Base classes
BaseCollection

Contained by
Class Property
Document DataLinks

1-2-3: DataLinks class members
Properties

Count

Methods
Item
Next
Open

1-2-3: DateTime class
Controls dates and times in 1-2-3.

Base classes
BaseObject

Contained by
Class Property
Document CreationDate, LastPrinted,

ModifiedDate
Version CreationDate, ModifiedDate
VersionGroup CreationDate, ModifiedDate

Usage
The 1-2-3 DateTime class provides date arithmetic, including converting strings that look like dates and times to
LotusScript date objects.

1-2-3: DateTime members
Properties

Application
Class
IsDraggable
IsLeapYear
IsSelectable
L123Seconds
LocalTime
LSLocalTime
Name
Parent
VersionId

Methods
ExtendedName
Goto
IsSameObject
TimeDifference

Events
MethodInvoked
NameChange
PropertySet

1-2-3: Document class
A 1-2-3 workbook file (.123 file).

Base classes
BaseObject

Contained by
Class Property
Application ActiveDocument, Documents
DocWindow Document

Usage
Use the document class to find information, such as the following:

• File name of the 1-2-3 file
• The name of the author
• A description of the 1-2-3 file
• Creation and modification dates for the 1-2-3 file

Use the predefined global variable CurrentDocument to refer to the workbook that contains the cell pointer. For
example, the following code deletes all charts from the current workbook:
ForAll x in CurrentDocument.Charts

x.Clear
End ForAll

1-2-3: Document members
Properties

Active
AlwaysReserve
Application
Author
Authors
CalcIterations
CalcMode
CalcOrder
Changed
Charts
Class
CreationDate
CurrentPrintSettings
CurrentSheet
DataLinks
DataProtected
DataQueryNames
Description
DocWindows
DrawnObjects
EditingTime
Embedded
FormatProtected
GridLineColor
HasPassword
IsDraggable
IsSelectable
Keywords
LastEditor
LastPrinted
LastVersionGroup
Location
Maps
ModifiedDate
Name
NamedPrintSettings
NamedRanges
OLEObjects
Parent
Password
Path
QueryTables
RangeHeaderInSort
Ranges
RangeSortHeaderDepth
ReadOnly
Revisions
Revs
Selection
SheetCount
Sheets
ShowAutomaticPageBreaks
ShowCellCommentMarkers
ShowDrawLayer
ShowFormulaMarkers

ShowGridLines
ShowManualPageBreaks
ShowScrollBars
ShowSheetFrame
ShowSheetTabs
ShowVersionBorders
Size
SortRange
Subject
SynchScrolling
Title
VersionId
ViewSplitHeight
ViewSplitStyle
ViewSplitWidth
Zoom
ZoomScale

Methods
Activate
Backsolve
Clear
ClearRangeNames
ClearSplits
Close
Connect
CopySelection
CopyToClipboard
CreateRangeName
CreateRangeNameFromLabel
CreateRangeNameTable
CreateTable
Cut
CutSelection
DeleteNamedPrintSettings
DeleteQuery
DeleteRangeName
Disconnect
Distribution
EndPoll
ExtendedName
ExtendSheetSelectionBack
ExtendSheetSelectionForward
Find
Goto
GroupSheets
IsSameObject
Lock
MatrixInvert
MatrixMultiply
MergeVersions
NewDataLink
NewDocWindow
NewNamedPrintSettings
NewQuery
NewSheet
NewVersionGroup
NextSplit
PageBack

PageForward
Paste
RangeSortDefineKey
RedefineNamedPrintSettings
Regression
RegressionReset
RenameNamedPrintSettings
Replace
ReplaceAll
ReservationGet
ReservationReleased
RetrievePrintSettings
Rollback
Save
SaveAs
SaveAsToInternet
SaveAsToNotes
SaveCopyAs
Send
SendCommand
SendSQL
Show
ShowAllSheets
SortResetKeys
StartPoll
UnGroupSheets
UpdateDefaultPrintSettings
UseDefaultPrintSettings
VersionGroup
VersionGroups
WhatIfTable1
WhatIfTable2
WhatIfTable3
WhatIfTableReset
ZoomIn
ZoomOut
ZoomReset
ZoomTo

Events
CloseWindow
MethodInvoked
NameChange
Opened
OpenWindow
Poll1
Poll2
Poll3
Poll4
PostClose
PostSave
PostSaveAs
PreClose
PreSave
PreSaveAs
PropertySet
SheetChange

1-2-3: Documents class
A collection of Document objects.

Base classes
BaseCollection

Contained by
Class Property
Application Documents

Usage
Iteration is the process of stepping through a collection and acting on each element in the collection. Use the
LotusScript ForAll statement to iterate through a collection.
For example, the following statement sets the custom view scale for all active workbooks to 75%:
ForAll x in CurrentApplication.Documents

x.ZoomScale = 75
End ForAll
Indexing is the process of using the Item method or the indexing syntax to access a specific object in the collection.
The Item method is a member of every collection class in 1-2-3.
For example, the following statement accesses the second document in a collection:
Application.Documents(1)

1-2-3: Documents class members
Properties

Count

Methods
Item
Next
Open

1-2-3: DocWindow class
Manages the window in which 1-2-3 displays an individual file.

Base classes
Window

Contained by
Class Property
Application ActiveDocWindow, Windows
Document DocWindows

Usage
Use the DocWindow class to perform tasks, such as the following:

• Determine which file is displayed in the current window
• Minimize, maximize, or close the 1-2-3 window
• Display or hide horizontal and vertical scroll bars
• Determine whether or not the window is the current window

Use the predefined global variable CurrentWindow to refer to the window in which 1-2-3 displays the current
workbook.

1-2-3: DocWindow class members
Properties

Active
Application
Caption
Class
Description
Document
Height
HorizontalScrollBarVisible
IsDraggable
IsSelectable
Left
Name
Parent
Top
VersionId
VerticalScrollBarVisible
Visible
Width

Methods
Activate
Close
ExtendedName
Goto
IsSameObject
Maximize
Minimize
Move
Resize
Restore
Update

Events
GetFocus
LostFocus
MethodInvoked
Moved
NameChange
PostClose
PreClose
PropertySet
Resized

1-2-3: DocWindows class members
Properties

Count

Methods
Item
Next
Open

1-2-3: DocWindows class
A collection of DocWindow objects.

Base classes
BaseCollection

Contained by
Class Property
Application Windows
Document DocWindows

1-2-3: DrawCollection class
A user-defined selection of several different types of DrawObject objects.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
A DrawCollection is not a LotusScript collection object. It simply represents a selection that includes multiple
DrawObjects.

1-2-3: DrawCollection class members
Properties

Anchor
Application
Arrow
AutoRedraw
Background
BaseMapName
Class
ColorBins
CoordinateRange
Count
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
FrameColor
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
KnownRegionAliases
KnownRegionCodes
KnownRegionNames
Left
Legend
Name
Overlays
Parent
PatternBins
Plot
RegionRange
Rotation
Rounded
ShowDesignerFrame
TextHorizontalAlign
TextOrientation
TextRotation
TextVerticalAlign
TextWrapped
Title
Top
VersionId
Visible
Width

Methods
AddOverlay
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
FlipLeftRight
FlipTopBottom

Get
Goto
Group
IsSameObject
Move
Paste
RecenterMap
RedrawMap
Remove
RemoveFromSelection
RemoveOverlay
Resize
Select
ToBack
ToFront
UnGroup
ZoomMapIn
ZoomMapOut
ZoomMapReset
ZoomMapTo

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: DrawLine class
A graphic object in the shape of a line, arrow, or polyline.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
Use the DrawLine class to perform tasks such as the following:

• Hide or lock the object
• Determine the object's edge color, edge style, and edge width
• Add arrows to the object.
• Add the object to or remove the object from the current selection

1-2-3: DrawLine class members
Properties

Anchor
Application
Arrow
Class
Description
EdgeColor
EdgeDashStyle
EdgeLineWidth
EditPoints
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
PointCount
Rotation
Top
VersionId
Visible
Width

Methods
AddPoint
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
FlipLeftRight
FlipTopBottom
Goto
IsSameObject
Move
MovePoint
Paste
PointX
PointY
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: DrawObject class
The base class for all 1-2-3 drawn objects.

Base classes
BaseObject

Contained by
Class Property
Document DrawnObjects

Usage
The DrawObject class is an abstract class. That is, you cannot create an instance of DrawObject. The properties,
methods and events of the DrawObject apply to all drawn objects inheriting from DrawObject.
The following 1-2-3 classes inherit from the DrawObject class:

• Arc
• ButtonControl
• DrawCollection
• DrawLine
• EditText
• Ellipse
• Freehand
• Group
• Map
• Picture
• Polygon
• Polyline
• Rectangle

The DrawObjects collection contains all drawn objects in a workbook.

1-2-3: DrawObject class members
Properties

Anchor
Application
Class
Description
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: DrawObjects class
A collection of DrawObject objects.

Base classes
BaseCollection

Contained by
Class Property
Document DrawnObjects

1-2-3: DrawObjects members
Properties

Count

Methods
Item
Next
Open

1-2-3: EditText class
A text block.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
Use the EditText class to perform tasks, such as the following:

• Hide or lock the object
• Determine the object's edge color, edge style, and edge width
• Determine the object's background color and pattern.
• Add the object to or remove the object from the current selection
• Change the text the object contains

1-2-3: EditText class members
Properties

Anchor
Application
Background
Class
Description
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
Font
FrameColor
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
ShowDesignerFrame
Text
TextHorizontalAlign
TextOrientation
TextRotation
TextVerticalAlign
TextWrapped
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected
ValueChange

1-2-3: Ellipse class
A graphic object in the shape of an ellipse or a circle.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
Use rectangles, rounded rectangles, squares, ellipses, and circles to emphasize data or to create designs such as
logos.
Use the Ellipse class to perform tasks, such as the following:

• Hide or lock the object
• Determine the object's edge color, edge style, and edge width
• Determine the object's background color and pattern.
• Add the object to or remove the object from the current selection

1-2-3: Ellipse class members
Properties

Anchor
Application
Background
Class
Description
EdgeColor
EdgeDashStyle
EdgeLineWidth
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
Rotation
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
FlipLeftRight
FlipTopBottom
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Font class
The properties of a font.

Base classes
BaseObject

Contained by
Class Property
ButtonControl Font
DrawCollection Font
EditText Font
Group Font
Legend Font
MapTitle Font
PrintSettings CellCommentsFont,

FooterCenterFont,
FooterLeftFont,
FooterRightFont,
FormulaFont,
HeaderCenterFont,
HeaderLeftFont,
HeaderRightFont

Range Font
Sheet Font

Usage
You can modify font properties such as color, size, and name.
Use the Font class to modify text in objects that have a Font property. A font object cannot be displayed by itself; it is
used as the font property of another object.

1-2-3: Font class members
Properties

Application
Bold
Class
DoubleUnderline
FontColor
FontName
IsDraggable
IsSelectable
Italic
Name
Normal
Parent
Size
Strikethrough
Underline
VersionId
WideUnderline

Methods
ExtendedName
Goto
IsSameObject
RevertToStyle

Events
MethodInvoked
NameChange
PropertySet

1-2-3: Freehand class
A graphic object in the shape of a freehand drawing.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
Use the Freehand class to perform tasks, such as the following:

• Hide or lock the object
• Determine the object's edge color, edge style, and edge width
• Determine the object's background color and pattern.
• Add the object to or remove the object from the current selection.

1-2-3: Freehand class members
Properties

Anchor
Application
Arrow
Background
Class
Description
EdgeColor
EdgeDashStyle
EdgeLineWidth
EditPoints
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
PointCount
Rotation
Top
VersionId
Visible
Width

Methods
AddPoint
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
FlipLeftRight
FlipTopBottom
Goto
IsSameObject
Move
MovePoint
Paste
PointX
PointY
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Group class
A set of graphic objects, grouped with the Drawing - Group command or the Group method.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
You can group graphic objects to manipulate and style them as a group rather than individually.

{button ,AL(`H_GROUPING_GRAPHICS_STEPS',0)} See related topics

1-2-3: Group class members
Properties

Anchor
Application
Arrow
AutoRedraw
Background
BaseMapName
Class
ColorBins
CoordinateRange
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
Font
FrameColor
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
KnownRegionAliases
KnownRegionCodes
KnownRegionNames
Left
Legend
Name
Overlays
Parent
PatternBins
Plot
RegionRange
Rotation
Rounded
ShowDesignerFrame
TextHorizontalAlign
TextOrientation
TextRotation
TextVerticalAlign
TextWrapped
Title
Top
VersionId
Visible
Width

Methods
AddOverlay
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
FlipLeftRight
FlipTopBottom

Goto
Group
IsSameObject
Move
Paste
RecenterMap
RedrawMap
RemoveFromSelection
RemoveOverlay
Resize
Select
ToBack
ToFront
UnGroup
ZoomMapIn
ZoomMapOut
ZoomMapReset
ZoomMapTo

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Legend class
A map legend.

Base classes
BaseObject

Contained by
Class Property
Map Legend

1-2-3: Legend class members
Properties

Anchor
Application
Class
ColorVisible
Description
EdgeColor
EdgeDashStyle
EdgeLineWidth
Height
Hidden
InsidePlot
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
PatternVisible
Placement
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
ExtendedName
Goto
IsSameObject
Move
RemoveFromSelection
Resize
Select

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Map class
A map in 1-2-3.

Base Class
DrawObject

Contained By
Class Property
Document Maps

Usage
A map links sheet data to a geographic map. For example, you can use a map to display sales information for each
country in the world by linking sales data in the sheet to a map of the world.
The Maps collection class contains all maps in a workbook.

1-2-3: Map class members
Properties

Anchor
Application
AutoRedraw
Background
BaseMapName
Class
ColorBins
CoordinateRange
Description
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
FrameColor
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
KnownRegionAliases
KnownRegionCodes
KnownRegionNames
Left
Legend
Name
Overlays
Parent
PatternBins
Plot
RegionRange
ShowDesignerFrame
Title
Top
VersionId
Visible
Width

Methods
AddOverlay
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
Goto
IsSameObject
Move
Paste
RecenterMap
RedrawMap
RemoveFromSelection
RemoveOverlay
Resize
Select

ToBack
ToFront
ZoomMapIn
ZoomMapOut
ZoomMapReset
ZoomMapTo

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: MapBin class
A map data bin object.

Base classes
BaseObject

Contained by
Class Property
Map ColorBins, PatternBins

Usage
Controls the colors or patterns of data bins for a map. Create a separate MapBin object for each Map object.
The MapBins collection class contains all map data bin objects for a map.

1-2-3: MapBin class members
Properties

Application
Class
Color
Description
IsDraggable
IsSelected
IsSelectable
Name
Parent
Pattern
Text
Value
VersionId

Methods
AddToSelection
ExtendedName
Goto
IsSameObject
RemoveFromSelection
Select

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: MapBins class
A collection of MapBin objects

Base classes
BaseCollection

Contained by
Class Property
Map ColorBins, PatternBins

1-2-3: MapBins class members
Properties

BinRange
BinsUsed
BinType
Count
LabelRange
LabelSource
StyleRange
StyleSource
ValueRange
ValueSource

Methods
Item
Next
Open

1-2-3: Maps class
A collection of Map objects.

Base classes
BaseCollection

Contained By
Class Property
Document Maps

Usage
Iteration is the process of stepping through a collection and acting on each element in the collection. Use the
LotusScript ForAll statement to iterate through a collection.
For example, the following statement adds a designer frame to each map in the current workbook:
ForAll x in CurrentDocument.Maps

x.DesignerFrameStyle = $DesignerFrame8
End ForAll
Indexing is the process of using the Item method or the indexing syntax to access a specific object in the collection.
The Item method is a member of every collection class in 1-2-3.
For example, the following statement accesses the second map in a collection:
CurrentDocument.Maps(1)

1-2-3: Maps class members
Properties

Count

Methods
Item
Next
Open

1-2-3: MapTextEntries class
The lines of text in a map title.

Base classes
BaseCollection

Contained by
Class Property
MapTitle Lines

Usage
To access a single line of text in a title, use the MapTextEntry class.

1-2-3: MapTextEntries class members
Properties

Count

Methods
Item
Next
Open

1-2-3: MapTextEntry class
 A single entry in a map title.

Base classes
BaseObject

Contained by
Class Property
MapTitle Lines

Usage
You access an individual entry in a line using an index value, such as Lines(1), which represents the first line in a title.
To access the collection of text entries in a title, use the MapTextEntries class.

1-2-3: MapTextEntry class members
Properties

Application
Class
Description
IsDraggable
IsSelectable
IsSelected
LinkedToCell
Name
Parent
Text
VersionId

Methods
AddToSelection
ExtendedName
Goto
IsSameObject
RemoveFromSelection
Select

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: MapTitle class
A map title.

Base classes
BaseObject

Contained by
Class Property
Map Title

Usage
To access the entries of a map title, use the MapTextEntries class.

1-2-3: MapTitle class members
Properties

Anchor
Application
Background
Class
Description
EdgeColor
EdgeDashStyle
EdgeLineWidth
Font
Height
Hidden
IsDraggable
IsSelectable
IsSelected
Left
Lines
Name
Parent
Placement
TextHorizontalAlign
TextOrientation
TextRotation
TextVerticalAlign
TextWrapped
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
ExtendedName
Goto
IsSameObject
Move
RemoveFromSelection
Resize
Select

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Menu class
A menu that you can display in the 1-2-3 main menu.

Base classes
BaseObject

Usage
If you want a menu to be available when the workbook that contains it is active, attach the menu script to the
document Opened event:
1. Choose Edit - Scripts & Macros - Show Script Editor.

The Script Editor appears.
2. Select the name of the current file from the Object list.
3. Select Opened from the Script list.

The empty Opened sub appears in the Script Editor.
4. Enter statements in the sub that you want to execute when the file opens.
5. Save the script by saving the .123 file.
When you open the file, 1-2-3 automatically runs the script.
If you want a menu to be available at the start of each 1-2-3 session, attach the menu script to the document Opened
event, then store the .123 file that contains the script in the "Automatically opened files" directory. At the start of each
session, 1-2-3 opens all the files in the "Automatically opened files" directory in alphabetical order, words before
numbers. Any scripts attached to the Opened event of a file run when 1-2-3 opens the file.

1-2-3: Menu class members
Properties

Application
Class
Description
EmbeddedParticipation
IsDraggable
IsSelectable
MenuPrompt
MenuText
Name
Parent
VersionId

Methods
AddItem
AddMenu
AddSeparator
CheckItem
DisableItem
EnableItem
ExtendedName
GetItemText
GetItemType
GetMenu
Goto
IsSameObject
RemoveItem
ReplaceItem
ReplaceMenu
UncheckItem

Events
MethodInvoked
NameChange
PropertySet

1-2-3: MenuBar class
A group of menus displayed across the top of the 1-2-3 application window.

Base classes
BaseObject

Contained by
Class Property
Application CurrentMenuBar

1-2-3: MenuBar class members
Properties

Application
Class
Description
EmbeddedParticipation
IsDraggable
IsSelectable
MenuPrompt
MenuText
Name
Parent
VersionId

Methods
AddItem
AddMenu
AddSeparator
CheckItem
DisableItem
EnableItem
ExtendedName
GetItemText
GetItemType
GetMenu
Goto
IsSameObject
RemoveItem
ReplaceItem
ReplaceMenu
UncheckItem

Events
MethodInvoked
NameChange
PropertySet

1-2-3: MapPlot class
A map plot. A map plot is the area in a map where the geographic data is plotted.

Base classes
BaseObject

Contained by
Class Property
Map Plot

Usage
Use the MapPlot class to perform tasks, such as the following:

• Change the position of the map plot
• Maintain map dimensions

1-2-3:MapPlot class members
Properties

Anchor
Application
Background
CenterLatitude
CenterLongitude
Class
Description
EdgeColor
EdgeDashStyle
EdgeLineWidth
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
MaintainDimensions
Name
Parent
PlotPosition
PlotRotation
Rotation
Top
VersionId
Visible
Width
Zoom

Methods
AddToSelection
Bounds
ExtendedName
Goto
IsSameObject
Move
RemoveFromSelection
Resize
Select

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: OLEObject class
An OLE object.

Base classes
BaseObject

Contained by
Class Property
Document OLEObjects

Usage
The OLEObjects collection contains all the OLEObject objects in a workbook.

1-2-3: OLEObject class members
Properties

Anchor
Application
AutoUpdate
Background
Class
Description
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
FileName
FrameColor
Height
Hidden
IsDraggable
IsLinked
IsLocked
IsSelectable
IsSelected
ItemName
Left
LinkSource
Name
Object
Parent
ShowDesignerFrame
Size
Top
UserClassNameApplication
UserClassNameFull
UserClassNameShort
VersionId
Visible
Width

Methods
AddToSelection
Bounds
BreakLink
Clear
CopyToClipboard
Cut
ExtendedName
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
Select
SetLinkSource
ToBack
ToFront
Update
Verb

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: OLEObjects class
A collection of OLEObject objects.

Base classes
BaseCollection

Contained by
Class Property
Document OLEObjects

1-2-3: OLEObjects class members
Properties

Count

Methods
Item
Next
Open

1-2-3: Picture class
An imported image displayed in a sheet.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
Although you cannot display a picture on a button you create in 1-2-3, you can add a picture, such as a bitmap, to the
sheet and then attach a script to the picture. The script runs when the user selects the picture. Attach the script to the
picture's Selected event.

1-2-3: Picture class members
Properties

Anchor
Application
Background
Class
Description
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
FrameColor
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
ShowDesignerFrame
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
RestoreToOriginalSize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Polygon class
A graphic object in the shape of a polygon. Polygons are closed shapes consisting of any number of straight or
freehand lines.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
Use the Polygon class to perform tasks, such as the following:

• Hide or lock the object
• Determine the object's edge color, edge style, and edge width
• Determine the object's background color and pattern.
• Add the object to or remove the object from the current selection

1-2-3: Polygon class members
Properties

Anchor
Application
Background
Class
Description
EdgeColor
EdgeDashStyle
EdgeLineWidth
EditPoints
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
PointCount
Rotation
Top
VersionId
Visible
Width

Methods
AddPoint
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
FlipLeftRight
FlipTopBottom
Goto
IsSameObject
Move
MovePoint
Paste
PointX
PointY
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Polyline class
A graphic object in the shape of a polyline. Polylines are open shapes consisting of any number of straight or
freehand lines.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
A polyline is an open shape with straight or freehand line segments.
Use the Polyline class to perform tasks, such as the following:

• Hide or lock the object
• Determine the object's edge color, edge style, and edge width
• Determine the object's background color and pattern.
• Add the object to or remove the object from the current selection

1-2-3: Polyline class members
Properties

Anchor
Application
Arrow
Background
Class
Description
EdgeColor
EdgeDashStyle
EdgeLineWidth
EditPoints
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
PointCount
Rotation
Top
VersionId
Visible
Width

Methods
AddPoint
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
FlipLeftRight
FlipTopBottom
Goto
IsSameObject
Move
MovePoint
Paste
PointX
PointY
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Preview class
This class is reserved by 1-2-3 for internal use.

1-2-3: Preview class members
This class is reserved by 1-2-3 for internal use.

1-2-3: PrintSettings class
A print style, which is a set of print and page settings for 1-2-3.

Base classes
BaseObject

Contained by
Class Property
Application DefaultPrintSettings
Document CurrentPrintSettings

Usage
To modify a collection of named print styles, use the PrintSettingsCollection class.
To create a PrintSettings object, use the NewNamedPrintSettings method.

1-2-3: PrintSettings class members
Properties

AllPagesPrint
Application
BottomMargin
CellCommentsFont
CellCommentsPrint
CenterLeftToRight
CenterTopToBottom
ChartsPicturesAndDrawPrint
Class
Collate
ColumnTitleRange
Copies
Description
Duplex
FitDrawnObjectToPage
FitToPage
FooterCenter
FooterCenterFont
FooterLeft
FooterLeftFont
FooterRight
FooterRightFont
FormulaFont
FormulasPrint
GridLinesPrint
HeaderCenter
HeaderCenterFont
HeaderLeft
HeaderLeftFont
HeaderRight
HeaderRightFont
IsDraggable
IsSelectable
LeftMargin
Name
Orientation
PaperBinName
PaperBinNames
PaperHeight
PaperHeightMaximum
PaperHeightMinimum
PaperSizeCustom
PaperSizeName
PaperSizeNames
PaperWidth
PaperWidthMaximum
PaperWidthMinimum
Parent
PrintPagesFrom
PrintPagesStart
PrintPagesTo
PrintRange
PrintRangeSaved
PrintSelection
PrintWhat

RightMargin
RowTitleRange
ScalePercent
SheetDataPrint
SheetFramePrint
Stapled
TopMargin
VersionId

Methods
ExtendedName
Goto
IsSameObject

Events
MethodInvoked
NameChange
PropertySet

1-2-3: PrintSettingsCollection class
A collection of PrintSettings objects.

Base classes
BaseCollection

Contained by
Class Property
Document NamedPrintSettings

Usage
A collection of PrintSettings objects is equivalent to named print styles for a workbook.

1-2-3: PrintSettingsCollection class members
Properties

Count

Methods
Item
Next
Open

1-2-3: DataQuery class
The information 1-2-3 uses to generate an output range.

Base classes
BaseObject

Contained by
Class Property
Document DataQueryNames

Usage
 Use the DataQuery class toperform tasks, such as the following:

• The source for input data
• The fields to include in the query
• The criteria to use
• The location for an output range

1-2-3: DataQuery class members
Properties

AllFields
AllowsUpdates
Application
AutoRefresh
BaseSourceTable
Class
Criteria
Description
ExtractingUniqueRecords
IsDraggable
IsSelectable
IsSelected
Name
OutputLocation
Parent
RecordsLimited
RecordsLimitMax
SelectFields
SQL
VersionId

Methods
AddSelectField
AddToSelection
CopySQLToClipboard
CreateComputedField
DeleteComputedField
ExtendedName
FieldAggregateType
FieldAlias
GetFieldAlias
Goto
IsSameObject
Join
QuerySortDefineKey
Refresh
RemoveFromSelection
RemoveSelectField
ResetFieldAggregates
Select
SetRecordsLimitMax
SortData
SortReset
Update

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: QueryTable class
A Lotus Approach object embedded in a 1-2-3 workbook. A query table contains a copy of the records from a source
database table in either 1-2-3 or an external table, and is linked to the source database.

Base classes
OLEObject

Contained by
Class Property
Document QueryTables

1-2-3: QueryTable class members
Properties

Anchor
Application
AutoUpdate
Background
Class
Description
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
FileName
FrameColor
Height
Hidden
IsDraggable
IsLinked
IsLocked
IsSelectable
IsSelected
ItemName
Left
LinkSource
Name
Object
OutputRange
Parent
RestrictOutput
SendOutputToRange
ShowDesignerFrame
ShowQueryNameAndBorder
Size
Top
UserClassNameApplication
UserClassNameFull
UserClassNameShort
VersionId
Visible
Width

Methods
AddToSelection
Bounds
BreakLink
Clear
CopyToClipboard
Cut
ExtendedName
Goto
IsSameObject
Move
Paste
RefreshOutput
RefreshQuery
RemoveFromSelection
Resize
Select

SetLinkSource
ToBack
ToFront
Update
Verb

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: QueryTables class
A collection of QueryTable objects.

Base classes
BaseCollection

Contained by
Class Property
Document QueryTables

1-2-3: QueryTables class members
Properties

Count

Methods
Item
Next
Open

1-2-3: Range class
A range.

Base classes
BaseObject

Contained by
Class Property
Document Ranges

Usage
1-2-3 does not contain a Cell object: 1-2-3 specifies a cell as a single-cell range.
The Ranges collection contains all ranges in a workbook.

1-2-3: Range class members
Properties

AlignOverColumns
AllNames
Application
Background
BottomBorder
CellComment
CellDisplay
Cells
CellValue
Class
ColumnLevel
ColumnWidth
Contents
CoordinateString
CurrentVersion
Description
DesignerFrameStyle
EndColumn
EndRow
EndSheet
Font
FormatDecimals
FormatName
FrameColor
GridBorder
HorizontalBorder
HorizontalPageBreak
InnerBorder
IsColumnCollapsed
IsColumnHidden
IsDraggable
IsFormatFreqUsed
IsHidden
IsNotesFX
IsParenthesized
IsProtected
IsRangeNamed
IsRowCollapsed
IsRowHidden
IsSelectable
IsSelected
LeftBorder
Name
NegativesInColor
OutlineBorder
Parent
RightBorder
RowHeight
RowLevel
ShowDesignerFrame
StartColumn
StartRow
StartSheet
StyleName
TextHorizontalAlign

TextOrientation
TextRotation
TextVerticalAlign
TextWrapped
TopBorder
VersionBorderVisible
VersionId
VersionStatus
VerticalBorder
VerticalPageBreak

Methods
AddToSelection
AppendRecords
AutoSmartSum
Cell
Clear
CollapseColumn
CollapseRow
CopyFill
CopyToClipboard
Cut
DataParse
DataParseGuess
DefineNamedStyle
DeleteColumns
DeleteCurrentVersion
DeleteNamedStyle
DeleteRecords
DeleteRows
DemoteColumn
DemoteRow
DragAndFill
ExpandColumn
ExpandRow
ExtendedName
Find
FitTallest
FitWidest
FitWidestNumber
Format
FormatReset
FreeCellData
GetCellData
Goto
HideColumns
HideRows
InsertColumns
InsertRows
IsSameObject
MacroRun
ModifyNamedStyle
NewVersion
Paste
PromoteColumn
PromoteRow
QuickCopy
QuickMove
RangeCombine

RangeCombineText
RangeExtract
RangeFill
RangeValue
RecalcRange
RemoveFromSelection
RenameNamedStyle
Replace
ReplaceAll
ReportVersion
ResetColumnWidth
ResetRowHeight
Reshape
RevertToNamedStyle
Select
Send
SetActiveCell
SetCellData
SetGalleryStyle
SmartSort
SmartSum
Sort
StyleFontReset
ToggleVersionBorder
Transpose
UnhideColumns
UnhideRows
Version
Versions

Events
CellContentsChange
CellValueChange
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: RangeBorder class
The border of a range.

Base classes
BaseObject

Contained by
Class Property
Range BottomBorder, GridBorder,

HorizontalBorder, InnerBorder,
LeftBorder, OutlineBorder,
RightBorder, TopBorder,
VerticalBorder

Usage
Use the RangeBorder class to set the color and style of a range border.

1-2-3: RangeBorder class members
Properties

Application
Class
Color
IsDraggable
IsSelectable
Name
Parent
Style
VersionId

Methods
ExtendedName
Goto
IsSameObject

Events
MethodInvoked
NameChange
PropertySet

1-2-3: Ranges class
A collection of Range objects.

Base classes
BaseCollection

Contained by
Class Property
Document Ranges
Range Cells

Usage
Iteration is the process of stepping through a collection and acting on each element in the collection. Use the
LotusScript ForAll statement to iterate through a collection.
For example, the following statement enters in the current row the names of all ranges in the current workbook:
ForAll x In CurrentDocument.Ranges

.Contents = x.Name

.MoveCellPointer $down, 1
End ForAll
Indexing is the process of using the Item method or the indexing syntax to access a specific object in the collection.
The Item method is a member of every collection class in 1-2-3.
For example, the following statement accesses the second range in a collection:
CurrentDocument.Ranges(1)
You can access any Range object by using the string equivalent of its address as the index into the Ranges
collection. For example, the following code changes the background color of the range A:A1..A:B10 to red:
CurrentDocument.Ranges("A:A1..A:B10").Background.BackColor.ColorName = "red"

1-2-3: Ranges class members
Properties

Count

Methods
Item
Next
Open

1-2-3: RangeSelector class
Provides for user selection of a range while a script is running.

Base classes
BaseObject

Contained by
Class Property
Application RangeSelector

Usage
The RangeSelector class provides script writers with an easy way to let users select a range during script execution.
For example, the following script lets the user select a range and then changes the font in the selected range:
Sub ChangeFont

Dim rs as RangeSelector
Dim r as Range
Set rs = CurrentApplication.RangeSelector
Set r = rs.GetRange
r.Font.FontName = "Courier New"

End Sub

1-2-3: RangeSelector class members
Properties

Application
Class
IsDraggable
IsSelectable
Name
Parent
VersionID

Methods
ExtendedName
GetRange
GetRangeString
Goto
IsSameObject

Events
MethodInvoked
NameChange
PropertySet

1-2-3: Rectangle class
A graphic object in the shape of a rectangle or square.

Base classes
DrawObject

Contained by
Class Property
Document DrawnObjects

Usage
Use rectangles, rounded rectangles, squares, ellipses, and circles to emphasize data or to create designs such as
logos.
Use the Rectangle class to perform tasks, such as the following:

• Hide or lock the object
• Determine the object's edge color, edge style, and edge width
• Determine the object's background color and pattern.
• Add the object to or remove the object from the current selection.

1-2-3: Rectangle class members
Properties

Anchor
Application
Background
Class
Description
DesignerFrameStyle
EdgeColor
EdgeDashStyle
EdgeLineWidth
FrameColor
Height
Hidden
IsDraggable
IsLocked
IsSelectable
IsSelected
Left
Name
Parent
Rotation
Rounded
ShowDesignerFrame
Top
VersionId
Visible
Width

Methods
AddToSelection
Bounds
Clear
CopyToClipboard
Cut
ExtendedName
FlipLeftRight
FlipTopBottom
Goto
IsSameObject
Move
Paste
RemoveFromSelection
Resize
Select
ToBack
ToFront

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: RoCollection class
This class is reserved by 1-2-3 for internal use.

1-2-3: RoCollection class members
This class is reserved by 1-2-3 for internal use.

1-2-3: Sheet class
One sheet in a workbook.

Base classes
BaseObject

Contained by
Class Property
Document CurrentSheet, Sheets

Usage
The Sheets collection class contains all the sheets in a workbook.
To create a Sheet object, use the NewSheet method.

1-2-3: Sheet class members
Properties

ActiveCell
Application
Background
Class
ColumnFolding
ColumnOutlineVisible
DefaultColumnWidth
DefaultRowHeight
Description
DisplayZeroAs
Font
FormatDecimals
FormatName
GridLineColor
HorizontalTitle
IsDraggable
IsFormatFreqUsed
IsParenthesized
IsProtected
IsSelectable
IsSelected
IsZeroDisplayed
Name
NegativesInColor
Parent
RowFolding
RowHeightUseFontSize
RowOutlineVisible
SheetName
SheetNumber
ShowDrawLayer
ShowGridLines
ShowSheetFrame
TabColor
TextHorizontalAlign
TextOrientation
TextRotation
TextVerticalAlign
TextWrapped
VersionId
VerticalTitle
WindowsDefaultsDisplayed

Methods
AddToSelection
ClearOutline
DeleteSheet
ExtendedName
ExtendSelection
Find
Format
FormatReset
GetActiveCell
Goto
HideSheet
IsSameObject

LowerRightVisibleCell
MacroRunText
MoveCellPointer
MoveOrigin
NewApproachConnection
NewArc
NewArrow
NewButton
NewChart
NewDrawLine
NewEditText
NewEllipse
NewFreehand
NewMap
NewObject
NewPicture
NewPolygon
NewPolyline
NewQueryTable
NewRectangle
NewRoundedRectangle
OutlineColumnsToLevel
OutlineRowsToLevel
RemoveFromSelection
Replace
ReplaceAll
ResetViewOverrides
ScrollToActiveCell
Select
SelectAll
SelectAllSheets
SetHorizontalTitle
SetOrigin
SetVerticalTitle
ShowSheet
TopLeftVisibleCell
TurnTo

Events
Deselected
MethodInvoked
NameChange
PropertySet
Selected

1-2-3: Sheets class
A collction of Sheet objects.

Base classes
BaseCollection

Contained by
Class Property
Document Sheets

1-2-3: Sheets class members
Properties

Count

Methods
Item
Next
Open

1-2-3: Strings class
A collection of related strings.

Base classes
BaseCollection

Contained by
Class Property
Application Addins, DayNames,

MonthNames, PrinterNames,
ShortDayNames,
ShortMonthNames,

ApplicationWindow IconBarNames
ClassInfo Events, Methods, Properties
DataQuery AllFields
Document Authors, DataQueryNames,

NamedRanges
DrawCollection KnownRegionAliases,

KnownRegionCodes,
KnownRegionNames,
Overlays

Map KnownRegionAliases,
KnownRegionCodes,
KnownRegionNames,
Overlays

PrintSettings PaperBinNames,
PaperSizeNames

Range AllNames

1-2-3: Strings class members
Properties

Count

Methods
Item
Next
Open

1-2-3: Version class
A version.

Base classes
BaseObject

Contained by
Class Property
Range CurrentVersion

Usage
The Versions collection class contains all versions in a workbook.

1-2-3: Version class members
Properties

Application
Author
Class
CreationDate
Description
IsDraggable
IsNew
IsSelectable
LastEditor
ModifiedDate
Name
Parent
Share
StylesRetained
VersionId
VersionName

Methods
DeleteVersion
ExtendedName
Goto
IsSameObject
MakeCurrent

Events
MethodInvoked
NameChange
PropertySet

1-2-3: VersionGroup class
A version group.

Base classes
BaseObject

Contained by
Class Property
Document LastVersionGroup

Usage
Although the VersionGroup class is a collection of versions associated with a single named range, it is not a collection
object. Its Versions method, however, returns a collection that is a selected subset of all the versions in the version
group.

1-2-3: VersionGroup class members
Properties

Application
Author
Class
CreationDate
Description
IsDraggable
IsNew
IsSelectable
LastEditor
ModifiedDate
Name
Parent
Share
VersionId

Methods
AddVersion
DeleteVersionGroup
ExtendedName
Goto
IsSameObject
MakeCurrent
RemoveAllVersions
RemoveVersion
Versions

Events
MethodInvoked
NameChange
PropertySet

1-2-3: VersionGroups class
A collection of VersionGroup objects.

Base classes
BaseCollection

1-2-3: VersionGroups class members
Properties

Count

Methods
Item
Next
Open

1-2-3: Versions class
A collection of Version objects.

Base classes
BaseCollection

Usage
The Versions class is a collection of all versions associated with a named range; it is not a version group.

1-2-3: Versions class members
Properties

Count

Methods
Item
Next
Open

1-2-3: Window class
A window in 1-2-3. The Window class is a base class for the creation of window objects such as the
ApplicationWindow and the DocWindow.

Base classes
BaseObject

Usage
The Window class is an abstract class. That is, you cannot create an instance of Window. You can, however,
represent all of the subclasses of the Windows class with the Window class. For example, you can write a subroutine
that takes Window as a parameter.Then, you can pass any instance of a Window subclass to that subroutine:
Dim x as Window
Set x = CurrentApplication.CurrentDocWindow

1-2-3: Window class members
Properties

Active
Application
Caption
Class
Description
Height
HorizontalScrollBarVisible
IsDraggable
IsSelectable
Left
Name
Parent
Top
VersionId
VerticalScrollBarVisible
Visible
Width

Methods
Activate
Close
ExtendedName
Goto
IsSameObject
Maximize
Minimize
Move
Resize
Restore
Update

Events
GetFocus
LostFocus
MethodInvoked
Moved
NameChange
PostClose
PreClose
PropertySet
Resized

1-2-3: Windows class
A collection of Window objects.

Base classes
BaseCollection

1-2-3: Windows class members
Properties

Count

Methods
Item
Next
Open

1-2-3: Calculate event
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_CALCULATE_EVENT_EXSCRIPT',1)} See example
Occurs when a recalculation ends.

Internal syntax
Calculate(source)

Parameters
source

Application. The object on which the event occurred.

{button ,AL(`H_123_CELLVALUECHANGE_EVENT_MEMDEF',0)} See related topics

' Example: Calculate event handler
' This handler fits a column's width to accommodate recalculated data.
Sub Calculate(source As Application)
 ' Fit the width of column B to the widest numerical data.
 [A:B4].FitWidestNumber
 ' Make sure the new width isn't too small for the column heading.
 If [A:B4].ColumnWidth < 10 Then
 [A:B4].ColumnWidth = 10
 End If
End Sub

1-2-3: CancelPrint event
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_STARTPRINT_ENDPRINT_CANCELPRINT_EVENT_EXSCRIPT',1)} See example
Occurs whens the printing of a document is canceled.

Internal Syntax
CancelPrint(source)

Parameters
source

Application. The object on which the event occurred.

1-2-3: CellContentsChange event
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_CELLCONTENTSCHANGE_EVENT_EXSCRIPT',1)} See example
Occurs when the contents of any cell or cell comment in the range changes.

Internal syntax
CellContentsChange(source)

Parameters
source

Range. The range on which a Contents property changed.

{button ,AL(`H_123_CELLVALUECHANGE_EVENT_MEMDEF;H_123_VALUECHANGE_EVENT_MEMDEF;H_123_
CALCULATE_EVENT_MEMDEF;H_123_CONTENTS_PROPERTY_MEMDEF;H_123_PROPERTYSET_EVENT_
MEMDEF',0)} See related topics

' Example: CellContentsChange event handler
' Check if the new cell contents remain acceptable.
' Display warning if the contents aren't numeric.
Sub CellContentsChange (source As Range)
 ' Loop over the cells in the source range.
 Forall sglcell In source.Cells
 ' Check whether the cell contents are numeric.
 If IsNumeric(sglcell.Contents) = False Then
 MessageBox "Warning: Cell " & sglcell.CoordinateString _
 & " does not contain a number.", MB_ICONQUESTION, "Script 1"
 End If
 End Forall
End Sub

1-2-3: CellValueChange event
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_CELLVALUECHANGE_EVENT_EXSCRIPT',1)} See example
Occurs when the value of any cell within the range changes.

Internal syntax
CellValueChange(source)

Parameters
source

Range. The range on which a CellValue property changed.

{button ,AL(`H_123_CELLCONTENTSCHANGE_EVENT_MEMDEF;H_123_CELLVALUE_PROPERTY_MEMDEF;H
_123_CALCULATE_EVENT_MEMDEF;H_123_PROPERTYSET_EVENT_MEMDEF',0)} See related topics

' Example: CellValueChange event handler
' Check if the new cell value remains valid.
' Display a warning if the value is too large.

' Global declarations
Dim maxValue As Long
' You could run the following sub in the Document.Opened event handler, for example.
' This sub sets a maximum value for the range.
Sub SetMaxValue
 maxValue = 100
End Sub

' Bind the following handler to the CellValueChange event.
Sub CellValueChange (source As Range)
 ' Loop over the cells in the source range.
 Forall sglcell In source.Cells
 ' Check whether the cell value is valid.
 If Not IsNumeric(sglcell.CellValue) Then
 MessageBox "Warning: Cell " & sglcell.CoordinateString _
 & " is not numeric.", MB_ICONQUESTION, "Script 1"
 ElseIf sglcell.CellValue > maxValue Then
 MessageBox "Warning: Cell " & sglcell.CoordinateString _
 & " exceeded the maximum value.", MB_ICONQUESTION, "Script 1"
 End If
 End Forall
End Sub

1-2-3: Click event
{button ,AL(`H_123_BUTTONCONTROL_CLASS',0)} See list of classes
{button ,AL(`H_123_CLICK_EVENT_EXSCRIPT',1)} See example
Occurs when the ButtonControl object is clicked.

Internal syntax
Click(source)

Parameters
source

ButtonControl. The object on which the event occurred.

{button ,AL(`H_123_GETFOCUS_EVENT_MEMDEF;H_123_SELECTED_EVENT_MEMDEF',0)} See related topics

' Example: Click event handler
' Handler for a button that sets the column width or other styles of the current cell.
Sub Click (source As ButtonControl)
 ' Set the column width of the active cell.
 CurrentDocument.CurrentSheet.ActiveCell.Cells(0).ColumnWidth = 15
 ' Set other styles here, if needed.
End Sub

1-2-3: CloseWindow event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_CLOSEWINDOW_EVENT_EXSCRIPT',1)} See example
Occurs when a document window closes.

Internal syntax
CloseWindow(source)

Parameters
source

The Document object whose window closed.

{button ,AL(`H_123_OPENWINDOW_EVENT_MEMDEF;H_123_DOCUMENTOPENED_EVENT_MEMDEF;H_123_
OPENED_EVENT_MEMDEF;H_123_PRECLOSE_EVENT_MEMDEF;H_123_POSTCLOSE_EVENT_MEMDEF',
0)} See related topics

' Example: CloseWindow event handler and ApplicationWindow property.
' Tile the remaining open windows when a window closes.

Sub CloseWindow(source As Document)
 CurrentApplication.ApplicationWindow.TileHorizontal
End Sub

1-2-3: Deselected event
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_QUERY_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLA
SS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_C
LASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_
PLOT_CLASS;H_123_MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_1
23_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_
123_RANGE_CLASS;H_123_RECTANGLE_CLASS;H_123_SHEET_CLASS',0)} See list of classes

{button ,AL(`H_123_DESELECTED_EVENT_EXSCRIPT',1)} See example
Occurs when the object is removed from the selection.

Internal syntax
Deselected(source)

Parameters
source

The object that was removed from the selection.

Usage
The selection is not guaranteed while a Deselected event script runs.

{button ,AL(`H_123_SELECTED_EVENT_MEMDEF;H_123_LOSTFOCUS_EVENT_MEMDEF;H_123_GETFOCUS_
EVENT_MEMDEF',0)} See related topics

' Example: Deselected event handler.
' Set a flag to indicate that a resource is not needed because of the deselection.

' In the globals section, declare the flag.
Dim resource1Keep As Variant

Sub Deselected(source As OLEObject)
 resource1Keep = False
End Sub

1-2-3: DisplayInit event
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
{button ,AL(`H_123_DISPLAYINIT_EVENT_EXSCRIPT',1)} See example
Occurs when a menu bar is first accessed.

Internal Syntax
DisplayInit(source)

Parameters
source

The ApplicationWindow object in which the event occurred.

Return values
None

Usage
This event only occurs when the menu bar is first accessed. Subsequently accessing the menu bar doesn't generate
this event again.
You can use this event to disable menus.

{button ,AL(`H_123_CLICK_EVENT_MEMDEF;H_123_OPENED_EVENT_MEMDEF;H_123_DOCUMENTOPENED_
EVENT_MEMDEF',0)} See related topics

' Example: DisplayInit and Opened event handlers; GetMenu and DisableItem methods.
' Disable a menu item when the menu bar is first accessed.

' In the Globals section, declare the application window for the event.
 Dim appWindow As ApplicationWindow

Sub DisplayInit(source As ApplicationWindow)
 ' Disable the first item in the third-from-last menu on the menu bar.
 Dim menu1 As Menu
 Set menu1 = CurrentApplication.CurrentMenuBar.GetMenu(-3)
 menu1.DisableItem 1
End Sub

' Bind the handler in the Opened event on the document.
Sub Opened(source As Document)
 Set appWindow = CurrentApplication.ApplicationWindow
 On Event DisplayInit From appWindow Call DisplayInit
End Sub

1-2-3: DocumentOpened event
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DOCUMENTOPENED_EVENT_EXSCRIPT',1)} See example
Occurs when a document is opened during a 1-2-3 session.

Internal Syntax
DocumentOpened(source)

Parameters
source

Application. The application that opened the document.

Usage
This event is raised whenever you open a document during a 1-2-3 session. This is different from the Opened event
in the Document class, which is only raised when the file containing the Opened event handler script is opened.
If you open more than one document and an event handler script is attached to each document's Opened event, the
events are raised in the reverse order that the documents were opened.

' Example: DocumentOpened event handler
' Write the current date and time to cell A:A1 whenever
' the document opens. If subsequent documents are opened
' before the current document is closed, the current date
' and time is written to cell A:A1 in each additional
' document as well.

Sub DocumentOpened(source As Application)
 [A:A1].Select
 Selection.Contents = Now
End Sub

1-2-3: EndPrint event
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_STARTPRINT_ENDPRINT_CANCELPRINT_EVENT_EXSCRIPT',1)} See example
Occurs when 1-2-3 finishes sending a file to a printer.

Internal Syntax
EndPrint(source)

Parameters
source

Application. The object on which the event occurred.

Usage
EndPrint occurs when a document has been successfully sent to the printer queue. This doesn't necessarily mean
that the print job has finished.

1-2-3: GetFocus event
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS',0)}

See list of classes
{button ,AL(`H_123_GETFOCUS_EVENT_EXSCRIPT;H_123_LOSTFOCUS_EVENT_EXSCRIPT',1)} See example
Occurs when the window gets the focus.

Internal syntax
GetFocus(source)

Parameters
source

The object that received the focus.

Usage
You can use this event on a DocWindow object to bind handlers for events that are specific to the document or
document window.
A window that gets the focus also becomes the active window.

{button ,AL(`H_123_LOSTFOCUS_EVENT_MEMDEF;H_123_DESELECTED_EVENT_MEMDEF;H_123_SELECTE
D_EVENT_MEMDEF',0)} See related topics

' Example: DocWindows, Count properties; GetFocus, LostFocus, Opened,
' OpenWindow, and CloseWindow event handlers
' Display custom menus for this document whenever a document window gets focus.
' This example handles any number of document windows.
' Note: This example has several hundred lines of code.

' Since the GetFocus event is only raised on a window object,
' you need to set it up explicitly for each DocWindow object that is created,
' rather than for the document as a whole.

' In the Options section for this module, make all declarations Public.
Option Public

' In the Globals section for this module, declare the flags, menu,
' and doc window lists.
Dim isMenu1Up As Variant ' Flag to prevent adding menu1 twice
Dim isMenu1Made As Variant ' Flag to prevent creating menu1 twice
Dim menu1 As Menu ' Custom menu to add to the menu bar
Dim multiDocWindows List As DocWindow ' Managed document windows
Dim regFlags List As Integer ' Boolean to track document windows
registration
Dim windowsCount As Long ' Number of document windows open
Dim settingValue As Variant ' Boolean property set by the menu item
Dim settingPos As Integer ' Menu position of the property item

' Global GetFocus event handler to display the custom menus for this document
' whenever it gets focus.
Sub GetFocus(source As DocWindow)
 ' Add the menu item. (The routine checks to avoid duplication.)
 AddAMenu
End Sub

' Global LostFocus event handler to remove the custom menus for this document
' whenever it loses focus.
Sub LostFocus(source As DocWindow)
 ' The routine will check the menu flag.
 RemoveAMenu
End Sub

' Global handler script for the custom menu item.
Sub itemHandler1
 ' Set the property.
 settingValue = Not settingValue
 ' Set the menu item check mark.
 If settingValue = True Then menu1.CheckItem settingPos
 If settingValue = False Then menu1.UncheckItem settingPos
End Sub

' Global sub to bind the GetFocus and LostFocus event handlers to the document window.
Sub RegFocus(docWindow1 As DocWindow, focusRegd As Integer)
 ' Don't bind twice -- the handler will get called twice.
 If focusRegd Then Exit Sub
 ' Bind both events on this window.
 On Event GetFocus From docWindow1 Call GetFocus
 On Event LostFocus From docWindow1 Call LostFocus
 ' And set the flag that says so.
 focusRegd = True

End Sub

Sub UnregFocus(docWindow1 As DocWindow, focusRegd As Integer)
 ' Remove the GetFocus and LostFocus event handlers from the doc window.
 ' Don't remove the handlers if they're not bound.
 If Not focusRegd Then Exit Sub
 ' Do the On Event ... Remove statements.
 On Event GetFocus From docWindow1 Remove GetFocus
 On Event LostFocus From docWindow1 Remove LostFocus
 ' And indicate that this window is unregistered.
 focusRegd = False
End Sub

Sub AddAMenu
 If isMenu1Up = False Then
 ' Add the custom menu to the menu bar.
 CurrentApplication.CurrentMenuBar.AddMenu -3, menu1
 ' Set the flag indicating that this menu is up.
 isMenu1Up = True
 End If
End Sub

Sub RemoveAMenu
 If isMenu1Up = True Then
 CurrentApplication.ResetMenuBar
 isMenu1Up = False
 End If
End Sub

Sub RegAllDW(doc As document)
 ' Register all open document windows into a window list and into a flag list.
 Dim s$
 ' Loop over all document windows on the document.
 ForAll dw In doc.DocWindows
 ' The list tag will be the window name.
 s$ = dw.Name
 ' If the window isn't in the current list, enter it.
 If Not Iselement(multiDocWindows(s$)) Then
 ' Add the window.
 Set multiDocWindows(s$) = dw
 ' And create a flag for registration, and set it to False.
 regFlags(s$) = False
 End If
 ' Now register this window.
 ' Call by reference so that the real flag gets changed.
 RegFocus multiDocWindows(s$), regFlags(s$)
 End ForAll
End Sub

Sub UnregAllDW(doc As document)
 ' Clean up the menu before abandoning the focus checking.
 RemoveAMenu
 Dim s$
 ' Check all windows on this document.
 ForAll dw In doc.DocWindows
 ' The list tag is the window name.
 s$ = dw.Name
 ' Unregister from the list, including the list of registration flags.
 ' Call by reference so that the real flag will be changed.

 UnRegFocus multiDocWindows(s$), RegFlags(s$)
 End ForAll
End Sub

Sub MakeMenu1
 If isMenu1Made Then Exit Sub
 isMenu1Up = False
 ' Create the custom menu.
 Set menu1 = CurrentApplication.NewMenu
 ' Set up display text for the custom menu.
 menu1.MenuText = "&Autotasks"
 menu1.MenuPrompt = "Custom automated tasks"
 ' Add items to the menu here ...
 menu1.AddItem 1, "Menu pick 1", "Prompt 1", ThisDocument, "itemHandler1"
 ' Initialize the item settings.
 settingValue = False
 settingPos = 1
 isMenu1Made = True
End Sub

' Handlers for document events.

' In the Opened event on the document, build and display the custom menu
' and bind the focus event handlers to the first DocWindow.
Sub Opened(source As Document)
 ' Make sure there is a menu 1.
 MakeMenu1
 ' Add menu 1 to the menu bar in the third-from-last position.
 AddAMenu
 ' Bind the focus event handlers to the first DocWindow when it opens.
 RegAllDW ThisDocument
End Sub

' OpenWindow event handler to bind the focus event handlers.
' to each additional DocWindow when it opens and put up the menu.
Sub OpenWindow(source As Document)
 Dim dw As DocWindow
 Dim s$
 ' Since we are responding to Openwindow, windowsCount is at least 1.
 windowsCount = ThisDocument.DocWindows.Count
 ' Find the window just added.
 Set dw = ThisDocument.DocWindows(windowsCount - 1)
 ' For a list, use the name of the window as a Tag (identifying index).
 s$ = dw.Name
 ' Set the new list element with the new tag.
 Set multiDocWindows(s$) = dw
 ' Register for the Focus events.
 ' RegAllDW will not re-register windows already registered.
 RegAllDW ThisDocument
 ' Add menu 1 to the menu bar in the third-from-last position.
 AddAMenu
End Sub

' This handler is called whenever a window on the document is closed.
' We are not told which one. Find out and remove it from the list.
Sub Closewindow(source As Document)
 Dim s$
 Dim tag$ List
 ' First, make a list of tags of existing windows.

 Forall dw In source.DocWindows
 tag$(dw.Name) = dw.Name
 End Forall
 ' Then go through the stored list of windows.
 Forall dw In multiDocWindows
 ' Get the tag of this window.
 s$ = ListTag(dw)
 ' If a window's tag isn't in the tag list, then it was closed.
 If Not Iselement(tag$(s$)) Then
 ' The registration was removed when the window was closed,
 ' but the window reference is still in this list.
 ' So remove the registration flag element from the list.
 Erase regFlags(s$)
 ' And remove the window, too.
 Erase multiDocWindows(s$)
 End If
 End Forall
End Sub

' Restore the menu bar when the document closes,
' using the PreClose and PostClose events.
Function PreClose(source As Document, p1 As Variant) As Variant
 If isMenu1Up = False Then
 ' Continue the close. The menu bar has already been reset.
 PreClose = $Continue
 Else
 ' Block the close and raise the PostClose event.
 PreClose = $Block
 End If
End Function
Sub PostClose(source As Document, p1 As Variant)
' PostClose is raised only when PreClose returns $Block.
 ' Reset the menu bar.
 RemoveAMenu
 ' Now actually close the document.
 source.Close
End Sub

' Example: StartPrint, EndPrint, and CancelPrint event handlers
' The following example sends mail to someone when the document is
' successfully printed. If printing is canceled, no mail is sent.

Dim isPrintingCanceled As Variant ' Added to Global Declarations.

Sub StartPrint(source As Application)
isPrintingCanceled = False

End Sub

Sub CancelPrint(source As Application)
 isPrintingCanceled = True
End Sub

Sub EndPrint(source As Application)
 If isPrintingCanceled = False Then
 CurrentApplication.SendMail "Joseph Folk",, _
 "Report completed and printed", "It's waiting in your printer."
 End If
End Sub

1-2-3: Initialize sub
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_12

3_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_DATALINK_CLASS;H_123_DOCUMENT_CLAS
S;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDI
TTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_LEGEN
D_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_MAPPLOT_CLASS;H_123_MAPTEXTENTRY_
CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_123_OLEOBJECT_CL
ASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERY_CLASS;
H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_123_RECTANGLE_CLASS;H_123_SHEET_CLASS',
0)} See list of classes

{button ,AL(`H_123_INITIALIZE_EVENT_EXSCRIPT',1)} See example
In 1-2-3, an object's Initialize sub runs when the first non-empty event script on the object is run. Initialize doesn't run
again until after the object's scripts have been unloaded, or the file has been unloaded.

Internal syntax
Initialize

Parameters
None

Usage
The Initialize sub resembles a 1-2-3 event handler, but doesn't have any parameters.
You can use Initialize to set up an object (such as declaring or initializing global variables) when the first event on it is
raised and handled.
Note that you can't bind any handler scripts to events on the object in the Initialize sub using an On Event statement,
unless you have a handler script attached to another event on the object by the file, because otherwise Initialize won't
run.

' Example: Initialize sub
' Create a custom menu for later display in this document.

' In the globals for this module, declare the flags, menu, and doc window.
Dim isMenu1Up As Variant ' Flag to prevent adding menu1 twice
Dim isMenu1Made As Variant ' Flag to prevent creating menu1 twice
Dim menu1 As Menu ' Custom menu to add to the menu bar
Dim settingValue As Variant ' Boolean property set by the menu item
Dim settingPos As Integer ' Menu position of the property item

' In the Initialize sub on the file, build the custom Menu object.
Sub Initialize
 ' Create the custom menu.
 Set menu1 = CurrentApplication.NewMenu
 ' Set up display text for the custom menu.
 menu1.MenuText = "&Autotasks"
 menu1.MenuPrompt = "Custom automated tasks"
 ' Add items to the menu here ...
 menu1.AddItem 1, "Menu pick 1", "Prompt 1", ThisDocument, "itemHandler1"
 ' Initialize the item settings.
 settingValue = False
 settingPos = 1
 ' Initialize the flags that track menu creation and display.
 isMenu1Up = False
 isMenu1Made = True
End Sub

1-2-3: LostFocus event
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS',0)}

See list of classes
{button ,AL(`H_123_LOSTFOCUS_EVENT_EXSCRIPT;H_123_GETFOCUS_EVENT_EXSCRIPT',1)} See example
Occurs when the window loses focus.

Internal syntax
LostFocus(source)

Parameters
source

The window object that lost focus.

Usage
You can use this event on a DocWindow object to remove handlers that are specific to the document.
A window that loses the focus is no longer the active window.

{button ,AL(`H_123_GETFOCUS_EVENT_MEMDEF;H_123_DESELECTED_EVENT_MEMDEF;H_123_SELECTED
_EVENT_MEMDEF',0)} See related topics

' Example: GetFocus, LostFocus, and Opened event handlers
' These examples work only when there is no more than one document window open.

' Example 1
' Set a flag for disposal of resources that are only needed when
' a document (with only one document window) has focus.
' To dispose of resources when the document closes,
' use the PreClose and PostClose event handlers.
' See the PreClose event example for details.

' Global declarations.
Dim resource1Keep As Variant ' Flag indicating that the resource should stay
available

' Set a flag to indicate that a resource is needed because the window got focus.
Sub GetFocus(source As DocWindow)
 resource1Keep = True
End Sub

' Set a flag to indicate that a resource is not needed because of the lost focus.
Sub LostFocus(source As DocWindow)
 resource1Keep = False
End Sub

' Bind the focus event handlers in the first DocWindow when it opens.
Sub Opened(source As Document)
 Set docWindow1 = ThisDocument.DocWindows(0)
 On Event GetFocus From docWindow1 Call GetFocus
 On Event LostFocus From docWindow1 Call LostFocus
End Sub

' Example 2
' Display a custom menu when the document gets focus and
' remove it when the document loses focus.
' Note 1: This example has over fifty lines of code.
' Note 2: You also need to take the custom menu down
' when the document closes. See the example for the PreClose
' and PostClose event handlers for details on how to do this.

' Global declarations.
Dim docWindow1 As DocWindow ' Doc window for the event
Dim isMenu1Up As Variant ' Flag to prevent adding menu1 twice
Dim menu1 As Menu ' Custom menu to add to the menu bar
Dim settingValue As Variant ' Boolean property set by the menu item
Dim settingPos As Integer ' Menu position of the property item

' GetFocus event handler that displays a custom menu when the doc window gets the
focus.
Sub GetFocus(source As DocWindow)
 If isMenu1Up = False Then
 ' Add the custom menu to the menu bar.
 CurrentApplication.CurrentMenuBar.AddMenu -3, menu1

 ' Set the flag indicating that this menu is up.
 isMenu1Up = True
 End If
End Sub

' LostFocus event handler that deletes a custom menu when the doc window loses the
focus.
Sub LostFocus(source As DocWindow)
 If isMenu1Up = True Then
 CurrentApplication.ResetMenuBar
 isMenu1Up = False
 End If
End Sub

' Bind the following handler to the Opened event on the Document object.
Sub Opened(source As Document)
 ' Create the custom menu.
 Set menu1 = CurrentApplication.NewMenu
 ' Set up display text for the custom menu.
 menu1.MenuText = "&Autotasks"
 menu1.MenuPrompt = "Custom automated tasks"
 ' Add items to the menu here ...
 menu1.AddItem 1, "Menu pick 1", "Prompt 1", ThisDocument, "itemHandler1"
 ' Initialize the item settings.
 settingValue = False
 settingPos = 1
 ' Add the custom menu to the menu bar.
 CurrentApplication.CurrentMenuBar.AddMenu -3, menu1
 ' Set the flag indicating that this menu is up.
 isMenu1Up = True
 ' Bind the focus event handlers in the first DocWindow when it opens.
 Set docWindow1 = ThisDocument.DocWindows(0)
 On Event GetFocus From docWindow1 Call GetFocus
 On Event LostFocus From docWindow1 Call LostFocus
End Sub

' Global handler script for the custom menu item.
Sub itemHandler1
 ' Set the property.
 settingValue = Not settingValue
 ' Set the menu item check mark.
 If settingValue = True Then menu1.CheckItem settingPos
 If settingValue = False Then menu1.UncheckItem settingPos
End Sub

' Example: MenuBarReset event handler
' Set a flag so that other 1-2-3 files can put up their custom menus when they get
focus.

' In the 1-2-3 script module globals, declare the flag.
Dim isMenuBarDefault As Variant

Sub MenuBarReset(source As Application)
 ' Flag the menu bar reset.
 isMenuBarDefault = True
End Sub

1-2-3: MethodInvoked event
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_APPROACHCONNEC

TION_CLASS;H_123_ARC_CLASS;H_123_BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BU
TTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123
_DATALINK_CLASS;H_123_DATETIME_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H
_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITT
EXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CL
ASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_PLOT_CLASS;H_123_MA
PTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_123_O
LEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_P
RINTSETTINGS_CLASS;H_123_RANGESELECTOR_CLASS;H_123_QUERY_CLASS;H_123_QUERYTABLE_C
LASS;H_123_RANGE_CLASS;H_123_RANGEBORDER_CLASS;H_123_RECTANGLE_CLASS;H_123_SHEET_
CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS',0)} See list of
classes

{button ,AL(`H_123_METHODINVOKED_EVENT_EXSCRIPT',1)} See example
Occurs when any method is called on the object.

Internal syntax
MethodInvoked(source, name, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9, arg10, arg11, arg12, arg13,
arg14, arg15)

Parameters
source

The object on which the method executed.
name

String. The name of the method that was called.
arg1, arg2, . . . , arg15

Variant. The values of the first 15 arguments that were passed to the method.

{button ,AL(`H_123_PROPERTYSET_EVENT_MEMDEF',0)} See related topics

' Example: MethodInvoked, PostSave, and PreClose event handlers
' This MethodInvoked handler sets a flag indicating that there are
' key dirty objects, and adds this object to a list of key object types
' that had methods invoked on them.
' You could use the list to formulate detailed criteria for saving a dirty file.
' (This is not done here.)
' To use this handler, bind the MethodInvoked handler in each object
' that you want to monitor, substituting the object's class name
' for BaseObject in the handler definition. Also, bind the PreClose handler
' and initialize the flag in the document.

' In the Globals, declare the flag and list.
Public dirtyObjectList List As Variant
Public dirtyObjects As Variant
' Include LSCONST.LSS in your module, for the MessageBox.

' Bind the following handler to the MethodInvoked event on the object.
Sub MethodInvoked(source As BaseObject, P1 As String)
 ' Add the object class to the list, and set the flag.
 dirtyObjectList(Typename(source)) = True
 dirtyObjects = True
End Sub

' Before a close, put up a warning dialog box if key objects have changed.
Function PreClose(source As Document, saveChanges As Variant) As Variant
 If dirtyObjects = True Then
 MessageBox |This file contains key objects that have changed.
To preserve them, you need to save this file before closing it.|, _
 MB_OK + MB_ICONEXCLAMATION, "Pre-Close Alert"
 End If
End Function

' Reset dirtyObjects when the Document object is created and when it is saved.
Sub Opened(source As Document)
 dirtyObjects = False
End Sub
Sub PostSave(source As Document, status As Variant)
 If status = $Continue Then dirtyObjects = False
End Sub
Sub PostSaveAs(source As Document, status As Variant)
 If status = $Continue Then dirtyObjects = False
End Sub

1-2-3: Moved event
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS',0)}

See list of classes
{button ,AL(`H_123_MOVED_EVENT_EXSCRIPT',1)} See example
Occurs when the window moves.

Internal syntax
Moved(source)

Parameters
source

The window object that moved to a new position.

' Example: ApplicationWindow, Left, Width, Top, Height,
' and DocWindows properties; Moved event handler;
' Resize the window if necessary to keep it within the application window client area.

' Global declarations
Dim docWindow1 As DocWindow ' The doc window whose Moved event is handled.

' Handler for the Moved event.
Sub winMoved(source As DocWindow)
 Dim appWindow As ApplicationWindow
 Set appWindow = CurrentApplication.ApplicationWindow
 If source.Left + source.Width > appWindow.Width Then
 source.Width = appWindow.Width - source.Left
 End If
 If source.Top + source.Height > appWindow.Height Then
 source.Height = appWindow.Height - source.Top
 End If
End Sub

' Bind the winMoved handler in the DocumentOpened event.
Sub DocumentOpened(source As Application)
 Set docWindow1 = ThisDocument.DocWindows(0)
 On Event Moved From docWindow1 Call winMoved
End Sub

' If you want to do the resize in multiple document windows,
' you need to bind the handler for those document windows in the OpenWindow event.

1-2-3: MenuBarReset event
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_MENUBARRESET_EVENT_EXSCRIPT',1)} See example
Occurs when the ResetMenuBar method executes.

Internal syntax
MenuBarReset(source)

Parameters
source

Application. The 1-2-3 application in which the menu bar was reset.

{button ,AL(`H_123_CLOSEWINDOW_EVENT_MEMDEF;H_123_DOCUMENTOPENED_EVENT_MEMDEF;H_123_
OPENED_EVENT_MEMDEF;H_123_LOSTFOCUS_EVENT_MEMDEF;H_123_RESETMENUBAR_METHOD_M
EMDEF',0)} See related topics

1-2-3: NameChange event
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_APPROACHCONNEC

TION_CLASS;H_123_ARC_CLASS;H_123_BASEOBJECT_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_
CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123_DATALINK_CLASS;H_123_DATE
TIME_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H_123_DRAWCOLLECTION_CLAS
S;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CL
ASS;H_123_FONT_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_1
23_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_PLOT_CLASS;H_123_MAPTEXTENTRY_CLASS;H_123_MA
PTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICT
URE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_PRINTSETTINGS_CLASS;H_123_
QUERY_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_123_RANGEBORDER_CLASS;H_1
23_RANGESELECTOR_CLASS;H_123_RECTANGLE_CLASS;H_123_SHEET_CLASS;H_123_VERSION_CLAS
S;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS',0)} See list of classes

{button ,AL(`H_123_NAMECHANGE_EVENT_EXSCRIPT',1)} See example
Occurs when an object's name has been changed.

Internal syntax
NameChange(source)

Parameters
source

The object whose name changed.

' Example: NameChange event handler
' Check the range whose name changed to see if its old name is needed.

' Declare the needed range.
Dim neededRange As Range
' Sub to set up the range whose name is to be monitored.
Sub setNeededRange
 Set neededRange = Bind("C10..C11")
 neededRange.Name = "Init Name"
 ' Bind the handler sub to the event on this range.
 On Event NameChange From neededRange Call nameChangeHandler
End Sub
' NameChange event handler.
Sub nameChangeHandler(source As Range)
 If source.CoordinateString = neededRange.CoordinateString Then
 MessageBox |Warning: The range | & source.CoordinateString & | has been renamed.
 The scripts using the old name need to be updated.|, MB_OK + MB_ICONQUESTION,
_
 "Script 1"
 End If
End Sub
' Sub for testing the event handler. This sub will raise the event.
Sub setNeededRangeName
 neededRange.Name = "New Name"
End Sub

1-2-3: Opened event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_OPENED_EVENT_EXSCRIPT',1)} See example
Occurs when the document opens.

Internal Syntax
Opened(source)

Parameters
source

Document. The object on which the event was raised.

' Example: Opened event handler
' The following example adds a custom menu to a document whenever the

' document opens.
' Note: This example only adds a menu.
' To remove the menu when the document closes, use Example #1
' for the PostClose event.

Dim myMenu As Menu ' Add to Global declarations

Sub Opened(Source As Document)
 ' Create a menu.
 Set myMenu = CurrentApplication.NewMenu
 myMenu.MenuText = "Menu title"
 ' Script to set up the menu's items omitted.
 ' Place the menu at the 5th position in the menu bar.
 CurrentApplication.CurrentMenubar.AddMenu 5, myMenu
End Sub

1-2-3: OpenWindow event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_OPENWINDOW_EVENT_EXSCRIPT',1)} See example
Occurs when a workbook (document) window opens.

Internal Syntax
OpenWindow(source)

Parameters
source

Document. The object on which the event occurred.

' Example: OpenWindow event handler
' The following example sets a global variable when the document is opened
' in a window.

Dim windowOpened As Variant ' A Global Declaration

Sub Openwindow(Source As Document)
windowOpened = True

End Sub

1-2-3: Poll1 event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_POLL1_POLL2_POLL3_POLL4_EVENT_EXSCRIPT',1)} See example
This event occurs at the interval specified in the StartPoll method that activated it.

Internal Syntax
Poll1(source)

Parameters
source

Document. The object on which the event occurred.

Usage
Each document has four poll events. These can be used in any combination and can trigger at overlapping intervals.
For example, one poll event could save the document at one hour intervals, another poll event could print the
document at two hour intervals, and so on.

{button ,AL(`H_123_STARTPOLL_METHOD_MEMDEF;H_123_POLL2_EVENT_MEMDEF;H_123_POLL3_EVENT_
MEMDEF;H_123_POLL4_EVENT_MEMDEF',0)} See related topics

' Example: Poll1, Poll2, Poll3, Poll4 event handler

' Like all poll events, the following example for the Poll1
' event handler can be used for any of the other polls
' (Poll2, Poll3, or Poll4). For example, to use this example
' for Poll 2, change the two instances of 1 to 2.

' In the following example, the script for the Opened event
' turns on Poll1 and specifies that it should raise
' at one hour intervals (every 3600000 milliseconds)
' until the document closes. Then, the script for the Poll1
' event saves the document once per hour.

Sub Opened(Source As Document)
 CurrentDocument.StartPoll 1, 3600000, 0
End Sub

Sub Poll1(Source As Document)
 Source.Save
End Sub

1-2-3: Poll2 event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_POLL1_POLL2_POLL3_POLL4_EVENT_EXSCRIPT',1)} See example
This event occurs at the interval specified in the StartPoll method that activated it.

Internal Syntax
Poll2(source)

Parameters
source

Document. The object on which the event occurred.

Usage
Each document has four poll events. These can be used in any combination and can trigger at overlapping intervals.
For example, one poll event could save the document at one hour intervals, another poll event could print the
document at two hour intervals, and so on.

{button ,AL(`H_123_STARTPOLL_METHOD_MEMDEF;H_123_POLL1_EVENT_MEMDEF;H_123_POLL3_EVENT_
MEMDEF;H_123_POLL4_EVENT_MEMDEF',0)} See related topics

1-2-3: Poll3 event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_POLL1_POLL2_POLL3_POLL4_EVENT_EXSCRIPT',1)} See example
This event occurs at the interval specified in the StartPoll method that activated it.

Internal Syntax
Poll3(source)

Parameters
source

Document. The object on which the event occurred.

Usage
Each document has four poll events. These can be used in any combination and can trigger at overlapping intervals.
For example, one poll event could save the document at one hour intervals, another poll event could print the
document at two hour intervals, and so on.

{button ,AL(`H_123_STARTPOLL_METHOD_MEMDEF;H_123_POLL2_EVENT_MEMDEF;H_123_POLL1_EVENT_
MEMDEF;H_123_POLL4_EVENT_MEMDEF',0)} See related topics

1-2-3: Poll4 event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_POLL1_POLL2_POLL3_POLL4_EVENT_EXSCRIPT',1)} See example
This event occurs at the interval specified in the StartPoll method that activated it.

Internal Syntax
Poll4(source)

Parameters
source

Document. The object on which the event occurred.

Usage
Each document has four poll events. These can be used in any combination and can trigger at overlapping intervals.
For example, one poll event could save the document at one hour intervals, another poll event could print the
document at two hour intervals, and so on.

{button ,AL(`H_123_STARTPOLL_METHOD_MEMDEF;H_123_POLL2_EVENT_MEMDEF;H_123_POLL3_EVENT_
MEMDEF;H_123_POLL1_EVENT_MEMDEF',0)} See related topics

1-2-3: PostClose event
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;

H_123_WINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_123_PRECLOSE_EVENT_EXSCRIPT',1)} See example
Occurs only after the PreClose event event has blocked a close. If the PreClose event allows the object to close
(without blocking the close), the script attached to the PostClose event never runs, because the object has closed.

Internal Syntax
PostClose(source, status)

Parameters
source

The object on which the event occurred.
status

Variant (enumeration). Indicates that the document close was blocked. The value for this argument is always
$Block.

1-2-3: PostSaveAs event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_PRESAVEAS_EVENT_EXSCRIPT',1)} See example
The PostSaveAs event is raised after a SaveAs command has either occurred or been blocked.

Internal Syntax
PostSaveAs(source, status)

Parameters
source

Document. The object on which the event occurred.
status

Variant (enumeration). Indicates whether the SaveAs command is blocked or not. The following table lists the
possible values for the status argument.

Value Description
$Block The SaveAs command is blocked.
$Continue The SaveAs command is not blocked.

{button ,AL(`H_123_PRESAVEAS_EVENT_MEMDEF',0)} See related topics

1-2-3: PostSave event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_PRESAVE_EVENT_EXSCRIPT',1)} See example
The PostSave event is raised after a Save command has either occurred or been blocked.

Internal Syntax
PostSave(source, status)

Parameters
source

Document. The object on which the event occurred.
status

Variant (enumeration). Indicates whether the Save command is blocked or not. The following table lists the
possible values for the status argument.

Value Description
$Block The Save command is blocked.
$Continue The Save command is not blocked.

1-2-3: PreClose event
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;

H_123_WINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_123_PRECLOSE_EVENT_EXSCRIPT',1)} See example
Occurs when an object is about to close. The script you add to this event should determine whether to allow or block
a document close.
The script attached to this event can get properties, but it cannot set properties or call object methods.

Internal Syntax
PreClose(source, savechanges)

Parameters
source

The object on which the event occurred.
savechanges

Variant (Boolean). Indicates whether to save any changes that have been made to the file (value True) or not
(value False).

Return values
The following table lists the possible return values for this event.

Value Description
$Block Blocks the close and raises the PostClose event.
$Continue Continues the close and doesn't raise the PostClose event.

Usage
You can use PreClose handlers when you want your script to do something whenever the object closes.

' Example: ResetMenuBar method; PreClose and PostClose event handlers
' Example 1

' In the following example, the PreClose and PostClose events are used to
' reset the menu bar whenever the document is closed.
' This removes all custom menus displayed while the document was open.

' Global declaration.
Dim isMenu1Up As Variant ' Boolean flag indicating a custom menu is up.

Function PreClose(source As Document, p1 As Variant) As Variant
 If isMenu1Up = False Then
 ' Continue the close. The menu bar has already been reset.
 PreClose = $Continue
 Else
 ' Block the close and raise the PostClose event.
 PreClose = $Block
 End If
End Function

Sub PostClose(source As Document, p1 As Variant)
' PostClose is raised only when PreClose returns $Block.
 ' Reset the menu bar.
 CurrentApplication.ResetMenuBar
 ' Allow the Close method to proceed.
 isMenu1Up = False
 ' Now actually close the document.
 source.Close
End Sub

' Example 2
' The following PreClose event displays a message box which asks whether the
' user really wants to close the document. If the user clicks YES, the
' PostClose event is never raised.

Function PreClose(Source As Document, P1 As Variant) As Variant
r = Msgbox("Close this document?", 4, "Confirmation")
If r = 6 Then

' User clicked YES.
' Continue the close.
PreClose = $Continue

Else
' User clicked NO.
' Block the close and raise PostClose.
PreClose = $Block

End If
End Function

' PostClose is raised only when PreClose returns $Block.
Sub PostClose(Source As Document, P1 As Variant)

Msgbox "Closure has been blocked!",,"1-2-3"
End Sub

1-2-3: PreSaveAs event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_PRESAVEAS_EVENT_EXSCRIPT',1)} See example
Occurs when a document is about to be saved using the SaveAs command. The script you add to this event should
determine whether to allow or block the SaveAs command.
The script attached to this event can get properties, but it cannot set properties or call object methods.

Internal Syntax
PreSaveAs(source, filename, [location], [filetype], [backup], [password], [addtorecentfiles])

Parameters
source

Document. The object on which the event occurred.
filename

String. The name of the file, or the name and full path to the file.
location

(Optional) String. The container or path where the file is to be saved.
filetype

(Optional) String. The file format to be used. The default is 1-2-3 97 workbook format. The following table lists the
allowed values for this parameter.

Value Description
"1-2-3 (123)" 1-2-3 97 workbook
"1-2-3 (WK4)" 1-2-3 for Windows Release 4
"1-2-3 (WK3)" 1-2-3 for DOS Releases 3, 4;

1-2-3 for Windows Release 1
"1-2-3 (WK1)" 1-2-3 for DOS Release 2
"SmartMaster (12M)" 1-2-3 SmartMaster template
"Text (TXT)" Text
"Comma-delimited text (TXT)" Comma-delimited text
"Excel Worksheet (XLS)" Microsoft Excel worksheet
"Excel Workbook (XLW)" Microsoft Excel workbook

backup
(Optional) Variant (Boolean). Specifies whether to back up the file (value True) or not (value False). If this
argument is specified as False, 1-2-3 replaces the file with the one being saved.

password
(Optional) String. A password associated with the document. If this argument is not specified, the file has no
password.

addtorecentfiles
(Optional) Variant (Boolean). Specifies whether to add the file to the most recent file list (value True) or not (value
False). The default is not to add it (False).

Return values
The following table lists the possible return values for this event.

Value Description
$Block Blocks the close and raises the PostSaveAs event.
$Continue Continues the close and doesn't raise the

PostSaveAs event.

{button ,AL(`H_123_POSTSAVEAS_EVENT_MEMDEF',0)} See related topics

' Exmple: PreSaveAs and PostSaveAs event handlers
' Allow the user to block a SaveAs command or not to.

Function PreSaveAs(Source As Document, P1 As String, P2 As String, P3 As String, P4 As
Variant, P5 As String, P6 As Variant) As Variant

r = Msgbox("Save this document?", 4, "Confirmation")
If r = 6 Then

' User clicked YES.
' Continue the SaveAs, then raise the PostSaveAs event.
PreSaveAs = $Continue

Else
' User clicked NO.
' Block the SaveAs and raise the PostSaveAs event.
PreSaveAs = $Block

End If
End Function

Sub PostSaveAs(Source As Document, P1 As Variant)
 ' P1 will be 1 if the SaveAs command was blocked
 ' or 0 if it wasn't.
 If (P1 = $Block) Then
 Msgbox "This SaveAs command was blocked.",, "1-2-3"
 End If
End Sub

1-2-3: PreSave event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_PRESAVE_EVENT_EXSCRIPT',1)} See example
Occurs when a document is about to be saved. The script you add to this event should determine whether to allow or
block a save.
The script attached to this event can get properties, but it cannot set properties or call object methods.

Internal Syntax
PreSave(source)

Parameters
source

Document. The object on which the event occurred.

' Example: PreSave and PostSave event handlers
' The following PreSave event handler demonstrates that
' you can block a document save. Then the PostSave event handler
' indicates whether the document was saved.

' Make a document's PreSave event handler as follows:
Function PreSave(Source As Document) As Variant

r = Msgbox("Save this document?", 4, "Confirmation")
If r = 6 Then

' User clicked YES.
' Continue the Save, then raise PostSave.
PreSave = $Continue

Else
' User clicked NO.
' Block the Save and raise PostSave.
PreSave = $Block

End If
End Function

' Make the same document's PostSave event handler as follows:
Sub PostSave(Source As Document, P1 As Variant)

' P1 will be $Block if the Save was blocked or $Continue if it wasn't.
If (P1 = $Block) Then

Msgbox "This Save was blocked.",, "1-2-3"
Else

Msgbox "Document saved.",, "1-2-3"
End If

End Sub

1-2-3: PropertySet event
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_APPROACHCONNEC

TION_CLASS;H_123_ARC_CLASS;H_123_BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BU
TTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123
_DATALINK_CLASS;H_123_DATETIME_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H
_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITT
EXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CL
ASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_PLOT_CLASS;H_123_MA
PTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_123_O
LEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_P
RINTSETTINGS_CLASS;H_123_QUERY_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_12
3_RANGEBORDER_CLASS;H_123_RANGESELECTOR_CLASS;H_123_RECTANGLE_CLASS;H_123_SHEET_
CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS',0)} See list of
classes

{button ,AL(`H_123_PROPERTYSET_EVENT_EXSCRIPT',1)} See example
Occurs when any property is set on the object.

Internal syntax
PropertySet(source, name, value)

Parameters
source

The object on which the property was set.
name

String. The name of the property that was set.
value

Variant. The new value of the property.

{button ,AL(`H_123_METHODINVOKED_EVENT_MEMDEF',0)} See related topics

' Example: FormatName property; PropertySet event handler
' Display a warning if a range's format is changed to a problematic format.
Sub PropertySet(source As Range, sourcename As String, value As Variant)
 If sourcename = "FormatName" And source.FormatName <> "General" Then
 MessageBox "Range format changed from General to " & value & _
 ". Some values may not display.", MB_OK + MB_ICONINFORMATION, _
 "Script 1"
 End If
End Sub

1-2-3: Resized event
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS',0)}

See list of classes
{button ,AL(`H_123_RESIZED_EVENT_EXSCRIPT',1)} See example
Occurs when a window has been resized.

Internal syntax
Resized(source)

Parameters
source

The window that was resized.

{button ,AL(`H_123_MOVED_EVENT_MEMDEF',0)} See related topics

' Example: Resized event handler
' Resize a control when the parent window Resized event occurs.

' Global declarations.
Dim scale As Single ' Scale factor for resizing
Dim docWindow1 As DocWindow ' Doc window in which to resize

' DocumentOpened event handler to bind the Resized event handler.
Sub DocumentOpened(source As Application)
 Set docWindow1 = ThisDocument.DocWindows(0)
 ' Bind the Resized event handler in the first document window.
 On Event Resized From docWindow1 Call myResizedHandler
 ' Use a scale factor of 0.5 and convert to twips (1/1440 inch) from pixels
 ' for a monitor with a screen resolution of 120 dots per inch.
 ' DrawObjects are in twips, but window size is in pixels.
 ' Get the screen DPI for Windows 95 from HKEY_CURRENT_CONFIG\Display\Settings.
 scale = 0.5 * 1440 / 120
End Sub

' Handler sub for the Resized event.
Sub myResizedHandler(source As DocWindow)
 ' Resize the first DrawObject.
 ThisDocument.DrawnObjects(0).Height = scale * source.Height
 ThisDocument.DrawnObjects(0).Width = scale * source.Width
End Sub

' The above handler is satisfactory for centrally located objects,
' but you may want a more precise size adjustment for offset objects,
' based on the position of the object.

1-2-3: Selected event
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_QUERY_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLA
SS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_C
LASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_
MAPTITLE_CLASS;H_123_PLOT_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POL
YGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_123_REC
TANGLE_CLASS;H_123_SHEET_CLASS',0)} See list of classes

{button ,AL(`H_123_SELECTED_EVENT_EXSCRIPT',1)} See example
Occurs when the object is selected.

Internal syntax
Selected(source)

Parameters
source

The object that was selected.

{button ,AL(`H_123_DESELECTED_EVENT_MEMDEF;H_123_CLICK_EVENT_MEMDEF;H_123_GETFOCUS_EVE
NT_MEMDEF;H_123_LOSTFOCUS_EVENT_MEMDEF',0)} See related topics

' Example: Cells and OpenDocumentFromInternet methods;
' Selected event handler
' Launch a web browser using a URL entered in the source cell.
Sub Selected(source As Range)
 Dim sourceURL As String
 ' Take the URL from the first cell in the source range.
 sourceURL = source.Cells(0).Contents
 ' Delete the label-prefix character that 1-2-3 puts in label cells.
 sourceURL = Mid(sourceURL, 2)
 ' Verify that the selection was intentional.
 If IDYES = MessageBox("Browse the page " & sourceURL & " ?", _
 MB_YESNO + MB_ICONQUESTION, _
 ThisDocument.Name & " script") Then
 ' Launch the Web browser.
 Dim taskID As Integer
 taskID = Shell(|C:\Program Files\Netscape\Navigator\Program\netscape | & sourceURL,
1)
 End If
 ' Note: It's not necessary to assume the user has
 ' Netscape Navigator installed in a particular path.
 ' You can find the user's default browser using the script
 ' for the Internet Tool "Create a button with a link to a URL."
 ' Click View - Show Internet Tools, create the button,
 ' and copy its script.
End Sub

1-2-3: SheetChange event
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHEETCHANGE_EVENT_EXSCRIPT',1)} See example
Occurs when a different sheet becomes the current sheet.

Internal Syntax
SheetChange(source)

Parameters
source

Document. The object on which the event occurred.

' Example: SheetChange event handler
' The SheetChange event is useful for controlling whether the sheet should
' really change.

' Assume there are two sheets and each one contains a button. You want to
' prevent navigation from one sheet to another until a button is clicked.

' Global declarations.
Dim LastSheet As Variant
Dim AllowSheetChange As Integer

' Set up each button's Click event.
Sub Click(Source As Buttoncontrol)

AllowSheetChange = True
End Sub

' Set up the SheetChange event.
Sub SheetChange(Source As Document)

If AllowSheetChange = False Then
AllowSheetChange = True
CurrentDocument.Sheets(LastSheet.SheetName).TurnTo

Else
Set LastSheet = CurrentDocument.CurrentSheet
AllowSheetChange = False

End If
End Sub

' Set up the document's Opened event.
Sub Opened(Source As Document)

Set LastSheet = CurrentDocument.CurrentSheet
AllowSheetChange = False

End Sub

1-2-3: StartPrint event
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_STARTPRINT_ENDPRINT_CANCELPRINT_EVENT_EXSCRIPT',1)} See example
Occurs after a user clicks Print in the Print dialog box or calls the Print method, and 1-2-3 has started transmitting
print pages to the print queue.

Internal Syntax
StartPrint(source)

Parameters
source

Application. The object on which the event occurred.

1-2-3: Terminate sub
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_12

3_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_DATALINK_CLASS;H_123_DOCUMENT_CLAS
S;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDI
TTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_LEGEN
D_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_MAPPLOT_CLASS;H_123_MAPTEXTENTRY_
CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_123_OLEOBJECT_CL
ASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERY_CLASS;
H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_123_RECTANGLE_CLASS;H_123_SHEET_CLASS',
0)} See list of classes

{button ,AL(`H_123_TERMINATE_EVENT_EXSCRIPT',1)} See example
In 1-2-3, an object's Terminate sub runs when the object is deleted.

Internal syntax
Terminate

Parameters
None

Usage
The Terminate sub resembles a 1-2-3 event, but doesn't have any parameters.
You can use Terminate to clean up after an object (such as closing files and deleting unneeded auxiliary objects)
when the object is deleted.

' Example: Terminate sub
' Delete a custom object not needed outside this object.

' In the Initialize sub, instantiate the custom object.
Sub Initialize
Dim myInstance As New myClass
End Sub

' In the Terminate sub, delete the object reference.
Sub Terminate
 Delete myInstance
End Sub

1-2-3: ValueChange event
{button ,AL(`H_123_BUTTONCONTROL_CLASS;H_123_EDITTEXT_CLASS;H_123_MAPTITLE_CLASS',0)} See

list of classes
{button ,AL(`H_123_VALUECHANGE_EVENT_EXSCRIPT',1)} See example
Occurs when the Text property of the object is changed.

Internal syntax
ValueChange(source)

Parameters
source

The object on which the event occurred.

' Example: ValueChange event handler
' Copy the new Text value into a cell.
Sub ValueChange (source As EditText)
 [A:C10].Contents = source.Text
End Sub

1-2-3 predefined global product variables
1-2-3 supports five predefined global variables that greatly simplify script object references.

Variable Description
CurrentApplication Represents the current

session of 1-2-3 and is the
object at the top of the entire
hierarchy. Uses the properties
and methods of the Application
class.

CurrentDocument Represents the current 1-2-3
document (.123 file) in the
current 1-2-3 session. Uses
the properties and methods of
the Document class.

CurrentWindow Represents the window in
which 1-2-3 displays the
current document and uses
the properties and methods of
the DocWindow class.

Selection Represents the currently
selected object, for example,
the currently selected range,
chart, or graphic object.

ThisDocument Represents the document that
contains the script that is
currently running. Uses the
properties and methods of the
Document class.

1-2-3 LotusScript constants
You can select the following 1-2-3 constants from the Browser:

Constant Description
ClearBorder Clear the cell border
ClearComments Clear the cell comment
ClearData Clear the cell contents
ClearFormat Clear the data format
ClearScripts Clear the scripts
ClearStyle Clear the style
MemberOfCollection The range is a member of the

current worksheet collection
MultiCellOverlapped The range contains versions,

and some cells overlap
another range that contains
versions

NotVersioned The range contains no
versions

PasteBorders Paste object borders
PasteComments Paste cell comments
PasteData Paste cell contents, but leave

the styles in the target object
intact

PasteFormulas Paste both cell contents and
styles, but convert all formulas
to values

PasteDrawObjectsWithRange Paste any graphic objects
associated with the 1-2-3
range on the Clipboard

PasteStyleAndNumberFormats Paste all formatting done with
the InfoBox

SingleCellOverlapped The range contains versions,
and one cell overlaps another
range that contains versions

VersionBordered The range contains versions,
and the version border is
visible

Versioned The range contains versions
VersionedHiddenCurrent The range contains versions,

and they are hidden

1-2-3: Activate method
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;

H_123_WINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_123_ACTIVATE_METHOD_EXSCRIPT',1)} See example
Activates the document, application, or window.

Syntax
object.Activate

Parameters
None

Return values
None

Usage
For a Document object, this method activates the last active DocWindow it finds.

{button ,AL(`H_123_GOTO_METHOD_MEMDEF;H_123_SCROLLTOACTIVECELL_METHOD_MEMDEF;H_123_NE
WDOCUMENT_METHOD_MEMDEF;H_123_ACTIVE_PROPERTY_MEMDEF;H_123_ACTIVEDOCUMENT_PR
OPERTY_MEMDEF;H_123_ACTIVEDOCWINDOW_PROPERTY_MEMDEF',0)} See related topics

' Example: Activate method and NewDocument method
' Create 2 documents and activate the first one.
Dim document1 As Document, document2 As Document
Set document1 = CurrentApplication.NewDocument("Doc #1")
' Doc #1 is now current.
Set document2 = CurrentApplication.NewDocument("Doc #2")
' Doc #2 is now current.
' To make Doc #1 current, activate it.
document1.Activate

1-2-3: AddItem method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS;',0)} See list of classes
{button ,AL(`H_123_ADDITEM_METHOD_EXSCRIPT',1)} See example
Adds a non-submenu item to a menu or menu bar and binds a specified script to it. The item script is executed when
the user chooses the item.

Syntax
object.AddItem position, menutext, menuprompt, scriptdocument, scriptname

Parameters
position

Long. The new item's position in the menu.

Value Description
Positive integer The new item's position in the menu,

counting forward from the beginning. The
value 1 means after the first existing item. If
position exceeds the position of the last
existing item, the new item is placed at the
end.

Zero Place the new item before the first existing
menu item.

Negative integer The new item's position in the menu,
counting backward from the end. The value
–1 means the last position.

menutext
String. Text for the new item to display in the menu. An & (ampersand) before any letter specifies the shortcut key
for the item.

menuprompt
String. The long prompt for the item.

scriptdocument
Document. The file containing the global script to be called by the item. This must be either a reference to a
Document object in the form [docname.123] or the predefined global variable ThisDocument. For example,
[mysheet.123].

scriptname
String. The name of the global script or sub to call when the user chooses the menu item. This script can employ
the full set of 1-2-3 methods and properties, as well as LotusScript language elements.

Return values
None

Usage
An item added by this method only executes its script, and doesn't display a submenu. To add a submenu to a menu
or menu bar, use the AddMenu method.
If the item script sets a property, you can indicate the status of the setting by calling the CheckItem or UncheckItem
method in the item script.
You can't add an item or menu between any special menus that 1-2-3 displays in specific contexts.

{button ,AL(`H_123_ADDSEPARATOR_METHOD_MEMDEF;H_123_CHECKITEM_METHOD_MEMDEF;H_123_DIS
ABLEITEM_METHOD_MEMDEF;H_123_ENABLEITEM_METHOD_MEMDEF;H_123_REMOVEITEM_METHOD_
MEMDEF;H_123_REPLACEITEM_METHOD_MEMDEF;H_123_UNCHECKITEM_METHOD_MEMDEF;H_123_N
EWMENU_METHOD_MEMDEF;H_123_NEWMENUBAR_METHOD_MEMDEF;H_123_MENUPROMPT_PROPE
RTY_MEMDEF;H_123_MENUTEXT_PROPERTY_MEMDEF',0)} See related topics

' Example: AddItem method and NewMenu method
' Create a menu and add 2 menu items to it.
' You need item handler scripts available for each item in the menu.
' The sample item handlers for this script just flip a Boolean property.

' Global declarations.
Dim menu1 As Menu ' Custom menu to add to the menu bar
Dim settingValue1 As Variant ' The Boolean property to be set by the menu
item
Dim settingPos1 As Long ' The menu position of the property item
Dim settingValue2 As Variant ' The Boolean property to be set by the menu
item
Dim settingPos2 As Long ' The menu position of the property item

' Create the custom menu.
Sub createMenu
 ' Create the custom menu object.
 Set menu1 = CurrentApplication.NewMenu
 ' Set up display text for the custom menu.
 menu1.MenuText = "&Autotasks"
 menu1.MenuPrompt = "Custom automated tasks"
 ' Initialize the custom menu items.
 settingPos1 = 1
 settingPos2 = 2
 settingValue1 = False
 settingValue1 = False
 ' Add the items to the custom menu.
 menu1.AddItem settingPos1, "Menu pick 1", "Prompt 1", ThisDocument, "itemHandler1"
 menu1.AddItem settingPos2, "Menu pick 2", "Prompt 2", ThisDocument, "itemHandler2"
 ' Add the custom menu to the menu bar in the third-from-last position.
 CurrentApplication.CurrentMenuBar.AddMenu -3, menu1
End Sub

' Handler script for the first custom menu item.
' It reverses a Boolean property and indicates the setting with a check mark.
Sub itemHandler1
 ' Set the property.
 settingValue1 = Not settingValue1
 ' Set the menu item check mark.
 If settingValue1 = True Then menu1.CheckItem settingPos1
 If settingValue1 = False Then menu1.UncheckItem settingPos1
End Sub

' Handler script for the second custom menu item.
' It reverses a Boolean property and indicates the setting with a check mark.
Sub itemHandler2
 ' Set the property.
 settingValue2 = Not settingValue2
 ' Set the menu item check mark.
 If settingValue2 = True Then menu1.CheckItem settingPos2
 If settingValue2 = False Then menu1.UncheckItem settingPos2
End Sub

1-2-3: AddMenu method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS;',0)} See list of classes
{button ,AL(`H_123_ADDMENU_METHOD_EXSCRIPT',1)} See example
Adds a submenu to a menu, or a new menu to a menu bar.

Syntax
object.AddMenu position, newmenu

Parameters
position

Long. The new menu's position in the menu.

Value Description
Positive integer The new menu's position in the menu,

counting forward from the beginning.
The value 1 means after the first
existing item or menu. If position
exceeds the last existing item's
position, the new menu will be placed at
the end.

Zero Place the new menu before the first
existing item or menu.

Negative integer The new menu's position in the menu,
counting backward from the end. The
value –1 means the last position.

newmenu
Menu. The menu to add.

Return values
None

Usage
To add a menu to the current menu bar, run this method on the Application.CurrentMenuBar property, which contains
the current menu bar object.
To add a non-submenu item to a menu, instead of adding a submenu, use the AddItem method. A non-submenu item
only executes its script when clicked, and doesn't display a submenu.
1-2-3 doesn't add menus between any special menus that 1-2-3 displays in specific contexts. If position is between
special menus, 1-2-3 adds the new menu next to an adjacent fixed menu.
For menus participating in OLE in-place editing, you must add your menu next to the fixed menu of the same type as
the embedded participation type of your menu. For example, if the EmbeddedParticipation property of your menu has
the value $FileGroup, you must add your menu next to the File menu.

{button ,AL(`H_123_EMBEDDEDPARTICIPATION_PROPERTY_MEMDEF;H_123_ADDITEM_METHOD_MEMDEF;
H_123_ADDSEPARATOR_METHOD_MEMDEF;H_123_CHECKITEM_METHOD_MEMDEF;H_123_DISABLEITE
M_METHOD_MEMDEF;H_123_ENABLEITEM_METHOD_MEMDEF;H_123_REMOVEITEM_METHOD_MEMDE
F;H_123_REPLACEITEM_METHOD_MEMDEF;H_123_REPLACEMENU_METHOD_MEMDEF;H_123_RESETM
ENUBAR_METHOD_MEMDEF;H_123_UNCHECKITEM_METHOD_MEMDEF;H_123_MENUBARRESET_EVEN
T_MEMDEF;H_123_GETMENU_METHOD_MEMDEF;H_123_GETMENUPOSITION_METHOD_MEMDEF;H_123
_NEWMENU_METHOD_MEMDEF;H_123_NEWMENUBAR_METHOD_MEMDEF;H_123_CURRENTMENUBAR
_PROPERTY_MEMDEF;H_123_MENUPROMPT_PROPERTY_MEMDEF;H_123_MENUTEXT_PROPERTY_ME
MDEF',0)} See related topics

' Example: AddMenu, NewMenu, AddItem, ResetMenuBar, and Close methods;
' CurrentMenuBar, MenuText, and MenuPrompt properties;
' Opened, PreClose, and PostClose events.

' Create a menu and add a menu item to it. Add the menu to the menu bar.
' For example, do this in the Document.Opened event handler.

' This example is suitable when the custom menu will not interfere
' with other documents that may be open. If you don't want the custom menu up
' when another document is current, use the example for the GetFocus method
' instead of this example.

' In the Globals, declare the submenu and item position,
' so the item handler can find them.
Dim isMenu1Up As Variant ' Flag to prevent adding menu1 twice
Dim menu1 As Menu ' Custom menu to add to the menu bar
Dim docWindow1 As DocWindow ' First doc window
Dim settingValue As Variant ' The Boolean property to be set by the menu item
Dim settingPos As Long ' The position of the menu item in the menu

' Build and display the custom menu when the document opens.
' Bind this event handler to the Opened event on your document.
Sub Opened(Source As Document)
 ' Initialize the menu flag.
 isMenu1Up = False
 ' Create the custom menu.
 Set menu1 = CurrentApplication.NewMenu
 ' Set up display text for the custom menu.
 menu1.MenuText = "&Autotasks"
 menu1.MenuPrompt = "Custom automated tasks"
 ' Add items to the menu here ...
 menu1.AddItem 1, "Task 1", "Prompt 1", ThisDocument, "itemHandler1"
 ' Initialize the item settings.
 settingValue = False
 settingPos = 1
 ' Add menu 1 to the menu bar in the third-from-last position.
 CurrentApplication.CurrentMenuBar.AddMenu -3, menu1
 isMenu1Up = True
End Sub

' Handler for the menu item.
Sub itemHandler1
 ' Set the property.
 settingValue = Not settingValue
 ' Set the menu item check mark.
 If settingValue = True Then menu1.CheckItem settingPos
 If settingValue = False Then menu1.UncheckItem settingPos
End Sub

' Remove the custom menu when the document is closed.
' Bind these handlers to the PreClose and PostClose events.

Function Preclose(Source As Document, P1 As Variant) As Variant
 If isMenu1Up = False Then
 ' Continue the close. The menu bar has already been reset.
 PreClose = $Continue
 Else
 ' Block the close and raise the PostClose event.
 PreClose = $Block
 End If
End Function
Sub Postclose(Source As Document, P1 As Variant)
' PostClose is raised only when PreClose returns $Block.
 ' Reset the menu bar.
 CurrentApplication.ResetMenuBar
 ' Allow the Close method to proceed.
 isMenu1Up = False
 ' Now actually close the document.
 source.Close
End Sub

1-2-3: AddOverlay method
{button ,AL(`H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS;H_123_MAP_CLASS',0)} See list of

classes
{button ,AL(`H_123_ADDOVERLAY_METHOD_EXSCRIPT',1)} See example
Adds an overlay to the map.

Syntax
map.AddOverlay overlayname, [location]

Parameters
overlayname

String. The file name of the overlay (for example, "USA.TV")
location

(Optional) String. The location of the overlay file.

Return values
None

Usage
You can use this method to add broader context or more detail, such as smaller divisions, to the map.

{button ,AL(`H_123_REMOVEOVERLAY_METHOD_MEMDEF;H_123_NEWMAP_METHOD_MEMDEF',0)} See
related topics

' Example: AddOverlay, NewMap methods
' Add an overlay USA.TV to a world map.
' First, create a map of data into colors by country on a world map.
[A:B2].Contents = "United States"
[A:B3].Contents = "Germany"
[A:B4].Contents = "Australia"
[A:C2].Contents = "20"
[A:C3].Contents = "30"
[A:C4].Contents = "40"
Dim worldMap As Map
Set worldMap = [A].NewMap(1440, 1440, 8640, 7200, [A:B2..A:C4], "World Countries")
' Add an overlay of state boundaries to the US part of the map.
worldMap.AddOverlay "usa.tv"

1-2-3: AddPoint method
{button ,AL(`H_123_DRAWLINE_CLASS;H_123_FREEHAND_CLASS;H_123_POLYGON_CLASS;H_123_POLYLIN

E_CLASS',0)} See list of classes
{button ,AL(`H_123_ADDPOINT_METHOD_EXSCRIPT',1)} See example
Adds a new point to a Polyline, Polygon, or Freehand drawing, and draws a line to that point.

Syntax
drawobject.AddPoint xposition, yposition

Parameters
xposition

Long. The horizontal position of the new point, relative to the origin of the spreadsheet (the upper left corner). The
units are twips.

yposition
Long. The vertical position of the new point, relative to the origin of the spreadsheet. The positive direction, like
row numbers, is down. The units are twips.

Return values
None

{button ,AL(`H_123_MOVEPOINT_METHOD_MEMDEF;H_123_NEWDRAWLINE_METHOD_MEMDEF;H_123_NE
WFREEHAND_METHOD_MEMDEF;H_123_NEWPOLYGON_METHOD_MEMDEF;H_123_NEWPOLYLINE_MET
HOD_MEMDEF;H_123_POINTX_METHOD_MEMDEF;H_123_POINTY_METHOD_MEMDEF;H_123_POINTCO
UNT_PROPERTY_MEMDEF',0)} See related topics

' Example: AddPoint and NewPolygon methods
' Draw a triangle on sheet A pointing left.
Dim myPolygon As Polygon
' Begin by creating a Polygon object and drawing the first line segment.
Set myPolygon = [A].NewPolygon (1440, 2160, 2880, 2880)
' Draw the second line segment.
myPolygon.AddPoint 2880, 1440
' 1-2-3 automatically draws the third line segment,
' by connecting the first point to the last.

1-2-3: AddSelectField method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_ADDSELECTFIELD_METHOD_EXSCRIPT',1)} See example
Adds a field to this DataQuery object. The field is displayed as the last field in the query table, unless you specify the
existing field before which the new field is to be added.

Syntax
dataquery.AddSelectField newfield, [nextfield]

Parameters
newfield

String. The name of the field to add to the query.
nextfield

(Optional) String. The name of the field before which the new field is to be added. If you omit this parameter, the
new field is added as the last field in the query.

Return values
None

{button ,AL(`H_123_CREATECOMPUTEDFIELD_METHOD_MEMDEF;H_123_DELETECOMPUTEDFIELD_METHO
D_MEMDEF;H_123_FIELDAGGREGATETYPE_METHOD_MEMDEF;H_123_FIELDALIAS_METHOD_MEMDEF;
H_123_FIELDEXAMPLEVALUE_METHOD_MEMDEF;H_123_REMOVESELECTFIELD_METHOD_MEMDEF;H_
123_SELECTFIELDS_PROPERTY_MEMDEF;H_123_NEWQUERY_METHOD_MEMDEF',0)} See related topics

' Example: OutputLocation and SelectFields properties;
' AddSelectField, DeleteQuery, NewQuery, Refresh methods
' Create a new query with four fields, then modify the query field selection.

' First, set up the query.
[A:B2].Contents = "Field 1"
[A:C2].Contents = "Field 2"
[A:D2].Contents = "Field 3"
[A:E2].Contents = "Field 4"
CurrentDocument.NewQuery "Query1", "A:B2..A:E10"
' Run the query.
[Query1].OutputLocation = "A:A13"
[Query1].Refresh

' Reduce the fields in the query to fields 1 and 2.
[Query1].SelectFields = "Field 1;Field 2"

' Add Field 4 to the end of the query.
[Query1].AddSelectField "Field 4"
' Add Field 3 to the query before Field 4.
[Query1].AddSelectField "Field 3", "Field 4"

' If necessary, delete the query when finished.
CurrentDocument.DeleteQuery "Query1"

1-2-3: AddSeparator method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS;',0)} See list of classes
{button ,AL(`H_123_ADDSEPARATOR_METHOD_EXSCRIPT',1)} See example
Adds a separator to a menu.

Syntax
object.AddSeparator position

Parameters
position

Long. The separator's position in the menu.

Value Description
Positive integer The new separator's position in the menu,

counting forward from the beginning. The
value 1 means after the first menu item. If
position exceeds the last existing item's
position, the new separator is placed at
the end.

Zero Place the new separator before the first
menu item.

Negative integer The new separator's position in the menu,
counting backward from the end. The
value –2 means before the last menu
item.

Return values
None

Usage
Use a separator to categorize groups of menu items.
If the separator is in the last position, it is not visible.

{button ,AL(`H_123_ADDITEM_METHOD_MEMDEF;H_123_CHECKITEM_METHOD_MEMDEF;H_123_REMOVEIT
EM_METHOD_MEMDEF;H_123_REPLACEITEM_METHOD_MEMDEF;H_123_REPLACEMENU_METHOD_ME
MDEF;H_123_RESETMENUBAR_METHOD_MEMDEF;H_123_UNCHECKITEM_METHOD_MEMDEF;H_123_G
ETMENU_METHOD_MEMDEF;H_123_GETMENUPOSITION_METHOD_MEMDEF;H_123_NEWMENU_METHO
D_MEMDEF;H_123_NEWMENUBAR_METHOD_MEMDEF;H_123_CURRENTMENUBAR_PROPERTY_MEMDE
F;',0)} See related topics

' Example: AddSeparator method, AddItem method, and NewMenu method
' Create a menu, add 3 menu items, and add a separator after the first.
' For more context on this example, see the example for the AddItem method.
' You need item scripts "itemHandler1" through "itemHandler3" available to use this
code.
' For an example of such a handler, see the example for the CheckItem method.
Dim menu1 As Menu
Set menu1 = CurrentApplication.NewMenu
menu1.AddItem 1, "Menu pick 1", "Prompt 1", ThisDocument, "itemHandler1"
menu1.AddItem 2, "Menu pick 2", "Prompt 2", ThisDocument, "itemHandler2"
menu1.AddItem 3, "Menu pick 3", "Prompt 3", ThisDocument, "itemHandler3"
menu1.AddSeparator 1

1-2-3: AddToSelection method
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJE
CT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_
CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_PLOT_CLASS;H_123_
MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;
H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERY_CLASS;H_123_QUERYTABLE_CLASS;
H_123_RANGE_CLASS;H_123_RECTANGLE_CLASS;H_123_SHEET_CLASS',0)} See list of classes

{button ,AL(`H_123_ADDTOSELECTION_METHOD_EXSCRIPT;H_123_SELECTION_PROPERTY_EXSCRIPT;',1)}
See example

Adds an object to the selection for the current file, without removing currently selected objects.

Syntax
object.AddToSelection

Parameters
None

Return values
None

{button ,AL(`H_123_CLEARSELECTION_METHOD_MEMDEF;H_123_COPYSELECTION_METHOD_MEMDEF;H_
123_CUTSELECTION_METHOD_MEMDEF;H_123_EXTENDSELECTFROMTAB_METHOD_MEMDEF;H_123_E
XTENDSELECT_METHOD_MEMDEF;H_123_EXTENDWORKSHEETSELECTIONBACK_METHOD_MEMDEF;H
_123_EXTENDWORKSHEETSELECTIONFORWARD_METHOD_MEMDEF;H_123_GETSELECTION_METHOD
_MEMDEF;H_123_REMOVEFROMSELECTION_METHOD_MEMDEF;H_123_SELECT_METHOD_MEMDEF;H_
123_SELECTALL_METHOD_MEMDEF;H_123_SELECTALLSHEETS_METHOD_MEMDEF;H_123_ACTIVE_PR
OPERTY_MEMDEF;H_123_ISSELECTABLE_PROPERTY_MEMDEF;H_123_ISSELECTED_PROPERTY_MEMD
EF;H_123_SELECTION_PROPERTY_MEMDEF;H_123_SELECTED_EVENT_MEMDEF',0)} See related topics

' Example: AddToSelection, Print, and RemoveFromSelection methods
' Create two ranges and select them. Then print them and unselect the second range.
Dim range1 As Range, range2 As Range
Set range1 = Bind("A:A1..A:A10")

Set range2 = Bind("A:B10..A:B20")
' Select A:A1..A:A10, then add A:B10..A:B20 to the selection.

range1.Select
range2.AddToSelection
' Print both ranges in list.

Print(Selection.Name)
' Remove range 2 from the selection.
range2.RemoveFromSelection

1-2-3: AddVersion method
{button ,AL(`H_123_VERSIONGROUP_CLASS',0)} See list of classes
{button ,AL(`H_123_ADDVERSION_METHOD_EXSCRIPT',1)} See example
Adds a version to this version group.

Syntax
versiongroup.AddVersion rangename, versionname, [lastmodifier]

Parameters
rangename

String. The name of the range that contains the version that you want to add to the version group.
versionname

String. The name of the version that you want to add to the version group.
lastmodifier

(Optional) String. The name of the last person to modify this version.

Return values
None

Usage
You can put only one version of each named range into a single version group.

{button ,AL(`H_123_DELETEVERSION_METHOD_MEMDEF;H_123_MERGEVERSIONS_METHOD_MEMDEF;H_1
23_NEWVERSIONGROUP_METHOD_MEMDEF;H_123_NEWVERSION_METHOD_MEMDEF;H_123_REMOVE
VERSION_METHOD_MEMDEF;H_123_REPORTVERSION_METHOD_MEMDEF;H_123_VERSIONGROUP_ME
THOD_MEMDEF;H_123_VERSIONS_METHOD_MEMDEF;H_123_VERSION_METHOD_MEMDEF;H_123_CUR
RENTVERSION_PROPERTY_MEMDEF;H_123_LASTVERSIONGROUP_PROPERTY_MEMDEF;H_123_SHOW
VERSIONBORDERS_PROPERTY_MEMDEF;H_123_VERSIONBORDERSVISIBLE_PROPERTY_MEMDEF;H_1
23_VERSIONBORDERVISIBLE_PROPERTY_MEMDEF',0)} See related topics

' Example: Background, BackColor, Colors properties; AddVersion,
' CreateRangeName, DeleteVersion, DeleteVersionGroup, NewVersion,
' NewVersionGroup, RemoveVersion methods
' This example creates 2 range names and a version for each.
' It then puts the versions in a version group.
' First, create the ranges.
CurrentDocument.CreateRangeName "North Sales", [A:B2..A:B10]
CurrentDocument.CreateRangeName "South Sales", [A:C2..A:C10]
' Next, make a second version for each range.
[North Sales].NewVersion("Version 2")
[South Sales].NewVersion("Version 2")
' Do something to make Version 2 different. For example, set the background color.
Set [North Sales].Background.BackColor = CurrentApplication.Colors("light yellow")
Set [South Sales].Background.BackColor = CurrentApplication.Colors("pale blue")
' Create a version group and add the versions to it.
CurrentDocument.NewVersionGroup("Version Group A")
[Version Group A].AddVersion "North Sales", "Version 2"
[Version Group A].AddVersion "South Sales", "Version 2"
' After you're finished with the version, you can remove it or delete it.
' If necessary, remove a version from the version group.
[Version Group A].RemoveVersion "South Sales"
' If necessary, delete the version.
[South Sales.Version 2].DeleteVersion
' When finished, you can also delete Version Group A from the document.
[Version Group A].DeleteVersionGroup

1-2-3: AppendRecords method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_APPENDRECORDS_METHOD_EXSCRIPT',1)} See example
Appends records from the specified source range to this database table range. The range that is the object of this
method must be a database table in the worksheet or an external database table.

Syntax
range.AppendRecords sourcerange

Parameters
sourcerange

Variant. The range of records to append to this range. The range to append must be organized as a database
table.

Return values
None

{button ,AL(`H_123_DELETERECORDS_METHOD_MEMDEF;H_123_FINDRECORDS_METHOD_MEMDEF;H_123
_CREATETABLE_METHOD_MEMDEF',0)} See related topics

' Example: AppendRecords and CreateRangeName methods
' Create 2 database tables and then append the second to the first.
' Create a new file
Dim doc1 As Document
Set doc1 = CurrentApplication.NewDocument("Doc_1")
' Create the first database table.
CurrentDocument.CreateRangeName "EmpTable1", [A:B2..A:C10]
[A:B2].Contents = "Name"
[A:C2].Contents = "Employee ID"
[A:B3].Contents = "Smith, John"
[A:C3].Contents = "1234"
' Create the second database table.
.NewSheet $After,1,True
CurrentDocument.CreateRangeName "EmpTable2", [B:B2..B:C10]
[B:B2].Contents = "Name"
[B:C2].Contents = "Employee ID"
[B:B3].Contents = "Doe, Jane"
[B:C3].Contents = "5678"
' Append the second table to the first table.
[EmpTable1].AppendRecords([EmpTable2])
[EmpTable1].Goto

1-2-3: ArrangeIcons method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;',0)} See list of classes
Arranges the icons within the application window.

Syntax
applicationwindow.ArrangeIcons

Parameters
None

Return values
None

1-2-3: AutoSmartSum method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_AUTOSMARTSUM_METHOD_EXSCRIPT',1)} See example
Generates a sum cell for a range of numbers near a cell containing the string "Total".

Syntax
range.AutoSmartSum

Parameters
None

Return values
None

Usage
This method is activated when you type in a cell the word Total or Totals. These labels are case-insensitive. From the
location of the cell with "Total" in it, this method searches for nearby data that should be summed, up to 10 rows or
columns away. If it finds a range of data that seems suitable, it puts @Sum for that range in the appropriate cells.
This command is not generated if you just put the string "Total" in a cell via script.
AutoSmartSum is enabled when the Application.UsingTotalToAutoSum property is set to True, which is the default
setting.

{button ,AL(`H_123_SMARTSUM_METHOD_MEMDEF;H_123_USINGTOTALTOAUTOSUM_PROPERTY_MEMDEF
',0)} See related topics

' Example: AutoSmartSum method
' Run AutoSmartSum on a column of 3 cells.
' Enter values to be summed in B1..B3.
[A:B1].Contents = "1"
[A:B2].Contents = "2"
[A:B3].Contents = "3"
' Enter the "Total" string for AutoSmartSum in A4.
[A:A4].Contents = "Total"
' AutoSmartSum on cell A4 containing "Total" puts @SUM(B1..B3) in B4.
[A:A4].AutoSmartSum
' Output: The value "6" will appear in cell B4.

1-2-3: Backsolve method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_BACKSOLVE_METHOD_EXSCRIPT',1)} See example
Makes a formula cell equal to a specified value, by changing the values of specified adjustable cells that are used by
the formula.

Syntax
document.Backsolve makecell, cellvalue, adjustablecells

Parameters
makecell

Variant. The cell containing the formula.
cellvalue

Variant. The value to which the makecell formula output is to be changed by adjusting the values in the
adjustablecells range.

adjustablecells
Variant. The range of cells you want to change, to cause the formula to result in cellvalue.

Return values
None

' Example: BackSolve method

' Modify the value in cell A1

' so that the formula in cell B1 returns the value 20.

[B1].Contents = "+A1*5"
CurrentDocument.BackSolve [B1],20,[A1]

' Results:

' A1 will contain 4.

' The formula in B1 will show 20.

1-2-3: Bounds method
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJE
CT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_
CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPTTITLE_CLASS;H_123_OLEOBJECT_CLA
SS;H_123_PICTURE_CLASS;H_123_PLOT_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_1
23_QUERYTABLE_CLASS;H_123_RECTANGLE_CLASS',0)} See list of classes

{button ,AL(`H_123_BOUNDS_METHOD_EXSCRIPT',1)} See example
Redraws the graphic object using (left, top) as the top left corner and (right, bottom) as the bottom right corner. All
units are one-twentieth of a point (twips).

Syntax
document.object.Bounds left, top, right, bottom

Parameters
left

Long. Left position of the object's bounding rectangle, in units of twips.
top

Long. Top position of the object's bounding rectangle, in units of twips.
right

Long. Right position of the object's bounding rectangle, in units of twips.
bottom

Long. Bottom position of the object's bounding rectangle, in units of twips.

Return value
None

{button ,AL(`H_123_MOVE_METHOD_MEMDEF;H_123_RESIZE_METHOD_MEMDEF',0)} See related topics

' Example: Bounds and NewEllipse methods
' Create an ellipse in a 1"x2" box and then redraw it in a 0.5"x1" box.
' First, draw an ellipse on sheet A.
Dim myEllipse As Ellipse
Set myEllipse = [A].NewEllipse(1440, 1440, 4320, 2880)
' Redraw the ellipse in a smaller bounding rectangle.
myEllipse.Bounds 1440, 1440, 2880, 2160

1-2-3: Calc method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_CALC_METHOD_EXSCRIPT',1)} See example
Recalculates the formulas in open files.

Syntax
object.Calc

Parameters
None

Return values
None

{button ,AL(`H_123_RANGERECALC_METHOD_MEMDEF;H_123_CALCITERATIONS_PROPERTY_MEMDEF;H_1
23_CALCMODE_PROPERTY_MEMDEF;H_123_CALCORDER_PROPERTY_MEMDEF',0)} See related topics

' Example: CalcMode property; Calc method
' Set up a summed range, change one its cells, and recalculate the sum.
' First, create a summed range.
[A:B2].Contents = "1"

[A:B3].Contents = "2"

[A:B4].Contents = "3"

[A:B5].Contents = "@Sum(B2..B4)"
' Set Calc mode to manual,
' to can control when recalculation occurs.
CurrentDocument.CalcMode = $Manual
' B5 now shows 6. Now change B2.
[A:B2].Contents = "2"
' To see the effect of this, you must recalculate,
' because .CalcMode was set to $Manual.
CurrentApplication.Calc
' B5 now shows 7.

1-2-3: Cascade method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
{button ,AL(`H_123_CASCADE_METHOD_EXSCRIPT',1)} See example
Cascades the workbook windows when more than one window is open.

Syntax
applicationwindow.Cascade

Parameters
None

Return values
None

{button ,AL(`H_123_TILE_METHOD_MEMDEF;H_123_TILEHORIZONTAL_METHOD_MEMDEF;H_123_TILEVERTI
CAL_METHOD_MEMDEF',0)} See related topics

' Example: ApplicationWindow property; Cascade method
' Create two workbook windows and cascade them.
Dim appWindow As ApplicationWindow
Dim doc1 As Document
Dim doc2 As Document
Set appWindow = CurrentApplication.ApplicationWindow
Set doc1 = CurrentApplication.NewDocument("Document #1")
Set doc2 = CurrentApplication.NewDocument("Document #2")
' Cascade the workbook windows.
appWindow.Cascade

1-2-3: Cell method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_CELL_METHOD_EXSCRIPT',1)} See example
Returns the single-cell range for a specified row, column, and sheet. You specify the row, column, and sheet using
indexes that are zero-based from the top leftmost cell of the first sheet of the range on which you run this method.
The top leftmost cell of the first sheet thus has the indexes (0, 0, 0).

Syntax
Set cellrange = range.Cell(row, column, [sheet])

Parameters
row

Long. The zero-based row of the cell.
column

Long. The zero-based column of the cell.
sheet

(Optional) Long. The zero-based sheet of the cell.

Return values
Range. The desired cell range.

Usage
The specified indexes must designate a cell within the range on which you run this method.

{button ,AL(`H_123_CELLS_PROPERTY_MEMDEF',0)} See related topics

' Example: CoordinateString property; Cell method
' Get a single-cell range from its row and column titles in row 1 and column A.

' Search titles.
Dim rowTitle As String ' The cell row title to find
Dim colTitle As String ' The cell column title to find

' Result variables.
Dim cellFound As Variant ' The cell found by this routine
Dim rowFound As Variant ' True if a row with rowTitle in column A was found
Dim colFound As Variant ' True if a column with colTitle in row 1 was found
rowFound = False
colFound = False

' Set up test data.
rowTitle = "markRow"
colTitle = "markCol"
[A3].Contents = rowTitle
[D1].Contents = colTitle

' Find the row title cell that matches rowTitle.
Dim rowRange As Range ' The range containing all the row titles (column A)
Dim row As Long ' Index of the row being searched
Dim rowCell As Variant ' The single cell being searched
Set rowRange = Bind("A1..A8192")
row = 0 ' Index is zero-based
Do While row < 8192
 Set rowCell = rowRange.Cell(row, 0, 0)
 ' Remove the label-prefix character from the cell contents
 ' and compare to the desired row title.
 If Mid(rowCell.Contents, 2) = rowTitle Then
 rowFound = True
 Exit Do
 ' You can add code here to limit the number of blank cells examined,
 ' when rowTitle is not found ...
 End If
 row = row + 1
Loop

' Find the column title cell that matches colTitle
Dim colRange As Range ' The range containing all the column titles (row 1)
Dim col As Long ' Index of the column being searched
Dim colCell As Variant ' The single cell being searched
Set colRange = Bind("A1..IV1")
col = 0 ' Index is zero-based
Do While col < 256
 Set colCell = colRange.Cell(0, col, 0)
 ' Remove the label-prefix character from the cell contents
 ' and compare to the desired column title.
 If Mid(colCell.Contents, 2) = colTitle Then
 colFound = True
 Exit Do
 ' You can add code here to limit the number of blank cells examined,
 ' when colTitle is not found ...
 End If
 col = col + 1
Loop

' Get the single-cell matching range that was found.
If rowFound = True And colFound = True Then
 Set cellFound = [A1..IV8192].Cell(row, col, 0)
Else
 Set cellFound = Null
End If
Messagebox "The specified cell is " & cellFound.CoordinateString, MB_OK +
MB_ICONINFORMATION
' Test result is cellFound = [D3].

1-2-3: CheckItem method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS;',0)} See list of classes
{button ,AL(`H_123_CHECKITEM_METHOD_EXSCRIPT',1)} See example
Puts a check mark before the name of a specified item on the menu.

Syntax
object.CheckItem position

Parameters
position

Long. The menu position of the item to check.

Value Description
Positive integer The item's position in the menu,

counting forward from the beginning.
The value 1 means the first position.

Negative integer The item's position in the menu,
counting backward from the end.
The value –1 means the last
position.

Return values
None

Usage
Use a check mark to indicate that the corresponding menu item is set, true, or on. Typically, you call this method in
the Click event for the menu item. This method only works on items created using LotusScript.

{button ,AL(`H_123_ADDITEM_METHOD_MEMDEF;H_123_ADDSEPARATOR_METHOD_MEMDEF;H_123_DISAB
LEITEM_METHOD_MEMDEF;H_123_ENABLEITEM_METHOD_MEMDEF;H_123_REMOVEITEM_METHOD_M
EMDEF;H_123_REPLACEITEM_METHOD_MEMDEF;H_123_UNCHECKITEM_METHOD_MEMDEF;H_123_NE
WMENU_METHOD_MEMDEF;H_123_NEWMENUBAR_METHOD_MEMDEF;H_123_MENUPROMPT_PROPER
TY_MEMDEF;H_123_MENUTEXT_PROPERTY_MEMDEF',0)} See related topics

' Example: CheckItem method, UncheckItem method
' Handler for a menu item that sets a property True or False
' and checks the menu item when the property is set True.
' See the example for the AddMenu method for an example of
' how to hook this item handler up to a displayed menu.

' In the Globals section, Dim the variables.
Dim settingValue As Variant ' The Boolean property to be set.
Dim settingPos As Integer ' The menu position of the property item.
Dim menu As Menu ' The menu containing the item.

Sub MenuItemInitialize ' For testing only.
 settingValue = False
 settingPos = 1
 Set menu = CurrentApplication.NewMenu
End Sub

Sub mySettingHandler
 ' Set the property.
 settingValue = Not settingValue
 ' Set the menu item check mark.
 If settingValue = True Then menu.CheckItem settingPos
 If settingValue = False Then menu.UncheckItem settingPos
End Sub

1-2-3: ClearOutline method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_CLEAROUTLINE_METHOD_EXSCRIPT',1)} See example
Clears the entire outline for the sheet. Clearing the outline fully promotes and expands all outlined rows and columns
in the sheet and turns off the display of the outline frames for the rows and columns.

Syntax
sheet.ClearOutline

Parameters
None

Return values
None

{button ,AL(`H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_PROMOTECOLUMN_METHOD_MEMDEF;H_
123_COLLAPSECOLUMN_METHOD_MEMDEF;H_123_EXPANDCOLUMN_METHOD_MEMDEF;H_123_DEMO
TEROW_METHOD_MEMDEF;H_123_PROMOTEROW_METHOD_MEMDEF;H_123_COLLAPSEROW_METHO
D_MEMDEF;H_123_EXPANDROW_METHOD_MEMDEF;H_123_COLLAPSEALL_METHOD_MEMDEF;H_123_
EXPANDALL_METHOD_MEMDEF',0)} See related topics

' Example: ClearOutline method, DemoteRow method
' Demote some rows and then clear the outline in sheet A.
' First, demote rows 2 through 10 in Sheet A.
[A:A2..A:A10].DemoteRow
' Reverse the demotion by clearing the outline.
[A].ClearOutline

1-2-3: ClearRangeNames method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_CLEARRANGENAMES_METHOD_EXSCRIPT',1)} See example
Deletes all range names in a file.

Syntax
document.ClearRangeNames

Parameters
None

Return values
None

{button ,AL(`H_123_CREATERANGENAME_METHOD_MEMDEF;H_123_DELETERANGENAME_METHOD_MEMD
EF;H_123_CREATERANGENAMEFROMLABEL_METHOD_MEMDEF;H_123_CREATERANGENAMETABLE_ME
THOD_MEMDEF;H_123_ISRANGENAMED_METHOD_MEMDEF;H_123_NAME_PROPERTY_MEMDEF',0)}
See related topics

' Example: ClearRangeNames, CreateRangeName methods
' Create, use, and clear some range names.
' First, create the named ranges.
CurrentDocument.CreateRangeName "Range 1", [A:B2..A:B10]
CurrentDocument.CreateRangeName "Range 2", [A:C2..A:C10]
' Do something with these ranges using their range names ...
' Then delete them all.
CurrentDocument.ClearRangeNames

1-2-3: ClearSplits method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_NEXTSPLIT_METHOD_EXSCRIPT',1)} See example
Clears existing splits in the workbook window.

Syntax
document.ClearSplits

Parameters
None

Return values
None

{button ,AL(`H_123_VIEWSPLITHEIGHT_PROPERTY_MEMDEF;H_123_VIEWSPLITSTYLE_PROPERTY_MEMDE
F;H_123_VIEWSPLITWIDTH_PROPERTY_MEMDEF;H_123_NEXTSPLIT_METHOD_MEMDEF',0)} See related
topics

1-2-3: Clear method
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_DOCUMENT_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE
_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHA
ND_CLASS;H_123_GROUP_CLASS;H_123_MAP_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLA
SS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLA
SS;H_123_RECTANGLE_CLASS',0)} See list of classes

{button ,AL(`H_123_CLEAR_METHOD_EXSCRIPT;H_123_SHOWVERSIONBORDERS_PROPERTY_EXSCRIPT;',1
)} See example

Deletes the object without placing it on the Clipboard. For a Range object, clears the specified data from the range.

Syntax
object.Clear [clearchoice]

Parameters
clearchoice

(Optional) Variant (RangeClearChoice enumeration). Valid only for Range objects. Specifies what data to clear
from the range. The following table lists the allowed values for this parameter. These values can be combined.
The default is to clear the cell contents of the range.

Value Description
$ClearData Clear the cell contents
$ClearStyle Clear the style
$ClearFormat Clear the data format
$ClearBorder Clear the cell border
$ClearScripts Clear the scripts
$ClearComment Clear the cell comment

Return values
None

{button ,AL(`H_123_CLEAROUTLINE_METHOD_MEMDEF;H_123_CLEARRANGENAMES_METHOD_MEMDEF;H
_123_CLEARSPLITS_METHOD_MEMDEF;H_123_CLEARTRANSCRIPT_METHOD_MEMDEF;',0)} See related
topics

' Example: Background, Color, ColorName and Pattern properties;
' Clear and NewRectangle methods

' Enter data into cell B2 and then clear it.
[A:B2].Contents = "100"
Msgbox "Clear the data."
[A:B2].Clear $ClearData

' Create a rectangle and then clear it from the sheet.
Dim rect1 As Rectangle
Set rect1 = [A].NewRectangle(100, 100, 1000, 1000)
' Do something with the rectangle. For example, set its background.
[Rectangle 1].Background.Color.ColorName = "neon green"
[Rectangle 1].Background.Pattern = $BowlingBalls
' When finished, delete the rectangle.
Msgbox "Clear the rectangle."
rect1.Clear

1-2-3: CloseAll method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_CLOSEALL_METHOD_EXSCRIPT',1)} See example
In a 1-2-3 add-in, closes all open documents, saving changes if you so specify. This method is only for use in scripts
that will be compiled into a 1-2-3 add-in file.

Syntax
application.CloseAll savechanges

Parameters
savechanges

Variant (Boolean). Indicates whether to save any changes in the documents (value True) or not to save them
(value False).

Return values
None

{button ,AL(`H_123_NEWDOCUMENT_METHOD_MEMDEF;H_123_OPEN_METHOD_MEMDEF;H_123_OPENDO
CUMENT_METHOD_MEMDEF;H_123_CLOSE_METHOD_MEMDEF',0)} See related topics

' Example: CloseAll method
' Save all changes in the currently open files and close them.

' First, create a document and modify it.
Dim scratchfile As Document
Set scratchfile = CurrentApplication.NewDocument
[A:B2].Contents = "testdata"
' Save all changes in the document and close it.
CurrentApplication.CloseAll True
' This brings up the SaveAs dialog box to prompt the user
' for the filenames of any new files that have never been saved.
' After the user supplies the filenames, 1-2-3 closes all open files.

1-2-3: Close method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;

H_123_WINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_123_CLOSE_METHOD_EXSCRIPT',1)} See example
Closes the window, document, or application.

Syntax
object.Close [savechanges]

Parameters
savechanges

(Optional) Variant. A Boolean value that indicates whether to save any changes that have been made to the file. If
you don't pass in this argument and changes have been made in a file with a single open document window, the
Save Changes dialog box appears. The dialog box doesn't appear when you run this method on an Application
object that has no open files, or on a DocWindow object that is not the only one open for a file.

Return values
None

Usage
When you close an application window and the application is serving objects to a client, the application remains
active (but not visible) until all served objects are released. At that point, the application ends.

{button ,AL(`H_123_NEWDOCUMENT_METHOD_MEMDEF;H_123_OPEN_METHOD_MEMDEF;H_123_OPENDO
CUMENT_METHOD_MEMDEF;H_123_CLOSEALL_METHOD_MEMDEF',0)} See related topics

' Example: Close method
' Example 1: Close the current document and save any changes.
CurrentDocument.Close True
' Example 2: Close document window 3 in the document <<Untitled>>.
[<<Untitled>>.Window 3].Close

1-2-3: CollapseColumn method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_COLLAPSECOLUMN_METHOD_EXSCRIPT',1)} See example
Collapses all expanded columns whose parents (summary columns) are within this range.

Syntax
range.CollapseColumn

Parameters
None

Return values
None

Usage
This method doesn't work on 3D ranges.

{button ,AL(`H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_PROMOTECOLUMN_METHOD_MEMDEF;H_
123_EXPANDCOLUMN_METHOD_MEMDEF;H_123_DEMOTEROW_METHOD_MEMDEF;H_123_PROMOTER
OW_METHOD_MEMDEF;H_123_COLLAPSEROW_METHOD_MEMDEF;H_123_EXPANDROW_METHOD_ME
MDEF;H_123_COLLAPSEALL_METHOD_MEMDEF;H_123_EXPANDALL_METHOD_MEMDEF',0)} See related
topics

' Example: CollapseColumn method, DemoteColumn method, ExpandColumn method
' Demote column D, collapse column E above it,
' and then expand column E.
[A:D1].DemoteColumn 1
[A:E1].CollapseColumn
' Column D is no longer visible.
' To see column D again, expand column E.
[A:E1].ExpandColumn

1-2-3: CollapseRow method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_COLLAPSEROW_METHOD_EXSCRIPT',1)} See example
Collapses all expanded rows whose parents (summary rows) are in the range.

Syntax
range.CollapseRow

Parameters
None

Return values
None

Usage
This method doesn't work on 3D ranges.

{button ,AL(`H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_PROMOTECOLUMN_METHOD_MEMDEF;H_
123_COLLAPSECOLUMN_METHOD_MEMDEF;H_123_EXPANDCOLUMN_METHOD_MEMDEF;H_123_DEMO
TEROW_METHOD_MEMDEF;H_123_PROMOTEROW_METHOD_MEMDEF;H_123_EXPANDROW_METHOD_
MEMDEF;H_123_COLLAPSEALL_METHOD_MEMDEF;H_123_EXPANDALL_METHOD_MEMDEF',0)} See
related topics

' Example: CollapseRow method, DemoteRow method, ExpandRow method
' Demote row 4, collapse the row 5 below it,
' and then expand the row.
[A:A4].DemoteRow 1
[A:A5].CollapseRow
' Row 4 is no longer visible.
' To see row 4 again, expand row 5.
[A:A5].ExpandRow

1-2-3: ColorFromRGB method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_COLORFROMRGB_METHOD_EXSCRIPT',1)} See example
Creates a Color object whose RGB value is closest to the specified RGB value, from the colors available in the
application.

Syntax
color = application.ColorFromRGB(rgbvalue)

Parameters
rgbvalue

Long. The RGB value to be converted to a Color object. The format for this value is &H00RRGGBB&, where RR,
GG, and BB are the red, green, and blue intensities, each varying from 00 to FF.

Return values
A Color object.

{button ,AL(`H_123_COLORS_PROPERTY_MEMDEF',0)} See related topics

' Example: Background and BackColor properties; ColorFromRGB method
' Create a primary blue Color object from a primary blue RGB value.
Dim myColor As Color
Dim rgbValue As Long
rgbValue = &H000000FF&
Set myColor = CurrentApplication.ColorFromRGB(rgbValue)
' Apply the color to a range.
Set [A:A2..A:A10].Background.BackColor = myColor

1-2-3: Connect method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Connects to an external database table and creates an external range that can be used in a query.

Syntax
document.Connect drivername, [driveruserid], [driverpassword], [connectstring], databasename, [databaseuserid],
[databasepassword], [ownername], tablename, [rangename]

Parameters
drivername

String. The name of the driver to use for the connection (for example, "DBase_IV").
driveruserid

(Optional) String. The database driver user ID.
driverpassword

(Optional) String. The database driver password.
connectstring

(Optional) String. A connection string to pass to the driver. Use this to specify additional information that may be
needed to connect to the database.

databasename
String. The name and path of the external database to which you want to connect (for example, "\lotus\work\123\
database\staff").

databaseuserid
(Optional) String. The database user ID.

databasepassword
(Optional) String. The database password.

ownername
(Optional) String. The name of the owner of the table.

tablename
String. The name of the table in the external database (for example, "employee.dbf").

rangename
(Optional) String. The name of the external range to create. If you don't supply this, the table name is used.

Return values
None

{button ,AL(`H_123_DISCONNECT_METHOD_MEMDEF',0)} See related topics

1-2-3: CopySelection method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_COPYSELECTION_METHOD_EXSCRIPT',1)} See example
Copies the selected objects to the Clipboard.

Syntax
document.CopySelection

Parameters
None

Return values
None

{button ,AL(`H_123_CUTSELECTION_METHOD_MEMDEF;H_123_GETSELECTION_METHOD_MEMDEF;H_123_
REMOVEFROMSELECTION_METHOD_MEMDEF;H_123_SELECT_METHOD_MEMDEF;H_123_SELECTALL_
METHOD_MEMDEF;H_123_SELECTALLSHEETS_METHOD_MEMDEF;H_123_SELECTION_PROPERTY_ME
MDEF;',0)} See related topics

' Example: CopySelection, Select, and Paste methods
' Copy and paste a selection.

' First, select a range.
[A:B2..A:B10].Select
' Copy it to the Clipboard.
CurrentDocument.CopySelection
' Paste it somewhere else.
[A:D2..A:D10].Paste

1-2-3: CopySQLToClipboard method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_COPYSQLTOCLIPBOARD_METHOD_EXSCRIPT',1)} See example
Copies the SQL statement that represents the current query to the Clipboard.

Syntax
query.CopySQLToClipboard

Parameters
None

Return values
None

{button ,AL(`H_123_NEWQUERY_METHOD_MEMDEF;H_123_QUERYSORTDEFINEKEY_METHOD_MEMDEF',0)}
See related topics

' Example: CopySQLToClipboard, OpenDocument, and Paste methods
Sub CopySQLToCLIP
 ' Open a workbook containing a table.
 CurrentApplication.OpenDocument "e:\data\123\employee.123"

 ' Set up a query, copy it to the Clipboard, and paste it.
 CurrentDocument.NewQuery "Query1", "A:A1..A:F11"
 ' Run the query.
 [Query1].OutputLocation = "A:A15"
 [Query1].Refresh

 ' Enter your SQL query into Query #1 ...
 Msgbox "Enter your SQL query into the query."
 [Query1].RemoveSelectField "LAST"
 [Query1].AddSelectField "LAST", "DOH"

 ' Copy the query to the Clipboard.
 [Query1].CopySQLToClipboard

 ' Paste the SQL string from the Clipboard into A:A13.
 [A:A13].Paste

 ' Output =
 ' SELECT EMPID, LAST, FIRST, DOH, SALARIED, DEPTNUM FROM A:A1..A:F11
End Sub

1-2-3: CopyToClipboard method
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_DOCUMENT_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE
_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHA
ND_CLASS;H_123_GROUP_CLASS;H_123_MAP_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLA
SS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLA
SS;H_123_RECTANGLE_CLASS',0)} See list of classes

{button ,AL(`H_123_COPYTOCLIPBOARD_METHOD_EXSCRIPT',1)} See example
Copies the object to the Clipboard.

Syntax
object.CopyToClipboard [format]

Parameters
format

(Optional) Variant (ClipboardFormat enumeration). The format in which to copy to the Clipboard. The following
table lists the allowed values for this parameter.

Value Description
$NativeFormat Native format
$RichTextFormat Rich text format
$BitmapFormat Bitmap format
$PictureFormat Picture format
$LotusChartFormat Lotus Chart format
$EmbedSourceFormat Embed source format
$EmbeddedObjectFormat Embedded object format
$DIBFormat Device-independent bitmap
$TextFormat Text
$WK1Format 1-2-3 for DOS, Release 2
$WK3Format 1-2-3 for Windows Release 1;

1-2-3 for DOS Releases 3, 4

Return values
None

{button ,AL(`H_123_PASTE_METHOD_MEMDEF',0)} See related topics

' Example: CopyToClipboard, Paste methods
' Copy a range's data to the Clipboard and paste it into another range.
[A:B2].Contents = "123"
[A:B2..A:B10].CopyToClipboard
[A:C2..A:C10].Paste

1-2-3: CreateComputedField method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_CREATECOMPUTEDFIELD_METHOD_EXSCRIPT',1)} See example
Adds a field containing a specified formula to the query.

Syntax
dataquery.CreateComputedField formula, [alias]

Parameters
formula

String. The formula in 1-2-3 syntax. For more information, search on "Formulas, guidelines" in the Help Index.
alias

(Optional) String. A field alias for the computed field. An alias replaces the formula in the computed field name
cell.

Return values
None

{button ,AL(`H_123_DELETECOMPUTEDFIELD_METHOD_MEMDEF;H_123_ADDSELECTFIELD_METHOD_MEM
DEF;H_GUIDELINES_FOR_ENTERING_FORMULAS_OVER@SS1N60EN.HLP',0)} See related topics

' Example: OutputLocation property; CreateComputedField, DeleteComputedField,
' DeleteQuery, NewQuery, and Refresh methods;
' Set up a new query, refresh it, and then delete it.
'
' Set up the query.
[A:B2].Contents = "Item"
[A:C2].Contents = "Price"
[A:D2].Contents = "Shipping"
[A:B3].Contents = "1"
[B3].DragAndFill [B3..D5]
CurrentDocument.NewQuery "Query 1", "A:B2..A:D5"
' Run the query.
[Query 1].OutputLocation = "A:B8"
[Query 1].Refresh
' Do something with the query. For example, create a computed field.
[Query 1].CreateComputedField "(Price)+(Shipping)", "Total Price"
' If necessary, delete the computed field.
If 6 = Messagebox("Delete the computed field?", 4 + 32, "Computed field example") Then

[Query 1].DeleteComputedField "(Price)+(Shipping)"
End If
' If necessary, delete the query.
If 6 = Messagebox("Delete the query?", 4 + 32, "Computed field example") Then

CurrentDocument.DeleteQuery "Query 1"
End If

1-2-3: CreateRangeNameFromLabel method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_CREATERANGENAMEFROMLABEL_METHOD_EXSCRIPT',1)} See example
Assigns an existing range of labels as the range names for a group of single-cell ranges immediately above, below, to
the right of, or to the left of the label range.

Syntax
document.CreateRangeNameFromLabel range, rangelabeldirection

Parameters
range

Variant. The range that contains the labels you want to assign as range names for adjacent cells.
rangelabeldirection

Variant (RangeNameLabelDir enumeration). Indicates which single-cell ranges to name using adjacent labels.
The following table lists the allowed values for this parameter.

Value Description
$LabelLeft Names cells to the left of the labels
$LabelRight Names cells to the right of the labels
$LabelUp Names cells above the labels
$LabelDown Names cells below the labels

Return values
None

{button ,AL(`H_123_CLEARRANGENAMES_METHOD_MEMDEF;H_123_CREATERANGENAME_METHOD_MEM
DEF;H_123_DELETERANGENAME_METHOD_MEMDEF;H_123_CREATERANGENAMETABLE_METHOD_ME
MDEF;H_123_ISRANGENAMED_METHOD_MEMDEF;H_123_NAME_PROPERTY_MEMDEF',0)} See related
topics

' Example: CreateRangeNameFromLabel and DragAndFill methods
' Create a column of labels and convert them to range names.
' First, create a range label in cell B2.
[A:B2].Contents = "Range_1"
' Fill the rest of the column B cells through row 10 with sequential names.
[A:B2].DragAndFill [A:B2..A:B10]
' Create range names from the labels.
CurrentDocument.CreateRangeNameFromLabel [A:B2..A:B10], $LabelRight

1-2-3: CreateRangeNameTable method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_CREATERANGENAMETABLE_METHOD_EXSCRIPT',1)} See example
Creates a two-column table with the names of all defined ranges in the current file listed alphabetically in the left
column, and the corresponding range addresses listed in the right column.

Syntax
document.CreateRangeNameTable tablelocation

Parameters
tablelocation

Variant. The name or address of the range where you want to create the table of range names and addresses.
Specify either the entire range or only the first cell.

Return values
None

Usage
The table occupies two columns and as many rows as there are range names, plus one blank row. 1-2-3 writes over
any existing data in the table range.

{button ,AL(`H_123_CLEARRANGENAMES_METHOD_MEMDEF;H_123_CREATERANGENAME_METHOD_MEM
DEF;H_123_CREATERANGENAMEFROMLABEL_METHOD_MEMDEF;H_123_ISRANGENAMED_METHOD_M
EMDEF;H_123_NAME_PROPERTY_MEMDEF',0)} See related topics

' Example: CreateRangeName and CreateRangeNameTable methods
' Create a range name table starting on sheet A, in cell F2.
' First, create two range names.
CurrentDocument.CreateRangeName "Range_1", [A:A2..A:A5]
CurrentDocument.CreateRangeName "Range_2", [A:B2..A:B5]
' Place the range names in a table starting in cell A:F2.
CurrentDocument.CreateRangeNameTable [A:F2]
' Output: Two range names and addresses at starting in cell A:F2.

1-2-3: CreateRangeName method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_DELETERANGENAME_METHOD_EXSCRIPT;H_123_SHOWVERSIONBORDERS_PROPERT

Y_EXSCRIPT;',1)} See example
Assigns a name to a range.

Syntax
document.CreateRangeName rangename, range

Parameters
rangename

String. The name you want to assign to the range.
range

Range. The range that you want to name.

Usage
Range names must be no more then 15 characters and must start with a letter (A–Z). For other name restrictions,
search on "Naming conventions" in the 1-2-3 Help Index.

{button ,AL(`H_123_CLEARRANGENAMES_METHOD_MEMDEF;H_123_CREATERANGENAMEFROMLABEL_ME
THOD_MEMDEF;H_123_CREATERANGENAMETABLE_METHOD_MEMDEF;H_123_ISRANGENAMED_METH
OD_MEMDEF;H_123_NAME_PROPERTY_MEMDEF',0)} See related topics

1-2-3: CreateTable method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Sets up the structure for and connects to a new table in an external database.

Syntax
document.CreateTable drivername, [driveruserid], [driverpassword], [connectstring], databasename,
[databaseuserid], [databasepassword], [ownername], tablename, [rangename], [createstring], modelrange

Parameters
drivername

String. The name of the driver to use for the connection to the database (for example, "dBASE_IV").
driveruserid

(Optional) String. The database driver user ID.
driverpassword

(Optional) String. The database driver password
connectstring

(Optional) String. A connection string to pass to the driver. Use this to specify additional information that may be
needed to connect to the database.

databasename
String. The name and path of the database to which you want to connect (for example, "\lotus\work\database\
staff").

databaseuserid
(Optional) String. The database user ID.

databasepassword
(Optional) String. The database password.

ownername
(Optional) String. The name of the owner of the table.

tablename
String. The name of the table in the external database (for example, "employee.dbf").

rangename
(Optional) String. The name of the external range to create for the table. If you don't supply this, the table name is
used.

createstring
(Optional) String. The table creation string to be passed to the driver.

modelrange
Range. The database table range that contains the data from which the new table is to be created.

Return values
None

{button ,AL(`H_123_BASESOURCETABLE_PROPERTY_MEMDEF;H_123_APPENDRECORDS_METHOD_MEMD
EF;H_123_DELETERECORDS_METHOD_MEMDEF;H_123_SETMAXRECORDS_METHOD_MEMDEF;H_123_
NEWQUERYTABLE_METHOD_MEMDEF;H_123_WHATIFTABLE1_METHOD_MEMDEF;H_123_WHATIFTABLE
2_METHOD_MEMDEF;H_123_WHATIFTABLE3_METHOD_MEMDEF;H_123_SOURCETABLES_PROPERTY_M
EMDEF',0)} See related topics

1-2-3: CutSelection method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_CUTSELECTION_METHOD_EXSCRIPT',1)} See example
Cuts the selected objects to the Clipboard.

Syntax
document.CutSelection

Parameters
None

Return values
None

{button ,AL(`H_123_CUT_METHOD_MEMDEF;H_123_PASTE_METHOD_MEMDEF',0)} See related topics

' Example: CutSelection, Paste methods
' Select, cut, and paste the contents of a cell.

' Create and select objects.
[A:B2].Contents = "1"
[A:B2].Select
' Cut the selection.
CurrentDocument.CutSelection
' Paste the cut material into B3.
[A:B3].Paste

1-2-3: Cut method
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_DOCUMENT_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE
_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHA
ND_CLASS;H_123_GROUP_CLASS;H_123_MAP_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLA
SS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLA
SS;H_123_RECTANGLE_CLASS',0)} See list of classes

{button ,AL(`H_123_CUT_METHOD_EXSCRIPT',1)} See example
Copies the object to the Clipboard and deletes it.

Syntax
object.Cut [format]

Parameters
format

(Optional) Variant (ClipboardFormat enumeration). The format in which to cut to the Clipboard. The following table
lists the allowed values for this parameter.

Value Description
$NativeFormat Native format
$RichTextFormat Rich text format
$BitmapFormat Bitmap format
$PictureFormat Picture format
$LotusChartFormat Lotus Chart format
$EmbedSourceFormat Embed source format
$EmbeddedObjectFormat Embedded object format
$DIBFormat Device-independent bitmap
$TextFormat Text
$WK1Format 1-2-3 for DOS, Release 2
$WK3Format 1-2-3 for Windows Release 1;

1-2-3 for DOS Releases 3, 4

Return values
None

{button ,AL(`H_123_CUTSELECTION_METHOD_MEMDEF;H_123_PASTE_METHOD_MEMDEF',0)} See related
topics

' Example: Cut and Paste methods
' Put "1" in B1, then cut it out and paste it in B2.
[A:B1].Contents = "1"
[A:B1].Cut
[A:B2].Paste

1-2-3: DataParseGuess method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_DATAPARSEGUESS_METHOD_EXSCRIPT',1)} See example
Parses a range, returns a string of guessed data formats, and outputs a parsed format line. This method parses for
labels, values, dates, and times. For more information, search on "Parsing data" in the 1-2-3 Help Index.

Syntax
format = range.DataParseGuess(destinationrange)

Parameters
destinationrange

Range. The output range for the parsed data format.

Return values
String. The guessed data formats, including the types of data and their block lengths.

{button ,AL(`H_123_DATAPARSE_METHOD_MEMDEF',0)} See related topics

' Example: CellValue property; DataParseGuess and DataParse methods
' Guess the data format for a cell containing a text block and a numeric block.
' Then parse the cell using the guessed format.
[B2].Contents = "AAA 123"
[B3].Contents = [B2].DataParseGuess
[B2].DataParse [B4], [B3].CellValue

1-2-3: DataParse method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_DATAPARSE_METHOD_EXSCRIPT',1)} See example
Parses a range containing text, using specified data formats. Puts the extracted data into the specified destination
range, one column per block of data.

Syntax
range.DataParse destinationrange, formatline

Parameters
destinationrange

Variant. The output range for the parsed data.
formatline

String. The data formats to use to parse the data. You can parse for numbers, labels, dates, and times in blocks of
specified length. For more information, search on "Format line" in the 1-2-3 Help Index.

Return values
None

Usage
The source range object on which you run this method may be read-only or read-write. The destination range must
be read-write.

{button ,AL(`H_123_DATAPARSEGUESS_METHOD_MEMDEF',0)} See related topics

' Example: DataParseGuess, DataParse methods
' Declare a variable to hold the format line for parsing.
Dim parseString As String

' Set up a label range to be parsed, containing
' two label blocks and one date block.
[A:B3].Contents = "Smith Arthur 5/23/89"
[A:B4].Contents = "Aubry Lisa 4/12/87"
[A:B5].Contents = "Howard Janet 2/6/84"

' Guess the data format based upon the labels.
parseString = [A:B3..A:B5].DataParseGuess
' Parse the range using the guessed format
' and put the resulting data in a range starting at B10.
[A:B3..A:B5].DataParse [A:B10],parseString

' Output:
' A: --- B --------- C ----- D --
' 10 Smith Arthur 05/23/89
' 11 Aubry Lisa 04/12/87
' 12 Howard Janet 02/06/84

1-2-3: DefineNamedStyle method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_DEFINENAMEDSTYLE_METHOD_EXSCRIPT;H_123_STYLENAME_PROPERTY_EXSCRIPT',

1)} See example
Defines a named style based on the styles of the source cell, which is the top left cell of this range.

Syntax
range.DefineNamedStyle stylename

Parameters
stylename

String. The name for the named style.

Return values
None

{button ,AL(`H_123_DELETENAMEDSTYLE_METHOD_MEMDEF;H_123_MODIFYNAMEDSTYLE_METHOD_MEM
DEF;H_123_RENAMENAMEDSTYLE_METHOD_MEMDEF;H_123_REVERTTONAMEDSTYLE_METHOD_MEM
DEF;H_123_STYLE_PROPERTY_MEMDEF;',0)} See related topics

' Example: Bold, Font, and StyleName properties;
' DefineNamedStyle and DeleteNamedStyle methods
' Define a named style, use it, and delete it.
[A:B2].Contents = "Louise"
[A:C2].Contents = "Norman"
' Set the style for text in a cell to bold and name the style.
[A:B2].Font.Bold = True
' Name this style as BoldText.
[A:B2].DefineNamedStyle "BoldText"
' Apply this style to another range.
[A:C2].StyleName = "BoldText"
' When finished with the named style, you can delete it.
 .DeleteNamedStyle "BoldText"

1-2-3: DeleteColumns method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_DELETECOLUMNS_METHOD_EXSCRIPT',1)} See example
Deletes the columns in the specified range.

Syntax
range.DeleteColumns [deletetype]

Return values
None

Parameters
deletetype

(Optional) Variant (ColRowType enumeration). Determines what part of the columns to delete. The following
table lists the allowed values for this parameter.

Value Description
$Full Delete the entire column.
$Partial Delete only the part of the column that is

inside the range.

{button ,AL(`H_123_DELETEROWS_METHOD_MEMDEF;H_123_DELETESHEET_METHOD_MEMDEF;H_123_IN
SERTROWS_METHOD_MEMDEF;H_123_INSERTSHEET_METHOD_MEMDEF;H_123_NEWSHEET_METHOD
_MEMDEF',0)} See related topics

' Example: DeleteColumns method
' Delete the full column.
[A:B2].DeleteColumns $Full

1-2-3: DeleteComputedField method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_CREATECOMPUTEDFIELD_METHOD_EXSCRIPT',1)} See example
Deletes a computed field from a query.

Syntax
dataquery.DeleteComputedField formula

Parameters
formula

String. The formula string or field name of the computed field that you want to delete from the query.

Return values
None

{button ,AL(`H_123_CREATECOMPUTEDFIELD_METHOD_MEMDEF;H_123_ADDSELECTFIELD_METHOD_MEM
DEF',0)} See related topics

1-2-3: DeleteNamedPrintSettings method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_DELETENAMEDPRINTSETTINGS_METHOD_EXSCRIPT',1)} See example
Deletes the given print settings name from the document's NamedPrintSettings collection.

Syntax
document.DeleteNamedPrintSettings settingsname

Parameters
settingsname

String. The print settings name to be deleted from the NamedPrintSettings collection.

Return values
None

{button ,AL(`H_123_NEWNAMEDPRINTSETTINGS_METHOD_MEMDEF;H_123_NAMEDPRINTSETTINGS_PROP
ERTY_MEMDEF;H_123_USEDEFAULTPRINTSETTINGS_METHOD_MEMDEF;H_123_CURRENTPRINTSETTI
NGS_PROPERTY_MEMDEF',0)} See related topics

' Example: CurrentPrintSettings property; DeleteNamedPrintSettings,
' NewNamedPrintSettings, Print, UseDefaultPrintSettings, methods
' This example creates a named print settings, uses it, then deletes it.
' First, create a new named print settings.
Dim myPrtSet As PrintSettings
Set myPrtSet = CurrentDocument.NewNamedPrintSettings("Prt_Set_1", False,)
' Do something with the print settings. For example, set a margin and footer.
myPrtSet.LeftMargin = 1440 ' In units of twips
myPrtSet.FooterLeft = "^" ' Print file name
' Make the current document use Prt_Set_1.
Set CurrentDocument.CurrentPrintSettings = [Prt_Set_1]
' Print the current document.
CurrentApplication.Print
' Continue using the print settings as needed ...
' Optionally, go back to the application's default print settings.
CurrentDocument.UseDefaultPrintSettings
' If necessary, delete the print settings name when finished.
CurrentDocument.DeleteNamedPrintSettings "Prt_Set_1"

1-2-3: DeleteNamedStyle method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_DEFINENAMEDSTYLE_METHOD_EXSCRIPT',1)} See example
Deletes the named style. Does not change the style of any ranges having this named style.

Syntax
range.DeleteNamedStyle stylename

Parameters
stylename

String. The name of the named style.

Return values
None

{button ,AL(`H_123_DEFINENAMEDSTYLE_METHOD_MEMDEF;H_123_MODIFYNAMEDSTYLE_METHOD_MEM
DEF;H_123_RENAMENAMEDSTYLE_METHOD_MEMDEF;H_123_REVERTTONAMEDSTYLE_METHOD_MEM
DEF;H_123_STYLENAME_PROPERTY_MEMDEF;',0)} See related topics

1-2-3: DeleteQuery method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_CREATECOMPUTEDFIELD_METHOD_EXSCRIPT',1)} See example
Deletes the specified query from the document.

Syntax
document.DeleteQuery queryname

Parameters
queryname

String. The name of the query to delete.

Return values
None

{button ,AL(`H_123_NEWQUERY_METHOD_MEMDEF;H_123_ADDSELECTFIELD_METHOD_MEMDEF',0)} See
related topics

1-2-3: DeleteRangeName method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_DELETERANGENAME_METHOD_EXSCRIPT',1)} See example
Deletes the specified range name from the document.

Syntax
document.DeleteRangeName rangename

Parameters
rangename

String. The range name to be deleted.

Return values
None

{button ,AL(`H_123_CLEARRANGENAMES_METHOD_MEMDEF;H_123_CREATERANGENAME_METHOD_MEM
DEF;H_123_CREATERANGENAMEFROMLABEL_METHOD_MEMDEF;H_123_CREATERANGENAMETABLE_
METHOD_MEMDEF;H_123_ISRANGENAMED_METHOD_MEMDEF;H_123_NAME_PROPERTY_MEMDEF',0)}
See related topics

' Example: CreateRangeName and DeleteRangeName methods, ColumnWidth property
' Create a range name, use it, and delete it.
' Create the range name "North Sales" for the range A:C10..A:C20.
CurrentDocument.CreateRangeName "North_Sales", [A:C10..A:C20]
' Use this named range. For example, set its column width.
[North_Sales].ColumnWidth = 10
' If necessary, delete the named range when finished.
CurrentDocument.DeleteRangeName "North_Sales"

1-2-3: DeleteRecords method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_DELETERECORDS_METHOD_EXSCRIPT',1)} See example
From a database table, deletes the records that meet the specified criteria formula.

Syntax
range.DeleteRecords criteria

Parameters
criteria

String. The criteria formula. For more information, search on "Criteria" in the 1-2-3 Help Index.

Return values
None

{button ,AL(`H_123_APPENDRECORDS_METHOD_MEMDEF;H_123_FINDRECORDS_METHOD_MEMDEF;H_12
3_CREATETABLE_METHOD_MEMDEF;H_123_COMMIT_METHOD_MEMDEF',0)} See related topics

' Example: CreateRange, and DeleteRecords methods
Sub DeleteRecordsMethod
 ' Create a small range of data.
 Msgbox "Create a small range of data."
 [A:A1].Contents = "Name"
 [A:B1].Contents = "State"
 [A:A2].Contents = "Sally"
 [A:B2].Contents = "NY"
 [A:A3].Contents = "Aidan"
 [A:B3].Contents = "MA"
 [A:A4].Contents = "Siobhan"
 [A:B4].Contents = "CT"
 [A:A5].Contents = "Lester"
 [A:B5].Contents = "MA"
 ' Name the range SOURCEINPUT.
 CurrentDocument.CreateRangeName "sourceinput",[A:A1..A:B5]

 ' Delete records in the range that match the criteria "State" = "MA".
 Msgbox "Delete records matching STATE = MA."
 [SOURCEINPUT].DeleteRecords "State=""MA"""
End Sub

1-2-3: DeleteRows method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_DELETEROWS_METHOD_EXSCRIPT',1)} See example
Deletes the rows in the specified range.

Syntax
range.DeleteRows [deletetype]

Parameters
deletetype

(Optional) Variant (ColRowType enumeration). Determines what part of the rows to delete. The following table
lists the allowed values for this parameter.

Value Description
$Full Delete the entire row.
$Partial Delete only the part of the row that is inside

the range.

Return values
None

{button ,AL(`H_123_DELETECOLUMNS_METHOD_MEMDEF;H_123_DELETESHEET_METHOD_MEMDEF;H_123
_HIDEROWS_METHOD_MEMDEF;H_123_INSERTCOLUMNS_METHOD_MEMDEF;H_123_INSERTROWS_ME
THOD_MEMDEF;H_123_NEWSHEET_METHOD_MEMDEF',0)} See related topics

' Example: DeleteRows method
' Delete the cells in A:B2..C3 and move the remaining data up to fill these cells.
[A:B2..A:C3].DeleteRows $Partial

1-2-3: DeleteSheet method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_DELETESHEET_METHOD_EXSCRIPT',1)} See example
Deletes the sheet or collection of sheets.

Syntax
sheet.DeleteSheet

Parameters
None

Return values
None

{button ,AL(`H_123_DELETEROWS_METHOD_MEMDEF;H_123_DELETECOLUMNS_METHOD_MEMDEF;H_123
_NEWSHEET_METHOD_MEMDEF',0)} See related topics

' Example: AddToSelection, DeleteSheet and NewSheet methods
' Delete sheets from a document in various ways: direct, selected, and named.
' First, create a new document.
CurrentApplication.NewDocument
' Add 12 sheets to the document.
CurrentDocument.NewSheet $Before, 12, True

' Delete sheet B.
Msgbox "Delete sheet B."
[B].DeleteSheet

' Delete the selected sheet.
Msgbox "Select sheet G and delete it."
[G].Select
.DeleteSheet

' Delete contiguous sheets.
Msgbox "Delete the contiguous sheets H and I."
[H].Select
[I].AddToSelection
Selection.DeleteSheet

' Delete a named sheet.
Msgbox "Name a sheet as "SheetB" and then delete it by name."
[B].Name = "SheetB"
[SheetB].DeleteSheet

1-2-3: DeleteVersionGroup method
{button ,AL(`H_123_VERSIONGROUP_CLASS',0)} See list of classes
{button ,AL(`H_123_ADDVERSION_METHOD_EXSCRIPT',1)} See example
Deletes this VersionGroup object from the document.

Syntax
versiongroup.DeleteVersionGroup

Parameters
None

Return values
None

{button ,AL(`H_123_ADDVERSION_METHOD_MEMDEF;H_123_MERGEVERSIONS_METHOD_MEMDEF;H_123_
NEWVERSIONGROUP_METHOD_MEMDEF;H_123_NEWVERSION_METHOD_MEMDEF;H_123_REMOVEVE
RSION_METHOD_MEMDEF;H_123_REPORTVERSION_METHOD_MEMDEF;H_123_VERSIONGROUP_METH
OD_MEMDEF;H_123_VERSIONS_METHOD_MEMDEF;H_123_VERSION_METHOD_MEMDEF;H_123_CURRE
NTVERSION_PROPERTY_MEMDEF;H_123_LASTVERSIONGROUP_PROPERTY_MEMDEF;H_123_SHOWVE
RSIONBORDERS_PROPERTY_MEMDEF;H_123_VERSIONBORDERSVISIBLE_PROPERTY_MEMDEF;H_123
_VERSIONBORDERVISIBLE_PROPERTY_MEMDEF',0)} See related topics

1-2-3: DeleteVersion method
{button ,AL(`H_123_VERSION_CLASS',0)} See list of classes
{button ,AL(`H_123_DELETEVERSION_METHOD_EXSCRIPT',1)} See example
Deletes this Version object from its range.

Syntax
version.DeleteVersion

Parameters
None

Return values
None

{button ,AL(`H_123_NEWVERSION_METHOD_MEMDEF;H_123_ADDVERSION_METHOD_MEMDEF;H_123_MER
GEVERSIONS_METHOD_MEMDEF;H_123_REMOVEVERSION_METHOD_MEMDEF;H_123_REPORTVERSIO
N_METHOD_MEMDEF;H_123_VERSIONS_METHOD_MEMDEF;H_123_VERSION_METHOD_MEMDEF;H_123
_CURRENTVERSION_PROPERTY_MEMDEF;H_123_SHOWVERSIONBORDERS_PROPERTY_MEMDEF;H_1
23_VERSIONBORDERSVISIBLE_PROPERTY_MEMDEF;H_123_VERSIONBORDERVISIBLE_PROPERTY_ME
MDEF',0)} See related topics

' Example: DeleteVersion, NewVersion, CreateRangeName methods
' Create, use, and delete a range version.

' First, create some data for a range.
[A:B2].Contents = "10"
[A:B3].Contents = "20"
[A:B4].Contents = "30"

' Create a version named "Projected_Sales" of the
' range named "Q1Sales" and show the border.
CurrentDocument.CreateRangeName "Q1Sales", [A:B2..A:B4]
[Q1Sales].NewVersion("Projected_Sales")
[Q1Sales].VersionBorderVisible = True

' Use this version to do something. For example, increase all its values 10%.
ForAll sglcell In [Q1Sales].Cells
 sglcell.Contents = CStr(sglcell.CellValue * 1.1)
End Forall

' If necessary, delete the "Projected_Sales" version when finished.
If 6 = Messagebox("Delete the version?", 4 + 32) Then

[Q1Sales.Projected_Sales].DeleteVersion
End If

1-2-3: DemoteColumn method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_COLLAPSECOLUMN_METHOD_EXSCRIPT',1)} See example
Demotes the outline level of the range by the specified number of levels. You can run this method on the currently
selected range or on a range object reference.

Syntax
range.DemoteColumn [levels]

Parameters
levels

(Optional) Long. The number of levels to demote from the current level. The default is one level.

Return values
None

Usage
If demotion of a column would make the difference in levels between it and its parent (summary column) more than
one level, this method doesn't demote the column.
If a column would hit the maximum demotion level, this method doesn't demote the column. If some columns in the
range can be demoted, while others have reached the maximum level or can't move further below their parents, the
columns that can move are demoted.
This method works on collections of ranges, but doesn't work on 3D ranges.
The default outline folding is parent before children, but you can reverse this by setting the Sheet.ColumnFolding
property to $ParentAfter.

{button ,AL(`H_123_DEMOTEROW_METHOD_MEMDEF;H_123_PROMOTEROW_METHOD_MEMDEF;H_123_PR
OMOTECOLUMN_METHOD_MEMDEF,H_123_COLLAPSECOLUMN_METHOD_MEMDEF,H_123_EXPANDCOL
UMN_METHOD_MEMDEF;H_123_COLUMNFOLDING_PROPERTY_MEMDEF',0)} See related topics

1-2-3: DemoteRow method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_DEMOTEROW_METHOD_EXSCRIPT',1)} See example
Demotes the outline level of the range by the specified number of levels. You can run this method on the currently
selected range or on a range object reference.

Syntax
range.DemoteRow [levels]

Parameters
levels

(Optional) Long. The number of levels to demote from the current level. The default is one level.

Return values
None

Usage
If demotion of a row would make the difference in levels between a parent (summary row) and child more than one
level, this method doesn't demote the row.
If a row would hit the maximum demotion level, this method doesn't demote the row. If some rows in the range can be
demoted, while others have reached the maximum level or can't move further below the parent, the rows that can
move are demoted.
This method works on range collections, but not on 3D ranges.
The default outline row folding is parent after children, but you can reverse this by setting the Sheet.RowFolding
property to $ParentBefore.

{button ,AL(`H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_PROMOTEROW_METHOD_MEMDEF;H_123
_PROMOTECOLUMN_METHOD_MEMDEF;H_123_COLLAPSEROW_METHOD_MEMDEF;H_123_EXPANDRO
W_METHOD_MEMDEF;H_123_ROWFOLDING_PROPERTY_MEMDEF',0)} See related topics

' Example: DemoteRow, Select, and AddToSelection methods
' Demote rows 2 through 10 in sheet A.
[A:A2..A:A10].DemoteRow
' Demote the rows in the currently selected range.
[].DemoteRow
' Select a collection of rows (3 and 5) and demote them.
[A:A3..A:IV3].Select
[A:A5..A:IV5].AddToSelection
Selection.DemoteRow

1-2-3: DisableItem method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
{button ,AL(`H_123_GETMENU_METHOD_EXSCRIPT',1)} See example
Disables an item in a menu or menu bar.

Syntax
object.DisableItem position

Parameters
position

Long. The menu position of the item to be disabled.

Value Description
Positive integer The item's position in the menu,

counting forward from the beginning.
The value 1 means the first position.

Negative integer The item's position in the menu,
counting backward from the end. The
value –1 means the last position.

Return values
None

{button ,AL(`H_123_ADDITEM_METHOD_MEMDEF;H_123_ADDSEPARATOR_METHOD_MEMDEF;H_123_CHEC
KITEM_METHOD_MEMDEF;H_123_ENABLEITEM_METHOD_MEMDEF;H_123_REMOVEITEM_METHOD_ME
MDEF;H_123_REPLACEITEM_METHOD_MEMDEF;H_123_UNCHECKITEM_METHOD_MEMDEF;H_123_NEW
MENU_METHOD_MEMDEF;H_123_NEWMENUBAR_METHOD_MEMDEF;H_123_MENUPROMPT_PROPERTY
_MEMDEF;H_123_MENUTEXT_PROPERTY_MEMDEF',0)} See related topics

1-2-3: Disconnect method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Disconnects from the specified external database range, ending all data exchange between 1-2-3 and the external
table.

Syntax
document.Disconnect externalrangename

Parameters
externalrangename

String. The name of the external range from which you want to disconnect.

Return values
None

{button ,AL(`H_123_CONNECT_METHOD_MEMDEF;H_123_CREATETABLE_METHOD_MEMDEF;H_123_NEWQ
UERYTABLE_METHOD_MEMDEF;H_123_ROLLBACK_METHOD_MEMDEF',0)} See related topics

1-2-3: Distribution method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_DISTRIBUTION_METHOD_EXSCRIPT',1)} See example
Determines the distribution of values in a range and enters the distribution in an adjacent range.

Syntax
document.Distribution valuesrange, binrange

Parameters
valuesrange

Variant. The range to scan for values. This range may be read-only or read-write. Text and blanks are ignored.
binrange

Variant. The range containing the list of bin values over which the input range will be distributed.

Return values
None

Usage
The output range appears in the column immediately to the right of the bin range. Each output cell contains the
number of values in valuesrange that fall in the bin determined by the adjacent bin values.

' Example: CreateRangeName and Distribution methods
' Determine how sales were distributed for the month of June.
' Use the range named June, containing June sales data, as the values range.
Dim valuesRange As Range
Set valuesRange = Bind("A2..A10")
CurrentDocument.CreateRangeName "June", valuesRange
[A1].Contents = "Values range"
[A2].Contents = "1000"
[A3].Contents = "2500"
[A4].Contents = "5000"
[A5].Contents = "2200"
[A6].Contents = "3000"
[A7].Contents = "3200"
' Use [B2..B4] as the bin range.
[B1].Contents = "Bin range"
[B2].Contents = "2000"
[B3].Contents = "3000"
[B4].Contents = "4000"
[C1].Contents = "Output"
' Calculate the distribution.
CurrentDocument.Distribution [June], [B2..B4]
' Output appears in cells [C2..C5].
' C2 is 1 (there is 1 value in Values range below 2000).
' C3 is 3 (there are 3 values in Values range between 2000 and 3000).
' C4 is 1 (there is 1 value in Values range between 3000 and 4000).
' C5 is 1 (there is 1 value in Values range above 4000).

1-2-3: DragAndFill method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_DRAGANDFILL_METHOD_EXSCRIPT',1)} See example
Fills a specified target range with a sequence of data that follows a pattern based on data already entered in the
source range that you run this method on. See 1-2-3 Help Index on "Filling ranges" for details on the data pattern that
1-2-3 creates.

Syntax
range.DragAndFill fillrange

Parameters
fillrange

Range. The 2D target range to be filled with a sequence of data. The fill range must completely overlap the
source range that you run this method on, and must start on the same root cell as the source range.

Return values
None

Usage
Neither the source range nor the fill range can be a 3D range.
If the source range has more than one cell, the fill proceeds only in one direction, along rows or along columns. Only
if the source range is a single cell can the fill proceed in both directions.
If the fill range is smaller than the source range, no fill occurs, but the part of the source range outside the fill range is
cleared of data.

{button ,AL(`H_123_RANGEFILL_METHOD_MEMDEF;H_123_FILLRANGE_PROPERTY_MEMDEF;H_123_RANG
EFILLINTERVAL_PROPERTY_MEMDEF;H_123_RANGEFILLSTART_PROPERTY_MEMDEF;H_123_RANGEFIL
LSTEP_PROPERTY_MEMDEF;H_123_RANGEFILLSTOP_PROPERTY_MEMDEF;H_123_RANGEFILLTYPE_P
ROPERTY_MEMDEF;',0)} See related topics

' Example: DragAndFill method
' Example 1: Fill a range with month names.
' Fill all 12 months in cells A1 to A12.
[A1].Contents = "January"
[A1].DragAndFill [A1..L1]
' Output: Row 1 now has the months of the year in the first 12 columns.

' Example 2: Fill a range with one name and sequential numbers.
[A2].Contents = "Item 1"
[A3].Contents = "Item 2"
' Fill cells A4..A10 with "Item n".
[A2..A3].DragAndFill [A2..A10]
' Output: Column A now has "Item 3" in A4, and so on
' through "Item 9" in A10.

1-2-3: EnableItem method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
{button ,AL(`H_123_ENABLEITEM_METHOD_EXSCRIPT',1)} See example
Enables an item in a menu or menu bar.

Syntax
object.EnableItem position

Parameters
position

Long. The menu position of the item to be enabled.

Value Description
Positive integer The item's position in the menu,

counting forward from the beginning.
The value 1 means the first position.

Negative integer The item's position in the menu,
counting backward from the end. The
value –1 means the last position.

Return values
None

Usage
This method resets a 1-2-3 default menu item to its state, enabled or disabled, prior to the running of the script. You
can't enable a 1-2-3 default menu item that 1-2-3 has disabled, but you can enable one that you have disabled.

{button ,AL(`H_123_ADDITEM_METHOD_MEMDEF;H_123_ADDSEPARATOR_METHOD_MEMDEF;H_123_CHEC
KITEM_METHOD_MEMDEF;H_123_DISABLEITEM_METHOD_MEMDEF;H_123_REMOVEITEM_METHOD_ME
MDEF;H_123_REPLACEITEM_METHOD_MEMDEF;H_123_UNCHECKITEM_METHOD_MEMDEF;H_123_NEW
MENU_METHOD_MEMDEF;H_123_NEWMENUBAR_METHOD_MEMDEF;H_123_MENUPROMPT_PROPERTY
_MEMDEF;H_123_MENUTEXT_PROPERTY_MEMDEF',0)} See related topics

' Example: EnableItem, GetMenu, GetMenuPosition, and GetItemText methods
' Get the positions of the Window menu and the New Window menu item, and
' enable the New Window item.
Dim menu1 As Menu ' Window menu object
Dim position As Long ' Position of Window menu in menu bar
' Get the Window menu object.
position = CurrentApplication.GetMenuPosition($WindowMenu)
Set menu1 = CurrentApplication.CurrentMenuBar.GetMenu(position)
' Verify the position of the New Window item and enable it.
If menu1.GetItemText(1) = "&New Window" Then
 menu1.EnableItem 1
Else
 ' The New Window item has been displaced to a different position.
 ' Loop over the other items to find the New Window item and then enable it ...
End If

1-2-3: EndPoll method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_STARTPOLL_METHOD_EXSCRIPT',1)} See example
Terminates the specified poll event. If the poll event is operating, it ceases operating, and no further events will be
raised. If the poll event is not operating, nothing happens.

Syntax
document.EndPoll eventindex

Parameters
eventindex

Long. Index of the event to be terminated. A value of 1 for eventindex specifies the event Poll1, and so on through
the event Poll4.

Return values
None

{button ,AL(`H_123_STARTPOLL_METHOD_MEMDEF;H_123_POLL1_EVENT_MEMDEF;H_123_POLL2_EVENT_
MEMDEF;H_123_POLL3_EVENT_MEMDEF;H_123_POLL4_EVENT_MEMDEF',0)} See related topics

1-2-3: ExpandColumn method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_COLLAPSECOLUMN_METHOD_EXSCRIPT',1)} See example
Expands collapsed columns in the range.

Syntax
range.ExpandColumn

Parameters
None

Return values
None

Usage
This method doesn't work on 3D ranges.

{button ,AL(`H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_PROMOTECOLUMN_METHOD_MEMDEF;H_
123_COLLAPSECOLUMN_METHOD_MEMDEF;H_123_DEMOTEROW_METHOD_MEMDEF;H_123_PROMOT
EROW_METHOD_MEMDEF;H_123_COLLAPSEROW_METHOD_MEMDEF;H_123_EXPANDROW_METHOD_
MEMDEF;H_123_COLLAPSEALL_METHOD_MEMDEF;H_123_EXPANDALL_METHOD_MEMDEF',0)} See
related topics

1-2-3: ExpandRow method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_COLLAPSEROW_METHOD_EXSCRIPT',1)} See example
Expands collapsed rows in the range.

Syntax
range.ExpandRow

Parameters
None

Return values
None

Usage
This method doesn't work on 3D ranges.

{button ,AL(`H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_PROMOTECOLUMN_METHOD_MEMDEF;H_
123_COLLAPSECOLUMN_METHOD_MEMDEF;H_123_EXPANDCOLUMN_METHOD_MEMDEF;H_123_DEMO
TEROW_METHOD_MEMDEF;H_123_PROMOTEROW_METHOD_MEMDEF;H_123_COLLAPSEROW_METHO
D_MEMDEF;H_123_COLLAPSEALL_METHOD_MEMDEF;H_123_EXPANDALL_METHOD_MEMDEF',0)} See
related topics

1-2-3: ExtendedName method
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_APPROACHCONNEC

TION_CLASS;H_123_ARC_CLASS;H_123_BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BU
TTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123
_DATALINK_CLASS;H_123_DATETIME_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H
_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS
;H_123_FONT_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_
MAP_CLASS;H_123_MAPBIN_CLASS;H_123_MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_M
ENU_CLASS;H_123_MENUBAR_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLY
GON_CLASS;H_123_POLYLINE_CLASS;H_123_PRINTSETTINGS_CLASS;H_123_QUERY_CLASS;H_123_QU
ERYTABLE_CLASS;H_123_RANGE_CLASS;H_123_RANGEBORDER_CLASS;H_123_RECTANGLE_CLASS;H
_123_SHEET_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS',
0)} See list of classes

{button ,AL(`H_123_EXTENDEDNAME_METHOD_EXSCRIPT',1)} See example
Returns the name of the object, including the specified parts of the name.

Syntax
extendedname = object.ExtendedName(nametype)

Parameters
nametype

Variant (enumeration). The parts of the extended name to return. The following table lists the allowed values for
this parameter. The values are from the ExtendedNameType enumeration.

Value Description
$ShortName By default, the object name.

For a Document object, the file
name without path information.
For a Version object, the
VersionName property (for
example, "Version 1").

$DocumentRelativeName The name with no document
qualification.
For a Version object, the
Name property (for example,
"Range 1.Version 1").

$FullName The name with document
qualification. Generally for
objects other than documents,
the FullName is
DocumentName & "." &
ShortName.
However, for a Document
object, the FullName is
DocumentName & "\" &
ShortName.
An example of the FullName
of a Version object is "<<D:\
lotus\work\123\
file1.123>>Range 1.Version
1".

$DocumentName The name of the object
container (for example, "<<D:\
lotus\work\123\file1.123>>").
For a Document object, the
document file name.

Return values
String. The extended name of the object.

{button ,AL(`H_123_FULLNAME_PROPERTY_MEMDEF;H_123_NAME_PROPERTY_MEMDEF',0)} See related
topics

' Example: ExtendedName method
' Return the filename of the current document,
' including the path information.
Dim filePath As String
filePath = CurrentDocument.ExtendedName($Fullname)

' Example: ExtendSelection, Select methods
' Extend a sheet selection forward.
' First, add 3 sheets to the current document.
CurrentDocument.NewSheet $After, 3, True
' Select sheet A and then extend the selection to include sheet B.
[A].Select
[B].ExtendSelection $Forward

1-2-3: ExtendSelection method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_EXTENDSELECTION_METHOD_EXSCRIPT',1)} See example
Extends the selection to this sheet. This method extends either a range or a sheet selection to include this sheet.

Syntax
sheet.ExtendSelection

Parameters
None

Return values
None

{button ,AL(`H_123_CLEARSELECTION_METHOD_MEMDEF;H_123_COPYSELECTION_METHOD_MEMDEF;H_
123_CUTSELECTION_METHOD_MEMDEF;H_123_EXTENDSELECTFROMTAB_METHOD_MEMDEF;H_123_E
XTENDWORKSHEETSELECTIONBACK_METHOD_MEMDEF;H_123_EXTENDWORKSHEETSELECTIONFOR
WARD_METHOD_MEMDEF;H_123_GETSELECTION_METHOD_MEMDEF;H_123_REMOVEFROMSELECTIO
N_METHOD_MEMDEF;H_123_SELECT_METHOD_MEMDEF;H_123_SELECTALL_METHOD_MEMDEF;H_123
_SELECTALLSHEETS_METHOD_MEMDEF;H_123_ISSELECTABLE_PROPERTY_MEMDEF;H_123_ISSELECT
ED_PROPERTY_MEMDEF;H_123_SELECTION_PROPERTY_MEMDEF;H_123_SELECTED_EVENT_MEMDEF
',0)} See related topics

' Example: ExtendSheetSelectionBack, Goto, and NewSheet methods
' Select a sheet and then extend the selection to include another sheet.

' First, create a new document.
CurrentApplication.NewDocument
' Add 3 sheets to the document.
CurrentDocument.NewSheet $After, 3, True
' Select cell D:B2.
[D:B2].Select
' Move the cell pointer also to cell D:B2,
' as required by the ExtendSheetSelectionBack method.
[D:B2].Goto
' Extend the selection to the previous sheet.
MessageBox "Extend the selection to the previous sheet."
CurrentDocument.ExtendSheetSelectionBack

' Example: ExtendSheetSelectionForward, Goto, and NewSheet methods
' Select a sheet and then extend the selection to include another sheet.

' First, create a new document.
CurrentApplication.NewDocument
' Add 6 sheets to the document.
CurrentDocument.NewSheet $After, 6, True

' Select cell D:B2.
[D:B2].Select
' Move the cell pointer also to cell D:B2,
' as required by the ExtendSheetSelectionBack method.
[D:B2].Goto
' Extend the selection to the next sheet.
Messagebox "Extend the selection to the next sheet."
CurrentDocument.ExtendSheetSelectionForward

1-2-3: ExtendSheetSelectionBack method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_EXTENDSHEETSELECTIONBACK_METHOD_EXSCRIPT',1)} See example
Extends the selected range, or entire sheet selection, to the previous sheet and goes to that sheet.

Syntax
document.ExtendSheetSelectionBack

Parameters
None

Return values
None

{button ,AL(`H_123_EXTENDWORKSHEETSELECTIONFORWARD_METHOD_MEMDEF;H_123_EXTENDSELECT
_METHOD_MEMDEF;H_123_SELECTION_PROPERTY_MEMDEF',0)} See related topics

1-2-3: ExtendSheetSelectionForward method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_EXTENDSHEETSELECTIONFORWARD_METHOD_EXSCRIPT',1)} See example
Extends the selected range, or the entire sheet selection, to the next sheet and goes to that sheet.

Syntax
document.ExtendSheetSelectionForward

Parameters
None

Return values
None

{button ,AL(`H_123_EXTENDWORKSHEETSELECTIONBACK_METHOD_MEMDEF;H_123_EXTENDSELECT_ME
THOD_MEMDEF;H_123_SELECT_METHOD_MEMDEF;H_123_SELECTION_PROPERTY_MEMDEF',0)} See
related topics

1-2-3: FieldAggregateType method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_FIELDAGGREGATETYPE_METHOD_EXSCRIPT',1)} See example
Performs a calculation on a group of data from a query table by setting up an aggregate column.

Syntax
dataquery.FieldAggregateType fieldname, function

Parameters
fieldname

String. The name of the field to set as aggregate.
function

Variant (SummaryOp enumeration). The aggregate or summary operation to be performed on the field. The
following table lists the allowed values for this parameter.

Value Description
$Sum Adds the values
$Average Averages the values
$Avg Averages the values
$Count Counts the values
$Maximum Finds the largest value
$Max Finds the largest value
$Minimum Finds the smallest value
$Min Finds the smallest value
$Reset Resets the values

Return values
None

{button ,AL(`H_123_NEWQUERY_METHOD_MEMDEF;H_123_CREATERANGENAME_METHOD_MEMDEF',0)}
See related topics

' Example: FieldAggregateType, FieldAlias, GetFieldAlias,
' NewQuery, and Refresh methods; OutputLocation property
' Set a database table field to be a sum field.

' First, set up the query.
[A:B2].Contents = "Employee"
[A:C2].Contents = "EmpID"
[A:D2].Contents = "AmountSold"
[A:B3].Contents = "1"
[B3].DragAndFill [B3..D5]
CurrentDocument.NewQuery "Query 1", "A:B2..A:D10"

' Run the query.
[Query 1].OutputLocation = "A:B13"
[Query 1].Refresh

' Set the "AmountSold" field to aggregate as summed.
[Query 1].FieldAggregateType "AmountSold", $SUM

' Set the field alias to reflect the new aggregate.
[Query 1].FieldAlias "AmountSold", "Total Amount Sold By All Employees"
[Query 1].Refresh

...

' Later, get the alias.
Dim alias1 As String
alias1 = [Query 1].GetFieldAlias("AmountSold")

1-2-3: FieldAlias method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_FIELDAGGREGATETYPE_METHOD_EXSCRIPT',1)} See example
Sets the alias of the given field. The alias is the name shown in the first row for the field in a query table.

Syntax
dataquery.FieldAlias fieldname, alias

Parameters
fieldname

String. The name of the field to be given an alias.
alias

String. The alias of the field.

Return values
None

{button ,AL(`H_123_CREATECOMPUTEDFIELD_METHOD_MEMDEF;H_123_GETFIELDALIAS_METHOD_MEMD
EF;H_123_FIELDAGGREGATETYPE_METHOD_MEMDEF;H_123_JOIN_METHOD_MEMDEF',0)} See related
topics

1-2-3: FileAdminLinksRefresh method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_FILEADMINLINKSREFRESH_METHOD_EXSCRIPT',1)} See example
Updates formulas in all open files that contain links to other files.

Syntax
application.FileAdminLinksRefresh

Parameters
None

Return values
None

{button ,AL(`H_123_UPDATE_METHOD_MEMDEF;H_123_LINKUPDATE_EVENT_MEMDEF;H_123_AUTOUPDAT
E_PROPERTY_MEMDEF;H_123_UPDATELINKSONOPENDOC_PROPERTY_MEMDEF;H_123_CALC_METHO
D_MEMDEF;H_123_RECALCRANGE_METHOD_MEMDEF',0)} See related topics

' Example: FileAdminLinksRefresh method
' Update all linked formulas in open files.
CurrentApplication.FileAdminLinksRefresh

1-2-3: Find method
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_FIND_METHOD_EXSCRIPT',1)} See example
Finds a cell containing the string stored in the Application.SearchString property and selects it. You can find the nth
occurrence by using the optional occurrence argument.

Syntax
boolean = document.object.Find[(occurrence)]

Parameters
occurrence

(Optional) Long. Specifies which occurrence of the target string to find. The default is 1.

Return values
Variant (Boolean). Indicates whether an occurrence of the target string was found (value True) or not found (value
False).

Usage
This method searches for the string stored in the Application.SearchString property, and uses the search matching
option properties also stored in the Application object.

{button ,AL(`H_123_SEARCHSTRING_PROPERTY_MEMDEF;H_123_SEARCHLABELS_PROPERTY_MEMDEF;H
_123_SEARCHFORMULAS_PROPERTY_MEMDEF;H_123_SEARCHVALUES_PROPERTY_MEMDEF;H_123_
MATCHCASE_PROPERTY_MEMDEF;H_123_MATCHACCENT_PROPERTY_MEMDEF;H_123_MATCHPITCH_
PROPERTY_MEMDEF;H_123_MATCHKATAKANA_PROPERTY_MEMDEF;H_123_REPLACE_METHOD_MEM
DEF;H_123_REPLACEALL_METHOD_MEMDEF',0)} See related topics

' Example: MatchCase, SearchLabels, and SearchString properties; Find method
' Find the second occurrence of "Stock Quote" in a label cell
' of the current document, that matches the case exactly.
Dim found As Variant
CurrentApplication.SearchString = "Stock Quote"
CurrentApplication.MatchCase = True
CurrentApplication.SearchLabels = True
found = CurrentDocument.Find(2)

1-2-3: FitTallest method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_FITTALLEST_METHOD_EXSCRIPT',1)} See example
Adjusts the height of each row in a range, or a collection of ranges, to fit the largest font in that row.

Syntax
range.FitTallest

Parameters
None

Return values
None

{button ,AL(`H_123_FITWIDEST_METHOD_MEMDEF;H_123_FITWIDESTNUMBER_METHOD_MEMDEF;H_123_F
ITROWHEIGHTTOFONT_PROPERTY_MEMDEF',0)} See related topics

' Example: DefaultRowHeight, Font, and Size properties;
' FitTallest and ResetRowHeight methods
' Set a large font size in B2 and adjust the row size to accommodate.

' First, set the default row height to 10 pt.
[A].DefaultRowHeight = 10

' Set the font size in B2 to 14 points.
' (The row height is automatically adjusted to fit.)
[A:B2].Contents = "Text"
[A:B2].Font.Size = 14

' Reset all the row heights to the default.
Msgbox "Reset all the row heights to the default (10)."
[A:B2].ResetRowHeight

' Readjust the size of row 2 to accommodate the larger font size in B2.
Msgbox "Readjust the size of row 2 to accommodate the height in B2."
[A:B2].FitTallest

1-2-3: FitWidestNumber method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_FITWIDESTNUMBER_METHOD_EXSCRIPT',1)} See example
Adjusts the column widths to fit the widest numeric entries included in a range or collection of ranges. This method
ignores label cells in fitting the width.

Syntax
range.FitWidestNumber

Parameters
None

Return values
None

{button ,AL(`H_123_FITWIDEST_METHOD_MEMDEF;H_123_FITTALLEST_METHOD_MEMDEF;H_123_FITROW
HEIGHTTOFONT_PROPERTY_MEMDEF',0)} See related topics

' Example: FitWidestNumber method
' Put more digits in a cell and adjust the column width accordingly.

' Set up an example cell.
[A:B2].Contents = "102,003,000"
[A:B2].FitWidestNumber
' Multiply the cell by 10.
' General-purpose checking for numeric contents is not actually needed
' for this cell, but would be for unknown cells.
If IsNumeric([A:B2].Contents) Then
 [A:B2].Contents = CStr(CLng([A:B2].Contents) * 10)
End If
' Then adjust the column width to the larger number.
[A:B2].FitWidestNumber

1-2-3: FitWidest method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_FITWIDEST_METHOD_EXSCRIPT;H_123_FORMATDECIMALS_AND_FORMATNAME_PROP

ERTIES_EXSCRIPT ',1)} See example
Adjusts the column widths to fit the widest cell entries included in a range or collection of ranges.

Syntax
range.FitWidest

Parameters
None

Return values
None

{button ,AL(`H_123_FITTALLEST_METHOD_MEMDEF;H_123_FITWIDESTNUMBER_METHOD_MEMDEF;H_123_
FITROWHEIGHTTOFONT_PROPERTY_MEMDEF',0)} See related topics

' Example: FitWidest method
' Enter a long label in B2 and adjust the column size to accommodate it.
' New cell contents should be longer than any others in column B.
[A:B2].Contents = "Long text entry"
' Adjust the column size to accommodate the largest cell.
[A:B2].FitWidest

1-2-3: FlipLeftRight method
{button ,AL(`H_123_ARC_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_ELLIP

SE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_POLYGON_
CLASS;H_123_POLYLINE_CLASS;H_123_RECTANGLE_CLASS',0)} See list of classes

{button ,AL(`H_123_FLIPLEFTRIGHT_METHOD_EXSCRIPT',1)} See example
Flips the object from left to right.

Syntax
document.object.FlipLeftRight

Parameters
None

Return values
None

{button ,AL(`H_123_FLIPTOPBOTTOM_METHOD_MEMDEF;H_123_ROTATION_PROPERTY_MEMDEF',0)} See
related topics

' Example: FlipLeftRight and NewArrow methods
' This example flips an arrow from pointing right to pointing left.
' Draw an arrow on sheet A pointing right.
Dim myArrow As DrawLine
Set myArrow = [A].NewArrow (1440, 1440, 2880, 1440)
MessageBox "FlipLeftRight", MB_OK + MB_ICONINFORMATION, "FlipLeftRight example"
' Flip the arrow horizontally.
myArrow.FlipLeftRight
' The arrow now points left.

1-2-3: FlipTopBottom method
{button ,AL(`H_123_ARC_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_ELLIP

SE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE
_CLASS;H_123_RECTANGLE_CLASS',0)} See list of classes

{button ,AL(`H_123_FLIPTOPBOTTOM_METHOD_EXSCRIPT',1)} See example
Flips the object from top to bottom, leaving the bounding rectangle unchanged, so that the object appears upside
down.

Syntax
document.object.FlipTopBottom

Parameters
None

Return values
None

{button ,AL(`H_123_FLIPLEFTRIGHT_METHOD_MEMDEF;H_123_ROTATION_PROPERTY_MEMDEF',0)} See
related topics

' Example: AddPoint, FlipTopBottom, and NewPolygon methods
' This example flips a triangle from pointing down to pointing up.
' Draw a triangle on sheet A pointing down.
Dim myPolygon As Polygon
' Begin by creating a Polygon object and drawing the first line segment.
Set myPolygon = [A].NewPolygon (1440, 1440, 2160, 2880)
' Draw the second line segment.
myPolygon.AddPoint 2880, 1440
' 1-2-3 automatically draws the third line segment,
' by connecting the first point to the last.
' Flip the triangle vertically.
Messagebox "FlipTopBottom.", MB_OK + MB_ICONINFORMATION, "FlipTopBottom example"
myPolygon.FlipTopBottom
' The triangle now points up.

1-2-3: FormatReset method
{button ,AL(`H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_FORMATRESET_METHOD_EXSCRIPT',1)} See example
Resets a range to the sheet default number format.

Syntax
object.FormatReset

Parameters
None

Return values
None

{button ,AL(`H_123_FORMAT_METHOD_MEMDEF;H_123_ISVALIDFORMAT_METHOD_MEMDEF;H_123_FORMA
TDECIMALS_PROPERTY_MEMDEF;H_123_FORMATNAME_PROPERTY_MEMDEF',0)} See related topics

' Example: FormatReset method, FormatName property
' Format the cell B2 as US currency and then reset it to the default format.
[A:B2].FormatName = "US Dollar"
' Use this format for a while ...
' Then reset it to the default.
[A:B2].FormatReset

1-2-3: Format method
{button ,AL(`H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_FORMAT_METHOD_EXSCRIPT',1)} See example
Sets the number format and the number of decimal places for a range or sheet.

Syntax
range.Format formatname, [formatdecimal]

Parameters
formatname

String. The name of the format as it appears in the Current Format list on the Number Format tab in the InfoBox
for ranges or sheets.

formatdecimal
(Optional) Long. The number of digits displayed to the right of the decimal point. Valid numbers are from 0 to 15.

Return values
None

Usage
This method is equivalent to setting the FormatName and FormatDecimals property.

{button ,AL(`H_123_FORMATRESET_METHOD_MEMDEF;H_123_ISVALIDFORMAT_METHOD_MEMDEF;H_123_
FORMATDECIMALS_PROPERTY_MEMDEF;H_123_FORMATNAME_PROPERTY_MEMDEF;H_123_CENTURY
LONGFORMAT_PROPERTY_MEMDEF;H_123_ISFORMATFREQUSED_PROPERTY_MEMDEF;',0)} See related
topics

' Example: Format method
' Format a range in Fixed format and then in Scientific format.
' First, set up a range with some data.
Dim myRange As Range

Set myRange = Bind("A:C10..A:C20")
[A:C10].Contents = "1234.5678"
' Format the range in Fixed format with two decimal places.
myrange.Format "Fixed", 2
' Result: cell C10 displays "1234.57".
' Format the range in Scientific format with two decimal places.
myrange.Format "Scientific", 2
' Result: cell C10 displays "1.23E+003".

1-2-3: FreeCellData method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_FREECELLDATA_METHOD_EXSCRIPT',1)} See example
Frees the memory buffer allocated in a previous call to the GetCellData method.

Syntax
range.FreeCellData celldatapointer

Parameters
celldatapointer

Long. A pointer to an array of pointers that was returned by the GetCellData method.

Return values
None

{button ,AL(`H_123_GETCELLDATA_METHOD_MEMDEF;H_123_CLEAR_METHOD_MEMDEF;H_123_CONTENT
S_PROPERTY_MEMDEF',0)} See related topics

' Example: GetCellData, FreeCellData and SetCellData methods
' Get an array of data from the selected range,
' call a C library function that transposes the array,
' and then free the data buffer.

' To run the example:
'
' 1. Build the C++ source code given below (following the script code)
' into a DLL. No other files are needed in the project. The DLL exports
' a function TransposeDoub that transposes an array of doubles.
' 2. In the Global declarations, change the Declare statements to point to
' the proper path and DLL name.
' 3. In a 1-2-3 worksheet, create and select a range with at least 3 rows,
' filled with doubles.
' 4. Run TransposeDoub to transpose the range of doubles.
' The transposition is described in the C++ source code.

' Global declarations for the script
Option Public

' Define the DLL worker function.
Declare Function TransposeDoub Lib "\proj\chngcell\debug\chngcell.dll" _
(Byval ptr As Long, Byval rows As Long, Byval cols As Long) As Long

' The following sub transposes an array of doubles.

Sub Click(Source As ButtonControl)
 Dim inRange As Range ' The range containing the original data
 Dim arrayPtr As Long ' Pointer to the array of data pointers
 Dim rows As Long ' Number of rows
 Dim cols As Long ' Number of columns

 ' Get the number of rows and columns.
 Set inRange = Selection
 rows = inRange.EndRow - inRange.StartRow + 1
 cols = inRange.EndColumn - inRange.StartColumn + 1
 Print inRange.Name

 ' Transpose the array.
 arrayPtr = InRange.GetCellData($Double)
 Print TransposeDoub(arrayPtr, rows, cols)
 inRange.SetCellData arrayPtr
 Print "Done with set."

 ' Free the data buffer.
 inRange.FreeCellData arrayPtr

End Sub

' The following is the C++ source code for the transpose routine.

celld.c

#include <malloc.h>
#define DllExport __declspec(dllexport)
//
// Cell array header
//

typedef struct _CellDataHdr {
 unsigned short hdrSize; // Length of this struct
 unsigned short IsDouble; // 1 if the following array is double
 // 0 if it is vector of char *-s
 unsigned long size; // Number of elements in the array
 unsigned long rows, cols, sheets; // Number of rows, columns, and sheets
 // Set by GetCellData method... ignored
 // Not used by other methods
} CellDataHdr, *PCellDataHdr;

// The cell array transposition follows this pattern:
//
// From ---------------->To
//
// <--cols--> <--cols-->
// ^ A B C D ^ Q R S T
// | E F G H | M N O P
// rows I J K L ==> rows I J K L
// | M N O P | E F G H
// v Q R S T v A B C D
//

//
// Transpose a cell array of doubles.
//
DllExport long TransposeDoub(unsigned long ptr, unsigned long rows, unsigned long
cols)
{
 PCellDataHdr hdr = (PCellDataHdr) ptr;
 double *buf = (double *) &hdr[1];
 unsigned int i, j;
 int count = 0;

 // Validate arguments and table.
 if (rows <= 2 ||
 !hdr->IsDouble ||
 rows > hdr->rows ||
 cols > hdr->cols) {
 return 0;
 }

 for (i = 0; i < cols; i++) {
 double tmp, *pCol;
 pCol = &buf[i * hdr->rows]; // Calc column pointer.

 // Swap column rows.
 for (j = 0; j < rows/2; j++) {
 tmp = pCol[rows - j - 1];
 pCol[rows - j - 1] = pCol[j];
 pCol[j] = tmp;
 count++;
 }
 }
 return count;
}

1-2-3: GetCellData method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_FREECELLDATA_METHOD_EXSCRIPT',1)} See example
Gets the data in a range, referenced as a set of pointers to the contents of individual cells. This method allocates
memory for copying the contents of the range, sets the values in memory, and returns an array pointer that can be
used by an external C program.

Syntax
arraypointer = range.GetCellData(celldatatype)

Parameters
celldatatype

Variant (CellDataType enumeration). The format for the returned cell data. The following table lists the allowed
values for this parameter.

Value Description
$CellValue Return a pointer to an array of strings. The

strings contain the formatted values that the
cells evaluate to. Blank cells result in NULL
pointers.

$FormulaContents Return a pointer to an array of strings. This is
similar to $CellValue, except the strings are
the contents of formula cells (for example,
"+A1+@SUM(B1)"). All other types of cells
result in NULL pointers.

$Double Return a pointer to an array of doubles.
Blank cells and labels are returned as zero.
NA and ERR are encoded as invalid
numbers.

Return values
Long. A pointer to an array of pointers, one for each cell in the range. The array is ordered by row/column/sheet. For
example, an array representing the range [A:A1..B:B2] would be given in the order A:A1, A:A2, A:B1, A:B2, B:A1,
B:A2, B:B1, B:B2.

Usage
This method allocates the memory for the returned array internally, and the caller must free that memory.

{button ,AL(`H_123_FREECELLDATA_METHOD_MEMDEF;H_123_SETCELLDATA_METHOD_MEMDEF;H_123_C
ONTENTS_PROPERTY_MEMDEF',0)} See related topics

1-2-3: GetEnumString method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_GETENUMSTRING_METHOD_EXSCRIPT',1)} See example
Returns the string associated with a specified enum tag registered by the application. You can use this method to get
the enum string associated with an enum tag held in a property.

Syntax
constantname = application.GetEnumString(enumtag)

Parameters
enumtag

Variant. The tag that you use to specify a 1-2-3 enumeration value. This is the tag that the application registers
with LotusScript for the given enum constant. For example, the tag $Medium for the EdgeLineWidth property.

Return values
String. The name of the specified constant (for example, "$Medium").

' Example: GetEnumString method
' Get the enum constant for an enum tag.

Dim calcModeStr As String
' Set the .CalcMode tag to $Auto.
CurrentDocument.CalcMode = $Auto

' Later, get the string for the current .CalcMode setting.
calcModeStr = CurrentApplication.GetEnumString(CurrentDocument.CalcMode)
' The string calcModeStr now contains "$Auto".

1-2-3: GetFieldAlias method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_FIELDAGGREGATETYPE_METHOD_EXSCRIPT',1)} See example
Gets the alias of the given field. The alias is the name shown in the first row of the field in a query table.

Syntax
alias = dataquery.GetFieldAlias(fieldname)

Parameters
fieldname

String. The name of the field for which the alias is to be returned.

Return values
String. The alias for the field.

Usage
You can use the field alias to identify the contents of the field.

{button ,AL(`H_123_FIELDALIAS_METHOD_MEMDEF',0)} See related topics

1-2-3: GetKey method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_GETKEY_METHOD_EXSCRIPT',1)} See example
Returns the next key pressed by the user in 1-2-3.

Syntax
key = application.GetKey

Parameters
None

Return values
String. A single-character string containing the key, for printable characters entered by the user. A descriptive longer
string for function keys, etc. (for example, A returns "A", F6 returns "F6", and CTRL-K returns "Ctrl K").

' Example: GetKey method
' Get the next key pressed by the user.
Dim key As String
MessageBox "Click OK and press X key.", MB_OK + MB_ICONINFORMATION, "Script input"
key = CurrentApplication.GetKey

1-2-3: GetMenuPosition method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_GETMENU_METHOD_EXSCRIPT',1)} See example
Gets the position of a specified menu within the application's menu bar.

Syntax
position = application.GetMenuPosition(menuid)

Parameters
menuid

Variant (TopLevelMenu enumeration). The ID of the menu whose position is to be returned. The following table
lists the allowed values for this parameter.

Value Description
$FileMenu The File menu
$EditMenu The Edit menu
$ViewMenu The View menu
$CreateMenu The Create menu
$WindowMenu The Window menu
$HelpMenu The Help menu

Return values
Long. A positive integer indicating the menu's position in the menu bar. The value 1 indicates the first position. The
value –1 means the menu was not found.

Usage
Use this method to allow for the menu bar changes that 1-2-3 makes in various user contexts. For example, you can't
add an item or menu between any special menus that 1-2-3 displays in specific contexts, such as the Range or Sheet
menus.

{button ,AL(`H_123_ADDMENU_METHOD_MEMDEF;H_123_GETMENU_METHOD_MEMDEF;H_123_REMOVEIT
EM_METHOD_MEMDEF',0)} See related topics

1-2-3: GetMenu method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
{button ,AL(`H_123_GETMENU_METHOD_EXSCRIPT',1)} See example
Gets the submenu that is in the specified position on the menu.

Syntax
menu = object.GetMenu(position)

Parameters
position

Long. The submenu's position in the menu.

Value Description
A positive integer The submenu's position in the

menu, counting forward from
the beginning. The value 1
means the first position. If
position exceeds the last
menu position, the last menu
is returned.

A negative integer The submenu's position in the
menu, counting backward
from the end. The value –1
means the last position. If
position indicates a menu
before the first menu, the first
menu is returned.

Return values
Menu. The submenu to get.

Usage
If there is any uncertainty about whether the menu position has a submenu or an item, use the GetItemType method
to determine this before calling the GetMenu method. The GetMenu method works only when the position has a
Menu object. If the position has an item that is not a submenu, you can find the item name with the GetItemText
method.

{button ,AL(`H_123_ADDITEM_METHOD_MEMDEF;H_123_REPLACEMENU_METHOD_MEMDEF;H_123_GETITE
MTEXT_METHOD_MEMDEF;H_123_GETITEMTYPE_METHOD_MEMDEF;H_123_GETMENUPOSITION_MET
HOD_MEMDEF;H_123_NEWMENU_METHOD_MEMDEF;H_123_NEWMENUBAR_METHOD_MEMDEF;H_123_
MENUPROMPT_PROPERTY_MEMDEF;H_123_MENUTEXT_PROPERTY_MEMDEF',0)} See related topics

' Example: GetMenu method, GetMenuPosition, GetItemText, and DisableItem methods
' Get the positions of the Window menu and the New Window menu item, and
' disable the New Window item.
Dim menu1 As Menu ' Window menu object
Dim position As Long ' Position of Window menu in menu bar
' Get the Window menu object.
position = CurrentApplication.GetMenuPosition($WindowMenu)
Set menu1 = CurrentApplication.CurrentMenuBar.GetMenu(position)
' Verify the position of the New Window item and disable it.
If menu1.GetItemText(1) = "&New Window" Then
 menu1.DisableItem 1
Else
 ' The New Window item has been displaced to a different position.
 ' Loop over the other items to find the New Window item and then disable it ...
End If

1-2-3: GetRGB method
{button ,AL(`H_123_COLOR_CLASS',0)} See list of classes
{button ,AL(`H_123_GETRGB_METHOD_EXSCRIPT',1)} See example
Returns the RGB value of a Color object.

Syntax
rgbvalue = color.GetRGB

Parameters
None

Return values
Long. The RGB value of the Color object. The following table lists the bit-field values inside this return value.

Value Description
Bits 0 – 7 Blue
Bits 8 – 15 Green
Bits 16 – 23 Red
Bits 24 – 31 All zero

{button ,AL(`H_123_COLOR_CLASS;H_123_COLORS_PROPERTY_MEMDEF;H_123_RGB_PROPERTY_MEMDE
F;H_123_COLORFROMRGB_METHOD_MEMDEF',0)} See related topics

' Example: GetRGB method, Colors Property
' Set a Color object to "blue" and get its RGB value.
Dim blueRGB As Long
Dim blueColor As Color
Set blueColor = CurrentApplication.Colors("blue")
blueRGB = blueColor.GetRGB
' You can use this RGB value, for example, to set up an RGB value
' in a different bit-field format for another application.

1-2-3: Goto method
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_APPROACHCONNEC

TION_CLASS;H_123_ARC_CLASS;H_123_BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BU
TTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123
_DATALINK_CLASS;H_123_DATETIME_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H
_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITT
EXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CL
ASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_MAPPLOT_CLASS;H_123
_MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_1
23_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_1
23_PRINTSETTINGS_CLASS;H_123_QUERY_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;
H_123_RANGESELECTOR_CLASS;H_123_RANGEBORDER_CLASS;H_123_RECTANGLE_CLASS;H_123_SH
EET_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS;',0)} See
list of classes

{button ,AL(`H_123_GOTO_METHOD_EXSCRIPT',1)} See example
Shows the object. This method does not change the current selection. It moves the cell pointer to the given object,
such as a specified cell, a named range, another sheet, another open file, a graphic object, a chart, or a query table.
When you go to another sheet or file, 1-2-3 moves the cell pointer to the cell you last highlighted in that sheet or file.

Syntax
object.Goto

Parameters
None

Return values
None

Usage
You can use the TurnTo method to display a different sheet and change the current selection to cell A1 in the new
sheet.

{button ,AL(`H_123_ACTIVATE_METHOD_MEMDEF;H_123_SCROLLTOACTIVECELL_METHOD_MEMDEF;H_123
_ACTIVE_PROPERTY_MEMDEF;H_123_ACTIVEDOCUMENT_PROPERTY_MEMDEF;H_123_ACTIVEDOCWI
NDOW_PROPERTY_MEMDEF;H_123_TURNTO_METHOD_MEMDEF',0)} See related topics

' Example: Goto, NewButton, NewObject, NewSheet, TurnTo, and Verb methods
' Create several targets in different sheets and run the Goto method on them.

' Create a new document.
CurrentApplication.NewDocument

' Add 3 sheets to the document.
CurrentDocument.NewSheet $After, 3, True

' Create a button in sheet B.
[B].TurnTo
[B].NewButton 375, 840, 1665, 1320
[Button 1].Select

' Create a rectangle in sheet C.
[C].TurnTo
[C].NewRoundedRectangle 420, 1080, 1740, 1650
[Rectangle 1].Select

' Create an OLE object (WordPad) in sheet D.
[D].TurnTo
[D].NewObject 195, 975, 2220, 4425, "WordPad.Document.1",,, False,,,
[OLE 1].Select
Selection.Verb $OLEVerbShow

' Select cell A:A1.
Msgbox "Select cell A:A1."
[A].TurnTo
[A:A1].Select
' Go to the button in sheet B.
Msgbox "Go to the button in sheet B."
[Button 1].Goto
' Go to the rectangle in sheet C.
Msgbox "Go to the rounded rectangle in sheet C."
[Rectangle 1].Goto
' Go to the OLE object in sheet D.
Msgbox "Go to the OLE object in sheet D."
[OLE 1].Goto
' Return to the selected cell in sheet A.
Msgbox "Return to the selected cell in sheet A."
[A].TurnTo

1-2-3: GroupSheets method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_GROUPSHEETS_METHOD_EXSCRIPT',1)} See example
Copies the styles and settings from the specified origin sheet to all sheets in the group specified as the start sheet
through the end sheet.

Syntax
document.GroupSheets startsheet, endsheet, originsheet

Parameters
startsheet

Long. The first sheet in the group.
endsheet

Long. The last sheet in the group.
originsheet

Long. The sheet whose styles and settings are to be copied into all the grouped sheets.

Return values
None

Usage
Changes the user makes to styles and settings in one grouped sheet are automatically applied to all sheets in the
group.
Sheet numbers in a document start with 0 for sheet [A].

' Example: GroupSheets method

' Set a style for the first sheet.
[A].Background.BackColor.ColorName = "ice blue"

' Create 12 sheets after the first one.
CurrentDocument.NewSheet $After, 12, True

' Group sheets 0 through 9 (A through J) together,
' and apply the styles and settings in sheet A to the entire group.
CurrentDocument.GroupSheets 0, 9, 0

' Refresh the window and turn to one of the sheets in the group.
CurrentWindow.Update
[J].TurnTo

1-2-3: Group method
{button ,AL(`H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS',0)} See list of classes
{button ,AL(`H_123_GROUP_METHOD_EXSCRIPT',1)} See example
Creates a group object containing the currently selected drawn objects, if there are more than one. It removes the
grouped drawn objects from the DrawObjects collection.

Syntax
[].Group

Parameters
None

Return values
None

Usage
You can reference the Group object that this method creates by its bracketed name, which 1-2-3 creates in sequence
as Group 1, Group 2, and so on.

{button ,AL(`H_123_DRAWOBJECTS_PROPERTY_MEMDEF;H_123_ADDTOSELECTION_METHOD_MEMDEF;H_
123_REMOVE_METHOD_MEMDEF;H_123_SELECT_METHOD_MEMDEF;H_123_UNGROUP_METHOD_MEM
DEF;',0)} See related topics

' Example: Text property; AddPoint, AddToSelection, Group, Move, NewDrawLine,
' NewEditText, NewPolyline, NewRectangle, Select, and UnGroup methods

' Example 1: Create two graphic objects and then group them.
Dim myRectangle As Rectangle
Dim myEditText As EditText
' Draw a rectangle on sheet A.
Set myRectangle = [A].NewRectangle(1440, 1440, 4800, 3600)
' Draw an edit control on sheet A.
Set myEditText = [A].NewEditText(2160, 2160, 3600, 2880)
myEditText.Text = "Box #1"
' Select the two objects.
myRectangle.Select
myEditText.AddToSelection
' Group the two objects.
[].Group
' The objects stay grouped when you select something else.
[A:B2].Select
' Do something with the group. For example, move it 0.5" in each direction.
[Group 1].Move 720, 720

' Example 2: Use object reference variables.
' After executing the code in Example 1, group another two objects.
Dim myDrawLine As DrawLine
Dim myPolyline As Polyline
Dim dc As DrawCollection
Dim lineGroup As Group
' Create two drawn objects and select them.
Set myDrawLine = [A].NewDrawLine(5760, 1440, 7200, 1440)
Set myPolyline = [A].NewPolyline(5760, 2880, 7200, 2880)
myPolyline.AddPoint 7200, 4340
myDrawLine.Select
myPolyline.AddToSelection
' Group the two objects as a DrawCollection.
Set dc = Selection
dc.group
' Get a Group object reference variable for the new group.
Set lineGroup = Selection
' Select both groups.
[Group 1].Select
dc.AddToSelection
' Do something with the selected groups.
[].Move 1440, 1440
' To work with the individual objects again, delete the group.
lineGroup.UnGroup ' This method doesn't change the selection.

1-2-3: HideColumns method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_UNHIDECOLUMNS_EXSCRIPT',1)} See example
Hides all columns in a range. This method does not change the column.

Syntax
range.HideColumns

Parameters
None

Return values
None

Usage
If the sheet that contains the range is part of a group, hiding columns in this sheet hides these columns in all sheets
in the group.
If hidden columns are not protected and the sheet or workbook containing them is not locked, commands that enter
new data can write over data in the hidden columns.

{button ,AL(`H_123_HIDE_METHOD_MEMDEF;H_123_HIDECOLUMNS_METHOD_MEMDEF;H_123_HIDEROWS
_METHOD_MEMDEF;H_123_ISCOLUMNHIDDEN_PROPERTY_MEMDEF;H_123_ISHIDDEN_PROPERTY_ME
MDEF;H_123_SHOW_METHOD_MEMDEF',0)} See related topics

1-2-3: HideIconBar method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Hides the specified set of SmartIcons.

Syntax
applicationwindow.HideIconBar(iconsetname)

Parameters
iconsetname

String. The name of the set of SmartIcons to be hidden.

Return values
None

{button ,AL(`H_123_ISICONBARSHOWING_METHOD_MEMDEF;H_123_SHOWICONBAR_METHOD_MEMDEF',0)
} See related topics

1-2-3: HideRows method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_UNHIDECOLUMNS_EXSCRIPT',1)} See example
Hides all rows in the specified range.

Syntax
range.HideRows

Parameters
None

Return values
None

Usage
If the sheet that contains the range is part of a group, hiding rows in this sheet hides these rows in all sheets in the
group.
If hidden rows are not protected and the sheet or workbook containing them is not locked, commands that enter new
data can write over data in the hidden rows.

{button ,AL(`H_123_HIDECOLUMNS_METHOD_MEMDEF;H_123_HIDESHEETS_METHOD_MEMDEF;H_123_ISHI
DDEN_PROPERTY_MEMDEF;H_123_SHOW_METHOD_MEMDEF;H_123_SHOWALLSHEETS_METHOD_ME
MDEF',0)} See related topics

1-2-3: HideSheet method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWSHEET_METHOD_EXSCRIPT',1)} See example
Hides the current sheet.

Syntax
sheet.HideSheet

Parameters
None

Return values
None

Usage
If hidden sheets are not protected and the workbook containing them is not locked, commands that enter new data
can write over data in the hidden sheets.

{button ,AL(`H_123_SHOW_METHOD_MEMDEF',0)} See related topics

1-2-3: InsertColumns method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_INSERTCOLUMNS_METHOD_EXSCRIPT',1)} See example
Inserts one or more columns in the current sheet, or inserts a blank range and shifts the selected range right.

Syntax
range.InsertColumns ([inserttype])

Parameters
inserttype

(Optional) Variant (enumeration). Specifies how 1-2-3 inserts columns. The values are from the
InsertColRowType enumeration. The following table lists the allowed values for this parameter.

Value Description
$Full Inserts entire columns; default

if you omit the parameter.
$Partial Inserts only the range and

moves the existing range to
the right.

Return values
None

Usage
1-2-3 inserts new columns to the left of the selected columns or range. Inserted columns have the default column
width.
If the current sheet is part of a group, inserting columns in this sheet inserts columns in all sheets in the group.
When you insert columns, 1-2-3 redefines named ranges and, if necessary, adjusts addresses in formulas. If you
insert columns into a named range, the named range expands by the number of columns you inserted.

{button ,AL(`H_123_DELETECOLUMNS_METHOD_MEMDEF;H_123_HIDECOLUMNS_METHOD_MEMDEF;H_123
_INSERTROWS_METHOD_MEMDEF;H_123_INSERTSHEET_METHOD_MEMDEF',0)} See related topics

' Example: InsertColumns and InsertRows methods
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

' Add some data to cells A:A1 through A:B6 in TestDocument.
[A:A1].Contents = "InsertRows"
[A:A2].Contents = "25"
[A:A3].Contents = "4"
[A:A4].Contents = "93"
[A:A5].Contents = "41"
[A:A6].Contents = "56"
[A:B1].Contents = "Example"
[A:B2].Contents = "1025"
[A:B3].Contents = "104"
[A:B4].Contents = "1093"
[A:B5].Contents = "1041"
[A:B6].Contents = "1056"

'InsertRows $Full
MessageBox "Insert three full rows across all columns"
[A1.A3].InsertRows $Full

'InsertRows $Partial
MessageBox "Insert three partial rows in column A"
[A1.A3].InsertRows $Partial

'InsertColumns $Full
MessageBox "Insert a full column"
[A1].InsertColumns $Full

'InsertColumns $Partial
MessageBox "Insert a partial column in row 5"
[A5].InsertColumns $Partial

1-2-3: InsertRows method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_INSERTCOLUMNS_METHOD_EXSCRIPT',1)} See example
Inserts one or more rows in the current file, or inserts only the part of the rows covered by the range.

Syntax
range.InsertRows(inserttype)

Parameters
inserttype

(Optional) Variant (enumeration). Specifies how 1-2-3 inserts rows. The values are from the InsertColRowType
enumeration. The following table lists the allowed values for this parameter.

Value Description
$Full Inserts entire rows; default if

you omit the parameter.
$Partial Inserts only the range and

moves the existing range
down.

Return values
None

Usage
1-2-3 inserts new rows above the selected rows or range. Inserted rows have the same height as the row above the
inserted rows.
If the current sheet is part of a group, inserting rows in this sheet inserts rows in all sheets in the group.
When you insert rows, 1-2-3 redefines named ranges and, if necessary, adjusts addresses in formulas. If you insert
rows into a named range, the named range expands by the number of rows you inserted.

{button ,AL(`H_123_DELETEROWS_METHOD_MEMDEF;H_123_HIDEROWS_METHOD_MEMDEF;H_123_INSER
TCOLUMNS_METHOD_MEMDEF',0)} See related topics

1-2-3: IsIconBarShowing method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Tests if a specified set of SmartIcons is visible.

Syntax
boolean = applicationwindow.IsIconBarShowing (iconsetname)

Parameters
iconsetname

String. The name of the set of SmartIcons.

Return value
Variant (boolean). Returns True if iconsetname is visible, False if not.

Usage
The ApplicationWindow.IconBarNames property is a collection of names of known icon bars that you can show or
hide.

{button ,AL(`H_123_HIDEICONBAR_METHOD_MEMDEF;H_123_SHOWICONBAR_METHOD_MEMDEF;H_123_IC
ONBARNAMES_PROPERTY_MEMDEF',0)} See related topics

1-2-3: IsSameObject method
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_ARC_CLASS;H_123_

BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_C
LASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123_DATALINK_CLASS;H_123_DATETIME_CLA
SS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJ
ECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_
CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_12
3_MENU_CLASS;H_123_MENUBAR_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_P
OLYGON_CLASS;H_123_PRINTSETTINGS_CLASS;H_123_QUERY_CLASS;H_123_RANGE_CLASS;H_123_R
ANGEBORDER_CLASS;H_123_RECTANGLE_CLASS;H_123_SHEET_CLASS;H_123_VERSION_CLASS;H_12
3_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS;H_123_PLOT_CLASS;H_123_DRAWCOLLECTION_CL
ASS;H_123_MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_POLYLINE_CLASS;',0)} See list of
classes

{button ,AL(`H_123_ISSAMEOBJECT_METHOD_EXSCRIPT',1)} See example
Tests if two objects are the same.

Syntax
boolean = object.IsSameObject(otherobject)

Parameters
otherobject

Variant. An object or expression returning an object that you want to compare to the base object.

Return value
Variant (boolean). Returns True if the objects are the same, False if not.

' Example: IsSameObject method
' This example creates two color objects and uses
' the IsSameObject method to test if the two
' objects are the same.
 ' Declare a variable for the first new color object.

Dim firstColor As Color
 ' Declare a variable for the second new color object.

Dim secondColor As Color
 ' Declare a variable to hold the return value of the SameColor method.

Dim colorissame As Variant
 ' Assign the color blue to the first color object.

Set firstColor = CurrentApplication.Colors("blue")
 ' Assign the color blue to the second color object.

Set secondColor = CurrentApplication.Colors("blue")
 ' Compare the color of the first color object with that of the second
 ' color object and return True (because the colors are the same).

colorissame = firstColor.IsSameObject(secondColor)
If colorissame = True Then

Messagebox("Colors are same.")
Else

Messagebox("Colors are not the same.")
End If

1-2-3: Item method
{button ,AL(`H_123_CHARTS_CLASS;H_123_COLORS_CLASS;H_123_DATALINKS_CLASS;H_123_DOCUMENT

S_CLASS;H_123_DRAWOBJECTS_CLASS;H_123_MAPBINS_CLASS;H_123_MAPS_CLASS;H_123_OLEOBJ
ECTS_CLASS;H_123_PRINTSETTINGSCOLLECTION_CLASS;H_123_RANGES_CLASS;H_123_SHEETS_CLA
SS;H_123_STRINGS_CLASS;H_123_VERSIONGROUPS_CLASS;H_123_VERSIONS_CLASS;H_123_WINDO
WS_CLASS;H_123_BASECOLLECTION_CLASS;H_123_DOCWINDOWS_CLASS;H_123_MAPTEXTENTRIES_
CLASS;H_123_QUERYTABLES_CLASS;',0)} See list of classes

{button ,AL(`H_123_ITEM_METHOD_EXSCRIPT;H_123_SHEETS_PROPERTY_EXSCRIPT;H_123_SHORTDAYNA
MES_PROPERTY_EXSCRIPT;',1)} See example

Returns the specified member of a collection of elements.

Syntax
indexeditem = object.Item (index)

Parameters
index

Variant. Specifies an index value for the object in the collection.

Return value
indexeditem

Variant. Holds the indexed element.

' Example: Item method
' This example uses the Item method to initialize a variable to the item "blue"
' in the Color collection.

Dim adtcolors As Colors
Dim curcolor As color
Set adtcolors = CurrentApplication.Colors
Set curcolor = adtcolors.Item("blue")

1-2-3: Join method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
Specifies a join formula to use for a query.

Syntax
query.Join([joinformula])

Parameters
joinformula

(Optional) String. Specifies a query criteria that compares fields from separate tables. If you omit joinformula, this
method removes all joined tables from the query.

Return values
None

Usage
In a join formula:

• Precede the field name with the table name and a . (period).
• Enter field names exactly as they appear in the database tables.
• The field names do not have to match, but the two fields must contain the same type of data.
• Entries in one field must match entries in the other field, and one field should not contain duplicate entries.

{button ,AL(`H_123_NEWQUERY_METHOD_MEMDEF;H_123_NEWQUERYTABLE_METHOD_MEMDEF;H_123_Q
UERYEXTRACT_METHOD_MEMDEF;H_123_QUERYFIND_METHOD_MEMDEF',0)} See related topics

1-2-3: LoadAddin method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_LOADADDIN_METHOD_EXSCRIPT',1)} See example
Reads an add-in into memory.

Syntax
application.LoadAddin(addinname)

Parameters
addinname

String. Specifies the name of the add-in you want to load.

Return value
None

Usage
The Application.Addins property is a collection of names of the registered add-ins that you can load or unload. Use
the IsAddinLoaded method to determine whether an add-in is loaded.

{button ,AL(`H_123_LOADEDADDINS_PROPERTY_MEMDEF;H_123_UNLOADADDIN_METHOD_MEMDEF;H_123
_ISADDINLOADED_METHOD_MEMDEF;H_123_ADDINS_PROPERTY_MEMDEF',0)} See related topics

' Example: LoadAddin, IsAddinLoaded, UnloadAddin methods
' Load, use, and unload an add-in.
' First, load the add-in.
If CurrentApplication.IsAddinLoaded("C:\Lotus\123\Addins\HTMLbtn.12a") = False Then
 CurrentApplication.LoadAddin "C:\Lotus\123\Addins\HTMLbtn.12a"
End If
' Do something with the add-in ...
' When finished, unload the add-in.
CurrentApplication.UnloadAddin "C:\Lotus\123\Addins\HTMLbtn.12a"

1-2-3: MacroRunText method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_MACRORUNTEXT_METHOD_EXSCRIPT',1)} See example
Executes specified text as a 1-2-3 macro.

Syntax
sheet.MacroRunText(macrotext)

Parameters
macrotext

String. Specifies a 1-2-3 macro.

Return values
None

{button ,AL(`H_123_MACRORUN_METHOD_MEMDEF;H_123_MACROSTEP_PROPERTY_MEMDEF;H_123_MAC
ROTRACE_PROPERTY_MEMDEF',0)} See related topics

' Example: MacroRunText method
' This example runs a macro that enters "HELLO" in cell A1

[].MacroRunText "{SELECT A1}HELLO~"

1-2-3: MacroRun method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_MACRORUN_METHOD_EXSCRIPT',1)} See example
Runs the 1-2-3 macro located in the top left cell of the specified range.

Syntax
range.MacroRun

Parameters
None

Return values
None

{button ,AL(`H_123_MACRORUNTEXT_METHOD_MEMDEF;H_123_MACROSTEP_PROPERTY_MEMDEF;H_123
_MACROTRACE_PROPERTY_MEMDEF',0)} See related topics

' Example: MacroRun method
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

' Enter a macro in A5..A6
[A:A5].Select
Selection.Contents = "{SELECT A1}"
[A].MoveCellPointer $Down,1
Selection.Contents = "HELLO~"

'Run the macro in A5..A6
[A:A5..A:A6].MacroRun

'Use the MessageBox statement to display a
'message asking if you want to close the test document.

Dim boxType As Long, answer As Integer
BoxType& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers with the MessageBox statement.
answer% = Messagebox("Do you want to close the test document

now?",boxType&,"Continue?")
If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document

CurrentDocument.Close False
End If

1-2-3: MakeCurrent method
{button ,AL(`H_123_MAKECURRENT_METHOD_MEMDEF_RT;H_123_VERSION_CLASS;H_123_VERSIONGROU

P_CLASS',0)} See list of classes
Makes the specified version or version group the currently displayed version or version group.

Syntax
object.MakeCurrent

Parameters
None

Return values
None

{button ,AL(`H_123_VERSION_METHOD_MEMDEF;H_123_VERSIONGROUP_METHOD_MEMDEF;H_123_VERSI
ONS_METHOD_MEMDEF',0)} See related topics

1-2-3: MatrixInvert method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Creates the inverse of a square matrix.

Syntax
document.MatrixInvert rangetoinvert, outputrange

Parameters
rangetoinvert

Variant. The range containing the matrix that you want to invert.
outputrange

Variant. The range where you want 1-2-3 to put the results of the matrix inversion.
Caution 1-2-3 writes over any data in outputrange.

Return values
None

Usage
The matrix range must have the same number of columns as rows and can contain up to 80 columns and 80 rows.
Matrix inversion algorithms by their nature propagate small errors. Inverting an ill-conditioned matrix (a matrix that
contains numbers differing widely in magnitude) may result in large errors. If 1-2-3 cannot invert the matrix at all,
LotusScript returns an error.

Inverting 3D matrixes
A 3D matrix includes the same cells in two or more contiguous sheets. When you invert a 3D matrix, the matrix you
want to invert and the results range must be square on each sheet, and contain the same number of sheets.
1-2-3 inverts the matrix in each sheet of the 3D range and enters the results in each sheet. The matrixes must be in
the same workbook but can be in different sheets. Also, the 3D results matrix must be in the same workbook as the
matrixes you're inverting, but can be in different sheets.
For example, 1-2-3 inverts the matrix in the first sheet of the range and enters the results in the first sheet, inverts the
matrix in the second sheet and enters the results in the second sheet, and so on.

1-2-3: MatrixMultiply method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Multiplies the values in two input matrixes to create an output matrix that contains the results.

Syntax
document.MatrixMultiply inputmatrix1, inputmatrix2, outputrange

Parameters
inputmatrix1

Range. The first matrix you want to multiply.
inputmatrix2

Range. The second matrix you want to multiply.
outputrange

Range. The range where you want 1-2-3 to put the result matrix.
Caution 1-2-3 writes over any data in outputrange.

Return value
None

Usage
The number of rows in inputmatrix1 must equal the number of columns in inputmatrix2 and outputrange.
Matrix multiplication algorithms by their nature propagate small errors. Multiplying an ill-converted matrix (a matrix
that contains numbers differing greatly in magnitude) or a very large matrix may result in less accurate results.

Multiplying 3D matrixes
A 3D matrix includes the same cells in two or more contiguous sheets. When you multiply 3D matrixes, both matrixes
must be 3D, and both must contain the same number of sheets. The matrixes can be in different sheets, or in
different workbooks. The 3D results matrix can also be in different sheets or workbooks from the the matrixes you're
multiplying.
1-2-3 multiplies the first and second matrixes in each sheet and enters the results in the resulting matrix range in that
sheet. For example, 1-2-3 multiplies the range in the first sheet of the first matrix by the range in the first sheet of the
second matrix and enters the results in the first sheet, multiplies the range in the second sheet of the first matrix by
the range in the second sheet of the second matrix and enters the results in the second sheet, and so on.

{button ,AL(`H_123_MATRIXINVERT_METHOD_MEMDEF',0)} See related topics

1-2-3: Maximize method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS',0)}

See list of classes
{button ,AL(`H_123_MAXIMIZE_METHOD_EXSCRIPT',1)} See example
Maximizes the window.

Syntax
object.Maximize

Parameters
None

Return Values
None

{button ,AL(`H_123_MINIMIZE_METHOD_MEMDEF;H_123_RESTORE_METHOD_MEMDEF',0)} See related topics

'Maximize method
'Maximizes the 1-2-3 application window
CurrentApplication.ApplicationWindow.Maximize

1-2-3: MergeVersions method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Copies versions from named ranges in the source workbook to ranges of the same size and with the same names in
the destination workbook.

Syntax
document.MergeVersions ([sourcefile], [datefilter], [userfilter], [tablelocation])

Parameters
sourcefile

(Optional) String. The name of the file that contains the versions and version groups you want to merge. The
default is the current file.

datefilter
(Optional) Variant. Tells 1-2-3 to merge only versions and version groups created or modified on or after a
particular date. The default is to merge all version and version groups.

userfilter
(Optional) String. Tells 1-2-3 to merge only versions and version groups created or last modified by a particular
user. The default is to merge all version and version groups.

tablelocation
(Optional) Variant. The range where you want 1-2-3 to create the table of merge results. If you omit tablelocation,
1-2-3 does not create a table of merge results.
Caution tablelocation occupies one column and as many rows as there are merge results, plus one blank row. 1-
2-3 writes over any existing data in tablelocation.

Return value
None

Usage
1-2-3 does not merge hidden versions and version groups in a locked file.
If a version or version group in the active file has the same name, creation date, last modified date, and last user as a
version or version group in sourcefile, the version or scenario in the sourcefile is not merged.
If tablelocation calls for more rows than there are rows remaining in the sheet, 1-2-3 truncates the table.

1-2-3: Minimize method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS',0)}

See list of classes
{button ,AL(`H_123_MINIMIZE_METHOD_EXSCRIPT',1)} See example
Minimizes the window.

Syntax
object.Minimize

Parameters
None

Return values
None

{button ,AL(`H_123_MAXIMIZE_METHOD_MEMDEF;H_123_RESTORE_METHOD_MEMDEF',0)} See related
topics

'Minimize method
'This function lays the groundwork for an application that runs
'in the background. After opening a document, you can minimize 1-2-3.

'Minimize 1-2-3
CurrentApplication.ApplicationWindow.Minimize

1-2-3: ModifyNamedStyle method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_MODIFYNAMEDSTYLE_METHOD_EXSCRIPT',1)} See example
Modifies the style of an existing named style by redefining the attributes of the named style to match the attributes of
the upper left cell of the range.

Syntax
range.ModifyNamedStyle (stylename)

Parameters
stylename

String. Name of the style you want to modify.

Return value
None

{button ,AL(`H_123_SETSTYLESOURCE_METHOD_MEMDEF;H_123_STYLE_PROPERTY_MEMDEF;H_123_STY
LENAME_PROPERTY_MEMDEF;H_123_STYLERANGE_PROPERTY_MEMDEF;H_123_STYLESOURCE_PRO
PERTY_MEMDEF',0)} See related topics

' Example: ModifyNamedStyle method
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

' Create two labels (one for each named style):
' Style1 and Style2.

MessageBox "Create labels for styles Style1 and Style2."
[A:A1].Select
Selection.Contents = "Style1"
[A].MoveCellPointer $Down,1
Selection.Contents = "Style2"

' Make each style distinctive.
MessageBox "Make each style distinctive."
[A:A1].Select
Selection.Font.FontColor.ColorName = "blue"
Selection.Font.Bold = True
Selection.Background.BackColor.ColorName = "ice blue"
Selection.DefineNamedStyle "Style1"
Selection.StyleName = "Style1"
[A:A2].Select
Selection.Font.Italic = True
Selection.Font.FontColor.ColorName = "red"
Selection.Background.BackColor.ColorName = "blush"
Selection.DefineNamedStyle "Style2"
Selection.StyleName = "Style2"

' Select C1 and give it styles
MessageBox "Select C1 and give it styles."
[A:C1].Select
Selection.Font.DoubleUnderline = True
Selection.Font.Size = 14
Selection.Font.FontColor.ColorName = "dark green"
Selection.Background.BackColor.ColorName = "pale green"

'Modify Style1 to give it the styles in C1
MessageBox "Modify Style1 to give it the styles in C1."
[C1].ModifyNamedStyle "Style1"

'Use the MessageBox statement to display a
'message asking if you want to close the test document.

Dim boxType As Long, answer As Integer
BoxType& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers with the MessageBox statement.
answer% = Messagebox("Do you want to close the test document

now?",boxType&,"Continue?")

If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document

CurrentDocument.Close False
End If

1-2-3: MoveCellPointer method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_MOVECELLPOINTER_METHOD_EXSCRIPT',1)} See example
Moves the cell pointer.

Syntax
sheet.MoveCellPointer direction, repeatcount

Parameters
direction

Variant (SheetDirection enumeration). Specifies the direction and type of movement. The following table lists the
allowed arguments for this parameter.

Value Description
$Left Moves the cell pointer left one

column.
$Right Moves the cell pointer right

one column.
$Up Moves the cell pointer up one

row.
$Down Moves the cell pointer down

one row.
$Home Moves the cell pointer to cell

A1 in the current sheet.
$FirstCell Moves the cell pointer to cell

A:A1 in the current file.
$PgLeft Moves the cell pointer left the

number of columns currently
visible in the window.

$PgRight Moves the cell pointer right the
number of columns currently
visible in the window.

$PgUp Moves the cell pointer up the
number of rows currently
visible in the window.

$PgDown Moves the cell pointer down
the number of rows currently
visible in the window.

$EndUp Moves the cell pointer up to a
cell that contains data and is
next to a blank cell.

$EndRight Moves the cell pointer right to
a cell that contains data and is
next to a blank cell.

$EndLeft Moves the cell pointer left to a
cell that contains data and is
next to a blank cell.

$EndDown Moves the cell pointer down to
a cell that contains data and is
next to a blank cell.

$EndHome Moves the cell pointer to the
bottom right corner of the
sheet's active area.

$LastCell Moves the cell pointer to the

bottom right corner of the last
sheet's active area.

$EndForward Moves the cell pointer to the
cell you last highlighted in the
first active file.

$EndBackward Moves the cell pointer to the
cell you last highlighted in the
last active file.

$Forward Moves the cell pointer to the
cell you last highlighted in the
next active file.

$Backward Moves the cell pointer to the
cell you last highlighted in the
previous active file.

repeatcount
Long. The number of times to repeat the movement.

Return value
None

{button ,AL(`H_123_SCROLLTOACTIVECELL_METHOD_MEMDEF',0)} See related topics

' Example: MoveCellPointer method
.MoveCellPointer $Right,5
.MoveCellPointer $Down,5
.MoveCellPointer $Left,5
.MoveCellPointer $Up,5

1-2-3: MoveOrigin method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_MOVEORIGIN_METHOD_EXSCRIPT',1)} See example
Scrolls to display a different cell in the top left corner of the sheet. When you use MoveOrigin, a different location in
the sheet is displayed, but the cell pointer does not move.

Syntax
sheet.MoveOrigin (direction, [repeatcount])

Parameters
direction

Variant (enumeration). Specifies the direction and type of movement. The values are from the enumeration
SheetDirection. The following table lists the allowed values for this parameter.

Value Description
$Left Moves the cell pointer left one

column.
$Right Moves the cell pointer right

one column.
$Up Moves the cell pointer up one

row.
$Down Moves the cell pointer down

one row.
$Home Moves the cell pointer to cell

A1 in the current sheet.
$FirstCell Moves the cell pointer to cell

A:A1 in the current file.
$PgLeft Moves the cell pointer left the

number of columns currently
visible in the window.

$PgRight Moves the cell pointer right the
number of columns currently
visible in the window.

$PgUp Moves the cell pointer up the
number of rows currently
visible in the window.

$PgDown Moves the cell pointer down
the number of rows currently
visible in the window.

$EndUp Moves the cell pointer up to a
cell that contains data and is
next to a blank cell.

$EndRight Moves the cell pointer right to
a cell that contains data and is
next to a blank cell.

$EndLeft Moves the cell pointer left to a
cell that contains data and is
next to a blank cell.

$EndDown Moves the cell pointer down to
a cell that contains data and is
next to a blank cell.

$EndHome Moves the cell pointer to the
bottom right corner of the
sheet's active area.

$LastCell Moves the cell pointer to the
bottom right corner of the last
sheet's active area.

$EndForward Moves the cell pointer to the
cell you last highlighted in the
first active file.

$EndBackward Moves the cell pointer to the
cell you last highlighted in the
last active file.

$Forward Moves the cell pointer to the
cell you last highlighted in the
next active file.

$Backward Moves the cell pointer to the
cell you last highlighted in the
previous active file.

repeatcount
(Optional) . The number of times to repeat the movement.

Return values
None

{button ,AL(`H_123_MOVE_METHOD_MEMDEF;H_123_MOVECELLPOINTER_METHOD_MEMDEF;H_123_MOVE
POINT_METHOD_MEMDEF',0)} See related topics

' Example: MoveOrigin method
.MoveOrigin $Right,5
.MoveOrigin $Left,5

1-2-3: Move method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS;H_

123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHA
RT_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H
_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_12
3_LEGEND_CLASS;H_123_MAP_CLASS;H_123_PLOT_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJE
CT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTA
BLE_CLASS;H_123_RECTANGLE_CLASS;',0)} See list of classes

{button ,AL(`H_123_MOVE_METHOD_EXSCRIPT;',1)} See example
For graphic objects, moves an object by a given distance. For an ApplicationWindow, DocWindow, or Window object,
moves the top left corner of the specified window to a new coordinate.

Syntax
For window objects: window.Move left, top
For graphic objects: object.Move horizontal, vertical

Parameters
For graphic objects:
horizontal

Long. The number of twips to move the object left or right. Specify a positive value to move the object to the right;
specify a negative value to move the object to the left.

vertical
Long. The number of twips to move the object up or down. Specify a positive value to move the object down;
specify a negative value to move the object up.

For window objects:
left

Long. The horizontal coordinate (x-axis) for the left edge of the window.
top

Long. The vertical coordinate (y-axis) for the top edge of the window.

Return value
None

Usage
If the window is currently maximized, the move occurs after the window is restored to its original size.

' Example: Move method (windows)
CurrentApplication.ApplicationWindow.Move 100,300

' Example: Move method (graphic object)
MessageBox("Create a button.")
[A].NewButton 400,1000,1290,1425
MessageBox("Move the button.")
[Button 1].Move 300,1200
MessageBox("Delete the button.")
[Button 1].Clear

1-2-3: NewApproachConnection method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_NEWAPPROACHCONNECTION_METHOD_EXSCRIPT',1)} See example
Creates a new ApproachConnection object.

Syntax
Set approachconnection = sheet.NewApproachConnection(left, top, right, bottom, objecttype, [filename], [link],
[displayasicon], [iconfilename], [iconindex], [iconlabel], inputrange)

Parameters
left

Long. The left position of the object's bounding rectangle, in units of twips. If you omit both left and top, the
ApproachConnection object is created at the position of the current selection.

top
Long. The top position of the object's bounding rectangle, in units of twips. If you omit both left and top, the
ApproachConnection object is created at the position of the current selection.

right
Long. The right position of the object's bounding rectangle, in units of twips. If you omit both right and bottom, the
ApproachConnection object is created with a default size.

bottom
Long. The bottom position of the object's bounding rectangle, in units of twips. If you omit both right and bottom,
the ApproachConnection object is created with a default size.

objecttype
String. The object type as it appears in the Create - Object dialog box. You can specify the objecttype or the
filename argument, but not both.

filename
(Optional, not applicable for this method) String. The name of the file to embed or link. You can specify the
objecttype or the filename argument, but not both.

link
(Optional, not applicable for this method) Variant (Boolean). Specify True to link the file, False to embed the file
specified by the filename argument. The default is False.

displayasicon
(Optional) Variant (Boolean). Specify True to display the object as an icon, False to display the object's content,
for forms and crosstabs. The default is False.

iconfilename
(Optional, not applicable for this method) String. The name of an executable file containing the icon to be
displayed for the object. Only relevant if displayasicon is True.

iconindex
(Optional, not applicable for this method) Integer. The index that specifies the icon within the file specified by
iconfilename. Only relevant if displayasicon is True.

iconlabel
(Optional, not applicable for this method) String. Text to display below the icon. Only relevant if displayasicon is
True.

inputrange
Variant. The range containing the source data for the Approach object.

Return values
ApproachConnection. A new ApproachConnection object.

{button ,AL(`H_123_NEWOBJECT_METHOD_MEMDEF;H_123_NEWQUERY_METHOD_MEMDEF;H_123_NEWQ
UERYTABLE_METHOD_MEMDEF',0)} See related topics

1-2-3: NewArc method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_NEWARC_METHOD_EXSCRIPT',1)} See example
Creates a new Arc object.

Syntax
Set arc = sheet.NewArc(left, top, right, bottom)

Parameters
left

Long. The left position of the arc's bounding rectangle in units of twips.
top

Long. The top position of the arc's bounding rectangle in units of twips.
right

Long. The right position of the arc's bounding rectangle in units of twips.
bottom

Long. The bottom position of the arc's bounding rectangle in units of twips.

Return values
Arc. A new instance of the Arc class.

1-2-3: NewArrow method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_FLIPLEFTRIGHT_METHOD_EXSCRIPT',1)} See example
Creates a new DrawLine object with an arrowhead on its second endpoint.

Syntax
Set drawline = sheet.NewArrow(xposition1, yposition1, xposition2, yposition2)

Parameters
xposition1

Long. The horizontal position of the arrow's first endpoint, in units of twips.
yposition1

Long. The vertical position of the arrow's first endpoint, in units of twips.
xposition2

Long. The horizontal position of the arrow's second endpoint, in units of twips.
yposition2

Long. The vertical position of the arrow's second endpoint, in units of twips.

Return values
DrawLine. A new instance of the DrawLine class, with its Arrow property set to $Head.

{button ,AL(`H_123_NEWDRAWLINE_METHOD_MEMDEF;H_123_ARROW_PROPERTY_MEMDEF',0)} See
related topics

1-2-3: NewButton method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
Creates a new ButtonControl object.

Syntax
Set buttoncontrol = sheet.NewButton(left, top, right, bottom)

Parameters
left

Long. The left position of the button's bounding rectangle, in units of twips.
top

Long. The top position of the button's bounding rectangle, in units of twips.
right

Long. The right position of the button's bounding rectangle, in units of twips.
bottom

Long. The bottom position of the button's bounding rectangle, in units of twips.

Return values
ButtonControl. A new instance of the ButtonControl class.

1-2-3: NewChart method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWDRAWLAYER_PROPERTY_EXSCRIPT;H_123_NEWCHART_METHOD_EXSCRIPT',1)}

See example
Creates a new Chart object.

Syntax
Set chart = sheet.NewChart(left, top, right, bottom, inputrange)

Parameters
left

Long. The left position of the chart's bounding rectangle, in units of twips.
top

Long. The top position of the chart's bounding rectangle, in units of twips.
right

Long. The right position of the chart's bounding rectangle, in units of twips.
bottom

Long. The bottom position of the chart's bounding rectangle, in units of twips.
inputrange

Variant. The input range of data to be charted.

Return values
Chart. A new instance of the Chart class.

1-2-3: NewDataLink method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_NEWDATALINK_METHOD_EXSCRIPT',1)} See example
Creates a new DataLink object, linked to an OLE server.

Syntax
Set datalink = document.NewDataLink([linkname], filename, itemname, [format], [autoupdate])

Parameters
linkname

(Optional) String. Name for the link.
filename

String. The name of the external file to link. The file application must be an OLE server.
itemname

String. The name of the source item in the link file. The source item must be in text, WK1, or WK3 format.
format

(Optional) Variant (ClipboardFormat enumeration). The Clipboard data format to use. The link returns text or cell
data in one of the following allowed formats.

Value Description
$TextFormat Text
$WK1Format Lotus 1-2-3 Release 2 file
$WK3Format Lotus 1-2-3 file; Release 1 for

Windows, Releases 3, 4 for
DOS

autoupdate
(Optional) Variant (Boolean). Specify True for automatic link updates, False for manual link updates.

Return value
DataLink. A new instance of the DataLink class.

{button ,AL(`H_123_NEWOBJECT_METHOD_MEMDEF;H_123_NEWAPPROACHCONNECTION_METHOD_MEM
DEF;H_123_NEWQUERY_METHOD_MEMDEF;H_123_NEWQUERYTABLE_METHOD_MEMDEF',0)} See
related topics

1-2-3: NewDocument method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_ACTIVATE_METHOD_EXSCRIPT',1)} See example
Creates a new Document object (workbook) in this application and displays it. The new document is not associated
with a preexisting file.

Syntax
Set document = application.NewDocument([name], [location], [smartmaster], [smartlocation], [smartpassword],
[adjacentdocument], [openmode])

Parameters
name

(Optional) String. A name for the document. If you don't specify a document name, "Untitled", "Untitled1",
"Untitled2", and so on are used in sequence.

location
(Optional, not currently used) Variant. The location (path) for the new document if and when it is saved. 1-2-3 only
accepts a string for this parameter.

smartmaster
(Optional) String. A SmartMaster template on which to base the new document.

smartlocation
(Optional) String. The directory path for the SmartMaster template.

smartpassword
(Optional) String. A potential password for the SmartMaster used.

adjacentdocument
(Optional) Document. A document in memory before or after which to open the new document.

openmode
(Optional) Variant (OpenMode enumeration). Specifies whether to open the new document before or after the
document specified by adjacentdocument. The default is $OpenModeAfter. The following table lists the allowed
values for this parameter.

Value Description
$OpenModeBefore Open the new document

before the document specified
by adjacentdocument.

$OpenModeAfter Open the new document after
the document specified by
adjacentdocument.

Return values
Document. A new instance of the Document class.

Usage
No permanent file for the document is created on disk until you call the SaveAs method with the name argument.
1-2-3 creates a new Document object for every workbook at the time the workbook is opened by the user or by script.
Running the NewDocument method is the way to create a new workbook by script. Running the OpenDocument
method is the way to open an existing workbook file by script.

1-2-3: NewDocWindow method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Creates a new workbook window with the same view of the current sheet as the current workbook window.

Syntax
Set docwindow = document.NewDocWindow

Parameters
None

Return values
DocWindow. A new instance of the DocWindow class.

{button ,AL(`H_123_NEWDOCUMENT_METHOD_MEMDEF',0)} See related topics

1-2-3: NewDrawLine method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_GROUP_METHOD_EXSCRIPT',1)} See example
Creates a new DrawLine object.

Syntax
Set drawline = sheet.NewDrawLine(xposition1, yposition1, xposition2, yposition2)

Parameters
xposition1

Long. The horizontal position of the drawn line's first endpoint, in units of twips.
yposition1

Long. The vertical position of the drawn line's first endpoint, in units of twips.
xposition2

Long. The horizontal position of the drawn line's second endpoint, in units of twips.
yposition2

Long. The vertical position of the drawn line's second endpoint, in units of twips.

Return value
DrawLine. A new instance of the DrawLine class.

1-2-3: NewEditText method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_GROUP_METHOD_EXSCRIPT',1)} See example
Creates a new EditText object.

Syntax
Set edittext = sheet.NewEditText(left, top, right, bottom)

Parameters
left

Long. The left position of the text box's bounding rectangle, in units of twips.
top

Long. The top position of the text box's bounding rectangle, in units of twips.
right

Long. The right position of the text box's bounding rectangle, in units of twips.
bottom

Long. The bottom position of the text box's bounding rectangle, in units of twips.

Return values
EditText. A new instance of the EditText class.

{button ,AL(`H_123_EDITTEXT_CLASS',0)} See related topics

1-2-3: NewEllipse method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_BOUNDS_METHOD_EXSCRIPT',1)} See example
Creates a new Ellipse object.

Syntax
Set ellipse = sheet.NewEllipse(left, top, right, bottom)

Parameters
left

Long. The left position of the ellipse's bounding rectangle, in units of twips.
top

Long.The top position of the ellipse's bounding rectangle, in units of twips.
right

Long. The right position of the ellipse's bounding rectangle, in units of twips.
bottom

Long. The bottom position of the ellipse's bounding rectangle, in units of twips.

Return values
Ellipse. A new instance of the Ellipse class.

{button ,AL(`H_123_ELLIPSE_CLASS',0)} See related topics

1-2-3: NewFreehand method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
Creates a new Freehand object and draws a line connecting its first two points.

Syntax
Set freehand = sheet.NewFreehand(xposition1, yposition1, xposition2, yposition2)

Parameters
xposition1

Long. The horizontal position of the freehand drawing's first point, in units of twips.
yposition1

Long. The vertical position of the freehand drawing's first point, in units of twips.
xposition2

Long. The horizontal position of the freehand drawing's second point, in units of twips.
yposition2

Long. The vertical position of the freehand drawing's second point, in units of twips.

Return values
Freehand. A new instance of the Freehand class.

Usage
This method creates a default name "Freehand n" for the new Freehand object, where n is the new number of
Freehand objects in the sheet. You can refer to the new Freehand object as [Freehand n].

1-2-3: NewMap method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_NEWMAP_METHOD_EXSCRIPT',1)} See example
Creates a new Map object.

Syntax
Set map = sheet.NewMap(left, top, right, bottom, [datarange], [mapname])

Parameters
left

Long. The left position of the map's bounding rectangle, in units of twips.
top

Long. The top position of the map's bounding rectangle, in units of twips.
right

Long. The right position of the map's bounding rectangle, in units of twips.
bottom

Long. The bottom position of the map's bounding rectangle, in units of twips.
datarange

(Optional) Variant. Range of data to be mapped. If you don't supply this argument, the current range selection is
used.

mapname
(Optional) String. Name of the new map. This must be the name of an installed map (for example, "World
Countries"). If you don't supply this argument, and the data range doesn't clearly indicate a specific map, the Map
Types dialog box prompts the user for the name.

Return values
Map. A new instance of the Map class.

Usage
You can determine the names of the installed maps by looking at the Map Types dialog box displayed for an empty
range selection, or by consulting the Windows registry.

1-2-3: NewMenu method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_ADDMENU_METHOD_EXSCRIPT',1)} See example
Creates an empty menu.

Syntax
Set menu = application.NewMenu

Parameters
None

Return values
Menu. A new instance of the Menu class.

Usage
You can populate the menu with non-submenu items using the AddItem method, and with submenus using the
AddMenu method.

1-2-3: NewMenuBar method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Creates an empty menu bar.

Syntax
Set menubar = application.NewMenuBar

Parameters
None

Return values
MenuBar. A new instance of the MenuBar class.

1-2-3: NewNamedPrintSettings method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_DELETENAMEDPRINTSETTINGS_METHOD_EXSCRIPT',1)} See example
Creates a new named PrintSettings object and initializes it. Adds the new object to the document's
NamedPrintSettings collection.

Syntax
Set printsettings = document.NewNamedPrintSettings(settingsname, [saveprintselection], [sourcesettings])

Parameters
settingsname

String. The name of the new PrintSettings object. If the print settings name you specify already exists, 1-2-3
generates an error.

saveprintselection
(Optional) Variant (Boolean). Specify True to save the print selection as part of the style, False not to save it.

sourcesettings
(Optional) PrintSettings. A PrintSettings object to use as the source of print settings for initializing values in the
new object. If you don't specify an object, the new object is initialized with values from the CurrentPrintSettings
property of the document.

Return values
PrintSettings. A new instance of the PrintSettings class.

Usage
A named PrintSettings object holds a named print style.

{button ,AL(`H_123_DELETENAMEDPRINTSETTINGS_METHOD_MEMDEF',0)} See related topics

1-2-3: NewObject method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_NEWOBJECT_METHOD_EXSCRIPT',1)} See example
Creates a new OLE object, either linked or embedded.

Syntax
Set oleobject = sheet.NewObject([left], [top], [right], [bottom], objecttype, filename, [link], [displayasicon],
[iconfilename], [iconindex], [iconlabel])

Parameters
left

(Optional) Long. The left position of bounding rectangle, in units of twips. If you omit this argument, the object is
created at the leftmost position.

top
(Optional) Long. The top position of bounding rectangle, in units of twips. If you omit this argument, the object is
created at the topmost position.

right
(Optional) Long. The right position of bounding rectangle, in units of twips. If you omit both right and bottom, the
object is created with a default size.

bottom
(Optional) Long. The bottom position of bounding rectangle, in units of twips. If you omit both right and bottom,
the object is created with a default size.

objecttype
String. The object type, or class definition, registered with the operating system for the server application. For
example, "Paint.Picture" for a .BMP file. You must specify either the objecttype or the filename argument, but not
both.

filename
String. The name of the file to embed or link, without path information. You must specify either the objecttype or
the filename argument, but not both. 1-2-3 looks for this file in the directory containing the 1-2-3 application.

link
(Optional) Variant (Boolean). Specify True to link the file specified by the filename argument, False to embed the
file. The default is False. This argument only has meaning if you specify the filename argument.

displayasicon
(Optional) Variant (Boolean). Specify True to display the object as an icon, False to display the object's content.
The default is False.

iconfilename
(Optional) String. The name of an executable file containing the icon to be displayed for the object. Only relevant
if displayasicon is True.

iconindex
(Optional) Integer. The index that specifies the icon within the file specified by iconfilename. Only relevant if
displayasicon is True. The default is zero.

iconlabel
(Optional) String. Text to display below the icon. Only relevant if displayasicon is True.

Return values
OLEObject. A new instance of the OLEObject class.

1-2-3: NewPicture method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
Creates a new Picture object in the file.

Syntax
Set picture = sheet.NewPicture(filename, filetype, left, top, right, bottom)

Parameters
filename

 String. The path and name of the file containing the picture.
filetype

Variant (DocType enumeration). The format of the picture file. The following table lists the allowed values for this
parameter.

Value Description
$DocType_BMP Bitmap (Paint or Paintbrush)
$DocType_CGM ANSI metafile (CGM)
$DocType_PIC 1-2-3 picture
$DocType_WMF Windows metafile

left
Long. The left position of the picture's bounding rectangle, in units of twips.

top
Long. The top position of the picture's bounding rectangle, in units of twips.

right
Long. The right position of the picture's bounding rectangle, in units of twips.

bottom
Long. The bottom position of the picture's bounding rectangle, in units of twips.

Return values
Picture. A new instance of the Picture class.

1-2-3: NewPolygon method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_ADDPOINT_METHOD_EXSCRIPT',1)} See example
Creates a new Polygon object and draws its first line between the specified points.

Syntax
Set polygon = sheet.NewPolygon(xposition1, yposition1, xposition2, yposition2)

Parameters
xposition1

Long. Horizontal position of the polygon's first point, in units of twips.
yposition1

Long. Vertical position of the polygon's first point, in units of twips.
xposition2

Long. Horizontal position of the polygon's second point, in units of twips.
yposition2

Long. Vertical position of the polygon's second point, in units of twips.

Return values
Polygon. A new instance of the Polygon class.

Usage
Use the AddPoint method to add more points to the polygon. 1-2-3 closes the polygon automatically, by drawing a
line between the first and last points.

{button ,AL(`H_123_NEWDRAWLINE_METHOD_MEMDEF;H_123_NEWPOLYLINE_METHOD_MEMDEF;H_123_N
EWRECTANGLE_METHOD_MEMDEF',0)} See related topics

1-2-3: NewPolyline method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
Creates a new Polyline object and draws its first line between the specified points.

Syntax
Set polyline = sheet.NewPolyline(xposition1, yposition1, xposition2, yposition2)

Parameters
xposition1

Long. The horizontal position of the polyline's first point, in units of twips.
yposition1

Long. The vertical position of the polyline's first point, in units of twips.
xposition2

Long. The horizontal position of the polyline's second point, in units of twips.
yposition2

Long. The vertical position of the polyline's second point, in units of twips.

Return values
Polyline. A new instance of the Polyline class.

Usage
Use the AddPoint method to add more points to the polyline.

1-2-3: NewQuery method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_CREATECOMPUTEDFIELD_METHOD_EXSCRIPT',1)} See example
Creates a new DataQuery object in the document.

Syntax
Set query = document.NewQuery([queryname], [sourcetablename])

Parameters
queryname

(Optional) String. The name of the new query. The name can have up to 15 characters. If you don't specify this
argument, 1-2-3 generates a name such as "Query 1".

sourcetablename
(Optional) String. The base source table name or address for the query. If you don't specify this argument, most
query commands and properties are invalid until you set the BaseSourceTable property for the query.

Return values
DataQuery. A new instance of the DataQuery class.

1-2-3: NewQueryTable method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_NEWQUERYTABLE_METHOD_EXSCRIPT;H_123_REFRESHOUTPUT_METHOD_EXSCRIPT',

1)} See example
Creates a new QueryTable object.

Syntax
Set querytable = sheet.NewQueryTable(left, top, right, bottom, objecttype, [filename], [link], [displayasicon],
[iconfilename], [iconindex], [iconlabel], [inputrange], [outputrange])

Parameters
left

Long. The left position of the bounding rectangle, in units of twips. If you omit both left and top, the QueryTable
object is created at the position of the current selection.

top
Long. The top position of the bounding rectangle, in units of twips. If you omit both left and top, the QueryTable
object is created at the position of the current selection.

right
Long. The right position of the bounding rectangle, in units of twips. If you omit both right and bottom, the
QueryTable object is created with a default size.

bottom
Long. The bottom position of the bounding rectangle, in units of twips. If you omit both right and bottom, the
QueryTable object is created with a default size.

objecttype
String. The object type as it appears in the Create - Object dialog box. You can specify the objecttype or the
filename argument, but not both.

filename
(Optional, not applicable to this method) String. The name of a file to embed or link. You can specify the
objecttype or the filename argument, but not both.

link
(Optional, not applicable to this method) Variant (Boolean). Specify True to link the file specified by the filename
argument, False to embed the file.

displayasicon
(Optional, not applicable to this method) Variant (Boolean). Specify True to display the object as an icon, False to
display the object's content.

iconfilename
(Optional, not applicable to this method) String. The name of an executable file containing the icon to be
displayed for the object. Only relevant if displayasicon is True.

iconindex
(Optional, not applicable to this method) Integer. The index that specifies the icon within the file specified by
iconfilename. Only relevant if displayasicon is True.

iconlabel
(Optional, not applicable to this method) String. Text to display below the icon. Only relevant if displayasicon is
True.

inputrange
(Optional) Variant. The input database table for the query.

outputrange
(Optional) Variant. The output range for query table results.

Return values
QueryTable. A new instance of the QueryTable class.

1-2-3: NewRectangle method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_GROUP_METHOD_EXSCRIPT',1)} See example
Creates a new Rectangle object.

Syntax
Set rectangle = sheet.NewRectangle(left, top, right, bottom)

Parameters
left

Long. The horizontal position of the rectangle's left side, in units of twips.
top

Long. The vertical position of the rectangle's top side, in units of twips.
right

Long. The horizontal position of the rectangle's right side, in units of twips.
bottom

Long. The vertical position of the rectangle's bottom side, in units of twips.

Return values
Rectangle. A new instance of the Rectangle class.

{button ,AL(`H_123_NEWROUNDRECTANGLE_METHOD_MEMDEF',0)} See related topics

1-2-3: NewRoundedRectangle method
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
Creates a new Rectangle object with rounded corners.

Syntax
Set rectangle = sheet.NewRoundedRectangle(left, top, right, bottom)

Parameters
left

Long. The horizontal position of the rectangle's left side, in units of twips.
top

Long. The vertical position of the rectangle's top side, in units of twips.
right

Long. The horizontal position of the rectangle's right side, in units of twips.
bottom

Long. The vertical position of the rectangle's bottom side, in units of twips.

Return values
Rectangle. A new instance of the Rectangle class, with the Rounded property set to True.

{button ,AL(`H_123_NEWRECTANGLE_METHOD_MEMDEF',0)} See related topics

1-2-3: NewSheet method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_NEWSHEET_METHOD_EXSCRIPT',1)} See example
Inserts one or more new sheets into a document.

Syntax
Set sheet = document.NewSheet(sheetposition, sheetcount, current)

Parameters
sheetposition

Variant (InsertType enumeration). Specifies where to insert the new sheets. The following table lists the allowed
values for this parameter.

Value Description
$Before Insert before the current sheet.
$After Insert after the current sheet.
$First Insert as the first sheet.
$Last Insert as the last sheet.

sheetcount
Long. The number of sheets to insert.

current
Variant (Boolean). If True, the first new sheet is made current. If False, the existing current sheet remains current.

Return values
Sheet. The Sheet object for the first new sheet.

1-2-3: NewVersion method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_NEWVERSION_METHOD_EXSCRIPT',1)} See example
Creates a new versioned instance of this range. When you create a version for the first time on a non-versioned
range, two versions are actually created: the original, with a default name, and a second version whose name is
determined by the versionname argument.

Syntax
Set version = range.NewVersion([versionname])

Parameters
versionname

(Optional) String. The name for the new version. If you don't specify this argument, the version is assigned the
next system-generated name (for example, "Version 3").

Return values
Version. A new Version object for this range.

{button ,AL(`H_123_DELETEVERSION_METHOD_MEMDEF',0)} See related topics

1-2-3: NewVersionGroup method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_ADDVERSION_METHOD_EXSCRIPT',1)} See example
Creates a new version group within the document.

Syntax
Set versiongroup = document.NewVersionGroup([versiongroupname])

Parameters
versiongroupname

(Optional) String. The name of the new version group. If you don't supply this argument, a system default name
(in the form "VersionGroup 1") is generated.

Return values
VersionGroup. A new instance of the VersionGroup class.

{button ,AL(`H_123_DELETEVERSION_METHOD_MEMDEF;H_123_MERGEVERSIONS_METHOD_MEMDEF;H_1
23_NEWVERSIONGROUP_METHOD_MEMDEF;H_123_NEWVERSION_METHOD_MEMDEF;H_123_REMOVE
VERSION_METHOD_MEMDEF;H_123_REPORTVERSION_METHOD_MEMDEF;H_123_VERSIONGROUP_ME
THOD_MEMDEF;H_123_VERSIONS_METHOD_MEMDEF;H_123_VERSION_METHOD_MEMDEF;H_123_CUR
RENTVERSION_PROPERTY_MEMDEF;H_123_LASTVERSIONGROUP_PROPERTY_MEMDEF;H_123_SHOW
VERSIONBORDERS_PROPERTY_MEMDEF;H_123_VERSIONBORDERSVISIBLE_PROPERTY_MEMDEF;',0)}
See related topics

1-2-3: Next method
{button ,AL(`H_123_BASECOLLECTION_CLASS;H_123_CHARTS_CLASS;H_123_COLORS_CLASS;H_123_DATA

LINKS_CLASS;H_123_DOCUMENTS_CLASS;H_123_DOCWINDOWS_CLASS;H_123_DRAWOBJECTS_CLAS
S;H_123_MAPS_CLASS;H_123_MAPBINS_CLASS;H_123_MAPTEXTENTRIES_CLASS;H_123_OLEOBJECTS
_CLASS;H_123_PRINTSETTINGSCOLLECTION_CLASS;H_123_QUERYTABLES_CLASS;H_123_RANGES_CL
ASS;H_123_SHEETS_CLASS;H_123_STRINGS_CLASS;H_123_VERSIONS_CLASS;H_123_VERSIONGROUP
S_CLASS;H_123_WINDOWS_CLASS',0)} See list of classes

{button ,AL(`H_123_NEXT_METHOD_EXSCRIPT',1)} See example
Returns the next item in a collection.

Syntax
variant = object.Next

Parameters
None

Return values
Variant. The next item in the collection object. If there are no more items, 1-2-3 displays a dialog box error
notification.

Usage
You can use this method in OLE automation to enumerate a collection of variant types.
By iterating no more than object.Count times, you can avoid the error dialog box displayed when you attempt to
retrieve more items than there are in the collection.

{button ,AL(`H_123_OPEN_METHOD_MEMDEF;H_123_ITEM_METHOD_MEMDEF',0)} See related topics

1-2-3: NextSplit method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_NEXTSPLIT_METHOD_EXSCRIPT',1)} See example
Deactivates the current pane and activates the next pane, in a workbook window that is split into several panes. This
method does nothing if the window is not split.

Syntax
document.NextSplit

Parameters
None

Return values
None

Usage
You can use this method to implement the F6 (PANE) key.

{button ,AL(`H_123_VIEWSPLITSTYLE_PROPERTY_MEMDEF;H_123_CLEARSPLITS_METHOD_MEMDEF',0)}
See related topics

1-2-3: Open method
{button ,AL(`H_123_BASECOLLECTION_CLASS;H_123_CHARTS_CLASS;H_123_COLORS_CLASS;H_123_DATA

LINKS_CLASS;H_123_DOCUMENTS_CLASS;H_123_DOCWINDOWS_CLASS;H_123_DRAWOBJECTS_CLAS
S;H_123_MAPS_CLASS;H_123_MAPBINS_CLASS;H_123_MAPTEXTENTRIES_CLASS;H_123_OLEOBJECTS
_CLASS;H_123_PRINTSETTINGSCOLLECTION_CLASS;H_123_QUERYTABLES_CLASS;H_123_RANGES_CL
ASS;H_123_SHEETS_CLASS;H_123_STRINGS_CLASS;H_123_VERSIONS_CLASS;H_123_VERSIONGROUP
S_CLASS;H_123_WINDOWS_CLASS',0)} See list of classes

{button ,AL(`H_123_NEXT_METHOD_EXSCRIPT',1)} See example
Initializes a collection for item retrieval and returns the first item in the collection.

Syntax
item = object.Open

Parameters
None

Return values
Variant. The first item in the collection object.

Usage
You can use this method in OLE automation to begin enumerating a collection of variant types.

{button ,AL(`H_123_NEXT_METHOD_MEMDEF;H_123_ITEM_METHOD_MEMDEF',0)} See related topics

1-2-3: OpenDocument method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_OPENDOCUMENT_METHOD_EXSCRIPT',1)} See example
Opens an existing file as a 1-2-3 document (workbook file) in this application.

Syntax
Set document = application.OpenDocument(filename, [location], [filetype], [password], [readonly], [makevisible],
[addtorecentfiles], [adjacentdocument], [openmode])

Parameters
filename

String. The name of the file, or the path and name of the file. If you only supply the filename here, 1-2-3 looks for
the file in the working directory.

location
(Optional) Variant (String). The path where the file is located. 1-2-3 only accepts strings here.

filetype
(Optional) String. The file format to be used. If you don't supply this argument, the file extension determines the
file format. The following table lists the allowed values for this parameter.

Value Description
"All (*)" All file types
"1-2-3 Workbook (123;WK*)" 1-2-3 97 workbook

1-2-3 Releases 4, 5
1-2-3 for DOS Releases 3, 4;
1-2-3 for Windows Release 1
1-2-3 for DOS Release 2

"1-2-3 SmartMaster (12M)" 1-2-3 SmartMaster template
(.12m, .wt4)

"Text (TXT;PRN;CSV;DAT;OUT;ASC)" Text file
(.txt, .prn, .csv, .dat, .out, .asc)

"Excel (XLS;XLT;XLW)" Microsoft Excel file (.xls, .xlt, .xlw)
"Quattro Pro (WQ1;WB1;WB2)" Quattro Pro file
"dBase (DBF)" Borland dBASE file
"Paradox (DB)" Borland Paradox file

password
(Optional) String. A password associated with the file.

readonly
(Optional) Variant (Boolean). Specifies whether the file is to be opened in read-only mode (value True) or read-
write (value False). The default is writable (False).

makevisible
(Optional) Variant (Boolean). Specifies whether the document window should be displayed (value True) or not
(value False). The default is visible (True).

addtorecentfiles
(Optional) Variant (Boolean). Specifies whether to add the file to the most recent file list (value True) or not (value
False). The default is not to add it (False).

adjacentdocument
(Optional) Document. Specifies a document in memory before or after which to open the file.

openmode
(Optional) Variant (OpenMode enumeration). Specifies whether to open the document before adjacentdocument
(value $OpenModeBefore) or after adjacentdocument (value $OpenModeAfter). The default is $OpenModeAfter.

Return values
Document. A new instance of the Document class for this workbook file.

Usage
1-2-3 creates a new Document object for every workbook at the time the workbook is opened.
This method can generate an error for most file-related exceptions.

{button ,AL(`H_123_CLOSE_METHOD_MEMDEF:H_123_SAVEAS_METHOD_MEMDEF;H_123_NEWDOCUMENT
_METHOD_MEMDEF',0)} See related topics

1-2-3: OpenDocumentFromInternet method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_OPENDOCUMENTFROMINTERNET_METHOD_EXSCRIPT',1)} See example
Opens a document from the Internet.

Syntax
Set document = application.OpenDocumentFromInternet([url], [filetype], [filepassword], [makevisible], [userid],
[userpassword], [passiveconnection], [proxyserver], [proxyport], [proxytype])

Parameters
url

(Optional) String. The Universal Resource Locator for the document (for example,
"ftp://myftpserver/users/bob/test.123"). If you omit this argument, a dialog box prompts the user for it.

filetype
(Optional) String. The file format to be used. The following table lists the allowed values for this parameter.

Value Description
"All (*)" All file types
"1-2-3 Workbook (123;WK*)" 1-2-3 97 workbook

1-2-3 Releases 4, 5
1-2-3 for DOS Releases 3, 4;
1-2-3 for Windows Release 1
1-2-3 for DOS Release 2

"1-2-3 SmartMaster (12M)" 1-2-3 SmartMaster template
(.12m, .wt4)

"Text (TXT;PRN;CSV;DAT;OUT;ASC)" Text file
(.txt, .prn, .csv, .dat, .out, .asc)

"Excel (XLS;XLT;XLW)" Microsoft Excel file
(.xls, .xlt, .xlw)

"Quattro Pro (WQ1;WB1;WB2)" Quattro Pro file
"dBase (DBF)" Borland dBASE file
"Paradox (DB)" Borland Paradox file

The following file types are not supported (because 123 "combines" these types with the current workbook):

Value Description
"Windows Metafile (wmf)" Windows metafile
"Bitmap (bmp)" Bitmap (Paint or Paintbrush)
"Ansi Metafile (cgm)" ANSI metafile (CGM)
"1-2-3 PIC (pic)" 1-2-3 picture

filepassword
(Optional) String. A password associated with the file.

makevisible
(Optional) Variant (Boolean). Specifies whether the document window should be opened and brought to the top
(value True) or not (value False). The default is not visible (False). 1-2-3 may ignore this parameter.

userid
(Optional) String. The user login name on the remote server. If you specify this argument, you must also supply
the userpassword and passiveconnection arguments.

userpassword
(Optional) String. The user login password on the remote server.

passiveconnection
(Optional) Variant (Boolean). Specifies whether a passive connection to the remote server should be used (value
True) or not (value False).

proxyserver
(Optional) String. The internet proxy server IP address or domain name. If you specify this argument, you must
also supply the proxyport and proxytype arguments.

proxyport
(Optional) Long. The port number to use to connect to the proxy server.

proxytype
(Optional) Long. The proxy type. The following table lists the allowed values for this parameter.

Value Description
 1 World Wide Web
 2 File Transfer Protocol (FTP)

Return values
Document. A new instance of the Document class for this Internet file.

{button ,AL(`H_123_SAVEASTOINTERNET_METHOD_MEMDEF;H_123_SETINTERNETOPTIONS_METHOD_ME
MDEF;H_123_RETRIEVEFILEFROMINTERNET_METHOD_MEMDEF',0)} See related topics

1-2-3: OpenDocumentFromNotes method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_OPENDOCUMENTFROMNOTES_METHOD_EXSCRIPT',1)} See example
Opens a file attached to a Notes document.

Syntax
Set document = application.OpenDocumentFromNotes([attachedfilename], [universalnotesid], [fieldname],
[databasefile], [servername], [filetype], [docpassword], [makevisible])

Parameters
attachedfilename

(Optional) String. The name of the attached file in the Notes document (for example, "test.123"). If you omit this
argument, a dialog box prompts the user for it. If you specify this argument, you must also specify
universalnotesid, fieldname, databasefile, and servername.

universalnotesid
(Optional) String. The 32-character hexadecimal Notes document ID (the NotesDocument.UniversalID property).
For example, "150DFE45F1089B790065828D852562CA".

fieldname
(Optional) String. The name of the field in which the file is attached (for example, "Body").

databasefile
(Optional) String. The Notes database location (for example, "Databases\Docs in Progress.nsf").

servername
(Optional) String. The Notes server name (for example, "Local").

filetype
(Optional) String. The file format to be used. The following table lists the allowed values for this parameter.

Value Description
"All (*)" All file types
"1-2-3 Workbook (123;WK*)" 1-2-3 97 workbook

1-2-3 Releases 4, 5
1-2-3 for DOS Releases 3, 4;
1-2-3 for Windows Release 1
1-2-3 for DOS Release 2

"1-2-3 SmartMaster (12M)" 1-2-3 SmartMaster template
(.12m, .wt4)

"Text (TXT;PRN;CSV;DAT;OUT;ASC)" Text file
(.txt, .prn, .csv, .dat, .out, .asc)

"Excel (XLS;XLT;XLW)" Microsoft Excel file
(.xls, .xlt, .xlw)

"Quattro Pro (WQ1;WB1;WB2)" Quattro Pro file
"dBase (DBF)" Borland dBASE file
"Paradox (DB)" Borland Paradox file

The following file types are not supported (because 123 "combines" these types with the current workbook):

Value Description
"Windows Metafile (WMF)" Windows metafile
"Bitmap (BMP)" Bitmap (Paint or Paintbrush)
"Ansi Metafile (CGM)" ANSI metafile (CGM)
"1-2-3 PIC (PIC)" 1-2-3 picture

docpassword
(Optional) String. A password associated with the file.

makevisible
(Optional) Variant (Boolean). Specifies whether the document window should be opened and brought to the top
(value True) or not (value False). The default is not visible (False). 1-2-3 may ignore this parameter.

Return values
Document. A new instance of the Document class for this file attachment.

{button ,AL(`H_123_SAVEASTONOTES_METHOD_MEMDEF',0)} See related topics

1-2-3: OutlineColumnsToLevel method
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_OUTLINECOLUMNSTOLEVEL_METHOD_EXSCRIPT;',1)} See example
Collapses or expands columns for a sheet that are set at or above the specified outline level. For example, to display
columns whose outline level is 1 or 2, but not 3, specify OutlineColumnsToLevel to 2.

Syntax
sheet.OutlineColumnsToLevel level

Parameters
level

Long. The minimum outline level to expand to in the specified sheet.

Return values
None

Usage
You can create up to 8 levels of outlining in a sheet.

{button ,AL(`;H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_DEMOTEROW_METHOD_MEMDEF;H_123_
OUTLINEROWSTOLEVEL_METHOD_MEMDEF;H_123_PROMOTECOLUMN_METHOD_MEMDEF;H_123_PRO
MOTEROW_METHOD_MEMDEF;H_123_COLLAPSECOLUMN_METHOD_MEMDEF;H_123_COLLAPSEROW_
METHOD_MEMDEF;H_123_EXPANDCOLUMN_METHOD_MEMDEF;H_123_EXPANDROW_METHOD_MEMDE
F;',0)} See related topics

1-2-3: OutlineRowsToLevel method
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_OUTLINEROWSTOLEVEL_EXSCRIPT;',1)} See example
Expands or collapses rows for a sheet that are set at or above the specified outline level. For example, to display
rows whose outline level is 1 or 2, but not 3, specify OutlineRowsToLevel to 2.

Syntax
sheet.OutlineRowsToLevel level

Parameters
level

Long. The minimum outline level to expand to in the specified sheet.

Return values
None

Usage
You can create up to 8 levels of outlining in a sheet.

{button ,AL(`;H_123_COLLAPSECOLUMN_METHOD_MEMDEF;H_123_COLLAPSEROW_METHOD_MEMDEF;H_
123_EXPANDCOLUMN_METHOD_MEMDEF;H_123_EXPANDROW_METHOD_MEMDEF;H_123_OUTLINECOL
UMNSTOLEVEL_METHOD_MEMDEF;;H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_DEMOTEROW
_METHOD_MEMDEF;H_123_PROMOTECOLUMN_METHOD_MEMDEF;H_123_PROMOTEROW_METHOD_M
EMDEF;',0)} See related topics

1-2-3: PageBack method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_PAGEBACK_METHOD_EXSCRIPT ',1)} See example
Displays a previous sheet in the current file.

Syntax
document.PageBack [sheetcount]

Parameters
sheetcount

(Optional) Long. The number of sheets to move backwards.

Return values
None

Usage
If you specify a number in sheetcount that is greater than the number of sheets preceding the current sheet,
PageBack displays the first sheet in the file.

{button ,AL(`H_123_PAGEFORWARD_METHOD_MEMDEF;H_123_SCROLLTOACTIVECELL_METHOD_MEMDEF;
H_123_TURNTO_METHOD_MEMDEF',0)} See related topics

1-2-3: PageForward method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_PAGEFORWARD_METHOD_EXSCRIPT',1)} See example
Displays the next sheet or a subsequent sheet in the current file.

Syntax
document.PageForward [sheetcount]

Parameters
sheetcount

(Optional) Long. The number of sheets to move forward.

Return values
None

Usage
If you specify a number in sheetcount that is greater than the number of sheets following the current sheet,
PageForward displays the last sheet in the file.

{button ,AL(`H_123_PAGEBACK_METHOD_MEMDEF;H_123_SCROLLTOACTIVECELL_METHOD_MEMDEF;H_12
3_TURNTO_METHOD_MEMDEF',0)} See related topics

1-2-3: Paste method
{button ,AL(`;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_DOCUMEN

T_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLI
PSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_MAP_CLASS;H_123_OLEOBJECT_
CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_RANGE_CLA
SS;H_123_RECTANGLE_CLASS',0)} See list of classes

{button ,AL(`H_123_COPYTOCLIPBOARD_METHOD_EXSCRIPT ',1)} See example
Copies data and related formatting from the Clipboard to the target object.

Syntax
object.Paste([format], [link], [attributes], [icon], [iconfile], [iconindex],
[iconlabel])

Parameters
format

(Optional) Variant (ClipboardFormat enumeration). The format in which to paste from the Clipboard. The following
table lists the allowed values for this parameter. If you omit format, 1-2-3 uses all appropriate formats.

Value Description
$NativeFormat Native format
$RichTextFormat Rich text format
$BitmapFormat Bitmap format
$PictureFormat Picture format
$LotusChartFormat Lotus Chart format
$EmbedSourceFormat Embed source format
$EmbeddedObjectFormat Embedded object format
$DIBFormat Device-independent bitmap
$TextFormat Text
$WK1Format 1-2-3 for DOS, Release 2
$WK3Format 1-2-3 for Windows Release 1;

1-2-3 for DOS Releases 3 and
4

$LinkSourceFormat Link source format
link

(Optional) Variant (Boolean). Specify True if the data on the Clipboard is linked to an external file, False if not. The
default is False.

attributes
(Optional) Variant (PasteSpecialChoice enumeration). The format in which to paste Clipboard data that was
copied or cut from 1-2-3. The following table lists the allowed values for this parameter.

Value 1-2-3 pastes
$PasteData Cell contents, but

leaves the styles in
the target object
intact; default if you
omit the parameter

$PasteStyleAndNumberFormats All formatting done
with the InfoBox

$PasteComments Comments attached
to the target object

$PasteScripts Scripts associated
with the target object

$PasteFormulas Both cell contents and

styles, but converts all
formulas to values

$PasteBorders Object borders
$PastesDrawObjectsWithRange Any graphic objects

associated with the 1-
2-3 range on the
Clipboard

icon
(Optional) Variant (Boolean). Specify True to display the Clipboard data as an icon. The default is False.

iconfile
(Optional) String. If icon is True, specifies the name of the file containing the icon bitmap to display.

iconindex
(Optional) Long. Specifies the index for the icon bitmap to use if the iconfile contains more than one icon bitmap.

iconlabel
(Optional) String. A description that is displayed below the icon bitmap.

Return value
None

{button ,AL(`;H_123_CLEAR_METHOD_MEMDEF;H_123_COPYTOCLIPBOARD_METHOD_MEMDEF;H_123_CUT
_METHOD_MEMDEF;H_123_QUICKCOPY_METHOD_MEMDEF;H_123_QUICKMOVE_METHOD_MEMDEF',0)
} See related topics

1-2-3: Preview method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_PREVIEW_METHOD_EXSCRIPT',1)} See example
Displays the print Preview window and InfoBox, using the current PrintSettings object for the current document. If a
range is selected, just that range is previewed. Otherwise, the current sheet is previewed.

Syntax
application.Preview

Parameters
None

Return values
None

1-2-3: Print method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_PRINT_METHOD_EXSCRIPT;H_123_SHOWPAGEBREAKS_PROPERTY_EXSCRIPT;',1)} See

example
Starts a print operation, using the current print settings object for the current document.

Syntax
application.Print

Parameters
None

Return values
None

Usage
Use the PrintOut method when writing scripts in applications that reserve Print as a keyword.

{button ,AL(`H_123_PRINTOUT_METHOD_MEMDEF;H_123_PRINTTOFILE_METHOD_MEMDEF',0)} See related
topics

1-2-3: PrintOut method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Starts a print operation, using the current print settings object for the current document.

Syntax
application.PrintOut

Parameters
None

Return values
None

Usage
Use the PrintOut method when writing scripts in applications that reserve Print as a keyword.

{button ,AL(`H_123_PRINT_METHOD_MEMDEF;H_123_PRINTTOFILE_METHOD_MEMDEF',0)} See related topics

1-2-3: PrintToFile method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Displays the Print To File dialog box (as obtained from the File - Print menu).

Syntax
application.PrintToFile

Parameters
None

Return values
None

Usage
Use this method to allow the user to select a path and file name for exporting the workbook data as a text (.PRN) file.

{button ,AL(`H_123_PRINTOUT_METHOD_MEMDEF;H_123_PRINT_METHOD_MEMDEF',0)} See related topics

1-2-3: PromoteColumn method
{button ,AL(`H_123_Range_Class;',0)} See list of classes
{button ,AL(`H_123_PROMOTECOLUMN_METHOD_EXSCRIPT ',1)} See example
Moves the specified columns up one or more outline levels.

Syntax
range.PromoteColumn [levels]

Parameters
levels

(Optional) Long. The number of levels to promote from the current level. The default is 1 (one) level. The
maximum is 8 levels.

Return values
None

Usage
The PromoteColumn method attempts to promote each column in the selection or in the specified range, by one
outline level (the default) or by the optionally specified number of levels. If a column in the selection cannot be
promoted because it is currently at the top level or its child would be more than one level removed from its new level,
the PromoteColumn method does not promote that column.
This method does not work on 3D ranges.

{button ,AL(`H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_PROMOTECOLUMN_METHOD_MEMDEF;H_
123_COLLAPSECOLUMN_METHOD_MEMDEF;H_123_EXPANDCOLUMN_METHOD_MEMDEF;H_123_DEMO
TEROW_METHOD_MEMDEF;H_123_PROMOTEROW_METHOD_MEMDEF;H_123_COLLAPSEROW_METHO
D_MEMDEF;H_123_EXPANDROW_METHOD_MEMDEF;H_123_COLLAPSEALL_METHOD_MEMDEF;H_123_
EXPANDALL_METHOD_MEMDEF',0)} See related topics

1-2-3: PromoteRow method
{button ,AL(`H_123_Range_Class;',0)} See list of classes
{button ,AL(`H_123_PROMOTEROW_METHOD_EXSCRIPT ',1)} See example
Moves the specified rows up one or more outline levels.

Syntax
range.PromoteRow [levels]

Parameters
levels

(Optional) Long. The number of levels to promote from the current level. The default is 1 (one) level. The
maximum is 8 levels.

Return values
None

Usage
The PromoteRow method attempts to promote each row in the selection or in the specified range, by one outline level
(the default) or by the optionally specified number of levels. If a row in the selection cannot be promoted because it is
currently at the top level or its child would be more than one level removed from its new level, the PromoteRow
method does not promote that row.
This method does not work on 3D ranges.

{button ,AL(`H_123_DEMOTECOLUMN_METHOD_MEMDEF;H_123_PROMOTECOLUMN_METHOD_MEMDEF;H_
123_COLLAPSECOLUMN_METHOD_MEMDEF;H_123_EXPANDCOLUMN_METHOD_MEMDEF;H_123_DEMO
TEROW_METHOD_MEMDEF;H_123_PROMOTEROW_METHOD_MEMDEF;H_123_COLLAPSEROW_METHO
D_MEMDEF;H_123_EXPANDROW_METHOD_MEMDEF;H_123_COLLAPSEALL_METHOD_MEMDEF;H_123_
EXPANDALL_METHOD_MEMDEF',0)} See related topics

1-2-3: QuerySortDefineKey method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_QUERYSORTDEFINEKEY_METHOD_EXSCRIPT',1)} See example
Defines the column to sort by for a query.

Syntax
query.QuerySortDefineKey fieldname, sortcolumn, sortdirection

Parameters
fieldname

String. The name of the field in the query to sort on. For example, "ZipCodes."
sortcolumn

Long. The sort key number, from 1 - 255. This must be sequential starting at 1.
sortdirection

Variant (Direction enumeration). The direction of the sort. The following table lists the allowed values for this
parameter.

Value Description
$Ascend Sorts from A - Z or from 0

(zero) to the highest number.
$Descend Sorts from Z - A or from the

highest number to 0 (zero).

Return values
None

{button ,AL(`;H_123_SORT_METHOD_MEMDEF;H_123_SORTRANGE_PROPERTY_MEMDEF;H_123_SORTDATA
_METHOD_MEMDEF',0)} See related topics

1-2-3: QuickCopy method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
Copies data and related styles and number formats from the source range to the destination range, without using the
Clipboard.

Syntax
range.QuickCopy destinationrange, [noborders]

Parameters
destinationrange

Variant. The name or address of the range to copy to. Destinationrange must be read-write.
noborders

(Optional) Variant (Boolean). Specify True to copy the content and styles from the source range, but not the
borders, False to copy content, styles, and borders. The default is False.

Usage
If you omit range, 1-2-3 uses the current selection as the source range.

Return values
None

{button ,AL(`H_123_QUICKMOVE_METHOD_MEMDEF',0)} See related topics

1-2-3: QuickMove method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
Moves data and related styles and number formats from the source range to the destination range, without using the
Clipboard.

Syntax
range.QuickMove destinationrange, [noborders]

Parameters
destinationrange

Variant. The name or address of the range to copy to. Destinationrange must be read-write.
noborders

(Optional) Variant (Boolean). Specify True to copy the content and styles from the source range, but not the
borders. Specify False to copy content, styles, and borders. The default is False.

Usage
If you omit range, 1-2-3 uses the current selection as the source range.

Return values
None

{button ,AL(`H_123_QUICKCOPY_METHOD_MEMDEF;',0)} See related topics

1-2-3: Quit method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_QUIT_METHOD_EXSCRIPT',1)} See example
Exits the application. Saves open documents if so specified by the savechanges argument.

Syntax
application.Quit savechanges

Parameters
savechanges

Variant (Boolean). Specifies whether to save changes to open files (value True) or not (value False). If you specify
False for savechanges, 1-2-3 closes changed files without saving, and without asking the user whether to save
them. If you omit the savechanges argument, a dialog box appears when there are changed files to be closed,
asking the user whether to save them.

Return values
None

{button ,AL(`H_123_CLOSE_METHOD_MEMDEF;H_123_NEWDOCUMENT_METHOD_MEMDEF;H_123_OPEN_M
ETHOD_MEMDEF;H_123_OPENDOCUMENT_METHOD_MEMDEF;H_123_CLOSEALL_METHOD_MEMDEF',0)
} See related topics

1-2-3: RangeCombine method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_RANGECOMBINE_METHOD_EXSCRIPT',1)} See example
Combines data and number formats from a range in a file on disk into the current workbook.

Syntax
range.RangeCombine filename, [location], [filetype], [password], [combineoption], [sourcerange]

Parameters
filename

String. Specifies the name of the file on disk containing data which you want to combine with data in the current
workbook.

location
(Optional) String. Specifies the location of the file containing the data you want to combine. If you omit this
parameter, 1-2-3 uses the working directory as the location for the input file.

filetype
(Optional) String. Specifies the file format. The following table lists the allowed values for this parameter. If you
omit this parameter, 1-2-3 uses the file extension to determine the file format.

Value Description
"All (*)" All file types
"1-2-3 Workbook (123;WK*)" 1-2-3 workbook
"1-2-3 SmartMaster (12M)" 1-2-3 SmartMaster template
"Text (TXT;PRN;CSV;DAT;OUT;ASC)" Text
"DBase (DBF)" Borland dBASE
"Paradox (DB)" Borland Paradox

password

(Optional) String. A password associated with the file.
combineoption

(Optional) Variant (WALCombineOption enumeration). Specifies how you want 1-2-3 to combine data. You can
only specify this argument if you are combining data from 1-2-3 files. The following table lists the allowed values
for this parameter.

Value Description
$CombineAdd Adds numbers and the results of numeric

formulas in a file on disk to numbers or blank
cells in the current file.

$CombineReplace Replaces data in the current file with data copied
from the file on disk; default if you omit the
parameter.

$CombineSub Subtracts numbers and the results of numeric
formulas in a file on disk from numbers or blank
cells in the current file.

sourcerange

(Optional) String. The name or address of the range in filename that contains data that you want to combine with
data in the current file. If you omit sourcerange, 1-2-3 combines all the data in filename with data in the current
file.

Return values
None

1-2-3: RangeCombineText method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_RANGECOMBINETEXT_METHOD_EXSCRIPT',1)} See example
Combines data from a text file into the specified file in the current workbook.

Syntax
range.RangeCombineText(inputfilename, [path], [readtextas], [delimiter], [characterset])

Parameters
inputfilename

String. Specifies the name of the file on disk containing data which you want to combine with data in the current
workbook.

path
(Optional) String. Specifies the location of the file containing the data you want to combine.

readtextas
(Optional) Variant (enumeration). Specifies how 1-2-3 should combine data from a text file. The following table
lists the allowed values for this parameter. The values are from the ReadTestAs enumeration.

Value Description
$AutoParse 1-2-3 automatically parses

the text file by determining
where the breaks are, then
breaks the data into separate
columns in the sheet.

$Tab Use tabs as delimiters.
$Comma Use commas as delimiters.
$Semicolon Use semicolons as

delimiters.
$Space Use spaces as delimiters.
$Other Use the character specified

by delimiter to parse the
text file.

$None 1-2-3 enters each line of
data as a label in a separate
cell using successive cells in
the same column.

$Text 1-2-3 enters each line of
data as a label in a separate
cell using successive cells in
the same column.

$Numbers 1-2-3 enters labels and
numbers from a delimited
text file and enters them in a
separate cell using
successive cells in the same
column. When a text file is
not delimited, 1-2-3 enters
only numbers.

delimiter
String. The delimiter character to use when $Other is specified as the readtextas option.

characterset
Variant (enumeration). Specifies the code page you want 1-2-3 to use for interpreting the data in the text file. The
following table lists the allowed values for this parameter. The values are from the ReadCharSet enumeration.

Value Description

$Windows Windows ANSI; default if you
omit this parameter

$DOS DOS or OS/2
$CP1252 Multilingual Windows
$CP850 Multilingual DOS
$CP932 Japanese
$BIG5 Taiwanese
$KS Korean
$GB Chinese
$CP1252 US Windows
$CP437 US DOS
$CP860 Portuguese DOS
$CP863 French Canadian DOS
$CP865 Nordic DOS
$CP1250 Eastern European Windows
$CP852 Eastern European DOS
$CP1251 Cyrillic Windows
$CP866 Cyrillic DOS
$CP1253 Greek Windows
$CP851 Greek DOS

Return values
None

Usage
Make sure that numbers in a text file do not contain commas, since these are delimiters. For example, 1-2-3
interprets 12,345 as two values, 12 and 345.

1-2-3: RangeExtract method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_RANGEEXTRACT_METHOD_EXSCRIPT',1)} See example
Saves a range to another file.

Syntax
range.RangeExtract filename, [location], [filetype], [backup], [password], [extractoption]

Parameters
filename

String. Specifies the name of the file to which you want to save the range.
location

(Optional) String. Specifies the location of the file to which you want to save the range. The default is the working
directory.

filetype
(Optional) String. Specifies the format of the saved file. The following table lists the allowed values for this
parameter. If you omit this parameter, 1-2-3 uses the file extension to determine the file format.

Value Description
"1-2-3 (123)" 1-2-3 97 workbook
"1-2-3 (WK4)" 1-2-3 Release 4
"1-2-3 (WK3)" 1-2-3 Release 3
"1-2-3 (WK1)" 1-2-3 for DOS Release 2
"SmartMaster (12M)" 1-2-3 SmartMaster template
"Text (TXT)" Text
"DBase (DBF)" Borland dBASE
"Paradox (DB)" Borland Paradox

backup
(Optional) Variant (boolean). Specifies whether or not to create a backup file if filename specifies an existing file.
The default is False.

password
(Optional) String. A password associated with the file.
If you omit password, and the file specified by filename has a password, 1-2-3 saves the file without a password.

extractoption
(Optional) Variant (enumeration). Specifies how to save formulas in the range to the file. The following table lists
the allowed values for this parameter. The values are from the WALExtractOption enumeration.

Value Description
$ExtractValuesAndFormulas Saves formulas without

converting them to
values; default if you
omit this parameter.

$ExtractValuesOnly Converts formulas to
values.

Return values
None

1-2-3: RangeFill method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_RANGEFILL_METHOD_EXSCRIPT',1)} See example
Enters a sequence of values in a range.

Syntax
range.RangeFill([startvalue], [increment], [stopvalue], [filltype], [datetimeunits])

Parameters
startvalue

(Optional) Variant. Specifies the first value 1-2-3 enters in the range.
increment

(Optional) Variant. Specifies the increment between each of the values in the range.
stopvalue

(Optional) Variant. Specifies the limit of the sequence. If you specify a negative increment, you must specify a
stopvalue that is less than the startvalue.

filltype
(Optional) Variant (enumeration). Specifies the type of values to fill. The following table lists the allowed values for
this parameter. The values are from the WorksheetFillType enumeration.

Value Description
$Number Fills the range with a

sequence of numbers; default
if you omit this parameter.

$DateValue Fills the range with a
sequence of dates.

$TimeValue Fills the range with a
sequence of times.

$FillByExample Fills the range with a
sequence, based on data you
include in the range.

datetimeunits
(Optional) Variant (enumeration). When filltype is $DateValue or $TimeValue, specifies the step increment as a
unit of time. The following table lists the allowed values for this parameter. The values are from the FillInterval
enumeration.

Value Description
$Day Day
$Week Week (7 days)
$Weekday Work week (5 days)
$Month Month (30 or 31 days)
$Quarter Quarter (90 days)
$Year Year (365 or 366 days)
$Hour Hour
$Minute Minute
$Second Second

Return values
None

Usage
If you omit startvalue, increment, or stopvalue, 1-2-3 uses the same values as the last time you used RangeFill during
the current 1-2-3 session.

1-2-3: RangeSortDefineKey method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_RANGESORTDEFINEKEY_METHOD_EXSCRIPT',1)} See example
Defines the column by which to sort the range of data.

Syntax
document.RangeSortDefineKey keynumber, keyrange, sortdirection

Parameters
keynumber

Long. Any integer from 0 through 255 that specifies a sort key.
keyrange

Variant. Specifies the name or address of the range to be sorted for this key. An empty string, "", is a legitimate
input value.

sortdirection
Variant (enumeration). Specifies the sort order for keyrange. The following table lists the allowed values for this
parameter. The values are from the SortDir enumeration.

Value Description
$Ascend Sorts from A - Z, and smallest

to largest values
$Descend Z - A, and largest to smallest

values

Return values
None

1-2-3: RangeValue method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_RANGEVALUE_METHOD_EXSCRIPT',1)} See example
Copies the contents and styles from a range, and replaces all copied formulas with their current values.

Syntax
range.RangeValue(destinationrange)

Parameters
destinationrange

Variant. The name or address of the range to which you are copying. Specify either the entire range or only the
first cell.

Return values
None

1-2-3: RecalcRange method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_RECALCRANGE_METHOD_EXSCRIPT',1)} See example
Specifies the recalculation order and then recalculates a range.

Syntax
range.RecalcRange (recalcorder)

Parameters
recalcorder

Variant (RecalcOrder enumeration). Specifies how 1-2-3 recalculates the range. The following table lists the
allowed values for this parameter.

Value Description
$Columns Recalculates all formulas

starting in the first cell of the
range and moves column by
column through each sheet
in the range.

$Rows Recalculates all formulas
starting in the first cell of the
range and moves row by row
through each sheet in the
range.

Return values
None

1-2-3: RecenterMap method
{button ,AL(`H_123_MAP_CLASS;',0)} See list of classes
Specifies the latitude and longitude for the center of the plot area of a map.

Syntax
map.RecenterMap(latitude, longitude)

Parameters
latitude

Double. The latitude, in degrees, you want to display in the center of the plot area.
longitude

Double. The longitude, in degrees, you want to display in the center of the plot area.

Return values
None

{button ,AL(`;H_123_REDRAWMAP_METHOD_MEMDEF;H_123_REMOVEOVERLAY_METHOD_MEMDEF;H_ZOO
MMAPIN_METHOD_MEMDEF;H_ZOOMMAPOUT_METHOD_MEMDEF;H_ZOOMMAPRESET_METHOD_MEM
DEF;H_ZOOMMAPTO_METHOD_MEMDEF;H_ZOOMMAPTORECTANGLE_METHOD_MEMDEF',0)} See
related topics

1-2-3: RedefineNamedPrintSettings method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
Redefines the specified named print settings (print style) by applying the settings in the document's
CurrentPrintSettings property to the named print settings.

Syntax
document.RedefineNamedPrintSettings settingsname, printrange

Parameters
settingsname

String. The name of the PrintSettings object to be redefined.
printrange

Variant (Boolean). If True, the currently selected range is used as the print range in the new print settings. If
False, the print range in the CurrentPrintSettings property is used.

Return values
None

{button ,AL(`H_123_DELETENAMEDPRINTSETTINGS_METHOD_MEMDEF;H_123_NEWNAMEDPRINTSETTING
S_METHOD_MEMDEF;H_123_NAMEDPRINTSETTINGS_PROPERTY_MEMDEF',0)} See related topics

1-2-3: RedrawMap method
{button ,AL(`H_123_MAP_CLASS;',0)} See list of classes
Redraws a map.

Syntax
map.RedrawMap

Parameters
None

Return values
None

{button ,AL(`H_123_RECENTERMAP_METHOD_MEMDEF;H_123_REDRAWMAP_METHOD_MEMDEF;H_123_RE
MOVEOVERLAY_METHOD_MEMDEF;H_ZOOMMAPIN_METHOD_MEMDEF;H_ZOOMMAPOUT_METHOD_ME
MDEF;H_ZOOMMAPRESET_METHOD_MEMDEF;H_ZOOMMAPTO_METHOD_MEMDEF;H_ZOOMMAPTORE
CTANGLE_METHOD_MEMDEF',0)} See related topics

1-2-3: Refresh method
{button ,AL(`H_123_REFRESH_METHOD_MEMDEF_RT;H_123_QUERY_CLASS;',0)} See list of classes
{button ,AL(`H_123_REFRESH_METHOD_EXSCRIPT',1)} See example
Runs a query and refreshes the output range with the new result records.

Syntax
query.Refresh

Parameters
None

Return values
None

{button ,AL(`;H_123_SELECT_METHOD_MEMDEF;H_123_UPDATE_METHOD_MEMDEF',0)} See related topics

1-2-3: RefreshOutput method
{button ,AL(`H_REFRESHOUTPUT_METHOD_MEMDEF_RT;H_123_QUERYTABLE_CLASS;',0)} See list of classes
{button ,AL(`H_123_REFRESHOUTPUT_METHOD_EXSCRIPT',1)} See example
Refreshes the output range based upon the current query table. This makes the contents of the output range identical
to those in the query table. The query table is not updated.

Syntax
querytable.RefreshOutput

Parameters
None

Return values
None

Usage
The RefreshOutput method is useful once you are satisfied with the contents of your query table and want to copy
output from the query table to the sheet.

{button ,AL(`;H_123_REFRESHQUERY_METHOD_MEMDEF;H_123_UPDATE_METHOD_MEMDEF',0)} See
related topics

1-2-3: RefreshQuery method
{button ,AL(`H_REFRESHQUERY_METHOD_MEMDEF_RT;H_123_QUERYTABLE_CLASS;',0)} See list of classes
{button ,AL(`H_123_REFRESHOUTPUT_METHOD_EXSCRIPT',1)} See example
Refreshes the contents of the query table. This method automatically performs a RefreshOutput, and the output
range is refreshed to match the contents of the query table.

Syntax
querytable.RefreshQuery

Parameters
None

Return values
None

Usage
The RefreshQuery method is useful after you have modified your query and want to refresh data in both the query
table and its output range.
If the query table is based on data that is external to 1-2-3, you can use the RefreshQuery method to update your
query table and output with the latest data in the source database.

{button ,AL(`;H_123_REFRESHOUTPUT_METHOD_MEMDEF;H_123_UPDATE_METHOD_MEMDEF',0)} See
related topics

1-2-3: Regression method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
Performs multiple linear regression analysis and also calculates the slope of the line that best illustrates the data.

Syntax
document.Regression xrange, yrange, outputrange, intercept

Parameters
xrange

Variant. Contains the independent variables. Xrange is the name or address of a range that can contain up to 75
columns and 8,192 rows.

yrange
Variant. Contains the set of values for the dependent variable. Yrange is the name or address of a single-column
range with the same number of rows as xrange.

outputrange
Variant. Specifies the name or address of a range for the results of the regression analysis. Specify either the
entire range or only the first cell.
Caution 1-2-3 writes over any existing data in outputrange.

intercept
Variant (enumeration). Specifies whether 1-2-3 calculates the y-axis intercept or uses 0 as the y-axis intercept.
The following table lists the allowed values for this parameter. The values are from the RegressionEnum
enumeration.

Value Description
$Compute Calculates the y-axis

intercept.
$Zero Uses 0 (zero) as the y-axis

intercept.

Return values
None

1-2-3: RegressionReset method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
Resets the x-range, y-range, output range, and y-axis intercept settings for a regression analysis.

Syntax
document.RegressionReset

Parameters
None

Return values
None

1-2-3: Remove method
{button ,AL(`H_123_DRAWCOLLECTION_CLASS',0)} See list of classes
Removes the specified object from the set of currently selected drawn objects.

Syntax
.Remove drawobject

Parameters
drawobject

Variant. The drawn object to be deselected. This must be a selected object derived from DrawObject.

Return values
None

{button ,AL(`H_123_ADDTOSELECTION_METHOD_MEMDEF;H_123_SELECTION_PROPERTY_MEMDEF;H_123
_DRAWCOLLECTION_CLASS;H_123_REMOVEFROMSELECTION_METHOD_MEMDEF;H_123_SELECT_MET
HOD_MEMDEF;H_123_GROUP_METHOD_MEMDEF;H_123_UNGROUP_METHOD_MEMDEF',0)} See related
topics

1-2-3: RemoveFromSelection method
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_QUERY_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLA
SS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_C
LASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_
MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;
H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;
H_123_RECTANGLE_CLASS;H_123_SHEET_CLASS',0)} See list of classes

{button ,AL(`H_123_REMOVEFROMSELECTION_METHOD_EXSCRIPT',1)} See example
Removes the object from the selection, while leaving other objects in the selection unchanged.

Syntax
object.RemoveFromSelection

Parameters
None

Return values
None

1-2-3: RemoveItem method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
Removes an item, including a submenu item, from a menu or menu bar.

Syntax
object.RemoveItem position

Parameters
position

Long. The position in the menu of the item to be removed.

Value Description
Positive integer The item's position in the menu,

counting forward from the beginning.
The value 1 means the first position.

Negative integer The item's position in the menu,
counting backward from the end.
The value –1 means the last position.

Return values
None

{button ,AL(`H_123_ADDITEM_METHOD_MEMDEF;H_123_DISABLEITEM_METHOD_MEMDEF;H_123_REPLACE
ITEM_METHOD_MEMDEF',0)} See related topics

1-2-3: RemoveOverlay method
{button ,AL(`H_123_MAP_CLASS;',0)} See list of classes
Removes an overlay that was added to a map.

Syntax
map.RemoveOverlay(overlayfilename)

Parameters
overlayfilename

String. The name of the overlay file to remove.

Return values
None

{button ,AL(`H_123_RECENTERMAP_METHOD_MEMDEF;H_123_REDRAWMAP_METHOD_MEMDEF;H_123_RE
MOVEOVERLAY_METHOD_MEMDEF;H_ZOOMMAPIN_METHOD_MEMDEF;H_ZOOMMAPOUT_METHOD_ME
MDEF;H_ZOOMMAPRESET_METHOD_MEMDEF;H_ZOOMMAPTO_METHOD_MEMDEF;H_ZOOMMAPTORE
CTANGLE_METHOD_MEMDEF',0)} See related topics

1-2-3: RemoveSelectField method
{button ,AL(`H_123_REMOVESELECTFIELD_METHOD_MEMDEF_RT;H_123_QUERY_CLASS;',0)} See list of

classes
{button ,AL(`H_123_REMOVESELECTFIELD_METHOD_EXSCRIPT ',1)} See example
Removes the specified field from the query.

Syntax
query.RemoveSelectField fieldname

Parameters
fieldname

String. The name of the field to remove from the query, For example, "ZipCodes."

Return values
None

{button ,AL(`H_123_ADDSELECTFIELD_METHOD_MEMDEF;',0)} See related topics

1-2-3: RemoveVersion method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_REMOVEVERSION_METHOD_EXSCRIPT ',1)} See example
Removes a version from the version group.

Syntax
versiongroup.RemoveVersion (rangename)

Parameters
rangename

String. The name of the range that contains the version that you want to remove from the version group.

Return values
None

{button ,AL(`H_123_ADDVERSION_METHOD_MEMDEF;H_123_DELETEVERSION_METHOD_MEMDEF',0)} See
related topics

1-2-3: RenameNamedPrintSettings method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
Renames the specified named print settings (print style).

Syntax
document.RenameNamedPrintSettings oldsettingsname, newsettingsname

Parameters
oldsettingsname

String. The existing name of the PrintSettings object to be renamed.
newsettingsname

String. The new name for the PrintSettings object.

Return values
None

{button ,AL(`H_123_DELETENAMEDPRINTSETTINGS_METHOD_MEMDEF;H_123_NEWNAMEDPRINTSETTING
S_METHOD_MEMDEF;H_123_REDEFINENAMEDPRINTSETTINGS_METHOD_MEMDEF;H_123_RETRIEVEN
AMEDPRINTSETTINGS_METHOD_MEMDEF;H_123_NAMEDPRINTSETTINGS_PROPERTY_MEMDEF;H_123
_CURRENTPRINTSETTINGS_PROPERTY_MEMDEF',0)} See related topics

1-2-3: RenameNamedStyle method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_RENAMENAMEDSTYLE_METHOD_EXSCRIPT ',1)} See example
Renames a named style.

Syntax
RenameNamedStyle "oldstylename", "newstylename"

Parameters
oldstylename

String. The previous name of the named style.
newstylename

String. The proposed name for the named style.

Return value
None

{button ,AL(`;H_123_MODIFYNAMEDSTYLE_METHOD_MEMDEF;H_123_RENAMENAMEDSTYLE_METHOD_ME
MDEF;H_123_REVERTTONAMEDSTYLE_METHOD_MEMDEF;H_123_STYLEFONTRESET_METHOD_MEMD
EF;H_123_STYLENAME_PROPERTY_MEMDEF;H_123_STYLESOURCE_PROPERTY_MEMDEF',0)} See
related topics

1-2-3: Replace method
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_REPLACE_METHOD_EXSCRIPT',1)} See example
Finds the first occurence of specified characters in labels, numbers, and formulas, and replaces them. You can find
the nth occurrence by using the optional occurrence argument.

Syntax
boolean = document.object.Replace [(occurrence)]

Parameters
occurrence

(Optional) Integer. Specifies which occurrence of the target string to find. The default is 1.

Return value
Variant. A Boolean value indicating whether an occurrence of the target string was found.

Usage
This method searches for the string stored in the SearchString property, uses the replacement text stored in the
ReplaceString property, and uses the search matching option properties also stored in the Application object.

{button ,AL(`;H_123_REPLACEALL_METHOD_MEMDEF',0)} See related topics

1-2-3: ReplaceAll method
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_REPLACE_METHOD_EXSCRIPT',1)} See example
Finds all occurrences of specified characters in labels, numbers, and formulas, and replaces them.

Syntax
boolean = document.object.ReplaceAll

Parameters
None

Return value
Variant. A Boolean value indicating whether an occurrence of the target string was found.

Usage
This method searches for the string stored in the SearchString property, uses the replacement text stored in the
ReplaceString property, and uses the search matching option properties also stored in the Application object.

{button ,AL(`H_123_REPLACE_METHOD_MEMDEF',0)} See related topics

1-2-3: ReplaceItem method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
Replaces a non-submenu item in a menu or menu bar and binds a specified script to it. The item script is executed
when the user chooses the item.

Syntax
object.ReplaceItem position, menutext, menuprompt, scriptdocument, scriptname

Parameters
position

Long. The position in the menu of the item to be replaced.

Value Description
Positive integer The item's position in the menu, counting

forward from the beginning. The value 1
means the first position.

Negative integer The item's position in the menu,
counting backward from the end. The
value –1 means the last position.

menutext
String. Text for the new item to display in the menu. An & (ampersand) before any letter specifies the shortcut key
for the item.

menuprompt
String. The long prompt for the item.

scriptdocument
Document. The file containing the global script to be called by the item. This must be either a reference to a
Document object in the form [docname.123] or the predefined global product variable ThisDocument. For
example, [mysheet.123].

scriptname
String. The name of the global script or sub to call when the user chooses the menu item. This script can employ
the full set of 1-2-3 methods and properties, as well as LotusScript language elements.

Return values
None

Usage
To replace a submenu in a menu or menu bar, use the ReplaceMenu method.
If the item is a setting, you can indicate the status of the setting by calling the CheckItem or UncheckItem method in
the script function for the item.

{button ,AL(`H_123_ADDITEM_METHOD_EXSCRIPT;H_123_CHECKITEM_METHOD_MEMDEF;H_123_DISABLEI
TEM_METHOD_MEMDEF;H_123_ENABLEITEM_METHOD_MEMDEF;H_123_REMOVEITEM_METHOD_MEM
DEF;H_123_UNCHECKITEM_METHOD_MEMDEF;H_123_MENUPROMPT_PROPERTY_MEMDEF;H_123_ME
NUTEXT_PROPERTY_MEMDEF;',0)} See related topics

1-2-3: ReplaceMenu method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
Replaces a submenu in a menu, or a menu in a menu bar.

Syntax
object.ReplaceMenu position, newmenu

Parameters
position

Long. The menu position of the menu to be replaced.

Value Description
Positive integer The menu's position in the menu,

counting forward from the beginning.
The value 1 means the first position. If
position exceeds the position of the
last existing submenu or item, the new
menu is placed at the end.

Negative integer The menu's position in the menu,
counting backward from the end. The
value –1 means the last position.

newmenu
Menu. The new submenu to add. You can add a custom menu you created with the NewMenu method, or a
system or product menu you got with the GetMenu method.

Return values
None

{button ,AL(`H_123_ADDITEM_METHOD_MEMDEF;H_123_REMOVEITEM_METHOD_MEMDEF;H_123_REPLAC
EITEM_METHOD_MEMDEF;H_123_RESETMENUBAR_METHOD_MEMDEF;H_123_GETMENU_METHOD_ME
MDEF;H_123_NEWMENU_METHOD_MEMDEF;H_123_NEWMENUBAR_METHOD_MEMDEF;H_123_CURREN
TMENUBAR_PROPERTY_MEMDEF',0)} See related topics

1-2-3: ReportVersion method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_REPORTVERSION_METHOD_EXSCRIPT ',1)} See example
Creates a document containing a report on versions for the specified range.

Syntax
range.ReportVersion versionnames, [formularange, includedata, includeaudit, orientation]

Parameters
versionnames

String. A list of the names of versions for the specified range to be included in the report. The list is enclosed in" "
(double quotes); items are separated by ; (semicolons).
Note Version names are case-sensitive.

formularange
(Optional) Variant. The address or range name containing formulas that depend on values in one or more of the
specified versions. For example, if you have a formula in a cell named NETGAIN that references cells in one or
more of the specified versions of a range, specify NETGAIN for formularange. The resulting report lists NETGAIN
as dependent formula. By default, no formulas are included in the report.

includedata
(Optional) Variant (Boolean). Specifies whether the report contains data from each of the specified versions. By
default, version data is included in the report.

includeaudit
(Optional) Variant (Boolean). Specifies whether audit information for each of the specified versions is included in
the report. Audit information includes the name of the user who created the version, the name of the user who last
modified the version, the date and time that the version was created, and the date and time that the version was
modified.

orientation
(Optional) Variant (ColumnOrRow enumeration). Specifies how the report is arranged. You can use columns or
rows as its orientation. The following table lists the allowed values for this parameter.

Value Description
$Column (Default) Format the report

using columns as the
orientation for information.

$Row Format the report using rows
as the orientation for
information.

Return value
None

Usage
Version reports are useful in evaluating the history, contents, and effects on formulas of each version for a specified
range.

{button ,AL(`;H_123_ADDVERSION_METHOD_MEMDEF;H_123_DELETEVERSION_METHOD_MEMDEF;H_123_
VERSIONS_METHOD_MEMDEF',0)} See related topics

1-2-3: ReservationGet method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_RESERVATIONGET_METHOD_EXSCRIPT',1)} See example
Attempts to get the reservation for the file.

Syntax
document.ReservationGet

Parameters
None

Return values
None

Usage
This method displays an error dialog box if you already have the reservation for the file.

{button ,AL(`H_123_RESERVATIONRELEASED_METHOD_MEMDEF;H_123_READONLY_PROPERTY_MEMDEF',
0)} See related topics

1-2-3: ReservationReleased method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_RESERVATIONGET_METHOD_EXSCRIPT',1)} See example
Releases the file reservation if you have it.

Syntax
document.ReservationReleased

Parameters
None

Return values
None

Usage
This method displays an error dialog box if you don't have the file reservation.

{button ,AL(`H_123_RESERVED_METHOD_MEMDEF',0)} See related topics

1-2-3: ResetColumnWidth method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_RESETCOLUMNWIDTH_METHOD_EXSCRIPT ',1)} See example
Resets the column width for the specified range to the default column width for the sheet containing the range.

Syntax
range.ResetColumnWidth

Parameters
None

Return values
None

Usage
The ResetColumnWidth method uses the current value of the sheet DefaultColumnWidth property to reset column
widths for a range.

{button ,AL(`;H_123_DEFAULTCOLUMNWIDTH_PROPERTY_MEMDEF;H_123_RESETROWHEIGHT_METHOD_M
EMDEF',0)} See related topics

1-2-3: ResetFieldAggregates method
{button ,AL(`H_123_QUERY_CLASS;',0)} See list of classes
{button ,AL(`H_123_RESETFIELDAGGREGATES_METHOD_EXSCRIPT ',1)} See example
Resets all aggregates set on all fields in a query. If you have added one or more aggregate or summary fields in your
query and have defined formulas for those aggregates, you can use this method to remove the formulas for all
aggregate fields.

Syntax
query.ResetFieldAggregates

Parameters
None

Return values
None

{button ,AL(`H_123_FIELDAGGREGATETYPE_METHOD_MEMDEF',0)} See related topics

1-2-3: ResetMenuBar method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_RESETMENUBAR_METHOD_EXSCRIPT',1)} See example
Resets the menu bar to the default menus. Removes custom menus.

Syntax
application.ResetMenuBar

Parameters
None

Return values
None

Usage
If you don't remove your custom menus when the file containing their menu item handlers closes, the menus will
remain up, but the items won't function.

{button ,AL(`H_123_ADDMENU_METHOD_MEMDEF;H_123_REMOVEITEM_METHOD_MEMDEF;H_123_CURRE
NTMENUBAR_PROPERTY_MEMDEF;H_123_PRECLOSE_EVENT_MEMDEF',0)} See related topics

1-2-3: ResetRowHeight method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_RESETROWHEIGHT_METHOD_EXSCRIPT;H_123_FITTALLEST_METHOD_EXSCRIPT',1)}

See example
Resets the row height for the specified range to the default row height for the sheet containing the range.

Syntax
range.ResetRowHeight

Parameters
None

Return values
None

Usage
The ResetRowHeight method uses the current value of the sheet DefaultRowHeight property to reset row heights for
a range.

{button ,AL(`H_123_RESETCOLUMNWIDTH_METHOD_MEMDEF;H_123_DEFAULTROWHEIGHT_PROPERTY_M
EMDEF',0)} See related topics

1-2-3: Reshape method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_RESHAPE_METHOD_EXSCRIPT',1)} See example
Changes the coordinates of the selected range.

Syntax
range.Reshape(newrange)

Parameters
newrange

Variant. The range coordinates to use to replace the selected range.

Return values
None

1-2-3: Resize method
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_WINDOW_CLASS;H_12

3_DOCWINDOW_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_
123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;
H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_M
APTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_P
OLYLINE_CLASS;H_123_RECTANGLE_CLASS;H_123_PLOT_CLASS;H_123_APPROACHCONNECTION_CLA
SS;H_123_QUERYTABLE_CLASS;H_123_DRAWCOLLECTION_CLASS;',0)} See list of classes

{button ,AL(`H_123_RESIZE_METHOD_EXSCRIPT',1)} See example
For objects based on the DrawObject class or window objects, sets the width and height of the object by a specified
number of units.

Syntax
object.Resize width, height

Paramters
width

Long. The width in twips (1/1440 of an inch).
height

Long. The height in twips (1/1440 of an inch).

Return values
None

{button ,AL(`H_123_BOUNDS_METHOD_MEMDEF;H_123_MAXIMIZE_METHOD_MEMDEF;H_123_MINIMIZE_ME
THOD_MEMDEF;H_123_MOVE_METHOD_MEMDEF;H_123_RESTORE_METHOD_MEMDEF',0)} See related
topics

1-2-3: Restore method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_WINDOW_CLASS;H_123_DOCWINDOW_CLASS;',0)

} See list of classes
Restores the specified window to its original size.

Syntax
object.Restore

Parameters
None

Return values
None

{button ,AL(`H_123_MAXIMIZE_METHOD_MEMDEF;H_123_MINIMIZE_METHOD_MEMDEF;H_123_MOVE_METH
OD_MEMDEF;H_123_RESIZE_METHOD_MEMDEF',0)} See related topics

1-2-3: RetrieveFileFromInternet method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_RETRIEVEFILEFROMINTERNET_METHOD_EXSCRIPT',1)} See example
Retrieves a document from the Internet and stores it locally as a file in the user's TEMP directory. The file is given a
unique name by the operating system.

Syntax
filename = application.RetrieveFileFromInternet(url, [userid], [userpassword], [passiveconnection], [proxyserver],
[proxyport], [proxytype])

Parameters
url

String. The Universal Resource Locator for the document (for example,
 "ftp://myftpserver/users/bob/test.123").

userid
(Optional) String. The user login name on the remote server. If you specify this argument, you must also supply
the userpassword and passiveconnection arguments.

userpassword
(Optional) String. The user login password on the remote server.

passiveconnection
(Optional) Variant (Boolean). Specifies whether a passive connection to the remote server should be used (value
True) or not (value False).

proxyserver
(Optional) String. The Internet proxy server IP address or domain name. If you specify this argument, you must
also supply the proxyport and proxytype arguments.

proxyport
(Optional) Long. The port number to use to connect to the proxy server.

proxytype
(Optional) Long. The proxy type. The following table lists the allowed values for this parameter.

Value Description
 1 World Wide Web
 2 File Transfer Protocol (FTP)

Return values
String. The local name of the retrieved file on the user's computer. This name is assigned by the operating system.

{button ,AL(`H_123_OPENDOCUMENTFROMINTERNET_METHOD_MEMDEF;H_123_SAVEASTOINTERNET_ME
THOD_MEMDEF',0)} See related topics

1-2-3: RetrievePrintSettings method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_RETRIEVEPRINTSETTINGS_METHOD_EXSCRIPT',1)} See example
Retrieves print settings from a named page settings (.AL3) file that was created in an earlier release of 1-2-3
(Release 3, 4, or 5) and applies them to the document's CurrentPrintSettings property.

Syntax
document.RetrievePrintSettings settingsfile

Parameters
settingsfile

String. The name of the 1-2-3 page settings (.AL3) file containing the print settings you want to retrieve.

Return values
None

{button ,AL(`H_123_REDEFINENAMEDPRINTSETTINGS_METHOD_MEMDEF;H_123_NEWNAMEDPRINTSETTIN
GS_METHOD_MEMDEF;H_123_NAMEDPRINTSETTINGS_PROPERTY_MEMDEF',0)} See related topics

1-2-3: RevertToNamedStyle method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_REVERTTONAMEDSTYLE_METHOD_EXSCRIPT ',1)} See example
Resets style properties for the range back to those of its named style.

Syntax
range.RevertToNamedStyle

Parameters
None

Return value
None

Usage
The RevertToNamedStyle method is useful when you first apply a named style to a range and then further modify
style properties for that range. Its style properties, therefore, are a combination of properties defined in the named
style and properties that you applied locally. Use the RevertToNamedStyle method to restore all style attributes for
the range to those defined in the named style.

{button ,AL(`;H_123_MODIFYNAMEDSTYLE_METHOD_MEMDEF;H_123_RENAMENAMEDSTYLE_METHOD_ME
MDEF;H_123_REVERTTOSTYLE_METHOD_MEMDEF',0)} See related topics

1-2-3: RevertToStyle method
{button ,AL(`H_123_FONT_CLASS;H_123_BACKGROUND_CLASS;',0)} See list of classes
{button ,AL(`H_123_REVERTTOSTYLE_METHOD_EXSCRIPT;',1)} See example
Resets the background and font styles for a range to the style defaults.

Syntax
object.RevertToStyle

Parameters
None

Return value
None

{button ,AL(`;H_123_MODIFYNAMEDSTYLE_METHOD_MEMDEF;H_123_RENAMENAMEDSTYLE_METHOD_ME
MDEF;H_123_REVERTTONAMEDSTYLE_METHOD_MEMDEF',0)} See related topics

1-2-3: SameColor method
{button ,AL(`H_123_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_123_SAMECOLOR_METHOD_EXSCRIPT',1)} See example
Tests if the RGB color value of a specified object matches another RGB color value.

Syntax
colorissame = color.SameColor(othercolor)

Parameters
othercolor

Color. A color value.

Return value
colorissame

Boolean. Indicates whether the colors are the same. The SameColor method returns True if the RGB color of the
specified object and othercolor are the same and returns False if they are different.

Usage
SameColor is useful if you need to compare the colors of two objects in different Lotus products.

{button ,AL(`H_123_GETRGB_METHOD_MEMDEF',0)} See related topics

1-2-3: Save method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SAVE_METHOD_EXSCRIPT',1)} See example
Saves the document to its current path. If no path and file name have been specified for the document (that is, it is a
new document), 1-2-3 prompts the user for the path and file name.

Syntax
document.Save

Parameters
None

Return values
None

{button ,AL(`H_123_SAVEAS_METHOD_MEMDEF;H_123_SAVECOPYAS_METHOD_MEMDEF;H_123_CLOSE_M
ETHOD_MEMDEF;H_123_CLOSEALL_METHOD_MEMDEF;H_123_OPENDOCUMENT_METHOD_MEMDEF',0)
} See related topics

1-2-3: SaveAs method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_OPENDOCUMENT_METHOD_EXSCRIPT',1)} See example
Saves the document, using the specified file name and path. If you do not specify a file name, 1-2-3 prompts the user
for it.

Syntax
document.SaveAs name, [location], [filetype], [backup], [password], [addtorecentfiles]

Parameters
name

String. The name of the file, or the name and full path of the file to be saved.
location

(Optional) String. The path where the file is to be saved.
filetype

(Optional) String. The file format to be used to save the file. The default is "1-2-3 (123)" format. The following
table lists the allowed values for this parameter.

Value Description
"1-2-3 (123)" 1-2-3 97 workbook
"1-2-3 (WK4)" 1-2-3 for Windows Release 4, 5
"1-2-3 (WK3)" 1-2-3 for DOS Releases 3, 4; 1-2-

3 for Windows Release 1
"1-2-3 (WK1)" 1-2-3 for DOS Release 2
"SmartMaster (12M)" 1-2-3 97 SmartMaster template
"Text (TXT)" Text
"Excel Worksheet (XLS)" Microsoft Excel worksheet
"Excel Workbook (XLW)" Microsoft Excel workbook

backup
(Optional) Variant (Boolean). Specifies whether to back up the file (value True) or not (value False). If you specify
False for this argument, 1-2-3 replaces the file previously saved with the one you are saving.

password
(Optional) String. A password associated with the file. If you don't specify this argument, the file will have no
password.

addtorecentfiles
(Optional) Variant (Boolean). Specifies whether to add the file to the most recent file list (value True) or not to add
it (value False). The default is False.

Return values
None

{button ,AL(`H_123_SAVE_METHOD_MEMDEF;H_123_SAVECOPYAS_METHOD_MEMDEF;H_123_CLOSE_MET
HOD_MEMDEF;H_123_CLOSEALL_METHOD_MEMDEF;H_123_OPENDOCUMENT_METHOD_MEMDEF',0)}
See related topics

1-2-3: SaveAsToInternet method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_OPENDOCUMENTFROMINTERNET_METHOD_EXSCRIPT',1)} See example
Saves the document to a specified Universal Resource Locator (URL) on the Internet.

Syntax
document.SaveAsToInternet [url], [filetype], [docpassword], [userid], [userpassword], [passiveconnection],
[proxyserver], [proxyport]

Parameters
url

(Optional) String. The URL for the document (for example,
"ftp://myftpserver/users/bob/test.123").

If you omit this argument, a dialog box prompts the user for it.
filetype

(Optional) String. The file format to be used. The following table lists the allowed values for this parameter.

Value Description
"1-2-3 (123)"
"1-2-3 (WK4)"
"1-2-3 (WK3)"

1-2-3 97 workbook
1-2-3 for Windows Release 4
1-2-3 for DOS Releases 3, 4;
1-2-3 for Windows Release 1

"1-2-3 (WK1)"
1-2-3 for DOS Release 2

"SmartMaster (12M)"
1-2-3 97 SmartMaster template

"Text (TXT)" Text
"Excel Workbook (XLW)"
"Excel Worksheet (XLS)"

Microsoft Excel workbook
Microsoft Excel worksheet

docpassword
(Optional) String. A password associated with the document.

userid
(Optional) String. The user login name on the remote server. If you specify this argument, you must also supply
the userpassword and passiveconnection arguments.

userpassword
(Optional) String. The user login password on the remote server.

passiveconnection
(Optional) Variant (Boolean). Specifies whether a passive connection to the remote server should be used (value
True) or not (value False).

proxyserver
(Optional) String. The Internet proxy server IP address or domain name. If you specify this argument, you must
also supply the proxyport argument.

proxyport
(Optional) Long. The port number to use to connect to the proxy server.

Return values
None

Usage
Although you can open a World Wide Web document using the OpenDocumentFromInternet method, you can't

directly save a document to the World Wide Web, so the proxy type always reflects saving the document to an FTP
site via the File Transfer Protocol.

{button ,AL(`H_123_OPENDOCUMENTFROMINTERNET_METHOD_MEMDEF;H_123_RETRIEVEFILEFROMINTE
RNET_METHOD_MEMDEF;H_123_SETINTERNETOPTIONS_METHOD_MEMDEF',0)} See related topics

1-2-3: SaveAsToNotes method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_OPENDOCUMENTFROMNOTES_METHOD_EXSCRIPT',1)} See example
Saves the document as a Notes attachment.

Syntax
document.SaveAsToNotes [attachedfilename], [universalnotesid], [fieldname], [databasefile], [servername], [filetype],
[docpassword]

Parameters
attachedfilename

(Optional) String. The name of the attached file in the Notes document. For example, "test.123". If you omit this
argument, a dialog box prompts the user for it.

universalnotesid
(Optional) String. The 32-character hexadecimal Notes document ID (the NotesDocument.UniversalID property).
For example, "150DFE45F1089B790065828D852562CA".

fieldname
(Optional) String. The name of the field in which the file is attached. For example, "Body".

databasefile
(Optional) String. The Notes database location. For example, "Databases\Docs_in_Progress.nsf".

servername
(Optional) String. The Notes server name. For example, "Local".

filetype
(Optional) String. The file format to be used. The following table lists the allowed values for this parameter.

Value Description
"1-2-3 (123)" 1-2-3 97 workbook
"1-2-3 (WK4)" 1-2-3 Releases 4 and 5 for

Windows
"1-2-3 (WK3)" 1-2-3 for DOS Releases 3, 4; 1-2-

3 for Windows Release 1

"1-2-3 (WK1)"
1-2-3 for DOS Release 2

"SmartMaster (12M)"
1-2-3 97 SmartMaster template

"Text (TXT)" Text
"Excel Workbook (XLW)" Microsoft Excel workbook

"Excel Worksheet (XLS)"
Microsoft Excel worksheet

docpassword
(Optional) String. A password associated with the 1-2-3 file.

Return values
None

Usage
When you save a document with the SaveAsToNotes method, the current document becomes the file copy you just
attached to the Notes document, not the document you started with. The current document is now the same as if you
had launched the attached file from the Notes document.

{button ,AL(`H_123_OPENDOCUMENTFROMNOTES_METHOD_MEMDEF',0)} See related topics

1-2-3: SaveCopyAs method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Saves a copy of the document in a specified file format, using a specified file name and path. The original document
is not saved or changed.

Syntax
document.SaveCopyAs name, [location], [filetype], [backup], [password], [comment]

Parameters
name

String. The name of the file copy, or the name and full path of the file copy.
location

(Optional) String. The path where the file copy is to be saved. For example, "d:\lotus\work\123"
filetype

(Optional) String. The file format to be used. The default is "1-2-3 (123)" format. The following table lists the
allowed values for this parameter.

Value Description
"1-2-3 (123)" 1-2-3 97 workbook (default)
"1-2-3 (WK4)" 1-2-3 for Windows Releases 4, 5
"1-2-3 (WK3)" 1-2-3 for DOS Releases 3, 4; 1-2-

3 for Windows Release 1
"1-2-3 (WK1)" 1-2-3 for DOS Release 2
"SmartMaster (12M)" 1-2-3 97 SmartMaster template
"Text (TXT)" Text
"Excel Worksheet (XLS)" Microsoft Excel worksheet
"Excel Workbook (XLW)" Microsoft Excel workbook

backup
(Optional) Variant (Boolean). Specifies whether to back up the file (value True) or not (value False). If you specify
False for this argument, 1-2-3 replaces any identically named and located file with the one you are saving.

password
(Optional) String. A password for the file. If you don't specify this argument, the file copy will have no password.

comment
(Optional) String. A description of the file contents. 1-2-3 places this string in the Document.Description property;
it appears in the File - Open dialog box.

Return values
None

{button ,AL(`H_123_SAVE_METHOD_MEMDEF;H_123_SAVEAS_METHOD_MEMDEF;H_123_CLOSE_METHOD_
MEMDEF;H_123_CLOSEALL_METHOD_MEMDEF;H_123_OPENDOCUMENT_METHOD_MEMDEF',0)} See
related topics

1-2-3: ScrollToActiveCell method
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_SCROLLTOACTIVECELL_METHOD_EXSCRIPT',1)} See example
Scrolls the current window to display the active cell.

Syntax
sheet.ScrollToActiveCell

Parameters
None

Return values
None

{button ,AL(`;H_123_PAGEBACK_METHOD_MEMDEF;H_123_PAGEFORWARD_METHOD_MEMDEF;H_123_TUR
NTO_METHOD_MEMDEF',0)} See related topics

1-2-3: Select method
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJE
CT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_
CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_PLOT_CLASS;H_123_
MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;
H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;
H_123_RECTANGLE_CLASS;H_123_QUERY_CLASS;H_123_SHEET_CLASS;',0)} See list of classes

{button ,AL(`H_123_SELECT_METHOD_EXSCRIPT;H_123_SHOWVERSIONBORDERS_PROPERTY_EXSCRIPT;',
1)} See example

Selects an object. Any objects in the same file that were previously selected become unselected.

Syntax
object.Select

Parameters
None

Return values
None

{button ,AL(`H_123_CLEARSELECTION_METHOD_MEMDEF;H_123_COPYSELECTION_METHOD_MEMDEF;H_
123_CUTSELECTION_METHOD_MEMDEF;H_123_EXTENDSELECTFROMTAB_METHOD_MEMDEF;H_123_E
XTENDSELECT_METHOD_MEMDEF;H_123_EXTENDWORKSHEETSELECTIONBACK_METHOD_MEMDEF;H
_123_EXTENDWORKSHEETSELECTIONFORWARD_METHOD_MEMDEF;H_123_GETSELECTION_METHOD
_MEMDEF;H_123_REMOVEFROMSELECTION_METHOD_MEMDEF;H_123_SELECT_METHOD_MEMDEF;H_
123_SELECTALL_METHOD_MEMDEF;H_123_SELECTALLSHEETS_METHOD_MEMDEF;H_123_ACTIVE_PR
OPERTY_MEMDEF;H_123_ISSELECTABLE_PROPERTY_MEMDEF;H_123_ISSELECTED_PROPERTY_MEMD
EF;H_123_SELECTION_PROPERTY_MEMDEF;H_123_SELECTED_EVENT_MEMDEF',0)} See related topics

1-2-3: SelectAll method
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_SELECT_METHOD_EXSCRIPT',1)} See example
Selects the active area of the current sheet.

Syntax
sheet.SelectAll

Parameters
None

Return values
None

Usage
The active area of a sheet is the area bounded by cell A1 and the lowest and rightmost nonblank cell in the current
sheet.

1-2-3: SelectAllSheets method
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
Selects the active areas of the all sheets in the current file.

Syntax
sheet.SelectAllSheets

Parameters
None

Return values
None

Usage
The active area of a sheet is the area bounded by cell A1 and the lowest and rightmost nonblank cell in the current
sheet.

1-2-3: Send method
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_SEND_METHOD_EXSCRIPT',1)} See example
Sends the workbook or range in an e-mail message, using the local e-mail application, while the user is in 1-2-3.

Syntax
object.Send [recipients], [individualmessages], [subject], [body], [returnreceipt], [priority], [extractformulas],
[sendtype], [returntooriginator], [messagetooriginator], [messagetoalternate], [messagewithtrack], [modifyroute],
[savecopy]

Parameters
recipients

(Optional) String. The list of mail recipients (with names separated by semicolons).
individualmessages

(Optional) String. The list of individual messages to recipients (with messages separated by semicolons).
subject

(Optional) String. The subject of the e-mail message.
body

(Optional) String. The text of the e-mail message.
returnreceipt

(Optional) Variant (Boolean). Determines whether to send a delivery confirmation or not.

Value Description
True Send a confirmation to each sender when a

recipient opens the e-mail message.
False Don't send a confirmation (default).

priority
(Optional) Variant (MailPriority enumeration). The delivery priority. The following table lists the allowed values for
this parameter.

Value Description
$LowPriority Low priority
$NormalPriority Normal priority (default)
$HighPriority High priority

extractformulas
(Optional) Variant (WALExtractOption enumeration). Determines whether to extract formulas from the cells. The
following table lists the allowed values for this parameter. This parameter only has meaning if the object you run
this method on is a range.

Value Description
$ExtractValuesAndFormulas Extract formulas and values

(default).
$ExtractValuesOnly Extract values only.

sendtype
(Optional) Variant (SendType enumeration). Determines how to distribute the message to the recipients. The
following table lists the allowed values for this parameter.

Value Description
$Route Route the message sequentially. Each

recipient must forward it to the next
(default when you run this method on a

Range object).
$Broadcast Send the message to all recipients at the

same time (default when you run this
method on a Document object).

returntooriginator
(Optional) Variant (Boolean). Determines whether to return the message to the originator when all recipients have
received the message.

Value Description
True Return the message to the originator after all

recipients have received the message (default
when you run this method on a Range object).

False Don't return the message to the originator
after all recipients have received the message
(default when you run this method on a
Document object).

messagetooriginator
(Optional) Variant (Boolean). Determines whether to send a tracking message to the originator each time the
message is forwarded to the next recipient (value True, the default) or not (value False). This parameter only has
meaning if sendtype is $Route.

alternaterecipient
(Optional) String. The name of an alternate person to receive a tracking message when a recipient forwards the
message. This parameter only has meaning if sendtype is $Route.

messagewithtrack
(Optional) Variant (Boolean). Determines whether to attach the routed workbook to tracking messages (value
True) or not (value False, the default). This parameter only has meaning if sendtype is $Route and if
messagetooriginator is True or an alternaterecipient is specified.

modifyroute
(Optional) Variant (Boolean). Determines whether recipients are allowed to alter the routing list of later recipients
(value True) or not (value False, the default). This parameter only has meaning if sendtype is $Route.

savecopy
(Optional) Variant (Boolean). Determines whether to save a copy of the message (value True, the default) or not
(value False).

Return values
None

Usage
Call the UserLogin method before calling the Send method, to prevent the display of the user mail login dialog box.
If you don't specify any valid recipients in the recipients argument, the SendMail method brings up a dialog box for
the user to specify the list of recipients.
To pass a list of strings in an argument, use the data type String and delimit each string in the list with a semicolon.
The Send method cannot be recorded.

{button ,AL(`H_123_SENDMAIL_METHOD_MEMDEF;H_123_USERLOGIN_METHOD_MEMDEF',0)} See related
topics

1-2-3: SendCommand method
{button ,AL(`H_123_SENDCOMMAND_METHOD_MEMDEF_RT;H_123_DOCUMENT_CLASS;',0)} See list of

classes
Connects to the specified database and sends a database command.

Syntax
document.SendCommand drivername, [driveruserid,] [driverpassword,] [connectstring,] databasename,
[databaseuserid,] [databasepassword,] commandstring

Parameters
driverName

String. The name of the driver to use for the connection, for example, "dBase_IV."
driverUserID

(Optional) String. The database driver user ID.
driverpassword

(Optional) String. The database driver password.
connectString

(Optional) String. A connection string to pass to the driver. Use this to specify additional information that may be
needed to connect to the database.

databaseName
String. The path and name of the external database to which you want to connect, for example, "C:\LOTUS\
APPROACH\STAFF.DBF."

databaseUserID
(Optional) String. The database user ID.

databasepassword
(Optional) String. The database password.

commandstring
String. The string containing the database commands to send to the specified database.

Return values
None

{button ,AL(`;H_123_SEND_METHOD_MEMDEF;H_123_SENDSQL_METHOD_MEMDEF;',0)} See related topics

1-2-3: SendMail method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_SENDMAIL_METHOD_EXSCRIPT',1)} See example
Sends an e-mail message, using the local e-mail application, while the user is in 1-2-3. The e-mail can contain text,
the current selection, or both.

Syntax
application.SendMail [recipients], [individualmessages], [subject], [body], [returnreceipt], [priority], [attachment],
[savecopy]

Parameters
recipients

(Optional) String. The list of e-mail recipients, with each name separated by a ; (semicolon).
individualmessages

(Optional) String. The list of individual messages to recipients, with each message separated by a ; (semicolon).
subject

(Optional) String. The subject of the e-mail message.
body

(Optional) String. The text of the e-mail message.
returnreceipt

(Optional) Variant (Boolean). Determines whether to send a delivery confirmation or not. This parameter has no
effect if the attachment parameter is $SelectedObject or $Clipboard.

Value Description
True Send a confirmation to each

sender when a recipient opens
the mail message.

False Don't send a confirmation
(default).

priority
(Optional) Variant (MailPriority enumeration). The delivery priority. This parameter has no effect if the attachment
parameter is $SelectedObject or $Clipboard. The following table lists the allowed values for this parameter.

Value Description
$LowPriority Low priority
$NormalPriority Normal priority (default)
$HighPriority High priority

attachment
(Optional) Variant (Attachment enumeration). Specifies an attachment to send with the message. The following
table lists the allowed values for this parameter.

Value Description
$SelectedObject Send the currently selected

object.
$Clipboard Send the contents of the

Clipboard via DDE.
$NoAttachment Don't send an attachment

(default).
savecopy

(Optional) Variant (Boolean). Determines whether to save a copy of the message (value True, the default) or not
to save it (value False).

Return values
None

Usage
Call the UserLogin method before calling the SendMail method, to prevent the display of the user mail login dialog
box when the user's mail application is not running.
If you don't specify any valid recipients in the recipients argument, the SendMail method brings up a dialog box for
the user to specify the list of recipients.
To pass a list of strings in an argument, use the data type String and delimit each string in the list with a ; (semicolon).
The SendMail method cannot be recorded.

{button ,AL(`H_123_SEND_METHOD_MEMDEF;H_123_USERLOGIN_METHOD_MEMDEF',0)} See related topics

1-2-3: SendSQL method
{button ,AL(`H_123_SENDSQL_METHOD_MEMDEF_RT;H_123_DOCUMENT_CLASS;',0)} See list of classes
Sends a Structured Query Language (SQL) statement to the specified database. If the database cannot return results
from the SQL statement, no results are returned.

Syntax
document.SendSQL externalrangename, commandstring, [outputrange,] [errorcodelocation]

Parameters
externalrangename

Variant. The name of the external range representing an existing connection to an external database.
commandstring

String. The SQL statement sent to the external database.
outputrange

(Optional) Variant. The name of the range in which to place the output that is sent from the SQL statement to the
external database.

errorcodelocation
(Optional) Variant. The name of the range to contain any error output from the SQL statements sent to the
external database.

Return values
None

{button ,AL(`;H_123_SEND_METHOD_MEMDEF;H_123_SENDCOMMAND_METHOD_MEMDEF;',0)} See related
topics

1-2-3: SetActiveCell method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_SETACTIVECELL_METHOD_EXSCRIPT;',1)} See example
Makes the top left cell in the selected range the active cell.

Syntax
range.SetActiveCell ([rangemember])

Parameters
rangemember

(Optional) Variant. The range in which to position the active cell, if the selection contains more than one range.
The default is to make the top left cell in the last range added to the collection of ranges the active cell.

Return values
None

1-2-3: SetCellData method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_FREECELLDATA_METHOD_EXSCRIPT;H_123_SETCELLDATA_METHOD_EXSCRIPT',1)}

See example
Fills a range with data passed from an external C routine.

Syntax
range.SetCellData pointer

Parameters
pointer

Long. A pointer to the data you want to enter in the range. This data includes a header and an array of cell data
pointers.

Return values
None

{button ,AL(`H_123_GETCELLDATA_METHOD_MEMDEF;H_123_FREECELLDATA_METHOD_MEMDEF',0)} See
related topics

1-2-3: SetGalleryStyle method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_SETGALLERYSTYLE_METHOD_EXSCRIPT ',1)} See example
Applies a style template from the Style Gallery to the specified range.

Syntax
range.SetGalleryStyle gallerystylename

Parameters
gallerystylename

Variant (GalleryStyles enumeration). The name of a style template to apply to the specified range. The following
table lists the allowed values for this parameter.

Value Description
$Chisel1 Style with chiseled borders.
$Chisel2 Style with chiseled borders.
$Computer Style with green and white

bands resembling a computer
printout.

$Photo Style with frame corners and
borders resembling a photo
album.

$Picture1 Style with borders resembling
a desktop photo.

$Picture2 Style with purple and grey
regions.

$NotePad Style with a yellow background
and dog-eared corner
resembling a post-it note.

$Simple1 Style with purple lines and
text.

$Simple2 Style with green regions and
text.

$Simple3 Style with blue regions and
text.

$B&W1 Style with horizontal rules for
each row.

$B&W2 Style with a grey region for the
first row and horizontal rules
for each row.

$B&W3 Style with horizontal rules for
each row.

$B&W4 Style with minimal rules and
character accents.

Return values
None

{button ,AL(`;H_123_DEFINENAMEDSTYLE_METHOD_MEMDEF;H_123_MODIFYNAMEDSTYLE_METHOD_MEM
DEF;H_123_REVERTTONAMEDSTYLE_METHOD_MEMDEF;H_123_REVERTTOSTYLE_METHOD_MEMDEF',
0)} See related topics

1-2-3: SetHorizontalTitle method
{button ,AL(`H_123_SETHORIZTITLE_METHOD_MEMDEF_RT;H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_SETHORIZONTALTITLE_METHOD_EXSCRIPT ',1)} See example
Sets the coordinates for the title along the top edge of a sheet.

Syntax
sheet.SetHorizontalTitle titlerange, numberofrows

Parameters
titlerange

Variant. The name of the range specifying the starting position for the horizontal title.
numberofrows

Long. The number of rows to include in the horizontal title.

Return value
None

{button ,AL(`;H_123_SETVERTTITLE_METHOD_MEMDEF',0)} See related topics

1-2-3: SetInternetOptions method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_SETINTERNETOPTIONS_METHOD_EXSCRIPT',1)} See example
Displays the File - Internet - FTP Connection Setup dialog box, in which the user can set Internet options.

Syntax
application.SetInternetOptions

Parameters
None

Return values
None

{button ,AL(`H_123_OPENDOCUMENTFROMINTERNET_METHOD_MEMDEF;H_123_SAVEASTOINTERNET_ME
THOD_MEMDEF;H_123_RETRIEVEFILEFROMINTERNET_METHOD_MEMDEF',0)} See related topics

1-2-3: SetOrigin method
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_SETORIGIN_METHOD_EXSCRIPT ',1)} See example
Scrolls to display the top-left cell of a specified range in the top-left corner of the display region. The current selection
does not change.

Syntax
sheet.SetOrigin originposition

Parameters
originposition

Variant. The address or range name whose top-left cell serves as the new top-left cell displayed in the current
window.

Return values
None

{button ,AL(`;H_123_MOVE_METHOD_MEMDEF;H_123_MOVEORIGIN_METHOD_MEMDEF',0)} See related
topics

1-2-3: SetRecordsLimitMax method
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_SORTDATA_METHOD_EXSCRIPT;',1)} See example
Sets a maximum number of records to be retrieved from a query and specifies whether that limit is applied to the
current query.

Syntax
query.SetRecordsLimitMax limitrecords, [numberofrecords]

Parameters
limitrecords

Boolean (enumeration). Specifies whether the query should or should not retrieve a maximum number of records
for the current query. The following table lists the allowed values for this parameter.

Value Description
Yes The current query should

retrieve no more than the
number of records specified in
the numberofrecords
parameter.

No The current query can retrieve
an unrestricted number of
records.

numberofrecords
(Optional) Long. The maximum number of records that the query can retrieve if the value of limitrecords is Yes.
The range of valid values for numberofrecords is any long from 1 - 8191 (the maximum number of rows in a
sheet).

Return values
None

{button ,AL(`;H_123_JOIN_METHOD_MEMDEF;H_123_REFRESH_METHOD_MEMDEF;H_123_UPDATE_METHO
D_MEMDEF',0)} See related topics

1-2-3: SetVerticalTitle method
{button ,AL(`H_123_SETVERTTITLE_METHOD_MEMDEF_RT;H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_SETVERTICALTITLE_METHOD_EXSCRIPT',1)} See example
Sets the coordinates for the title along the left edge of a sheet.

Syntax
sheet.SetVerticalTitle titlerange, numberofcolumns

Parameters
titlerange

Variant. The name of the range specifying the starting position for the vertical title.
numberofcolumns

Long. The number of columns to include in the vertical title.

Return value
None

{button ,AL(`H_123_SETHORIZTITLE_METHOD_MEMDEF',0)} See related topics

1-2-3: Show method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_SHOW_METHOD_EXSCRIPT ',1)} See example
Displays a Workbook window for the specified file, which has been opened invisibly.

Syntax
document.Show

Parameters
None

Return values
None

{button ,AL(`H_123_SHOWALLSHEETS_METHOD_MEMDEF',0)} See related topics

1-2-3: ShowAllSheets method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_SHOWALLSHEETS_METHOD_EXSCRIPT ',1)} See example
Shows all hidden sheets in a file.

Syntax
document.ShowAllSheets

Parameters
None

Return values
None

{button ,AL(`H_123_SHOW_METHOD_MEMDEF',0)} See related topics

1-2-3: ShowIconBar method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Displays the specified icon bar (set of SmartIcons).

Syntax
applicationwindow.ShowIconBar iconbarname

Parameters
iconbarname

String. The name of the icon bar to be shown.

Return values
None

Usage
The ApplicationWindow.IconBarNames property is a collection of names of known icon bars that you can show or
hide.

{button ,AL(`H_123_HIDEICONBAR_METHOD_MEMDEF;H_123_ICONBARNAMES_PROPERTY_MEMDEF',0)}
See related topics

1-2-3: ShowSheet method
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_SHOWSHEET_METHOD_EXSCRIPT ',1)} See example
Displays the specified sheet.

Syntax
sheet.ShowSheet

Parameters
None

Return values
None

Usage
Use the ShowSheet method to display sheets that have been hidden using the HideSheet method.

{button ,AL(`H_123_SHOW_METHOD_MEMDEF;H_123_SHOWALLSHEETS_METHOD_MEMDEF;H_123_HIDESH
EETS_METHOD_MEMDEF;',0)} See related topics

1-2-3: SmartSum method
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_SMARTSUM_METHOD_EXSCRIPT',1)} See example
Sums values in a range or adjacent range, if you include empty cells below or to the right of the range.

Syntax
range.SmartSum

Parameters
None

Return values
None

1-2-3: Sort method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_RANGESORTDEFINEKEY_METHOD_EXSCRIPT',1)} See example
Sorts data in a range, using the sort keys defined by the RangeSortDefineKey method.

Syntax
range.Sort

Parameters
None

Return values
None

1-2-3: SortData method
{button ,AL(`H_SORTDATA_METHOD_MEMDEF_RT;H_123_QUERY_CLASS;',0)} See list of classes
{button ,AL(`H_123_SORTDATA_METHOD_EXSCRIPT;',1)} See example
Sorts output records from the current query without reexecuting the query.

Syntax
query.SortData [fieldname1, sortdirection1, fieldname2, sortdirection2, fieldname3, sortdirection3]

Parameters
fieldname1

(Optional) String. The name of the field to be used as the first column to sort by. For example "LastName."
fieldname2

(Optional) String. The name of the field to be used as the second column to sort by. For example "FirstName."
fieldname3

(Optional) String. The name of the field to be used as the third column to sort by. For example "HomeTown."
sortdirection1, sortdirection2, sortdirection3

(Optional) Variant (Direction enumeration). The direction of the sort for the first, second, and third columns to
sort by, respectively.The following table lists the allowed values for this parameter.

Value Description
$Ascend Sorts from A - Z or from 0

(zero) to the highest number.
$Descend Sorts from Z - A or from the

highest number to 0 (zero).

Return values
None

{button ,AL(`H_123_QUERYSORTDEFINEKEY_METHOD_MEMDEF;H_123_SORT_METHOD_MEMDEF;',0)} See
related topics

1-2-3: SortReset method
{button ,AL(`H_SORTRESET_METHOD_MEMDEF_RT;H_123_QUERY_CLASS;',0)} See list of classes
{button ,AL(`H_123_SORTDATA_METHOD_EXSCRIPT;',1)} See example
Resets all the columns to sort by on all fields for the current query.

Syntax
query.SortReset

Parameters
None

Return values
None

{button ,AL(`H_123_QUERYSORTDEFINEKEY_METHOD_MEMDEF;H_123_SORT_METHOD_MEMDEF;H_123_S
ORTDATA_METHOD_MEMDEF;',0)} See related topics

1-2-3: SortResetKeys method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_RANGESORTDEFINEKEY_METHOD_EXSCRIPT',1)} See example
Clears all sort keys for sorting range data.

Syntax
range.SortResetKeys

Parameters
None

Return values
None

1-2-3: StartPoll method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_STARTPOLL_METHOD_EXSCRIPT',1)} See example
Starts the specified poll. You can activate four separate polls, at different event time intervals and raising different
numbers of events.

Syntax
document.StartPoll eventindex, timeinterval, repetitions

Parameters
eventindex

Long. The index of the poll event to start. There are four different poll events available, which can be operating
concurrently. The value eventindex = 1 specifies the event Poll1, and so on through the event Poll4.

timeinterval
Long. The time interval between successive poll events, in milliseconds. Higher-priority system tasks can
lengthen a particular event interval.

repetitions
Long. The number of times to raise this event. The value zero causes the events to go on indefinitely, until you
call the EndPoll method to turn off the poll, or close the document.

Return values
None

{button ,AL(`H_123_ENDPOLL_METHOD_MEMDEF;H_123_POLL1_EVENT_MEMDEF;H_123_POLL2_EVENT_M
EMDEF;H_123_POLL3_EVENT_MEMDEF;H_123_POLL4_EVENT_MEMDEF',0)} See related topics

1-2-3: StyleFontReset
{button ,AL(`H_123_RANGE_Class;',0)} See list of classes
{button ,AL(`H_123_STYLEFONTRESET_METHOD_EXSCRIPT',1)} See example
Restores default font, point size, attribute, and color for labels and values in a range.

Syntax
range.StyleFontReset

Parameters
None

Return values
None

{button ,AL(`;H_123_MODIFYNAMEDSTYLE_METHOD_MEMDEF;H_123_REVERTTONAMEDSTYLE_METHOD_
MEMDEF;H_123_REVERTTOSTYLE_METHOD_MEMDEF',0)} See related topics

' Example: NewApproachConnection method
' Create a new ApproachConnection object.
Dim approachconnection As ApproachConnection
Set approachconnection = [A].NewApproachConnection(4100, 1100, 4100, 1100, "Approach
Report",,, True,,,, [A:B2..A:F30])

' Example: NewArc method
' Create a 1" x 1" arc on sheet A.
Dim arc1 As Arc
Set arc1 = [A].NewArc(1440, 1440, 2880, 2880)

' Example: NewChart method
' Create a new chart of the data in [A:B2..A:D10].
' The chart's object reference variable is not needed.
[A:B2].Contents = "10"
[A:B3].Contents = "20"
[A:B4].Contents = "30"
[A].NewChart 1440, 1440, 7200, 7200, [A:B2..A:D10]

' Example: NewDataLink method
' To run this example, substitute the name of a WordPro document and bookmark
' for the filename (LnkTst.lwp) and itemname (test1) in this example.

' Create a new data link at [G1].
Dim datLnk1 As DataLink
Set datLnk1 = CurrentDocument.NewDataLink("Datalink1", _
 "E:\LnkTst.lwp", "test1", $TextFormat, True)
Set datLnk1.Target = [G1]

' Example: NewMap method
' Create a data map of the U.S.A.
' The color of each state on the map indicates its corresponding cell value.
[A:B2].Contents = "CA"
[A:B3].Contents = "MA"
[A:B4].Contents = "NY"
[A:C2].Contents = "20"
[A:C3].Contents = "30"
[A:C4].Contents = "40"
[A].NewMap 3320, 3100, 8510, 8000, [A:B2..A:C4], "USA by State"

' Example: NewObject method
' Create a new Paint picture.
[A].NewObject 1440, 1440, 4320, 4320, "Paint.Picture",,,,,,

' Example: NewQueryTable method
' Create a new QueryTable object.
Dim queryTable1 As QueryTable
' Enter field names for the input range.
[A:B2].Contents = "Field 1"
[A:C2].Contents = "Field 2"
[A:D2].Contents = "Field 3"
' Enter data for a record.
[A:B3].Contents = "1"
[A:C3].Contents = "2"
[A:D3].Contents = "3"
' Create the query table.
Set queryTable1 = [A].NewQueryTable(2880, 2880, 7200, 7200, _
 "ApproachWorksheet",,,,,,, [A:B2..A:D5], [A:F2..A:H5])

' Example: NewSheet method
' Insert 3 new sheets before the current sheet.
Dim sheet1 As Sheet
Set sheet1 = CurrentDocument.NewSheet($Before, 3, True)
sheet1.Name = "Sheet 1"

' Example: NewVersion method
' Create a new version for a range.
CurrentDocument.CreateRangeName "Range_1", [A:B2..A:B10]
[Range_1].NewVersion "Version_2"
' Do something with the version ...
' If necessary, delete the version.
[Range_1.Version_2].DeleteVersion

' Example: Open and Next methods
' Open a range collection, retrieve each of its items, and add a new version to each.
Sub processRanges
 Dim collection As Ranges ' Collection to extract items from
 Dim item As Variant ' Item retrieved from collection
 Dim itemIndex As Integer ' Loop index for collection items
 ' Add some items to the range collection.
 CurrentDocument.CreateRangeName "Range 1", [A:B2..A:B10]
 CurrentDocument.CreateRangeName "Range 2", [A:C2..A:C10]
 ' Retrieve all the items in the range collection and process them.
 Set collection = CurrentDocument.Ranges
 If collection.Count <> 0 Then
 Set item = collection.Open
 If IsEmpty(item) = False Then Call myItemProcessor(item)
 End If
 For itemIndex = 2 To collection.Count
 Set item = collection.Next
 If IsEmpty(item) = False Then Call myItemProcessor(item)
 Next
End Sub

' Process each item retrieved. For example, create a new version.
Sub myItemProcessor(item As Variant)
 item.NewVersion "Version X"
 item.VersionBorderVisible = True
End Sub

' Example: ViewSplitStyle property; NextSplit and ClearSplits methods
' Split the current document horizontally, move between panes,
' and then clear the splits.
CurrentDocument.ViewSplitStyle = $Horizontal
CurrentDocument.NextSplit
MessageBox "Clearing splits.", MB_OK + MB_ICONINFORMATION
CurrentDocument.ClearSplits

' Example: Sheets property; Close, OpenDocument, and SaveAs methods
' Save a 1-2-3 workbook file, close it, and then open it as read-write and visible.

' First create a test document.
Dim document1 As Document
' Open a new document without specifying a file or path.
Set document1 = CurrentApplication.NewDocument
' Add some content to the document.
' For example, put some text into the first sheet name.
document1.Sheets(0).Name = "My sheet 1"
' Save to a file.
document1.SaveAs "testopen.123", "d:\lotus\work\123", "1-2-3 (123)", False,
"mypassword", True
' Add more content to the document.
' For example, put some text into the first column head.
[A:A1].Contents = "My Column Head 1"
' Close the document, saving the changes.
document1.Close True
' Later, open the file.
Set document1 = CurrentApplication.OpenDocument("testopen.123", _
 "d:\lotus\work\123", "1-2-3 (123)", "mypassword", False, True, True,,)

' Example: OpenDocumentFromInternet and SaveAsToInternet methods
' Save a test file to the Internet and then open it from the Internet.
Dim file1 As Document
Set file1 = .NewDocument
[A:A1].Contents = "Internet File 1"
' Save file to FTP URL name without proxy.
file1.SaveAsToInternet "ftp://myintranet/lotus/file1.123", "1-2-3 (123)", "",
"userid", "userpassword"
' Close the file.
file1.Close
' Later, open the file by FTP URL name without proxy.
.OpenDocumentFromInternet "ftp://myintranet/lotus/file1.123", "1-2-3 (123)",,,
"userid", "userpassword",,,

' Example: OpenDocumentFromNotes and SaveAsToNotes methods
' Save a test file to a Notes database and then open it from Notes.

' First create a test file.
Dim file1 As Document
Set file1 = .NewDocument
[A:A1].Contents = "Notes File 1"

' Save the file to a local Notes database.
.SaveAsToNotes "file1.123", "0123456789ABCDEF0123456789ABCDEF", "Body", _
 "MyNotesDB.nsf", "Local", "1-2-3 (123)"

' Open the file from Notes.
.OpenDocumentFromNotes "file1.123", "0123456789ABCDEF0123456789ABCDEF", _
 "Body", "MyNotesDB.nsf", "Local", _
 "1-2-3 (123)",, True

' A script you can use in Notes Version 4 to extract a document's universal ID.
 Dim workspace As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Dim doc As NotesDocument
 Dim unid As String

 ' Get the universal ID.
 Set uidoc = workspace.CurrentDocument
 Set doc = uidoc.Document
 unid = doc.UniversalID

 ' Insert the universal ID into the Body field of the document.
 uidoc.EditMode = True
 uidoc.GotoField("Body")
 uidoc.InsertText(unid)

' Example: OutlineColumnsToLevel, OutlineRowsToLevel,
' PromoteColumn, and PromoteRow methods
Sub OutlineDemo
 Msgbox "Create outline levels for columns B - E."
 ' Demote columns B, C, D, and E by one outline level.
 [A:B1..A:E8192].DemoteColumn 1
 ' Demote columns C, D, and E by one outline level.
 [A:C1..A:E8192].DemoteColumn 1

 ' Promote column D by one outline level.
 Msgbox " Promote column D by one outline level."
 [A:D1..A:D8192].PromoteColumn 1

 Msgbox "Create outline levels for rows 2 - 5."
 ' Demote rows 2, 3, 4, and 5 by one outline level.
 [A:A2..A:IV5].DemoteRow 1
 ' Demote rows 3, 4, and 5 by one outline level.
 [A:A3..A:IV5].DemoteRow 1
 ' Promote row 4 by one outline level.
 Msgbox " Promote row 4 by one outline level."
 [A:A4..A:IV4].PromoteRow 1

 ' Collapse columns and rows to display outline at levels 0 - 1.
 Msgbox "Collapse columns and rows to display outline at levels 0 - 1."
 [A].OutlineColumnsToLevel 1
 [A].OutlineRowsToLevel 1

 ' Collapse columns and rows to display the outline at level 0.
 Msgbox "Collapse columns and rows to display the outline at level 0."
 [A].OutlineColumnsToLevel 0
 [A].OutlineRowsToLevel 0

 ' Expand columns and rows to display the outline at levels 0 - 2.
 Msgbox "Expand columns and rows to display the outline at levels 0 - 2."
 [A].OutlineColumnsToLevel 2
 [A].OutlineRowsToLevel 2

 ' Clear all outline levels for the current sheet.
 Msgbox "Clear the outline."
 [A].ClearOutline

End Sub

' Example: OutlineColumnsToLevel, OutlineRowsToLevel,
' PromoteColumn, and PromoteRow methods
Sub OutlineDemo
 Msgbox "Create outline levels for columns B - E."
 ' Demote columns B, C, D, and E by one outline level.
 [A:B1..A:E8192].DemoteColumn 1
 ' Demote columns C, D, and E by one outline level.
 [A:C1..A:E8192].DemoteColumn 1

 ' Promote column D by one outline level.
 Msgbox " Promote column D by one outline level."
 [A:D1..A:D8192].PromoteColumn 1

 Msgbox "Create outline levels for rows 2 - 5."
 ' Demote rows 2, 3, 4, and 5 by one outline level.
 [A:A2..A:IV5].DemoteRow 1
 ' Demote rows 3, 4, and 5 by one outline level.
 [A:A3..A:IV5].DemoteRow 1
 ' Promote row 4 by one outline level.
 Msgbox " Promote row 4 by one outline level."
 [A:A4..A:IV4].PromoteRow 1

 ' Collapse columns and rows to display outline at levels 0 - 1.
 Msgbox "Collapse columns and rows to display outline at levels 0 - 1."
 [A].OutlineColumnsToLevel 1
 [A].OutlineRowsToLevel 1

 ' Collapse columns and rows to display the outline at level 0.
 Msgbox "Collapse columns and rows to display the outline at level 0."
 [A].OutlineColumnsToLevel 0
 [A].OutlineRowsToLevel 0

 ' Expand columns and rows to display the outline at levels 0 - 2.
 Msgbox "Expand columns and rows to display the outline at levels 0 - 2."
 [A].OutlineColumnsToLevel 2
 [A].OutlineRowsToLevel 2

 ' Clear all outline levels for the current sheet.
 Msgbox "Clear the outline."
 [A].ClearOutline
End Sub

' Example: PageBack, PageForward, ShowAllSheets,
' ShowSheet, and TurnTo methods
Sub NavigateDoc
 ' Create 10 new sheets after the current sheet in the workbook.
 .NewSheet $After, 10, True
 .PageBack 2
 ' Move forward three sheets in the workbook.
 Msgbox "Move forward three sheets."
 .PageForward 3
 ' Move back one sheet in the workbook.
 Msgbox "Move back one sheet."
 .PageBack

 ' Turn to sheet A in the workbook.
 Msgbox "Turn to sheet A in the workbook."
 [A].TurnTo
 ' Hide sheets B, C, and D.
 Msgbox "Hide sheets B, C, and D."
 [B].HideSheet
 [C].HideSheet
 [D].HideSheet

 ' Unhide sheet B.
 Msgbox "Unhide sheet B."
 [B].ShowSheet

 ' Unhide all hidden sheets (including sheets C and D).
 Msgbox "Unhide all hidden sheets (including sheets C and D)."
 .ShowAllSheets
End Sub

' Example: PageBack, PageForward, ShowAllSheets,
' ShowSheet, and TurnTo methods
Sub NavigateDoc
 ' Create 10 new sheets after the current sheet in the workbook.
 .NewSheet $After, 10, True
 .PageBack 2
 ' Move forward three sheets in the workbook.
 Msgbox "Move forward three sheets."
 .PageForward 3
 ' Move back one sheet in the workbook.
 Msgbox "Move back one sheet."
 .PageBack

 ' Turn to sheet A in the workbook.
 Msgbox "Turn to sheet A in the workbook."
 [A].TurnTo
 ' Hide sheets B, C, and D.
 Msgbox "Hide sheets B, C, and D."
 [B].HideSheet
 [C].HideSheet
 [D].HideSheet

 ' Unhide sheet B.
 Msgbox "Unhide sheet B."
 [B].ShowSheet

 ' Unhide all hidden sheets (including sheets C and D).
 Msgbox "Unhide all hidden sheets (including sheets C and D)."
 .ShowAllSheets
End Sub

' Example: PrintSelection and PrintWhat properties; Preview method
' Display the print Preview window for a document.
' First, add some content to the current document.
[A:A1].Contents = "My First Heading"
' Select a range to preview.
[A:A1..A:C10].Select
Set CurrentDocument.CurrentPrintSettings.PrintSelection = [A:A1..A:C10]
CurrentDocument.CurrentPrintSettings.PrintWhat = $CurrentSelection
' Let the user change the print properties.
CurrentApplication.Preview
' Pause before proceeding to allow user to make changes in the Preview window.
' For example, yield control to the Preview & Page Setup InfoBox using the Yield
statement,
' put up a modeless dialog box using the operating system API,
' or terminate the LotusScript module.

' Example: Print method
' Print the current sheet.
CurrentDocument.CurrentPrintSettings.PrintWhat = $CurrentSheet
CurrentApplication.Print

' Example: OutlineColumnsToLevel, OutlineRowsToLevel,
' PromoteColumn, and PromoteRow methods
Sub OutlineDemo
 Msgbox "Create outline levels for columns B - E."
 ' Demote columns B, C, D, and E by one outline level.
 [A:B1..A:E8192].DemoteColumn 1
 ' Demote columns C, D, and E by one outline level.
 [A:C1..A:E8192].DemoteColumn 1

 ' Promote column D by one outline level.
 Msgbox " Promote column D by one outline level."
 [A:D1..A:D8192].PromoteColumn 1

 Msgbox "Create outline levels for rows 2 - 5."
 ' Demote rows 2, 3, 4, and 5 by one outline level.
 [A:A2..A:IV5].DemoteRow 1
 ' Demote rows 3, 4, and 5 by one outline level.
 [A:A3..A:IV5].DemoteRow 1
 ' Promote row 4 by one outline level.
 Msgbox " Promote row 4 by one outline level."
 [A:A4..A:IV4].PromoteRow 1

 ' Collapse columns and rows to display outline at levels 0 - 1.
 Msgbox "Collapse columns and rows to display outline at levels 0 - 1."
 [A].OutlineColumnsToLevel 1
 [A].OutlineRowsToLevel 1

 ' Collapse columns and rows to display the outline at level 0.
 Msgbox "Collapse columns and rows to display the outline at level 0."
 [A].OutlineColumnsToLevel 0
 [A].OutlineRowsToLevel 0

 ' Expand columns and rows to display the outline at levels 0 - 2.
 Msgbox "Expand columns and rows to display the outline at levels 0 - 2."
 [A].OutlineColumnsToLevel 2
 [A].OutlineRowsToLevel 2

 ' Clear all outline levels for the current sheet.
 Msgbox "Clear the outline."
 [A].ClearOutline
End Sub

' Example: OutlineColumnsToLevel, OutlineRowsToLevel,
' PromoteColumn, and PromoteRow methods
Sub OutlineDemo
 Msgbox "Create outline levels for columns B - E."
 ' Demote columns B, C, D, and E by one outline level.
 [A:B1..A:E8192].DemoteColumn 1
 ' Demote columns C, D, and E by one outline level.
 [A:C1..A:E8192].DemoteColumn 1

 ' Promote column D by one outline level.
 Msgbox " Promote column D by one outline level."
 [A:D1..A:D8192].PromoteColumn 1

 Msgbox "Create outline levels for rows 2 - 5."
 ' Demote rows 2, 3, 4, and 5 by one outline level.
 [A:A2..A:IV5].DemoteRow 1
 ' Demote rows 3, 4, and 5 by one outline level.
 [A:A3..A:IV5].DemoteRow 1
 ' Promote row 4 by one outline level.
 Msgbox " Promote row 4 by one outline level."
 [A:A4..A:IV4].PromoteRow 1

 ' Collapse columns and rows to display outline at levels 0 - 1.
 Msgbox "Collapse columns and rows to display outline at levels 0 - 1."
 [A].OutlineColumnsToLevel 1
 [A].OutlineRowsToLevel 1

 ' Collapse columns and rows to display the outline at level 0.
 Msgbox "Collapse columns and rows to display the outline at level 0."
 [A].OutlineColumnsToLevel 0
 [A].OutlineRowsToLevel 0

 ' Expand columns and rows to display the outline at levels 0 - 2.
 Msgbox "Expand columns and rows to display the outline at levels 0 - 2."
 [A].OutlineColumnsToLevel 2
 [A].OutlineRowsToLevel 2

 ' Clear all outline levels for the current sheet.
 Msgbox "Clear the outline."
 [A].ClearOutline
End Sub

' Example: QuerySortDefineKey, Refresh, RemoveSelectField,
' SetRecordsLimitMax, SortData, SortReset, and Update
' methods
Sub TableManners
 ' Open the data table EMPLOYEE.DBF as a new document.
 ' The data is stored in cells A:A1..A:F11.
 MessageBox "Create a new document for data in an external database."
 CurrentApplication.OpenDocument _
 "E:\data\123\Employee.dbf",,"dBase (DBF)",,False,True,True,,

 ' Set up ranges for the query.
 MessageBox "Define source and output ranges for a query."
 ' Assign the range name "source" to cells A:A1..A:F11.
 CurrentDocument.CreateRangeName _
 "source",[A:A1..A:F11]
 ' Assign the range name "outputrange" to cells A:A15..A:F26.
 CurrentDocument.CreateRangeName _
 "outputrange",[A:A15..A:F26]

 ' Create the query named QueryB.
 MessageBox "Create the query and set its working properties."
 CurrentDocument.NewQuery "QueryB"
 ' Set some properties for the new query.
 ' Assign the source data to the workbook range named "source".
 [QueryB].BaseSourceTable = "source"
 [QueryB].ExtractingUniqueRecords = False
 [QueryB].SetRecordsLimitMax True,1000
 ' Assign the query output to the workbook range named "outputrange".
 [QueryB].OutputLocation = "outputrange"
 ' Force a refresh of the output range.
 [QueryB].Refresh

 ' Sort data in the source and output ranges on the
 ' field named "Last".
 MessageBox "Sort the data on the field named Last."
 [QueryB].SortData "Last", $Ascend

 ' Define a sort field for the query on the field named "DEPTNUM".
 MessageBox "Define a new sort key for the data and resort."
 [QueryB].QuerySortDefineKey "DEPTNUM", 1, $Ascend
 ' Force the sort using the new sort key.
 [QueryB].SortData

 ' Reset all sort fields defined for the query.
 MessageBox "Reset all sort keys."
 [QueryB].SortReset

 ' Remove the field named DEPTNUM from the output range.
 MessageBox "Remove the field DEPTNUM from the query and output range."
 [QueryB].RemoveSelectField "DEPTNUM"

 ' Update data in the query.
 ' NOTE -- The query cannot contain computed fields or
 ' aggregate fields NOT in the source table.
 MessageBox "Update the data in the query."
 [QueryB].AllowsUpdates = True
 [QueryB].Update

 ' Remove the field named EMPID from the output range.

 MessageBox "Remove the field EMPID from the query and output range."
 [QueryB].RemoveSelectField "EMPID"

End Sub

' Example: Quit method
' Exit the application, without saving changed documents.
CurrentApplication.Quit False

' Example: RangeCombine method
' This example creates a new workbook document, adds some data to it,
' and saves it to a file called Testdoc1.123.
' The example then creates a second new workbook document, and uses
' RangeCombine to combine the data previously saved in testdoc1.123.
' First create two variables for the documents and get the default path

Dim TestDocument1 As Document
Dim TestDocument2 As Document
Dim DefaultPath As String

'Get the value of the default path
DefaultPath = CurrentApplication.DefaultPath

' Open a new document and call it TestDocument1.
Set TestDocument1 = CurrentApplication.NewDocument("TestDoc1")

' Add some data to cells A:A1 through A:A3 in TestDocument1.
[A:A1].Select
Selection.Contents = "Test document for RangeCombine script example"
[A].MoveCellPointer $Down,1
Selection.Contents = "10"
[A].MoveCellPointer $Down,1
Selection.Contents = "20"

' Save the contents of TestDocument1 to the file testdoc1.123
' in the default path.

TestDocument1.SaveAs DefaultPath & "Testdoc1.123"
' Close TestDocument1

TestDocument1.Close
' Open a new document and call it TestDocument2.

Set TestDocument2 = CurrentApplication.NewDocument("TestDoc2")
' Use RangeCombine method to combine the data saved in testdoc1.123.

[A:A1].RangeCombine DefaultPath & "Testdoc1.123"
' Delete the test file

Kill DefaultPath & "Testdoc1.123"

' Example: RangeCombineText method
'This example first opens and writes some data to a text file. It then creates
'a new 1-2-3 workbook and uses the RangeCombineText to insert the data
'that was written to the text file.
' First dimension some variables

Dim TestDocument As Document
Dim DefaultPath As String
Dim fileNumber As Integer

'Get the value of the default path
DefaultPath = [].DefaultPath

'Create a text file and put some data in it
fileNumber% = Freefile

Open DefaultPath & "rct.txt" For Output As fileNumber%
Write #fileNumber%,"RangeCombineText example input file"
Write #fileNumber%,10,20,30
Write #fileNumber%,40,50,60
Write #fileNumber%,70,80,90
Close fileNumber%

' Open a new workbook and call it TestDoc
Set TestDocument = CurrentApplication.NewDocument("TestDoc")

' Use the RangeCombineText method to combine the data saved in rct.txt
[A:A1].RangeCombineText "rct.txt",DefaultPath,,","

'Use the MessageBox statement to display a
'message asking if you want to delete the test documents and test file.

Dim boxType As Long, answer As Integer
BoxType& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers 'with the MessageBox statement.
answer% = Messagebox("Do you want to delete the test documents

now?",boxType&,"Continue?")
If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document and delete the test file

CurrentDocument.Close False
Kill DefaultPath & "rct.txt"

End If

'Example: RangeExtract method
'This example creates a test document and fills the range A:B1..A:B3 with some data.
'It then uses the RangeExtract method to copy the range to a test file.
'First create two variables for the documents and get the default path

Dim TestDocument1 As Document
Dim TestDocument2 As Document
Dim DefaultPath As String

'Get the value of the default path
DefaultPath = CurrentApplication.DefaultPath

' Open a new document and call it TestDocument1.
Set TestDocument1 = CurrentApplication.NewDocument("TestDoc1")

' Add some data to cells A:A1 through A:A3 in TestDocument1.
[A:B1].Select
Selection.Contents = "Test document for RangeExtract script example"
[A].MoveCellPointer $Down,1
Selection.Contents = "10"
[A].MoveCellPointer $Down,1
Selection.Contents = "20"

' Use the RangeExtract method to extract the contents of A:A1..A:A3 to the file
"Testdoc1.123"

[A:B1..A:B3].RangeExtract DefaultPath & "Testdoc2.123"
'Note that RangeExtract always extracts to the range starting in cell A:A1 of the

new file.
'Open Testdoc2.123 to check that the range got extracted.

CurrentApplication.OpenDocument DefaultPath & "Testdoc2.123"

' Example: RangeFill method
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

'Fill A1..A10 with even numbers
[A1..A10].RangeFill 2,2,100,$Number

'Use the MessageBox statement to display a
'message asking if you want to close the test document.

Dim boxType As Long, answer As Integer
BoxType& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers with the MessageBox statement.
answer% = Messagebox("Do you want to close the test document

now?",boxType&,"Continue?")
If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document

CurrentDocument.Close False
End If

' Example: RangeSortDefineKey, SortResetKeys, and Sort methods
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

' Add some data to cells A:A1 through A:B6 in TestDocument.
[A:A1].Contents = "Test document for script example"
[A:A2].Contents = "25"
[A:A3].Contents = "4"
[A:A4].Contents = "93"
[A:A5].Contents = "41"
[A:A6].Contents = "56"
[A:B2].Contents = "325"
[A:B3].Contents = "83"
[A:B4].Contents = "12"
[A:B5].Contents = "71"
[A:B6].Contents = "256"

'Define A:A2 as the sort key and sort the data in A1..B6
Messagebox("Define A2 as the sort key and sort the range.")
TestDocument.RangeSortDefineKey 0, [A:A2], $Ascend
[A:A2..A:B6].Sort

'Reset the keys, define B2 as the sort key and sort the range
Messagebox("Reset keys, define B2 as the sort key, and sort the range.")
TestDocument.SortResetKeys
TestDocument.RangeSortDefineKey 0, [A:B2], $Ascend
[A:A2..A:B6].Sort

' Example: RangeValue method
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

'Fill A1..A10 with even numbers
[A1..A10].RangeFill 2,2,100,$Number

'Use @sum to sum the values
[A12].Select
Selection.Contents = "@sum(A1..A10)"

'Use RangeValue to copy the value in A12 to C12
[A12].RangeValue [C12]

'Use the MessageBox statement to display a
'message asking if you want to close the test document.

Dim boxType As Long, answer As Integer
BoxType& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers with the MessageBox statement.
answer% = Messagebox("Do you want to close the test document

now?",boxType&,"Continue?")
If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document

CurrentDocument.Close False
End If

' Example: RecalcRange method
' Recalculates the formulas in A1..C10 by rows.
[A1..C10].RecalcRange $Rows

' Example: QuerySortDefineKey, Refresh, RemoveSelectField,
' SetRecordsLimitMax, SortData, SortReset, and Update
' methods
Sub TableManners
 ' Open the data table EMPLOYEE.DBF as a new document.
 ' The data is stored in cells A:A1..A:F11.
 Msgbox "Create a new document for data in an external database."
 CurrentApplication.OpenDocument _
 "E:\data\123\Employee.dbf",,"dBase (DBF)",,False,True,True,,

 ' Set up ranges for the query.
 Msgbox "Define source and output ranges for a query."
 ' Assign the range name "source" to cells A:A1..A:F11.
 CurrentDocument.CreateRangeName _
 "source",[A:A1..A:F11]
 ' Assign the range name "outputrange" to cells A:A15..A:F26.
 CurrentDocument.CreateRangeName _
 "outputrange",[A:A15..A:F26]

 ' Create the query named QueryB.
 Msgbox "Create the query and set its working properties."
 CurrentDocument.NewQuery "QueryB"
 ' Set some properties for the new query.
 ' Assign the source data to the workbook range named "source".
 [QueryB].BaseSourceTable = "source"
 [QueryB].ExtractingUniqueRecords = False
 [QueryB].SetRecordsLimitMax True,1000
 ' Assign the query output to the workbook range named "outputrange".
 [QueryB].OutputLocation = "outputrange"
 ' Force a refresh of the output range.
 [QueryB].Refresh

 ' Sort data in the source and output ranges on the
 ' field named "Last".
 Msgbox "Sort the data on the field named Last."
 [QueryB].SortData "Last", $Ascend

 ' Define a sort field for the query on the field named "DEPTNUM".
 Msgbox "Define a new sort key for the data and resort."
 [QueryB].QuerySortDefineKey "DEPTNUM", 1, $Ascend
 ' Force the sort using the new sort key.
 [QueryB].SortData

 ' Reset all sort fields defined for the query.
 Msgbox "Reset all sort keys."
 [QueryB].SortReset

 ' Remove the field named DEPTNUM from the output range.
 Msgbox "Remove the field DEPTNUM from the query and output range."
 [QueryB].RemoveSelectField "DEPTNUM"

 ' Update data in the query.
 ' NOTE -- The query cannot contain computed fields or
 ' aggregate fields NOT in the source table.
 Msgbox "Update the data in the query."
 [QueryB].AllowsUpdates = True
 [QueryB].Update

 ' Remove the field named EMPID from the output range.

 Msgbox "Remove the field EMPID from the query and output range."
 [QueryB].RemoveSelectField "EMPID"

End Sub

' Example: CreateRangeName, OpenDocument, NewQueryTable,
' RefreshOutput and RefreshQuery methods
' This example sets up an Approach query table, changes its source data,
' and then refreshes the query table and output range data.

Sub RefreshTables
 ' Open the document EMPLOYEE.123.
 ' The data is stored in cells A:A1..A:F11.
 Msgbox "Open the document EMPLOYEE.123."
 CurrentApplication.OpenDocument "E:\data\123\Employee.123",, _
 "1-2-3 Workbooks (123;WK*)",, False, True, True,,

 ' Set up ranges for the query table.
 Msgbox "Define source and output ranges for a query table."
 ' Assign the range name "source" to cells A:A1..A:F11.
 CurrentDocument.CreateRangeName "source", [A:A1..A:F11]
 ' Assign the range name "outputrange" to cells A:A15..A:F26.
 CurrentDocument.CreateRangeName "outputrange", [A:A15..A:F26]

 ' Declare a variable for a query table.
 Dim QT1 As QueryTable
 ' Assign the Approach query table to the source range "source"
 ' and to the output range named "outputrange".
 Msgbox "Create a query table based on workbook ranges."
 Set QT1 = [A].NewQueryTable(252,4176,252,4176, _
 "ApproachWorksheet",,,,,,, [SOURCE],[OUTPUTRANGE])

 ' Change some data in the source range.
 Msgbox "Change data in a cell in the source range."
 [A:C2].Contents = "Bob"
 ' Refresh the data in the query table and (automatically) the output range.
 Msgbox "Refresh the query table and output range."
 QT1.RefreshQuery

 ' NOTE -- If you change data directly in the query table, you can use the
 ' RefreshOutput method to refresh the contents of the output range.
 QT1.RefreshOutput
End Sub

' Example: RemoveFromSelection method
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

' Create two ranges and select them.
Messagebox("Create two ranges and select them.")
Dim range1 As Range, range2 As Range
Set range1 = Bind("A:A1..A:A10")
Set range2 = Bind("A:B10..A:B20")

' Select A:A1..A:A10, then add A:B10..A:B20 to the selection.
range1.Select
range2.AddToSelection

' Remove range1 from the selection
Messagebox("Remove the first range from the selection.")
range1.RemoveFromSelection

'Use the MessageBox statement to display a
'message asking if you want to close the test document.

Dim boxType As Long, answer As Integer
BoxType& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers with the MessageBox statement.
answer% = Messagebox("Do you want to close the test document

now?",boxType&,"Continue?")
If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document

CurrentDocument.Close False
End If

' Example: QuerySortDefineKey, Refresh, RemoveSelectField,
' SetRecordsLimitMax, SortData, SortReset, and Update
' methods
Sub TableManners
 ' Open the data table EMPLOYEE.DBF as a new document.
 ' The data is stored in cells A:A1..A:F11.
 Msgbox "Create a new document for data in an external database."
 CurrentApplication.OpenDocument _
 "E:\data\123\Employee.dbf",,"dBase (DBF)",,False,True,True,,

 ' Set up ranges for the query.
 Msgbox "Define source and output ranges for a query."
 ' Assign the range name "source" to cells A:A1..A:F11.
 CurrentDocument.CreateRangeName _
 "source",[A:A1..A:F11]
 ' Assign the range name "outputrange" to cells A:A15..A:F26.
 CurrentDocument.CreateRangeName _
 "outputrange",[A:A15..A:F26]

 ' Create the query named QueryB.
 Msgbox "Create the query and set its working properties."
 CurrentDocument.NewQuery "QueryB"
 ' Set some properties for the new query.
 ' Assign the source data to the workbook range named "source".
 [QueryB].BaseSourceTable = "source"
 [QueryB].ExtractingUniqueRecords = False
 [QueryB].SetRecordsLimitMax True,1000
 ' Assign the query output to the workbook range named "outputrange".
 [QueryB].OutputLocation = "outputrange"
 ' Force a refresh of the output range.
 [QueryB].Refresh

 ' Sort data in the source and output ranges on the
 ' field named "Last".
 Msgbox "Sort the data on the field named Last."
 [QueryB].SortData "Last", $Ascend

 ' Define a sort field for the query on the field named "DEPTNUM".
 Msgbox "Define a new sort key for the data and resort."
 [QueryB].QuerySortDefineKey "DEPTNUM", 1, $Ascend
 ' Force the sort using the new sort key.
 [QueryB].SortData

 ' Reset all sort fields defined for the query.
 Msgbox "Reset all sort keys."
 [QueryB].SortReset

 ' Remove the field named DEPTNUM from the output range.
 Msgbox "Remove the field DEPTNUM from the query and output range."
 [QueryB].RemoveSelectField "DEPTNUM"

 ' Update data in the query.
 ' NOTE -- The query cannot contain computed fields or
 ' aggregate fields NOT in the source table.
 Msgbox "Update the data in the query."
 [QueryB].AllowsUpdates = True
 [QueryB].Update

 ' Remove the field named EMPID from the output range.

 Msgbox "Remove the field EMPID from the query and output range."
 [QueryB].RemoveSelectField "EMPID"

End Sub

' Example: Background, BackColor, Colors properties; AddVersion,
' CreateRangeName, DeleteVersion, DeleteVersionGroup, NewVersion,
' NewVersionGroup, RemoveVersion methods
' This example creates 2 range names and a version for each.
' It then puts the versions in a version group.
' First, create the ranges.
CurrentDocument.CreateRangeName "North Sales", [A:B2..A:B10]
CurrentDocument.CreateRangeName "South Sales", [A:C2..A:C10]
' Next, make a second version for each range.
[North Sales].NewVersion("Version 2")
[South Sales].NewVersion("Version 2")
' Do something to make Version 2 different. For example, set the background color.
Set [North Sales].Background.BackColor = CurrentApplication.Colors("light yellow")
Set [South Sales].Background.BackColor = CurrentApplication.Colors("pale blue")
' Create a version group and add the versions to it.
CurrentDocument.NewVersionGroup("Version Group A")
[Version Group A].AddVersion "North Sales", "Version 2"
[Version Group A].AddVersion "South Sales", "Version 2"
' After you're finished with the version, you can remove it or delete it.
' If necessary, remove a version from the version group.
[Version Group A].RemoveVersion "South Sales"
' If necessary, delete the version.
[South Sales.Version 2].DeleteVersion
' When finished, you can also delete Version Group A from the document.
[Version Group A].DeleteVersionGroup

' Example: RenameNamedStyle, RevertToNamedStyle, RevertToStyle,
' SetGalleryStyle, and StyleFontReset methods
Sub SetStyles
 ' Create three labels (one for each named style):
 ' Style1, Style2, and Style3.
 Msgbox "Create labels for styles Style1, Style2, and Style3."
 [A:A4].Select
 Selection.Contents = "Style1"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style2"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style3"

 ' Make each style distinctive.
 Msgbox "Make each style distinctive."
 [A:A4].Select
 Selection.Font.FontColor.ColorName = "blue"
 Selection.Font.Bold = True
 Selection.Background.BackColor.ColorName = "ice blue"
 Selection.DefineNamedStyle "Style1"
 Selection.StyleName = "Style1"
 [A:A5].Select
 Selection.Font.Italic = True
 Selection.Font.FontColor.ColorName = "red"
 Selection.Background.BackColor.ColorName = "blush"
 Selection.DefineNamedStyle "Style2"
 Selection.StyleName = "Style2"
 [A:A6].Select
 Selection.Font.DoubleUnderline = True
 Selection.Font.Size = 14
 Selection.Font.FontColor.ColorName = "dark green"
 Selection.Background.BackColor.ColorName = "pale green"
 Selection.DefineNamedStyle "Style3"
 Selection.StyleName = "Style3"

 ' Make cell A:A6 bold, unlike its named style Style3 which is not bold.
 Msgbox "Change one font property locally in cell A:A6 (Style3)."
 [A:A6].Select
 Selection.Font.Bold = True
 ' Now have all style sttributes in cell A:A6 revert to those defined for
 ' the named style Style3. Cell A:A6 loses its bold attrribute.
 Msgbox "Revert all style attributes to those defdined for Style3."
 Selection.RevertToNamedStyle
 ' Rename Style3 to Style3a.
 Msgbox "Rename Style3 to Style3a."
 Selection.RenameNamedStyle "Style3","Style3a"

 ' Remove all named style attributes from the selection;
 ' restore defaults for the sheet.
 Msgbox "Restore default font attributes."
 [A:A4..A:A6].Stylefontreset

 ' Add a custom border from the gallery.
 Msgbox "Add a custom border from the gallery."
 [A:A4..A:A6].Select
 Selection.SetGalleryStyle $Picture1
End Sub

' Example: ReportVersion, Version, and Versions methods
Sub VersionDemo1

' Set up a range of data to support three versions.
MessageBox "Set up a range of data to support three versions."
[A:A3].Contents = "Item"
[A:B3].Contents = "Amount"
[A:A3..A:B3].Font.Bold = True
[A:A4].Contents = "Income"
[A:A5].Contents = "Expenses"
[A:A6].Contents = "Result"
[A:B4].Contents = "45000"
[A:B5].Contents = "42000"
[A:B6].Contents = "+B4-+B5"
[A:B4..A:B6].Format "US Dollar",0
CurrentDocument.CreateRangeName "BOTTOMLINE",[A:A3..A:B6]
[BOTTOMLINE].NewVersion "BestCase"
[BOTTOMLINE.BestCase].Description = "This is the best scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "40000"
[BOTTOMLINE.Original].MakeCurrent
[BOTTOMLINE].NewVersion "WorstCase"
[BOTTOMLINE.WorstCase].Description = "This is the worst case scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "47000"
' Use the Version method to access properties for the new versions.
MessageBox "Use the Version method to access properties for the new versions."
' Declare a variable as a Version object.
Dim returnRangeVersion As Version
' Select the range containing the versions.
[BOTTOMLINE].Goto
[BOTTOMLINE].Select
' Assign the variable to one of the versions in the range.
Set returnRangeVersion = Selection.Version("BestCase")
' Declare a variable to hold the version ID of the selected version.
Dim rangeVersionVersionID As Long
' Get the VersionID of the version.
rangeVersionVersionID = returnRangeVersion.VersionID
Print "VersionID for version BestCase = " rangeVersionVersionID
' Use the Versions method to access in a Versions collection.
MessageBox "Use the Versions method to get collection properties."
' Declare a variable as a Versions collection object.
Dim returnRangeVersions As versions
' Select the range containing the versions.
[BOTTOMLINE].Goto
[BOTTOMLINE].Select
' Assign the variable to collection of versions in the selected range.
Set returnRangeVersions = Selection.Versions
' Declare a variable to hold the value of the Count property.
Dim rangeVersionsCount As Long
' Get the number of versions in the selected range.
rangeVersionsCount = Selection.Versions.Count
Print "Number of versions in range BOTTOMLINE = " rangeVersionsCount
' Generate a report about versions in the selected range.
MessageBox "Generate a report about versions in the selected range."

[BOTTOMLINE].ReportVersion "BestCase;Original;",[A:A20],True,True,$Column
End Sub

' Example: ReadOnly property; Close, NewDocument, OpenDocument,
' ReservationGet, ReservationReleased, Save, SaveAs methods
' Open a file and attempt to get a reservation it.
' If successful, modify the file, save it, and release the reservation.
' First, create a test file.
CurrentApplication.NewDocument "My Doc #1"
CurrentDocument.SaveAs "MYFILE1.123"
CurrentDocument.Close
' Open the file and attempt to get its reservation.
CurrentApplication.OpenDocument "MYFILE1.123"
If CurrentDocument.ReadOnly = True Then
 CurrentDocument.ReservationGet
End If
' Check that the reservation was obtained before modifying the file.
If CurrentDocument.ReadOnly = False Then
 ' Reservation obtained.
 ' Write something to the document file ...
 [A:B2].Contents = Today & " version"
 CurrentDocument.Save
 ' When finished with the file, release the reservation.
 CurrentDocument.ReservationReleased
Else
 ' Reservation denied.
 ' Don't write to the document file for now.
End If

' Example: ResetColumnWidth and ResetRowHeight methods
Sub WidthAndHeight
 ' Set the column width for cell A:B2 to 25 characters.
 Msgbox "Set the column width for cell A:B2 to 25 characters."
 [A:B2].ColumnWidth = 25

 ' Set the row height for cell A:B2 to 25 points.
 Msgbox "Set the row height for cell A:B2 to 25 points."
 [A:B2].RowHeight = 25

 ' Reset the column width for A:B2 to the default column width.
 Msgbox "Reset the column width for A:B2 to the default column width."
 [A:B2].ResetColumnWidth
 ' Reset the row height for A:B2 to the default row height.
 Msgbox "Reset the row height for A:B2 to the default row height."
 [A:B2].ResetRowHeight
End Sub

' Example: ResetFieldAggregates, AddSelectField, RemoveSelectField methods
Sub Aggregates
 ' Set a database field to be a sum field.
 ' Create an aggregate field column in the query table named Query_1
 ' to add a column of values.

 ' Declare a string variable to hold the names of SelectFields
 ' in the query.
 Dim returnSelectFields As String

 ' Create some data in the sheet for the query.
 [A:B2].Contents = "Employee"
 [A:C2].Contents = "LastName"
 [A:D2].Contents = "AmountSold"
 [A:B3].Contents = "Employee1"
 [A:C3].Contents = "LastName1"
 [A:D3].Contents = "100"
 [A:B4].Contents = "Employee2"
 [A:C4].Contents = "LastName2"
 [A:D4].Contents = "200"
 [A:B5].Contents = "Employee3"
 [A:C5].Contents = "LastName3"
 [A:D5].Contents = "300"

 ' Create the query based on the data in range A:B2..A:D5.
 Msgbox "Create the query based on the data in range A:B2..A:D5."
 CurrentDocument.NewQuery "Query 1", "A:B2..A:D5"

 ' Run the query to generate ouput.
 Msgbox "Run the query to generate ouput."
 [Query 1].OutputLocation = "A:B10"
 [Query 1].Refresh

 ' Report the names of SelectFields in the query as they are
 ' removed and restored.
 returnSelectFields =[Query 1].SelectFields
 Msgbox "Initial SelectFields in the query = " & returnSelectFields

 ' Remove the SelectField named "Employee".
 Msgbox "Remove the SelectField named Employee."
 [Query 1].RemoveSelectField "Employee"
 returnSelectFields =[Query 1].SelectFields
 Msgbox "Current SelectFields in the query = " & returnSelectFields

 ' Restore the SelectField named "Employee".
 Msgbox "Restore the SelectField named Employee."
 [Query 1].AddSelectField "Employee"
 returnSelectFields =[Query 1].SelectFields
 Msgbox "Current SelectFields in the query = " & returnSelectFields

 ' Set a field in the query (AmountSold) to be an aggregate.
 Msgbox "Set a field in the query (AmountSold) to be an aggregate."
 [Query 1].FieldAggregateType "AmountSold", $SUM
 [Query 1].Refresh

 ' Remove the field aggregate formula.
 Msgbox "Remove the field aggregate formula."
 [Query 1].ResetFieldAggregates
 ' Force a refresh.

 [Query 1].Refresh
End Sub

' Example: Close and ResetMenuBar methods;
 PreClose and PostClose event handlers

' In the following example, you use the PreClose and PostClose events
' on the document to reset the menu bar whenever the document is closed.

' In the Globals section, declare a Boolean flag
' for blocking the close until the reset is done.
Dim menuBarDefault As Variant

' Bind the following two handlers to the Document object events.
Function PreClose(source As Document, p1 As Variant) As Variant
 If menuBarDefault = True Then
 ' Continue the close. The menu bar has already been reset.
 PreClose = $Continue
 Else
 ' Block the close and raise the PostClose event.
 PreClose = $Block
 End If
End Function

' PostClose is raised only when PreClose returns $Block.
Sub PostClose(Source As Document, P1 As Variant)
 ' Reset the menu bar.
 CurrentApplication.ResetMenuBar
 ' Allow the Close method to proceed in the PreClose handler.
 menuBarDefault = True
 ' Now actually close the document.
 source.Close
End Sub

' Example: ResetColumnWidth and ResetRowHeight methods
Sub WidthAndHeight
 ' Set the column width for cell A:B2 to 25 characters.
 Msgbox "Set the column width for cell A:B2 to 25 characters."
 [A:B2].ColumnWidth = 25

 ' Set the row height for cell A:B2 to 25 points.
 Msgbox "Set the row height for cell A:B2 to 25 points."
 [A:B2].RowHeight = 25

 ' Reset the column width for A:B2 to the default column width.
 Msgbox "Reset the column width for A:B2 to the default column width."
 [A:B2].ResetColumnWidth
 ' Reset the row height for A:B2 to the default row height.
 Msgbox "Reset the row height for A:B2 to the default row height."
 [A:B2].ResetRowHeight
End Sub

' Example: Reshape method
' Changes the coordinates of the selected range from "A1..A10' to "B1..C20".
[A1..A10].Select
Selection.Reshape[B1..C20]

' Example: Resize method
' Create a rectangle and resize it.
[A].NewRectangle 1830,1935,3735,3000
MessageBox "Make the rectangle smaller"
[Rectangle 1].Resize 150,150

' Example: Resize, Restore, ToBack, and ToFront methods
Sub StackAndSize
 Msgbox "Create three nested rectangles with different background colors."
 ' Create one large, red rectangle in the current sheet.
 .NewRectangle 465,525,2445,1935
 [Rectangle 1].Background.BackColor.ColorName = "red"
 [Rectangle 1].Background.Pattern = $FineCrossHatch

 ' Create a smaller green rectangle at the same origin point.
 .NewRectangle 465,525,2000,1500
 [Rectangle 2].Background.BackColor.ColorName = "neon green"
 [Rectangle 2].Background.Pattern = $FineCrossHatch

 ' Create a smaller turquoise rectangle at the same origin point.
 .NewRectangle 465,525,1200,900
 [Rectangle 3].Background.BackColor.ColorName = "turquoise"
 [Rectangle 3].Background.Pattern = $FineCrossHatch

 ' Move the first rectangle from the bottom of the stack to the top.
 Msgbox "Move the first rectangle from the bottom of the stack to the top."
 [Rectangle 1].ToFront
 ' Move the first rectangle back to the bottom of the stack.
 Msgbox "Move the first rectangle back to the bottom of the stack."
 [Rectangle 1].ToBack

 ' Make the first rectangle bigger.
 Msgbox "Make the first rectangle bigger."
 [Rectangle 1].Resize 3000, 2500

 ' Make the current window smaller.
 Msgbox "Make the current window smaller."
 CurrentWindow.Resize 300, 200

 ' Restore the current window to the default window size.
 Msgbox "Restore the current window to the default window size."
 CurrentWindow.Restore
End Sub

' Example: RetrieveFileFromInternet method
' Retrieve an HTML file from the Internet and open it.
' Open the file by FTP URL and copy it to the user's TEMP directory.
Dim filename As String
filename = .RetrieveFileFromInternet("ftp://ftp.support.lotus.com/pub/index.html",,,,
_
 "myproxy", myproxyport, 2)
CurrentApplication.OpenDocument filename

' Example: RetrievePrintSettings method
' Retrieve print settings from a named page settings (.AL3) file
' that was created in an earlier release of 1-2-3.
' Then print the current sheet.
CurrentDocument.RetrievePrintSettings "D:\LOTUS\WORK\123\PRTSET1.AL3"
CurrentDocument.CurrentPrintSettings.PrintWhat = $CurrentSheet
CurrentApplication.Print

' Example: RenameNamedStyle, RevertToNamedStyle, RevertToStyle,
' SetGalleryStyle, and StyleFontReset methods
Sub SetStyles
 ' Create three labels (one for each named style):
 ' Style1, Style2, and Style3.
 Msgbox "Create labels for styles Style1, Style2, and Style3."
 [A:A4].Select
 Selection.Contents = "Style1"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style2"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style3"

 ' Make each style distinctive.
 Msgbox "Make each style distinctive."
 [A:A4].Select
 Selection.Font.FontColor.ColorName = "blue"
 Selection.Font.Bold = True
 Selection.Background.BackColor.ColorName = "ice blue"
 Selection.DefineNamedStyle "Style1"
 Selection.StyleName = "Style1"
 [A:A5].Select
 Selection.Font.Italic = True
 Selection.Font.FontColor.ColorName = "red"
 Selection.Background.BackColor.ColorName = "blush"
 Selection.DefineNamedStyle "Style2"
 Selection.StyleName = "Style2"
 [A:A6].Select
 Selection.Font.DoubleUnderline = True
 Selection.Font.Size = 14
 Selection.Font.FontColor.ColorName = "dark green"
 Selection.Background.BackColor.ColorName = "pale green"
 Selection.DefineNamedStyle "Style3"
 Selection.StyleName = "Style3"

 ' Make cell A:A6 bold, unlike its named style Style3 which is not bold.
 Msgbox "Change one font property locally in cell A:A6 (Style3)."
 [A:A6].Select
 Selection.Font.Bold = True
 ' Now have all style sttributes in cell A:A6 revert to those defined for
 ' the named style Style3. Cell A:A6 loses its bold attrribute.
 Msgbox "Revert all style attributes to those defdined for Style3."
 Selection.RevertToNamedStyle
 ' Rename Style3 to Style3a.
 Msgbox "Rename Style3 to Style3a."
 Selection.RenameNamedStyle "Style3","Style3a"

 ' Remove all named style attributes from the selection;
 ' restore defaults for the sheet.
 Msgbox "Restore default font attributes."
 [A:A4..A:A6].Stylefontreset

 ' Add a custom border from the gallery.
 Msgbox "Add a custom border from the gallery."
 [A:A4..A:A6].Select
 Selection.SetGalleryStyle $Picture1
End Sub

' Example: RenameNamedStyle, RevertToNamedStyle, RevertToStyle,
' SetGalleryStyle, and StyleFontReset methods
Sub SetStyles
 ' Create three labels (one for each named style):
 ' Style1, Style2, and Style3.
 Msgbox "Create labels for styles Style1, Style2, and Style3."
 [A:A4].Select
 Selection.Contents = "Style1"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style2"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style3"

 ' Make each style distinctive.
 Msgbox "Make each style distinctive."
 [A:A4].Select
 Selection.Font.FontColor.ColorName = "blue"
 Selection.Font.Bold = True
 Selection.Background.BackColor.ColorName = "ice blue"
 Selection.DefineNamedStyle "Style1"
 Selection.StyleName = "Style1"
 [A:A5].Select
 Selection.Font.Italic = True
 Selection.Font.FontColor.ColorName = "red"
 Selection.Background.BackColor.ColorName = "blush"
 Selection.DefineNamedStyle "Style2"
 Selection.StyleName = "Style2"
 [A:A6].Select
 Selection.Font.DoubleUnderline = True
 Selection.Font.Size = 14
 Selection.Font.FontColor.ColorName = "dark green"
 Selection.Background.BackColor.ColorName = "pale green"
 Selection.DefineNamedStyle "Style3"
 Selection.StyleName = "Style3"

 ' Make cell A:A6 bold, unlike its named style Style3 which is not bold.
 Msgbox "Change one font property locally in cell A:A6 (Style3)."
 [A:A6].Select
 Selection.Font.Bold = True
 ' Now have all style attributes in cell A:A6 revert to those defined for
 ' the named style Style3. Cell A:A6 loses its bold attrribute.
 Msgbox "Revert all style attributes to those defined for Style3."
 Selection.RevertToNamedStyle
 ' Rename Style3 to Style3a.
 Msgbox "Rename Style3 to Style3a."
 Selection.RenameNamedStyle "Style3","Style3a"

 ' Remove all named style attributes from the selection;
 ' restore defaults for the sheet.
 Msgbox "Restore default font attributes."
 [A:A4..A:A6].Stylefontreset

 ' Add a custom border from the gallery.
 Msgbox "Add a custom border from the gallery."
 [A:A4..A:A6].Select
 Selection.SetGalleryStyle $Picture1
End Sub

' Example: SameColor method
Sub TestColorObjects
 ' Declare a variable for the first new color object.
 Dim firstColor As Color
 ' Declare a variable for the second new color object.
 Dim secondColor As Color
 ' Declare a variable to hold the return value of the SameColor method.
 Dim colorissame As Variant

 ' Assign the color blue to the first color object.
 Set firstColor = CurrentApplication.Colors("blue")
 ' Assign the color blue to the second color object.
 Set secondColor = CurrentApplication.Colors("blue")
 ' Compare the color of the first color object with that of the second
 ' color object and return True (because the colors are the same).
 colorissame = firstColor.SameColor(secondColor)
 Print colorissame

 ' Here is an efficient way to use SameColor.
 ' If Color1.SameColor(Color2) Then
 ' Print "Color2 is identical to Color1"
 ' End If
End Sub

' Example: Sheets property; NewDocument, Save and SaveAs methods
' Save a file.
' First create a test file.
Dim document1 As Document
' Open a new document without specifying a file or path.
Set document1 = CurrentApplication.NewDocument
' Add some content to the document.
' For example, put some text into the first sheet name.
document1.Sheets(0).Name = "My sheet 1"
' Save to a file.
document1.SaveAs "d:\lotus\work\123\testopen.123"
' Add more content to the document.
' For example, put some text into the first column head.
[A:A1].Contents = "My Column Head 1"
' Save the changes.
document1.Save

' Example: ScrollToActiveCell and SetOrigin methods
Sub Origins
 ' Select cell A:A122 and scroll the current window to display that cell.
 Msgbox "Select cell A:A122 and scroll the current window to display it."
 [A].TurnTo
 [A:A122].Select
 .ScrollToActiveCell

 ' Display the specified cell without changing the current selection.
 Msgbox "Display cell (A:F122) without changing the current selection."
 .SetOrigin [A:F122]
End Sub

' Example: MatchAccent, MatchCase, ReplaceString, and SearchString properties, Replace
and ReplaceAll methods
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

' Add some data to cells A:A1 through A:A5 in TestDocument.
[A:A1].Select
Selection.Contents = "Test document for example"
[A].MoveCellPointer $Down,1
Selection.Contents = "grey"
[A].MoveCellPointer $Down,1
Selection.Contents = "black and blue"
[A].MoveCellPointer $Down,1
Selection.Contents = "Red and Blue"
[A].MoveCellPointer $Down,1
Selection.Contents = "blue and white"

' Specify search and replace strings
CurrentApplication.SearchString = "blue"
CurrentApplication.ReplaceString = "green"

' Specify search characteristics
CurrentApplication.MatchAccent = True
CurrentApplication.MatchCase = False

' Replace the first occurence
Messagebox("Replace ""blue"" with ""green"" in the first occurence.")
[A1..A5].Replace
Messagebox("Replace ""blue"" with ""green"" in all occurences.")
[A1..A5].ReplaceAll

'Use the MessageBox statement to display a
'message asking if you want to close the test document.

Dim boxType As Long, answer As Integer
BoxType& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers with the MessageBox statement.
answer% = Messagebox("Do you want to close the test document

now?",boxType&,"Continue?")
If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document

CurrentDocument.Close False
End If

' Example: Select and SelectAll methods
' Select the range A1..A5.

Messagebox("Select the range A1..A5.")
[A1..A5].Select

' SelectAll
Messagebox("Use SelectAll to select the active area of the current sheet.")
CurrentDocument.CurrentSheet.SelectAll

' Example: Send method and UserLogin method
' Send a document in an e-mail message, using the local mail application.
Dim msg As Document
Set msg = CurrentApplication.NewDocument
[A:A1].Contents = "Message 1"
' Log into the e-mail system.
CurrentApplication.UserLogin "username", "userpassword",
' Send a broadcast message to two recipients.
msg.Send "John X. Smith; Jane X. Doe", "Comment for John; Comment for Jane","Msg
subject", "Msg body",,,, $Broadcast,,,,,,

' Example: SendMail and UserLogin method
' Send a an e-mail message, using the local mail application.
Dim msg As String
msg = "Body of message"
' Log into the e-mail system.
CurrentApplication.UserLogin "username", "userpassword",
' Send a message to two recipients.
CurrentApplication.SendMail "John X. Smith; Jane X. Doe", "Comment for John; Comment
for Jane", "Msg subject", msg,,,,

' Example: SetActiveCell method
' Selects a collection of ranges and makes the cell in the top left
' corner of the second range the active cell.
Dim Range1 As Range
Dim Range2 As Range
Set Range1 = Bind("A:A1..A:A10")
Set Range2 = Bind("A:C3..A:H6")
Range1.Select
Range2.AddToSelection
Selection.SetActiveCell

' Example: SetCellData method
' This example assumes you have an external C routine named "GetAddr" in
' the external library "CellLib.dll".
' Global declaration
Declare Function GetAddr Lib "CellLib.dll" () As Long
' Get external data and enter it into a range.
Dim externpointer As Long
externpointer = GetAddr () 'Returns a pointer to data to be set.
[A:A1..C:A3].SetCellData externpointer 'Enters values in the range.

' Example: RenameNamedStyle, RevertToNamedStyle, RevertToStyle,
' SetGalleryStyle, and StyleFontReset methods
Sub SetStyles
 ' Create three labels (one for each named style):
 ' Style1, Style2, and Style3.
 Msgbox "Create labels for styles Style1, Style2, and Style3."
 [A:A4].Select
 Selection.Contents = "Style1"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style2"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style3"

 ' Make each style distinctive.
 Msgbox "Make each style distinctive."
 [A:A4].Select
 Selection.Font.FontColor.ColorName = "blue"
 Selection.Font.Bold = True
 Selection.Background.BackColor.ColorName = "ice blue"
 Selection.DefineNamedStyle "Style1"
 Selection.StyleName = "Style1"
 [A:A5].Select
 Selection.Font.Italic = True
 Selection.Font.FontColor.ColorName = "red"
 Selection.Background.BackColor.ColorName = "blush"
 Selection.DefineNamedStyle "Style2"
 Selection.StyleName = "Style2"
 [A:A6].Select
 Selection.Font.DoubleUnderline = True
 Selection.Font.Size = 14
 Selection.Font.FontColor.ColorName = "dark green"
 Selection.Background.BackColor.ColorName = "pale green"
 Selection.DefineNamedStyle "Style3"
 Selection.StyleName = "Style3"

 ' Make cell A:A6 bold, unlike its named style Style3 which is not bold.
 Msgbox "Change one font property locally in cell A:A6 (Style3)."
 [A:A6].Select
 Selection.Font.Bold = True
 ' Now have all style sttributes in cell A:A6 revert to those defined for
 ' the named style Style3. Cell A:A6 loses its bold attrribute.
 Msgbox "Revert all style attributes to those defdined for Style3."
 Selection.RevertToNamedStyle
 ' Rename Style3 to Style3a.
 Msgbox "Rename Style3 to Style3a."
 Selection.RenameNamedStyle "Style3","Style3a"

 ' Remove all named style attributes from the selection;
 ' restore defaults for the sheet.
 Msgbox "Restore default font attributes."
 [A:A4..A:A6].Stylefontreset

 ' Add a custom border from the gallery.
 Msgbox "Add a custom border from the gallery."
 [A:A4..A:A6].Select
 Selection.SetGalleryStyle $Picture1
End Sub

' Example: SetHorizontalTitle and SetVerticalTitle methods
Sub VertAndHorzTitles
 ' Put labels for the titles in cells A:B1 and A:A2.
 Msgbox "Put labels for the titles in cells A:B1 and A:A2."
 [A].TurnTo
 [A:B1].Contents = "Horizontal title"
 [A:A2].Contents = "VerticalTitle"

 ' Set cell A:B1 as the horizontal title.
 Msgbox "Set cell A:B1 as the horizontal title."
 [A].SetHorizontalTitle [A:B1],1

 ' Set cell A:A2 as the vertical title.
 Msgbox "Set cell A:A2 as the vertical title."
 [A].SetVerticalTitle [A:A2],1
End Sub

' Example: SetInternetOptions method
' Display the Internet Options dialog box.
CurrentApplication.SetInternetOptions

' Example: ScrollToActiveCell and SetOrigin methods
Sub Origins
 ' Select cell A:A122 and scroll the current window to display that cell.
 Msgbox "Select cell A:A122 and scroll the current window to display it."
 [A].TurnTo
 [A:A122].Select
 .ScrollToActiveCell

 ' Display the specified cell without changing the current selection.
 Msgbox "Display cell (A:F122) without changing the current selection."
 .SetOrigin [A:F122]
End Sub

' Example: SetHorizontalTitle and SetVerticalTitle methods
Sub VertAndHorzTitles
 ' Put labels for the titles in cells A:B1 and A:A2.
 Msgbox "Put labels for the titles in cells A:B1 and A:A2."
 [A].TurnTo
 [A:B1].Contents = "Horizontal title"
 [A:A2].Contents = "VerticalTitle"

 ' Set cell A:B1 as the horizontal title.
 Msgbox "Set cell A:B1 as the horizontal title."
 [A].SetHorizontalTitle [A:B1],1

 ' Set cell A:A2 as the vertical title.
 Msgbox "Set cell A:A2 as the vertical title."
 [A].SetVerticalTitle [A:A2],1
End Sub

' Example: Show method
Sub ShowDocument
 ' Declare a variable for a document object.
 Dim document1 As Document

 ' Open an existing document, setting its MakeVisible parameter to FALSE.
 Msgbox "Open an existing document, setting its MakeVisible parameter to FALSE."
 Set document1 = CurrentApplication.OpenDocument ("Employee.123", _
 "e:\data\123", "1-2-3 (123)",, False, False, True,,)
 Msgbox "The opened document is not visible."
 ' Now show the document.
 Msgbox "Now show the document."
 document1.show
End Sub

' Example: PageBack, PageForward, ShowAllSheets,
' ShowSheet, and TurnTo methods
Sub NavigateDoc
 ' Create 10 new sheets after the current sheet in the workbook.
 .NewSheet $After, 10, True
 .PageBack 2
 ' Move forward three sheets in the workbook.
 Msgbox "Move forward three sheets."
 .PageForward 3
 ' Move back one sheet in the workbook.
 Msgbox "Move back one sheet."
 .PageBack

 ' Turn to sheet A in the workbook.
 Msgbox "Turn to sheet A in the workbook."
 [A].TurnTo
 ' Hide sheets B, C, and D.
 Msgbox "Hide sheets B, C, and D."
 [B].HideSheet
 [C].HideSheet
 [D].HideSheet

 ' Unhide sheet B.
 Msgbox "Unhide sheet B."
 [B].ShowSheet

 ' Unhide all hidden sheets (including sheets C and D).
 Msgbox "Unhide all hidden sheets (including sheets C and D)."
 .ShowAllSheets
End Sub

' Example: PageBack, PageForward, ShowAllSheets,
' ShowSheet, and TurnTo methods
Sub NavigateDoc
 ' Create 10 new sheets after the current sheet in the workbook.
 .NewSheet $After, 10, True
 .PageBack 2
 ' Move forward three sheets in the workbook.
 Msgbox "Move forward three sheets."
 .PageForward 3
 ' Move back one sheet in the workbook.
 Msgbox "Move back one sheet."
 .PageBack

 ' Turn to sheet A in the workbook.
 Msgbox "Turn to sheet A in the workbook."
 [A].TurnTo
 ' Hide sheets B, C, and D.
 Msgbox "Hide sheets B, C, and D."
 [B].HideSheet
 [C].HideSheet
 [D].HideSheet

 ' Unhide sheet B.
 Msgbox "Unhide sheet B."
 [B].ShowSheet

 ' Unhide all hidden sheets (including sheets C and D).
 Msgbox "Unhide all hidden sheets (including sheets C and D)."
 .ShowAllSheets
End Sub

' Example: SmartSum method
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

' Add some data to cells A:A1 through A:A5 in TestDocument.
[A:A1].Select
Selection.Contents = "Test document for example"
[A].MoveCellPointer $Down,1
Selection.Contents = "10"
[A].MoveCellPointer $Down,1
Selection.Contents = "14"
[A].MoveCellPointer $Down,1
Selection.Contents = "83"
[A].MoveCellPointer $Down,1
Selection.Contents = "27"

' Use SmartSum method to sum the values in A2..A5.
[A2..A7].SmartSum

' Example: QuerySortDefineKey, Refresh, RemoveSelectField,
' SetRecordsLimitMax, SortData, SortReset, and Update
' methods
Sub TableManners
 ' Open the data table EMPLOYEE.DBF as a new document.
 ' The data is stored in cells A:A1..A:F11.
 Msgbox "Create a new document for data in an external database."
 CurrentApplication.OpenDocument _
 "E:\data\123\Employee.dbf",,"dBase (DBF)",,False,True,True,,

 ' Set up ranges for the query.
 Msgbox "Define source and output ranges for a query."
 ' Assign the range name "source" to cells A:A1..A:F11.
 CurrentDocument.CreateRangeName _
 "source",[A:A1..A:F11]
 ' Assign the range name "outputrange" to cells A:A15..A:F26.
 CurrentDocument.CreateRangeName _
 "outputrange",[A:A15..A:F26]

 ' Create the query named QueryB.
 Msgbox "Create the query and set its working properties."
 CurrentDocument.NewQuery "QueryB"
 ' Set some properties for the new query.
 ' Assign the source data to the workbook range named "source".
 [QueryB].BaseSourceTable = "source"
 [QueryB].ExtractingUniqueRecords = False
 [QueryB].SetRecordsLimitMax True,1000
 ' Assign the query output to the workbook range named "outputrange".
 [QueryB].OutputLocation = "outputrange"
 ' Force a refresh of the output range.
 [QueryB].Refresh

 ' Sort data in the source and output ranges on the
 ' field named "Last".
 Msgbox "Sort the data on the field named Last."
 [QueryB].SortData "Last", $Ascend

 ' Define a sort field for the query on the field named "DEPTNUM".
 Msgbox "Define a new sort key for the data and resort."
 [QueryB].QuerySortDefineKey "DEPTNUM", 1, $Ascend
 ' Force the sort using the new sort key.
 [QueryB].SortData

 ' Reset all sort fields defined for the query.
 Msgbox "Reset all sort keys."
 [QueryB].SortReset

 ' Remove the field named DEPTNUM from the output range.
 Msgbox "Remove the field DEPTNUM from the query and output range."
 [QueryB].RemoveSelectField "DEPTNUM"

 ' Update data in the query.
 ' NOTE -- The query cannot contain computed fields or
 ' aggregate fields NOT in the source table.
 Msgbox "Update the data in the query."
 [QueryB].AllowsUpdates = True
 [QueryB].Update

 ' Remove the field named EMPID from the output range.

 Msgbox "Remove the field EMPID from the query and output range."
 [QueryB].RemoveSelectField "EMPID"

End Sub

' Example: Documents and Changed properties;
' StartPoll, EndPoll, and Save methods; Poll[n] event handler
' Automatically save open documents at regular intervals, using timed poll events.

' Turn on automatic save of open documents. For example,
' you could attach the following autosave enable sub to the Actions menu.
Sub enableAutoSave
 ' Start an indefinite series of poll #2 events occurring once an hour
 ' (every 3,600,000 milliseconds).
 CurrentDocument.StartPoll 2, 3600000, 0
End Sub

' Bind this handler to the Poll2 event.
Sub Poll2(source As Document)
 ' Save all open documents that have changed since their last save.
 Forall doc in CurrentApplication.Documents
 If doc.Changed Then Call doc.Save()
 End Forall
End Sub

' Turn off automatic save of open documents. For example,
' you could attach the following autosave disable sub to the Actions menu.
Sub disableAutoSave
 CurrentDocument.EndPoll 2
End Sub

' Example: RenameNamedStyle, RevertToNamedStyle, RevertToStyle,
' SetGalleryStyle, and StyleFontReset methods
Sub SetStyles
 ' Create three labels (one for each named style):
 ' Style1, Style2, and Style3.
 Msgbox "Create labels for styles Style1, Style2, and Style3."
 [A:A4].Select
 Selection.Contents = "Style1"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style2"
 [A].MoveCellPointer $Down,1
 Selection.Contents = "Style3"

 ' Make each style distinctive.
 Msgbox "Make each style distinctive."
 [A:A4].Select
 Selection.Font.FontColor.ColorName = "blue"
 Selection.Font.Bold = True
 Selection.Background.BackColor.ColorName = "ice blue"
 Selection.DefineNamedStyle "Style1"
 Selection.StyleName = "Style1"
 [A:A5].Select
 Selection.Font.Italic = True
 Selection.Font.FontColor.ColorName = "red"
 Selection.Background.BackColor.ColorName = "blush"
 Selection.DefineNamedStyle "Style2"
 Selection.StyleName = "Style2"
 [A:A6].Select
 Selection.Font.DoubleUnderline = True
 Selection.Font.Size = 14
 Selection.Font.FontColor.ColorName = "dark green"
 Selection.Background.BackColor.ColorName = "pale green"
 Selection.DefineNamedStyle "Style3"
 Selection.StyleName = "Style3"

 ' Make cell A:A6 bold, unlike its named style Style3 which is not bold.
 Msgbox "Change one font property locally in cell A:A6 (Style3)."
 [A:A6].Select
 Selection.Font.Bold = True
 ' Now have all style sttributes in cell A:A6 revert to those defined for
 ' the named style Style3. Cell A:A6 loses its bold attrribute.
 Msgbox "Revert all style attributes to those defdined for Style3."
 Selection.RevertToNamedStyle
 ' Rename Style3 to Style3a.
 Msgbox "Rename Style3 to Style3a."
 Selection.RenameNamedStyle "Style3","Style3a"

 ' Remove all named style attributes from the selection;
 ' restore defaults for the sheet.
 Msgbox "Restore default font attributes."
 [A:A4..A:A6].Stylefontreset

 ' Add a custom border from the gallery.
 Msgbox "Add a custom border from the gallery."
 [A:A4..A:A6].Select
 Selection.SetGalleryStyle $Picture1
End Sub

1-2-3: TileHorizontal method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_123_TILEHORIZONTAL_METHOD_EXSCRIPT ',1)} See example
Tiles all Workbook windows top to bottom.

Syntax
applicationwindow.TileHorizontal

Parameters
None

Return values
None

{button ,AL(`H_123_TILE_METHOD_MEMDEF;H_123_TILEVERTICAL_METHOD_MEMDEF',0)} See related topics

' Example: SyncSplits, Tile, TileHorizontal, and
' TileVertical methods
Sub WindowTiles
 ' Create a new window for the curent document.
 Msgbox "Create a new window for the current document."
 CurrentDocument.NewDocWindow

 ' Tile the windows left-right (the default).
 Msgbox "Tile the windows left-right (the default)."
 [ApplicationWindow].Tile

 ' Maximize the current window.
 Msgbox "Maximize the current window"
 .Maximize

 ' Tile the windows left-right explicitly.
 Msgbox "Tile the windows left-right explicitly."
 [ApplicationWindow].TileVertical

 ' Maximize the current window.
 Msgbox "Maximize the current window."
 .Maximize

 ' Tile the windows top-bottom explicitly.
 Msgbox "Tile the windows top-bottom explicitly."
 [ApplicationWindow].TileHorizontal

 ' Synchronize the window splits.
 Msgbox "Synchronize the window splits."
 ' CurrentDocument.Syncsplits

 ' Close the current window.
 Msgbox "Close the current window."
 CurrentWindow.Close

 ' Maximize the current window.
 Msgbox "Maximize the current window."
 .Maximize
End Sub

1-2-3: TileVertical method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_123_TILEVERTICAL_METHOD_EXSCRIPT ',1)} See example
Tiles all Workbook windows side by side.

Syntax
applicationwindow.TileVertical

Parameters
None

Return values
None

{button ,AL(`H_123_CASCADE_METHOD_MEMDEF;H_123_TILE_METHOD_MEMDEF;H_123_TILEHORIZONTAL
_METHOD_MEMDEF',0)} See related topics

' Example: SyncSplits, Tile, TileHorizontal, and
' TileVertical methods
Sub WindowTiles
 ' Create a new window for the curent document.
 Msgbox "Create a new window for the current document."
 CurrentDocument.NewDocWindow

 ' Tile the windows left-right (the default).
 Msgbox "Tile the windows left-right (the default)."
 [ApplicationWindow].Tile

 ' Maximize the current window.
 Msgbox "Maximize the current window"
 .Maximize

 ' Tile the windows left-right explicitly.
 Msgbox "Tile the windows left-right explicitly."
 [ApplicationWindow].TileVertical

 ' Maximize the current window.
 Msgbox "Maximize the current window."
 .Maximize

 ' Tile the windows top-bottom explicitly.
 Msgbox "Tile the windows top-bottom explicitly."
 [ApplicationWindow].TileHorizontal

 ' Synchronize the window splits.
 Msgbox "Synchronize the window splits."
 ' CurrentDocument.Syncsplits

 ' Close the current window.
 Msgbox "Close the current window."
 CurrentWindow.Close

 ' Maximize the current window.
 Msgbox "Maximize the current window."
 .Maximize
End Sub

1-2-3: Tile method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;',0)} See list of classes
{button ,AL(`H_123_TILE_METHOD_EXSCRIPT ',1)} See example
Tiles all Workbook windows side by side.

Syntax
applicationwindow.Tile

Parameters
None

Return values
None

{button ,AL(`H_123_CASCADE_METHOD_MEMDEF;H_123_TILEHORIZONTAL_METHOD_MEMDEF;H_123_TILE
VERTICAL_METHOD_MEMDEF',0)} See related topics

' Example: Tile, TileHorizontal, and TileVertical methods
Sub WindowTiles

' Create a new window for the curent document.
MessageBox "Create a new window for the current document."
CurrentDocument.NewDocWindow
' Tile the windows left-right (the default).
MessageBox "Tile the windows left-right (the default)."
[ApplicationWindow].Tile
' Maximize the current window.
MessageBox "Maximize the current window"
.Maximize
' Tile the windows left-right explicitly.
MessageBox "Tile the windows left-right explicitly."
[ApplicationWindow].TileVertical
' Maximize the current window.
MessageBox "Maximize the current window."
.Maximize
' Tile the windows top-bottom explicitly.
MessageBox "Tile the windows top-bottom explicitly."
[ApplicationWindow].TileHorizontal
' Close the current window.
MessageBox "Close the current window."
CurrentWindow.Close
' Maximize the current window.
MessageBox "Maximize the current window."
.Maximize

End Sub

1-2-3: TimeDifference method
{button ,AL(`H_123_TIMEDIFFERENCE_METHOD_MEMDEF_RT;H_123_DATETIME_CLASS',0)} See list of classes
Returns the difference in seconds between the time of the current object and the time of the specified object.

Syntax
timedifference = TimeDifference time

Parameters
time

DateTime. The base time to compare with the time of the current object.

Return value
timedifference

Long. The time difference in seconds.

1-2-3: ToBack method
{button ,AL(`H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_DRAWLINE

_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHA
ND_CLASS;H_123_GROUP_CLASS;H_123_MAP_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLA
SS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_RECTANGLE_CLASS;H_123_QUERYTABLE
_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_APPROACHCONNECTION_CLASS',0)} See list of
classes

{button ,AL(`H_123_TOBACK_METHOD_EXSCRIPT ',1)} See example
Sends the specified graphic object to the back of all other overlapping graphic objects. The vertical or horizontal
position of the object does not change.

Syntax
drawobject.ToBack

Parameters
None

Return values
None

{button ,AL(`H_123_TOFRONT_METHOD_MEMDEF',0)} See related topics

'Example: ToBack method
'Selects Rectangle 2 on the current sheet and puts it behind all other graphic objects
on the sheet.
[A].NewRectangle 1770,1035,3765,2715
[Rectangle 1].Select
Selection.Background.BackColor.ColorName = "25% gray"
Selection.Background.Pattern = $SolidBackground
[A].NewRectangle 3225,1470,4530,3045
[Rectangle 2].Select
Selection.Background.BackColor.ColorName = "50% gray"
Selection.Background.Pattern = $SolidBackground
Selection.ToBack

1-2-3: ToFront method
{button ,AL(`H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_DRAWLINE

_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHA
ND_CLASS;H_123_GROUP_CLASS;H_123_MAP_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLA
SS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_RECTANGLE_CLASS;H_123_QUERYTABLE
_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_APPROACHCONNECTION_CLASS',0)} See list of
classes

{button ,AL(`H_123_TOFRONT_METHOD_EXSCRIPT ',1)} See example
Sends the specified graphic object to the front of all other overlapping graphic objects. The vertical or horizontal
position of the object does not change.

Syntax
drawobject.ToFront

Parameters
None

Return values
None

{button ,AL(`H_123_TOBACK_METHOD_MEMDEF',0)} See related topics

'Example: ToFront method
'Selects Button 5 on the current sheet and puts it in front of all other graphic
objects on the sheet.
[A].NewButton 540,915,1905,1410
[Button 1].Select
[A].NewButton 2355,945,3495,1425
[Button 2].Select
[A].NewButton 4035,915,5355,1380
[Button 3].Select
[A].NewButton 5880,930,7155,1410
[Button 4].Select
[A].NewButton 930,1860,2070,2250
[Button 5].Select
[A].NewRectangle 315,720,7455,2745
[Rectangle 1].Select
[Button 5].Select
[Button 5].ToFront

1-2-3: Transpose method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_TRANSPOSE_METHOD_EXSCRIPT',1)} See example
Copies data in a range to a destination range, transposing rows and columns within the same sheet or across sheets
and replacing any copied formulas with their current values.

Syntax
range.Transpose(destinationrange, [transposeoption])

Parameters
destinationrange

Variant. The range to which you are copying. Specify either the entire range or only the first cell.
transposeoption

(Optional) Variant (TransposeEnum enumeration). Specifies how to transpose the data. The following table lists
the allowed values for this parameter.

Value Description
$RowsToColumns Transposes rows of data in

range to columns of data in
destinationrange; default if you
omit this parameter.

$ColumnsToSheets Copies the first column in
every sheet of range to the
first sheet in destinationrange;
the second column in every
sheet of range to the second
sheet in destinationrange; and
so on. This argument works
only for 3D ranges.

$SheetsToRows Copies the first row in every
sheet of range to the first
sheet in destinationrange; the
second row in every sheet of
range to the second sheet in
destinationrange; and so on.
This argument works only for
3D ranges.

Return values
None

' Example: Transpose method
' Open a new document and call it TestDocument.

Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")

' Add some data to cells A:A1 through A:B4 in TestDocument.
[A:A1].Select
Selection.Contents = "Test document for script example"
[A].MoveCellPointer $Down,1
Selection.Contents = "25"
[A].MoveCellPointer $Down,1
Selection.Contents = "54"
[A].MoveCellPointer $Down,1
Selection.Contents = "93"
[A:B2].Select
Selection.Contents = "341"
[A].MoveCellPointer $Down,1
Selection.Contents = "956"
[A].MoveCellPointer $Down,1
Selection.Contents = "272"

'Transpose
Messagebox("Transpose the range.")
[A:A2..A:B4].Transpose [A:A15]

'Use the MessageBox statement to display a
'message asking if you want to delete the test documents and test file.

Dim boxType As Long, answer As Integer
BoxType& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers with the MessageBox statement.
answer% = Messagebox("Do you want to close the test document

now?",boxType&,"Continue?")
If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document

CurrentDocument.Close False
End If

1-2-3: TurnTo method
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_TURNTO_METHOD_EXSCRIPT ',1)} See example
Displays the specified sheet.

Syntax
sheet.TurnTo

Parameters
None

Return values
None

{button ,AL(`H_123_PAGEBACK_METHOD_MEMDEF;H_123_PAGEFORWARD_METHOD_MEMDEF',0)} See
related topics

' Example: TurnTo method
' Opens the file BUDGET.123 and displays the sheet named Marketing.
CurrentApplication.OpenDocument "D:\lotus\work\123\budget.123",,False,True,True,,
[Marketing].TurnTo

1-2-3: UncheckItem method
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS',0)} See list of classes
{button ,AL(`H_123_CHECKITEM_METHOD_EXSCRIPT',1)} See example
Removes a check mark before the name of a specified item on the menu. This method only works on menu items
created using LotusScript.

Syntax
object.UncheckItem position

Parameters
position

Long. The menu position of the item to check.

Value Description
Positive integer The item's position in the menu,

counting forward from the beginning.
The value 1 means the first position.

Negative integer The item's position in the menu,
counting backward from the end. The
value –1 means the last position.

Return values
None

{button ,AL(`H_123_ADDITEM_METHOD_MEMDEF;H_123_DISABLEITEM_METHOD_MEMDEF;H_123_ENABLEI
TEM_METHOD_MEMDEF;H_123_REMOVEITEM_METHOD_MEMDEF;H_123_REPLACEITEM_METHOD_ME
MDEF;H_123_CHECKITEM_METHOD_MEMDEF;H_123_MENUPROMPT_PROPERTY_MEMDEF;H_123_MEN
UTEXT_PROPERTY_MEMDEF',0)} See related topics

1-2-3: UnGroupSheets method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_UNGROUPSHEETS_METHOD_EXSCRIPT',1)} See example
Clears sheet groups. After you ungroup sheets, the "Grp" indicator no longer appears in the status bar.

Syntax
document.UnGroupSheets

Parameters
None

Return values
None

' Example: UnGroupSheets method
' Group sheets 0 through 9 (A through J) together,
' and apply the styles and settings in sheet A to the entire group.
CurrentDocument.GroupSheets 0, 9, 0
' Ungroup the sheets
CurrentDocument.UnGroupSheets

1-2-3: UnGroup method
{button ,AL(`;H_123_GROUP_CLASS',0)} See list of classes
Ungroups graphic objects so you can manipulate them individually.

Syntax
object.UnGroup

Parameters
None

Return values
None

{button ,AL(`H_123_UNGROUPSHEETS_METHOD_MEMDEF',0)} See related topics

' Example: UnhideColumns and UnhideRows methods
Sub HideAndUnhide
 Msgbox "Hide columns B and D."
 ' Hide column B in the current sheet.
 [A:B1..A:B8192].HideColumns
 ' Hide column D in the current sheet.
 [A:D1..A:D8192].HideColumns
 ' Note -- this is equivalent to setting the column property
 ' IsColumnHidden = True

 ' Unhide columns B and D.
 Msgbox "Unhide columns B and D."
 [A:B1..A:B8192].UnHideColumns
 [A:D1..A:D8192].UnHideColumns

 ' Hide rows 2 and 4.
 Msgbox "Hide rows 2 and 4."
 [A:A2..A:IV2].HideRows
 [A:A4..A:IV4].HideRows
 ' Note -- this is equivalent to setting the row property
 ' IsRowHidden = True

 ' Unhide rows 2 and 4.
 Msgbox "Unhide rows 2 and 4."
 [A:A2..A:IV2].UnHideRows
 [A:A4..A:IV4].UnHideRows
End Sub

1-2-3: UnhideColumns method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_UNHIDECOLUMNS_EXSCRIPT;',1)} See example
Redisplays all hidden columns in a range. Column widths do not change.

Syntax
range.UnhideColumns

Parameters
None

Return values
None

{button ,AL(`H_123_HIDECOLUMNS_METHOD_MEMDEF;H_123_HIDEROWS_METHOD_MEMDEF;H_123_UNHI
DEROWS_METHOD_MEMDEF',0)} See related topics

1-2-3: UnhideRows method
{button ,AL(`H_123_Range_Class;',0)} See list of classes
{button ,AL(`H_123_UNHIDEROWS_METHOD_EXSCRIPT',1)} See example
Redisplays all hidden rows in a range. Row heights do not change.

Syntax
range.UnhideRows

Parameters
None

Return values
None

{button ,AL(`;H_123_HIDECOLUMNS_METHOD_MEMDEF;H_123_HIDEROWS_METHOD_MEMDEF;H_123_UNHI
DECOLUMNS_METHOD_MEMDEF',0)} See related topics

' Example: UnhideColumns and UnhideRows methods
Sub HideAndUnhide
 Msgbox "Hide columns B and D."
 ' Hide column B in the current sheet.
 [A:B1..A:B8192].HideColumns
 ' Hide column D in the current sheet.
 [A:D1..A:D8192].HideColumns
 ' Note -- this is equivalent to setting the column property
 ' IsColumnHidden = True

 ' Unhide columns B and D.
 Msgbox "Unhide columns B and D."
 [A:B1..A:B8192].UnHideColumns
 [A:D1..A:D8192].UnHideColumns

 ' Hide rows 2 and 4.
 Msgbox "Hide rows 2 and 4."
 [A:A2..A:IV2].HideRows
 [A:A4..A:IV4].HideRows
 ' Note -- this is equivalent to setting the row property
 ' IsRowHidden = True

 ' Unhide rows 2 and 4.
 Msgbox "Unhide rows 2 and 4."
 [A:A2..A:IV2].UnHideRows
 [A:A4..A:IV4].UnHideRows
End Sub

1-2-3: UnloadAddin method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_LOADADDIN_METHOD_EXSCRIPT',1)} See example
Unloads the specified add-in.

Syntax
application.UnloadAddin addinname

Parameters
addinname

String. The name of the add-in to be unloaded.

Return values
None

Usage
The Application.Addins property is a collection of names of the registered add-ins that you can load or unload. Use
the IsAddinLoaded method to determine whether an add-in is loaded.

{button ,AL(`H_123_LOADADDIN_METHOD_MEMDEF;H_123_ISADDINLOADED_METHOD_MEMDEF;H_123_AD
DINS_PROPERTY_MEMDEF',0)} See related topics

1-2-3: UpdateDefaultPrintSettings method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Copies the document's CurrentPrintSettings property to the application's DefaultPrintSettings property. This method
has the effect of updating the print settings in the Windows registry.

Syntax
document.UpdateDefaultPrintSettings

Parameters
None

Return values
None

Usage
The Application.DefaultPrintSettings print style is used for all new workbooks.

{button ,AL(`H_123_USEDEFAULTPRINTSETTINGS_METHOD_MEMDEF;H_123_REDEFINENAMEDPRINTSETTI
NGS_METHOD_MEMDEF;H_123_RETRIEVENAMEDPRINTSETTINGS_METHOD_MEMDEF;H_123_NEWNAM
EDPRINTSETTINGS_METHOD_MEMDEF;H_123_NAMEDPRINTSETTINGS_PROPERTY_MEMDEF;H_123_C
URRENTPRINTSETTINGS_PROPERTY_MEMDEF',0)} See related topics

1-2-3: Update method
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS;H_

123_OLEOBJECT_CLASS;H_123_APPROACHCONNECTION_CLASS;H_123_DATALINK_CLASS;H_123_QUE
RY_CLASS;H_123_QUERYTABLE_CLASS',0)} See list of classes

{button ,AL(`H_123_SORTDATA_METHOD_EXSCRIPT',1)} See example
Updates the object. For a window object, refreshes the window. For a DataQuery object, updates the source table of
the query with the modifications made to records in the query table results. For a linked OLE object (including an OLE
object inside an OLE object), updates its presentation in the worksheet.

Syntax
object.Update

Parameters
None

Return values
None

Usage
For DataQuery objects, this method only works when the DataQuery.AllowsUpdates property is set to True.
For OLE objects, this method only works if the OLEObject.AutoUpdate property is set to $Manual, or the
Application.UpdateLinksOnOpenDoc property is set to False.

{button ,AL(`H_REFRESH_METHOD_MEMDEF;H_REFRESHOUTPUT_METHOD_MEMDEF;H_REFRESHQUERY
_METHOD_MEMDEF;H_123_AUTOUPDATE_PROPERTY_MEMDEF;H_123_UPDATELINKSONOPENDOC_PR
OPERTY_MEMDEF;H_123_AUTOREFRESH_PROPERTY_MEMDEF;H_123_ALLOWSUPDATES_PROPERTY_
MEMDEF',0)} See related topics

1-2-3: UseDefaultPrintSettings method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_DELETENAMEDPRINTSETTINGS_METHOD_EXSCRIPT',1)} See example
Copies the application's default print settings to the document's CurrentPrintSettings property.

Syntax
document.UseDefaultPrintSettings

Parameters
None

Return values
None

{button ,AL(`H_123_UPDATEDEFAULTPRINTSETTINGS_METHOD_MEMDEF;H_123_REDEFINENAMEDPRINTS
ETTINGS_METHOD_MEMDEF;H_123_RETRIEVENAMEDPRINTSETTINGS_METHOD_MEMDEF;H_123_NEW
NAMEDPRINTSETTINGS_METHOD_MEMDEF;H_123_NAMEDPRINTSETTINGS_PROPERTY_MEMDEF;H_12
3_CURRENTPRINTSETTINGS_PROPERTY_MEMDEF',0)} See related topics

1-2-3: UserLogin method
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_SEND_METHOD_EXSCRIPT',1)} See example
Logs the user into the local e-mail application. Call this method before calling the Send or SendMail methods, to
prevent the display of the user mail login dialog box.

Syntax
application.UserLogin [username], [password], [messagecontainerpath]

Parameters
username

(Optional) String. The user name for the e-mail application.
password

(Optional) String. The password for the e-mail application.
messagecontainerpath

(Optional) String. The full path, including the drive letter, to the user's cc:Mail post office database, if applicable.
This parameter is needed only if cc:Mail is the e-mail application.

Return values
None

{button ,AL(`H_123_SEND_METHOD_MEMDEF;H_123_SENDMAIL_METHOD_MEMDEF',0)} See related topics

1-2-3: Verb method
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;

H_123_QUERYTABLE_CLASS',0)} See list of classes
Invokes the specified action on an object. The verb actions are defined in the registry by the server that manages the
object.

Syntax
object.Verb verb

Parameters
verb

(Optional) String, Integer, or Variant (OLEVerb enumeration). One of the registered verbs supported by the object,
such as "Edit" and "Open". Strings are case insensitive, and you can pass the integer equivalent instead. The
default is the object's primary verb, which is the action that results when the user double-clicks the object, or
presses ENTER when the object is selected.
The following table lists the allowed enumerated values for this parameter. Some objects will only support a
subset of these values. If the object doesn't support the specified verb, its server may generate an error.

Enumeration Value Description
$OLEVerbPrimary The object's primary verb, normally the

action that results when the user double-
clicks the object. (Default.)

$OLEVerbShow Show the object for editing or viewing.
$OLEVerbOpen Open the object for editing in a separate

window.
$OLEVerbHide Remove the object's user interface (UI)

from view.
$OLEVerbUIActivate Activate the object for in-place editing

and show its UI.
$OLEVerbInPlaceActivate Activate the object for in-place editing,

without showing its UI.
$OLEVerbDiscardUndoState Discard the object's undo state.

Return values
None

1-2-3: VersionGroups method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_VERSIONGROUPS_METHOD_EXSCRIPT ',1)} See example
Returns a collection of version groups matching the specified criteria.

Syntax
versiongroups = document.VersionGroups([versiongroupname], [lastmodifier])

Parameters
versiongroupname

(Optional) String. The name of a version group in the specified file to match. By default, all version groups are
included.

lastmodifier
(Optional) String. The name of a user who last modified one or more version groups. If a version group was
modified most recently by the name in lastmodifier, the VersionGroups method adds that version group to the
collection.

Return values
Returns a VersionGroups object.

{button ,AL(`H_123_NEWVERSIONGROUP_METHOD_MEMDEF;H_123_VERSIONGROUP_METHOD_MEMDEF',
0)} See related topics

' Example: VersionGroup and VersionGroups methods
Sub VersionDemo2

' Set up two ranges of data, each supporting three versions.
Messagebox "Set up two ranges of data, each supporting three versions."
Messagebox "The first range is named BOTTOMLINE."
[A:A3].Contents = "Item"
[A:B3].Contents = "Amount"
[A:A3..A:B3].Font.Bold = True
[A:A4].Contents = "Income"
[A:A5].Contents = "Expenses"
[A:A6].Contents = "Result"
[A:B4].Contents = "45000"
[A:B5].Contents = "42000"
[A:B6].Contents = "+B4-+B5"
[A:B4..A:B6].Format "US Dollar",0
' Create the range name BOTTOMLINE and three versions.
CurrentDocument.CreateRangeName "BOTTOMLINE",[A:A3..A:B6]
[BOTTOMLINE].NewVersion "BestCase"
[BOTTOMLINE.BestCase].Description = "This is the best scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "40000" ' New data for the version.
[BOTTOMLINE.Original].MakeCurrent
[BOTTOMLINE].NewVersion "WorstCase"
[BOTTOMLINE.WorstCase].Description = "This is the worst case scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "47000" ' New data for the version.
' Set up the second range of data and create the versions.
Messagebox "The second range is named TAXABLES."
[A:A9].Contents = "Item"
[A:B9].Contents = "Amount"
[A:A9..A:B9].Font.Bold = True
[A:A10].Contents = "Income"
[A:A11].Contents = "Retirement Account"
[A:A12].Contents = "Taxable"
[A:B10].Contents = "45000"
[A:B11].Contents = "1500"
[A:B12].Contents = "+B10-+B11"
[A:B10..A:B12].Format "US Dollar",0
' Create the range name TAXABLES and three versions.
CurrentDocument.CreateRangeName "TAXABLES",[A:A9..A:B12]
[TAXABLES].NewVersion "BestCase"
[TAXABLES.BestCase].Description = "This is the best scenario."
[TAXABLES].VersionBorderVisible = True
[A:B11].Contents = "2500" ' New data for the version.
[TAXABLES.Original].MakeCurrent
[TAXABLES].NewVersion "WorstCase"
[TAXABLES.WorstCase].Description = "This is the worst case scenario."
[TAXABLES].VersionBorderVisible = True
[A:B11].Contents = "500" ' New data for the version.
' Create a version group named "VersionGroup 1".
Messagebox "Create a version group named VersionGroup 1."
CurrentDocument.NewVersionGroup "VersionGroup 1"
[VersionGroup 1].Description = "Here is a version group."
' Add the version BOTTOMLINE.BestCase to the group.
' Add the version TAXABLES.BestCase to the group.
Messagebox "Add versions from BOTTOMLINE and TAXABLES to the group."
[VersionGroup 1].AddVersion "BOTTOMLINE","BestCase",
[VersionGroup 1].AddVersion "TAXABLES","BestCase",

[VersionGroup 1].Name = "VersionGroup 1"
[VersionGroup 1].Share = $Unprotected
' Declare a variable for a VersionGroups collection.
Messagebox "Use the VersionGroups method to get versiongroups properties."
Dim returnVersionGroups As versiongroups
Set returnVersionGroups = Currentdocument.VersionGroups
' Declare a variable to hold the number of versiongroups in the document.
Dim versionGroupsCount As Long
' Get the value of the Count property.
versionGroupsCount = returnVersionGroups.Count
MessageBox "The number of versiongroups = + Cstr(versionGroupsCount)

End Sub

1-2-3: VersionGroup method
{button ,AL(`H_123_Document_Class;',0)} See list of classes
{button ,AL(`H_123_VERSIONGROUP_METHOD_EXSCRIPT ',1)} See example
Returns a VersionGroup object for the version group matching the specified criteria.

Syntax
versiongroup = document.VersionGroup(versiongroupname, [lastmodifier])

Parameters
versiongroupname

String. The name of the version group for the specified file.
lastmodifier

(Optional) String. The name of the user who last modified the version group. This parameter allows you to
distinguish between version groups that have the same name but were modified by different users.

Return values
The VersionGroup object corresponding to versiongroupname. If there are multiple version groups that use the
same name and were last modified by the same user, 1-2-3 chooses a version group to return.

{button ,AL(`H_123_NEWVERSIONGROUP_METHOD_MEMDEF;H_123_VERSIONS_METHOD_MEMDEF',0)} See
related topics

' Example: VersionGroup and VersionGroups methods
Sub VersionDemo2

' Set up two ranges of data, each supporting three versions.
Messagebox "Set up two ranges of data, each supporting three versions."
Messagebox "The first range is named BOTTOMLINE."
[A:A3].Contents = "Item"
[A:B3].Contents = "Amount"
[A:A3..A:B3].Font.Bold = True
[A:A4].Contents = "Income"
[A:A5].Contents = "Expenses"
[A:A6].Contents = "Result"
[A:B4].Contents = "45000"
[A:B5].Contents = "42000"
[A:B6].Contents = "+B4-+B5"
[A:B4..A:B6].Format "US Dollar",0
' Create the range name BOTTOMLINE and three versions.
CurrentDocument.CreateRangeName "BOTTOMLINE",[A:A3..A:B6]
[BOTTOMLINE].NewVersion "BestCase"
[BOTTOMLINE.BestCase].Description = "This is the best scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "40000" ' New data for the version.
[BOTTOMLINE.Original].MakeCurrent
[BOTTOMLINE].NewVersion "WorstCase"
[BOTTOMLINE.WorstCase].Description = "This is the worst case scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "47000" ' New data for the version.
' Set up the second range of data and create the versions.
Messagebox "The second range is named TAXABLES."
[A:A9].Contents = "Item"
[A:B9].Contents = "Amount"
[A:A9..A:B9].Font.Bold = True
[A:A10].Contents = "Income"
[A:A11].Contents = "Returement Account"
[A:A12].Contents = "Taxable"
[A:B10].Contents = "45000"
[A:B11].Contents = "1500"
[A:B12].Contents = "+B10-+B11"
[A:B10..A:B12].Format "US Dollar",0
' Create the range name TAXABLES and three versions.
CurrentDocument.CreateRangeName "TAXABLES",[A:A9..A:B12]
[TAXABLES].NewVersion "BestCase"
[TAXABLES.BestCase].Description = "This is the best scenario."
[TAXABLES].VersionBorderVisible = True
[A:B11].Contents = "2500" ' New data for the version.
[TAXABLES.Original].MakeCurrent
[TAXABLES].NewVersion "WorstCase"
[TAXABLES.WorstCase].Description = "This is the worst case scenario."
[TAXABLES].VersionBorderVisible = True
[A:B11].Contents = "500" ' New data for the version.
' Create a version group named "VersionGroup 1".
Messagebox "Create a version group named VersionGroup 1."
CurrentDocument.NewVersionGroup "VersionGroup 1"
[VersionGroup 1].Description = "Here is a version group."
' Add the version BOTTOMLINE.BestCase to the group.
' Add the version TAXABLES.BestCase to the group.
Messagebox "Add versions from BOTTOMLINE and TAXABLES to the group."
[VersionGroup 1].AddVersion "BOTTOMLINE","BestCase",
[VersionGroup 1].AddVersion "TAXABLES","BestCase",

[VersionGroup 1].Name = "VersionGroup 1"
[VersionGroup 1].Share = $Unprotected
' Declare a variable for a VersionGroups collection.
Messagebox "Use the VersionGroups method to get versiongroups properties."
Dim returnVersionGroups As versiongroups
Set returnVersionGroups = Currentdocument.VersionGroups
' Declare a variable to hold the number of versiongroups in the document.
Dim versionGroupsCount As Long
' Get the value of the Count property.
versionGroupsCount = returnVersionGroups.Count
MessageBox "The number of versiongroups = " + Cstr(versionGroupsCount)

End Sub

1-2-3: Versions method
{button ,AL(`H_123_Range_Class;H_123_VersionGroup_Class;',0)} See list of classes
{button ,AL(`H_123_VERSIONS_METHOD_EXSCRIPT ',1)} See example
Returns a collection of versions matching the specified criteria.

Syntax
versions = range.Versions([versionnames], [lastmodifier])

Parameters
versionnames

(Optional) String. The names of the versions to match. By default, all versions are included.
Note Version names are case-sensitive.

lastmodifier
(Optional) String. The name of a user who last modified one or more versions. If a version was last modified by
the user specified in lastmodifier, the Versions method adds that version to the collection.

Return values
Returns a Versions object.

{button ,AL(`H_123_DELETEVERSION_METHOD_MEMDEF;H_123_NEWVERSION_METHOD_MEMDEF;H_123_
ADDVERSION_METHOD_MEMDEF;H_123_REPORTVERSION_METHOD_MEMDEF',0)} See related topics

' Example: ReportVersion, Version, and Versions methods
Sub VersionDemo1

' Set up a range of data to support three versions.
MessageBox "Set up a range of data to support three versions."
[A:A3].Contents = "Item"
[A:B3].Contents = "Amount"
[A:A3..A:B3].Font.Bold = True
[A:A4].Contents = "Income"
[A:A5].Contents = "Expenses"
[A:A6].Contents = "Result"
[A:B4].Contents = "45000"
[A:B5].Contents = "42000"
[A:B6].Contents = "+B4-+B5"
[A:B4..A:B6].Format "US Dollar",0
CurrentDocument.CreateRangeName "BOTTOMLINE",[A:A3..A:B6]
[BOTTOMLINE].NewVersion "BestCase"
[BOTTOMLINE.BestCase].Description = "This is the best scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "40000"
[BOTTOMLINE.Original].MakeCurrent
[BOTTOMLINE].NewVersion "WorstCase"
[BOTTOMLINE.WorstCase].Description = "This is the worst case scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "47000"
' Use the Version method to access properties for the new versions.
MessageBox "Use the Version method to access properties for the new versions."
' Declare a variable as a Version object.
Dim returnRangeVersion As Version
' Select the range containing the versions.
[BOTTOMLINE].Goto
[BOTTOMLINE].Select
' Assign the variable to one of the versions in the range.
Set returnRangeVersion = Selection.Version("BestCase")
' Declare a variable to hold the version ID of the selected version.
Dim rangeVersionVersionID As Long
' Get the VersionID of the version.
rangeVersionVersionID = returnRangeVersion.VersionID
Print "VersionID for version BestCase = " rangeVersionVersionID
' Use the Versions method to access in a Versions collection.
MessageBox "Use the Versions method to get collection properties."
' Declare a variable as a Versions collection object.
Dim returnRangeVersions As versions
' Select the range containing the versions.
[BOTTOMLINE].Goto
[BOTTOMLINE].Select
' Assign the variable to collection of versions in the selected range.
Set returnRangeVersions = Selection.Versions
' Declare a variable to hold the value of the Count property.
Dim rangeVersionsCount As Long
' Get the number of versions in the selected range.
rangeVersionsCount = Selection.Versions.Count
Print "Number of versions in range BOTTOMLINE = " rangeVersionsCount
' Generate a report about versions in the selected range.
MessageBox "Generate a report about versions in the selected range."

[BOTTOMLINE].ReportVersion "BestCase;Original;",[A:A20],True,True,$Column
End Sub

1-2-3: Version method
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_VERSION_METHOD_EXSCRIPT ',1)} See example
Returns a Version object for the version matching the criteria.

Syntax
version = range.Version(versionname, [lastmodifier])

Parameters
versionname

String. The name of the version for range.
Note Version names are case-sensitive.

lastmodifier
(Optional) String. The name of the user who last modified the version. This parameter allows you to distinguish
between two versions that have the same name but were modified by different users.

Return value
A Version object corresponding to versionname. If there are multiple versions that use the same name and were last
modified by the same user, 1-2-3 chooses a version to return.

{button ,AL(`H_123_ADDVERSION_METHOD_MEMDEF;H_123_REPORTVERSION_METHOD_MEMDEF;H_123_
DELETEVERSION_METHOD_MEMDEF;H_123_NEWVERSION_METHOD_MEMDEF;',0)} See related topics

' Example: ReportVersion, Version, and Versions methods
Sub VersionDemo1

' Set up a range of data to support three versions.
MessageBox "Set up a range of data to support three versions."
[A:A3].Contents = "Item"
[A:B3].Contents = "Amount"
[A:A3..A:B3].Font.Bold = True
[A:A4].Contents = "Income"
[A:A5].Contents = "Expenses"
[A:A6].Contents = "Result"
[A:B4].Contents = "45000"
[A:B5].Contents = "42000"
[A:B6].Contents = "+B4-+B5"
[A:B4..A:B6].Format "US Dollar",0
CurrentDocument.CreateRangeName "BOTTOMLINE",[A:A3..A:B6]
[BOTTOMLINE].NewVersion "BestCase"
[BOTTOMLINE.BestCase].Description = "This is the best scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "40000"
[BOTTOMLINE.Original].MakeCurrent
[BOTTOMLINE].NewVersion "WorstCase"
[BOTTOMLINE.WorstCase].Description = "This is the worst case scenario."
[BOTTOMLINE].VersionBorderVisible = True
[A:B5].Contents = "47000"
' Use the Version method to access properties for the new versions.
MessageBox "Use the Version method to access properties for the new versions."
' Declare a variable as a Version object.
Dim returnRangeVersion As Version
' Select the range containing the versions.
[BOTTOMLINE].Goto
[BOTTOMLINE].Select
' Assign the variable to one of the versions in the range.
Set returnRangeVersion = Selection.Version("BestCase")
' Declare a variable to hold the version ID of the selected version.
Dim rangeVersionVersionID As Long
' Get the VersionID of the version.
rangeVersionVersionID = returnRangeVersion.VersionID
Print "VersionID for version BestCase = " rangeVersionVersionID
' Use the Versions method to access in a Versions collection.
MessageBox "Use the Versions method to get collection properties."
' Declare a variable as a Versions collection object.
Dim returnRangeVersions As versions
' Select the range containing the versions.
[BOTTOMLINE].Goto
[BOTTOMLINE].Select
' Assign the variable to collection of versions in the selected range.
Set returnRangeVersions = Selection.Versions
' Declare a variable to hold the value of the Count property.
Dim rangeVersionsCount As Long
' Get the number of versions in the selected range.
rangeVersionsCount = Selection.Versions.Count
Print "Number of versions in range BOTTOMLINE = " rangeVersionsCount
' Generate a report about versions in the selected range.
MessageBox "Generate a report about versions in the selected range."

[BOTTOMLINE].ReportVersion "BestCase;Original;",[A:A20],True,True,$Column
End Sub

1-2-3: WhatIfTable1 method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
Substitutes values for one variable in one or more formulas and enters the results in an output range.

Syntax
document.WhatIfTable1 outputrange, inputcell

Parameters
outputrange

Variant. The name or address of a range that contains the formulas, a list of input values that the formula uses in
place of the variable, and blank cells where 1-2-3 places the results.

inputcell
Variant. The name or address of the cell in which 1-2-3 temporarily enters values for the variable while performing
the calculations required to create the what-if table.
Inputcell1 must be outside of outputrange.

Return values
None

1-2-3: WhatIfTable2 method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
Substitutes values for two variables in one formula and enters the results in an output range.

Syntax
document.WhatIfTable2 outputrange, inputcell1, inputcell2

Parameters
outputrange

Variant. The name or address of a range that contains the formula, a list of input values that the formula uses in
place of the variables, and blank cells where 1-2-3 places the results.

inputcell1, inputcell2
Variant. The names or addresses of the first and second cells in which 1-2-3 temporarily enters values while
performing the calculations required to create the table.
Inputcell1 and inputcell2 must be outside of outputrange.

Return values
None

1-2-3: WhatIfTable3 method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
Substitutes values for three variables in one formula and enters the results in an output range.

Syntax
document.WhatIfTable3 outputrange, inputcell1, inputcell2, inputcell3, formula

Parameters
outputrange

Variant. The name or address of a range that a list of input values that the formula uses in place of the variables,
and blank cells where 1-2-3 places the results.

inputcell1, inputcell2, inputcell3
Variant. The names or addresses of the first, second, and third cells in which 1-2-3 temporarily enters values
while performing the calculations required to create the table.
Inputcell1, inputcell2, and inputcell3 must be outside of outputrange.

formula
Variant. The name or address of a cell containing the formula that has the three variables you want to change.

Return Values
None

1-2-3: WhatIfTableReset method
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
Clears the output ranges and input cells for all what-if tables in the current file.

Syntax
document.WhatIfTableReset

Parameters
None

Return values
None

1-2-3: ZoomIn method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_ZOOMIN_METHOD_EXSCRIPT ',1)} See example
Increases the current zoom value for all sheets in the document by 25% to 400%.

Syntax
document.ZoomIn

Parameters
None

Return values
None

{button ,AL(`H_123_ZOOMOUT_METHOD_MEMDEF;H_123_ZOOMRESET_METHOD_MEMDEF;H_123_ZOOMT
O_METHOD_MEMDEF',0)} See related topics

' Example: ZoomIn, ZoomOut, ZoomReset, and ZoomTo methods
Sub ZoomScales
 ' Zoom out to a preset scale.
 Msgbox "Zoom out to a preset scale."
 CurrentDocument.ZoomOut

 ' Zoom in to the next preset scale.
 Msgbox "Zoom in to the next preset scale."
 CurrentDocument.ZoomIn

 ' Zoom in to the next preset scale.
 Msgbox "Zoom in to the next preset scale."
 CurrentDocument.ZoomIn

 ' Reset the Zoom factor to the current custom zoom factor.
 Msgbox "Reset the Zoom factor to the default."
 CurrentDocument.ZoomReset

 ' Zoom out to 25%.
 Msgbox "Zoom out to 25%."
 CurrentDocument.ZoomTo 25

 ' Zoom in to 200%.
 Msgbox "Zoom in to 200%."
 CurrentDocument.ZoomTo 200

 ' Set the custom zoom factor to 80% and zoom to 80%.
 Msgbox "Set the ZoomScale property to 80%."
 CurrentDocument.ZoomScale = 80
 CurrentDocument.ZoomReset
End Sub

1-2-3: ZoomMapIn method
{button ,AL(`H_123_MAP_CLASS;',0)} See list of classes
Increases the display size of the map by 100%.

Syntax
map.ZoomMapIn

Parameters
None

Return values
None

{button ,AL(`H_123_RECENTERMAP_METHOD_MEMDEF;H_123_REDRAWMAP_METHOD_MEMDEF;H_123_RE
MOVEOVERLAY_METHOD_MEMDEF;H_ZOOMMAPIN_METHOD_MEMDEF;H_ZOOMMAPOUT_METHOD_ME
MDEF;H_ZOOMMAPRESET_METHOD_MEMDEF;H_ZOOMMAPTO_METHOD_MEMDEF;H_ZOOMMAPTORE
CTANGLE_METHOD_MEMDEF',0)} See related topics

1-2-3: ZoomMapOut method
{button ,AL(`H_123_MAP_CLASS;',0)} See list of classes
Shrinks the display size of the map by 50%.

Syntax
map.ZoomMapOut

Parameters
None

Return values
None

{button ,AL(`H_123_RECENTERMAP_METHOD_MEMDEF;H_123_REDRAWMAP_METHOD_MEMDEF;H_123_RE
MOVEOVERLAY_METHOD_MEMDEF;H_ZOOMMAPIN_METHOD_MEMDEF;H_ZOOMMAPOUT_METHOD_ME
MDEF;H_ZOOMMAPRESET_METHOD_MEMDEF;H_ZOOMMAPTO_METHOD_MEMDEF;H_ZOOMMAPTORE
CTANGLE_METHOD_MEMDEF',0)} See related topics

1-2-3: ZoomMapReset method
{button ,AL(`H_123_MAP_CLASS;',0)} See list of classes
Displays the map as it was when it was created.

Syntax
map.ZoomMapReset

Parameters
None

Return values
None

{button ,AL(`H_123_RECENTERMAP_METHOD_MEMDEF;H_123_REDRAWMAP_METHOD_MEMDEF;H_123_RE
MOVEOVERLAY_METHOD_MEMDEF;H_ZOOMMAPIN_METHOD_MEMDEF;H_ZOOMMAPOUT_METHOD_ME
MDEF;H_ZOOMMAPRESET_METHOD_MEMDEF;H_ZOOMMAPTO_METHOD_MEMDEF;H_ZOOMMAPTORE
CTANGLE_METHOD_MEMDEF',0)} See related topics

1-2-3: ZoomMapTo method
{button ,AL(`H_123_MAP_CLASS;',0)} See list of classes
Sets the view scale for the map to the specified percentage.

Syntax
map.ZoomMapTo(viewscale)

Parameters
viewscale

Long. Any long from 0 (zero) - 10000. The percentage to use for the map's view scale.

Return values
None

{button ,AL(`H_123_RECENTERMAP_METHOD_MEMDEF;H_123_REDRAWMAP_METHOD_MEMDEF;H_123_RE
MOVEOVERLAY_METHOD_MEMDEF;H_123_ZOOMMAPIN_METHOD_MEMDEF;H_123_ZOOMMAPOUT_ME
THOD_MEMDEF;H_123_ZOOMMAPRESET_METHOD_MEMDEF;H_123_ZOOMMAPTO_METHOD_MEMDEF;
H_123_ZOOMMAPTORECTANGLE_METHOD_MEMDEF',0)} See related topics

1-2-3: ZoomOut method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_ZOOMOUT_METHOD_EXSCRIPT ',1)} See example
Decreases the current zoom value for all sheets in the document by by a value between 25% and 400%.

Syntax
document.ZoomOut

Parameters
None

Return values
None

{button ,AL(`H_123_ZOOMIN_METHOD_MEMDEF;H_123_ZOOMRESET_METHOD_MEMDEF;H_123_ZOOMTO_
METHOD_MEMDEF',0)} See related topics

' Example: ZoomIn, ZoomOut, ZoomReset, and ZoomTo methods
Sub ZoomScales
 ' Zoom out to a preset scale.
 Msgbox "Zoom out to a preset scale."
 CurrentDocument.ZoomOut

 ' Zoom in to the next preset scale.
 Msgbox "Zoom in to the next preset scale."
 CurrentDocument.ZoomIn

 ' Zoom in to the next preset scale.
 Msgbox "Zoom in to the next preset scale."
 CurrentDocument.ZoomIn

 ' Reset the Zoom factor to the current custom zoom factor.
 Msgbox "Reset the Zoom factor to the default."
 CurrentDocument.ZoomReset

 ' Zoom out to 25%.
 Msgbox "Zoom out to 25%."
 CurrentDocument.ZoomTo 25

 ' Zoom in to 200%.
 Msgbox "Zoom in to 200%."
 CurrentDocument.ZoomTo 200

 ' Set the custom zoom factor to 80% and zoom to 80%.
 Msgbox "Set the ZoomScale property to 80%."
 CurrentDocument.ZoomScale = 80
 CurrentDocument.ZoomReset
End Sub

1-2-3: ZoomReset method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_ZOOMRESET_METHOD_EXSCRIPT',1)} See example
Restores the view scale for the file to the custom scale setting.

Syntax
document.ZoomReset

Parameters
None

Return values
None

{button ,AL(`H_123_ZOOMIN_METHOD_MEMDEF;H_123_ZOOMOUT_METHOD_MEMDEF;H_123_ZOOMTO_ME
THOD_MEMDEF',0)} See related topics

' Example: ZoomIn, ZoomOut, ZoomReset, and ZoomTo methods
Sub ZoomScales
 ' Zoom out to a preset scale.
 Msgbox "Zoom out to a preset scale."
 CurrentDocument.ZoomOut

 ' Zoom in to the next preset scale.
 Msgbox "Zoom in to the next preset scale."
 CurrentDocument.ZoomIn

 ' Zoom in to the next preset scale.
 Msgbox "Zoom in to the next preset scale."
 CurrentDocument.ZoomIn

 ' Reset the Zoom factor to the current custom zoom factor.
 Msgbox "Reset the Zoom factor to the default."
 CurrentDocument.ZoomReset

 ' Zoom out to 25%.
 Msgbox "Zoom out to 25%."
 CurrentDocument.ZoomTo 25

 ' Zoom in to 200%.
 Msgbox "Zoom in to 200%."
 CurrentDocument.ZoomTo 200

 ' Set the custom zoom factor to 80% and zoom to 80%.
 Msgbox "Set the ZoomScale property to 80%."
 CurrentDocument.ZoomScale = 80
 CurrentDocument.ZoomReset
End Sub

1-2-3: ZoomTo method
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_ZOOM_PROPERTY_EXSCRIPT;H_123_ZOOMTO_METHOD_EXSCRIPT;',1)} See example
Sets the view scale for all sheets in the file to the specified magnification percentage. Increasing the view scale
increases magnification; decreasing it reduces magnification.

Syntax
document.ZoomTo viewscale

Parameters
viewscale

Long. Any long from 25 - 400. The magnification factor of the view scale expressed as a percent. The default view
scale for new files can be set using the View menu Zoom commands.

Return values
None

{button ,AL(`H_123_ZOOMIN_METHOD_MEMDEF;H_123_ZOOMOUT_METHOD_MEMDEF;H_123_ZOOMRESET
_METHOD_MEMDEF;',0)} See related topics

'Example: ZoomTo method
'Toggle display size of cells between 75% and 100%

'Check current zoom percentage
If .Zoom = 75 Then
 'Zoom in or out, accordingly
 .ZoomTo 100
Else
 .ZoomTo 75
End If

1-2-3: ActiveCell property
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_ACTIVECELL_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns a Range object containing just the active cell.

Data type
Range

Syntax
Set value = sheet.ActiveCell

Legal values
The legal value for the ActiveCell property is a single-cell Range object.

' Example: ActiveCell property and SetActiveCell method
' To verify the active cell.
[C1..D5].Select
[D3].SetActiveCell
'Verify that the active cell is set and returned correctly.
Msgbox [A].ActiveCell.Name

' Example: ActiveDocument property
' To read the name of the active document.
Msgbox "The active document is " + CurrentApplication.ActiveDocument.Name

1-2-3: ActiveDocument property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_ACTIVEDOCUMENT_EXSCRIPT',1)} See example
(Read-only) Returns the current document object.

Data type
Document

Syntax
Set value = application.ActiveDocument

Legal values
The value of the ActiveDocument property is a Document object.

1-2-3: ActiveDocWindow property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns the active document window.

Data type
DocWindow

Syntax
Set application.ActiveDocWindow = value
Set value = application.ActiveDocWindow

Legal values
The value for the ActiveDocWindow property can be any valid document window.

1-2-3: Active property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;

H_123_WINDOW_CLASS',0)} See list of classes
{button ,AL(`H_123_ACTIVE_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Determines whether the object you specify is the active object.

Data type
Variant (Boolean)

Syntax
value = object.Active

Legal values
Value Description
TRUE The specified object is the

active object.
FALSE The specified object is not the

active object.

' Example: Active property
' To determine whether a file is active.
Forall win In CurrentDocument.DocWindows
 If win.Active = False Then
 Msgbox win.Name + "is not active."
 Else
 Msgbox win.Name + "is active."
 End If
End Forall

1-2-3: Addins property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns a collection of add-in names that are currently registered.

Data type
Strings

Syntax
Set strings = application.Addins

Legal values
The value of the Addins property is the names of add-ins that are currently registered.

Usage
An add-in must be registered in order to be loaded.

{button ,AL(`H_123_ISADDINLOADED_METHOD_MEMDEF',0)} See related topics

1-2-3: AlignOverColumns property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_ALIGNOVERCOLUMNS_PROPERTY_EXSCRIPT',1)} See example
Determines whether the text in the leftmost cell is aligned over the columns within the range. The text alignment for
the range is set by the TextHorizontalAlign property.

Data type
Variant (Boolean)

Syntax
range.AlignOverColumns = value
value = range.AlignOverColumns

Legal values
Value Description
TRUE Align text over the columns.
FALSE Do not align text over the

columns.

' Example: AlignOverColumns, Contents, and TextHorizontalAlign properties (Text Only)
' Select a range and align the text over columns.
Sub AlignText

[A:B5].Contents = "Test"
[A:B5].TextHorizontalAlign = $AlignCenter
[A:B5..A:C5].Select
[A:B5..A:C5].AlignOverColumns = True

End Sub

1-2-3: AllNames property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_ALLNAMES_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the address of the current range and all range names for that range.

Data type
Strings

Syntax
value = range.AllNames

Legal values
The values of the AllNames property are all range names for the specified range, all associated version names, and
the range address. The AllNames property always returns the range address, at least.

' Example: AllNames property and CreateRangeName method
' Create 3 different range names on the same range.
' Print out all names for the range.
Sub PrintNames
 CurrentDocument.CreateRangeName "xyz1",[A:B10..A:E15]

CurrentDocument.CreateRangeName "eieio",[A:B10..A:E15]
CurrentDocument.CreateRangeName "b10toe15",[A:B10..A:E15]

Forall x In [A:B10..A:E15].AllNames
Print x

End Forall
End Sub

'The output will be:
' A:B10..A:E15
' B10TOE15
' EIEIO
' XYZ1

1-2-3: AllowsUpdates property
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
Determines whether the user can update the data retrieved for a query, using the Query Table - Update command.
Setting this property also causes the data to be refreshed.

Data type
Variant (Boolean)

Syntax
dataquery.AllowsUpdates = value
value = dataquery.AllowsUpdates

Legal values
Value Description
TRUE The query table will accept

updates.
FALSE (Default) The query table will

not accept updates.

Usage
This property can only be set if there is only one source table associated with the query. It is not valid if there are
joined tables, or if the query table has an aggregate, a computed column, sorted fields, or if the unique setting is on,
or if records-limited is on.

1-2-3: AllPagesPrint property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether to print all of the pages in the print selection.

Data type
Variant (Boolean)

Syntax
printsettings.AllPagesPrint = value
value = printsettings.AllPagesPrint

Legal values
Value Description
TRUE (Default) Print all pages in the

print selection.
FALSE Print only the pages specified

by the PageFrom and PageTo
properties.

1-2-3: AlwaysReserve property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_ALWAYSRESERVE_PROPERTY_EXSCRIPT',1)} See example
Determines whether the file opens as read-write (reserved) or read-only.

Data type
Variant (Boolean)

Syntax
value = document.AlwaysReserve
document.AlwaysReserve = value

Legal values
Value Description
TRUE (Default) The file will open as

read-write.
FALSE The file will open as read-only.

' Example: AlwaysReserve property
' Reserve the file.
CurrentDocument.AlwaysReserve = True

1-2-3: Anchor property
{button ,AL(`;H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS

;H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJE
CT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_
CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;
H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RECTANGLE_CL
ASS',0)} See list of classes

Sets or returns how an object is fastened to the cells behind it.

Data type
Variant (AnchorType enumeration)

Syntax
object.Anchor = value
value = object.Anchor

Legal values
Value Description
$TopLeftAndBottomRight You can move and size the

object when you move, size,
and hide cells behind it.

$TopLeft You can move, but not size,
the object when you move,
size, and hide cells behind it.

$NotFastened You can detach the object
from the underlying cells.
Then you can move, size, or
hide cells behind the selected
object without moving or
resizing the object.

Usage
Anchoring applies to the following objects: Arc, ButtonControl, Chart, DrawLine, DrawObject, EditText, Ellipse,
Freehand, Group, Legend, Map, MapTitle, OLEObject, Picture, MapPlot, Polygon, Polyline, Rectangle,
RoundedRectangle.

1-2-3: ApplicationMaximized property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_APPLICATIONMAXIMIZED_PROPERTY_EXSCRIPT',1)} See example
Determines whether to display 1-2-3 in a maximized window when starting.

Data type
Variant (Boolean)

Syntax
application.ApplicationMaximized = value
value = application.ApplicationMaximized

Legal values
Value Description
TRUE Display 1-2-3 in a maximized

window.
FALSE (Default) Do not display 1-2-3

in a maximized window.

' Example: ApplicationMaximized property
' Set the application to display as maximized when opened.
CurrentApplication.ApplicationMaximized = True

1-2-3: ApplicationWindow property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_CASCADE_METHOD_EXSCRIPT;H_123_APPLICATIONWINDOW_PROPERTY_EXSCRIPT',1)

} See example
(Read-only) Returns the application window for the current application.

Data type
ApplicationWindow

Syntax
Set applicationwindow = application.ApplicationWindow

Legal Values
The value of the ApplicationWindow property is the ApplicationWindow object.

' Example: ApplicationWindow property and Cascade method
' Create two document windows and cascade them.
Dim appwindow As ApplicationWindow
Dim doc1 As Document
Dim doc2 As Document
Set appwindow = CurrentApplication.ApplicationWindow
Set doc1 = CurrentApplication.NewDocument("Document #1")
Set doc2 = CurrentApplication.NewDocument("Document #2")
' Cascade the document windows.
appwindow.Cascade

1-2-3: Application property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_ARC_CLASS;H_123_

APPROACHCONNECTION_CLASS;H_123_BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BU
TTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123
_DATALINK_CLASS;H_123_DATETIME_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H
_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITT
EXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CL
ASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_MAPPLOT_CLASS;H_123
_MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_1
23_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_1
23_PRINTSETTINGS_CLASS;H_123_QUERY_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;
H_123_RANGEBORDER_CLASS;H_123_RANGESELECTOR_CLASS;H_123_RECTANGLE_CLASS;H_123_SH
EET_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS;',0)} See
list of classes

{button ,AL(`H_123_APPLICATION_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the application object. There can be only one application object per running application, that is,
one application per 1-2-3 executable running. There is a single window associated with each application.

Data type
Application

Syntax
Set application = object.Application

Legal values
The legal value for the Application property is the application object.

' Example: Application property
' The Application property is best illustrated in the context of OLE automation.
' Assume this script is being run from any Lotus SmartSuite product
' or from VisualBasic.
Dim docvar As Variant
Dim appvar As Variant
Set docvar = CreateObject("Lotus123.Workbook.97")
' Get a reference to the 1-2-3 application object.
Set appvar = docvar.Application
Msgbox "The application name is "+appvar.name

1-2-3: ArgumentSeparator property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_ARGUMENTSEPARATOR_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the argument separator that is set in the Windows Control Panel. For more information, see
your Microsoft documentation.

Data type
String

Syntax
value = application.ArgumentSeparator

Legal values
The value of the ArgumentSeparator property is the list separator set in the Windows Control Panel.

' Example: ArgumentSeparator property
' To return the argument separator.
Msgbox "The regional settings list separator is " + _
 CurrentApplication.ArgumentSeparator

1-2-3: Arrow property
{button ,AL(`H_123_ARC_CLASS;H_123_DRAWLINE_CLASS;H_123_FREEHAND_CLASS;H_123_POLYLINE_CL

ASS;H_123_DRAWCOLLECTION_CLASS',0)} See list of classes
Sets or returns the type of arrowhead that is added to an object.

Data type
Variant (ArrowType enumeration)

Syntax
object.Arrow = value
value = object.Arrow

Legal values
Value Description
$Head Add an arrowhead to the

beginning of the object.
$Tail Add an arrowhead to the end

of the object.
$Both Add an arrowhead to both

ends of the object.
$None Do not add any arrowheads to

the object.

1-2-3: Authors property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_AUTHORS_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns a string collection containing the name of the person who created the file and the name of the
last person to modify that file.

Data type
Strings

Syntax
Set strings = document.Authors

Legal values
The value of the Authors property is the Strings object containing the names of the persons who created and last
modified the file.

' Example: Authors property
' To return the author and last editor of the document.
Msgbox "The original author of this document is " + _
 CurrentDocument.Authors(0)
Msgbox "The last editor of this document is " + CurrentDocument.Authors(1)

1-2-3: Author property
{button ,AL(`;H_123_DOCUMENT_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS',0)} See

list of classes
{button ,AL(`H_123_AUTHOR_PROPERTY_EXSCRIPT;H_123_KEYWORDS_PROPERTY_EXSCRIPT ',1)} See

example
(Read-only) Returns the name of the person who created the workbook, version, or version group.

Data type
String

Syntax
value = object.Author

Legal values
The value of the Author property is the string containing the name of the person who created the object.

' Example: Author property
' To return the author of the document.
Msgbox "The author of this document is " + CurrentDocument.Author

1-2-3: AutoExecMacrosEnabled property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_AUTOEXECMACROSENABLED_PROPERTY_EXSCRIPT',1)} See example
Determines whether autoexecute macros run automatically when you open a workbook.

Data type
Variant (Boolean)

Syntax
application.AutoExecMacrosEnabled = value
value = application.AutoExecMacrosEnabled

Legal values
Value Description
TRUE (Default) Run the autoexecute

macros.
FALSE Do not run the autoexecute

macros.

' Example: AutoexecMacrosEnabled property
' Set autoexecute macros to run automatically.
CurrentApplication.AutoExecMacrosEnabled = True

1-2-3: AutoOpenPath property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_AUTOOPENPATH_PROPERTY_EXSCRIPT',1)} See example
Sets or returns a folder. The files in this folder are automatically opened when the application starts.

Data type
String

Syntax
application.AutoOpenPath = value
value = application.AutoOpenPath

Legal values
The value of the AutoOpenPath property is the name of the folder you specify in the File - User Setup - 1-2-3
Preferences dialog box, under Automatically opened files.

' Example: AutoOpenPath property
' To return the directory of the documents that are opened automatically.
Msgbox "The documents in the directory " + _
 CurrentApplication.AutoOpenPath + _
 are opened automatically when 1-2-3 starts."

1-2-3: AutoRedraw property
{button ,AL(`H_123_MAP_CLASS;H_123_DRAWCOLLECTION_CLASS',0)} See list of classes
Determines whether maps are set to redraw automatically when data changes.

Data type
Variant (Boolean)

Syntax
object.AutoRedraw = value
value = object.AutoRedraw

Legal values
Value Description
TRUE (Default) Maps redraw

automatically.
FALSE Maps do not redraw

automatically.

Usage
If the value of the AutoRedraw property is false, 1-2-3 redraws maps only when it reaches a RedrawMap method in a
script or when the user chooses the Map - Redraw command.

1-2-3: AutoRefresh property
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
Determines whether to automatically refresh a query table whenever a change is made to the query that would affect
the results.
The following methods and properties will always refresh the table automatically: AddSelectField,
RemoveSelectField, setting SelectFields, setting BaseSourceTable, CreateComputedField, DeleteComputedField,
Join, and setting AllowsUpdates to TRUE.

Data type
Variant (Boolean)

Syntax
dataquery.AutoRefresh = value
value = dataquery.AutoRefresh

Legal values
Value Description
TRUE (Default) Refresh the query

table automatically.
FALSE Do not refresh the query table

automatically.

Usage
If the value of the AutoRefresh property is false, 1-2-3 refreshes query tables only when it reaches a RefreshQuery
method in a script or when the user chooses the Query Table - Refrsh command.

1-2-3: AutoUpdate property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;

H_123_QUERYTABLE_CLASS',0)} See list of classes
Determines whether to automatically update the linked object when the source changes.

Data type
Variant (Boolean)

Syntax
object.AutoUpdate = value
value = object.AutoUpdate

Legal values
Value Description
TRUE (Default) Update the linked

object automatically.
FALSE Do not update the linked

object automatically.

Usage
If the value of the AutoUpdate property is false, 1-2-3 updates links only when it reaches an Update method in a script
or when the user chooses Edit - Manage Links and clicks the Update Now button in the Manage Links dialog box.

1-2-3: AvailableMemory property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns the amount of available memory in bytes.

Data type
Long

Syntax
value = application.AvailableMemory

Legal Values
The value for the AvailableMemory property is the amount of available memory.

1-2-3: BackColor property
{button ,AL(`H_123_BACKGROUND_CLASS',0)} See list of classes
{button ,AL(`H_123_BACKCOLOR_PROPERTY_EXSCRIPT;H_123_SHOWDRAWLAYER_PROPERTY_EXSCRIPT;

H_123_GREEN_PROPERTY_EXSCRIPT;H_123_ISHIDDEN_AND_ISPROTECTED_PROPERTIES_EXSCRIPT',
1)} See example

Sets or returns the background color for an object.

Data type
Color

Syntax
Set background.BackColor = color
Set color = background.BackColor

Legal Values
The value of the BackColor property is a Color object.

' Example: BackColor, Background, Bold, Colors, Contents, Font, Fontcolor,
' and Pattern properties
' Declare the variables.

Dim testapp As Application
Dim testfont As Font
Dim y As Color
Dim z As Color
Dim range1 As Range
Set testapp = CurrentApplication

' Declare and name a range.
Set range1 = [A:A2..A:A10]

' Set the variable testfont as the font for the A1 cell and make
' the font bold. Set the variables y and z to the colors red and white.

Set testfont = [A1].Font
testfont.Bold = True
Set y = testapp.Colors("White")
Set z = testapp.Colors("Red")

' Set the colors for the first column and the background pattern for
' the named range. Set the contents of cell A1 to read "label here".

Set testfont.Fontcolor = y
Set range1.Background.Backcolor = z
range1.Background.Pattern = $runningbricks
[A1].Contents = "label here"

1-2-3: Background property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_CHART_CLASS;;H_123_DR

AWCOLLECTION_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_
123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPPLOT_CLASS;H_123_MAPTI
TLE_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYL
INE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_123_RECTANGLE_CLASS;H_123_SHE
ET_CLASS',0)} See list of classes

{button ,AL(`H_123_BACKCOLOR_PROPERTY_EXSCRIPT;H_123_SHOWDRAWLAYER_PROPERTY_EXSCRIPT;
H_123_SHOWMARKERS_PROPERTY_EXSCRIPT;H_123_BACKGROUND_PROPERTY_EXSCRIPT;H_123_PA
TTERN_PROPERTY_EXSCRIPT;H_123_GREEN_PROPERTY_EXSCRIPT;H_123_ISHIDDEN_AND_ISPROTEC
TED_PROPERTIES_EXSCRIPT',1)} See example

With the Pattern, Color, or BackColor property, sets or returns the pattern, color, or background color for an object.

Data type
Background

Syntax
Set object.Background = background
Set object.Background.BackColor = color
Set object.Background.Color = color
Set object.Background.Pattern = pattern
Set background = object.Background
Set color = object.Background.BackColor
Set color = object.Background.Color
Set pattern = object.Background.Pattern

Legal values
A Background object.
See the Pattern property for a list of patterns.
See the Color palette for a list of colors.

' Example: Background and Pattern properties
' Add a background pattern.
Sub AddPattern
 [A:A5..A:H25].Background.Pattern = $DoubleRightHatch
End Sub

1-2-3: BaseMapName property
{button ,AL(`;H_123_DRAWCOLLECTION_CLASS;H_123_MAP_CLASS;H_123_GROUP_CLASS',0)} See list of

classes
(Read-only) Returns the file name of a base map. A base map is a map one starts with before adding overlays.

Data type
String

Syntax
value = object.BaseMapName

Legal values
The value of the BaseMapName property is a string containing the name of a map. Map names for maps that are
available with 1-2-3 include the following:
World Countries
USA by State
Alaska
Hawaii
Canada by Province
European Union by Region
Europe by Country
Japan by Prefecture
Mexico by Estado
Australia by State
Taiwan

1-2-3: BaseSourceTable property
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
Sets or returns the base (first) source table. If there is a joined table, all other tables are joined to the base table.

Data type
String

Syntax
dataquery.BaseSourceTable = value
value = dataquery.BaseSourceTable

Legal values
The value of the BaseSourceTable property is a string containing the range name or address of a database table.

Usage
When you set a new table as the base source table, it must have the same number of fields and the same field
names as the current base source table.

1-2-3: BeepsOnError property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_BEEPSONERROR_PROPERTY_EXSCRIPT',1)} See example
Determines whether an audible beep sounds when an error occurs.

Data type
Variant (Boolean)

Syntax
application.BeepsOnError = value
value = application.BeepsOnError

Legal values
Value Description
TRUE (Default) Sound a beep when

an error occurs.
FALSE Do not sound a beep when an

error occurs.

' Example: BeepsOnError property
' Set the property to sound a beep when an error occurs.
CurrentApplication.BeepsOnError = True

1-2-3: BinRange property
{button ,AL(`H_123_MAPBINS_CLASS',0)} See list of classes
Sets or returns the range that contains the data 1-2-3 uses to group data into map data bins.

Data type
Range

Syntax
Set mapbins.BinRange = value
Set value = mapbins.BinRange

Legal values
The value of the BinRange property is any valid range.

1-2-3: BinsUsed property
{button ,AL(`H_123_MAPBINS_CLASS',0)} See list of classes
(Read-only) Returns the number of map data bins that contain values for the specified collection of bins.

Data type
Long

Syntax
value = mapbins.BinsUsed

Legal values
The value of the BinsUsed property is the number of bins that contain values.

1-2-3: BinType property
{button ,AL(`H_123_MAPBINS_CLASS',0)} See list of classes
Sets or returns the way 1-2-3 groups data into map data bins for a collection of bins: Exact Match or Upper Limit.

Data type
Variant (MapBinType enumeration)

Syntax
mapbins.BinType = value
value = mapbins.BinType

Legal values
Value Description
$ExactMatch Display in the map data that is

the same as the bin value
only.

$UpperLimit Display in the map data that is
less than or equal to the bin
value.

1-2-3: Blue property
{button ,AL(`H_123_COLOR_CLASS',0)} See list of classes
{button ,AL(`H_123_BLUE_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the blue component of a color.

Data type
Long

Syntax
value = color.Blue

Legal values
The value of the Blue property is an integer from 0 - 255.

' Example: Blue and Colors properties
' Return the Blue value of the color.
Dim blueval As Long
Dim mycolor As Color
Set mycolor = CurrentApplication.Colors("magenta")
blueval = mycolor.Blue
Print blueval

1-2-3: Bold property
{button ,AL(`H_123_FONT_CLASS',0)} See list of classes
{button ,AL(`H_123_BACKCOLOR_PROPERTY_EXSCRIPT;H_123_STRIKETHROUGH_PROPERTY_EXSCRIPT;H

_123_STYLENAME_PROPERTY_EXSCRIPT;H_123_BOLD_PROPERTY_EXSCRIPT',1)} See example
Sets or returns whether the data is styled using the bold attribute.

Data type
Variant (Boolean)

Syntax
font.Bold = value
value = font.Bold

Legal values
Value Description
TRUE Apply the bold attribute to the

data.
FALSE (Default) Do not apply the bold

attribute to the data.

' Example: Bold, Contents, and Font properties
' Make the title bold.
[A1].Contents = "Quarterly Report"
[A1].Font.Bold = True

1-2-3: BottomBorder property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_BOTTOMBORDER_PROPERTY_EXSCRIPT',1)} See example
With the Style or Color property, sets or returns the style or color of the bottom border of a range.

Data type
RangeBorder

Syntax
Set range.BottomBorder.Style = value
Set range.BottomBorder.Color = value
Set value = range.BottomBorder.Style
Set value = range.BottomBorder.Color

Legal values
See the Style property for a list of border styles.
See the Color palette for a list of border colors.

'Example: BottomBorder, Color, and ColorName properties
'Select a range and apply a bottom border style to the range.
[A1..B5].Select
Selection.BottomBorder.Style = $LongDashBorder
Selection.BottomBorder.Color.ColorName = "red"

1-2-3: BottomMargin property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the bottom margin print setting in twips.

Data type
Long

Syntax
printsettings.BottomMargin = value
value = printsettings.BottomMargin

Legal values
The combined top and bottom margin settings cannot be greater than the length of the paper.

1-2-3: CalcIterations property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_CALCITERATIONS_PROPERTY_EXSCRIPT',1)} See example
Sets the number of passes 1-2-3 makes to recalculate data.

Data type
Long

Syntax
object.CalcIterations = value
value = object.CalcIterations

Legal values
The value of the CalcIterations property is from 1 - 50.

' Example: CalcIterations property
' Set the recalculation iterations value for a document.
CurrentDocument.CalcIterations = 5

1-2-3: CalcMode property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_DESCRIPTION_PROPERTY_EXSCRIPT;H_123_CALCMODE_PROPERTY_EXSCRIPT',1)}

See example
Sets or returns whether 1-2-3 recalculates data automatically or manually.

Data type
Variant (RecalcMode enumeration)

Syntax
object.CalcMode = value
value = object.CalcMode

Legal values

Value Description
$Automatic (Default) Automatically

recalculate all corresponding
formulas when a change has
been made to a cell.

$Manual Recalculate formulas only
after the following actions or
commands: F9, {Calc}, .Calc,
or .RecalcRange.

' Example: CalcMode property
' Set the recalculation mode to manual for the document.
CurrentDocument.CalcMode = $Manual

1-2-3: CalcOrder property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_CALCORDER_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the order in which 1-2-3 recalculates data: on all values, by columns, or by rows.

Data type
Variant (RecalcOrder enumeration)

Syntax
object.CalcOrder = value
value = object.CalcOrder

Legal values
Value Description
$Natural (Default) Recalculate all

values on which the formula
depends before recalculating
the formula.

$Column Recalculate by column,
beginning with A:A1.

$Row Recalculate by row, beginning
with A:A1.

' Example: CalcOrder property
' Recalculate values in the document by column.
CurrentDocument.CalcOrder = $Columns

1-2-3: Caption property
{button ,AL(`;H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS',0)

} See list of classes
(Read-only) Returns the title of a window.

Data type
String

Syntax
value = object.Caption

Legal values
The value for the Caption property is a string containing the window title.

1-2-3: CellCommentsPrint property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether cell comments for the corresponding print range will print. Cell comments will print in a list
starting on a new page, following all other data.

Data type
Variant (Boolean)

Syntax
printsettings.CellCommentsPrint = value
value = printsettings.CellCommentsPrint

Legal values
Value Description
TRUE Print cell comments.
FALSE (Default) Do not print cell

comments.

1-2-3: CellComment property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWMARKERS_PROPERTY_EXSCRIPT;H_123_CELLCOMMENT_PROPERTY_EXSCRIPT'

,1)} See example
Sets or returns a comment that is attached to a cell or range, which can be viewed by the Range - Range Properties
InfoBox.

Data type
String

Syntax
range.CellComment = value
value = range.CellComment

Legal values
The maximum length of the string is 1024 characters.

Usage
You can set or return a comment for a single cell only. If you set a cell comment for a range, only the first cell in the
range contains the comment.

' Example: CellComment property
' Set the comment of a cell.
Dim commentfortotal As String
commentfortotal = "This is the grand total for the year."
[A:B9].CellComment = commentfortotal

1-2-3: CellDisplay property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_CELLDISPLAY_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the formatted cell as it is displayed.

Data type
String

Syntax
value = range.CellDisplay

Legal Value
The value of the CellDisplay propery is a string containing the formatted cell.

' Example: CellDisplay, Contents, FormatDecimals, and FormatName properties
' Enter a value, format the value, and display the formatted value.
Sub FormatVal

[A:B5].Select
Selection.Contents = "0.15"
Selection.FormatName = "Percent"
Selection.FormatDecimals = 0
Messagebox Selection.CellDisplay

End Sub
'The messagebox will display: 15%

1-2-3: Cells property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_CELLS_PROPERTY_EXSCRIPT;H_123_FONTCOLOR_PROPERTY_EXSCRIPT',1)} See

example
(Read-only) Returns a range collection, with each element of the collection being a single-cell range. Each iteration of
the collection goes to the next cell in the range.

Data type
Ranges

Syntax
Set ranges = range.Cells

Legal values
The value of the Cells property is a range collection of single-cell ranges.

' Example: Cells and Contents properties
' Returns a range collection.
'Create a new sheet.
CurrentDocument.NewSheet $After,1,True
'Declare a variable of type Ranges.
Dim rangetoiterate As Ranges
'Use a 3D source range.
Set rangetoiterate = [A:A1..B:C3].Cells
'A variable for use in the Forall.
Dim indx As Integer
'Collections start at zero.
indx=0
'This loop sets the Contents property to its index value in the
'Cells collection.
Forall onecell in rangetoiterate
 'CellValue is the index.
 onecell.Contents = Cstr(indx)
 indx=indx + 1
End Forall

1-2-3: CellValue property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_CELLVALUE_PROPERTY_EXSCRIPT;H_123_FONTCOLOR_PROPERTY_EXSCRIPT',1)} See

example
(Read-only) Returns the value of a cell once formulas have been calculated.

Data type
Variant

Syntax
value = range.CellValue

Legal values
The value of the CellValue property is the value that appears in the specified cell.

' Example: CellValue property
' Return the value of a cell.
Dim myvalue As Variant
[A:B9].Contents = "10*5"
myvalue = [A:B9].CellValue
Msgbox "The value of B9 is: " + myvalue
' The result will be a messagebox that says, "The value of B9 is: 50".

1-2-3: CenterLeftToRight property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether data and graphic objects will be centered horizontally when printed.

Data type
Variant (Boolean)

Syntax
printsettings.CenterLeftToRight = value
value = printsettings.CenterLeftToRight

Legal values
Value Description
TRUE Center printed data

horizontally.
FALSE (Default) Do not center printed

data.

1-2-3: CenterTopToBottom property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether data will be centered vertically when printed.

Data type
Variant (Boolean)

Syntax
printsettings.CenterTopToBottom = value
value = printsettings.CenterTopToBottom

Legal values
Value Description
TRUE Center printed data vertically.
FALSE (Default) Do not center printed

data.

1-2-3: CenturyLongFormat property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_CENTURYLONGFORMAT_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Determines whether the year number in date formats have a long format. For example, 1997 is a long
format, while 97 is a short format.

Data type
Variant (Boolean)

Syntax
value = application.CenturyLongFormat

Legal values
Value Description
TRUE The year number has a long

format.
FALSE (Default) The year number has

a short format.

' Example: CenturyLongFormat property
' Determine what format the operating system is using to display the year.
Dim dispdate as Variant
dispdate = CurrentApplication.CenturyLongFormat
Print dispdate
'This prints True if the operating system is set to show the year in four digits,
'or False if the operating system is set to show the year in two digits.

1-2-3: Changed property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_CHANGED_PROPERTY_EXSCRIPT',1)} See example
Determines whether the file has been changed since it was last saved.

Data type
Variant (Boolean)

Syntax
document.Changed = value
value = document.Changed

Legal values
Value Description
TRUE The file has changed.
FALSE The file has not changed.

' Example: Changed property
' Determine whether a file has changed or not.
Dim docchanged As Variant
docchanged = CurrentDocument.Changed
' Show the mesage True if the file has changed and
' False if the file has not changed.
MessageBox Str(docchanged)

1-2-3: ChartsPicturesAndDrawPrint property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether graphic objects should be printed with sheet data.

Data type
Variant (Boolean)

Syntax
printsettings.ChartPicturesAndDrawPrint = value
value = printsettings.ChartPicturesAndDrawPrint

Legal values
Value Description
TRUE (Default) Print graphic objects

with sheet data.
FALSE Do not print graphic objects

with sheet data.

1-2-3: Charts property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
(Read-only) Returns a ChartsCollection object.

Data type
Charts

Syntax
Set charts = document.Charts

Legal values
The value for the Charts property is the collection of charts in the specified file.

1-2-3: ClassicMenuActivationKey property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns the key(s) you use to display the 1-2-3 Classic menu.

Data type
Variant (ClassicMenuKeyChoices enumeration)

Syntax
application.ClassicMenuActivationKey = value
value = application.ClassicMenuActivationKey

Legal values
Value Description
$SlashKey (Default) Slash key displays

the Classic menu.
$LessThanKey Angle bracket displays the

Classic menu.
$SlashAndLessThanKey Either the slash key or the

angle bracket displays the
Classic menu.

1-2-3: ClassicMenuEnabled property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether the user can turn on the display of the 1-2-3 Classic menu.

Data type
Variant (Boolean)

Syntax
application.ClassicMenuEnabled = value
value = application.ClassicMenuEnabled

Legal values
Value Description
TRUE (Default) The user can turn on

the display of the 1-2-3 Classic
menu.

FALSE The user can turn off the
display of the 1-2-3 Classic
menu.

1-2-3: ClassName property
{button ,AL(`H_123_CLASSINFO_CLASS',0)} See list of classes
(Read-only) Returns the name of the data type of the specified class.

Data type
String

Syntax
value = classinfo.ClassName

Legal values
The value of the ClassName property is the name of any valid 1-2-3 class.

1-2-3: ClassVersionId property
{button ,AL(`H_123_CLASSINFO_CLASS',0)} See list of classes
(Read-only) Returns the version of the specified object.

Data type
Long

Syntax
value = classinfo.ClassVersionId

Legal values
The default value of the ClassVersionId property is the version of the specified object.

1-2-3: Class property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_ARC_CLASS;H_123_

BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_C
LASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123_DATALINK_CLASS;H_123_DATETIME_CLA
SS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJ
ECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_
CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_12
3_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_123_OLEOBJECT_CLASS;H_123_
PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_PRINTSETTINGS_CLASS;H_
123_QUERY_CLASS;H_123_RANGE_CLASS;H_123_RANGEBORDER_CLASS;H_123_RECTANGLE_CLASS;
H_123_SHEET_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS
;H_123_APPROACHCONNECTION_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_QUERYTABLE_CLAS
S;H_123_MAPPLOT_CLASS;H_123_MAPTEXTENTRY_CLASS;H_123_RANGESELECTOR_CLASS;',0)} See
list of classes

{button ,AL(`H_123_CLASS_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the ClassInfo subobject for the specified object.

Data type
ClassInfo

Syntax
Set classinfo = object.Class

Legal values
The value of the Class property is the ClassInfo subobject for the specified object.

' Example: Class property
' To return the class type of the selection.
MessageBox "The class type of the selection is " + Selection.Class.Classname

1-2-3: Collate property
{button ,AL(`H_123_PRINTSETTINGS_CLASS;',0)} See list of classes
Determines whether the print selection is collated or not. This property applies to printers with the collate function
only.

Data type
Variant (Boolean)

Syntax
printsettings.Collate = value
value = printsettings.Collate

Legal values
Value Description
TRUE Collate the print selection.
FALSE (Default) Do not collate the

print selection.

1-2-3: ColorBins property
{button ,AL(`H_123_DRAWCOLLECTION_CLASS;H_123_MAP_CLASS;H_123_GROUP_CLASS',0)} See list of

classes
(Read-only) Returns the collection of color bins for a map.

Data type
MapBins

Syntax
Set mapbins = object.ColorBins

Legal values
The value for the ColorBins property is a MapBins object.

1-2-3: ColorIndex property
{button ,AL(`H_123_COLOR_CLASS',0)} See list of classes
{button ,AL(`H_123_COLORINDEX_PROPERTY_EXSCRIPT;H_123_NEGATIVESINCOLOR_PROPERTY_EXSCRI

PT;',1)} See example
Sets or returns the palette index of the color.

Data type
Long

Syntax
object.color.ColorIndex = value
value = object.color.ColorIndex

Legal values
Any Long from 0 - 239. For a list of color names and color index values, see the Color palette.

' Example: BackColor, Background, and ColorIndex properties
' To set the background to every available color.
Dim palindex As Long
'Set the background to every available color.
For palindex = 239 To 0 Step -1
[A:A1].Background.BackColor.ColorIndex = palindex
Next palindex

1-2-3: ColorName property
{button ,AL(`H_123_COLOR_CLASS;',0)} See list of classes
{button ,AL(`H_123_SHOWMARKERS_PROPERTY_EXSCRIPT;H_123_SHOWDRAWLAYER_PROPERTY_EXSCR

IPT;H_123_STYLENAME_PROPERTY_EXSCRIPT;H_123_EDGECOLOR_PROPERTY_EXSCRIPT;H_123_COL
ORNAME_PROPERTY_EXSCRIPT;H_123_PATTERN_PROPERTY_EXSCRIPT;H_123_FONTCOLOR_PROPER
TY_EXSCRIPT;H_123_GRIDBORDER_PROPERTY_EXSCRIPT;H_123_HORIZONTALBORDER_PROPERTY_E
XSCRIPT;H_123_INNERBORDER_PROPERTY_EXSCRIPT;',1)} See example

Set or returns the name of the color of the Color object.

Data type
String

Syntax
object.color.ColorName = value
value = object.color.ColorName

Legal values
The value for the ColorName property is the name of the color of the Color object.
For a list of all the color names, see the Color palette.

Usage
This string is identical to the Name property of the color.

' Example: ColorName, Font, and FontColor properties
' Select a range and change font color.
Sub FontColor
 [A:B5..A:H25].Select
 [A:A5..A:H25].Font.FontColor.ColorName = "Wedgewood"
End Sub

1-2-3: Colors property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_BACKCOLOR_PROPERTY_EXSCRIPT;H_123_COLORS_PROPERTY_EXSCRIPT',1)} See

example
(Read-only) Returns the collection of 240 colors.

Data type
Colors

Syntax
Set colors = application.Colors

Legal values
The values of the Colors property are Color objects.

Usage
You can access the Color objects in the Colors property either by the name of the color (a string index) or by numbers
0 - 239 (an ordinal index). See Color palette for a list of color names and the color index.

' Example: Background, BackColor, and Colors properties;
' CreateRangeName method
' Create a range name, then apply a specific color to that range.
' First, create the range.
CurrentDocument.CreateRangeName "North Sales", [A:B2..A:B10]
' Then, apply the color.
Set [North Sales].Background.BackColor = CurrentApplication.Colors("light yellow")

1-2-3: ColorVisible property
{button ,AL(`H_123_LEGEND_CLASS',0)} See list of classes
Determines whether the color legend for a map is displayed or not.

Data type
Variant (Boolean)

Syntax
legend.ColorVisible = value
value = legend.ColorVisible

Legal values
Value Description
TRUE (Default) Display the map's

color legend.
FALSE Do not display the map's color

legend.

1-2-3: Color palette
The Colors collection holds a collection of 240 color constants, representing all the colors in the palette. You can
access the Colors collection by an ordinal index (0 - 239) or by a string index (the name of the color in English in all
releases of 1-2-3). The following table shows the index number and name for all the colors in the palette.
See the Color property for information on specifying colors.

Color
Index

Color Name

0 white
1 vanilla
2 parchment
3 ivory
4 pale green
5 sea mist
6 ice blue
7 powder blue
8 arctic blue
9 lilac mist
10 purple wash
11 violet frost
12 seashell
13 rose pearl
14 pale cherry
15 white
16 blush
17 sand
18 light yellow
19 honeydew
20 celery
21 pale aqua
22 pale blue
23 crystal blue
24 lt cornflower
25 pale lavender
26 grape fizz
27 pale plum
28 pale pink
29 pale rose
30 rose quartz
31 5% gray
32 red sand
33 buff
34 lemon
35 pale lemon lime
36 mint green
37 pastel green
38 pastel blue

39 sapphire
40 cornflower
41 light lavender
42 pale purple
43 light orchid
44 pink orchid
45 apple blossom
46 pink coral
47 10% gray
48 light salmon
49 light peach
50 yellow
51 avocado
52 leaf green
53 light aqua
54 lt turquoise
55 light cerulean
56 azure
57 lavender
58 light purple
59 dusty violet
60 pink
61 pastel pink
62 pastel red
63 15% gray
64 salmon
65 peach
66 mustard
67 lemon lime
68 neon green
69 aqua
70 turquoise
71 cerulean
72 wedgewood
73 heather
74 purple haze
75 orchid
76 flamingo
77 cherry pink
78 red coral
79 20% gray
80 dark salmon
81 dark peach
82 gold
83 yellow green

84 light green
85 caribbean
86 dk pastel blue
87 dark cerulean
88 manganese blue
89 lilac
90 purple
91 lt red violet
92 light magenta
93 rose
94 carnation pink
95 25% gray
96 watermelon
97 tangerine
98 orange
99 chartreuse
100 green
101 teal
102 dark turquoise
103 lt slate blue
104 medium blue
105 dark lilac
106 royal purple
107 fuchsia
108 confetti pink
109 pale burgundy
110 strawberry
111 30% gray
112 rouge
113 burnt orange
114 dark orange
115 light olive
116 kelly green
117 sea green
118 aztec blue
119 dusty blue
120 blueberry
121 violet
122 deep purple
123 red violet
124 hot pink
125 dark rose
126 poppy red
127 35% gray
128 crimson

129 red
130 light brown
131 olive
132 dark green
133 dark teal
134 spruce
135 slate blue
136 navy blue
137 blue violet
138 amethyst
139 dk red violet
140 magenta
141 light burgundy
142 cherry red
143 40% gray
144 dark crimson
145 dark red
146 hazelnut
147 dark olive
148 emerald
149 malachite
150 dark spruce
151 steel blue
152 blue
153 iris
154 grape
155 plum
156 dark magenta
157 burgundy
158 cranberry
159 50% gray
160 mahogany
161 brick
162 dark brown
163 deep olive
164 dark emerald
165 evergreen
166 baltic blue
167 blue denim
168 cobalt blue
169 dark iris
170 midnight
171 dark plum
172 plum red
173 dark burgundy

174 scarlet
175 60% gray
176 chestnut
177 terra cotta
178 umber
179 amazon
180 peacock green
181 pine
182 metallic blue
183 dk slate blue
184 royal blue
185 lapis
186 dark grape
187 aubergine
188 dark plum red
189 raspberry
190 deep scarlet
191 70% gray
192 burnt sienna
193 milk chocolate
194 burnt umber
195 deep avocado
196 deep forest
197 dark pine
198 dk metalic blue
199 air force blue
200 ultramarine
201 prussian blue
202 raisin
203 eggplant
204 boisenberry
205 bordeaux
206 ruby
207 75% gray
208 red gray
209 tan
210 khaki
211 putty
212 bamboo green
213 green gray
214 baltic gray
215 blue gray
216 rain cloud
217 lilac gray
218 lt purple gray

219 light mauve
220 lt plum gray
221 lt burgundy gray
222 rose gray
223 80% gray
224 dark red gray
225 dark tan
226 safari
227 olive gray
228 jade
229 dk green gray
230 spruce gray
231 dk blue gray
232 atlantic gray
233 dk lilac gray
234 purple gray
235 mauve
236 plum gray
237 burgundy gray
238 dark rose gray
239 black

1-2-3: Color property
{button ,AL(`H_123_BACKGROUND_CLASS;H_123_MAPBIN_CLASS;H_123_RANGEBORDER_CLASS;',0)} See

list of classes
{button ,AL(`H_123_SHOWMARKERS_PROPERTY_EXSCRIPT;H_123_SHOWDRAWLAYER_PROPERTY_EXSCR

IPT;H_123_STYLENAME_PROPERTY_EXSCRIPT;H_123_COLOR_PROPERTY_EXSCRIPT;H_123_GRIDBOR
DER_PROPERTY_EXSCRIPT;H_123_HORIZONTALBORDER_PROPERTY_EXSCRIPT;H_123_INNERBORDER
_PROPERTY_EXSCRIPT',1)} See example

Sets or returns the color object of the specified object.

Data type
Color

Syntax
Set object.Color = color
Set color = object.Color

Legal values
You can use the Color property in conjunction with the ColorName or ColorIndex property. See the Color palette for
a list of the color names and index values. You can also specify any color object from the Colors collection, as
shown here:
 Dim y As Color

Set y = CurrentApplication.Colors("red")
Set [c:b12].BottomBorder.Color = y

Usage
The value of the Color property for a graphic object is the current pattern color. The value of the Color property for a
bin object is the current color for Color type bins.

' Example: Color and Colors properties
' Set the Color value.
Dim mycolor As Variant
Set mycolor = CurrentApplication.Colors("magenta")

1-2-3: ColumnFolding property
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_COLUMNFOLDING_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the location of the parent or child items in the outline of a column. The parent items can be located
either before or after the children items in an outline.

Data type
Variant (FoldDir enumeration)

Syntax
sheet.ColumnFolding = value
value = sheet.ColumnFolding

Legal values
Value Description
$ParentBefore (Default) Display the parent

item before the child item.
$ParentAfter Display the parent item after

the child item.

' Example: ColumnFolding and ColumnOutlineVisible properties
' Display the column outline, with the parent items displayed to the right.
' Demote a column to show the location of the parent.
Sub ShowColumn

[A].ColumnOutlineVisible = True
[A].ColumnFolding = $ParentAfter
[A:F8].Select
Selection.DemoteColumn

End Sub

1-2-3: ColumnOutlineVisible property
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_COLUMNOUTLINEVISIBLE_PROPERTY_EXSCRIPT',1)} See example
Determines whether the outline frame above the column letters is displayed or not.

Data type
Variant (Boolean)

Syntax
sheet.ColumnOutlineVisible = value
value = sheet.ColumnOutlineVisible

Legal values
Value Description
TRUE Display the outline frame

above the column letters.
FALSE (Default) Do not display the

outline frame above the
column letters.

' Example: ColumnOutlineVisible property
' Display the outline frame above the column letters.
[A].ColumnOutlineVisible = True

1-2-3: ColumnTitleRange property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns a print title range, identified as a column only. This print title range is printed to the left of the print
range on every printed page.

Data type
Variant

Syntax
printsettings.ColumnTitleRange = value
value = printsettings.ColumnTitleRange

Legal values
The value for the ColumnTitleRange property is the column you set or the column you specify using File - Preview &
Page Setup (Headers & Footers).

1-2-3: ColumnWidth property
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_COLUMNWIDTH_PROPERTY_EXSCRIPT;H_123_PATTERN_PROPERTY_EXSCRIPT',1)} See

example
Sets or returns the width of all columns in the specified range.

Data type
Long

Syntax
range.ColumnWidth = value
value = range.ColumnWidth

Legal values
The value of the ColumnWidth property is any long from 0 - 240.

Usage
Setting the column width to 0 hides the column.

' Example: ColumnWidth property
' Select a range and adjust its column width.
Sub AdjustWidth
 [A:B5..A:H25].select
 [A:B5..A:H25].ColumnWidth = 23
End Sub

1-2-3: ConfirmDragAndDrop property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether confirmation of drag and drop is enabled.

Data type
Variant (Boolean)

Syntax
application.ConfirmDragAndDrop = value
value = application.ConfirmDragAndDrop

Legal values
Value Description
TRUE (Default) Enable confirmation

of drag and drop.
FALSE Do not enable confirmation of

drag and drop.

1-2-3: Contents property
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_BACKCOLOR_PROPERTY_EXSCRIPT;H_123_SHOWVERSIONBORDERS_PROPERTY_EXS

CRIPT;H_123_DATAPROTECTED_PROPERTY_EXSCRIPT;H_123_CONTENTS_PROPERTY_EXSCRIPT;H_12
3_GREEN_PROPERTY_EXSCRIPT;H_123_KEYWORDS_PROPERTY_EXSCRIPT ',1)} See example

Sets or returns the contents of a cell as it appears in the edit window.

Data type
String

Syntax
range.Contents = value
value = range.Contents

Legal values
When referring to a multi-cell range, .Contents refers to the cell in the upper left corner of the range only.

' Example: Contents property
' Set the contents of a cell.
[A:B2].Contents = "Field 1"

1-2-3: CoordinateRange property
{button ,AL(`H_123_DRAWCOLLECTION_CLASS;H_123_MAP_CLASS;H_123_GROUP_CLASS;',0)} See list of

classes
Sets or returns the range that contains the pin character data for a map.

Data type
Variant

Syntax
object.CoordinateRange = value
value = object.CoordinateRange

Legal values
The value for the CoordinateRange property is the range you set or the range you specified using Map - Ranges.

1-2-3: CoordinateString property
{button ,AL(`H_123_RANGE_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS;H_123_ISRAN

GENAMED_PROPERTY_EXSCRIPT',0)} See list of classes
(Read-only) Returns a coordinate string for the specified range.

Data type
String

Syntax
value = range.CoordinateString

Legal values
The value of the CoordinateString property is a string containing a valid range, for example "A:A1..B:B12". The
CoordinateString property never returns a range name.

1-2-3: Copies property
{button ,AL(`H_123_PRINTSETTINGS_CLASS;',0)} See list of classes
Sets or returns the number of copies to be printed.

Data type
Long

Syntax
printsettings.Copies = value
value = printsettings.Copies

Legal values
The value for the Copies property is the number of copies to be printed you set or the number of copies to be printed
that you specified using File - Print.

1-2-3: CountryCode property
{button ,AL(`H_123_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Returns the country code, using the international telephone code. The country code used for Canada is
2.

Data type
Long

Syntax
value = application.CountryCode

Legal values
The value for the CountryCode property can be any international telephone code.

1-2-3: Count property
{button ,AL(`;H_123_BASECOLLECTION_CLASS;H_123_CHARTS_CLASS;H_123_COLORS_CLASS;H_123_DAT

ALINKS_CLASS;H_123_DOCUMENTS_CLASS;H_123_DOCWINDOWS_CLASS;H_123_DRAWOBJECTS_CLA
SS;H_123_MAPBINS_CLASS;H_123_MAPS_CLASS;H_123_MAPTEXTENTRIES_CLASS;H_123_OLEOBJECT
S_CLASS;H_123_PRINTSETTINGSCOLLECTION_CLASS;H_123_QUERYTABLES_CLASS;H_123_RANGES_
CLASS;H_123_SHEETS_CLASS;H_123_STRINGS_CLASS;H_123_VERSIONGROUPS_CLASS;H_123_VERSI
ONS_CLASS;H_123_WINDOWS_CLASS;H_123_DRAWCOLLECTION_CLASS',0)} See list of classes

{button ,AL(`H_123_SHEETS_PROPERTY_EXSCRIPT;H_123_COUNT_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the number of items in the specified collection.

Data type
Long

Syntax
value = object.Count

Legal values
The value for the Count property is the number of items in the specified collection.

' Example: Count, Name, and NamedRanges properties
' Count the number of named ranges in a file.
Msgbox "There are "+Cstr(CurrentDocument.NamedRanges.Count)+" named ranges in the file
"+CurrentDocument.Name

1-2-3: CreationDate property
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;',0)} See

list of classes
{button ,AL(`H_123_CREATIONDATE_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the date the specified file was created.

Data type
DateTime

Syntax
Set datetime = object.CreationDate

Legal values
The value for the CreationDate property is the date the file or file version was created.

' Example: CreationDate property
' To return the date the document was created.
Msgbox "This document was created on " + _
 CurrentDocument.CreationDate.LocalTime

1-2-3: Criteria property
{button ,AL(`H_123_QUERY_CLASS;',0)} See list of classes
Sets or returns a formula that represents the criteria that determine which results appear in a query output location.

Data type
String

Syntax
dataquery.Criteria = value
value = dataquery.Criteria

Legal values
The default value of the Criteria property is " ", which returns all records.
For the requirements of a valid criteria formula, search on "Criteria" in the 1-2-3 Help Index.

1-2-3: CurrentDirectory property
{button ,AL(`H_123_APPLICATION_CLASS;',0)} See list of classes
{button ,AL(`H_123_CURRENTDIRECTORY_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the directory used by 1-2-3 to save workbook files for the current session.

Data type
String

Syntax
application.CurrentDirectory = value
value = application.CurrentDirectory

Legal values
The value of the CurrentDirectory property is a string containing a valid directory name, for example "C:\LOTUS\
WORK\123".

Usage
The value for the CurrentDirectory property is not saved between 1-2-3 sessions. It is reset to the value of
DefaultPath.

' Example: CurrentDirectory property
' Set the directory that 1-2-3 uses to save work files.
CurrentApplication.CurrentDirectory = "C:\LOTUS\WORK\123"

1-2-3: CurrentMenuBar property
{button ,AL(`H_123_APPLICATION_CLASS;',0)} See list of classes
{button ,AL(`H_123_ADDMENU_METHOD_EXSCRIPT;H_123_DISABLEITEM_METHOD_EXSCRIPT;H_123_CURR

ENTMENUBAR_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the current menu bar.

Data type
MenuBar

Syntax
Set application.CurrentMenuBar = menubar
Set menubar = application.CurrentMenuBar

Legal values
The value for the CurrentMenuBar property is any valid MenuBar object.

' Example: CurrentMenuBar property
' Get a reference to the application's top-level menu bar.
Dim mymenubar As Variant
Set mymenubar = CurrentApplication.CurrentMenuBar

1-2-3: CurrentPrintSettings property
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_CURRENTPRINTSETTINGS_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the print settings for a document.

Data type
PrintSettings

Syntax
Set document.CurrentPrintSettings = printsettings
Set printsettings = document.CurrentPrintSettings

Legal values
The value of the CurrentPrintSettings property is the current PrintSettings object. See the File - Preview & Page
Settings InfoBox for a description of the print features you can set.

Usage
The current print settings are persistent and are saved with the workbook file.

' Example: CurrentPrintSettings property; NewNamedPrintSettings method
' Create a PrintSettings object, set a print property, and set the
' new PrintSettings object to be the current print setting.
Dim myprintset As PrintSettings
Set myprintset = CurrentDocument.NewNamedPrintSettings("newps")
myprintset.Orientation = $Landscape
Set CurrentDocument.CurrentPrintSettings = myprintset

1-2-3: CurrentSheet property
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_SHEETNUMBER_PROPERTY_EXSCRIPT;H_123_CURRENTSHEET_PROPERTY_EXSCRIPT

',1)} See example
(Read-only) Returns the current sheet.

Data type
Sheet

Syntax
Set sheet = document.CurrentSheet

Legal values
The value for the CurrentSheet property is the current sheet.

' Example: CurrentSheet and SheetNumber properties
Sub NewSheet

' Declare variables
Dim current As Sheet
Dim sheetnum As Long

' Get the current sheet, and add another sheet after it.
Set current = CurrentDocument.CurrentSheet
CurrentDocument.NewSheet $After,1,True

 sheetnum = Current.SheetNumber

' Set the current sheet to be the sheet you just added, and select it.
Set current = CurrentDocument.CurrentSheet
Current.Select

End Sub

1-2-3: CurrentVersion property
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_CURRENTVERSION_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the current version of the specified range.

Data type
Range

Syntax
Set range = range.CurrentVersion

Legal values
The value for the CurrentVersion property is the current version of the specified range.

' Example: CurrentVersion, Description, and Name properties
' Creates a few versions, then do some work on the current version.
Sub Click(Source As ButtonControl)
 Dim v As Version
' Create a named range.
 [A:A1..A:B5].Name = "RANGE 1"
 [RANGE 1].NewVersion "Best Case"
 [RANGE 1].NewVersion "Worst Case"
 Set v = [RANGE 1].CurrentVersion
 v.Description = "This is the worst possible case we will encounter!"
 v.Share = $Protected
End Sub

1-2-3: DataLinks property
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_DATALINKS_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the collection of DataLink objects in the specified file.

Data type
DataLinks

Syntax
Set datalinks = document.DataLinks

Legal values
The default value for the DataLinks property is the collection of DataLink objects in the specified file.

' Example: Count, DataLinks, and Name properties; Item method
Sub MyLinks

' Create a string to hold information about the links.
Dim mystring As String
mystring = "Names of current links: "

' Show the number of links in the file.
Messagebox "Number of data links in current file: " +
Str(CurrentDocument.DataLinks.Count)

If CurrentDocument.DataLinks.Count = 0 Then
 mystring = "There are no links in the current file"
Else
 ' Build up mystring, putting the name of each link in the string.
 For i = 0 To CurrentDocument.DataLinks.Count - 1
 mystring = mystring + CurrentDocument.DataLinks.Item(i).Name + " "
 Next
End If

' Display mystring, which contains either a list of all links in the string or the
' text "There are no links in the current file".
Messagebox mystring

End Sub

1-2-3: DataProtected property
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_DATAPROTECTED_PROPERTY_EXSCRIPT;',1)} See example
Determines whether cell contents in a file are protected or not.

Data type
Variant (Boolean)

Syntax
document.DataProtected = value
value = document.DataProtected

Legal values
Value Description
TRUE Protect cell contents from

changes.
FALSE (Default) Do not protect cell

contents from changes.

' Example: Contents, DataProtected, and IsProtected properties
Sub SetProtection

CurrentApplication.NewDocument

' By default, all cells are locked. Verify this by
' returning the value of the IsProtected property for a cell.
Messagebox "Value of IsProtected: " + [A:A1].IsProtected

' You can still write to the cell, though.
[A:A3].Contents = "Hello"

' Now set DataProtected to true.
CurrentDocument.DataProtected = True

' You can no longer write to the cell; trying to do so would
' give an error message.
' Instead, you have to make the cells you want to write to unprotected.
' 1-2-3 writes the text in a different color to show
' that it's not protected.
[A:A4].IsProtected = False
[A:A4].Contents = "Good-bye"

' Turn off data protection again.
CurrentDocument.DataProtected = False

End Sub

1-2-3: DateOrder property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DATEORDER_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the order in which dates are written.

Data type
Variant (DateOrder enumeration)

Syntax
Set value = application.DateOrder

Legal values
Value Description
$MDY Write dates as month/day/year

(for example, 05/28/97).
$DMY Write dates as day/month/year

(for example, 28/05/97).
$YMD Write dates as year/month/day

(for example, 97/05/28).

' Example: DateOrder, DefaultDecimals, and DefaultNegCurrencyFormat properties
Sub CountrySettings

Dim order, showorder, showformat As String

' Determine how the date order is set in the regional (country) settings.
order = CurrentApplication.DateOrder

' Translate the date order code to a string that makes sense to the user.
Select Case order
 Case $MDY : showorder = "Month/Day/Year"
 Case $DMY : showorder = "Day/Month/Year"
 Case $YMD : showorder = "Year/Month/Day"
 Case Else : showorder = "not set"
End Select

Msgbox "Date order is: " + showorder

' Determine how negative currency is shown.
If CurrentApplication.DefaultNegCurrencyFormat = $Parens Then
 showformat = "shown with parentheses"
Else
 showformat = "shown with a minus sign"
End If

' Display a message box saying how the currency is shown.
Msgbox "Negative currency is " + showformat

' Determine the number of decimal places used when displaying the number format.
Msgbox "Number of decimal places is " + Str(CurrentApplication.DefaultDecimals)

End Sub

1-2-3: DateSeparator property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DATESEPARATOR_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the character used to separate date fields when a date format is used. This character is set in
the Windows Control Panel.

Data type
String

Syntax
value = application.DateSeparator

Legal values
The value of the DateSeparator property is set in the Windows Control Panel.

' Example: DateSeparator and DecimalSeparator properties
Sub CheckDefaults

Dim msgstring As String

' Create a two-line message (using the vertical bar to
' include a line feed) with the date and decimal separator.
msgstring = "Date separator: " + CurrentApplication.DateSeparator + |

|+ "Decimal separator: " + CurrentApplication.DecimalSeparator

Msgbox msgstring
End Sub

1-2-3: DayNames property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DAYNAMES_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns a collection of strings that represent the unabbreviated days of the week.

Data type
Strings

Syntax
strings = application.DayNames

Legal values
The value for the DayNames property is the collection of strings.

' Example: Count, DayNames, Name, and Sheet properties; Item method
' This example creates a new document, adds 6 sheet tabs, and names
' each tab with a day of the week.
Sub NewTabs

Dim mydoc As Document
Dim mysheet As Sheet
Dim x As Long

' Create a new workbook.
Set mydoc = CurrentApplication.NewDocument

' Add 6 new tabs to the document; don't make the last sheet tab the selected tab.
mydoc.NewSheet $After,6,False

' Make each sheet tab have a day of the week.
For x = 0 To (mydoc.Sheets.Count - 1)
 mydoc.Sheets.Item(x).Name = CurrentApplication.DayNames.Item(x)
Next x

End Sub

1-2-3: DecimalSeparator property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DATESEPARATOR_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the character used to separate decimals. This character is set in the Windows Control Panel.

Data type
String

Syntax
value = application.DecimalSeparator

Legal values
The legal value for the DecimalSeparator property can be any single character set through the WIndows control
panel.

1-2-3: DefaultAddinPath property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DEFAULTPATH_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the default path used to load an add-in if no path is specified.

Data type
String

Syntax
application.DefaultAddinPath = value
value = application.DefaultAddinPath

Legal values
The value for the DefaultAddinPath property is the path the user specified using File - User Setup - 1-2-3 Preferences
(File Locations). The default value for add-ins is \Lotus\123\Addins.

1-2-3: DefaultColumnWidth property
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_DISPLAYZEROAS_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the default column width for the specified sheet.

Data type
Long

Syntax
value = sheet.DefaultColumnWidth

Legal values
The value for the DefaultColumnWidth property is any long from 1 - 240.

1-2-3: DefaultDecimals property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DATEORDER_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the number of decimal places used when displaying the number format.

Data type
Long

Syntax
value = application.DefaultDecimals

Legal values
The value for the DefaultDecimals property is set in the Windows Control Panel.

1-2-3: DefaultFileExtension property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DEFAULTPATH_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the default extension to apply when saving or listing files.

Data type
String

Syntax
application.DefaultFileExtension = value
value = application.DefaultFileExtension

Legal values
The value for the DefaultFileExtension property is .123, or whatever value you set using the 1-2-3 Classic menu
(/Worksheet Global Default Ext Save).

1-2-3: DefaultFontName property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DEFAULTFONT_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the default font you want 1-2-3 to use for new files.

Data type
String

Syntax
application.DefaultFontName = value
value = application.DefaultFontName

Legal values
The value of the DefaultFontName property is the font you set or the font you specified using File - User Setup - 1-2-3
Preferences (New Workbook Defaults). For a US installation, the default value is Arial.

1-2-3: DefaultFontSize property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DEFAULTFONT_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the default font point size you want 1-2-3 to use for new files.

Data type
Long

Syntax
application.DefaultFontSize = value
value = application.DefaultFontSize

Legal values
The value of the DefaultFontSize property is the point size you set or the point size you specified using File - User
Setup - 1-2-3 Preferences (New Workbook Defaults). For a US installation, the default value is 12.

' Example: ColorName, DefaultFontName, DefaultFontSize, and DefaultTextColor
properties
Sub MakeNew

Dim answer As Long
Dim myapp As Application
Set myapp = CurrentApplication

' 4 in the following statement means a YesNo box;
' 32 means display a question mark.
answer = Messagebox("Use custom font and color settings?",4 + 32)

' An answer of 6 means the user clicked "Yes".
If answer = 6 Then
 myapp.DefaultFontName = "Arial"
 myapp.DefaultTextColor.ColorName = "deep purple"
 myapp.DefaultBackColor.ColorName = "ivory"
 myapp.DefaultFontSize = 12
 myapp.UseOSDefaultColors = False
Else
 Messagebox("Using current workbook defaults for new workbook...")
End If

' Create a new workbook.
CurrentApplication.NewDocument

End Sub

1-2-3: DefaultNegCurrencyFormat property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DATEORDER_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the default negative currency format used when displaying numbers in a currency format.

Data type
Variant (NegCurVal enumeration)

Syntax
value = application.DefaultNegCurrencyFormat

Legal values
The value of the DefaultNegCurrencyFormat property is set in the Windows Control Panel.

Value Description
$Parens Negative values are in

parentheses.
$Minus (Default) Negative values are

displayed with a minus sign.

1-2-3: DefaultPath property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DEFAULTPATH_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the default folder for Workbook files if no other folder is specified.

Data type
String

Syntax
application.DefaultPath = value
value = application.DefaultPath

Legal values
The default value of the DefaultPath property is "\Lotus\Work\123\".

' Example: DefaultAddinPath, DefaultFileExtension, and DefaultPath properties
Sub ChangeDefaults

Dim extension As String, path As String, addinpath As String

' Change the extension to be what the user specifies.
' If the user presses Cancel, don't change the extension.
extension = Inputbox("Specify the file extension to use: "_
,,CurrentApplication.DefaultFileExtension)
If extension <> "" Then
 CurrentApplication.DefaultFileExtension = extension
End If

' Change the default path to be what the user specifies.
' If the user presses Cancel, don't change the path.
path = Inputbox("Specify the path to look for workbooks: "_
,,CurrentApplication.DefaultPath)
If path <> "" Then
 CurrentApplication.DefaultPath = path
End If

' Change the default add-in path to be what the user specifies.
' If the user presses Cancel, don't change the add-in path.
addinpath = Inputbox("Specify the path to look for add-ins: "_
,,CurrentApplication.DefaultAddinPath)
If addinpath <> "" Then
 CurrentApplication.DefaultAddinPath = addinpath
End If

End Sub

1-2-3: DefaultRowHeight property
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_DISPLAYZEROAS_PROPERTY_EXSCRIPT;H_123_ROWHEIGHTUSEFONTSIZE_PROPERTY

_EXSCRIPT',1)} See example
Sets or returns the default row height for the specified sheet.

Data type
Long

Syntax
sheet.DefaultRowHeight = value
value = sheet.DefaultRowHeight

Legal values
The value of the DefaultRowHeight property is the row height you set or the row height you specified using Sheet -
Sheet Properties (Basics). Legal values are from 1 - 255.

1-2-3: DefaultTextColor property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_DEFAULTFONT_PROPERTY_EXSCRIPT;',1)} See example
Set or returns the default text color for new workbooks.

Data type
Color

Syntax
application.DefaultTextColor = color
color = application.DefaultTextColor

Legal values
See Color palette for a list of the color names and color index.

' Example: CalcMode and Description properties; Calc method
' Create a new document and give a description of it.
Dim doc1 As Document
Set doc1 = CurrentApplication.NewDocument("Doc_1")
CurrentDocument.Description = "first in a series with calculations"
' Set up a summed range.
[A:B2].Contents = "1"

[A:B3].Contents = "2"

[A:B4].Contents = "3"
MessageBox "Add the column"
[A:B5].Contents = "@Sum(B2..B4)"
' Set Calc mode to manual, to control when recalculation occurs.
CurrentDocument.CalcMode = $Manual
' B5 now shows 6. Now change B2.
MessageBox "Change 1 to 2"
[A:B2].Contents = "2"
' To see the effect of this, you must recalculate, because
' you set .CalcMode = $Manual.
MessageBox "Recalculate"
CurrentApplication.Calc
' B5 now shows 7.

1-2-3: Description property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_APPROACHCONNEC

TION_CLASS;H_123_BUTTON_CLASS;H_123_ARC_CLASS;H_123_CHART_CLASS;H_123_DATALINK_CLAS
S;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJE
CT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_LEGEND
_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_MAPPLOT_CLASS;H_123_MAPTEXTENTRY_C
LASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_123_OLEOBJECT_CLA
SS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_PRINTSETTINGS_
CLASS;H_123_QUERY_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_123_RECTANGLE_
CLASS;H_123_SHEET_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW
_CLASS;',0)} See list of classes

{button ,AL(`H_123_DESCRIPTION_PROPERTY_EXSCRIPT;H_123_EDITINGTIME_PROPERTY_EXSCRIPT;',1)}
See example

Sets or returns comments or a description for the specified object.

Data type
String

Syntax
object.Description = value
value = object.Description

Legal values
The value of the Description property is a string containing up to 1024 characters.

Usage
The value of the Description property is set when the user enters text in a "Comments" or "Description" field. This
property has no effect for objects other than Document, Version, or VersionGroup.

1-2-3: DesignerFrameStyle property
{button ,AL(`;H_123_APPROACHCONNECTION_CLASS;H_123_CHART_CLASS;H_123_EDITTEXT_CLASS;H_12

3_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPPLOT_CLASS;H_123_MAPTITL
E_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RAN
GE_CLASS;H_123_RECTANGLE_CLASS',0)} See list of classes

Sets or returns the style of a designer frame.

Data type
Variant (DesignerFrameStyle enumeration)

Syntax
object.DesignerFrameStyle = value
value = object.DesignerFrameStyle

Legal values
The value for the DesignerFrameStyle property can also be set in the Range - Range Properties infobox.

Value Description
$DesignerFrame1
$DesignerFrame2
$DesignerFrame3
$DesignerFrame4
$DesignerFrame5
$DesignerFrame6
$DesignerFrame7
$DesignerFrame8
$DesignerFrame9
$DesignerFrame10
$DesignerFrame11
$DesignerFrame12
$DesignerFrame13
$DesignerFrame14
$DesignerFrame15
$DesignerFrame16

1-2-3: Display4DigitYear property
{button ,AL(`H_123_APPLICATION_CLASS;',0)} See list of classes
Sets or returns whether to display the year as a 4-digit number.

Data type
Variant (Boolean)

Syntax
application.Display4DigitYear = value
value = application.Display4DigitYear

Legal values
Value Description
TRUE Display the year as a 4-digit number.
FALSE Display the year as a 2-digit number.

1-2-3: DisplayZeroAs property
{button ,AL(`H_123_SHEET_CLASS;',0)} See list of classes
{button ,AL(`H_123_DISPLAYZEROAS_PROPERTY_EXSCRIPT;H_123_ISZERODISPLAYED_PROPERTY_EXSCR

IPT',1)} See example
Sets or returns how zeros will be displayed in the specified sheet.

Data type
String

Syntax
sheet.DisplayZeroAs = value
value = sheet.DisplayZeroAs

Legal values
The value of the DisplayZeroAs property is set in the Sheet - Sheet Properties (#) infobox.
The legal values are multi-character strings.

' Example: Contents, DefaultColumnWidth, DefaultRowHeight, DisplayZeroAs,
' IsZeroDisplayed, and Name properties
' This example creates a new sheet and specifies row height and column width settings,
' as well as how to display zeros in the sheet.
Sub SetUpSheet

' Create a new sheet.
Dim mysheet As Sheet
Set mysheet = CurrentDocument.Newsheet($After,1,True)
mysheet.Name = "Test Settings"

' Specify not to use the font size for the row height,
' and set the row height to 12 points.
mysheet.RowHeightUseFontSize = False
mysheet.DefaultRowHeight = 12

' Set the column width to 14 points.
mysheet.DefaultColumnWidth = 14

' Add a couple of zeros in the sheet.
[Test Settings:A1].Contents = "0"
[Test Settings:A2].Contents = "0"

' Specify to display zeros as "(empty)".
mysheet.IsZeroDisplayed = True
mysheet.DisplayZeroAs = "(empty)"

End Sub

1-2-3: Documents property
{button ,AL(`H_123_APPLICATION_CLASS;',0)} See list of classes
{button ,AL(`H_123_DOCUMENTS_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns a list of the files that are open in the specified application.

Data type
Documents

Syntax
Set documents = application.Documents

Legal values
The value of the Documents property is the Documents object, a collection of files that are open in the specified
application.

' Example: Count, Documents, and Name properties; Item method
' This example puts the name of all open documents in a string, and
' displays that string.
Sub ShowDocs

Dim mytext As String
mytext = "Open documents: "

' Loop through all the open documents, and append the document
' names to mytext.
For i = 0 To (CurrentApplication.Documents.Count - 1)
 mytext = mytext + CurrentApplication.Documents.Item(i).Name + " "
Next
Messagebox mytext

End Sub

1-2-3: Document property
{button ,AL(`H_123_DOCWINDOW_CLASS;',0)} See list of classes
Returns the document object to which the current window belongs.

Data type
Document

Syntax
Set document = docwindow.Document

Legal values
The value of the Document property is the Document object to which the document window belongs.

1-2-3: DocWindows property
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_DOCWINDOWS_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns a list of all the sheet windows associated with the specified file.

Data type
DocWindows

Syntax
Set docwindows = document.DocWindows

Legal values
The value of the DocWindows property is the collection of all the sheet windows associated with the specified file.

' Example: Count and DocWindows properties
Sub DocWins
' This example counts the number of open windows in the current document.
' For example, if you have the Preview window and the current sheet showing,
' then this sub shows 2 windows.

Messagebox "Number of open windows: " + Str(CurrentDocument.DocWindows.Count)
End Sub

1-2-3: DoubleUnderline property
{button ,AL(`H_123_FONT_CLASS;',0)} See list of classes
{button ,AL(`H_123_DOUBLEUNDERLINE_PROPERTY_EXSCRIPT;',1)} See example
Determines whether data is styled using the double underline attribute or not.

Data type
Variant (Boolean)

Syntax
font.DoubleUnderline = value
value = font.DoubleUnderline

Legal values
Value Description
TRUE Apply the double underline

attribute to the data.
FALSE (Default) Do not apply the

double underline attribute to
the data.

' Example: Contents, DoubleUnderline, Font, FontName, and Size properties; Select
method
' This example creates a heading with the text "Summary" and then
' specifies text styles for the heading.
Sub CreateHeading

[a:a4].Select
Selection.Contents = "Summary"
Selection.Font.DoubleUnderline = True
Selection.Font.FontName = "Times New Roman"
Selection.Font.Size = 14

End Sub

1-2-3: DragAndDropEnabled property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether drag and drop is enabled.

Data type
Variant (Boolean)

Syntax
application.DragAndDropEnabled = value
value = application.DragAndDropEnabled

Legal values
Value Description
TRUE (Default) Enable drag and

drop.
FALSE Disable drag and drop.

1-2-3: DrawnObjects property
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
(Read-only) Returns an object that is a collection of graphic objects.

Data type
DrawObjects

Syntax
drawobjects = document.DrawnObjects

Legal values
The following object types are included in the collection returned by the DrawnObjects property: Arc, Ellipse, Drawline
(includes arrows), Rectangle (includes rounded rectangles), Polyline, Polygon, Freehand, ButtonControl, Picture, and
, EditText.

1-2-3: EdgeColor property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_CHART_CLASS;H_123_DRA

WCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_1
23_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_PLOT
_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON
_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RECTANGLE_CLASS',0)} See list of
classes

{button ,AL(`H_123_EDGECOLOR_PROPERTY_EXSCRIPT;',1)} See example
Sets and returns the color of the border of the specified object.

Data type
Color

Syntax
Set object.EdgeColor = color
Set color = object.EdgeColor

Legal values
For a list of legal values, see the Color palette.

' Example: BackColor, Background, ColorName, EdgeColor, and Pattern properties
Sub MakeBlueRect

Dim myrect As rectangle

' Create a new rectangle
Set myrect = [A].NewRectangle(1400,1085,3135,1820)

' Set the styles of the rectangle
myrect.EdgeColor.ColorName = "blueberry"
myrect.EdgeLineWidth = $Thin
myrect.Background.BackColor.ColorName = "arctic blue"
myrect.Background.Pattern = $SolidBackground

End Sub

1-2-3: EdgeDashStyle property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_CHART_CLASS;H_123_DRA

WCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_1
23_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPP
LOT_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLY
GON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RECTANGLE_CLASS',0)} See
list of classes

Sets or returns the border style for a graphic object or the line style.

Data type
Variant (LineStyleType enumeration)

Syntax
object.EdgeDashStyle = value
value = object.EdgeDashStyle

Legal values
Value Description
$None none
$Solid
$LongDash

$Dash

$DashDot

$DashDotDot

$Dot

$DotDot

1-2-3: EdgeLineWidth property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_CHART_CLASS;H_123_DRA

WCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_1
23_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPP
LOT_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLY
GON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RECTANGLE_CLASS',0)} See
list of classes

Sets or returns the width of the border of a graphic object or of a line.

Data type
Variant (LineWidths enumeration)

Syntax
object.EdgeLineWidth = value
value = object.EdgeLineWidth

Legal values
Value Description
$onepixel

$verythin

$thin

$moderatelythin

$medium

$moderatelythick

$thick

$verythick

1-2-3: EditingTime property
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_EDITINGTIME_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the total amount of time a file has been open.

Data type
Long

Syntax
value = document.EditingTime

Legal values
The value of the EditingTime property is the total number of minutes that a file has been open. The maximum
value is 1092 hours and 15 minutes.

' Example: Contents, Description, EditingTime, LastEditor, and Name properties
Sub WriteStatistics

Dim mysheet As Sheet

' Create a new sheet at the end of the document, and name it "Statistics".
Set mysheet = CurrentDocument.NewSheet($Last,1,True)
mysheet.Name = "Statistics"

' Put the document statistics on the new sheet.
[Statistics:a1].Contents = "Document contents: " + CurrentDocument.Description
[Statistics:a2].Contents = "Editing time: " + Str(CurrentDocument.EditingTime) + "
minutes"
[Statistics:a3].Contents = "Last editor: " + CurrentDocument.LastEditor

End Sub

1-2-3: EditLineVisible property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Determines whether to display the edit line in the application window.

Data type
Variant (Boolean)

Syntax
applicationwindow.EditLineVisible = value
value = applicationwindow.EditLineVisible

Legal values
Value Description
TRUE (Default) Display the edit line

in the application window.
FALSE Do not display the edit line in

the application window.

1-2-3: EditPoints property
{button ,AL(`;H_123_DRAWLINE_CLASS;H_123_FREEHAND_CLASS;H_123_POLYGON_CLASS;H_123_POLYLIN

E_CLASS',0)} See list of classes
Determines whether to display the handles on a specified draw object, so you can move and reshape the object.

Data type
Variant (Boolean)

Syntax
object.EditPoints = value

Legal values
Value Description
TRUE Display the handles on a

selected object.
FALSE Do not display the handles on

a selected object.

1-2-3: EmbeddedParticipation property
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS;',0)} See list of classes
(Read-only) Returns the type of menu displayed during an OLE session. User-defined objects can be read-write.

Data type
Variant (EmbeddedParticipationType enumeration)

Syntax
value = object.EmbeddedParticipation
object.EmbeddedParticipation = value

Legal values
The values for the EmbeddedParticipation property are: $NoGroup, $FileGroup, $EditGroup, $ContainerGroup,
$ObjectGroup, $WindowGroup, and $HelpGroup.

1-2-3: Embedded property
{button ,AL(`H_123_DOCUMENT_CLASS;',0)} See list of classes
{button ,AL(`H_123_EMBEDDED_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Determines whether the file is embedded or not.

Data type
Variant (Boolean)

Syntax
value = document.Embedded

Legal values

Value Description
TRUE The file is embedded.
FALSE (Default) The file is not

embedded.

' Example: Embedded, SynchScrolling, and ViewSplitStyle methods
Sub MySplit

' You can split the window only if the workbook isn't embedded in another product.
If (CurrentDocument.Embedded) Then
 Messagebox "You cannot split the window because the workbook is embedded"
Else
 CurrentDocument.ViewSplitStyle = $Horizontal
 CurrentDocument.SynchScrolling = True
End If

End Sub

1-2-3: EndColumn
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_STARTROWCOL_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the column number for the bottom right cell of the specified range.

Data type
Long

Syntax
value = range.EndColumn

Legal values
The value for the EndColumn property is any long from 0 - 255, which correspond to columns A - IV.

1-2-3: EndRow property
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_STARTROWCOL_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the row number for the last row of the specified range.

Data type
Long

Syntax
value = range.EndRow

Legal values
The value for the EndRow property is any long from 0 - 8,191, which corresponds to row numbers 1 - 8192.

1-2-3: EndSheet property
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_STARTROWCOL_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the sheet number of the last sheet of the specified range.

Data type
Long

Syntax
value = range.EndSheet

Legal values
The value for the EndSheet property is an long from 0 - 255 that corresponds to the sheet number.

1-2-3: EveningString property
{button ,AL(`H_123_APPLICATION_CLASS;',0)} See list of classes
(Read-only) Returns a string for the PM symbol used to indicate evening time.

Data type
String

Syntax
value = application.EveningString

Legal values
The default value of the EveningString property is PM. You set the value of the EveningString property in the
Windows Control Panel.

1-2-3: Events property
{button ,AL(`H_123_CLASSINFO_CLASS;',0)} See list of classes
(Read-only) Returns a collection of the events that can be raised by a class.

Data type
Strings

Syntax
strings = classinfo.Events

Legal values
The value of the Events property is a collection of strings containing the names of the events for the class.

1-2-3: ExtractingUniqueRecords property
{button ,AL(`H_123_QUERY_CLASS;',0)} See list of classes
Determines whether a query should return unique records only.

Data type
Variant (Boolean)

Syntax
dataquery.ExtractingUniqueRecords = value
value = dataquery.ExtractingUniqueRecords

Legal values
Value Description
TRUE (Default) Return unique

records only.
FALSE Do not return unique records

only.

1-2-3: DataQueryNames property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SQL_PROPERTY_EXSCRIPT;H_123_QUERYNAMES_PROPERTY_EXSCRIPT ',1)} See

example
(Read-only) Returns a collection of the existing query names in the specified file.

Data type
Strings

Syntax
Set strings = document.DataQueryNames

Legal values
The value for the DataQueryNames property is a collection of the existing query names.

' Example: Contents and DataQueryNames properties; MoveCellPointer and OpenDocument
methods
' List in column A the current names of all queries in a file.
' You must change the file name in the line below to refer to
' the file you want the query to run against.
Const QRYFILE = "c:\lotus\work\123\qtfile.123"
Dim myfile As Document
Dim qnames As Strings
' Open a file containing queries
Set myfile = CurrentApplication.OpenDocument(QRYFILE, "", "", "", True)
' Get all query names
Set qnames = myfile.DataQueryNames
' Move to cell A1
.MoveCellPointer $Home, 1
' Show all query names in column A
Forall X In QNames
' Put name in cell
Selection.Contents = X
' Move down 1 row
.MoveCellPointer $Down, 1
End Forall

1-2-3: IsBubbleHelp property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Determines whether the bubble help is displayed.

Data type
Variant (Boolean)

Syntax
applicationwindow.IsBubbleHelp = value
value = applicationwindow.IsBubbleHelp

Legal values
Value Description
TRUE (Default) Display bubble help.
FALSE Do not display bubble help.

1-2-3: FitDrawnObjectToPage property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the type of scaling to be done for the printed output of graphic objects.

Data type
Variant (FitDrawToPage enumeration)

Syntax
printsettings.FitDrawnObjectToPage = value
value = printsettings.FitDrawnObjectToPage

Legal values
Value Description
$FillNone No scaling.
$FillPage Fit the graphic to the page.
$FillPageProportions Fit the graphic to the page

while maintaining proportions.
$FillCustom Use a specified scale to fit the

graphic to the page.

1-2-3: FitRowHeightToFont property
{button ,AL(`;H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether the row height in a new file automatically fits entries with the largest font or not.

Data type
Variant (Boolean)

Syntax
application.FitRowHeightToFont = value
value = application.FitRowHeightToFont

Legal values
Value Description
TRUE (Default) Automatically fit

entries with the largest font.
FALSE Do not automatically fit entries

with the largest font.

1-2-3: FitToPage property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the page fit for the print selection.

Data type
Variant (Scaling enumeration)

Syntax
printsettings.FitToPage = value
value = printsettings.FitToPage

Legal values
Value Description
$None Print the actual size.
$FitRows Fit all rows on the page.
$FitColumns Fit all columns on the page.
$FitRowsAndColumns Fit all rows and columns on

the page.
$CustomFit Manually scale the print range.

1-2-3: FontColor property
{button ,AL(`H_123_FONT_CLASS',0)} See list of classes
{button ,AL(`H_123_FONTCOLOR_PROPERTY_EXSCRIPT;H_123_STYLENAME_PROPERTY_EXSCRIPT;H_123_

PATTERN_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the color of the font for an object.

Data type
Color

Syntax
Set font.FontColor = color
Set color = font.FontColor

Legal values
The value of the FontColor is the color object for the font for an object.

Usage
The FontColor property applies to any object that can have font and text styling.

' Example: Cells, CellValue, ColorName, Font, andFontColor properties
' Assigns a color to each value in a range, depending on if the value is
' larger or smaller than a specified value.
Sub SalesQuota

'This script acts on each cell in a selected range.
ForAll x In Selection.Cells
 'Color all values greater than 500 blue.
 If x.CellValue > 500 Then
 x.Font.FontColor.ColorName = "blue"
 Else
 'Color all values less than 500 red.
 x.Font.FontColor.ColorName = "red"
 End If
End Forall

End Sub

1-2-3: FontName property
{button ,AL(`H_123_FONT_CLASS',0)} See list of classes
{button ,AL(`H_123_FONTNAME_PROPERTY_EXSCRIPT;H_123_STYLENAME_PROPERTY_EXSCRIPT;H_123_F

ONT_PROPERTY_EXSCRIPT ',1)} See example
Sets or returns the name of the font for an object.

Data type
String

Syntax
font.FontName = value
value = font.FontName

Legal values
The value of the FontName property is a string containing the font name.

Usage
The FontName property applies to any object that can have font and text styling. The available font names depend on
what you have installed on your system.

' Example: Font, FontName, and Size properties
Sub ChangeFont

'Set the font name and font size for the currently selected range.
Selection.Font.FontName = "Arial Narrow"
Selection.Font.Size = 12

End Sub

1-2-3: Font property
{button ,AL(`H_123_BUTTONCONTROL_CLASS;H_123_EDITTEXT_CLASS;H_123_GROUP_CLASS;H_123_RAN

GE_CLASS;H_123_SHEET_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_MAPTITLE_CLASS;',0)} See
list of classes

{button ,AL(`H_123_FONT_PROPERTY_EXSCRIPT;H_123_STRIKETHROUGH_PROPERTY_EXSCRIPT;H_123_S
TYLENAME_PROPERTY_EXSCRIPT;H_123_PATTERN_PROPERTY_EXSCRIPT;H_123_FONTCOLOR_PROP
ERTY_EXSCRIPT;H_123_FONTNAME_PROPERTY_EXSCRIPT ',1)} See example

(Read-only) Returns the font and text styles of the object.

Data type
Font

Syntax
Set font = object.Font

Legal values
The values of the Font property are the font and text styles of the object.

Usage
The Font property applies to text and numbers in buttons, text blocks, query tables, and ranges.

' Example: Font, FontName, RangeSelector, and Size properties
' Select a range and then set text styles for the range.
Sub FontStyle

' The RangeSelector object lets the user select a range during script execution.
Dim rs As RangeSelector
Set rs = CurrentApplication.RangeSelector
Dim r As Range
Set r = rs.GetRange
' Change the font in the selected range to Arial Narrow, 14 point.
r.Font.FontName = "Arial Narrow"
r.Font.Size = 14

End Sub

1-2-3: FooterCenterFont property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the font for the center footer of the print selection.

Data type
Font

Syntax
Set printsettings.FooterCenterFont = font
Set font = printsettings.FooterCenterFont

Legal values
The value of the FooterCenterFont property is the font for the center footer, set in the Preview & Page Setup InfoBox.

1-2-3: FooterCenter property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the text of the center footer of the print selection.

Data type
String

Syntax
printsettings.FooterCenter = value
value = printsettings.FooterCenter

Legal values
The value of the FooterCenter property can include the current date, the current time, the page number, the name of
the file, and the cell contents. To include these items, use the symbols shown in the following table.

Value Description
@ (at sign) Date of printing
+ (plus sign) Time of printing
(pound sign) Page number
% (percent sign) Total number of pages
^ (caret) File name
\ (backslash) followed
by a cell address or
range name

Contents of a cell

1-2-3: FooterLeftFont property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the font for the left footer of the print selection.

Data type
Font

Syntax
Set printsettings.FooterLeftFont = font
Set font = printsettings.FooterLeftFont

Legal values
The value of the FooterLeftFont property depends on the fonts you have installed on your computer.

1-2-3: FooterLeft property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the text of the left footer of the print selection.

Data type
String

Syntax
printsettings.FooterLeft = value
value = printsettings.FooterLeft

Legal values
The value of the FooterLeft property can include the current date, the current time, the page number, the name of the
file, and the cell contents. To include these items, use the symbols shown in the following table.

Value Description
@ (at sign) Date of printing
+ (plus sign) Time of printing
(pound sign) Page number
% (percent sign) Total number of pages
^ (caret) File name
\ (backslash) followed
by a cell address or
range name

Contents of a cell

1-2-3: FooterRightFont property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the font for the right footer of the print selection.

Data type
Font

Syntax
Set printsettings.FooterRightFont = font
Set font = printsettings.FooterRightFont

Legal values
The value of the FooterRightFont property depends on the fonts you have installed on your computer.

1-2-3: FooterRight property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the text of the right footer of the print selection.

Data type
String

Syntax
printsettings.FooterRight = value
value = printsettings.FooterRight

Legal values
The value of the FooterRight property can include the current date, the current time, the page number, the name of
the file, and the cell contents. To include these items, use the symbols shown in the following table.

Value Description
@ (at sign) Date of printing
+ (plus sign) Time of printing
(pound sign) Page number
% (percent sign) Total number of pages
^ (caret) File name
\ (backslash) followed
by a cell address or
range name

Contents of a cell

' Example: FormatDecimals and FormatName properties; FitWidest method
' This example formats the values in the current range as
' Spanish Peseta with 0 decimal places.
Sub MyNumbers

' Set currency format with 0 decimal places.
Selection.FormatName = "Spanish Peseta"
Selection.FormatDecimals = 0
' Make sure column is wide enough to accommodate new format.
Selection.FitWidest

End Sub

1-2-3: FormatDecimals property
{button ,AL(`H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_FORMATDECIMALS_AND_FORMATNAME_PROPERTIES_EXSCRIPT;H_123_NEGATIVESIN

COLOR_PROPERTY_EXSCRIPT;H_123_ISPARENTHESIZED_PROPERTY_EXSCRIPT ',1)} See example
Sets or returns the number of digits displayed after the decimal point for the specified range or sheet.

Data type
Long

Syntax
object.FormatDecimals = value
value = object.FormatDecimals

Legal values
The value of the FormatDecimals property is any long from 0-15. The default value is what you specified in the
Windows Control Panel.

1-2-3: FormatName property
{button ,AL(`H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_FORMATDECIMALS_AND_FORMATNAME_PROPERTIES_EXSCRIPT;H_123_NEGATIVESIN

COLOR_PROPERTY_EXSCRIPT;H_123_ISPARENTHESIZED_PROPERTY_EXSCRIPT ',1)} See example
Sets or returns the number format for a range or sheet.

Data type
Variant (String)

Syntax
object.FormatName = value
value = object.FormatName

Legal values
The values for the FormatName property are the currency, date, time, and number formats listed in the Range -
Range Properties and Sheet - Sheet Properties infoboxes.

1-2-3: FormatProtected property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_FORMATPROTECTED_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Determines whether styles in a file are protected or not.

Data type
Variant (Boolean)

Syntax
value = document.FormatProtected

Legal values
Value Description
TRUE Styles are locked.
FALSE (Default) Styles are not locked.

' Example: FormatProtected property
' This example tests to see if the styles for the current
' document are protected.
Sub ChangeStyle

' Check to see if the styles are protected.
If CurrentDocument.FormatProtected Then
 'If they are, display this message.
 Messagebox "This workbook is locked. You cannot change styles."
Else
 'If they aren't, display this message.
 Messagebox "This workbook is not locked. You can change styles."
End If

End Sub

1-2-3: Format property
{button ,AL(`;H_123_DATALINK_CLASS',0)} See list of classes
(Read-only) Returns the Clipboard format that is associated with a Datalink object.

Data type
Variant (ClipboardFormat enumeration)

Syntax
value = datalink.Format

Legal values
The values for the Format property are: $TextFormat, $Wk1Format, and $Wk3Format.

1-2-3: FormulaFont property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the text style object for formulas in the print selection.

Data type
Font

Syntax
Set printsettings.FormulaFont = font
Set font = printsettings.FormulaFont

Legal values
The value of the FormulaFont property is a font object.

1-2-3: FormulasPrint property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether formulas in the print selection will print the text of the formula on the following pages.

Data type
Variant (Boolean)

Syntax
printsettings.FormulasPrint = value
value = printsettings.FormulasPrint

Legal values
Value Description
TRUE Print formulas.
FALSE (Default) Do not print formulas.

1-2-3: FrameColor property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CLA

SS;H_123_EDITTEXT_CLASS;H_123_GROUP_CLASS;H_123_MAP_CLASS;H_123_MAPPLOT_CLASS;H_123
_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_12
3_RECTANGLE_CLASS',0)} See list of classes

Sets or returns the color of an object's frame.

Data type
Color

Syntax
Set object.FrameColor = color
Set color = object.FrameColor

Legal values
The value for the FrameColor property is a color object.

1-2-3: FullName property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns the full path name of the application's executable file.

Data type
String

Syntax
value = application.FullName

Legal values
The value of the FullName property is a string containing the full path (drive, directory, and applicable subdirectories)
in which the application's executable file is located.

1-2-3: GMTTime property
{button ,AL(`H_123_DATETIME_CLASS',0)} See list of classes
(Read-only) Returns the date and time, in Greenwich mean time.

Data type
String

Syntax
value = datetime.GMTTime

Legal values
The value for the GMTTime property can be any date/time string.

1-2-3: Green property
{button ,AL(`;H_123_COLOR_CLASS',0)} See list of classes
{button ,AL(`H_123_GREEN_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Returns the green component of the Color object which is contained by any object that can be styled,
such as a border or a text block.

Data type
Long

Syntax
value = color.Green

Legal values
The value of the Green property is any long from 0 - 255.

' Example: BackColor, Background, Contents, Green, and Name properties
' This example enters information about a color in the sheet.
Sub AmountRedGreen

Cn = [A1].Background.BackColor.Name
Gr = [A1].Background.BackColor.Green
Rd = [A1].Background.BackColor.Red
'Enter the name of the the background color of cell A1.
[B1].Contents = "Color: "&cn
'Enter the amount of green in the background color of cell A1.
[B2].Contents = "Green: "&gr
'Enter the amount of red in the background color of cell A1.
[B3].Contents = "Red: "&rd

End Sub

1-2-3: GridBorder property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_gridborder_PROPERTY_EXSCRIPT;',1)} See example
With the Style or Color property, sets or returns the style or color of the grid border of a range.

Data type
RangeBorder

Syntax
Set range.GridBorder.Style = value
Set range.GridBorder.Color = value
Set range.GridBorder = rangeborder
Set value = range.GridBorder.Style
Set value = range.GridBorder.Color
Set rangeborder = range.GridBorder

Legal values
See the Style property for a list of border styles.
See the Color palette for a list of border colors.
A RangeBorder object.

' Example: Color, ColorName, and GridBorder properties
' Add a gray, double-line grid border to a range of values.
Sub OutlineCells

Selection.GridBorder.Style = $DoubleBorder
Selection.GridBorder.Color.ColorName = "50% gray"

End Sub

1-2-3: GridLineColor property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS;H_123_SHEET_CLASS',0)} See list of

classes
{button ,AL(`H_123_GRIDLINECOLOR_PROPERTY_EXSCRIPT;H_123_SHOWMARKERS_PROPERTY_EXSCRIP

T;',1)} See example
Sets or returns the color of grid lines in the specified sheet, file, or application.

Data type
Color

Syntax
Set object.GridLineColor = color
Set color = object.GridLineColor

Legal values
The value of the GridLineColor property is a Color object.

' Example: GridLineColor, ShowAutomaticPageBreaks, ShowGridLines,
ShowManualPageBreaks, ShowSheetFrame, and ZoomScale properties
' Sets the following view preferences: Hides the sheet frame,
' displays green grid lines, hides both manual and automatic page breaks,
' and sets the zoom scale to 90%.
Sub ViewPrefs

CurrentDocument.ShowSheetFrame = False
CurrentDocument.ShowGridLines = True
CurrentDocument.GridLineColor.ColorName = "green"
CurrentDocument.ShowManualPageBreaks = False
CurrentDocument.ShowAutomaticPageBreaks = False
CurrentDocument.ZoomScale = 90

End Sub

1-2-3: GridLinesPrint property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether grid lines are printed with the print selection.

Data type
Variant (Boolean)

Syntax
printsettings.GridLinesPrint = value
value = printsettings.GridLinesPrint

Legal values
Value Description
TRUE Print data with grid lines.
FALSE Do not print grid lines with the

data.

1-2-3: HasPassword property
{button ,AL(`;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_HASPASSWORD_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Determines whether the file is protected with a password.

Data type
Variant (Boolean)

Syntax
value = document.HasPassword

Legal values
Value Description
TRUE The file is protected with a

password.
FALSE (Default) The file is not

protected with a password.

' Example: HasPassword property
' Make the user specify a password before saving a file.
' The PreSave event function checks to see if the file has been saved with a
' password and blocks the save if it has not. To ensure that the user saves
' files with a password, attach these scripts to the PreSaveAs and
' PostSaveAs events, as well.
Function PreSave(Source As Document) As Variant

If CurrentDocument.HasPassword Then
 ' User specified password.
 ' Continue the Save.
 PreSave = $Continue
Else
 ' User did not specify a password.
 ' Block the Save and raise PostSave.
 PreSave = $Block
End If

End Function

Sub PostSave(Source As Document, P1 As Variant)
If P1 = $Block Then
 Messagebox "You must specify a password when you save this file.",,"1-2-3"
Else
 Messagebox "The workbook was saved.",,"1-2-3"
End If

End Sub

1-2-3: HeaderCenterFont property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the font for the center header of the print setting.

Data type
Font

Syntax
Set printsettings.HeaderCenterFont = font
Set font = printsettings.HeaderCenterFont

Legal values
The value of the HeaderCenterFont property depends on the fonts you have installed on your computer.

1-2-3: HeaderCenter property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the text of the center header of the print setting.

Data type
String

Syntax
printsettings.HeaderCenter = value
value = printsettings.HeaderCenter

Legal values
The value of the HeaderCenter property can include any text. In addition, it can include the current date, the current
time, the page number, the total number of pages, the name of the file, and the contents of a cell. To include these
items, use the symbols shown in the following table.

Value Description
@ (at sign) Date of printing
+ (plus sign) Time of printing
(pound sign) Page number
% (percent sign) Total number of pages
^ (caret) File name
\ (backslash) followed
by a cell address or
range name

Contents of a cell

1-2-3: HeaderLeftFont property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the font for the left header of the print setting.

Data type
Font

Syntax
Set printsettings.HeaderLeftFont = font
Set font = printsettings.HeaderLeftFont

Legal values
The value of the HeaderLeftFont property depends on the fonts you have installed on your computer.

1-2-3: HeaderLeft property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the text of the left header of the print setting.

Data type
String

Syntax
printsettings.HeaderLeft = value
value = printsettings.HeaderLeft

Legal values
The value of the HeaderLeft property can include any text. In addition, it can include the current date, the current
time, the page number, the name of the file, and the cell contents. To include these items, use the symbols shown in
the following table.

Value Description
@ (at sign) Date of printing
+ (plus sign) Time of printing
(pound sign) Page number
% (percent sign) Total number of pages
^ (caret) File name
\ (backslash) followed
by a cell address or
range name

Contents of a cell

1-2-3: HeaderRightFont property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the font for the right header of the print setting.

Data type
Font

Syntax
Set printsettings.HeaderRightFont = font
Set font = printsettings.HeaderRightFont

Legal values
The value of the HeaderRightFont property depends on the fonts you have installed on your computer.

1-2-3: HeaderRight property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the text of the right header of the print setting.

Data type
String

Syntax
printsettings.HeaderRight = value
value = printsettings.HeaderRight

Legal values
The value of the HeaderRight property can include any text. In addition, it can include the current date, the current
time, the page number, the name of the file, and the cell content. To include these items, use the symbols shown in
the following table.

Value Description
@ (at sign) Date of printing
+ (plus sign) Time of printing
(pound sign) Page number
% (percent sign) Total number of pages
^ (caret) File name
\ (backslash) followed
by a cell address or
range name

Contents of a cell

1-2-3: Height property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS;H_

123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHA
RT_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H
_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_12
3_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123_PIC
TURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_RECTANGLE_CLASS;H_123_QU
ERYTABLE_CLASS',0)} See list of classes

{button ,AL(`H_123_HEIGHT_PROPERTY_EXSCRIPT ',1)} See example
Sets or returns the height of the window, or the height of the bounding box around a graphic object.

Data type
Long

Syntax
Set object.Height = value
Set value = object.Height

Legal values
For window objects, the value of the Height property is the height of the window, in units of pixels. For graphic
objects, it is the height of the object's bounding box, in units of twips.

Usage
If the window is minimized or maximized, you will not see the effect of the Height property setting until the window is
restored.

' Example: Height property
' Set the height of all charts in a workbook.
Sub SizeCharts

' This script acts on all charts in the current workbook.
ForAll x in CurrentDocument.Charts
' Set the height of all charts to 2000 pixels.
x.Height = 2000

End ForAll
End Sub

1-2-3: HorizontalBorder property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
With the Style or Color property, sets or returns the style or color of the horizontal border of a range.

Data type
RangeBorder

Syntax
Set range.HorizontalBorder = rangeborder
range.HorizontalBorder.Style = value
Set range.HorizontalBorder.Color = color
Set rangeborder = range.HorizontalBorder
value = range.HorizontalBorder.Style
Set color = range.HorizontalBorder.Color

Legal values
A RangeBorder object.
See the Style property for a list of border styles.
See the Color palette for a list of border colors.

' Example: Color, ColorName, and HorizontalBorder properties
' Add a horizontal border between the rows of a range.
Sub HBorder

Selection.HorizontalBorder.Style = $DoubleBorder
Selection.HorizontalBorder.Color.ColorName = "light burgundy"

End Sub

' Example: HorizontalPageBreak and VerticalPageBreak properties
' Set a horizontal page break above row 20 and to the left
' of column E on the sheet named Budget.
Sub MakePage

[Budget:E20].HorizontalPageBreak = True
[Budget:E20].VerticalPageBreak = True

End Sub

' Delete a horizontal page break above row 20 and to the left
' of column E on the sheet named Budget.
Sub NoBreaks

[Budget:E20].HorizontalPageBreak = False
[Budget:E20].VerticalPageBreak = False

End Sub

1-2-3: HorizontalPageBreak property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_HORIZONTALPAGEBREAK_AND_VERTICALPAGEBREAK_PROPERTIES_EXSCRIPT',1)}

See example
Determines whether to insert or delete a horizontal page break above the topmost row in the specified range.

Data type
Variant (Boolean)

Syntax
range.HorizontalPageBreak = value
value = range.HorizontalPageBreak

Legal values
Value Description
TRUE Insert a horizontal page break.
FALSE Delete the horizontal page

break.

1-2-3: HorizontalScrollBarVisible property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS',0)}

See list of classes
(Read-only) Returns whether to display the horizontal scroll bar in the window or not.

Data type
Variant (Boolean)

Syntax
value = object.HorizontalScrollBarVisible

Legal values
Value Description
TRUE (Default) Display the horizontal

scroll bar.
FALSE Hide the horizontal scroll bar.

1-2-3: HorizontalTitle property
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_HORIZONTALTITLE_PROPERTY_EXSCRIPT ',1)} See example
Determines whether the horizontal titles are frozen, based on the current location of the cell pointer.

Data type
Variant (Boolean)

Syntax
sheet.HorizontalTitle = value
value = sheet.HorizontalTitle

Legal values
Value Description
TRUE Freeze horizontal titles.
FALSE (Default) Do not freeze

horizontal titles.

' Example: HorizontalTitle and VerticalTitle properties
' Moves the cell pointer to A:B2 and freezes row 1 and column A as titles.
Sub MakeTitles

[A:B2].Select
[A].HorizontalTitle = True
[A].VerticalTitle = True

End Sub

1-2-3: IconBarNames property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
(Read-only) Returns a collection of the names of the available sets of SmartIcons, including the names of custom
sets of SmartIcons you created.

Data type
Strings

Syntax
Set strings = applicationwindow.IconBarNames

Legal values
The value of the IconBarNames property is a collection of strings containing the names of the sets of SmartIcons
available in 1-2-3, including custom sets.

1-2-3: IconBarsVisible property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Determines whether all sets of SmartIcons are displayed.

Data type
Variant (Boolean)

Syntax
applicationwindow.IconBarsVisible = value
value = applicationwindow.IconBarsVisible

Legal values
Value Description
TRUE Display the sets of

SmartIcons.
FALSE Hide the sets of SmartIcons.

1-2-3: IconSize property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Sets or returns the display size of icons.

Data type
Variant (IconSizeType enumeration)

Syntax
applicationwindow.IconSize = value
value = applicationwindow.IconSize

Legal values
Value Description
$Regular (Default) Display small-sized icons.
$Large Display large-sized icons.

' Example: InitialColWidth and InitialRowHeight properties
' Set the initial column width and row height for new workbooks
' and then create a new workbook.
Dim document1 as Document
' Set the initial row height and column width for new workbooks.
CurrentApplication.FitRowHeightToFont = False
CurrentApplication.InitialColWidth = 15
CurrentApplication.InitialRowHeight = 72
' Create a new workbook called MyDoc.
Set document1 = CurrentApplication.NewDocument("MyDoc", "", "", "", "",,)

1-2-3: InitialColWidth property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_INITIALCOLWIDTH_AND_INITIALROWHEIGHT_PROPERTIES_EXSCRIPT ',1)} See example
Sets or returns the column width for a new file.

Data type
Long

Syntax
application.InitialColWidth = value
value = application.InitialColWidth

Legal values
The value of the InitialColWidth property is any integer from 1 - 240. 1-2-3 sizes columns in whole-character
increments; the default is 9 characters.

1-2-3: InitialRowHeight property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_INITIALCOLWIDTH_AND_INITIALROWHEIGHT_PROPERTIES_EXSCRIPT ',1)} See example
Sets or returns the row height for a new file.

Data type
Long

Syntax
application.InitialRowHeight = value
value = application.InitialRowHeight

Legal values
The value of the InitialRowHeight property is any integer from 1 - 255. Row height is set in points. The default value
is 14.

1-2-3: InnerBorder property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_INNERBORDER_PROPERTY_EXSCRIPT ',1)} See example
With the Style or Color property, sets or returns the style or color of the inner border of a range.

Data type
RangeBorder

Syntax
Set range.InnerBorder = rangeborder
range.InnerBorder.Style = value
Set range.InnerBorder.Color = color
Set rangeborder = range.InnerBorder
value = range.InnerBorder.Style
Set color = range.InnerBorder.Color

Legal values
A RangeBorder object.
See the Style property for a list of border styles.
See the Color palette for a list of border colors.

' Example: Color; ColorName; and InnerBorder properties
' Add a solid, turquoise inner border to the selected range.
Sub MakeBorder

Selection.InnerBorder.Color.ColorName = "turquoise"
Selection.InnerBorder.Style = $SolidBorder

End Sub

1-2-3: InsidePlot property
{button ,AL(`H_123_LEGEND_CLASS',0)} See list of classes
Determines whether to place the legend in the plot area of a map frame or not.

Data type
Variant (Boolean)

Syntax
legend.InsidePlot = value
value = legend.InsidePlot

Legal values
Value Description
TRUE (Default) Place legend in the

plot area.
FALSE Do not place legend in the plot

area.

1-2-3: Interactive property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Determines whether 1-2-3 currently has focus and so can accept user input.

Data type
Variant (Boolean)

Syntax
value = application.Interactive

Legal values
Value Description
TRUE 1-2-3 accepts user input.
FALSE 1-2-3 does not accept user

input.

1-2-3: InternetIconsVisible property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Determines whether the set of Internet SmartIcons is displayed or not.

Data type
Variant (Boolean)

Syntax
applicationwindow.InternetIconsVisible = value
value = applicationwindow.InternetIconsVisible

Legal values
Value Description
TRUE Set of Internet SmartIcons is

displayed.
FALSE (Default) Set of Internet

SmartIcons is not displayed.

' Example: IsColumnCollapsed and IsRowCollapsed properties
Sub Collapse
[A:A1].DemoteColumn 1
[B1].CollapseColumn
[A:A1].DemoteRow 1
[A2].CollapseRow
If [B1].IsColumnCollapsed = True Then
Messagebox "Column Collapsed"
Else
Messagebox "Not Collapsed"
End If
If [A2].IsRowCollapsed = True Then
Messagebox "Row Collapsed"
Else
Messagebox "Row Not Collapsed"
End If
End Sub

1-2-3: IsColumnCollapsed property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_ISCOLUMNCOLLAPSED_AND_ISROWCOLLAPSED_PROPERTIES_EXSCRIPT ',1)} See

example
(Read-only) Determines whether any of the columns in an outlined range are collapsed.

Data type
Variant (Boolean)

Syntax
value = range.IsColumnCollapsed

Legal values
Value Description
TRUE Columns are collapsed.
FALSE Columns are not collapsed

' Example: IsColumnHidden and IsRowHidden properties
' Check a range for hidden columns or rows. Use this code to
' prevent unexpected results in a script that asks the user
' to specify a range to make changes to. (If hidden columns and rows are
' not protected and the sheet or workbook that contains them is not
' locked, scripts that enter new data can write over data in the hidden
' columns and rows.)
Sub OutlineCheck

Dim r As Range
Set r = [A:B1..A:B4]
 'If the range contains hidden rows, display this message.
 If r.IsRowHidden = True Then
 MessageBox "Error! Range contains hidden rows."
 'If the range contains hidden columns, display this message.
 ElseIf r.IsColumnHidden = True Then
 MessageBox "Error! Range contains hidden columns."
 'If the specified range contains no hidden rows or columns, display this
message.
 Else
 MessageBox "Range contains no hidden columns or rows."
 End If

End Sub

1-2-3: IsColumnHidden property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_ISCOLUMNHIDDEN_AND_ISROWHIDDEN_PROPERTIES_EXSCRIPT ',1)} See example
(Read-only) Determines whether columns in a specified range are hidden.

Data type
Variant (Boolean)

Syntax
value = range.IsColumnHidden

Legal values
Value Description
TRUE Columns are hidden.
FALSE Columns are displayed.

1-2-3: IsDraggable property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_ARC_CLASS;H_123_

APPROACHCONNECTION_CLASS;H_123_BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BU
TTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123
_DATALINK_CLASS;H_123_DATETIME_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H
_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITT
EXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CL
ASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_MAPPLOT_CLASS;H_123
_MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_1
23_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_1
23_PRINTSETTINGS_CLASS;H_123_QUERY_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;
H_123_RANGEBORDER_CLASS;H_123_RANGESELECTOR_CLASS;H_123_RECTANGLE_CLASS;H_123_SH
EET_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS;',0)} See
list of classes

(Read-only) Determines whether or not an object can be cut or copied to the Clipboard, or dragged and dropped.

Data type
Variant (Boolean)

Syntax
value = object.IsDraggable

Legal values
Value Description
TRUE The object can be cut, copied, or

dragged and dropped.
FALSE The object cannot be cut, copied, or

dragged and dropped.

1-2-3: IsFormatFreqUsed property
{button ,AL(`H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_ISFORMATFREQUSED_PROPERTY_EXSCRIPT ',1)} See example
Determines whether the current format appears in the Frequently Used list.

Data type
Variant (Boolean)

Syntax
object.IsFormatFreqUsed = value
value = object.IsFormatFreqUsed

Legal values
Value Description
TRUE The format appears in the

Frequently Used list.
FALSE The format does not appear in the

Frequently Used list.

' Example: IsFormatFreqUsed property
' Promotes the number format of the selected cell to the
' frequently used list in the status bar.
Sub PromoteMyFormat

' Check to see if the number format of the current cell is in the frequently used
list.
If Selection.IsFormatFreqUsed = False Then
 ' If not, then promote the format.
 Selection.IsFormatFreqUsed = True
Else
 ' Otherwise, display this message.
 Messagebox "Format is already in the Frequently used list."
End If

End Sub

' Example: BackColor, Background, IsHidden, IsProtected, and Pattern properties
' Hide the data in a specified range, protect the range from changes
' and add a pattern to it.
Sub HideData

' Lock Sheet A.
[A].IsProtected = True
' Protect the selected range and hide any data in it.
Selection.IsHidden = True
Selection.IsProtected = True
' Add a pattern to the range to alert users that it contains hidden data.
Selection.Background.Pattern = $DoubleRightHatch
Selection.Background.BackColor.ColorName = "25% gray"

End Sub

1-2-3: IsHidden property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_ISHIDDEN_AND_ISPROTECTED_PROPERTIES_EXSCRIPT ',1)} See example
Determines whether the range is hidden.

Data type
Variant (Boolean)

Syntax
range.IsHidden = value
value = range.IsHidden

Legal values
Value Description
TRUE Hide the range.
FALSE (Default) Display the range.

1-2-3: IsLeapYear property
{button ,AL(`H_123_DATETIME_CLASS',0)} See list of classes
(Read-only) Determines whether the date specified by the DateTime object occurs in a leap year.

Data type
Variant (Boolean)

Syntax
value = datetime.IsLeapYear

Legal values
Value Description
TRUE The date specified occurs in a

leap year.
FALSE The date specified does not

occur in a leap year.

1-2-3: IsLocked property
{button ,AL(`;H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS

;H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJE
CT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_
CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;
H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_RECTANGLE_CLASS;H_123_QUERYTABLE_CL
ASS',0)} See list of classes

{button ,AL(`H_123_ISLOCKED_PROPERTY_EXSCRIPT ',1)} See example
Determines whether the graphic object is locked.

Data type
Variant (Boolean)

Syntax
object.IsLocked = value
value = object.IsLocked

Legal values
Value Description
TRUE Lock the graphic object.
FALSE (Default) Do not lock the

graphic object.

Usage
When an object is locked, you cannot move, size, delete, style, or manipulate it.

' Example: IsLocked property
' Lock all the OLE objects in the current workbook.
Sub LockObjects

ForAll x.CurrentDocument.OLEObjects
 x.IsLocked = True
End ForAll

End Sub

1-2-3: IsNew property
{button ,AL(`H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS',0)} See list of classes
(Read-only) Returns whether the current version or version group has been added since you last saved the file.

Data type
Variant (Boolean)

Syntax
value = object.IsNew

Legal values
Value Description
TRUE Version or version group has

been added since the file was
last saved.

FALSE Version or version group has
not been added since the file
was last saved.

1-2-3: IsNotesFX property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
Determines whether the current range is used for Notes/FX.

Data type
Variant (Boolean)

Syntax
range.IsNotesFX = value
value = range.IsNotesFX

Legal values
Value Description
TRUE Range is used for Notes/FX.
FALSE Range is not used for

Notes/FX.

1-2-3: IsParenthesized property
{button ,AL(`H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_ISPARENTHESIZED_PROPERTY_EXSCRIPT ',1)} See example
Determines whether parentheses are placed around all numbers in a range or a sheet.

Data type
Variant (Boolean)

Syntax
object.IsParenthesized = value
value = object.IsParenthesized

Legal values
Value Description
TRUE Place parentheses around all

numeric values.
FALSE (Default) Do not place

parentheses around all
numeric values.

' Example: FormatDecimals, FormatName, and IsParenthesized properties
' Format values in the selected range as parethesized,
' and fixed with no decimal places.
Sub ParenFormat

Selection.FormatName = "Fixed"
Selection.FormatDecimals = 0
Selection.IsParenthesized = True

End Sub

1-2-3: IsProtected property
{button ,AL(`H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_ISHIDDEN_AND_ISPROTECTED_PROPERTIES_EXSCRIPT ',1)} See example
Determines whether the current range, table, or sheet is protected.

Data type
Variant (Boolean)

Syntax
object.IsProtected = value
value = object.IsProtected

Legal values
Value Description
TRUE Protect the range, table, or

sheet.
FALSE Do not protect the range,

table, or sheet.
The default value of the IsProtected property for a range is True. The default value for a sheet is False.

1-2-3: IsRangeNamed property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_ISRANGENAMED_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Determines whether a specified range is named.

Data type
Variant (Boolean)

Syntax
value = range.IsRangeNamed

Legal values
Value Description
TRUE Specified range is named.
FALSE (Default) Specified range is

not named.

{button ,AL(`H_123_CLEARRANGENAMES_METHOD_MEMDEF;H_123_CREATERANGENAME_METHOD_MEM
DEF;H_123_CREATERANGENAMEFROMLABEL_METHOD_MEMDEF;H_123_CREATERANGENAMETABLE_
METHOD_MEMDEF;H_123_NAME_PROPERTY_MEMDEF',0)} See related topics

' Example: CoordinateString, IsRangeNamed, and Name properties
' Tell the user if a selected range is named and, if it is,
' what the name is.
Sub AboutRange

' Uses RangeSelector object to let the user select a range.
Dim rs As RangeSelector
Set rs = CurrentApplication.RangeSelector
Dim r As Range
Set r = rs.GetRange
' Variable rn is the name of the selected range.
rn = r.Name
' Variable cs is the address of the selected range.
cs = r.CoordinateString
Noname = "The range "& cs &" is not named."
Nameis = "The range "& cs &" is named "& rn
 ' If the selected range is not named, display a message that says so.
 If r.IsRangeNamed = False Then
 Messagebox Noname
 ' If the selected range is named, display the name in a message.
 Else
 Messagebox Nameis
 End If

End Sub

1-2-3: IsRowCollapsed property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_ISCOLUMNCOLLAPSED_AND_ISROWCOLLAPSED_PROPERTIES_EXSCRIPT ',1)} See

example
(Read-only) Determines whether any of the rows in an outlined range are collapsed.

Data type
Variant (Boolean)

Syntax
value = range.IsRowCollapsed

Legal values
Value Description
TRUE Rows in the range are

collapsed.
FALSE Rows in the range are not

collapsed.

1-2-3: IsRowHidden property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_ISCOLUMNHIDDEN_AND_ISROWHIDDEN_PROPERTIES_EXSCRIPT ',1)} See example
(Read-only) Determines whether rows in a specified range are hidden.

Data type
Variant (Boolean)

Syntax
value = range.IsRowHidden

Legal values
Value Description
TRUE Rows in the range are hidden.
FALSE Rows in the range are

displayed.

1-2-3: IsSelectable property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_ARC_CLASS;H_123_

APPROACHCONNECTION_CLASS;H_123_BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BU
TTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123
_DATALINK_CLASS;H_123_DATETIME_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H
_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITT
EXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CL
ASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_MAPPLOT_CLASS;H_123
_MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_1
23_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_1
23_PRINTSETTINGS_CLASS;H_123_QUERY_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;
H_123_RANGEBORDER_CLASS;H_123_RANGESELECTOR_CLASS;H_123_RECTANGLE_CLASS;H_123_SH
EET_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS;',0)} See
list of classes

(Read-only) Determines whether an object can be added to a selection.

Data type
Variant (Boolean)

Syntax
value = object.IsSelectable

Legal values
Value Description
TRUE The object can be added to a

selection.
FALSE The object cannot be added to a

selection.

1-2-3: IsSelected property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJE
CT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_
CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLAS
S;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_RECTANGLE_CLAS
S;H_123_QUERYTABLE_CLASS;H_123_QUERY_CLASS;H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)}
See list of classes

(Read-only) Determines whether an object is selected.

Data type
Variant (Boolean)

Syntax
value = object.IsSelected

Legal values
Value Description
TRUE Object is selected.
FALSE Object is not selected.

1-2-3: IsZeroDisplayed property
{button ,AL(`;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_ISZERODISPLAYED_PROPERTY_EXSCRIPT;H_123_DISPLAYZEROAS_PROPERTY_EXSCR

IPT;',1)} See example
Determines whether zeros are displayed in the sheet.

Data type
Variant (Boolean)

Syntax
sheet.IsZeroDisplayed = value
value = sheet.IsZeroDisplayed

Legal values
Value Description
TRUE (Default) Display zeros in the

sheet.
FALSE Do not display zeros in the

sheet.

' Example: DisplayZeroAs, IsZeroDisplayed, and Sheets properties
' Display all zeros in a workbook as the word "None."
Sub ChangeZeros

'Act on all sheets in the current workbook
ForAll x in CurrentDocument.Sheets
 'Turn on the display of zeros and display all zeros as the word "None."
 x.IsZeroDisplayed = True
 x.DisplayZeroAs = "None"
End ForAll

End Sub

1-2-3: Italic property
{button ,AL(`;H_123_FONT_CLASS',0)} See list of classes
{button ,AL(`H_123_ITALIC_PROPERTY_EXSCRIPT ',1)} See example
Determines whether data is styled using italics.

Data type
Variant (Boolean)

Syntax
font.Italic = value
value = font.Italic

Legal values
Value Description
TRUE Apply italics.
FALSE Do not apply italics.

' Example: ColorName, DoubleUnderline, Font, FontColor, FontName, Italic and Size
properties
' Formats the selected range. This format would be appropriate for a title.
Sub TitleStyle

Selection.Font.FontName = "Century Schoolbook"
Selection.Font.FontColor.ColorName = "50% gray"
Selection.Font.Italic = True
Selection.Font.DoubleUnderline = True
Selection.Font.Size = 18

End Sub

1-2-3: Keywords property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_KEYWORDS_PROPERTY_EXSCRIPT ',1)} See example
Sets or returns keywords associated with a file.

Data type
String

Syntax
document.Keywords = value
value = document.Keywords

Legal values
The value of the Keywords property is a string containing the keywords you set or entered using File - Workbook
Properties (General tab).

' Example: Author, Contents, Keywords, and LastEditor properties; MoveCellPointer
method
' Enter 1-2-3 Statistics information in a sheet.
Sub Stats

' Assign variables for the current file's keywords,
' author, and last editor.
kw = CurrentDocument.Keywords
au = CurrentDocument.Author
le = CurrentDocument.LastEditor
' Enter the file's keywords, author, and last editor in
' separate cells down a column.
Selection.Contents = kw
[A].MoveCellPointer $Down,1
Selection.Contents = au
[A].MoveCellPointer $Down,1
Selection.Contents = le

End Sub

1-2-3: KnownRegionAliases property
{button ,AL(`H_123_MAP_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS',0)} See list of

classes
(Read-only) Returns a collection of available custom names for recognized map regions for a map. For example,
you may have created the custom name "Nippon" for the recognized region name "Japan" for the World Countries
map.

Data type
Strings

Syntax
Set strings = object.KnownRegionAliases

Legal values
The value of the KnownRegionAliases property is a collection of strings containing custom names you created for
regions of the map.

1-2-3: KnownRegionCodes property
{button ,AL(`H_123_MAP_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS',0)} See list of

classes
(Read-only) Returns a collection of available map region codes for a map.

Data type
Strings

Syntax
Set strings = object.KnownRegionCodes

Legal values
The value for the KnownRegionCodes property is a collection of strings containing the map region codes for the map.

1-2-3: KnownRegionNames property
{button ,AL(`H_123_MAP_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS',0)} See list of

classes
(Read-only) Returns a collection of available region names for a map.

Data type
Strings

Syntax
Set strings = object.KnownRegionNames

Legal values
The value for the KnownRegionNames property is a collection of strings containing names for the regions of the map.

1-2-3: L123Seconds property
{button ,AL(`H_123_DATETIME_CLASS;',0)} See list of classes
(Read-only) Returns the internal 1-2-3 representation of the date and time specified by the DateTime object.

Data type
Double

Syntax
value = datetime.L123Seconds

Legal values
The L123Seconds property returns a 1-2-3 time number. The integer portion of this positive number represents a
date; the fractional portion represents a time.

Usage
The L123Seconds property is used by 1-2-3 to communicate with the DateTime object.

1-2-3: LabelRange property
{button ,AL(`H_123_MAPBINS_CLASS',0)} See list of classes
Sets or returns the range that contains the legend labels for the specified map data bin.

Data type
Range

Syntax
Set mapbins.LabelRange = range
Set range = mapbins.LabelRange

Legal values
The value of the LabelRange property is a Range object containing labels.

Usage
The LabelRange property is ignored unless the LabelSource property is set to $LabelsFromRange. Because there
is a maximum of six map bins, only the first six values in the range are used.

1-2-3: LabelSource property
{button ,AL(`H_123_MAPBINS_CLASS',0)} See list of classes
(Read-only) Returns the way in which legend labels are defined.

Data type
Variant (MapBinLabelSource enumeration)

Syntax
value = mapbins.LabelSource

Legal values
Value Description
$FromValues 1-2-3 determines the legend

labels from the bin values.
$LabelsManual You specify the label strings.
$LabelsFromRange You specify the range that

contains the legend labels.

1-2-3: LastEditor property
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;',0)} See

list of classes
{button ,AL(`H_123_KEYWORDS_PROPERTY_EXSCRIPT;H_123_EDITINGTIME_PROPERTY_EXSCRIPT;',1)}

See example
(Read-only) Returns the name of the user who made the last change to the file, version, or version group.

Data type
String

Syntax
value = object.LastEditor

Legal values
The default value for the LastEditor property is the name of the user who made the last change to the file, version, or
version group. If no revision has been made, the value is the same as the value of the Author property.

1-2-3: LastPrinted property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_LASTPRINTED_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Returns the system date and time when the file was last printed.

Data type
DateTime

Syntax
Set datetime = document.LastPrinted

Legal values
The value of the LastPrinted property is the date and time on your system when the file was last printed.

' Example: LastPrinted property
' Prints the current workbook if it was not printed the last time it was saved, using
the current print and page settings.
Sub PrintDoc

If CurrentDocument.LastPrinted.LocalTime <> _
 CurrentDocument.LastPrinted.LocalTime Then
 CurrentApplication.Print

End If
End Sub

1-2-3: LastVersionGroup property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
(Read-only) Returns the last version group that was current in the file.

Data type
VersionGroup

Syntax
Set versiongroup = document.LastVersionGroup

Legal values
The value of the LastVersionGroup property is the last version group you set or the last version group you displayed
using Range - Version Group.

1-2-3: LeftBorder property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_LEFTBORDER_PROPERTY_EXSCRIPT ',1)} See example
With the Style or Color property, sets or returns the style or color of the left border of a range.

Data type
RangeBorder

Syntax
Set range.LeftBorder = rangeborder
range.LeftBorder.Style = value
Set range.LeftBorder.Color = value
Set rangeborder = range.LeftBorder
value = range.LeftBorder.Style
Set value = range.LeftBorder.Color

Legal values
A RangeBorder object.
See the Style property for a list of border styles.
See the Color palette for a list of border colors.

' Example: Color, ColorName, and LeftBorder properties
' Adds a light lavender, double border to the left of a selected range.
Sub StyleLeftBorder

Selection.LeftBorder.Style = $DoubleBorder
Selection.LeftBorder.Color.ColorName = "light lavender"

End Sub

1-2-3: LeftMargin property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the left margin print setting, in twips.

Data type
Long

Syntax
printsettings.LeftMargin = value
value = printsettings.LeftMargin

Legal values
The value of the LeftMargin property is the left margin you set or the left margin you specified using File - Preview &
Setup (Layout tab).

1-2-3: Left property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJE
CT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_
CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLAS
S;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_RECTANGLE_CLAS
S;H_123_QUERYTABLE_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_12
3_WINDOW_CLASS',0)} See list of classes

{button ,AL(`H_123_LEFT_PROPERTY_EXSCRIPT ',1)} See example
Sets or returns the coordinate of the left boundary of the bounding rectangle for a graphic object, in twips, or the
horizontal coordinate of the window's origin.

Data type
Long

Syntax
object.Left = value
value = object.Left

Legal values
The boundary for a graphic object cannot be outside the boundary for the worksheet.

Usage
If the window is minimized or maximized, you will not see the effect of the Left property setting until the window is
restored.

' Example: Left property
' Align the left edges of all the charts on a sheet to make the
' data look neater when printed.
Sub LineUp

'This script acts on all charts in the current workbook.
ForAll x in CurrentDocument.Charts
 'Place the left edge of all charts 1000 pixels from the left edge of the window.
 x.Left = 1000
End ForAll

End Sub

1-2-3: Legend property
{button ,AL(`H_123_MAP_CLASS;H_123_DRAWCOLLECTION_CLASS',0)} See list of classes
(Read-only) Returns the legend object for the specified map.

Data type
Legend

Syntax
Set legend = object.Legend

Legal values
The return value for the Legend property is a legend object.

1-2-3: LinkedToCell property
{button ,AL(`H_123_MAPTEXTENTRY_CLASS',0)} See list of classes
Indicates whether a specifed line of text is connected to a cell.

Data type
Variant (Boolean)

Syntax
maptextentry.LinkedToCell = value

Legal values
Value Description
TRUE The text is connected to a cell.
FALSE The text is not connected to a

cell.

1-2-3: LinkSource property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;

H_123_QUERYTABLE_CLASS',0)} See list of classes
Sets or returns the source of a link.

Data type
String

Syntax
object.LinkSource = value
value = object.LinkSource

Legal values
The default value for the LinkSource property is the source you set or the source of a link you specified using the
SetLinkSource method.

1-2-3: LocalTime property
{button ,AL(`;H_123_DATETIME_CLASS',0)} See list of classes
Sets or returns the time on your computer as a string.

Data type
String

Syntax
datetime.LocalTime = value
value = datetime.LocalTime

Legal values
The value for the LocalTime property is the time you set or the time you specified in the Windows Control Panel.
You can set time in hours, minutes, and seconds.

1-2-3: Location property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`',1)} See example
(Read-only) Returns the location of the file, either a directory or a Notes database. 1-2-3 copies the location into a
temp file.

Data type
String

Syntax
value = document.Location

Legal values
The value for the Location property is the path in which the file is located.

' Example: Location property
' Finds a file to create an automatic backup.

1-2-3: LongPrompt property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Sets or returns the current long prompt. A long prompt is a description that appears in the title bar of the 1-2-3
window when you highlight a commmand.

Data type
String

Syntax
applicationwindow.LongPrompt = value
value = applicationwindow.LongPrompt

Legal values
The value of the LongPrompt property is a string containing the text of the prompt.

1-2-3: LSGMTTime property
{button ,AL(`H_123_DATETIME_CLASS',0)} See list of classes
(Read-only) Returns the LotusScript date value in Greenwich mean time.

Data type
Variant

Syntax
value = datetime.LSGMTTime

Legal values
The value for the LSGMTTime property is any valid date.

1-2-3: LSLocalTime property
{button ,AL(`H_123_DATETIME_CLASS',0)} See list of classes
Sets or returns the LotusScript date value for the current date on your system.

Data type
Variant

Syntax
datetime.LSLocalTime = value
value = datetime.LSLocalTime

Legal values
The value of the LSLocalTime property is the time you set or the time you specified in the Windows Control Panel.

1-2-3: MacroStep property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether to step through each instruction of a macro one at a time.

Data type
Variant (Boolean)

Syntax
application.MacroStep = value
value = application.MacroStep

Legal values
Value Description
TRUE Step through each instruction

of the macro.
FALSE (Default) Do not step through

each instruction of the macro.

Usage
Setting the value of the MacroStep property to TRUE automatically sets the value of the MacroTrace property to
TRUE.

1-2-3: MacroTrace property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether to display the Macro Trace window to view a macro while it is running.

Data type
Variant (Boolean)

Syntax
application.MacroTrace = value
value = application.MacroTrace

Legal values
Value Description
TRUE Display the Macro Trace

window.
FALSE (Default) Do not display the

Macro Trace window.

1-2-3: MaintainDimensions property
{button ,AL(`H_123_PLOT_CLASS;',0)} See list of classes
Determines whether to maintain the correct dimensions of the map when you resize it.

Data type
Variant (Boolean)

Syntax
mapplot.MaintainDimensions = value
value = mapplot.MaintainDimensions

Legal values
Value Description
TRUE (Default) Maintain the correct

map dimensions.
FALSE Do not maintain the correct

map dimensions.

1-2-3: Maps property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_MAPS_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Returns a collection of the maps for the specified file.

Data type
Maps

Syntax
Set maps = document.Maps

Legal values
The value of the Maps property is the maps collection for the file.

' Example: Maps property
' Clears all maps.
 Forall mps in CurrentDocument.Maps
 mps.Clear
 End Forall

1-2-3: MatchAccent property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_MATCHCASE_PROPERTY_MATCHACCENT_PROPERTY_EXSCRIPT;',1)} See example
Determines whether to look for accented characters when finding text.

Data type
Variant (Boolean)

Syntax
application.MatchAccent = value
value = application.MatchAccent

Legal values
Value Description
TRUE Look for accented characters.
FALSE (Default) Do not look for

accented characters.

1-2-3: MatchCase property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_MATCHCASE_PROPERTY_MATCHACCENT_PROPERTY_EXSCRIPT;',1)} See example
Determines whether to look for characters using the exact combination of upercase and lowercase letters you enter
when finding text.

Data type
Variant (Boolean)

Syntax
application.MatchCase = value
value = application.MatchCase

Legal values
Value Description
TRUE Look for exact combination of

uppercase and lowercase
letters.

FALSE (Default) Do not look for exact
combination of uppercase and
lowercase letters.

'Example: MatchAccent and MatchCase properties
' Open a new document and call it TestDocument.
Dim TestDocument As Document
Set TestDocument = CurrentApplication.NewDocument("TestDocument")
' Add some data to cells A:A1 through A:A5 in TestDocument.
[A:A1].Select
Selection.Contents = "Test document for example"
[A].MoveCellPointer $Down,1
Selection.Contents = "crepe paper"
[A].MoveCellPointer $Down,1
Selection.Contents = "crêpe desserts"
[A].MoveCellPointer $Down,1
Selection.Contents = "Crepe de Chine"
' Specify search and replace strings
CurrentApplication.SearchString = "crepe"
CurrentApplication.ReplaceString = "green"
' Specify search characteristics
CurrentApplication.MatchAccent = True
CurrentApplication.MatchCase = False
' Replace the first occurence
Messagebox("Replace ""crepe"" with ""green"" in the first occurence.")
[A1..A5].Replace
Messagebox("Replace ""crepe"" with ""green"" in all occurences.")
[A1..A5].ReplaceAll

1-2-3: MatchKatakana property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether specified text is Katakana-to-Hiragana sensitive.

Data type
Variant (Boolean)

Syntax
application.MatchKatakana = value
value = application.MatchKatakana

Legal values
Value Description
TRUE The specified text is Katakana-

to-Hiragana sensitive.
FALSE (Default) The specified text is

not Katakana-to-Hiragana
sensitive.

1-2-3: MatchPitch property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether to check if pitch matches when finding text.

Data type
Variant (Boolean)

Syntax
application.MatchPitch = value
value = application.MatchPitch

Legal values
Value Description
TRUE The specified text is pitch-

sensitive.
FALSE (Default) The specified text is

not pitch-sensitive.

1-2-3: MenuPrompt property
{button ,AL(`H_123_MENU_CLASS;H_123_MENUBAR_CLASS;',0)} See list of classes
Sets or returns the long prompt for a selected menu item. This property is read-write for menu commands you
create with LotusScript, and read-only for built-in 1-2-3 menus.

Data type
String

Syntax
object.MenuPrompt = value
value = object.MenuPrompt

Legal values
The value of the MenuPrompt property is a string containing the text of the prompt.

1-2-3: Methods property
{button ,AL(`H_123_CLASSINFO_CLASS',0)} See list of classes
(Read-only) Returns a collection of the available methods for the class.

Data type
Strings

Syntax
Set strings = classinfo.Methods

Legal values
The value of the Methods property is a collection of strings containing the names of the methods for the class.

1-2-3: ModifiedDate property
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS',0)} See list

of classes
{button ,AL(`H_123_MODIFIEDDATE_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the most recent date the file, version, or version group was modified.

Data type
DateTime

Syntax
Set datetime = object.ModifiedDate

Legal values
If the file, version, or version group has not been modified, the default value is the date it was created.

' Example: ModifiedDate property
' Check if file has been modified.
Dim File1 As Document
Dim ModifiedDateResult As String
Set File1 = CurrentApplication.NewDocument
File1.SaveAs "test123"
If File1.CreationDate.LocalTime = File1.ModifiedDate.LocalTime Then
ModifiedDateResult = "Not Modified"
Else
ModifiedDateResult = "Modified"
End If

1-2-3: MonthNames property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_MONTHNAMES_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the unabbreviated names of the months used in dates.

Data type
Strings

Syntax
Set strings = application.MonthNames

Legal values
The default values of the MonthNames property are the names of the months determined by the country setting you
specified in the Windows Control Panel.

' Example: Contents and MonthNames properties
Forall x In CurrentApplication.MonthNames
Selection.Contents = x
.MoveCellPointer $Down, 1
End Forall

1-2-3: MorningString property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns a time string for the AM symbol.

Data type
String

Syntax
value = application.MorningString

Legal values
The default value of the MorningString property is AM, or a string you specified in the Windows Control Panel.

1-2-3: NamedPrintSettings property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_NAMEDPRINTSETTINGS_PROPERTY_EXSCRIPT',1)} See example
Sets or returns a collection of the named print styles.

Data type
PrintSettingsCollection

Syntax
Set document.NamedPrintSettings = printsettingscollection
Set printsettingscollection = document.NamedPrintSettings

Legal values
The default value for the NamedPrintSettings property is a collection of the names of the print styles you set, or the
names of the print styles you created using File - Preview & Page Settings (Named Styles).
A document always has a PrintSettings object named Default.

' Example: NamedPrintSettings property
' Print a list of named print styles in the current file.
Dim printcollect As PrintSettingsCollection
Set printcollect = CurrentDocument.NamedPrintSettings
Forall PSC In printcollect
Print PSC.Name
End Forall

1-2-3: NamedRanges property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_NAMEDRANGES_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Returns a list of all named ranges in the file.

Data type
Strings

Syntax
Set strings = document.NamedRanges

Legal values
The value of the NamedRanges property is a collection of the range name strings associated with the file.

' Example: NamedRanges property
' Print in the Output view all of the named ranges in the workbook.
Forall ranges In CurrentDocument.NamedRanges
Print ranges
End Forall

1-2-3: Name property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_APPROACHCONNEC

TION_CLASS;H_123_ARC_CLASS;H_123_BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BU
TTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123
_DATALINK_CLASS;H_123_DATAQUERY_CLASS;H_123_DATETIME_CLASS;H_123_DOCUMENT_CLASS;H_
123_DOCWINDOW_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWO
BJECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAN
D_CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_
123_MAPPLOT_CLASS;H_123_MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H
_123_MENUBAR_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H
_123_POLYLINE_CLASS;H_123_PRINTSETTINGS_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CL
ASS;H_123_RANGEBORDER_CLASS;H_123_RANGESELECTOR_CLASS;H_123_RECTANGLE_CLASS;H_12
3_SHEET_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS',0)}
See list of classes

{button ,AL(`H_123_NAME_PROPERTY_EXSCRIPT;H_123_SHEETCOUNT_PROPERTY_EXSCRIPT;H_123_SELE
CTION_PROPERTY_EXSCRIPT;H_123_SHEETS_PROPERTY_EXSCRIPT;H_123_GREEN_PROPERTY_EXSC
RIPT;H_123_ISRANGENAMED_PROPERTY_EXSCRIPT',1)} See example

(Read-only) Returns the name of the object.

Data type
String

Syntax
value = object.Name

Legal values
This property is read-write for certain classes, such as the Query class.
For the Range class, the default value for the Name property when a range has multiple names associated with it is
the last range name used. If a range address was used, the address will be returned.
For the Document class, the default value for the Name property is the name of the file, including the path.
If the object is not named, the Name property returns the name of the parent object.
For collections, the Name property returns an empty string.

' Example: Name property
' Display the name of the current document in a message box.
Dim file1 As Document
Set file1 = CurrentApplication.NewDocument
Dim filename As String
filename = CurrentDocument.Name
MessageBox filename

1-2-3: NegativesInColor property
{button ,AL(`H_123_RANGE_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_NEGATIVESINCOLOR_PROPERTY_EXSCRIPT;',1)} See example
Determines whether negative numbers are displayed in red in the range or sheet.

Data type
Variant (Boolean)

Syntax
object.NegativesInColor = value
value = object.NegativesInColor

Legal values
Value Description
TRUE Display negative numbers in

red.
FALSE (Default) Do not display

negative numbers in red.

' Example: ColorIndex, FormatDecimals, FormatName, NegativesInColor, and
' OutlineBorder properties; RangeFill method
' Set up and format a range, using various styles and number formats.
Dim testrange As Range
Dim testborder As RangeBorder
Set testrange = Bind("A:A1..A:C20")
testrange.RangeFill -5,1,32767,$Number,
Set testborder = testrange.OutlineBorder
testborder.Style = $ThickBorder
testborder.Color.ColorIndex = 54
testrange.NegativesInColor = True
testrange.Font.Bold = True
testrange.FormatDecimals = 2
testrange.FormatName = "US Dollar"
MsgBox "Range has been filled and formatted."

1-2-3: Normal property
{button ,AL(`H_123_FONT_CLASS',0)} See list of classes
Sets or returns whether the data is styled using the normal attribute.

Data type
Variant (Boolean)

Syntax
font.Normal = value
value = font.Normal

Legal values
Value Description
TRUE Apply the normal attribute to the

data. This sets all other font
attributes to FALSE.

FALSE Do not apply the normal attribute to
the data. You cannot explicitly set
this value; FALSE is returned when
another text property (for example,
Bold) is set to TRUE.

1-2-3: NotesPath property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_NOTESPATH_PROPERTY_EXSCRIPT',1)} See example
(Read only) Returns the path where Notes is installed.

Data type
String

Syntax
filename = application.Notespath

Legal values
The value for the NotesPath property is a string containing a path name and executable filename, for example, "C:\
NOTES\NOTES.EXE".

' Example: NotesPath property
' Displays a message box showing the location of Notes.

Dim x as String
x = CurrentApplication.NotesPath
MessageBox (x)

1-2-3: NumberOfMostRecentFiles property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_NUMBEROFMOSTRECENTFILES_PROPERTY_EXSCRIPT ',1)} See example
Sets or returns the number of the most recently opened files to display on the File menu.

Data type
Long

Syntax
application.NumberOfMostRecentFiles = value
value = application.NumberOfMostRecentFiles

Legal values
The value of the NumberOfMostRecentFiles property can be any Long integer from 0 - 10.

' Example: NumberOfMostRecentFiles property
' Returns the number of files listed.
Dim myapp As Application
Dim filenumber As Integer
Set myapp = CurrentApplication
' Store the default number of most recent files
filenumber = myapp.NumberOfMostRecentFiles
Messagebox ("The number of most recent files that will be " + _
 "displayed on the File menu is: " + Str(filenumber))

1-2-3: Object property
{button ,AL(`H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;H_123_QUERYTABLE_CLASS;H_123_APPR

OACHCONNECTION_CLASS',0)} See list of classes
{button ,AL(`h_123_object_property_exscript',1)} See example
(Read-only) Returns a reference to the OLE Automation object.

Data type
Variant

Syntax
Set object = objectspecifier.Object

Legal values
A reference to the object specified by objectspecifier.

Usage
Use the Object property to call the automation commands and properties supported by the OLE Automation class.
Use the Set statement to assign the object reference returned to a Variant variable. This is the same type returned by
the functions CreateObject and GetObject.

' Example: Object property
' Use the Object property to get an OLE automation server object.

' Example 1. Word Pro automation server
' Embed a new Word Pro document using OLE automation, add content, and save it.
' Note: To run this example, OLE automation needs to be unchecked
' in the Disable drop-down list in Word Pro Preferences.
Dim myObj As OLEObject
Dim myDoc As Variant
' First, create a Word Pro OLE object, of 1-2-3 type OLEObject.
Set myObj = [A].NewObject(1080, 360, 6480, 4320, "WordPro.Document",,, False,,,)
' Get the Word Pro TextDocument object for OLE automation.
Set myDoc = [OLE 1].Object
' Display the object's content.
myObj.Verb $OLEVerbShow
' Now run methods of the TextDocument class in Word Pro.
' For example, use a different SmartMaster.
myDoc.Parent.ChangeSmartMaster "f:\lotus\smasters\wordpro\letter1.mwp", "", "Current
division only"
' Add some text.
myDoc.Parent.Type "This is a test of using Word Pro as an OLE automation server. "
' Save the Word Pro document to a file.
myDoc.SaveAs "F:\lotus\work\wordpro\123ObjP.lwp", "", "Lotus Word Pro", False, True,
False

' Example 2. Freelance Graphics automation server
' Embed a Freelance Graphics document and add some content to it.
' First, create the Freelance Graphics OLE object, of 1-2-3 type OLEObject.
[A].NewObject 1080, 720, 6480, 5080, "FLW3Presentation",,, False,,,
' At this point, Freelance Graphics is launched full-screen,
' and presents two modal dialog boxes asking the user to select
' a SmartMaster Content topic and Look, and a page layout for
' the new presentation.
' Get the Freelance Graphics Document object for OLE automation.
Dim mydoc As Variant ' Freelance Graphics Document object
Set mydoc = [OLE 1].Object
' Now run methods and set properties of the Document class in Freelance Graphics.
' For example:
' Set the SmartMaster look.
mydoc.SmartLook = "blank.mas"
' Create a new page.
mydoc.CreatePage "my page", 12
' Add a block of text.
Dim txtblock As Variant
Set txtblock = mydoc.Pages("my page").CreateText(2880, 5760, 7200, 3600)
txtblock.Text = "Page content."

1-2-3: OLEObjects property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`h_123_oleobjects_property_exscript',1)} See example
(Read-only) Returns a list of the OLE objects embedded in the specified file.

Data type
OLEObjects

Syntax
Set oleobjects = document.OLEObjects

Legal values
The value of the OLEObjects property is a collection of references to the OLE objects in the file.

' Example: OLEObjects property
' Check all of the OLE objects and, for linked OLE objects, update the link.
Forall foo In CurrentDocument.OLEObjects
If foo.Islinked = True Then
foo.Update
End If
End Forall

1-2-3: Orientation property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the orientation of paper for printed output.

Data type
Variant (Orientation enumeration)

Syntax
printsettings.Orientation = value
value = printsettings.Orientation

Legal values
Value Description
$Portrait (Default) Print output in the

portrait (vertical) orientation.
$Landscape Print output in the landscape

(horizontal) orientation.

1-2-3: OSType property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns the name and version of the operating system installed on your computer.

Data type
String

Syntax
value = application.OSType

Legal values
The value of the OSType property is a string containing the name and version of the operating system installed on
your computer.

1-2-3: OutlineBorder property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_OUTLINEBORDER_PROPERTY_EXSCRIPT;H_123_NEGATIVESINCOLOR_PROPERTY_EXS

CRIPT',1)} See example
With the Style or Color property, sets or returns the style or color of the outline border of a range.

Data type
RangeBorder

Syntax
Set range.OutlineBorder = rangeborder
Set range.OutlineBorder.Style = value
Set range.OutlineBorder.Color = color
Set rangeborder = range.OutlineBorder
Set value = range.OutlineBorder.Style
Set color = range.OutlineBorder.Color

Legal values
A RangeBorder object.
See the Style property for a list of border styles.
See the Color palette for a list of border colors.

' Example: OutlineBorder property and RangeFill method
' Set up range, fill it with numbers, and give it a solid outline border.
Dim testrange As Range
Dim testborder As RangeBorder
Set testrange = Bind("A:A1..A:C20")
testrange.RangeFill 0,1,32767,$Number,
Set testborder = testrange.OutlineBorder
testborder.Style = $ThickBorder

1-2-3: OutputLocation property
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
Sets or returns the address of the output range for the query table.

Data type
String

Syntax
dataquery.OutputLocation = value
value = dataquery.OutputLocation

Legal values
The value of the OutputLocation property is a string containing the range address of the output range for the specified
query table.

1-2-3: OutputRange property
{button ,AL(`H_123_QUERYTABLE_CLASS',0)} See list of classes
Sets or returns the output range for a query table.

Data type
Range

Syntax
Set querytable.OutputRange = range
Set range = querytable.OutputRange

Legal values
The value for the OutputRange property is a valid range.

1-2-3: Overlays property
{button ,AL(`H_123_MAP_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS;',0)} See list of

classes
(Read-only) Returns the names of the overlays that are added to a base map.

Data type
Strings

Syntax
Set strings = object.Overlays

Legal values
The values for the Overlays property are the names of the overlays you set or the names of the overlays you
specified using Map - Map Properties (Overlays).

1-2-3: PaperBinNames property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns a collection of all the printer paper sources supported by the current printer.

Data type
Strings

Syntax
Set printsettings.PaperBinNames = strings
Set strings = printsettings.PaperBinNames

Legal values
The bin names in the PaperBinNames collection can include the following:
AutoSelect
UpperTray
ManualFeed
EnvelopeManualFeed
LowerTray
Envelope

1-2-3: PaperBinName property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the name of a printer paper source.

Data type
String

Syntax
printsettings.PaperBinName = value
value = printsettings.PaperBinName

Legal values
The default values for the PaperBinName property are the following:
AutoSelect
UpperTray
ManualFeed
EnvelopeManualFeed
LowerTray
Envelope

1-2-3: PaperHeightMaximum property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
(Read-only) Returns the maximum height of the printer paper, in twips. This is a read-write property if the paper size
has been set to a custom size.

Data type
Long

Syntax
printsettings.PaperHeightMaximum = value (for custom size)
value = printsettings.PaperHeightMaximum

Legal values
The default value for the PaperHeightMaximum property is the height of the paper size you specified using File -
Preview & Page Setup (Printer).

1-2-3: PaperHeightMinimum property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
(Read-only) Returns the minimum height of the printer paper, in twips. This is a read-write property if the paper size
has been set to a custom size.

Data type
Long

Syntax
printsettings.PaperHeightMinimum = value (for custom size)
value = printsettings.PaperHeightMinimum

Legal values
The default value for the PaperHeightMinimum property is the height of the paper size you specified using File -
Preview & Page Setup (Printer).

1-2-3: PaperHeight property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
(Read-only) Returns the height of the printer paper, in twips. This is a read-write property if the paper size has been
set to a custom size.

Data type
Long

Syntax
printsettings.PaperHeight = value (for custom size)
value = printsettings.PaperHeight

Legal values
The default value for the PaperHeight property is what you set or what you specified using File - Preview & Page
Setup (Printer).

1-2-3: PaperSizeNames property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
(Read-only) Returns a collection of strings for all the paper sizes supported by the current printer.

Data type
Strings

Syntax
value = printsettings.PaperSizeNames

Legal values
The value for the PaperSizeNames property is the collection of paper size names supported by the current printer.

1-2-3: PaperSizeName property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the name of a paper size.

Data type
String

Syntax
printsettings.PaperSizeName = value
value = printsettings.PaperSizeName

Legal values
The following table shows the names for some common paper sizes.

Value Description
Letter (Default) 8 1/2 x 11 inches
Legal 8 1/2 x 14 inches
Executive 7 1/4 x 10 1/2 inches
A4 219 x 297 millimeters
Envelope # 10 4 1/8 x 9 1/2 inches
Envelope DL 110 x 220 millimeters
Envelope Monarch 3 7/8 x 7 1/2 inches

1-2-3: PaperWidthMaximum property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
(Read-only) Returns the maximum width of the printer paper, in twips. This is a read-write property if the paper size
has been set to a custom size.

Data type
Long

Syntax
printsettings.PaperWidthMaximum = value (for custom size)
value = printsettings.PaperWidthMaximum

Legal values
The default value for the PaperWidthMaximum property is the width of the paper size you specified using File -
Preview & Page Setup (Printer).

1-2-3: PaperWidthMinimum property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
(Read-only) Returns the minimum width of the printer paper, in twips. This is a read-write property if the paper size
has been set to a custom size.

Data type
Long

Syntax
printsettings.PaperWidthMinimum = value (for custom size)
value = printsettings.PaperWidthMinimum

Legal values
The default value for the PaperWidthMinimum property is the width of the paper size you specified using File -
Preview & Page Setup (Printer).

1-2-3: PaperWidth property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
(Read-only) Returns the width of the printer paper, in twips. This is a read-write property if the paper size has been
set to a custom size.

Data type
Long

Syntax
printsettings.PaperWidth = value (for custom size)
value = printsettings.PaperWidth

Legal values
The default value for the PaperWidth property is the width of the paper size you specified using File - Preview & Page
Setup (Printer).

1-2-3: Parent property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS;H_123_APPLICATIONWINDOW_CLASS;

H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BACKGROUND_CLASS;H_123_BASE
OBJECT_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_
123_COLOR_CLASS;H_123_DATALINK_CLASS;H_123_DATAQUERY_CLASS;H_123_DATETIME_CLASS;H_1
23_DOCWINDOW_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOB
JECT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_
CLASS;H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASSH_123
_MAPPLOT_CLASS;H_123_MAPTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_12
3_MENUBAR_CLASS;H_123_OLEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_12
3_POLYLINE_CLASS;H_123_PRINTSETTINGS_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLAS
S;H_123_RANGEBORDER_CLASS;H_123_RANGESELECTOR_CLASS;H_123_RECTANGLE_CLASS;H_123_
SHEET_CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS',0)}
See list of classes

{button ,AL(`H_123_PARENT_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the parent object of the current or specified object.

Data type
Variant

Syntax
value = object.Parent

Legal values
The value for the Parent property is the containing object. For example, the value for the Parent property of a
Document object is the Application object.

' Example: Name and Parent properties
' Shows what sheet the first chart is on.
If CurrentDocument.Charts.Count > 0 Then
 Print CurrentDocument.Charts(0).Parent.Name
Else
 Print "No Charts"
End If

1-2-3: Password property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_PASSWORD_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the password needed to open the current file.

Data type
String

Syntax
document.Password = value
value = document.Password

Legal values
The value for the Password property is any string of 15 or fewer characters. The value for the Password property is
what you set or the password you specified using File - Save As.

' Example: Password property; Save and SaveAs methods
' Set a password.
Dim mydoc As Document
Dim mypasswd As String
Set mydoc = CurrentApplication.NewDocument()
mydoc.SaveAs "FileOne"
mypasswd = "itsasecret"
'Set the password and then save the file.
mydoc.Password = mypasswd
mydoc.Save

1-2-3: Path property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_PATH_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the full path of a file or application.

Data type
String

Syntax
value = document.Path
or
value = application.Path

Legal values
The default value for the Path property is the location of the file or application, including the full path.

' Example: Path property
' Find path and print.
Dim mydoc As Document
Dim mypath As String
Set mydoc = CurrentDocument
my path = mydoc.Path
Print mypath

1-2-3: PatternBins property
{button ,AL(`H_123_MAP_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS;',0)} See list of

classes
(Read-only) Returns a collection of the pattern bins for the specified map.

Data type
MapBins

Syntax
value = object.PatternBins

Legal values
The default value for the PattenBins property is a MapBins object containing the pattern bins for the specified map.

1-2-3: PatternVisible property
{button ,AL(`H_123_LEGEND_CLASS',0)} See list of classes
Determines whether to display the specified pattern legend for a map.

Data type
Variant (Boolean)

Syntax
legend.PatternVisible = value
value = legend.PatternVisible

Legal values
Value Description
TRUE (Default) Display the pattern

legend.
FALSE Do not display the pattern

legend.

1-2-3: Pattern property
{button ,AL(`H_123_BACKGROUND_CLASS;H_123_MAPBIN_CLASS',0)} See list of classes
{button ,AL(`H_123_PATTERN_PROPERTY_EXSCRIPT;H_123_BACKCOLOR_PROPERTY_EXSCRIPT;H_123_SH

OWDRAWLAYER_PROPERTY_EXSCRIPT;H_123_SHOWMARKERS_PROPERTY_EXSCRIPT;',1)} See
example

Sets or returns the fill region pattern for Background and MapBin objects.

Data type
Variant (PatternType enumeration)

Syntax
object.Pattern = value
value = object.Pattern

Legal values
Value Description
$BowlingBalls

$BroadRightHatch
$Checkers
$CoarseCrossHatch
$CoarseSquareHatch
$Confetti
$CrossHatch
$DarkCoarseCrossHatch
$DarkSingleLeftHatch
$DarkSingleRightHatch
$DiagonalBricks
$Diamonds
$DottedSquareHatch
$DoubleCoarseLeftHatch
$DoubleCoarseRightHatch
$DoubleHorizStripes
$DoubleLeftHatch
$DoubleRightHatch
$DoubleVertStripes
$FineCheckers
$FineCrossHatch
$FineSquareHatch
$Flags
$Fountains
$GradientFillHorizBG2FG shades horizontally from light to

dark
$GradientFillHorizFG2BG shades horizontally from dark to

light
$GradientFillVertBG2FG shades vertically from dark to light
$GradientFillVertFG2BG shades vertically from light to dark
$GrayScale2ndDarkest
$GrayScale2ndLightest

$GrayScale3rdDarkest
$GrayScale3rdLightest
$GrayScale4rdDarkest
$GrayScale4thLightest
$GrayScale5thDarkest
$GrayScale5thLightest
$GrayScale6thDarkest
$GrayScaleDarkest
$GrayScaleLightest
$HorizCoarseHatch
$HorizHatch
$LongHorizCheckers
$Mountains
$Pavers
$QuadrupleDarkHorizStripes
$QuadrupleDarkVertStripes
$QuadrupleGrayHorizStripes
$QuadrupleGrayVertStripes
$RoundStones
$RunningBricks
$SingleCoarseLeftHatch
$SingleCoarseRightHatch
$SingleLeftHatch
$SingleNarrowLeftHatch
$SingleRightHatch
$SolidBackground (background color)

$SolidForeground (foreground color)

$SquareHatch
$TallVertCheckers
$Transparent
$TripleLeftHatch
$TripleRightHatch
$VertCoarseHatch
$VertHatch
$Waves
$WideCrossHatch
$WideSquareHatch
$Zigzags

' Example: Background, ColorName, ColumnWidth, Font, FontColor, Pattern, and
' RowHeight properties; RangeFill and Select methods
' Select a range, adjust its style, add numbers, add a background pattern,
' and change font color.
Dim rng1 as Range
Set rng1 = [A:B5..A:H25]
rng1.RowHeight = 20
rng1.ColumnWidth = 15
rng1.RangeFill 200,3,37999,$Number
rng1.Background.Pattern = $DoubleRightHatch
rng1.Background.BackColor.ColorName = "pale green"
rng1.Font.FontColor.ColorName = "black"
rng1.Font.Bold = True

1-2-3: Placement property
{button ,AL(`H_123_MAPTITLE_CLASS;H_123_LEGEND_CLASS',0)} See list of classes
Sets or returns the position of a legend or title in a map frame.

Data type
Variant (MapPlacement enumeration)

Syntax
object.Placement = value
value = object.Placement

Legal values
Value Description
$TopLeft Place the legend or title in the

top left.
$CenterLeft Place the legend or title in the

center left.
$BottomLeft Place the legend or title in the

bottom left.
$BottomCenter Place the legend or title in the

bottom center.
$BottomRight Place the legend or title in the

bottom right.
$CenterRight Place the legend or title in the

center right.
$TopRight Place the legend or title in the

top right.
$TopCenter Place the legend or title in the

top center.
$Custom Place the legend or title in a

non-standard position.

1-2-3: PlotPosition property
{button ,AL(`H_123_PLOT_CLASS;',0)} See list of classes
Sets or returns the manner in which a map plot is positioned.

Data type
Variant (PlotPosition enumeration)

Syntax
mapplot.PlotPosition = value
value = mapplot.PlotPosition

Legal values
Value Description
$Default (Default) The map uses the

default plot positioning.
$Custom Allows you to specify the plot

positioning for the map.

1-2-3: PlotRotation property
{button ,AL(`H_123_PLOT_CLASS;',0)} See list of classes
Sets and returns the rotation of the map in degrees.

Data type
Long

Syntax
mapplot.PlotRotation = value
value = mapplot.PlotRotation

Legal values
The value for the PlotRotation property is any long between -360 to 360. The default value is 0 (zero).

1-2-3: Plot property
{button ,AL(`H_123_MAP_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS',0)} See list of

classes
(Read-only) Returns the plot object for a map.

Data type
MapPlot

Syntax
Set mapplot = object.Plot

Legal values
The value for the Plot property is the MapPlot object for a map.

1-2-3: PointCount property
{button ,AL(`H_123_DRAWLINE_CLASS;H_123_FREEHAND_CLASS;H_123_POLYGON_CLASS;H_123_POLYLIN

E_CLASS',0)} See list of classes
Sets and returns the number of points in a Freehand drawing, line, polyline, or polygon.

Data type
Long

Syntax
value = object.PointCount

Legal values
The value for the PointCount property is the number of points in a Freehand drawing, line, polyline, or polygon.

1-2-3: PrinterNames property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_PRINTERNAMES_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Returns a collection of the printer names the application can use.

Data type
Strings

Syntax
Set strings = application.PrinterNames

Legal values
The value for the PrinterNames property is a collection of all the printer names the application can use.

' Example: PrinterNames property and Print method
' Print a list of the printers the application can use in the Output panel.
Forall x In CurrentApplication.PrinterNames
Print x
End Forall

1-2-3: PrinterName property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_PRINTERNAME_PROPERTY_EXSCRIPT ',1)} See example
Sets or returns the name of the currently selected printer.

Data type
String

Syntax
application.PrinterName = value
value = application.PrinterName

Legal values
The value of the PrinterName property is the name you set or the name of the currently selected printer.

' Example: CurrentPrintSettings and PrinterName properties
' Select a range, preview it, get the printer name, print the printer name
' to output, then print the range, and close preview window.
Dim prntnm As String
Set CurrentDocument.CurrentPrintSettings.PrintRange = [A:B5..A:H25]
CurrentApplication.Preview
prntnm=CurrentApplication.PrinterName
[A:B5].Contents = prntnm
CurrentApplication.Print
CurrentApplication.ClosePreview

1-2-3: PrinterQuality property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns the print quality for the specified printer.

Data type
String

Syntax
application.PrinterQuality = value
value = application.PrinterQuality

Legal values
The default value for the PrinterQuality property is set in the Windows Control Panel.

1-2-3: PrintPagesFrom property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the number of the first page to print, with the value of 1 representing the first page in the selected
range or collection.

Data type
Long

Syntax
printsettings.PrintPagesFrom = value
value = printsettings.PrintPagesFrom

Legal values
The value for the PrintPagesFrom property is the number of the first page you want to print.

1-2-3: PrintPagesStart property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the number to assign to the first page printed from the selected range or collection.

Data type
Long

Syntax
printsettings.PrintPagesStart = value
value = printsettings.PrintPagesStart

Legal values
The value for the PrintPagesStart property is the number assigned to the first page printed from the selected range or
collection.

1-2-3: PrintPagesTo property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the number of the last page to print, beginning with the value of 1 representing the first page in the
selected range or collection.

Data type
Long

Syntax
printsettings.PrintPagesTo = value
value = printsettings.PrintPagesTo

Legal values
The value for the PrintPagesTo property is the number of the last page you want to print.

1-2-3: PrintRangeSaved property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether to save the print selection with the named print styles and let you print the same range with the
same settings each time.

Data type
Variant (Boolean)

Syntax
printsettings.PrintRangeSaved = value
value = printsettings.PrintRangeSaved

Legal values
Value Description
TRUE Save the print range with the

named print styles.
FALSE (Default) Do not save the print

range with the named print
styles.

1-2-3: PrintRange property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the range or collection of ranges to be printed.

Data type
Range or Ranges

Syntax
Set printsettings.PrintRange = object
Set object = printsettings.PrintRange

Legal values
The value for the PrintRange property is any on-sheet Range object or Ranges collection.

1-2-3: PrintWhat property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the range to print.

Data type
Variant (PrintWhat enumeration)

Syntax
printsettings.PrintWhat = value
value = printsettings.PrintWhat

Legal values
Value Description
$AllSheets Print all sheets.
$CurrentSelection Print the currently selected

range.
$CurrentSheet Print the current sheet.
$None No print range is stored as a

print setting.

1-2-3: ProductVersion property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_PRODUCTVERSION_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Returns the release number of the product.

Data type
String

Syntax
value = application.ProductVersion

Legal values
The value of the ProductVersion property is a string containing the release number of the product.

' Example: ProductVersion property
' Display product version in a message box.
Messagebox ("The product version is " + CurrentApplication.ProductVersion)

1-2-3: Properties property
{button ,AL(`H_123_CLASSINFO_CLASS;',0)} See list of classes
(Read-only) Returns a collection of property names that the object accepts.

Data type
Strings

Syntax
Set strings = classinfo.Properties

Legal values
The value for the Properties property is a collection of strings containing property names that the object accepts.

1-2-3: QueryTables property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_QUERYTABLES_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns a collection of all the existing query table connections to Approach.

Data type
QueryTables

Syntax
Set querytables = document.QueryTables

Legal values
The value for the QueryTables property is a collection.

' Example: QueryTables property
' List in column A the current names of all query tables in a file.
' The file specified in the next line must be modified to point to your file.
Const QTFILE = "c:\lotus\work\123\qtfile.123"
Dim myfile As Document
Dim qtables As QueryTables
' Open a file with Query Tables
Set myfile = CurrentApplication.OpenDocument(QTFILE, "", "", "", True)
' Get all Query Table names
Set qtables = myfile.QueryTables
' Move to cell A1
.MoveCellPointer $Home, 1
' Show all Query Table names in column A
Forall X In qtables
' Put name in cell
Selection.Contents = X.Name
' Move down one row
.MoveCellPointer $Down, 1
End Forall

1-2-3: RangeHeaderInSort property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_RANGEHEADERINSORT_PROPERTY_EXSCRIPT ',1)} See example
Specifies whether there are column header labels in the range of data to sort.

Data type
Variant (Boolean)

Syntax
document.RangeHeaderInSort = value
value = document.RangeHeaderInSort

Legal values
Value Description
TRUE There are column headers in the

range selected to sort. Do not
sort the column headers with the
data.

FALSE There are no column headers in
the range selected to sort. Sort
the entire selection.

' Example: RangeHeaderInSort and RangeSortHeaderDepth properties
' Indicate that there are column header rows in the sort selection, so that they
' are not be sorted. The column header rows are set by the RangeSortHeaderDepth
property.
CurrentDocument.RangeHeaderInSort = True
CurrentDocument.RangeSortHeaderDepth = 2

1-2-3: RangeSortHeaderDepth property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_RANGESORTHEADERDEPTH_PROPERTY_EXSCRIPT;H_123_RANGEHEADERINSORT_PR

OPERTY_EXSCRIPT ',1)} See example
Sets or returns the number of rows in the sort header.

Data type
Long

Syntax
document.RangeSortHeaderDepth = value
value = document.RangeSortHeaderDepth

Legal values
The value for the RangeSortHeaderDepth property is the number of rows in the sort header.

' Example: RangeHeaderInSort, RangeSortHeaderDepth properties
' Indicate that the column header should not be sorted.
' The column header area is the number of rows set by the RangeSortHeaderDepth
property.
CurrentDocument.RangeHeaderInSort = TRUE
CurrentDocument.RangeSortHeaderDepth = 2

1-2-3: Ranges property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_RANGES_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Returns a collection of ranges.

Data type
Ranges

Syntax
Set ranges = document.Ranges

Legal values
The value for the Ranges property is a collection of ranges.

' Example: Ranges property
Dim r as Range
Set r = CurrentDocument.Ranges("A:A1")

1-2-3: ReadOnly property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_READONLY_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Determines whether the file is read-only or not.

Data type
Variant (Boolean)

Syntax
value = document.ReadOnly

Legal values
Value Description
TRUE The file is read-only.
FALSE (Default) The file is read-write.

' Example: ReadOnly property
' Find out if current file is read only.
Dim isread As Variant
isread = CurrentDocument.ReadOnly
Print isread

1-2-3: RecordsLimited property
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
Determines whether the number of records in a query table are limited or not.

Data type
Variant (Boolean)

Syntax
dataquery.RecordsLimit = value
value = dataquery.RecordsLimited

Legal values
Value Description
TRUE Limit the number of records

retrieved.
FALSE (Default) Do not limit the

number of records retrieved.

1-2-3: RecordsLimitMax property
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
Sets or returns the maximum number of records that will be retrieved when creating a query table.

Data type
Long

Syntax
dataquery.RecordsLimitMax = value
value = dataquery.RecordsLimitMax

Legal values
The value for the RecordsLimitMax property is any long from 1 - 8191.

Usage
The RecordsLimitMax property is used only if the RecordsLimited property is TRUE.

1-2-3: Red property
{button ,AL(`H_123_COLOR_CLASS',0)} See list of classes
{button ,AL(`H_123_RED_PROPERTY_EXSCRIPT ',1)} See example
(Read-only) Returns the red value of an object.

Data type
Long

Syntax
value = color.Red

Legal values
The value of the Red property is any long 0 - 255, where 0 represents no red and 255 represents the most amount of
red.

' Example: Red property
' Check the red value for the specified color.
Dim somecolor As Color
Dim redvalue As Long
Set somecolor = CurrentApplication.Colors(22)
redvalue = somecolor.Red
Print redvalue

1-2-3: RegionRange property
{button ,AL(`H_123_MAP_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS;',0)} See list of

classes
Sets or returns a map data range that contains all the region names to be mapped.

Data type
Range

Syntax
object.RegionRange = range
range = object.RegionRange

Legal values
The default value for the RegionRange property is the range you set or the range you specified using Map - Ranges.

1-2-3: RegisteredCompany property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns the name of the registered company for the software.

Data type
String

Syntax
value = application.RegisteredCompany

Legal values
The value for the RegisteredCompany property is a string containing a name.

1-2-3: RegisteredUser property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns the name of the registered user for the software.

Data type
String

Syntax
value = application.RegisteredUser

Legal values
The value for the RegisteredUser property is a string containing a name.

1-2-3: ReplaceString property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_REPLACE_METHOD_EXSCRIPT',1)} See example
Sets or returns the string of characters to replace the text or numbers you find using a Replace or ReplaceAll method.

Data type
String

Syntax
application.ReplaceString = value
value = application.ReplaceString

Legal values
The value for the ReplaceString property is the string of characters to replace the text or numbers you find using a
Replace or ReplaceAll method.

1-2-3: RestrictOutput property
{button ,AL(`H_123_QUERYTABLE_CLASS',0)} See list of classes
Determines whether to restrict the results of a query to a specified output range.

Data type
Variant (Boolean)

Syntax
querytable.RestrictOutput = value
value = querytable.RestrictOutput

Legal values
Value Description
TRUE Restrict the results of a query.
FALSE (Default) Do not restrict the

results of a query.

1-2-3: Revisions property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_REVISIONS_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the revision history for the specified file.

Data type
String

Syntax
document.Revisions = value
value = document.Revisions

Legal values
The default value of the Revisions property is the text you set or the revision history you entered using File -
Workbook Properties (General tab).

' Example Revisions property
' Make a new document, set revison history information, then display it in message
box.
Dim testdoc As Document
Set testdoc = CurrentApplication.NewDocument
testdoc.Revisions = "These are document revisions."
MessageBox testdoc.Revisions

1-2-3: Revs property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_REVS_PROPERTY_EXSCRIPT;',1)} See example
(Read-only) Returns the total number revisions associated with the specified file.

Data type
Long

Syntax
value = document.Revs

Legal values
The default value of the Revs property is the number of the times the file has been saved.

' Example: Revs property
' Display number of revisions for current file.
Dim mydoc As Document
Dim numbofrevisions As Long
Set mydoc = CurrentDocument
numbofrevisions = mydoc.Revs
MessageBox "The number of revisions is " & Str(numbofrevisions)

1-2-3: RGB property
{button ,AL(`H_123_COLOR_CLASS',0)} See list of classes
{button ,AL(`H_123_RGB_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the RGB (red, green, blue) value of the Color object.

Data type
Long

Syntax
color.RGB = value
value = color.RGB

Legal values
The value for the RGB property is the RGB value of the Color object.

' Example: BackColor, Background, and RGB properties
' Set the background color for a range and display a messagebox
' showing the RGB value of the color.
Dim z As Color
Dim a As Long
Set z = CurrentApplication.Colors("violet")
Set [A:A1..A:A10].Background.Backcolor = z
a = z.RGB
MessageBox Hex(a)

1-2-3: RightBorder property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_RIGHTBORDER_PROPERTY_EXSCRIPT',1)} See example
With the Style or Color property, sets or returns the style or color of the right border of a range.

Data type
RangeBorder

Syntax
Set range.RightBorder = rangeborder
range.RightBorder.Style = value
Set range.RightBorder.Color = color
Set rangeborder = range.RightBorder
value = range.RightBorder.Style
Set color = range.RightBorder.Color

Legal values
A RangeBorder object.
See the Style property for a list of border styles.
See the Color palette for a list of border colors.

' Example: RightBorder property; Select method
' Select a range, then change the right border style to a dashed line.
[A:B3..A:C5].Select
Selection.RightBorder.Style = $DashBorder

1-2-3: RightMargin property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the right margin print setting, in twips.

Data type
Long

Syntax
printsettings.RightMargin = value
value = printsettings.RightMargin

Legal values
The default value for the RightMargin property is what you set or the right margin setting you specified using File -
Preview & Page Setup (Margins).

Usage
Combined with the LeftMargin property, this value should not be greater than the width of the paper.

1-2-3: Rotation property
{button ,AL(`H_123_ARC_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_ELLIP

SE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE
_CLASS;H_123_RECTANGLE_CLASS',0)} See list of classes

Sets or returns the rotation of the graphic object.

Data type
Long

Syntax
object.Rotation = value
value = object.Rotation

Legal values
The value for the Rotation property is any long from -360 - 360.

Usage
The Rotation property does not apply to the following:
button controls
charts
data tables
edit texts
embedded objects
linked objects
links
map annotations
maps
pictures

1-2-3: Rounded property
{button ,AL(`H_123_RECTANGLE_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_GROUP_CLASS;',0)} See

list of classes
Sets or returns whether a rectangle has rounded corners.

Data type
Variant (Boolean)

Syntax
rectangle.Rounded = value
value = rectangle.Rounded

Legal values
Value Description
TRUE The rectangle has rounded

corners.
FALSE The rectangle does not have

rounded corners.

1-2-3: RowFolding property
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_ROWFOLDING_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the folding direction of an outline.

Data type
Variant (FoldDir enumeration)

Syntax
sheet.RowFolding = value
value = sheet.RowFolding

Legal values
Value Description
$ParentBefore Fold the row so that the parent

row is above its child rows.
$ParentAfter (Default) Fold the row so that

the parent row is below its
child rows.

Usage
If you change the folding direction when an outline exists already, the existing outline information is deleted.

' Example: RowFolding property, RowOutlineVisible property, DemoteRow method,
' and Select method
[A].RowOutlineVisible = True
[A].RowFolding = $ParentBefore
[A:A17..A:IV18].Select
Selection.DemoteRow

1-2-3: RowHeight property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_ROWHEIGHT_PROPERTY_EXSCRIPT;H_123_PATTERN_PROPERTY_EXSCRIPT ',1)} See

example
Sets or returns the row height for the specified range.

Data type
Long

Syntax
range.RowHeight = value
value = range.RowHeight

Parameters
None

Legal values
Any long from 0 - 255. Setting the row height to 0 (zero) hides the row.

' Example: RowHeight property
' Select a range and adjust its row height
[A:B5..A:H25].Select
[A:B5..A:H25].RowHeight = 20

1-2-3: RowOutlineVisible property
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_ROWOUTLINEVISIBLE_PROPERTY_EXSCRIPT',1)} See example
Sets or returns whether the outline frame is displayed to the left of the row numbers.

Data type
Variant (Boolean)

Syntax
sheet.RowOutlineVisible = value
value = sheet.RowOutlineVisible

Legal values
Value Description
TRUE Display the outline frame to

the left of the row numbers.
FALSE Do not display the outline

frame to the left of the row
numbers.

' Example: RowOutlineVisible property; Select method
' Select a range and make the row outline visible.
[A:C8..A:C9].Select
[A].RowOutlineVisible = True

1-2-3: RowTitleRange property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the range of rows to be printed above the print range on each page of output.

Data type
Range

Syntax
printsettings.RowTitleRange = value
value = printsettings.RowTitleRange

Legal values
The value for the RowTitleRange property is a valid range, for example [A:A1..A:F1].

1-2-3: ScalePercent property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns how much the printed selection is shrunk or expanded.

Data type
Long

Syntax
printsettings.ScalePercent = value
value = printsettings.ScalePercent

Legal values
The default value of the ScalePercent property is any long from 15 - 1000. For example, if a print selection is to be
shrunk to 75% of its normal size, the value would be 75.

1-2-3: SearchFormulas property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether to search for formulas when finding and replacing text and values.

Data type
Variant (Boolean)

Syntax
application.SearchFormulas = value
value = application.SearchFormulas

Legal values
Value Description
TRUE (Default) Search for formulas.
FALSE Do not search for formulas.

1-2-3: SearchLabels property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether to search for labels when finding and replacing text and values.

Data type
Variant (Boolean)

Syntax
application.SearchLabels = value
value = application.SearchLabels

Legal values
Value Description
TRUE (Default) Search for labels.
FALSE Do not search for labels.

1-2-3: SearchString property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns the search string to use when finding and replacing text and values.

Data type
String

Syntax
application.SearchString = value
value = application.SearchString

Legal values
The value of the SearchString property is the search string used for finding and replacing text and values.

1-2-3: SearchValues property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether to search for numbers when finding and replacing text and values.

Data type
Variant (Boolean)

Syntax
application.SearchValues = value
value = application.SearchValues

Legal values
Value Description
TRUE (Default) Search for values.
FALSE Do not search for values.

1-2-3: SelectFields property
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
Sets or returns the list of field names to use to perform a query. When set, the query automatically updates to
include these fields only.

Data type
String

Syntax
dataquery.SelectFields = value
value = dataquery.SelectFields

Legal values
The default value of the SelectFields property is the string that contains the field names in select order, delimited by
semicolons.

Usage
The SelectFields property sets or returns original field names only; it does not recognize aliases or aggregates.

1-2-3: Selection property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SELECTION_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the currently selected objects in the active file.

Data type
Variant (object)

Syntax
Set selectobjects = object.Selection

Legal values
The value of the Selection property is the currently selected object. If more than one object is selected, the value is a
collection object that derives from the BaseCollection class.

{button ,AL(`H_123_CLIENT_VARIABLES_OVER',0)} See related topics

' Example: Name and Selection properties; AddToSelection method
Sub TrySelection

' Create a new workbook.
Dim file1 As Document
Set file1 = CurrentApplication.NewDocument

' Select a range and show the range name in the message box.
[A:A1].Select
Messagebox "Current Selection: " + CurrentDocument.Selection.Name

' Create and select a rectangle and show the rectangle name in the message box.
[A].NewRectangle 465,1530,1440,2760
[Rectangle 1].Select
Messagebox "Current Selection: " + CurrentDocument.Selection.Name

' Create and select a drawn line and show the line name in the message box.
[A].NewDrawLine 240,450,975,975
[Line 1].Select
Messagebox "Current Selection: " + CurrentDocument.Selection.Name

' Create an ellipse and add it and the rectangle to the current selection.
[A].NewEllipse 495,2610,1350,3165
[Ellipse 1].AddToSelection
[Rectangle 1].AddToSelection

' Change the edge color of the selected objects.
Selection.EdgeColor.Colorname = "orchid"

End Sub

1-2-3: Share property
{button ,AL(`H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS',0)} See list of classes
Sets or returns the share options for a version or version group.

Data type
Variant (Share enumeration)

Syntax
object.Share = value
value = object.Share

Legal values
Value Description
$Protected Versions or version groups

cannot be edited or deleted.
$Unprotected (Default) Versions or version

groups can be edited or
deleted.

$Hidden Versions or version groups
cannot be edited, deleted, or
seen.

Usage
The Share property applies to a locked file, and it does not override prior protection of a sheet or range.

1-2-3: SheetCount property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHEETCOUNT_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the number of sheets in the current file.

Data type
Long

Syntax
value = document.SheetCount

Legal values
The value of the SheetCount property is any long from 0 - 255.

' Example: Name, SheetCount, Size, Subject, and Title properties
Sub DocStatistics

' This sub prints out information about the current document.

Print "Name of workbook: " + CurrentDocument.Name
Print "Number of sheets: " + Str(CurrentDocument.SheetCount)
Print "Subject: " + CurrentDocument.Subject
Print "Title: " + CurrentDocument.Title
Print "File size: " + Str(CurrentDocument.Size)

End Sub

1-2-3: SheetDataPrint property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether sheet data is printed.

Data type
Variant (Boolean)

Syntax
printsettings.SheetDataPrint = value
value = printsettings.SheetDataPrint

Legal values
Value Description
TRUE (Default) Print sheet data.
FALSE Do not print sheet data.

1-2-3: SheetFramePrint property
{button ,AL(`H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Determines whether row numbers and column letters will print in addition to sheet data.

Data type
Variant (Boolean)

Syntax
printsettings.SheetFramePrint = value
value = printsettings.SheetFramePrint

Legal values
Value Description
TRUE Print sheet frame.
FALSE Do not print sheet frame.

1-2-3: SheetNumber property
{button ,AL(`H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_SHEETNUMBER_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the number of the sheet in a file, as opposed to the sheet letter or name.

Data type
Long

Syntax
value = sheet.SheetNumber

Legal values
The value of the SheetNumber property is any long from 0 - 255.

' Example: CurrentSheet, SheetNumber, and TabColor properties
Sub NewSheet

' Declare variables
Dim Current As Sheet
Dim SheetNum As Long

' Get the current sheet, and add another sheet after it.
Set Current = CurrentDocument.CurrentSheet
CurrentDocument.NewSheet $After,1,True

' Set the current sheet to be the sheet you just made, and select it.
Set Current = CurrentDocument.CurrentSheet
Current.Select

' Ask the user for a name for the sheet.
Current.SheetName = Inputbox$("Name of new sheet?","Enter Sheet Name")

' Find out the number of the current sheet, and set the tab color
' based on the number; the first sheet is number 0.
SheetNum = Current.SheetNumber
Select Case SheetNum
 Case 1 : Selection.TabColor.ColorName = "pink"
 Case 2 : Selection.TabColor.ColorName = "red"
 Case 3 : Selection.TabColor.ColorName = "blue"
 Case Else : Selection.TabColor.ColorName = "yellow"
End Select

End Sub

1-2-3: Sheets property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHEETS_PROPERTY_EXSCRIPT;H_123_ISZERODISPLAYED_PROPERTY_EXSCRIPT',1)}

See example
(Read-only) Returns a collection of all the sheets in the specified file.

Data type
Sheets

Syntax
Set sheets = document.Sheets

Legal values
The value of the Sheets property is a Sheets object containing all the sheets in the specified file.

' Example: Count, Name, and Sheets properties; Item method
' This sub lists the sheets in the current document.
Sub ListSheets

Dim numsheets As Long

' Find out how many sheets there are in the document.
numsheets = CurrentDocument.Sheets.Count

' Cycle through the sheets, printing the name of each one.
' The first sheet in the collection is always number zero.
For x = 0 To numsheets - 1
 Print CurrentDocument.Sheets.Item(x).Name
Next

End Sub

1-2-3: ShortDayNames property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_SHORTDAYNAMES_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns a collection of strings that represent the abbreviated names of days.

Data type
Strings

Syntax
Set strings = application.ShortDayNames

Legal values
The value of the ShortDayNames property is the collection of day names, which is determined by the country setting
you specified in the Windows Control Panel.

' Example: ShortDayNames and ShortMonthNames properties; Item method
Sub EnterShortNames

' Print the short name of each day (7 in all).
' Add a space after each name, but don't put a line feed after each one
' (the line feed is suppressed by the semicolon).
For x = 0 To 6
 Print CurrentApplication.ShortDayNames.Item(x) & " ";
Next
Print

' Print the short name of each month (12 in all).
For x = 0 To 11
 Print CurrentApplication.ShortMonthNames.Item(x) & " ";
Next
Print

End Sub
' Output:
' Mon Tue Wed Thu Fri Sat Sun
' Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1-2-3: ShortMonthNames property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_SHORTDAYNAMES_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns a collection of strings that represent the abbreviated names of months.

Data type
Strings

Syntax
Set strings = application.ShortMonthNames

Legal values
The value of the ShortMonthNames property is the collection of month names, which is determined by the country
setting you specified in the Windows Control Panel.

1-2-3: ShowAutomaticPageBreaks property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWPAGEBREAKS_PROPERTY_EXSCRIPT;H_123_GRIDLINECOLOR_PROPERTY_EXSC

RIPT',1)} See example
Determines whether to display automatic page breaks or not.

Data type
Variant (Boolean)

Syntax
object.ShowAutomaticPageBreaks = value
value = object.ShowAutomaticPageBreaks

Legal values
Value Description
TRUE (Default) Display automatic

page breaks.
FALSE Do not display automatic page

breaks.

1-2-3: ShowCellCommentMarkers property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWMARKERS_PROPERTY_EXSCRIPT',1)} See example
Determines whether to display cell comment markers.

Data type
Variant (Boolean)

Syntax
object.ShowCellCommentMarkers = value
value = object.ShowCellCommentMarkers

Legal values
Value Description
TRUE (Default) Display cell comment

markers.
FALSE Hide cell comment markers.

Usage
You can set cell comment markers to display in a file or in an application.

1-2-3: ShowDrawLayer property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS;H_123_SHEET_CLASS',0)} See list of

classes
{button ,AL(`H_123_SHOWDRAWLAYER_PROPERTY_EXSCRIPT',1)} See example
Determines whether to display graphic objects, including maps, charts, drawings, text blocks, buttons, and embedded
objects.

Data type
Variant (Boolean)

Syntax
object.ShowDrawLayer = value
value = object.ShowDrawLayer

Legal values
Value Description
TRUE (Default) Display graphic

objects.
FALSE Hide graphic objects.

' Example: BackColor, Background, Color, ColorName, Pattern, and ShowDrawLayer
properties;
' NewChart method
Sub TestDraw

CurrentApplication.NewDocument
Dim mysheet As Sheet
Set mysheet = CurrentDocument.CurrentSheet

' Create a rectangle.
mysheet.NewRectangle 500,4000,3500,5000
[Rectangle 1].Select
Selection.Background.Pattern = $BowlingBalls
Selection.Background.Color.ColorName = "blue"

' Add some data to the sheet.
[A:A1].Contents = "45"
[A:A2].Contents = "56"
[A:A3].Contents = "92"
[A:B1].Contents = "24"
[A:B2].Contents = "35"
[A:B3].Contents = "59"

' Create a chart.
mysheet.NewChart 1020,1005,3165,3135,[A:A1..A:B3]

Messagebox "Turn off display of drawn objects."
mysheet.ShowDrawLayer = False

Messagebox "Display drawn objects again."
mysheet.ShowDrawLayer = True

End Sub

1-2-3: ShowFormulaMarkers property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWMARKERS_PROPERTY_EXSCRIPT',1)} See example
Determines whether to display formula markers or not.

Data type
Variant (Boolean)

Syntax
object.ShowFormulaMarkers = value
value = object.ShowFormulaMarkers

Legal values
Value Description
TRUE Display formula markers.
FALSE (Default) Hide formula

markers.

1-2-3: ShowGridLines property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS;H_123_SHEET_CLASS',0)} See list of

classes
{button ,AL(`H_123_SHOWMARKERS_PROPERTY_EXSCRIPT;H_123_GRIDLINECOLOR_PROPERTY_EXSCRIP

T',1)} See example
Determines whether to display grid lines in a sheet.

Data type
Variant (Boolean)

Syntax
object.ShowGridLines = value
value = object.ShowGridLines

Legal values
Value Description
TRUE (Default) Display grid lines.
FALSE Hide grid lines.

1-2-3: ShowManualPageBreaks property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWPAGEBREAKS_PROPERTY_EXSCRIPT;H_123_GRIDLINECOLOR_PROPERTY_EXSC

RIPT',1)} See example
Determines whether to display manual page breaks.

Data type
Variant (Boolean)

Syntax
object.ShowManualPageBreaks = value
value = object.ShowManualPageBreaks

Legal values
Value Description
TRUE (Default) Display manual page

breaks.
FALSE Do not display manual page

breaks.

' Example: Background, CellComment, Color, ColorName, GridLineColor, Pattern,
' ShowCellCommentMarkers, ShowFormulaMarkers, ShowGridLines, and ShowSheetFrame
properties
Sub CustomLook

' Declare mysheet as the current sheet.
Dim mysheet As Sheet
Set mysheet = CurrentDocument.CurrentSheet

' Set sheet and gridline colors.
mysheet.Background.Pattern = $SolidForeground
mysheet.Background.Color.ColorName = "ivory"
mysheet.GridLineColor.ColorName = "khaki"
' Note that ShowGridLines is true by default; this turns them on if the user
' had turned them off.
mysheet.ShowGridLines = True
mysheet.ShowSheetFrame = False

' Enter some values in the sheet
[a:b2].Contents = "Values"
[a:b3].Contents = "45"
[a:b4].Contents = "84"
[a:b5].Contents = "73"
[a:a6].Contents = "Average"
' Enter a formula
[a:b6].Contents = "@AVG(A:b2..A:b4)"
' Enter a cell note
[a:b2].CellComment = "Values from data collected in October."

' Show all cell comment and formula markers.
CurrentDocument.ShowFormulaMarkers = True
' Note that ShowCellCommentMarkers is true by default; this turns them on if the
user
' had turned them off.
CurrentDocument.ShowCellCommentMarkers = True

End Sub

' Example: HorizontalPageBreak, ShowAutomaticPageBreaks, ShowManualPageBreaks,
' and VerticalPageBreak properties; Print method
Sub MyPrint

' This example hides all page breaks, sets manual page breaks,
' prints the sheet, removes the manual page breaks, and then shows the breaks
again.

' Hide page breaks.
CurrentDocument.ShowManualPageBreaks = False
CurrentDocument.ShowAutomaticPageBreaks = False

' Set manual page breaks.
[A:d20].HorizontalPageBreak = True
[A:d20].VerticalPageBreak = True

' Print the current sheet.
CurrentDocument.CurrentPrintSettings.PrintWhat = $CurrentSheet
CurrentApplication.Print

' Remove manual page breaks.
[A:d20].HorizontalPageBreak = False
[A:d20].VerticalPageBreak = False

' Show page breaks again.
CurrentDocument.ShowManualPageBreaks = True
CurrentDocument.ShowAutomaticPageBreaks = True

End Sub

1-2-3: ShowScrollBars property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWSHEETTABS_PROPERTY_EXSCRIPT',1)} See example
Determines whether to display scroll bars in the specified file.

Data type
Variant (Boolean)

Syntax
object.ShowScrollBars = value
value = object.ShowScrollBars

Legal values
Value Description
TRUE (Default) Display scroll bars.
FALSE Hide scroll bars.

1-2-3: ShowSheetFrame property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS;H_123_SHEET_CLASS',0)} See list of

classes
{button ,AL(`H_123_SHOWMARKERS_PROPERTY_EXSCRIPT;H_123_SHOWSHEETTABS_PROPERTY_EXSCRI

PT;H_123_GRIDLINECOLOR_PROPERTY_EXSCRIPT',1)} See example
Determines whether to display the frame of the sheet.

Data type
Variant (Boolean)

Syntax
object.ShowSheetFrame = value
value = object.ShowSheetFrame

Legal values
Value Description
TRUE (Default) Display the sheet

frame.
FALSE Hide the sheet frame.

1-2-3: ShowSheetTabs property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWSHEETTABS_PROPERTY_EXSCRIPT',1)} See example
Determines whether to display all the tabs for a sheet.

Data type
Variant (Boolean)

Syntax
object.ShowSheetTabs = value
value = object.ShowSheetTabs

Legal values
Value Description
TRUE (Default) Display all sheet

tabs.
FALSE Hide all sheet tabs.

' Example: ShowSheetFrame, ShowSheetTabs, and ShowScrollBars properties
Sub Biggest

Dim answer As Long

' First restore the application window if it's maximized.
CurrentApplication.ApplicationWindow.Restore

' Make current document take up the whole screen, and don't show sheet tabs,
' scroll bars, the sheet frame, the status bar, the edit line, or icons.
CurrentApplication.ApplicationWindow.Maximize
CurrentDocument.ShowSheetTabs = False
CurrentDocument.ShowScrollBars = False
CurrentDocument.ShowSheetFrame = False
CurrentApplication.ApplicationWindow.StatusBarVisible = False
CurrentApplication.ApplicationWindow.IconBarsVisible = False
CurrentApplication.ApplicationWindow.EditLineVisible = False

' The "1" in the following statement means to use an OK/Cancel message box.
answer = Messagebox("Click OK to show document at regular size",1)
if answer = 1 then
 ' Restore the document to its original size, and turn on display
 ' of sheet tabs, scroll bars, the sheet frame, the status bar, and icons.
 CurrentDocument.ShowSheetTabs = True
 CurrentDocument.ShowScrollBars = True
 CurrentDocument.ShowSheetFrame = True
 CurrentApplication.ApplicationWindow.StatusBarVisible = True
 CurrentApplication.ApplicationWindow.IconBarsVisible = True
 CurrentApplication.ApplicationWindow.Restore
End If

End Sub

1-2-3: ShowVersionBorders property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHOWVERSIONBORDERS_PROPERTY_EXSCRIPT',1)} See example
Determines whether to display version borders.

Data type
Variant (Boolean)

Syntax
object.ShowVersionBorders = value
value = object.ShowVersionBorders

Legal values
Value Description
TRUE (Default) Display version

borders.
FALSE Hide version borders.

' Example: Contents, ShowVersionBorders, and VersionBorderVisible properties; Clear,
' CreateRangeName, and Select methods
Sub ShowBorders

CurrentApplication.NewDocument
' Turn off display of version names and borders for this document.
CurrentDocument.ShowVersionBorders = False

' Put some data in the sheet.
[a:b5].Contents = "Low estimate"
[a:b6].Contents = "12"
[a:b7].Contents = "15"
[a:b8].Contents = "17"
[a:b9].Contents = "19"
[a:c6].Contents = "14"
[a:c7].Contents = "16"
[a:c8].Contents = "19"
[a:c9].Contents = "22"

' Create a new version.
[A:b5..a:c9].Select
CurrentDocument.CreateRangeName "DATA",[A:b5..a:c9]
Selection.NewVersion "Version 1"

' Specify that it's OK to show the version border for this particular version.
' This statement does not actually turn the borders on.
Selection.VersionBorderVisible = True
Selection.Clear

' Add data for 2nd version.
[a:b5].Contents = "High estimate"
[a:b6].Contents = "15"
[a:b7].Contents = "19"
[a:b8].Contents = "24"
[a:b9].Contents = "27"
[a:c6].Contents = "18"
[a:c7].Contents = "21"
[a:c8].Contents = "25"
[a:c9].Contents = "29"

Messagebox "Turning on version borders again"
CurrentDocument.ShowVersionBorders = True

End Sub

1-2-3: Size property
{button ,AL(`H_123_DOCUMENT_CLASS;H_123_FONT_CLASS;H_123_OLEOBJECT_CLASS;H_123_APPROACH

CONNECTION_CLASS;H_123_DATALINK_CLASS;H_123_QUERYTABLE_CLASS',0)} See list of classes
{button ,AL(`H_123_SHEETCOUNT_PROPERTY_EXSCRIPT;H_123_STYLENAME_PROPERTY_EXSCRIPT;H_123

_FONTNAME_PROPERTY_EXSCRIPT;H_123_FONT_PROPERTY_EXSCRIPT;H_123_ITALIC_PROPERTY_EX
SCRIPT ',1)} See example

For Font objects: Sets or returns the point size of the font.
For Document objects: (Read-only) Returns the size of a file, in bytes.
For embedded or linked-to objects: (Read-only) Returns the size of the file in kilobytes.

Data type
For Font objects: Double
For Document objects: Long
For embedded or linked-to objects: Long

Syntax
For Font objects:
font.Size = value
value = font.Size
or
For Document objects:
value = document.Size
or
For embedded or linked-to objects:
value = object.Size

Legal values
For Font objects, the value of the Size property is the point size of the font.
For Document objects, the value of the Size property is the size of the file when last saved.
For embedded or linked-to objects, the value of the Size property is the size of the file in kilobytes.

1-2-3: SmartMasterOn property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether the New Workbook dialog box displays when you create a new file, letting you choose from a list
of available SmartMaster templates.

Data type
Variant (Boolean)

Syntax
application.SmartMasterOn = value
value = application.SmartMasterOn

Legal values
Value Description
TRUE (Default) Display the New

Workbook dialog box when
creating a new file.

FALSE Do not display the New
Workbook dialog box when
creating a new file.

1-2-3: SmartMasterPath property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns the default path for SmartMaster templates.

Data type
String

Syntax
application.SmartMasterPath = value
value = application.SmartMasterPath

Legal values
The default value of the SmartMasterPath property is the path for SmartMaster templates you set or the path you
specified using File - User Setup - 1-2-3 Preferences (File Locations tab). The install program sets the default path
to \Lotus\SMasters\123.

1-2-3: SortDriver property
{button ,AL(`H_123_APPLICATION_CLASS;',0)} See list of classes
Sets or returns the country sort driver.

Data type
String

Syntax
application.SortDriver = value
value = application.SortDriver

Legal values
The value of the SortDriver property is the country sort driver you set or the country sort order you specified in the
Windows Control Panel.

1-2-3: SortRange property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
Sets or returns the range that was last used by the Sort method.

Data type
Range

Syntax
Set document.SortRange = range
Set range = document.SortRange

Legal values
The default value of the SortRange property is the range that was last used by the Sort method.

1-2-3: SQL property
{button ,AL(`H_123_QUERY_CLASS',0)} See list of classes
{button ,AL(`H_123_SQL_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the equivalent SQL statement for query operations.

Data type
String

Syntax
value = dataquery.SQL

Legal values
The value of the SQL property is a string that represents the equivalent SQL statement for query operations.

' Example: SQL and DataQueryNames properties
' This sub prints the SQL strings for queries created with macro commands.
' You could use this sub to print the names of all the queries in your
' workbook, along with their SQL strings.
' Or you could use a similar sub to refresh the queries, using
' the Refresh method instead of the SQL property.
Sub PrintQueries

Dim y As DataQuery

' Loop through all the queries in the current document.
Forall x In CurrentDocument.DataQueryNames
 ' Print the name of the query (the semicolon prevents a newline).
 Print x," ";
 ' Assign a new query to the name specified in x.
 Set y = Bind(x)
 ' Print the SQL statement for the query.
 Print y.SQL
End Forall

Print
End Sub

1-2-3: Stapled property
{button ,AL(`H_123_PRINTSETTINGS_CLASS;',0)} See list of classes
Determines whether to staple a print selection after it has been printed.

Data type
Variant (Boolean)

Syntax
printsettings.Stapled = value
value = printsettings.Stapled

Legal values
Value Description
TRUE (Default) Staple the printed

selection.
FALSE Do not staple the printed

selection.

Usage
This property applies only to printers with a stapling feature.

1-2-3: StartColumn property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_STARTROWCOL_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the value representing the column number that corresponds to the top left cell of a range.

Data type
Long

Syntax
value = range.StartColumn

Legal values
The value of the StartColumn property is the zero-based column number of the top left cell of a range, from 0 - 255.
The zero-based column number of column A is 0.

' Example: EndColumn, EndRow, EndSheet, StartColumn, StartRow, and StartSheet
properties
' This Sub checks whether the current selected range is exactly
' 4 rows long and 2 columns wide.
Sub CheckRangeShape

Dim mysel As Range
Dim flag As Integer

' Get the current selection.
Set mysel = CurrentDocument.Selection

' Start by setting flag to false.
flag = 0

' The number of columns in range must be 2.
If mysel.EndColumn - mysel.StartColumn = 1 Then
 ' The number of rows in range must be 4.
 If mysel.EndRow - mysel.StartRow = 3 Then
 ' The entire range must be on one sheet.
 If mysel.EndSheet - mysel.StartSheet = 0 Then
 flag = 1
 End If
 End If
End If

' Glag = 1 means that flag is set to true (range is correct size).
If flag = 1 Then
 Messagebox "Range is correct size"
Else
 Messagebox "Range is not correct size"
End If

End Sub

1-2-3: StartRow property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_STARTROWCOL_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the row number associated with the address of the top left cell of the specified range.

Data type
Long

Syntax
value = range.StartRow

Legal values
The value of the StartRow property is the zero-based row number of the top left cell of a range, from 0 - 8191. The
zero-based row number of row 1 is 0.

1-2-3: StartSheet property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_STARTROWCOL_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the sheet number associated with the address of the top left cell of the specified range.

Data type
Long

Syntax
value = range.StartSheet

Legal values
The value of the StartSheet property is the zero-based sheet number of the top left cell of a range, from 0 - 255. The
zero-based sheet number of sheet A is 0.

1-2-3: StatusBarVisible property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS',0)} See list of classes
Determines whether the status bar is displayed.

Data type
Variant (Boolean)

Syntax
applicationwindow.StatusBarVisible = value
value = applicationwindow.StatusBarVisible

Legal values
Value Description
TRUE (Default) Display the status

bar.
FALSE Hide the status bar.

1-2-3: Strikethrough property
{button ,AL(`;H_123_FONT_CLASS',0)} See list of classes
{button ,AL(`H_123_STRIKETHROUGH_PROPERTY_EXSCRIPT',1)} See example
Determines whether data is styled using the strikethrough attribute.

Data type
Variant (Boolean)

Syntax
font.Strikethrough = value
value = font.Strikethrough

Legal values
Value Description
TRUE Apply the strikethrough style to

data.
FALSE (Default) Do not apply the

strikethrough style to data.

' Example: Bold, Font, and Strikethrough properties
Sub FixUpText

' Check whether current selection uses the strikethrough attribute.
If CurrentDocument.Selection.Font.Strikethrough = True Then
 ' If so, then change it to bold.
 CurrentDocument.Selection.Font.Strikethrough = False
 CurrentDocument.Selection.Font.Bold = True
End If

End Sub

1-2-3: StyleName property
{button ,AL(`;H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_STYLENAME_PROPERTY_EXSCRIPT',1)} See example
Sets or returns a named style for a range.

Data type
String

Syntax
range.StyleName = value
value = range.StyleName

Legal values
The value for the StyleName property is a string containing the name of an existing style.

' Example: Bold, Font, FontColor, FontName, GridBorder, Size, and StyleName
properties;
' DefineNamedStyle method
Sub NameStyle

Dim myrange As Range
Set myrange = CurrentDocument.Selection

' Set the text styles and grid color of the current range.
myrange.Font.FontName = "Lydian"
myrange.Font.FontColor.ColorName = "manganese blue"
myrange.Font.Size = 16
myrange.Font.Bold = True
myrange.GridBorder.Color.ColorName = "dk red violet"

' Define a style with the DefineNamedStyle method.
myrange.DefineNamedStyle "MyStyle"

' Give this range that style name; you can also apply this style to other ranges.
myrange.StyleName = "MyStyle"

End Sub

1-2-3: StyleRange property
{button ,AL(`;H_123_MAPBINS_CLASS',0)} See list of classes
Sets or returns the range specified for the color or pattern bins for a map.

Data type
Range

Syntax
Set mapbins.StyleRange = range
Set range = mapbins.StyleRange

Legal values
The default value of the StyleRange property is the range specified for the color or pattern bins for a map.

1-2-3: StyleSource property
{button ,AL(`;H_123_MAPBINS_CLASS',0)} See list of classes
Sets or returns the method used to set the values for colors and patterns bins for maps.

Data type
Variant (MapBinRenderSource enumeration)

Syntax
mapbins.StyleSource = value
value = mapbins.StyleSource

Legal values
Value Description
$FromValues (Default) 1-2-3 determines the

values for colors and patterns
bins.

$StylesManual You manually set the values
for colors and patterns bins.

$StylesFromRange You specify the range that
contains the values for colors
and patterns bins.

1-2-3: StylesRetained property
{button ,AL(`H_123_VERSION_CLASS',0)} See list of classes
Determines whether to keep styles with versions.

Data type
Variant (Boolean)

Syntax
version.StylesRetained = value
value = version.StylesRetained

Legal values
Value Description
TRUE Keep styles with version.
FALSE (Default) Do not keep styles

with version.

Usage
You can create a style, for example, a background color, that is unique to each version. Or, you can keep the same
styles for all versions of a range.

1-2-3: Style property
{button ,AL(`;H_123_RANGEBORDER_CLASS',0)} See list of classes
Sets or returns the border style for a range.

Data type
Variant (BorderStyleType enumeration)

Syntax
rangeborder.Style = value
value = rangeborder.Style

Legal values
The rangeborder can be any of the following: BottomBorder, GridBorder, HorizontalBorder, InnerBorder, LeftBorder,
OutlineBorder, RightBorder, TopBorder, or VerticalBorder.
The following table shows the legal values for Style.

Value Description
$NoBorder (Default) Do not display a border

around a range.
$SolidBorder
$DoubleBorder
$ThickBorder
$DashBorder
$DashSpaceBorder
$LongDashBorder
$DashDotBorder
$DashDotDotBorder

1-2-3: Subject property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SHEETCOUNT_PROPERTY_EXSCRIPT',1)} See example
Sets or returns subject information about the file.

Data type
String

Syntax
document.Subject = value
value = document.Subject

Legal values
The value of the Subject property is any valid string, with a maximum length of 256 characters.

1-2-3: SynchScrolling property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_SYNCHSCROLLING_PROPERTY_EXSCRIPT;H_123_EMBEDDED_PROPERTY_EXSCRIPT;',

1)} See example
Determines whether panes of a split window scroll individually or simultaneously.

Data type
Variant (Boolean)

Syntax
document.SynchScrolling = value
value = document.SynchScrolling

Legal values
Value Description
TRUE Scroll panes simultaneously.
FALSE (Default) Do not scroll panes

simultaneously.

' Example: SynchScrolling and ViewSplitStyle properties
Sub Split

' Split the window in half horizontally.
CurrentDocument.ViewSplitStyle = $Horizontal

' Specify that both windows scroll simultaneously.
CurrentDocument.SynchScrolling = True

End Sub

1-2-3: TabColor property
{button ,AL(`;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_TABCOLOR_PROPERTY_EXSCRIPT;H_123_SHEETNUMBER_PROPERTY_EXSCRIPT',1)}

See example
Sets or returns the color of the tab for the specified sheet.

Data type
Color

Syntax
Set sheet.TabColor = color
Set color = sheet.TabColor

Legal values
The value of the TabColor property is the color of the tab you set for the specified sheet or the tab color you specified
using Sheet - Sheet Properties (Basics tab).

' Example: TabColor property
' Declare mysheet as the current sheet.

Dim mysheet As Sheet
Set mysheet = CurrentDocument.CurrentSheet

' Set the tab color by setting ColorName.
mysheet.TabColor.ColorName = "red"

1-2-3: TabReturnKeyMovement property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns the movement for the TAB and ENTER keys.

Data type
Variant (TabReturnKeyMovementChoices enumeration)

Syntax
application.TabReturnKeyMovement = value
value = application.TabReturnKeyMovement

Legal values
Value Description
$DefaultMovement TAB moves to the right one column.

ENTER moves the cell pointer down.

$ClassicMovement TAB moves right one screen. ENTER
does not move the cell pointer.

1-2-3: TextCodepage property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns the character set when a file is read as text.

Data type
Variant (ReadCharSet enumeration)

Syntax
application.TextCodepage = value
value = application.TextCodepage

Legal values
Value Description
$CP850 Multilinugal
$CP932 Japanese
$BIG5 Taiwanese
$KS Korean
$GB Chinese
$CP1252 US Windows
$CP437 US DOS
$CP860 Portugese
$CP863 French Canadian
$CP865 Norwegian/Danish
$CP1250 Eastern European Windows
$CP852 Eastern European DOS
$CP1251 Cyrillic Windows
$CP866 Cyrillic DOS
$CP1253 Greek Windows
$CP851 Greek DOS
$CP1254 Turkish Windows
$CP857 Turkish DOS
$CP1255 Hebrew Windows
$CP1256 Arabic Windows
$Windows Windows ANSI
$DOS DOS or OS/2

1-2-3: TextColumnParseOption property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns how a text file is parsed.

Data type
Variant (ReadTextAs enumeration)

Syntax
application.TextColumnParseOption = value
value = application.TextColumnParseOption

Legal values
Value Description
$Tab Use a tab as the delimiter.
$Comma Use a comma as the delimiter.
$Semicolon Use a semicolon as the delimiter.
$Space Use a space as the delimiter.
$AutoParse Use the layout of the file to

determine how to parse the file.
$Other Use a user-defined delimiter.
$None No delimiter.
$Text Text and numbers from a

nondelimited file.
$Numbers Text and numbers from a delimited

file.

Usage
When the TextColumnParseOption property is set to $Other, you can use the TextColumnParseUserDefined
property to set the delimiter.

{button ,AL(`H_123_TEXTCOLUMNPARSEUSERDEFINED_PROPERTY_MEMDEF',0)} See related topics

1-2-3: TextColumnParseUserDefined property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Sets or returns what delimiter to use to parse data while reading a file as text.

Data type
String

Syntax
application.TextColumnParseUserDefined = value
value = application.TextColumnParseUserDefined

Legal values
The value of the TextColumnParseUserDefined property is the delimiter to use to parse data while reading a file as
text. The value can be a string containing up to three characters.

Usage
The TextColumnParseUserDefined property can be used only when the TextColumnParseOption property is set to
$Other.

{button ,AL(`H_123_TEXTCOLUMNPARSEOPTION_PROPERTY_MEMDEF',0)} See related topics

1-2-3: TextHorizontalAlign property
{button ,AL(`;H_123_EDITTEXT_CLASS;H_123_GROUP_CLASS;H_123_RANGE_CLASS;H_123_SHEET_CLASS;

H_123_DRAWCOLLECTION_CLASS;H_123_LEGEND_CLASS;H_123_MAPTITLE_CLASS;H_123_BUTTONCO
NTROL_CLASS',0)} See list of classes

{button ,AL(`H_123_TEXTXXX_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the horizontal alignment of data in a selection.

Data type
Variant (TextAlignment enumeration)

Syntax
object.TextHorizontalAlign = value
value = object.TextHorizontalAlign

Legal values
Value Description
$AlignGeneral Left-align text and right-align

values in a selection.
$AlignLeft Left-align data in a selection.

$AlignRight Right-align data in a selection.

$AlignCenter Center-align data in a
selection.

$AlignEvenlySpaced Evenly align text and labels
with both the left and right
margins in a selection.

$AlignRepeat Repeat one or more
characters across a cell

1-2-3: TextOrientation property
{button ,AL(`H_123_BUTTONCONTROL_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_EDITTEXT_CLASS;

H_123_GROUP_CLASS;H_123_LEGEND_CLASS;H_123_MAPTITLE_CLASS;H_123_RANGE_CLASS;H_123_
SHEET_CLASS;',0)} See list of classes

{button ,AL(`H_123_TEXTXXX_PROPERTY_EXSCRIPT',1)} See example
Sets or returns how text is oriented.

Data type
Variant (TextOrientation enumeration)

Syntax
object.TextOrientation = value
value = object.TextOrientation

Legal values
Value Description
$OrientLeftToRight

$OrientVertical

$OrientUp

$OrientDown

$OrientRotate

1-2-3: TextRotation property
{button ,AL(`;H_123_BUTTONCONTROL_CLASS;H_123_EDITTEXT_CLASS;H_123_GROUP_CLASS;H_123_RAN

GE_CLASS;H_123_SHEET_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_LEGEND_CLASS;H_123_MA
PTITLE_CLASS',0)} See list of classes

{button ,AL(`H_123_TEXTXXX_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the rotation angle of data in a selection.

Data type
Long

Syntax
object.TextRotation = value
value = object.TextRotation

Legal values
The default value of the TextRotation property is 45.

1-2-3: TextVerticalAlign property
{button ,AL(`;H_123_EDITTEXT_CLASS;H_123_GROUP_CLASS;H_123_RANGE_CLASS;H_123_SHEET_CLASS;

H_123_BUTTONCONTROL_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_LEGEND_CLASS;H_123_MA
PTITLE_CLASS',0)} See list of classes

{button ,AL(`H_123_TEXTXXX_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the vertical alignment of data in a selection.

Data type
Variant (TextVertAlignment enumeration)

Syntax
object.TextVerticalAlign = value
value = object.TextVerticalAlign

Legal values
Value Description
$AlignTop Align text to the top of cells.
$AlignMiddle Align text to the middle of

cells.
$AlignBottom Align text to the bottom of

cells.

1-2-3: TextWrapped property
{button ,AL(`;H_123_EDITTEXT_CLASS;H_123_GROUP_CLASS;H_123_RANGE_CLASS;H_123_SHEET_CLASS;

H_123_LEGEND_CLASS;H_123_MAPTITLE_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_DRAWCOLLE
CTION_CLASS;',0)} See list of classes

Determines whether data in a range is wrapped.

Data type
Variant (Boolean)

Syntax
object.TextWrapped = value
value = object.TextWrapped

Legal values
Value Description
TRUE Automatically wrap data in the

range.
FALSE (Default) Do not wrap data in

the range.

' Example: TextHorizontalAlign, TextOrientation, TextRotation, TextVerticalAlign, and
TextWrapped properties
' Open a new document and call it testdocument.

Dim testdocument As Document
Set testdocument = CurrentApplication.NewDocument("testdocument")

' Enter "Hello" in cell B1 and increase row height.
[B1].Contents = "Hello"
[B1].RowHeight = 48

' Right-align the text.
MessageBox("Right-align text.")
[B1].TextHorizontalAlign = $AlignRight

' Set orientation to up.
MessageBox("Set orientation to up.")
[B1].TextOrientation = $OrientUp

' Set rotation to 60 degrees.
MessageBox("Set rotation to 60 degrees.")
'Note: You must set TextOrientation to $OrientRotate to use TextRotation.
[B1].TextOrientation = $OrientRotate
[B1].TextRotation = 60

' Set vertical alignment to middle.
MessageBox("Set vertical alignment to middle.")
[B1].TextOrientation = $OrientLeftToRight
[B1].TextVerticalAlign = $AlignMiddle

' Enter some text in cell B3 and wrap it within one cell.
MessageBox("Wrap some text.")
[B3].Contents = "My name is Allison. What is your name?"
[B3].TextWrapped = True

'Use the MessageBox statement to display a
'message asking if you want to delete the test documents and test file.

Dim boxtype As Long, answer As Integer
boxtype& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers with the MessageBox statement.
answer% = Messagebox("Do you want to close the test document

now?",boxType&,"Continue?")
If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document

CurrentDocument.Close False
End If

1-2-3: Text property
{button ,AL(`;H_123_BUTTONCONTROL_CLASS;H_123_EDITTEXT_CLASS;H_123_MAPTEXTENTRY_CLASS;H_

123_MAPBIN_CLASS;',0)} See list of classes
{button ,AL(`H_123_TEXT_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the text string in a button, text block, map bin label, or map title.

Data type
String

Syntax
object.Text = value
value = object.Text

Legal values
The value of the Text property is the text string in the button, text block, map bin label, or map title.

' Example: Text property; Clear and NewButton methods
' Create a button and change the button text.

Dim mysheet As Sheet
Dim mybutton As ButtonControl
Set mysheet = CurrentDocument.CurrentSheet
MessageBox("Create a button.")
Set mybutton = mysheet.NewButton(975,2205,3285,2655)
MessageBox("Change the button text.")
mybutton.Text = "Hello"
MessageBox("Delete the button.")
MyButton.Clear

1-2-3: ThousandsSeparator property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_THOUSANDSSEPARATOR_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the separator character used for numbers over 999.

Data type
String

Syntax
value = application.ThousandsSeparator

Legal values
The value of the ThousandsSeparator property is set in the Windows Control Panel.

' Example: ThousandsSeparator property
' Return the thousands separator character in a message box.

Dim thousandssep As String
thousandssep = CurrentApplication.ThousandsSeparator
MessageBox("The thousands separator is " + thousandssep)

1-2-3: TimeSeparator property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_TIMESEPARATOR_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the type of separator used between hours and minutes, and minutes and seconds.

Data type
String

Syntax
value = application.TimeSeparator

Legal values
The default value of the TimeSeparator property is set in the Windows Control Panel.

' Example: TimeSeparator property
' Return the time separator character in a message box.

Dim timesep As String
timesep = CurrentApplication.TimeSeparator
MessageBox("The time separator is " + TimeSep)

1-2-3: Title property
{button ,AL(`;H_123_DRAWCOLLECTION_CLASS;H_123_MAP_CLASS;H_123_DOCUMENT_CLASS;H_123_GRO

UP_CLASS;',0)} See list of classes
{button ,AL(`H_123_TITLE_PROPERTY_EXSCRIPT;H_123_SHEETCOUNT_PROPERTY_EXSCRIPT',1)} See

example
Returns the MapTitle object for a specified map.
Sets or returns the title of a specified file.

Data type
For Map objects: MapTitle
For Document objects: String

Syntax
Set maptitle = map.Title
or
Set document.Title = value
Set value = document.Title

Legal values
For Map objects, the value of the Title property is a MapTitle object.
For Document objects, the value of the Title property is a string.

' Example: Title property
' Create a new document and name it.
' Open a new document and call it testdocument.

Dim testdocument As Document
Set testdocument = CurrentApplication.NewDocument("testdocument")

' Set the document title to "mydocument"
testdocument.Title = "mydocument"

' Display the title in a messagebox.
MessageBox(TestDocument.Title)

' Use the MessageBox statement to display a
' message asking if you want to close the test document.

Dim boxtype As Long, answer As Integer
boxtype& = 4 + 32
'4 = MB_YESNO; 32 = MB_ICONQUESTION
'Note: %INCLUDE LSCONST.LSS in your script declarations to use
'the constants instead of the numbers with the MessageBox statement.
answer% = Messagebox("Do you want to close the test document

now?",boxType&,"Continue?")
If answer% = 6 Then
'If the answer is 6 (IDYES), close the test document

CurrentDocument.Close False
End If

1-2-3: TopBorder property
{button ,AL(`;H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_TOPBORDER_PROPERTY_EXSCRIPT',1)} See example
With the Style or Color property, sets or returns the style or color of the top border of a range.

Data type
RangeBorder

Syntax
Set range.TopBorder.Style = value
Set range.TopBorder.Color = value
Set range.TopBorde = rangeborder
Set value = range.TopBorder.Style
Set value = range.TopBorder.Color

Legal values
See the Style property for a list of border styles.
See the Color palette for a list of border colors.
A RangeBorder object.

' Example: TopBorder property
' Add a solid, thick border style to the top border of the range.

[B3].TopBorder.Style = $ThickBorder

1-2-3: TopMargin property
{button ,AL(`;H_123_PRINTSETTINGS_CLASS',0)} See list of classes
Sets or returns the top margin setting for the print selection, in twips.

Data type
Long

Syntax
printsettings.TopMargin = value
value = print.TopMargin

Legal values
The value for the TopMargin property is the top margin you set or the top margin you specified using File - Preview &
Page Setup (Layout tab).

1-2-3: Top property
{button ,AL(`H_123_APPROACHCONNECTION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;

H_123_CHART_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJE
CT_CLASS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_
CLASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLAS
S;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_QUERYTABLE_CLA
SS;H_123_RECTANGLE_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_12
3_WINDOW_CLASS',0)} See list of classes

For a graphic object, sets or returns the vertical coordinate of the top handle.
For ApplicationWindow, DocWindow, or Window objects, sets or returns the top coordinate of the window.

Data type
Long

Syntax
object.Top = value
value = object.Top

Legal values
For graphic objects: The value of the Top property is the top boundary of a bounding rectangle, in units of twips.
For ApplicationWindow, DocWindow, and Window objects: The value for the Top property is the top coordinate of the
window in pixels.

Usage
If the window is minimized or maximized, you will not see the effect of the Top property setting until the window is
restored.

1-2-3: TotalMemory property
{button ,AL(`;H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns how much memory is available.

Data type
Long

Syntax
value = application.TotalMemory

Legal values
The value of the TotalMemory property is the amount of memory available in bytes.

1-2-3: Underline property
{button ,AL(`;H_123_FONT_CLASS',0)} See list of classes
{button ,AL(`H_123_UNDERLINE_PROPERTY_EXSCRIPT',1)} See example
Determines whether data is styled using the underline attribute.

Data type
Variant (Boolean)

Syntax
font.Underline = value
value = font.Underline

Legal values
Value Description
TRUE Apply the underline attribute to

data.
FALSE (Default) Do not apply the

underline attribute to data.

' Example: Underline property
' Add the underline attribute to text in in the range.

[A1].Font.Underline = True

1-2-3: UndoEnabled property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_UNDOENABLED_PROPERTY_EXSCRIPT',1)} See example
Determines whether Undo is enabled.

Data type
Variant (Boolean)

Syntax
application.UndoEnabled = value
value = application.UndoEnabled

Legal values
Value Description
TRUE (Default) Undo is enabled.
FALSE Undo is not enabled.

' Example: UndoEnabled property
' Get the value of UndoEnabled and display a message box telling if it is enabled or
not.

If CurrentApplication.UndoEnabled = True Then
MessageBox("Undo is enabled.")

Else
MessageBox("Undo is not enabled.")

End If

1-2-3: UpdateLinksOnOpenDoc property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_UPDATELINKSONOPENDOC_PROPERTY_EXSCRIPT',1)} See example
Determines whether links are updated when a file is opened.

Data type
Variant (Boolean)

Syntax
application.UpdateLinksOnOpenDoc = value
value = application.UpdateLinksOnOpenDoc

Legal values
Value Description
TRUE (Default) Update links when a

file is opened.
FALSE Do not update links when a file

is opened.

' Example: UpdateLinksOnOpenDoc property
' Get the value for link updating, and display a message box about it.

If CurrentApplication.UpdateLinksOnOpenDoc = True Then
Messagebox("Link updating is on.")

Else
Messagebox("Link updating is off.")

End If

1-2-3: UseOSDefaultColors property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
Determines whether to use the operating system default text and background colors for new workbook files.

Data type
Variant (Boolean)

Syntax
application.UseOSDefaultColors = value
value = application.UseOSDefaultColors

Parameters
None

Legal values
Value Description
TRUE Use the operating system default

text and background colors.
This sets the DefaultTextColor and
DefaultBackColor properties to the
operating system defaults.

FALSE Use the default text and background
colors set by the DefaultTextColor
and DefaultBackColor properties.

1-2-3: UserClassNameApplication property
{button ,AL(`;H_123_APPROACHCONNECTION_CLASS;H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;

H_123_QUERYTABLE_CLASS',0)} See list of classes
(Read-only) Returns the name of the application.

Data type
String

Syntax
appname = object.UserClassNameApplication

Legal values
The value of the UserClassNameApplication property is the name of the application.

1-2-3: UserClassNameFull property
{button ,AL(`;H_123_APPROACHCONNECTION_CLASS;H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;

H_123_QUERYTABLE_CLASS',0)} See list of classes
(Read-only) Returns the full name of the specified object, as registered by the server.

Data type
String

Syntax
fullname = object.UserClassNameFull

Legal values
The value of the UserClassNameFull property is the full name of the object.

1-2-3: UserClassNameShort property
{button ,AL(`;H_123_APPROACHCONNECTION_CLASS;H_123_DATALINK_CLASS;H_123_OLEOBJECT_CLASS;

H_123_QUERYTABLE_CLASS',0)} See list of classes
(Read-only) Returns the short name of the specified object, as registered by the server.

Data type
String

Syntax
shortname = object.UserClassNameShort

Legal values
The value of the UserClassNameShort property is the short name of the object.

1-2-3: UserName property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_USERNAME_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the name of the user associated with the current computer.

Data type
String

Syntax
value = application.UserName

Legal values
The value of the UserName property is the name of the user.

' Example: UserName property
' Return the name of the user in a message box.

Dim username As String
username = CurrentApplication.UserName
MessageBox(UserName)

1-2-3: UsingTotalToAutoSum property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_USINGTOTALTOAUTOSUM_PROPERTY_EXSCRIPT',1)} See example
Determines whether typing "total" in a cell activates the AutoSum feature or not.

Data type
Variant (Boolean)

Syntax
application.UsingTotalToAutoSum = value
value = application.UsingTotalToAutoSum

Legal values
Value Description
TRUE (Default) Enable typing "total"

to activate AutoSum.
FALSE Do not enable typing "total" to

activate AutoSum.

' Example: UsingTotalToAutoSum property
' Turn AutoTotal on.

MessageBox("Turn on using ""Total"" to automatically calculate a sum.")
CurrentApplication.UsingTotalToAutoSum = True

1-2-3: ValueRange property
{button ,AL(`;H_123_MAPBINS_CLASS',0)} See list of classes
Sets or returns the range that contains the data for the specified map bins.

Data type
Range

Syntax
Set mapbins.ValueRange = range
Set range = mapbins.ValueRange

Legal values
The value of the ValueRange property is the range that contains the data for the specified map bins.

1-2-3: ValueSource property
{button ,AL(`;H_123_MAPBINS_CLASS',0)} See list of classes
(Read-only) Returns the method used to set the values for the specified map data bins.

Data type
Variant (MapBinValueSource enumeration)

Syntax
value = mapbins.ValueSource

Legal values
Value Description
$Computed (Default) 1-2-3 determines the

values.
$Manual You manually specify the

values
$FromRange You specify the range that

contains the values.

1-2-3: Value property
{button ,AL(`H_123_MAPBIN_CLASS',0)} See list of classes
Sets or returns the value of the specified map bin.

Data type
Variant

Syntax
mapbin.Value = value
value = mapbin.Value

Legal values
The value of the Value property is the value of the map bin you set or the value you specified using Map - Color Bins
or Map - Pattern Bins.

1-2-3: VersionBorderVisible property
{button ,AL(`H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_VERSION_METHOD_EXSCRIPT ',1)} See example
Determines whether to show the version border for the specified range.

Data type
Variant (Boolean)

Syntax
range.VersionBorderVisible = value
value = range.VersionBorderVisible

Legal values
Value Description
TRUE (Default) Show the version

border.
FALSE Do not show the version

border.

1-2-3: VersionId property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_ARC_CLASS;H_123_

APPROACHCONNECTION_CLASS;H_123_BACKGROUND_CLASS;H_123_BASEOBJECT_CLASS;H_123_BU
TTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_CLASSINFO_CLASS;H_123_COLOR_CLASS;H_123
_DATALINK_CLASS;H_123_DATETIME_CLASS;H_123_DOCUMENT_CLASS;H_123_DOCWINDOW_CLASS;H
_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLASS;H_123_EDITT
EXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FONT_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CL
ASS;H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPBIN_CLASS;H_123_PLOT_CLASS;H_123_MA
PTEXTENTRY_CLASS;H_123_MAPTITLE_CLASS;H_123_MENU_CLASS;H_123_MENUBAR_CLASS;H_123_O
LEOBJECT_CLASS;H_123_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_P
RINTSETTINGS_CLASS;H_123_QUERY_CLASS;H_123_QUERYTABLE_CLASS;H_123_RANGE_CLASS;H_12
3_RANGEBORDER_CLASS;H_123_RANGESELECTOR_CLASS;H_123_RECTANGLE_CLASS;H_123_SHEET_
CLASS;H_123_VERSION_CLASS;H_123_VERSIONGROUP_CLASS;H_123_WINDOW_CLASS;',0)} See list of
classes

{button ,AL(`H_123_VERSION_METHOD_EXSCRIPT ',1)} See example
(Read-only) Returns which version of the class was in use when the specified object was last modified.

Data type
Long

Syntax
value = object.VersionId

Legal values
The value of the VersionId property is which version of the class was in use when the specified object was last
modified.

1-2-3: VersionStatus property
{button ,AL(`H_123_RANGE_CLASS;',0)} See list of classes
{button ,AL(`H_123_VERSIONSTATUS_PROPERTY_EXSCRIPT',1)} See example
(Read-only) Returns the version status of a range.

Data type
Variant (VersionStatus enumeration)

Syntax
value = range.VersionStatus

Parameters
None

Legal values
Value Description
$NotVersioned The ranges contains no versions.
$Versioned The range contains versions.
$VersionBordered The range contains versions, and

the version border is visible. This is
returned in conjunction with the
value $Versioned.

$VersionedHiddenCurrent The range contains versions, and
they are hidden. This is returned in
conjunction with the value
$Versioned.

$MemberOfCollection The range is a member of the
current worksheet collection.

$MultiCellOverlapped The range contains versions, and
some cells overlap another range
that contains versions.

$SingleCellOverlapped The range contains versions, and
one cell overlaps another range that
contains versions.

' Example: VersionStatus property
' Return the version status of the range in a message box.

Dim statusofA1C3 As Variant
statusofA1C3 = [A1..C3].VersionStatus
MessageBox(statusofA1C3)

1-2-3: VerticalBorder property
{button ,AL(`;H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_VERTICALBORDER_PROPERTY_EXSCRIPT',1)} See example
With the Style or Color property, sets or returns the style or color of the vertical border of a range.

Data type
RangeBorder

Syntax
Set range.VerticalBorder.Style = value
Set range.VerticalBorder.Color = value
Set range.VerticalBorder = rangeborder
Set value = range.VerticalBorder.Style
Set value = range.VerticalBorder.Color
Set rangeborder = range.VerticalBorder

Legal values
See the Style property for a list of border styles.
See the Color palette for a list of border colors.
A RangeBorder object.

' Example: VerticalBorder property
' Add a solid, thick border style to the vertical border of the range.

[B10].VerticalBorder.Style = $ThickBorder

1-2-3: VerticalPageBreak property
{button ,AL(`;H_123_RANGE_CLASS',0)} See list of classes
{button ,AL(`H_123_VERTICALPAGEBREAK_PROPERTY_EXSCRIPT;H_123_SHOWPAGEBREAKS_PROPERTY_

EXSCRIPT',1)} See example
Determines whether a vertical page break exists to the left of the leftmost column in the specified range.

Data type
Variant (Boolean)

Syntax
range.VerticalPageBreak = value
value = range.VerticalPageBreak

Legal values
Value Description
TRUE (Default) Insert the vertical

page break.
FALSE Delete the vertical page break.

' Example: VerticalPageBreak property
' Insert a vertical page break.

MessageBox("Insert a vertical page break to the left of column D.")
[D1].VerticalPageBreak = True
MessageBox("Remove the vertical page break.")
[D1].VerticalPageBreak = False

1-2-3: VerticalTitle property
{button ,AL(`;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_VERTICALTITLE_PROPERTY_EXSCRIPT;H_123_HORIZONTALTITLE_PROPERTY_EXSCRIP

T',1)} See example
Determines whether the vertical titles are frozen, based on the current location of the cell pointer.

Data type
Variant (Boolean)

Syntax
sheet.VerticalTitle = value
value = sheet.VerticalTitle

Legal values
Value Description
TRUE (Default) Vertical titles are

frozen.
FALSE Vertical titles are not frozen.

' Example: VerticalTitle property
' Select a range and add a frozen title.

Messagebox("Freeze titles in column A.")
[B1].Select
[].VerticalTitle = True
[Z1].Goto
Messagebox("Turn off frozen titles.")
[].VerticalTitle = False

1-2-3: VerticalScrollBarVisible property
{button ,AL(`H_123_APPLICATIONWINDOW_CLASS;H_123_DOCWINDOW_CLASS;H_123_WINDOW_CLASS',0)}

See list of classes
(Read-only) Returns whether the vertical scroll bar is displayed or not.

Data type
Variant (Boolean)

Syntax
value = object.VerticalScrollBarVisible

Legal values
Value Description
TRUE (Default) Display the vertical

scroll bar.
FALSE Hide the vertical scroll bar.

1-2-3: ViewSplitHeight property
{button ,AL(`;H_123_DOCUMENT_CLASS',0)} See list of classes
Sets or returns the height in pixels of the upper pane of the current document window, when the window is split.

Data type
Long

Syntax
document.ViewSplitHeight = value
value = document.ViewSplitHeight

Legal values
The values for the ViewSplitHeight property depend on the display setting. The value must be at least the height of
one row.

{button ,AL(`H_123_VIEWSPLITWIDTH_PROPERTY_MEMDEF;H_123_VIEWSPLITSTYLE_PROPERTY_MEMDEF
',0)} See related topics

1-2-3: ViewSplitStyle property
{button ,AL(`H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_VIEWSPLITSTYLE_PROPERTY_EXSCRIPT;H_123_SYNCHSCROLLING_PROPERTY_EXSC

RIPT;H_123_EMBEDDED_PROPERTY_EXSCRIPT;',1)} See example
Sets or returns the way the Sheet window is split for viewing.

Data type
Variant (WindowSplitType enumeration)

Syntax
document.ViewSplitStyle = value
value = document.ViewSplitStyle

Legal values
Value Description
$Horizontal Split the window pane

horizontally, above the cell
pointer.

$Vertical Split the window pane
vertically, to the left of the cell
pointer.

$FourWay Split the window pane
horizontally and vertically,
above and to the left of the cell
pointer.

$NoSplits Do not split the window pane.

' Example: ViewSplitStyle property
' Split the current window into 2 vertical panes.

[D10].Select
MessageBox("Split the window vertically.")
.ViewSplitStyle = $Vertical
MessageBox("Unsplit the window.")
.ViewSplitStyle = $NoSplits

1-2-3: ViewSplitWidth property
{button ,AL(`;H_123_DOCUMENT_CLASS',0)} See list of classes
Sets or returns the width in pixels of the left pane of the current document window, when the window is split.

Data type
Long

Syntax
document.ViewSplitWidth = value
value = document.ViewSplitWidth

Legal values
The values for the ViewSplitWidth property depend on the display setting. The value must be at least the width of
one column.

{button ,AL(`H_123_VIEWSPLITHEIGHT_PROPERTY_MEMDEF;H_123_VIEWSPLITSTYLE_PROPERTY_MEMDE
F',0)} See related topics

1-2-3: Visible property
{button ,AL(`;H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_APPROACHCONNEC

TION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_DOCW
INDOW_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLA
SS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;
H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123
_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_RECTANGLE_CLASS;H_123
_QUERYTABLE_CLASS;H_123_WINDOW_CLASS;H_123_PLOT_CLASS',0)} See list of classes

Determines whether the specified object is currently displayed.
The Visible property is a read-only property if the specified object is the Application object.

Data type
Variant (Boolean)

Syntax
object.Visible = value
value = object.Visible

Legal values
Value Description
TRUE (Default) Display the object.
FALSE Hide the object.

1-2-3: WelcomeOn property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
{button ,AL(`H_123_WELCOMEON_PROPERTY_EXSCRIPT',1)} See example
Determines whether the Welcome to 1-2-3 dialog box appears at startup or not.

Data type
Variant (Boolean)

Syntax
application.WelcomeOn = value
value = application.WelcomeOn

Legal values
Value Description
TRUE (Default) Display the Welcome

to 1-2-3 dialog box at startup.
FALSE Do not display the Welcome to

1-2-3 dialog box at startup.

' Example: WelcomeOn property
' Return a message box saying whether the welcome to 1-2-3 dialog box gets displayed.

Dim iswelcomeon As Variant
iswelcomeon = CurrentApplication.WelcomeOn
MessageBox("WelcomeOn is currently " + iswelcomeon + ".")

1-2-3: WideUnderline property
{button ,AL(`H_123_FONT_CLASS',0)} See list of classes
{button ,AL(`H_123_WIDEUNDERLINE_PROPERTY_EXSCRIPT',1)} See example
Determines whether data is styled using the wide underline attribute.

Data type
Variant (Boolean)

Syntax
font.WideUnderline = value
value = font.WideUnderline

Legal values
Value Description
TRUE (Default) Apply the wide

underline attribute to data.
FALSE Do not apply the wide

underline attribute to data.

' Example: WideUnderline property
' Add the wide underline attribute to the range.

[A1].Font.WideUnderline = True

1-2-3: Width property
{button ,AL(`;H_123_APPLICATION_CLASS;H_123_APPLICATIONWINDOW_CLASS;H_123_APPROACHCONNEC

TION_CLASS;H_123_ARC_CLASS;H_123_BUTTONCONTROL_CLASS;H_123_CHART_CLASS;H_123_DOCW
INDOW_CLASS;H_123_DRAWCOLLECTION_CLASS;H_123_DRAWLINE_CLASS;H_123_DRAWOBJECT_CLA
SS;H_123_EDITTEXT_CLASS;H_123_ELLIPSE_CLASS;H_123_FREEHAND_CLASS;H_123_GROUP_CLASS;
H_123_LEGEND_CLASS;H_123_MAP_CLASS;H_123_MAPTITLE_CLASS;H_123_OLEOBJECT_CLASS;H_123
_PICTURE_CLASS;H_123_POLYGON_CLASS;H_123_POLYLINE_CLASS;H_123_RECTANGLE_CLASS;H_123
_QUERYTABLE_CLASS;H_123_WINDOW_CLASS;H_123_PLOT_CLASS;',0)} See list of classes

{button ,AL(`H_123_WIDTH_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the width of the current window, or the width of the bounding box around a graphic object.

Data type
Long

Syntax
object.Width = value
value = object.Width

Legal values
The value of the Width property is the width of the current window, in pixels, or the width of the bounding box around
a graphic object, in twips.

Usage
If the window is minimized or maximized, you will not see the effect of the Width property setting until the window is
restored.

' Example: Width property
' Return the width of the current window in a message box.

Dim winwidth As Long
winwidth = CurrentWindow.Width
MessageBox("The width of the current window is " + Cstr(winwidth) + ".")

1-2-3: WindowsDefaultsDisplayed property
{button ,AL(`;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_WINDOWS_DEFAULTS_DISPLAYED_PROPERTY_EXSCRIPT',1)} See example
Determines whether the sheet displays the default Windows colors for text and background.

Data type
Variant (Boolean)

Syntax
sheet.WindowsDefaultsDisplayed = value
value = sheet.WindowsDefaultsDisplayed

Legal values
Value Description
TRUE (Default) Display the default

Windows colors.
FALSE Display custom window colors.

' Example: WindowsDefaultsDisplayed property
' Return the default Windows color for text and background in a message box.

Dim arewindowsdefaultsdisplayed As Variant
arewindowsdefaultsdisplayed = [].WindowsDefaultsDisplayed
MessageBox("Window defaults are currently " +arewindowsdefaultsdisplayed + ".")

1-2-3: Windows property
{button ,AL(`H_123_APPLICATION_CLASS',0)} See list of classes
(Read-only) Returns a collection of all the open windows in 1-2-3.

Data type
DocWindows

Syntax
Set docwindows = application.Windows

Legal values
The value of the Windows property is the collection of all the open windows in 1-2-3.

' Example: Windows property
' Return a collection of the open windows.

Dim windowcollection As DocWindows
Set windowcollection = CurrentApplication.Windows

1-2-3: ZoomScale property
{button ,AL(`H_123_APPLICATION_CLASS;H_123_DOCUMENT_CLASS',0)} See list of classes
{button ,AL(`H_123_ZOOM_PROPERTY_EXSCRIPT;H_123_GRIDLINECOLOR_PROPERTY_EXSCRIPT',1)} See

example
Sets or returns the percentage view scale factor for all sheets in the file or application.

Data type
Long

Syntax
object.ZoomScale = value
value = object.ZoomScale

Legal values
The value of the ZoomScale property is any long from 25 - 400.

1-2-3: Zoom property
{button ,AL(`;H_123_PLOT_CLASS;H_123_SHEET_CLASS',0)} See list of classes
{button ,AL(`H_123_ZOOM_PROPERTY_EXSCRIPT',1)} See example
Sets or returns the percentage view scale factor for the specified document or map plot.

Data type
For documents: Long
For map plots: Double

Syntax
object.Zoom = value
value = object.Zoom

Legal values
The value of the Zoom property for documents is any percentage view scale factor from 25 - 400.

' Example: Zoom and ZoomScale properties; ZoomTo method
'This example illustrates different ways to set the zoom scale.
Sub zooming

' First determine the current zoom scale.
Dim firstzoom As Long
firstzoom = CurrentDocument.Zoom

' Use ZoomTo to set the zoom scale to a standard value: 25, 50, 75, 100, 200.
' In this case, set the zoom scale to 50%.
Messagebox "Set the zoom scale to 50%"
CurrentDocument.ZoomTo 50

' Use Zoom to set the zoom scale to any value between 25 and 400.
' In this case, set the zoom scale to 125%.
Messagebox "Set the zoom scale to 125%"
CurrentDocument.Zoom = 125

' Use ZoomScale to set a new custom value.
' In this case, set the custom value to 75%.
Messagebox "Set the zoom scale to 75%"
CurrentDocument.ZoomScale = 75

' Now set the zoom scale back to its initial value.
Messagebox "Set the zoom scale back to its initial value (" + Str(firstzoom) + "%)"
CurrentDocument.Zoom = firstzoom

End Sub

1-2-3 LotusScript Classes

A
Application
ApplicationWindow
ApproachConnection
Arc

B
Background
BaseCollection
BaseObject
ButtonControl

C
Chart
Charts
ClassInfo
Color
Colors

D
DataLink
DataLinks
DataQuery
DateTime
Document
Documents
DocWindow
DocWindows
DrawCollection
DrawLine
DrawObject
DrawObjects

E
EditText
Ellipse

F
Font
Freehand

G
Group

H

I

J

K

L
Legend

M
Map
MapBin
MapBins
MapPlot
Maps
MapTextEntries
MapTextEntry
MapTitle
Menu
MenuBar

N

O
OLEObject
OLEObjects

P
Picture
Polygon
Polyline
PrintSettings
PrintSettingsCollection

Q
QueryTable
QueryTables

R

Range
RangeBorder
Ranges
RangeSelector
Rectangle

S
Sheet
Sheets
Strings

T

U

V
Version
VersionGroup
VersionGroups
Versions

W
Window
Windows

X

Y

Z

1-2-3 LotusScript Events
Calculate
CancelPrint
CellContentsChange
CellValueChange
Click
CloseWindow
Deselected
DisplayInit
DocumentOpened
EndPrint
GetFocus
Initialize
LostFocus
MenuBarReset
MethodInvoked
Moved
NameChange
Opened
OpenWindow
Poll1
Poll2
Poll3
Poll4
PostClose
PostSave
PostSaveAs
PreClose
PreSave
PreSaveAs
PropertySet
Resized
Selected
SheetChange
StartPrint
Terminate
ValueChange

1-2-3 LotusScript Methods

A
Activate
AddItem
AddMenu
AddOverlay
AddPoint
AddSelectField
AddSeparator
AddToSelection
AddVersion
AppendRecords
ArrangeIcons
AutoSmartSum

B
Backsolve
Bounds
BreakLink

C
Calc
Cascade
Cell
CheckItem
Clear
ClearOutline
ClearRangeNames
ClearSplits
Close
CloseAll

ClosePreview
CollapseColumn
CollapseRow
ColorFromRGB
Connect
CopyFill
CopySelection
CopySQLToClipboard
CopyToClipboard
CreateComputedField
CreateRangeName
CreateRangeNameFromLabel
CreateRangeNameTable
CreateTable
Cut
CutSelection

D
DataParse
DataParseGuess
DefineNamedStyle
DeleteColumns
DeleteComputedField
DeleteCurrentVersion
DeleteNamedPrintSettings
DeleteNamedStyle
DeleteQuery
DeleteRangeName
DeleteRecords
DeleteRows
DeleteSheet
DeleteVersion
DeleteVersionGroup
DemoteColumn
DemoteRow
DisableItem
Disconnect
Distribution
DragAndFill

E
EnableItem
EndPoll
ExpandColumn
ExpandRow
ExtendedName
ExtendSelection
ExtendSheetSelectionBack
ExtendSheetSelectionForward

F
FieldAggregateType
FieldAlias
FileAdminLinksRefresh
Find
FitTallest
FitWidest
FitWidestNumber

FlipLeftRight
FlipTopBottom
Format
FormatReset
FreeCellData

G
GetActiveCell
GetCellData
GetEnumString
GetFieldAlias
GetItemText
GetItemType
GetKey
GetMenu
GetMenuPosition
GetRange
GetRangeString
GetRGB
Goto
GotoCirc
Group
GroupSheets

H
HelpContents
HideColumns
HideIconBar
HideRows
HideSheet

I
InsertColumns
InsertRows
IsAddinLoaded
IsIconBarShowing
IsSameObject
Item

J
Join

K

L
LoadAddin
Lock
LowerRightVisibleCell

M
MacroRun
MacroRunText
MakeCurrent
MatrixInvert
MatrixMultiply
Maximize
MergeVersions
Minimize

ModifyNamedStyle
Move
MoveCellPointer
MoveOrigin
MovePoint

N
NewApproachConnection
NewArc
NewArrow
NewButton
NewChart
NewDataLink
NewDocument
NewDocWindow
NewDrawLine
NewEditText
NewEllipse
NewFreehand
NewMap
NewMenu
NewMenuBar
NewNamedPrintSettings
NewObject
NewPicture
NewPolygon
NewPolyline
NewQuery
NewQueryTable
NewRectangle
NewRoundedRectangle
NewSheet
NewVersion
NewVersionGroup
Next
NextSplit

O
Open
OpenDocument
OpenDocumentFromInternet
OpenDocumentFromNotes
OutlineColumnsToLevel
OutlineRowsToLevel

P
PageBack
PageForward
Paste
PointX
PointY
Preview
Print
PrintOut
PrintToFile
PromoteColumn
PromoteRow

Q

QuerySortDefineKey
QuickCopy
QuickMove
Quit

R
RangeCombine
RangeCombineText
RangeExtract
RangeFill
RangeSortDefineKey
RangeValue
RecalcRange
RecenterMap
RedefineNamedPrintSettings
RedrawMap
Refresh
RefreshOutput
RefreshQuery
Regression
RegressionReset
Remove
RemoveAllVersions
RemoveFromSelection
RemoveItem
RemoveOverlay
RemoveSelectField
RemoveVersion
RenameNamedPrintSettings
RenameNamedStyle
Replace
ReplaceAll
ReplaceItem
ReplaceMenu
ReportVersion
ReservationGet
ReservationReleased
ResetColumnWidth
ResetFieldAggregates
ResetMenuBar
ResetRowHeight
ResetViewOverrides
Reshape
Resize
Restore
RestoreToOriginalSize
RetrieveFileFromInternet
RetrievePrintSettings
RevertToNamedStyle
RevertToStyle

S
SameColor
Save
SaveAs
SaveAsToInternet
SaveAsToNotes
SaveCopyAs

ScrollToActiveCell
Select
SelectAll
SelectAllSheets
Send
SendCommand
SendMail
SendSQL
SetActiveCell
SetCellData
SetGalleryStyle
SetHorizontalTitle
SetInternetOptions
SetLinkSource
SetOrigin
SetRecordsLimitMax
SetVerticalTitle
Show
ShowAllSheets
ShowIconBar
ShowSheet
SmartSort
SmartSum
Sort
SortData
SortReset
SortResetKeys
StartPoll
StyleFontReset

T
Tile
TileHorizontal
TileVertical
TimeDifference
ToBack
ToFront
ToggleVersionBorder
TopLeftVisibleCell
Transpose
TurnTo

U
UncheckItem
UnGroup
UnGroupSheets
UnhideColumns
UnhideRows
UnloadAddin
Update
UpdateDefaultPrintSettings
UseDefaultPrintSettings
UserLogin

V
Verb
VersionGroup
VersionGroups

Version
Versions

W
WhatIfTable1
WhatIfTable2
WhatIfTable3
WhatIfTableReset

X

Y

Z
ZoomIn
ZoomMapIn
ZoomMapOut
ZoomMapReset
ZoomMapTo
ZoomOut
ZoomReset
ZoomTo

1-2-3 LotusScript Properties

A
Active
ActiveCell
ActiveDocument
ActiveDocWindow
Addins
AlignOverColumns
AllFields
AllNames
AllowsUpdates
AllPagesPrint
AlwaysReserve
Anchor
Application
ApplicationMaximized
ApplicationWindow
ArgumentSeparator
Arrow
Author
Authors
AutoExecMacrosEnabled
AutoOpenPath
AutoRedraw
AutoRefresh
AutoUpdate
AvailableMemory

B
BackColor
Background
BaseMapName

BaseSourceTable
BeepsOnError
BinRange
BinsUsed
BinType
Blue
Bold
BottomBorder
BottomMargin

C
CalcIterations
CalcMode
CalcOrder
Caption
CellComment
CellCommentsFont
CellCommentsPrint
CellDisplay
Cells
CellValue
CenterLatitude
CenterLeftToRight
CenterLongitude
CenterTopToBottom
CenturyLongFormat
Changed
Charts
ChartsPicturesAndDrawPrint
Class
ClassicMenuActivationKey
ClassicMenuEnabled
ClassName
ClassVersionId
Collate
Color
ColorBins
ColorIndex
ColorName
Colors
ColorVisible
ColumnFolding
ColumnLevel
ColumnOutlineVisible
ColumnTitleRange
ColumnWidth
ConfirmDragAndDrop
Contents
CoordinateRange
CoordinateString
Copies
Count
CountryCode
CreationDate
Criteria
CurrentDirectory
CurrentMenuBar
CurrentPrinter

CurrentPrintSettings
CurrentSheet
CurrentVersion

D
DataLinks
DataProtected
DataQueryNames
DateOrder
DateSeparator
DateTo21stCentury
DayNames
DecimalSeparator
DefaultAddinPath
DefaultBackColor
DefaultColumnWidth
DefaultDecimals
DefaultFileExtension
DefaultFontName
DefaultFontSize
DefaultNegCurrencyFormat
DefaultPath
DefaultPrintSettings
DefaultRowHeight
DefaultTextColor
Description
DesignerFrameStyle
Display4DigitYear property
DisplayZeroAs
Document
Documents
DocWindows
DoubleUnderline
DragAndDropEnabled
DrawnObjects
Duplex

E
EdgeColor
EdgeDashStyle
EdgeLineWidth
EditingTime
EditLineVisible
EditPoints
Embedded
EmbeddedParticipation
EndColumn
EndRow
EndSheet
EveningString
Events
ExtractingUniqueRecords

F
FileName
FindTarget
FitDrawnObjectToPage
FitRowHeightToFont

FitToPage
Font
FontColor
FontName
FooterCenter
FooterCenterFont
FooterLeft
FooterLeftFont
FooterRight
FooterRightFont
Format
FormatDecimals
FormatName
FormatProtected
FormulaFont
FormulasPrint
FrameColor
FullName

G
Green
GridBorder
GridLineColor
GridLinesPrint

H
HasPassword
HeaderCenter
HeaderCenterFont
HeaderLeft
HeaderLeftFont
HeaderRight
HeaderRightFont
Height
Hidden
HorizontalBorder
HorizontalPageBreak
HorizontalScrollBarVisible
HorizontalTitle

I
IconBarNames
IconBarsVisible
IconSize
InitialColWidth
InitialRowHeight
InnerBorder
InsidePlot
Interactive
InternetIconsVisible
IsBubbleHelp
IsColumnCollapsed
IsColumnHidden
IsDraggable
IsFormatFreqUsed
IsHidden
IsLeapYear
IsLinked

IsLocked
IsNew
IsNotesFX
IsParenthesized
IsProtected
IsRangeNamed
IsRowCollapsed
IsRowHidden
IsSelectable
IsSelected
IsSheetHidden
IsZeroDisplayed
Italic
ItemName

J

K
Keywords
KnownRegionAliases
KnownRegionCodes
KnownRegionNames

L
L123Seconds
LabelRange
LabelSource
Language
LastEditor
LastPrinted
LastVersionGroup
Left
LeftBorder
LeftMargin
Legend
Lines
LinkedToCell
LinkSource
LocalTime
LongPrompt
LSLocalTime

M
MacroStep
MacroTrace
MaintainDimensions
Maps
MatchAccent
MatchCase
MatchKatakana
MatchPitch
MenuPrompt
MenuText
Methods
ModifiedDate
MonthNames
MorningString

N
Name
NamedPrintSettings
NamedRanges
NegativesInColor
Normal
NotesPath
NumberOfMostRecentFiles

O
Object
OLEObjects
Orientation
OSType
OutlineBorder
OutputLocation
OutputRange
Overlays

P
PaperBinName
PaperBinNames
PaperHeight
PaperHeightMaximum
PaperHeightMinimum
PaperSizeCustom
PaperSizeName
PaperSizeNames
PaperWidth
PaperWidthMaximum
PaperWidthMinimum
Parent
Password
Path
Pattern
PatternBins
PatternVisible
Placement
Plot
PlotPosition
PlotRotation
PointCount
PrinterName
PrinterNames
PrinterQuality
PrintPagesFrom
PrintPagesStart
PrintPagesTo
PrintRange
PrintRangeSaved
PrintSelection
PrintWhat
ProductVersion
Properties

Q
QueryTables

R

RangeHeaderInSort
Ranges
RangeSelector
RangeSortHeaderDepth
ReadOnly
RecordsLimited
RecordsLimitMax
Red
RegionRange
RegisteredCompany
RegisteredUser
ReplaceString
RestrictOutput
Revisions
Revs
RGB
RightBorder
RightMargin
Rotation
Rounded
RowFolding
RowHeight
RowHeightUseFontSize
RowLevel
RowOutlineVisible
RowTitleRange

S
ScalePercent
ScreenHeight
ScreenWidth
SearchFormulas
SearchLabels
SearchString
SearchValues
SelectFields
Selection
SendOutputToRange
Share
SheetCount
SheetDataPrint
SheetFramePrint
SheetName
SheetNumber
Sheets
ShortDayNames
ShortMonthNames
ShowAutomaticPageBreaks
ShowCellCommentMarkers
ShowDataLossDialog
ShowDesignerFrame
ShowDrawLayer
ShowFormulaMarkers
ShowGridLines
ShowManualPageBreaks
ShowQueryNameandBorder
ShowScrollBars
ShowSheetFrame

ShowSheetTabs
ShowVersionBorders
Size
SmartMasterOn
SmartMasterPath
SortBlanksLast
SortDriver
SortNumbersFirst
SortRange
SQL
Stapled
StartColumn
StartRow
StartSheet
StatusBarVisible
Strikethrough
Style
StyleName
StyleRange
StyleSource
StylesRetained
Subject
SynchScrolling

T
TabColor
TabReturnKeyMovement
Target
Text
TextCodePage
TextColumnParseOption
TextColumnParseUserDefined
TextHorizontalAlign
TextOrientation
TextRotation
TextVerticalAlign
TextWrapped
ThousandsSeparator
TimeCycle
TimeSeparator
Title
Top
TopBorder
TopMargin
TotalMemory

U
Underline
UndoEnabled
UnitsOfMeasure
UpdateLinksOnOpenDoc
UpdateSheetDisplay
UseOSDefaultColors
UserClassNameApplication
UserClassNameFull
UserClassNameShort
UserName
UsingTotalToAutoSum

V
Value
ValueRange
ValueSource
VersionBorderVisible
VersionId
VersionName
VersionStatus
VerticalBorder
VerticalPageBreak
VerticalScrollBarVisible
VerticalTitle
ViewSplitHeight
ViewSplitStyle
ViewSplitWidth
Visible

W
WelcomeOn
WideUnderline
Width
Windows
WindowsDefaultsDisplayed

X

Y

Z
Zoom
ZoomScale

1-2-3 LotusScript A-Z

A
Activate method
Active property
ActiveCell property
ActiveDocument property
ActiveDocWindow property
Addins property
AddItem method
AddMenu method
AddOverlay method
AddPoint method
AddSelectField method
AddSeparator method
AddToSelection method
AddVersion method
AlignOverColumns property
AllFields property
AllNames property
AllowsUpdates property
AllPagesPrint property
AlwaysReserve property
Anchor property
AppendRecords method
Application class
Application property
ApplicationMaximized property
ApplicationWindow property
ApplicationWindow class
ApproachConnection class
Arc class
ArgumentSeparator property

ArrangeIcons method
Arrow property
Author property
Authors property
AutoExecMacrosEnabled property
AutoOpenPath property
AutoRedraw property
AutoRefresh property
AutoSmartSum method
AutoUpdate property
AvailableMemory property

B
BackColor property
Background class
Background property
Backsolve method
BaseCollection class
BaseMapName property
BaseObject class
BaseSourceTable property
BeepsOnError property
BinRange property
BinsUsed property
BinType property
Blue property
Bold property
BottomBorder property
BottomMargin property
Bounds method
BreakLink method
ButtonControl class

C
Calc method
CalcIterations property
CalcMode property
CalcOrder property
CancelPrint event
Caption property
Cascade method
Cell method
CellComment property
CellCommentsFont property
CellCommentsPrint property
CellContentsChange event
CellDisplay property
Cells property
CellValue property
CellValueChange event
CenterLatitude property
CenterLeftToRight property
CenterLongitude property
CenterTopToBottom property
CenturyLongFormat property

Changed property
Chart class
Charts class
Charts property
ChartsPicturesAndDrawPrint property
CheckItem method
Class property
ClassicMenuActivationKey property
ClassicMenuEnabled property
ClassInfo class
ClassName property
ClassVersionId property
Clear method
ClearOutline method
ClearRangeNames method
ClearSplits method
Click event
Close method
CloseAll method
ClosePreview method
CloseWindow event
CollapseColumn method
CollapseRow method
Collate property
Color class
Color property
ColorBins property
ColorFromRGB method
ColorIndex property
ColorName property
Colors class
Colors property
ColorVisible property
ColumnFolding property
ColumnLevel property
ColumnOutlineVisible property
ColumnTitleRange property
ColumnWidth property
ConfirmDragAndDrop property
Connect method
Contents property
CoordinateRange property
CoordinateString property
Copies property
CopyFill method
CopySelection method
CopySQLToClipboard method
CopyToClipboard method
Count property
CountryCode property
CreateComputedField method
CreateRangeName method
CreateRangeNameFromLabel method
CreateRangeNameTable method
CreateTable method
CreationDate property
Criteria property
CurrentDirectory property

CurrentMenuBar property
CurrentPrinter property
CurrentPrintSettings property
CurrentSheet property
CurrentVersion property
Cut method
CutSelection method

D
DataLink class
DataLinks class
DataLinks property
DataParse method
DataParseGuess method
DataProtected property
DataQuery class
DataQueryNames property
DateOrder property
DateSeparator property
DateTime class
DateTo21stCentury property
DayNames property
DecimalSeparator property
DefaultAddinPath property
DefaultBackColor property
DefaultColumnWidth property
DefaultDecimals property
DefaultFileExtension property
DefaultFontName property
DefaultFontSize property
DefaultNegCurrencyFormat property
DefaultPath property
DefaultPrintSettings property
DefaultRowHeight property
DefaultTextColor property
DefineNamedStyle method
DeleteColumns method
DeleteComputedField method
DeleteCurrentVersion method
DeleteNamedPrintSettings method
DeleteNamedStyle method
DeleteQuery method
DeleteRangeName method
DeleteRecords method
DeleteRows method
DeleteSheet method
DeleteVersion method
DeleteVersionGroup method
DemoteColumn method
DemoteRow method
Description property
Deselected event
DesignerFrameStyle property
DisableItem method
Disconnect method
Display4DigitYear property
DisplayInit event
DisplayZeroAs property

Distribution method
Document class
Document property
DocumentOpened event
Documents class
Documents property
DocWindow class
DocWindows class
DocWindows property
DoubleUnderline property
DragAndDropEnabled property
DragAndFill method
DrawCollection class
DrawLine class
DrawnObjects property
DrawObject class
DrawObjects class
Duplex property

E
EdgeColor property
EdgeDashStyle property
EdgeLineWidth property
EditingTime property
EditLineVisible property
EditPoints property
EditText class
Ellipse class
Embedded property
EmbeddedParticipation property
EnableItem method
EndColumn property
EndPoll method
EndPrint event
EndRow property
EndSheet property
EveningString property
Events property
ExpandColumn method
ExpandRow method
ExtendedName method
ExtendSelection method
ExtendSheetSelectionBack method
ExtendSheetSelectionForward method
ExtractingUniqueRecords property

F
FieldAggregateType method
FieldAlias method
FileAdminLinksRefresh method
FileName property
Find method
FindTarget property
FitDrawnObjectToPage property
FitRowHeightToFont property
FitTallest method
FitToPage property
FitWidest method

FitWidestNumber method
FlipLeftRight method
FlipTopBottom method
Font class
Font property
FontColor property
FontName property
FooterCenter property
FooterCenterFont property
FooterLeft property
FooterLeftFont property
FooterRight property
FooterRightFont property
Format method
Format property
FormatDecimals property
FormatName property
FormatProtected property
FormatReset method
FormulaFont property
FormulasPrint property
FrameColor property
FreeCellData method
Freehand class
FullName property

G
GetActiveCell method
GetCellData method
GetEnumString method
GetFieldAlias method
GetFocus event
GetItemText method
GetItemType method
GetKey method
GetMenu method
GetMenuPosition method
GetRange method
GetRangeString method
GetRGB method
Goto method
GotoCirc method
Green property
GridBorder property
GridLineColor property
GridLinesPrint property
Group class
Group method
GroupSheets method

H
HasPassword property
HeaderCenter property
HeaderCenterFont property
HeaderLeft property
HeaderLeftFont property
HeaderRight property
HeaderRightFont property

Height property
HelpContents method
Hidden property
HideColumns method
HideIconBar method
HideRows method
HideSheet method
HorizontalBorder property
HorizontalPageBreak property
HorizontalScrollBarVisible property
HorizontalTitle property

I
IconBarNames property
IconBarsVisible property
IconSize property
InitialColWidth property
InitialRowHeight property
InnerBorder property
InsertColumns method
InsertRows method
InsidePlot property
Interactive property
InternetIconsVisible property
IsAddinLoaded method
IsBubbleHelp property
IsColumnCollapsed property
IsColumnHidden property
IsDraggable property
IsFormatFreqUsed property
IsHidden property
IsIconBarShowing method
IsLeapYear property
IsLinked property
IsLocked property
IsNew property
IsNotesFX property
IsParenthesized property
IsProtected property
IsRangeNamed property
IsRowCollapsed property
IsRowHidden property
IsSameObject method
IsSelectable property
IsSelected property
IsSheetHidden property
IsZeroDisplayed property
Italic property
Item method
ItemName property

J
Join method

K
Keywords property
KnownRegionAliases property
KnownRegionCodes property

KnownRegionNames property

L
L123Seconds property
LabelRange property
LabelSource property
Language property
LastEditor property
LastPrinted property
LastVersionGroup property
Left property
LeftBorder property
LeftMargin property
Legend class
Legend property
Lines property
LinkedToCell property
LinkSource property
LoadAddin method
LocalTime property
Lock method
LongPrompt property
LostFocus event
LowerRightVisibleCell method
LSLocalTime property

M
MacroRun method
MacroRunText method
MacroStep property
MacroTrace property
MaintainDimensions property
MakeCurrent method
Map class
MapBin class
MapBins class
MapPlot class
Maps class
Maps property
MapTextEntries class
MapTextEntry class
MapTitle class
MatchAccent property
MatchCase property
MatchKatakana property
MatchPitch property
MatrixInvert method
MatrixMultiply method
Maximize method
Menu class
MenuBar class
MenuBarReset event
MenuPrompt property
MenuText property
MergeVersions method
MethodInvoked event
Methods property
Minimize method

ModifiedDate property
ModifyNamedStyle method
MonthNames property
MorningString property
Move method
MoveCellPointer method
Moved event
MoveOrigin method
MovePoint method

N
Name property
NameChange event
NamedPrintSettings property
NamedRanges property
NegativesInColor property
NewApproachConnection method
NewArc method
NewArrow method
NewButton method
NewChart method
NewDataLink method
NewDocument method
NewDocWindow method
NewDrawLine method
NewEditText method
NewEllipse method
NewFreehand method
NewMap method
NewMenu method
NewMenuBar method
NewNamedPrintSettings method
NewObject method
NewPicture method
NewPolygon method
NewPolyline method
NewQuery method
NewQueryTable method
NewRectangle method
NewRoundedRectangle method
NewSheet method
NewVersion method
NewVersionGroup method
Next method
NextSplit method
Normal property
NotesPath property
NumberOfMostRecentFiles property

O
Object property
OLEObject class
OLEObjects property
OLEObjects class
Open method
OpenDocument method
OpenDocumentFromInternet method
OpenDocumentFromNotes method

Opened event
OpenWindow event
Orientation property
OSType property
OutlineBorder property
OutlineColumnsToLevel method
OutlineRowsToLevel method
OutputLocation property
OutputRange property
Overlays property

P
PageBack method
PageForward method
PaperBinName property
PaperBinNames property
PaperHeight property
PaperHeightMaximum property
PaperHeightMinimum property
PaperSizeCustom property
PaperSizeName property
PaperSizeNames property
PaperWidth property
PaperWidthMaximum property
PaperWidthMinimum property
Parent property
Password property
Paste method
Path property
Pattern property
PatternBins property
PatternVisible property
Picture class
Placement property
Plot property
PlotPosition property
PlotRotation property
PointCount property
PointX method
PointY method
Poll1 event
Poll2 event
Poll3 event
Poll4 event
Polygon class
Polyline class
PostClose event
PostSave event
PostSaveAs event
PreClose event
PreSave event
PreSaveAs event
Preview method
Print method
PrintOut method
PrinterName property
PrinterNames property
PrinterQuality property

PrintPagesFrom property
PrintPagesStart property
PrintPagesTo property
PrintRange property
PrintRangeSaved property
PrintSelection property
PrintSettings class
PrintSettingsCollection class
PrintToFile method
PrintWhat property
ProductVersion property
PromoteColumn method
PromoteRow method
Properties property
PropertySet event

Q
QuerySortDefineKey method
QueryTable class
QueryTables class
QueryTables property
QuickCopy method
QuickMove method
Quit method

R
Range class
RangeBorder class
RangeCombine method
RangeCombineText method
RangeExtract method
RangeFill method
RangeHeaderInSort property
Ranges class
Ranges property
RangeSelector property
RangeSortDefineKey method
RangeSortHeaderDepth property
RangeValue method
ReadOnly property
RecalcRange method
RecenterMap method
RecordsLimited property
RecordsLimitMax property
Rectangle class
Red property
RedefineNamedPrintSettings method
RedrawMap method
Refresh method
RefreshOutput method
RefreshQuery method
RegionRange property
RegisteredCompany property
RegisteredUser property
Regression method
RegressionReset method
Remove method
RemoveAllVersions method

RemoveFromSelection method
RemoveItem method
RemoveOverlay method
RemoveSelectField method
RemoveVersion method
RenameNamedPrintSettings method
RenameNamedStyle method
Replace method
ReplaceAll method
ReplaceItem method
ReplaceMenu method
ReplaceString property
ReportVersion method
ReservationGet method
ReservationReleased method
ResetColumnWidth method
ResetFieldAggregates method
ResetMenuBar method
ResetRowHeight method
ResetViewOverrides method
Reshape method
Resize method
Resized event
Restore method
RestoreToOriginalSize method
RestrictOutput property
RetrieveFileFromInternet method
RetrievePrintSettings method
RevertToNamedStyle method
RevertToStyle method
Revisions property
Revs property
RGB property
RightBorder property
RightMargin property
Rotation property
Rounded property
RowFolding property
RowHeight property
RowHeightUseFontSize property
RowLevel property
RowOutlineVisible property
RowTitleRange property

S
SameColor method
Save method
SaveAs method
SaveAsToInternet method
SaveAsToNotes method
SaveCopyAs method
ScalePercent property
ScreenHeight property
ScreenWidth property
ScrollToActiveCell method
SearchFormulas property
SearchLabels property
SearchString property

SearchValues property
Select method
SelectAll method
SelectAllSheets method
Selected event
SelectFields property
Selection property
Send method
SendCommand method
SendMail method
SendOutputToRange property
SendSQL method
SetActiveCell method
SetCellData method
SetGalleryStyle method
SetHorizontalTitle method
SetInternetOptions method
SetLinkSource method
SetOrigin method
SetRecordsLimitMax method
SetVerticalTitle method
Share property
Sheet class
SheetChange event
SheetCount property
SheetDataPrint property
SheetFramePrint property
SheetName property
SheetNumber property
Sheets class
Sheets property
ShortDayNames property
ShortMonthNames property
Show method
ShowAllSheets method
ShowAutomaticPageBreaks property
ShowCellCommentMarkers property
ShowDataLossDialog property
ShowDesignerFrame property
ShowDrawLayer property
ShowFormulaMarkers property
ShowGridLines property
ShowIconBar method
ShowManualPageBreaks property
ShowQueryNameandBorder property
ShowScrollBars property
ShowSheet method
ShowSheetFrame property
ShowSheetTabs property
ShowVersionBorders property
Size property
SmartMasterOn property
SmartMasterPath property
SmartSort method
SmartSum method
Sort method
SortBlanksLast property
SortData method

SortDriver property
SortNumbersFirst property
SortRange property
SortReset method
SortResetKeys method
SQL property
Stapled property
StartColumn property
StartPoll method
StartPrint event
StartRow property
StartSheet property
StatusBarVisible property
Strikethrough property
Strings class
Style property
StyleFontReset method
StyleName property
StyleRange property
StyleSource property
StylesRetained property
Subject property
SynchScrolling property

T
TabColor property
TabReturnKeyMovement property
Target property
Text property
TextCodePage property
TextColumnParseOption property
TextColumnParseUserDefined property
TextHorizontalAlign property
TextOrientation property
TextRotation property
TextVerticalAlign property
TextWrapped property
ThousandsSeparator property
Tile method
TileHorizontal method
TileVertical method
TimeCycle property
TimeDifference method
TimeSeparator property
Title property
ToBack method
ToFront method
ToggleVersionBorder method
Top property
TopBorder property
TopLeftVisibleCell method
TopMargin property
TotalMemory property
Transpose method
TurnTo method

U
UncheckItem method

Underline property
UndoEnabled property
UnGroup method
UnGroupSheets method
UnhideColumns method
UnhideRows method
UnitsOfMeasure property
UnloadAddin method
Update method
UpdateDefaultPrintSettings method
UpdateLinksOnOpenDoc property
UpdateSheetDisplay property
UseDefaultPrintSettings method
UseOSDefaultColors property
UserClassNameApplication property
UserClassNameFull property
UserClassNameShort property
UserLogin method
UserName property
UsingTotalToAutoSum property

V
Value property
ValueChange event
ValueRange property
ValueSource property
Verb method
Version class
Version method
VersionBorderVisible property
VersionGroup class
VersionGroup method
VersionGroups class
VersionGroups method
VersionId property
VersionName property
Versions class
Versions method
VersionStatus property
VerticalBorder property
VerticalPageBreak property
VerticalScrollBarVisible property
VerticalTitle property
ViewSplitHeight property
ViewSplitStyle property
ViewSplitWidth property
Visible property

W
WelcomeOn property
WhatIfTable1 method
WhatIfTable2 method
WhatIfTable3 method
WhatIfTableReset method
WideUnderline property
Width property
Window class
Windows property

Windows class
WindowsDefaultsDisplayed property

X

Y

Z
Zoom property
ZoomIn method
ZoomMapIn method
ZoomMapOut method
ZoomMapReset method
ZoomMapTo method
ZoomOut method
ZoomReset method
ZoomScale property
ZoomTo method

