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Using Frontline's Solvers
Thank you for using Frontline Systems's Solver products for Lotus 1-2-3 97 Edition.    This Helpfile covers 
the features of the standard Solver for 1-2-3, which is offered on a trial basis free to Lotus 1-2-3 97 users.

This Helpfile provides information about the Solver's features and options, and describes how to use the 
Solver most effectively.    It will help you set up and solve problems, and interpret the results of running the
Solver such as the completion messages and reports.

You can obtain a low-cost permanent license to use the standard Solver directly from Frontline Systems.   
When you're ready, you can upgrade to more powerful versions of the Solver, as they become available.   
When you upgrade, your Solver models and macros developed with the standard version will work as-is 
with the enhanced Solver products.



The Enhanced Solver Products
The Premium Solver
The Quadratic Solver
The Large-Scale LP Solver



The Premium Solver
The Premium Solver is Frontline's basic upgrade to the standard Solver, and is the foundation upon which
our other enhanced Solvers are built.    Please contact Frontline Systems for the latest news on availability
of the Premium Solver for Lotus 1-2-3 97 Edition.

Once the Premium Solver is installed, you can solve nonlinear optimization problems (NLPs) of up to 400 
variables (or changing cells) and 200 constraints in addition to bounds on the variables, and linear 
optimization problems (LPs) of up to 800 variables with no limit on the number of constraints.    User 
interface improvements make it easier to set up your models and give you better control of various 
aspects of the solution process. Solution speed is improved for all types of problems, especially for 
problems with all linear and integer constraints.



The Quadratic Solver
The Quadratic Solver includes all of the features of the Premium Solver, plus a new, much faster 
algorithm for solving quadratic optimization problems (QPs).    These problems have a quadratic objective 
function (in which variables can be squared or multiplied by each other) and all linear constraints; they are
often used to find "efficient portfolios" of securities using the Markowitz or Sharpe methods.    Where the 
standard Solver employs the much slower nonlinear GRG method on problems of this type, the Quadratic
Solver employs methods specially suited for these problems to find more accurate optimal solutions in a 
small fraction of the time that otherwise would have been required. Please contact Frontline Systems for 
the latest news on availability of the Quadratic Solver for Lotus 1-2-3 97 Edition.



The Large-Scale LP Solver
The Large-Scale LP Solver combines the power of the most advanced LP solution methods with the 
features of the Premium Solver.    You can solve "industrial strength" LP models in a form that encourages
rapid development and modification, and present results in a format that your management or client will 
understand.

Because the Large-Scale LP Solver represents problems in an internal "sparse matrix" form, it can handle
LP models of many thousands of variables and constraints, which would require megabytes of memory 
and hours of solution time using the standard Solver, or even the Premium Solver.

Due to the intrinsic finite precision of computer arithmetic, which becomes an important factor in large LP 
models, a standard Simplex method such as that used in the standard Solver or the Premium Solver may 
be foiled by numerical "instability" and fail to find the optimal solution.    The Large-Scale LP Solver uses 
sophisticated methods of scaling, matrix factorization and pivoting to overcome the problems of finite 
precision arithmetic; it can find solutions to LP models which would have been considered numerically 
intractable a few years ago.    The same methods contribute to solution speed on problems that formerly 
took many "pivots" or iterations to solve.

Please contact Frontline Systems for the latest news on availability of the Large-Scale LP Solver for Lotus
1-2-3 97 Edition.



How to Use This Helpfile
"Custom Installation" describes steps you can take to install the Solver for 1-2-3 97 Edition if you had 
trouble with the automatic installation program.    If you have successfully installed the Solver, you can 
skip this section.

"Solver Basics" reviews the basic framework of the optimization problems which can be handled by the 
Solver.    It describes how a model is made up of variables, constraints and an objective, and covers the 
major categories of optimization problems (linear and quadratic programming, nonlinear programming, 
and integer programming) handled by the Solver.

"Building Solver Models" is an introduction to the process of building optimization models in Lotus 1-2-3, 
translating from algebraic notation to spreadsheet formulas and Solver dialog choices.    It also covers 
multiple selections for decision variables, use of the Variables button, the possible forms of constraint left-
and right-hand sides, and use of the "bin" dropdown to specify binary integer variables.

"Diagnosing Solver Problems" helps you determine what is wrong if you don't get the solution you expect 
from the Solver, or if you encounter a message other than "Solver found a solution."    It outlines the most 
common problems that users have, based on our technical support experience with the Solver.

"Solver Options" documents in depth the advanced options and tolerances which can be set using the 
Solver Options dialog.    The effect of each option and situations where you would likely choose it are 
described.

"Solver Reports" describes the contents of the reports which may be chosen from the Solver Results 
dialog.    It shows you how to interpret the numbers in the reports, and how to use the Sensitivity Report to
predict changes in the optimal solution in response to certain kinds of changes in your input data.

"Programming the Solver" describes how you can control the Solver from LotusScript and create "turn-
key" applications using the Solver.



Telephone Support and the World Wide Web
Frontline Systems offers telephone technical support for the Solver on a fee basis, and also maintains an 
extensive World Wide Web support site which you can access free of charge.    Most questions can be 
answered from this Helpfile or by consulting our Web site -- both are based on our telephone support 
experience.    We encourage you to use our free resources first!

To learn about Solver licensing and telephone technical support, click on the Help button in the Solver 
Parameters, Solver Options or Solver Results dialog.    You will see a dialog box which reports the status 
of your Solver license:    If you are using the trial version, this dialog shows how many problem solution 
attempts (clicks of the Solve button) remain before the trial license expires.    If you have purchased a 
permanent license, it shows your user name and registration serial number.    To purchase a permanent 
license now, click the Register button.    Also included in this dialog is telephone support and Web site 
information.    Click the Help button in this dialog to reach the Solver Helpfile.

If you have access to the World Wide Web via the Internet, you will find a wealth of current information 
about the Solver -- over 65 pages at this writing -- at Frontline Systems' Web site, 
http://www.frontsys.com.    Since this site is frequently updated, it is well worth while to check it 
periodically for the latest news about the standard and enhanced Solvers.    The World Wide Web is 
currently our best way of delivering technical support assistance for both our standard and our enhanced 
Solvers.    If you can't find the answer you need, you can send email to Frontline Systems directly from 
your Web browser with a single mouse click (or, if you're using a separate email system, send it to 
info@frontsys.com).

To reach Frontline Systems by phone, fax, or postal mail, please use:

Frontline Systems, Inc.
P.O. Box 4288
Incline Village, NV 89450, USA
Tel (702) 831-0300
Fax (702) 831-0314



Further Reading
Although this Helpfile will provide many valuable hints for making effective use of the Solver, it does not 
attempt to teach you how to formulate Solver models or apply linear and quadratic programming, 
nonlinear programming or integer programming techniques.    To make the most of the Solver, we strongly
recommend that you consult one of the books cited below, or discuss your problem with someone in your 
firm or at your local university with a background in operations research and/or management science.    
There is a vast literature on problems of various types and for various industries and business situations 
which have been solved successfully with the methods available in the Solver.    Don't reinvent the wheel 
-- find out how others have solved problems similar to yours!

Spreadsheet Modeling and Decision Analysis by Cliff T. Ragsdale, published by Course Technology. 
ISBN 1-56527-277-3.    This book uses the Microsoft Excel Solver, which is quite similar to the 1-2-3 97 
Solver, for all of its examples.    You'll find a discussion of linear, nonlinear and integer programming; an 
explanation of sensitivity analysis and how to use the Solver's reports; topics like goal programming and 
multi-objective optimization; and additional coverage of regression, time series analysis, queuing, project 
management, decision analysis, and other topics.

Practical Management Science: Spreadsheet Modeling and Applications by S. Christian Albright and 
Wayne L. Winston, published by Duxbury Press. ISBN 0-534-21774-5.    This is a new book based on 
Winston's well-regarded textbook Operations Research: Applications and Algorithms (see below), 
updated to use spreadsheet Solvers throughout. It is notable for its extensive, in-depth coverage of 
classic optimization problems, including many in the exercises. It also includes coverage of decision 
making under uncertainty, inventory models, queuing, simulation and forecasting.

Managerial Spreadsheet Modeling and Analysis by Rick Hesse, published by Richard D. Irwin. ISBN 
0-256-21530-8.    This book teaches you how to formulate a model from a complex business situation, 
using a four-step process: Picture and paraphrase, verbal model, algebraic model and spreadsheet 
model. It covers types of models ranging from simple goalseeking and unconstrained problems to linear, 
nonlinear and integer programming problems.

Management Science: Modeling, Analysis and Interpretation by Jeffrey D. Camm and James R. 
Evans, published by South-Western College Publishing. ISBN 0-538-82738-6.    This book focuses on 
modeling and covers both optimization and simulation. It uses the Excel Solver and the (earlier) Lotus 
Solver in many examples, though some examples use the older LINDO optimizer which has its own 
language for expressing LP models. It covers multiobjective LP models, integer models and network 
models, but does not cover nonlinear optimization models. 

Model Building in Mathematical Programming, Third Edition by H.P. Williams, published by John 
Wiley. ISBN 0-471-92580-2 (HC), 0-471-94111-5 (SC).    Written before the advent of spreadsheet 
optimizers, this book is still valuable for its explanation of model-building methods, especially if you are 
building larger-scale optimization models. It focuses on linear and integer programming, mentioning 
nonlinear models only briefly, but it offers a unique treatment of large-scale model structure and 
decomposition methods. It also includes a complete discussion of 20 models drawn from various 
industries.

Operations Research: Applications and Algorithms, Third Edition by Wayne L. Winston, published by
Duxbury Press. ISBN 0-534-20971-8 (with DOS software), 0-534-20973-4 (with Mac software).    This 
popular textbook, also written before the advent of spreadsheet optimizers, covers many classic 



optimization problems and also includes a discussion of some of the algorithms used in the Solver, such 
as the Simplex method for linear programming, the Branch & Bound method for integer programming, and
selected methods for nonlinear programming -- as well as many other topics in operations research. An 
edition with (non-spreadsheet-based) Windows software is due in the Fall of 1996, with ISBN 0-534-
52020-0.

Management Science by Andrew S. Shogan, published by Prentice-Hall, Inc. ISBN 0-13-551219-0.    
Another popular textbook written before the advent of spreadsheet optimizers, with in-depth coverage of 
the Simplex and Branch & Bound methods as well as many classic optimization problems. Also includes a
detailed discussion of sensitivity analysis, goal programming, and piecewise linear programming -- as well
as many other management science topics -- but does not cover nonlinear programming.

For a technical description of the nonlinear GRG solver included with the standard and enhanced Solvers,
please consult the following academic papers:

L.S. Lasdon, A. Waren, A. Jain and M. Ratner.    Design and Testing of a Generalized Reduced Gradient 
Code for Nonlinear Programming.    ACM Transactions on Mathematical Software 4:1 (1978), pp. 34-50.

L.S. Lasdon and S. Smith.    Solving Sparse Nonlinear Programs Using GRG.    ORSA Journal on 
Computing 4:1 (1992), pp. 2-15.



Extracting Files
Read this section ONLY if you have had trouble with automatic installation of the Solver.    It explains how 
to manually install the Solver files and configure 1-2-3 to use the Solver.    It assumes that you have 
experience working with Windows 95 or Windows NT files, directories and the Registry.

To install the Solver automatically, simply run the program SOLVE123.EXE on the computer where you 
have already installed 1-2-3 97 Edition.    The automatic installation process performs all of the steps 
outlined in the sections "Extracting Files," "Modifying the Registry" and "Using the Files Add-Ins Menu."

To install the Solver manually, first create a solver subdirectory within the \lotus\123 directory which was 
created when 1-2-3 97 Edition was installed.    Then open the file SOLVE123.EXE using a archiver 
program such as PKZIP or WinZip, and extract all of the archived files into the newly created solver 
subdirectory.



Modifying the Registry
To perform this step, you must use the Registry Editor.    From the Start Menu, choose Run and type or 
select the program name regedit.    The Registry is organized hierarchically, much like the Windows file 
system.    Double-click on each key level to display:

HKEY_LOCAL_MACHINE\SOFTWARE\Lotus\Components\LotusScriptExtensions\2.0

Choose Edit New String Value.    For the name, type SOLVER (this must be all capitals).    For the value, 
type the complete path to the Solver DLL, such as c:\lotus\123\solver\solve123.dll.    Now, move to:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Help

Choose Edit New String Value.    For the name, type solver.hlp.    For the value, type the complete path 
to the directory containing the Solver Helpfile, such as c:\lotus\123\solver\.    Finally, choose Registry 
Exit to dismiss the Registry Editor.



Using the Files Add-Ins Menu
The final step is to register the Solver add-in with 1-2-3 97 Edition.    To do this, start 1-2-3 and select the 
Add-Ins option from the File menu.    Then select Manage Add-Ins... from the cascading submenu.    A 
dialog box should appear, containing a list of add-ins (which may be empty).    You will add the Solver add-
in to this list, and specify that it should be auto-loaded.

Click on the Register... button.    In the Register Add-In dialog, which operates like a File Open dialog, 
navigate to the directory containing solver.12a (normally c:\lotus\123\solver).    Click on solver.12a in 
the file list, then click on the Open button.

The Manage Add-Ins dialog should reappear, this time listing the Solver add-in's path, such as c:\lotus\
123\solver\solver.12a.    Now click just to the left of the drive letter on this line, so that a check mark 
appears next to the full pathname.    Then click on the Done button.

To verify that the Solver add-in has been registered, select the Analyze option from the Range menu.    
On the cascading submenu, you should see a new Solver... option.    You select this menu option to 
activate the Solver and display the Solver Parameters dialog.

Now you can open solvsamp.123, which should be in the directory c:\lotus\123\solver, and try out the 
six Solver examples on tabs B through G of this workbook.    You can also set up and solve a problem 
manually as described step-by-step in sheet tab A.



Elements of Solver Models
The basic purpose of the Solver is to find a solution -- that is, values for the variables or Changing Cells in
your model -- which satisfies the constraints and which maximizes or minimizes the objective or Set Cell 
value.    Let us examine this framework more closely.

The model you create for use with the Solver is no different from any other spreadsheet model.    It 
consists of input values; formulas which calculate values based on the input values or on other formulas; 
and other elements such as formatting.    You can practice "what if" with a Solver model just as easily as 
with any other spreadsheet model.    This familiar concept can be very useful when you wish to present 
your results to managers or clients, who are usually "spreadsheet literate" even if they are unfamiliar with 
Solvers or optimization.

Related Topics:
Decision Variables and Parameters
The Objective Function
Constraints
Feasible and Optimal Solutions
Linear and Nonlinear Functions
Quadratic Functions
Functions to Avoid: Discontinuities



Decision Variables and Parameters
The input values may be fixed numbers associated with the particular problem.    We'll call these values 
parameters of the model.    Often you will have several "cases" or variations of the same problem to solve,
and the parameter values will change in each problem variation.

Alternatively, the input values may be quantities which are variable, or under the control of the decision 
maker.    We'll refer to these as the variables, decision variables, or Changing Cells.    Very often, the same
cell values you use to play "what if" are the ones for which you'll want the Solver to find solution values.    
These cells are listed in the Changing Cells edit box of the Solver Parameters dialog.



The Objective Function
The quantity you want to maximize or minimize is called the objective function or Set Cell.    This cell is 
listed in the Set Cell edit box of the Solver Parameters dialog.

You may have a Solver model which has nothing to maximize or minimize, in which case the Set Cell edit 
box will be blank.    In this situation the Solver will simply find a solution which satisfies the constraints.

The Solver also permits you to enter a specific value which you want the objective function or Set Cell to 
achieve.    This feature was included for compatibility with the Range Analyze Backsolver... option, which
allows you to seek a specific value for a cell by adjusting the values of other cells on which it depends.    
In fact, entering a specific value for the Solver's Set Cell is exactly the same as leaving the Set Cell blank 
and entering an equality constraint for the Set Cell in the Constraint List Box.

There is rarely a good reason to use the Set Cell Value of edit box in the Solver Parameters dialog.    If 
you have a simple "goalseeking" or "backsolving" problem, you will find it convenient to use the Range 
Analyze Backsolver... option.    If you have nothing to maximize or minimize, we recommend that you 
leave the Set Cell blank and enter any constraints you need in the Constraint List Box.



Constraints
Constraints are relations such as A1 >= 0.    A constraint is satisfied if the condition it specifies is true 
within a small tolerance.    This is a little different from a logical formula such as +A1>=0 evaluating to 1 or 
0 which you might enter in a cell.    In this example, if A1 were -0.0000001, the logical formula would 
evaluate to 0, but with the default Solver Precision setting, the constraint would be satisfied.    Because of 
the numerical methods used to find solutions to Solver models and the finite precision of computer 
arithmetic, it would be unrealistic to require that constraints like A1 >= 0 be satisfied exactly -- such 
solutions would rarely be found.

In the 1-2-3 97 Solver, constraints are specified by giving a cell reference such as A1 or A1..A10 (the "left 
hand side"), a relation (<=, = or >=), and an expression for the "right hand side."    Although you can enter 
any numeric expression on the right hand side, we encourage you to use only constants, or references to 
cells which contain constant values on the right hand side.    (A constant value to the Solver is any value 
which does not depend on any of the decision variables.)    Using constant right hand sides in constraints 
will simplify your model, and allows the Solver to handle the constraints more efficiently.

Another type of constraint is of the form A1 = integer, where A1 is one of the decision variables.    This 
specifies that the solution value for A1 must be an integer or whole number such as -1, 0 or 2 to within a 
small tolerance.    A common special case, also supported by the Solver, is a constraint such as A1 = 
binary which specifies that A1 must be either 0 or 1 at the solution.    The presence of even one such 
integer constraint in a Solver model makes the problem an integer programming problem (discussed 
below), which may be much more difficult to solve than the equivalent problem without the integer 
constraint.



Feasible and Optimal Solutions
A solution (values for the decision variables) for which all of the constraints in the Solver model are 
satisfied is called a feasible solution.    The Solver proceeds by first finding a feasible solution, and then 
seeking to improve upon it, changing the decision variables to move from one feasible solution to another 
feasible solution until the objective function has reached its maximum or minimum.    This is called an 
optimal solution.

How does the Solver know (more important, how do you know) that the solution is optimal?    The answer 
to this question depends on the type of problem (linear/quadratic, nonlinear or integer) you are trying to 
solve, which is discussed at some length in the next section.



Linear and Nonlinear Functions
The objective function in a Solver problem is some calculated value that depends on the decision variable
cells; the job of the Solver is to find some combination of values for the decision variables which 
maximizes or minimizes the objective function.    During the optimization process, only the decision 
variable cells are changed; all other "input" cells are held constant.    If you analyze the chain of formulas 
which calculates the objective function value, you will find that parts of those formulas (those which refer 
to non-decision variable cells) are unchanging in value and could be replaced by a numeric constant for 
the purposes of the optimization.

If you follow the suggestion above and use only constant values on the right hand sides of constraints, 
then the same observation applies to the left hand sides of the constraints:    Parts of the constraint 
formulas (those which refer to non-decision variable cells) are unchanging in value, and only the parts 
dependent on the decision variables "count" during the optimization.

The mathematical form of the relationship between the objective function and constraint cells and the 
decision variables has important implications for the difficulty of the problem, the Solver "engine" that can 
be used, and the speed of solution.    The simplest and most common case is where the objective function
is a linear function of the variables.    This means that the objective can be written as a sum of terms, 
where each term consists of one decision variable multiplied by a (positive or negative) constant.    
Algebraically, we can write:

max (or min)    a1x1 + a2x2 + ... + anxn

where the ais, which are called the coefficients, stand for constant values and the xis stand for the 
decision variables.    Remember that the ais need only be constant in the optimization problem, i.e. not 
dependent on any of the decision variables.    As an example, suppose that the objective function is 
+B1/B2*C1+(D1*2+E1)*C2, where only C1 and C2 are decision variables, and the other cells contain 
constants (or formulas that don't depend on any of the decision variables).    This would still be a linear 
function, where a1 = B1/B2 and a2 = (D1*2+E1) are the coefficients, and x1 = C1 and x2 = C2 are the 
variables.

Note that the @SUMPRODUCT function computes exactly the algebraic expression shown above.    If we 
were to place the formula +B1/B2 in cell A1, and the formula +(D1*2+E1) in cell A2, then we could write 
the example objective function as:

@SUMPRODUCT(A1..A2,C1..C2)

A nonlinear function, as its name implies, is any function of the decision variables which is not linear, i.e. 
which cannot be written in the algebraic form shown above.    Examples would be +1/C1, @LOG(C1), 
+C1^2 or +C1*C2 where both C1 and C2 are decision variables.    If the objective function or any of the 
constraints are nonlinear functions of the variables, then the problem cannot be solved with an LP Solver.



Quadratic Functions
The last two examples above, +C1^2 or +C1*C2, are simple instances of quadratic functions of the 
variables.    A more complex example would be:

+2*C1^2+3*C2^2+4*C1*C2+5*C1

A quadratic function is a sum of terms, where each term is a (positive or negative) constant (again called 
a coefficient) multiplied by a single variable or the product of two variables.    Common uses for quadratic 
functions are to compute the mean squared error in a curve-fitting application, or the variance or standard
deviation of security returns in a portfolio optimization application.

What if you have already created a complex spreadsheet model without using functions like 
@SUMPRODUCT, and you aren't sure whether your objective function and constraints are linear or 
nonlinear functions of the variables?    A quick way to find out is to try solving the model with Assume 
Linear Model box checked in the Solver Options dialog.    Although this test is not 100% foolproof, it will in 
most cases return an error message if the problem contains nonlinear functions of the variables.    In any 
case, the next step is to look closely at the formulas in your spreadsheet and to try rewriting them using 
the @SUMPRODUCT product.    Your effort will be rewarded in most cases by a better understanding of 
your model, as well as a problem which Frontline's enhanced Solvers can handle efficiently.



Functions to Avoid: Discontinuities 
There are many formulas and built-in functions which you can use in a 1-2-3 spreadsheet, but which 
cause difficulties for both linear and nonlinear solvers. These functions share the property that they are 
non-smooth or discontinuous at some point. The most common example is the IF function. For example:

@IF(A1>10,B1,2*B1)

is discontinuous around A1=10 because its value "jumps" from whatever value B1 has to twice that value. 
A nonlinear solver relies on information from partial derivatives to guide it towards a feasible and optimal 
solution; since it is unable to compute the partial derivatives of a function at points where that function is 
discontinuous, it cannot guarantee that any solution it finds is truly optimal. In practice, the nonlinear GRG
algorithm included with the standard Solver can sometimes deal with discontinuities which are "incidental"
to the problem, but as a general statement, the Solver cannot handle problems where the objective 
function or some of the constraints are discontinuous.

A partial list of the most common 1-2-3 functions which are discontinuous at certain points would include 
the ones listed below.

@ABS
@MIN
@MAX
@INT
@ROUND
@IF
@CHOOSE
@CEILING
@FLOOR
@COUNT

If you aren't sure about a particular function, try graphing it (by hand or in 1-2-3) over the expected range 
of the decision variables; this will usually reveal whether the function is smooth or discontinuous.



Linear and Nonlinear Programming
A model in which the objective function and all of the constraints (other than integer constraints) are linear
functions of the decision variables is called a linear programming (LP) problem.    If the objective function 
or any of the constraints is not a linear function of the decision variables, the model is called a nonlinear 
programming (NLP) problem.    (The term "programming" dates from the 1940s and the discipline of 
"planning and programming" where these solution methods were first used; it has nothing to do with 
computer programming.)    If the problem includes integer constraints, it is called an integer linear or 
integer nonlinear programming problem, respectively.    A linear programming problem with some "regular"
(continuous) decision variables, and some variables which are constrained to integer values, is called a 
mixed-integer programming (MIP) problem.

A quadratic programming (QP) problem can be thought of as a generalization of a linear programming 
problem, or as a restricted case of a nonlinear problem.    Its objective is a quadratic function of the 
decision variables, and all of its constraints must be linear functions of the variables.    A QP problem 
cannot be solved with a linear programming "engine" such as the Large-Scale LP Solver.    Since a QP 
problem is a special case of an NLP problem, it can be solved with the standard GRG nonlinear solver in 
1-2-3, but this may take far more time than solving an LP of the same size.    Frontline's Quadratic Solver 
includes special methods for efficiently solving QP problems.

Related Topics:
Linear Programming
Quadratic Programming
Nonlinear Programming



Linear Programming
Linear programming problems are intrinsically easier to solve than nonlinear problems.    In an NLP there 
may be more than one feasible region and the optimal solution might be found at any point within any 
such region.    In contrast, an LP has at most one feasible region with "flat faces" (i.e. no curves) on its 
outer surface, and the optimal solution will always be found at a "corner point" on the surface where the 
constraints intersect.    (In some problems there may be multiple optimal solutions, all of them lying along 
a line between corner points, with the same objective function value.)    This means that an LP Solver 
needs to consider many fewer points than an NLP Solver, and it is always possible to determine (subject 
to the limitations of finite precision computer arithmetic) that an LP problem (i) has no feasible solution, (ii)
has an unbounded objective, or (iii) has an optimal solution (either a single point or multiple equivalent 
points along a line).

Related Topics:
Problem Size and Numerical Stability
The Simplex Method



Problem Size and Numerical Stability
Because of their structural simplicity, the main limitations on the size of LP problems which can be solved 
are time, memory, and the possibility of numerical "instabilities" which are the cumulative result of the 
small errors intrinsic to finite precision computer arithmetic.    The larger the model, the more likely it is 
that numerical instabilities will be encountered in solving it.

Most large LP models are sparse in nature:    While they may include thousands of decision variables and 
constraints, the typical constraint will depend upon only a few of the variables.    This sparsity can be 
exploited to save memory and gain speed in solving the problem.



The Simplex Method
LP problems are generally solved via the Simplex method.    The standard Solver uses a straightforward 
implementation of the Simplex method to solve LP problems, when the Assume Linear Model box is 
checked in the Solver Options dialog.    The Premium and Quadratic Solvers use an improved 
implementation of the Simplex method, when the Simplex or LP/Quadratic Solver is chosen from the 
Solver "engine" dropdown list in the Solver Parameters dialog.    The memory required by this Simplex 
code increases with the number of variables times the number of constraints, regardless of the model's 
sparsity.

The Large-Scale LP Solver uses a far more sophisticated implementation of the Simplex method, which 
fully exploits sparsity in the LP model to save time and memory.    To cope with potential numerical 
instabilities, the Large-Scale LP Solver uses techniques such as automatic scaling, matrix factorization 
using the LU decomposition with the Bartels-Golub update, steepest-edge pivoting strategies, and 
dynamic Markowitz refactorization.    These same techniques often result in much faster solution times -- 
making it practical to solve LP problems with thousands of variables and constraints.



Quadratic Programming
Quadratic programming problems are more complex than LP problems, but simpler than general NLP 
problems.    Such problems have only one feasible region with "flat faces" on its surface, but the optimal 
solution may be found anywhere within the region or on its surface.    Frontline's Quadratic Solver uses 
the Simplex method to determine the feasible region, then uses special methods based on the properties 
of quadratics to find the optimal solution.

Large QP problems are subject to many of the same considerations as large LP problems:    When using 
a straightforward or "dense" representation as in Frontline's current Quadratic Solver, the amount of 
memory required increases with the number of variables times the number of constraints, regardless of 
the model's sparsity.    Numerical instabilities can arise in QP problems and may cause more difficulty than
in similar-size LP problems.    To deal with these issues, Frontline hopes to offer a large-scale sparse 
quadratic solver in the future.



Nonlinear Programming
As outlined above, nonlinear programming (NLP) problems are intrinsically more difficult to solve than LP 
and QP problems.    Because of the possibility of multiple feasible regions and multiple locally optimal 
points within such regions, there is no known way to determine with certainty that the problem is 
infeasible, the objective unbounded, or that an optimal solution is the "global optimum" across all feasible 
regions.    However, many common NLP problems have a simpler structure than this general description, 
and are more amenable to solution.

It is important to realize that an NLP Solver, like the one in 1-2-3, applies the same method to all 
problems, even those that are really LPs or QPs.    If you don't check the Assume Linear Model box in the 
Solver Options dialog, or (in the enhanced Solvers) select another solver from the dropdown list box in 
the Solver Parameters dialog, the default GRG Nonlinear Solver will be used.      This solver may have 
difficulty with LP or QP problems that could have been solved easily with one of the other solvers.

Related Topics:
The GRG Method



The GRG Method
In the standard Solver, NLP problems are solved with the GRG (Generalized Reduced Gradient) method 
as implemented in Lasdon and Waren's GRG2 code.    This method and specific implementation have 
been proven in use over many years as one of the most robust and reliable approaches to solving difficult
NLP problems.

The GRG method is subject to the intrinsic limitations cited above on its ability to find the globally optimal 
solution.    However, limited guarantees can be made about the GRG method's ability to find a "local 
optimum," in particular where the objective function and all of the constraints are twice continuously 
differentiable.      When these are combined with your knowledge of problem structure in a specific case,    
the result will often be a definitive "optimal solution."    For more information on this topic, please consult 
the references cited in the Using Frontline's Solvers.

As with the Simplex method, the GRG method in the standard Solver uses a "dense" problem 
representation, and its memory and solution time increases with the number of variables times the 
number of constraints.    It is also subject to problems of numerical instability, which may be even more 
severe than for LP and QP problems.    In the future, Frontline Systems plans to release a Large-Scale 
NLP Solver based on Lasdon and Waren's LSGRG code, which uses sparse storage methods and more 
sophisticated numerical techniques specific to nonlinear models.



Integer Programming
When a Solver model includes integer constraints, it is called an integer programming problem.    Solving 
such problems may require far more computing time than the same problem without the integer 
constraints.

The standard Solver, the Premium and Quadratic Solvers, and the Large-Scale LP Solver all use the 
Branch and Bound method to find optimal solutions to such problems.    However, refinements to this 
method in the enhanced Solver products will often result in considerably faster solutions than those 
obtained with the standard Solver.

Related Topics:
The Branch & Bound Method



The Branch & Bound Method
The Branch & Bound method begins by finding the optimal solution in the absence of the integer 
constraints.    If it happens that in this solution, the decision variables whose values are constrained to be 
integers already have integer values, then no further work is required.

If one or more integer variables have non-integral solutions, the Branch & Bound method chooses one 
such variable and "branches," creating two new subproblems where the value of that variable is more 
tightly constrained.    For example, if integer variable A1 has the value 3.45 at the solution, then one 
subproblem will have the additional constraint A1 <= 3 and the other subproblem will add the constraint 
A1 >= 4.    These subproblems are solved and the process is repeated, "branching" as needed on each of 
the integer decision variables, until a solution is found where all of the integer variables have integer 
values (to within a small tolerance).

Hence, the Branch & Bound method may solve many subproblems, each one a "regular" Solver problem. 
The number of subproblems may grow exponentially; the "bounding" part of the Branch & Bound method
is designed to eliminate sets of subproblems that do not need to be explored because the resulting 
solutions cannot be better than the solutions already obtained.    Obviously this may take a great deal of 
computing time.

Integer programming has many important applications.    Many of them involve the use of integer decision 
variables that are further constrained to have values of either 0 or 1; these are called binary or 0-1 integer
variables.    Such variables may be specified in one step with the "bin" dropdown choice in the 
Add/Change Constraint dialogs.    Binary integer variables can be used to represent yes/no decisions, 
such as whether a pipeline is open, or whether a facility is built at a certain location.    For a discussion of 
applications of integer programming, please consult the references cited in the Introduction.



From Algebra to Spreadsheets
Optimization problems are often described in algebraic terms.    In this topic, we'll show how you can 
translate from the algebraic statement of a problem to a spreadsheet model which the Solver can 
optimize.

A spreadsheet, however, can do much more than accept and compute values for algebraic expressions.    
It can help you organize and display the structure of the model you are trying to optimize, through tools 
such as defined names, formatting and outlining.    As models become larger, the problems of managing 
data for constraints, coefficients, and so on become more significant, and a properly organized 
spreadsheet model can help manage this complexity.

Related Topics:
Setting Up a Model



Setting Up a Model
To set up an optimization model as a 1-2-3 spreadsheet, you will follow these essential steps:

1. Reserve a cell to hold the value of each decision variable.

2. Pick a cell to represent the objective function, and enter a formula that calculates the objective 
function value in this cell.

3. Pick other cells and use them to enter the formulas that calculate the left hand sides of the 
constraints.

4. The constraint right hand sides can be entered as numbers in other cells, or entered directly in 
the Solver's Add Constraint dialog box.

Within this overall structure, you have a great deal of flexibility in how you lay out and format the cells 
which represent variables and constraints, and which formulas and built-in functions you use.    For 
example, the formulas needed for a linear programming problem can always be specified with the 
@SUMPRODUCT function.

Cells for decision variables, the objective function, and the left hand sides of constraints must be on the 
active worksheet.    Constraint right hand sides which are simple cells or cell ranges must also be on the 
active worksheet.    To use a cell on another worksheet, enter a formula referencing this cell on the right 
hand side of a constraint.



Decision Variables and Constraints
You have a great deal of flexibility in how you specify the decision variables and the constraints in the 
Solver dialogs.    In the previous section, we discussed the simplest forms.    In this section, we'll cover 
more general forms of specifying both variables and constraints.

Related Topics:
Variables and Multiple Selections
Using the Variables Button
Constraint Left and Right Hand Sides



Variables and Multiple Selections
The Solver Parameters dialog initially displays just one Changing Cells edit box to specify the decision 
variables in a model.    This edit box accepts cell ranges, which may be typed in as cell coordinates (or as 
range names equivalent to cell coordinates), or entered by clicking the Range Selector button and 
selecting the desired cells in the spreadsheet.    However, in many Solver models it is convenient to lay 
out the decision variable cells in several different ranges on the spreadsheet    An example is the 
"Maximizing Income" worksheet in the SOLVSAMP.123 workbook.



Using the Variables Button
If you click on the Variables button, the dialog box changes to show the variable selections in a list box, as
shown below.    The Variables button is now labeled Constraints, and clicking on it returns you to the 
original display.

You can now use the Add, Change and Delete buttons to add, modify or remove variable cells, just as you
would for constraints.    Each row in the Variable Cells list box can contain a multiple selection; however 
we recommend that you use a simple selection for clarity, since there is no limit on the number of rows in 
the list box.



Constraint Left and Right Hand Sides
In the simplest cases, constraint left hand sides are single cell references, and the right hand sides are 
constants entered in the Add Constraint dialog.    But the Solver permits more general forms for both the 
left and right hand sides of constraints.

The constraint left hand side, entered in the Cell Reference edit box, may be any cell range, such as a 
column, row, or rectangular area of cells.    The cells you reference must be on the active worksheet.    In 
the example shown earlier, we could have entered all five constraint left hand sides at once, as B1..B5 (as
long as we entered the five right hand sides at the same time).

The constraint right hand side may be any of the following:

1. A numeric constant such as 1.

2. A cell reference such as C1.

3. A cell range such as C1..C5.

4. An arbitrary formula such as +A:C1+1 or +A:C2/B:D2.

5. Either "integer" or "binary" for integer constraints 

Option 5 is for integer constraints only and is discussed below under "Using Integer Constraints."    When 
entering a formula (Option 4), be sure to include an explicit sheet reference such as A:C1.    This is the 
only context where you can refer to cells on sheets other than the active worksheet.    If you use option 3 
-- a selection of more than one cell -- the number of cells selected must match the number of cells you 
selected for the constraint left hand side.    The two selections need not have the same "shape:" For 
example, the left hand side could be a column and the right hand side a row.    You may also use 
rectangular areas of cells.    In any case, when you use this form you are specifying several constraints at 
once, and the constraint left hand sides correspond element-by-element to the right hand sides.    In the 
example shown earlier, you could have entered the right hand side values 400, 200, 800, 400 and 600 
into cells C1 to C5, and entered a single constraint such as B1..B5 <= C1..C5.    You can see examples of 
this form in nearly all of the sample worksheets included with the Solver, as well as throughout this 
Helpfile.    It is by far the most useful form.

If the constraint right hand side is a cell reference, cell selection or formula, the Solver needs to know 
whether the contents of those cells, or the value of the formula is constant in the problem, or variable (i.e. 
dependent on the values of the decision variables).    If the right hand side depends on any of the decision
variables, the Solver transforms a constraint such as "LHS    >= RHS"    into "LHS - RHS    >= 0" internally. 
Both the linear and nonlinear Solvers work internally with constant bounds on the constraint functions.

Related Topics:
Implicit Non-Negativity Constraints
Efficiency of Constraint Forms
Using Integer Constraints



Implicit Non-Negativity Constraints
Many Solver problems -- and perhaps most LP problems -- have "non-negativity" constraints, or lower 
bounds of zero on the decision variables.    To save you the trouble of entering these constraints explicitly 
in the Constraints list box, the Solver provides an Assume Non-Negative check box in the Solver Options 
dialog.    When this box is checked, all variables which do not have explicit lower bounds in the Constraint 
list box are automatically given lower bounds of zero.    You can enter constraints such as A1 >= 2 or A1 
>= -3 for certain variables, overriding the implicit lower bound, and check the Assume Non-Negative box 
to give all other variables a lower bound of zero.



Efficiency of Constraint Forms
The Solver recognizes the case where the constraint left hand side is a decision variable, or a set of 
decision variables.    As long as the corresponding right hand sides are constant (i.e. not dependent on 
any of the variables), these constraints are specially treated as bounds on the variables.    The most 
common instance of a bound on a variable is a non-negativity constraint such as A1 >= 0, but any sort of 
constant bounds are efficiently handled by both the linear and nonlinear Solvers.

There is no difference in terms of efficiency between a constraint entered (for example) as A1 <= 100 or 
as A1 <= B1 where B1 contains 100; the Solver recognizes that B1 is equivalent to a constant.    The form 
A1 <= B1 is usually better from the standpoint of maintainability of your optimization model.

On the other hand, a constraint right hand side which is a formula -- even a simple one like    2+2    -- will 
incrementally increase the solution time for the model.    Because the Solver doesn't have the facilities to 
recognize the right hand side "on the fly," it treats any formula as a RHS potentially dependent on the 
variables, and internally creates a constraint    "LHS - RHS    >= 0"    -- even if the formula really was a 
constant bound on a variable.    It is better to place whatever formula you need into a cell, and reference 
that cell as the constraint right hand side.



Using Integer Constraints
Integer constraints can only be applied to cells which are decision variables; hence the cells selected on 
the left hand side of the constraint must be a subset (or all) of the cells in the By Changing Cells edit box, 
or the Variable Cell list box.    Integer constraints specify that the selected variable cells must have 
solution values which are integers, such as -1, 0 or 2, to within a small tolerance.    Variable cells which 
have binary integer constraints must be either 0 or 1 at the optimal solution.

You specify an integer or binary constraint by selecting the "int" or "bin" choice from the Relation 
dropdown list in the Add/Change Constraint dialog.    The Solver displays such constraints in the 
Constraint list box in the form "A1..A10 = integer" or "A1..A10 = binary".    A binary integer constraint is 
exactly equivalent to three other constraints:    One of the form "A1..A10 = integer", another of the form 
"A1..A10 >= 0" and a third of the form "A1..A10 <= 1". 

Be sure that you select "int" or "bin" from the Relation dropdown list.    If you select = from the dropdown 
list and type the word "integer" or "binary" on the right hand side, the Solver will not recognize this as an 
integer constraint, and clicking on Solve will probably result in the error message "Solver encountered an 
error value in a target or constraint cell".



If You Aren't Getting the Solution You Expect
This topic is intended to help you diagnose problems with your Solver models.    The most important step 
you can take to deal with potential Solver problems is to start out with a clear idea of the type of 
optimization model you are creating, how it relates to well-known problem types, and whether yours is a 
linear, nonlinear or integer programming problem -- as discussed in previous topics.    If you then build 
your model in a well-structured, readable and efficient form -- as outlined elsewhere in this Helpfile -- 
diagnosing problems should be relatively easy.    But at times you may be "surprised" by the results you 
get from the Solver.

If the Solver stops with a solution (set of values for the decision variables or changing cells) which is 
different from what you expect, or what you believe is correct, follow the suggestions below. You can 
usually narrow down the problem to one of a few possibilities.

Check the Solver Completion Message shown in the Solver Results dialog. Users sometimes 
contact Frontline Systems about "wrong solutions", but they don't know which Solver Completion
Message they received. This is crucial to diagnosing the problem. 

Consider carefully the possibility that the solution found by the Solver is correct, and that your 
expectation is wrong. This may mean that what your model actually says is different from what 
you intended. 

Check the "Show Iteration Results" box in the Solver Options dialog and re-solve. The Solver will 
pause with the message "Solver paused, current solution values displayed on worksheet." Click 
Continue to see the path towards the solution taken by the Solver. 

Consider the possibilities for poorly scaled models, role of the Tolerance option for integer 
problems, limitations on nonlinear problems, and problems with discontinuous functions outlined
below. 



Solver Completion Messages
One of the Solver Completion messages described on the following pages will appear in the Solver 
Results dialog whenever the Solver stops running.

These messages are numbered with the result codes which can be returned when you invoke the Solver 
in a user-written program in LotusScript.    It's a good idea to test for these codes in your programs, as 
outlined in the topic "Programming the Solver."

Some of these messages have a slightly different interpretation depending on which Solver "engine" you 
are using -- the linear Simplex Solver, nonlinear GRG Solver, or the Branch & Bound method for problems
with integer constraints. See the explanations of each message, particularly the first one, "Solver found a 
solution."

Related Topics:
0.    Solver found a solution. All constraints and optimality conditions are satisfied.
1.    Solver has converged to the current solution. All constraints are satisfied.
2.    Solver cannot improve the current solution. All constraints are satisfied.
3.    Stop chosen when the maximum iteration limit was reached.
4.    The Set Target Cell values do not converge.
5.    Solver could not find a feasible solution.
6.    Solver stopped at user's request.
7.    The conditions for Assume Linear Model are not satisfied.
8.    The problem is too large for Solver to handle.
9.    Solver encountered an error value in a target or constraint cell.
10.    Stop chosen when the maximum time limit was reached.
11.    There is not enough memory available to solve the problem.
12.    Another 1-2-3 instance is using SOLVE123.DLL. Try again later.
13.    Error in model. Please verify that all cells and constraints are valid.
14.    Your free trial license to use the Solver has expired.



0.    Solver found a solution. All constraints and optimality conditions are 
satisfied.
This means that the Solver has found the optimal or "best" solution under the circumstances. The exact 
meaning depends on whether you are solving a linear, nonlinear, or integer programming problem:

If you are solving a linear programming problem with no integer constraints, the Simplex Solver has found
the globally optimal solution: There is no other solution satisfying the constraints which has a better value 
for the objective (Target Cell). It is possible that there are other solutions with the same objective value, 
but all such solutions are linear combinations of the current decision variable values.

If you are solving a nonlinear programming problem with no integer constraints, the GRG Solver has 
found a locally optimal solution: There is no other set of values for the decision variables close to the 
current values and satisfying the constraints which yields a better value for the objective (Target Cell). In 
general, there may be other sets of values for the variables, far away from the current values, which yield 
better values for the objective.

If you are solving a mixed-integer programming problem (any problem with integer constraints), the Solver
has found a solution which was within the range of the true integer optimal solution allowed by the 
Tolerance value in the Solver Options dialog (5% by default).    If the problem is linear or quadratic, the 
true integer optimal solution (within the Tolerance) has been found.    If the problem is nonlinear, the 
Branch & Bound process has found the best of the locally optimal solutions found for subproblems by the 
GRG method.



1.    Solver has converged to the current solution. All constraints are satisfied.
This message appears only when the GRG Solver is used. It means that the Solver stopped because the 
objective function value is changing very slowly for the last few iterations or trial solutions. More precisely,
the GRG Solver stops if the absolute value of the relative change in the objective function is less than the 
value of the Convergence box in the Solver Options dialog. A poorly scaled model is more likely to trigger 
this stopping condition, even if the Use Automatic Scaling box in the Solver Options dialog is checked. If 
you are sure that your model is well scaled, you should consider why it is that the objective function is 
changing so slowly. For more information, see the discussion of "GRG Solver Stopping Conditions" below.



2.    Solver cannot improve the current solution. All constraints are satisfied.
This message appears only when the GRG Solver is used, and occurs only rarely. It means that the 
model is degenerate and the Solver is probably cycling. One possibility worth checking is that some of 
your constraints are redundant, and should be removed. For more information, see the discussion of 
"GRG Solver Stopping Conditions" below.



3.    Stop chosen when the maximum iteration limit was reached.
This message appears when (i) the Solver has completed the maximum number of iterations, or trial 
solutions, allowed in the Iterations box in the Solver Options dialog and (ii) you clicked on the Stop button 
when the Solver displayed the Show Trial Solution dialog. You may increase the value in the Iterations 
box (to a maximum of 32767) or click on Continue instead of Stop in the Show Trial Solution dialog. But 
you should also consider whether re-scaling your model or adding constraints might reduce the total 
number of iterations required.



4.    The Set Target Cell values do not converge.
This message appears when the Solver is able to increase (if you are trying to Maximize) or decrease (for
Minimize) without limit the value calculated by the objective or Target Cell, while still satisfying the 
constraints. Remember that, if you've selected Minimize, the Target Cell may take on negative values 
without limit unless this is prevented by constraints on the Target Calls or other cells.

If the objective is a linear function of the decision variables, it can always be increased or decreased 
without limit (picture it as a straight line), so the Solver will seek the extreme value which still satisfies the 
constraints. If the objective is a nonlinear function of the variables, it may have a "natural" maximum or 
minimum (for example, +A1*A1 has a minimum at zero), or no such limit (for example, @LOG(A1) 
increases without limit).

If you receive this message, you may have forgotten a constraint, or failed to anticipate values for the 
variables that allow the objective to increase or decrease without limit. The final values for the adjustable 
cells, the constraint left hand sides and the objective should provide a strong clue about what happened.



5.    Solver could not find a feasible solution.
This message appears when the Solver could not find any combination of values for the decision 
variables which allows all of the constraints to be satisfied simultaneously. If you are using the linear 
Simplex Solver, and the model is well scaled, the Simplex method has determined for certain that there is 
no feasible solution. If you are using the nonlinear GRG Solver, the GRG method was unable to find a 
feasible solution, starting from the initial values of the variables; however it is possible that there is a 
feasible solution far away from these initial values, which the Solver might find if you run it with different 
initial values for the variables. In either case, you should first look for conflicting constraints, i.e. conditions
which cannot be satisfied simultaneously. Most often this is due to choosing the wrong relation (e.g. <= 
instead of >=) on an otherwise appropriate constraint.



6.    Solver stopped at user's request.
This message appears only if you press ESC to display the Show Trial Solution dialog, and then click on 
the Stop button. If you are writing a LotusScript program, the user of your program may do this, so be 
sure to test for this return code value (6) and take action appropriate for your application.



7.    The conditions for Assume Linear Model are not satisfied.
This message appears if you have selected the linear Simplex Solver "engine," but the Solver's numeric 
test to ensure that the objective and constraints were indeed linear functions of the decision variables was
not satisfied.    (The wording of this message may be slightly different in the enhanced Solver products, 
which don't use the Assume Linear Model check box.)    To understand exactly what is meant by a linear 
model, read the topic "Solver Basics."

If you receive this message, examine the formulas for the objective (Target Cell) and constraints for 
nonlinear or discontinuous functions or operators applied to the decision variables or adjustable cells.    
You can always write a linear function using only @SUM and @SUMPRODUCT.



8.    The problem is too large for Solver to handle.
This message appears when the Solver determines that there are too many decision variables or 
constraints in your model. In many cases you will first see a message such as "Too many adjustable cells"
or "Too many constraints" when you set up the model using the Solver Parameters dialog. This message 
appears after you click Solve and the Solver analyzes the model for cases not checked earlier.



9.    Solver encountered an error value in a target or constraint cell.
This message appears when the Solver recalculates your worksheet using a new set of values for the 
decision variables (adjustable or changing cells), and discovers an error value (such as ERR or NA) in the
cell calculating the objective (Target Cell) or one of the constraints. Inspecting the worksheet for error 
values like these will usually indicate the source of the problem. If you have entered formulas for the right 
hand sides of certain constraints, the error might have occurred in one of these formulas rather than in a 
cell on the worksheet. For this and other reasons, we recommend that you use only constants and cell 
references on the right hand sides of constraints.    If you use a formula, be sure to include explicit sheet 
letters on any cell references, such as 1+A:C1.

Look for names or cell references to rows or columns that you have deleted, or for unanticipated values of
the decision variables which lead to arguments outside the domains of your functions -- such as a 
negative value supplied to @SQRT. You can often add constraints to avoid such domain errors; if you 
have trouble with a constraint such as A1 >= 0, try a constraint such as A1 >= 0.00001 instead.



10.    Stop chosen when the maximum time limit was reached.
This message appears when (i) the Solver has run for the maximum time (number of seconds) allowed in 
the Max Time box in the Solver Options dialog and (ii) you clicked on the Stop button when the Solver 
displayed the Show Trial Solution dialog. You may increase the value in the Max Time box (to a maximum
of 32767 seconds) or click on Continue instead of Stop in the Show Trial Solution dialog. But you should 
also consider whether re-scaling your model or adding constraints might reduce the total solution time 
required.



11.    There is not enough memory available to solve the problem.
This message appears when the Solver could not allocate the memory it needs to solve the problem.    In 
addition to situations where the Solver problem itself requires too much memory, this message can 
appear if you have too many workbooks open in 1-2-3 or if you have too many open applications besides 
1-2-3.    Close these workbooks or applications and try again.



12.    Another 1-2-3 instance is using SOLVE123.DLL. Try again later.
This message should appear only if you are running multiple instances of 1-2-3, and you click on Solve 
while another 1-2-3 instance is also running the Solver. Wait for the other 1-2-3 instance to finish solving 
and then try again. If this message appears under any other circumstances (most likely due to previous 
problems with 1-2-3), you should restart Windows and then try again.



13.    Error in model. Please verify that all cells and constraints are valid.
This message means that the internal "model" (information about the adjustable cells, target cell, 
constraints, Solver options, etc.) which is created by the SOLVER.12A add-in and passed to 
SOLVE123.DLL is not in a valid form. You might receive this message if you are using the wrong version 
of either SOLVER.12A or SOLVE123.DLL, or if you have modified cells on the "hidden sheet" used by the 
Solver, either interactively or in a LotusScript or macro program.



14.    Your free trial license to use the Solver has expired.
You attempted to solve a problem (by clicking the Solve button, or calling the LotusScript function 
SolverSolve or the macro {solver-define}) more than 100 times with the free trial version of the Solver.    
The trial version is limited to 100 problem solution attempts.    You can upgrade your trial version to a 
permanent license (allowing an unlimited number of problem solution attempts) at any time:    Just click 
the Help button in any of the Solver dialogs, read the message displayed in the initial Help dialog, then 
click the Register button and follow the instructions to purchase a license.    The cost is $50 and you can 
use any of several credit cards.    If you have either a modem or an Internet connection, you can complete
the purchase instantly and automatically, with full security for your credit card and other information.    
Otherwise, you can call an 800 number 24 hours a day, 7 days a week and obtain an enablement code 
from the operator, or you can complete the purchase by fax or mail. 



Problems with Poorly Scaled Models
A poorly scaled model is one in which the typical values of the objective and constraint functions differ by 
several orders of magnitude. A classic example is a financial model with some dollar amounts in millions, 
and other rate of return figures in percent. Poorly scaled models often cause difficulty for both linear and 
nonlinear Solver algorithms; the effect is often more severe for the nonlinear GRG Solver.

The Solver must perform many calculations where quantities derived from the values of the objective and 
constraints must be divided into and subtracted from one another. Because of the finite precision of 
computer arithmetic, when these calculations are performed with values of very different magnitudes, 
roundoff error builds up to the point where the Solver can no longer reliably find the optimal solution.

When the Use Automatic Scaling box in the Solver Options dialog is checked, the Solver will attempt to 
scale the values of the objective and constraint functions internally in order to minimize the effects of a 
poorly scaled model. We recommend that you check the Use Automatic Scaling box for most of 
your Solver problems.



The Tolerance Option and Integer Constraints
When you solve a mixed-integer programming problem (any problem with integer constraints), the 
solution process is governed by the Tolerance option in the Solver Options dialog. Since the default 
setting of the Tolerance option is 0.05, the Solver stops when it has found a solution satisfying the integer 
constraints whose objective is within 5% of the true integer optimal solution. Therefore, you may know of 
or be able to discover an integer solution which is "better" than the one found by the Solver.

The reason that the default setting of the Tolerance option is 0.05 is that the solution process for integer 
problems -- which can take a great deal of time in any case -- often finds a near-optimal solution 
(sometimes the optimal solution) relatively quickly, and then spends far more time exhaustively checking 
other possibilities to find (or verify that it has found) the very best integer solution. The Tolerance option 
default setting is a compromise value that often saves a great deal of time, and still ensures that a 
solution returned by the Solver will be within 5% of the true integer optimal solution.

To ensure that the Solver finds the true integer optimal solution -- possibly at the expense of far more 
solution time -- set the Tolerance option to a value of zero.



Limitations on Nonlinear Problems
Nonlinear problems are intrinsically more difficult to solve than linear problems, and there are fewer 
guarantees about what the Solver (or any optimization method) can do. Whenever the "GRG Solver" 
choice appears in the Solver dropdown list in the Solver Parameters dialog, the GRG (Generalized 
Reduced Gradient) algorithm    is used to solve the problem -- even if it is actually a linear model that 
could be solved by the (faster and more reliable) Simplex method. The GRG method will usually find the 
optimal solution to a linear problem -- but occasionally you will receive a Solver Completion Message 
indicating some uncertainty about the status of the solution -- especially if the model is poorly scaled, as 
discussed above. So you should always ensure that you have selected the right Solver "engine" for your 
problem.

When dealing with a nonlinear problem, it is a good idea to run the Solver starting from several different 
sets of initial values for the decision variables. Since the Solver follows a path from the starting values 
(guided by the direction and curvature of the objective function and constraints) to the final solution 
values, it will normally stop at a peak or valley closest to the starting values you supply. By starting from 
more than one point -- ideally chosen based on your own knowledge of the problem -- you can increase 
the chances that you have found the best possible "optimal solution."

If your model has certain mathematical properties, such as convexity, it is possible to make stronger 
guarantees about the Solver's ability to find the true optimal solution. For more information on this topic 
consult the books recommended in the Introduction, particularly the titles by Wayne Winston.

Related Topics:
GRG Solver Stopping Conditions



GRG Solver Stopping Conditions
It is important to understand what the nonlinear GRG Solver can and cannot do, and what each of the 
possible Solver Completion Messages means for this Solver "engine." At best, the GRG Solver -- like 
virtually all nonlinear optimization algorithms -- can find a locally optimal solution to a reasonably well-
scaled model. At times, the Solver will stop before finding a locally optimal solution, when it is making very
slow progress (the objective function is changing very little from one trial solution to another) or for other 
reasons.

Related Topics:
Locally Versus Globally Optimal Solutions
When Solver has Converged to the Current Solution
When Solver Cannot Improve the Current Solution



Locally Versus Globally Optimal Solutions
When the first message ("Solver found a solution") appears, it means that the GRG Solver has found a 
locally optimal solution -- there is no other set of values for the decision variables close to the current 
values which yields a better value for the objective. Figuratively, this means that the Solver has found a 
"peak" (if maximizing) or "valley" (if minimizing) -- but there may be other taller peaks or deeper valleys far
away from the current solution. Mathematically, this message means that the Karush - Kuhn - Tucker 
(KKT) conditions for local optimality have been satisfied (to within a certain tolerance, related to the 
Precision setting in the Solver Options dialog).

Although there is ongoing research in globally optimal nonlinear programming methods which we are 
monitoring, the best that current nonlinear methods can guarantee is to find a locally optimal solution. We 
recommend that you run the GRG Solver starting from several different sets of initial values for the 
decision variables -- ideally chosen based on your own knowledge of the problem. In this way you can 
increase the chances that you have found the best possible "optimal solution."



When Solver has Converged to the Current Solution
When the GRG Solver's second stopping condition is satisfied (before the KKT conditions are satisfied), 
the second message ("Solver converged to the current solution") appears. This means that the objective 
function value is changing very slowly for the last few iterations or trial solutions. More precisely, the GRG
Solver stops if the absolute value of the relative change in the objective function is less than the value in 
the Convergence box in the Solver Options dialog for the last 5 iterations. While the default value of 1E-4 
(0.0001) is suitable for most problems, it may be too large for some models, causing the GRG Solver to 
stop prematurely when this test is satisfied, instead of continuing for more iterations until the KKT 
conditions are satisfied.

A poorly scaled model is more likely to trigger this stopping condition, even if the Use Automatic Scaling 
box in the Solver Options dialog is checked. So it pays to design your model to be reasonably well scaled 
in the first place: The typical values of the objective and constraints should not differ from each other, or 
from the decision variable values, by more than three or four orders of magnitude.

If you are getting this message when you are seeking a locally optimal solution, you can change the 
setting in the Convergence box to a smaller value such as 1E-5 or 1E-6; but you should also consider 
why it is that the objective function is changing so slowly. Perhaps you can add constraints or use 
different starting values for the variables, so that the Solver does not get "trapped" in a region of slow 
improvement.



When Solver Cannot Improve the Current Solution
The third stopping condition, which yields the message "Solver cannot improve the current solution," 
occurs only rarely. It means that the model is degenerate and the Solver is probably cycling. The issues 
involved are beyond the level of this User Guide, as well as most of the books recommended in the 
Introduction.    One possibility worth checking is that some of your constraints are redundant, and should 
be removed. If this suggestion doesn't help and you cannot reformulate the problem, you will probably 
need specialized consulting assistance.



Problems with Discontinuous Functions
A discontinuous function is one whose graph shows sudden "breaks" instead of a smooth (straight linear, 
or curved nonlinear) line. The most common example is the IF function. For example:

@IF(A1>10,B1,2*B1)

is discontinuous around A1=10 because its value "jumps" from whatever value B1 has to twice that value. 
A model with a discontinuous function does not meet the conditions required by either the linear or the 
nonlinear solver in 1-2-3 97 Edition.

A nonlinear solver relies on partial derivative information to guide it towards a feasible and optimal 
solution; since it is unable to compute the partial derivatives of a function at points where that function is 
discontinuous, it cannot guarantee that any solution it finds is truly optimal. In practice, the nonlinear GRG
algorithm included with the standard Solver can sometimes deal with discontinuities which are "incidental"
to the problem, but as a general statement, the Solver cannot handle problems where the objective 
function or some of the constraints are discontinuous.

If you try to solve a problem with discontinuous functions with the linear Simplex Solver, it is possible -- 
though very unlikely -- that the linearity test performed by the Solver will not detect the discontinuities and 
will proceed to try to solve the problem. (This probably means that the functions were linear over the 
range considered by the linearity test -- but there are no guarantees at all that the solution found is 
optimal!)

You can use discontinuous functions such as @IF and @CHOOSE in calculations on the worksheet 
which are not dependent on the decision variables, and are therefore constant in the optimization 
problem. But any discontinuous functions that do depend on the variables will likely cause problems for 
the Solver. Users sometimes fail to realize that certain functions, such as @ABS and @ROUND, are 
discontinuous at certain points. For more information on this subject, read the section "Functions to Avoid:
Discontinuous Functions" in the topic "Solver Basics."



Introduction
This topic describes the options available in the Solver Options dialog for the standard Solver.    Bear in 
mind that the options which control numerical tolerances and solution strategies are pre-set to the choices
which are applicable to the great majority of problems; you should only change these settings in 
exceptional circumstances.    The options you will use most often are common to all the Solver products, 
and control features like the display of iteration results or the upper limits on solution time or Solver 
iterations.



Max Time and Iterations
The Max Time and Iterations settings determine how much time, or computing effort, the Solver will 
expend on a problem before asking you whether you want to stop.    You may need to increase these 
settings from their default values, in order to solve larger problems.    Bear in mind that if the maximum 
time or maximum number of iterations is exceeded, the Solver stops and displays a dialog like the one 
below:    You will have the option to stop at that point or to continue the solution process.    If you click on 
the Continue button, the time and iteration limits are removed, and you will not be prompted again.

There is really no downside to specifying quite a large value for the Max Time or Iterations setting:    If you
ever get impatient, you can simply press the ESC key while the Solver is running.    If your model is large 
enough to take some time to recalculate even once, you should hold down the ESC key for a second or 
two.    After a momentary delay, the dialog box shown below will appear, and you will have the option to 
stop at that point or continue with the solution process.



Precision
The number entered here determines how closely the calculated values of the constraint left hand sides 
must match the right hand sides in order for the constraint to be satisfied.    Recall from Elements of 
Solver Models that a constraint is satisfied if the relation it represents is true within a small tolerance; the 
Precision value is that tolerance.    With the default setting of 1.0E-6 (0.000001), a calculated left hand 
side    of -1.0E-7 would satisfy a contraint such as A1 >= 0.

Related Topics:
Precision and Regular Constraints
Precision and Integer Constraints



Precision and Regular Constraints
Use caution in making this number much smaller, since the finite precision of computer arithmetic virtually
ensures that the values calculated by 1-2-3 and the Solver will differ from the expected or "true" values by
a small amount.    On the other hand, setting the Precision to a much larger value would cause constraints
to be satisfied too easily.    If your constraints are not being satisfied because the values you are 
calculating are in units such as millions of dollars, consider checking the Use Automatic Scaling box 
instead of altering the Precision setting.



Precision and Integer Constraints
Another use of Precision is determining whether an integer constraint, such as A1 = integer or A1 = 
binary, is satisfied.    If the difference between the decision variable's value and the closest integer value is
less than the Precision, the variable value is treated as an integer.



Integer Tolerance
This number affects only the solution process for integer programming problems; it has no impact on 
"regular" optimization problems.    When you solve an integer programming problem, it often happens that 
the Branch & Bound method will find a good solution fairly quickly, but will require a great deal of 
computation time to find (or verify that it has found) the optimal integer solution.    The Integer Tolerance 
setting may be used to tell the Solver to stop if the best solution it has found so far is "close enough."

The Branch & Bound process starts by finding the optimal solution without considering the integer 
constraints (this is called the relaxation of the integer programming problem). The objective value of the 
relaxation forms the initial "best bound" on the objective of the optimal integer solution, which can be no 
better than this. During the optimization process, the Branch & Bound method finds "candidate" integer 
solutions, and it keeps the best solution so far as the "incumbent." By eliminating alternatives as its 
proceeds, the B&B method also tightens the "best bound" on how good the integer solution can be.

Each time the Solver finds a new "incumbent" -- an improved all-integer solution -- it computes the 
maximum percentage difference between the objective of this solution and the current "best bound" on 
the objective:

Objective of incumbent - Objective of best bound
------------------------------------------------
            Objective of best bound

If the absolute value of this maximum percentage difference is equal to or less than the Integer Tolerance,
the Solver will stop and report the current integer solution as the optimal result. If you set the Integer 
Tolerance to zero, the Solver will continue searching until all alternatives have been explored and the 
optimal integer solution has been found. This may take a great deal of computing time.



Assume Linear Model
In the standard Solver, the Assume Linear Model check box controls the choice of the linear Simplex 
Solver or the nonlinear GRG Solver:    When it is checked, the Simplex Solver is used; otherwise the GRG
Solver is used.    The box is labeled "Assume Linear Model" because the Solver initially assumes that your
model is made up entirely of linear functions for the objective and constraints.    It solves the problem 
using the Simplex Solver, and then checks the solution by comparing the values for the objective and 
constraints calculated from the Simplex method with the values for these cells obtained when the solution 
values are placed in the decision variable cells and the spreadsheet is recalculated.    If these values do 
not agree to within a close tolerance, the Solver displays the Completion Message shown below in the 
Solver Results dialog:



Show Iteration Results
When this box is checked, a dialog like the one below will appear on every iteration during the solution 
process:

This is the same dialog which appears when you press ESC at any time during the solution process, but 
when the Show Iteration Results box is checked it appears automatically on every iteration.    When this 
dialog appears, the best values so far for the decision variables appear on the spreadsheet, which is 
recalculated to show the values of the objective function and the constraints.    You may click on the 
Continue button to go on with the solution process, or on the Stop button to stop immediately.



Use Automatic Scaling
When this box is checked, the Solver will attempt to scale the values of the objective and constraint 
functions internally in order to minimize the effects of a poorly scaled model.    A poorly scaled model is 
one in which the typical values of the objective and constraint functions differ by several orders of 
magnitude.    A classic example is a financial model with some dollar amounts in millions, and other rate of
return figures in percent.    Poorly scaled models may cause difficulty in the solution process, again due to 
the effects of finite precision computer arithmetic.

Poorly scaled models are one of the most common causes of problems in which the Solver appears to 
stop prematurely without reaching the true optimal solution; it is a good idea to keep this box checked for 
all of your Solver models.

If your model is nonlinear and you do check the Use Automatic Scaling box, make sure that the initial 
values for the decision variables are "reasonable," i.e. of roughly the same magnitudes that you expect for
those variables at the optimal solution.    The effectiveness of the Automatic Scaling option depends on 
how well these starting values reflect the values encountered during the solution process.



Assume Non-Negative
When this box is checked, any decision variables without explicit lower bounds (>= constraints) in the 
Constraints list box of the Solver Parameters dialog will be given a lower bound of zero when the problem
is solved.    This option has no effect for decision variables which do have explicit >= constraints, even if 
those constraints allow the variables to assume negative values.    For example, a constraint A1 >= -3 
specifies that A1 can assume values from -3 to 0, even if the Assume Non-Negative box is checked.



GRG Solver Options
These options affect only the nonlinear GRG Solver; they are not used by the linear Simplex Solver.    The
default choices are suitable for the vast majority of problems; although it generally won't hurt to change 
these options, you should first consider other alternatives such as improved scaling before attempting to 
fine-tune these options.    In some scientific and engineering applications, alternative choices may improve
the solution process.

Related Topics:
Convergence
Other Nonlinear Options
Estimates
Derivatives
Search



Convergence
As discussed under "GRG Solver Stopping Conditions" GRG Solver Stopping Conditions, the GRG 
Solver will stop and display the message "Solver converged to the current solution" when the objective 
function value is changing very slowly for the last few iterations or trial solutions. More precisely, the GRG
Solver stops if the absolute value of the relative change in the objective function is less than the value in 
the Convergence edit box for the last 5 iterations. While the default value of 1E-4 (0.0001) is suitable for 
most problems, it may be too large for some models, causing the GRG Solver to stop prematurely when 
this test is satisfied, instead of continuing for more iterations until the optimality conditions are satisfied.

If you are getting this message when you are seeking a locally optimal solution, you can change the 
setting in the Convergence box to a smaller value such as 1E-5 or 1E-6; but you should also consider 
why it is that the objective function is changing so slowly. Perhaps you can add constraints or use 
different starting values for the variables, so that the Solver does not get "trapped" in a region of slow 
improvement.



Other Nonlinear Options
The following general background may assist you in understanding how the Estimates, Derivatives and 
Search options are used.    For more information, consult the academic papers on the GRG method listed 
under "Further Reading."

On each major iteration, the GRG Solver must compute values for the first partial derivatives of the 
objective and constraints. The Derivatives option is concerned with how these partial derivatives are 
computed.

The GRG (Generalized Reduced Gradient) solution process proceeds by first "reducing" the problem to 
an unconstrained optimization problem, by solving a set of nonlinear equations for certain variables (the 
"basic" variables) in terms of others (the "nonbasic" variables). Then a search direction (a vector in N-
space, where N is the number of nonbasic variables) is chosen along which an improvement in the 
objective function will be sought. The Search option is concerned with how this search direction is 
determined.

Once a search direction is chosen, a one-dimensional "line search" is carried out along that direction, 
varying a step size in an effort to improve the reduced objective. The initial estimates for values of the 
variables which are being varied has a significant impact on the effectiveness of the search. The 
Estimates option is concerned with how these estimates are obtained.



Estimates
This option determines the approach used to obtain initial estimates of the basic variable values at the 
outset of each one-dimensional search.    The Tangent choice uses linear extrapolation from the line 
tangent to the reduced objective function.    The Quadratic choice extrapolates the minimum (or 
maximum) of a quadratic fitted to the function at its current point.    If the current reduced objective is well 
modeled by a quadratic, then the Quadratic option can save time by choosing a better initial point, which 
requires fewer subsequent steps in each line search.    If you have no special information about the 
behavior of this function, the Tangent choice is "slower but surer."    Note:    the Quadratic choice here has 
no bearing on quadratic programming problems.



Derivatives
The first partial derivatives of the problem functions are computed through "finite differencing," which 
involves perturbing the current values of the decision variables, observing how the problem functions 
change, and performing a "rise over run" calculation.    With Forward differencing (the default choice), the 
point from the previous iteration (where the problem function values are already known) is used in 
conjunction with the current point.    This reduces the recalculation time required for finite differencing, 
which can account for up to half of the total solution time.    Central differencing relies only on the current 
point and perturbs the decision variables in opposite directions from that point.    Although this involves 
more recalculation time, it may result in a better choice of search direction when the derivatives are 
rapidly changing, and hence fewer total iterations.



Search
It would be far too expensive to determine a search direction using the pure form of Newton's method, by 
computing the Hessian matrix of second partial derivatives of the problem functions.    (This would roughly
square the number of spreadsheet recalculations required to solve the problem.)    Instead, an direction is 
chosen through an estimation method.    The default choice Newton uses a quasi-Newton (or BFGS) 
method, which maintains an approximation to the Hessian matrix; this requires more storage (an amount 
proportional to the square of the number of currently binding constraints) but performs very well in 
practice.    The alternative choice Conjugate uses a conjugate gradient method, which does not require 
storage for the Hessian matrix and still performs well in most cases.    The choice you make here is not 
crucial, since the GRG solver is capable of switching automatically between the quasi-Newton and 
conjugate gradient methods depending on the available storage.



Introduction
This topic will help you use the information in the Solver Reports, which can be produced whenever the 
Solver finds a solution. We'll explain how to interpret the values in the Answer, Sensitivity and Limits 
reports, using as an example the Product Mix problem, which appears as sheet tab B in the workbook 
SOLVSAMP.123.

All three types of reports can be useful, but we recommend that you focus on the Sensitivity Report. 
When properly interpreted, this report will tell you a great deal about your model and its optimal solution, 
that you could not easily determine by simply inspecting the final solution values on the worksheet. Using 
the Sensitivity report, you can determine what would happen if you changed your model in various ways 
and re-ran the Solver, without your having to actually carry out these steps.

All of the reports are 1-2-3 worksheets, with grid lines turned off.    You can turn the grid lines back on, if 
you wish, through the Sheet Properties... menu option (using the View tab in the dialog box).    Because 
the reports are worksheets, you can copy and edit the report information, perform calculations on the 
numbers in the reports, or create graphs directly from the report data.    This makes the 1-2-3 97 Solver's 
reports considerably more useful than those produced by standalone optimization software packages. 



Selecting the Reports
When the Solver finds the solution to an optimization problem, or when the solution process is terminated 
prematurely due to some error condition (or your own intervention), the Solver Results dialog is displayed,
as shown below.

If the solution process was terminated prematurely, the Reports list box in the dialog above will be greyed,
and you will not be able to select any reports; you will need to re-solve and obtain an optimal solution in 
order to produce the reports.

When the Reports list box is available, you can select one, two, or all three reports.    Simply click on the 
report names to select the reports you want, or press Alt-R and then down-arrow from the keyboard.    In 
this setting, you don't need to hold down the SHIFT or CTRL key while you click on the report names with 
the mouse.

Once the reports are selected, you can choose one of the options "Keep Solver Solution" or "Restore 
Original Values."    When you click on OK, the reports will be generated.    Clicking on Cancel instead will 
cancel generation of the reports.    The reports are 1-2-3 worksheets which are inserted in the current 
workbook, just after the sheet containing the Solver model.



An Example Model
To illustrate the Solver Reports, we will solve the Product Mix problem on sheet tab B of SOLVSAMP.123. 
This model has three decision variables at D9..F9 and five constraints of the form C11..C15 <= B11..B15, 
plus non-negativity constraints on the variables.

In brief, the Answer Report summarizes the original and final values of the decision variables and 
constraints, with information about which constraints are "binding" at the solution.    The Sensitivity Report 
provides information about how the solution would change for small changes in the constraints or the 
objective function.    And the Limits Report shows you the largest and smallest value each decision 
variable can assume and still satisfy the constraints, while all other variables are held fixed at their 
solution values.



The Answer Report
The Answer Report provides basic information about the decision variables and the constraints, with their 
original and final values.    It also gives you a quick way to determine which constraints are "binding" or 
satisfied with equality at the solution, and which constraints have slack.    An example Answer Report for 
the Product Mix problem is shown below.

First shown are the objective function (target cell) and decision variables (adjustable cells), with their 
original value and final values. Next are the constraints, with their final cell values; a formula representing 
the constraint; a "status" column showing whether the constraint was binding or non-binding at the 
solution; and the slack value -- the difference between the final value and the lower or upper bound 
imposed by that constraint.    A binding constraint, which is satisfied with equality, will always have a slack 
of zero.

Note: When creating a report, the Solver constructs the entries in the Name column by searching for the 
first text cell to the left and the first text cell above each adjustable (changing) cell and each constraint 
cell. If you lay out your Solver model in tabular form, with text labels in the leftmost column and topmost 
row, these entries will be most the most useful -- as in the example above. Also note that the formatting 
for the Original Value, Final Value and Cell Value is "inherited" from the formatting of the corresponding 
cell in the Solver model.





The Limits Report
The Limits Report was designed to provide a different kind of "sensitivity analysis" information.    It is 
created by re-running the optimization model with each decision variable (or changing cell) in turn as the 
objective (both maximizing and minimizing), and all other variables held fixed.    Hence, it shows a "lower 
limit" for each variable, which is the smallest value that a variable can take while satisfying the constraints
and holding all of the other variables constant, and an "upper limit," which is the largest value the variable 
can take under these circumstances.    An example of the Limits Report for the Product Mix problem is 
shown below.



The Sensitivity Report
The Sensitivity Report provides classical sensitivity analysis information for both linear and nonlinear 
programming problems, including dual values (in both cases) and range information (for linear problems 
only).    The dual values for (nonbasic) variables are called Reduced Costs in the case of linear 
programming problems, and Reduced Gradients for nonlinear problems.    The dual values for (binding) 
constraints are called Shadow Prices for linear programming problems, and Lagrange Multipliers for 
nonlinear problems.

Constraints which are simple upper and lower bounds on the variables, that you enter in the Constraints 
list box of the Solver Parameters dialog, are handled specially (for efficiency reasons) by both the linear 
and nonlinear Solver algorithms, and will not appear in the Constraints section of the Sensitivity report.    
When an upper or lower bound on a variable is binding at the solution, a nonzero Reduced Cost or 
Reduced Gradient for that variable will appear in the "Adjustable Cells" section of the report; this is 
normally the same as a Lagrange Multiplier or Shadow Price for the upper or lower bound.

Note: The formatting of cells in the Sensitivity Report is "inherited" from the corresponding cells in the 
Solver model. This can make a significant difference in how the Reduced Gradient, Lagrange Multiplier, 
Reduced Cost and Shadow Prices are displayed.    In the example Sensitivity Reports to follow, the 
various cells in the Product Mix model were formatted to display as integers (0 decimal places), so the 
entries in the report are formatted the same way. If you select the cell displayed as      -2 below (the 
Reduced Gradient for Speakers), you'll see that the actual value is -2.4999... which has been rounded 
down to -2. Bear this in mind when designing your model and when reading the report. Since the report is 
a worksheet, you can always change the cell formatting.

Related Topics:
Interpreting Dual Values
Interpreting Range Information



Interpreting Dual Values
Dual values are the most basic form of sensitivity analysis information.    The dual value for a variable is 
nonzero only when the variable's value is equal to its upper or lower bound (usually zero) at the optimal 
solution.    This is called a nonbasic variable, and its value was driven to the bound during the optimization
process.    Moving the variable's value away from the bound will worsen the objective function's value; 
conversely, "loosening" the bound will improve the objective.    The dual value measures the increase in 
the objective function's value per unit increase in the variable's value.    In the example Sensitivity Report 
below, the dual value for producing speakers is -2.499, meaning that if we were to build one speaker (and
therefore less of something else), our total profit would decrease by $2.50.

The dual value for a constraint is nonzero only when the constraint is equal to its bound.    This is called a 
binding constraint, and its value was driven to the bound during the optimization process.    Moving the 
constraint left hand side's value away from the bound will worsen the objective function's value; 
conversely, "loosening" the bound will improve the objective.    The dual value measures the increase in 
the objective function's value per unit increase in the constraint's bound.    In the example Sensitivity 
Report below, increasing the number of electronics units from 600 to 601 will allow the Solver to increase 
total profit by $25.

An example of a Sensitivity Report generated for the Product Mix problem when the Solver "engine" is the
nonlinear GRG solver is shown below.    Note that it includes only the solution values and the dual values: 
Reduced Gradients for variables and Lagrange Multipliers for constraints.    If you solve a quadratic 
programming problem with the LP/Quadratic "engine" in either the Quadratic or Large-Scale LP Solvers, 
the report will also appear in this format.



If you are not accustomed to analyzing sensitivity information for nonlinear problems, you should bear in 
mind that the dual values are valid only at the single point of the optimal solution -- if there is any 
curvature involved, the dual values begin to change (along with the constraint gradients) as soon as you 
move away from the optimal solution.    In the case of linear problems, the dual values remain constant 
over the range of Allowable Increases and Decreases in the variables' objective coefficients and the 
constraints' right hand sides, respectively.



Interpreting Range Information
In linear programming problems, unlike nonlinear problems, the dual values are constant over a range of 
possible changes in the objective function coefficients and the constraint right hand sides.    The 
Sensitivity Report for linear programming models includes this range information.

A Sensitivity Report for the Product Mix problem when the Solver "engine" is the standard Simplex or the 
Large-Scale LP Solver is shown below.    In addition to the dual values (Reduced Costs for variables, 
Shadow Prices for constraints), this report provides information about the range over which these values 
will remain valid.

For each decision variable, the report shows its coefficient in the objective function, and the amount by 
which this coefficient could be increased or decreased without changing the dual value.    In the example 
below, we'd still build 200 TV sets even if the profitability of TV sets decreased up to $5 per unit.    Beyond
that point, or if the unit profit of speakers increased by more than $2.50 -- rounded below for display 
purposes to $3 -- we'd start building speakers.

For each constraint, the report shows the constraint right hand side, and the amount by which the RHS 
could be increased or decreased without changing the dual value.    In this example, we could use up to 
50 more electronics units, which we'd use to build more TV sets instead of stereos, increasing our profits 
by $25 per unit.    Beyond 650 units, we would switch to building speakers at an incremental profit of $20 
per unit (a new dual value).    A value of 1.00E+30 in these reports represents "infinity:" in the example 
below, we wouldn't build any speakers regardless of how much the profit per speaker were decreased.





Controlling the Solver's Operation
You can control every aspect of the Solver's operation programmatically. You can display or completely 
hide the Solver dialog boxes, create or modify the choices of objective (target cell), variables (changing 
cells) and constraints, check whether an optimal solution was found and produce reports. You do this by 
calling a set of Solver-specific functions from a program you write in LotusScript for 1-2-3 97 Edition.

Controlling the Solver can be as simple as adding one line to your LotusScript code!    Each worksheet in 
a workbook may have a Solver problem defined, which is saved automatically with the workbook. You can
create this Solver model interactively if you wish. If you distribute such a workbook, with a worksheet 
containing a Solver model and a LotusScript program, all you need to do in your code is activate the 
worksheet and call the function SolverSolve.

Note:    In order to use any of the Solver-specific functions, you must include a LotusScript Use statement
referencing the Solver add-in in your Global Declarations section.    For example:

Use "c:\lotus\123\solver\solver.12a"



LotusScript Function Reference
SolverAdd (Form 1)
SolverAdd (Form 2)
SolverChange (Form 1)
SolverChange (Form 2)
SolverDelete (Form 1)
SolverDelete (Form 2)
SolverFinish
SolverFinishDialog
SolverGet
SolverLoad
SolverOk
SolverOkDialog
SolverOptions
SolverReset
SolverSave
SolverSolve



SolverAdd (Form 1) 
Equivalent to choosing Range Analyze Solver... and pressing the Add button in the Solver Parameters 
dialog box. Adds a constraint to the current problem.

Syntax 

SolverAdd(CellRef, Relation, FormulaText) 

CellRef is a reference to a cell or a range of cells on the active worksheet and forms the left hand side of 
the constraint.

Relation specifies the arithmetic relationship between the left and right sides, or whether CellRef must 
have an integer value at the solution.

Relation Relationship                  
1 <= 
2 = 
3 >= 
4 Int (CellRef is an integer variable)
5 Bin (CellRef is a binary integer variable)

FormulaText is the right hand side of the constraint and will often be a single number, but it may be a 
formula or a reference to a range of cells.    If it is a formula, any cell references should have explicit sheet
letters, such as "1+A:C1".

If Relation is 4 or 5, FormulaText is ignored, and CellRef must be a subset of the By Changing Cells.

If FormulaText is a reference to a range of cells, the number of cells in the range must match the number
of cells in CellRef, although the shape of the areas need not be the same. For example, CellRef could be
a row and FormulaText could refer to a column, as long as the number of cells is the same.

Remarks 

The SolverAdd, SolverChange and SolverDelete functions correspond to the Add, Change, and Delete 
buttons in the Solver Parameters dialog box. You use these functions to define constraints. For many 
macro applications, however, you may find it more convenient to load the problem in a single step using 
the SolverLoad function.

Each constraint is uniquely identified by the combination of the cell reference on the left and the 
relationship (<=, =, >=, int or bin) between its left and right sides. This takes the place of selecting the 
appropriate constraint in the Solver Parameters dialog box. You can manipulate constraints with 
SolverChange and SolverDelete.



SolverAdd (Form 2)
Equivalent to choosing Range Analyze Solver..., pressing the Variables button, and then pressing the 
Add button in the Solver Parameters dialog box. Adds a set of decision variable cells to the current 
problem.

Syntax 

SolverAdd(CellRef, 0, 0) 

CellRef is a reference to a cell or a range of cells on the active worksheet and forms a set of decision 
variables.

Remarks 

The SolverAdd, SolverChange and SolverDelete functions correspond to the Add, Change, and Delete 
buttons in the Solver Parameters dialog box. In this form, you can use these functions to add or change 
sets of decision variables. For many macro applications, however, you may find it more convenient to load
the problem in a single step using the SolverLoad function.

Note that SolverOk defines the first entry in the By Changing Variable Cells list box. Use SolverAdd to 
define additional entries in the Variables Cells list box. Do not call SolverOk with a different ByChange 
argument after you have defined more than one set of variable cells.



SolverChange (Form 1) 
Equivalent to choosing Range Analyze Solver... and pressing the Change button in the Solver 
Parameters dialog box. Changes the right hand side of an existing constraint.

Syntax 

SolverChange(CellRef, Relation, FormulaText) 

For an explanation of the arguments and constraints, see SolverAdd.

Remarks 

If the combination of CellRef and Relation does not match any existing constraint, the function returns 
the value 4 and no action is taken.

To change the CellRef or Relation of an existing constraint, use SolverDelete to delete the old constraint 
and then use SolverAdd to add the constraint in the form you want.



SolverChange (Form 2)
Equivalent to choosing Range Analyze Solver..., pressing the Variables button, and then pressing the 
Change button in the Solver Parameters dialog box. Changes a set of decision variable cells.

Syntax 

SolverChange(CellRef, Relation, 0) 

CellRef is a reference to a cell or a range of cells on the active worksheet, currently defined in the By 
Changing Variable Cells list box as variable cells.

Relation is a reference to a different cell or range of cells on the active worksheet, which will replace 
CellRef as a new set of variable cells.

Remarks 

If CellRef does not match any existing set of variable cells, the function returns the value 1 and no action 
is taken.



SolverDelete (Form 1) 
Equivalent to choosing Range Analyze Solver... and pressing the Delete button in the Solver Parameters
dialog box. Deletes an existing constraint.

Syntax 

SolverDelete(CellRef, Relation, FormulaText) 

For an explanation of the arguments and constraints, see SolverAdd.

Remarks 

If the combination of CellRef and Relation does not match any existing constraint, the function returns 
the value 4 and no action is taken. If the constraint is found, it is deleted, and the function returns the 
value 0.



SolverDelete (Form 2)
Equivalent to choosing Range Analyze Solver..., pressing the Variables button, and then pressing the 
Delete button in the Solver Parameters dialog box. Deletes an existing set of variable cells.

Syntax 

SolverDelete(CellRef, 0, 0) 

CellRef is a reference to a cell or a range of cells on the active worksheet, currently defined in the By 
Changing Variable Cells list box as variable cells.

Remarks 

If CellRef does not match any existing set of variable cells, the function returns the value 1 and no action 
is taken. If the variable cells are found, they are deleted, and the function returns the value 0.



SolverFinish 
Equivalent to making selections and clicking OK in the Solver Results dialog box that appears when the 
solution process is finished. The dialog box will not be displayed.

Syntax 

SolverFinish(KeepFinal, ReportArray) 

KeepFinal is the number 1 or 2 and specifies whether to keep or discard the final solution. If KeepFinal is
1 or omitted, the final solution values are kept in the changing cells. If KeepFinal is 2, the final solution 
values are discarded and the former values of the changing cells are restored.

ReportArray is an array argument specifying what reports to create when Solver is finished.

If ReportArray is 1-2-3 creates
1 An Answer Report
2 A Sensitivity Report
3 A Limits Report

A combination of these values produces multiple reports. For example, if ReportArray(1) = 1 and 
ReportArray(2) = 3, 1-2-3 creates an Answer Report and a Limits Report.



SolverFinishDialog 
Equivalent to making selections in the Solver Results dialog box that appears when the solution process 
is finished. The dialog box will be displayed, and the user will be able to change the options you initially 
specify.

Syntax 

SolverFinishDialog(KeepFinal, ReportArray) 

For an explanation of the arguments, see SolverFinish. 



SolverGet 
Returns information about the current Solver problem. The settings are specified in the Solver Parameters
and Solver Options dialog boxes, or with the other Solver functions described in this section.

Syntax 

SolverGet(TypeNum, SheetName) 

TypeNum is a number specifying the type of information you want. The following settings are specified in 
the Solver Parameters dialog box.

TypeNum   Returns

1         The reference in the Set Cell box, or 0 if
          Solver has not been used on the active document

2         A number corresponding to the Equal To option
          1 = Max
          2 = Min
          3 = Value Of

3         The value in the Value Of box

4         The reference in the By Changing Cells box (only
          the first entry in the Variables list box)

5         The number of entries in the Constraints list box

6         An array of the left sides of the constraints as text

7         An array of numbers corresponding to the relationships
          between the left and right sides of the constraints:
          1  =  <=
          2  =  =
          3  =  >=
          4  =  int
          5  =  bin

8         An array of the right sides of the constraints as text
The following settings are specified in the Solver Options dialog box:

TypeNum   Returns

9         The Max Time value (as a number in seconds)

10        The Iterations value (max number of iterations)

11        The Precision value (as a decimal number)



12        The integer Tolerance value (as a decimal number)

13        1 if the Assume Linear Model check box is selected;
          0 otherwise.

14        1 if Show Iteration Result check box is selected;
          0 otherwise

15        1 if Use Automatic Scaling check box is selected;
          0 otherwise

16        A number corresponding to the type of Estimates:
          1  =  Tangent
          2  =  Quadratic

17        A number corresponding to the type of Derivatives:
          1  =  Forward
          2  =  Central

18        A number corresponding to the type of Search:
          1  =  Newton
          2  =  Conjugate

19        The Convergence value (as a decimal number) in the nonlinear
          GRG Solver

20        1 if the Assume Non-Negative check box is selected;
          0 otherwise

21        An array of the entries in the Variables list box as text

SheetName is the name of a worksheet that contains the Solver problem for which you want information. 
If SheetName is omitted, it is assumed to be the active sheet.



SolverLoad 
Equivalent to choosing Range Analyze Solver..., choosing the Options button from the Solver 
Parameters dialog box, and choosing the Load Model button in the Solver Options dialog box. Loads 
Solver problem specifications that you have previously saved on the worksheet.

Syntax 

SolverLoad(LoadArea) 

LoadArea is a reference on the active worksheet to a range of cells from which you want to load a 
complete problem specification.

The first cell in LoadArea contains a formula for the Set Cell Box; the second cell contains a formula for 
the changing cells; subsequent cells contain constraints in the form of logical formulas. The last cell 
optionally contains an array of Solver option values (see SolverOptions).

Although LoadArea must be on the active worksheet, it need not be the current selection.



SolverOk
Equivalent to choosing Range Analyze Solver... and making entries and selections in the Solver 
Parameters dialog box. Specifies basic Solver options. The dialog box will not be displayed.

Syntax 

SolverOk(SetCell, MaxMinVal, Valueof, ByChange) 

SetCell corresponds to the Set Cell box in the Solver Parameters dialog box (the objective function in the 
optimization problem). SetCell must be a reference to a cell on the active worksheet. If you enter a cell, 
you must enter a value for MaxMinVal. If you do not enter a cell, you must include three zeroes (0, 0, 0) 
before the ByChanging value.

MaxMinVal corresponds to the options Max, Min and Value Of in the Solver Parameters dialog box. Use 
this option only if you entered a reference for SetCell.

MaxMinVal Option specified
1 Maximize
2 Minimize
3 Value Of

ValueOf is the number that becomes the target for the cell in the Set Cell box if MaxMinVal is 3. ValueOf 
is ignored if the cell is being maximized or minimized.

ByChanging indicates the changing cells (decision variables), as entered in the By Changing Cells box. 
ByChanging must be a cell reference (usually a cell range or multiple reference) on the active worksheet.
You can add more changing cell references using Form 2 of the SolverAdd function.



SolverOkDialog 
Equivalent to choosing Range Analyze Solver... and making entries and selections in the Solver 
Parameters dialog box. The Solver Parameters dialog box will be displayed, and the user will be able to 
change the options you initially specify.

Syntax 

SolverOkDialog(SetCell, MaxMinVal, Valueof, ByChange) 

For an explanation of the arguments, see SolverOK. 



SolverOptions 
Equivalent to choosing Range Analyze Solver... and then choosing the Options button in the Solver 
Parameters dialog box. Specifies the Solver algorithmic options.

Syntax 

SolverOptions(MaxTime, Iterations, Precision, AssumeLinear, StepThru, Estimates, Derivatives, 
SearchOption, IntTolerance, Scaling, Convergence, AssumeNonneg) 

The arguments correspond to the options in the Solver Options dialog box. If any of the arguments are of 
the wrong type, LotusScript will report an error. If all arguments are of the correct type, but an argument 
has an invalid value, the function returns a positive integer corresponding to its position. A zero indicates 
that all options were accepted.

MaxTime must be an integer greater than zero. It corresponds to the Max Time edit box.

Iterations must be an integer greater than zero. It corresponds to the Iterations edit box.

Precision must be a number between zero and one, but not equal to zero or one. It corresponds to the 
Precision edit box.

AssumeLinear is a value 1 or 0 corresponding to the Assume Linear Model check box.

StepThru is a value 1 or 0 corresponding to the Show Iteration Results check box. If 1, Solver pauses at 
each trial solution; if 0 it does not. If you have supplied SolverSolve with a valid LotusScript function 
reference, your function or macro will be called each time Solver pauses; otherwise the standard Show 
Trial Solution dialog box will appear.

Estimates is the number 1 or 2 and corresponds to the Estimates option: 1 for Tangent and 2 for 
Quadratic.

Derivatives is the number 1 or 2 and corresponds to the Derivatives option: 1 for Forward and 2 for 
Central.

SearchOption is the number 1 or 2 and corresponds to the Search option: 1 for Newton and 2 for 
Conjugate.

IntTolerance is a number between zero and one, corresponding to the Tolerance edit box. This argument 
applies only if integer constraints have been defined.

Scaling is a value 1 or 0 corresponding to the Use Automatic Scaling check box. If 1, then Solver 
rescales the constraints internally to similar orders of magnitude during computation. If 0, Solver 
calculates normally.

Convergence is a number between zero and one, but not equal to zero or one.    It corresponds to the 
Convergence box.

AssumeNonneg is a value 1 or 0 corresponding to the Assume Non-Negative check box.    If 1, Solver 
supplies a lower bound of zero for all variables without explicit lower bounds in the Constraint list box.



SolverReset 
Equivalent to choosing Range Analyze Solver... and choosing the Reset All button in the Solver 
Parameters dialog box. Erases all cell selections and constraints from the Solver Parameters dialog box 
and restores all the settings in the Solver Options dialog box to their defaults. The SolverReset function is 
automatically performed when you call SolverLoad.

Syntax 

SolverReset() 



SolverSave 
Equivalent to choosing Range Analyze Solver..., choosing the Options button from the Solver 
Parameters dialog box, and choosing the Save Model button in the Solver Options dialog box. Saves the 
problem specifications on the worksheet.

Syntax 

SolverSave(SaveArea) 

SaveArea is a reference on the active worksheet to a range of cells or to the upper-left corner of a 
column of cells into which you want to save the current problem specification.

Remarks 

If you specify only one cell for SaveArea, the area is extended downwards for as many cells as are 
required to hold the problem specifications (3 plus the number of constraints).

If you specify more than one cell and the area is too small for the problem, the problem specifications will 
not be saved, and the function will return the value 2.

SaveArea must be on the active worksheet, but it need not be the current selection.



SolverSolve 
Equivalent to choosing Range Analyze Solver... and choosing the Solve button in the Solver Parameters
dialog box. If successful, returns an integer value indicating the condition that caused the Solver to stop, 
as described below.

Syntax 

SolverSolve(UserFinish, ShowRef) 

UserFinish is a value 0 or 1, specifying whether to show the standard Solver Results dialog box.

If UserFinish is 1, SolverSolve returns its integer value without displaying anything. Your LotusScript 
program should decide what action to take (for example, by examining the return value or presenting its 
own dialog box); it must call SolverFinish in any case to return the worksheet to its proper state.

If UserFinish is 0, Solver displays the standard Solver Results dialog box, allowing the user to keep or 
discard the final solution values, and optionally produce reports.

ShowRef is either "", or a string representing a LotusScript function to be called instead of displaying the 
Show Trial Solution dialog box during the solution process. It is used when you want to regain control 
whenever Solver finds a new intermediate solution value.    The function can inspect the current solution 
values on the worksheet, or take other actions such as saving or charting the intermediate values, as 
required by your application.    It may determine on each call whether Solver should continue or stop.

In you are not using a custom function, ShowRef should be "".    To write a custom ShowRef function, you
must be familiar with and use certain advanced features of LotusScript.    For technical details and 
examples of the ShowRef function, please visit the 1-2-3 Solver technical support pages and/or the 
discussion forum on the Frontline Systems World Wide Web site, http://www.frontsys.com.

Remarks 

If a Solver problem has not been completely defined, SolverSolve returns -1. Otherwise the Solver 
"engine" is started, and the problem specifications are passed to it. When the solution process is 
complete, SolverSolve returns an integer value indicating the stopping condition:

Value  Stopping Condition

0      Solver found a solution. All constraints and optimality
       conditions are satisfied.

1      Solver has converged to the current solution. All constraints
       are satisfied.

2      Solver cannot improve the current solution. All constraints are
       satisfied.

3      Stop chosen when the maximum iteration limit was reached.

4      The Set Cell values do not converge.

5      Solver could not find a feasible solution.



6      Solver stopped at user's request.

7      The conditions for Assume Linear Model are not satisfied.

8      The problem is too large for Solver to handle.

9      Solver encountered an error value in a target or constraint
       cell.

10     Stop chosen when maximum time limit was reached.

11     There is not enough memory available to solve the problem.

12     Another 1-2-3 instance is using SOLVE123.DLL. Try again later.

13     Error in model. Please verify that all cells and constraints are
       valid.

14     Your free trial license to use the Solver has expired.




