

CheckBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objCheckboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objCheckboxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objCheckboxP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objCheckboxM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"f3objCheckboxE"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objCheckboxS"}

Displays the selection state of an item.

Remarks
Use a CheckBox to give the user a choice between two values such as Yes/No, True/False, or
On/Off. When the user selects a CheckBox, it displays a special mark (such as an X) and its current
setting is Yes, True, or On; if the user does not select the CheckBox, it is empty and its setting is No,
False, or Off. Depending on the value of the TripleState property, a CheckBox can also have a null
value.

If a CheckBox is bound to a data source, changing the setting changes the value of that source. A
disabled CheckBox shows the current value, but is dimmed and does not allow changes to the value
from the user interface.

You can also use check boxes inside a group box to select one or more of a group of related items.
For example, you can create an order form that contains a list of available items, with a CheckBox
preceding each item. The user can select a particular item or items by checking the corresponding
CheckBox.

The default property of a CheckBox is the Value property.

The default event of a CheckBox is the Click event.

Note    The ListBox also lets you put a check mark by selected options. Depending on your
application, you can use the ListBox instead of using a group of CheckBox controls.

ComboBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objComboBoxC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objComboBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objComboBoxP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objComboBoxM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"f3objComboBoxE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3objComboBoxS"}

Combines the features of a ListBox and a TextBox. The user can enter a new value, as with a
TextBox, or the user can select an existing value as with a ListBox.

Remarks
If a ComboBox is bound to a data source, then the ComboBox inserts the value the user enters or
selects into that data source. If a multicolumn combo box is bound, then the BoundColumn property
determines which value is stored in the bound data source.

The list in a ComboBox consists of rows of data. Each row can have one or more columns, which
can appear with or without headings. Some applications do not support column headings, others
provide only limited support.

The default property of a ComboBox is the Value property.

The default event of a ComboBox is the Change event.

Note    If you want more than a single line of the list to appear at all times, you might want to use a
ListBox instead of a ComboBox. If you want to use a ComboBox and limit values to those in the
list, you can set the Style property of the ComboBox so the control looks like a drop-down list box.

CommandButton Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objCommandButtonC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objCommandButtonX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objCommandButtonP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objCommandButtonM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"f3objCommandButtonE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3objCommandButtonS"}

Starts, ends, or interrupts an action or series of actions.

Remarks
The macro or event procedure assigned to the CommandButton's Click event determines what the
CommandButton does. For example, you can create a CommandButton that opens another form.
You can also display text, a picture, or both on a CommandButton.

The default property of a CommandButton is the Value property.

The default event for a CommandButton is the Click event.

Frame Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objFrameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objFrameX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objFrameP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objFrameM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"f3objFrameE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objFrameS"}

Creates a functional and visual control group.

Remarks
All option buttons in a Frame are mutually exclusive, so you can use the Frame to create an option
group. You can also use a Frame to group controls with closely related contents.For example, in an
application that processes customer orders, you might use a Frame to group the name, address, and
account number of customers.

You can also use a Frame to create a group of toggle buttons, but the toggle buttons are not mutually
exclusive.

The default event for a Frame is the Click event.

Image Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objImageC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objImageX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objImageP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objImageM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"f3objImageE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objImageS"}

Displays a picture on a form.

Remarks
The Image lets you display a picture as part of the data in a form. For example, you might use an
Image to display employee photographs in a personnel form.

The Image lets you crop, size, or zoom a picture, but does not allow you to edit the contents of the
picture. For example, you cannot use the Image to change the colors in the picture, to make the
picture transparent, or to refine the image of the picture. You must use image editing software for
these purposes.

The Image supports the following file formats:

· *.bmp
· *.cur
· *.gif
· *.ico
· *.jpg
· *.wmf

Note    You can also display a picture on a Label. However, a Label does not let you crop, size, or
zoom the picture.

The default event for the Image is the Click event.

ListBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objListBoxC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objListBoxX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objListBoxP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objListBoxM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"f3objListBoxE"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objListBoxS"}

Displays a list of values and lets you select one or more.

Remarks
If the ListBox is bound to a data source, then the ListBox stores the selected value in that data
source.

The ListBox can either appear as a list or as a group of OptionButton controls or CheckBox 
controls.

The default property for a ListBox is the Value property.

The default event for a ListBox is the Click event.

Note You can't drop text into a drop-down ListBox.

MultiPage Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objMultiPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objMultiPageX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objMultiPageP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objMultiPageM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"f3objMultiPageE"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objMultiPageS"}

Presents multiple screens of information as a single set.

Remarks
A MultiPage is useful when you work with a large amount of information that can be sorted into
several categories. For example, use a MultiPage to display information from an employment
application. One page might contain personal information such as name and address; another page
might list previous employers; a third page might list references. The MultiPage lets you visually
combine related information, while keeping the entire record readily accessible.

New pages are added to the right of the currently selected page rather than adjacent to it.

Note    The MultiPage is a container of a Pages collection, each of which contains one or more Page
objects.

The default property for a MultiPage is the Value property, which returns the index of the currently
active Page in the Pages collection of the MultiPage.

The default event for a MultiPage is the Change event.

OptionButton Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objOptionButtonC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objOptionButtonX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objOptionButtonP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objOptionButtonM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"f3objOptionButtonE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3objOptionButtonS"}

Shows the selection status of one item in a group of choices.

Remarks
Use an OptionButton to show whether a single item in a group is selected. Note that each
OptionButton in a Frame is mutually exclusive.

If an OptionButton is bound to a data source, the OptionButton can show the value of that data
source as either Yes/No, True/False, or On/Off. If the user selects the OptionButton, the current
setting is Yes, True, or On; if the user does not select the OptionButton, the setting is No, False, or
Off. For example, an OptionButton in an inventory-tracking application might show whether an item
is discontinued. If the OptionButton is bound to a data source, then changing the settings changes
the value of that data source. A disabled OptionButton is dimmed and does not show a value.

Depending on the value of the TripleState property, an OptionButton can also have a null value.

You can also use an OptionButton inside a group box to select one or more of a group of related
items. For example, you can create an order form with a list of available items, with an OptionButton
preceding each item. The user can select a particular item by checking the corresponding
OptionButton.

The default property for an OptionButton is the Value property.

The default event for an OptionButton is the Click event.

ScrollBar Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objScrollBarC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objScrollBarX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objScrollBarP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objScrollBarM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"f3objScrollBarE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objScrollBarS"}

Returns or sets the value of another control based on the position of the scroll box.

Remarks
A ScrollBar is a stand-alone control you can place on a form. It is visually like the scroll bar you see
in certain objects such as a ListBox or the drop-down portion of a ComboBox. However, unlike the
scroll bars in these examples, the stand-alone ScrollBar is not an integral part of any other control.

To use the ScrollBar to set or read the value of another control, you must write code for the
ScrollBar’s events and methods. For example, to use the ScrollBar to update the value of a
TextBox, you can write code that reads the Value property of the ScrollBar and then sets the Value
property of the TextBox.

The default property for a ScrollBar is the Value property.

The default event for a ScrollBar is the Change event.

Note    To create a horizontal or vertical ScrollBar, drag the sizing handles of the ScrollBar
horizontally or vertically on the form.

SpinButton Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objSpinButtonC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objSpinButtonX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objSpinButtonP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objSpinButtonM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"f3objSpinButtonE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3objSpinButtonS"}

Increments and decrements numbers.

Remarks
Clicking a SpinButton changes only the value of the SpinButton. You can write code that uses the
SpinButton to update the displayed value of another control. For example, you can use a
SpinButton to change the month, the day, or the year shown on a date. You can also use a
SpinButton to scroll through a range of values or a list of items, or to change the value displayed in a
text box.

To display a value updated by a SpinButton, you must assign the value of the SpinButton to the
displayed portion of a control, such as the Caption property of a Label or the Text property of a
TextBox. To create a horizontal or vertical SpinButton, drag the sizing handles of the SpinButton
horizontally or vertically on the form.

The default property for a SpinButton is the Value property.

The default event for a SpinButton is the Change event.

TabStrip Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objTabStripC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objTabStripX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objTabStripP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objTabStripM"}
{ewc HLP95EN.DLL,DYNALINK,"Events":"f3objTabStripE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3objTabStripS"}

Presents a set of related controls as a visual group.

Remarks
You can use a TabStrip to view different sets of information for related controls.

For example, the controls might represent information about a daily schedule for a group of
individuals, with each set of information corresponding to a different individual in the group. Set the
title of each tab to show one individual's name. Then, you can write code that, when you click a tab,
updates the controls to show information about the person identified on the tab.

Note    The TabStrip is implemented as a container of a Tabs collection, which in turn contains a
group of Tab objects.

The default property for a TabStrip is the SelectedItem property.

The default event for a TabStrip is the Change event.

TextBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objTextBoxC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objTextBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objTextBoxP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objTextBoxM"}
{ewc HLP95EN.DLL,DYNALINK,"Events":"f3objTextBoxE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3objTextBoxS"}

Displays information from a user or from an organized set of data.

Remarks
A TextBox is the control most commonly used to display information entered by a user. Also, it can
display a set of data, such as a table, query, worksheet, or a calculation result. If a TextBox is bound
to a data source, then changing the contents of the TextBox also changes the value of the bound
data source.

Formatting applied to any piece of text in a TextBox will affect all text in the control. For example, if
you change the font or point size of any character in the control, the change will affect all characters in
the control.

The default property for a TextBox is the Value property.

The default event for a TextBox is the Change event.

ToggleButton Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objToggleButtonC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objToggleButtonX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objToggleButtonP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objToggleButtonM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"f3objToggleButtonE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3objToggleButtonS"}

Shows the selection state of an item.

Remarks
Use a ToggleButton to show whether an item is selected. If a ToggleButton is bound to a data
source, the ToggleButton shows the current value of that data source as either Yes/No, True/False,
On/Off, or some other choice of two settings. If the user selects the ToggleButton, the current setting
is Yes, True, or On; if the user does not select the ToggleButton, the setting is No, False, or Off. If
the ToggleButton is bound to a data source, changing the setting changes the value of that data
source. A disabled ToggleButton shows a value, but is dimmed and does not allow changes from the
user interface.

You can also use a ToggleButton inside a Frame to select one or more of a group of related items.
For example, you can create an order form with a list of available items, with a ToggleButton
preceding each item. The user can select a particular item by selecting the appropriate
ToggleButton.

The default property of a ToggleButton is the Value property.

The default event of a ToggleButton is the Click event.

DataObject Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objDataObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objDataObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"f3objDataObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objDataObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"f3objDataObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3objDataObjectS"}

A holding area for formatted text data used in transfer operations. Also holds a list of formats
corresponding to the pieces of text stored in the DataObject.

Remarks
A DataObject can contain one piece of text for the Clipboard text format, and one piece of text for
each additional text format, such as custom and user-defined formats.

A DataObject is distinct from the Clipboard. A DataObject supports commands that involve the
Clipboard and drag-and-drop actions for text. When you start an operation involving the Clipboard
(such as GetText) or a drag-and-drop operation, the data involved in that operation is moved to a
DataObject.
The DataObject works like the Clipboard. If you copy a text string to a DataObject, the DataObject
stores the text string. If you copy a second string of the same format to the DataObject, the
DataObject discards the first text string and stores a copy of the second string. It stores one piece of
text of a specified format and keeps the text from the most recent operation.

Font Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objFontC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3objFontX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3objFontA"} {ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objFontP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objFontM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"f3objFontE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objFontS"}

Defines the characteristics of the text used by a control or form.

Remarks
Each control or form has its own Font object to let you set its text characteristics independently of the
characteristics defined for other controls and forms. Use font properties to specify the font name, to
set bold or underlined text, or to adjust the size of the text.

Note The font properties of your form or container determine the default font attributes of controls
you put on the form.
The default property for the Font object is the Name property. If the Name property contains a null
string, the Font object uses the default system font.

Label Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objLabelC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objLabelX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objLabelP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objLabelM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"f3objLabelE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objLabelS"}

Displays descriptive text.

Remarks
A Label control on a form displays descriptive text such as titles, captions, pictures, or brief
instructions. For example, labels for an address book might include a Label for a name, street, or city.
A Label doesn't display values from data sources or expressions; it is always unbound and doesn't
change as you move from record to record.

The default property for a Label is the Caption property.

The default event for a Label is the Click event.

Page Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objPageC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3objPageX":1}
{ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objPageP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objPageM"}
{ewc HLP95EN.DLL,DYNALINK,"Events":"f3objPageE"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objPageS"}

One page of a MultiPage and a single member of a Pages collection.

Remarks
Each Page object contains its own set of controls and does not necessarily rely on other pages in the
collection for information. A Page inherits some properties from its container; the value of each
inherited property is set by the container.

A Page has a unique name and index value within a Pages collection. You can reference a Page by
either its name or its index value. The index of the first Page in a collection is 0; the index of the
second Page is 1; and so on. When two Page objects have the same name, you must reference each
Page by its index value. References to the name in code will access only the first Page that uses the
name.

The default name for the first Page is Page1; the default name for the second Page is Page2.

Tab Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objTabC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3objTabX":1}
{ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objTabP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"f3objTabM"}
{ewc HLP95EN.DLL,DYNALINK,"Events":"f3objTabE"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objTabS"}

A Tab is an individual member of a Tabs collection.

Remarks
Visually, a Tab object appears as a rectangle protruding from a larger rectangular area or as a button
adjacent to a rectangular area.

In contrast to a Page, a Tab does not contain any controls. Controls that appear within the region
bounded by a TabStrip are contained on the form, as is the TabStrip.

Each Tab has its own set of properties, but has no methods or events. You must use events from the
appropriate TabStrip to initiate processing of an individual Tab.

Each Tab has a unique name and index value within the collection. You can reference a Tab by either
its name or its index value. The index of the first Tab is 0; the index of the second Tab is 1; and so on.
When two Tab objects have the same name, you must reference each Tab by its index value.
References to the name in code will access only the first Tab that uses the name.

Controls Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3objControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objControlsP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objControlsM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"f3objControlsE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objControlsS"}

Includes all the controls contained in an object.

Remarks
Each control in the Controls collection of an object has a unique index whose value can be either an
integer or a string. The index value for the first control in a collection is 0; the value for the second
control is 1, and so on. This value indicates the order in which controls were added to the collection.

If the index is a string, it represents the name of the control. The Name property of a control also
specifies a control's name.

You can use the Controls collection to enumerate or count individual controls, and to set their
properties. For example, you can enumerate the Controls collection of a particular form and set the
Height property of each control to a specified value.

Note    The For Each...Next statement is useful for enumerating a collection.

Pages Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objPageCollC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objPageCollX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3objPageCollA"} {ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objPageCollP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objPageCollM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"f3objPageCollE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objPageCollS"}

A Pages collection includes all the pages of a MultiPage.

Remarks
Each Pages collection provides the features to manage the number of pages in the collection and to
identify the page that is currently in use.

A Page object has a unique name and index value within a Pages collection. You can reference a
Page either by its name or its index value. The index of the first Page in a collection is 0; the index of
the second Page is 1; and so on. The default name for the first page is Page1; the default name for
the second page is Page2.

The default value of a Pages collection identifies the current Page of a collection.

Tabs Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3objTabCollC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3objTabCollX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3objTabCollA"} {ewc HLP95EN.DLL,DYNALINK,"Properties":"f3objTabCollP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"f3objTabCollM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"f3objTabCollE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3objTabCollS"}

A Tabs collection includes all Tabs of a TabStrip.

Remarks
Each Tabs collection provides the features to manage the number of tabs in the collection and to
identify the tab that is currently in use.

The default value of the Tabs collection identifies the current Tab of a collection.

A Tab object has a unique name and index value within a Tabs collection. You can reference a Tab
either by its name or its index value. The index value reflects the ordinal position of the Tab within the
collection. The index of the first Tab in a collection is 0; the index of the second Tab is 1; and so on.

Microsoft Forms Object Model Overview

UserForm Window

AddControl Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtAddControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtAddControlX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtAddControlA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtAddControlS"}

Occurs when a control is inserted onto a form, a Frame, or a Page of a MultiPage.

Syntax
For Frame
Private Sub object_AddControl( )

For MultiPage
Private Sub object_AddControl( index As Long, ctrl As Control)

The AddControl event syntax has these parts:

Part Description
object Required. A valid object.
index Required. The index of the Page that will contain the new control.
ctrl Required. The control to be added.

Remarks
The AddControl event occurs when a control is added at run time. This event is not initiated when you
add a control at design time, nor is it initiated when a form is initially loaded and displayed at run time.

The default action of this event is to add a control to the specified form, Frame, or MultiPage.

The Add method initiates the AddControl event.

AfterUpdate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtAfterUpdateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtAfterUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtAfterUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtAfterUpdateS"}

Occurs after data in a control is changed through the user interface.

Syntax
Private Sub object_AfterUpdate( )
The AfterUpdate event syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The AfterUpdate event occurs regardless of whether the control is bound (that is, when the
RowSource property specifies a data source for the control). This event cannot be canceled. If you
want to cancel the update (to restore the previous value of the control), use the BeforeUpdate event
and set the Cancel argument to True.

The AfterUpdate event occurs after the BeforeUpdate event and before the Exit event for the current
control and before the Enter event for the next control in the tab order.

BeforeDragOver Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtBeforeDragOverC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtBeforeDragOverX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtBeforeDragOverA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtBeforeDragOverS"}

Occurs when a drag-and-drop operation is in progress.

Syntax
For Frame
Private Sub object_BeforeDragOver( ByVal Cancel As MSForms.ReturnBoolean, ctrl As 
Control, ByVal Data As DataObject, ByVal X As Single, ByVal Y As Single, ByVal DragState 
As fmDragState, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

For MultiPage
Private Sub object_BeforeDragOver( index As Long, ByVal Cancel As 
MSForms.ReturnBoolean, ctrl As Control, ByVal Data As DataObject, ByVal X As Single,
ByVal Y As Single, ByVal DragState As fmDragState, ByVal Effect As MSForms.ReturnEffect,
ByVal Shift As fmShiftState)

For TabStrip
Private Sub object_BeforeDragOver( index As Long, ByVal Cancel As 
MSForms.ReturnBoolean, ByVal Data As DataObject, ByVal X As Single, ByVal Y As Single,
ByVal DragState As fmDragState, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As 
fmShiftState)

For other controls
Private Sub object_BeforeDragOver( ByVal Cancel As MSForms.ReturnBoolean, ByVal Data 
As DataObject, ByVal X As Single, ByVal Y As Single, ByVal DragState As fmDragState,
ByVal Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

The BeforeDragOver event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the Page in a MultiPage that the drag-

and-drop operation will affect.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application
handles the event.

ctrl Required. The control being dragged over.
Data Required. Data that is dragged in a drag-and-drop operation.

The data is packaged in a DataObject.
X, Y Required. The horizontal and vertical coordinates of the

control’s position. Both coordinates are measured in points. X
is measured from the left edge of the control; Y is measured
from the top of the control..

DragState Required. Transition state of the data being dragged.
Effect Required. Operations supported by the drop source.
Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

Settings
The settings for DragState are:

Constant Value Description
fmDragStateEnter 0 Mouse pointer is within range of a target.
fmDragStateLeave 1 Mouse pointer is outside the range of a

target.
fmDragStateOver 2 Mouse pointer is at a new position, but

remains within range of the same target.

The settings for Effect are:

Constant Value Description
fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.
fmDropEffectCopy 1 Copies the drop source to the drop

target.
fmDropEffectMove 2 Moves the drop source to the drop

target.
fmDropEffectCopyOrMove 3 Copies or moves the drop source to

the drop target.

The settings for Shift are:

Constant Value Description
fmShiftMask 1 SHIFT was pressed.
fmCtrlMask 2 CTRL was pressed.
fmAltMask 4 ALT was pressed.

Remarks
Use this event to monitor the mouse pointer as it enters, leaves, or rests directly over a valid target.
When a drag-and-drop operation is in progress, the system initiates this event when the user moves
the mouse, or presses or releases the mouse buttons. The mouse pointer position determines the
target object that receives this event. You can determine the state of the mouse pointer by examining
the DragState argument.

When a control handles this event, you can use the Effect argument to identify the drag-and-drop
action to perform. When Effect is set to fmDropEffectCopyOrMove, the drop source supports a copy
(fmDropEffectCopy), move (fmDropEffectMove), or a cancel (fmDropEffectNone) operation.

When Effect is set to fmDropEffectCopy, the drop source supports a copy or a cancel
(fmDropEffectNone) operation.

When Effect is set to fmDropEffectMove, the drop source supports a move or a cancel
(fmDropEffectNone) operation.

When Effect is set to fmDropEffectNone. the drop source supports a cancel operation.

Most controls do not support drag-and-drop while Cancel is False, which is the default setting. This
means the control rejects attempts to drag or drop anything on the control, and the control does not
initiate the BeforeDropOrPaste event. The TextBox and ComboBox controls are exceptions to this;
these controls support drag-and-drop operations even when Cancel is False.

BeforeDropOrPaste Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtBeforeDropOrPasteC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtBeforeDropOrPasteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtBeforeDropOrPasteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtBeforeDropOrPasteS"}

Occurs when the user is about to drop or paste data onto an object.

Syntax
For Frame
Private Sub object_BeforeDropOrPaste( ByVal Cancel As MSForms.ReturnBoolean, ctrl As 
Control, ByVal Action As fmAction, ByVal Data As DataObject, ByVal X As Single, ByVal Y As 
Single, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

For MultiPage
Private Sub object_BeforeDropOrPaste( index As Long, ByVal Cancel As 
MSForms.ReturnBoolean, ctrl As Control, ByVal Action As fmAction, ByVal Data As 
DataObject, ByVal X As Single, ByVal Y As Single, ByVal Effect As MSForms.ReturnEffect,
ByVal Shift As fmShiftState)

For TabStrip
Private Sub object_BeforeDropOrPaste( index As Long, ByVal Cancel As 
MSForms.ReturnBoolean, ByVal Action As fmAction, ByVal Data As DataObject, ByVal X As 
Single, ByVal Y As Single, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As 
fmShiftState)

For other controls
Private Sub object_BeforeDropOrPaste( ByVal Cancel As MSForms.ReturnBoolean, ByVal 
Action As fmAction, ByVal Data As DataObject, ByVal X As Single, ByVal Y As Single, ByVal
Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

The BeforeDropOrPaste event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the Page in a MultiPage that the drop or

paste operation will affect.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application
handles the event.

ctrl Required. The target control.
Action Required. Indicates the result, based on the current keyboard

settings, of the pending drag-and-drop operation.
Data Required. Data that is dragged in a drag-and-drop operation. The

data is packaged in a DataObject.
X, Y Required. The horizontal and vertical position of the mouse

pointer when the drop occurs. Both coordinates are measured in
points. X is measured from the left edge of the control; Y is
measured from the top of the control..

Effect Required. Effect of the drag-and-drop operation on the target
control.

Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

Settings
The settings for Action are:

Constant Value Description

fmActionPaste 2 Pastes the selected object into the drop
target.

fmActionDragDrop 3 Indicates the user has dragged the object
from its source to the drop target and
dropped it on the drop target.

The settings for Effect are:

Constant Value Description
fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.
fmDropEffectCopy 1 Copies the drop source to the drop

target.
fmDropEffectMove 2 Moves the drop source to the drop

target.
fmDropEffectCopyOrMove 3 Copies or moves the drop source to

the drop target.

The settings for Shift are:

Constant Value Description
fmShiftMask 1 SHIFT was pressed.
fmCtrlMask 2 CTRL was pressed.
fmAltMask 4 ALT was pressed.

Remarks
For a MultiPage or TabStrip, Visual Basic for Applications initiates this event when it transfers a data
object to the control.

For other controls, the system initiates this event immediately prior to the drop or paste operation.

When a control handles this event, you can update the Action argument to identify the drag-and-drop
action to perform. When Effect is set to fmDropEffectCopyOrMove, you can assign Action to
fmDropEffectNone, fmDropEffectCopy, or fmDropEffectMove. When Effect is set to
fmDropEffectCopy or fmDropEffectMove, you can reassign Action to fmDropEffectNone. You
cannot reassign Action when Effect is set to fmDropEffectNone.

BeforeUpdate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtBeforeUpdateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtBeforeUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtBeforeUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtBeforeUpdateS"}

Occurs before data in a control is changed.

Syntax
Private Sub object_BeforeUpdate( ByVal Cancel As MSForms.ReturnBoolean)
The BeforeUpdate event syntax has these parts:

Part Description
object Required. A valid object.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True cancels the update and
indicates the application should handle the event.

Remarks
The BeforeUpdate event occurs regardless of whether the control is bound (that is, when the
RowSource property specifies a data source for the control). This event occurs before the
AfterUpdate and Exit events for the control (and before the Enter event for the next control that
receives focus).

If you set the Cancel argument to True, the focus remains on the control and neither the AfterUpdate
event nor the Exit event occurs.

Change Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtChangeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtChangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtChangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtChangeS"}

Occurs when the Value property changes.

Syntax
Private Sub object_Change( )
The Change event syntax has these parts:

Part Description
object Required. A valid object.

Settings
The Change event occurs when the setting of the Value property changes, regardless of whether the
change results from execution of code or a user action in the interface.

Here are some examples of actions that change the Value property:

· Clicking a CheckBox, OptionButton, or ToggleButton.
· Entering or selecting a new text value for a ComboBox, ListBox, or TextBox.
· Selecting a different tab on a TabStrip.
· Moving the scroll box in a ScrollBar.
· Clicking the up arrow or down arrow on a SpinButton.
· Selecting a different page on a MultiPage.

Remarks
The Change event procedure can synchronize or coordinate data displayed among controls. For
example, you can use the Change event procedure of a ScrollBar to update the contents of a
TextBox that displays the value of the ScrollBar. Or you can use a Change event procedure to
display data and formulas in a work area and results in another area.

Note In some cases, the Click event may also occur when the Value property changes. However,
using the Change event is the preferred technique for detecting a new value for a property.

Click Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtClickC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3evtClickX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3evtClickA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtClickS"}

Occurs in one of two cases:

· The user clicks a control with the mouse.
· The user definitively selects a value for a control with more than one possible value.

Syntax
For MultiPage, TabStrip
Private Sub object_Click( index As Long)

For all other controls
Private Sub object_Click( )

The Click event syntax has these parts:

Part Description
object Required. A valid object.
index Required. The index of the page or tab in a MultiPage or TabStrip

associated with this event.

Remarks
Of the two cases where the Click event occurs, the first case applies to the CommandButton,
Frame, Image, Label, ScrollBar, and SpinButton. The second case applies to the CheckBox,
ComboBox, ListBox, MultiPage, TabStrip, and ToggleButton. It also applies to an OptionButton
when the value changes to True.

The following are examples of actions that initiate the Click event:

· Clicking a blank area of a form or a disabled control (other than a list box) on the form.
· Clicking a CommandButton. If the command button doesn't already have the focus, the Enter

event occurs before the Click event.
· Pressing the SPACEBAR when a CommandButton has the focus.
· Clicking a control with the left mouse button (left-clicking).
· Pressing ENTER on a form that has a command button whose Default property is set to True, as

long as no other command button has the focus.
· Pressing ESC on a form that has a command button whose Cancel property is set to True, as long

as no other command button has the focus.
· Pressing a control's accelerator key.
When the Click event results from clicking a control, the sequence of events leading to the Click event
is:

1. MouseDown
2. MouseUp
3. Click
For some controls, the Click event occurs when the Value property changes. However, using the
Change event is the preferred technique for detecting a new value for a property. The following are
examples of actions that initiate the Click event due to assigning a new value to a control:

· Clicking a different page or tab in a MultiPage or TabStrip. The Value property for these controls
reflects the current Page or Tab. Clicking the current page or tab does not change the control’s
value and does not initiate the Click event.

· Clicking a CheckBox or ToggleButton, pressing the SPACEBAR when one of these controls has the
focus, pressing the accelerator key for one of these controls, or changing the value of the control in

code.
· Changing the value of an OptionButton to True. Setting one OptionButton in a group to True

sets all other buttons in the group to False, but the Click event occurs only for the button whose
value changes to True.

· Selecting a value for a ComboBox or ListBox so that it unquestionably matches an item in the
control’s drop-down list. For example, if a list is not sorted, the first match for characters typed in
the edit region may not be the only match in the list, so choosing such a value does not initiate the
Click event. In a sorted list, you can use entry-matching to ensure that a selected value is a unique
match for text the user types.

The Click event is not initiated when Value is set to Null.
Note Left-clicking changes the value of a control, thus it initiates the Click event. Right-clicking does
not change the value of the control, so it does not initiate the Click event.

DblClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtDblClickC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtDblClickX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtDblClickA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtDblClickS"}

Occurs when the user points to an object and then clicks a mouse button twice.

Syntax
For MultiPage, TabStrip 
Private Sub object_DblClick( index As Long, ByVal Cancel As MSForms.ReturnBoolean)

For other controls
Private Sub object_DblClick( ByVal Cancel As MSForms.ReturnBoolean)

The DblClick event syntax has these parts:

Part Description
object Required. A valid object.
index Required. The position of a Page or Tab object within a Pages or

Tabs collection.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application handles
the event.

Remarks
For this event to occur, the two clicks must occur within the time span specified by the system's
double-click speed setting.

For controls that support Click, the following sequence of events leads to the DblClick event:

1. MouseDown
2. MouseUp
3. Click
4. DblClick
If a control, such as TextBox, does not support Click, Click is omitted fom the order of events leading
to the DblClick event.

If the return value of Cancel is True when the user clicks twice, the control ignores the second click.
This is useful if the second click reverses the effect of the first, such as double-clicking a toggle
button. The Cancel argument allows your form to ignore the second click, so that either clicking or
double-clicking the button has the same effect.

DropButtonClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtDropButtonClickC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtDropButtonClickX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtDropButtonClickA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtDropButtonClickS"}

Occurs whenever the drop-down list appears or disappears.

Syntax
Private Sub object_DropButtonClick( )
The DropButtonClick event syntax has these parts:

Part Description
object Required. A valid object.

Remarks
You can initiate the DropButtonClick event through code or by taking certain actions in the user
interface.

In code, calling the DropDown method initiates the DropButtonClick event.

In the user interface, any of the following actions initiates the event:

· Clicking the drop-down button on the control.
· Pressing F4.
Any of the above actions, in code or in the interface, cause the drop-down box to appear on the
control. The system initiates the DropButtonClick event when the drop-down box goes away.

Enter, Exit Events
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtEnterC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3evtEnterX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3evtEnterA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtEnterS"}

Enter occurs before a control actually receives the focus from a control on the same form. Exit occurs
immediately before a control loses the focus to another control on the same form.

Syntax
Private Sub object_Enter( )
Private Sub object_Exit( ByVal Cancel As MSForms.ReturnBoolean)
The Enter and Exit event syntaxes have these parts:

Part Description
object Required. A valid object name.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application handles
the event and the focus should remain at the current control.

Remarks
The Enter and Exit events are similar to the GotFocus and LostFocus events in Visual Basic. Unlike
GotFocus and LostFocus, the Enter and Exit events don't occur when a form receives or loses the
focus.

For example, suppose you select the check box that initiates the Enter event. If you then select
another control in the same form, the Exit event is initiated for the check box (because focus is
moving to a different object in the same form) and then the Enter event occurs for the second control
on the form.

Because the Enter event occurs before the focus moves to a particular control, you can use an Enter
event procedure to display instructions; for example, you could use a macro or event procedure to
display a small form or message box identifying the type of data the control typically contains.

Note    To prevent the control from losing focus, assign True to the Cancel argument of the Exit event.

Error Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtErrorC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3evtErrorX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3evtErrorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtErrorS"}

Occurs when a control detects an error and cannot return the error information to a calling program.

Syntax
For MultiPage
Private Sub object_Error( index As Long, ByVal Number As Integer, ByVal Description As 
MSForms.ReturnString, ByVal SCode As SCode, ByVal Source As String, ByVal HelpFile As 
String, ByVal HelpContext As Long, ByVal CancelDisplay As MSForms.ReturnBoolean)

For other controls
Private Sub object_Error( ByVal Number As Integer, ByVal Description As 
MSForms.ReturnString, ByVal SCode As SCode, ByVal Source As String, ByVal HelpFile As 
String, ByVal HelpContext As Long, ByVal CancelDisplay As MSForms.ReturnBoolean)

The Error event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the page in a MultiPage associated

with this event.
Number Required. Specifies a unique value that the control uses to

identify the error.
Description Required. A textual description of the error.
SCode Required. Specifies the OLE status code for the error. The

low-order 16 bits specify a value that is identical to the
Number argument.

Source Required. The string that identifies the control which
initiated the event.

HelpFile Required. Specifies a fully qualified path name for the Help
file that describes the error.

HelpContext Required. Specifies the context ID of the Help file topic that
contains a description of the error.

CancelDisplay Required. Specifies whether to display the error string in a
message box.

Remarks
The code written for the Error event determines how the control responds to the error condition.

The ability to handle error conditions varies from one application to another. The Error event is
initiated when an error occurs that the application is not equipped to handle.

KeyDown, KeyUp Events
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtKeyDownC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtKeyDownX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtKeyDownA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtKeyDownS"}

Occur in sequence when a user presses and releases a key. KeyDown occurs when the user presses
a key. KeyUp occurs when the user releases a key.

Syntax
Private Sub object_KeyDown( ByVal KeyCode As MSForms.ReturnInteger, ByVal Shift As 
fmShiftState)

Private Sub object_KeyUp( ByVal KeyCode As MSForms.ReturnInteger, ByVal Shift As 
fmShiftState)

The KeyDown and KeyUp event syntaxes have these parts:

Part Description
object Required. A valid object name.
KeyCode Required. An integer that represents the key code of the key

that was pressed or released.
Shift Required. The state of SHIFT, CTRL, and ALT.

Settings
The settings for Shift are:

Constant Value Description

fmShiftMask 1 SHIFT was pressed.
fmCtrlMask 2 CTRL was pressed.
 fmAltMask 4 ALT was pressed.

Remarks
The KeyDown event occurs when the user presses a key on a running form while that form or a
control on it has the focus. The KeyDown and KeyPress events alternate repeatedly until the user
releases the key, at which time the KeyUp event occurs. The form or control with the focus receives
all keystrokes. A form can have the focus only if it has no controls or all its visible controls are
disabled.

These events also occur if you send a keystroke to a form or control using either the SendKeys action
in a macro or the SendKeys Statement in Visual Basic.

The KeyDown and KeyUp events are typically used to recognize or distinguish between:

· Extended character keys, such as function keys.
· Navigation keys, such as HOME, END, PAGEUP, PAGEDOWN, UP ARROW, DOWN ARROW, RIGHT ARROW,

LEFT ARROW, and TAB.
· Combinations of keys and standard keyboard modifiers (SHIFT, CTRL, or ALT).
· The numeric keypad and keyboard number keys.
The KeyDown and KeyUp events do not occur under the following circumstances:

· The user presses enter on a form with a command button whose Default property is set to True.
· The user presses esc on a form with a command button whose Cancel property is set to True.
The KeyDown and KeyPress events occur when you press or send an ANSI key. The KeyUp event
occurs after any event for a control caused by pressing or sending the key. If a keystroke causes the
focus to move from one control to another control, the KeyDown event occurs for the first control,

while the KeyPress and KeyUp events occur for the second control.

The sequence of keyboard-related events is:

1. KeyDown
2. KeyPress
3. KeyUp
Note    The KeyDown and KeyUp events apply only to forms and controls on a form. To interpret ANSI
characters or to find out the ANSI character corresponding to the key pressed, use the KeyPress
event.

KeyPress Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtKeyPressC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtKeyPressX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtKeyPressA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtKeyPressS"}

Occurs when the user presses an ANSI key.

Syntax
Private Sub object_KeyPress( ByVal KeyANSI As MSForms.ReturnInteger)
The KeyPress event syntax has these parts:

Part Description
object Required. A valid object.
KeyANSI Required. An integer value that represents a standard numeric

ANSI key code.

Remarks
The KeyPress event occurs when the user presses a key that produces a typeable character (an
ANSI key) on a running form while the form or a control on it has the focus. The event can occur
either before or after the key is released. This event also occurs if you send an ANSI keystroke to a
form or control using either the SendKeys action in a macro or the SendKeys Statement in Visual
Basic.

A KeyPress event can occur when any of the following keys are pressed:

· Any printable keyboard character.
· CTRL combined with a character from the standard alphabet.
· CTRL combined with any special character.
· BACKSPACE.
· ESC.
A KeyPress event does not occur under the following conditions:

· Pressing TAB.
· Pressing ENTER.
· Pressing an arrow key.
· When a keystroke causes the focus to move from one control to another.
Note    BACKSPACE is part of the ANSI Character Set, but DELETE is not. Deleting a character in a
control using BACKSPACE causes a KeyPress event; deleting a character using DELETE doesn't.

When a user holds down a key that produces an ANSI keycode, the KeyDown and KeyPress events
alternate repeatedly. When the user releases the key, the KeyUp event occurs. The form or control
with the focus receives all keystrokes. A form can have the focus only if it has no controls, or if all its
visible controls are disabled.

The default action for the KeyPress event is to process the event code that corresponds to the key
that was pressed. KeyANSI indicates the ANSI character that corresponds to the pressed key or key
combination. The KeyPress event interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

To respond to the physical state of the keyboard, or to handle keystrokes not recognized by the
KeyPress event, such as function keys, navigation keys, and any combinations of these with
keyboard modifiers (ALT, SHIFT, or CTRL), use the KeyDown and KeyUp event procedures.

The sequence of keyboard-related events is:

1. KeyDown
2. KeyPress
3. KeyUp

Layout Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtLayoutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtLayoutX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3evtLayoutA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtLayoutS"}

Occurs when a form, Frame, or MultiPage changes size.

Syntax
For MultiPage
Private Sub object_Layout( index As Long)

For all other controls
Private Sub object_Layout( )

The Layout event syntax has these parts:

Part Description
object Required. A valid object.
index Required. The index of the page in a MultiPage that changed

size.

Remarks
The default action of the layout event is to calculate new positions of controls and to repaint the
screen.

A user can initiate the Layout event by changing the size of a control.

For controls that support the AutoSize property, the Layout event is initiated when AutoSize changes
the size of the control. This occurs when the user changes the value of a property that affects the size
of a control. For example, increasing the Font size of a TextBox or Label can significantly change the
dimensions of the control and initiate a Layout event.

MouseDown, MouseUp Events
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtMouseDownC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtMouseDownX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtMouseDownA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtMouseDownS"}

Occur when the user clicks a mouse button. MouseDown occurs when the user presses the mouse
button; MouseUp occurs when the user releases the mouse button.

Syntax
For MultiPage, TabStrip
Private Sub object_MouseDown( index As Long, ByVal Button As fmButton, ByVal Shift As 
fmShiftState, ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseUp( index As Long, ByVal Button As fmButton, ByVal Shift As 
fmShiftState, ByVal X As Single, ByVal Y As Single)

For other controls
Private Sub object_MouseDown( ByVal Button As fmButton, ByVal Shift As fmShiftState,
ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseUp( ByVal Button As fmButton, ByVal Shift As fmShiftState, ByVal X
As Single, ByVal Y As Single)

The MouseDown and MouseUp event syntaxes have these parts:

Part Description
object Required. A valid object.
index Required. The index of the page or tab in a MultiPage or

TabStrip with the specified event.
Button Required. An integer value that identifies which mouse button

caused the event.
Shift Required. The state of SHIFT, CTRL, and ALT.
X, Y Required. The horizontal or vertical position, in points, from the

left or top edge of the form, Frame, or Page.

Settings
The settings for Button are:

Constant Value Description
fmButtonLeft 1 The left button was pressed.
fmButtonRight 2 The right button was pressed.
fmButtonMiddle 4 The middle button was pressed.

The settings for Shift are:

Value Description
1 SHIFT was pressed.
2 CTRL was pressed.
3 SHIFT and CTRL were pressed.
4 ALT was pressed.
5 ALT and SHIFT were pressed.
6 ALT and CTRL were pressed.
7 ALT, SHIFT, and CTRL were pressed.

You can identify individual keyboard modifiers by using the following constants:

Constant Value Description
fmShiftMask 1 Mask to detect SHIFT.
fmCtrlMask 2 Mask to detect CTRL.
fmAltMask 4 Mask to detect ALT.

Remarks
For a MultiPage, the MouseDown event occurs when the user presses a mouse button over the
control.

For a TabStrip, the index argument identifies the tab where the user clicked. An index of –1 indicates
the user did not click a tab. For example, if there are no tabs in the upper right corner of the control,
clicking in the upper right corner sets the index to –1.

For a form, the user can generate MouseDown and MouseUp events by pressing and releasing a
mouse button in a blank area, record selector, or scroll bar on the form.

The sequence of mouse-related events is:

1. MouseDown
2. MouseUp
3. Click
4. DblClick
5. MouseUp
MouseDown or MouseUp event procedures specify actions that occur when a mouse button is
pressed or released. MouseDown and MouseUp events enable you to distinguish between the left,
right, and middle mouse buttons. You can also write code for mouse-keyboard combinations that use
the SHIFT, CTRL, and ALT keyboard modifiers.

If a mouse button is pressed while the pointer is over a form or control, that object "captures" the
mouse and receives all mouse events up to and including the last MouseUp event. This implies that
the X, Y mouse-pointer coordinates returned by a mouse event may not always be within the
boundaries of the object that receives them.

If mouse buttons are pressed in succession, the object that captures the mouse receives all
successive mouse events until all buttons are released.

Use the Shift argument to identify the state of SHIFT, CTRL, and ALT when the MouseDown or MouseUp
event occurred. For example, if both CTRL and ALT are pressed, the value of Shift is 6.

MouseMove Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtMouseMoveC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtMouseMoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtMouseMoveA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtMouseMoveS"}

Occurs when the user moves the mouse.

Syntax
For MultiPage, TabStrip 
Private Sub object_MouseMove( index As Long, ByVal Button As fmButton, ByVal Shift As 
fmShiftState, ByVal X As Single, ByVal Y As Single)

For other controls
Private Sub object_MouseMove( ByVal Button As fmButton, ByVal Shift As fmShiftState,
ByVal X As Single, ByVal Y As Single)

The MouseMove event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the page or tab in a MultiPage or

TabStrip associated with this event.
Button Required. An integer value that identifies the state of the mouse

buttons.
Shift Required. Specifies the state of SHIFT, CTRL, and ALT.
X, Y Required. The horizontal or vertical position, measured in points,

from the left or top edge of the control.

Settings
The index argument specifies which page or tab was clicked over. A –1 designates that the user did
not click on any of the pages or tabs.

The settings for Button are:

Value Description
0 No button is pressed.
1 The left button is pressed.
2 The right button is pressed.
3 The right and left buttons are pressed.
4 The middle button is pressed.
5 The middle and left buttons are pressed.
6 The middle and right buttons are pressed.
7 All three buttons are pressed.

The settings for Shift are:

Value Description
1 SHIFT was pressed.
2 CTRL was pressed.
3 SHIFT and CTRL were pressed.
4 ALT was pressed.
5 ALT and SHIFT were pressed.
6 ALT and CTRL were pressed.

7 ALT, SHIFT, and CTRL were pressed.

You can identify individual keyboard modifiers by using the following constants:

Constant Value Description
fmShiftMask 1 Mask to detect SHIFT.
fmCtrlMask 2 Mask to detect CTRL.
fmAltMask 4 Mask to detect ALT.

Remarks
The MouseMove event applies to forms, controls on a form, and labels.

MouseMove events are generated continually as the mouse pointer moves across objects. Unless
another object has captured the mouse, an object recognizes a MouseMove event whenever the
mouse position is within its borders.

Moving a form can also generate a MouseMove event even if the mouse is stationary. MouseMove
events are generated when the form moves underneath the pointer. If a macro or event procedure
moves a form in response to a MouseMove event, the event can continually generate (cascade)
MouseMove events.

If two controls are very close together, and you move the mouse pointer quickly over the space
between them, the MouseMove event might not occur for that space. In such cases, you might need
to respond to the MouseMove event in both controls.

You can use the value returned in the Button argument to identify the state of the mouse buttons.

Use the Shift argument to identify the state of SHIFT, CTRL, and ALT when the MouseMove event
occurred. For example, if both CTRL and ALT are pressed, the value of Shift is 6.

Note    You can use MouseDown and MouseUp event procedures to respond to events caused by
pressing and releasing mouse buttons.

RemoveControl Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtRemoveControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtRemoveControlX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtRemoveControlA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtRemoveControlS"}

Occurs when a control is deleted from the container.

Syntax
For MultiPage
Private Sub object_RemoveControl( index As Long, ctrl As Control)

For all other controls
Private Sub object_RemoveControl( ctrl As Control)

The RemoveControl event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the page in a MultiPage that contained

the deleted control.
ctrl Required. The deleted control.

Remarks
This event occurs when a control is deleted from the form, not when a control is unloaded due to a
form being closed.

Scroll Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtScrollC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtScrollX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3evtScrollA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtScrollS"}

Occurs when the scroll box is repositioned.

Syntax
For ScrollBar
Private Sub object_Scroll( )

For MultiPage
Private Sub object_Scroll( index As Long, ActionX As fmScrollAction, ActionY As 
fmScrollAction, ByVal RequestDx As Single, ByVal RequestDy As Single, ByVal ActualDx As 
MSForms.ReturnSingle, ByVal ActualDy As MSForms.ReturnSingle)

For Frame
Private Sub object_Scroll( ActionX As fmScrollAction, ActionY As fmScrollAction, ByVal 
RequestDx As Single, ByVal RequestDy As Single, ByVal ActualDx As MSForms.ReturnSingle,
ByVal ActualDy As MSForms.ReturnSingle)

The Scroll event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the page in a MultiPage associated

with this event.
ActionX Required. The action that occurred in the horizontal direction.
ActionY Required. The action that occurred in the vertical direction.
RequestDx Required. The distance, in points, you want the scroll bar to

move in the horizontal direction.
RequestDy Required. The distance, in points, you want the scroll bar to

move in the vertical direction.
ActualDx Required. The distance, in points, the scroll bar travelled in

the horizontal direction.
ActualDy Required. The distance, in points, the scroll bar travelled in

the vertical direction.

Settings
The settings for ActionX and ActionY are:

Constant Value Description
fmScrollActionNoChange 0 No change occurred.
fmScrollActionLineUp 1 A small distance up on a vertical

scroll bar; a small distance to the
left on a horizontal scroll bar.
Movement is equivalent to
pressing the up or left arrow
keys on the keyboard to move
the scroll bar.

fmScrollActionLineDown 2 A small distance down on a
vertical scroll bar; a small
distance to the right on a
horizontal scroll bar. Movement
is equivalent to pressing the

down or right arrow keys on the
keyboard to move the scroll bar.

fmScrollActionPageUp 3 One page up on a vertical scroll
bar; one page to the left on a
horizontal scroll bar. Movement
is equivalent to pressing PAGE UP
on the keyboard to move the
scroll bar.

fmScrollActionPageDown 4 One page down on a vertical
scroll bar; one page to the right
on a horizontal scroll bar.
Movement is equivalent to
pressing PAGE DOWN on the
keyboard to move the scroll bar.

fmScrollActionBegin 5 The top of a vertical scroll bar;
the left end of a horizontal scroll
bar.

fmScrollActionEnd 6 The bottom of a vertical scroll
bar; the right end of a horizontal
scroll bar.

fmScrollActionPropertyChange 8 The value of either the ScrollTop
or the ScrollLeft property
changed. The direction and amount
of movement depend on which
property was changed and on the
new property value.

fmScrollActionControlRequest 9 A control asked its container to
scroll. The amount of movement
depends on the specific control
and container involved.

fmScrollActionFocusRequest 10 The user moved to a different
control. The amount of
movement depends on the
placement of the selected
control, and generally has the
effect of moving the selected
control so it is completely visible
to the user.

Remarks
The Scroll events associated with a form, Frame, or Page return the following arguments: ActionX,
ActionY, ActualX, and ActualY. ActionX and ActionY identify the action that occurred. ActualX and
ActualY identify the distance that the scroll box traveled.

The default action is to calculate the new position of the scroll box and then scroll to that position.

You can initiate a Scroll event by issuing a Scroll method for a form, Frame, or Page. Users can
generate Scroll events by moving the scroll box.

The Scroll event associated with the stand-alone ScrollBar indicates that the user moved the scroll
box in either direction. This event is not initiated when the value of the ScrollBar changes by code or
by the user clicking on parts of the ScrollBar other than the scroll box.

SpinDown, SpinUp Events
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtSpinDownC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtSpinDownX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3evtSpinDownA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtSpinDownS"}

SpinDown occurs when the user clicks the lower or left spin-button arrow. SpinUp occurs when the
user clicks the upper or right spin-button arrow.

Syntax
Private Sub object_SpinDown( )
Private Sub object_SpinUp( )
The SpinDown and SpinUp event syntaxes have these parts:

Part Description
object Required. A valid object.

Remarks
The SpinDown event decreases the Value property. The SpinUp event increases Value.

Zoom Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3evtZoomC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3evtZoomX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3evtZoomA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3evtZoomS"}

Occurs when the value of the Zoom property changes.

Syntax
For Frame
Private Sub object_Zoom( Percent As Integer)

For MultiPage
Private Sub object_Zoom( index As Long, Percent As Integer)

The Zoom event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the page in a MultiPage associated with

this event.
Percent Required. The percentage the form is to be zoomed. Valid

values range from 10 percent to 400 percent.

Remarks
The value of the Zoom property identifies how the size of the form or Page changes. The value of the
property indicates how the size of the control should change relative to its current size. Values less
than 100 reduce the displayed size of the form; values greater than 100 increase the displayed size of
the form.

You can set this property to any integer from 10 to 400.

Add Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthAddC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3mthAddX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3mthAddA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthAddS"}

Adds or inserts a Tab or Page in a TabStrip or MultiPage, or adds a control by its programmatic
identifier (ProgID) to a page or form.

Syntax
For MultiPage, TabStrip 
Set Object = object.Add( [Name [, Caption [, index]]])

For other controls
Set Control = object.Add(  ProgID [, Name [, Visible]])

The Add method syntax has these parts:

Part Description
object Required. A valid object name.
Name Optional. Specifies the name of the object being added. If a

name is not specified, the system generates a default name
based on the rules of the application where the form is used.

Caption Optional. Specifies the caption to appear on a tab or a control.
If a caption is not specified, the system generates a default
caption based on the rules of the application where the form is
used.

index Optional. Identifies the position of a page or tab within a Pages or
Tabs collection. If an index is not specified, the system appends
the page or tab to the end of the Pages or Tabs collection and
assigns the appropriate index value.

ProgID Required. Programmatic identifier. A text string with no spaces
that identifies an object class. The standard syntax for a ProgID
is <Vendor>.<Component>.<Version>. A ProgID is mapped to a
class identifier (CLSID).

 Visible Optional. True if the object is visible (default). False if the
object is hidden.

Settings
ProgID values for individual controls are:

CheckBox Forms.CheckBox.1
ComboBox Forms.ComboBox.1
CommandButton Forms.CommandButton.1
Frame Forms.Frame.1
Image Forms.Image.1
Label Forms.Label.1
ListBox Forms.ListBox.1
MultiPage Forms.MultiPage.1
OptionButton Forms.OptionButton.1
ScrollBar Forms.ScrollBar.1
SpinButton Forms.SpinButton.1
TabStrip Forms.TabStrip.1
TextBox Forms.TextBox.1

ToggleButton Forms.ToggleButton.1

Remarks
For a MultiPage control, the Add method returns a Page object. For a TabStrip, it returns a Tab
object. The index value for the first Page or Tab of a collection is 0, the value for the second Page or
Tab is 1, and so on.

For the Controls collection of an object, the Add method returns a control corresponding to the
specified ProgID. The AddControl event occurs after the control is added.

The following syntax will return the Text property of a control added at design time:
userform1.thebox.text
If you add a control at run time, you must use the exclamation syntax to reference properties of that
control. For example, to return the Text property of a control added at run time, use the following
syntax:
userform1!thebox.text
Note    You can change a control's Name property at run time only if you added that control at run
time with the Add method.

AddItem Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthAddItemC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthAddItemX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthAddItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthAddItemS"}

For a single-column list box or combo box, adds an item to the list. For a multicolumn list box or
combo box, adds a row to the list.

Syntax
Variant = object.AddItem( [item [, varIndex]])
The AddItem method syntax has these parts:

Part Description
object Required. A valid object.
Item Optional. Specifies the item or row to add. The number of the

first item or row is 0; the number of the second item or row is 1,
and so on.

varIndex Optional. Integer specifying the position within the object where
the new item or row is placed.

Remarks
If you supply a valid value for varIndex, the AddItem method places the item or row at that position
within the list. If you omit varIndex, the method adds the item or row at the end of the list.

The value of varIndex must not be greater than the value of the ListCount property.

For a multicolumn ListBox or ComboBox, AddItem inserts an entire row, that is, it inserts an item for
each column of the control. To assign values to an item beyond the first column, use the List or
Column property and specify the row and column of the item.

If the control is bound to data, the AddItem method fails.

Note    You can add more than one row at a time to a ComboBox or ListBox by using List.

Clear Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthClearC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthClearX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3mthClearA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthClearS"}

Removes all objects from an object or collection.

Syntax
object.Clear 
The Clear method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
For a MultiPage or TabStrip, the Clear method deletes individual pages or tabs.

For a ListBox or ComboBox, Clear removes all entries in the list.

For a Controls collection, Clear deletes controls that were created at run time with the Add method.
Using Clear on controls created at design time causes an error.

If the control is bound to data, the Clear method fails.

Copy Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthCopyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthCopyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3mthCopyA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthCopyS"}

Copies the contents of an object to the Clipboard.

Syntax
object.Copy 
The Copy method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The original content remains on the object.

The actual content that is copied depends on the object. For example, on a Page, the Copy method
copies the currently selected control or controls. On a TextBox or ComboBox, it copies the currently
selected text.

Using Copy for a form, Frame, or Page copies the currently-active control.

Cut Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthCutC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3mthCutX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3mthCutA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthCutS"}

Removes selected information from an object and transfers it to the Clipboard.

Syntax
object.Cut 
The Cut method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
For a ComboBox or TextBox, the Cut method removes currently selected text in the control to the
Clipboard. This method does not require that the control have the focus.

On a Page, Frame, or form, Cut removes currently selected controls to the Clipboard. This method
only removes controls created at run time.

DropDown Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthDropDownC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthDropDownX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthDropDownA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthDropDownS"}

Displays the list portion of a ComboBox.

Syntax
object.DropDown

The DropDown method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
Use the DropDown method to open the list in a combo box.

GetFormat Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthGetFormatC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthGetFormatX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthGetFormatA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthGetFormatS"}

Returns an integer value indicating whether a specific format is on the DataObject.

Syntax
Boolean = object.GetFormat( format)
The GetFormat method syntax has these parts:

Part Description
object Required. A valid object.
format Required. An integer or string specifying a specific format that

might exist in the DataObject. If the specified format exists in
the DataObject, GetFormat returns True.

Settings
The settings for format are:

Value Description
1 Text format.
A string or any
integer other than 1

A user-defined DataObject format passed to the
DataObject from SetText.

Remarks
The GetFormat method searches for a format in the current list of formats on the DataObject. If the
format is on the DataObject, GetFormat returns True; if not, GetFormat returns False.

The DataObject currently supports only text formats.

GetFromClipboard Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthGetFromClipboardC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthGetFromClipboardX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthGetFromClipboardA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthGetFromClipboardS"}

Copies data from the Clipboard to a DataObject.

Syntax
String = object.GetFromClipboard( )
The GetFromClipboard method syntax has these parts:

Part Description
object Required. A valid object name.

Remarks
The DataObject can contain multiple data items, but each item must be in a different format. For
example, the DataObject might include one text item and one item in a custom format; but cannot
include two text items.

GetText Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthGetTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthGetTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthGetTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthGetTextS"}

Retrieves a text string from the DataObject using the specified format.

Syntax
String = object.GetText( [format])
The GetText method syntax has these parts:

Part Description
object Required. A valid object name.
format Optional. A string or integer specifying the format of the data to

retrieve from the DataObject.

Settings
The settings for format are:

Value Description
1 Text format.
A string or any
integer other than 1

A user-defined DataObject format passed to the
DataObject from SetText.

Remarks
The DataObject supports multiple formats, but only supports one data item of each format. For
example, the DataObject might include one text item and one item in a custom format; but cannot
include two text items.

If no format is specified, the GetText method requests information in the Text format from the
DataObject.

Item Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthItemC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3mthItemX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3mthItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthItemS"}

Returns a member of a collection, either by position or by name.

Syntax
Set Object = object.Item(  collectionindex)
The Item method syntax has these parts:

Part Description
object Required. A valid object.
collectionindex Required. A member's position, or index, within a

collection.

Settings
The collectionindex can be either a string or an integer. If it is a string, it must be a valid member
name. If it is an integer, the minimum value is 0 and the maximum value is one less than the number
of items in the collection.

Remarks
If an invalid index or name is specified, an error occurs.

Move Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthMoveC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthMoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3mthMoveA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthMoveS"}

Moves a form or control, or moves all the controls in the Controls collection..

Syntax
For a form or control

object.Move([Left [, Top [, Width [, Height [, Layout]]]]])
For the Controls collection

object.Move(X, Y)
The Move method syntax has these parts:

Part Description
object Required. A valid object name.
Left Optional. Single-precision value, in points, indicating the

horizontal coordinate for the left edge of the object.
Top Optional. Single-precision value, in points, that specifies the

vertical coordinate for the top edge of the object.
Width Optional. Single-precision value, in points, indicating the width of

the object.
Height Optional. Single-precision value, in points, indicating the height

of the object.
Layout Optional. A Boolean value indicating whether the Layout event is

initiated for the control's parent following this move. False is the
default value.

X, Y Required. Single-precision value, in points, that specifies the
change from the current horizontal and vertical position for each
control in the Controls collection.

Settings
The maximum and minimum values for the Left, Top, Width, Height, X, and Y arguments vary from
one application to another.

Remarks
For a form or control, you can move a selection to a specific location relative to the edges of the form
that contains the selection.

You can use named arguments, or you can enter the arguments by position. If you use named
arguments, you can list the arguments in any order. If not, you must enter the arguments in the order
shown, using commas to indicate the relative position of arguments you do not specify. Any
unspecified arguments remain unchanged.

For the Controls collection, you can move all the controls in this collection a specific distance from
their current positions on a form, Frame, or Page.

Paste Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthPasteC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthPasteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3mthPasteA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthPasteS"}

Transfers the contents of the Clipboard to an object.

Syntax
object.Paste 
The Paste method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
Data pasted into a ComboBox or TextBox is treated as text.

When the paste method is used with a form, you can paste any object onto the form.

PutInClipboard Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthPutInClipboardC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthPutInClipboardX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthPutInClipboardA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthPutInClipboardS"}

Moves data from a DataObject to the Clipboard.

Syntax
object.PutInClipboard 
The PutInClipboard method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The PutInClipboard method replaces the contents of the Clipboard with the contents of the
DataObject that is in Text format.

RedoAction Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthRedoActionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthRedoActionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthRedoActionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthRedoActionS"}

Reverses the effect of the most recent Undo action.

Syntax
Boolean = object.RedoAction 
The RedoAction method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
Redo reverses the last Undo, which is not necessarily the last action taken. Not all actions can be
undone.

For example, after pasting text into a TextBox and then choosing the Undo command to remove the
text, you can choose the Redo command to put the text back in.

Note    If the CanRedo property is False, the Redo command is not available in the user interface,
and the RedoAction method is not valid in code.

RedoAction returns True if it was successful.

Remove Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthRemoveC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthRemoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthRemoveA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthRemoveS"}

Removes a member from a collection; or, removes a control from a Frame, Page, or form.

Syntax
object.Remove(  collectionindex)
The Remove method syntax has these parts:

Part Description
object Required. A valid object.
collectionindex Required. A member's position, or index, within a

collection. Numeric as well as string values are
acceptable. If the value is a number, the minimum value
is zero, and the maximum value is one less than the
number of members in the collection. If the value is a
string, it must correspond to a valid member name.

Remarks
This method deletes any control that was added at run time. However, attempting to delete a control
that was added at design time will result in an error.

RemoveItem Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthRemoveItemC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthRemoveItemX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthRemoveItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthRemoveItemS"}

Removes a row from the list in a list box or combo box.

Syntax
Boolean = object.RemoveItem(  index)
The RemoveItem method syntax has these parts:

Part Description
object Required. A valid object.
index Required. Specifies the row to delete. The number of the first

row is 0; the number of the second row is 1, and so on.

This method will not remove a row from the list if the ListBox is data bound (that is, when the
RowSource property specifies a data source for the ListBox).

Repaint Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthRepaintC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthRepaintX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthRepaintA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthRepaintS"}

Updates the display by redrawing the form or page.

Syntax
Boolean = object.Repaint 
The Repaint method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The Repaint method is useful if the contents or appearance of an object changes significantly, and
you don't want to wait until the system automatically repaints the area.

Scroll Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthScrollC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthScrollX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3mthScrollA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthScrollS"}

Moves the scroll bar on an object.

Syntax
object.Scroll( [ActionX [, ActionY]])
The Scroll method syntax has these parts:

Part Description
object Required. A valid object name.
ActionX Optional. Identifies the action to occur in the horizontal

direction.
ActionY Optional. Identifies the action to occur in the vertical direction.

Settings
The settings for ActionX and ActionY are:

Constant Value Description
fmScrollActionNoChange 0 Do not scroll in the specified

direction.
fmScrollActionLineUp 1 Move up on a vertical scroll bar

or left on a horizontal scroll bar.
Movement is equivalent to
pressing the up or left arrow key
on the keyboard to move the
scroll bar.

fmScrollActionLineDown 2 Move down on a vertical scroll
bar or right on a horizontal scroll
bar. Movement is equivalent to
pressing the right or down arrow
key on the keyboard to move the
scroll bar.

fmScrollActionPageUp 3 Move one pageup on a vertical
scroll bar or one page left on a
horizontal scroll bar. Movement
is equivalent to pressing PAGE UP
on the keyboard to move the
scroll bar.

fmScrollActionPageDown 4 Move one pagedown on a
vertical scroll bar or one page
right on a horizontal scroll bar.
Movement is equivalent to
pressing PAGE DOWN on the
keyboard to move the scroll bar.

fmScrollActionBegin 5 Move to the top of a vertical
scroll bar or to the left end of a
horizontal scroll bar.

fmScrollActionEnd 6 Move to the bottom of a vertical
scroll bar or to the right end of a

horizontal scroll bar.

Remarks
The Scroll method applies scroll bars that appear on a form, Frame, or Page that is larger than its
display area. This method does not apply to the stand-alone ScrollBar or to scroll bars that appear on
a TextBox.

SetDefaultTabOrder Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthSetDefaultTabOrderC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthSetDefaultTabOrderX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthSetDefaultTabOrderA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthSetDefaultTabOrderS"}

Sets the TabIndex property of each control on a form, using a default top-to-bottom, left-to-right tab
order.

Syntax
object.SetDefaultTabOrder 
The SetDefaultTabOrder method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
Microsoft Forms sets the tab order beginning with controls in the upper left corner of the form and
moving to the right. It places controls closest to the left edge of the form earlier in the tab order. If
more than one control is the same distance from the left edge of the form, tab order values are
assigned from top to bottom.

SetFocus Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthSetFocusC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthSetFocusX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthSetFocusA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthSetFocusS"}

Moves the focus to this instance of an object.

Syntax
object.SetFocus
The SetFocus method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
If setting the focus fails, the focus reverts to the previous object and an error is generated.

By default, setting the focus to a control does not activate the control's window or place it on top of
other controls.

The SetFocus method is valid for an empty Frame as well as a Frame that contains other controls.
An empty Frame will take the focus itself, and any subsequent keyboard events apply to the Frame.
In a Frame that contains other controls, the focus moves to the first control in the Frame, and
subsequent keyboard events apply to the control that has the focus.

SetText Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthSetTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthSetTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthSetTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthSetTextS"}

Copies a text string to the DataObject using a specified format.

Syntax
object.SetText(  StoreData [, format])
The SetText method syntax has these parts:

Part Description
object Required. A valid object.
StoreData Required. Defines the data to store on the DataObject.
format Optional. An integer or string specifying the format of

StoreData. When retrieving data from the DataObject, the
format identifies the piece of data to retrieve.

Settings
The settings for format are:

Value Description
1 Text format.
A string or integer
value other than 1

A user-defined DataObject format.

Remarks
The DataObject stores data according to its format. When the user supplies a string, the DataObject
saves the text under the specified format.

If the DataObject contains data in the same format as new data, the new data replaces the existing
data in the DataObject. If the new data is in a new format, the new data and the new format are both
added to the DataObject, and the previously existing data is there as well.

If no format is specified, the SetText method assigns the Text format to the text string. If a new format
is specified, the DataObject registers the new format with the system.

StartDrag Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthStartDragC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthStartDragX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthStartDragA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthStartDragS"}

Initiates a drag-and-drop operation for a DataObject.

Syntax
fmDropEffect=Object.StartDrag([Effect as fmDropEffect])

The StartDrag method syntax has these parts:

Part Description
Object Required. A valid object.
Effect Optional. Effect of the drop operation on the target control.

Settings
The settings for Effect are:

Constant Value Description
fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.
fmDropEffectCopy 1 Copies the drop source to the

drop target.
fmDropEffectMove 2 Moves the drop source to the

drop target.
fmDropEffectCopyOrMove 3 Copies or moves the drop source

to the drop target.

Remarks
The drag action starts at the current mouse pointer position with the current keyboard state and ends
when the user releases the mouse. The effect of the drag-and-drop operation depends on the effect
chosen for the drop target.

For example, a control’s MouseMove event might include the StartDrag method. When the user
clicks the control and moves the mouse, the mouse pointer changes to indicate whether Effect is valid
for the drop target.

UndoAction Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthUndoActionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthUndoActionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthUndoActionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthUndoActionS"}

Reverses the most recent action that supports the Undo command.

Syntax
Boolean = object.UndoAction 
The UndoAction method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The Undo command in the user interface uses the UndoAction method. For example, if you paste
text into a TextBox, you can use UndoAction to remove that text and restore the previous contents
of the TextBox.

Not all user actions can be undone. If an action cannot be undone, the Undo command is unavailable
following the action.

Note    If the CanUndo property is False, the Undo command is not available in the user interface,
and UndoAction is not valid in code.

If UndoAction is applied to a form, all changes to the current record are lost. If UndoAction is
applied to a control, only the control itself is affected.

You must apply this method before the form or control is updated. You may want to include this
method in a form's BeforeUpdate event or a control's Change event.

UndoAction is an alternative to using the SendKeys Statement to send the value of ESC in an event
procedure.

ZOrder Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3mthZOrderC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3mthZOrderX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3mthZOrderA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3mthZOrderS"}

Places the object at the front or back of the z-order.

Syntax
object.ZOrder( [zPosition])
The ZOrder method syntax has these parts:

Part Description
object Required. A valid object.
zPosition Optional. A control's position, front or back, in the container's

z-order.

Settings
The settings for zPosition are:

Constant Value Description
fmTop 0 Places the control at the front of the z-order.

The control appears on top of other controls
(default).

 fmBottom 1 Places the control at the back of the z-order.
The control appears underneath other controls.

Remarks
The z-order determines how windows and controls are stacked when they are presented to the user.
Items at the back of the z-order are overlaid by closer items; items at the front of the z-order appear to
be on top of items at the back. When the zPosition argument is omitted, the object is brought to the
front.

In design mode, the Bring to Front or Send To Back commands set the z-order. Bring to Front is
equivalent to using the ZOrder method and putting the object at the front of the z-order. Send to Back
is equivalent to using ZOrder and putting the object at the back of the z-order.

This method does not affect content or sequence of the controls in the Controls collection.

Note You can't Undo or Redo layering commands, such as Send to Back or Bring to Front. For
example, if you select an object and click Move Backward on the shortcut menu, you won't be able to
Undo or Redo that action.

Accelerator Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proAcceleratorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proAcceleratorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proAcceleratorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proAcceleratorS"}

Sets or retrieves the accelerator key for a control.

Syntax
object.Accelerator [= String]

The Accelerator property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. The character to use as the accelerator key.

Remarks
To designate an accelerator key, enter a single character for the Accelerator property. You can set
Accelerator in the control's property sheet or in code. If the value of this property contains more than
one character, the first character in the string becomes the value of Accelerator.
When an accelerator key is used, there is no visual feedback (other than focus) to indicate that the
control initiated the Click event. For example, if the accelerator key applies to a CommandButton,
the user will not see the button pressed in the interface. The button receives the focus, however,
when the user presses the accelerator key.

If the accelerator applies to a Label, the control following the Label in the tab order, rather than the
Label itself, receives the focus.

ActiveControl Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proActiveControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proActiveControlX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proActiveControlA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proActiveControlS"}

Identifies and allows manipulation of the control that has the focus.

Syntax
object.ActiveControl
The ActiveControl property syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The ActiveControl property is read-only and is set when you select a control in the interface. You can
use ActiveControl as a substitute for the control name when setting properties or calling methods.

Alignment Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proAlignmentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proAlignmentX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proAlignmentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proAlignmentS"}

Specifies the position of a control relative to its caption.

Syntax
object.Alignment [= fmAlignment]

The Alignment property syntax has these parts:

Part Description
object Required. A valid object.
fmAlignment Optional. Caption position.

Settings
The settings for fmAlignment are:

Constant Value Description
fmAlignmentLeft 0 Places the caption to the left of the control.
fmAlignmentRight 1 Places the caption to the right of the

control (default).

Remarks
The caption text for a control is left-aligned.

Note      Although the Alignment property exists on the ToggleButton, the property is disabled. You
cannot set or return a value for this property on the ToggleButton.

AutoSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proAutoSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proAutoSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proAutoSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proAutoSizeS"}

Specifies whether an object automatically resizes to display its entire contents.

Syntax
object.AutoSize [= Boolean]

The AutoSize property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the control is resized.

Settings
The settings for Boolean are:

Value Description
True Automatically resizes the control to display its entire contents.
False Keeps the size of the control constant. Contents are clipped

when they exceed the area of the control (default).

Remarks
For controls with captions, the AutoSize property specifies whether the control automatically adjusts
to display the entire caption.

For controls without captions, this property specifies whether the control automatically adjusts to
display the information stored in the control. In a ComboBox, for example, setting AutoSize to True
automatically sets the width of the display area to match the length of the current text.

For a single-line text box, setting AutoSize to True automatically sets the width of the display area to
the length of the text in the text box.

For a multiline text box that contains no text, setting AutoSize to True automatically displays the text
as a column. The width of the text column is set to accommodate the widest letter of that font size.
The height of the text column is set to display the entire text of the TextBox.

For a multiline text box that contains text, setting AutoSize to True automatically enlarges the
TextBox vertically to display ithe entire text. The width of the TextBox does not change.

Note If you manually change the size of a control while AutoSize is True, the manual change
overrides the size previously set by AutoSize.

AutoTab Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proAutoTabC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proAutoTabX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proAutoTabA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proAutoTabS"}

Specifies whether an automatic tab occurs when a user enters the maximum allowable number of
characters into a TextBox or the text box portion of a ComboBox.

Syntax
object.AutoTab [= Boolean]

The AutoTab property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether an automatic tab occurs.

Settings
The settings for Boolean are:

Value Description
True Tab occurs.
False Tab does not occur (default).

Remarks
The MaxLength property specifies the maximum number of characters allowed in a TextBox or the
text box portion of a ComboBox.

You can specify the AutoTab property for a TextBox or ComboBox on a form for which you usually
enter a set number of characters. Once a user enters the maximum number of characters, the focus
automatically moves to the next control in the tab order. For example, if a TextBox displays inventory
stock numbers that are always five characters long, you can use MaxLength to specify the maximum
number of characters to enter into the TextBox and AutoTab to automatically tab to the next control
after the user enters five characters.

Support for AutoTab varies from one application to another. Not all containers support this property.

AutoWordSelect Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proAutoWordSelectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proAutoWordSelectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proAutoWordSelectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proAutoWordSelectS"}

Specifies whether a word or a character is the basic unit used to extend a selection.

Syntax
object.AutoWordSelect [= Boolean]

The AutoWordSelect property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies the basic unit used to extend a selection.

Settings
The settings for Boolean are:

Value Description
True Uses a word as the basic unit (default).
False Uses a character as the basic unit.

Remarks
The AutoWordSelect property specifies how the selection extends or contracts in the edit region of a
TextBox or ComboBox.

If the user places the insertion point in the middle of a word and then extends the selection while
AutoWordSelect is True, the selection includes the entire word.

BackColor Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proBackColorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proBackColorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proBackColorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proBackColorS"}

Specifies the background color of the object.

Syntax
object.BackColor [= Long]

The BackColor property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A value or constant that determines the

background color of an object.

Settings
You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from zero to 255. For example, you can specify teal blue as the integer value 4966415 or
as red, green, and blue color components 15, 200, 75.

Remarks
You can only see the background color of an object if the BackStyle property is set to
fmBackStyleOpaque.

BackStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proBackStyleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proBackStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proBackStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proBackStyleS"}

Returns or sets the background style for an object.

Syntax
object.BackStyle [= fmBackStyle]

The BackStyle property syntax has these parts:

Part Description
object Required. A valid object.
fmBackStyle Optional. Specifies the control background.

Settings
The settings for fmBackStyle are:

Constant Value Description
fmBackStyleTransparent 0 The background is transparent.
fmBackStyleOpaque 1 The background is opaque (default).

Remarks
The BackStyle property determines whether a control is transparent. If BackStyle is
fmBackStyleOpaque, the control is not transparent and you cannot see anything behind the control
on a form. If BackStyle is fmBackStyleTransparent, you can see through the control and look at
anything on the form located behind the control.

Note    BackStyle does not affect the transparency of bitmaps. You must use a picture editor such as
Paintbrush to make a bitmap transparent. Not all controls support transparent bitmaps.

Bold, Italic, Size, StrikeThrough, Underline, Weight Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proBoldC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3proBoldX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proBoldA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proBoldS"}

Specifies the visual attributes of text on a displayed or printed form.

Syntax
object.Bold [= Boolean]
object.Italic [= Boolean]
object.Size [= Currency]
object.StrikeThrough [= Boolean]
object.Underline [= Boolean]
object.Weight [= Integer]

The Bold, Italic, Size, StrikeThrough, Underline, and Weight property syntaxes have these parts:

Part Description
object Required. A valid object name.
Boolean Optional. Specifies the font style.
Currency Optional. A number indicating the font size.
Integer Optional. Specifies the font style.

The settings for Boolean are:

Value Description
True The text has the specified attribute (that is bold, italic, size,

strikethrough or underline marks, or weight).
False The text does not have the specified attribute (default).

The Weight property accepts values from 0 to 1000. A value of zero allows the system to pick the
most appropriate weight. A value from 1 to 1000 indicates a specific weight, where 1 represents the
lightest type and 1000 represents the darkest type.

Remarks
These properties define the visual characteristics of text. The Bold property determines whether text
is normal or bold. The Italic property determines whether text is normal or italic. The Size property
determines the height, in points, of displayed text. The Underline property determines whether text is
underlined. The StrikeThrough property determines whether the text appears with strikethrough
marks. The Weight property determines the darkness of the type.

The font's appearance on screen and in print may differ, depending on your computer and printer. If
you select a font that your system can't display with the specified attribute or that isn't installed,
Windows substitutes a similar font. The substitute font will be as similar as possible to the font
originally requested.

Changing the value of Bold also changes the value of Weight. Setting Bold to True sets Weight to
700; setting Bold to False sets Weight to 400. Conversely, setting Weight to anything over 550 sets
Bold to True; setting Weight to 550 or less sets Bold to False.

The default point size is determined by the operating system.

BorderColor Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proBorderColorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proBorderColorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proBorderColorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proBorderColorS"}

Specifies the color of an object's border.

Syntax
object.BorderColor [= Long]

The BorderColor property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A value or constant that determines the border

color of an object.

Settings
You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from zero to 255. For example, you can specify teal blue as the integer value 4966415 or
as RGB color component values 15, 200, 75.

Remarks
To use the BorderColor property, the BorderStyle property must be set to a value other than
fmBorderStyleNone.

BorderStyle uses BorderColor to define the border colors. The SpecialEffect property uses system
colors exclusively to define its border colors. For Windows operating systems, system color settings
are part of the Control Panel and are found in the Appearance tab of the Display folder. In Windows
NT 3.51, system color settings are stored in the Color folder of the Control Panel.

BorderStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proBorderStyleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proBorderStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proBorderStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proBorderStyleS"}

Specifies the type of border used by a control or a form.

Syntax
object.BorderStyle [= fmBorderStyle]

The BorderStyle property syntax has these parts:

Part Description
object Required. A valid object.
fmBorderStyle Optional. Specifies the border style.

Settings
The settings for fmBorderStyle are:

Constant Value Description
fmBorderStyleNone 0 The control has no visible border line.
fmBorderStyleSingle 1 The control has a single-line border

(default).

The default value for a ComboBox, Frame, Label, ListBox or TextBox is 0 (None). The default
value for an Image is 1 (Single).

Remarks
For a Frame, the BorderStyle property is ignored if the SpecialEffect property is None.

You can use either BorderStyle or SpecialEffect to specify the border for a control, but not both. If
you specify a nonzero value for one of these properties, the system sets the value of the other
property to zero. For example, if you set BorderStyle to fmBorderStyleSingle, the system sets
SpecialEffect to zero (Flat). If you specify a nonzero value for SpecialEffect, the system sets
BorderStyle to zero.

BorderStyle uses BorderColor to define the colors of its borders.

BoundColumn Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proBoundColumnC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proBoundColumnX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proBoundColumnA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proBoundColumnS"}

Identifies the source of data in a multicolumn ComboBox or ListBox.

Syntax
object.BoundColumn [= Variant]

The BoundColumn property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. Indicates how the BoundColumn value is selected.

Settings
The settings for Variant are:

Value Description
0 Assigns the value of the ListIndex property to the control.
1 or greater Assigns the value from the specified column to the control.

Columns are numbered from 1 when using this property
(default).

Remarks
When the user chooses a row in a multicolumn ListBox or ComboBox, the BoundColumn property
identifies which item from that row to store as the value of the control. For example, if each row
contains 8 items and BoundColumn is 3, the system stores the information in the third column of the
currently-selected row as the value of the object.

You can display one set of data to users but store different, associated values for the object by using
the BoundColumn and the TextColumn properties. TextColumn identifies the column of data
displayed in a ComboBox or ListBox; BoundColumn identifies the column of associated data
values stored for the control. For example, you could set up a multicolumn ListBox that contains the
names of holidays in one column and dates for the holidays in a second column. To present the
holiday names to users, specify the first column as the TextColumn. To store the dates of the
holidays, specify the second column as the BoundColumn.

If the control is bound to a data source, the value in the column specified by BoundColumn is stored
in the data source named in the ControlSource property.

The ListIndex value retrieves the number of the selected row. For example, if you want to know the
row of the selected item, set BoundColumn to 0 to assign the number of the selected row as the
value of the control. Be sure to retrieve a current value, rather than relying on a previously saved
value, if you are referencing a list whose contents might change.

The Column, List, and ListIndex properties all use zero-based numbering. That is, the value of the
first item (column or row) is zero; the value of the second item is one, and so on. This means that if
BoundColumn is set to 3, you could access the value stored in that column using the expression
Column(2).

BoundValue Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proBoundValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proBoundValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proBoundValueA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proBoundValueS"}

Contains the value of a control when that control receives the focus.

Syntax
object.BoundValue [= Variant]

The BoundValue property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The current state or content of the control.

Settings
Control Description
CheckBox An integer value indicating whether the item is

selected:
Null Indicates the item is in a null state, neither
selected nor cleared.
–1 True. Indicates the item is selected.
 0 False. Indicates the item is cleared.

OptionButton Same as CheckBox.
ToggleButton Same as CheckBox.
ScrollBar An integer between the values specified for the

Max and Min properties.
SpinButton Same as ScrollBar.
ComboBox, ListBox The value in the BoundColumn of the currently

selected rows.
CommandButton Always False.
MultiPage An integer indicating the currently active page.

Zero (0) indicates the first page. The maximum
value is one less than the number of pages.

TextBox The text in the edit region.

Remarks
BoundValue applies to the control that has the focus.

The contents of the BoundValue and Value properties are identical most of the time. When the user
edits a control so that its value changes, the contents of BoundValue and Value are different until the
change is final.

Several things occur when the user changes the value of a control. For example, if a user changes
the text in a TextBox, the following things occur:

1. The Change event is initiated. At this time the Value property contains the new text and
BoundValue contains the previous text.

2. The BeforeUpdate event is initiated.
3. The AfterUpdate event is initiated. The values for BoundValue and Value are once again

identical, containing the new text.

BoundValue cannot be used with a multi-select list box.

Cancel Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCancelC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proCancelX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proCancelA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCancelS"}

Returns or sets a value indicating whether a command button is the Cancel button on a form.

Syntax
object.Cancel [= Boolean]

The Cancel property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the object is the Cancel button.

Settings
The settings for Boolean are:

Value Description
True The CommandButton is the Cancel button.
False The CommandButton is not the Cancel button (default).

Remarks
A CommandButton or an object that acts like a command button can be designated as the default
command button. For OLE container controls, the Cancel property is provided only for those objects
that specifically behave as command buttons.

Only one CommandButton on a form can be the Cancel button. Setting Cancel to True for one
command button automatically sets it to False for all other objects on the form. When a
CommandButton's Cancel property is set to True and the form is the active form, the user can
choose the command button by clicking it, pressing ESC, or pressing ENTER when the button has the
focus.

A typical use of Cancel is to give the user the option of canceling uncommitted changes and returning
the form to its previous state.

You should consider making the Cancel button the default button for forms that support operations
that can’t be undone (such as delete). To do this, set both Cancel and the Default property to True.

CanPaste Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCanPasteC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proCanPasteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proCanPasteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCanPasteS"}

Specifies whether the Clipboard contains data that the object supports.

Syntax
object.CanPaste
The CanPaste property syntax has these parts:

Part Description
object Required. A valid object.

Return Values
The CanPaste property return values are:

Value Description
True The object underneath the mouse pointer can receive

information pasted from the Clipboard (default).
False The object underneath the mouse pointer cannot receive

information pasted from the Clipboard.

Remarks
CanPaste is read-only.

If the Clipboard data is in a format that the current target object does not support, the CanPaste
property is False. For example, if you try to paste a bitmap into an object that only supports text,
CanPaste will be False.

CanRedo Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCanRedoC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proCanRedoX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proCanRedoA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCanRedoS"}

Indicates whether the most recent Undo can be reversed.

Syntax
object.CanRedo
The CanRedo property syntax has these parts:

Part Description
object Required. A valid object.

Return Values
The CanRedo property return values are:

Value Description
True The most recent Undo can be reversed.
False The most recent Undo is irreversible.

Remarks
CanRedo is read-only.

To Redo an action means to reverse an Undo; it does not necessarily mean to repeat the last user
action.

The following user actions illustrate using Undo and Redo:

1. Change the setting of an option button.
2. Enter text into a text box.
3. Click Undo. The text disappears from the text box.
4. Click Undo. The option button reverts to its previous setting.
5. Click Redo. The value of the option button changes.
6. Click Redo. The text reappears in the text box.

CanUndo Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCanUndoC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proCanUndoX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proCanUndoA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCanUndoS"}

Indicates whether the last user action can be undone.

Syntax
object.CanUndo
The CanUndo property syntax has these parts:

Part Description
object Required. A valid object.

Return Values
The CanUndo property return values are:

Value Description
True The most recent user action can be undone.
False The most recent user action cannot be undone.

Remarks
CanUndo is read-only.

Many user actions can be undone with the Undo command. The CanUndo property indicates whether
the most recent action can be undone.

Caption Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCaptionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proCaptionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proCaptionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCaptionS"}

Descriptive text that appears on an object to identify or describe it.

Syntax
object.Caption [= String]

The Caption property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. A string expression that evaluates to the text

displayed as the caption.

Settings
The default setting for a control is a unique name based on the type of control. For example,
CommandButton1 is the default caption for the first command button in a form.

Remarks
The text identifies or describes the object with which it is associated. For buttons and labels, the
Caption property specifies the text that appears in the control. For Page and Tab objects, it specifies
the text that appears on the tab.

If a control's caption is too long, the caption is truncated. If a form's caption is too long for the title bar,
the title is displayed with an ellipsis.

The ForeColor property of the control determines the color of the text in the caption.

Tip If a control has both the Caption and AutoSize properties, setting AutoSize to True
automatically adjusts the size of the control to frame the entire caption.

ClientHeight, ClientLeft, ClientTop, ClientWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proClientHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proClientHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proClientHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proClientHeightS"}

Define the dimensions and location of the display area of a TabStrip.

Syntax
object.ClientHeight [=Single]
object.ClientLeft [=Single]
object.ClientTop [=Single]
object.ClientWidth [=Single]

The ClientHeight, ClientLeft, ClientTop, and ClientWidth property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. For ClientHeight and ClientWidth, specifies the height

or width, in points, of the display area. For ClientLeft and
ClientTop, specifies the distance, in points, from the top or left
edge of the TabStrip’s container.

Remarks
At run time, ClientLeft, ClientTop, ClientHeight, and ClientWidth automatically store the
coordinates and dimensions of the TabStrip's internal area, which is shared by objects in the
TabStrip.

Column Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proColumnC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proColumnX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proColumnA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proColumnS"}

Specifies one or more items in a ListBox or ComboBox.

Syntax
object.Column(column, row) [= Variant]

The Column property syntax has these parts:

Part Description
object Required. A valid object.
column Optional. An integer with a range from 0 to one less than the

total number of columns.
row Optional. An integer with a range from 0 to one less than the

total number of rows.
Variant Optional. Specifies a single value, a column of values, or a two-

dimensional array to load into a ListBox or ComboBox.

Settings
If you specify both the column and row values, Column reads or writes a specific item.

If you specify only the column value, the Column property reads or writes the specified column in the
current row of the object. For example, MyListBox.Column (3) reads or writes the third column in
MyListBox.

Column returns a Variant from the cursor. When a built-in cursor provides the value for Variant (such
as when using the AddItem method), the value is a string. When an external cursor provides the
value for Variant, formatting associated with the data is not included in the Variant.

Remarks
You can use Column to assign the contents of a combo box or list box to another control, such as a
text box. For example, you can set the ControlSource property of a text box to the value in the
second column of a list box.

If the user makes no selection when you refer to a column in a combo box or list box, the Column
setting is Null. You can check for this condition by using the IsNull function.

You can also use Column to copy an entire two-dimensional array of values to a control. This syntax
lets you quickly load a list of choices rather than individually loading each element of the list using
AddItem.

Note    When copying data from a two-dimensional array, Column transposes the contents of the
array in the control so that the contents of ListBox1.Column(X, Y) is the same as MyArray(Y, X). You
can also use List to copy an array without transposing it.

ColumnCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proColumnCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proColumnCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proColumnCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proColumnCountS"}

Specifies the number of columns to display in a list box or combo box.

Syntax
object.ColumnCount [= Long]

The ColumnCount property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. Specifies the number of columns to display.

Remarks
If you set the ColumnCount property for a list box to 3 on an employee form, one column can list last
names, another can list first names, and the third can list employee ID numbers.

Setting ColumnCount to 0 displays zero columns, and setting it to -1 displays all the available
columns. For an unbound data source, there is a 10-column limit (0 to 9).

You can use the ColumnWidths property to set the width of the columns displayed in the control.

ColumnHeads Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proColumnHeadsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proColumnHeadsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proColumnHeadsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proColumnHeadsS"}

Displays a single row of column headings for list boxes, combo boxes, and objects that accept
column headings.

Syntax
object.ColumnHeads [= Boolean]

The ColumnHeads property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the column headings are displayed.

Settings
The settings for Boolean are:

Value Description
True Display column headings.
False Do not display column headings (default).

Headings in combo boxes appear only when the list drops down.

Remarks
When the system uses the first row of data items as column headings, they can't be selected.

ColumnWidths Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proColumnWidthsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proColumnWidthsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proColumnWidthsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proColumnWidthsS"}

Specifies the width of each column in a multicolumn combo box or list box.

Syntax
object.ColumnWidths [= String]

The ColumnWidths property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. Sets the column width in points. A setting of –1 or

blank results in a calculated width. A width of 0 hides a column.
To specify a different unit of measurement, include the unit of
measure. A value greater than 0 explicitly specifies the width of
the column.

Settings
To separate column entries, use semicolons (;) as list separators. Or use the list separator specified in
the Regional Settings section of the Windows Control Panel.

Any or all of the ColumnWidths property settings can be blank. You create a blank setting by typing a
list separator without a preceding value.

If you specify a –1 in the property page, the displayed value in the property page is a blank.

To calculate column widths when ColumnWidths is blank or –1, the width of the control is divided
equally among all columns of the list. If the sum of the specified column widths exceeds the width of
the control, the list is left-aligned within the control and one or more of the rightmost columns are not
displayed. Users can scroll the list using the horizontal scroll bar to display the rightmost columns.

The minimum calculated column width is 72 points (1 inch). To produce columns narrower than this,
you must specify the width explicitly.

Unless specified otherwise, column widths are measured in points. To specify another unit of
measure, include the units as part of the values. The following examples specify column widths in
several units of measure and describe how the various settings would fit in a three-column list box
that is 4 inches wide.

Setting Effect
90;72;90 The first column is 90 points (1.25 inch); the second

column is 72 points (1 inch); the third column is 90 points.
6 cm;0;6 cm The first column is 6 centimeters; the second column is

hidden; the third column is 6 centimeters. Because part of
the third column is visible, a horizontal scroll bar appears.

1.5 in;0;2.5 in The first column is 1.5 inches, the second column is
hidden, and the third column is 2.5 inches.

2 in;;2 in The first column is 2 inches, the second column is 1 inch
(default), and the third column is 2 inches. Because only
half of the third column is visible, a horizontal scroll bar
appears.

(Blank) All three columns are the same width (1.33 inches).

Remarks

In a combo box, the system displays the column designated by the TextColumn property in the text
box portion of the control.

ControlSource Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proControlSourceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proControlSourceX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proControlSourceA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proControlSourceS"}

Identifies the data location used to set or store the Value property of a control.

Syntax
object.ControlSource [= String]

The ControlSource property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. Specifies the worksheet cell linked to the Value

property of a control.

Remarks
The ControlSource property identifies a cell or field; it does not contain the data stored in the cell or
field. If you change the Value of the control, the change is automatically reflected in the linked cell or
field. Similarly, if you change the value of the linked cell or field, the change is automatically reflected
in the Value of the control.

You cannot specify another control for the ControlSource. Doing so causes an error.

The default value for ControlSource is an empty string. If ControlSource contains a value other
than an empty string, it identifies a linked cell or field. The contents of that cell or field are
automatically copied to the Value property when the control is loaded.

Note If the Value property is Null, no value appears in the location identified by ControlSource.

ControlTipText Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proControlTipTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proControlTipTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proControlTipTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proControlTipTextS"}

Specifies text that appears when the user briefly holds the mouse pointer over a control without
clicking.

Syntax
object.ControlTipText [= String]

The ControlTipText property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. The text that appears when the user holds the mouse

pointer over a control.

Remarks
The ControlTipText property lets you give users tips about a control in a running form. The property
can be set during design time but only appears by the control during run time.

The default value of ControlTipText is an empty string. When the value of ControlTipText is set to
an empty string, no tip is available for that control.

Count Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proCountA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCountS"}

Returns the number of objects in a collection.

Syntax
object.Count
The Count property syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The Count property is read only.

Note that the index value for the first page or tab of a collection is zero, the value for the second page
or tab is one, and so on. For example, if a MultiPage contains two pages, the indexes of the pages
are 0 and 1, and the value of Count is 2.

CurLine Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCurLineC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proCurLineX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proCurLineA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCurLineS"}

Specifies the current line of a control.

Syntax
object.CurLine [= Long]

The CurLine property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. Specifies the current line of a control.

Remarks
The current line of a control is the line that contains the insertion point. The number of the first line is
zero.

The CurLine property is valid when the control has the focus.

CurTargetX Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCurTargetXC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proCurTargetXX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proCurTargetXA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCurTargetXS"}

Retrieves the preferred horizontal position of the insertion point in a multiline TextBox or ComboBox.

Syntax
object.CurTargetX
The CurTargetX property syntax has these parts:

Part Description
object Required. A valid object.

Return Values
The CurTargetX property retrieves the preferred position, measured in himetric units. A himetric is
0.0001 meter.

Remarks
The target position is relative to the left edge of the control. If the length of a line is less than the value
of the CurTargetX property, you can place the insertion point at the end of the the line. The value of
CurTargetX changes when the user sets the insertion point or when the CurX property is set.
CurTargetX is read-only.

The return value is valid when the object has focus.

You can use CurTargetX and CurX to move the insertion point as the user scrolls through the
contents of a multiline TextBox or ComboBox. When the user moves the insertion point to another
line of text by scrolling the content of the object, CurTargetX specifies the preferred position for the
insertion point. CurX is set to this value if the line of text is longer than the value of CurTargetX.
Otherwise, CurX is set to the end of the line of text.

CurX Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCurXC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3proCurXX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proCurXA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCurXS"}

Specifies the current horizontal position of the insertion point in a multiline TextBox or ComboBox.

Syntax
object.CurX [= Long]

The CurX property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. Indicates the current position, measured in himetrics.

A himetric is 0.0001 meter.

Remarks
The CurX property applies to a multiline TextBox or ComboBox. The return value is valid when the
object has the focus.

You can use CurTargetX and CurX to position the insertion point as the user scrolls through the
contents of a multiline TextBox or ComboBox. When the user moves the insertion point to another
line of text by scrolling the content of the object, CurTargetX specifies the preferred position for the
insertion point. CurX is set to this value if the line of text is longer than the value of CurTargetX.
Otherwise, CurX is set to the end of the line of text.

Cycle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proCycleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proCycleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proCycleA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proCycleS"}

Specifies the action to take when the user leaves the last control on a Frame or Page.

Syntax
object.Cycle [= fmCycle]

The Cycle property syntax has these parts:

Part Description
object Required. A valid object.
fmCycle Optional. Specifies whether cycling includes controls nested

in a Frame or MultiPage.

Settings
The settings for fmCycle are:

Constant Value Description
fmCycleAllForms 0 Cycles through the controls on the form

and the controls of the Frame and
MultiPage controls that are currently
displayed on the form.

fmCycleCurrentForm 2 Cycles through the controls on the form,
Frame, or MultiPage. The focus stays
within the form, Frame, or MultiPage until
the focus is explicitly set to a control
outside the form, Frame, or MultiPage.

If you specify a non-integer value for Cycle, the value is rounded up to the nearest integer.

Remarks
The tab order identifies the order in which controls receive the focus as the user tabs through a form
or subform. The Cycle property determines the action to take when a user tabs from the last control in
the tab order.

The fmCycleAllForms setting transfers the focus to the the first control of the next Frame or
MultiPage on the form when the user tabs from the last control in the tab order.

The fmCycleCurrentForm setting transfers the focus to the the first control of the same form, Frame,
or MultiPage when the user tabs from the last control in the tab order.

Default Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proDefaultC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proDefaultX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proDefaultA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proDefaultS"}

Designates the default command button on a form.

Syntax
object.Default [= Boolean]

The Default property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the command button is the default.

Settings
The settings for Boolean are:

Value Description
True The CommandButton is the default button.
False The CommandButton is not the default button (default).

Remarks
A CommandButton or an object that acts like a command button can be designated as the default
command button. Only one object on a form can be the default command button. Setting the Default
property to True for one object automatically sets it to False for all other objects on the form.

To choose the default command button on an active form, the user can click the button, or press
ENTER when no other CommandButton has the focus. Pressing ENTER when no other
CommandButton has the focus also initiates the KeyUp event for the default command button.

Default is provided for OLE container controls that specifically act like CommandButton controls.

Tip You should consider making the Cancel button the default button for forms that support
operations that can’t be undone (such as delete). To do this, set both Default and the Cancel
property to True.

Delay Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proDelayC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proDelayX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proDelayA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proDelayS"}

Specifies the delay for the SpinUp, SpinDown, and Change events on a SpinButton or ScrollBar.

Syntax
object.Delay [= Long]

The Delay property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. The delay, in milliseconds, between events.

Remarks
The Delay property affects the amount of time between consecutive SpinUp, SpinDown, and Change
events generated when the user clicks and holds down a button on a SpinButton or ScrollBar. The
first event occurs immediately. The delay to the second occurrence of the event is five times the value
of the specified Delay. This initial lag makes it easy to generate a single event rather than a stream of
events.

After the initial lag, the interval between events is the value specified for Delay.

The default value of Delay is 50 milliseconds. This means the object initiates the first event after 250
milliseconds (5 times the specified value) and initiates each subsequent event after 50 milliseconds.

DragBehavior Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proDragBehaviorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proDragBehaviorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proDragBehaviorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proDragBehaviorS"}

Specifies whether the system enables the drag-and-drop feature for a TextBox or ComboBox.

Syntax
object.DragBehavior [= fmDragBehavior]

The DragBehavior property syntax has these parts:

Part Description
object Required. A valid object.
fmDragBehavior Optional. Specifies whether the drag-and-drop feature is

enabled.

Settings
The settings for fmDragBehavior are:

Constant Value Description
fmDragBehaviorDisabled 0 Does not allow a drag-and-drop

action (default).
fmDragBehaviorEnabled 1 Allows a drag-and-drop action.

Remarks
If the DragBehavior property is enabled, dragging in a text box or combo box starts a drag-and-drop
operation on the selected text. If DragBehavior is disabled, dragging in a text box or combo box
selects text.

The drop-down portion of a ComboBox does not support drag-and-drop processes, nor does it
support selection of list items within the text.

DragBehavior has no effect on a ComboBox whose Style property is set to fmStyleDropDownList.
Note    You can combine the effects of the EnterFieldBehavior property and DragBehavior to create
a large number of text box styles.

DrawBuffer Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proDrawBufferC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proDrawBufferX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proDrawBufferA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proDrawBufferS"}

Specifies the number of pixels set aside for off-screen memory in rendering a frame.

Syntax
object.DrawBuffer [= value]

Part Description
object Required. A valid object name.
value An integer from 16,000 through 1,048,576 equal to the maximum

number of pixels the object can render off-screen.

Remarks
The DrawBuffer property specifies the maximum number of pixels that can be drawn at one time as
the display repaints. The actual memory used by the object depends upon the screen resolution of the
display. If you set a large value for DrawBuffer, performance will be slower. A large buffer only helps
when several large images overlap.

Use the Properties window to specify the value of DrawBuffer.

DropButtonStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proDropButtonStyleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proDropButtonStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proDropButtonStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proDropButtonStyleS"}

Specifies the symbol displayed on the drop button in a ComboBox.

Syntax
object.DropButtonStyle [= fmDropButtonStyle]

The DropButtonStyle property syntax has these parts:

Part Description
object Required. A valid object.
fmDropButtonStyle Optional. The appearance of the drop button.

Settings
The settings for fmDropButtonStyle are:

Constant Value Description
fmDropButtonStylePlain 0 Displays a plain button, with no

symbol.
fmDropButtonStyleArrow 1 Displays a down arrow (default).
fmDropButtonStyleEllipsis 2 Displays an ellipsis ().
fmDropButtonStyleReduce 3 Displays a horizontal line like an

underscore character.

Remarks
The recommended setting for showing items in a list is fmDropButtonStyleArrow. If you want to use
the drop button in another way, such as to display a dialog box, specify fmDropButtonStyleEllipsis,
fmDropButtonStylePlain, or fmDropButtonStyleReduce and trap the DropButtonClick event.

Enabled Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proEnabledC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proEnabledX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proEnabledA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proEnabledS"}

Specifies whether a control can receive the focus and respond to user-generated events.

Syntax
object.Enabled [= Boolean]

The Enabled property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the object can respond to user-generated

events.

Settings
The settings for Boolean are:

Value Description
True The control can receive the focus and respond to user-

generated events, and is accessible through code (default).
False The user cannot interact with the control by using the mouse,

keystrokes, accelerators, or hotkeys. The control is generally
still accessible through code.

Remarks
Use the Enabled property to enable and disable controls. A disabled control appears dimmed, while
an enabled control does not. Also, if a control displays a bitmap, the bitmap is dimmed whenever the
control is dimmed. If Enabled is False for an Image, the control does not initiate events but does not
appear dimmed.

The Enabled and Locked properties work together to achieve the following effects:

· If Enabled and Locked are both True, the control can receive focus and appears normally (not
dimmed) in the form. The user can copy, but not edit, data in the control.

· If Enabled is True and Locked is False, the control can receive focus and appears normally in the
form. The user can copy and edit data in the control.

· If Enabled is False and Locked is True, the control cannot receive focus and is dimmed in the
form. The user can neither copy nor edit data in the control.

· If Enabled and Locked are both False, the control cannot receive focus and is dimmed in the
form. The user can neither copy nor edit data in the control.

You can combine the settings of the Enabled and the TabStop properties to prevent the user from
selecting a command button with TAB, while still allowing the user to click the button. Setting TabStop
to False means that the command button won't appear in the tab order. However, if Enabled is True,
then the user can still click the command button, as long as TakeFocusOnClick is set to True.

When the user tabs into an enabled MultiPage or TabStrip, the first page or tab in the control
receives the focus. If the first page or tab of a MultiPage or TabStrip is disabled, the first enabled
page or tab of that control receives the focus. If all pages or tabs of a MultiPage or TabStrip are
disabled, the control is disabled and cannot receive the focus.

If a Frame is disabled, all controls it contains are disabled.

Clicking a disabled ListBox does not initiate the Click event.

EnterFieldBehavior Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proEnterFieldBehaviorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proEnterFieldBehaviorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proEnterFieldBehaviorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proEnterFieldBehaviorS"}

Specifies the selection behavior when entering a TextBox or ComboBox.

Syntax
object.EnterFieldBehavior [= fmEnterFieldBehavior]

The EnterFieldBehavior property syntax has these parts:

Part Description
object Required. A valid object.
fmEnterFieldBehavior Optional. The desired selection behavior.

Settings
The settings for fmEnterFieldBehavior are:

Constant Value Description
fmEnterFieldBehaviorSelectAll 0 Selects the entire contents

of the edit region when
entering the control
(default).

fmEnterFieldBehaviorRecallSelection 1 Leaves the selection
unchanged. Visually, this
uses the selection that was
in effect the last time the
control was active.

Remarks
The EnterFieldBehavior property controls the way text is selected when the user tabs to the control,
not when the control receives focus as a result of the SetFocus method. Following SetFocus, the
contents of the control are not selected and the insertion point appears after the last character in the
control’s edit region.

EnterKeyBehavior Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proEnterKeyBehaviorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proEnterKeyBehaviorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proEnterKeyBehaviorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proEnterKeyBehaviorS"}

Defines the effect of pressing ENTER in a TextBox.

Syntax
object.EnterKeyBehavior [= Boolean]

The EnterKeyBehavior property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies the effect of pressing ENTER.

Settings
The settings for Boolean are:

Value Description
True Pressing ENTER creates a new line.
False Pressing ENTER moves the focus to the next object in the tab

order (default).

Remarks
The EnterKeyBehavior and MultiLine properties are closely related. The values described above
only apply if MultiLine is True. If MultiLine is False, pressing ENTER always moves the focus to the
next control in the tab order regardless of the value of EnterKeyBehavior.
The effect of pressing CTRL+ENTER also depends on the value of MultiLine. If MultiLine is True,
pressing CTRL+ENTER creates a new line regardless of the value of EnterKeyBehavior. If MultiLine is
False, pressing CTRL+ENTER has no effect.

ForeColor Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proForeColorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proForeColorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proForeColorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proForeColorS"}

Specifies the foreground color of an object.

Syntax
object.ForeColor [= Long]

The ForeColor property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A value or constant that determines the

foreground color of an object.

Settings
You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from zero to 255. For example, you can specify teal blue as the integer value 4966415 or
as red, green, and blue color components 15, 200, 75.

Remarks
Use the ForeColor property for controls on forms to make them easy to read or to convey a special
meaning. For example, if a text box reports the number of units in stock, you can change the color of
the text when the value falls below the reorder level.

For a ScrollBar or SpinButton, ForeColor sets the color of the arrows. For a Frame, ForeColor
changes the color of the caption. For a Font object, ForeColor determines the color of the text.

GroupName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proGroupNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proGroupNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proGroupNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proGroupNameS"}

Creates a group of mutually exclusive OptionButton controls.

Syntax
object.GroupName [= String]

The GroupName property syntax has these parts:

Part Description
object Required. A valid OptionButton.
String Optional. The name of the group that includes the

OptionButton. Use the same setting for all buttons in the
group. The default setting is an empty string.

Remarks
To create a group of mutually exclusive OptionButton controls, you can put the buttons in a Frame
on your form, or you can use the GroupName property. GroupName is more efficient for the
following reasons:

· You do not have to include a Frame for each group. By not using a Frame, you reduce the number
of controls on the form, and in turn, improve performance and reduce the size of the form.

· You have more design flexibility. If you use a Frame to create the group, all the buttons must be
inside the Frame. If you want more than one group, you must have one Frame for each group.
However, if you use GroupName to create the group, the group can include option buttons
anywhere on the form. If you want more than one group, specify a unique name for each group;
you can still place the individual controls anywhere on the form.

· You can create buttons with transparent backgrounds, which can improve the visual appearance of
your form. The Frame is not a transparent control.

Regardless of which method you use to create the group of buttons, clicking one button in a group
sets all other buttons in the same group to False. All option buttons with the same GroupName within
a single container are mutually exclusive. You can use the same group name in two containers, but
doing so creates two groups (one in each container) rather than one group that includes both
containers.

For example, assume your form includes some option buttons and a MultiPage that also includes
option buttons. The option buttons on the MultiPage are one group and the buttons on the form are
another group. The two groups do not affect each other. Changing the setting of a button on the
MultiPage does not affect the buttons on the form.

Height, Width Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proHeightA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proHeightS"}

The height or width, in points, of an object.

Syntax
object.Height [= Single]
object.Width [= Single]

The Height and Width property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. A numeric expression specifying the dimensions of an

object.

Remarks
The Height and Width properties are automatically updated when you move or size a control. If you
change the size of a control, the Height or Width property stores the new height or width and the
OldHeight or OldWidth property stores the previous height or width. If you specify a setting for the
Left or Top property that is less than zero, that value will be used to calculate the height or width of
the control, but a portion of the control will not be visible on the form.

If you move a control from one part of a form to another, the setting of Height or Width only changes
if you size the control as you move it. The settings of the control’s Left and Top properties will change
to reflect the control’s new position relative to the edges of the form that contains it.

The value assigned to Height or Width must be greater than or equal to zero. For most systems, the
recommended range of values is from 0 to +32,767. Higher values may also work depending on your
system configuration.

HelpContextID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proHelpContextIDC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proHelpContextIDX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proHelpContextIDA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proHelpContextIDS"}

Associates a specific topic in a custom Microsoft Windows Help file with a specific control.

Syntax
object.HelpContextID [= Long]

The HelpContextID property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A positive integer specifies the context ID of a topic in

the Help file associated with the object. Zero indicates no Help
topic is associated with the object (default). Must be a valid
context ID in the specified Help file.

Remarks
The topic identified by the HelpContextID property is available to users when a form is running. To
display the topic, the user must either select the control or set focus to the control, and then press F1.

The HelpContextID property refers to a topic in a custom Help file you have created to describe your
form or application. In Visual Basic, the custom Help file is a property of the project.

HideSelection Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proHideSelectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proHideSelectionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proHideSelectionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proHideSelectionS"}

Specifies whether selected text remains highlighted when a control does not have the focus.

Syntax
object.HideSelection [= Boolean]

The HideSelection property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the selected text remains highlighted even

when the control does not have the focus.

Settings
The settings for Boolean are:

Value Description
True Selected text is not highlighted unless the control has the focus

(default).
False Selected text always appears highlighted.

Remarks
You can use the HideSelection property to maintain highlighted text when another form or a dialog
box receives the focus, such as in a spell-checking procedure.

IMEMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proIMEModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proIMEModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proIMEModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proIMEModeS"}

Specifies the default run time mode of the Input Method Editor (IME) for a control. This property
applies only to applications written for the Far East and is ignored in other applications.

Syntax
object.IMEMode [= fmIMEMode]

The IMEMode property syntax has these parts:

Part Description
object Required. A valid object.
fmIMEMode Optional. The mode of the Input Method Editor (IME).

Settings
The settings for fmIMEMode are:

Constant Value Description
fmIMEModeNoControl 0 Does not control IME (default).
 fmIMEModeOn 1 IME on.
fmIMEModeOff 2 IME off. English mode.
fmIMEModeDisable 3 IME off. User can't turn on IME by

keyboard.
fmIMEModeHiragana 4 IME on with Full-width Hiragana

mode.
fmIMEModeKatakana 5 IME on with Full-width Katakana

mode.
fmIMEModeKatakanaHalf 6 IME on with Half-width Katakana

mode.
fmIMEModeAlphaFull 7 IME on with Full-width Alphanumeric

mode.
fmIMEModeAlpha 8 IME on with Half-width Alphanumeric

mode.
fmIMEModeHangulFull 9 IME on with Full-width Hangul mode.
fmIMEModeHangul 10 IME on with Half-width Hangul mode.

The fmIMEModeNoControl setting indicates that the mode of the IME does not change when the
control receives focus at run time. For any other value, the mode of the IME is set to the value
specified by the IMEMode property when the control receives focus at run time.

Remarks
There are two ways to set the mode of the IME. One is through the toolbar of the IME. The other is
with the IMEMode property of a control, which sets or returns the current mode of the IME. This
property allows dynamic control of the IME through code.

The following example explains how IMEMode interacts with the toolbar of the IME. Assume that you
have designed a form with TextBox1 and CheckBox1. You have set TextBox1.IMEMode to 0, and you
have set CheckBox1.IMEMode to 1. While in design mode you have used the IME toolbar to put the
IME in mode 2.

When you run the form, the IME begins in mode 2. If you click TextBox1, the IME mode does not
change because IMEMode for this control is 0. If you click CheckBox1, the IME changes to mode 1,
because IMEMode for this control is 1. If you click again on TextBox1, the IME remains in mode 1
(IMEMode is 0, so the IME retains its last setting).

However, you can override IMEMode. For example, assume you click CheckBox1 and the IME enters
mode 1, as defined by IMEMode for the CheckBox. If you then use the IME toolbar to put the IME in
mode 3, then the IME will be set to mode 3 anytime you click the control. This does not change the
value of the property, it overrides the property until the next time you run the form.

Index Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proIndexA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proIndexS"}

The position of a Tab object within a Tabs collection or a Page object in a Pages collection.

Syntax
object.Index [= Integer]

The Index property syntax has these parts:

Part Description
object Required. A valid object.
Integer Optional. The index of the currently selected Tab object.

Remarks
The Index property specifies the order in which tabs appear. Changing the value of Index visually
changes the order of Pages in a MultiPage or Tabs on a TabStrip. The index value for the first page
or tab is zero, the index value of the second page or tab is one, and so on.

In a MultiPage, Index refers to a Page as well as the page’s Tab. In a TabStrip, Index refers to the
tab only.

InsideHeight, InsideWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proInsideHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proInsideHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proInsideHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proInsideHeightS"}

InsideHeight returns the height, in points, of the client region inside a form. InsideWidth returns the
width, in points, of the client region inside a form.

Syntax
object.InsideHeight
object.InsideWidth
The InsideHeight and InsideWidth property syntaxes have these parts:

Part Description
object Required. A valid object.

Remarks
The InsideHeight and InsideWidth properties are read-only. If the region includes a scroll bar, the
returned value does not include the height or width of the scroll bar.

IntegralHeight Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proIntegralHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proIntegralHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proIntegralHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proIntegralHeightS"}

Indicates whether a ListBox or TextBox displays full lines of text in a list or partial lines.

Syntax
object.IntegralHeight [= Boolean]

The IntegralHeight property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the list displays partial lines of text.

Settings
The settings for Boolean are:

Value Description
True The list resizes itself to display only complete items (default).
False The list does not resize itself even if the item is too tall to display

completely.

Remarks
The IntegralHeight property relates to the height of the list, just as the AutoSize property relates to
the width of the list.

If IntegralHeight is True, the list box automatically resizes when necessary to show full rows. If
False, the list remains a fixed size; if items are taller than the available space in the list, the entire
item is not shown.

TakeFocusOnClick Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTakeFocusOnClickC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTakeFocusOnClickX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTakeFocusOnClickA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTakeFocusOnClickS"}

Specifies whether a control takes the focus when clicked.

Syntax
object.TakeFocusOnClick [= Boolean]

The TakeFocusOnClick property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether a control takes the focus when

clicked.

Settings
The settings for Boolean are:

Value Description
True The button takes the focus when clicked (default).
False The button does not take the focus when clicked.

Remarks
The TakeFocusOnClick property defines only what happens when the user clicks a control. If the
user tabs to the control, the control takes the focus regardless of the value of TakeFocusOnClick.

Use this property to complete actions that affect a control without requiring that control to give up
focus. For example, assume your form includes a TextBox and a CommandButton that checks for
correct spelling of text. You would like to be able to select text in the TextBox, then click the
CommandButton and run the spelling checker without taking focus away from the TextBox. You can
do this by setting the TakeFocusOnClick property of the CommandButton to False.

KeepScrollBarsVisible Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proKeepScrollBarsVisibleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proKeepScrollBarsVisibleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proKeepScrollBarsVisibleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proKeepScrollBarsVisibleS"}

Specifies whether scroll bars remain visible when not required.

Syntax
object.KeepScrollBarsVisible [= fmScrollBars]

The KeepScrollBarsVisible property syntax has these parts:

Part Description
object Required. A valid object.
fmScrollBars Optional. Where scroll bars are displayed.

Settings
The settings for fmScrollBars are:

Constant Value Description
fmScrollBarsNone 0 Displays no scroll bars.
fmScrollBarsHorizontal 1 Displays a horizontal scroll bar.
fmScrollBarsVertical 2 Displays a vertical scroll bar.
fmScrollBarsBoth 3 Displays both a horizontal and a vertical

scroll bar (default).

Remarks
If the visible region is large enough to display all the controls on an object such as a Page object or a
form, scroll bars are not required. The KeepScrollBarsVisible property determines whether the scroll
bars remain visible when they are not required.

If the scroll bars are visible when they are not required, they appear normal in size, and the scroll box
fills the entire width or height of the scroll bar.

LargeChange Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proLargeChangeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proLargeChangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proLargeChangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proLargeChangeS"}

Specifies the amount of movement that occurs when the user clicks between the scroll box and scroll
arrow.

Syntax
object.LargeChange [= Long]

The LargeChange property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. An integer that specifies the amount of change to the

Value property.

Remarks
The LargeChange property applies only to the ScrollBar. It does not apply to the scrollbars in other
controls such as a TextBox or a drop-down ComboBox.

The value of LargeChange is the amount by which the ScrollBar’s Value property changes when
the user clicks the area between the scroll box and scroll arrow. The direction of the movement is
always toward the place where the user clicks. For example, in a horizontal ScrollBar, clicking to the
left of the scroll box moves the scroll box to the left. In a vertical ScrollBar, clicking above the scroll
box moves the scroll box up.

LargeChange does not have units. Any integer is a valid setting for LargeChange. The
recommended range of values is from –32,767 to +32,767, and the value must be between the values
of the Max and Min properties of the ScrollBar.

LayoutEffect Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proLayoutEffectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proLayoutEffectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proLayoutEffectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proLayoutEffectS"}

Specifies whether a control was moved during a layout change.

Syntax
object.LayoutEffect
The LayoutEffect property syntax has these parts:

Part Description
object Required. A valid object.

Return Values
The LayoutEffect property return values are:

Constant Value Description
fmLayoutEffectNone 0 The control was not moved.
fmLayoutEffectInitiate 1 The control moved.

Remarks
The LayoutEffect property is read-only and is available only in the Layout event. The Layout event is
initiated by the Move method if the Layout argument is True.

The Layout event is not initiated when you change the settings of the Left, Top, Height, or Width
properties of a control.

The Layout event sets LayoutEffect for any control that was involved in a move operation. For
example, if you move a group of controls, LayoutEffect of each control is set.

Left, Top Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proLeftC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3proLeftX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proLeftA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proLeftS"}

The distance between a control and the left or top edge of the form that contains it.

Syntax
object.Left [= Single]
object.Top [= Single]

The Left and Top property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. A numeric expression specifying the coordinates of an

object.

Settings
Setting the Left or Top property to 0 places the control's edge at the left or top edge of its container.

Remarks
For most systems, the recommended range of values for Left and Top is from -32,767 to +32,767.
Other values may also work depending on your sytem configuration. For a ComboBox, values of Left
and Top apply to the text portion of the control, not to the list portion. When you move or size a
control, its new Left setting is automatically entered in the property sheet. When you print a form, the
control's horizontal or vertical location is determined by its Left or Top setting.

LineCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proLineCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proLineCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proLineCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proLineCountS"}

Returns the number of text lines in a TextBox or ComboBox.

Syntax
object.LineCount
The LineCount property syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The LineCount property is read-only.

Note    A ComboBox will only have one line.

List Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proListC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3proListX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proListA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proListS"}

Returns or sets the list entries of a ListBox or ComboBox.

Syntax
object.List(row, column) [= Variant]

The List property syntax has these parts:

Part Description
object Required. A valid object.
row Required. An integer with a range from 0 to one less than the

number of entries in the list.
column Required. An integer with a range from 0 to one less than the

number of columns.
Variant Optional. The contents of the specified entry in the ListBox or

ComboBox.

Settings
Row and column numbering begins with zero. That is, the row number of the first row in the list is
zero; the column number of the first column is zero. The number of the second row or column is 1,
and so on.

Remarks
The List property works with the ListCount and ListIndex properties.Use List to access list items. A
list is a variant array; each item in the list has a row number and a column number.

Initially, ComboBox and ListBox contain an empty list.

Note    To specify items you want to display in a ComboBox or ListBox, use the AddItem method. To
remove items, use the RemoveItem method.

Use List to copy an entire two-dimensional array of values to a control. Use AddItem to load a one-
dimensional array or to load an individual element.

ListCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proListCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proListCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proListCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proListCountS"}

Returns the number of list entries in a control.

Syntax
object.ListCount
The ListCount property syntax has these parts:

Part Description

object Required. A valid object.

Remarks
The ListCount property is read-only. ListCount is the number of rows over which you can scroll.
ListRows is the maximum to display at once. ListCount is always one greater than the largest value
for the ListIndex property, because index numbers begin with 0 and the count of items begins with 1.
If no item is selected, ListCount is 0 and ListIndex is –1.

ListIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proListIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proListIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proListIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proListIndexS"}

Identifies the currently selected item in a ListBox or ComboBox.

Syntax
object.ListIndex [= Variant]

The ListIndex property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The currently selected item in the control.

Remarks
The ListIndex property contains an index of the selected row in a list. Values of ListIndex range from
–1 to one less than the total number of rows in a list (that is, ListCount – 1). When no rows are
selected, ListIndex returns –1. When the user selects a row in a ListBox or ComboBox, the system
sets the ListIndex value. The ListIndex value of the first row in a list is 0, the value of the second row
is 1, and so on.

Note If you use the MultiSelect property to create a ListBox that allows multiple selections, the
Selected property of the ListBox (rather than the ListIndex property) identifies the selected rows.
The Selected property is an array with the same number of values as the number of rows in the
ListBox. For each row in the list box, Selected is True if the row is selected and False if it is not. In a
ListBox that allows multiple selections, ListIndex returns the index of the row that has focus,
regardless of whether that row is currently selected.

The ListIndex value is also available by setting the BoundColumn property to 0 for a combo box or
list box. If BoundColumn is 0, the underlying data source to which the combo box or list box is bound
contains the same list index value as ListIndex.

ListRows Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proListRowsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proListRowsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proListRowsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proListRowsS"}

Specifies the maximum number of rows to display in the list.

Syntax
object.ListRows [= Long]

The ListRows property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. An integer indicating the maximum number of rows.

The default value is 8.

Remarks
If the number of items in the list exceeds the value of the ListRows property, a scroll bar appears at
the right edge of the list box portion of the combo box.

ListStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proListStyleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proListStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proListStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proListStyleS"}

Specifies the visual appearance of the list in a ListBox or ComboBox.

Syntax
object.ListStyle [= fmListStyle]

The ListStyle property syntax has these parts:

Part Description
object Required. A valid object.
fmListStyle Optional. The visual style of the list.

Settings
The settings for fmListStyle are:

Constant Value Description
fmListStylePlain 0 Looks like a regular list box, with the

background of items highlighted.
fmListStyleOption 1 Shows option buttons, or check boxes for a

multi-select list (default). When the user
selects an item from the group, the option
button associated with that item is selected
and the option buttons for the other items in
the group are deselected.

Remarks
The ListStyle property lets you change the visual presentation of a ListBox or ComboBox. By
specifying a setting other than fmListStylePlain, you can present the contents of either control as a
group of individual items, with each item including a visual cue to indicate whether it is selected.

If the control supports a single selection (the MultiSelect property is set to fmMultiSelectSingle), the
user can press one button in the group. If the control supports multi-select, the user can press two or
more buttons in the group.

ListWidth Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proListWidthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proListWidthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proListWidthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proListWidthS"}

Specifies the width of the list in a ComboBox.

Syntax
object.ListWidth [= Variant]

The ListWidth property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The width of the list. A value of zero makes the list as

wide as the ComboBox. The default value is to make the list as
wide as the text portion of the control.

Remarks
If you want to display a multicolumn list, enter a value that will make the list box wide enough to fit all
the columns.

Tip When designing combo boxes, be sure to leave enough space to display your data and for a
vertical scroll bar.

Locked Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proLockedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proLockedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proLockedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proLockedS"}

Specifies whether a control can be edited.

Syntax
object.Locked [= Boolean]

The Locked property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the control can be edited.

Settings
The settings for Boolean are:

Value Description
True You can't edit the value.
False You can edit the value (default).

Remarks
When a control is locked and enabled, it can still initiate events and can still receive the focus.

MatchEntry Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMatchEntryC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proMatchEntryX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proMatchEntryA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMatchEntryS"}

Returns or sets a value indicating how a ListBox or ComboBox searches its list as the user types.

Syntax
object.MatchEntry [= fmMatchEntry]

The MatchEntry property syntax has these parts:

Part Description
object Required. A valid object.
fmMatchEntry Optional. The rule used to match entries in the list.

Settings
The settings for fmMatchEntry are:

Constant Value Description
fmMatchEntryFirstLetter 0 Basic matching. The control searches

for the next entry that starts with the
character entered. Repeatedly typing
the same letter cycles through all
entries beginning with that letter.

FmMatchEntryComplete 1 Extended matching. As each character
is typed, the control searches for an
entry matching all characters entered
(default).

FmMatchEntryNone 2 No matching.

Remarks
The MatchEntry property searches entries from the TextColumn property of a ListBox or
ComboBox.

The control searches the column identified by TextColumn for an entry that matches the user's typed
entry. Upon finding a match, the row containing the match is selected, the contents of the column are
displayed, and the contents of its BoundColumn property become the value of the control. If the
match is unambiguous, finding the match initiates the Click event.

The control initiates the Click event as soon as the user types a sequence of characters that match
exactly one entry in the list. As the user types, the entry is compared with the current row in the list
and with the next row in the list. When the entry matches only the current row, the match is
unambiguous.

In Microsoft Forms, this is true regardless of whether the list is sorted. This means the control finds
the first occurrence that matches the entry, based on the order of items in the list. For example,
entering either “abc” or “bc” will initiate the Click event for the following list:
abcde
bcdef
abcxyz
bchij
Note that in either case, the matched entry is not unique; however, it is sufficiently different from the
adjacent entry that the control interprets the match as unambiguous and initiates the Click event.

MatchFound Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMatchFoundC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proMatchFoundX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proMatchFoundA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMatchFoundS"}

Indicates whether the text that a user has typed into a combo box matches any of the entries in the
list.

Syntax
object.MatchFound
The MatchFound property syntax has these parts:

Part Description
object Required. A valid object.

Return Values
The MatchFound property return values are:

Value Description
True The contents of the Value property matches one of the records

in the list.
False The contents of Value does not match any of the records in the

list (default).

Remarks
The MatchFound property is read-only. It is not applicable when the MatchEntry property is set to
fmMatchEntryNone.

MatchRequired Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMatchRequiredC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proMatchRequiredX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proMatchRequiredA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMatchRequiredS"}

Specifies whether a value entered in the text portion of a ComboBox must match an entry in the
existing list portion of the control. The user can enter non-matching values, but may not leave the
control until a matching value is entered.

Syntax
object.MatchRequired [= Boolean]

The MatchRequired property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the text entered must match an existing item

in the list.

Settings
The settings for Boolean are:

Value Description
True The text entered must match an existing list entry.
False The text entered can be different from all existing list entries

(default).

Remarks
If the MatchRequired property is True, the user cannot exit the ComboBox until the text entered
matches an entry in the existing list. MatchRequired maintains the integrity of the list by requiring the
user to select an existing entry.

Note Not all containers enforce this property.

Max, Min Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMaxC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3proMaxX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proMaxA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMaxS"}

Specify the maximum and minimum acceptable values for the Value property of a ScrollBar or
SpinButton.

Syntax
object.Max [= Long]
object.Min [= Long]

The Max and Min property syntaxes have these parts:

Part Description
object Required. A valid object.
Long Optional. A numeric expression specifying the maximum or

minimum Value property setting.

Remarks
Clicking a SpinButton or moving the scroll box in a ScrollBar changes the Value property of the
control.

The value for the Max property corresponds to the lowest position of a vertical ScrollBar or the
rightmost position of a horizontal ScrollBar. The value for the Min property corresponds to the
highest position of a vertical ScrollBar or the leftmost position of a horizontal ScrollBar.
Any integer is an acceptable setting for this property. The recommended range of values is from –
32,767 to +32,767. The default value is 1.

Note    Min and Max refer to locations, not to relative values, on the ScrollBar. That is, the value of
Max could be less than the value of Min. If this is the case, moving toward the Max (bottom) position
means decreasing Value; moving toward the Min (top) position means increasing Value.

MaxLength Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMaxLengthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proMaxLengthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proMaxLengthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMaxLengthS"}

Specifies the maximum number of characters a user can enter in a TextBox or ComboBox.

Syntax
object.MaxLength [= Long]

The MaxLength property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. An integer indicating the allowable number of

characters.

Remarks
Setting the MaxLength property to 0 indicates there is no limit other than that created by memory
constraints.

MouseIcon Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMouseIconC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proMouseIconX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proMouseIconA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMouseIconS"}

Assigns a custom icon to an object.

Syntax
object.MouseIcon = LoadPicture( pathname )
The MouseIcon property syntax has these parts:

Part Description
object Required. A valid object.
pathname Required. A string expression specifying the path and filename

of the file containing the custom icon.

Remarks
The MouseIcon property is valid when the MousePointer property is set to 99. The mouse icon of an
object is the image that appears when the user moves the mouse across that object.

To assign an image for the mouse pointer, you can either assign a picture to the MouseIcon property
or load a picture from a file using the LoadPicture function.

MousePointer Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMousePointerC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proMousePointerX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proMousePointerA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMousePointerS"}

Specifies the type of pointer displayed when the user positions the mouse over a particular object.

Syntax
object.MousePointer [= fmMousePointer]

The MousePointer property syntax has these parts:

Part Description
object Required. A valid object.
fmMousePointer Optional. The shape you want for the mouse pointer.

Settings
The settings for fmMousePointer are:

Constant Value Description
fmMousePointerDefault 0 Standard pointer. The image is

determined by the object (default).
fmMousePointerArrow 1 Arrow.
fmMousePointerCross 2 Cross-hair pointer.
fmMousePointerIBeam 3 I-beam.
fmMousePointerSizeNESW 6 Double arrow pointing northeast and

southwest.
fmMousePointerSizeNS 7 Double arrow pointing north and

south.
fmMousePointerSizeNWSE 8 Double arrow pointing northwest and

southeast.
fmMousePointerSizeWE 9 Double arrow pointing west and

east.
fmMousePointerUpArrow 10 Up arrow.
fmMousePointerHourglass 11 Hourglass.
fmMousePointerNoDrop 12 "Not" symbol (circle with a diagonal

line) on top of the object being
dragged. Indicates an invalid drop
target.

fmMousePointerAppStarting 13 Arrow with an hourglass.
fmMousePointerHelp 14 Arrow with a question mark.
fmMousePointerSizeAll 15 Size all cursor (arrows pointing

north, south, east, and west).
fmMousePointerCustom 99 Uses the icon specified by the

MouseIcon property.

Remarks
Use the MousePointer property when you want to indicate changes in functionality as the mouse
pointer passes over controls on a form. For example, the hourglass setting (11) is useful to indicate
that the user must wait for a process or operation to finish.

Some icons vary depending on system settings, such as the icons associated with desktop themes.

MultiLine Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMultiLineC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proMultiLineX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proMultiLineA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMultiLineS"}

Specifies whether a control can accept and display multiple lines of text.

Syntax
object.MultiLine [= Boolean]

The MultiLine property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the control supports more than one line of

text.

Settings
The settings for Boolean are:

Value Description
True The text is displayed across multiple lines (default).
False The text is not displayed across multiple lines.

Remarks
A multiline TextBox allows absolute line breaks and adjusts its quantity of lines to accommodate the
amount of text it holds. If needed, a multiline control can have vertical scroll bars.

A single-line TextBox doesn’t allow absolute line breaks and doesn’t use vertical scroll bars.

Single-line controls ignore the value of the WordWrap property.

Note If you change MultiLine to False in a multiline TextBox, all the characters in the TextBox will
be combined into one line, including non-printing characters (such as carriage returns and new-lines).

MultiRow Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMultiRowC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proMultiRowX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proMultiRowA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMultiRowS"}

Specifies whether the control has more than one row of tabs.

Syntax
object.MultiRow [= Boolean]

The MultiRow property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the control has more than one row of tabs.

Settings
The settings for Boolean are:

Value Description
True Allows more than one row of tabs.
False Restricts tabs to a single row (default).

Remarks
The width and number of tabs determines the number of rows. Changing the control's size also
changes the number of rows. This allows the developer to resize the control and ensure that tabs
wrap to fit the control. If the MultiRow property is False, then truncation occurs if the width of the tabs
exceeds the width of the control.

If MultiRow is False and tabs are truncated, there will be a small scroll bar on the TabStrip to allow
scrolling to the other tabs or pages.

MultiSelect Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proMultiSelectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proMultiSelectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proMultiSelectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proMultiSelectS"}

Indicates whether the object permits multiple selections.

Syntax
object.MultiSelect [= fmMultiSelect]

The MultiSelect property syntax has these parts:

Part Description
object Required. A valid object.
fmMultiSelect Optional. The selection mode that the control uses.

Settings
The settings for fmMultiSelect are:

Constant Value Description
fmMultiSelectSingle 0 Only one item can be selected (default).
fmMultiSelectMulti 1 Pressing the SPACEBAR or clicking

selects or deselects an item in the list.
fmMultiSelectExtended 2 Pressing SHIFT and clicking the mouse,

or pressing SHIFT and one of the arrow
keys, extends the selection from the
previously selected item to the current
item. Pressing CTRL and clicking the
mouse selects or deselects an item.

Remarks
When the MultiSelect property is set to Extended or Simple, you must use the list box's Selected
property to determine the selected items. Also, the Value property of the control is always Null.
The ListIndex property returns the index of the row with the keyboard focus.

Name Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proNameA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proNameS"}

Specifies the name of a control or an object, or the name of a font to associate with a Font object.

Syntax
For Font

Font.Name [= String]
For all other controls and objects

object.Name [= String]

The Name property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. The name you want to assign to the font or control.

Settings
Guidelines for assigning a string to Name, such as the maximum length of the name, vary from one
application to another.

Remarks
For objects, the default value of Name consists of the object's class name followed by an integer. For
example, the default name for the first TextBox you place on a form is TextBox1. The default name
for the second TextBox is TextBox2.

You can set the Name property for a control from the control's property sheet or, for controls added at
run time, by using program statements. If you add a control at design time, you cannot modify its
Name property at run time.

Each control added to a form at design time must have a unique name.

For Font objects, Name identifies a particular typeface to use in the text portion of a control, object, or
form. The font's appearance on screen and in print may differ, depending on your computer and
printer. If you select a font that your system can't display or that isn't installed, Windows substitutes a
similar font.

Object Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proObjectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proObjectA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proObjectS"}

Overrides a standard property or method when a new control has a property or method of the same
name.

Syntax
object.Object[.property |.method]

The Object property syntax has these parts:

Part Description
object Required. The name of an object you have added to the

Microsoft Forms Toolbox.
property Optional. A property that has the same name as a standard

Microsoft Forms property.
method Optional. A method that has the same name as a standard

Microsoft Forms method.

Remarks
Object is read-only.

If you add a new control to the Microsoft Forms Toolbox, it is possible that the added control will have
a property or method with the same name as a standard Microsoft Forms property or method. The
Object property lets you use the property or method from the added control, rather than the standard
property or method.

OldHeight, OldWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proOldHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proOldHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proOldHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proOldHeightS"}

Returns the previous height or width, in points, of the control.

Syntax
object.OldHeight
object.OldWidth
The OldHeight and OldWidth property syntaxes have these parts:

Part Description
object Required. A valid object.

Remarks
OldHeight and OldWidth are read-only.

The OldHeight and OldWidth properties are automatically updated when you move or size a control.
If you change the size of a control, the Height and Width properties store the new height and
OldHeight and OldWidth store the previous height.

These properties are valid only in the Layout event.

OldLeft, OldTop Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proOldLeftC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proOldLeftX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proOldLeftA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proOldLeftS"}

Returns the distance, in points, between the previous position of a control and the left or top edge of
the form that contains it.

Syntax
object.OldLeft
object.OldTop
The OldLeft and OldTop property syntaxes have these parts:

Part Description
object Required. A valid object.

Remarks
OldLeft and OldTop are read-only.

The OldLeft and OldTop properties are automatically updated when you move or size a control. If
you move a control, the Left and Top properties store the new distance from the control to the left
edge of its container and OldLeft and OldTop store the previous value of Left.
OldLeft and OldTop are valid only in the Layout event.

Orientation Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proOrientationC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proOrientationX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proOrientationA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proOrientationS"}

Specifies whether the SpinButton or ScrollBar is oriented vertically or horizontally.

Syntax
object.Orientation [= fmOrientation]

The Orientation property syntax has these parts:

Part Description
object Required. A valid object.
fmOrientation Optional. Orientation of the control.

Settings
The settings for fmOrientation are:

Constant Value Description
fmOrientationAuto –1 Automatically determines the

orientation based upon the dimensions
of the control (default).

FmOrientationVertical 0 Control is rendered vertically.
FmOrientationHorizonta
l

 1 Control is rendered horizontally.

Remarks
If you specify automatic orientation, the height and width of the control determine whether it appears
horizontally or vertically. For example, if the control is wider than it is tall, it appears horizontally; if it is
taller than it is wide, the control appears vertically.

Parent Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proParentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proParentX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proParentA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proParentS"}

Returns the name of the form, object, or collection that contains a specific control, object, or
collection.

Syntax
object.Parent
The Parent property syntax has these parts:

Part Description
object Required. A valid object.

Remarks
Parent is read-only.

Use the Parent property to access the properties, methods, or controls of an object's parent.

This property is useful in an application in which you pass objects as arguments. For example, you
could pass a control variable to a general procedure in a module, and use Parent to access its parent
form.

PasswordChar Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proPasswordCharC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proPasswordCharX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proPasswordCharA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proPasswordCharS"}

Specifies whether placeholder characters are displayed instead of the characters actually entered in a
TextBox.

Syntax
object.PasswordChar [= String]

The PasswordChar property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. A string expression specifying the placeholder

character.

Remarks
You can use the PasswordChar property to protect sensitive information, such as passwords or
security codes. The value of PasswordChar is the character that appears in a control instead of the
actual characters that the user types. If you don't specify a character, the control displays the
characters that the user types.

Picture Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proPictureC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proPictureX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proPictureA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proPictureS"}

Specifies the bitmap to display on an object.

Syntax
object.Picture = LoadPicture( pathname )
The Picture property syntax has these parts:

Part Description
object Required. A valid object.
pathname Required. The full path to a picture file.

Remarks
While designing a form, you can use the control’s property page to assign a bitmap to the Picture
property. While running a form, you must use the LoadPicture function to assign a bitmap to Picture.

To remove a picture that is assigned to a control, click the value of the Picture property in the
property page and then press DELETE. Pressing BACKSPACE will not remove the picture.

Note For controls with captions, use the PicturePosition property to specify where to display the
picture on the object. Use the PictureSizeMode property to determine how the picture fills the object.

Transparent pictures sometimes have a hazy appearance. If you do not like this appearance, display
the picture on a control that supports opaque images. Image and MultiPage support opaque images.

PictureAlignment Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proPictureAlignmentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proPictureAlignmentX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proPictureAlignmentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proPictureAlignmentS"}

Specifies the location of a background picture.

Syntax
object.PictureAlignment [= fmPictureAlignment]

The PictureAlignment property syntax has these parts:

Part Description
object Required. A valid object.
fmPictureAlignment Optional. The position where the picture aligns with

the control.

Settings
The settings for fmPictureAlignment are:

Constant Value Description
fmPictureAlignmentTopLeft 0 The top left corner.
fmPictureAlignmentTopRight 1 The top right corner.
fmPictureAlignmentCenter 2 The center.
fmPictureAlignmentBottomLeft 3 The bottom left corner.
fmPictureAlignmentBottomRight 4 The bottom right corner.

Remarks
The PictureAlignment property identifies which corner of the picture is the same as the
corresponding corner of the control or container where the picture is used.

For example, setting PictureAlignment to fmPictureAlignmentTopLeft means that the top left
corner of the picture coincides with the top left corner of the control or container. Setting
PictureAlignment to fmPictureAlignmentCenter positions the picture in the middle, relative to the
height as well as the width of the control or container.

If you tile an image on a control or container, the setting of PIctureAlignment affects the tiling
pattern. For example, if PictureAlignment is set to fmPictureAlignmentUpperLeft, the first copy of
the image is laid in the upper left corner of the control or container and additional copies are tiled from
left to right across each row. If PictureAlignment is fmPictureAlignmentCenter, the first copy of the
image is laid at the center of the control or container, additional copies are laid to the left and right to
complete the row, and additional rows are added to fill the control or container.

Note    Setting the PictureSizeMode property to fmSizeModeStretch overrides PictureAlignment.
When PictureSizeMode is set to fmSizeModeStretch, the picture fills the entire control or container.

PicturePosition Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proPicturePositionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proPicturePositionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proPicturePositionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proPicturePositionS"}

Specifies the location of the picture relative to its caption.

Syntax
object.PicturePosition [= fmPicturePosition]

The PicturePosition property syntax has these parts:

Part Description
object Required. A valid object.
fmPicturePosition Optional. How the picture aligns with its container.

Settings
The settings for fmPicturePosition are:

Constant Value Description
fmPicturePositionLeftTop 0 The picture appears to the left of

the caption. The caption is
aligned with the top of the
picture.

fmPicturePositionLeftCenter 1 The picture appears to the left of
the caption. The caption is
centered relative to the picture.

fmPicturePositionLeftBottom 2 The picture appears to the left of
the caption. The caption is
aligned with the bottom of the
picture.

fmPicturePositionRightTop 3 The picture appears to the right
of the caption. The caption is
aligned with the top of the
picture.

fmPicturePositionRightCenter 4 The picture appears to the right
of the caption. The caption is
centered relative to the picture.

fmPicturePositionRightBottom 5 The picture appears to the right
of the caption. The caption is
aligned with the bottom of the
picture.

fmPicturePositionAboveLeft 6 The picture appears above the
caption. The caption is aligned
with the left edge of the picture.

fmPicturePositionAboveCenter 7 The picture appears above the
caption. The caption is centered
below the picture (default).

fmPicturePositionAboveRight 8 The picture appears above the
caption. The caption is aligned
with the right edge of the picture.

fmPicturePositionBelowLeft 9 The picture appears below the
caption. The caption is aligned

with the left edge of the picture.
fmPicturePositionBelowCenter 10 The picture appears below the

caption. The caption is centered
above the picture.

fmPicturePositionBelowRight 11 The picture appears below the
caption. The caption is aligned
with the right edge of the picture.

fmPicturePositionCenter 12 The picture appears in the
center of the control. The
caption is centered horizontally
and vertically on top of the
picture.

Remarks
The picture and the caption, as a unit, are centered on the control. If no caption exists, the picture’s
location is relative to the center of the control.

This property is ignored if the Picture property does not specify a picture.

PictureSizeMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proPictureSizeModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proPictureSizeModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proPictureSizeModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proPictureSizeModeS"}

Specifies how to display the background picture on a control, form, or page.

Syntax
object.PictureSizeMode [= fmPictureSizeMode]

The PictureSizeMode property syntax has these parts:

Part Description
object Required. A valid object.
fmPictureSizeMode Optional. The action to take if the picture and the form

or page that contains it are not the same size.

Settings
The settings for fmPictureSizeMode are:

Constant Value Description
fmPictureSizeModeClip 0 Crops any part of the picture that is

larger than the form or page
(default).

fmPictureSizeModeStretch 1 Stretches the picture to fill the form
or page. This setting distorts the
picture in either the horizontal or
vertical direction.

fmPictureSizeModeZoom 3 Enlarges the picture, but does not
distort the picture in either the
horizontal or vertical direction.

Remarks
The fmPictureSizeModeClip setting indicates you want to show the picture in its original size and
scale. If the form or page is smaller than the picture, this setting only shows the part of the picture that
fits within the form or page.

The fmPictureSizeModeStretch and fmPictureSizeModeZoom settings both enlarge the image, but
fmPictureSizeModeStretch causes distortion. The fmPictureSizeModeStretch setting enlarges the
image horizontally and vertically until the image reaches the corresponding edges of the container or
control. The fmPictureSizeModeZoom setting enlarges the image until it reaches either the
horizontal or vertical edges of the container or control. If the image reaches the horizontal edges first,
any remaining distance to the vertical edges remains blank. If it reaches the vertical edges first, any
remaining distance to the horizontal edges remains blank.

PictureTiling Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proPictureTilingC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proPictureTilingX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proPictureTilingA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proPictureTilingS"}

Lets you tile a picture in a form or page.

Syntax
object.PictureTiling [= Boolean]

The PictureTiling property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether a picture is repeated across a background.

Settings
The settings for Boolean are:

Value Description
True The picture is tiled across the background.
False The picture is not tiled across the background (default).

Remarks
If a picture is smaller than the form or page that contains it, you can tile the picture on the form or
page.

The tiling pattern depends on the current setting of the PictureAlignment and PictureSizeMode
properties. For example, if PictureAlignment is set to fmPictureAlignmentTopLeft, the tiling pattern
starts at the upper left and repeats the picture across the form or page and down the height of the
form or page. If PictureSizeMode is set to fmPictureSizeModeClip, the tiling pattern crops the last
tile if it doesn't completely fit on the form or page.

ProportionalThumb Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proProportionalThumbC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proProportionalThumbX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proProportionalThumbA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proProportionalThumbS"}

Specifies whether the size of the scroll box is proportional to the scrolling region or fixed.

Syntax
object.ProportionalThumb [= Boolean]

The ProportionalThumb property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the scroll box is proportional or fixed.

Settings
The settings for Boolean are:

Value Description
True The scroll box is proportional in size to the scrolling region

(default).
False The scroll box is a fixed size.

Remarks
The size of a proportional scroll box graphically represents the percentage of the object that is visible
in the window. For example, if 75 percent of an object is visible, the scroll box covers three-fourths of
the scrolling region in the scroll bar.

If the scroll box is a fixed size, the system determines its size based on the height and width of the
scroll bar.

RowSource Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proRowSourceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proRowSourceX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proRowSourceA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proRowSourceS"}

Specifies the source providing a list for a ComboBox or ListBox.

Syntax
object.RowSource [= String]

The RowSource property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. The source of the list for the ComboBox or ListBox.

Remarks
The RowSource property accepts worksheet ranges from Microsoft Excel.

ScrollBars Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proScrollBarsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proScrollBarsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proScrollBarsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proScrollBarsS"}

Specifies whether a control, form, or page has vertical scroll bars, horizontal scroll bars, or both.

Syntax
object.ScrollBars [= fmScrollBars]

The ScrollBars property syntax has these parts:

Part Description
object Required. A valid object.
fmScrollBars Optional. Where scroll bars should be displayed.

Settings
The settings for fmScrollBars are:

Constant Value Description
fmScrollBarsNone 0 Displays no scroll bars (default).
fmScrollBarsHorizontal 1 Displays a horizontal scroll bar.
fmScrollBarsVertical 2 Displays a vertical scroll bar.
fmScrollBarsBoth 3 Displays both a horizontal and a vertical

scroll bar.

Remarks
If the KeepScrollBarsVisible property is True, any scroll bar on a form or page is always visible,
regardless of whether the object's contents fit within the object's borders.

If visible, a scroll bar constrains its scroll box to the visible region of the scroll bar. It also modifies the
scroll position as needed to keep the entire scroll bar visible. The range of a scroll bar changes when
the value of the ScrollBars property changes, the scroll size changes, or the visible size changes.

If a scroll bar is not visible, then you can set its scroll position to any value. Negative values and
values greater than the scroll size are both valid.

For a single-line control, you can display a horizontal scroll bar by using the ScrollBars and
AutoSize properties. Scroll bars are hidden or displayed according to the following rules:

1. When ScrollBars is set to fmScrollBarsNone, no scroll bar is displayed.
2. When ScrollBars is set to fmScrollBarsHorizontal or fmScrollBarsBoth, the control displays a

horizontal scroll bar if the text is longer than the edit region and if the control has enough room to
include the scroll bar underneath its edit region.

3. When AutoSize is True, the control enlarges itself to accommodate the addition of a scroll bar
unless the control is at or near its maximum size.

For a multiline TextBox, you can display scroll bars by using the ScrollBars, WordWrap, and
AutoSize properties. Scroll bars are hidden or displayed according to the following rules:

1. When ScrollBars is set to fmScrollBarsNone, no scroll bar is displayed.
2. When ScrollBars is set to fmScrollBarsVertical or fmScrollBarsBoth, the control displays a

vertical scroll bar if the text is longer than the edit region and if the control has enough room to
include the scroll bar at the right edge of its edit region.

3. When WordWrap is True, the multiline control will not display a horizontal scroll bar. Most multiline
controls do not use a horizontal scroll bar.

4. A multiline control can display a horizontal scroll bar if the following conditions occur
simultaneously:
· The edit region contains a word that is longer than the edit region’s width.
· The control has enabled horizontal scroll bars.
· The control has enough room to include the scroll bar under the edit region.
· The WordWrap property is set to False.

ScrollHeight, ScrollWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proScrollHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proScrollHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proScrollHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proScrollHeightS"}

Specify the height, in points, of the total area that can be viewed by moving the scroll bars on the
control, form, or page.

Syntax
object.ScrollHeight [= Single]
object.ScrollWidth [= Single]

The ScrollHeight and ScrollWidth property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. The height or width of the scrollable region.

ScrollLeft, ScrollTop Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proScrollLeftC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proScrollLeftX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proScrollLeftA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proScrollLeftS"}

Specify the distance, in points, of the left or top edge of the visible form from the left or top edge of the
logical form, page, or control.

Syntax
object.ScrollLeft [= Single]
object.ScrollTop [= Single]

The ScrollLeft and ScrollTop property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. The distance from the edge of the form.

Remarks
The minimum value is zero; the maximum value is the difference between the value of the
ScrollWidth property and the value of the Width property for the form or page.

Selected Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proSelectedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proSelectedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proSelectedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proSelectedS"}

Returns or sets the selection state of items in a ListBox.

Syntax
object.Selected(index) [= Boolean]

The Selected property syntax has these parts:

Part Description
object Required. A valid object.
index Required. An integer with a range from 0 to one less than the

number of items in the list.
Boolean Optional. Whether an item is selected.

Settings
The settings for Boolean are:

Value Description
True The item is selected.
False The item is not selected.

Remarks
The Selected property is useful when users can make multiple selections. You can use this property
to determine the selected rows in a multi-select list box. You can also use this property to select or
deselect rows in a list from code.

The default value of this property is based on the current selection state of the ListBox.

For single-selection list boxes, the Value or ListIndex properties are recommended for getting and
setting the selection. In this case, ListIndex returns the index of the selected item. However, in a
multiple selection, ListIndex returns the index of the row contained within the focus rectangle,
regardless of whether the row is actually selected.

When a list box control's MultiSelect property is set to None, only one row can have its Selected
property set to True.

Entering a value that is out of range for the index does not generate an error message, but does not
set a property for any item in the list.

SelectedItem Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proSelectedItemC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proSelectedItemX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proSelectedItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proSelectedItemS"}

Returns the currently selected Tab or Page object.

Syntax
object.SelectedItem
The SelectedItem property syntax has these parts:

Part Description
object Required. A valid TabStrip or MultiPage.

Remarks
The SelectedItem property is read-only. Use SelectedItem to programmatically control the currently
selected Tab or Page object. For example, you can use SelectedItem to assign values to properties
of a Tab or Page object.

SelectionMargin Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proSelectionMarginC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proSelectionMarginX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proSelectionMarginA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proSelectionMarginS"}

Specifies whether the user can select a line of text by clicking in the region to the left of the text.

Syntax
object.SelectionMargin [= Boolean]

The SelectionMargin property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether clicking in the margin selects a line of text.

Settings
The settings for Boolean are:

Value Description
True Clicking in margin causes selection of text (default).
False Clicking in margin does not cause selection of text.

Remarks
When the SelectionMargin property is True, the selection margin occupies a thin strip along the left
edge of a control’s edit region. When set to False, the entire edit region can store text.

If the SelectionMargin property is set to True when a control is printed, the selection margin also
prints.

SelLength Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proSelLengthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proSelLengthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proSelLengthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proSelLengthS"}

The number of characters selected in a text box or the text portion of a combo box.

Syntax
object.SelLength [= Long]

The SelLength property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A numeric expression specifying the number of

characters selected. For SelLength and SelStart, the valid range
of settings is 0 to the total number of characters in the edit area
of a ComboBox or TextBox.

Remarks
The SelLength property is always valid, even when the control does not have focus. Setting
SelLength to a value less than zero creates an error. Attempting to set SelLength to a value greater
than the number of characters available in a control results in a value equal to the number of
characters in the control.

Note    Changing the value of the SelStart property cancels any existing selection in the control,
places an insertion point in the text, and sets SelLength to zero.

The default value, zero, means that no text is currently selected.

SelStart Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proSelStartC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proSelStartX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proSelStartA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proSelStartS"}

Indicates the starting point of selected text, or the insertion point if no text is selected.

Syntax
object.SelStart [= Long]

The SelStart property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A numeric expression specifying the starting point of

text selected. For SelLength and SelStart, the valid range of
settings is 0 to the total number of characters in the edit area of
a ComboBox or TextBox. The default value is zero.

Remarks
The SelStart property is always valid, even when the control does not have focus. Setting SelStart to
a value less than zero creates an error. Attempting to set SelStart to a value greater than the number
of characters available in a control results in a value equal to the number of characters in the control.

Changing the value of SelStart cancels any existing selection in the control, places an insertion point
in the text, and sets the SelLength property to zero.

SelText Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proSelTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proSelTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proSelTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proSelTextS"}

Returns or sets the selected text of a control.

Syntax
object.SelText [= String]

The SelText property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. A string expression containing the selected text.

Remarks
If no characters are selected in the edit region of the control, the SelText property returns a zero
length string. This property is valid regardless of whether the control has the focus.

ShowDropButtonWhen Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proShowDropButtonWhenC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proShowDropButtonWhenX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proShowDropButtonWhenA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proShowDropButtonWhenS"}

Specifies when to show the drop-down button for a ComboBox or TextBox.

Syntax
object.ShowDropButtonWhen [= fmShowDropButtonWhen]

The ShowDropButtonWhen property syntax has these parts:

Part Description
object Required. A valid object.
fmShowDropButtonWhen Optional. The circumstances under which the

drop-down button will be visible.

Settings
The settings for fmShowDropButtonWhen are:

Constant Value Description
fmShowDropButtonWhenNever 0 Do not show the drop-down

button under any
circumstances.

fmShowDropButtonWhenFocus 1 Show the drop-down button
when the control has the
focus.

fmShowDropButtonWhenAlways 2 Always show the drop-down
button.

For a ComboBox, the default value is fmShowDropButtonWhenAlways; for a TextBox, the default
value is fmShowDropButtonWhenNever.

SmallChange Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proSmallChangeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proSmallChangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proSmallChangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proSmallChangeS"}

Specifies the amount of movement that occurs when the user clicks either scroll arrow in a ScrollBar
or SpinButton.

Syntax
object.SmallChange [= Long]

The SmallChange property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. An integer that specifies the amount of change to the

Value property.

Remarks
The SmallChange property does not have units.

Any integer is an acceptable setting for this property. The recommended range of values is from –
32,767 to +32,767. The default value is 1.

SpecialEffect Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proSpecialEffectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proSpecialEffectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proSpecialEffectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proSpecialEffectS"}

Specifies the visual appearance of an object.

Syntax
For CheckBox, OptionButton, ToggleButton

object.SpecialEffect [= fmButtonEffect]
For other controls

object.SpecialEffect [= fmSpecialEffect]

The SpecialEffect property syntax has these parts:

Part Description
object Required. A valid object.
fmButtonEffect Optional. The desired visual appearance for a CheckBox,

OptionButton, or ToggleButton.
fmSpecialEffect Optional. The desired visual appearance of an object

other than a CheckBox, OptionButton, or
ToggleButton.

Settings
The settings for fmSpecialEffect are:

Constant Value Description
fmSpecialEffectFlat 0 Object appears flat, distinguished from

the surrounding form by a border, a
change of color, or both. Default for
Image and Label, valid for all controls.

fmSpecialEffectRaised 1 Object has a highlight on the top and
left and a shadow on the bottom and
right. Not valid for check boxes or
option buttons.

fmSpecialEffectSunken 2 Object has a shadow on the top and left
and a highlight on the bottom and right.
The control and its border appear to be
carved into the form that contains them.
Default for CheckBox and
OptionButton, valid for all controls
(default).

fmSpecialEffectEtched 3 Border appears to be carved around
the edge of the control. Not valid for
check boxes or option buttons.

fmSpecialEffectBump 6 Object has a ridge on the bottom and
right and appears flat on the top and
left. Not valid for check boxes or option
buttons.

For a Frame, the default value is Sunken.

Note that only Flat and Sunken (0 and 2) are acceptable values for CheckBox, OptionButton, and
ToggleButton. All values listed are acceptable for other controls.

Remarks
You can use either the SpecialEffect or the BorderStyle property to specify the edging for a control,
but not both. If you specify a nonzero value for one of these properties, the system sets the value of
the other property to zero. For example, if you set SpecialEffect to fmSpecialEffectRaised, the
system sets BorderStyle to zero (fmBorderStyleNone).

For a Frame, BorderStyle is ignored if SpecialEffect is fmSpecialEffectFlat.
SpecialEffect uses the system colors to define its borders.

Note      Although the SpecialEffect property exists on the ToggleButton, the property is disabled.
You cannot set or return a value for this property on the ToggleButton.

Style Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proStyleC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3proStyleX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proStyleS"}

For ComboBox, specifies how the user can choose or set the control’s value. For MultiPage and
TabStrip, identifies the style of the tabs on the control.

Syntax
For ComboBox

object.Style [= fmStyle]
For MultiPage and TabStrip

object.Style [= fmTabStyle]

The Style property syntax has these parts:

Part Description
object Required. A valid object.
fmStyle Optional. Specifies how a user sets the value of a

ComboBox.
fmTabStyle Optional. Specifies the tab style in a MultiPage or TabStrip.

Settings
The settings for fmStyle are:

Constant Value Description
fmStyleDropDownCombo 0 The ComboBox behaves as a drop-

down combo box. The user can type
a value in the edit region or select a
value from the drop-down list
(default).

fmStyleDropDownList 2 The ComboBox behaves as a list
box. The user must choose a value
from the list.

The settings for fmTabStyle are:

Constant Value Description
fmTabStyleTabs 0 Displays tabs on the tab bar (default).
fmTabStyleButtons 1 Displays buttons on the tab bar.
fmTabStyleNone 2 Does not display the tab bar.

TabFixedHeight, TabFixedWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTabFixedHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTabFixedHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTabFixedHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTabFixedHeightS"}

Sets or returns the fixed height or width of the tabs in points.

Syntax
object.TabFixedHeight [= Single]
object.TabFixedWidth [= Single]

The TabFixedHeight and TabFixedWidth property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. The number of points of the height or width of the tabs

on a TabStrip or MultiPage.

Settings
If the value is 0, tab widths are automatically adjusted so that each tab is wide enough to
accommodate its contents and each row of tabs spans the width of the control.

If the value is greater than 0, all tabs have an identical width as specified by this property.

Remarks
The minimum size is 4 points.

TabIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTabIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTabIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTabIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTabIndexS"}

Specifies the position of a single object in the form's tab order.

Syntax
object.TabIndex [= Integer]

The TabIndex property syntax has these parts:

Part Description
object Required. A valid object.
Integer Optional. An integer from 0 to one less than the number of

controls on the form that have a TabIndex property. Assigning a
TabIndex value of less than 0 generates an error. If you assign a
TabIndex value greater than the largest index value, the system
resets the value to the maximum allowable value.

Remarks
The index value of the first object in the tab order is zero.

TabKeyBehavior Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTabKeyBehaviorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTabKeyBehaviorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTabKeyBehaviorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTabKeyBehaviorS"}

Determines whether tabs are allowed in the edit region.

Syntax
object.TabKeyBehavior [= Boolean]

The TabKeyBehavior property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. The effect of pressing TAB.

Settings
The settings for Boolean are:

Value Description
True Pressing TAB inserts a tab character in the edit region.
False Pressing TAB moves the focus to the next object in the tab order

(default).

Remarks
The TabKeyBehavior and MultiLine properties are closely related. The values described above only
apply if MultiLine is True. If MultiLine is False, pressing TAB always moves the focus to the next
control in the tab order regardless of the value of TabKeyBehavior.
The effect of pressing CTRL+TAB also depends on the value of MultiLine. If MultiLine is True,
pressing CTRL+TAB creates a new line regardless of the value of TabKeyBehavior. If MultiLine is
False, pressing CTRL+TAB has no effect.

TabOrientation Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTabOrientationC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTabOrientationX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTabOrientationA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTabOrientationS"}

Specifies the location of the tabs on a MultiPage or TabStrip.

Syntax
object.TabOrientation [= fmTabOrientation]

The TabOrientation property syntax has these parts:

Part Description
object Required. A valid object.
fmTabOrientation Optional. Where the tabs will appear.

Settings
The settings for fmTabOrientation are:

Constant Value Description
fmTabOrientationTop 0 The tabs appear at the top of the

control (default).
fmTabOrientationBottom 1 The tabs appear at the bottom of the

control.
fmTabOrientationLeft 2 The tabs appear at the left side of the

control.
fmTabOrientationRight 3 The tabs appear at the right side of the

control.

Remarks
If you use TrueType fonts, the text rotates when the TabOrientation property is set to
fmTabOrientationLeft or fmTabOrientationRight. If you use bitmapped fonts, the text does not
rotate.

TabStop Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTabStopC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTabStopX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTabStopA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTabStopS"}

Indicates whether an object can receive focus when the user tabs to it.

Syntax
object.TabStop [= Boolean]

The TabStop property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the object is a tab stop.

Settings
The settings for Boolean are:

Value Description
True Designates the object as a tab stop (default).
False Bypasses the object when the user is tabbing, although the

object still holds its place in the actual tab order, as determined
by the TabIndex property.

Tag Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTagC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3proTagX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proTagA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTagS"}

Stores additional information about an object.

Syntax
object.Tag [= String]

The Tag property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. A string expression identifying the object. The default

is a zero-length string ("").

Remarks
Use the Tag property to assign an identification string to an object without affecting other property
settings or attributes.

For example, you can use Tag to check the identity of a form or control that is passed as a variable to
a procedure.

Text Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTextC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"f3proTextX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTextS"}

Returns or sets the text in a TextBox. Changes the selected row in a ComboBox or ListBox.

Syntax
object.Text [= String]

The Text property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. A string expression specifying text. The default value

is a zero-length string (“”).

Remarks
For a TextBox, any value you assign to the Text property is also assigned to the Value property.

For a ComboBox, you can use Text to update the value of the control. If the value of Text matches
an existing list entry, the value of the ListIndex property (the index of the current row) is set to the row
that matches Text. If the value of Text does not match a row, ListIndex is set to –1.

For a ListBox, the value of Text must match an existing list entry. Specifying a value that does not
match an existing list entry causes an error.

You cannot use Text to change the value of an entry in a ComboBox or ListBox; use the Column or
List property for this purpose.

The ForeColor property determines the color of the text.

TextAlign Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTextAlignC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTextAlignX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTextAlignA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTextAlignS"}

Specifies how text is aligned in a control.

Syntax
object.TextAlign [= fmTextAlign]

The TextAlign property syntax has these parts:

Part Description
object Required. A valid object.
fmTextAlign Optional. How text is aligned in the control.

Settings
The settings for fmTextAlign are:

Constant Value Description
fmTextAlignLeft 1 Aligns the first character of displayed text

with the left edge of the control's display or
edit area (default).

fmTextAlignCenter 2 Centers the text in the control's display or
edit area.

fmTextAlignRight 3 Aligns the last character of displayed text
with the right edge of the control's display or
edit area.

Remarks
For a ComboBox, the TextAlign property only affects the edit region; this property has no effect on
the alignment of text in the list. For stand-alone labels, TextAlign determines the alignment of the
label's caption.

TextColumn Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTextColumnC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTextColumnX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTextColumnA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTextColumnS"}

Identifies the column in a ComboBox or ListBox to display to the user.

Syntax
object.TextColumn [= Variant]

The TextColumn property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The column to be displayed.

Settings
Values for the TextColumn property range from –1 to the number of columns in the list. The
TextColumn value for the first column is 1, the value of the second column is 2, and so on. Setting
TextColumn to 0 displays the ListIndex values. Setting TextColumn to –1 displays the first column
that has a ColumnWidths value greater than 0.

Remarks
When the user selects a row from a ComboBox or ListBox, the column referenced by TextColumn
is stored in the Text property.For example, you could set up a multicolumn ListBox that contains the
names of holidays in one column and dates for the holidays in a second column. To present the
holiday names to users, specify the first column as the TextColumn. To store the dates of the
holidays, specify the second column as the BoundColumn.

When the Text property of a ComboBox changes (such as when a user types an entry into the
control), the new text is compared to the column of data specified by TextColumn.

TextLength Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTextLengthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTextLengthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTextLengthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTextLengthS"}

Returns the length, in characters, of text in the edit region of a TextBox or ComboBox.

Syntax
object.TextLength
The TextLength property syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The TextLength property is read-only. For a multiline TextBox, TextLength includes LF (line feed)
and CR (carriage return) characters.

TopIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTopIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTopIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTopIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTopIndexS"}

Sets and returns the item that appears in the topmost position in the list.

Syntax
object.TopIndex [= Variant]

The TopIndex property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The number of the list item that is displayed in the

topmost position. The default is 0, or the first item in the list.

Settings
Returns the value –1 if the list is empty or not displayed.

TransitionEffect Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTransitionEffectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTransitionEffectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTransitionEffectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTransitionEffectS"}

Specifies the visual effect to use when changing from one page to another.

Syntax
object.TransitionEffect [= fmTransitionEffect]

The TransitionEffect property syntax has these parts:

Part Description
object Required. A valid object.
fmTransitionEffect Optional. The transition effect you want between

pages.

Settings
The settings for fmTransitionEffect are:

Constant Value Description
fmTransitionEffectNone 0 No special effect (default).
fmTransitionEffectCoverUp 1 The new page covers the

old page, moving from the
bottom to the top.

fmTransitionEffectCoverRightUp 2 The new page covers the
old page, moving from the
bottom left corner to the top
right corner.

fmTransitionEffectCoverRight 3 The new page covers the
old page, moving from the
left edge to the right.

fmTransitionEffectCoverRightDown 4 The new page covers the
old page, moving from the
top left corner to the bottom
right corner.

fmTransitionEffectCoverDown 5 The new page covers the
old page, moving from the
top to the bottom.

fmTransitionEffectCoverLeftDown 6 The new page covers the
old page, moving from the
top right corner to the
bottom left corner.

fmTransitionEffectCoverLeft 7 The new page covers the
old page, moving from the
right to the left.

fmTransitionEffectCoverLeftUp 8 The new page covers the
old page, moving from the
bottom right corner to the
top left corner.

fmTransitionEffectPushUp 9 The new page pushes the
old page out of view, moving

from the bottom to the top.
fmTransitionEffectPushRight 10 The new page pushes the

old page out of view, moving
from the left to the right.

fmTransitionEffectPushDown 11 The new page pushes the
old page out of view, moving
from the top to the bottom.

fmTransitionEffectPushLeft 12 The new page pushes the
old page out of view, moving
from the right to the left.

Remarks
Use the TransitionPeriod property to specify the duration of a transition effect.

TransitionPeriod Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTransitionPeriodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTransitionPeriodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTransitionPeriodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTransitionPeriodS"}

Specifies the duration, in milliseconds, of a transition effect.

Syntax
object.TransitionPeriod [= Long]

The TransitionPeriod property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. How long it takes to complete the transition from one

page to another.

Remarks
Any integer from zero to 10000 is a valid setting for this property. Setting the TransitionPeriod
property to zero disables the transition effect; setting TransitionPeriod to 10000 creates a 10-second
transition.

TripleState Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proTripleStateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proTripleStateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proTripleStateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proTripleStateS"}

Determines whether a user can specify, from the user interface, the Null state for a CheckBox or
ToggleButton.

Syntax
object.TripleState [= Boolean]

The TripleState property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the control supports the Null state.

Settings
The settings for Boolean are:

Value Description
True The button clicks through three states.
 False The button only supports True and False (default).

Remarks
Although the TripleState property exists on the OptionButton, the property is disabled. Regardless
of the value of TripleState, you cannot set the control to Null through the user interface.

When the TripleState property is True, a user can choose from the values of Null, True, and False.
The null value is displayed as a shaded button.

When TripleState is False, the user can choose either True or False.

A control set to Null does not initiate the Click event.

Regardless of the property setting, the Null value can always be assigned programmatically to a
CheckBox or ToggleButton, causing that control to appear shaded.

Value Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proValueA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proValueS"}

Specifies the state or content of a given control.

Syntax
object.Value [= Variant]

The Value property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The state or content of the control.

Settings
Control Description
CheckBox An integer value indicating whether the item is

selected:
Null Indicates the item is in a null state, neither
selected nor cleared.
–1 True. Indicates the item is selected.
 0 False. Indicates the item is cleared.

OptionButton Same as CheckBox.
ToggleButton Same as CheckBox.
ScrollBar An integer between the values specified for the

Max and Min properties.
SpinButton Same as ScrollBar.
ComboBox, ListBox The value in the BoundColumn of the currently

selected rows.
CommandButton Always False.
MultiPage An integer indicating the currently active page.

Zero (0) indicates the first page. The maximum
value is one less than the number of pages.

TextBox The text in the edit region.

Remarks
For a CommandButton, setting the Value property to True in a macro or procedure initiates the
button’s Click event.

For a ComboBox, changing the contents of Value does not change the value of BoundColumn. To
add or delete entries in a ComboBox, you can use the AddItem or RemoveItem method.

Value cannot be used with a multi-select list box.

VerticalScrollbarSide Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proVerticalScrollbarSideC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proVerticalScrollbarSideX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proVerticalScrollbarSideA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proVerticalScrollbarSideS"}

Specifies whether a vertical scroll bar appears on the right or left side of a form or page.

Syntax
object.VerticalScrollbarSide [= fmVerticalScrollbarSide]

The VerticalScrollbarSide property syntax has these parts:

Part Description
object Required. A valid object.
fmVerticalScrollbarSide Optional. Where the scroll bar should appear.

Settings
The settings for fmVerticalScrollbarSide are:

Constant Value Description
fmVerticalScrollbarSideRight 0 Puts the scroll bar on the right

side (default).
 
fmVerticalScrollBarSideLeft

1 Puts the scroll bar on the left
side.

Remarks
The VerticalScrollBarSide property is is particularly useful if the form will be used in an environment
where reading occurs from right to left.

Visible Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proVisibleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proVisibleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proVisibleA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proVisibleS"}

Specifies whether an object is visible or hidden.

Syntax
object.Visible [= Boolean]

The Visible property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the object is visible or hidden.

Settings
The settings for Boolean are:

Value Description
True Object is visible (default).
False Object is hidden.

Remarks
Use the Visible property to control access to information without displaying it. For example, you could
use the value of a control on a hidden form as the criteria for a query.

All controls are visible at design time.

WordWrap Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proWordWrapC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proWordWrapX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3proWordWrapA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proWordWrapS"}

Indicates whether the contents of a control automatically wrap at the end of a line.

Syntax
object.WordWrap [= Boolean]

The WordWrap property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the control expands to fit the text.

Settings
The settings for Boolean are:

Value Description
True The text wraps (default).
False The text does not wrap.

Remarks
For controls that support the MultiLine property as well as the WordWrap property, WordWrap is
ignored when MultiLine is False.

Zoom Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3proZoomC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"f3proZoomX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3proZoomA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3proZoomS"}

Specifies how much to change the size of a displayed object.

Syntax
object.Zoom [= Integer]

The Zoom property syntax has these parts:

Part Description
object Required. A valid object.
Integer Optional. The percentage to increase or decrease the displayed

image.

Remarks
The value of the Zoom property specifies a percentage of image enlargement or reduction by which
an image display should change. Values from 10 to 400 are valid. The value specified is a percentage
of the object's original size; thus, a setting of 400 means you want to enlarge the image to four times
its original size (or 400 percent), while a setting of 10 means you want to reduce the image to one-
tenth of its original size (or 10 percent).

accelerator key
A single character used as a shortcut for selecting an object. Pressing the ALT key followed by the
accelerator key gives focus to the object and initiates one or more events associated with the object.
The specific event or events initiated varies from one object to another. If code is associated with an
event, it is processed when the event is initiated. Also called keyboard accelerator, shortcut key,
keyboard shortcut.

background color
The color of the client region of an empty window or display screen, on which all drawing and color
display takes place.

bound
Describes a control whose contents are associated with a particular data source, such as a cell or cell
range in a worksheet.

class identifier (CLSID)
A unique identifier (UUID) that identifies an object. An object registers its CLSID in the system
registration database so the object can be loaded and programmed by other applications.

clear
To change a setting to "off" or remove a value.

client region
The portion of a window where an application displays output such as text or graphics.

context ID
A unique number or string that corresponds to a specific object in an application. Context IDs are
used to create links between the application and corresponding Help topics.

control group
A set of controls that are conceptually or logically related. Controls that are conceptually related are
usually viewed together but do not necessarily affect each other. Controls that are logically related
affect each other. For example, setting one button in a group of option buttons sets the value of all
other buttons in the group to False.

control tip
A brief phrase that describes a control, a Page, or a Tab. The control tip appears when the user
briefly holds the mouse pointer over a control without clicking. A control tip is similar to a ToolTip.
Microsoft Forms provides ToolTips to developers at design time, while developers provide control tips
to end-users at run time.

cursor
A piece of software that returns rows of data to the application. A cursor on a result set indicates the
current position in the result set.

cycle
To move through a group of objects in a defined order.

data format
The structure or appearance of a unit of data, such as a file, a database record, a cell in a
spreadsheet, or text in a word-processing document.

data source
The location of data to which a control is bound, for example, a cell in a worksheet. The current value
of the data source can be stored in the Value property of a control. However, the control does not
store the data; it only displays the information that is stored in the data source.

dominant control
A reference for the Align command and Make Same Size command on the Format menu. When
aligning controls, the selected controls align to the dominant control. When sizing controls, the
selected controls are assigned the dimensions of the dominant control.

The dominant control is indicated by white sizing handles. The sizing handles of the other selected
controls are black.

drop source
The selected text or object that is dragged in a drag-and-drop operation.

enumerated constant
You can find additional information for an enumerated data item in the description of the property,
method, or event that uses the enumeration.

foreground color
The color that is currently selected for drawing or displaying text on screen. In monochrome displays,
the foreground color is the color of a bitmap or other graphic.

grid block
The space between two adjacent grid points.

Input Method Editor (IME)
An application that translates what you type into characters of a DBCS language, such as Japanese
or Chinese. As the user types, the IME displays possible equivalents. The user selects the most
appropriate entry.

inherited property
A property that has acquired the characteristics of another class.

keyboard state
A return value that identifies which keys are pressed and whether the keyboard modifiers SHIFT, CTRL,
and ALT are pressed.

OLE container control
A Visual Basic control that is used to link and embed objects from other applications in a Visual Basic
application.

OLE status code
The error number portion of a data structure that returns information for error conditions. The data
structure is defined by Object Linking and Embedding.

placeholder
A character that masks or hides another character for security reasons. For example, when a user
types a password, an asterisk is displayed on the screen to take the place of each character typed.

property page
A grouping of properties presented as a tabbed page of a property sheet.

RGB
A color value system used to describe colors as a mixture of red (R), green (G), and blue (B). The
color is defined as a set of three integers (R,G,B) where each integer ranges from 0–255. A value of 0
indicates a total absence of a color component. A value of 255 indicates the highest intensity of a
color component.

system colors
Colors that are defined by the operating system for a specific type of monitor and video adapter. Each
color is associated with a specific part of the user interface, such as a window title or a menu.

target
An object onto which the user drops the object being dragged.

transparent
Describes the background of the object if the background is not visible. Instead of the background,
you see whatever is behind the object, for example, an image or picture used as a backdrop in your
application. Use the BackStyle property to make the background transparent.

unbound
Describes a control that is not related to a worksheet cell. In contrast, a bound control is a data
source for a worksheet cell that provides access to display and edit the value of a control.

What is a MultiPage?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsMultiPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsMultiPageS"}

A MultiPage is a control that contains a collection of one or more pages.

Each Page of a MultiPage is a form that contains its own controls, and as such, can have a unique
layout. Typically, the pages in a MultiPage have tabs so the user can select the individual pages.

By default, a MultiPage includes two pages, called Page1 and Page2. Each of these is a Page
object, and together they represent the Pages collection of the MultiPage. If you add more pages,
they become part of the same Pages collection.

What is a TabStrip?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsTabStripC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsTabStripS"}

A TabStrip is a control that contains a collection of one or more tabs.

Each Tab of a TabStrip is a separate object that users can select. Visually, a TabStrip also includes a
client area that all the tabs in the TabStrip share.

By default, a TabStrip includes two pages, called Tab1 and Tab2. Each of these is a Tab object, and
together they represent the Tabs collection of the TabStrip. If you add more pages, they become part
of the same Tabs collection.

Should I use a MultiPage or a TabStrip?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conShouldIUseMultiPageOrTabStripC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conShouldIUseMultiPageOrTabStripS"}

If you use a single layout for data, use a TabStrip and map each set of data to its own Tab. If you
need several layouts for data, use a MultiPage and assign each layout to its own Page.

Unlike a Page of a MultiPage, the client region of a TabStrip is not a separate form, but a portion of
the form that contains the TabStrip. The border of a TabStrip defines a region of the form that you
can associate with the tabs. When you place a control in the client region of a TabStrip, you are
adding a control to the form that contains the TabStrip.

Tips on using text boxes
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conTipsOnUsingTextBoxesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conTipsOnUsingTextBoxesS"}

The TextBox is a flexible control governed by the following properties: Text, MultiLine, WordWrap,
and AutoSize.

Text contains the text that’s displayed in the text box.

MultiLine controls whether the TextBox can display text as a single line or as multiple lines. Newline
characters identify where one line ends and another begins. If MultiLine is False, then the text is
truncated instead of wrapped.

WordWrap allows the TextBox to wrap lines of text that are longer than the width of the TextBox into
shorter lines that fit.

If you do not use WordWrap, the TextBox starts a new line of text when it encounters a newline
character in the text. If WordWrap is turned off, you can have text lines that do not fit completely in
the TextBox. The TextBox displays the portions of text that fit inside its width and truncates the
portions of text that do not fit. WordWrap is not applicable unless MultiLine is True.

AutoSize controls whether the TextBox adjusts to display all of the text. When using AutoSize with a
TextBox, the width of the TextBox shrinks or expands according to the amount of text in the TextBox
and the font size used to display the text.

AutoSize works well in the following situations:

· Displaying a caption of one or more lines.
· Displaying the contents of a single-line TextBox.
· Displaying the contents of a multiline TextBox that is read-only to the user.

Note      Avoid using AutoSize with an empty TextBox that also uses the MultiLine and WordWrap
properties. When the user enters text into a TextBox with these properties, the TextBox automatically
sizes to a long narrow box one character wide and as long as the line of text.

Create a standard list box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateStandardListBoxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateStandardListBoxS"}

1 In the Properties window, select the ListStyle property.
2 Click the drop-down arrow to display a list of available styles.
3 From the list, choose Plain.

Create a list box with option buttons or check boxes
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateListBoxWithOptionButtonsOrCheckBoxesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateListBoxWithOptionButtonsOrCheckBoxesS"}

1 In the Properties window, select the ListStyle property.
2 Click the drop-down arrow to display a list of available styles.
3 From the list, choose Option.
When the ListStyle property is set to Option, the MultiSelect property determines whether check
boxes or option buttons appear in the list. When MultiSelect is Single, option buttons appear in the
list. When MultiSelect is Multi or Extended, check boxes appear in the list.

ListBox styles
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conListBoxStylesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conListBoxStylesS"}

You can choose between two presentation styles for a ListBox. Each style provides different ways for
users to select items in the list.

If the style is Plain, each item is on a separate row; the user selects an item by highlighting one or
more rows.

If the style is Option, an option button or check box appears at the beginning of each row. With this
style, the user selects an item by clicking the option button or check box. Check boxes appear only
when the MultiSelect property is True.

What is the difference between the DataObject and the Clipboard?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conDifferenceBetweenDataObjectAndClipboardC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conDifferenceBetweenDataObjectAndClipboardS"}

The DataObject and the Clipboard both provide a means to move data from one place to another. As
an application developer, there are several important points to remember when you use either a
DataObject or the Clipboard:

· You can store more than one piece of data at a time on either a DataObject or the Clipboard as
long as each piece of data has a different data format. If you store data with a format that is already
in use, the new data is saved and the old data is discarded.

· The Clipboard supports picture formats and text formats. A DataObject currently supports only text
formats.

· A DataObject exists only while your application is running; the Clipboard exists as long as the
operating system is running. This means you can put data on the Clipboard and close an
application without losing the data. The same is not true with the DataObject. If you close the
application that put data on a DataObject, you lose the data.

· A DataObject is a standard OLE object, while the Clipboard is not. This means the Clipboard can
support standard move operations (copy, cut, and paste) but not drag-and-drop operations. You
must use the DataObject if you want your application to support drag-and-drop operations.

Tip      You can define your own data format names when you use the SetText method to move data to
the Clipboard or a DataObject. This can help distinguish between text that your application moves
and text that the user moves.

Display or hide the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDisplayOrHideToolboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDisplayOrHideToolboxS"}

On the View menu, determine whether a check mark appears in front of Toolbox. If the check mark is
present, the Toolbox is displayed. If not, the Toolbox is hidden.

Do one of the following:

· To display the Toolbox, make sure a check mark appears in front of Toolbox. If not, select
Toolbox.

· To hide the Toolbox, make sure there is no check mark in front of Toolbox. If there is, select
Toolbox to remove it.

What is the Toolbox?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsToolboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsToolboxS"}

The Toolbox identifies the different controls that you can add to a form, Frame, or Page.

You can customize the Toolbox in many ways including the following:

· Add pages to the Toolbox.
· Move controls from one page to another.
· Rename pages.
· Add other controls, including ActiveX controls, to the Toolbox.
· Copy customized controls from the form into the Toolbox.
For example, OK and Cancel buttons are special cases of a CommandButton. If you add OK and
Cancel templates to the Toolbox, you can quickly add them to other forms.

Add a customized control to the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":" f3howAddCustomizedControlToToolboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":" f3howAddCustomizedControlToToolboxS"}

1 Place a control on your form and customize it.
For example, to create an OK button, place a CommandButton on the form, set its Caption property

to OK and set its Default property to True.
3 Select the customized control.
4 Drag the control to the Toolbox.

Note      When you drag a control onto the Toolbox, you only transfer property values. Any code you
have written for that control does not transfer with the control. You must write new code for the icon or
copy code from the control on the form to the control on the Toolbox.

Add a control to a form
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conAddControlToFormC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conAddControlToFormS"}

Use any of the following methods to add a control from the Toolbox to your form. You can also use
these methods to insert a control in a Frame, TabStrip, or MultiPage on the form.

· Click a control in the Toolbox and then click in the form. The control appears in its default size. You
can then drag the control to change its size.

· Drag a control from the Toolbox to the form. The control appears in its default size.
· Double-click the control in the Toolbox, and then click in the form once for each control you want to

create. For example, to create four command buttons, double-click the CommandButton in the
Toolbox and then click four times in the form.

Add a control to the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAddControlToToolboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAddControlToToolboxS"}

1 Right-click any control icon in the Toolbox, or an empty area on any page of the Toolbox.
2 From the shortcut menu, select Additional Controls.
3 From the Available Controls list, select the new controls.
4 Click OK.

Delete an item from the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDeleteItemFromToolboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDeleteItemFromToolboxS"}

1 In the Toolbox, right-click the icon of the item you want to remove.
2 From the shortcut menu, select Delete. The command will include the name of the selected

control.
Note      If you are deleting controls, you can use Additional Controls from the shortcut menu, and
clear the check boxes of all controls you want to delete.

Customize a Toolbox icon
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCustomizeToolboxIconC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCustomizeToolboxIconS"}

1 Right-click the icon in the Toolbox.
2 From the shortcut menu, choose Customize.
3 Do one of the following:

· To change the ToolTip, enter the new text for the ToolTip.
· To edit the icon, choose Edit Picture. Then choose the color you want to use and choose the

pixel in the image where you want to apply that color.
· To assign a new bitmap, choose Load Picture. Then identify the file that contains the bitmap

you want to use as the icon. If you attempt to load a picture that is larger than an icon, an error
occurs.

What is a ToolTip?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsToolTipC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsToolTipS"}

A ToolTip is a short description, usually just a few words, that appears when the user holds the mouse
pointer briefly over a control or another part of the user interface without clicking. You can customize
ToolTips for controls and for the Toolbox.

The default value for a new control that is copied from a form to the Toolbox is “New” followed by the
control type. For example, the default ToolTip for a customized CommandButton (such as OK) is
“New CommandButton”. If a control has no associated ToolTip, “Unknown” is the default value.

Note The ToolTip is information provided by Microsoft Forms to forms developers in design mode.
Each control has a property, ControlTipText, that allows forms developers to give a “ToolTip” to end
users while the application is running.

Customize a ToolTip in the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCustomizeToolTipInToolboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCustomizeToolTipInToolboxS"}

1 Select the control in the Toolbox.
2 Right-click.
3 From the shortcut menu, choose Customize. The Customize command will include the name of

the control, such as “Customize Label.”
4 Enter the new text for the ToolTip.
5 Click OK.

Set the ToolTip for a Toolbox page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSetToolTipForPageOfToolboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSetToolTipForPageOfToolboxS"}

1 Select the page of the Toolbox.
2 Right-click.
3 From the shortcut menu, choose Rename.
4 Enter the new text for the ToolTip.
5 Click OK.

Change the name of a Toolbox page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeNameOfToolboxPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeNameOfToolboxPageS"}

1 Right-click the tab of the Toolbox page whose name you want to change.
2 From the shortcut menu, choose Rename.
3 In the Caption field, enter the name you want to use.
4 Click OK.

Change the order of Toolbox pages
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeOrderOfToolboxPagesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeOrderOfToolboxPagesS"}

1 Right-click the tab of any Toolbox page.
2 From the shortcut menu, choose Move.
3 Select the name of a page you want to move.
4 Choose Move Up or Move Down until the page is at the appropriate position in the page list.
5 Click OK.

Create a new Toolbox page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateNewToolboxPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateNewToolboxPageS"}

1 Right-click the tab of any Toolbox page. The new page will be inserted after this page.
2 Choose New Page.

Delete a Toolbox page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDeleteToolboxPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDeleteToolboxPageS"}

1 Right-click the tab of the Toolbox page you want to delete.
2 Choose Delete Page. All controls on the page are deleted at the same time.

Import or export a Toolbox page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howImportOrExportToolboxPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howImportOrExportToolboxPageS"}

1 Right-click the tab of any page in the Toolbox. If you import a page, it will be inserted after this
page.

2 Do one of the following:
· To import a page, choose Import Page. Then select the name of the page file you want to

import.
· To export a page, choose Export Page. Then enter a name for the file that will store a copy of

the Toolbox page. Exporting a page does not remove it from the Toolbox.
1 Click OK.

Move an item to another Toolbox page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howMoveItemToAnotherToolboxPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howMoveItemToAnotherToolboxPageS"}

1 Select a control on any page of the Toolbox.
2 Drag the control to the tab of the new page. Hold the mouse pointer over the tab until the page

appears at the front of the Toolbox.
3 Drag the control onto the main region of the page.

Note      If the page you want to place the control on is not visible, you can increase the width of the
Toolbox to display tabs for all the pages, and then drag the control to the appropriate page.

Change the size of the Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeSizeOfToolboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeSizeOfToolboxS"}

1 Move the mouse pointer over an edge or a corner of the Toolbox. The pointer changes to a double-
ended arrow.

2 When the double-ended arrow appears, drag the Toolbox to change its size.

Assign a custom Help topic to a control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignCustomHelpTopicToControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignCustomHelpTopicToControlS"}

This procedure assumes you have created a custom Help file and associated it with your project. The
procedure for associating a Help file with a project depends on your project environment.

1 Select a control for which you have written a custom Help topic.
2 In the Properties window, select the HelpContextID property.
3 Enter the context ID of the appropriate topic from your custom Help file.

Custom Help files
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conCustomHelpFilesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conCustomHelpFilesS"}

As an application developer, you can use a custom Help file to provide information about how to use
your form application.

To create a custom Help file, use a product or tool that creates Windows Help files.

You can associate a specific topic in your custom Help file with each control in your application. When
your application is running, the user can view your Help topic by selecting the control and pressing F1.

Assign an accelerator key
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignAcceleratorKeyC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignAcceleratorKeyS"}

1 In design mode, select the control on the form.
2 In the Properties window, select the Accelerator property.
3 Enter a single character as the value for Accelerator.
Tip Use a character from the caption of the control. Note that the selected character is underlined
in the control’s caption.

Assign an accelerator key for a Page or Tab
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignAcceleratorKeyForPageOrTabC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignAcceleratorKeyForPageOrTabS"}

1 In design mode, select an individual Page or Tab. Be sure to select the Page or Tab, not the
associated MultiPage or TabStrip. When a Page or Tab is selected, a rectangle appears around
the caption of the Page or Tab.

2 Right-click the selected Page or Tab.
3 From the shortcut menu, choose Rename.
4 In the Rename dialog box, enter a single character in the Accelerator Key field.

Tip Use a character from the caption of the control. Note that the selected character is underlined
in the control’s caption.

Assign a control tip to a Page or Tab
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignControlTipToPageOrTabC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignControlTipToPageOrTabS"}

1 Select an individual Page or Tab.
Be sure to select an individual Page or Tab, not the corresponding MultiPage or TabStrip. When a
Page or Tab is selected, a rectangle appears around its caption.

2 Right-click the selected Page or Tab.
3 From the shortcut menu, choose Rename.
4 In the ControlTipText field, type the string you want to use as the control tip.
5 Click OK.

Tip      To assign a control tip for a MultiPage or TabStrip, use the ControlTipText property.

Assign a control tip to a control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignControlTipToControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignControlTipToControlS"}

1 Select the control.
2 In the Properties window, select the ControlTipText property.

You can also set the value of ControlTipText through code.
3 Enter the string you want to use as the control tip.

Tip      To assign a control tip for a Page or Tab, use the Rename command on the shortcut menu of
the Page or Tab.

What is a control tip?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsControlTipC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsControlTipS"}

A control tip is a brief phrase that describes a control, a Page, or a Tab. The control tip appears when
the user briefly holds the mouse pointer over a control without clicking. A control tip is very similar to a
ToolTip. The difference is that Microsoft Forms provides ToolTips to developers at design time, and
developers provide control tips to end-users at run time.

If you assign a control tip to a MultiPage or a TabStrip, control tips for the individual Page or Tab
objects within the MultiPage or TabStrip are not displayed.

Assign a caption
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignCaptionC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignCaptionS"}

To assign a caption to a CheckBox, CommandButton, Frame, Label, OptionButton, or
ToggleButton:

1 Display the control’s Properties window.
2 Select the Caption property.
3 Enter the text you want to use as the caption.

To assign a caption to a Page or Tab:

1 Select the MultiPage or TabStrip that contains the Page or Tab.
2 Select the individual Page or Tab. When the Page or Tab is selected, a rectangle appears around

its caption.
3 Right-click the selected MultiPage or TabStrip.
4 From the shortcut menu, choose Rename.
5 In the Caption field, enter the text you want to use as the caption.
6 Click OK.

What is a caption?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsCaptionC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsCaptionS"}

A caption is descriptive text that appears directly on or around a control. The following controls can
have captions: CheckBox, CommandButton, Frame, Label, OptionButton, and ToggleButton.
The Page and Tab objects that are part of the MultiPage and TabStrip also can have captions.

Set the tab order using the Tab Order dialog box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSetTabOrderUsingDialogBoxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSetTabOrderUsingDialogBoxS"}

1 Make sure no controls are selected.
2 Right-click in the form, but not on a control.
3 From the shortcut menu, choose Tab Order.
4 Select the name of a control you want to reposition in the tab order.
5 Choose Move Up or Move Down until the control name is in the appropriate position in the tab

order.

Set the tab order using the TabIndex property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSetTabOrderUsingTabIndexPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSetTabOrderUsingTabIndexPropertyS"}

1 Identify the tab order you want to use for the form.
The tab index of the first control in the tab order is 0; the tab index of the second is 1, and so on.
3 Select a control in the tab order.
4 In the Properties window, select the TabIndex property.
5 Enter the appropriate number to identify the control’s position in the tab order.

Change the order of pages in a MultiPage or TabStrip
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeOrderOfPagesInMultiPageOrTabStripC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeOrderOfPagesInMultiPageOrTabStripS"}

1 Select any page in the MultiPage or TabStrip.
2 Right-click the caption of the page.
3 From the shortcut menu, choose Move.
4 In the Move dialog box, select the Page you want to move.
5 Choose Move Up or Move Down to change the position of the page.
6 When you’ve made all changes you want to, click OK.

Note You can also use the Index property to change the page order through the Properties
window. The index of the first page is 0; the index of the second page is 1, and so on.

Change the size of the form
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeSizeOfFormC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeSizeOfFormS"}

At design time:

· Drag the sizing handle of the form until the form is the size you want.

At run time:

· Set the form’s Height and Width properties to the appropriate values.

Change the location of the form
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howChangeLocationOfFormC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howChangeLocationOfFormS"}

Through the user interface:

· Drag the title bar until the form is where you want it.

At design time:

· Set the form’s Left and Top properties to the appropriate values. You can set these properties
through the Properties window or through code.

Ways to protect sensitive information
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToProtectSensitiveInformationC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToProtectSensitiveInformationS"}

Many applications use data that should be available only to certain users. Here are some suggestions
you can use to protect sensitive information in Microsoft Forms:

· Write code that makes a control (and its data) invisible to unauthorized users. The Visible property
makes a control visible or invisible. For more information about Visible, click .

· Write code that sets the control’s foreground and background to the same color when
unauthorized users run the application. This hides the information from unauthorized users. The
ForeColor and BackColor properties determine the foreground color and the background color. For
information about ForeColor, click . For information about BackColor, click

.
· Disable the control when unauthorized users run the application. The Enabled property determines

when a control is disabled. For information about Enabled, click .
· Require a password for access to the application or a specific control. You can use placeholders
as the user types each character. The PasswordChar property defines placeholder characters. For
information about PasswordChar, click .

Note      Using passwords or any other techniques listed can improve the security of your application,
but does not guarantee the prevention of unauthorized access to your data.

Make a control that automatically adjusts to the size of its data
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howMakeControlThatAutomaticallyAdjustsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howMakeControlThatAutomaticallyAdjustsS"}

In the Properties window, set the AutoSize property to True.

Ways to change the appearance of a control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToChangeAppearanceOfControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToChangeAppearanceOfControlS"}

Microsoft Forms includes several properties that let you define the appearance of controls in your
application:

· ForeColor
· BackColor, BackStyle
· BorderColor, BorderStyle
· SpecialEffect

ForeColor determines the foreground color. The foreground color applies to any text associated with
the control, such as the caption or the control’s contents.

BackColor and BackStyle apply to the control’s background. The background is the area within the
control’s boundaries, such as the area surrounding the text in a control, but not the control’s border.
BackColor determines the background color. BackStyle determines whether the background is
transparent. A transparent control background is useful if your application design includes a picture as
the main background and you want to see that picture through the control.

BorderColor, BorderStyle, and SpecialEffect apply to the control’s border. You can use
BorderStyle or SpecialEffect to choose a type of border. Only one of these two properties can be
used at a time. When you assign a value to one of these properties, the system sets the other
property to None. SpecialEffect lets you choose one of several border styles, but only lets you use
system colors for the border. BorderStyle supports only one border style, but lets you choose any
color that is a valid setting for BorderColor. BorderColor specifies the color of the control’s border,
and is only valid when you use BorderStyle to create the border.

Things you can do with a picture on an Image control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conThingsPictureOnImageC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conThingsPictureOnImageS"}

An Image control is not a picture itself; rather, it contains a picture that is stored in a separate file. You
cannot edit the picture with the properties of the Image, but you can use them to specify the way the
picture appears on the Image.

An interesting application of Image is that you can use it as a background picture for your application.
To do this, make the Image the same size as the form. Then, you can place other controls on top of
the background.

Align text in a control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAlignTextInControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAlignTextInControlS"}

1 In the Properties window, choose the TextAlign property.
2 Click the drop-down arrow next to the property’s value to display a list of available choices.
3 Choose one of the following:

· Left—to align the text with the left edge of the control.
· Right—to align the text with the right edge of the control.
· Center—to center the text relative to the length of the control.

TextAlign is available for a ComboBox, Label, and TextBox.

Show or hide the grid
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howShowHideGridC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howShowHideGridS"}

1 From the Tools menu, choose Options.
2 Select the General tab sheet.
3 Do one of the following:

· To show the grid, check the Show Grid box.
· To hide the grid, clear the Show Grid box.

1 Click OK.

Size to grid
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSizeToGridC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSizeToGridS"}

1 Select the control.
2 From the Format menu, choose Size to Grid.
Microsoft Forms adjusts the size of the selected control so that each corner aligns with a grid point.

Size to fit
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSizeToFitC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSizeToFitS"}

1 Select the control.
2 From the Format menu, choose Size to Fit.
Microsoft Forms sets the size of the control so it is just large enough to display its picture and any text

assigned to the Caption or Text property.

Make controls the same size
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howMakeControlsSameSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howMakeControlsSameSizeS"}

1 Select all the controls you want to be the same size.
2 Select the dominant control.
3 From the Format menu, choose Make Same Size.
4 From the cascading menu, choose one of the following:

· Width—to make all selected controls the same width as the dominant control.
· Height—to make all selected controls the same height as the dominant control.
· Both—to make all selected controls the same height and width as the dominant control.

Align controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAlignControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAlignControlsS"}

1 Select the controls to align.
2 Select the dominant control.
3 From the Format menu, choose Align.
4 From the cascading menu, choose one of the following to align the specified part of each selected

control with the same part of the dominant control:
· Lefts—to align the left edge.
· Centers—to align the center of each control. This means a vertical line drawn at the center of

the dominant control would contain the center of every selected control.
· Rights—to align the right edge.
· Tops—to align the top.
· Middles—to align the center of each control. This means a horizontal line drawn at the center of

the dominant control would also contain the center of every selected control.
· Bottoms—to align the bottom.
· To Grid—to align the upper left corner of each selected control with its nearest grid point. Note

that this option is not based on the position of the dominant control.

Note Each command on the menu has a small picture that shows how the controls will be aligned.

Adjust horizontal and vertical spacing between controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAdjustHorizontalSpacingC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAdjustHorizontalSpacingS"}

1 Select the controls where you want to adjust spacing.
2 From the Format menu, choose Horizontal Spacing or Vertical Spacing.
3 From the cascading menu, choose one of the following:

· Make Equal—to make all horizontal and vertical spaces between controls the same size. The
amount of horizontal and vertical space will vary depending on the area available for displaying
controls and the combined width of all controls.

· Increase—to increase the space between controls by one grid block.
· Decrease—to decrease the space between controls by one grid block.
· Remove—to remove the space between controls. The controls do not overlap, but are

immediately adjacent to each other.

Arrange buttons
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howArrangeButtonsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howArrangeButtonsS"}

1 Select the CommandButton controls to arrange.
2 From the Format menu, choose Arrange Buttons.
3 From the cascading menu, choose one of the following:

· Bottom—to put the buttons in a row starting at the bottom left corner of the form and align the
bottoms of all buttons.

· Right—to put the buttons in a column starting at the upper right corner of the form and align the
right edges of all buttons.

After you arrange the buttons, use either Horizontal Spacing or Vertical Spacing on the Format
menu to adjust the spacing between the buttons.

Tip      Select a small grid size before choosing this command to position the buttons close to the
bottom or right of the form. Changing the grid size after the buttons are in place will not change their
position.

Center controls in a form
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCenterInFormC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCenterInFormS"}

1 Select the controls or groups to center.
2 From the Format menu, choose Center in Form.
3 From the cascading menu, choose one of the following:

· Horizontally
· Vertically

Things you can do with control groups
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conThingsControlGroupsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conThingsControlGroupsS"}

A group is two or more controls on a form that you treat as a single unit. You can include any control
on the form in a group. Once controls belong to a group, you can work with the entire group, or you
can select a single object.

Microsoft Forms provides many ways to work with groups and the controls in a group. After you select
a group, you can do any of the following:

· Size all controls in the group at the same time. For more information, click .
· Break up the group so each control is independent of the others. For more information, click .
· Display the group’s shortcut menu, which provides quick access to commands that affect the
group. For more information, click .
· Select a single control within the group without breaking up the group, which lets you change
property settings of that control without affecting any other control in the group. For more information,
click .

Transparency in Microsoft Forms
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conTransparencyInMSFormsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conTransparencyInMSFormsS"}

Microsoft Forms supports transparency in two areas: the background of certain controls, and in
bitmaps used on certain controls.

The BackStyle property determines whether a control is transparent. A transparent control lets you
see what is behind it on the form. This is useful if you have a decorative background on the form and
you want to minimize the amount of that background that is hidden behind the controls. For more
information on making a control transparent, click .

You can display a bitmap on many controls in Microsoft Forms. Certain controls support transparent
bitmaps, that is, bitmaps in which one or more background color is transparent. Bitmap transparency
is not controlled by any control property; it is controlled by the color of the lower-left pixel in the image.
Microsoft Forms does not provide a way to edit a bitmap and make it transparent; you must use a
picture editor for this purpose.

In Microsoft Forms, bitmaps are always transparent on the following controls:

· CheckBox
· CommandButton
· Label
· OptionButton
· ToggleButton

Transparent pictures sometimes have a hazy appearance. If you do not like this appearance, display
the picture on a control that supports opaque images.

If you use a transparent bitmap on a control that does not support transparent bitmaps, the bitmap will
display correctly but you won’t be able to see what’s behind it. In Microsoft Forms, the following
controls do not support transparent bitmaps:

· The form window (UserForm)
· Frame
· Image
· MultiPage

What is a shortcut menu?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWhatIsShortcutMenuC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWhatIsShortcutMenuS"}

A shortcut menu is a menu that appears when you right-click an object. In Microsoft Forms, the
following objects have shortcut menus:

· The Toolbox, each page in the Toolbox, and each item on a page of the Toolbox.
· Individual controls on a form.
· Groups of controls (groups created with the Group command).
· Containers (such as UserForm).
· Individual Page objects in a MultiPage.
· Individual Tab objects in a TabStrip.
· Multiple controls that aren’t in a group.

The commands on a shortcut menu vary depending on the object you select. For example, if you
select multiple controls that aren’t in a group, the shortcut menu will include the Group command; the
shortcut menu for the Toolbox will not.

To display the shortcut menu for a control or container, right-click the object.

For more information on displaying the shortcut menu for a MultiPage or a Page, click .

For more information on displaying the shortcut menu for a TabStrip or a Tab, click .

Ways to put data in a ListBox or ComboBox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToPutDataInListC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToPutDataInListS"}

In a ListBox or ComboBox with a single column, the AddItem method provides an effective
technique for adding an individual entry to the list. In a multicolumn ListBox or ComboBox, however,
the List and Column properties offer another technique; you can load the list from a two-dimensional
array.

Things you can do with a multicolumn ListBox or ComboBox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conThingsYouCanDoWithListC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conThingsYouCanDoWithListS"}

To control the column widths of a multicolumn ListBox or ComboBox, you can specify the width, in
points, for all the columns in the ColumnWidths property. Specifying zero for a specific column hides
that column of information from the display.

If you want to hide all but one column of a ListBox or ComboBox from the user, you can identify the
column of information to display by using the TextColumn property.

Similarly, you can control which column of values is used for the control when the user makes a
selection by specifying the column number in the BoundColumn property.

Add items to a list using the List or Column property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAddItemsToListUsingListOrColumnPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAddItemsToListUsingListOrColumnPropertyS"}

1 Create a multicolumn ListBox or ComboBox.
2 Create a two-dimensional array that contains the items you want to put in the list.
3 Set the ColumnCount property of the ListBox or ComboBox to match the number of entries in

the list.
4 Do one of the following:

· Assign the array as the value of the List property. The contents of the ListBox will match the
contents of the array exactly.

· Assign the array as the value of the Column property. Column transposes rows and columns,
so each row of the ListBox matches the corresponding column of the array.

Show or hide ToolTips
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howShowHideToolTipsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howShowHideToolTipsS"}

1 From the Tools menu, choose Options.
2 Select the General tab sheet.
3 Do one of the following:

· To display ToolTips, check the Show ToolTips box.
· To hide ToolTips, clear the Show ToolTips box.

Object model for Microsoft Forms
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conObjectModelMSFormsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conObjectModelMSFormsS"}

The Microsoft Forms object model includes the following types of object:

· Controls
· Collections
· Objects (within collections)
Each element of the Microsoft Forms object model has some combination of properties, events, and
methods that you can use to make your application work the way you want it to.

Microsoft Forms has three collections:

Controls collection—contains all the controls on a form, Frame, or Page.

Pages collection—contains all the Page objects in a MultiPage. Each MultiPage has its own distinct
Pages collection.

Tabs collection—contains all the Tab objects in a TabStrip. Each TabStrip has its own distinct Tabs
collection.

Ways to create an option group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToCreateOptionGroupC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToCreateOptionGroupS"}

By default, all OptionButton controls on a container (such as a form, a MultiPage, or a Frame) are
part of a single option group. This means that selecting one of the buttons automatically sets all other
option buttons on the form to False.

If you want more than one option group on the form, there are two ways to create additional groups:

· Use the GroupName property to identify related buttons.
· Put related buttons in a Frame on the form.

The first method is recommended over the second because it reduces the number of controls
required in the application. This reduces the disk space required for your application and can improve
the performance of your application as well.

Note      A TabStrip is not a container. Option buttons in the TabStrip are included in the form’s option
group. You can use GroupName to create an option group from buttons in a TabStrip.

Create an option group using the GroupName property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateOptionGroupUsingGroupNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateOptionGroupUsingGroupNameS"}

1 Place all required OptionButton controls on the form. Note that option buttons in a MultiPage or
Frame will automatically form an option group.

2 Identify the buttons for each group you want to create.
3 Enter a value for the Name property of each control.
4 For each button in a group, set the GroupName property to the same value.

Ways to match entries in a list
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToMatchEntriesInListC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToMatchEntriesInListS"}

Microsoft Forms provides three ways to match a value entered by the user with an entry that exists in
the list of a ListBox or ComboBox:

· No matching—provides no assistance in matching a user’s typed entry to an entry in the list.
· First letter—compares the most recently-typed letter to the first letter of each entry in the list. The

first match in the list is selected.
· Complete—compares the user’s entry and tries to find an exact match in an entry from the list.
The matching feature resets after two seconds (six seconds in the Far East version). For example, if
you have a list of the 50 states and you type “CO” quickly, you will find “Colorado.” But if you type
“CO” slowly, you will find “Ohio” because the auto-complete search resets between letters.
If you choose Complete matching, it is a good idea to sort the list entries alphabetically (you can use
the TextColumn property to do this). If the list is not sorted alphabetically, matching may not work
correctly. For example, if the list includes Alabama, Louisiana, and Alaska in that order, then
“Alabama” will be considered a complete match if the user types “ala.” In fact, this result is ambiguous
because there are two entries in the list that could match what the user entered. Sorting alphabetically
eliminates this ambiguity.

Use z-order to layer controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howLayerControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howLayerControlsS"}

To place a control at the front or back of the z-order:

1. Select the controls you want to reposition.
2. From the Format menu, choose Order.
3. From the cascading menu, select Bring to Front or Send to Back.

To adjust a control one position in the z-order:

1. Select the controls you want to reposition.
2. From the Format menu, choose Order.
3. From the cascading menu, select Bring Forward or Send Backward.

Note You can't Undo or Redo layering commands, such as Send to Back or Bring to Front. For
example, if you select an object and click Send Backward on the shortcut menu, you won't be able to
Undo or Redo that action.

The Bring to Front, Bring Forward, Send to Back, and Send Backward menu choices let you
change the z-order of a control relative to other controls. If the form includes any ListBox, Frame, or
MultiPage controls, those controls automatically move as close as possible to the top of the stack.
For example, applying Send Backward to a ListBox, Frame, or MultiPage moves the control below
other ListBox, Frame, or MultiPage controls, but will not move it below any other type of control in
the stack. Similarly, applying Bring Forward to a control other than a ListBox, Frame, or MultiPage
will move the control closer to to top of the stack, but will not move it above any ListBox, Frame, or
MultiPage in the stack.

Visually, this means that if a ListBox, Frame, or MultiPage and any other Microsoft Forms control
are in the same location on a form, the ListBox, Frame, or MultiPage will always appear on top of
the other control. If a ListBox, Frame, or MultiPage is in the same place as another ListBox, Frame,
or MultiPage, the z-order of the controls determines which control appears on top of the other.

Create a transparent control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateTransparentControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateTransparentControlS"}

1 Put the basic control onto the form.
2 View the control’s properties.
3 Set the BackStyle property to Transparent.
4 If the control supports the BorderStyle property, set it to None.

Note      When you make a control transparent, the background color does not display, so the
BackColor property is ignored. However, the setting for BackColor is not changed when a control is
transparent.

Delete a bitmap from a control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDeleteBitmapFromControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDeleteBitmapFromControlS"}

In the Properties window:

1 Highlight the value of the Picture property (the word “bitmap”).
2 Press DELETE.

Or, in code:

· Enter the following statement: Object.Picture = LoadPicture(“”)

Assign a bitmap to a control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howAssignBitmapToControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howAssignBitmapToControlS"}

In the Properties window:

1 Choose the Picture property.
2 In the Picture dialog box, enter the name of the picture and its location.

If the picture is larger than the control, Microsoft Forms scales the picture to fit the control, regardless
of whether you assign the picture through the Properties window or through code. The
PictureAlignment property determines how it is aligned within the control.

Ways to align a picture on a control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conWaysToAlignPictureOnControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conWaysToAlignPictureOnControlS"}

The Picture property assigns a bitmap or other picture to a control. After you assign the picture to the
control, you can do any of the following to align the picture on the control:

· Use the PictureAlignment property to center the picture within the Image or align any corner of
the picture with the corresponding corner of the Image.

· Use the PictureSizeMode property to clip, stretch, or zoom the picture within the Image.
Stretching can distort the picture, but zooming will not.

· Use the PictureTiling property to display multiple copies of the picture within the Image.

Select a grid size
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSelectGridSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSelectGridSizeS"}

1 From the Tools menu, choose Options.
2 In the Options dialog box, choose the General page.
3 In the Form Grid Settings group, specify the size you want for each grid block. Specifying smaller

numbers results in smaller grid blocks.

Tip If you use the Arrange Buttons command to position command buttons in your application, try
a small grid setting. This will allow you to position the buttons closer to the edge of the form.

Create a control group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howCreateControlGroupC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howCreateControlGroupS"}

1 In the form, select each control you want to include in the group.
2 From the Format menu, choose Group.

Size all the controls in a group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSizeAllControlsInGroupC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSizeAllControlsInGroupS"}

1 Select the group.
A rectangle with sizing handles surrounds the group to indicate it is selected.
3 Click one of the sizing handles and drag it to change the size of the rectangle.
4 Release the mouse button.
The size of each control will be changed proportionately to the way you changed the rectangle around

the group.

Break up a control group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howBreakUpControlGroupC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howBreakUpControlGroupS"}

1 Select the group.
2 From the Format menu, choose Ungroup.

Display a group’s shortcut menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDisplayGroupsShortcutMenuC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDisplayGroupsShortcutMenuS"}

1 Select the group.
2 Right-click anywhere inside the rectangle that surrounds the group.
Tip Click anywhere in the group, but not on the shortcut menu, to make the shortcut menu go away
if you don’t want to use any of the commands on the menu.

Select a control within a group
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howSelectControlWithinGroupC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howSelectControlWithinGroupS"}

1 Select the group.
2 Select a single control within the group. The sizing handles around the group become lighter, and

dark handles appear on the selected control.
You can change the value of the selected control’s properties. Any changes you make will affect
only the selected control.

3 When you’re finished working with the selected control, click anywhere inside the group, but not on
the selected control. The group is still selected.
You can select another control in the group or go on to any other task you need to perform.

Display the shortcut menu for a MultiPage or Page
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDisplayShortcutMenuForMultiPageOrPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDisplayShortcutMenuForMultiPageOrPageS"}

1 Make sure the form isn’t running.
2 Do one of the following:

· To display the shortcut menu of an individual Page, right-click the caption of the appropriate
page.

· To display the shortcut menu of the entire MultiPage, right-click anywhere in the control, but not
on the caption of any Page in the control.

Display the shortcut menu for a TabStrip or Tab
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3howDisplayShortcutMenuForTabStripOrTabC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3howDisplayShortcutMenuForTabStripOrTabS"}

1 Make sure the form isn’t running.
2 Do one of the following:

· To display the shortcut menu of an individual Tab, select the appropriate tab.
When the tab is selected, a dotted rectangle appears around its caption.

Right-click the selected caption.
· To display the shortcut menu of the TabStrip, right-click anywhere in the control, but not on the

caption of any Tab in the control.

Active controls and selected controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conActiveControlsSelectedControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conActiveControlsSelectedControlsS"}

All controls have an active state and a selected state. When a control is active, it means you are
working with the contents of the control; when a control is selected, it means you are working with the
control itself.

Most controls are automatically selected when you put them on the form. In design mode, sizing
handles appear around a control’s border when the control is selected. If you deselect the control, you
can select it again by clicking once on the control.

Clicking a control that is selected puts the control in the active state. In this state, you can directly edit
the control’s caption.

In both the selected state and the active state, you can use DEL, CTRL+X, and CTRL+C as shortcut keys
for the Delete, Cut, and Copy commands respectively. In the selected state, these commands are
available on the shortcut menu and will affect the control itself. In the active state, these commands
will affect whatever text is selected inside the control; if no text is selected, these commands have no
effect. These commands are not available on the shortcut menu for active controls.

Tips on selecting multiple controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conTipsOnSelectingMultipleControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conTipsOnSelectingMultipleControlsS"}

You can select more than one control in three ways:

· SHIFT+CLICK: Microsoft Forms creates an invisible selection rectangle around the selected controls
and puts sizing handles on all controls within that rectangle.

· CTRL+CLICK: sizing handles only appear on the selected controls, not on controls within the
surrounding rectangle. Occasionally, this method may select additional controls that are near to or
adjacent to the selected controls. In that case, use the Select Objects pointer explained below.

· Select Objects pointer on the Toolbox: draw a rectangle over the controls you want to select. All
controls that fall within or just touch the rectangle will be selected.

When you select multiple controls, one of the selected controls becomes a reference for the rest of
the selected controls and is called the dominant control.

Tips on setting the dominant control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conTipsOnSettingDominantControlC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conTipsOnSettingDominantControlS"}

You can set the dominant control in one of the following ways when selecting multiple controls:

· SHIFT+CLICK: The dominant control is the first control you select using SHIFT+CLICK.
· CTRL+CLICK: The dominant control is the last control you select using CTRL+CLICK.
· Select Objects pointer on the Toolbox: The dominant control is nearest the mouse pointer when

you begin drawing the rectangle over the controls you want to select.

If you CTRL+CLICK twice on a selected control, that control becomes the dominant control.

Undo and Redo in Microsoft Forms
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conUndoRedoInMicrosoftFormsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conUndoRedoInMicrosoftFormsS"}

Microsoft Forms supports multiple levels of Undo and Redo commands. This means you can undo a
series of actions, not just a single action.

CTRL+Z is the shortcut key for Undo; CTRL+Y is the shortcut key for Redo.

You cannot undo or redo layering commands, such as Send To Back or Bring To Front. For
example, if you select an object and click Move Backward on the shortcut menu, you will not be able
to undo or redo that action.

ByVal References in Microsoft Forms
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3conByValReferencesInMicrosoftFormsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3conByValReferencesInMicrosoftFormsS"}

The ByVal keyword in Microsoft Forms indicates that an argument is passed as a value; this is the
standard meaning of ByVal in Visual Basic. However, in Microsoft Forms, you can use ByVal with a
ReturnBoolean, ReturnEffect, ReturnInteger, or ReturnString object. When you do, the value passed
is not a simple data type; it is a pointer to the object.

When used with these objects, ByVal refers to the object, not the method of passing parameters.
Each of the objects listed above has a Value property that you can set. You can also pass that value
into and out of a function. Because you can change the values of the object’s members, events
produce results consistent with ByRef behavior, even though the event syntax says the parameter is
ByVal.

Assigning a value to an argument associated with a ReturnBoolean, ReturnEffect, ReturnInteger, or
ReturnString is no different from setting the value of any other argument. For example, if the event
syntax indicates a Cancel argument used with the ReturnBoolean object, the statement
Cancel=True is still valid, just as it is with other data types.

The Rename dialog box
Contains the Accelerator, Caption, and ControlTipText property settings for the individual page or
tab that has the focus. Contains the Caption and ToolTipText property settings for the current
Toolbox page. You can update the values for these properties.

The accelerator key is a keyboard key that the user presses simultaneously with ALT to set the focus
to a Page or Tab. The caption is the text in the tab area of a Page or Tab, or the current Toolbox
page. The ControlTipText is a brief description of a control that appears when the user holds the
mouse pointer over the control without clicking. The ToolTipText is a brief description of a control that
appears when the user holds the mouse pointer over the current Toolbox page without clicking.

To set an accelerator for the Page or Tab:

· Enter a single character for Accelerator.

To rename the Page or Tab:

· Enter a new value for Caption.

To define ControlTipText for the Page or Tab:

· Enter a new value for ControlTipText.

To define ToolTipText for the current Toolbox page:

· Enter a new value for ToolTipText.

Note      Click OK to apply the new values to the page, tab, or Toolbox page.

The Page Order/Tab Order dialog box
To change the position of a page or tab:

1. Select the name of the Page or Tab you want to move.
2. Choose Move Up or Move Down until the selected item is in the desired location.
3. When all items are in the order you want, click OK.

The Additional Controls dialog box
1. In the Available Controls list, select the control or controls you want to add to the Toolbox.
2. Click OK.
Tip You can filter the Available Controls list by selecting options in the Show group.

The Customize Control dialog box
Contains the ControlTipText property and the icon that represents this control in the Toolbox. With
this dialog box, you can define or change the ControlTipText associated with this control, as well as
change the icon that is displayed in the Toolbox.

To define or edit ControlTipText:
· Enter a new value for ControlTipText.

To edit the icon:

1. Choose the Edit Picture CommandButton.
2. Use the Image Editor to alter the icon as needed.

To load another icon:

1. Choose the Load Picture CommandButton.
2. From the common dialog box, select a picture file.
3. Click OK to apply the new values.

Item Method Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpItemC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpItemS"}

The following example uses the Item method to access individual members of the Controls and
Pages collections. The user chooses an option button for either the Controls collection or the
MultiPage, and then clicks the CommandButton. The name of the appropriate control is returned in
the Label.
To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A CommandButton named CommandButton1.
· A Label named Label1.
· Two OptionButton controls named OptionButton1 and OptionButton2.
· A MultiPage named MultiPage1.

Dim MyControl As Object
Dim ControlsIndex As Integer

Private Sub CommandButton1_Click()
 If OptionButton1.Value = True Then
 'Process Controls collection for UserForm
 Set MyControl = Controls.Item(ControlsIndex)
 Label1.Caption = MyControl.Name

 'Prepare index for next control on Userform
 ControlsIndex = ControlsIndex + 1
 If ControlsIndex >= Controls.Count Then
 ControlsIndex = 0
 End If

 ElseIf OptionButton2.Value = True Then
 'Process Current Page of Pages collection
 Set MyControl = MultiPage1.Pages.Item(MultiPage1.Value)
 Label1.Caption = MyControl.Name
 End If
End Sub

Private Sub UserForm_Initialize()
 ControlsIndex = 0
 'TabsIndex = 0

 OptionButton1.Caption = "Controls Collection"
 OptionButton2.Caption = "Pages Collection"
 OptionButton1.Value = True

 CommandButton1.Caption = "Get Member Name"
End Sub

Object Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpObjectC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpObjectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpObjectS"}

Assume a new control has a Top property that is different from the standard Top property in Microsoft
Forms. You can use either property, based on the syntax:

· control.Top uses the standard Top property.
· control.Object.Top uses the Top property from the added control.

TabStop Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTabStopC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpTabStopA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTabStopS"}

The following example uses the TabStop property to control whether a user can press TAB to move
the focus to a particular control. The user presses TAB to move the focus among the controls on the
form, and then clicks the ToggleButton to change TabStop for CommandButton1. When TabStop is
False, CommandButton1 will not receive the focus by using TAB.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A CommandButton named CommandButton1.
· A ToggleButton named ToggleButton1.
· One or two other controls, such as an OptionButton or ListBox.

Private Sub CommandButton1_Click()
 MsgBox "Clicked CommandButton1."
End Sub

Private Sub ToggleButton1_Click()
 If ToggleButton1 = True Then
 CommandButton1.TabStop = True
 ToggleButton1.Caption = "TabStop On"
 Else
 CommandButton1.TabStop = False
 ToggleButton1.Caption = "TabStop Off"
 End If
End Sub

Private Sub UserForm_Initialize()
 CommandButton1.Caption = "Show Message"

 ToggleButton1.Caption = "TabStop On"
 ToggleButton1.Value = True
 ToggleButton1.Width = 90
End Sub

TakeFocusOnClick Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTakeFocusOnClickC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpTakeFocusOnClickA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTakeFocusOnClickS"}

The following example uses the TakeFocusOnClick property to control whether a CommandButton
receives the focus when the user clicks on it. The user clicks a control other than CommandButton1
and then clicks CommandButton1. If TakeFocusOnClick is True, CommandButton1 receives the
focus after it is clicked. The user can change the value of TakeFocusOnClick by clicking the
ToggleButton.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A CommandButton named CommandButton1.
· A ToggleButton named ToggleButton1.
· One or two other controls, such as an OptionButton or ListBox.

Private Sub CommandButton1_Click()
 MsgBox "Watch CommandButton1 to see if it takes the focus."
End Sub

Private Sub ToggleButton1_Click()
 If ToggleButton1 = True Then
 CommandButton1.TakeFocusOnClick = True
 ToggleButton1.Caption = "TakeFocusOnClick On"
 Else
 CommandButton1.TakeFocusOnClick = False
 ToggleButton1.Caption = "TakeFocusOnClick Off"
 End If
End Sub

Private Sub UserForm_Initialize()
 CommandButton1.Caption = "Show Message"

 ToggleButton1.Caption = "TakeFocusOnClick On"
 ToggleButton1.Value = True
 ToggleButton1.Width = 90
End Sub

MatchEntry Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpMatchEntryC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpMatchEntryA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpMatchEntryS"}

The following example uses the MatchEntry property to demonstrate character matching that is
available for ComboBox and ListBox. In this example, the user can set the type of matching with the
OptionButton controls and then type into the ComboBox to specify an item from its list.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Three OptionButton controls named OptionButton1 through OptionButton3.
· A ComboBox named ComboBox1.

Private Sub OptionButton1_Click()
 ComboBox1.MatchEntry = fmMatchEntryNone
End Sub

Private Sub OptionButton2_Click()
 ComboBox1.MatchEntry = fmMatchEntryFirstLetter
End Sub

Private Sub OptionButton3_Click()
 ComboBox1.MatchEntry = fmMatchEntryComplete
End Sub

Private Sub UserForm_Initialize()
 Dim i As Integer

 For i = 1 To 9
 ComboBox1.AddItem "Choice " & i
 Next i
 ComboBox1.AddItem "Chocoholic"

 OptionButton1.Caption = "No matching"
 OptionButton1.Value = True

 OptionButton2.Caption = "Basic matching"
 OptionButton3.Caption = "Extended matching"
End Sub

MatchFound, MatchRequired Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpMatchFoundMatchRequiredC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpMatchFoundMatchRequiredA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpMatchFoundMatchRequiredS"}

The following example uses the MatchFound and MatchRequired properties to demonstrate
additional character matching for ComboBox. The matching verification occurs in the Change event.

In this example, the user specifies whether the text portion of a ComboBox must match one of the
listed items in the ComboBox. The user can specify whether matching is required by using a
CheckBox and then type into the ComboBox to specify an item from its list.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ComboBox named ComboBox1.
· A CheckBox named CheckBox1.

Private Sub CheckBox1_Click()
 If CheckBox1.Value = True Then
 ComboBox1.MatchRequired = True
 MsgBox "To move the focus from the ComboBox, you must match an
entry in the list or press ESC."
 Else
 ComboBox1.MatchRequired = False
 MsgBox " To move the focus from the ComboBox, just tab to or click
another control. Matching is optional."
 End If
End Sub

Private Sub ComboBox1_Change()
 If ComboBox1.MatchRequired = True Then
 'MSForms handles this case automatically
 Else
 If ComboBox1.MatchFound = True Then
 MsgBox "Match Found; matching optional."
 Else
 MsgBox "Match not Found; matching optional."
 End If
 End If
End Sub

Private Sub UserForm_Initialize()
Dim i As Integer

For i = 1 To 9
 ComboBox1.AddItem "Choice " & i
Next i
ComboBox1.AddItem "Chocoholic"

CheckBox1.Caption = "MatchRequired"
CheckBox1.Value = True
End Sub

MultiSelect, Selected Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpMultiSelectSelectedC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpMultiSelectSelectedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpMultiSelectSelectedS"}

The following example uses the MultiSelect and Selected properties to demonstate how the user
can select one or more items in a ListBox. The user specifies a selection method by choosing an
option button and then selects an item(s) from the ListBox. The user can display the selected items
in a second ListBox by clicking the CommandButton.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two ListBox controls named ListBox1 and ListBox2.
· A CommandButton named CommandButton1.
· Three OptionButton controls named OptionButton1 through OptionButton3.

Dim i As Integer

Private Sub CommandButton1_Click()
 ListBox2.Clear

 For i = 0 To 9
 If ListBox1.Selected(i) = True Then
 ListBox2.AddItem ListBox1.List(i)
 End If
 Next i

End Sub

Private Sub OptionButton1_Click()
 ListBox1.MultiSelect = fmMultiSelectSingle
End Sub

Private Sub OptionButton2_Click()
 ListBox1.MultiSelect = fmMultiSelectMulti
End Sub

Private Sub OptionButton3_Click()
 ListBox1.MultiSelect = fmMultiSelectExtended
End Sub

Private Sub UserForm_Initialize()
 For i = 0 To 9
 ListBox1.AddItem "Choice " & (ListBox1.ListCount + 1)
 Next i

 OptionButton1.Caption = "Single Selection"
 ListBox1.MultiSelect = fmMultiSelectSingle
 OptionButton1.Value = True

 OptionButton2.Caption = "Multiple Selection"
 OptionButton3.Caption = "Extended Selection"

 CommandButton1.Caption = "Show selections"
 CommandButton1.AutoSize = True
End Sub

Style Property Example for ComboBox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpStyleComboBoxC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpStyleComboBoxA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpStyleComboBoxS"}

The following example uses the Style property to change the effect of typing in the text area of a
ComboBox. The user chooses a style by selecting an OptionButton control and then types into the
ComboBox to select an item. When Style is fmStyleDropDownList, the user must choose an item
from the drop-down list. When Style is fmStyleDropDownCombo, the user can type into the text area
to specify an item in the drop-down list.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two OptionButton controls named OptionButton1 and OptionButton2.
· A ComboBox named ComboBox1.

Private Sub OptionButton1_Click()
 ComboBox1.Style = fmStyleDropDownCombo
End Sub

Private Sub OptionButton2_Click()
 ComboBox1.Style = fmStyleDropDownList
End Sub

Private Sub UserForm_Initialize()
 Dim i As Integer

 For i = 1 To 10
 ComboBox1.AddItem "Choice " & i
 Next i

 OptionButton1.Caption = "Select like ComboBox"
 OptionButton1.Value = True
 ComboBox1.Style = fmStyleDropDownCombo

 OptionButton2.Caption = "Select like ListBox"
End Sub

Style Property Example for MultiPage and TabStrip
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpStyleMultiPageTabStripC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpStyleMultiPageTabStripA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpStyleMultiPageTabStripS"}

The following example uses the Style property to specify the appearance of the tabs in MultiPage
and TabStrip. This example also demonstrates using a Label. The user chooses a style by selecting
an OptionButton.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Label named Label1.
· Three OptionButton controls named OptionButton1 through OptionButton3.
· A MultiPage named MultiPage1.
· A TabStrip named TabStrip1.
· Any control inside the TabStrip.
· Any control in each page of the MultiPage.

Private Sub OptionButton1_Click()
 MultiPage1.Style = fmTabStyleTabs
 TabStrip1.Style = fmTabStyleTabs
End Sub

Private Sub OptionButton2_Click()
 'Note that the page borders are invisible
 MultiPage1.Style = fmTabStyleButtons
 TabStrip1.Style = fmTabStyleButtons
End Sub

Private Sub OptionButton3_Click()
 'Note that the page borders are invisible and
 'the page body begins where the tabs normally appear.
 MultiPage1.Style = fmTabStyleNone
 TabStrip1.Style = fmTabStyleNone
End Sub

Private Sub UserForm_Initialize()
 Label1.Caption = "Page/Tab Style"
 OptionButton1.Caption = "Tabs"
 OptionButton1.Value = True
 MultiPage1.Style = fmTabStyleTabs
 TabStrip1.Style = fmTabStyleTabs

 OptionButton2.Caption = "Buttons"
 OptionButton3.Caption = "No Tabs or Buttons"
End Sub

OldLeft, OldTop, OldHeight, OldWidth Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpOldLeftOldTopOldHeightOldWidthC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpOldLeftOldTopOldHeightOldWidthA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpOldLeftOldTopOldHeightOldWidthS"}

The following example uses the OldLeft, OldTop, OldHeight, and OldWidth properties within the
Layout event to keep a control at its current position and size. The user clicks the CommandButton
labeled Move ComboBox to move the control, and then responds to a message box. The user can
click the CommandButton labeled Reset ComboBox to reset the control for another repetition.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two CommandButton controls named CommandButton1 and CommandButton2.
· A ComboBox named ComboBox1.

Dim Initialize As Integer
Dim ComboLeft, ComboTop, ComboWidth, ComboHeight As Integer

Private Sub UserForm_Initialize()
 Initialize = 0
 CommandButton1.Caption = "Move ComboBox"
 CommandButton2.Caption = "Reset ComboBox"

 'Information for resetting ComboBox
 ComboLeft = ComboBox1.Left
 ComboTop = ComboBox1.Top
 ComboWidth = ComboBox1.Width
 ComboHeight = ComboBox1.Height
End Sub

Private Sub CommandButton1_Click()
 ComboBox1.Move 0, 0, , , True
End Sub

Private Sub UserForm_Layout()
 Dim MyControl As Control
 Dim MsgBoxResult As Integer

 If Initialize = 0 Then 'Suppress MsgBox on initial layout event.
 Initialize = 1
 Exit Sub
 End If

 MsgBoxResult = MsgBox("In Layout event - Continue move?", vbYesNo)
 If MsgBoxResult = vbNo Then
 ComboBox1.Move ComboBox1.OldLeft, ComboBox1.OldTop,
ComboBox1.OldWidth, ComboBox1.OldHeight
 End If
End Sub

Private Sub CommandButton2_Click()
 ComboBox1.Move ComboLeft, ComboTop, ComboWidth, ComboHeight

 'OldLeft, OldTop, OldWidth, and OldHeight are not recognized here.
 'The following statement, if not commented, would produce an error at
run time.

 'ComboBox1.Move ComboBox1.OldLeft, ComboBox1.OldTop,
ComboBox1.OldWidth, ComboBox1.OldHeight
End Sub

TabFixedHeight, TabFixedWidth Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTabFixedHeightTabFixedWidthC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpTabFixedHeightTabFixedWidthA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTabFixedHeightTabFixedWidthS"}

The following example uses the TabFixedHeight and TabFixedWidth properties to set the size of the
tabs used in MultiPage and TabStrip. The user clicks the SpinButton controls to adjust the height
and width of the tabs within the MultiPage and TabStrip.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A MultiPage named MultiPage1.
· A TabStrip named TabStrip1.
· A Label named Label1 for the width control.
· A SpinButton named SpinButton1 for the width control.
· A TextBox named TextBox1 for the width control.
· A Label named Label2 for the height control.
· A SpinButton named SpinButton2 for the height control.
· A TextBox named TextBox2 for the height control.

Private Sub UpdateTabWidth()
 TextBox1.Text = SpinButton1.Value
 TabStrip1.TabFixedWidth = SpinButton1.Value
 MultiPage1.TabFixedWidth = SpinButton1.Value
End Sub

Private Sub UpdateTabHeight()
 TextBox2.Text = SpinButton2.Value
 TabStrip1.TabFixedHeight = SpinButton2.Value
 MultiPage1.TabFixedHeight = SpinButton2.Value
End Sub

Private Sub UserForm_Initialize()
 MultiPage1.Style = fmTabStyleButtons

 Label1.Caption = "Tab Width"
 SpinButton1.Min = 0
 SpinButton1.Max = TabStrip1.Width / TabStrip1.Tabs.Count
 SpinButton1.Value = 0
 TextBox1.Locked = True

 UpdateTabWidth

 Label2.Caption = "Tab Height"
 SpinButton2.Min = 0
 SpinButton2.Max = TabStrip1.Height
 SpinButton2.Value = 0
 TextBox2.Locked = True

 UpdateTabHeight
End Sub

Private Sub SpinButton1_SpinDown()
 UpdateTabWidth
End Sub

Private Sub SpinButton1_SpinUp()
 UpdateTabWidth
End Sub

Private Sub SpinButton2_SpinDown()
 UpdateTabHeight
End Sub

Private Sub SpinButton2_SpinUp()
 UpdateTabHeight
End Sub

TabIndex Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTabIndexC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpTabIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTabIndexS"}

The following example uses the TabIndex property to display and set the tab order for individual
controls. The user can press TAB to reach the next control in the tab order and to display the
TabIndex of that control. The user can also click on a control to display its TabIndex. The User can
change the TabIndex of a control by specifying a new index value in the TextBox and clicking
CommandButton3. Changing the TabIndex for one control also updates the TabIndex for other
controls in the Frame.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Label named Label1.
· A TextBox named TextBox1.
· A Frame named Frame1.
· A TextBox in the Frame named TextBox2.
· Two CommandButton controls in the Frame named CommandButton1 and CommandButton2.
· A ScrollBar in the Frame named ScrollBar1.
· A CommandButton (not in the Frame) named CommandButton3.

Private Sub MoveToFront()
 Dim i, Temp As Integer

 Temp = Frame1.ActiveControl.TabIndex
 For i = 0 To Temp - 1
 Frame1.Controls.Item(i).TabIndex = i + 1
 Next i

 Frame1.ActiveControl.TabIndex = 0
 TextBox1.Text = Frame1.ActiveControl.TabIndex
End Sub

Private Sub CommandButton3_Click()
 Dim i, Temp As Integer

 If IsNumeric(TextBox1.Text) Then
 Temp = Val(TextBox1.Text)

 If Temp >= Frame1.Controls.Count Or Temp < 0 Then
 'Entry out of range; move control to front of tab order
 MoveToFront
 ElseIf Temp > Frame1.ActiveControl.TabIndex Then
 'Move entry down the list
 For i = Frame1.ActiveControl.TabIndex + 1 To Temp
 Frame1.Controls.Item(i).TabIndex = i - 1
 Next i
 Frame1.ActiveControl.TabIndex = Temp
 TextBox1.Text = Frame1.ActiveControl.TabIndex
 Else
 'Move Entry up the list
 For i = Frame1.ActiveControl.TabIndex - 1 To Temp
 Frame1.Controls.Item(i).TabIndex = i + 1
 Next i
 Frame1.ActiveControl.TabIndex = Temp

 TextBox1.Text = Frame1.ActiveControl.TabIndex
 End If
 Else
 'Text entry; move control to front of tab order
 MoveToFront
 End If
End Sub

Private Sub UserForm_Initialize()
 Label1.Caption = "TabIndex"

 Frame1.Controls(0).SetFocus
 TextBox1.Text = Frame1.ActiveControl.TabIndex

 Frame1.Cycle = fmCycleCurrentForm

 CommandButton3.Caption = "Set TabIndex"
 CommandButton3.TakeFocusOnClick = False
End Sub

Private Sub TextBox2_Enter()
 TextBox1.Text = Frame1.ActiveControl.TabIndex
End Sub

Private Sub CommandButton1_Enter()
 TextBox1.Text = Frame1.ActiveControl.TabIndex
End Sub

Private Sub CommandButton2_Enter()
 TextBox1.Text = Frame1.ActiveControl.TabIndex
End Sub

Private Sub ScrollBar1_Enter()
 TextBox1.Text = Frame1.ActiveControl.TabIndex
End Sub

Layout Event, LayoutEffect Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpLayoutLayoutEffectC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpLayoutLayoutEffectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpLayoutLayoutEffectS"}

The following example moves a selected control on a form with the Move method, and uses the
Layout event and LayoutEffect property to identify the control that moved (and changed the layout of
the UserForm). The user clicks a control to move and then clicks the CommandButton. A message
box displays the name of the control that is moving.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A TextBox named TextBox1.
· A ComboBox named ComboBox1.
· An OptionButton named OptionButton1.
· A CommandButton named CommandButton1.
· A ToggleButton named ToggleButton1.

Private Sub UserForm_Initialize()
 CommandButton1.Caption = "Move current control"
 CommandButton1.AutoSize = True
 CommandButton1.TakeFocusOnClick = False

 ToggleButton1.Caption = "Use Layout Event"
 ToggleButton1.Value = True
End Sub

Private Sub CommandButton1_Click()
 If ActiveControl.Name = "ToggleButton1" Then
 'Keep it stationary
 Else
 'Move the control, using Layout event when ToggleButton1.Value is
True
 ActiveControl.Move 0, 0, , , ToggleButton1.Value
 End If
End Sub

Private Sub UserForm_Layout()
 Dim MyControl As Control

 MsgBox "In the Layout Event"

 'Find the control that is moving.
 For Each MyControl In Controls
 If MyControl.LayoutEffect = fmLayoutEffectInitiate Then
 MsgBox MyControl.Name & " is moving."
 Exit For
 End If
 Next
End Sub

Private Sub ToggleButton1_Click()
 If ToggleButton1.Value = True Then
 ToggleButton1.Caption = "Use Layout Event"
 Else
 ToggleButton1.Caption = "No Layout Event"

 End If
End Sub

Tag Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTagC"} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3smpTagA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTagS"}

The following example uses the Tag property to store additional information about each control on the
UserForm. The user clicks a control and then clicks the CommandButton. The contents of Tag for
the appropriate control are returned in the TextBox.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A TextBox named TextBox1.
· A CommandButton named CommandButton1.
· A ScrollBar named ScrollBar1.
· A ComboBox named ComboBox1.
· A MultiPage named MultiPage1.

Private Sub CommandButton1_Click()
 TextBox1.Text = ActiveControl.Tag
End Sub

Private Sub UserForm_Initialize()
 TextBox1.Locked = True
 TextBox1.Tag = "Display area for Tag properties."
 TextBox1.AutoSize = True

 CommandButton1.Caption = "Show Tag of Current Control."
 CommandButton1.AutoSize = True
 CommandButton1.WordWrap = True
 CommandButton1.TakeFocusOnClick = False
 CommandButton1.Tag = "Shows tag of control that has the focus."

 ComboBox1.Style = fmStyleDropDownList
 ComboBox1.Tag = "ComboBox Style is that of a ListBox."

 ScrollBar1.Max = 100
 ScrollBar1.Min = -273
 ScrollBar1.Tag = "Max = " & ScrollBar1.Max & " , Min = " &
ScrollBar1.Min

 MultiPage1.Pages.Add
 MultiPage1.Pages.Add
 MultiPage1.Tag = "This MultiPage has " & MultiPage1.Pages.Count & "
pages."
End Sub

TopIndex Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTopIndexC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpTopIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTopIndexS"}

The following example identifies the top item displayed in a ListBox and the item that has the focus
within the ListBox. This example uses the TopIndex property to identify the item displayed at the top
of the ListBox and the ListIndex property to identify the item that has the focus. The user selects an
item in the ListBox. The displayed values of TopIndex and ListIndex are updated when the user
selects an item or when the user clicks the CommandButton..

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Label named Label1.
· A TextBox named TextBox1.
· A Label named Label2.
· A TextBox named TextBox2.
· A CommandButton named CommandButton1.
· A ListBox named ListBox1.

Private Sub CommandButton1_Click()
 ListBox1.TopIndex = ListBox1.ListIndex
 TextBox1.Text = ListBox1.TopIndex
 TextBox2.Text = ListBox1.ListIndex
End Sub

Private Sub ListBox1_Change()
 TextBox1.Text = ListBox1.TopIndex
 TextBox2.Text = ListBox1.ListIndex
End Sub

Private Sub UserForm_Initialize()
 Dim i As Integer

 For i = 0 To 24
 ListBox1.AddItem "Choice " & (i + 1)
 Next i
 ListBox1.Height = 66
 CommandButton1.Caption = "Move to top of list"
 CommandButton1.AutoSize = True
 CommandButton1.TakeFocusOnClick = False

 Label1.Caption = "Index of top item"
 TextBox1.Text = ListBox1.TopIndex

 Label2. Caption = "Index of current item"
 Label2.AutoSize = True
 Label2.WordWrap = False
 TextBox2.Text = ListBox1.ListIndex
End Sub

TripleState Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTripleStateC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpTripleStateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTripleStateS"}

The following example uses the TripleState property to allow Null as a legal value of a CheckBox
and a ToggleButton. The user controls the value of TripleState through ToggleButton2. The user can
set the value of a CheckBox or ToggleButton based on the value of TripleState.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A CheckBox named CheckBox1.
· A ToggleButton named ToggleButton1.
· A ToggleButton named ToggleButton2.

Private Sub UserForm_Initialize()
 CheckBox1.Caption = "Value is True"
 CheckBox1.Value = True
 CheckBox1.TripleState = False

 ToggleButton1.Caption = "Value is True"
 ToggleButton1.Value = True
 ToggleButton1.TripleState = False

 ToggleButton2.Value = False
 ToggleButton2.Caption = "Triple State Off"
End Sub

Private Sub ToggleButton2_Click()
 If ToggleButton2.Value = True Then
 ToggleButton2.Caption = "Triple State On"
 CheckBox1.TripleState = True
 ToggleButton1.TripleState = True
 Else
 ToggleButton2.Caption = "Triple State Off"
 CheckBox1.TripleState = False
 ToggleButton1.TripleState = False
 End If
End Sub

Private Sub CheckBox1_Change()
 If IsNull(CheckBox1.Value) Then
 CheckBox1.Caption = "Value is Null"
 ElseIf CheckBox1.Value = False Then
 CheckBox1.Caption = "Value is False"
 ElseIf CheckBox1.Value = True Then
 CheckBox1.Caption = "Value is True"
 End If
End Sub

Private Sub ToggleButton1_Change()
 If IsNull(ToggleButton1.Value) Then
 ToggleButton1.Caption = "Value is Null"
 ElseIf ToggleButton1.Value = False Then
 ToggleButton1.Caption = "Value is False"
 ElseIf ToggleButton1.Value = True Then

 ToggleButton1.Caption = "Value is True"
 End If
End Sub

Value Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpValueC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpValueA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpValueS"}

The following example demonstrates the values that the different types of controls can have by
displaying the Value property of a selected control. The user chooses a control by pressing TAB or by
clicking on the control. Depending on the type of control, the user can also specify a value for the
control by typing in the text area of the control, by clicking one or more times on the control, or by
selecting an item, page, or tab within the control. The user can display the value of the selected
control by clicking the appropriately labeled CommandButton.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A CommandButton named CommandButton1.
· A TextBox named TextBox1.
· A CheckBox named CheckBox1.
· A ComboBox named ComboBox1.
· A CommandButton named CommandButton2.
· A ListBox named ListBox1.
· A MultiPage named MultiPage1.
· Two OptionButton controls named OptionButton1 and OptionButton2.
· A ScrollBar named ScrollBar1.
· A SpinButton named SpinButton1.
· A TabStrip named TabStrip1.
· A TextBox named TextBox2.
· A ToggleButton named ToggleButton1.

Dim i As Integer

Private Sub CommandButton1_Click()
 TextBox1.Text = "Value of " & ActiveControl.Name & " is " &
ActiveControl.Value
End Sub

Private Sub UserForm_Initialize()
 CommandButton1.Caption = "Get value of current control"
 CommandButton1.AutoSize = True
 CommandButton1.TakeFocusOnClick = False
 CommandButton1.TabStop = False

 TextBox1.AutoSize = True

 For i = 0 To 10
 ComboBox1.AddItem "Choice " & (i + 1)
 ListBox1.AddItem "Selection " & (100 - i)
 Next i

 CheckBox1.TripleState = True
 ToggleButton1.TripleState = True

 TextBox2.Text = "Enter text here."
End Sub

KeyPress Event Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpKeyPressC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpKeyPressA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpKeyPressS"}

The following example uses the KeyPress event to copy keystrokes from one TextBox to a second
TextBox. The user types into the appropriately marked TextBox.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two TextBox controls named TextBox1 and TextBox2.

Private Sub TextBox1_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)
 TextBox2.Text = TextBox2.Text & Chr(KeyAscii)

 'To handle keyboard combinations (using SHIFT, CTRL, ALT, and another
key),
 'or TAB or ENTER, use the KeyDown or KeyUp event.
End Sub

Private Sub UserForm_Initialize()
 Move 0, 0, 570, 380

 TextBox1.Move 30, 40, 220, 160
 TextBox1.MultiLine = True
 TextBox1.WordWrap = True
 TextBox1.Text = "Type text here."
 TextBox1.EnterKeyBehavior = True

 TextBox2.Move 298, 40, 220, 160
 TextBox2.MultiLine = True
 TextBox2.WordWrap = True
 TextBox2.Text = "Typed text copied here."
 TextBox2.Locked = True
 End Sub

Zoom Event Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpZoomEventC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpZoomEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpZoomEventS"}

The following example uses the Zoom event to evaluate the new value of the Zoom property and
adds scroll bars to the form when appropriate. The example uses a Label to display the current value.
The user specifies the size for the form by using the SpinButton and then clicks the
CommandButton to set the value in the Zoom property.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Label named Label1.
· A SpinButton named SpinButton1.
· A CommandButton named CommandButton1.
· Other controls placed near the edges of the form.

Private Sub CommandButton1_Click()
 Zoom = SpinButton1.Value
End Sub

Private Sub SpinButton1_SpinDown()
 Label1.Caption = SpinButton1.Value
End Sub

Private Sub SpinButton1_SpinUp()
 Label1.Caption = SpinButton1.Value
End Sub

Private Sub UserForm_Initialize()
 SpinButton1.Min = 10
 SpinButton1.Max = 400
 SpinButton1.Value = 100
 Label1.Caption = SpinButton1.Value

 CommandButton1.Caption = "Zoom it!"
End Sub

Private Sub UserForm_Zoom(Percent As Integer)
 Dim MyResult As Double

 If Percent > 99 Then
 ScrollBars = fmScrollBarsBoth
 ScrollLeft = 0
 ScrollTop = 0

 MyResult = Width * Percent / 100
 ScrollWidth = MyResult

 MyResult = Height * Percent / 100
 ScrollHeight = MyResult
 Else
 ScrollBars = fmScrollBarsNone
 ScrollLeft = 0
 ScrollTop = 0

 End If
End Sub

Max, Min, MaxLength Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpMaxMinMaxLengthC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpMaxMinMaxLengthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpMaxMinMaxLengthS"}

The following example demonstrates the Max and Min properties when used with a stand-alone
ScrollBar. The user can set the Max and Min values to any integer in the range of –1000 to 1000.
This example also uses the MaxLength property to restrict the number of characters entered for the
Max and Min values.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Label named Label1 and a TextBox named TextBox1.
· A Label named Label2 and a TextBox named TextBox2.
· A ScrollBar named ScrollBar1.
· A Label named Label3.

Dim TempNum As Integer

Private Sub UserForm_Initialize()
 Label1.Caption = "Min -1000 to 1000"
 ScrollBar1.Min = -1000
 TextBox1.Text = ScrollBar1.Min
 TextBox1.MaxLength = 5

 Label2.Caption = "Max -1000 to 1000"
 ScrollBar1.Max = 1000
 TextBox2.Text = ScrollBar1.Max
 TextBox2.MaxLength = 5

 ScrollBar1.SmallChange = 1
 ScrollBar1.LargeChange = 100
 ScrollBar1.Value = 0
 Label3.Caption = ScrollBar1.Value
End Sub

Private Sub TextBox1_Change()
 If IsNumeric(TextBox1.Text) Then
 TempNum = CInt(TextBox1.Text)
 If TempNum >= -1000 And TempNum <= 1000 Then
 ScrollBar1.Min = TempNum
 Else
 TextBox1.Text = ScrollBar1.Min
 End If
 Else
 TextBox1.Text = ScrollBar1.Min
 End If
End Sub

Private Sub TextBox2_Change()
 If IsNumeric(TextBox2.Text) Then
 TempNum = CInt(TextBox2.Text)
 If TempNum >= -1000 And TempNum <= 1000 Then
 ScrollBar1.Max = TempNum
 Else
 TextBox2.Text = ScrollBar1.Max

 End If
 Else
 TextBox2.Text = ScrollBar1.Max
 End If
End Sub

Private Sub ScrollBar1_Change()
Label3.Caption = ScrollBar1.Value
End Sub

LargeChange, SmallChange Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpLargeChangeSmallChangeC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpLargeChangeSmallChangeA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpLargeChangeSmallChangeS"}

The following example demonstrates the LargeChange and SmallChange properties when used
with a stand-alone ScrollBar. The user can set the LargeChange and SmallChange values to any
integer in the range of 0 to 100. This example also uses the MaxLength property to restrict the
number of characters entered for the LargeChange and SmallChange values.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Label named Label1 and a TextBox named TextBox1.
· A Label named Label2 and a TextBox named TextBox2.
· A ScrollBar named ScrollBar1.
· A Label named Label3.

Dim TempNum As Integer

Private Sub ScrollBar1_Change()
 Label3.Caption = ScrollBar1.Value
End Sub

Private Sub TextBox1_Change()
 If IsNumeric(TextBox1.Text) Then
 TempNum = CInt(TextBox1.Text)
 If TempNum >= 0 And TempNum <= 100 Then
 ScrollBar1.SmallChange = TempNum
 Else
 TextBox1.Text = ScrollBar1.SmallChange
 End If
 Else
 TextBox1.Text = ScrollBar1.SmallChange
 End If
End Sub

Private Sub TextBox2_Change()
 If IsNumeric(TextBox2.Text) Then
 TempNum = CInt(TextBox2.Text)
 If TempNum >= 0 And TempNum <= 100 Then
 ScrollBar1.LargeChange = TempNum
 Else
 TextBox2.Text = ScrollBar1.LargeChange
 End If
 Else
 TextBox2.Text = ScrollBar1.LargeChange
 End If
End Sub

Private Sub UserForm_Initialize()
 ScrollBar1.Min = -1000
 ScrollBar1.Max = 1000

 Label1.Caption = "SmallChange 0 to 100"
 ScrollBar1.SmallChange = 1
 TextBox1.Text = ScrollBar1.SmallChange

 TextBox1.MaxLength = 3

 Label2.Caption = "LargeChange 0 to 100"
 ScrollBar1.LargeChange = 100
 TextBox2.Text = ScrollBar1.LargeChange
 TextBox2.MaxLength = 3

 ScrollBar1.Value = 0
 Label3.Caption = ScrollBar1.Value
End Sub

ScrollBars, KeepScrollBarsVisible Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpScrollBarsKeepScrollBarsVisibleC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpScrollBarsKeepScrollBarsVisibleA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpScrollBarsKeepScrollBarsVisibleS"}

The following example uses the ScrollBars and the KeepScrollBarsVisible properties to add scroll
bars to a page of a MultiPage and to a Frame. The user chooses an option button that, in turn,
specifies a value for KeepScrollBarsVisible.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A MultiPage named MultiPage1.
· A Frame named Frame1.
· Four OptionButton controls named OptionButton1 through OptionButton4.

Private Sub UserForm_Initialize()
 MultiPage1.Pages(0).ScrollBars = fmScrollBarsBoth
 MultiPage1.Pages(0).KeepScrollBarsVisible = fmScrollBarsNone

 Frame1.ScrollBars = fmScrollBarsBoth
 Frame1.KeepScrollBarsVisible = fmScrollBarsNone

 OptionButton1.Caption = "No scroll bars"
 OptionButton1.Value = True
 OptionButton2.Caption = "Horizontal scroll bars"
 OptionButton3.Caption = "Vertical scroll bars"
 OptionButton4.Caption = "Both scroll bars"
End Sub

Private Sub OptionButton1_Click()
 MultiPage1.Pages(0).KeepScrollBarsVisible = fmScrollBarsNone
 Frame1.KeepScrollBarsVisible = fmScrollBarsNone
End Sub

Private Sub OptionButton2_Click()
 MultiPage1.Pages(0).KeepScrollBarsVisible = fmScrollBarsHorizontal
 Frame1.KeepScrollBarsVisible = fmScrollBarsHorizontal
End Sub

Private Sub OptionButton3_Click()
 MultiPage1.Pages(0).KeepScrollBarsVisible = fmScrollBarsVertical
 Frame1.KeepScrollBarsVisible = fmScrollBarsVertical
End Sub

Private Sub OptionButton4_Click()
 MultiPage1.Pages(0).KeepScrollBarsVisible = fmScrollBarsBoth
 Frame1.KeepScrollBarsVisible = fmScrollBarsBoth
End Sub

ScrollHeight, ScrollLeft, ScrollTop, ScrollWidth Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpScrollHeightC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpScrollHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpScrollHeightS"}

The following example uses a page of a MultiPage as a scrolling region. The user can use the scroll
bars on Page2 of the MultiPage to gain access to parts of the page that are not initially displayed.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains a MultiPage named MultiPage1, and that each page of the MultiPage contains one or
more controls.

Note Each page of a MultiPage is unique. Page1 has no scroll bars. Page2 has horizontal and
vertical scroll bars.

Private Sub UserForm_Initialize()
 MultiPage1.Pages(1).ScrollBars = fmScrollBarsBoth
 MultiPage1.Pages(1).KeepScrollBarsVisible = fmScrollBarsNone

 MultiPage1.Pages(1).ScrollHeight = 2 * MultiPage1.Height
 MultiPage1.Pages(1).ScrollWidth = 2 * MultiPage1.Width

 'Set ScrollHeight, ScrollWidth before setting ScrollLeft, ScrollTop
 MultiPage1.Pages(1).ScrollLeft = MultiPage1.Width / 2
 MultiPage1.Pages(1).ScrollTop = MultiPage1.Height / 2
End Sub

InsideHeight, InsideWidth Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpInsideHeightInsideWidthC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpInsideHeightInsideWidthA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpInsideHeightInsideWidthS"}

The following example uses the InsideHeight and InsideWidth properties to resize a
CommandButton. The user clicks the CommandButton to resize it.

Note InsideHeight and InsideWidth are read-only properties.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A CommandButton named CommandButton1.

Dim Resize As Single

Private Sub UserForm_Initialize()
 Resize = 0.75
 CommandButton1.Caption = "Resize Button"

End Sub

Private Sub CommandButton1_Click()
 CommandButton1.Move 10, 10, UserForm1.InsideWidth * Resize,
UserForm1.InsideHeight * Resize
 CommandButton1.Caption = "Button resized using InsideHeight and
InsideWidth!"
End Sub

ListRows Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpListRowsC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpListRowsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpListRowsS"}

The following example uses a SpinButton to control the number of rows in the drop-down list of a
ComboBox. The user changes the value of the SpinButton, then clicks on the drop-down arrow of
the ComboBox to display the list.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ComboBox named ComboBox1.
· A SpinButton named SpinButton1.
· A Label named Label1.

Private Sub UserForm_Initialize()
 Dim i As Integer

 For i = 1 To 20
 ComboBox1.AddItem "Choice " & (ComboBox1.ListCount + 1)
 Next i

 SpinButton1.Min = 0
 SpinButton1.Max = 12
 SpinButton1.Value = ComboBox1.ListRows
 Label1.Caption = "ListRows = " & SpinButton1.Value
End Sub

Private Sub SpinButton1_Change()
 ComboBox1.ListRows = SpinButton1.Value
 Label1.Caption = "ListRows = " & SpinButton1.Value
End Sub

ListWidth Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpListWidthC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpListWidthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpListWidthS"}

The following example uses a SpinButton to control the width of the drop-down list of a ComboBox.
The user changes the value of the SpinButton, then clicks on the drop-down arrow of the
ComboBox to display the list.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ComboBox named ComboBox1.
· A SpinButton named SpinButton1.
· A Label named Label1.

Private Sub SpinButton1_Change()
 ComboBox1.ListWidth = SpinButton1.Value
 Label1.Caption = "ListWidth = " & SpinButton1.Value
End Sub

Private Sub UserForm_Initialize()
 Dim i As Integer

 For i = 1 To 20
 ComboBox1.AddItem "Choice " & (ComboBox1.ListCount + 1)
 Next i

 SpinButton1.Min = 0
 SpinButton1.Max = 130
 SpinButton1.Value = Val(ComboBox1.ListWidth)
 SpinButton1.SmallChange = 5
 Label1.Caption = "ListWidth = " & SpinButton1.Value
End Sub

ListStyle, MultiSelect Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpListStyleMultiSelectC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpListStyleMultiSelectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpListStyleMultiSelectS"}

The following example uses the ListStyle and MultiSelect properties to control the appearance of a
ListBox. The user chooses a value for ListStyle using the ToggleButton and chooses an
OptionButton for one of the MultiSelect values. The appearance of the ListBox changes
accordingly, as well as the selection behavior within the ListBox.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ListBox named ListBox1.
· A Label named Label1.
· Three OptionButton controls named OptionButton1 through OptionButton3.
· A ToggleButton named ToggleButton1.

Private Sub UserForm_Initialize()
 Dim i As Integer

 For i = 1 To 8
 ListBox1.AddItem "Choice" & (ListBox1.ListCount + 1)
 Next i

 Label1.Caption = "MultiSelect Choices"
 Label1.AutoSize = True

 ListBox1.MultiSelect = fmMultiSelectSingle
 OptionButton1.Caption = "Single entry"
 OptionButton1.Value = True
 OptionButton2.Caption = "Multiple entries"
 OptionButton3.Caption = "Extended entries"

 ToggleButton1.Caption = "ListStyle - Plain"
 ToggleButton1.Value = True
 ToggleButton1.Width = 90
 ToggleButton1.Height = 30
End Sub

Private Sub OptionButton1_Click()
 ListBox1.MultiSelect = fmMultiSelectSingle
End Sub

Private Sub OptionButton2_Click()
 ListBox1.MultiSelect = fmMultiSelectMulti
End Sub

Private Sub OptionButton3_Click()
 ListBox1.MultiSelect = fmMultiSelectExtended
End Sub

Private Sub ToggleButton1_Click()
 If ToggleButton1.Value = True Then
 ToggleButton1.Caption = "Plain ListStyle"
 ListBox1.ListStyle = fmListStylePlain
 Else

 ToggleButton1.Caption = "OptionButton or CheckBox"
 ListBox1.ListStyle = fmListStyleOption
 End If
End Sub

MouseIcon, MousePointer Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpMouseIconMousePointerC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpMouseIconMousePointerA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpMouseIconMousePointerS"}

The following example demonstrates how to specify a mouse pointer that is appropriate for a specific
control or situation. You can assign one of several available mouse pointers using the MousePointer
property; or, you can assign a custom icon using the MousePointer and MouseIcon properties.

This example works in the following ways:

· Choose a mouse pointer from the ListBox to change the mouse pointer associated with the first
CommandButton.

· Click the first CommandButton to associate its mouse pointer with the second CommandButton.
· Click the second CommandButton to load a custom icon for its mouse pointer.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two CommandButton controls named CommandButton1 and CommandButton2.
· A ListBox named ListBox1.

Note This example uses two icon files (identified by the ico file extention) that are loaded using the
LoadPicture function. You should edit each LoadPicture function call to specify an icon file that
resides on your system.

Private Sub ListBox1_Click()
 If IsNull(ListBox1.Value) = False Then
 CommandButton1.MousePointer = ListBox1.Value

 If CommandButton1.MousePointer = fmMousePointerCustom Then
 CommandButton1.MouseIcon = LoadPicture("c:\msvc20\cdk32\
samples\circ1\bix.ico")
 End If
 End If
End Sub

Private Sub CommandButton1_Click()
 CommandButton2.MousePointer = CommandButton1.MousePointer

 If CommandButton2.MousePointer = fmMousePointerCustom Then
 CommandButton2.MouseIcon = CommandButton1.MouseIcon
 End If
End Sub

Private Sub CommandButton2_Click()
 CommandButton2.MousePointer = fmMousePointerCustom
 CommandButton2.MouseIcon = LoadPicture("c:\msvc20\cdk32\samples\push\
push.ico")
End Sub

Private Sub UserForm_Initialize()
 'Load ListBox with MousePointer choices
 ListBox1.ColumnCount = 2

 ListBox1.AddItem "fmMousePointerDefault"
 ListBox1.List(0, 1) = fmMousePointerDefault

 ListBox1.AddItem "fmMousePointerArrow"
 ListBox1.List(1, 1) = fmMousePointerArrow
 ListBox1.AddItem "fmMousePointerCross"
 ListBox1.List(2, 1) = fmMousePointerCross

 ListBox1.AddItem "fmMousePointerIBeam"
 ListBox1.List(3, 1) = fmMousePointerIBeam
 ListBox1.AddItem "fmMousePointerSizeNESW"
 ListBox1.List(4, 1) = fmMousePointerSizeNESW
 ListBox1.AddItem "fmMousePointerSizeNS"
 ListBox1.List(5, 1) = fmMousePointerSizeNS

 ListBox1.AddItem "fmMousePointerSizeNWSE"
 ListBox1.List(6, 1) = fmMousePointerSizeNWSE
 ListBox1.AddItem "fmMousePointerSizeWE"
 ListBox1.List(7, 1) = fmMousePointerSizeWE
 ListBox1.AddItem "fmMousePointerUpArrow"
 ListBox1.List(8, 1) = fmMousePointerUpArrow

 ListBox1.AddItem "fmMousePointerHourglass"
 ListBox1.List(9, 1) = fmMousePointerHourGlass
 ListBox1.AddItem "fmMousePointerNoDrop"
 ListBox1.List(10, 1) = fmMousePointerNoDrop
 ListBox1.AddItem "fmMousePointerAppStarting"
 ListBox1.List(11, 1) = fmMousePointerAppStarting

 ListBox1.AddItem "fmMousePointerHelp"
 ListBox1.List(12, 1) = fmMousePointerHelp
 ListBox1.AddItem "fmMousePointerSizeAll"
 ListBox1.List(13, 1) = fmMousePointerSizeAll
 ListBox1.AddItem "fmMousePointerCustom"
 ListBox1.List(14, 1) = fmMousePointerCustom

 ListBox1.BoundColumn = 2
 ListBox1.Value = fmMousePointerDefault

 MsgBox "ListBox1.Value =" & ListBox1.Value & "."
 CommandButton1.MousePointer = ListBox1.Value
End Sub

EnterKeyBehavior Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpEnterKeyBehaviorC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpEnterKeyBehaviorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpEnterKeyBehaviorS"}

The following example uses the EnterKeyBehavior property to control the effect of ENTER in a
TextBox. In this example, the user can specify either a single-line or multiline TextBox.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A TextBox named TextBox1.
· Two ToggleButton controls named ToggleButton1 and ToggleButton2.

Private Sub UserForm_Initialize()
 TextBox1.EnterKeyBehavior = True
 ToggleButton1.Caption = "EnterKeyBehavior is True"
 ToggleButton1.Width = 70
 ToggleButton1.Value = True

 TextBox1.MultiLine = True
 ToggleButton2.Caption = "MultiLine is True"
 ToggleButton2.Width = 70
 ToggleButton2.Value = True

 TextBox1.Height = 100
 TextBox1.WordWrap = True
 TextBox1.Text = "Type your text here. If EnterKeyBehavior is True,"& _
 " press Enter to start a new line. Otherwise, press SHIFT+ENTER."
End Sub

Private Sub ToggleButton1_Click()
 If ToggleButton1.Value = True Then
 TextBox1.EnterKeyBehavior = True
 ToggleButton1.Caption = "EnterKeyBehavior is True"
 Else
 TextBox1.EnterKeyBehavior = False
 ToggleButton1.Caption = "EnterKeyBehavior is False"
 End If
End Sub

Private Sub ToggleButton2_Click()
 If ToggleButton2.Value = True Then
 TextBox1.MultiLine = True
 ToggleButton2.Caption = "MultiLine TextBox"
 Else
 TextBox1.MultiLine = False
 ToggleButton2.Caption = "Single-line TextBox"
 End If
End Sub

Index Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpIndexC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpIndexS"}

The following example uses the Index property to change the order of the pages and tabs in a
MultiPage and TabStrip. The user chooses CommandButton1 to move the third page and tab to the
front of the MultiPage and TabStrip. The user chooses CommandButton2 to move the selected page
and tab to the back of the MultiPage and TabStrip.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two CommandButton controls named CommandButton1 and CommandButton2.
· A MultiPage named MultiPage1.
· A TabStrip named TabStrip1.

Dim MyPageOrTab As Object

Private Sub CommandButton1_Click()
'Move third page and tab to front of control
 MultiPage1.page3.Index = 0
 TabStrip1.Tab3.Index = 0
End Sub

Private Sub CommandButton2_Click()
'Move selected page and tab to back of control
 Set MyPageOrObject = MultiPage1.SelectedItem
 MsgBox "MultiPage1.SelectedItem = " & MultiPage1.SelectedItem.Name
 MyPageOrObject.Index = 4

 Set MyPageOrObject = TabStrip1.SelectedItem
 MsgBox "TabStrip1.SelectedItem = " & TabStrip1.SelectedItem.Caption
 MyPageOrObject.Index = 4
End Sub

Private Sub UserForm_Initialize()
 MultiPage1.Width = 200
 MultiPage1.Pages.Add
 MultiPage1.Pages.Add
 MultiPage1.Pages.Add

 TabStrip1.Width = 200
 TabStrip1.Tabs.Add
 TabStrip1.Tabs.Add
 TabStrip1.Tabs.Add

 CommandButton1.Caption = "Move third page/tab to front"
 CommandButton1.Width = 120

 CommandButton2.Caption = "Move selected item to back"
 CommandButton2.Width = 120
 End Sub

Enabled, Locked Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpEnabledLockedC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpEnabledLockedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpEnabledLockedS"}

The following example demonstrates the Enabled and Locked properties and how they complement
each other. This example exposes each property independently with a CheckBox, so you observe
the settings individually and combined. This example also includes a second TextBox so you can
copy and paste information between the TextBox controls and verify the activities supported by the
settings of these properties.

Note You can copy the selection to the Clipboard using CTRL+C and paste using CTRL+V.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A TextBox named TextBox1.
· Two CheckBox controls named CheckBox1 and CheckBox2.
· A second TextBox named TextBox2.

Private Sub CheckBox1_Change()
 TextBox2.Text = "TextBox2"
 TextBox1.Enabled = CheckBox1.Value
End Sub

Private Sub CheckBox2_Change()
 TextBox2.Text = "TextBox2"
 TextBox1.Locked = CheckBox2.Value
End Sub

Private Sub UserForm_Initialize()
 TextBox1.Text = "TextBox1"
 TextBox1.Enabled = True
 TextBox1.Locked = False

 CheckBox1.Caption = "Enabled"
 CheckBox1.Value = True

 CheckBox2.Caption = "Locked"
 CheckBox2.Value = False

 TextBox2.Text = "TextBox2"
End Sub

Delay Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpDelayC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpDelayA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpDelayS"}

The following example demonstrates the time interval between successive Change, SpinUp, and
SpinDown events that occur when a user holds down the mouse button to change the value of a
SpinButton or ScrollBar.
In this example, the user chooses a delay setting, then clicks and holds down either side of a
SpinButton. The SpinUp and SpinDown events are recorded in a ListBox as they are initiated.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A SpinButton named SpinButton1.
· Two OptionButton controls named OptionButton1 and OptionButton2.
· A ListBox named ListBox1.

Dim EventCount As Long

Private Sub ResetControl()
 ListBox1.Clear
 EventCount = 0
 SpinButton1.Value = 5000
End Sub

Private Sub UserForm_Initialize()
 SpinButton1.Min = 0
 SpinButton1.Max = 10000
 ResetControl

 SpinButton1.Delay = 50
 OptionButton1.Caption = "50 millisecond delay"
 OptionButton2.Caption = "250 millisecond delay"

 OptionButton1.Value = True
End Sub

Private Sub OptionButton1_Click()
 SpinButton1.Delay = 50
 ResetControl
End Sub

Private Sub OptionButton2_Click()
 SpinButton1.Delay = 250
 ResetControl
End Sub

Private Sub SpinButton1_SpinDown()
 EventCount = EventCount + 1
 ListBox1.AddItem EventCount
End Sub

Private Sub SpinButton1_SpinUp()
 EventCount = EventCount + 1
 ListBox1.AddItem EventCount
End Sub

DropButtonStyle, ShowDropButtonWhen Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpDropButtonStyleShowDropButtonWhenC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpDropButtonStyleShowDropButtonWhenA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpDropButtonStyleShowDropButtonWhenS"}

The following example demonstrates the different symbols that you can specify for a drop-down arrow
in a ComboBox or TextBox. In this example, the user chooses a drop-down arrow style from a
ComboBox. This example also uses the Locked property. To use this example, copy this sample
code to the Declarations portion of a form. Make sure that the form contains:

· A ComboBox named ComboBox1.
· A Label named Label1.
· A TextBox named TextBox1 placed beneath Label1.

Private Sub ComboBox1_Click()
 ComboBox1.DropButtonStyle = ComboBox1.Value
 TextBox1.DropButtonStyle = ComboBox1.Value
End Sub

Private Sub UserForm_Initialize()
 ComboBox1.ColumnCount = 2
 ComboBox1.BoundColumn = 2
 ComboBox1.TextColumn = 1

 ComboBox1.AddItem "Blank Button"
 ComboBox1.List(0, 1) = 0
 ComboBox1.AddItem "Down Arrow"
 ComboBox1.List(1, 1) = 1
 ComboBox1.AddItem "Ellipsis"
 ComboBox1.List(2, 1) = 2
 ComboBox1.AddItem "Underscore"
 ComboBox1.List(3, 1) = 3

 ComboBox1.Value = 0

 TextBox1.Text = "TextBox1"
 TextBox1.ShowDropButtonWhen = fmShowDropButtonWhenAlways
 TextBox1.Locked = True

 Label1.Caption = "TheDropButton also applies to a TextBox."
 Label1.AutoSize = True
 Label1.WordWrap = False
End Sub

LineCount, TextLength Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpLineCountTextLengthC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpLineCountTextLengthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpLineCountTextLengthS"}

The following example counts the characters and the number of lines of text in a TextBox by using
the LineCount and TextLength properties, and the SetFocus method. In this example, the user can
type into a TextBox, and can retrieve current values of the LineCount and TextLength properties.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains the following controls:

· A TextBox named TextBox1.
· A CommandButton named CommandButton1.
· Two Label controls named Label1 and Label2.

'Type SHIFT+ENTER to start a new line in the text box.

Private Sub CommandButton1_Click()
 'Must first give TextBox1 the focus to get line count
 TextBox1.SetFocus
 Label1.Caption = "LineCount = " & TextBox1.LineCount
 Label2.Caption = "TextLength = " & TextBox1.TextLength
End Sub

Private Sub UserForm_Initialize()
 CommandButton1.WordWrap = True
 CommandButton1.AutoSize = True
 CommandButton1.Caption = "Get Counts"

 Label1.Caption = "LineCount = "
 Label2.Caption = "TextLength = "

 TextBox1.MultiLine = True
 TextBox1.WordWrap = True
 TextBox1.Text = "Enter your text here."
End Sub

Count Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpCountC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpCountS"}

The following example displays the Count property of the Controls collection for the form, and the
Count property identifying the number of pages and tabs of each MultiPage and TabStrip.

To use this example, copy this sample code to the Declarations portion of a form. The form can
contain any number of controls, with the following restrictions:

· Names of MultiPage controls must start with “MultiPage”.
· Names of TabStrip controls must start with “TabStrip”.

Note You can add pages to a MultiPage or add tabs to a TabStrip. Double-click on the control,
then right click in the tab area of the control and choose New Page from the shortcut menu.

Private Sub UserForm_Initialize()
 Dim MyControl As Control

 MsgBox "UserForm1.Controls.Count = " & Controls.Count

 For Each MyControl In Controls
 If (MyControl.Name Like "MultiPage*") Then
 MsgBox MyControl.Name & ".Pages.Count = " &
MyControl.Pages.Count
 ElseIf (MyControl.Name Like "TabStrip*") Then
 MsgBox MyControl.Name & ".Tabs.Count = " & MyControl.Tabs.Count
 End If
 Next

End Sub

Alignment Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpAlignmentC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpAlignmentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpAlignmentS"}

The following example demonstrates the Alignment property used with several OptionButton
controls. In this example, the user can change the alignment by clicking a ToggleButton.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains the following controls:

· Two OptionButton controls named OptionButton1 and OptionButton2.
· A ToggleButton named ToggleButton1.

Private Sub UserForm_Initialize()
 OptionButton1.Alignment = fmAlignmentLeft
 OptionButton2.Alignment = fmAlignmentLeft

 OptionButton1.Caption = "Alignment with AutoSize"
 OptionButton2.Caption = "Choice 2"
 OptionButton1.AutoSize = True
 OptionButton2.AutoSize = True

 ToggleButton1.Caption = "Left Align"
 ToggleButton1.WordWrap = True
 ToggleButton1.Value = True
End Sub

Private Sub ToggleButton1_Click()
 If ToggleButton1.Value = True Then
 ToggleButton1.Caption = "Left Align"
 OptionButton1.Alignment = fmAlignmentLeft
 OptionButton2.Alignment = fmAlignmentLeft
 Else
 ToggleButton1.Caption = "Right Align"
 OptionButton1.Alignment = fmAlignmentRight
 OptionButton2.Alignment = fmAlignmentRight
 End If
End Sub

ActiveControl Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpActiveControlC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpActiveControlA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpActiveControlS"}

The following example uses the ActiveControl property in a subroutine that tracks the controls a user
visits. The Enter event for each control calls the TraceFocus subroutine to identify the control that has
the focus.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains the following controls:

· A ScrollBar named ScrollBar1.
· A ListBox named ListBox1.
· Two OptionButton controls named OptionButton1 and OptionButton2.
· A Frame named Frame1.

Dim MyControl As Control

Private Sub TraceFocus()
 ListBox1.AddItem ActiveControl.Name
 ListBox1.List(ListBox1.ListCount - 1, 1) = ActiveControl.TabIndex
End Sub

Private Sub UserForm_Initialize()
 ListBox1.ColumnCount = 2
 ListBox1.AddItem "Controls Visited"
 ListBox1.List(0, 1) = "Control Index"
End Sub

Private Sub Frame1_Enter()
 TraceFocus
End Sub

Private Sub ListBox1_Enter()
 TraceFocus
End Sub

Private Sub OptionButton1_Enter()
 TraceFocus
End Sub

Private Sub OptionButton2_Enter()
 TraceFocus
End Sub

Private Sub ScrollBar1_Enter()
 TraceFocus
End Sub

DropDown Method Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpDropDownC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpDropDownA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpDropDownS"}

The following example uses the DropDown method to display the list in a ComboBox. The user can
display the list of a ComboBox by clicking the CommandButton.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ComboBox named ComboBox1.
· A CommandButton named CommandButton1.

Private Sub CommandButton1_Click()
 ComboBox1.DropDown
End Sub

Private Sub UserForm_Initialize()
 ComboBox1.AddItem "Turkey"
 ComboBox1.AddItem "Chicken"
 ComboBox1.AddItem "Duck"
 ComboBox1.AddItem "Goose"
 ComboBox1.AddItem "Grouse"
End Sub

Cut and Paste From a TextBox Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpCutPasteFromTextBoxC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpCutPasteFromTextBoxA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpCutPasteFromTextBoxS"}

The following example uses the Cut and Paste methods to cut text from one TextBox and paste it
into another TextBox.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two TextBox controls named TextBox1 and TextBox2.
· A CommandButton named CommandButton1.

Private Sub UserForm_Initialize()
 TextBox1.Text = "From TextBox1!"
 TextBox2.Text = "Hello "

 CommandButton1.Caption = "Cut and Paste"
 CommandButton1.AutoSize = True
End Sub

Private Sub CommandButton1_Click()
 TextBox2.SelStart = 0
 TextBox2.SelLength = TextBox2.TextLength
 TextBox2.Cut

 TextBox1.SetFocus
 TextBox1.SelStart = 0

 TextBox1.Paste
 TextBox2.SelStart = 0
End Sub

Cut and Paste From a Page Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpCutPasteFromPageC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpCutPasteFromPageA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpCutPasteFromPageS"}

The following example uses the Add, Cut, and Paste methods to cut and paste a control from a Page
of a MultiPage. The control involved in the cut and paste operations is dynamically added to the form.

This example assumes the user will add, then cut, then paste the new control.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Three CommandButton controls named CommandButton1 through CommandButton3.
· A MultiPage named MultiPage1.

Dim MyTextBox As Control

Private Sub CommandButton1_Click()
 Set MyTextBox =
MultiPage1.Pages(MultiPage1.Value).Controls.Add("Forms.TextBox.1",
"MyTextBox", Visible)
 CommandButton2.Enabled = True
 CommandButton1.Enabled = False
End Sub
Private Sub CommandButton2_Click()
 MultiPage1.Pages(MultiPage1.Value).Controls.Cut
 CommandButton3.Enabled = True
 CommandButton2.Enabled = False
End Sub
Private Sub CommandButton3_Click()
 Dim MyPage As Object
 Set MyPage = MultiPage1.Pages.Item(MultiPage1.Value)

 MyPage.Paste
 CommandButton3.Enabled = False
End Sub
Private Sub UserForm_Initialize()
 CommandButton1.Caption = "Add"
 CommandButton2.Caption = "Cut"
 CommandButton3.Caption = "Paste"

 CommandButton1.Enabled = True
 CommandButton2.Enabled = False
 CommandButton3.Enabled = False
End Sub

Name Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpNameC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpNameS"}

The following example displays the Name property of each control on a form. This example uses the
Controls collection to cycle through all the controls placed directly on the Userform.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains a CommandButton named CommandButton1 and several other controls.

Private Sub CommandButton1_Click()
 Dim MyControl As Control

 For Each MyControl In Controls
 MsgBox "MyControl.Name = " & MyControl.Name
 Next
End Sub

Accessing a Tab Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpAccessingTabC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpAccessingTabA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpAccessingTabS"}

The following example accesses an individual tab of a TabStrip in several ways:

· Using the Tabs collection with a numeric index.
· Using the Tabs collection with a string index.
· Using the Tabs collection with the Item method.
· Using the name of the individual Tab.
· Using the SelectedItem property.
To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains a TabStrip named TabStrip1.

Private Sub UserForm_Initialize()
 Dim TabName As String

 For i = 0 To TabStrip1.Count - 1
 'Using index (numeric or string)
 MsgBox "TabStrip1.Tabs(i).Caption = " & TabStrip1.Tabs(i).Caption
 MsgBox "TabStrip1.Tabs.Item(i).Caption = " &
TabStrip1.Tabs.Item(i).Caption

 TabName = TabStrip1.Tabs(i).Name
 MsgBox "TabName = " & TabName

 MsgBox "TabStrip1.Tabs(TabName).Caption = " &
TabStrip1.Tabs(TabName).Caption
 MsgBox "TabStrip1.Tabs.Item(TabName).Caption = " &
TabStrip1.Tabs.Item(TabName).Caption

 'Use Tab object without referring to Tabs collection
 If i = 0 Then
 MsgBox "TabStrip1.Tab1. Caption = " & TabStrip1.Tab1.Caption
 ElseIf i = 1 Then
 MsgBox "TabStrip1.Tab2. Caption = " & TabStrip1.Tab2.Caption
 EndIf

 'Use SelectedItem Property
 TabStrip1.Value = i
 MsgBox " TabStrip1.SelectedItem.Caption = " &
TabStrip1.SelectedItem.Caption
 Next i
End Sub

Zoom Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpZoomPropC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpZoomPropA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpZoomPropS"}

The following example uses the Zoom property to shrink or enlarge the information displayed on a
form, Page, or Frame. This example includes a Frame, a TextBox in the Frame, and a ScrollBar.
The magnification level of the Frame changes through Zoom. The user can set Zoom by using the
ScrollBar. The TextBox is present to demonstrate the effects of zooming.

This example also uses the Max and Min properties to identify the range of acceptable values for the
ScrollBar.
To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Label named Label1.
· A ScrollBar named ScrollBar1.
· A second Label named Label2.
· A Frame named Frame1.
· A TextBox named TextBox1 that is located inside Frame1.

Private Sub UserForm_Initialize()
 ScrollBar1.Max = 400
 ScrollBar1.Min = 10
 ScrollBar1.Value = 100

 Label1.Caption = "10 -----Percent of Original Size---- 400"
 Label2.Caption = ScrollBar1.Value

 Frame1.TextBox1.Text = "Enter your text here."
 Frame1.TextBox1.MultiLine = True
 Frame1.TextBox1.WordWrap = True

 Frame1.Zoom = ScrollBar1.Value
End Sub

Private Sub ScrollBar1_Change()
 Frame1.Zoom = ScrollBar1.Value
 Label2.Caption = ScrollBar1.Value
End Sub

TextColumn Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTextColumnC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpTextColumnA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTextColumnS"}

The following example uses the TextColumn property to identify the column of data in a ListBox that
supplies data for its Text property. This example sets the third column of the ListBox as the text
column. As you select an entry from the ListBox, the value from the TextColumn will be displayed in
the Label.
This example also demonstrates how to load a multicolumn ListBox using the AddItem method and
the List property.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ListBox named ListBox1.
· A TextBox named TextBox1.

Private Sub UserForm_Initialize()
ListBox1.ColumnCount = 3

ListBox1.AddItem "Row 1, Col 1"
ListBox1.List(0, 1) = "Row 1, Col 2"
ListBox1.List(0, 2) = "Row 1, Col 3"

ListBox1.AddItem "Row 2, Col 1"
ListBox1.List(1, 1) = "Row 2, Col 2"
ListBox1.List(1, 2) = "Row 2, Col 3"

ListBox1.AddItem "Row 3, Col 1"
ListBox1.List(2, 1) = "Row 3, Col 2"
ListBox1.List(2, 2) = "Row 3, Col 3"

ListBox1.TextColumn = 3
End Sub

Private Sub ListBox1_Change()
TextBox1.Text = ListBox1.Text
End Sub

PictureSizeMode Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpPictureSizeModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpPictureSizeModePropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpPictureSizeModePropertyS"}

The following example uses the PictureSizeMode property to demonstrate three display options for a
picture: showing the picture as is, changing the size of the picture while maintaining its original
proportions, and stretching the picture to fill a space.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Frame named Frame1.
· A SpinButton named SpinButton1.
· A TextBox named TextBox1.
· Three OptionButton controls named OptionButton1 through OptionButton3.

Note This example is an enhanced version of the PictureAlignment property example, as the two
properties complement each other. The enhancements are three OptionButton event subroutines
that control whether the image is cropped, zoomed, or stretched.

Dim Alignments(5) As String

Private Sub UserForm_Initialize()
 Alignments(0) = "0 - Top Left"
 Alignments(1) = "1 - Top Right"
 Alignments(2) = "2 - Center"
 Alignments(3) = "3 - Bottom Left"
 Alignments(4) = "4 - Bottom Right"

 'Specify a bitmap that exists on your system
 Frame1.Picture = LoadPicture("c:\winnt2\ball.bmp")

 SpinButton1.Min = 0
 SpinButton1.Max = 4
 SpinButton1.Value = 0

 TextBox1.Text = Alignments(0)
 Frame1.PictureAlignment = SpinButton1.Value

 OptionButton1.Caption = "Crop"
 OptionButton1.Value = True
 OptionButton2.Caption = "Stretch"
 OptionButton3.Caption = "Zoom"
End Sub

Private Sub OptionButton1_Click()
 If OptionButton1.Value = True Then
 Frame1.PictureSizeMode = fmPictureSizeModeClip
 End If
End Sub

Private Sub OptionButton2_Click()
 If OptionButton2.Value = True Then
 Frame1.PictureSizeMode = fmPictureSizeModeStretch
 End If
End Sub

Private Sub OptionButton3_Click()
 If OptionButton3.Value = True Then
 Frame1.PictureSizeMode = fmPictureSizeModeZoom
 End If
End Sub

Private Sub SpinButton1_Change()
 TextBox1.Text = Alignments(SpinButton1.Value)
 Frame1.PictureAlignment = SpinButton1.Value
End Sub

Private Sub TextBox1_Change()
 Select Case TextBox1.Text
 Case "0"
 TextBox1.Text = Alignments(0)
 Frame1.PictureAlignment = 0
 Case "1"
 TextBox1.Text = Alignments(1)
 Frame1.PictureAlignment = 1
 Case "2"
 TextBox1.Text = Alignments(2)
 Frame1.PictureAlignment = 2
 Case "3"
 TextBox1.Text = Alignments(3)
 Frame1.PictureAlignment = 3
 Case "4"
 TextBox1.Text = Alignments(4)
 Frame1.PictureAlignment = 4
 Case Else
 TextBox1.Text = Alignments(SpinButton1.Value)
 Frame1.PictureAlignment = SpinButton1.Value
 End Select
End Sub

PictureAlignment Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpPictureAlignmentC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpPictureAlignmentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpPictureAlignmentS"}

The following example uses the PictureAlignment property to set up a background picture. The
example also identifies the alignment options provided by PictureAlignment.
To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Frame named Frame1.
· A SpinButton named SpinButton1.
· A TextBox named TextBox1.

Dim Alignments(5) As String

Private Sub UserForm_Initialize()
 Alignments(0) = "0 - Top Left"
 Alignments(1) = "1 - Top Right"
 Alignments(2) = "2 - Center"
 Alignments(3) = "3 - Bottom Left"
 Alignments(4) = "4 - Bottom Right"

 'Specify a bitmap that exists on your system
 Frame1.Picture = LoadPicture("c:\winnt2\ball.bmp")

 SpinButton1.Min = 0
 SpinButton1.Max = 4
 SpinButton1.Value = 0

 TextBox1.Text = Alignments(0)
 Frame1.PictureAlignment = SpinButton1.Value
End Sub

Private Sub SpinButton1_Change()
 TextBox1.Text = Alignments(SpinButton1.Value)
 Frame1.PictureAlignment = SpinButton1.Value
End Sub

Private Sub TextBox1_Change()
 Select Case TextBox1.Text
 Case "0"
 TextBox1.Text = Alignments(0)
 Frame1.PictureAlignment = 0
 Case "1"
 TextBox1.Text = Alignments(1)
 Frame1.PictureAlignment = 1
 Case "2"
 TextBox1.Text = Alignments(2)
 Frame1.PictureAlignment = 2
 Case "3"
 TextBox1.Text = Alignments(3)
 Frame1.PictureAlignment = 3
 Case "4"
 TextBox1.Text = Alignments(4)
 Frame1.PictureAlignment = 4
 Case Else

 TextBox1.Text = Alignments(SpinButton1.Value)
 Frame1.PictureAlignment = SpinButton1.Value
 End Select
End Sub

GroupName Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpGroupNameC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpGroupNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpGroupNameS"}

The following example uses the GroupName property to create two groups of OptionButton controls
on the same form.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains five OptionButton controls named OptionButton1 through OptionButton5.

Private Sub UserForm_Initialize()
 OptionButton1.GroupName = "Widgets"
 OptionButton2.GroupName = "Widgets"
 OptionButton4.GroupName = "Widgets"

 OptionButton3.GroupName = "Gadgets-Group2"
 OptionButton5.GroupName = "Gadgets-Group2"
End Sub

GetFromClipboard Method Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpGetFromClipboardC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpGetFromClipboardA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpGetFromClipboardS"}

The following example demonstrates data movement from a TextBox to the Clipboard, from the
Clipboard to a DataObject, and from a DataObject into another TextBox. The GetFromClipboard
method transfers the data from the Clipboard to a DataObject. The Copy and GetText methods are
also used.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two TextBox controls named TextBox1 and TextBox2.
· A CommandButton named CommandButton1.

Dim MyData as DataObject

Private Sub CommandButton1_Click()
 'Need to select text before copying it to Clipboard
 TextBox1.SelStart = 0
 TextBox1.SelLength = TextBox1.TextLength
 TextBox1.Copy

 MyData.GetFromClipboard
 TextBox2.Text = MyData.GetText(1)
End Sub

Private Sub UserForm_Initialize()
 Set MyData = New DataObject
 TextBox1.Text = "Move this data to the Clipboard, to a DataObject, then
to TextBox2!"
End Sub

PutInClipboard Method Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpPutInClipboardC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpPutInClipboardA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpPutInClipboardS"}

The following example demonstrates data movement from a TextBox to a DataObject, from a
DataObject to the Clipboard, and from the Clipboard to another TextBox. The PutInClipboard
method transfers the data from a DataObject to the Clipboard. The SetText and Paste methods are
also used.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two TextBox controls named TextBox1 and TextBox2.
· A CommandButton named CommandButton1.

Dim MyData As DataObject

Private Sub CommandButton1_Click()
 Set MyData = New DataObject

 MyData.SetText TextBox1.Text
 MyData.PutInClipboard

 TextBox2.Paste
End Sub

Private Sub UserForm_Initialize()
 TextBox1.Text = "Move this data to a DataObject, to the Clipboard, then
to TextBox2!"
End Sub

DragBehavior, EnterFieldBehavior Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpDragBehaviorEnterFieldBehaviorC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpDragBehaviorEnterFieldBehaviorA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpDragBehaviorEnterFieldBehaviorS"}

The following example uses the DragBehavior and EnterFieldBehavior properties to demonstrate
the different effects that you can provide when entering a control and when dragging information from
one control to another.

The sample uses two TextBox controls. You can set DragBehavior and EnterFieldBehavior for
each control and see the effects of dragging from one control to another.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A TextBox named TextBox1.
· Two ToggleButton controls named ToggleButton1 and ToggleButton2. These controls are

associated with TextBox1.
· A TextBox named TextBox2.
· Two ToggleButton controls named ToggleButton3 and ToggleButton4. These controls are

associated with TextBox2.

Private Sub UserForm_Initialize()
 TextBox1.Text = "Once upon a time in a land ...,"
 ToggleButton1.Value = True
 ToggleButton1.Caption = "Drag Enabled"
 ToggleButton1.WordWrap = True
 TextBox1.DragBehavior = fmDragBehaviorEnabled

 ToggleButton2.Value = True
 ToggleButton2.Caption = "Recall Selection"
 ToggleButton2.WordWrap = True
 TextBox1.EnterFieldBehavior = fmEnterFieldBehaviorRecallSelection

 TextBox2.Text = "XXX, YYYY"
 ToggleButton3.Value = False
 ToggleButton3.Caption = "Drag Disabled"
 ToggleButton3.WordWrap = True
 TextBox2.DragBehavior = fmDragBehaviorDisabled

 ToggleButton4.Value = False
 ToggleButton4.Caption = "Select All"
 ToggleButton4.WordWrap = True
 TextBox2.EnterFieldBehavior = fmEnterFieldBehaviorSelectAll
End Sub

Private Sub ToggleButton1_Click()
 If ToggleButton1.Value = True Then
 ToggleButton1.Caption = "Drag Enabled"
 TextBox1.DragBehavior = fmDragBehaviorEnabled
 Else
 ToggleButton1.Caption = "Drag Disabled"
 TextBox1.DragBehavior = fmDragBehaviorDisabled
 End If
End Sub

Private Sub ToggleButton2_Click()

 If ToggleButton2.Value = True Then
 ToggleButton2.Caption = "Recall Selection"
 TextBox1.EnterFieldBehavior = fmEnterFieldBehaviorRecallSelection
 Else
 ToggleButton2.Caption = "Select All"
 TextBox1.EnterFieldBehavior = fmEnterFieldBehaviorSelectAll
 End If
End Sub

Private Sub ToggleButton3_Click()
 If ToggleButton3.Value = True Then
 ToggleButton3.Caption = "Drag Enabled"
 TextBox2.DragBehavior = fmDragBehaviorEnabled
 Else
 ToggleButton3.Caption = "Drag Disabled"
 TextBox2.DragBehavior = fmDragBehaviorDisabled
 End If
End Sub

Private Sub ToggleButton4_Click()
 If ToggleButton4.Value = True Then
 ToggleButton4.Caption = "Recall Selection"
 TextBox2.EnterFieldBehavior = fmEnterFieldBehaviorRecallSelection
 Else
 ToggleButton4.Caption = "Select All"
 TextBox2.EnterFieldBehavior = fmEnterFieldBehaviorSelectAll
 End If
End Sub

GetFormat, GetText, SetText Methods Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpGetFormatGetTextSetTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpGetFormatGetTextSetTextA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpGetFormatGetTextSetTextS"}

The following example uses the GetFormat, GetText, and SetText methods to transfer text between
a DataObject and the Clipboard.

The user types text into a TextBox and then can transfer it to a DataObject in a standard text format
by clicking CommandButton1. Clicking CommandButton2 retrieves the text from the DataObject.
Clicking CommandButton3 copies text from TextBox1 to the DataObject in a custom format. Clicking
CommandButton4 retrieves the text from the DataObject in a custom format.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A TextBox named TextBox1.
· Four CommandButton controls named CommandButton1 through CommandButton4.
· A Label named Label1.

Dim MyDataObject As DataObject

Private Sub CommandButton1_Click()
'Put standard format on Clipboard
 If TextBox1.TextLength > 0 Then
 Set MyDataObject = New DataObject
 MyDataObject.SetText TextBox1.Text
 Label1.Caption = "Put on D.O."
 CommandButton2.Enabled = True
 CommandButton4.Enabled = False
 End If
End Sub

Private Sub CommandButton2_Click()
'Get standard format from Clipboard
 If MyDataObject.GetFormat(1) = True Then
 Label1.Caption = "Std format - " & MyDataObject.GetText(1)
 End If
End Sub

Private Sub CommandButton3_Click()
'Put custom format on Clipboard
 If TextBox1.TextLength > 0 Then
 Set MyDataObject = New DataObject
 MyDataObject.SetText TextBox1.Text, 233
 Label1.Caption = "Custom on D.O."
 CommandButton4.Enabled = True
 CommandButton2.Enabled = False
 End If
End Sub

Private Sub CommandButton4_Click()
'Get custom format from Clipboard
 If MyDataObject.GetFormat(233) = True Then
 Label1.Caption = "Cust format - " & MyDataObject.GetText(233)
End If
End Sub

Private Sub UserForm_Initialize()
 CommandButton2.Enabled = False
 CommandButton4.Enabled = False
End Sub

CanPaste Property, Paste, Copy Methods Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpCanPasteCopyC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpCanPasteCopyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpCanPasteCopyS"}

The following example uses the CanPaste property and the Paste method to paste a ComboBox
from the Clipboard to a Page of a MultiPage. This sample also uses the SetFocus and Copy
methods to copy a control from the form to the Clipboard.

The user clicks CommandButton1 to copy the ComboBox to the Clipboard. The user double-clicks
(using the DblClick event) CommandButton1 to paste the ComboBox to the MultiPage.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A TextBox named TextBox1.
· A ComboBox named ComboBox1.
· A MultiPage named MultiPage1.
· A CommandButton named CommandButton1.

Note      This example also includes a subroutine to illustrate pasting text into a control.

Private Sub UserForm_Initialize()
 ComboBox1.AddItem "It's a beautiful day!"

 CommandButton1.Caption = "Copy ComboBox to Clipboard"
 CommandButton1.AutoSize = True
End Sub

Private Sub MultiPage1_DblClick(ByVal Index As Long, ByVal Cancel As
MSForms.ReturnBoolean)
 If MultiPage1.Pages(MultiPage1.Value).CanPaste = True Then
 MultiPage1.Pages(MultiPage1.Value).Paste
 Else
 TextBox1.Text = "Can't Paste"
 End If
End Sub

Private Sub CommandButton1_Click()
 UserForm1.ComboBox1.SetFocus
 UserForm1.Copy
End Sub

'Code for pasting text into a control
'Private Sub ComboBox1_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
' If ComboBox1.CanPaste = True Then
' ComboBox1.Paste
' Else
' TextBox1.Text = "Can't Paste"
' End If

'End Sub

ScrollBar Control Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpScrollBarC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpScrollBarA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpScrollBarS"}

The following example demonstrates the stand-alone ScrollBar and reports the change in its value
as the user moves the scroll box. The user can move the scroll box by clicking on either arrow at the
ends of the control, by clicking in the region between scroll box and either arrow, or by dragging the
scroll box. When the user drags the scroll box, the Scroll event displays a message indicating that the
user scrolled to obtain the new value.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ScrollBar named ScrollBar1.
· Two Label controls named Label1 and Label2. Label1 contains scaling information for the user.

Label2 reports the delta value.

Dim ScrollSaved As Integer 'Previous ScrollBar setting

Private Sub UserForm_Initialize()
 ScrollBar1.Min = -225
 ScrollBar1.Max = 289
 ScrollBar1.Value = 0

 Label1.Caption = "-225 -----Widgets----- 289"
 Label1.AutoSize = True

 Label2.Caption = ""
End Sub

Private Sub ScrollBar1_Change()
 Label2.Caption = " Widget Changes " & (ScrollSaved - ScrollBar1.Value)
End Sub

Private Sub ScrollBar1_Exit(ByVal Cancel as MSForms.ReturnBoolean)
 Label2.Caption = " Widget Changes " & (ScrollSaved - ScrollBar1.Value)
 ScrollSaved = ScrollBar1.Value
End Sub

Private Sub ScrollBar1_Scroll()
 Label2.Caption = (ScrollSaved - ScrollBar1.Value) & " Widget Changes by
Scrolling"
End Sub

CanUndo, CanRedo Properties, UndoAction, RedoAction Methods
Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpCanUndoCanRedoUndoActionRedoActionC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpCanUndoCanRedoUndoActionRedoActionA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpCanUndoCanRedoUndoActionRedoActionS"}

The following example demonstrates how to undo or redo text editing within a text box or within the
text area of a ComboBox. This sample checks whether an undo or redo operation can occur and
then performs the appropriate action. The sample uses the CanUndo and CanRedo properties, and
the UndoAction and RedoAction methods.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A TextBox named TextBox1.
· A ComboBox named ComboBox1.
· Two CommandButton controls named CommandButton1 and CommandButton2.

Private Sub CommandButton1_Click()
 If UserForm1.CanUndo = True Then
 UserForm1.UndoAction
 MsgBox "Undid IT"
 Else
 MsgBox "No undo performed."
 End If
End Sub

Private Sub CommandButton2_Click()
 If UserForm1.CanRedo = True Then
 UserForm1.RedoAction
 MsgBox "Redid IT"
 Else
 MsgBox "No redo performed."
 End If
End Sub

Private Sub UserForm_Initialize()
 TextBox1.Text = "Type your text here."

 ComboBox1.ColumnCount = 3
 ComboBox1.AddItem "Choice 1, column 1"
 ComboBox1.List(0, 1) = "Choice 1, column 2"
 ComboBox1.List(0, 2) = "Choice 1, column 3"

 CommandButton1.Caption = "Undo"
 CommandButton2.Caption = "Redo"
End Sub

BoundColumn Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpBoundColumnC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpBoundColumnA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpBoundColumnS"}

The following example demonstrates how the BoundColumn property influences the value of a
ListBox. The user can choose to set the value of the ListBox to the index value of the specified row,
or to a specified column of data in the ListBox.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ListBox named ListBox1.
· A Label named Label1.
· Three OptionButton controls named OptionButton1, OptionButton2, and OptionButton3.

Private Sub UserForm_Initialize()
 ListBox1.ColumnCount = 2

 ListBox1.AddItem "Item 1, Column 1"
 ListBox1.List(0, 1) = "Item 1, Column 2"
 ListBox1.AddItem "Item 2, Column 1"
 ListBox1.List(1, 1) = "Item 2, Column 2"

 ListBox1.Value = "Item 1, Column 1"

 OptionButton1.Caption = "List Index"
 OptionButton2.Caption = "Column 1"
 OptionButton3.Caption = "Column 2"
 OptionButton2.Value = True
End Sub

Private Sub OptionButton1_Click()
 ListBox1.BoundColumn = 0
 Label1.Caption = ListBox1.Value
End Sub

Private Sub OptionButton2_Click()
 ListBox1.BoundColumn = 1
 Label1.Caption = ListBox1.Value
End Sub

Private Sub OptionButton3_Click()
 ListBox1.BoundColumn = 2
 Label1.Caption = ListBox1.Value
End Sub

Private Sub ListBox1_Click()
 Label1.Caption = ListBox1.Value
End Sub

List Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpListC"} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"f3smpListA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpListS"}

The following example swaps columns of a multicolumn ListBox. The sample uses the List property
in two ways:

1. To access and exchange individual values in the ListBox. In this usage, List has subscripts to
designate the row and column of a specified value.

1. To initially load the ListBox with values from an array. In this usage, List has no subscripts.
To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains a ListBox named ListBox1 and a CommandButton named CommandButton1.

Dim MyArray(6, 3) 'Array containing column values for ListBox.

Private Sub UserForm_Initialize()
 Dim i As Single

 ListBox1.ColumnCount = 3 'This list box contains 3 data columns

 'Load integer values MyArray
 For i = 0 To 5
 MyArray(i, 0) = i
 MyArray(i, 1) = Rnd
 MyArray(i, 2) = Rnd
 Next i

 'Load ListBox1
 ListBox1.List() = MyArray

End Sub

Private Sub CommandButton1_Click()
' Exchange contents of columns 1 and 3

 Dim i As Single
 Dim Temp As Single

 For i = 0 To 5
 Temp = ListBox1.List(i, 0)
 ListBox1.List(i, 0) = ListBox1.List(i, 2)
 ListBox1.List(i, 2) = Temp
 Next i
End Sub

ClientHeight, ClientLeft, ClientTop, ClientWidth Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTabStripC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpTabStripA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTabStripS"}

The following example sets the dimensions of an Image to the size of a TabStrip's client area when
the user clicks a CommandButton. This code sample uses the following properties: Height, Left,
Top, Width, ClientHeight, ClientLeft, ClientTop, and ClientWidth.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A CommandButton named CommandButton1.
· A TabStrip named TabStrip1.
· An Image named Image1.

Private Sub UserForm_Initialize()
CommandButton1.Caption = "Size Image to Tab Area"
CommandButton1.WordWrap = True
CommandButton1.AutoSize = True

End Sub

Private Sub CommandButton1_Click()
Image1.ZOrder (fmFront) 'Place Image in front of

TabStrip

'ClientLeft and ClientTop are measured from the edge of the TabStrip,
'not from the edges of the form containing the TabStrip.
Image1.Left = TabStrip1.Left + TabStrip1.ClientLeft
Image1.Top = TabStrip1.Top + TabStrip1.ClientTop
Image1.Width = TabStrip1.ClientWidth
Image1.Height = TabStrip1.ClientHeight

End Sub

MultiLine, WordWrap, ScrollBars Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpMultiLineWordWrapScrollBarsC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpMultiLineWordWrapScrollBarsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpMultiLineWordWrapScrollBarsS"}

The following example demonstrates the MultiLine, WordWrap, and ScrollBars properties on a
TextBox.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A TextBox named TextBox1.
· Four ToggleButton controls named ToggleButton1 through ToggleButton4.
To see the entire text placed in the TextBox, set MultiLine and WordWrap to True by clicking the
ToggleButton controls.

When MultiLine is True, you can enter new lines of text by pressing SHIFT+ENTER.

ScrollBars appears when you manually change the content of the TextBox.

Private Sub UserForm_Initialize()
'Initialize TextBox properties and toggle buttons

TextBox1.Text = "Type your text here. Enter SHIFT+ENTER to move to a new
line."

TextBox1.AutoSize = False
ToggleButton1.Caption = "AutoSize Off"
ToggleButton1.Value = False
ToggleButton1.AutoSize = True

TextBox1.WordWrap = False
ToggleButton2.Caption = "WordWrap Off"
ToggleButton2.Value = False
ToggleButton2.AutoSize = True

TextBox1.ScrollBars = 0
ToggleButton3.Caption = "ScrollBars Off"
ToggleButton3.Value = False
ToggleButton3.AutoSize = True

TextBox1.MultiLine = False
ToggleButton4.Caption = "Single Line"
ToggleButton4.Value = False
ToggleButton4.AutoSize = True

 End Sub

Private Sub ToggleButton1_Click()
'Set AutoSize property and associated ToggleButton

If ToggleButton1.Value = True Then
TextBox1.AutoSize = True
ToggleButton1.Caption = "AutoSize On"

Else
TextBox1.AutoSize = False
ToggleButton1.Caption = "AutoSize Off"

End If

End Sub

Private Sub ToggleButton2_Click()
'Set WordWrap property and associated ToggleButton

If ToggleButton2.Value = True Then
TextBox1.WordWrap = True
ToggleButton2.Caption = "WordWrap On"

Else
TextBox1.WordWrap = False
ToggleButton2.Caption = "WordWrap Off"

End If
End Sub

Private Sub ToggleButton3_Click()
'Set ScrollBars property and associated ToggleButton

If ToggleButton3.Value = True Then
TextBox1.ScrollBars = 3
ToggleButton3.Caption = "ScrollBars On"

Else
TextBox1.ScrollBars = 0
ToggleButton3.Caption = "ScrollBars Off"

End If
End Sub

Private Sub ToggleButton4_Click()
'Set MultiLine property and associated ToggleButton

If ToggleButton4.Value = True Then
TextBox1.MultiLine = True
ToggleButton4.Caption = "Multiple Lines"

Else
TextBox1.MultiLine = False
ToggleButton4.Caption = "Single Line"

End If
End Sub

Drag-and-Drop Operation Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpDragandDropOperationC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpDragandDropOperationA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpDragandDropOperationS"}

The following example demonstrates a drag-and-drop operation from one ListBox to another using a
DataObject to contain the dragged text. This code sample uses the SetText and StartDrag methods
in the MouseMove event to implement the drag-and-drop operation.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains two ListBox controls named ListBox1 and ListBox2. You also need to add choices to
the second ListBox.

Private Sub ListBox2_BeforeDragOver(ByVal Cancel As MSForms.ReturnBoolean,
ByVal Data As MSForms.DataObject, ByVal X As Single, ByVal Y As Single,
ByVal DragState As Long, ByVal Effect As MSForms.ReturnEffect, ByVal Shift
As Integer)
 Cancel = True
 Effect = 1
End Sub

Private Sub ListBox2_BeforeDropOrPaste(ByVal Cancel As
MSForms.ReturnBoolean, ByVal Action As Long, ByVal Data As
MSForms.DataObject, ByVal X As Single, ByVal Y As Single, ByVal Effect As
MSForms.ReturnEffect, ByVal Shift As Integer)
 Cancel = True
 Effect = 1
 ListBox2.AddItem Data.GetText
End Sub

Private Sub ListBox1_MouseMove(ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single)
 Dim MyDataObject As DataObject
 If Button = 1 Then
 Set MyDataObject = New DataObject
 Dim Effect As Integer
 MyDataObject.SetText ListBox1.Value
 Effect = MyDataObject.StartDrag
 End If
End Sub

Private Sub UserForm_Initialize()
 For i = 1 To 10
 ListBox1.AddItem "Choice " & (ListBox1.ListCount + 1)
 Next i
End Sub

Accessing a Page Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpAccessingPageC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpAccessingPageA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpAccessingPageS"}

The following example accesses an individual page of a MultiPage in several ways:

· Using the Pages collection with a numeric index.
· Using the Pages collection with a string index.
· Using the Pages collection with the Item method.
· Using the name of the individual page in the MultiPage.
· Using the SelectedItem property.
To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains a MultiPage named MultiPage1.

Private Sub UserForm_Initialize()
 Dim PageNAme As String

 For i = 0 To MultiPage1.Count - 1
 'Use index (numeric or string)
 MsgBox "MultiPage1.Pages(i).Caption = " &
MultiPage1.Pages(i).Caption
 MsgBox "MultiPage1.Pages.Item(i).Caption = " &
MultiPage1.Pages.Item(i).Caption

 PageNAme = MultiPage1.Pages(i).Name
 MsgBox "PageName = " & PageNAme

 MsgBox "MultiPage1.Pages(PageName).Caption = " &
MultiPage1.Pages(PageNAme).Caption
 MsgBox "MultiPage1.Pages.Item(PageName).Caption = " &
MultiPage1.Pages.Item(PageNAme).Caption

 'Use Page object without referring to Pages collection
 If i = 0 Then
 MsgBox "MultiPage1.Page1.Caption= " & MultiPage1.Page1.Caption
 ElseIf i = 1 Then
 MsgBox "MultiPage1.Page2.Caption = " & MultiPage1.Page2.Caption
 End If

 'Use SelectedItem Property
 MultiPage1.Value = i
 MsgBox "MultiPage1.SelectedItem.Caption = " &
MultiPage1.SelectedItem.Caption
 Next i
End Sub

Adding a Control Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpAddingControlC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpAddingControlA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpAddingControlS"}

The following example uses the Add method to add a control to a form at run time and uses the
AddControl event as confirmation that the control was added.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A CommandButton named CommandButton1.
· A Label named Label1.

Dim Mycmd as Control
Private Sub CommandButton1_Click()

Set Mycmd = Controls.Add("Forms.CommandButton.1") ', CommandButton2,
Visible)

Mycmd.Left = 18
Mycmd.Top = 150
Mycmd.Width = 175
Mycmd.Height = 20
Mycmd.Caption = "This is fun." & Mycmd.Name

End Sub

Private Sub UserForm_AddControl(ByVal Control As MSForms.Control)
Label1.Caption = "Control was Added."

End Sub

Adding a Control to a MultiPage Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpAddingControlToMultiPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpAddingControlToMultiPageA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpAddingControlToMultiPageS"}

The following example uses the Add, Clear, and Remove methods to add and remove a control to a
Page of a MultiPage at run time.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A MultiPage named MultiPage1.
· Three CommandButton controls named CommandButton1 through CommandButton3.

Dim MyTextBox As Control

Private Sub CommandButton1_Click()
Set MyTextBox = MultiPage1.Pages(0).Controls.Add("Forms.TextBox.1",
"MyTextBox", Visible)
End Sub

Private Sub CommandButton2_Click()
MultiPage1.Pages(0).Controls.Clear

End Sub

Private Sub CommandButton3_Click()
If MultiPage1.Pages(0).Controls.Count > 0 Then

MultiPage1.Pages(0).Controls.Remove "MyTextBox"
End If

End Sub

Private Sub UserForm_Initialize()
CommandButton1.Caption = "Add control"
CommandButton2.Caption = "Clear controls"
CommandButton3.Caption = "Remove control"

End Sub

ListBox Control Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpListBoxC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpListBoxA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpListBoxS"}

The following example adds and deletes the contents of a ListBox using the AddItem, RemoveItem,
and SetFocus methods, and the ListIndex and ListCount properties.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ListBox named ListBox1.
· Two CommandButton controls named CommandButton1 and CommandButton2.

Dim EntryCount As Single
Private Sub CommandButton1_Click()
 EntryCount = EntryCount + 1
 ListBox1.AddItem (EntryCount & " - Selection")
End Sub

Private Sub CommandButton2_Click()
 ListBox1.SetFocus

 'Ensure ListBox contains list items
 If ListBox1.ListCount >= 1 Then
 'If no selection, choose last list item.
 If ListBox1.ListIndex = -1 Then
 ListBox1.ListIndex = ListBox1.ListCount - 1
 End If
 ListBox1.RemoveItem (ListBox1.ListIndex)
 End If
End Sub

Private Sub UserForm_Initialize()
 EntryCount = 0
 CommandButton1.Caption = "Add Item"
 CommandButton2.Caption = "Remove Item"
End Sub

ZOrder Method Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpZOrderC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpZOrderA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpZOrderS"}

The following example sets the z-order of a TextBox, so the user can display the entire TextBox (by
bringing it to the front of the z-order) or can place the TextBox behind other controls (by sending it to
the back of the z-order).

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Three TextBox controls named TextBox1 through TextBox3.
· A ToggleButton named ToggleButton1.

Private Sub ToggleButton1_Click()
If ToggleButton1.Value = True Then

TextBox2.ZOrder (fmTop) 'Place TextBox2 on Top of z-order

'Update ToggleButton caption to identify next state
ToggleButton1.Caption = "Send TextBox2 to back"

Else
TextBox2.ZOrder (1) 'Place TextBox2 on Bottom of z-order

'Update ToggleButton caption to identify next state
ToggleButton1.Caption = "Bring TextBox2 to front"

End If
End Sub

Private Sub UserForm_Initialize()
'Set up text boxes to show z-order in the form
TextBox1.Text = "TextBox 1"
TextBox2.Text = "TextBox 2"
TextBox3.Text = "TextBox 3"

TextBox1.Height = 40
TextBox2.Height = 40
TextBox3.Height = 40

TextBox1.Width = 60
TextBox2.Width = 60
TextBox3.Width = 60

TextBox1.Left = 10
TextBox1.Top = 10

TextBox2.Left = 25 'Overlap TextBox2 on TextBox1
TextBox2.Top = 25

TextBox3.Left = 40 'Overlap TextBox3 on TextBox2, TextBox1
TextBox3.Top = 40

ToggleButton1.Value = False
ToggleButton1.Caption = "Bring TextBox2 to Front"
ToggleButton1.Left = 10
ToggleButton1.Top = 90
ToggleButton1.Width = 50

ToggleButton1.Height = 50

End Sub

Accelerator, Caption Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpAcceleratorCaptionC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpAcceleratorCaptionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpAcceleratorCaptionS"}

This example changes the Accelerator and Caption properties of a CommandButton each time the
user clicks the button by using the mouse or the accelerator key. The Click event contains the code to
change the Accelerator and Caption properties.

To try this example, paste the code into the Declarations section of a form containing a
CommandButton named CommandButton1.

Private Sub UserForm_Initialize()
CommandButton1.Accelerator = "C" 'Set Accelerator key to ALT +

C
End Sub

Private Sub CommandButton1_Click ()
If CommandButton1.Caption = "OK" Then 'Check caption, then change

it.
CommandButton1.Caption = "Clicked"
CommandButton1.Accelerator = "C" 'Set Accelerator key to ALT

+ C
Else

CommandButton1.Caption = "OK"
CommandButton1.Accelerator = "O" 'Set Accelerator key to ALT

+ O
End If

End Sub

AutoSize Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpAutoSizeC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpAutoSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpAutoSizeS"}

The following example demonstrates the effects of the AutoSize property with a single-line TextBox
and a multiline TextBox. The user can enter text into either TextBox and turn AutoSize on or off
independently of the contents of the TextBox. This code sample also uses the Text property.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two TextBox controls named TextBox1 and TextBox2.
· A ToggleButton named ToggleButton1.

Private Sub UserForm_Initialize()
 TextBox1.Text = "Single-line TextBox. Type your text here."

 TextBox2.MultiLine = True
 TextBox2.Text = "Multi-line TextBox. Type your text here. Use
CTRL+ENTER to start a new line."

 ToggleButton1.Value = True
 ToggleButton1.Caption = "AutoSize On"
 TextBox1.AutoSize = True
 TextBox2.AutoSize = True
End Sub

Private Sub ToggleButton1_Click()
 If ToggleButton1.Value = True Then
 ToggleButton1.Caption = "AutoSize On"
 TextBox1.AutoSize = True
 TextBox2.AutoSize = True
 Else
 ToggleButton1.Caption = "AutoSize Off"
 TextBox1.AutoSize = False
 TextBox2.AutoSize = False
 End If
End Sub

Bold, Italic, Size, StrikeThrough, Underline, Weight Properties
Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpBoldC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpBoldA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpBoldS"}

The following example demonstrates a Font object and the Bold, Italic, Size, StrikeThrough,
Underline, and Weight properties related to fonts. You can manipulate font properties of an object
directly or by using an alias, as this example also shows.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Label named Label1.
· Four ToggleButton controls named ToggleButton1 through ToggleButton4.
· A second Label and a TextBox named Label2 and TextBox1.

Dim MyFont As StdFont

Private Sub ToggleButton1_Click()
 If ToggleButton1.Value = True Then
 MyFont.Bold = True 'Using MyFont alias to control font
 ToggleButton1.Caption = "Bold On"
 MyFont.Size = 22 'Increase the font size
 Else
 MyFont.Bold = False
 ToggleButton1.Caption = "Bold Off"
 MyFont.Size = 8 'Return font size to initial size
 End If

 TextBox1.Text = Str(MyFont.Weight) 'Bold and Weight are related
End Sub

Private Sub ToggleButton2_Click()
 If ToggleButton2.Value = True Then
 Label1.Font.Italic = True 'Using Label1.Font directly
 ToggleButton2.Caption = "Italic On"
 Else
 Label1.Font.Italic = False
 ToggleButton2.Caption = "Italic Off"
 End If
End Sub

Private Sub ToggleButton3_Click()
 If ToggleButton3.Value = True Then
 Label1.Font.Strikethrough = True 'Using Label1.Font
directly
 ToggleButton3.Caption = "StrikeThrough On"
 Else
 Label1.Font.Strikethrough = False
 ToggleButton3.Caption = "StrikeThrough Off"
 End If
End Sub

Private Sub ToggleButton4_Click()
 If ToggleButton4.Value = True Then

 MyFont.Underline = True 'Using MyFont alias for
Label1.Font
 ToggleButton4.Caption = "Underline On"
 Else
 Label1.Font.Underline = False
 ToggleButton4.Caption = "Underline Off"
 End If
End Sub

Private Sub UserForm_Initialize()
 Set MyFont = Label1.Font

 ToggleButton1.Value = True
 ToggleButton1.Caption = "Bold On"

 Label1.AutoSize = True 'Set size of Label1
 Label1.AutoSize = False

 ToggleButton2.Value = False
 ToggleButton2.Caption = "Italic Off"

 ToggleButton3.Value = False
 ToggleButton3.Caption = "StrikeThrough Off"

 ToggleButton4.Value = False
 ToggleButton4.Caption = "Underline Off"

 Label2.Caption = "Font Weight"
 TextBox1.Text = Str(Label1.Font.Weight)
 TextBox1.Enabled = False

End Sub

Border, Color Enhancements Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpBorderColorEnhancementsC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpBorderColorEnhancementsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpBorderColorEnhancementsS"}

The following example demonstrates the BorderStyle and SpecialEffect properties, showing each
border available through these properties. The example also demonstrates how to control color
settings by using the BackColor, BackStyle, BorderColor, and ForeColor properties.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Six TextBox controls named TextBox1 through TextBox6.
· Two ToggleButton controls named ToggleButton1 and ToggleButton2.

Private Sub UserForm_Initialize()
'Initialize each TextBox with a border style or special effect,
'and foreground and background colors

'TextBox1 initially uses a borderstyle
TextBox1.Text = "BorderStyle-Single"
TextBox1.BorderStyle = fmBorderStyleSingle
TextBox1.BorderColor = RGB(255, 128, 128) 'Color - Salmon
TextBox1.ForeColor = RGB(255, 255, 0) 'Color - Yellow
TextBox1.BackColor = RGB(0, 128, 64) 'Color - Green #2

'TextBoxes 2 through 6 initially use special effects
TextBox2.Text = "Flat"
TextBox2.SpecialEffect = fmSpecialEffectFlat
TextBox2.ForeColor = RGB(64, 0, 0) 'Color - Brown
TextBox2.BackColor = RGB(0, 0, 255) 'Color - Blue

'Ensure the background style for TextBox2 is initially opaque.
TextBox2.BackStyle = fmBackStyleOpaque

TextBox3.Text = "Etched"
TextBox3.SpecialEffect = fmSpecialEffectEtched
TextBox3.ForeColor = RGB(128, 0, 255) 'Color - Purple
TextBox3.BackColor = RGB(0, 255, 255) 'Color - Cyan

'Define BorderColor for later use (when borderstyle=fmBorderStyleSingle)
TextBox3.BorderColor = RGB(0, 0, 0) 'Color - Black

TextBox4.Text = "Bump"
TextBox4.SpecialEffect = fmSpecialEffectBump
TextBox4.ForeColor = RGB(255, 0, 255) 'Color - Magenta
TextBox4.BackColor = RGB(0, 0, 100) 'Color - Navy blue

TextBox5.Text = "Raised"
TextBox5.SpecialEffect = fmSpecialEffectRaised
TextBox5.ForeColor = RGB(255, 0, 0) 'Color - Red
TextBox5.BackColor = RGB(128, 128, 128) 'Color - Gray

TextBox6.Text = "Sunken"
TextBox6.SpecialEffect = fmSpecialEffectSunken
TextBox6.ForeColor = RGB(0, 64, 0) 'Color - Olive
TextBox6.BackColor = RGB(0, 255, 0) 'Color - Green #1

ToggleButton1.Caption = "Swap styles"
ToggleButton2.Caption = "Transparent/Opaque background"
End Sub

Private Sub ToggleButton1_Click()

'Swap borders between TextBox1 and TextBox3
If ToggleButton1.Value = True Then

'Change TextBox1 from BorderStyle to Etched
TextBox1.Text = "Etched"
TextBox1.SpecialEffect = fmSpecialEffectEtched

'Change TextBox3 from Etched to BorderStyle
TextBox3.Text = "BorderStyle-Single"
TextBox3.BorderStyle = fmBorderStyleSingle

Else
'Change TextBox1 back to BorderStyle
TextBox1.Text = "BorderStyle-Single"
TextBox1.BorderStyle = fmBorderStyleSingle

'Change TextBox3 back to Etched
TextBox3.Text = "Etched"
TextBox3.SpecialEffect = fmSpecialEffectEtched

End If
End Sub

Private Sub ToggleButton2_Click()

'Set background to Opaque or Transparent
If ToggleButton2.Value = True Then

'Change TextBox2 to a transparent background
TextBox2.BackStyle = fmBackStyleTransparent

Else
'Change TextBox2 back to opaque background
TextBox2.BackStyle = fmBackStyleOpaque

End If

End Sub

Column Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpColumnC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpColumnA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpColumnS"}
'

The following example loads a two-dimensional array with data and, in turn, loads two ListBox
controls using the Column and List properties. Note that the Column property transposes the array
elements during loading.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains two ListBox controls named ListBox1 and ListBox2.

Dim MyArray(6,3)

Private Sub UserForm_Initialize()
 Dim i As Single

 ListBox1.ColumnCount = 3 'The 1st list box contains 3 data
columns
 ListBox2.ColumnCount = 6 'The 2nd box contains 6 data columns

 'Load integer values into first column of MyArray
 For i = 0 To 5
 MyArray(i, 0) = i
 Next i

 'Load columns 2 and three of MyArray
 MyArray(0, 1) = "Zero"
 MyArray(1, 1) = "One"
 MyArray(2, 1) = "Two"
 MyArray(3, 1) = "Three"
 MyArray(4, 1) = "Four"
 MyArray(5, 1) = "Five"

 MyArray(0, 2) = "Zero"
 MyArray(1, 2) = "Un ou Une"
 MyArray(2, 2) = "Deux"
 MyArray(3, 2) = "Trois"
 MyArray(4, 2) = "Quatre"
 MyArray(5, 2) = "Cinq"

 'Load data into ListBox1 and ListBox2
 ListBox1.List() = MyArray
 ListBox2.Column() = MyArray

End Sub

ColumnWidths Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpColumnWidthsC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpColumnWidthsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpColumnWidthsS"}

The following example uses the ColumnWidths property to change the column widths of a
multicolumn ListBox. The example uses three TextBox controls to specify the individual column
widths and uses the Exit event to specify the units of measure of each TextBox.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A ListBox named ListBox1.
· Three TextBox controls named TextBox1 through TextBox3.
· A CommandButton named CommandButton1.

Try entering the value 0 to hide a column.

Dim MyArray(2, 3) As String

Private Sub CommandButton1_Click()
'ColumnWidths requires a value for each column separated by semicolons
ListBox1.ColumnWidths = TextBox1.Text & ";" & TextBox2.Text & ";" &

TextBox3.Text
End Sub

Private Sub TextBox1_Exit(ByVal Cancel as MSForms.ReturnBoolean)
'ColumnWidths accepts points (no units), inches or centimeters; make

inches the default
If Not (InStr(TextBox1.Text, "in") > 0 Or InStr(TextBox1.Text, "cm") >

0) Then
TextBox1.Text = TextBox1.Text & " in"

End If
End Sub

Private Sub TextBox2_Exit(ByVal Cancel as MSForms.ReturnBoolean)
'ColumnWidths accepts points (no units), inches or centimeters; make

inches the default
If Not (InStr(TextBox2.Text, "in") > 0 Or InStr(TextBox2.Text, "cm") >

0) Then
TextBox2.Text = TextBox2.Text & " in"

End If
End Sub

Private Sub TextBox3_Exit(ByVal Cancel as MSForms.ReturnBoolean)
'ColumnWidths accepts points (no units), inches or centimeters; make
inches the default
If Not (InStr(TextBox3.Text, "in") > 0 Or InStr(TextBox3.Text, "cm") >

0) Then
TextBox3.Text = TextBox3.Text & " in"

End If
End Sub

Private Sub UserForm_Initialize()
Dim i, j, Rows As Single

ListBox1.ColumnCount = 3
Rows = 2

For j = 0 To ListBox1.ColumnCount - 1
For i = 0 To Rows - 1

MyArray(i, j) = "Row " & i & ", Column " & j
Next i

Next j

ListBox1.List() = MyArray 'Load MyArray into ListBox1

TextBox1.Text = "1 in" '1-inch columns initially
TextBox2.Text = "1 in"
TextBox3.Text = "1 in"

End Sub

ControlTipText Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpControlTipTextC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpControlTipTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpControlTipTextS"}

The following example defines the ControlTipText property for three CommandButton controls and
two Page objects in a MultiPage.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A MultiPage named MultiPage1.
· Three CommandButton controls named CommandButton1 through CommandButton3.

Note For an individual Page of a MultiPage, ControlTipText becomes enabled when the
MultiPage or a control on the current page of the MultiPage has the focus.

Private Sub UserForm_Initialize()
MultiPage1.Page1.ControlTipText = "Here in page 1"
MultiPage1.Page2.ControlTipText = "Now in page 2"

CommandButton1.ControlTipText = "And now here's"
CommandButton2.ControlTipText = "a tip from"
CommandButton3.ControlTipText = "your controls!"

End Sub

CurLine, CurTargetX, CurX, Text Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpCurLineCurTargetXCurXC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpCurLineCurTargetXCurXA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpCurLineCurTargetXCurXS"}

The following example tracks the CurLine, CurTargetX, and CurX property settings in a multiline
TextBox. These settings change in the KeyUp event as the user types into the Text property, moves
the insertion point, and extends the selection using the keyboard.

To use this example, follow these steps:

1. Copy this sample code to the Declarations portion of a form.
1. Add one large TextBox named TextBox1 to the form.
1. Add three TextBox controls named TextBox2, TextBox3, and TextBox4 in a column.

Private Sub TextBox1_KeyUp(ByVal KeyCode As MSForms.ReturnInteger, ByVal
Shift As Integer)

TextBox2.Text = TextBox1.CurLine
TextBox3.Text = TextBox1.CurX
TextBox4.Text = TextBox1.CurTargetX

End Sub

Private Sub UserForm_Initialize()
TextBox1.MultiLine = True

TextBox1.Text = "Type your text here. User CTRL + ENTER to start a new
line."
End Sub

HideSelection Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpHideSelectionC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpHideSelectionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpHideSelectionS"}
'

The following example demonstrates the HideSelection property in the context of either a single form
or more than one form. The user can select text in a TextBox and TAB to other controls on a form, as
well as transfer the focus to a second form. This code sample also uses the SetFocus method, and
the EnterFieldBehavior, MultiLine, and Value properties.

To use this example, follow these steps:

1. Copy this sample code (except for the last event subroutine) to the Declarations portion of a form.
1. Add a large TextBox named TextBox1, a ToggleButton named ToggleButton1, and a
CommandButton named CommandButton1.

1. Insert a second form into this project named UserForm2.
1. Paste the last event subroutine of this listing into the Declarations section of UserForm2.
1. In this form, add a CommandButton named CommandButton1.
2. Run UserForm1.

' ***** Code for UserForm1 *****

Private Sub CommandButton1_Click()
TextBox1.SetFocus
UserForm2.Show 'Bring up the second form.

End Sub

Private Sub ToggleButton1_Click()
If ToggleButton1.Value = True Then

TextBox1.HideSelection = False
ToggleButton1.Caption = "Selection Visible"

Else
TextBox1.HideSelection = True
ToggleButton1.Caption = "Selection Hidden"

End If
End Sub

Private Sub UserForm_Initialize()
TextBox1.MultiLine = True
TextBox1.EnterFieldBehavior = fmEnterFieldBehaviorRecallSelection

'Fill the TextBox
TextBox1.Text = "SelText indicates the starting point of selected text,

or the insertion point if no text is selected." _
& Chr$(10) & Chr$(13) & "The SelStart property is always valid, even

when the control does not have focus. Setting SelStart to a value less than
zero creates an error. " _

& Chr$(10) & Chr$(13) & "Changing the value of SelStart cancels any
existing selection in the control, places an insertion point in the text,
and sets the SelLength property to zero."

TextBox1.HideSelection = True
ToggleButton1.Caption = "Selection Hidden"
ToggleButton1.Value = False

End Sub
'

' ***** Code for UserForm2 *****

Private Sub CommandButton1_Click()
UserForm2.Hide

End Sub

Picture, PicturePosition Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpPicturePositionC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpPicturePositionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpPicturePositionS"}

The following example uses a ComboBox to show the picture placement options for a control. Each
time the user clicks a list choice, the picture and caption are updated on the CommandButton. This
code sample also uses the AddItem method to populate the ComboBox choices.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Label named Label1.
· A CommandButton named CommandButton1.
· A ComboBox named ComboBox1.

Private Sub UserForm_Initialize()
Label1.Left = 18
Label1.Top = 12
Label1.Height = 12
Label1.Width = 190
Label1.Caption = "Select picture placement relative to the caption."

'Add list entries to combo box. The value of each entry matches the
'corresponding ListIndex value in the combo box.
ComboBox1.AddItem "Left Top" 'ListIndex = 0
ComboBox1.AddItem "Left Center" 'ListIndex = 1
ComboBox1.AddItem "Left Bottom" 'ListIndex = 2
ComboBox1.AddItem "Right Top" 'ListIndex = 3
ComboBox1.AddItem "Right Center" 'ListIndex = 4
ComboBox1.AddItem "Right Bottom" 'ListIndex = 5

ComboBox1.AddItem "Above Left" 'ListIndex = 6
ComboBox1.AddItem "Above Center" 'ListIndex = 7
ComboBox1.AddItem "Above Right" 'ListIndex = 8
ComboBox1.AddItem "Below Left" 'ListIndex = 9
ComboBox1.AddItem "Below Center" 'ListIndex = 10
ComboBox1.AddItem "Below Right" 'ListIndex = 11

ComboBox1.AddItem "Centered" 'ListIndex = 12

ComboBox1.Style = fmStyleDropDownList 'Use drop-down list

ComboBox1.BoundColumn = 0 'Combo box values are ListIndex
values

ComboBox1.ListIndex = 0 'Set combo box to first entry

ComboBox1.Left = 18
ComboBox1.Top = 36
ComboBox1.Width = 90
ComboBox1.ListWidth = 90

'Initialize CommandButton1
CommandButton1.Left = 230
CommandButton1.Top = 36
CommandButton1.Height = 120
CommandButton1.Width = 120

'Note: Be sure to refer to a bitmap file that is present on your
'Note: system, and to include the path in the filename.
CommandButton1.Picture = LoadPicture("c:\windows\argyle.bmp")
CommandButton1.PicturePosition = ComboBox1.Value

End Sub

Private Sub ComboBox1_Click()
Select Case ComboBox1.Value
Case 0 'Left Top

CommandButton1.Caption = "Left Top"
CommandButton1.PicturePosition = fmPicturePositionLeftTop

Case 1 'Left Center
CommandButton1.Caption = "Left Center"
CommandButton1.PicturePosition = fmPicturePositionLeftCenter

Case 2 'Left Bottom
CommandButton1.Caption = "Left Bottom"
CommandButton1.PicturePosition = fmPicturePositionLeftBottom

Case 3 'Right Top
CommandButton1.Caption = "Right Top"
CommandButton1.PicturePosition = fmPicturePositionRightTop

Case 4 'Right Center
CommandButton1.Caption = "Right Center"
CommandButton1.PicturePosition = fmPicturePositionRightCenter

Case 5 'Right Bottom
CommandButton1.Caption = "Right Bottom"
CommandButton1.PicturePosition = fmPicturePositionRightBottom

Case 6 'Above Left
CommandButton1.Caption = "Above Left"
CommandButton1.PicturePosition = fmPicturePositionAboveLeft

Case 7 'Above Center
CommandButton1.Caption = "Above Center"
CommandButton1.PicturePosition = fmPicturePositionAboveCenter

Case 8 'Above Right
CommandButton1.Caption = "Above Right"
CommandButton1.PicturePosition = fmPicturePositionAboveRight

Case 9 'Below Left
CommandButton1.Caption = "Below Left"
CommandButton1.PicturePosition = fmPicturePositionBelowLeft

Case 10 'Below Center
CommandButton1.Caption = "Below Center"
CommandButton1.PicturePosition = fmPicturePositionBelowCenter

Case 11 'Below Right
CommandButton1.Caption = "Below Right"
CommandButton1.PicturePosition = fmPicturePositionBelowRight

Case 12 'Centered
CommandButton1.Caption = "Centered"
CommandButton1.PicturePosition = fmPicturePositionCenter

End Select

End Sub

Worksheet Binding Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpControlworksheetBindingC"} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"f3smpControlworksheetBindingA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"f3smpControlworksheetBindingS"}

The following example uses a range of worksheet cells in a ListBox and, when the user selects a row
from the list, displays the row index in another worksheet cell. This code sample uses the
RowSource, BoundColumn, and ControlSource properties.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains a ListBox named ListBox1. In the worksheet, enter data in cells A1:E4. You also need
to make sure cell A6 contains no data.

Private Sub UserForm_Initialize()

ListBox1.ColumnCount = 5
ListBox1.RowSource = "a1:e4"

ListBox1.ControlSource = "a6"
ListBox1.BoundColumn = 0 'Place the ListIndex into cell a6
End Sub

Text Selection Properties Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpTextSelectionC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpTextSelectionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpTextSelectionS"}

The following example tracks the selection-related properties (SelLength, SelStart, and SelText) that
change as the user moves the insertion point and extends the selection using the keyboard. This
example also uses the Enabled and EnterFieldBehavior properties.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· One large TextBox named TextBox1.

· Three TextBox controls in a column named TextBox2 through TextBox4.

Private Sub TextBox1_KeyUp(ByVal KeyCode As MSForms.ReturnInteger, ByVal
Shift As Integer)

TextBox2.Text = TextBox1.SelStart
TextBox3.Text = TextBox1.SelLength
TextBox4.Text = TextBox1.SelText

End Sub

Private Sub UserForm_Initialize()
TextBox1.MultiLine = True
TextBox1.EnterFieldBehavior = fmEnterFieldBehaviorRecallSelection

TextBox1.Text = "Type your text here. Use CTRL+ENTER to start a new
line."
End Sub

Accessing Controls Through the Controls Collection Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpControlsC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpControlsS"}

The following example accesses individual controls from the Controls collection using a For
Each...Next loop. When the user presses CommandButton1, the other controls are placed in a
column along the left edge of the form using the Move method.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains a CommandButton named CommandButton1 and several other controls.

Dim CtrlHeight As Single
Dim CtrlTop As Single
Dim CtrlGap As Single

Private Sub CommandButton1_Click()
Dim MyControl As Control
CtrlTop = 5

For Each MyControl In Controls
If MyControl.Name = "CommandButton1" Then

'Don't move or resize this control.
Else

'Move method using named arguments
MyControl.Move Top:=CtrlTop, Height:=CtrlHeight, Left:=5

'Move method using unnamed arguments (left, top, width, height)
'MyControl.Move 5, CtrlTop, ,CtrlHeight

'Calculate top coordinate for next control
CtrlTop = CtrlTop + CtrlHeight + CtrlGap

End If
Next

End Sub

Private Sub UserForm_Initialize()
CtrlHeight = 20
CtrlGap = 5

CommandButton1.Caption = "Click to move controls"
CommandButton1.AutoSize = True
CommandButton1.Left = 120
CommandButton1.Top = CtrlTop

End Sub

Cycle Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpCycleC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpCycleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpCycleS"}

The following example defines the Cycle property for a Frame and two Page objects in a MultiPage.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· A Frame named Frame1.
· A MultiPage named MultiPage1 that contains two objects named Page1 and Page2.
· Two CommandButton controls named CommandButton1 and CommandButton2.
In the form, the Frame, and each Page of the MultiPage, place a couple of controls, so you can see
how Cycle affects the tab order of the Frame and MultiPage.

The user should tab through the controls to observe how Cycle affects the tab order. Pressing
CommandButton1 extends the tab order to include controls in the Frame and Page objects. Pressing
CommandButton2 restricts the tab order.

Private Sub RestrictCycles()
'Limit tab order for the Frame and Page objects
 Frame1.Cycle = fmCycleCurrentForm
 MultiPage1.Page1.Cycle = fmCycleCurrentForm
 MultiPage1.Page2.Cycle = fmCycleCurrentForm
End Sub

Private Sub UserForm_Initialize()
RestrictCycles

End Sub

Private Sub CommandButton1_Click()
'Extend tab order subforms (the Frame and Page objects)
 Frame1.Cycle = fmCycleAllForms
 MultiPage1.Page1.Cycle = fmCycleAllForms
 MultiPage1.Page2.Cycle = fmCycleAllForms
End Sub

Private Sub CommandButton2_Click()
RestrictCycles

End Sub

Move Method Example for Controls Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpControlsMoveC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpControlsMoveA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpControlsMoveS"}

The following example demonstrates moving all the controls on a form by using the Move method
with the Controls collection. The user clicks on the CommandButton to move the controls.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains a CommandButton named CommandButton1 and several other controls.

Private Sub CommandButton1_Click()
 'Move each control on the form right 25 points and up 25 points.
Controls.Move 25, -25
End Sub

Parent Property Example
{ewc HLP95EN.DLL,DYNALINK,"See Also":"f3smpParentC"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"f3smpParentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"f3smpParentS"}

The following example uses the Parent property to refer to the control or form that contains a specific
control.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two Label controls named Label1 and Label2.
· A CommandButton named CommandButton1.
· One or more additional controls of your choice.

Dim MyControl As Object
Dim MyParent As Object
Dim ControlsIndex As Integer

Private Sub UserForm_Initialize()
 ControlsIndex = 0
 CommandButton1.Caption = "Get Control and Parent"
 CommandButton1.AutoSize = True
 CommandButton1.WordWrap = True
End Sub

Private Sub CommandButton1_Click()
 'Process Controls collection for UserForm
 Set MyControl = Controls.Item(ControlsIndex)
 Set MyParent = MyControl.Parent
 Label1.Caption = MyControl.Name
 Label2.Caption = MyParent.Name

 'Prepare index for next control on Userform
 ControlsIndex = ControlsIndex + 1
 If ControlsIndex >= Controls.Count Then
 ControlsIndex = 0
 End If
End Sub

