
ObjectComponents Framework Help Contents
Click the icon above to open all folders. Click an icon below to open a folder or click the underlined text to see a specific topic.
Welcome to Help for Borland C++ ObjectComponents Framework (OCF).

Essentials and concepts you will need to know to
work with OCF.

Tasks with step-by-step directions for using OCF
tasks and its utilities.

Language Reference for OCF language elements
and error messages.

Shortcut: Use the Search button at the top of the Help window if you are ready to look for
something by name.

ObjectComponents Framework Help Contents
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.
Welcome to Help for Borland C++ ObjectComponents Framework (OCF).

Essentials and concepts you will need to know for
working with Borland C++.

Support for OLE in Borland C++
What does ObjectComponents do?
Where Should You Start?
What is OLE?
What does OLE look like?
What is ObjectComponents?
How do I use ObjectComponents?
How does ObjectComponents work?
What ObjectComponents programming tools

are available?
Where do I look for information?
What do these new OLE terms mean?
Glossary of OLE terms

Tasks with step-by-step directions for using OCF
tasks and its utilities.

Language Reference for Borland C++ language
elements and error messages.

Shortcut: Use the Search and Search All buttons at the top of the Help window if you are ready to
look for an item by name.

ObjectComponents Framework Help Contents
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.
Welcome to Help for Borland C++ ObjectComponents Framework (OCF).

Essentials and concepts you will need to know to
work with OCF.
Tasks with step-by-step directions for using Borland
C++ tasks and its utilities.

Automating an Application
Register an Automation server
Automating a Class
Build the Server

Creating an OLE Container
Turning a Doc/View Application Into an OLE

Container
Turning an Objectwindows Application Into an

OLE Container
Turning a C++ Application Into an OLE

Container
Creating an Automation Controller

Steps for Building an Automation Controller
Enumerating Automated Collections

Creating an OLE Server
Turning a Doc/View Application Into an OLE

Server
Turning an ObjectWindows Application Into an

OLE Server
Turning a C++ Application Into an OLE Server
Understanding Registration
Making a DLL Server

Language Reference for OCF language elements
and error messages.

Shortcut: Use the Search button at the top of the Help window if you are ready to look for
something by name.

ObjectComponents Framework Help Contents
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.
Welcome to Help for Borland C++ ObjectComponents Framework (OCF).

Essentials and concepts you will need to know to
work with OCF.
Tasks with step-by-step directions for using Borland
C++ tasks and its utilities.
Language Reference for OCF language elements
and error messages.

ObjectComponents Framework (OCF)
Constants
Exception Classes
General OLE Classes, Macros, and Typedefs
Global Utility Functions
Header Files
Libraries
Registration Keys

Linking and Embedding
Classes
Enums
Messages
Structs

OLE Automation
Classes
Enumerated Types and Type Definitions
Data Types
Macros
Structs

Compound File I/O
Classes
Enumerated Types and Structs
Constants

Shortcut: Use the Search button at the top of the Help window if you are ready to look for
something by name.

ObjectComponents Framework Help Contents
Click any icon to close all folders or click the underlined text to see a specific topic.
Welcome to Help for Borland C++ ObjectComponents Framework (OCF).

Essentials and concepts you will need to know for
working with Borland C++.

Support for OLE in Borland C++
What does ObjectComponents do?
Where Should You Start?
What is OLE?
What does OLE look like?
What is ObjectComponents?
How do I use ObjectComponents?
How does ObjectComponents work?
What ObjectComponents programming tools

are available?
Where do I look for information?
What do these new OLE terms mean?
Glossary of OLE terms

Tasks with step-by-step directions for using Borland
C++ tasks and its utilities.

Automating an Application
Register the automation server
Automate a class
Build the server

Creating an OLE container
Turning a Doc/View Application Into an OLE

Container
Turning an Objectwindows Application Into an

OLE Container
Turning a C++ Application Into an OLE

Container
Creating an Automation Controller

Steps for Building an Automation Controller
Enumerating Automated Collections

Creating an OLE Server
Turning a Doc/View Application Into an OLE

Server
Turning an Objectwindows Application Into an

OLE Server
Turning a C++ Application Into an OLE Server
Understanding Registration
Making a Dll Server

Language Reference for OCF language elements
and error messages.

ObjectComponents Framework (OCF)
Constants
Exception Classes

General OLE Classes, Macros, and Typedefs
Global Utility Functions
Header Files
Libraries
Registration Keys

Linking and Embedding
Classes
Enums
Messages
Structs

OLE Automation
Classes
Enumerated Types and Type Definitions
Data Types
Macros
Structs

Compound File I/O
Classes
Enumerated Types and Structs
Constants

Essentials
Support for OLE in Borland C++
What does ObjectComponents do?
Where Should You Start?
What is OLE?
What does OLE look like?
What is ObjectComponents?
How do I use ObjectComponents?
How does ObjectComponents work?
What ObjectComponents programming tools are available?
Where do I look for information?
What do these new OLE terms mean?
Glossary of OLE terms

Tasks
Automating an Application

Register the automation server
Automate a class
Build the server

Creating an OLE container
Turning a Doc/View Application Into an OLE Container
Turning an Objectwindows Application Into an OLE Container
Turning a C++ Application Into an OLE Container

Creating an Automation Controller
Steps for Building an Automation Controller
Enumerating Automated Collections

Creating an OLE Server
Turning a Doc/View Application Into an OLE Server
Turning an Objectwindows Application Into an OLE Server
Turning a C++ Application Into an OLE Server
Understanding Registration
Making a Dll Server

ObjectComponents Framework Language Reference

ObjectComponents Framework (OCF)
Constants
Exception Classes
General OLE Classes, Macros, and typedefs
Global Utility Functions
Header Files
Libraries
Registration Keys

Linking and Embedding
Classes
Enums
Messages
Structs

OLE Automation
Classes
Enumerated Types and Type Definitions
Data Types
Macros
Structs

Compound File I/O
Classes
Enumerated Types and Structs
Constants

Automation Macros
Automation Declaration Macros
Automation Definition Macros
Automation Hook Macros
Automation Proxy Macros

Automating an Application
See Also
Automating a program means exposing its functions to other programs. Once a program is automated,
other programs can control it by issuing commands through OLE. ObjectComponents is your interface
to OLE automation. Through ObjectComponents you can expose any C++ classes to OLE, and you
won't have to restructure your existing classes to do it.

Automating a Progam
The following steps for automating an application are the same whether the application uses
ObjectWindows or not. They will work for any C++ application.
1. Register the automation server
2. Automate a class
3. Build the server
To enhance your server by localizing symbol names, combining C++ objects, exposing collections,
invalidating deleted objects, or creating a type library, see Enhancing Automation Server Functions.
ObjectComponents lets OLE reach members of your classes through standard C++ mechanisms. At
run time, other programs can send commands for your program to OLE.
A program that exposes itself to receive automation commands is called an automation server. A
program that sends commands for others to execute is called an automation controller.
Automation servers can be built as DLLs using the same methods for making an in-process linking and
embedding server.
Note: The AutoCalc example program installed in the EXAMPLES/OCF/AUTOCALC directory

illustrates many of the above steps. AutoCalc draws a calculator on the screen and lets the user
click buttons to perform calculations. AutoCalc also automates its classes so that a controller
application can send commands to do the same things a user does.

See Also
Creating an Automation Controller
Making a DLL server

Registering an Automation Server
See Also
Registering an application means giving OLE information about what the application can do.
To register the application.

Create a registration table and record the information.
Create a registrar object and pass the table to the constructor of the registrar object.

See Also
Automating a Class
Building the Server
Enhancing Automation Server Functions

Creating a Registration Table
See Also Registering an Automation Server
An automation server must set four pieces of information in the application's registration table: its
program ID, its class ID, a description of itself, and command-line arguments for invoking the
automation server.
BEGIN_REGISTRATION(AppReg)
 REGDATA(clsid, "{877B6200-7627-101B-B87C-0000C057CE4E}")
 REGDATA(progid, "Calculator.Application")
 REGDATA(appname, "AutoCalc"
 REGDATA(description,"Automated Calculator 1.2 Application")
 REGDATA(cmdline, "/Automation")
 REGDATA(version, "1.2")
END_REGISTRATION
The registration macros create a structure that this example names AppReg. The clsid must be
specially generated to ensure uniqueness. To learn how, refer to the entry for the clsid registration key
in the ObjectWindows Reference Guide. The progid for an automation server conventionally has two
parts, one naming the program ("Calculator") and one naming the type of object ("Application"). A
period (".") is the only permissible delimiter character in a progid.
A server that creates several different kinds of automatable objects must give each a different progid,
such as AppName.MySecondObject and AppName.MyThirdObject. You need not, however, supply a
different clsid for each kind of object, only for the first one. ObjectComponents increments the first clsid
for each subsequent object.
The progid is visible to users when they create your object in their automation scripts. They also see
the description string when OLE browses the system for available automation objects.
For the final registration key, cmdline, an automation server should normally include the -Automation
switch. When an automation controller asks to create your object, OLE invokes your application and
places the cmdline value on the command line.
Although OLE conventions call for this switch, OLE itself pays no attention to it. ObjectComponents
uses it, though, to determine whether to invoke new instances of your program for each new OLE
client or whether a single instance should service all clients. Normally you don't want several different
clients sending commands to the exact same object. The commands they send might interfere with
each other. ObjectComponents responds to the -Automation switch by making the application support
only one client per instance. (The -Automation switch overrides ocrMultipleUse if you register that in
your usage key.) If it makes sense for your automation server to support simultaneous clients with a
single instance, then register it as ocrMultipleUse and omit -Automation from the cmdline string.
The -Automation switch directs the creation of an OLE factory, the facility that ObjectComponents
registers at run time for OLE to call when it wants to create whatever the server produces. When the
switch is present, ObjectComponents registers the application class so that OLE can create an
instance of the application. ObjectComponents does not register the document factory. To make the
application single-use, ObjectComponents removes the factory after it creates the first instance of the
application.
The registration table in the example holds information about the application, so it is called an
application registration table. Using the same macros, an application can also create document
registration structures to describe the kinds of documents (or objects) that the server produces. An
automation server creates automated documents if it wants controllers to embed the automated object
before issuing commands.
The following table briefly describes all the registration keys that might be used by an automation
server. It shows which are optional and which required, as well as which belong in the application
registration table (usually named AppReg) and which in the document registration table (usually
named DocReg). The table assumes that the server's documents support automation. For non-
automated document types, the server needs to register only docflags and docfilter.

Key in AppReg? in DocReg? Description
appname Yes Optional Short name for the application
clsid Yes Optional Globally unique identifier (GUID); generated

automatically for the DocReg structure
description Yes Yes Descriptive string (up to 40 characters)
progid Yes Yes Name of program or object type (unique string)
extension No Optional Document file extension associated with server
docfilter No Yes Wildcard file filter for File Open dialog box

Note: dtHidden is not in DocReg.
docflags No Yes Options for running the File Open dialog box
typehelp No Optional Name of an .HLP file documenting supported commands
helpdir No Optional Path to an .HLP file documenting supported commands

(defaults to current module path)
debugger Optional Optional Command line for running debugger.
debugprogid Optional Optional Name of debugging version (unique string)
debugdesc Optional Optional Description of debugging version
cmdline Yes No Arguments to place on server's command line
path Optional No Path to server file (defaults to current module path)
permid Optional Optional Name string without version information
permname Optional Optional Descriptive string without version information
usage Optional Optional Support for concurrent clients
language Optional No Language for registered strings (defaults to system's user

language setting)
version Optional No Major and minor version numbers (defaults to "1.0")

The table assumes that the server's documents support automation. For non-automated document
types, the server needs to register only docflags and docfilter
Register all the keys that are required in any of the tables that apply to your application.
For more information about individual registration keys and the values they hold, see the
ObjectWindows Reference Guide.
An automation server that supports system language settings should localize the description string it
registers. (The progid must never be localized)
The complete AppReg structure is later passed to the program's TRegistrar object and written to the
registry.

See Also
Building Registration Tables
Localizing Symbol Names
Registration Keys

Creating a Registrar Object
See Also Registering an Automation Server
An automation server needs a registrar object, just as linking and embedding applications do.
Applications that support only automation, however, without linking and embedding, should create
TRegistrar instead of TOcRegistrar. TRegistrar is the base class for TOcRegistrar. TOcRegistrar
extends TRegistrar by connecting the application to the BOCOLE support library interfaces that
support linking and embedding.
First, declare a static pointer to hold the TRegistrar*. Use the TPointer<> template to ensure that the
registrar object is properly deleted when the program ends.
TPointer<TRegistrar> Registrar; // initialized at WinMain or LibMain
In the main procedure (for AutoCalc, this is WinMain), you should create the registrar object and call its
Run method.
Try {
 ::Registrar=new
TRegistrar(AppReg,TOcAutoFactory<TCalc>,string(cmdLine),hInst);

 if (!::Registrar->IsOptionSet(amAnyRegOption))
 ::Registrar->Run();
 ::Registrar = 0; // deletes registrar by
replacing pointer

 return 0;
}
catch (TXBase& x) {
 ::MessageBox(0, x.why().c_str(), "OLE Exception", MB_OK);
}
The first parameter of the TRegistrar constructor is the application registration structure, conventionally
named AppReg. The second parameter is a factory callback function. The example uses a factory
template to create the callback. For an automation server that doesn't use ObjectWindows, the
appropriate template is TOcAutoFactory.The call to IsOptionSet determines whether the application
was passed a command-line switch asking the application to register itself in the system registration
database and then quit. If not, the application calls Run. The registrar then calls the factory callback,
where the message loop resides. When Run returns, the application has ended.

See Also
Factory Template Classes
TOcRegistrar
TRegistrar
TRegistrar::IsOptionSet
TRegistrar::Run

Automating a Class
See Also
Automating a class requires building two tables, one in the class declaration and one in the class
implementation.
The first table is called the automation declaration, where you declare automatable methods and
properties or which members of the class a controller can reach.
The second table is called the automation definition, where you define external methods and
properties and give them public names that a controller uses to reach each exposed class member.

See Also
Building the Server
Enhancing Automation Server Functions
Registering an Automation Server
TOcRegistrar
TRegistrar::Run

Declaring Automatable Methods and Properties
See Also Automating a Class
Automating a class requires building two tables, one in the class declaration and one in the class
implementation. The first table is called the automation declaration, and it declares which members of
the class a controller can reach. The second table is called the automation definition, and it defines
public names that a controller uses to reach each exposed class member. This section tells how to
build an automation declaration.
To create an automation declaration, you will need to:

Write Declaration Macros
You might also want to set hooks to monitor automation commands.

Provide Optional Hooks for Validation and Filtering
The automation declaration belongs inside the declaration of an automated class. It begins with the
macro DECLARE_AUTOCLASS and includes one entry for each class member that you choose to
expose. The macros add nested classes that ObjectComponents instantiates to process commands
received from OLE. They do not alter the structure or size of the original class.
This sample automation declaration exposes functions and data members of a C++ class that mimics
a calculator:
DECLARE_AUTOCLASS(TCalc)
 AUTODATA (Accum, Accum, long,)
 AUTODATA (Opnd, Opnd, long,)
 AUTODATA (Op, Op, short, AUTOVALIDATE(Val>=OP_NONE &&
Val<=OP_CLEAR))

 AUTOFUNC0 (Eval, Eval, TBool,)
 AUTOFUNC0V(Clear, Clear,)
 AUTOFUNC0V(Display, Display,)
 AUTOFUNC0V(Quit, Quit,)
 AUTOFUNC1 (Button, Button, TBool, TAutoString,)
 AUTOFUNC0 (Window, GetWindow, TAutoObject<TCalcWindow>,)
 AUTOFUNC1 (LookAt, LookAtWindow, long, TAutoObject<const TCalcWindow>,)
 AUTODATARO(MyArray, Elem, TAutoObjectByVal<TMyArray>,)
The automated class is called TCalc. Each AUTOFUNC or AUTODATA macro exposes one member of
TCalc. Some of the TCalc member functions are Eval, Clear, Display, and Quit. Its data members
include Accum, Opnd, Op, and Elem. TCalc also has other members that it chooses not to automate
and so excludes from the declaration table.
No termination macro is needed for an automation declaration. The END_AUTOCLASS macro that
closes an automation definition is not used here. Also, each line of the declaration ends with a closing
parenthesis, not with punctuation.
Note: The automation declaration should appear at the end of a class declaration because the macros

can modify the access specifier. If you put the declaration anywhere other than the end, be sure
to follow it immediately with an access specifier (public, protected, or private).

See Also
AUTODATA Macros
AUTOFUNC Macros
Automation Declaration Macros
DECLARE_AUTOCLASS Macro
END_AUTOCLASS Macro

Writing Declaration Macros
See Also Automating a Class
Each of the macros within an automation declaration describes a single method or property that other
programs can manipulate. The different macros expose different kinds of class members.
AUTOFUNC1, for example, exposes a member function that takes one parameter. AUTOFUNC2V
exposes a function that takes two parameters and returns nothing (void). AUTOPROP exposes a
property through Set and Get functions that insert or retrieve a single value. AUTODATA exposes a
data member that the controller can read and modify directly.
The general form of the automation macros is this:
MACRONAME(InternalName, FunctionName, ReturnType, ArgumentType, Options)
Some of the macros don't use all five parameters. AUTOFUNC1V, for example, doesn't have a
ReturnType because the function has a void return. AUTOFUNC0 doesn't have any arguments, while
AUTOFUNC2 has two different arguments. But whatever parameters are relevant appear in the order
shown.
InternalName is an identifier you assign to each automatable property or function. It is used internally
by ObjectComponents for keeping track of the members. The only other place you ever use the
internal name is in the corresponding entry of the class's automation definition table. The internal
name is a unique identifier for the member. (the names used in source code are not necessarily
unique. They can be overloaded, for example.)
FunctionName is the name you use in your source code to refer to the same property or function.
FunctionName can be any expression that evaluates to a function call. The expression must, however,
be defined within the scope of the automated object. ObjectComponents attempts to reach the function
through the this pointer.
The internal and function names should be the same unless the function name is overloaded or uses
indirection. For example, suppose a class contains a data member that points to another object:
TObject* MyObject;
To expose a function call like MyObject->MyFunction, you should supply an internal name that does
not use indirection. In this case, a good choice would be MyFunction.
AUTOFUNC0V(MyFunction, MyObject->MyFunction,)
If a function is overloaded, use the same function name for all versions but give each a different
internal name. ObjectComponents can distinguish the overloaded functions by the return types and
argument types in the parameters that follow.
The ReturnType and ArgumentType parameters can be any fundamental C type, such as int or char,
or a pointer to any fundamental type. Some pointers, however, require special handling. If the data
type is a string (type char*), declare it to be a TAutoString instead. If the data type is a pointer or a
reference to a C++ object, then declare it using the TAutoObject<> wrapper. The type substitutions
help ObjectComponents convert between C++ data types and the VARIANT union type that OLE uses.
Pointers and object references are hardest to convert because they refer to data that is not in the
variable itself. The TAutoString and TAutoObject classes provide type information for the conversion so
that ObjectComponents can pass the right information between server and controller applications.
The TCalc example shows how to use TAutoObject. One of the functions TCalc exposes is
GetFunction, which returns a reference to a TCalcWindow object.
AUTOFUNC0 (Window, GetWindow, TAutoObject<TCalcWindow>,)
When it declares TCalcWindow as the return type, it makes use of the TAutoObject template to create
a smart, self-describing pointer to a TCalcWindow object.

See Also
AUTODATA Macros
AUTOFUNC Macros
Automation Declaration Macros
DECLARE_AUTOCLASS Macro
TAutoObject
TAutoString

Providing Optional Hooks for Validation and Filtering
See Also Automating a Class
The final parameter of every automation macro names a hook function to be called whenever OLE
calls the exposed class member. A hook is code that executes every time anyone uses a particular
class member. ObjectComponents supports hooks to record commands, undo commands, validate
command arguments, and override a command's implementation. Hooks are always optional.
To install a hook, use one of these macros as the last parameter to any automation declaration:

AUTOINVOKE
AUTORECORD

AUTOUNDO

AUTONOHOOK

AUTOREPORT

AUTOVALIDATE
Each macro receives a single parameter containing code to execute. The form of the required macro
varies with its function.
To validate arguments, for example, the code should be a Boolean expression. The Op data member
of TCalc holds an integer that identifies an operation to perform, such as addition or subtraction. The
automation declaration installs a hook to be sure that Op is not assigned a value outside the legal
range of operator identifiers.
AUTODATA(Op, Op, short, AUTOVALIDATE(Val>=OP_NONE && Val<=OP_CLEAR))
AUTOVALIDATE introduces the expression to execute for validation. Within the validation expression,
use the name Val to represent the value received from the controller. When used to validate function
arguments, AUTOVALIDATE uses the names Arg1, Arg2, Arg3, and so on.
Whenever any automation controller attempts to set a value in the Op data member,
ObjectComponents verifies that the new value falls within the range OP_NONE to OP_CLEAR. If
passed an illegal value, ObjectComponents cancels the command and sends OLE an error result.
The expression passed to AUTOVALIDATE can include function calls.
AUTODATA(Op, Op, short, AUTOVALIDATE(Val>=OP_NONE && NotTooBig(Val))
Now ObjectComponents calls NotTooBig whenever a controller attempts to modify Op.
bool NotTooBig(int Val) {
 return (Val <= OP_CLEAR)
}

See Also
AUTOINVOKE Macro
Automation Declaration Macros
Automation Hook Macros
AUTONOHOOK Macro
AUTORECORD Macro
AUTOREPORT Macro
AUTOUNDO Macro
AUTOVALIDATE Macro

Defining External Methods and Properties
See Also
To create an automation definition, you will need to:

Write an Automation Definition Table

Use Data Type Specifiers in an Automation Definition
In addition, if you want to expose enumerated values through automation, you also need this step:

Expose Data for Enumeration
Besides declaring which of its members are automatable, an automated class must also create a
second table of macros to assign public symbols for referring to the exposed methods and properties.
The public symbols are what other applications see. They become the controller's interface to an
automated OLE object.
Behind the scenes, ObjectComponents links the public names to the C++ object or objects that you
create to implement the OLE object. The automation declaration table identifies which class members
to expose, and the automation definition table assigns them names.
The automation definition belongs with the class implementation. It begins with the
DEFINE_AUTOCLASS macro and ends with END_AUTOCLASS. Here's the automation definition for
TCalc:
DEFINE_AUTOCLASS(TCalc)
 EXPOSE_PROPRW(Opnd, TAutoLong, "Operand", "@Operand_",
HC_TCALC_OPERAND)

 EXPOSE_PROPRW_ID(0,Accum,TAutoLong, "!Accumulator", "@Accumulator_",
 HC_TCALC_ACCUMULATOR)
 EXPOSE_PROPRW(Op, CalcOps, "Op", "@Op_",
HC_TCALC_OPERATOR)

 EXPOSE_METHOD(Eval, TAutoBool, "!Evaluate", "@Evaluate_",
HC_TCALC_EVALU ATE)

 EXPOSE_METHOD(Clear, TAutoVoid, "!Clear", "@Clear_",
HC_TCALC_CLEAR)

 EXPOSE_METHOD(Display, TAutoVoid, "!Display", "@Display_",
HC_TCALC_DISPLA Y)

 EXPOSE_METHOD(Quit, TAutoVoid, "!Quit", "@Quit_",
HC_TCALC_QUIT)

 EXPOSE_METHOD(Button, TAutoBool, "!Button", "@Button_",
HC_TCALC_BUTTON)

 REQUIRED_ARG(TAutoString,"!Key")
 EXPOSE_PROPRO(Window, TCalcWindow,"!Window", "@Window_",
HC_TCALC_WI NDOW)

 EXPOSE_METHOD(LookAt, TAutoLong, "!LookAtWindow","@LookAtWindow_",
 HC_TCALC_LOOKATWINDOW)
 REQUIRED_ARG(TCalcWindow,"!Window")
 EXPOSE_PROPRO(MyArray, TMyArray, "!Array", "@Array_",
HC_TCALC_ARRAY)

 EXPOSE_APPLICATION(TCalc, "!Application", "@Application_",
 HC_TCALC_APPLICATION)
END_AUTOCLASS(TCalc, tfNormal, "TCalc", "@TCalc", HC_TCALC)
The EXPOSE_xxxx macros assign names to methods and properties. EXPOSE_PROPRW defines a
property that controllers can both read and write. EXPOSE_PROPRO limits a controller's access so it
can only read the property value. REQUIRED_ARG assigns a name to a function argument.
for example, a controller invokes the LookAt function by using the name LookAtWindow, and it calls

the function's one parameter Window. The DEFINE_AUTOCLASS and END_AUTOCLASS macros
assign "TCalc" as the public name for objects of type TCalc.
Most of the strings in this automation definition begin with a symbol, either ! or @. These symbols
indicate that the AutoCalc application has in its resources translations for each public symbol. Each
command from an automation controller comes with a locale ID indicating the language the controller
is using. If the controller was written in German, for example, it can pass the string "Auswerten"
instead of "Evaluate," and ObjectComponents correctly invokes the Eval function.
Every item listed in the automation definition must already appear in the automation declaration. For
example, every function name you define with EXPOSE_METHOD must have a corresponding
AUTOFUNC declaration. Every EXPOSE_PROP must have a corresponding AUTOPROP,
AUTOFUNC, AUTOFLAG, or AUTODATA, depending on how you implement the property.

See Also
AUTODATA Macros
AUTOFLAG Macro
AUTOFUNC Macros
Automation Declaration Macros
Automation Definition Macros
AUTOPROP Macros
DEFINE_AUTOCLASS Macro
END_AUTOCLASS Macro
EXPOSE_METHOD Macros
EXPOSE_PROPxxxx Macros
EXPOSE_xxxx Macros
Localizing Symbol Names
REQUIRED_ARG Macro

Writing Definition Macros
See Also Defining External Methods and Properties
The macros for exposing methods and properties have five parameters: the internal name, the type of
value returned, the external name, and a documentation string. The optional fifth parameter allows you
to associate a Help context ID with each member.
MACRONAME(InternalName, ReturnType, ExternalName, DocString, HelpContext)

InternalName is the identifier string you assigned to the member in the automation declaration.

ReturnType tells what automation data type the method returns or the property holds.

ExternalName is what automation controllers see. A user sending commands from a controller
refers to all properties and methods by their external names.

DocString should explain to a user what the exposed property or method does. OLE displays this
string if the user asks for help with a particular automation command. If you omit the document string, set
the parameter to 0.

HelpContext, the fifth parameter, is optional. It is a number that identifies a particular section of a
Windows Help file (.HLP). You can create a Help file that describes the syntax and usage of all the
members you expose. If you supply the context IDs for each member in the class's automation definition,
then an automation controller can ask OLE to display the help screens for the user. A user writing an
automation script, for example, can browse at run time for the list of members your application exposes,
ask to see their document strings, and even ask to see a Help screen about each one.

If you provide a Help file for automation, you should be sure to register its name with the typehelp
key.

When exposing a method that takes arguments, you also need to add to the definition a macro
describing each argument. Here is the prototype for a function that takes three arguments, along with
the macros needed to define the method for automation:
// member function declaration
long TCalculator::AddNumbers(short Num1, short Num2 = 0, short Num3 = 0);

// later, this appears after DEFINE_AUTOCLASS(TCalculator)
EXPOSE_METHOD(AddNumbers, TAutoLong, "AddNumbers", "Sum up to 3 numbers",
HC_ADDNUMBERS)

 REQUIRED_ARG(TAutoShort, "Num1")
 OPTIONAL_ARG(TAutoShort, "Num2", "0")
 OPTIONAL_ARG(TAutoShort, "Num3", "0")
The first argument, Num1, is required. The others are optional. All three are short integers. When
describing optional arguments, you need to supply a default value. In the example, 0 is the default
value for the two optional arguments.
OLE conventions suggest that each automation object should have a property representing the
application it belongs to. You can add this property to any automation definition with the
EXPOSE_APPLICATION macro.
EXPOSE_APPLICATION(TMyClass, "Application", "My Application",)
The class passed to EXPOSE_APPLICATION must be the same class passed to the factory template.

See Also
Automation Data Types
Automation Definition Macros
Creating a Registrar Object
EXPOSE_APPLICATION Macro

Data Type Specifiers in an Automation Definition
See Also Defining External Methods and Properties
Most of the macros in an automation definition ask for a data type - the type of a function's return
value, of each function argument, or of a data member. The possible values for data types within an
automation definition are not fundamental C types. They can be any of the following:

An enumeration value previously defined for automation.

The name of an automated class (such as TCalc).

Any of the predefined classes that ObjectComponents provides to represent intrinsic C types. S
The reason for exposing predefined classes rather than intrinsic C types is to make type information
available when browsing from the controller. For exposed classes, ObjectComponents can extract type
information using RTTI. The automation data types in the following table are defined as structures that
contain no data; they simply retrieve a static value indicating a data type. The identifier values are the
same identifiers that OLE uses to distinguish the data types it supports. All the automation data types
derive from a base called TAutoVal, so they are polymorphic. In effect, ObjectComponents can ask any
value passed through automation to describe its own data type. For more information, se the table
provided in Declarations and Definitions of Automation Data Types.

See Also
Automation Declaration Macros
Automation Definition Macros
TAutoBool
TAutoCurrency
TAutoCurrencyRef
TAutoDate
TAutoDateRef
TAutoDouble
TAutoDoubleRef
TAutoFloat
TAutoFloatRef
TAutoInt
TAutoLong
TAutoLongRef
TAutoObject
TAutoObjectDelete
TAutoObjectByVal
TAutoShort
TAutoShortRef
TAutoString
TAutoVoid
TAutoVal

Exposing Data for Enumeration
See Also Defining External Methods and Properties
An automation server might also need to expose enumerated values. Use OLE enumerations when
you want to expose a set of internal data values and refer to them with localizable strings. For
example, AutoCalc defines the enumerated type operators to represent different actions the calculator
can perform with numbers.
enum operators {
 OP_NONE = 0,
 OP_PLUS,
 OP_MINUS,
 OP_MULT,
 OP_DIV,
 OP_EQUALS,
 OP_CLEAR,
};
As the calculator receives input, it stores the pending mathematical operation in a private data member
called Op.
short Op;
Operations are identified by different OP_xxxx constants. The Eval method performs the pending
operation using the number just entered and the total in the calculator's accumulator. AutoCalc
exposes the Op data member to automation so that a controller can enter operators directly. Here's the
automation declaration:
AUTODATA(Op, Op, short, AUTOVALIDATE(Val>=OP_NONE && Val<=OP_CLEAR))
The automation declaration shows that the Op data member holds a short value, but the symbols
OP_PLUS and OP_MINUS are defined only within the server program. The controller can't use them
when it passes commands. Ideally the controller should be able to use more readable strings such as
"Add" and "Subtract" in scripts.
The place for declaring public symbols is the automation definition. Use the DEFINE_AUTOENUM
macro to begin a table defining symbols for the enumerated values.
DEFINE_AUTOENUM(CalcOps, TAutoShort)
 AUTOENUM("Add", OP_PLUS)
 AUTOENUM("Subtract", OP_MINUS)
 AUTOENUM("Multiply", OP_MULT)
 AUTOENUM("Divide", OP_DIV)
 AUTOENUM("Equals", OP_EQUALS)
 AUTOENUM("Clear", OP_CLEAR)
END_AUTOENUM(CalcOps, TAutoShort)
The AUTOENUM macro takes two parameters: an enumeration string and a constant value. The
enumeration string (which can be localized) is the external name exposed through OLE for use by
controllers.
The macros that begin and end the enumeration table assign the name CalcOps to this enumerated
type. They also associate the automated data type TAutoShort with this enumeration because the
enumerated values are all short ints.
 The following table lists the C++ types that can be enumerated and the corresponding automation
types for exposing them.

C++ type Enumeration type (for automation definitions)
bool TAutoBool
double TAutoDoubl
float TAutoFloat

int TAutoInt
long TAutoLong
short TAutoShort
const char* TAutoString
Creating a table of enumerated values results in a new data type that you can use to describe
arguments and return values in an automation definition. Now that ObjectComponents understands
the CalcOps enumerated type, you can use the type to define the Op property.
EXPOSE_PROPRW(Op, CalcOps, "Op", "@Op_", HC_TCALC_OPERATOR)
This line says that Op is a read-write property holding a value of type CalcOps. When the controller
tries to place "Multiply" or "Divide" in the Ops property, ObjectComponents correctly translates the
string into the value defined as OP_MULT or OP_DIV.

See Also
Automation Declaration Macros
Automation Definition Macros
TAutoShort

Building the Server
See Also
To build an automation server, you need to:

Include header files

Link to the right libraries and compile

See Also
Automating a Class
Enhancing Automation Server Functions
Registering the Application.

Including Header Files
See Also Building The Server
An automated program needs to include the following headers:
#include <ocf/automacr.h> // definition and declaration macros
#include <ocf/ocreg.h> // TRegistrar class
The list is short because an automation server does not need many of the ObjectComponents classes
used for linking and embedding.

See Also
Compiling and Linking

Compiling and Linking
See Also Building The Server
Automation servers and controllers must be compiled with the medium or large memory model. (They
run faster in medium model.) They must be linked with the OLE and ObjectComponents libraries.
The IDE chooses the right build options for you when you ask for OLE support. To build any
ObjectComponents program from the command line, create a short makefile that includes the
OCFMAKE.GEN file found in the EXAMPLES subdirectory.
EXERES = MYPROGRAM
OBJEXE = winmain.obj myprogram.obj
!include $(BCEXAMPLEDIR)\ocfmake.gen
EXERES and OBJRES hold the name of the file to build and the names of the object files to build it
from. The last line includes the OCFMAKE.GEN file. Name your file MAKEFILE and type this at the
command line prompt:
make MODEL=l
MAKE, using instructions in OCFMAKE.GEN, will build a new makefile tailored to your project. The
new makefile is called WIN16Lxx.MAK.
Note: The first time the server runs, the registrar object records its information in the registration

database. Be sure to run the server once before trying to use it with a controller.

See Also
Including Header Files

Enhancing Automation Server Functions
See Also

There are many ways to enhance a server's capabilities.

Combine Multiple C++ Objects Into a Single OLE Automation Object

Tell OLE When The Object Goes Away

Localize Symbol Names and registration entries

Expose Collections of Objects

Create a Type Library

See Also
Automating a Class
Building the Server
Registering An Automation Server

Combining Multiple C++ Objects Into a Single OLE Automation Object
See Also Enhancing Automation Server Functions
The complete set of member functions and properties that belong to a single automatable OLE object
can in fact be implemented by a combination of C++ objects. An automatable calendar, for example,
might begin with a TCalendar class. But the automatable OLE calendar object might need to expose
some methods and properties that don't happen to belong to the C++ TCalendar object. The
background color, for example, might be inherited from TCalendar's base class, and some of the input
functions might belong to separate control windows in the calendar's client area. In that case, the
automation declaration for TCalendar should delegate some tasks to other C++ classes. To combine
several C++ objects together into a single OLE object, add macros to the automation definition table.
// these lines belong in the definition block that begins
DEFINE_AUTOCLASS(TCalendar)

 EXPOSE_INHERIT(TCalendarWindow, "CalendarWindow")
 EXPOSE_DELEGATE(TWeekForwardButton, "WeekForward",
 GetWeekForwardButton(this))
Any exposed classes must also be automated. In other words, TCalendarWindow and
TWeekForwardButton must also have their own AUTOCLASS tables. By exposing both of these
classes in the TCalendar automation definition, you combine all the exposed members from all three
classes into a single symbol table. When OLE sends an automation command to the calendar,
ObjectComponents searches for the matching class member in TCalendar, then in TCalendarWindow,
and finally in TWeekForwardButton.
The EXPOSE_DELEGATE macro takes as its third parameter a conversion function. In order to reach
members in the delegation class, ObjectComponents needs a pointer to an object of that class. The
conversion function has one parameter for receiving a this pointer to the object where the definition
table appears. The function must return a pointer to the delegation object. Also, it must be a global
function. For example, if TCalendar has a data member that points to the Week Forward button, this
might be the conversion function.
TWeekForwardButton *GetWeekForwardButton (TCalendar* this) {
 return(this->m_ForwardButton);
}
You don't need to provide a conversion function when exposing an inherited function or property
because in that case ObjectComponents can create its own templatized conversion function to reach
the base class.
Note: Another way to coordinate the actions of several automated objects within a single application is

to give one object access functions that return the other objects. For example, the sample
program AutoCalc automates five different classes, but no class delegates to any other. When a
controller asks for an object from the AutoCalc server, it receives only the automated TCalc
object. TCalc, however, has a property called Window that holds a TCalcWindow object.
TCalcWindow, in turn, has a property that holds the collection of buttons. The collection object
returns individual button objects. Without properties or functions that return the other objects,
the controller would never be able to reach them. Be sure to add access functions if necessary.

See Also
Automation Definition Macros
EXPOSE_DELEGATE Macro
EXPOSE_INHERIT Macro

Telling OLE When the Object Goes Away
See Also Enhancing Automation Server Functions
If there is a chance that your program might delete its automated object while still connected to a
controller, then you need to tell OLE when the object is destroyed. This precaution matters only if the
logic of your program might cause the object to be destroyed through nonautomated means while an
OLE session is still in progress. If OLE attempts to use an automation object whose underlying C++
object has been destroyed, it attempts to use an invalid pointer. A single function call prevents the error
by sending OLE an obituary to announce that the object no longer exists.
// place this line in the destructor of your automated class
::GetAppDescriptor()->InvalidateObject(this);
GetAppDescriptor is a global function returning a pointer the application's TAppDescriptor object.
InvalidateObject is a TAppDescriptor method. It tells OLE the object that was passed to the
descriptor's constructor is now invalid.
Although the object's destructor is a good place to call InvalidateObject, you can call it anywhere. If
you do not own the class you are automating, it might not be possible to modify the destructor. This
works, too:
TMyAutoClass MyAutomatedObject;
.
.
.
::GetAppDescriptor()->InvalidateObject(MyAutomatedObject);
delete MyAutomatedObject;
The object pointer you pass to InvalidateObject must always represent the most derived form of the
object. In other words, if the pointer is polymorphic, it must point to the class as it was created and not
to any of its base classes. Calling InvalidateObject from the object's own destructor is safe because in
that case this always points to the most derived class. If you call InvalidateObject from somewhere
else, you might need the global function MostDerived to ensure that you are invalidating the correct
object.
appDesc->InvalidateObject(::MostDerived(MyPolymorphObject,
typeid(MyPolymorphObject)));

In the example, MyPolymorphObject is a pointer to a polymorphic object, so it might point to a base
class or to an object of any type derived from the base. MostDerived converts the pointer, making it
point to an object of the type furthest down the hierarchy, the one furthest descended from the base.
Besides calling InvalidateObject, there are two other ways to be sure OLE knows when the object is
destroyed. One way is to derive the object's class from TAutoBase. The only code in TAutoBase is a
virtual destructor that calls InvalidateObject for you. This example declares a class called
TMyAutoClass. OLE always knows when any object of type TMyAutoClass is destroyed.
class TMyAutoClass: public TAutoBase { /* declarations */ };
The other way is to put the AUTODETACH macro in the class's automation declaration table. This
works without having to change the class derivation, but it does add one byte to the size of the class.

See Also
AUTODETACH macro
MostDerived function
TAutoBase
TOcRegistrar::GetAppDescriptor

Localizing Symbol Names
See Also Enhancing Automation Server Functions
The symbols that appear in an automation definition become visible to other OLE programs. Users
writing scripts can see and use the symbols. The symbols become part of the program's user interface.
Programs intended to reach international audiences need to translate the strings for different markets.
For example, a property named "Color" in English should be called "Couleur" in a French script,
"Farbe" in a German script, and "Colour" in a British one.

To localize symbols:
1. Put Translations in the Resource Script
2. Mark Translatable Strings in the Source Code
These two topics give more information about how ObjectComponents implements localization.

Understand How ObjectComponents Uses XLAT Resources

Localize Registration Strings
OLE does its best to help you out by passing a number that indicates the user's language setting. This
number is called a locale ID, or LCID. LCIDs are defined by OLE and the Win32 API. They consist of
two numbers, one identifying a language and one identifying a subdialect within the language. When
OLE passes an automation call into an automated application, it also passes an LCID. The automation
controller might determine the LCID from the system settings at run time, or the person using the
controller might choose a locale.
An automated program is expected to examine the LCID and respond with appropriately translated
strings. ObjectComponents eases the burden by letting you build a resource table to supply localized
versions of any strings you use. When handling automation calls, ObjectComponents automatically
searches the table to find strings that match whatever language the controller requests.
ObjectComponents searches first for a string with the correct language and dialect IDs. Failing that,
ObjectComponents searches for a match on primary language only, ignoring dialect. If still no match is
found, ObjectComponents simply uses the original, untranslated string.

See Also
Langxxxx ID constants (OWL.HLP)

Putting Translations in the Resource Script
See Also Localizing Symbol Names
To build a table of translations in your resource (.RC) file, use the XLAT resource type.
#include "owl/locale.rh"
Left XLAT FRENCH "Gauche" GERMAN "Links" SPANISH "Izquierda" XEND
Right XLAT FRENCH "Droit" GERMAN DUTCH "Rechts" XEND
Center XLAT ENGLISH_UK FRENCH GERMAN "Centre" SPANISH "Centro" XEND
Help XLAT FRENCH "Aide" GERMAN "Hilfe" SPANISH "Ayuda" XEND
The locale.rh header file defines XLAT as a type of resource. XLAT and XEND are delimiters for all the
translations of a single string. The same header also defines macros to represent various locale IDs.
FRENCH, DUTCH, and ENGLISH_UK, for example, each represent a different LCID. UK is a
subdialect of ENGLISH.
Each line in the localization table begins with a resource identifier. These examples use the original
string itself to identify the resource that holds its translations.
A localization table is not obliged to provide the same set of translations for each string. For example, it
is legal to provide FRENCH_FRANCE, FRENCH_BELGIUM, and SWEDISH for one string, but only
FRENCH and ITALIAN for the next string. Also, if several languages happen to use the same string, it
is legal to write the string only once, as in this example:
Center XLAT ENGLISH_UK FRENCH GERMAN "Centre" SPANISH "Centro" XEND
In British English, French, and German, "Center" is translated as "Centre." in Spanish, it becomes
"Centro." Writing "Centre" only once makes the .EXE file smaller.

See Also
Marking Translatable Strings in the Source Code

Marking Translatable Strings in the Source Code
See Also Localizing Symbol Names
Composing a resource table is the first step, but ObjectComponents still needs to be told when to use
the table you have provided. In the automation definition, mark each translatable string by prefixing it
with an exclamation point.
EXPOSE_METHOD(Clear, TAutoVoid, "!Clear", "Clear accumulator",
HC_TCALC_CLEAR)

This line from AutoCalc exposes a class method named Clear. Clear returns void. The third
parameter, !Clear, gives the external name that controllers see. The initial exclamation point tells
ObjectComponents to look in the program's executable file for a localization resource whose identifier
is the string Clear.
Clear XLAT GERMAN "AllesLöschen" XEND
The exclamation point prefix also marks Clear as the language-neutral form of the string. If an
automation controller decides to use the locale ID GERMAN, then ObjectComponents tells it that the
exposed property is called AllesLöschen. If the controller sets any other locale ID, it receives the
neutral form, Clear.
Argument names as well as properties and methods can be localized.
EXPOSE_METHOD(Button, TAutoBool, "!Button", "Button push sequence",
HC_TCALC_BUTTON)

 REQUIRED_ARG(TAutoString, "!Key")
in determining what to call both the Button method and its one argument, ObjectComponents will
search the program's localization resources for Button and Key.
Button XLAT GERMAN "Schaltfläche" XEND
Key XLAT GERMAN "Taste" XEND
The algorithm that searches for resources is not sensitive to case, and the current implementation of
16-bit Windows does not allow the use of extended characters (such as characters with diacritical
marks) in resource names. The strings stored in a resource, however, can use any characters and do
preserve their case.
A problem arises in naming your resource if the string contains spaces. Resource identifier strings
cannot have spaces. Consider what happens if you try to localize the description string for this
property:
// illegal: no spaces allowed in resource identifiers
EXPOSE_PROPRW(Caption, TAutoString, "!Caption", "!Window Title",
HC_TCALCWINDOW_TITLE)

It's a good idea to localize descriptions as well as property names, but "Window title" is not a legal
resource identifier. In cases like this, use @ instead of ! as the localization prefix, and follow it with any
legal identifier.
EXPOSE_PROPRW(Caption, TAutoString, "!Caption",
"@Caption_",HC_TCALCWINDOW_TITLE)

The @ prefix tells ObjectComponents that the string is only a resource identifier and should never be
displayed no matter what locale the controller requests. To make the distinction even clearer for
programmers reading the code, strings used only as identifiers conventionally end with an underscore,
as in Caption_ .
To make "Window Title" the language-neutral string, do not assign it a locale ID in the localization
resource.
Caption_ XLAT "Window Title" GERMAN "Fenster-Aufschrift" XEND
Now a controller that requests any locale setting other than GERMAN is given the string Window Title.
Besides ! and @, there is a third localization prefix: #. The # prefix must be followed by digits that
identify a localization resource by number.

EXPOSE_PROPRW(Caption, TAutoString, "!Caption",
"#10047",HC_TCALCWINDOW_TITLE)

This example tells ObjectComponents to look for a resource numbered 10047. This is how the
resource should appear in the .RC file:
10047 XLAT "Window Title" GERMAN "Fenster-Aufschrift" XEND

See Also
Automation Definition Macros
Putting Translations in the Resource Script
Understanding How Object Components Uses XLAT Resources

Understanding How ObjectComponents Uses XLAT Resources
See Also Localizing Symbol Names
The external names in macros like EXPOSE_METHOD and EXPOSE_PROPRW are wrapped in
objects of type TLocaleString, a localizable substitute for char* strings. A TLocaleString object
contains code that searches a program's executable file for XLAT resources. All access to the XLAT
resources is performed by TLocaleString.
The TLocaleString class is defined in osl/locale.h. You don't need to refer to TLocaleString directly. The
macros and headers bring it in for you.
TLocaleString is very efficient. If the controller is working in the server's native language, then
TLocaleString realizes the strings in the source code already match the locale and it doesn't waste any
time reading resources.
Usually ObjectComponents determines the application's default language by reading the system's
locale ID at compile time and storing it in the compiled program. You can override the default by
including a line like this in your source code.
#include "olenls.h"
TLangId
TLocaleString::NativeLangId=MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US);

The olenls.h header holds national language support constants, including the MAKELANGID macro
and the language and dialect symbols.
When it must resort to resources, TLocaleString does everything it can to minimize the time spent
searching for translations. When it finds a string to match the current locale, it caches the string in
memory and never has to load it again. That means only the first attempt to use each translated string
incurs a performance hit. Subsequent requests are satisfied quickly. Once in memory, the strings are
stored in a hash table so no space is wasted on duplicates. If TLocaleString fails to find a requested
string, it remembers the failure as well and won't try to find the same string a second time.

See Also
Localizing Registration Strings
Putting Translations in the Resource Script
TLangId (OWL.HLP)

Localizing Registration Strings
See Also Localizing Symbol Names
The same localization mechanism works with strings your application registers. Some strings, such as
the progid, should not be localized, but the following list names registration keys that can be localized.

appname

debugdesc

description

formatn

menuname

permname

typehelp

verbn
The following excerpt from the AutoCalc registration tables shows where to put the localization
prefixes. The appname, description and typehelp keys are localized.
BEGIN_REGISTRATION(AppReg)
 REGDATA(clsid, "{877B6200-7627-101B-B87C-0000C057CE4E}")
 REGDATA(progid, APP_NAME ".Application")
 REGDATA(appname, "@AppName")
 REGDATA(description,"@Desc")
 REGDATA(typehelp, "@typehelp")
 REGDATA(version, "1.2")
END_REGISTRATION
AutoCalc supplies translations for the appname, description, and typehelp strings in its resource script.
Here are two of them.
Desc XLAT "Automated Calculator 1.2 Application"
 GERMAN "Automatisierte Taschenrechner-Anwendung 1.2"
 XEND
Typehelp XLAT "autocalc.hlp"
 GERMAN "acalcger.hlp"
 XEND
ObjectComponents determines the proper language for registration by examining the system settings
at run time, but it is possible to override the system setting with the Language command-line switch.

See Also
Putting Translations in the Resource Script
Registration Keys
Registration Macros (OWL.HLP)

Exposing Collections of Objects
Enhancing Automation Server Functions
ObjectComponents lets an automated object expose collections of various types as object properties.
The items in a collection can belong to an array, a linked list, or any other structure that organizes sets
of similar items.

Exposing collections for automation

Constructand Expose a Collection Class - How you do this depends on the constructor of the
class that manages the collection.

Implement an Iterator for the Collection

Add Other Members to the Collection Class
To expose a collection, you need to expose methods for manipulating it. These methods typically
include a counter to show the size of the collection, an iterator to walk through the collection, and a
random-access function to retrieve specific items in the collection.
A collection object is an object that returns on request individual items from a set of related items. It
implements the methods that manipulate the items. In the AutoCalc sample program, the buttons on
the face of the calculator are a set of related, similar objects. AutoCalc defines a new class,
TCalcButtons, whose methods let a controller ask for individual button objects. The buttons
themselves are automated objects, so once a controller receives a button it can send a push
command or change the text the button displays.

Constructing and Exposing a Collection Class
See Also Exposing Collections of Objects
If you are converting an application to support automation, you are likely to find that it does not already
have a C++ class to act as a collection object. The items might be simple values, structures, or even
system objects represented by handles. You have to create a new C++ class, and you have to expose
the class in the parent's automation tables as a property of the parent class. How you expose the
collection in the parent's automation declaration table depends on what information the parent passes
the collection object to construct it. This section considers several different possible constructors and
shows the macros for adding the collection as a property of its parent.
Instances of the collection class are constructed only when a controller requests it. The collection
object appears to the controller as a property of the parent class. In AutoCalc, for example, when a
controller asks for what is in the Buttons property, ObjectComponents creates a TCalcButtons object
on the fly. The constructor of a collection object must accept a single argument passed from the parent
to initialize itself.
Because TCalcButtons manages a collection of child windows, its parent passes the handle of the
parent window. The constructor looks like this:
TCalcButtons(HWND window) : HWnd(window) {}

For the handle to be passed to the constructor, the parent must add a line to its automation
declaration:
// from the automation declaration of the parent class
DECLARE_AUTOCLASS(TCalcWindow)
 AUTODATARO(Buttons, hWnd, TAutoObjectByVal<TCalcButtons>,)

Buttons is assigned as the internal name of a read-only property whose value is TCalcWindow::hWnd.
For the data type of this property, the table specifies a new class based on the collection class.
TAutoObjectByVal<T> causes an instance of T to be constructed that persists until all external
references to that instance are released (when the exposed object goes out of scope in the automation
controller).
TCalcWindow must also expose the collection property in its automation definition:
// from the automation definition of the parent class
DEFINE_AUTOCLASS(TCalcWindow)
 EXPOSE_PROPRO(Buttons, TCalcButtons, "!Buttons", "@Buttons_",
HC_TCALCWINDOW_BUTTONS)

When a controller asks for what is stored in the read-only property called Buttons, ObjectComponents
creates a TCalcButtons object and passes hWnd to its constructor.

Other Ways To Expose a Collection Object
Here are three examples showing other ways a parent class might expose a collection object as one of
its properties:

Case 1: TParent::DocList points to the head of a linked list of TDocument objects. A new class,
TDocumentList, is created as the collection object. The constructor of TDocumentList receives from its
parent the head of the linked list:

TDocumentList(TDocument*);
The automation declaration of TParent exposes DocList as a read-only property, using the collection
class to assign it a type.
DECLARE_AUTOCLASS(TParent)
 AUTODATARO(Documents, DocList, TAutoObjectByVal<TDocumentList>,)

The automation definition of TParent calls the collection Documents and says its type is

TDocumentList.
DEFINE_AUTOCLASS(TParent)
 EXPOSE_PROPRO(Documents, TDocumentList, "Documents", "Doc Collection",
270)

Case 2: TParent contains a list. It passes this to the collection object, TList, which extracts list
items by indirection through the parent's pointer. The constructor receives the pointer.

TList(TParent* owner)
The automation declaration of TParent exposes this as a read-only property, using the collection
class to assign it a type.
DECLARE_AUTOCLASS(TParent)
 AUTOTHIS(List, TAutoObjectByVal<TList>,)

The automation definition of TParent calls the collection List and says its type is TList.
DEFINE_AUTOCLASS(TParent)
 EXPOSE_PROPRO(List, TList, "List", "List of items", 240)

Case 3: Elem is an array of integers, defined as short Elem[COUNT]. The collection object is
TMyArray, and the constructor receives from the parent a pointer to Elem.

TMyArray(short* array)
The automation declaration of TParent exposes Elem as a read-only property, using the collection
class to assign it a type.
DECLARE_AUTOCLASS(TParent)
 AUTODATARO(MyArray, Elem, TAutoObjectByVal<TMyArray>,)

The automation definition of TParent calls the collection Array and says its type is TMyArray.
DEFINE_AUTOCLASS(TParent)
 EXPOSE_PROPRO(MyArray, TMyArray, "Array", "Array as collection", 110)

See Also
Automation Declaration Macros
Automation Definition Macros
Implementing an Iterator for the Collection
TAutoObjectByVal

Implementing an Iterator for the Collection
See Also Exposing Collections of Objects
The collection class performs whatever actions you want a controller to be able to perform with the
collection. Common collection methods include Count and GetObject, which return the number of
items in the collection or individual items specified by number. The only methods you need to
implement, however, are the constructor and an iterator. You have already seen the constructor. An
iterator function walks through the collection and returns successive items on each new call.
The easy way to define an iterator is with the AUTOITERATOR macro, which you add to the
declaration table of the collection object.
DECLARE_AUTOCLASS(TCalcButtons)
 AUTOITERATOR(int Id, Id = IDC_FIRSTID+1, Id <= IDC_LASTID, Id++,
 TAutoObjectByVal<TCalcButton>(::GetDlgItem(This->HWnd,Id)))
The parameters to AUTOITERATOR define the algorithm for enumerating objects in the collection.
Each of the five macro arguments represents a code fragment, ordered as in a for loop.
1. Declare state variables for keeping track of loop iterations. For example,
int Index;
2. Assign initial values to the state variables. For example,
Index = 0;
3. Test a Boolean expression to decide whether to enter the loop. For example,
Index < This->Total
4. Modify state variables to prepare for the next iteration. For example,
Index++;
5. Retrieve one item from the collection. For example,
(This->Array)[Index];
Note that the server can return any data type for itemsvalues or objects.
In the AUTOITERATOR parameters, do not use commas except inside parentheses. Semicolons can
separate multiple statements, but cannot be used to end a macro argument. As in automated methods,
This is defined to be the this pointer of the enclosing C++ class (here, the collection itself).
AUTOITERATOR puts an iterator in the automation declaration table, but the iterator member must still
be exposed in the definition table. Use the EXPOSE_ITERATOR macro.
EXPOSE_ITERATOR(TAutoShort, "Array Iterator", HC_ARRAY_ITERATOR)
EXPOSE_ITERATOR takes fewer parameters than other EXPOSE_xxxx macros do. No internal or
external names are supplied. A class can have only one iterator, and the external name is always
_NewEnum. The first parameter describes the type of the items returned from the iterator.
The automation type describes the type of the items returned from the iterator, in the same manner as
a function return. The previous example iterates an array of short int values, so its automation data
type is TAutoShort. The second parameter is the documentation string describing the iterator property,
and the third parameter, which is optional, identifies a context in an .HLP file for more information
about the iterator.
Note: From the external side, a script controller sees the enumerator as a property with the reserved

name _NewEnum that returns an object supporting the standard OLE interface IEnumVARIANT.
This interface contains methods to perform iteration. A controller makes use of an iterator in a
loop like this one, which is written in Visual Basic for Applications:

For Each Thing in Owner.Bunch ("Thing" is an arbitrary iterator name)
 Thing.Member...... (can access methods and properties)
 Next Thing (loops through all items in collection)
Note: The AUTOITERATOR macro generates a nested class definition within the collection class. For

complex iterators, you can choose to code the iterator explicitly in C++. Here is an example:
class TIterator : public TAutoIterator {

 public:
 ThisClass* This;
 /* declare state variables here as members */
 void Init() {/* loop initialization function body */}
 bool Test() {/* loop entry test function body */}
 void Step() {/* loop iteration function body;}
 void Return(TAutoVal& v) {/* current element return: v = expr */}
 TIterator* Copy() {return new TIterator(*this);}
 TIterator(ThisClass* obj, TServedObject& owner)
 : This(obj), TAutoIterator(owner) {}
 static TAutoIterator* Build(ObjectPtr obj, TServedObject& owner)
 { return new TIterator((ThisClass*)obj, owner); }
};
friend class TIterator; // make iterator a friend of the surrounding
collection class

See Also
Adding Other Members to the Collection Class
AUTOITERATOR Macros
Constructing and Exposing a Collection Class
EXPOSE_ITERATOR Macro
TAutoShort

Adding Other Members to the Collection Class
See Also Exposing Collections of Objects
In addition to exposing an iterator, a collection class by convention exposes a Count method to return
the number of items in the collection, an Index method for random access to members of the
collection, and optionally, methods such as Add and Delete to manage the collection externally. Here,
for example, is the complete code for the TCalcButtons collection class in AutoCalc:
class TCalcButtons { // class used only temporarily to expose collection
 public:
 TCalcButtons(HWND window) : HWnd(window) {}
 short GetCount() { return IDC_LASTID - IDC_FIRSTID; }
 HWND GetButton(short i) {return ::GetDlgItem(HWnd, i + IDC_FIRSTID+1);}
 HWND HWnd;
 DECLARE_AUTOCLASS(TCalcButtons)
 AUTOFUNC0 (Count, GetCount, short,)
 AUTOFUNC1 (Item, GetButton, TAutoObjectByVal<TCalcButton>, short,
 AUTOVALIDATE(Arg1 >= 0 && Arg1 < This->GetCount())
)
 AUTOITERATOR(int Id, Id = IDC_FIRSTID+1, Id <= IDC_LASTID, Id++,
 TAutoObjectByVal<TCalcButton>(::GetDlgItem(This->HWnd,Id)))
};

DEFINE_AUTOCLASS(TCalcButtons)
 EXPOSE_PROPRO(Count, TAutoLong, "!Count", "@CountBu_",
HC_TCALCBUTTONS_COUNT)
 EXPOSE_ITERATOR(TCalcButton, "Button Iterator", HC_TCALCBUTTONS_ITERATOR)
 EXPOSE_METHOD_ID(0, Item, TCalcButton,"!Item", "@ItemBu_", 0)
 REQUIRED_ARG(TAutoShort, "!Index")
END_AUTOCLASS(TCalcButtons, tfNormal, "TButtonList", "@TCalcButtons",
HC_TCALCBUTTONS)

See Also
Automation Declaration Macros
Automation Definition Macros
Constructing and Exposing a Collection Class
Implementing an Iterator for the Collection

Creating a Type Library
See Also Enhancing Automation Server Functions
A type library is a binary file containing information about an automation server. The information
describes the objects, properties, and methods the server supports. It is used by programming tools,
such as automation controllers, that call the server. Controllers can query the type library for
documentation and help with specific objects. The location of its type library is one of the pieces of
information an automation server records in the system's registration database.
ObjectComponents can create a type library for you from information in the server's automation
definitions. To make a type library, call the server and set the TypeLib switch on the command line.
myapp -TypeLib
This command causes ObjectComponents to create a new file, MYAPP.OLB, in the same directory as
MYAPP.EXE. ObjectComponents also records the library's location in the registration database.
The TypeLib flag also accepts an optional path and file name.
myapp -TypeLib = data\mytyplib
ObjectComponents places MYTYPLIB.OLB in a subdirectory called DATA under the directory where
MYAPP.EXE resides.
You can also make ObjectComponents generate mutliple type libraries in different languages with the
Language switch. This command produces two type libraries, one in German and one in Italian.
myapp -Language=10 -TypeLib=italiano -Language=7 -TypeLib=deutsch
The number passed to Language must be hexadecimal digits. The Win32 API defines 80C as the
locale ID for the Belgian dialect of the French language. For this command line to have the effect you
want, of course, myapp must supply Belgian French strings in its XLAT resources.
You can also create an .HLP file of online Help to accompany your type library. The Help file
documents all the commands the server exposes, explaining what arguments they expect and how to
use them. If you have a Help file, be sure to register it using the typehelp and helpdir registration keys
Use the final parameter of the EXPOSE_xxxx macros in the automation definition table to associate
Help context IDs with each command. If the automation controller asks for help on a command, OLE
launches the Help file automatically.

See Also
Automating a Class
Buildingthe Server
Enhancing Automation Server Functions
EXPOSE_xxxx Macros
Exposing Collections of Objects
Localizing Symbol Names
Processing the Command Line
Registering An Automation Server

Creating an OLE Container
See Also
OLE container is an application that can store in its own documents data objects taken from other
applications. A container can link objects or embed them in its OLE container is an application that can
store in its own documents data objects taken documents. A program that creates objects to be linked
or embedded is called a server.
The following topics explain how to turn existing programs into OLE containers.

Turning a Doc/View Application Into an OLE Container

Turning an Objectwindows Application Into an OLE Container

Turning a C++ Application Into an OLE Container

See Also
Automating an Application

Turning a Doc/View Application Into an OLE Container
See Also
Turning a Doc/View application into an OLE container requires only a few modifications.
1. Connect Objects to OLE
2. Register the Container
3. Support OLE Commands
4. Build the Container
That's all you need to do. By following these steps, you can create an OLE container that supports all
the following features:

Linking

Embedding

OLE clipboard operations

Drag and drop operations

In-place editing

Tool bar and menu merging

Compound document storage
You also get standard OLE 2 user interface features, such as object verbs on the Edit menu, the Insert
Object dialog box, and a pop-up menu that appears when the user right-clicks an embedded object.
ObjectComponents provides default behavior for all these common OLE features. Should you want to
modify the default behavior, you can additionally choose to override the default event handlers for
messages that ObjectComponents sends. The code examples in this section are based on the
STEP14.CPP and STEP14DV.CPP sample programs in EXAMPLES/OWL/TUTORIAL. Look there for
a complete working program that incorporates all the prescribed steps.

See Also
Turning a C++ Application Into an OLE Container
Turning an Objectwindows Application Into an OLE Container

Connecting Objects to OLE
See Also Turning a Doc/View Application Into an OLE Container
Your application, window, document, and view objects need to make use of new OLE-enabled classes.
The constructor for the application object expects to receive an application dictionary object, so create
that first.
The following tasks are necessary when connecting objects to OLE.

Deriving the Application Object from TOcModule

Inheriting from OLE Classes

Creating an Application Dictionary

See Also
Turning a Doc/View Application Into an OLE Server

Deriving the Application Object from TOcModule
See Also Turning a Doc/View Application Into an OLE Container
The application object of an ObjectComponents program needs to derive from TOcModule as well as
TApplication. TOcModule coordinates some basic housekeeping chores related to registration and
memory management. It also connects your application to OLE. More specifically, TOcModule
manages the connector object that implements COM interfaces on behalf of an application.
If the declaration of your application object looks like this:
class TMyApp : public TApplication {
 public:
 TMyApp() : TApplication(){};
 .
 .
 .
};
Then change it to look like this:
class TMyApp : public TApplication, public TOcModule {
 public:
 TMyApp(): TApplication(::AppReg["appname"], ::Module, &::AppDictionary)
{};
 .
 .
 .
};
The constructor for the revised TMyApp class takes three parameters.

A string naming the application
AppReg is the application's registration table. The expression ::AppReg["appname"] extracts a

string that was registered to describe the application.

A pointer to the application module.
Module is a global variable of type TModule* defined by ObjectWindows.

The address of the application dictionary.
AppDictionary is the application dictionary object.

See Also
TApplication (OWL.HLP)
TOcModule

Inheriting from OLE Classes
See Also Turning a Doc/View Application Into an OLE Container
ObjectWindows includes classes that let windows, documents, and views interact with the
ObjectComponents classes. The ObjectWindows OLE classes include default implementations for
most normal OLE operations. To adapt an existing ObjectWindows program to OLE, change its derived
classes so they inherit from the OLE classes. The following table shows which OLE class replaces
each of the non-OLE classes.

Non-OLE class OLE class
TFrameWindow TOleFrame
TMDIFrame TOleMDIFrame
TDecoratedFrame TOleFrame
TDecoratedMDIFrame TOleMDIFrame
TWindow TOleWindow
TDocument TOleDocument
TView TOleView
TFileDocument TOleDocument
The TOleFrame and TOleMDIFrame classes both derive from decorated window classes. The OLE 2
user interface requires containers to handle tool bars and status bars. Even if the container has no
decorations, servers might need to display their own in the container's window. The OLE window
classes handle those negotiations for you.
Wherever your existing OWL program uses a non-OLE class, replace it with an OLE class, as shown
here. Boldface type highlights the change.
Before
// pre-OLE declaration of a window class
class TMyFrame: public TFrameWindow { /* declarations */);
After
// new declaration of the same window class
class TMyFrame: public TOleFrame { /* declarations */);
Note: If the implementation of your class makes direct calls to its base class, be sure to change the

base class calls, as well. Response tables also refer to the base class and need to be updated.

See Also
TDocument (OWL.HLP)
TFrameWindow (OWL.HLP)
TOleDocument (OWL.HLP)
TOleFrame (OWL.HLP)
TOleMDIFrame (OWL.HLP)
TMDIFrame (OWL.HLP)
Turning a Doc/View Application Into an OLE Server
TWindow (OWL.HLP)

Creating an Application Dictionary
See Also Turning a Doc/View Application Into an OLE Container
An application dictionary tracks information for the currently active process. It is particularly useful for
DLLs. When several processes use a DLL concurrently, the DLL must maintain multiple copies of the
global, static, and dynamic variables that represent its current state in each process. for example, the
DLL version of ObjectWindows maintains a dictionary that allows it to retrieve the TApplication
corresponding to the currently active client process. If you convert an executable server to a DLL
server, your application too must maintain a dictionary of the TApplication objects representing each of
its container clients. If your DLL uses the DLL version of ObjectWindows, then your DLL needs its own
dictionary and cannot use the one in ObjectWindows.
The DEFINE_APP_DICTIONARY macro provides a simple and unified way to create the application
object for any application, whether it is a container or a server, a DLL or an EXE. Insert this statement
with your other static variables:
DEFINE_APP_DICTIONARY(AppDictionary);
For any application linked to the static version of the DLL, the macro simply creates a reference to the
application dictionary in ObjectWindows. for DLL servers using the DLL version of ObjectWindows,
however, it creates an instance of the TAppDictionary class.
Note: Name your dictionary object AppDictionary to take advantage of the factory templates such as

TOleDocViewFactory.

See Also
DEFINE_APP_DICTIONARY macro (OWL.HLP)
Factory Template Classes (OWL.HLP)
Turning a Doc/View Application Into an OLE Server

Registering a Container
Turning a Doc/View Application Into an OLE Container
Registering your application with OLE involves the following steps:

Building Registration Tables

Understanding Registration Macros

Creating a Registrar Object

Building Registration Tables
See Also Registering a Container
OLE requires programs to identify themselves by registering unique identifiers and names. OLE also
needs to know what Clipboard formats a program supports. Doc/ View applications also register their
document file extensions and document flags. To accommodate the many new items an application
might need to register, in ObjectWindows 2.5 you use macros to build structures to hold the items.
Then you can pass the structure to the object that needs the information. The advantage of this
method lies in the structure's flexibility. It can hold as many or as few items as you need.
Note: Previous versions of ObjectWindows passed some of the same information in parameters. Old

code still works unchanged, but passing information in registration structures is the
recommended method for all new applications.

A Doc/View OLE container fills one registration structure with information about the application and
then creates another to describe each of its Doc/View pairs. The structure with application information
is passed to the TOcRegistrar constructor. Document registration structures are passed to the
document template constructor.
Here are the commands to register a typical container:
REGISTRATION_FORMAT_BUFFER(100) // allow extra space for expanding
macros

BEGIN_REGISTRATION(AppReg) // information for the TOcRegistrar constructor
 REGDATA(clsid, "{383882A1-8ABC-101B-A23B-CE4E85D07ED2}")
 REGDATA(appname, "DrawPad Container")
END_REGISTRATION

BEGIN_REGISTRATION(DocReg) // information for the document template
 REGDATA(progid, "DrawPad.Document.14")
 REGDATA(description,"Drawing Pad (Step14--Container)")
 REGDATA(extension, "p14")
 REGDATA(docfilter, "*.p14")
 REGDOCFLAGS(dtAutoOpen | dtAutoDelete | dtUpdateDir | dtCreatePrompt |
dtRegisterExt)
 REGFORMAT(0, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
 REGFORMAT(1, ocrMetafilePict, ocrContent, ocrMfPict|ocrStaticMed, ocrGet)
 REGFORMAT(2, ocrBitmap, ocrContent, ocrGDI|ocrStaticMed, ocrGet)
 REGFORMAT(3, ocrDib, ocrContent, ocrHGlobal|ocrStaticMed, ocrGet)
 REGFORMAT(4, ocrLinkSource, ocrContent, ocrIStream, ocrGet)
END_REGISTRATION
The registration macros build structures of type TRegList. Each entry in a registration structure
contains a key, such as clsid or progid, and a value assigned to the key. Internally ObjectComponents
finds the values by searching for the keys. The order in which the keys appear does not matter.
Insert the registration macros after your declaration of the application dictionary. Since the value of the
clsid key must be a unique number identifying your application, it is recommended that you generated
a new value using the GUIDGEN.EXE utility. (the ObjectWindows Reference Guide entry for clsid
explains other ways to generate an identifer.) of course, modify the value of the description key to
describe your container.
The example builds two structures, one named AppReg and one named DocReg. AppReg is an
application registration structure and DocReg is a document registration structure. Both structures are
built alike, but each contains a different set of keys and values. The keys in an application registration
structure describe attributes of the application. A document registration structure describes the type of
document an application can create. A document's attributes include the data formats that it can
exchange with the clipboard, its file extensions, and its document type name.

The set of keys you place in a structure depends on what OLE capabilities you intend to support. The
macros in the example show the minimum amount of information a container should provide.
The following table describes all the registration keys that a container can use. It shows which are
optional and which required as well as which belong in the application registration table and which in
the document registration table.

Key in AppReg? in DocReg? Description
appname Optional No Short name for the application
clsid Yes Optional Globally unique identifier (GUID); generated

automatically for the DocReg structure.
description No Yes Descriptive string (up to 40 characters)
progid No Yes Identifier for program or document type (unique

string)
Note: (Yes for a link source)

extension No Optional Document file extension associated with server
docfilter No Yes Wildcard file filter for File Open dialog box
docflags No Yes Options for running the File Open dialog box
formatn No Yes A clipboard format the container supports
directory No Optional Default directory for storing document files
permid No Optional Name string without version information
permname No Optional Descriptive string without version information
version Optional No Major and minor version numbers (defaults to "1.0")

The table shows what is required for container documents that support linking or embedding. For
documents that support neither, the container needs to register only docflags and docfilter.
If your container is also a linking and embedding server or an automation server, then you should also
consult the server table or the automation table. Register all the keys that are required in any of the
tables that apply to your application.
The values assigned to keys can be translated to accommodate system language settings.

See Also
Localizing Symbol Names
Registering Localized Entries
TOcRegistrar
Understanding Registration Macros

Understanding Registration Macros
See Also Registering a Container
The first macro in the example, REGISTRATION_FORMAT_BUFFER, sets the size of a buffer needed
temporarily as the macros that follow are expanded.
The REGDATA, REGFORMAT, and REGDOCFLAGS macros place items in the registration structure.
All the registration macros are documented in the ObjectWindows Help (OWL.HLP).
REGDATA's first parameter is a key and the second is a value to associate with the key. in the
example, the AppReg structure begins by assigning a value to the key clsid. The clsid is a globally
unique identifier (GUID) specifying the application. The application's progid is a text string that serves
the same purpose. The description key briefly describes the application (Drawing Pad
(Step14Container)). Of these three keys, only the description value is visible to users. The document
structure registers its own progid and description. Although each document type also needs its own
unique clsid, if you omit it ObjectComponents supplies it for you by incrementing the application's clsid.
REGFORMAT entries list the data formats that the container can place on the Clipboard. The first
parameter sets a priority order for the formats you use. 0 marks the format that renders data with the
best fidelity, and higher numbers indicate lower fidelity. The second parameter represents a data
format. The other parameters tell what presentation aspect of the format you use, what medium you
use to transfer the data, and whether you can supply and receive Clipboard data in that format. All the
data formats you specify with REGFORMAT are registered with the Windows Clipboard for you.
Even a simple container is usually capable of placing OLE objects on the Clipboard. If the user selects
a linked or embedded object from the container's document and wants to transfer it through the
Clipboard to another container, then the first container needs to act as a server by supporting at least
the ocrEmbedSource or ocrLinkSource formats. Any application that registers either of these formats
must also register ocrMetafilePict. The usual case is to register the five formats shown in the example.
ObjectComponents automatically handles OLE objects in any of the standard formats for you. All you
have to do is register the ones you want to support.
To register user-defined formats, replace the data format parameter with a string naming your format.
REGFORMAT(3, "MyOwnFormat", ocrContent, ocrIStorage, ocrGet)
If you register any custom Clipboard formats, you must also provide OLE with strings to describe your
format in dialog boxes. Call AddUserFormatName, a method on classes derived from TOleFrame, to
supply the descriptions.
REGDOCFLAGS adds to the registration structure an entry containing flags for a document template.
The flags set options for running the File Open common dialog box.
After creating registration tables, you must pass them to the appropriate object constructors. The
AppReg structure is passed to the TOcRegistrar constructor, as described in "Creating a registrar
object." In a Doc/View application, document registration tables are passed to the document template
constructor.
DEFINE_DOC_TEMPLATE_CLASS(TMyOleDocument, TMyOleView, MyTemplate);
MyTemplate myTpl(DocReg);
A program that uses several document templates should create a different registration table for each
template. Each registration table must start with the BEGIN_REGISTRATION macro and have a
different name, for example DocReg1 and DocReg2.
All the information that normally gets passed to a document template constructor can be placed in a
registration structure using REGFORMAT, REGDOCFLAGS, and REGDATA. Previous versions of
OWL passed the same information to the document template as a series of separate parameters. The
old method is still supported for backward compatibility, but new programs, whether they use OLE or
not, should use the registration macros to supply document template parameters.

See Also
ocrxxxx Clipboard Constants
Registration Macros (OWL.HLP)
TOcRegistrar
Understanding Registration Macros

Creating a Registrar Object
See Also Registering a Container
Every ObjectComponents application needs a registrar object to manage its registration tasks. In a
linking and embedding application, the registrar is an object of type TOcRegistrar. At the top of your
source code file, declare a global variable holding a pointer to the registrar.
static TPointer<TOcRegistrar> Registrar;
The TPointer template ensures that the TOcRegistrar instance is deleted when the program ends.
Note: Name the variable Registrar to take advantage of the factory callback template used in the

registrar's constructor.
The next step is to modify your OwlMain function to allocate a new TOcRegistrar object and initialize
the global pointer Registrar. The TOcRegistrar constructor expects three parameters: the application's
registration structure, the component's factory callback and the command line string that invoked that
application.

The registration structure you create with the registration macros.

The factory callback you create with a template class.
For a linking and embedding ObjectWindows application that uses Doc/View, the template class

is called TOleDocViewFactory. The code in the factory template assumes you have defined an application
dictionary called AppDictionary and a TOcRegistrar* called Registrar.

The command line string can come from the GetCmdLine method of TApplication.
int
OwlMain(int /*argc*/, char* /*argv*/ [])
{
 try {
 // Create Registrar object
 Registrar = new TOcRegistrar(::AppReg, TOleDocViewFactory<TMyApp>(),
 TApplication::GetCmdLine());
 return Registrar->Run();
 }
 catch (xmsg& x) {
 ::MessageBox(0, x.why().c_str(), "Exception", MB_OK);
 }
 return -1;
}
After initializing the Registrar pointer, your OLE container application must invoke the Run method of
the registrar instead of TApplication::Run. For OLE containers, the registrar's Run simply invokes the
application object's Run to create the application's windows and process messages. However, using
the registrar method makes your application OLE server-ready. The following code shows a sample
OwlMain before and after the addition of a registrar object. Boldface type highlights the changes.
Before:
// Non-OLE OwlMain
int
OwlMain(int /*argc*/, char* /*argv*/[])
{
 return TMyApp().Run();
}
After adding the registrar object:
int
OwlMain(int /*argc*/, char* /*argv*/[])

{
 ::Registrar = new TOcRegistrar(::AppReg,
 TOleDocViewFactory<TMyApp>(),
 TApplication::GetCmdLine());
 return ::Registrar->Run();
}
The last parameter of the TOcRegistrar constructor is the command line string that invokes the
application. The registrar object processes the command line by searching for switches, such as
Embedding or Automation, that OLE may have placed there. ObjectComponents takes whatever
action the switches call for and then removes them. If for some reason you need to test the OLE
switches, be sure to do it before constructing the registrar. If you have no use for the OLE switches,
wait until after constructing the registrar before parsing the command line.

See Also
Factory Template Classes (OWL.HLP)
Processing the Command Line
TOcRegistrar
Turning a Doc/View Application Into an OLE Server

Supporting OLE Commands
See Also Turning a Doc/View Application Into an OLE Container
A container needs to place some standard OLE commands on its Edit menu. ObjectWindows
implements the commands for you. A container also needs to let ObjectComponents read and write
any linked or embedded objects when loading or saving documents.
The following topics discuss what you need to know in order to support OLE commands.

Setting Up the Edit Menu and the Tool Bar

Loading and Saving Compound Documents

See Also
Turning a Doc/View Application Into an OLE Server

Setting Up the Edit Menu and the Tool Bar
See Also Supporting OLE Commands
An OLE container places OLE commands on its Edit menu. The following table describes the standard
OLE commands. It's not necessary to use all of them, but every container should support at least
Insert Object, to let the user add new objects to the current document, and Edit Object, to let the user
activate the currently selected object. The TOleView class has default implementations for all the
commands. It invokes standard dialog boxes where necessary and processes the user's response. All
you have to do is add the commands to the Edit menu for each view you derive from TOleView.

Menu command Predefined identifier Command description
Paste Special CM_EDITPASTESPECIAL Lets the user choose from available formats for

pasting an object from the Clipboard.
Paste Link CM_EDITPASTELINK Creates a link in the current document to the

object on the Clipboard.
Insert Object CM_EDITINSERTOBJECT Lets the user create a new object by choosing

from a list of available types.
Edit Links CM_EDITLINKS Lets the user manually update the list of linked

items in the current document.
Convert CM_EDITCONVERT Lets the user convert objects from one type to

another.
Object CM_EDITOBJECT Reserves a space on the menu for the server's

verbs (actions the server can take with the
container's object).

If your OLE container has a tool bar, assign it the predefined identifier IDW_TOOLBAR.
ObjectComponents must be able to find the container's tool bar if a server asks to display its own tool
bar in the container's window. If ObjectComponents can identify the old tool bar, it temporarily replaces
it with a new one taken from the server. For ObjectComponents to identify the container's tool bar, the
container must use the IDW_TOOLBAR as its window ID, as shown here.
TControlBar *cb = new TControlBar(parent);
cb->Attr.Id = IDW_TOOLBAR; // use this identifier
The TOleFrame::EvAppBorderSpaceSet method uses the IDW_TOOLBAR for its default
implementation. A container can provide its own implementation to handle more complex situations,
such as merging with multiple tool bars.

See Also
TOleFrame (OWL.HLP)
TOleView (OWL.HLP)

Loading and Saving Compound Documents
See Also Supporting OLE Commands
When the user pastes or drops an OLE object into a container, the object becomes data in the
container's document. The container must store and load the object along with the rest of the
document whenever the user chooses Save or Open from the File menu. The new Commit and Open
methods of TOleDocument perform this chore for you. All you have to do is add calls to the base class
in your own implementation of Open and Commit. The code that reads and writes your document's
native data remains unchanged.
Because TOleDocument is derived from TStorageDocument rather than TFileDocument, it always
creates compound files. Compound files are a feature of OLE 2 used to organize the contents of a disk
file into separate compartments . You can ask to read or write from any compartment in the file without
worrying about where on the disk the compartment begins or ends. OLE calls the compartments
storages. The storages in a file can be ordered hierarchically, just like directories and subdirectories.
Any storage compartment can contain other sub-storages.
Compound files are good for storing compound documents. When you call Open or Commit,
ObjectComponents automatically creates storages in your file to hold whatever objects the document
contains. All the document's native data is saved in the file's root storage. Your existing file data
structure remains intact, isolated in a separate compartment. The following code shows how load
compound documents.
// document class declaration derived from TOleDocument
class _DOCVIEWCLASS TMyDocument : public TOleDocument {
 // declarations
}

// document class implementation
bool
TDrawDocument::Open(int mode, const char far* path) {
 TOleDocument::Open(mode, path); // load any embedded objects
 // code to load other document data
}
The TOleDocument::Open command does not actually copy the data for all the objects into memory.
ObjectComponents is smart enough to load the data for particular objects only when the user activates
them.
The next code shows how to save compound documents.
bool
TMyDocument::Commit(bool force) {
 TOleDocument::Commit(force); // save the embedded objects
 // code to save other document data
 TOleDocument::CommitTransactedStorage(); // commit if in transacted mode
}
By default, TOleDocument opens compound files in transacted mode. Transacted mode saves
changes in a temporary buffer and merges them with the file only after an explicit command. A revert
command discards any uncommitted changes. Commit buffers a new transaction.
CommitTransactedStorage merges all pending transactions.
The opposite of transacted mode is direct mode. Direct mode eliminates buffers and makes each
change take effect immediately. To alter the default mode, override TOleDocument::PreOpen. Omit the
ofTransacted flag to specify direct mode.
Note: In order for compound file I/O to work correctly, you need to include the dtAutoOpen flag when

you register docflags in the document registration table.

See Also
Turning a Doc/View Application Into an OLE Container
TOleDocument (OWL.HLP)

Building the Container
Turning a Doc/View Application Into an OLE Container
To build the container, include the right headers, compile with a supported memory model, and link to
the ObjectComponents and OLE libraries.
The following topics discuss what you need to know when building containers:

Including OLE Headers

Compiling and Linking

Including OLE Headers
See Also Building the Container
An ObjectComponents program needs the classes, structures, macros, and symbols defined in the
header files for the ObjectWindows OLE classes. The following list shows the headers needed for an
OLE container that uses the Doc/View model and an MDI frame window.
#include <owl/oledoc.h> // replaces DOCVIEW.H
#include <owl/oleview.h> // replaces DOCVIEW.H
#include <owl/olemdifr.h> // replaces MDI.H
An SDI application includes oleframe.h instead of olemdifr.h.

See Also
Turning a Doc/View Application Into an OLE Container

Compiling and Linking
See Also Building the Container
Containers that use ObjectComponents and ObjectWindows require the large memory model. Link
them with the OLE and ObjectComponents libraries.
The integrated development environment (IDE) chooses the right build options when you ask for OLE
support. To build any ObjectComponents program from the command line, create a short makefile that
includes the OWLOCFMK.GEN file found in the EXAMPLES subdirectory. Here, for example, is the
makefile that builds the AutoCalc sample program:
EXERES = MYPROGRAM
OBJEXE = winmain.obj autocalc.obj
HLP = MYPROGRAM
!include $(BCEXAMPLEDIR)\owlocfmk.gen
EXERES and OBJEXE hold the name of the file to build and the names of the object files to build it
from. HLP is an optional online Help file. Finally, your makefile should include the OWLOCFMK.GEN
file.
Name your file MAKEFILE and type this at the command line prompt:
make MODEL=l
Make, using instructions in OWLOCFMK.GEN, builds a new makefile tailored to your project. The new
makefile is called WIN16Lxx.MAK. The final two digits of the name tell whether the makefile builds
diagnostic or debugging versions of the libraries. 01 indicates a debugging version, 10 a diagnostic
version, and 11 means both kinds of information are included. The same command then runs the new
makefile and builds the program. If you change the command to define MODEL as d, the new makefile
is WIN16Dxx.MAK and it builds the program as a DLL.
For more information about how to use OWLOCFMK.GEN, read the instructions at the beginning of
MAKEFILE.GEN, found in the EXAMPLES directory.
The following table shows the libraries an ObjectComponents program links with.

Large model libraries DLL import libraries Description
OCFWL.LIB OCFWI.LIB ObjectComponents
OWLWL.LIB OWLWI.LIB ObjectWindows
BIDSL.LIB BIDSI.LIB Class libraries
OLE2W16.LIB OLE2W16.LIB OLE system DLLs
IMPORT.LIB IMPORT.LIB Windows system DLLs
MATHWL.LIB Math support
CWL.LIB CRTLDLL.LIB C run-time libraries

The ObjectComponents library must be linked first, before the ObjectWindows library. Also,
ObjectComponents requires RTTI and exception handling. Do not use compiler command line options
that disable these features.

See Also
Turning a Doc/View Application Into an OLE Container

Turning an ObjectWindows Application Into an OLE Container
See Also
Turning an ObjectWindows application into an OLE container requires a few modifications.
The following topics discuss converting ObjectWindows applications into OLE containers:
1. Set Up the Application
2. Register a Container
3. Set Up the Client Window
4. Program the User Interface
5. Build a Container
By following these steps, you give your ObjectWindows application the following features:

Linking

Embedding

OLE clipboard operations

Drag and drop operations

In-place editing

Tool bar and menu merging

Compound document storage

OLE 2 user interface
Code excerpts are from the OWLOCF0.CPP sample in the EXAMPLES/OWL/TUTORIAL/OLE
directory. The OWLOCF0.CPP sample is based on the STEP10.CPP sample used in the
ObjectWindows Tutorial. It does not support OLE. OWLOCF1.CPP modifies the first program to create
an OLE container.

See Also
Turning a Doc/View Application Into an OLE Container
Turning a C++ Application Into an OLE Container

Setting Up the Application
Turning an ObjectWindows Application Into an OLE Container
An ObjectComponents application needs an application dictionary, and the object you derive from
TApplication must also derive from TOcModule.
The following topics discuss what you need to know to set up the application for ObjectComponents:

Defining an Application Dictionary Object

Modifying Your Application Class

Defining an Application Dictionary Object
Setting Up the Application
When a DLL is used by more than one application or process, it must maintain multiple copies of the
global, static, and dynamic variables that represent its current state in each process. For example, the
DLL version of ObjectWindows maintains a dictionary that allows it to retrieve the TApplication object
which corresponds to the current active process. If you turn your application into a DLL server, the
application must also maintain a dictionary of the TApplication objects created as each new client
attaches to the DLL. The DEFINE_APP_DICTIONARY macro provides a simple and unified method
for creating an application dictionary object. Insert the following statement with your other static
variable declarations.
DEFINE_APP_DICTIONARY(AppDictionary);
The DEFINE_APP_DICTIONARY macro correctly defines the AppDictionary variable regardless of
how the application is built. in applications using the static version of ObjectWindows, it simply creates
a reference to the existing ObjectWindows application dictionary. for DLL-servers using the DLL
version of ObjectWindows, however, the macro declares a instance of the TAppDictionary class. It is
important to use the name AppDictionary when creating your application dictionary object. This allows
you to take advantage of the factory template classes for implementing a factory callback function.

Modifying Your Application Class
See Also Setting Up the Application
ObjectWindows provides the mix-in class TOcModule for applications that support linking and
embedding. Change your application object so it derives from both TApplication and TOcModule as
shown in the following example:
// Non-OLE application
class TScribbleApp : public TApplication { /* declarations */ };

// New declaration of same class
class TScribbleApp : public TApplication, public TOcModule { /* declarations
*/ };
The TOcModule object coordinates basic housekeeping chores related to registration and memory
management. It also connects your application object to OLE.
Your TApplication-derived class must provide a CreateOleObject method with the following signature:
TUnknown* CreateOleObject(uint32 options, TDocTemplate* tpl);
The method is used by the factory template class. Because containers don't create OLE objects, a
container can implement CreateOleObject by simply returning 0. Servers have more work to do to
implement CreateOleObject.
//
// non-OLE application class
//
class TScribbleApp : public TApplication {
 public:
 TScribbleApp() : TApplication("Scribble Pad") {}

 protected:
 InitMainWindow();

};

//
// New declaration of same class
//
class TScribbleApp : public TApplication, public TOcModule {
 public:
 TScribbleApp() : TApplication(::AppReg["description"]){}
 TUnknown* CreateOleObject(uint32, TDocTemplate*){ return 0; }

 protected:
 InitMainWindow();

See Also
TOcModule
TApplication (OWL.HLP)

Registering a Container
Turning an ObjectWindows Application Into an OLE Container
To register an application, you build registration tables with macros. Then you pass the tables to a
registrar object to process the information they contain.
The following topics discuss these tasks:

Creating Registration Tables

Creating a Registrar Object

Creating Registration Tables
Registering a Container
OLE requires programs to identify themselves by registering unique identifiers and names.
ObjectWindows offers macros that let you build a structure to hold registration information. The
structure can then be used when creating the application's instance of TOcRegistrar.
Here are the commands to create a simple container registration structure:
REGISTRATION_FORMAT_BUFFER(100) // create buffer for expanding macros

BEGIN_REGISTRATION(AppReg)
 REGDATA(clsid, "{9B0BBE60-B6BD-101B-B3FF-86C8A0834EDE}")
 REGDATA(description, "Scribble Pad Container")
END_REGISTRATION
The first macro, REGISTRATION_FORMAT_BUFFER, sets the size of a buffer needed temporarily as
the macros that are expanded. The REGDATA macro places items in the registration structure,
AppReg. Each item in AppReg is a smaller structure that contains a key, such as clsid or progid, and a
value assigned to the key. The values you assign are case-sensitive strings. The order of keys within
the registration table does not matter.
Insert the registration macros after your declaration of the application dictionary. Since the value of the
clsid key must be a unique number identifying your application, it is recommended that you generated
a new value using the GUIDGEN.EXE utility. (The ObjectWindows Reference Guide entry for clsid
explains other ways to generate an identifer.) Of course, modify the value of the description key to
describe your container.
The AppReg structure built in the sample code is an application registration structure. A container may
also build one or more document registration structures. Both structures are built alike, but each
contains a different set of keys and values. The keys in an application registration structure describe
attributes of the application. A document registration structure describes the type of document an
application can create. A document's attributes include the data formats that it can exchange with the
clipboard, its file extensions, and its document type name. The OWLOCF1 sample application does
not create any document registration structures.

Creating a Registrar Object
See Also Registering a Container
Every ObjectComponents application needs to create a registrar object to manage all of its registration
tasks. Insert the following line after the #include statements in your main .CPP file.
static TPointer<TOcRegistrar> Registrar;
The TOcRegistrar instance is created in your OwlMain function. Declaring the pointer of type
TPointer<TOcRegistrar> instead of TOcRegistrar* ensures that the TOcRegistrar instance is
deleted.
Note: Name the variable Registrar to take advantage of the TOleFactory template for implementing a

factory callback.
The next step is to modify your OwlMain function to allocate a new TOcRegistrar object to initialize the
global pointer Registrar. The TOcRegistrar constructor requires three parameters: the application's
registration structure, the component's factory callback and the command line string that invoked that
application.

The registration structure you create with the registration macros.

The factory callback you create with an ObjectWindows factory template.
You can write your own callback function from scratch if you prefer, but the templates are much

easier to use. For a linking and embedding ObjectWindows application that doesn't use Doc/View, the
template class is called TOleFactory. The code in the factory template assumes you have defined an
application dictionary called AppDictionary and a TOcRegistrar* called Registrar.

The command line string comes from the GetCmdLine method of TApplication.
Here is the code to create the registrar.
int OwlMain(int, char*[])
{

 // create the registrar object
 ::Registrar = new TOcRegistrar(::AppReg, TOleFactory<TScribbleApp>(),
 TApplication::GetCmdLine());
}
Factories are explained in more detail in the ObjectWindows Reference Guide.
After initializing the Registrar pointer, your OLE container application must invoke TOcRegistrar::Run
instead of TApplication::Run. For OLE containers, the registrar's Run simply invokes the application
object's Run to create the application's windows and process messages. In a server, however,
TOcRegistrar::Run does more. Using the registrar's Run method in a container makes it easier to
modify the application later if you decide to turn it into a server.

Before and After
Here is the OwlMain from OWLOCF1, omitting for clarity the usual try and catch statements. The lines
in bold are the new code.

Before:
// Non-OLE OwlMain
int
OwlMain(int /*argc*/, char* /*argv*/[])
{
 return TScribbleApp().Run();
}
After adding the registrar object:
int

OwlMain(int /*argc*/, char* /*argv*/[])
{
 ::Registrar = new TOcRegistrar(::AppReg, TOleFactory<TScribbleApp>(),
 TApplication::GetCmdLine());
 return ::Registrar->Run();
}

See Also
Factory Template Classes (OWL.HLP)

Setting Up The Client Window
Turning an ObjectWindows Application Into an OLE Container
An ObjectWindows SDI application can use a frame window that does not contain a client window.
Similarly, an ObjectWindows MDI application can use MDI child windows that do not contain a client
window. Omitting the client window makes it harder to convert the application from one kind of frame to
anotherSDI, MDI, or decorated frame. It is also awkward when building OLE 2 applications.
For example, it is easier for a container's main window to make room for a server's tool bar if the
container owns a client window. To take full advantage of the ObjectWindows OLE classes, your
application must use a client window. For more information about using client windows, see the
ObjectWindows Tutorial.
The following topics discuss setting up the Client Window.

Inheriting from OLE Classes

Delaying the Creation of the Client Window in SDI Applications

Creating ObjectComponents View and Document Objects

Inheriting from OLE Classes
See Also Setting Up the Client Window
ObjectWindows provide several classes that include default implementations for many OLE
operations. To adapt an existing ObjectWindows program to OLE, change its derived classes to inherit
from the OLE classes.
The TOleFrame and TOleMDIFrame classes both derive from decorated window classes. The OLE 2
user interface requires that containers be prepared to handle tool bars and status bars. Even if a
container has no such decorations, servers might need to display their own in the container's window.
The OLE window classes handle those negotiations for you. The following code shows how to change
the declaration for a client window. Boldface type highlights the changes.
Before:
// Pre-OLE declaration of a client window
class TScribbleWindow : public TWindow {
 // declarations
};
DEFINE_RESPONSE_TABLE1(TScribbleWindow, TWindow);

After changing the declaration to derive from an OLE-enabled class:
// New declaration of the same window class
class TScribbleWindow : public TOleWindow {
 // declarations
};
DEFINE_RESPONSE_TABLE1(TScribbleWindow, TOleWindow);

See Also
TOleFrame (OWL.HLP)
TOleMDIFrame (OWL.HLP)

Delaying the Creation of the Client Window in SDI Applications
See Also Setting Up the Client Window
ObjectWindows applications create their main window in the InitMainWindow method of the
TApplication-derived class. Typically, SDI applications also create their initial client window in the
InitMainWindow function. The following code shows the typical sequence.
void
TDrawApp::InitMainWindow()
{
 // Construct the decorated frame window
 TDecoratedFrame* frame = new TDecoratedFrame(0, "Drawing Pad",
 new TDrawWindow(0), true);
 // more declarations to init and set the main window
}
When used in the OLE frame and client classes, however, that sequence presents a timing problem for
OLE. The OLE client window must be created after the OLE frame has initialized its variables pointing
to ObjectComponents classes. To meet this requirement, an SDI OLE application should create only
the frame window in the InitMainWindow function. Create the client window in the InitInstance method
of your application class. Boldface type highlights the changes.
void
TDrawApp::InitMainWindow()
{
 // construct the decorated frame window
 TOleFrame* frame = new TOleFrame("Drawing Pad", 0, true);

 // more declarations to init and set the main window
}

void
TDrawApp::InitInstance()
{
 TApplication::InitInstance();

 // create and set client window
 GetMainWindow()->SetClientWindow(new TDrawWindow(0));
}

See Also
TApplication (OWL.HLP)

Creating ObjectComponents View and Document Objects
See Also Setting Up the Client Window
For every client window capable of having linked or embedded objects, you must create a
TOcDocument object to manage the embedded OLE objects, and a TOcView object to manage the
presentation of the OLE objects. The CreateOcView method from the TOleWindow class creates both
the container document and the container view. Add a call to CreateOcView in the constructor of your
TOleWindow-derived class.
// Pre-OLE declaration of a client window constructor
TScribbleWindow::TScribbleWindow(TWindow* parent, char far* filename)
: TWindow(parent, 0, 0)
{

}

// New declaration of client window constructor
TScribbleWindow::TScribbleWindow(TWindow* parent, char far* filename)
: TOleWindow(parent, 0)
{

 // Create TOcDocument object to hold OLE parts
 // and TOcView object to provide OLE services.
 CreateOcView(0, false, 0);
}
Notice that unlike the TWindow constructor, the TOleWindow constructor does not require a title
parameter. It is unnecessary because TOleWindow is always the client of a frame. TWindow, on the
other hand, can be used as a non-client windowa pop-up, for example.

See Also
TOleWindow (OWL.HLP)
TOcView

Programming the User Interface
Turning an ObjectWindows Application Into an OLE Container
The next set of adaptations provide standard OLE user interface features such as menu merging and
drag and drop. The following topics discuss programming the user interface.
The following topics discuss programming the user interface.

Handling OLE-Related Messages and Events

Supporting Menu Merging

Updating the Edit Menu

Assigning a Tool Bar ID

Handling OLE-Related Messages and Events
Programming the User Interface
ObjectComponents notifies your application's windows of OLE-related events by sending the
WM_OCEVENT message. The ObjectWindows OLE classes provide default handlers for the various
WM_OCEVENT event notifications. Furthermore, the ObjectWindows classes also process a few
standard Windows messages to add additional features of the standard OLE user interface. For
example, if a user double-clicks within the client area of your container window, a handler in
TOleWindow checks whether the click occurred over an embedded object and, if so, activates the
object. Similarly, the TOleWindow::EvPaint method causes each embedded object to draw itself. The
following table lists the methods implemented by the client window (TOleWindow) and frame
window(TOleFrame, TOleMDIFrame) classes. If you override these handlers in your derived class you
must invoke the base class version.

Method Message Class Description
EvSize WM_SIZE Frame Notifies embedded servers of the size

change.
EvTimer WM_TIMER Frame Invokes IdleAction so that DLL servers

can carry out command enabling.
EvActivateApp WM_ACTIVATEAPP Frame Notifies embedded servers about

being activated.
EvLButtonDown WM_LBUTTONDOWN Client Deactivates any in-place active object.
EvRButtonDown WM_RBUTTONDOWN Client Displays pop-up verb menu if cursor is

on an embedded object.
EvLButtonDblClk WM_LBUTTONDBLCLK Client Activates any embedded object under

the cursor.
EvMouseMove WM_MOUSEMOVE Client Allows user to move or resize an

embedded object.
EvLButtonUp WM_LBUTTONUP Client Informs the selected object of position

or size changes.
EvSize WM_SIZE Client Informs TOcView object that window

has changed size.
EvMdiActivate WM_MDIACTIVATE Client Informs TOcView object that window

has changed size.
EvMouseActivate WM_MOUSEACTIVATE Client Forwards the message to the top-level

parent window and returns the code to
activate the client window.

EvSetFocus WM_SETFOCUS Client Notifies any in-place server of focus
change.

EvSetCursor WM_SETCURSOR Client Changes cursor shape if within an
embedded object.

EvDropFiles WM_DROPFILES Client Embeds dropped file(s).
EvPaint WM_PAINT Client Causes embedded objects to paint.
EvCommand WM_COMMAND Client Processes command IDs of verbs.
EvCommandEnable WM_COMMANDENABLE Client Processes command IDs of verbs.

In some cases, you might need to know what action the base class handler took before you decide
what to do in your overriding handler. This is particularly true for mouse-related messages. If the base
class handled a double-click action, for example, the user intended the action to activate an object and

you probably don't want your code to reinterpret the double-click as a different command. The code
that follows shows how to coordinate with a base class handler. These three procedures let the user
draw on the surface of the client window with the mouse.
void
TMyClient::EvLButtonDown(uint modKeys, TPoint& pt)
{
 if (!Drawing) {
 SetCapture()
 Drawing = true;
 // additional GDI calls to display drawing
 }
}

void
TMyClient::EvMouseMove(uint modKeys, TPoint& pt)
{
 if (Drawing) {
 // additional GDI calls to display drawing
 }
}

void
TMyClient::EvLButtonUp(uint modKeys, TPoint& pt)
{
 if (Drawing) {
 Drawing = false;
 ReleaseCapture();
 }
}
As an OLE container, however, the client window may contain embedded objects. Mouse events
performed on these objects should not result in any drawing operation. This code shows the handlers
updated to allow and check for OLE related processing. Boldface type highlights the changes.
void
TMyClient::EvLButtonDown(uint modKeys, TPoint& pt)
{
 TOleWindow::EvLButtonDown(modKeys, pt);

 if (!Drawing && !SelectEmbedded()) {
 SetCapture()
 Drawing = true;
 // additional GDI calls to display drawing
 }
}

void
TMyClient::EvMouseMove(uint modKeys, TPoint& pt)
{
 TOleWindow::EvMouseMove(modKeys, pt);

 if (Drawing && !SelectEmbedded()) {
 // additional GDI calls to display drawing
 }
}

void
TMyClient::EvLButtonUp(uint modKeys, TPoint& pt)
{
 if (Drawing && !SelectEmbedded()) {
 Drawing = false;
 ReleaseCapture();
 }

 TOleWindow::EvLButtonUp(modKeys, pt);
}
The SelectEmbedded method is inherited from TOleWindow. It returns true if an embedded object is
currently being moved. The client window calls it to determine whether a mouse message has already
been processed by the OLE base class.
Typically, your derived class must call the base class handlers before processing any event or
message. The EvLButtonUp handler, however, calls the base class last. Doing so allows the handler to
rely on SelectEmbedded which is likely to be reset after TOleWindow processes the mouse-up
message.

Supporting Menu Merging
See Also Programming the User Interface
The menu bar of an OLE container with an active object is composed of individual pieces from the
normal menus of both the container and server. The container contributes pop-up menus dealing with
the application frame or with documents. The server, on the other hand, provides the Edit menu, the
Help menu, and any menus that let the user manipulate the activated object.
OLE divides the top-level menus of a menu bar into six groups. Each group is a set of contiguous top-
level drop-down menus. Each group is made up of zero or more pop-up menus. The menu groups are
named File, Edit, Container, Object, Window, and Help. The group names are for convenience only.
They suggest a common organization of related commands, but you can group the commands any
way you like.
When operating on its own, a container or server provides the menus for all of the six groups. During
an in-place edit session, however, the container retains control of the File, Container and Window
groups while the server is responsible for the Edit, Object, and Help groups.
The TMenuDescr class automatically handles all menu negotiations between the server and the
container. You simply identify the various menu groups within your menu resource, and
ObjectWindows displays the right ones at the right times.
To indicate where groups begin and end in your menu resource, insert SEPARATOR menu items
between them. Remember to mark all six groups even if some of them are empty. The TMenuDescr
class scans for the separators when loading a menu from a resource. It removes the separators found
between top-level entries and builds a structure which stores the number of pop-up menus assigned to
each menu group. This information allows ObjectWindows to merge the server's menu into your
container's menu bar.
The following menu resource script, taken from the ObjectWindows Tutorial, illustrates defining a
simple application menu before it is divided into groups.
COMMANDS MENU
{
 pop-up "&File"
 {
 MENUITEM "&New", CM_FILENEW
 MENUITEM "&Open", CM_FILEOPEN
 MENUITEM "&Save", CM_FILESAVE
 MENUITEM "Save &As", CM_FILESAVEAS
 }

 pop-up "&Tools"
 {
 MENUITEM "Pen &Size", CM_PENSIZE
 MENUITEM "Pen &Color", CM_PENCOLOR
 }

 pop-up "&Help"
 {
 MENUITEM "&About", CM_ABOUT
 }
}
The File menu entry belongs to the OLE File menu group. The Tools menu allows the user to edit the
application's document, so it belongs to the Edit group. This application does not contain any menus
belonging to the Object, Container, or Window group. And finally, the Help menu belongs to the Help
group.
The following code is a modified version of the same menu resource with SEPARATOR dividers

inserted to indicate where one group stops and the next begins. Boldface type highlights the changes.
COMMANDS MENU
{
 pop-up "&File"
 {
 MENUITEM "&New", CM_FILENEW
 MENUITEM "&Open", CM_FILEOPEN
 MENUITEM "&Save", CM_FILESAVE
 MENUITEM "Save &As", CM_FILESAVEAS
 }

 MENUITEM SEPARATOR // end of File group, beginning of Edit group

 pop-up "&Tools"
 {
 MENUITEM "Pen &Size", CM_PENSIZE
 MENUITEM "Pen &Color", CM_PENCOLOR
 }

 MENUITEM SEPARATOR // end of Edit group, beginning of Container
group
 MENUITEM SEPARATOR // end of Container group, beginning of Object
group
 MENUITEM SEPARATOR // end of Object group, beginning of Window
group
 MENUITEM SEPARATOR // end of Window group, beginning of Help group

 pop-up "&Help"
 {
 MENUITEM "&About", CM_ABOUT
 }
}
Insert separators in your application's menu to indicate the various menu groups. Then modify your
code to use the SetMenuDescr method when assigning your frame window's menu. This example
shows the menu assignment before and after adding menu merging. Boldface type highlights the
changes.

Before:
// original menu assignment
void
TScribbleApp::InitMainWindow()
{
 TDecoratedFrame* frame;
 // Initialize frame and decorations etc. etc.

 // Assign frame's menu
 frame->AssignMenu("COMMANDS");
}
After including group indicators in the menu:
void
TScribbleApp::InitMainWindow()
{
 TOleFrame* frame;
 // Initialize frame and decorations etc. etc.

 // Assign frame's menu
 frame->SetMenuDescr(TMenuDescr("COMMANDS"));
}
Instead of using separators to show which drop-down menus belong to each group, you can use the
TMenuDescr constructor whose parameters accept a count for each group. For more details, see the
description of the TMenuDescr constructors in the ObjectWindows Reference Guide.

See Also
TMenuDescr (OWL.HLP)

Updating the Edit menu
Programming the User Interface
An OLE container places OLE commands on its Edit menu. The TOleWindow class has default
implementations for all of them. It invokes standard dialogs boxes where necessary and processes the
user's response. All you have to do is add the commands to the Edit menu of your frame window. It's
not necessary to support all six commands, but every container should support at least
CM_EDITINSERTOBJECT, to let the user add new objects to the current document, and
CM_EDITOBJECT, to let the user choose verbs for the currently selected object.
ObjectWindows defines standard identifiers for the OLE Edit menu commands in owl/ oleview.rh.
Update your resource file to include the header file and use the standard identifiers to put OLE
commands on the Edit menu.
#include <owl/oleview.rh>
#include <owl/edit.rh>

COMMANDS MENU
{
 // File menu goes here

 MENUITEM SEPARATOR
 pop-up "&Edit"
 {
 MENUITEM "&Undo\aCtrl+Z", CM_EDITUNDO
 MENUITEM Separator
 MENUITEM "&Cut\aCtrl+X", CM_EDITCUT
 MENUITEM "C&opy\aCtrl+C", CM_EDITCOPY
 MENUITEM "&Paste\aCtrl+V", CM_EDITPASTE
 MENUITEM "Paste &Special...", CM_EDITPASTESPECIAL
 MENUITEM "Paste &Link", CM_EDITPASTELINK
 MENUITEM "&Delete\aDel", CM_EDITDELETE
 MENUITEM SEPARATOR
 MENUITEM "&Insert Object...", CM_EDITINSERTOBJECT
 MENUITEM "&Links...", CM_EDITLINKS
 MENUITEM "&Object", CM_EDITOBJECT
 MENUITEM SEPARATOR
 MENUITEM "&Show Objects", CM_EDITSHOWOBJECTS
 }
 // other menus go here
}

Assigning a Tool Bar ID
See Also Programming the User Interface
If your OLE container has a tool bar, assign it the predefined identifier IDW_TOOLBAR.
ObjectWindows must be able to find the container's tool bar if a server needs to display its own tool
bar in the container's window. If ObjectWindows can identify the old tool bar, it temporarily replaces it
with the new one taken from the server. For ObjectWindows to identify the container's tool bar, the
container must use the IDW_TOOLBAR as its window ID.
 TControlBar* cb = new TControlBar(parent);
 cb->Attr.Id = IDW_TOOLBAR;
The TOleFrame::EvAppBorderSpaceSet method uses the IDW_TOOLBAR for its default
implementation. A container can provide its own implementation to handle more complex situations,
such as merging with multiple tool bars.

See Also
TOleFrame (OWL.HLP)

Building a Container
Turning an ObjectWindows Application Into an OLE Container
A container must include OLE ObjectWindows headers, compile with a supported memory model, and
link to the right libraries.

Including OLE Headers
ObjectWindows provides OLE-related classes, structures, macros and symbols in various header files.
The following list shows the headers needed for an OLE container using an SDI frame window.
#include <owl/oleframe.h>
#include <owl/olewindo.h>
#include <ocf/ocstorag.h>
an MDI application includes olemdifr.h instead of oleframe.h.

Compiling and Linking
ObjectWindows containers and servers must be compiled with the large memory model. They must be
linked with the OLE, ObjectComponents, and ObjectWindows libraries.

Turning a C++ Application Into an OLE Container
See Also
If you are writing a new program, consider using ObjectWindows to save yourself some work. The
ObjectWindows Library contains built-in code that automatically performs some tasks common to all
ObjectComponents programs. Programs that don't use ObjectWindows must undertake these chores
for themselves.
If you are writing a new program, consider using the AppExpert and ObjectWindows to save yourself
some work. But ObjectComponents works well in straight C++ programs without ObjectWindows, as
well.
The following topics discuss the changes needed for turning a C++ application into an
ObjectComponents container:
1.Register a Container
2.Create a View Window
3.Program the Main Window
4.Build the Program
The topics above illustrate each step using examples from the programs in the
EXAMPLES/OCF/CPPOCF directory. The source files titled CPPOCF0 contain a windows application
that does not support OLE. CPPOCF1 modifies the first program to make it an OLE container. The
code samples for this discussion come from CPPOCF1. The same directory also contains CPPOCF2,
an OLE server.
CPPOCF1 is a simple application that supports basic container functions: registering the application,
creating objects to initialize a new document, and embedding an object in the document. For ideas
about implementing other features, you might want to look at the source code for ObjectWindows OLE
classes such as TOleWindow and TOleView.
The explanations that follow do not describe all the differences in the source code from CPPOCF0 to
CPPOCF1. The omit details that are not specific to ObjectComponents and OLE, such as calling
RegisterClass for a new child window.

See Also
Turning a Doc/View Application Into an OLE Container
Turning an Objectwindows Application Into an OLE Container

Registering a Container
Turning a C++ Application Into an OLE Container
Giving the system the information it needs about your container takes three steps: building a
registration table, passing the table to a registrar object, and creating a memory allocator object.
The following topics discuss the three steps to registering a container:

Building a Registration Table

Creating the Registrar Object

Creating a Memory Allocator

Building a Registration Table
See Also Registering a Container
A container uses the registration macros to build a registration table describing the application. A
container does not need to create document registration tables except to support being a link source.
(When a container is a link source, it allows other containers to create links to objects in its own
documents.)
Here is the registration table from CPPOCF1:
REGISTRATION_FORMAT_BUFFER(100)
BEGIN_REGISTRATION(AppReg)
 REGDATA(clsid, "{8646DB80-94E5-101B-B01F-00608CC04F66}")
 REGDATA(progid, APPSTRING ".Application.1")
 REGDATA(description, "Sample container")
END_REGISTRATION
The application's header file includes this line:
#define APPSTRING "CppOcf1"
The progid string is therefore "CppOcf1.Application.1."
The registration macros build a structure of type TRegList. Each entry in the structure contains a key,
such as clsid or progid, and a value assigned to the key. Internally ObjectComponents finds the values
by searching for the keys. The order in which the keys appear does not matter.

See Also
Understanding Registration

Creating the Registrar Object
See Also Registering a Container
The registrar object records application information in the system registration database, processes any
OLE switches on the application's command line, and notifies OLE that the server is running.
CPPOCF1 declares a static pointer for the registrar object:
TOcRegistrar* OcRegistrar = 0;
TOcApp* OcApp = 0;
The second variable, OcApp, points to the connector object that implements OLE interfaces for the
application to communicate with OLE. The registrar creates the TOcApp object in WinMain.
Create the registrar as you initialize the application in WinMain. Instead of entering a message loop,
call the registrar's Run method. When Run returns, the application is ready to shut down. Delete the
registrar before you quit. This excerpt from the CPPOCF1 WinMain function shows all the steps.
int PASCAL
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 char far* lpCmdLine, int nCmdShow)
{
 try {
 TOleAllocator allocator(0); //required for OLE2
 MSG msg;

 // Initialize OCF objects
 OcRegistrar = new TOcRegistrar(::AppReg, 0,
 string(lpCmdLine), 0);
 OcRegistrar->CreateOcApp(OcRegistrar->GetOptions(), OcApp);

 // per-instance and per-task initialization code goes here

 // Standard Windows message loop
 while (GetMessage(&msg, 0, 0, 0)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 catch (TXBase& xbase) {
 MessageBox(GetFocus(), xbase.why().c_str(), "Exception caught", MB_OK);
 }

 // free the registrar object
 delete OcRegistrar;
 return 0;
}
TOcRegistrar Constructor Parameters
The TOcRegistrar constructor takes four parameters:

::AppReg, is the application registration structure already built with the registration macros.

ComponentFactory is a callback function.
The callback is responsible for creating any of the application's OLE components, including the

application itself, as required. The callback contains the application's message loop, as well.

cmdLine is a string object holding the application's command line.
The registrar searches the command line for OLE-related switches such as Automation or

Embedding, and it sets internal running mode flags accordingly.

0 is a null pointer to a document list.
Because CPPOCF1 does not register any document types, this list is empty. A container registers

document types to support being a link source.
Besides recording information in the registration database, the registrar object also creates the
TOcApp connector object when you call CreateOcApp.

See Also
TOcRegistrar
Building a Registration Table

Creating a Memory Allocator
Registering a Container
The beginning of the WinMain procedure creates a TOleAllocator:
TOleAllocator allocator(0); // use default memory allocator
The allocator's constructor initializes the OLE libraries and its destructor releases them when the
object goes out of scope. Passing 0 to the constructor tells it to let OLE use its standard memory
functions whenever allocating memory on behalf of this application.

Creating a View Window
Turning a C++ Application Into an OLE Container
ObjectComponents imposes one design requirement: a compound document must have its own
window, separate from the application's main window. To keep the distinction clear, we'll call the main
window the frame window, because it uses the WS_THICKFRAME style and has a visible border on
the screen. The second window has no visible border. We'll call it the view window because that is
where the application displays its data. The view window always exactly fills the frame window's client
area, so from the user's point of view the frame window appears to be the only window.
ObjectComponents needs the view window, though, because it expects to send some event messages
to the application and some to the view. (View windows are sometimes called client windows, too.)
In an SDI application like the CPPOCF1 sample program, the frame window controls the view window.
When the frame window receives a WM_SIZE message, it moves the view to keep it aligned with the
frame's client area. When it receives WM_CLOSE, it destroys both itself and the view window.
In an MDI application, each child window creates its own view. The child window does what the SDI
frame does: creates and manages a view for the document it displays.
The following topics discuss tasks involved with creating a view window:

Creating, Resizing, and Destroying the View Window

Creating a TOcDocument and TOcView

Handling WM_OCEVENT

Handling Selected View Events

Painting the Document

Activating and Deactivating Objects

Creating, Resizing, and Destroying the View Window
Creating a View Window
Before creating the view window, the application must first register a class for the view window.
CPPOCF1 registers both classes in InitApplication.
CPPOCF1 creates the view window in its factory because the factory is in charge of creating new
documents on request. The code for the view window, as you'll see, connects the new document to
OLE by creating some ObjectComponents helper objects. The factory calls this function to create the
view window:
HWND CreateViewWindow(HWND hwndParent)
{
 HWND hwnd = CreateWindow(VIEWCLASSNAME, "",
 WS_CHILD | WS_CLIPCHILDREN | WS_CLIPSIBLINGS | WS_VISIBLE | WS_BORDER,
 10, 10, 300, 300,
 hwndParent, (HMENU)1, HInstance, 0);
 return hwnd;
}
CPPOCF1 resizes and destroys the view window when the frame window receives WM_SIZE and
WM_CLOSE messages.
void
MainWnd_OnSize(HWND hwnd, UINT /*state*/, int /*cx*/, int /*cy*/)
{
 if (IsWindow(HwndView)) {
 TRect rect;
 GetClientRect(hwnd, &rect);
 MoveWindow(HwndView, rect.left, rect.top, rect.right, rect.bottom,
true);
 }
}

void
MainWnd_OnClose(HWND hwnd)
{
 if (IsWindow(HwndView))
 DestroyWindow(HwndView);
 DestroyWindow(hwnd);
}
The view window always fills the frame window's client area exactly. If the user opens and closes
documents or embeds objects, the changes show up in the view window.

Creating a TOcDocument and TOcView
See Also Creating a View Window
If the user embeds several objects in the container's view window, they all become part of a single
compound document. If the container supports file I/O, then the user can save and load different
documents.
For every document the container opens or creates, it needs one view window and two helper objects:
TOcDocument and TOcView. The document helper manages the collection of objects inserted in the
document. The view helper connects the document to OLE. More specifically, it implements interfaces
that OLE can call to communicate with the document. When OLE tells the view object that something
noteworthy has occurred, the view object sends a message to the view window.
The sample CPPOCF1 container declares two global pointers to hold the two helper objects. (A
program that opens more than one document at a time needs more than one pair of variables.)
TOcDocument* OcDoc = 0;
TOcView* OcView = 0;
CPPOCF1 creates and destroys the two helpers when it creates and destroys the view window that
displays the document.
bool
ViewWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* /*lpCreateStruct*/)
{
 OcDoc = new TOcDocument(*OcApp); // create document helper
 OcView = new TOcView(*OcDoc); // create view connector
 if (OcView)
 OcView->SetupWindow(hwnd); // attach view to window
 return true;
}

void
ViewWnd_OnDestroy(HWND /*hwnd*/)
{
 // code to de-activate objects goes here (explained later)

 if (OcView)
 OcView->ReleaseObject(); // do not delete the view; it is a COM
object
 OcDoc->Close(); // release the server for each embedded
object
 delete OcDoc; // delete the document helper; it is not a
COM object
}
The WM_CREATE message handler for the view window creates both helpers and then calls OcView-
>SetupWindow. The SetupWindow method tells the TOcView object where to send event messages.
in this case, it sends messages to hwnd, the view window. The view window now receives
WM_OCEVENT messages.
When the view window is destroyed, it makes three calls to dispose of the helper objects. OcView-
>ReleaseObject signals that the view window is through with the TOcView connector object. You
shouldn't call delete for a TOcView object because the OLE system might still need more information
before it allows the view to shut down. ReleaseObject tells the TOcView object that you don't need it
any longer. The view subsequently destroys itself as soon as all other OLE clients finish with it, as well.
The TOcView destructor is protected to prevent you from calling it directly.
A container document only has other OLE clients if it registers support for being a link source. in that
case, other applications can create links to objects in the container's document.

The TOcDocument object, on the other hand, is not a connector object and so you can destroy it with
delete in the usual way. First, however, you should call Close to release the server applications that
OLE may have invoked to support each linked or embedded object.

See Also
TOcDocument
TOcView

Handling WM_OCEVENT
See Also Creating a View Window
Because the TOcView::SetupWindow method bound the TOcView connector to the view window, the
connector sends its event notification messages to the window. All ObjectComponents events are sent
in the WM_OCEVENT message, so the view window procedure must respond to WM_OCEVENT.
long CALLBACK _export
ViewWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM lParam)
{
 switch (message) {
.
.
.
 // other message crackers go here
 HANDLE_MSG(hwnd, WM_OCEVENT, ViewWnd_OnOcEvent);
 }
 return DefWindowProc(hwnd, message, wParam, lParam);
}
The HANDLE_MSG message cracker macro for WM_OCEVENT is defined in the ocf/ ocfevx.h
header. The same header also defines a another cracker for use in the WM_OCEVENT message
handler.
// Subdispatch OC_VIEWxxxx messages
long
ViewWnd_OnOcEvent(HWND hwnd, WPARAM wParam, LPARAM /*lParam*/)
{
 switch (wParam) {
 // insert an event cracker for each OC_VIEWxxxx message you want to
handle
 HANDLE_OCF(hwnd, OC_VIEWPARTINVALID, ViewWnd_OnOcViewPartInvalid);
 }
 return true;
}
The WM_OCEVENT message carries an event ID in its wParam, just as WM_COMMAND messages
carry command IDs. OC_VIEWPARTINVALID is one possible event, indicating that it is time to repaint
a linked or embedded object. The HANDLE_OCF macro calls the handler you designate for each
ObjectComponents event, just as HANDLE_MSG calls the handler for for a window message.
CPPOCF1 chooses to handle only the OC_VIEWPARTINVALID message. To handle others, add one
HANDLE_OCF macro for each event ID.

See Also
WM_OCEVENT message

Handling Selected View Events
Creating a View Window
Each HANDLE_OCF macro calls a different handler function. In the example, the handler function is
called ViewWnd_OnOcViewPartInvalid. ObjectComponents sends this message to a container when
one of the OLE data objects in its document needs to be repainted.
bool
ViewWnd_OnOcViewPartInvalid(HWND hwnd, TOcPart& part)
{
 HDC dc = GetDC(hwnd);
 SetMapMode(dc, MM_ANISOTROPIC);
 SetWindowOrg(dc, 0, 0);
 SetViewportOrg(dc, 0, 0);
 RECT rect = part.GetRect();
 LPtoDP(dc, (POINT*)&rect, 2);
 InvalidateRect(hwnd, &rect, true);
 ReleaseDC(hwnd, dc);
 return true;
}
The TOcPart parameter represents the object that needs painting. ObjectComponents creates a
TOcPart object for every linked or embedded object in a container document. CPPOCF1 handles this
message by asking the part for its coordinates and invalidating that part of its client area. The
InvalidateRect command results in a WM_PAINT message, and the ViewWnd_OnPaint procedure
responds by drawing the document.

Painting the Document
See Also Creating a View Window
Painting a compound document requires two steps: drawing the container's own data and drawing all
the linked or embedded objects. Here's the basic frame for a paint procedure:
void
ViewWnd_OnPaint(HWND hwnd)
{
 PAINTSTRUCT ps;
 HDC dc = BeginPaint(hwnd, &ps);
 //
 // Do your regular painting here
 //

 // Now draw embedded objects
 ViewWnd_PaintParts(hwnd, dc, false);
 EndPaint(hwnd, &ps);
}
The code for ViewWnd_PaintParts is the same in most applications.
bool
ViewWnd_PaintParts(HWND hwnd, HDC dc, bool metafile)
{
 // get logical coordinates of area to draw
 TRect clientRect;
 GetClientRect(hwnd, &clientRect);
 TRect logicalRect = clientRect;
 DPtoLP(dc, (POINT*)&logicalRect, 2);

 // loop through all the parts and draw each one
 ViewData& viewData = GetViewData(hwnd);
 for (TOcPartCollectionIter i(viewData.OcDoc->GetParts()); i; i++) {
 TOcPart& part = *i.Current();
 if (part.IsVisible(logicalRect)) {
 TRect rect = part.GetRect();
 part.Draw(dc, rect, clientRect, asDefault);
 if (metafile)
 continue;

 // If an object is selected, draw whatever mark indicates that state
 if (part.IsSelected()) {
 // Draw some XOR rectangle around 'rect'
 }
 }
 }
 return true;
}
CPPOCF1 is a very simple container. Because it holds only one embedded object at a time, it doesn't
really have to create a loop to handle painting multiple parts. If it expanded to permit multiple objects,
however, it would not have to change its paint procedure.
The TOcPart class manages linked or embedded objects in a container document. The TOcPart::Draw
method asks the server to draw its object. The Draw method does not need to be told the position of
the object. The TOcPart object receives that information when it is constructed, as you will see in
"Handling selected application events."

The for loop creates an iterator object to enumerate all the parts in the document. The ++ operator
advances the iterator to point to successive parts. The expression *i.Current() evaluates to a different
part each time through the loop.

See Also
TOcPart

Activating and Deactivating Objects
Creating a View Window
After embedding an object into a compound document, the user might decide to edit the object. In
most containers, the user activates an object by double-clicking it. CPPOCF1 does not support
activating objects, but the code to do it is straightforward. You intercept WM_LBUTTONDBLCLK
messages, check the mouse coordinates, and if they fall on an object you activate it.
To enumerate the document's embedded and linked objects, use a for loop with a
TOcPartCollectionIter object, as the paint procedure does to draw all the parts. To find the coordinates
of an object, call TOcPart::GetRect. To activate a part, call TOcPart::Activate.
Before a container closes a compound document, it should always check that no object is activated.
CPPOCF1 includes this loop in the WM_DESTROY handler of its view window:
for (TOcPartCollectionIter i(OcDoc->GetParts()); i; i++) {
 TOcPart& p = *i.Current();
 p.Activate(false);
}
Passing false to Activate terminates any editing session.

Programming the Main Window
Turning a C++ Application Into an OLE Container
The view window manages tasks related to a single document. It opens and closes the document and
draws it on the screen. The frame window manages tasks for the whole application. It responds to
menu commands, and it creates and destroys the view window.
The following topics discuss programming the main window:

Creating the Main Window

Handling WM_OCEVENT

Handling Selected Application Events

Handling Standard OLE Menu Commands

Creating the Main Window
Programming the Main Window
When the application creates its main window, it must bind the window to its TOcApp object. (The
TOcApp object was created in the factory callback function.)
bool
MainWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* /*lpCreateStruct*/)
{
 HwndMain = hwnd;
 if (OcApp)
 OcApp->SetupWindow(hwnd);
 return true;
}
The TOcApp object sends messges about OLE events to the application's main window. SetupWindow
tells the TOcApp where to direct its event notifications.

Handling WM_OCEVENT
Programming the Main Window
TOcApp sends event notifications in the WM_OCEVENT message. Like the view window, the frame
window also must handle WM_OCEVENT. The frame window receives notification of events that
concern the application as a whole, not just a particular document. The frame window procedure sends
WM_OCEVENT messages to a handler that identifies the event and calls the appropriate handler
routine. Both routines closely resemble the corresponding code for the view window.
// Standard message-handler routine for main window
long CALLBACK _export
MainWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM lParam)
{
 switch (message) {
.
.
.
// other message crackers go here
 HANDLE_MSG(hwnd, WM_OCEVENT, MainWnd_OnOcEvent);
 }
 return DefWindowProc(hwnd, message, wParam, lParam);
}

// Subdispatch OC_... messages
long
MainWnd_OnOcEvent(HWND hwnd, WPARAM wParam, LPARAM /*lParam*/)
{
 switch (wParam) {
 HANDLE_OCF(hwnd, OC_VIEWTITLE, MainWnd_OnOcViewTitle);
 }
 return true;
}

Handling Selected Application Events
Programming the Main Window
The only ObjectComponents event that CPPOCF1 handles in its main window is OC_VIEWTITLE.
This message is sent when a server engaged in open editing wants to use the container's title in its
own window caption. The OLE user interface guidelines require the server to show the source of the
object it is editing.
const char*
MainWnd_OnOcViewTitle(HWND /*hwnd*/)
{
 return APPSTRING;
}
Because CPPOCF1 always has only a single document, it returns the name of the application as the
title of its view. Because it always has only one view, it can handle the OC_VIEWTITLE event in the
main window procedure. Most containers handle this message in the view window and return the
name of the application and the name of the document combined in a single string.

Handling Standard OLE Menu Commands
Programming the Main Window
An OLE container places OLE commands on its Edit menu. It's not necessary to use all of them.
CPPOCF1 supports one, Insert Object. This command lets users add new objects to the current
document.
void
MainWnd_OnCommand(HWND hwnd, int id, HWND /*hwndCtl*/, uint /*codeNotify*/)
{
 switch (id) {
 case CM_INSERTOBJECT: {
 try {
 TOcInitInfo initInfo(OcView); // begin initializing info
structure
 if (OcApp->Browse(initInfo)) { // show Insert Object dialog
box
 TRect rect(30, 30, 100, 100); // only top and left are
used
 new TOcPart(*OcDoc, initInfo, rect); // add new object to
document
 }
 }
 catch (TXBase& xbase) {
 MessageBox(GetFocus(), xbase.why().c_str(), "Exception caught",
MB_OK);
 }
 break;
 }
 case CM_EXIT: {
 PostMessage(hwnd, WM_CLOSE, 0, 0);
 break;
 }
 }
}
The code for inserting, dropping, or pasting an object into a document always begins with a TOcInitInfo
structure. TOcInitInfo holds information describing the object about to be created: what container will
receive it, whether to link or embed it, whether it already exists or will be newly created, and if it exists,
where the data resides and in what format.
The constructor for TOcInitInfo receives a pointer to the view where you want the new object to
appear. The next command, OcApp->Browse, invokes the standard Insert Object dialog box offering
the user a choice of all the objects any server registered in the system can create. When the user
chooses one, the Browse command places more information in initInfo.
The final step to insert a new OLE object is to create a TOcPart connector. TOcPart implements all the
OLE services that a linked or embedded object is required to provide. It plugs into OLE, gets the data
for the new object, adds itself to the list of parts in OcDoc, and draws itself on the screen in the
position given by TRect.
For examples showing how to implement other OLE Edit menu commands, look at the source code for
event handlers in OWL/OLEWINDO.CPP.

Building the Program
Turning a C++ Application Into an OLE Container
To build the server, you need to include the right headers, use a supported memory model, and link to
the right libraries.
The following topics discuss those tasks:

Including ObjectComponents Headers

Compiling and Linking

Including ObjectComponents Headers
Building the Program
The following list shows the ObjectComponents headers for a container that does not use
ObjectWindows.
#include <ocf/ocapp.h> // TOcRegistrar, TOcModule, TOcApp (application
connector)
#include <ocf/ocdoc.h> // TOcDocument (compound document manager)
#include <ocf/ocview.h> // TOcView (document view connector)
#include <ocf/ocpart.h> // TOcPart (linked/embedded object connector)
#include <ocf/ocfevx.h> // WM_OCEVENT message crackers

Compiling and Linking
Building the Program
ObjectComponents applications that do not use ObjectWindows can use either the medium or large
memory model. Link them with the OLE and ObjectComponents libraries.
To build CPPOCF0, CPPOCF1, and CPPOCF2, move to the program's directory and type this at the
command prompt:
make MODEL=l
This command builds all three programs using the large memory model.
The make file that builds this example program refers to the OCFMAKE.GEN file.

Creating an Automation Controller
See Also
An automation controller is an application that controls a server's automated objects by sending
commands to OLE for other programs to execute. Writing an automation controller is easier than
writing a container, a server, or an automation object because sending commands doesn't require any
user interface. You don't need to create any windows or use the Clipboard or draw objects on the
screen.
In order to send commands to an OLE object, the automation controller must know the names of
methods and properties the object's server exposes to OLE. Generally these names come from the
server's type library. The controller uses the names in creating C++ proxy classes whose methods
send commands to the server. It's possible to browse through available automation objects at run time
and discover what commands they support, but to make use of commands discovered at run time
usually requires a scripting language.
The following topics discuss creating an automation controller and enumerating items in an automated
collection:

Steps for Building an Automation Controller

Enumerating Automated Collections

See Also
Automating an Application

Steps for Building an Automation Controller
See Also
These are the coding steps required to make one program control another.
1. Include header files
2. Create a TOleAllocator object
3. Declare proxy classes - to represent each OLE object you want to automate. Derive the classes

from TAutoProxy.
4. Implement proxy classes
5. Create and use proxy objects
6. Compile and link

See Also
Enumerating Automated Collections

Including Header Files
See Also Steps For Building An Automation Controller
An automation controller needs to include the following headers:
#include <ocf/autodefs.h>
#include <ocf/automacr.h>
The autodefs.h header defines automation classes such as TAutoProxy. The automacr.h header
defines the macros a controller uses to implement proxy class methods.

See Also
ObjectComponents Header Files

Creating a TOleAllocator Object
See Also Steps For Building An Automation Controller
Like automation servers, automation controllers must also create a TOleAllocator object to initialize the
OLE libraries and (optionally) to give OLE a memory allocation function. To create a TOleAllocator
object, add this line to your program.
TOleAllocator OleAlloc;
The constructor for TOleAllocator initializes the OLE libraries and its destructor releases them. Create
an object of type TOleAllocator before you begin OLE operations and be sure the object is not
destroyed until all OLE operations have ended. A good place to create the TOleAllocator is at the
beginning of WinMain or OwlMain.

See Also
TOleAllocator

Declaring Proxy Classes
See Also Steps For Building An Automation Controller
A proxy class is a C++ stand-in for an automated OLE object. You create a proxy class whose
interface corresponds to that of the OLE object. By deriving the proxy class from TAutoProxy, you
connect it to ObjectComponents. When a TAutoProxy object is constructed, it calls an OLE API to
request the IDispatch interface of the automated object that the proxy represents. When you call a
function of the proxy class, the proxy sends the corresponding command to the automation server.
An automation controller declares one proxy class for every type of object it wants to control. in simple
cases, a single proxy class might be enough. Controlling a complex application that creates several
different kinds of automatable objects requires more proxies. To control a spreadsheet, for example,
you might need a proxy application class, a proxy spreadsheet class, and a proxy cell class.
The easiest way to declare and implement proxy classes is with the AutoGen utility. AutoGen reads the
server's type library and generates C++ source code for the proxy classes a controller needs to send
any commands to the server. Simply compile the generated code into your application, construct proxy
objects when you need them, and call their member functions to send commands.
As an example of a proxy class, here is the code that AutoGen generates for the automated class
TCalc in the AutoCalc sample program. The opening comment shows descriptive information from
AutoCalc's entries in the registration database including the value of AutoCalc's version, clsid, and
description registration keys. The comments for individual members show the documentation strings
that AutoCalc assigns to each member in its automation definition table, the dispatch ID that
ObjectComponents assigned to identify each command, and whether the member is a function or a
property.
// TKIND_DISPATCH: TCalc 1.2 {877B6207-7627-101B-B87C-0000C057CE4E}\409
// Automated Calculator Class
class TCalc : public TAutoProxy {
 public:
 TCalc() : TAutoProxy(0x409) {}
 // Pending operand
 long GetOperand(); // [id(1), prop r/w]
 void SetOperand(long); // [id(1), prop r/w]
 // Calculator accumulator
 long GetAccumulator(); // [id(0), prop r/w]
 void SetAccumulator(long); // [id(0), prop r/w]
 // Pending operation
 TAutoString GetOp(); // [id(3), prop r/w]
 void SetOp(TAutoString); // [id(3), prop r/w]
 // Evaluate operand, op
 TBool Evaluate(); // [id(4), method]
 // Clear accumulator
 void Clear(); // [id(5), method]
 // Update display
 void Display(); // [id(6), method]
 // Terminate calculator
 void Quit(); // [id(7), method]
 // Button push sequence
 TBool Button(TAutoString Key); // [id(8), method]
 // Calculator window
 void GetWindow(TCalcWindow&); // [id(9), propget]
 // Test of object as arg
 long LookAtWindow(TCalcWindow& Window); // [id(10), method]
 // Array as collection
 void GetArray(TCalcArray&); // [id(11), propget]
 // Application object

 void GetApplication(TCalc&); // [id(12), propget]
};
The constructor of an automation proxy class must pass to its base class, TAutoProxy, a number
representing a locale setting. The locale tells what language the automation controller uses when it
sends commands to objects. in the example, the number is 0x409, which is the locale ID for American
English. AutoGen chooses this locale by reading the system settings when it runs, but you are free to
change it to whatever locale you prefer.
The function members of class TCalc each send a different command to the calculator object. Read-
write properties get two commands, one for getting the value and one for setting it. GetOp and SetOp,
for example, write and read the value representing the next operation the calculator will perform. Other
commands, such as Display and Quit, make the calculator perform some action..

See Also
TAutoProxy
TLocaleId

Implementing Proxy Classes
See Also Steps For Building An Automation Controller
Simply declaring methods doesn't accomplish much, of course. You also have to implement them.
Each method must send a command through ObjectComponents to the automated object. Here is part
of the implementation code that AutoGen generates for the TCalc proxy object. Every method simply
calls the same three macros.
// TKIND_DISPATCH: TCalc 1.2 {877B6207-7627-101B-B87C-0000C057CE4E}\409
Automated Calculator Class
TAutoString TCalc::GetOp()
{
 AUTONAMES0("Op")
 AUTOARGS0()
 AUTOCALL_PROP_GET
}
void TCalc::SetOp(TAutoString val)
{
 AUTONAMES0("Op")
 AUTOARGS0()
 AUTOCALL_PROP_SET(val)
}
TBool TCalc::Evaluate()
{
 AUTONAMES0("Evaluate")
 AUTOARGS0()
 AUTOCALL_METHOD_RET
}
void TCalc::Clear()
{
 AUTONAMES0("Clear")
 AUTOARGS0()
 AUTOCALL_METHOD_VOID
}
void TCalc::Display()
{
 AUTONAMES0("Display")
 AUTOARGS0()
 AUTOCALL_METHOD_VOID
}
void TCalc::Quit()
{
 AUTONAMES0("Quit")
 AUTOARGS0()
 AUTOCALL_METHOD_VOID
}
void TCalc::GetWindow(TCalcWindow& obj)
{
 AUTONAMES0("Window")
 AUTOARGS0()
 AUTOCALL_PROP_REF(obj)
}
The three macros supply all the code needed for each function. The first two macros, AUTONAMES
and AUTOARGS, specify what arguments you want to pass. They are explained in more detail below.
None of the methods in the example takes any arguments. The AUTOCALL_xxxx macros tell whether
the command is a function or a property and what kind of value it returns.

Macro Description
AUTOCALL_METHODn(id, arg...) Calls a method with n arguments that returns a value.
AUTOCALL_METHODnV(id, arg...) Calls a method with n arguments that returns void.
AUTOCALL_METHODn_REF(id, prx, arg...) Calls a method with n arguments that returns a proxy

object.
AUTOCALL_PROPGET(id) Retrieves the value of a property.
AUTOCALL_PROPSET(id, arg) Assigns a value to a property.
AUTOCALL_PROPREF(id, obj) Retrieves the value of a property that contains an

object. (Objects must be passed by reference.)

Note: When an automation command passes an object as a parameter or a return value, be sure to
pass by reference, not by assignment. for example, access functions for a property
implemented as an object should follow this form:
GetObjectX(X& obj);
SetObjectX(X& obj);

Passing objects by assignment makes it impossible to provide C++ type safety.

See Also
AUTOARGS Macros
AUTOCALL_xxxx Macros
AUTONAMES Macros
Specifying Arguments in a Proxy Method

Specifying Arguments in a Proxy Method
See Also Implementing Proxy Classes
The first two macros in the implementation of a proxy method indicate what arguments you intend to
pass. The server can decide that some arguments to a method are optional. You must pass all
required arguments, and you can choose to pass any subset of the optional arguments.
For example, a server might expose a method that takes ten arguments, of which five are optional.
Optional arguments have default values. Your controller might have a use for only one of the optional
arguments, always accepting the default values for the other four. in that case, you can set up your
proxy implementation so that you have to pass only six arguments instead of ten.
The AUTONAMES macro lists any optional arguments that you do want to use. It lists them by the
names the server assigns to them. (AutoGen reads the names from the server's type library for you.) If
you intend to pass only one of five optional arguments, then you list only one argument in
AUTONAMES.
The first argument passed to an AUTONAMES macro always indentifies the automation method that
this proxy command invokes. The names of arguments come after. If the automation server uses
ObjectComponents, then the names used in AUTONAMES come from the server's automation
definition table. The function name is the external name in an EXPOSE_METHOD macro, and the
argument names come from subsequent OPTIONAL_ARG macros.
The second parameter in a proxy method implementation, AUTOARGS, lists all the arguments that the
controller chooses to pass for this command. It tells what will be pushed onto the command stack.
AUTOARGS must always list all the required arguments in order first. At the end of the list come any
optional arguments from the AUTONAMES macro. If there are five required arguments and the
controller wants to pass only one of five optional arguments, then the list in AUTOARGS includes six
arguments, the optional one last.
The names used for required arguments are just dummy names. Their position in the list indicates
which argument they represent. The names for optional arguments must be the same names used in
AUTONAMES. for optional arguments, the name itself is what identifies a particular parameter.

See Also
AUTOARGS Macros
AUTONAMES Macros
EXPOSE_METHOD Macros
OPTIONAL_ARG Macro
Writing Definition Macros

Creating and Using Proxy Objects
See Also Steps For Building An Automation Controller
Through a proxy class you can talk to an OLE object, but first the object has to exist. The TAutoProxy
class defines a member function called Bind that asks OLE to create an object. The parameter passed
to Bind determines the type of object to create. The most convenient identifier is usually a name the
automation object has recorded in the registration database. (the object's unique clsid number also
works but is harder to remember and write.) This is what an automation controller does to make OLE
create a calculator object:
TCalc calc; // create proxy object
calculator.Bind("Calc.Application"); // make OLE create real object
The string passed to Bind is what the automation server registered as its progid:
REGDATA(progid, "Calc.Application") // from server's registration table
The destructor for TAutoProxy calls the Unbind method, so when calculator goes out of scope, OLE
destroys the actual calculator object.
While calculator remains in scope, the controller program issues commands by calling methods on the
proxy object. The commands in the following example add 1234 + 4321 and display the result in the
calculator's window.
calc.SetOperand(1234);
calc.SetOp("Add");
calc.Evaluate();
calc.SetOperand(4321);
calc.Button("+");
calc.Evaluate();
calc.Display();

See Also
REGDATA Macro (OWL.HLP)
TAutoProxy::Bind
TAutoProxy::Unbind

Compiling and Linking
Steps For Building An Automation Controller
Automation servers and controllers must be compiled with the medium or large memory model. (They
run faster in medium model.) They must be linked with the OLE and ObjectComponents libraries.
The integrated development environment (IDE) chooses the right build options for you when you ask
for OLE support. To build any ObjectComponents program from the command line, create a short
makefile that includes the OCFMAKE.GEN file found in the EXAMPLES subdirectory.
EXERES = MYPROGRAM
OBJEXE = winmain.obj myprogram.obj
!include $(BCEXAMPLEDIR)\ocfmake.gen
EXERES and OBJRES hold the name of the file to build and the names of the object files to build it
from. The last line includes the OCFMAKE.GEN file. Name your file MAKEFILE and type this at the
command line prompt:
make MODEL=m
MAKE, using instructions in OCFMAKE.GEN, will build a new makefile tailored to your project. The
new makefile is called WIN16Mxx.MAK.

Enumerating Automated Collections
See Also
Many automated objects have properties that represent a set of related itemsfor example, integers in
an array, structures in a linked list, or a group of objects such as the buttons on the face of the
calculator. To expose a collection, the automation server must implement a collection object with
access functions. As OLE sees it, a collection object implements the standard IEnumVARIANT
interface.
The following topics explain what a controller must do to use a collection object and enumerate items
in the server:
1. Declare a proxy collection class
2. Implement the proxy collection class
3. Declare a collection property
4. Send commands to the collection

See Also
Steps For Building An Automation Controller

Declaring a Proxy Collection Class
See Also Enumerating Automated Collections
A proxy collection class usually supplies member functions to find out how many items are in the
collection, to retrieve individual items randomly by their position in the list, and to enumerate the items
in the list sequentially. (on the server's side, ObjectComponents calls this iterating. The controller uses
the server's iterator to enumerate the items.)
Here is the proxy class that AutoGen creates to enumerate the collection of calculator buttons in
AutoCalc.
// TKIND_DISPATCH: TButtonList 1.2 {877B6204-7627-101B-B87C-0000C057CE4E}\
409
// Button Collection
class TButtonList : public TAutoProxy {
 public:
 TButtonList() : TAutoProxy(0x409) {}
 // Button Count
 long GetCount(); // [id(1), propget]
 // Button Iterator
 void Enumerate(TAutoEnumerator<TCalcButton>&); // [id(-4), propget]
 // Button Collection Item
 void Item(TCalcButton&, short Index); // [id(0), method]
};
The only thing here that wasn't in the previous proxy classes is the use of the TAutoEnumerator
template. TAutoEnumerator encapsulates the code for manipulating the IEnumVARIANT interface of a
collection object. The type you pass to the template is the type of value the collection contains. In the
example, TCalcButton is another proxy class representing an automated button object in the server.

See Also
TAutoEnumerator

Implementing the Proxy Collection Class
See Also Enumerating Automated Collections
This is the code that AutoGen writes to implement the proxy collection class. Count and Item are
straightforward. The Enumerate method does several new things, however.
// TKIND_DISPATCH: TButtonList 1.2 {877B6204-7627-101B-B87C-0000C057CE4E}\
409 Button Collection
long TButtonList::GetCount()
{
 AUTONAMES0("Count")
 AUTOARGS0()
 AUTOCALL_PROP_GET
}
void TButtonList::Enumerate(TAutoEnumerator<TCalcButton>& obj)
{
 AUTONAMES0(DISPID_NEWENUM)
 AUTOARGS0()
 AUTOCALL_PROP_REF(obj)
}
void TButtonList::Item(TCalcButton& obj, short Index)
{
 AUTONAMES0("Item")
 AUTOARGS1(Index)
 AUTOCALL_METHOD_REF(obj)
}
First, the parameter to the Enumerate method is a reference to an object of the type that the collection
contains. on successive calls, Enumerate returns collection items through this parameter. The data
type for the parameter must use the TAutoEnumerator template.
Second, the method is identified to AUTONAMES0 as DISPID_NEWENUM. This is a predefined
constant from oleauto.h representing the standard dispatch ID (which happens to be 4) for an
enumerating command. The AUTONAMES0 macro accepts a dispatch ID instead of a function name.
(the other AUTONAMES macros, those that expect argument names as well, require a name string for
the function.)
Finally, an enumerator is a property of its object and it passes an object by value, so it the enumerator
implementation ends with the AUTOCALL_PROP_REF macro.

See Also
AUTOCALL_xxxx Macros
AUTONAMES Macros

Declaring a Collection Property
Enumerating Automated Collections
TButtonsList is now fully defined as a proxy class for the server's collection object. What's needed now
is a way to ask the controller for the collection. In AutoCalc, the collection of buttons is a property of the
calculator's automated window object.
class TCalcWindow : public TAutoProxy {
 public:
 TCalcWindow() : TAutoProxy(0x409) {}
 // Button Collection
 void GetButtons(TButtonList&); // [id(5), propget]
The window class exposes the collection through a GetButtons command that returns the value of the
collection property. GetButtons needs the TButtonList class to declare its parameter type.

Sending Commands to the Collection
Enumerating Automated Collections
This code from the sample program CallCalc sends the calculator commands that press its buttons. in
the code, window is the automated window object. TCalcButton is the proxy class for individual
buttons. TButtonList is the proxy object for the collection.
TButtonList buttons; // declare a collection object
window.GetButtons(buttons); // bind buttons to automated
collection object
TAutoEnumerator<TCalcButton> list; // create an enumerator of
TCalcButton objects
buttons.Enumerate(list); // bind list to the server's
iterator
TCalcButton button; // declare a button object

// list.Step advances to the next item in list
for (i = IDC_FIRSTBUTTON; list.Step(); i++) {
 list.Object(button); // bind button to an automated
button object
 button.SetActivate(true); // press the calculator button
}
The buttons, list, and button variables are each created in one step and then bound to a server object
in another. Each of them is a proxy object for something the server created; buttons, for example, is
the proxy object for a collection of automated button objects. Simply declaring a proxy object, however,
does not attach it to any particular automated object in the server. To be able to send commands, a
proxy object must be bound to something with an automation interface (IDispatch or IEnumVARIANT).
Because the server defines the collection of buttons as a property of the calculator's window, this
command retrieves the collection and connects it to the buttons proxy object:
window.GetButtons(buttons); // bind buttons to automated collection object
The two other lines where the comments indicate binding takes place similarly connect list to the
collection's iterator object and button to individual button objects in the collection.
A simple assignment statement might seem more intuitive than the binding step, but the only value that
could be assigned in these cases is simply a pointer to an automation interface. A pointer carries no
type information; a pointer to a collection's IDispatch looks just like the pointer to a button's IDispatch.
Binding to an existing C++ object preserves information about what kind of automation object it
represents.

Support for OLE in Borland C++
ObjectComponents is a set of classes for creating OLE 2 applications in C++. The following topics
discuss questions you may have about using Borland C++ to create OLE 2 application:

What does ObjectComponents do?

Where Should You Start?

What is OLE?

What does OLE look like?

What is ObjectComponents?

How do I use ObjectComponents?

How does ObjectComponents work?

What ObjectComponents programming tools are available?

Where do I look for information?

What do these new OLE terms mean?

What Does ObjectComponents Do?
See Also Support for OLE in Borland C++
ObjectComponents makes OLE programming easy. It supports all the following OLE 2 capabilities:

Linking

Embedding

In-place editing

Drag-and-drop operation

OLE Clipboard operations

Compound document storage

Automation servers and controllers

DLL servers

Localization

Registration
Using ObjectComponents offers these features::

an easy upgrade path to linking and embedding for existing C++ applications, especially if they
use ObjectWindows

Easy automation of existing C++ applications, whether or not they use ObjectWindows

Default implementations of standard OLE 2 user interface elements, such as the Insert Object
and Paste Link dialog boxes

The ability to create OLE 2 applications with AppExpert, which generates and understands the
new OLE classes

Compatibility with other OLE applications, including OLE 1 applications, whether or not they were
built with Borland tools

Virtually no operating overhead imposed on ObjectWindows applications that choose not to use
OLE

See Also
OLE 2 Features Supported by ObjectComponents

Where Should You Start?
See Also Support for OLE in Borland C++
That depends on what you want to know and what application you want to create. The following topics
offer introductory discussions:

Writing Applications

Learning About Object Components

See Also
Where Do I Look for Information?

Writing Applications
Where Should You Start?
The right starting place depends on whether you are creating a new application or adapting an existing
one.
The following topics discuss your choices:

Creating a New Application

Converting an Application Into an OLE Container

Converting Application Into a Linking and Embedding Server

Adding Automation Support

Other Useful Topics

Creating a New Application
Writing Applications
You can generate a complete OLE application almost instantly using AppExpert. AppExpert fully
supports all the new features of ObjectComponents. To start an OLE application from scratch, simply
choose Project|AppExpert from the IDE menu. For more information about AppExpert, consult the
User's Guide.
The programs AppExpert creates use the ObjectWindows Library. If you are new to ObjectWindows,
begin with the ObjectWindows Tutorial book.

Converting an Application into an OLE Container
Writing Applications
Where you should start depends on whether your application uses ObjectWindows, and if so, whether
it uses the Doc/View model.
The following table gets you started:

ObjectWindows? Doc/View? Where to start
Yes Yes Turning a Doc/View Application Into an OLE Container
Yes No Turning an Objectwindows Application Into an OLE

Container
No No Turning a C++ Application Into an OLE Container

Converting Application into a Linking and Embedding Server
Writing Applications
Where you should start depends on whether your application uses ObjectWindows, and if so, whether
it uses the Doc/View model.
The following table gets you started:

ObjectWindows? Doc/View? Where to start
Yes Yes Turning a Doc/View Application Into an OLE Server
Yes No Turning an Objectwindows Application Into an OLE

Server
No No Turning a C++ Application Into an OLE Server

Adding Automation Support
Writing Applications

The process of adding automation support to an existing application is the same regardless of whether
the application uses ObjectWindows or the Doc/View model. For help creating an automation server, a
controller, or a type library, select the indicated topic.

Automation server: Automating an Application

Automation client: Creating an Automation Controller

Type library: Creating a Type Library

Other Useful Topics
Writing Applications
Here are some topics common to different kinds of OLE applications. For help with them, select the
indicated topic.

DLL server: Making a DLL Server

Localization: Localizing Symbol Names

Registration: Building Registration Tables

Compiling and linking: Building an ObjectComponents Application

Exception handling: Exception Handling in ObjectComponents

Learning about ObjectComponents
Where Should You Start?
The following topics help you become familiar with ObjectComponents.

Understanding OLE

What is OLE? - an introduction to OLE

What does OLE look like? - illustrations showing how common OLE interactions look onscreen

Surveying the new classes

Using ObjectComponents - summarizing new classes and messages in ObjectComponents and
ObjectWindows

Understanding how ObjectComponents works

How ObjectComponents Works - how ObjectComponents classes mediate between OLE and
your own C++ classes
Finding example programs

Example Programs - a brief description of some of the sample ObjectComponents programs in
Borland C++
Finding the right documentation

Books and Online Help - all the parts of the documentation that describe ObjectComponents
Understanding terms

Glossary of OLE terms - definitions of terms used in the documentation. Skimming the glossary is
also a good way to introduce yourself to the features of ObjectComponents.

What Is OLE?
See Also Support for OLE in Borland C++
OLE, which stands for object linking and embedding, is an operating system extension that lets
applications achieve a high degree of integration. OLE defines a set of standard interfaces so that any
OLE program can interact with any other OLE program. No program needs to have any built-in
knowledge of its possible partners.
Programmers implement OLE applications by creating objects that conform to the Component Object
Model (COM). COM is the specification that defines what an OLE object is. COM objects support
interfaces, composed of functions for other objects to call. OLE defines a number of standard
interfaces. COM objects intended for public access expose their interfaces in a registration database.
Interfaces have unique identifiers to distiguish them.
ObjectComponents encapsulates the COM specification for creating objects and provides default
implementations of the interfaces used for two common OLE tasks: linking and embedding, and
automation. Linking and embedding lets one application incorporate live data from other OLE
applications in its documents. Automation lets one application issue commands to control another
application.
The following topics discuss common uses for OLE.

Linking and Embedding

Automation

See Also
Glossary of OLE Terms

Linking and Embedding
See Also What is OLE?
Linking and embedding refer to the transfer of data from one program to another. The first program,
the server, sends its data to the second program, the container. For example, cells from a spreadsheet
can be dropped into a word processing document. Of course you don't need OLE to pass data from
one Windows program to another. You can do that much with just the Clipboard. The difference
between OLE and the Clipboard is that in OLE the receiving program doesn't have to know anything at
all about the format of the data in the object. Any OLE server application can give its data to any OLE
container application. Thanks to OLE, the container doesn't care whether the object it receives is a
metafile, a bitmap, or ASCII text. The server passes whatever data it uses internally and the container
accepts it. Furthermore, the object remains dynamic even after being transplanted. When the
container wants to display, modify, or save the object, it calls OLE to do it. OLE, working behind the
scenes, calls the server to execute the user's command. The object belongs to the container's
document, but OLE maintains a live connection back to the server. The user can continue to edit the
object using all of the server's tools. As a result, the user can combine objects from different servers
into a single document without losing the ability to update and modify any object as the document
evolves.

See Also
Overview of Linking and Embedding Classes

automation
See Also What is OLE?
Automation happens when one program issues commands to another. If you write a calculator
program, for example, you might allow other programs to issue commands like these:

Press the nine button.

Press the plus button.

Press the six button.

Press the equals button.

Tell me what's in the Total window.
These are commands a person might normally issue through the calculator's user interface. With
automation, the calculator exposes its internal functions to other programs. The calculator becomes an
automation object, and programs that send commands to it are automation controllers. OLE defines
standard interfaces that let a controller ask any installed server to create one of its objects. OLE also
makes it possible for the controller to browse through a list of automated commands the server
supports and execute them.

See Also
Overview of Automation Classes

What Does OLE Look Like?
See Also Support for OLE in Borland C++
The linking and embedding features of OLE include a standard user interface for performing common
operations such as placing OLE objects in container documents and activating them once they are
linked or embedded. The OLE standards cover menu commands, dialog boxes, tool bars, drag and
drop support, and painting conventions, so that the user interface for OLE operations is consistent
across applications. Together, ObjectComponents and ObjectWindows execute most of the interface
tasks for you.
Understanding OLE programming can be difficult without a clear grasp of the interface you are trying to
create. The following sections present pictures of a container showing what happens onscreen at each
step in a common sequence of OLE operations. The user runs a container, inserts objects from several
OLE servers into the document, edits an object, and saves the document. The descriptions of these
steps introduce the following OLE features:

Inserting an Object

Editing an Object in Place

Activating Deactivating and Selecting an Object

Finding an Object's Verbs

Linking an Object

Opening an Object to Edit it

See Also
Glossary of OLE Terms

Inserting an Object
What Does OLE Look Like?
The example program called SdiOle is an OLE container using the single-document interface (SDI)
and written with ObjectWindows and ObjectComponents. The source code for SdiOle is in
EXAMPLES/OWL/OCF/ SDIOLE.
The SdiOle Edit menu contains five standard OLE commands that most containers possess: Paste
Special, Paste Link, Insert Object, Links, and Object.
ObjectWindows implements all five of the standard commands for you if you like, but a container does
not have to use them all.
Like the common dialog boxes in Windows for opening files and choosing fonts, the Insert Object
dialog box is a standard resource implemented by the system. For consistency, it is best to use the
standard dialog boxes unless your application has some unusual requirement that the standard dialog
box does not meet.
The box under Object Type lists all the kinds of objects available in the system. Whenever a server
installs itself, it tells the system what objects it can create. The system keeps this information in its
registration database. The Insert Object dialog box queries the database and shows all the types that
OLE can create for you using the available server applications.
In the illustration, the user has chosen to insert a Quattro Pro spreadsheet. The Result box at the
bottom of the dialog box explains what will happen if the user clicks OK now. Because the Create New
button is selected, clicking OK will embed a new, empty spreadsheet object into the user's open
document.

Editing an Object in Place
What Does OLE Look Like?
The example program called SdiOle is an OLE container using the single-document interface (SDI)
and written with ObjectWindows and ObjectComponents. The source code for SdiOle is in
EXAMPLES/OWL/OCF/ SDIOLE.
The SdiOle Edit menu contains five standard OLE commands that most containers possess: Paste
Special, Paste Link, Insert Object, Links, and Object.
If Quattro Pro is the server application that creates the active object, Quattro Pro will take over the
SdiOle window and display its own menus and tool bars. All the Quattro Pro menu and tool bar
commands can be executed right there in SdiOle. The feature of OLE that lets a server take over a
container's main window is called in-place editing. It lets the user edit the object in its place, without
switching back and forth between different windows. The programming task that makes this possible is
called menu merging, combining menus from two programs in one menu bar.
Although many programs let you paste data from other programs into your documents, without OLE
you cannot continue to edit the objects after they are transferred.
SdiOle is a very simple application and knows nothing about columns and rows or fonts and shading.
But, even though the Quattro Pro server created and formatted the object, that data in the object
belongs to the container. When the user chooses File|Save from the SdiOle menu bar, what gets
written is an SdiOle document, not a Quattro Pro document. With the help of ObjectComponents and
the OLE system, SdiOle marks an area in its own file to store the data for the embedded object. When
the user chooses File|Load to reload the same document, the spreadsheet cells will still be there. If the
user tries to edit the object again, OLE invokes Quattro Pro to take over the SdiOle window once more.
The object remains associated with the application that created it even though the object is stored in a
foreign file.
When OLE places the data for an object directly into the container's document as it has the data for
this spreadsheet, the object is said to be embedded. Besides embedding, OLE also links objects to
container documents.

Activating, Deactivating, and Selecting an Object
What Does OLE Look Like?
The example program called SdiOle is an OLE container using the single-document interface (SDI)
and written with ObjectWindows and ObjectComponents. The source code for SdiOle is in
EXAMPLES/OWL/OCF/ SDIOLE.
The SdiOle Edit menu contains five standard OLE commands that most containers possess: Paste
Special, Paste Link, Insert Object, Links, and Object.
An embedded object is outlined by a thick gray rectangle. The presence of this rectangle indicates that
the object is active. The activation rectangle appears when you double-click the object. Usually
activating an object initiates an editing session, but the server decides whether to follow that
convention. For example, embedded sound objects might play when activated. In most cases, only
one object can be active at a time.
When an activation rectangle has small black boxes spaced around it, they are called grapples. The
user can resize the object by clicking a grapple and dragging the mouse. Also, the user can move the
object by clicking anywhere else on the activation rectangle and dragging. ObjectWindows uses the
TUIHandle class to draw rectangles and grapples around objects.
When the user clicks the mouse button outside the activated object, the activation rectangle goes
away. The object is now inactive. Deactivating an object tells OLE that you are through editing. The
server relinquishes its place, and the container's window returns to normal. The only commands on the
menu bar are the ones SdiOle put there. The tool bar and window caption are back to normal, as well.
You can select an inactive object without activating it. When you press the mouse button over an
inactive object, the container draws a thin black rectangle to show that you have selected it. Like the
activation rectangle, it has grapples. The user can move and resize a selected object just like an active
object.

Finding an Object's Verbs
What Does OLE Look Like?
The example program called SdiOle is an OLE container using the single-document interface (SDI)
and written with ObjectWindows and ObjectComponents. The source code for SdiOle is in
EXAMPLES/OWL/OCF/ SDIOLE.
The SdiOle Edit menu contains five standard OLE commands that most containers possess: Paste
Special, Paste Link, Insert Object, Links, and Object.
When an object is selected, the container modifies its menus to offer a choice of whatever actions the
object's server can do with the object. OLE calls these actions verbs. Conventionally, the container
displays available verbs in two places: on its Edit menu and on a SpeedMenu. For example, if a
SpeedMenu pops up when the user right clicks, the first three commands on the SpeedMenu are
always Cut, Copy, and Delete. The fourth item, Notebook Object, changes depending on the opject
selected. When an opbect from Paradox is inserted, for example, the fourth item becomes Paradox 5
Object.
The smaller cascading menu lists the particular verbs that the server supports. Quattro Pro has only
two verbs. It can edit an object or open an object. The Edit verb initiates an in-place editing session
The Open verb inititates an open editing session.
The final item, Convert, is the same for all objects. It invokes another standard OLE dialog box that lets
the user convert an object from one server's data format to another. The Convert command is useful
when, for example, you have Paradox installed on your machine, but someone gives you a compound
document with an embedded object from some other database application. If Paradox knows how to
convert data from the other database, then the Convert command binds the foreign database object to
Paradox.
The speed menu for a selected object shows where verbs appear on the Edit menu. When no object
is selected, the last command on the Edit menu is disabled and says simply Object. When an object is
selected, the Object command changes to describe the selected object. In the example, Object
changes to Notebook Object.

Linking an Object
What Does OLE Look Like?
The example program called SdiOle is an OLE container using the single-document interface (SDI)
and written with ObjectWindows and ObjectComponents. The source code for SdiOle is in
EXAMPLES/OWL/OCF/ SDIOLE.
The SdiOle Edit menu contains five standard OLE commands that most containers possess: Paste
Special, Paste Link, Insert Object, Links, and Object.
By default, the Insert Object command creates a brand new empty object, and embeds it. Instead of
embedding an object, you can choose to link it.
When OLE links an object, it does not store the object's data in the container's document. It stores only
the name of the server file where the data is stored along with the location of the data within the file
and a snapshot of the object as it appears onscreen. The snapshot is usually a metafile. The container
doesn't receive a copy of the object; it receives a pointer to the object. OLE still draws the object in the
container's document, just as though it was embedded, but the container doesn't own the data.
If the server document that holds the data for the linked object is deleted, then the user can no longer
activate and edit the linked object. On the other hand, if the data in the server document is updated,
then the updates appear automatically in all the container documents that have been linked to the
same object. If several documents embed the same object, then they are creating copies, and
changes made in one document have no effect on the copies in other documents.
What if you select the Create from File button in the Insert Object dialog box? Instead of creating a
new empty object, you choose a file with existing data and OLE invokes the server that created the file.
You can embed data from the file, but if the user has checked the Link box, when the user clicks OK,
OLE does not copy data from CHECKS.DB into the server's document. It creates a link that refers
back to the data stored in the original file.
The text in the Result box at the bottom of the dialog box explains what will happen when the user
clicks OK. The EXAMPLE.DFL document now contains two OLE objectsthe embedded Quattro Pro
spreadsheet and the linked Paradox table. Neither of the two objects is active. The spreadsheet is
inactive and the database table is selected. Because the database table is linked, ObjectWindows
draws the selection rectangle with a dashed line.

Opening an Object to Edit It
What Does OLE Look Like?
The example program called SdiOle is an OLE container using the single-document interface (SDI)
and written with ObjectWindows and ObjectComponents. The source code for SdiOle is in
EXAMPLES/OWL/OCF/SDIOLE.
The SdiOle Edit menu contains five standard OLE commands that most containers possess: Paste
Special, Paste Link, Insert Object, Links, and Object.
TheEdit and Open are the two most common verbs, and Quattro Pro and Paradox, for example, both
use them. Choosing the Open verb makes the same table visible in two windows - the container
window where it is linked and the server window where it is being edited. When finished editing in the
server window, the user chooses File|Close and returns to the container. Any changes made during the
editing session automatically appear in the container window afterward.
Contrast this editing session with another. In this session, the container window remains unchanged.
The SdiOle window has only its own commands and its own tool bar. The editing takes place in a
separate window that OLE opened just for this session. Returning to the server to edit is called open
editing. Some servers support only open editing, not in-place editing.
These are common linking and embedding operations: the user links or embeds an object, selects it,
activates it, edits it in place or open, and saves the compound document complete with its OLE object.
The standard way is to link and embed objects with the Insert Object dialog box, but there are other
ways as well. The Paste, Paste Special, and Paste Link commands can all create OLE objects from
data on the Clipboard. You can also link or embed objects by dragging them from one applicaton and
dropping them on another.

What Is ObjectComponents?
See Also Support for OLE in Borland C++

ObjectComponents features
For a listing of ObjectComponents features, see OLE 2 Features Supported by ObjectComponents.

The Borland OLE 2 Support Library
Microsoft's OLE 2 operating system extensions require the programmer to implement a variety of
interfaces depending on the tasks an application undertakes. Borland has developed an OLE engine,
already used in several of its commercial applications, that simplifies the programmer's job by
implementing a smaller set of high-level interfaces on top of OLE. The engine resides in a library called
BOCOLE.DLL. The BOCOLE support library provides default implementations for many standard OLE
interfaces.
C++ programmers can make use of the OLE support in BOCOLE.DLL through a set of new classes
collectively called the ObjectComponents Framework (OCF). Instead of implementing OLE-style
interfaces, you create objects from the ObjectComponents classes and call their methods. Your own
classes can gain OLE capabilities simply by inheriting from the ObjectComponents classes.
ObjectComponents translates between C++ and OLE.

Interacting with OLE 2
The ObjectComponents classes implement OLE-style interfaces for talking to the BOCOLE support
library. Your programs reach OLE by calling methods from ObjectComponents classes. When OLE
sends information to you, ObjectComponents sends messages to your application using the standard
Windows message mechanisms. The ObjectComponents classes also contain default implementations
for all the OLE messages. You can override the default event handlers selectively to modify your
application's responses.
ObjectComponents is not part of the ObjectWindows Library. That means C++ programs that don't use
ObjectWindows can still take full advantage of ObjectComponents for linking, embedding, and
automation. But ObjectWindows can simplify your work even more. ObjectWindows 2.5 introduces
new classes such as TOleWindow and TOleDocument that inherit from ObjectComponents classes to
bring OLE support into Borland's C++ application framework. An ObjectWindows application that uses
the Doc/View model doesn't need to use ObjectComponents directly at all. A few simple changes to
your Doc/View program will have you linking and embedding almost instantly. Programs that don't use
the Doc/View model can do the same thing with just a little more work.

See Also
What is OLE?

OLE 2 Features Supported by ObjectComponents
See Also What is ObjectComponents?
The following list summarizes the OLE 2 capabilities that ObjectComponents gives your applications.
The descriptions assume you are using ObjectWindows, as well. All the same features are available
through ObjectComponents without ObjectWindows, but then you have to code explicitly some things
that ObjectWindows does by default.

Linking and embedding: to embed data from one application in the document of another,
ObjectComponents gives you classes to represent the data in the object and an image of the data for
drawing on the screen. The data must be separable from its graphical representation because in OLE
transactions they are sometimes handled by different programs. When the container asks the server for
an object to embed, the server must provide data and a view of the data. The server can also be asked to
edit the object even after it is embedded and to read or write the object to and from the container's
document file. The ObjectComponents classes handle both sides of these negotiations for you.

Clipboard operations: the default event handlers for the ObjectComponents messages handle
cutting and pasting for you. If you add to your menus standard commands such as Insert Object and
Paste Link, ObjectComponents will implement them for you.

Drag and drop operations: the default event handlers for ObjectComponents messages help
you here, too. If the user drops an OLE object on your container's window, ObjectComponents inserts it in
your document. If the user double-clicks the embedded object, ObjectComponents activates it. If the user
drags the object, ObjectComponents moves it.

Standard OLE 2 user interface: OLE defines standard user interface features and asks OLE
programmers to comply with them. Built into ObjectComponents are dialog boxes for commands like
Insert Object, Paste Special, and Paste Link; a pop-up menu that appears whenever the user right-clicks
an embedded object; and an item on the container's Edit menu that always shows the verbs (server
commands) available for the active object. ObjectComponents even arranges to modify the container's
window if the server takes over the container's tool bar, status bar, and menus for in-place editing.

Compound files: A new ObjectComponents class (TOcStorage) encapsulates file input and
output to compound files. If you convert an ObjectWindows Doc/View application into an
ObjectComponents container, the document writes itself to compound files automatically, creating
storages and substorages within the file as needed.

EXE and DLL servers: ObjectComponents lets you construct your OLE server as either a
standalone executable program or as an in-process DLL server. DLL servers respond to clients more
quickly because a DLL is not a separate process. OLE doesn't have to serialize calls or marshall
parameters to communicate between a DLL server and its client.

Automation: ObjectComponents permits C++ classes to be automated without structural
changes to the classes themselves. It accomplishes this with nested classes that have direct access to
the existing class members. These nested classes instantiate small command objects that reach the
members through standard C++ mechanisms, avoiding the use of restrictive, non-portable stack
manipulations. The command objects support hooks for undoing, recording, and filtering automation
commands. A program can even send itself automation commands using standard C++ code.

Type libraries: A type library describes for OLE all the classes, methods, properties, and data
members available for controlling an automated application. Once you create an automation server, you
can ask ObjectComponents to build and register the type library for you.

Registration: OLE requires applications to register themselves with the system by providing a
unique identifier string. For servers, this string and much other information besides must be recorded in

the system's registration database as part of the program's installation process. With ObjectComponents,
all you have to do is list all the information in one place using macros. Every time your server starts up,
ObjectComponents confirms that the database accurately reflects the server's status. When necessary,
ObjectComponents records or updates registration entries automatically.

Localization: OLE servers need to speak the language of their client programs. If an automation
server is marketed in several countries, it needs to recognize commands sent in each different language.
A linking and embedding server registers strings that describe its objects to the user, and those too should
be available in multiple languages in order to accommodate whatever language the user might request. If
you provide translations for your strings, ObjectComponents uses the right strings at the right time. Add
your translations to the program's resources and mark the original strings as localized when you register
them. At run time, ObjectComponents quickly and efficiently retrieves translations to match whatever
language OLE requests. For more about localization, see "Registering localized entries" on page 373.

See Also
Automation
Compound file I/O classes
Creating a type library
Linking and Embedding
Localizing Symbol Names
Making a DLL Server
Overview of automation classes
Overview of linking and embedding classes
Registering the application
Using ObjectComponents
What does OLE look like?

Using ObjectComponents
See Also Support for OLE in Borland C++
To use ObjectComponents, you will want to survey the classes and messages in ObjectComponents,
as well as new classes in ObjectWindows that help you take advantage of ObjectComponents. You will
need to understand how ObjectComponents uses C++ exception handling, how to build an
ObjectComponents application, and what files to distribute with your application.
The following topics discuss these and other topics:

Overview of Classes and Messages

Exception Handling in ObjectComponents

Building an ObjectComponents Application

Distributing Files with Your Application

See Also
OLE 2 features supported by ObjectComponents
What is ObjectComponents?

Overview of Classes and Messages
See Also Using ObjectComponents
The following topics introduce the ObjectComponents classes and messages you are likely to use
most often. Subsequent chapters describe their use in more detail.

Linking and Embedding Classes

Connector Objects

Automation Classes

ObjectComponents Messages

Messages and Windows

New ObjectWindows OLE Classes

See Also
Automation
Linking and Embedding

Overview of Linking and Embedding Classes
See Also Overview of Classes and Messages
The following classes support linking and embedding, but if your program uses ObjectWindows you
won't need to work directly with most of them.

Class Description
TOcApp Connects containers and servers to OLE. It implements COM interfaces for the

application.
TOcDocument Represents a compound document. It holds parts (embedded objects).
TOcModule A mix-in class for deriving the application object in a linking and embedding

program. It coordinates some basic housekeeping chores related to registration
and memory management.

TOcPart Represents an embedded or linked object in a document.
TOcRegistrar Records application information in the system registration database and tells OLE

when the application starts and stops. Also creates the TOcApp object and
responds when OLE wants a server to make something.

TOcRemView Represents a remote view for a server document. The server creates a remote
view for every object it donates to a container. The remote view is drawn in the
container's window.

TOcView Responsible for displaying a part. A container needs a view for every part it
embeds.

Although ObjectComponents includes classes for documents and views, it does not require
applications to use the ObjectWindows Doc/View model. If you do use the Doc/View model, the new
TOleDocument and TOleView classes make OLE programming even easier. ObjectWindows is not
required, however. Any C++ program can use the ObjectComponents Framework.

See Also
Linking and embedding enums
Linking and embedding messages
Linking and embedding structs
New ObjectWindows OLE Classes
Overview of Automation Classes

Connector Objects
See Also Overview of Classes and Messages
A few of the ObjectComponents classes actually implement COM interfaces. (COM stands for
Component Object Model. COM is the standard that defines what an OLE object is.) Most of the
supported interfaces are not standard OLE interfaces; they are custom interfaces that communicate
with OLE through the BOCOLE support library. But like any COM object they do implement IUnknown
(by deriving from TUnknown).
The classes that define COM objects for linking and embedding are TOcApp, TOcView, TOcRemView,
and TOcPart. These classes are special because they connect your application to OLE. They are
called connector objects. An ObjectComponents application must create connector objects in order to
interact with other OLE applications.
Because they are COM objects, connector objects have one peculiarity: their destructors are protected
so you cannot call delete to destroy them. Readers familiar with OLE will recognize that the connector
objects have internal reference counts that track the number of clients using them. Often you are not
the only user of your own connectors. For example, when a server creates a TOcRemView to paint an
object in a container's window, the container becomes a client of the same object. The server must not
destroy the view object until the container is through with it, otherwise OLE could end up attempting to
address functions that no longer exist in memory.
The Component Object Model decrees that an object must maintain an internal reference count. When
an object provides anyone a pointer to one of its interfaces, the object also increments its own
reference count. When the client finishes with the pointer, it calls Release and the object decrements
its reference count. As long as the count is greater than zero, the object must not be destroyed. When
the count reaches 0, the object destroys itself.
ObjectComponents shields you from the details of reference counting. You never have to increment or
decrement a reference count. You cannot delete COM objects, however, because the delete command
pays no attention to the reference count. Instead, call the connector's ReleaseObject method.

See Also
TOcApp
TOcPart
TOcRemView
TOcView

Overview of Automation Classes
See Also Overview of Classes and Messages
Following are some ObjectComponents classes used for automation.

Class Description
TAutoBase Simplifies clean-up chores when an automated object is destroyed. Make it the

base class for your automated classes if you want that help.
TAutoProxy the base class for an automation controller's proxy objects. Controllers create C++

proxy objects to represent the OLE objects they want to manipulate. The proxy
objects become connected to OLE when they derive from TAutoProxy.

TOleAllocator Initializes the OLE libraries and, optionally, passes OLE a custom memory allocator
for managing any memory the system allocates on the program's behalf.

TRegistrar Records application information in the system registration database and tells OLE
when the application starts and stops.

There are more automation classes than the above table shows, but many of them are internal to the
ObjectComponents implementation. Most of the work in automating an existing application is done
with macros. Automating a class means writing two tables of macros, one in the class declaration and
one in the class implementation. The macros describe the methods you choose to expose. Within the
parent class they create nested classes, one for each command. ObjectComponents knows how to
make a nested object execute the method it exposes, and the nested class calls members of the
parent class directly.
The connector objects that ObjectComponents creates to implement COM interfaces for an automation
program are considered internal. ObjectComponents makes them for you when they are needed.

See Also
Automation data types
Automation enumerated types and type definitions
Automation macros
Automation structs
New ObjectWindows OLE classes
Overview of linking and embedding classes

ObjectComponents Messages
See Also Overview of Classes and Messages
When ObjectComponents needs to tell an application about signals and events that come from OLE, it
sends a message through the normal Windows message queues. The message it sends is
WM_OCEVENT. The value in the message's wParam identifies a particular event. Only applications
that support linking and embedding receive WM_OCEVENT messages. (They are sent by the
application's TOcApp, TOcView, and TOcRemView objects. Automation applications that don't support
linking and embedding have no need for any of these objects.)
Simple ObjectWindows applications don't need to process any of the events because the new OLE
classes have default event handlers that make reasonable responses for you. To modify the default
behavior, add event handlers to your ObjectWindows program. If you are programming without
ObjectWindows, handle WM_OCEVENT in your window procedure.
The events are divided into two groups. Those that concern the application as a whole are listed in the
following table. Those that call for a response from a particular document are addressed to the view
window. They are listed in the next table.
Most of the events in the following tables are sent only to a server or to a container. A single
application receives both kinds of messages if it chooses to support both container and server
capabilities.

Application messages for TOcApp clients

wParam value Recipient Description
OC_APPDIALOGHELP Container Asks the container to show Help for one of the

standard OLE dialog boxes where the user has
just clicked the Help button.

OC_APPBORDERSPACEREQ Container Asks the container whether it can give the server
border space in its frame window.

OC_APPBORDERSPACESET Container Asks the container to rearrange its client area
windows to make room for server tools.

OC_APPFRAMERECT Container Requests client area coordinates for the inner
rectangle of the program's main window.

OC_APPINSMENUS Container Asks the container to merge its menu into the
server's.

OC_APPMENUS Container Asks the container to install the merged menu
bar.

OC_APPPROCESSMSG Container Asks the container to process accelerators and
other messages from the server's message
queue.

OC_APPRESTOREUI Container Tells the container to restore its normal menu,
window titles, and borders because in-place
editing has ended.

OC_APPSHUTDOWN Server Tells the server when its last embedded object
closes down. If the server has nothing else to do,
it can terminate.

OC_APPSTATUSTEXT Container Passes text for the status bar from the server to
the container.

A view is the image of an object as it appears onscreen. When an OLE server gives an object to a
container, the object contains data. The server also provides a view of the data so OLE can draw the
object onscreen. Sometimes the word view also refers to the window where the container draws a

compound document with all its embedded parts. Each object has its own small view, and the
container has a single larger view of the whole document with all its embedded objects.

View messages for TOcView and TOcRemView clients

wParam value Recipient Description
OC_VIEWATTACHWINDOW Server Asks server window to attach to its own frame

window or container's window.
OC_VIEWBORDERSPACEREQ Container Asks whether server can have space for a tool

bar within the view of an embedded object.
OC_VIEWBORDERSPACESET Container Asks container to rearrange its windows so the

server can show its tool bar within an embedded
object.

OC_VIEWBREAKLINK Server Asks server to break a link to the currently
selected data.

OC_VIEWCLIPDATA Server Asks server to provide clipboard data in a
particular format.

OC_VIEWCLOSE Server Asks server to close its document.
OC_VIEWDRAG Server Asks server to provide visual feedback as the

user drags its embedded object.
OC_VIEWDROP Container Tells container an object has been dropped on its

window and asks it to create a TOcPart.
OC_VIEWGETITEMNAME Server Asks the server for a moniker identifying the

currently selected data.
OC_VIEWGETPALETTE Server Asks server for the color palette it uses to draw

an object.
OC_VIEWGETSCALE Container Asks container to give scaling information.
OC_VIEWGETSITERECT Container Asks container for the site rectangle that a part

occupies.
OC_VIEWINSMENUS Server Asks server to insert its menus in a composite

menu bar.
OC_VIEWLOADPART Server Asks server to load an embedded object stored

in the container's data file.
OC_VIEWOPENDOC Server Asks server to open a document with the

specified path.
OC_VIEWPAINT Server Asks server to draw or redraw an object at a

particular position in a given device context.
OC_VIEWPARTACTIVATE Container Indicates that an embedded part has become

active.
OC_VIEWPARTINVALID Container Indicates that embedded objects needs to be

redrawn.
OC_VIEWPARTSIZE Server Asks server the initial size of its view in pixels.
OC_VIEWSAVEPART Server Asks server to write the data for an object into

the container's file.
OC_VIEWSCROLL Container Asks container to scroll its view window.
OC_VIEWSETSCALE Server Asks server to handle scaling.
OC_VIEWSETLINK Server Asks server to create a link to the currently

selected data.
OC_VIEWSETSITERECT Container Asks container to set the site rectangle.
OC_VIEWSETTITLE Container Asks the container to add to its title bar the name

of the server for the active object.
OC_VIEWSHOWTOOLS Server Asks server to display its tool bar in container's

window.
OC_VIEWTITLE Container Asks container for the caption in its frame

window.

See Also
Messages and Windows

Messages and Windows
See Also Overview of Classes and Messages
Because the view and part objects expect to send notification messages to a particular document,
every ObjectComponents application is expected to create a new window for each open document.
Document windows should not be frame windows; they should be client windows that exactly fill the
client area of a parent frame window. In an SDI application, the parent is the application's main frame
window. In an MDI application, the parent is an MDI child frame. ObjectWindows programs should use
TOleWindow for client windows. Many ObjectWindows applications, including all those that use the
Doc/View model, already possess client windows.

See Also
Creating a View Window
ObjectComponents Messages
Setting up the Client Window

New ObjectWindows OLE Classes
See Also Overview of Classes and Messages
Another set of new classes integrates ObjectWindows with ObjectComponents. Internally, the new
ObjectWindows classes use the the ObjectComponents classes to connect with OLE for you.
Depending on the complexity of your ObjectWindows application, you might not need to interact
directly with ObjectComponents at all.
The following table briefly summarizes the most important new ObjectWindows classes.

New classes Base classes Description
TOleFrame TDecoratedFrame Provides OLE user interface support for

the main window of an SDI application.
TOleMDIFrame TMDIFrame and TOleFrame Provides OLE user interface support for

the main window of an MDI application.
TOleWindow TWindow Used as the client of a frame window,

provides support for embedding objects
in a compound document.

TStorageDocument TDocument Adds the ability to work with OLE's
compound file structure. It is the natural
class to choose for compound
documents with embedded objects.

TOleDocument TStorageDocument Implements the Document half of an
OLE-enabled Doc/View pair.

TOleView TOleWindow, TView Implements the View half of a Doc/View
pair.

TOleFactory<> TOleFactoryBase Implements the function OLE calls when
an application should create an object.

TOleDocViewFactory<> TOleFactoryBase Implements the function OLE calls when
an application should create an object.

TOleAutoFactory<> TOleFactoryBase Implements the function OLE calls when
an application should create an object.

TOleDocViewAutoFactory<> TOleFactoryBase Implements the function OLE calls when
an application should create an object.

TAutoFactory<> TOleFactoryBase Implements the function OLE calls when
an application should create an object.

TOcAutoFactory<> TOleFactoryBase Implements the function OLE calls when
an application should create an object.

The ObjectWindows OLE classes create ObjectComponents objects for you as needed. For example,
whenever a container or a server creates a compound document, it also creates a a TOcView (or
TOcRemView) object to implement the interfaces that tie a document to OLE.
TOleView::CreateOcView does that for you. Furthermore, when the new TOcView object sends event
messages to the view window, TOleView processes them for you with handlers like
EvOcViewSavePart and EvOcViewInsMenus. The default event handlers manage much of the OLE
user interface for you.

See Also
Overview of automation classes
Overview of linking and embedding classes
Turning a Doc/View application into an OLE container
Turning a Doc/View application into an OLE server
Turning an ObjectWindows application into an OLE container
Turning an ObjectWindows application into an OLE server

Exception Handling in ObjectComponents
See Also Using ObjectComponents
ObjectWindows 2.5 modifies the hierarchy of exception classes. TXBase is the new base class for all
exception classes. TXOwl derives from it, as do the new exception classes summarized in the
following table.

Class Purpose
TXAuto Exceptions that occur during automation
TXObjComp Exceptions that occur during ObjectComponents linking and embedding operations
TXOle Exceptions that occur while processing OLE API commands
TXRegistry Exceptions that occur while using the system registration database

Because the exception classes all derive from TXBase, a general-purpose catch statement often takes
a TXBase& as a parameter. The catch statement in the following example receives any exception
thrown by ObjectWindows or ObjectComponents:
int
OwlMain(int /*argc*/, char* /*argv*/ [])
{
 try {
 Registrar = new TOcRegistrar(AppReg, TOleFactory<TMyApp>(),
 TApplication::GetCmdLine());
 return Registrar->Run();
 }
 catch (TXBase& x) {
 ::MessageBox(0, x.why().c_str(), "Exception", MB_OK);
 }
 return -1;
}

See Also
TXAuto
TXBase (OWL.HLP)
TXObjComp
TXOle
TXOle and Error Codes
TXRegistry

TXOle and OLE Error Codes
See Also Exception Handling in ObjectComponents
Most of the OLE API functions pass back a return value of type HRESULT (or the nearly identical
SCODE). The return value indicates whether the call was successful, and it can also encode other
status information. When a public member function of an ObjectComponents class results in a call to
an OLE interface and the interface call fails, then ObjectComponents turns the OLE return result into a
C++ exception object of type TXOle. This allows you to handle OLE error codes via the standard C++
try and catch constructs.
The TXOle class defines a variable, Stat, which holds the return value passed back from from a failed
OLE API call. Therefore, a catch statement taking a TXOle& as a parameter has access to the OLE
error code. The following code shows an example of a routine where the error value is simply returned
back to the caller. This is useful if the function is called from an application that cannot handle C++
exceptions.
HRESULT
TMyAppDescriptor::CheckTypeLib(TLangId lang, const char far* file)
{
 HRESULT stat = HR_NOERROR;

 // Create OCF classes and invoke OCF methods to perform operation
 try {
 TOleCreateList typeList(new TTypeLibrary(*this, lang), file);
 .
.
.
 }

 catch(TXOle& x) { // Catch OLE exception
 stat = ResultFromScode(x.Stat); // Create HRESULT from SCODE
 }
 return stat; // Return OLE error code
}
The previous example uses the ResultFromScode macro to cast an SCODE to an HRESULT. The
OLE headers define various other macros that allow you to break down, assemble, and convert the
various components of the value returned from an OLE API call.For more information, search for the
topic "Error Handling Functions and Macros" in OLE.HLP.
If ObjectComponents catches a TXOle exception internally, it displays a dialog box showing the OLE
return code. OLE documents the codes only in the header files where they are defined. To make what
information there is more accessible, the DOCS/OLE_ERR.TXT file extracts information from that
header and presents the codes in numerical order.

See Also
TXOle

Building an ObjectComponents Application
Using ObjectComponents
All ObjectComponents applications require exception handling and RTTI. Do not set any compiler
options that disable these features.
Linking and embedding applications must use the large memory model. Automation applications can
use the medium model as well (and they run faster in medium model).
The integrated development environment (IDE) sets the appropriate compiler and linker options for
you automatically when you select OCF in the TargetExpert.
To build any ObjectComponents program from the command line, create a short makefile that includes
the OWLOCFMK.GEN found in the EXAMPLES subdirectory. If your application does not use
ObjectWindows, include the OCFMAKE.GEN instead. Here, for example, is the makefile that builds the
AutoCalc sample program:
EXERES = MYPROGRAM
OBJEXE = winmain.obj autocalc.obj
HLP = MYPROGRAM
!include $(BCEXAMPLEDIR)\ocfmake.gen
EXERES and OBJRES hold the name of the file to build and the names of the object files to build it
from. HLP is optional. Use it if your project includes an online Help file. Finally, your makefile should
include OWLOCFMK.GEN or OCFMAKE.GEN.
Name your file MAKEFILE and type this at the command line prompt:
make MODEL=l
MAKE, using instructions in the included file, will build a new makefile tailored to your project. The new
makefile is called WIN16Lxx.MAK. The final two digits of the name tell whether the makefile uses
diagnostic or debugging versions of the libraries. 01 Indicates a debugging version, 10 a diagnostic
version, and 11 means both kinds of information are included. The same command also then runs the
new makefile and builds the program. If you change the command to define MODEL as d, the new
makefile is WIN16Dxx.MAK and it builds the program as a DLL.
For more information about how to use OCFMAKE.GEN and OWLOCFMK.GEN, read the instructions
at the beginning of MAKEFILE.GEN, found in the same directory.
The following table shows the libraries an ObjectComponents program links with.libraries for building
ObjectComponents programs.
The ObjectComponents library must be linked first, before the ObjectWindows library.

Medium model Large model DLL libraries Description
OCFWM.LIB OCFWL.LIB OCFWI.LIB ObjectComponents
OWLWM.LIB OWLWL.LIB OWLWI.LIB ObjectWindows
BIDSM.LIB BIDSL.LIB BIDSI.LIB Class libraries
OLE2W16.LIB OLE2W16.LIB OLE2W16.LIB OLE system DLLs
IMPORT.LIB IMPORT.LIB IMPORT.LIB Windows system DLLs
MATHWM.LIB MATHWL.LIB Math support
CWM.LIB CWL.LIB CRTLDLL.LIB C run-time libraries

Distributing Files with Your Application
Using ObjectComponents
When you distribute your application, you need to distribute along with it some libraries that
ObjectComponents requires. Your installation program should install the files for the user, being careful
not to replace any more current versions the user might already have.
The following files are part of OLE 2 and should be distributed with any OLE application, whether it
uses ObjectComponents or not.
compobj.dll ole2conv.dll ole2disp.dll
ole2.dll ole2nls.dll ole2prox.dll
storage.dll Typelib.dll stdole.tlb
ole2.reg
All these files belong in the user's WINDOWS/SYSTEM directory. Microsoft requires that if you
distribute any of the files, you must distribute all of them. Call RegEdit to merge OLE2.REG with the
user's registration database. (The RegEdit registration editor comes with Windows.) Double-clicking
OLE2.REG in the File Manager accomplishes the same thing.
Any program that uses ObjectComponents should also distribute BOCOLE.DLL.
In addition, if your program uses the DLL version of OWL, of the container class libraries, or of the run-
time library, you should distribute those as well.

How ObjectComponents Works
See Also Support for OLE in Borland C++
The following topics are not essential for using ObjectComponents, only for understanding what goes
on behind the scenes when you create ObjectComponents connector objects.

How ObjectComponents Talks to OLE

How ObjectComponents Talks to You

Linking and Embedding Connections

Automation Connections
The essential function of ObjectComponents is to connect you with OLE. ObjectComponents is an
intermediate layer standing between OLE on one side and your C++ code on the other.

See Also
OLE 2 features supported by ObjectComponents
What is ObjectComponents?

How ObjectComponents Talks to OLE
See Also How ObjectComponents Works
Fundamentally, all OLE interaction of any sort requires the implementation of standard OLE interfaces,
such as IUnknown and IDispatch, as defined by the Component Object Model (COM).
An Interface is just a set of related function prototypes forming a pure base class. Every OLE object
that implements the same interface can choose to implement the prescribed functions in its own way.
All that matters is that the interface functions always accept the same parameters and always produce
the same results. This makes it possible for any OLE object to call any standard function in any other
OLE object that supports the interface.
Every OLE object must implement the IUnknown interface. One of the three functions in the IUnknown
interface is QueryInterface. This common function implemented on all OLE objects lets you ask
whether the object supports other interfaces that you want to use, such as automation interfaces or
data transfer interfaces. This makes it possible for any OLE object to determine at run time what any
other OLE object can do.
OLE defines a large number of standard interfaces that are notoriously tedious to implement. Borland's
BOCOLE support library defines an alternate set of custom COM interfaces that collectively provide an
alternative interface to OLE programming, one conceived at a higher level of abstraction. Client
objects of the support library must still implement IUnknown, as all COM objects must, but instead of
other standard OLE interfaces such as IDataObject and IMoniker, they implement interfaces defined
by BOCOLE. The support library acts as an agent translating commands received through its custom
interfaces into standard OLE. All the custom interfaces commands are carried out for you using
standard OLE interfaces.
The custom interfaces in the BOCOLE support library have names like IBContainer and IBDocument.
You'll see them used if you look in the ObjectComponents source code. Because the support library is
an internal tool and subject to change, its interfaces are not documented. The complete library source
code, however, comes with Borland C++, so you can refer to it if you need to track the OLE
interactions minutely. You can also modify and rebuild the support library, just as you can the
ObjectWindows Library, if that suits your purposes.

See Also
Messages and Windows
ObjectComponents Messages

How ObjectComponents Talks to You
See Also How ObjectComponents Works
Some of the ObjectComponents classes define COM objects. These objects derive from TUnknown,
an ObjectComponents base class that implements the IUnknown interface and handles details of
aggregation (a way of combining several objects into a single functional unit). They also mix in other
base classes that implement interfaces from the BOCOLE support library.
the ObjectComponents objects that implement COM interfaces are called connector objects, because
they connect your application to OLE. TOcPart, for example, is the connector object that implements
the interfaces a container must support for each OLE object (part) that is placed in its document. To
embed an object in your document, you take information ObjectComponents gets from the Clipboard,
a drop message, or the Insert Object dialog box, and you pass the information to the TOcPart
constructor. Among other things, the constructor (indirectly) calls a BOCOLE function to create an
embedded OLE object. TOcPart holds the pointer to that object, queries it for interfaces, and stores the
coordinates of the site where the part should be drawn. When you want the part to do something, you
call TOcPart methods such as Activate and Save.

See Also
Connector objects
How ObjectComponents talks to OLE
Messages and Windows
ObjectComponents Messages
TOcPart
TUnknown

Linking and Embedding Connections
See Also How ObjectComponents Works
A linking and embedding application always creates a TOcApp object (usually it is created for you).
TOcApp is a connector object that implements interfaces every linking and embedding application
needs. Another connector object that all linking and embedding applications create is the view object,
either TOcView for a container or TOcRemView for a server. You create one view object for each
document you open. A view object is associated with the window where the document is drawn. The
only other connector object used for linking and embedding is TOcPart, which containers create for
each object deposited in their documents.
Of course communication through a connector object is not just one way. When you call methods on a
connector object, the object calls through to OLE, but sometimes OLE needs to call you. For example,
if when user chooses Insert Object and asks for an object from a server, OLE must invoke the server
and ask it to create an object. The connector objects cannot, of course, call your functions the same
way you can call theirs because they don't know anything about your code. When a connector object
needs to communicate a request or a notification from OLE to you, it sends WM_OCEVENT message
to one of your windows. TOcApp sends its messages to your frame window. The view and part objects
send messages to the client window where you draw your document.
Communication from you to OLE happens through function calls to connector objects. Communication
from OLE to you happens through messages from connector objects to your windows.
The initial wiring between you and ObjectComponents is established the first time the registrar object
calls your factory callback function. The TOcApp object is bound to a window in
TOleFrame::SetupWindow, or in the WM_CREATE handler of your main window.

See Also
Connector Objects
Factory template classes (OWL.HLP)
Messages and Windows
ObjectComponents Messages
Overview of Linking And Embedding Classes
TOcApp
TOcPart
TOcRemView
TOcView
TOleFrame::SetupWindow (OWL.HLP)

Automation Connections
See Also How ObjectComponents Works
Applications that support automation but not linking and embedding use a different set of objects. The
central function of the automation layer in OLE is to pass arguments from the controller to the server,
an operation with no user interface. The COM interfaces for automation are buried deeper in the
implementation of ObjectComponents than the linking and embedding interfaces.
To support automation, ObjectComponents must identify exposed commands and arguments, attach
type information to them, transfer values to and from the stack of VARIANT unions that OLE uses to
pass values, and invoke your C++ functions when a controller sends a command. Once you set up the
tables that describe what you want to expose, there is little in the automation process to customize or
override. You never directly create or manipulate the connector objects for automation;
ObjectComponents does it for you.
Advanced users who enjoy reading source code might like to know that TServedObject is the class
that implements IDispatch and ITypeInfo, that TTypeLibrary implements ITypeLib, and that
TAutoIterator implements IEnumVARIANT. Of these, only TAutoIterator is exposed as a public part of
ObjectComponents. The others are considered internal implementation.
To automate a class, ObjectComponents asks you to build two descriptive tables from macros. A
declaration table goes with the class declaration and declares which members are accessible to OLE.
A definition table goes with the class implementation and assigns public names for controllers to use
when invoking your functions. The automation macros also create nested classes within the automated
parent, one for each exposed function or data member. The nested classes have an Invoke method
that calls your function. Because the class is nested, it has direct access to your class through normal
C++ mechanisms.
TServedObject is the connector that receives IDispatch commands from OLE and translates them into
the appropriate Invoke calls. TServedObject finds the information it needs to do this in an object of
type TAutoClass, which holds the symbol information from the automation tables. TServedObject
receives dispatch IDs, looks them up in TAutoClass, uses the information it finds to extract arguments
from the stack of VARIANT unions passed by OLE. Finally it calls Invoke on the appropriate nested
command object.

See Also
Automation
Connector objects
Overview of Automation Classes
TAutoIterator

ObjectComponents Programming Tools
Support for OLE in Borland C++
The most powerful tool in Borland C++ to help you with ObjectComponents programming is
AppExpert. AppExpert generates a complete basic application according to your specification. It fully
supports both linking and embedding and automation. Use it to create containers, servers, and
automation servers. ClassExpert helps you modify the generated code to make it do what you need.
The TargetExpert in the integrated development environment (IDE) also supports ObjectComponents.
Click the option for OCF and it automatically sets the right build options.
For information about tools that help you create ObjectComponents applications, see Utility
Programs.

Utility Programs
ObjectComponents Programming Tools
Borland C++ 4.5 comes with some new utility programs that simplify common OLE programming
chores. Some of them solve problems that other chapters explain in more detail.

AutoGen
Generates proxy classes for an automation controller. Scans the type library of an automated
application and writes the source code for classes a controller uses to send commands automation
commands.

DllRun
Launches a DLL server in executable mode. Any DLL server written with ObjectComponents can also
run as a standalone application if you invoke it with DllRun. Running in executable mode sometimes
makes it easier to debug the DLL. It also makes it possible to distribute a single program that your
users can run either as an in-process server or as an independent application.

GuidGen
Generates globally unique identifiers for use in registering applications. Every server must have an
absolutely unique ID. Containers need them in order to be link sources.

MacroGen
Generates automation macros for exposing functions with any number of arguments. The
ObjectComponents headers declare versions of the macros for functions with up to four arguments.
MacroGen saves you from having to revise the macros by hand to accommodate more arguments.

Register
Registers or unregisters any ObjectComponents EXE or DLL. Usually the applications register
themselves if necessary when they run, or in response to command-line switches. Developers,
however, sometimes need to register and unregister different versions of an application over and over.
Register is especially useful for DLLs because you can't pass command-line switches to a DLL.

WinRun
A background program that makes it possible to launch Windows programs from the command line
prompt in a DOS box. WinRun makes it possible to run GUI programs (such as Register) from a make
file.
The source code for all the utilities but WINRUN is in the OCTOOLS directory.
You might find it helpful to install these tools in the integrated development environment (IDE). For
more information, open the EXAMPLES\IDE\IDEHOOK\ IDEHOOKIDE file and read the instructions in
OLETOOLS.CPP.

Where Do I Look for Information?
See Also Support for OLE in Borland C++

You can find information about programming with ObjectComponents in the online Help, in the printed
manuals, and in the directories of sample programs.
Throughout the documentation, OLE refers to OLE 2.0 unless version 1 is indicated explicitly.

Books

Online Help

Example Programs

See Also
Where should you start?

Books
Where do I Look for Information?
The chapters that follow describe how to build programs that perform all these functions.

Chapter Title Topic
Support for OLE in Borland C++ Overview of ObjectComponents
Creating an OLE container How to build an application that receives OLE objects in its

documents
Creating an OLE server How to build an application that creates OLE objects for

containers to use
Automating an application How to build an application that other programs can control
Creating an automation controller How to build an application that controls other applications

For complete reference material covering all the new OLE-related classes and macros in
ObjectComponents andObjectWindows, see the ObjectWindows Reference Guide.
The ObjectComponents material in this book and in the ObjectWindows Reference Guide is also in the
online Help for Borland C++.
The ObjectWindows Tutorial develops a sample application from scratch. The later steps use add OLE
container, server, and automation capabilities.

Online Help
Where do I Look for Information?
Borland C++ includes three online Help files covering the OLE API. For the most part,
ObjectComponents makes knowledge of OLE interfaces unnecessary, but if you want to understand
more about how ObjectComponents works, or if your application requires advanced programming at
the OLE interface level, then you might find these files useful.

Help file Topic
OCF.HLP ObjectComponents chapters from the ObjectWindows Programmer's Guide and the

ObjectWindows Reference Guide
OWL.HLP Reference material for new OLE-enabled classes in ObjectWindows
OLE.HLP OLE 2 overviews and reference

Example Programs
Where do I Look for Information?
One of the best ways to learn about programming is to study working code. AppExpert is a good place
to start. Use it to generate the code for servers, containers, automation servers, and DLL servers. In
addition, Borland C++ comes with a variety of sample programs that show off ObjectComponents.
Some of them are described in this list.

EXAMPLES/OCF
ObjectComponents without ObjectWindows

AutoCalc: an automation server; draws a calculator onscreen and lets a controller click the
buttons

CallCalc: an automation controller to manipulate the calculator in AutoCalc

CppOcf: Three-step linking and embedding tutorial that starts with a simple C++ program, turns it
into a container, and then into a server

Localize: Pulls translated strings from XLAT resources to reflect language settings

RegTest: Registers, validates the registration, and unregisters an ObjectComponents application

EXAMPLES/OWL/TUTORIAL
ObjectWindows tutorial examples

OwlOcf: Three-step linking and embedding tutorial that starts with a simple ObjectComponents
program, turns it into a container, and then into a server.

Step14 - Step17: the final steps of the tutorial application described in ObjectWindows Tutorial;
shows how to be a linking and embedding container or server, how to be an automation server or
controller, and how to support both automation and linking and embedding at the same time.

EXAMPLES/OWL/OCF
ObjectComponents with ObjectWindows

MdiOle: A multidocument interface application with container capabilities

SdiOle: A single document interface application with container capabilities

Tic Tac Toe: A linking and embedding server

SOURCE/OCTOOLS
Source code for programming utilities

AutoGen: Scans a type library and generates proxy classes for an automation controller

DllRun: Runs a DLL server in executable mode

GuidGen: Generates globally unique identifiers (GUIDs)

Register: Registers a DLL server

Glossary of OLE Terms

The definitions in this list explain common terms in OLE programming. Read it for an introduction to
important programming topics, or refer to it for clarification as you read other ObjectComponents
chapters.
The definitions of advanced concepts assume you already know something about OLE and its
standard interfaces. For more information about OLE, refer to the three OLE online Help files.

A
Activate
Aggregation
Automated Object
Automated Application
Automation
Automation Controller
Automation Server

B
BOCOLE Support Library

C
COM Object
Compound Document
Compound File
Connector Object
Container

D
DLL Server
Document

E

Embedded Object
EXE Server

G
GUID

I
IDispatch Interface
In place Editing
Inprocess Server
Interface
IUnknown Interface

L
Linked Object
Link Source
Localization

O
ObjectComponents Framework
ObjectWindows Library
OLE
OLE Interface
Open Editing

P
Part

R
Reference Counting
Registrar Object
Registration Database
Registration Table
Remote View

S
Select
Server
System Registration Database

T
Type Library

V
Verb
View

Activate
Glossary of OLE Terms
The user activates a linked or embedded object by double-clicking it. Activating an object causes the
server to execute the object's primary verb. For document-style objects, the primary verb is generally
initiates an editing session, either in-place or open. For other objects, such as movies and sounds, the
primary verb is usually Play. Activating is not the same as selecting; see the entry for Select.

Aggregation
Glossary of OLE Terms
A way of combining several OLE objects to make them function as a single bigger object. Objects are
aggregated at run time. You can aggregate with objects that you did not design. An object aggregates
to delegate commands or to inherit and override the functionality of other objects.
Aggregation is an advanced programming technique. In order for aggregated objects to act as a unit,
all the aggregated objects must delegate any QueryInterface call they receive to the primary object,
usually called the outer object. The outer object begins an aggregation by passing its own IUnknown
pointer. The second object remembers the outer IUnknown pointer and routes all requests for an
interface to the outer object. If the outer object does not support a requested interface, it forwards the
request to the first in what might be a chain of aggregated objects. A client can reach all the interfaces
supported by any of the auxiliary objects through the IUnknown of the outer object.

Automated Object
See Also Glossary of OLE Terms
An OLE object that publishes commands other applications can send it. An automation server creates
automated objects. The automated object can be the application itself or something that the application
creates.

See Also
automation server

Automated Application
See Also Glossary of OLE Terms
An OLE object that publishes commands other applications can send it. An automation server creates
automated objects. The automated object can be the application itself or something that the application
creates.

See Also
automation server

Automation
Glossary of OLE Terms
The ability of an application to define a set of commands for other applications to invoke.

Automation Controller
Glossary of OLE Terms
An application that invokes commands to control automated objects or applications. A controller is
sometimes called an automation client.

Automation Server
Glossary of OLE Terms
An application that exposes some of its own internal function calls as a set of commands that other
programs can invoke. An automation object is what the server creates for other programs to control.

BOCOLE Support Library
Glossary of OLE Terms
A DLL of OLE implementation utility interfaces that ObjectComponents calls internally. The support
library implements a number of custom OLE interfaces designed by Borland. The BOCOLE.DLL file
should be distributed with any ObjectComponents program. Its custom interfaces are considered
internal and so are not documented. The source code for the BOCOLE support library, however, is
included with Borland C++.

COM Object
Glossary of OLE Terms
An object whose architecture conforms to the Component Object Model, a Microsoft specification that
forms the basis of the OLE system. Briefly stated, the characteristics of COM objects are

They communicate through predefined interfaces.

They all support the IUnknown interface, and IUnknown includes the QueryInterface method for
getting other optional interfaces.

They keep a reference count of their clients and delete themselves if the count reaches zero.
Only COM objects can communicate with OLE. Some of the classes in ObjectComponents are COM
objects (see Connector object). ObjectComponents shields you from the details of interface methods,
interface pointers, and reference counters. It connects you to OLE using familiar C++ and Windows
programming models such as inheritance and messages.

Compound Document
Glossary of OLE Terms
A document that contains OLE objects brought in from other applications. A compound document
might contain pieces of information from a spreadsheet, a database, and a word processor, all in one
document that the user loads or saves with a single command. The objects from other applications are
either linked or embedded in the container's document.

Compound File
Glossary of OLE Terms
A single disk file that the operating system divides into independent compartments called storages. In
effect, each storage has its own file I/O pointer so you can read, write, rewrite, and erase data in any
one storage without needing to maintain offsets to other storages in the same file. Compound files are
useful for storing compound documents because you can create a new storage for each linked or
embedded object. OLE extends the file system by implementing interfaces to support compound files.

Connector Object
Glossary of OLE Terms
An ObjectComponents class that communicates with OLE for you. Connector objects connect parts of
your application to OLE. TOcApp, for example, performs OLE functions for the application. TOcView
performs OLE functions for one view of a document. TOcPart performs OLE functions for a linked or
embedded object. The connector objects are partners that work together with corresponding parts of
your application. You call their methods and they send you messages. Connectors are Component
Object Model objects and implement COM interfaces. (Not all ObjectComponents classes are
connectors.)

Container
Glossary of OLE Terms
An application that permits OLE to embed or link objects from other applications into its own
documents. Containers are also called clients of the servers that give them objects.

DLL Server
Glossary of OLE Terms
A server whose code is in a dynamic-link library rather than an executable file. The advantage of a DLL
server is speed. When OLE invokes an .EXE server to support an embedded object, it has to create a
a separate process and marshall data to pass it between the two applications. A DLL, on the other
hand, is part of the same system task as its client, so OLE calls from a container to a DLL server run
much more quickly. See "Making a DLL server" on page 374.

Document
Glossary of OLE Terms
This word has two different meanings for programmers. First, a document is a set of data that an
application loads in response to File|Open. A document can be a spreadsheet, or a bitmap, or a letter,
or any other set of data that an application treats as a whole.
Sometimes it is useful to distinguish between the data in a document and the appearance of the data
onscreen. A spreadsheet, for example, might be able to display a single set of data as either a table of
numbers or a chart. One document can be displayed different ways. In such cases, document refers
only to the data, and each possible representation of the document is called a view.
ObjectWindows programmers are familiar with an application architecture called the Doc/View model
that separates the code for managing document data from the code for displaying the data.
ObjectComponents also has a document class and view classes, but they are not part of the
ObjectWindows Doc/View model. The document class keeps track of the objects embedded in a
document and the view classes draw the objects onscreen.

Embedded Object
Glossary of OLE Terms
Data from a server application deposited by OLE in a container's document. OLE lets the user paste,
drag, or insert objects into a container. If during these actions the user chooses to create an
embedded object, then all the data in the object is copied to the container's document. When the user
loads or saves the document, the data for the embedded object is written to the file along with the
container's own native data.
Contrast embedded objects with linked objects, where the the data for the OLE object is stored in
another application and the container receives only a reference to the object's file.

EXE Server
Glossary of OLE Terms
A server application compiled and linked into an executable file. A server can also be built as a library;
see DLL server.

GUID
Glossary of OLE Terms
Globally unique identifier, a 16-byte value. OLE uses GUIDs to identify applications, the objects they
produce, and the interfaces that objects implement. For linking and embedding, OLE needs GUIDs to
match embedded objects to their servers even after the user transfers a compound document from
system to system. If two servers had the same ID, OLE might accidentally invoke the wrong one. Each
server and object type must have an absolutely unique ID. Tools such as GUIDGEN create the ID for
you. For more information, see the clsid entry in the ObjectWindows Reference Guide.

IDispatch Interface
Glossary of OLE Terms
The OLE interface that all automated objects implement. With the four methods of the IDispatch
interface, you can ask any automated object for information about its automated commands, look up
the identifiers for particular commands, or invoke any command. For more information, see the
OLEAUTO.HLP Help file.

In-place Editing
Glossary of OLE Terms
Editing an OLE object in the container's window. During in-place editing, the container lets the server
display its own menus and tool bars in the container's window. The purpose of in-place editing is to let
the user edit any object in a document without leaving the document's window. Contrast Open editing.

In-process Server
Glossary of OLE Terms
A server whose code is in a dynamic-link library rather than an executable file. The advantage of a DLL
server is speed. When OLE invokes an .EXE server to support an embedded object, it has to create a
a separate process and marshall data to pass it between the two applications. A DLL, on the other
hand, is part of the same system task as its client, so OLE calls from a container to a DLL server run
much more quickly.

Interface
See Also Glossary of OLE Terms
A set of function prototypes, usually declared as an abstract base class. OLE objects are able to
communicate with each other because they implement standard interfaces, sets of functions that the
system defines. The system defines only what functions an interface contains; it does not implement
the functions. Each object implements the functions for itself. The interfaces are defined in the OLE
system headers such as compobj.h and ole2.h. The OLE system communicates with applications and
objects by calling the functions it assumes each one has implemented. For more about the OLE
interface model, see the entry for Component Object Model (COM). For examples of standard OLE
interfaces, see IDispatch and IUnknown.
Besides the standard interfaces, an object can define and implement its own custom interfaces. Of
course the system can't call functions from custom interfaces because it doesn't know they exist, but
other applications that know about the custom interface can use it. Internally, ObjectComponents
works through a set of Borland custom interfaces. See BOCOLE support library.
ObjectComponents shields you from having to understand or implement particular interfaces.
Advanced users who want to manipulate interfaces directly or mix in their own custom interfaces are
free to do so.

See Also
BOCOLE support library

IUnknown Interface
Glossary of OLE Terms
The root interface that all OLE objects and interfaces must implement. With the three methods of the
IUnknown interface, you can ask any object for a pointer to another interface it might also support, and
you can adjust the object's reference count. For more information, see the Help file, OLE.HLP.

Linked Object
Glossary of OLE Terms
An object that appears in a container document but whose data really resides in another file. When
dragging or pasting an object into a container, the user can choose to create a link to the object
instead of embedding it. The container does not receive or store the linked object's data in its own
document. Instead, it receives only a string identifying the location of the actual data, which can be in a
file.
Several containers can link to the same object. In that case, all the containers receive the same string
pointing to the same object. If the data in the original object changes, then the changes are reflected
automatically in all the documents that link to it. If the user embeds one object in several containers,
then each container has its own copy of the object's data and changes in one copy do not affect the
other copies.

Link Source
Glossary of OLE Terms
The document that a link refers to, the source for the data in a linked object. Usually the link source is
a server document, but it is not uncommon for containers to export link source data so that other
applications can link to objects embedded or linked in the container's document. For information on
becoming a link source.
.

Localization
Glossary of OLE Terms
Adapting an application to display strings in the user's language, whatever that might be. OLE servers
need to speak the language of their client programs. If an automation server is marketed in several
countries, it needs to recognize commands sent in each different language. A linking and embedding
server registers strings that describe its objects to the user, and those too should be available in
multiple languages in order to accommodate whatever language the user might request.
ObjectComponents lets you place translations for all your strings in your resource file as XLAT
resources. ObjectComponents chooses the right string at the right time.

ObjectComponents Framework
Glossary of OLE Terms
A set of C++ classes from Borland International that encapsulate linking and embedding functions as
well as automation functions. Internally the ObjectComponents classes implement standard and
custom OLE interfaces. With ObjectComponents you write for OLE using familiar programming models
such as inheritance and window messages instead of implementing COM interfaces.

ObjectWindows Library
Glossary of OLE Terms
A set of C++ classes from Borland International that encapsulate standard Windows programming
functions such as managing windows and dialog boxes. The current version of ObjectWindows
introduces some new classes, such as TOleWindow and TOleView, that use ObjectComponents
classes to acquire OLE capabilities. The new classes make it very easy to add OLE support to existing
ObjectWindows applications.

OLE
Glossary of OLE Terms
Object linking and embedding, an extension to the Windows system. (In newer versions of Windows,
OLE is an integral part of the system , not an extension.) the new commands that OLE implements and
the interfaces it defines add many new features to the system, including linking and embedding,
automation, and compound file I/O.

OLE Interface
See Also Glossary of OLE Terms
A set of function prototypes, usually declared as an abstract base class. OLE objects are able to
communicate with each other because they implement standard interfaces, sets of functions that the
system defines. The system defines only what functions an interface contains; it does not implement
the functions. Each object implements the functions for itself. The interfaces are defined in the OLE
system headers such as compobj.h and ole2.h. The OLE system communicates with applications and
objects by calling the functions it assumes each one has implemented. For more about the OLE
interface model, see the entry for Component Object Model (COM). For examples of standard OLE
interfaces, see IDispatch and IUnknown.
Besides the standard interfaces, an object can define and implement its own custom interfaces. Of
course the system can't call functions from custom interfaces because it doesn't know they exist, but
other applications that know about the custom interface can use it. Internally, ObjectComponents
works through a set of Borland custom interfaces. See BOCOLE support library.
ObjectComponents shields you from having to understand or implement particular interfaces.
Advanced users who want to manipulate interfaces directly or mix in their own custom interfaces are
free to do so.

See Also
BOCOLE support library

Open Editing
Glossary of OLE Terms
Editing an OLE object in the server's own window. Open editing happens when the user executes the
Open verb. During open editing, the server's window opens up in front of the container's window.
When the user finishes editing the object, the server window disappears and the modifications become
visible back in the container window. Contrast in-place editing.

Part
See Also Glossary of OLE Terms
An object linked or embedded in a compound document. An ObjectComponents container creates an
object of class TOcPart to represent each object linked or embedded in its document.
Part is the container's word for an object created by a server. In the server's code, the same object is
created as a normal server document. ObjectComponents presents the document to OLE as an OLE
object. The container, when it receives the OLE object, creates a TOcPart. When the part needs to be
painted, the part object communicates through OLE with the server's view object.

See Also
TOcPart

Reference Counting
Glossary of OLE Terms
Away of remembering how many clients an object has. Every section of code that requires the object
to exist calls the object's AddRef method to increment the reference count. When the client code is
done, it calls the object's Release method to decrement the reference count. If a Release call causes
the count to reach 0, then the object is allowed to destroy itself.
Every OLE object has AddRef and Release methods because they are part of the IUnknown interface.
Knowing who is a client and when to call AddRef or Release is sometimes complicated.
ObjectComponents manages reference counting for you. Only advanced users will find any need to
call AddRef or Release directly.

Registrar Object
See Also Glossary of OLE Terms
An object of type TRegistrar or TOcRegistrar. Every ObjectComponents application needs a registrar
object. The registrar processes the application's command line, sets running mode flags, verifies the
application's entries in the system registration database, and calls the application's factory function to
launch the application.
Registration: giving information about the application to the system. OLE programs perform two
different kinds of registration. When an application is first installed, ObjectComponents writes
information from the application's registration tables into the system registration database. This
information is static and needs to be recorded only once. The registrar object performs this task.
Subsequently whenever the user launches the application, ObjectComponents tells OLE that the
application is running and it registers a factory for each type of document the application can produce.
When the application ends, ObjectComponents unregisters the factories. The TOcApp or TRegistrar
object performs this task.

See Also
Registration Database

Registration Database
Glossary of OLE Terms
A structured repository of information about applications installed on a particular computer. In 16-bit
Windows, the database is kept in the REG.DAT file. In 32-bit Windows, the database is called the
system registry and resides in private system files. Applications record their information during
installation. The information includes identifiers for the application and its documents, descriptions of
the application and its documents, the path to the application file, the default extension of the
application's document files, and other details that help the OLE system associate servers with their
objects.

Registration Table
Glossary of OLE Terms
A table built with registration macros and containing information about an application or about the
types of documents an application creates. The macros create a structure of type TRegList. The
registrar object reads the registration structure and copies any necessary information to the system
registration database.

Remote View
Glossary of OLE Terms
The view of its own object a server draws in a container's window. When an ObjectComponents server
is launched to manage an object linked or embedded in a container's document, the server creates a
TOcRemView object and a TOcDocument object. The view object draws in the container's window.
The document object loads and saves the object's data.

Select
Glossary of OLE Terms
The user selects an object by clicking it once. The selected object does not become active and cannot
be edited. Conventionally a container indicates that an object is selected by drawing a rectangle with
grapples around the object. (Grapples are small handles for moving the rectangle.) the container might
permit the user to select several objects at once to move or delete as a group, but usually only one
object per child window can be active at a time.

Server
Glossary of OLE Terms
An application that creates objects for other applications to use. In this documentation, server usually
refers to either a linking and embedding server or an automation server. A linking and embedding
server creates data objects that containers can paste, drop, or insert into their own compound
documents. An automation server creates objects that other applications can manipulate by sending
commands for the object to execute. (A single application can choose to create both kinds of objects. It
is even possible to link and embed automated objects.)

System Registration Database
Glossary of OLE Terms
A structured repository of information about applications installed on a particular computer. In 16-bit
Windows, the database is kept in the REG.DAT file. In 32-bit Windows, the database is called the
system registry and resides in private system files. Applications record their information during
installation. The information includes identifiers for the application and its documents, descriptions of
the application and its documents, the path to the application file, the default extension of the
application's document files, and other details that help the OLE system associate servers with their
objects.

Type Library
Glossary of OLE Terms
A file describing the commands an automation controller supports. Creating a type library is the
standard way for an automation server to publish the programming interface it implements. The type
library tells what objects the server creates and describes the objects' properties and methods. Type
information is read by compilers and interpreters that process automation commands. Some
applications also allow the user to browse the type information.
Any ObjectComponents automation server generates a type library if you invoke it with the TypeLib
command line switch. Type libraries conventionally use the .TLB or .OLB extension. An automation
server registers the location of its type library during installation.

Verb
Glossary of OLE Terms
A command that a linking and embedding server can execute with its objects. The server tells the
container what verbs it supports and the container displays the verb strings on its own Edit menu. To
execute a verb, the user selects an object and then chooses a verb from the menu. The container
updates the verb menu each time the user selects a new object.
The server can support any verbs it chooses. Most servers support the Edit and Open verbs for in-
place or open editing. Depending on the kind of data it owns, a server might choose to offer other
verbs such as Play and Rewind.

View
Glossary of OLE Terms
The graphical representation of data. The term is used to distinguish between the way the data is
painted and the data itself, usually called the document. A single word processor document, for
example, might have three different views: a page layout view, a draft view without fancy fonts, and a
print preview view.
In ObjectComponents, containers create views to draw their compound documents. Servers also
create views to draw the objects they create. Both create a TOcDocument object to manage the data
and a view object, either TOcView or TOcRemView, to draw the document.
In ObjectWindows, Doc/View refers to a particular application architecture supported by the framework
that also treats data and its representation in separate classes.

Creating an OLE Server
See Also
An OLE server is an application that creates and manages data objects for other programs. Existing
programs can be turned into linking and embedding servers.
The following topics discuss adapting three kinds of programs:

Turning a Doc/View Application Into an OLE Server

Turning an Objectwindows Application Into an OLE Server

Turning a C++ Application Into an OLE Server
In addition, the following related topics round out this discussion of creating an OLE server:

Understanding Registration

Making a DLL Server
The ObjectComponents Framework classes support servers as well as containers, and new
ObjectWindows classes make this support easily available. The easiest kind of program to convert is
one that uses ObjectWindows and the Doc/View model, but ObjectComponents simplifies the task of
writing a server application even without the ObjectWindows framework.
OLE applications can also be automation servers.

See Also
Automating an Application
Turning a Doc/View Application Into an OLE Server

Turning a Doc/View Application Into an OLE Server
See Also Creating an OLE Server
Turning a Doc/View application into an OLE server requires only a few modifications, and many of
them are the same as the changes required to create a container. If you have already modified your
application, then much of your server work is already done.
The following topics discuss the changes you will need to make to turn a Doc/View application into an
OLE server:
1. Connect Objects to OLE
2. Register a Linking and Embedding Server
3. Draw, Load, and Save Objects
4. Build the Server
That's all you need to do. After performing these steps, your OLE server supports all the following
features:

Source for linking

Source for drag and drop

Registration

Source for embedding

In-place editing

Compound document storage
To modify the default behavior ObjectComponents provides for common OLE options, you can
additionally override the default handlers for messages that ObjectComponents sends.

See Also
Turning a Doc/View Application Into an OLE Server

Connecting Objects to OLE
Turning a Doc/View Application Into an OLE Server
Your application, window, document, and view objects need to make use of new OLE-enabled classes.
The constructor for the application object expects to receive an application dictionary object, so create
that first.
The following topics discuss the steps needed to connect to OLE:

Creating an Application Dictionary

Deriving the Application Object from TOcModule

Inheriting from OLE Classes

Creating an Application Dictionary
See Also Connecting Objects to OLE
An application dictionary tracks information for the currently active process. It is particularly useful for
DLLs. When several processes use a DLL concurrently, the DLL must maintain multiple copies of the
global, static, and dynamic variables that represent its current state in each process. For example, the
DLL version of ObjectWindows maintains a dictionary that allows it to retrieve the TApplication
corresponding to the currently active client process. If you convert an executable server to a DLL
server, it must also maintain a dictionary of the TApplication objects representing each of its container
clients.
The DEFINE_APP_DICTIONARY macro provides a simple and unified way to create the dictionary
object for any type of application, whether it is a container, a server, a DLL, or an EXE. Insert this
statement with your other static variables:
DEFINE_APP_DICTIONARY(AppDictionary);
For any application linked to the static version of the DLL library, the macro simply creates a reference
to the application dictionary in ObjectWindows. For DLL servers using the DLL version of
ObjectWindows, however, it creates an instance of the TAppDictionary class.
Note: Name your dictionary object AppDictionary to take advantage of the factory templates such as

TOleDocViewFactory (as explained later in "Creating a registrar object").

See Also
DEFINE_APP_DICTIONARY macro (OWL.HLP)
Factory Template Classes (OWL.HLP)
TApplication (OWL.HLP)
Turning a Doc/View Application Into an OLE Server

Deriving the Application Object from TOcModule
See Also Connecting Objects to OLE
The application object of an ObjectComponents program needs to derive from TOcModule as well as
TApplication. TOcModule coordinates some basic housekeeping chores related to registration and
memory management. It also connects your application to OLE. More specifically, TOcModule
manages the connector object that implements COM interfaces on behalf of an application.
If the declaration of your application object looks like this:
class TMyApp : public TApplication {
 public:
 TMyApp() : TApplication(){};
 .
 .
 .
};
Then change it to look like this:
class TMyApp : public TApplication, public TOcModule {
 public:
 TMyApp(): TApplication(::AppReg["description"], ::Module,
&::AppDictionary){};
 .
 .
 .
};
The constructor for the revised TMyApp class takes three parameters.

A string naming the application
AppReg is the application's registration table." The expression ::AppReg["description"] extracts a

string that was registered to describe the application.

A pointer to the application module
Module is a global variable of type TModule* defined by ObjectWindows

the address of the application dictionary
AppDictionary is the application dictionary object.

See Also
TApplication (OWL.HLP)
TModule (OWL.HLP)
TOcModule (OWL.HLP)
Registering a Linking and Embedding Server
Turning a Doc/View Application Into an OLE Server

Inheriting From OLE Classes
See Also Connecting Objects to OLE
A server makes the same changes to its OLE classes that a container makes. ObjectWindows wraps a
great deal of power in its new window, document, and view classes. To give an ObjectWindows
program OLE capabilities, change its derived classes to inherit from OLE classes.
Here are some examples:
// old declarations (without OLE)
class TMyDocument: public TDocument { /* declarations */ };
class TMyView: public TView { /* declarations */ };
class TMyFrame: public TFrameWindow { /* declarations */);

// new declarations (with OLE)
class TMyDocument: public TOleDocument { /* declarations */ };
class TMyView: public TOleView { /* declarations */ };
class TMyFrame: public TOleFrame { /* declarations */);
When you change to OLE classes, be sure that those methods in your classes which refer to their
direct base classes now use the OLE class names.
void TMyView::Paint(TDC& dc, BOOL erase, TRect& rect)
{
 TOleView::Paint(dc, erase, rect);
 // paint the view here
}
It is generally safer to allow the OLE classes to handle Windows events and Doc/View notifications.
This is particularly true for the Paint method and mouse message handlers in classes derived from
TOleView. TOleView::Paint knows how to paint the objects embedded in your document. (Servers are
often containers as well, and a server's object might have other objects embedded in it.) Similarly, the
mouse handlers of TOleView let the user select, move, resize, and activate an OLE object embedded
or linked in your document.

See Also
Turning a Doc/View Application Into an OLE Server

Registering a Linking and Embedding Server
See Also
To register your application with OLE, first create registration tables describing the application and the
kinds of documents it creates. The tables create structures that you pass to the registrar object when
you create it. Call the registrar's Run method to start the application.
The following topics discuss the tasks involved with linking and embedding:

Building Registration Tables

Creating a Registrar Object

Processing the Command Line

See Also
Turning a Doc/View Application Into an OLE Server
Understanding Registration

Building Registration Tables
See Also Registering a Linking and Embedding Server
databaseServers implement OLE objects that any container can use. Different servers implement
different types of objects. Every type of object a server creates must have a globally unique identifier
(GUID) and a unique string identifier. Every server must record this information, along with other
descriptive information, in the registration database of the system where it runs. OLE reads the registry
to determine which objects are available, what their capabilities are, and how to invoke the application
that creates objects of each type.
ObjectComponents simplifies the task of registration. You call macros to build a table of keys with
associated values. ObjectComponents receives the table and automatically performs all registration
tasks.
Servers and containers use the same macros for registration, but servers must provide more
information than containers. Here are the commands to build the registration tables for a typical server.
This example comes from the STEP15.CPP and STEP15DV.CPP file in the EXAMPLES\OWL\
TUTORIAL directory of your compiler installation.
REGISTRATION_FORMAT_BUFFER(100) // allow space for expanding macros

BEGIN_REGISTRATION(AppReg)
 REGDATA(clsid, "{5E4BD320-8ABC-101B-A23B-CE4E85D07ED2}")
 REGDATA(description,"Drawing Pad Server")
END_REGISTRATION

BEGIN_REGISTRATION(DocReg)
 REGDATA(progid, "DrawPad.Document.15")
 REGDATA(description,"Drawing Pad (Step15--Server)")
 REGDATA(menuname, "Drawing Pad 15")
 REGDATA(extension, "p15")
 REGDATA(docfilter, "*.p15")
 REGDOCFLAGS(dtAutoOpen | dtAutoDelete | dtUpdateDir | dtCreatePrompt |
dtRegisterExt)
 REGDATA(insertable, "")
 REGDATA(verb0, "&Edit")
 REGDATA(verb1, "&Open")
 REGFORMAT(0, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
 REGFORMAT(1, ocrMetafilePict, ocrContent, ocrMfPict|ocrStaticMed, ocrGet)
 REGFORMAT(2, ocrBitmap, ocrContent, ocrGDI|ocrStaticMed, ocrGet)
 REGFORMAT(3, ocrDib, ocrContent, ocrHGlobal|ocrStaticMed,
ocrGet)
 REGFORMAT(4, ocrLinkSource, ocrContent, ocrIStream, ocrGet)
END_REGISTRATION
The macros in the example build two structures. The first structure is named AppReg and the second
is DocReg. ObjectComponents uses lowercase strings such as progid and clsid to name the standard
keys to which you assign values. The values you assign are strings, and they are sensitive to case.
The order of keys within the registration table doesn't matter. For information on the the full set of
registration macros, see the ObjectWindows Help (OWL.HLP).
The set of keys you place in a structure depends on what OLE capabilities you intend to support and
whether the structure holds application information or document information. The macros in the
example show the minimum amount of information a server with one type of document should provide.
A server registers program and class ID strings (progid and clsid) for itself and for every type of
document it creates. The IDs must be absolutely unique so that OLE can distinguish one application
from another. The description strings appear on the Insert Object dialog box where the user sees a list

of objects available in the system.
The following table describes all the registration keys that can be used by a server that supports
linking and embedding. It shows which are optional and which required as well as which belong in the
application registration table and which in the document registration table

Key in AppReg? in DocReg? Description
appname Yes Optional Short name for the application

clsid Yes Optional Globally unique identifier (GUID); generated automatically for the
DocReg structure

description Yes Yes Descriptive string (up to 40 characters)

progid No No Identifier for program or object type (unique string)

Note: in DocReg for link or embed source

menuname No Yes Name of server object for container menu

extension No Optional Document file extension associated with server

docfilter No Yes Wildcard file filter for File Open dialog box

Note: not in DocReg if dtHidden

docflags No Yes Options for running the File Open dialog box

debugger No Optional Command line for running debugger

debugprogid No Optional Name of debugging version (unique string)

debugdesc No No Description of debugging version

Note: in DocReg if using debugprogid

insertable No No Indication that object can be embedded. If omitted, the document is only
a link source

Note: in DocReg for embedding

verbn No Yes An action the server can execute with the object

formatn No Yes A clipboard format the server can produce

aspectall No Optional Options for displaying object in any aspect

aspectcontent No Optional Options for displaying the object's content aspect

aspectdocprint No Optional Options for displaying the object's docprint aspect

aspecticon No Optional Options for displaying the object's icon aspect

aspectthumbnail No Optional Options for displaying the object's thumbnail aspect

cmdline No Optional Arguments to place on server's command line

path No Optional Path to server file (defaults to current module path)

permid No Optional Name string without version information

permname No Optional Descriptive string without version information

usage Optional Optional Support for concurrent clients

language Optional No Language for registered strings (defaults to system's user language
setting)

version Optional No Major and minor version numbers (defaults to "1.0")database

The previous table assumes that the server's documents support linking or embedding. For documents
that support neither, the server needs to register only docflags and docfilter.
If the server is also a container or an automation server, then you should also consult the container
table or the automation table. Register all the keys that are required in any of the tables that apply to
your application.
For more information about individual registration keys, the values they hold, and the macros used to
register them, see Registration Keys.

The values assigned to keys can be translated to accommodate system language settings.
Place your registration structures in the source code files where you construct document templates
and implement your TApplication-derived class. A server always creates only one application
registration table (called AppReg in the example). The server might create several document
registration tables, however, if it creates several different kinds of documents (for example, text objects
and chart objects). Each registration table needs a unique progid value.
After creating registration tables, you must pass them to the appropriate object constructors. The
AppReg structure is passed to the TOcRegistrar constructor. Document registration tables are passed
to the document template constructor.
DEFINE_DOC_TEMPLATE_CLASS(TMyOleDocument, TMyOleView, MyTemplate);
MyTemplate myTpl(::DocReg);
DatabaseSome of the information in the document registration table is used only by the document
template. The document filter and document flags have to do with documents, not with OLE. Previous
versions of OWL passed the same information to the document template as a series of separate
parameters. The old method is still supported for backward compatibility, but new programs, whether
they use OLE or not, should use the registration macros to supply document template parameters.
Some of the registration macros expand the values passed to them. The
REGISTRATION_FORMAT_BUFFER macro reserves memory needed temporarily for the expansion.
To determine how much buffer space you need, allow 10 bytes for each REGFORMAT item plus the
size of any string parameters you pass to the macros REGSTATUS, REGVERBOPT, REGICON, or
REGFORMAT. For more information, see Registration macros in Object Windows Help (OWL.HLP).

See Also
Localizing Symbol Names
Registering Localized Entries
Registration Keys
REGISTRATION_FORMAT_BUFFER Macro (OWL.HLP)
Registration Macros (OWL.HLP)
Turning a Doc/View Application Into an OLE Server
Understanding Registration Macros

Creating a Registrar Object
See Also Registering a Linking and Embedding Server
Every ObjectComponents application needs a registrar object to manage all of its registration tasks. In
a linking and embedding application, the registrar is an object of type TOcRegistrar. At the top of your
source code file, declare a global variable holding a pointer to the registrar.
static TPointer<TOcRegistrar> Registrar;
The TPointer template ensures that the TOcRegistrar instance is deleted when the program ends.
Note: Name this variable Registrar to take advantage of the factory callback template used in the

registrar's constructor.
The next step is to modify your OwlMain function to allocate a new TOcRegistrar object and initialize
the global pointer Registrar. The TOcRegistrar constructor expects three parameters: the application's
registration structure, the component's factory callback and the command-line string that invoked that
application. The registration structure is created with the registration macros.
The factory callback is created with a class template. For a linking and embedding ObjectWindows
application that uses Doc/View, the template is called TOleDocViewFactory. The third parameter, the
command-line string, can be obtained from the GetCmdLine method of TApplication. The code in the
factory template assumes you have defined an application dictionary called AppDictionary and a
TOcRegistrar* called Registrar.
int OwlMain(int, char*[])
{
 // Create Registrar object
 ::Registrar = new TOcRegistrar(::AppReg, TOleDocViewFactory<TMyApp>(),
 TApplication::GetCmdLine());
.
.
.
}
After initializing the Registrar pointer, your OLE container application must invoke the Run method of
the registrar instead of TApplication::Run. TRegistrar::Run calls the factory callback procedure (the
one the second parameter points to) and causes the application to create itself. The application enters
its message loop, which is actually in the factory callback. The following code shows a sample
OwlMain before and after adding a registrar object. Boldface type highlights changes.
Before:
// Non-OLE OwlMain
int
OwlMain(int /*argc*/, char* /*argv*/[])
{
 return TMyApp().Run();
}
After:
// New declaration of OwlMain
int
OwlMain(int /*argc*/, char* /*argv*/[])
{
 ::Registrar = new TOcRegistrar(::AppReg,
 TOleDocViewFactory<TMyApp>(),
 TApplication::GetCmdLine());
 return ::Registrar->Run();
}
The last parameter of the TOcRegistrar constructor is the command line string that invoked the
application.

See Also
Factory Template Classes (OWL.HLP)
TOcRegistrar
TRegistrar
Turning a Doc/View Application Into an OLE Server

Processing the Command Line
See Also Registering a Linking and Embedding Server
When OLE invokes a server, it places an -Embedding switch on the command line to tell the
application why it has been invoked. The presence of the switch indicates that the user did not launch
the server directly. Usually a server responds by keeping its main window hidden. The user interacts
with the server through the container. If the -Embedding switch is not present, the user has invoked the
server as a standalone application and the server shows itself in the normal way.
When you construct a TRegistrar object, it parses the command line for you and searches for any
OLE-related switches. It removes the switches as it processes them, so if you examine your command
line after creating TRegistrar you will never see them.
If you want to know what switches were found, call IsOptionSet. For example, this line tests for the
presence of a registration switch on the command line:
if (Registrar->IsOptionSet(amAnyRegOption))
 return 0;
This is a common test in OwlMain. If the a command line switch such as RegServer was set, the
application simply quits. By the time the registrar object is constructed, any registration action
requested on the command line have already been performed.
The following table lists all the OLE-related command-line switches

Switch What the server should do OLE places switch?
-RegServer Register all its information and quit No
-UnregServer Remove all its entries from the No

system and quit
NoRegValidate Run without confirming entries in the No

system database
-Automation Register itself as single-use (one client only). Yes

Always accompanied by -Embedding
-Embedding Consider remaining hidden because it is Yes

running for a client, not for itself
-Language Set the language for registration and No

 type libraries
-TypeLib Create and register a type library No
-Debug Enter a debugging session Yes
OLE places some of the switches on the program's command line. Anyone can set other flags to make
ObjectComponents perform specific tasks. An install program, for example, might invoke the
application it installs and pass it the -RegServer switch to make the server register itself. Switches can
begin with either a hyphen () or a slash (/).
Only a few of the switches call for any action from you. If a server or an automation object sees the -
Embedding or -Automation switch, it might decide to keep its main window hidden. Usually
ObjectComponents makes that decision for you. You can use the Debug switch as a signal to turn
trace messages on and off, but responding to Debug is always optional. (OLE uses Debug switch only
if you register the debugprogid key.)
ObjectComponents handles all the other switches for you. If the user calls a program with the -
UnregServer switch, ObjectComponents examines its registration tables and erases all its entries from
the registration database. If ObjectComponents finds a series of switches on the command line, it
processes them all. This example makes ObjectComponents generate a type libary in the default
language and then again in Belgian French.

myapp -TypeLib -Language=80C -TypeLib
the number passed to -Language must be hexadecimal digits. The Win32 API defines 80C as the
locale ID for the Belgian dialect of the French language. For this command line to have the desired
effect, of course, myapp must supply Belgian French strings in its XLAT resources.
The RegServer flag optionally accepts a file name.
myapp -RegServer = MYAPP.REG
This causes ObjectComponents to create a registration data file in MYAPP.REG. The new file contains
all the application's registration data. If you distribute MYAPP.REG with your program, users can
merge the file directly into their own registration database (using RegEdit). Without a file name,
RegServer writes all data directly to the system's registration database.
Note: Only EXE servers have true command lines. OLE can't pass command line switches to a DLL .

ObjectComponents simulates passing a command line to a DLL server so that you can use the
same code either way. The registrar object always sets the right running mode flags.

See Also
Creating a Type Library
debugprogid Registration Key
Localizing Symbol Names
Making a DLL Server

Drawing, Loading, and Saving Objects
See Also Turning a Doc/View Application Into an OLE Server
A server must coordinate with its client to process its objects when they need to be painted or saved.
The following topics discuss drawing, loading, and saving objects:

Telling Clients When an Object Changes

Loading and Saving the Server's Documents

See Also
Turning a Doc/View Application Into an OLE Server

Telling Clients When an Object Changes
See Also Drawing, Loading, and Saving Objects
Whenever the server makes any changes that alter the appearance of an object, the server must tell
OLE. OLE keeps a metafile representation with every linked or embedded object so that even when
the server is not active OLE can still draw the object for the container. If the object changes, OLE must
update the metafile. The server notifies OLE of the change by calling TOleView::InvalidatePart. OLE, in
turn, asks the server to paint the revised object into a new metafile. ObjectComponents handles this
request by passing the metafile device context to the server's Paint procedure. You don't need to write
extra code for updating the metafile.
A good place to call InvalidatePart is in the handlers for the messages that ObjectWindows sends to a
view when its data changes:
bool TDrawView::VnRevert(bool /*clear*/) {
 Invalidate(); // force full repaint
 InvalidatePart(invView); // tell container about the change
 return true;
}
invView is an enumeration value, defined by ObjectComponents, indicating that the view is invalid and
needs repainting.
Other view notification messages that signal the need for an update include EV_VN_APPEND,
EV_VN_MODIFY, and EV_VN_DELETE.

See Also
TOleWindow::InvalidatePart (OWL.HLP)
Turning a Doc/View Application Into an OLE Server

Loading and Saving the Server's Documents
See Also Drawing, Loading, and Saving Objects
When a server gives objects to containers, the containers assume the burden of storing the objects in
files and reading them back when necessary. If your server can also run independently and load and
save its own documents, it too should make use of the compound file capabilities built into
TOleDocument.
In its Open method, a server calls TOleDocument::Open. In its Commit method, a server should call
TOleDocument::Commit and TOleDocument::CommitTransactedStorage.
// document class declaration derived from TOleDocument
class _DOCVIEWCLASS TMyDocument : public TOleDocument {
 // declarations
}

// document class implementation
bool TMyDocument::Commit(bool force) {
 TOleDocument::Commit(force); // save linked and embedded objects
 .
 .
 . // code to save other document data
 TOleDocument::CommitTransactedStorage(); // write to file if transacted
mode
}

bool TDrawDocument::Open(int, const char far* path) {
 TOleDocument::Open(); // load linked or embedded objects
 .
 .
 . // code to load other document data
}
Note: By default, TOleDocument opens compound files in transacted mode. Transacted mode saves

changes in temporary storages until you call CommitTransactedStorage.

See Also
Loading And Saving Compound Documents
Turning a Doc/View Application Into an OLE Server

Building the Server
Turning a Doc/View Application Into an OLE Server
To build the server application, include the OLE headers and link with the OLE libraries.
The following topics discuss steps required for building the server:

Including OLE headers

Compiling and Linking

Including OLE Headers
See Also Building the Server
The headers for a server are the same as the headers for a container. A server that uses the Doc/View
model and an MDI frame window needs the following headers:
#include <owl/oledoc.h> // replaces DOCVIEW.H
#include <owl/oleview.h> // replaces DOCVIEW.H
#include <owl/olemdifr.h> // replaces MDI.H
An SDI application includes OLEFRAME.H instead of OLEMDIFR.H.

See Also
Building an ObjectComponents Application
Turning a Doc/View Application Into an OLE Server

Compiling and Linking
See Also Building the Server
Linking and embedding servers that use ObjectComponents and ObjectWindows require the large
memory model. Link them with the OLE and ObjectComponents libraries.
The integrated development environment (IDE) chooses the right build options when you ask for OLE
support. To build any ObjectComponents program from the command line, create a short makefile that
includes the OWLOCFMK.GEN file found in the EXAMPLES subdirectory.
EXERES = MYPROGRAM
OBJEXE = winmain.obj myprogram.obj
!include $(BCEXAMPLEDIR)\ocfmake.gen
EXERES and OBJEXE hold the name of the file to build and the names of the object files to build it
from. The last line includes the OWLOCFMK.GEN file. Name your file MAKEFILE and type this at the
command-line prompt:
make MODEL=l
MAKE, using instructions in OCFMAKE.GEN, will build a new makefile tailored to your project. The
new makefile is called WIN16Lxx.MAK.

See Also
Turning a Doc/View Application Into an OLE Server

Turning an ObjectWindows Application Into an OLE Server
Creating an OLE Server
Turning a non-Doc/View ObjectWindows container into an OLE server requires a few modifications.
The following topics discuss those modifications:
1.Register the Server
2.Set Up the Client Window
3.Modify the Application Class
4.Build the Server
Code excerpts used in the above topics are from the OWLOCF2.CPP sample in the
EXAMPLES/OWL/TUTORIAL/OLE directory. OWLOCF2 converts the OWLOCF1 sample from a
container to a server.

Registering the server
See Also Turning an Objectwindows Application Into an OLE Server
To register the server you describe it in registration tablesone table for the application and one for each
type of document it creates. The document tables are put in a linked list, and the registrar object
processes the information in all the tables. The registrar also needs an application dictionary object.
The following was created for Help purposes.The following topics discuss how to register the server.

Creating an Application Dictionary

Creating Registration Tables

Creating the Document List

Creating the Registrar Object

See Also
Understanding Registration

Creating an Application Dictionary
See Also Registering the Server
An application dictionary tracks information for the currently active process. It is particularly useful for
DLLs. When several processes use a DLL concurrently, the DLL must maintain multiple copies of the
global, static, and dynamic variables that represent its current state in each process. For example, the
DLL version of ObjectWindows maintains a dictionary that allows it to retrieve the TApplication
corresponding to the currently active client process. If you convert an executable server to a DLL
server, it must also maintain a dictionary of the TApplication objects representing each of its container
clients.
The DEFINE_APP_DICTIONARY macro provides a simple and unified way to create the dictionary
object for any type of application, whether it is a container, a server, a DLL, or an EXE. Insert this
statement with your other static variables:
DEFINE_APP_DICTIONARY(AppDictionary);
For any application linked to the static version of the DLL library, the macro simply creates a reference
to the application dictionary in ObjectWindows. For DLL servers using the DLL version of
ObjectWindows, however, it creates an instance of the TAppDictionary class.
It is important to name your dictionary object AppDictionary to take advantage of the factory templates
such as TOleFactory.

See Also
DEFINE_APP_DICTIONARY macro (OWL.HLP)
Factory Template Classes (OWL.HLP)

Creating Registration Tables
See Also Registering the Server
Servers implement OLE objects that any container can link or embed in their own documents. Different
servers implement different types of objects. Every type of object a server can create must have a 16-
byte globally unique identifier (GUID) and a unique string identifier. Every server must record this
information, along with other descriptive information, in the registration database of the system where
it runs. OLE reads the registry to determine what objects are available, what their capabilities are, and
how to invoke the application that creates objects of each type.
A server provides registration information to ObjectComponents using macros to build registration
tables: one table describing the application itself and one for each type of OLE object the server
creates. Here is the application registration table from OWLOCF2.
REGISTRATION_FORMAT_BUFFER(100)

// application registration table
BEGIN_REGISTRATION(AppReg)
 REGDATA(clsid, "{B6B58B70-B9C3-101B-B3FF-86C8A0834EDE}")
 REGDATA(description,"Scribble Pad Server")
END_REGISTRATION
The registration macros build a structure of items. Each item contains a key, such as clsid or
description, and a value assigned to the key. The order in which the keys appear does not matter. In
the example, AppReg is the name of the structure that holds the information in this table.
Servers that create several types of objects must build a document registration table for each type.
(What the server creates as a document is presented through OLE as an object.) If a spreadsheet
application, for example, creates spreadsheet files and graph files, and if both kinds of documents can
be linked or embedded, then the application registers two document types and creates two document
registration tables.
The OWLOCF2 sample program creates one type of object, a scribbling pad, so it requires one
document registration table (shown here) in addition to the application registration table.
// document registration table
BEGIN_REGISTRATION(DocReg)
 REGDATA(progid, "Scribble.Document.3")
 REGDATA(description,"Scribble Pad Document")
 REGDATA(debugger, "tdw")
 REGDATA(debugprogid,"Scribble.Document.3.D")
 REGDATA(debugdesc, "Scribble Pad Document (debug)")
 REGDATA(menuname, "Scribble")
 REGDATA(insertable, "")
 REGDATA(extension, DocExt)
 REGDATA(docfilter, "*."DocExt)
 REGDOCFLAGS(dtAutoDelete | dtUpdateDir | dtCreatePrompt | dtRegisterExt)
 REGDATA(verb0, "&Edit")
 REGDATA(verb1, "&Open")
 REGFORMAT(0, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
 REGFORMAT(1, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)
END_REGISTRATION
The progid key is an identifier for this document type. The string must be unique so that OLE can
distinguish one object from another. The insertable key indicates that this type of document should be
listed in the Insert Object dialog box. The description, menuname, and verb keys are all visible to the
user during OLE operations. The description appears in the Insert Object dialog box where the user
sees a list of objects available in the system. The menuname is used in the container's Edit menu
when composing the string that pops up the verb menu, which is where the verb strings appear. The
remaining registration items are used when the application opens a file or uses the Clipboard.

For more information about particular register keys, see the ObjectWindows Reference Guide.
Place your registration structures in the source code file where you implement your TApplication-
derived class. If you cut and paste registration tables from other programs, be sure to modify at least
the progid and clsid because these must identify your application uniquely. (Use the GUIDGEN.EXE
utility to generate new 16-byte clsid identifiers.)

See Also
Building Registration Tables
Registration Macros (OWL.HLP)
Understanding Registration

Creating the Document List
Registering the Server
The registration tables hold information about your application and its documents, but they are static.
They don't do anything with that information. To register the information with the system, an application
must pass the structures to an object that know how to use them. That object is the registrar, which
records any necessary information in the system registration database.
In a Doc/View application, the registrar examines the list of document templates to find each document
registration structure. A non-Doc/View application doesn't have document templates, so it uses
TRegLink instead to create a linked list of all its document registration tables.
static TRegLink* RegLinkHead;
TRegLink scribbleLink(::DocReg, RegLinkHead);
RegLinkHead points to the first node of the linked list. ScribbleLink is a node in the linked list. The
TRegLink constructor follows RegLinkHead to the end of the list and appends the new node. Each
node contains a pointer to a document registration structure. In OWLOCF2, the list contains only one
node because the server creates only one type of document. The node points to DocReg.
OWLOCF2 declares RegLinkHead as a static variable because it is used in several parts of the code,
as the following sections explain.

Creating the Registrar Object
See Also Registering the Server
The registrar object registers and runs the application. Its constructor receives the application
registration structure and a pointer to the list of document registration structures. In a linking and
embedding application, the registrar is an object of type TOcRegistrar. At the top of your source code
file, declare a global variable holding a pointer to the registrar.
static TPointer<TOcRegistrar> Registrar;
The TPointer template ensures that the TOcRegistrar instance is deleted when the program ends.
Note: Name this variable Registrar to take advantage of the factory callback template used in the

registrar's constructor.
Next, in OwlMain allocate a new TOcRegistrar object and initialize the global pointer Registrar. The
TOcRegistrar constructor has three required parameters: the application's registration structure, the
component's factory callback and the command-line string that invoked that application.
An optional fourth parameter points to the beginning of the document registration list. In a Doc/View
application, this parameter defaults to the application's list of document templates. Applications that do
not use Doc/View should pass a TRegLink* pointing to the list of document registration structures.
int
OwlMain(int /*argc*/, char* /*argv*/ [])
{
 try {
 // construct a registrar object to register the application
 Registrar = new TOcRegistrar(::AppReg, // application registration
structure
 TOleFactory<TScribbleApp>(), // factory callback
 TApplication::GetCmdLine(), // app's command line
 ::RegLinkHead); // pointer to doc
registration structures

 // did command line say to register only?
 if (Registrar->IsOptionSet(amAnyRegOption))
 return 0;
 return Registrar->Run(); // enter message loop in
factory callback
 }
 catch (xmsg& x) {
 ::MessageBox(0, x.why().c_str(), "Scribble App Exception", MB_OK);
 }
 return -1;
}
TOleFactory is a template that creates a class with a factory callback function. For a linking and
embedding ObjectWindows application that does not use Doc/View, the template is called
TOleFactory. The code in the factory template assumes you have defined an application dictionary
called AppDictionary and a TOcRegistrar* called Registrar.
When the registrar is created, it compares the information in the registration tables to the application's
entries in the system registration database and updates the database if necessary. The Run method
causes the registrar to call the factory callback which, among other things, enters the application's
message loop.

See Also
Factory Template Classes (OWL.HLP)
Processing the Command Line
TOcRegistrar
Turning a Doc/View Application Into an OLE Server

Setting Up the Client Window
See Also Turning an Objectwindows Application Into an OLE Server
ObjectComponents applications need to have a separate window for each document. The document
window derives from TOleFrame and usually is made to fill the client area of a frame window. If your
application does not already have a client window, you will need to add one.
The client window constructors are good places to place the two helper objects that will be required:

Creating Helper Objects for a Document

See Also
Setting Up the Client Window

Creating Helper Objects for a Document
See Also Setting Up the Client Window
Each new document you open needs two helper objects from ObjectComponents: TOcDocument and
TOcView. Because you create a client window for each document, the window's constructor is a good
place to create the helpers. The TOleWindow::CreateOcView function creates both at once.
In OWLOCF2, the client window is TScribbleWindow. Here is the declaration for the class and its
constructor:
class TScribbleWindow : public TOleWindow {
 public:
 TScribbleWindow(TWindow* parent, TOpenSaveDialog::TData& fileData);
 TScribbleWindow(TWindow* parent, TOpenSaveDialog::TData& fileData,
TRegLink* link);
The second constructor is new. It is useful when ObjectComponents passes you a pointer to the
registration information you provided for one of your document types and asks you to create a
document of that type. Here is the implementation of the new constructor:
TScribbleWindow::TScribbleWindow(TWindow* parent, TOpenSaveDialog::TData&
fileData, TRegLink* link)
:
 TOleWindow(parent, 0),
 FileData(fileData)
{

.

.

.
 // Create a TOcDocument object to hold the OLE parts that we create
 // and a TOcRemView to provide OLE services
 CreateOcView(link, true, 0);
}
The constructor receives a TRegLink pointer and passes it on to CreateOcView. The pointer points to
the document registration information for the type of document being created. ObjectComponents
passes the pointer to this constructor; you don't have to keep track of it yourself.
Passing true to CreateOcView causes the function to create a TOcRemView helper instead of a
TOcView. The remote view object draws an OLE object within a container's window. When a server is
launched to help a client with a linked or embedded object, it should create a remote view.
If your application supports more than one document type, you can choose to use a different
TOleWindow-derived class for each one. You must then provide the additional constructor for each
class. Alternatively, you can use a single TOleWindow-derived class that behaves differently
depending on the TRegList pointer it receives.

See Also
TOcDocument
TOcRemView
TOcView
TOleWindow (OWL.HLP)

Modifying the application class
See Also Turning an Objectwindows Application Into an OLE Server
ObjectComponents requires that the class you derive from TApplication must also inherit from
TOcModule. In addition, the application object needs to implement a CreateOleObject method with the
following signature:
TUnknown* CreateOleObject(uint32 options, TRegList* link);
The purpose of the function is to create a server document for linking or embedding. The server must
create a client window and return a pointer of type TOcRemView*. Here is how OWLOCF2 declares
this procedure:
class TScribbleApp : public TApplication, public TOcModule {
 public:
 TScribbleApp();
 TUnknown* CreateOleObject(uint32 options, TRegLink* link);
and here is how it implements the procedure:
TUnknown*
TScribbleApp::CreateOleObject(uint32 options, TRegLink* link)
{
 if (!link) // factory creating an application only, no view required
 link = &scribbleLink; // need to have a view for this app
 TOleFrame* olefr = TYPESAFE_DOWNCAST(GetMainWindow(), TOleFrame);
 CHECK(olefr);
 FileData.FileName[0] = 0;
 TScribbleWindow* client = new TScribbleWindow(
 olefr->GetRemViewBucket(), FileData, link);
 client->Create();
 return client->GetOcRemView();
}
ObjectWindows uses the CreateOleObject method to inform your application when OLE needs the
server to create an object. The TRegLink* parameter indicates which object to create.

Understanding the Treglink Document List

See Also
Deriving the Application Object from TOcModule
TOcModule
TOcRemView

Understanding the TRegLink Document List
See Also Modifying the Application Class
This topic explains the relationship between the document registration structure, the document list,
and the CreateOleObject method. A server builds a document registration table for each type of object
that it can serve. (The variable that holds the document registration information is conventionally
named DocReg.) the registration structure is then passed to a TRegLink constructor, which appends
the the structure to a linked list so that all the document types can be registered.
OLE displays the description value for each document in the Insert Object dialog box whenever the
user asks to insert an object. (OLE also displays the description strings for all the other available
server document types.) When the user chooses to insert one of your objects into a container
application, OLE launches your server and places the -Embedding switch on the command line. When
the server loads, ObjectComponents calls your CreateOleObject method, passing the address of the
registration link that was used to register the requested document type. The TRegList pointer lets you
determine which type of object was chosen. This matters primarily for servers that register more than
one document type.
The following code illustrates one possible implementation of the CreateOleObject method for an
application that serves more than one type of object:
// Create a appropriate client window and return its TOcRemView pointer
TUnknown*
TServerApp::CreateOleObject(uint32 options, TRegList* link)
{
 if (link == &chartLink) {
 // Create TOleChartWindow
 // and return charWindow->GetOcRemView();
 }

 if (tpl == &worksheetLink) {
 // Create TOleWorksheetWindow
 // and return worksheetWindow->GetOcRemView();
 }

 return 0;
}

See Also
Processing the Command Line

Building the Server
See Also Turning an Objectwindows Application Into an OLE Server
To build the server application, include the OLE headers and link with the OLE libraries.
The following topics discuss those tasks:

Including OLE Headers

Compiling and Linking

See Also
Building an ObjectComponents Application

Including OLE Headers
Building the Server
ObjectWindows provides OLE-related classes, structures, macros, and symbols in various header
files. The following list shows the headers needed for an OLE container using an SDI frame window.
#include <owl/oleframe.h>
#include <owl/olewindo.h>
#include <ocf/ocstorag.h>
An MDI application includes olemdifr.h instead of oleframe.h.

Compiling and Linking
See Also Building the Server
Linking and embedding servers that use ObjectComponents and ObjectWindows must be compiled
with the large memory model. They must be linked with the OLE and ObjectComponents libraries.

See Also
Building an ObjectComponents Application

Turning a C++ Application Into an OLE Server
Creating an OLE Server
If you are writing a new program, consider using ObjectWindows to save yourself some work. The
ObjectWindows Library contains built-in code that automatically performs some tasks common to all
ObjectComponents programs. Programs that don't use ObjectWindows must undertake these chores
for themselves.
The following list briefly describes what you need to do to turn a C++ application into an
ObjectComponents server.If you have already turned your C++ application into a container, much of
the server work is already done. The most important differences concern the registration tables and
the factory callback function.
The following topics discuss each step in turning a C++ application into an OLE server.
1. Create a Memory Allocator
2. Register the Application
3. Create a View Window
4. Program the Main Window
5. Build the Server
The sections that follow illustrate each step using examples from the programs in the
EXAMPLES/OCF/CPPOCF directory. The source files titled CPPOCF0 contain a Windows application
that does not support OLE. CPPOCF1 turns the first program into an OLE container. CPPOCF2 adds
server capabilities. The code samples for this discussion come from CPPOCF2. The CPPOCF2 server
creates a simple timer display for containers to embed. The timer display increments every second.

Creating a Memory Allocator
See Also Turning a C++ Application Into an OLE Server
A server adds this line to the beginning of its WinMain procedure:
TOleAllocator allocator(0); // use default memory allocator
The allocator's constructor initializes the OLE libraries and its destructor releases them when the
object goes out of scope. Passing 0 to the constructor tells it to let OLE use its standard memory
functions whenever allocating memory for this application.

See Also
TOleAllocator

Registering the Application
See Also Turning a C++ Application Into an OLE Server
CPPOCF2 supports basic server functions. It registers information about itself and its document type,
and it creates on demand an object to embed in other applications.
The following topics discuss steps needed to register your application:

Building Registration Tables

Creating the Document List

Creating the Registrar Object

Writing the Factory Callback Function

See Also
Understanding Registration

Building Registration Tables
See Also Registering the Application
A server uses the registration macros to build registration tables describing the application and the
documents it creates. The first table describes the server itself:
REGISTRATION_FORMAT_BUFFER(100)
BEGIN_REGISTRATION(AppReg)
 REGDATA(clsid, "{BD5E4A81-A4EF-101B-B31B-0694B5E75735}")
 REGDATA(description, "Sample C Server")
END_REGISTRATION
The registration macros build a structure of type TRegList. The structure is stored in a variable named
AppReg. Each entry in the structure contains a key, such as clsid or description, and a value assigned
to the key. Internally, ObjectComponents finds the values by searching for the keys. The order in which
the keys appear does not matter.
Tthe server creates a second registration table to describe the type of document it produces. If a
spreadsheet application, for example, creates spreadsheet files and graph files, it registers two
document types. CPPOCF2 creates only one kind of document, a timer display. The registration
structure for this document type is held in a variable named DocReg, as the following code shows.
BEGIN_REGISTRATION(DocReg)
 REGDATA(description, "Sample C Server Document")
 REGDATA(progid, APPSTRING".Document.1")
 REGDATA(menuname, "CServer")
 REGDATA(insertable, "")
 REGDATA(verb0, "&Edit")
 REGDATA(verb1, "&Open")
 REGDATA(extension, "scd")
 REGDATA(docfilter, "*.scd")
 REGDOCFLAGS(dtAutoDelete | dtUpdateDir | dtCreatePrompt | dtRegisterExt)
 REGFORMAT(0, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
 REGFORMAT(1, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)
END_REGISTRATION
The progid key is an identifier for this document type. The insertable key indicates that this type of
document should be listed in the Insert Object dialog box. The description, menuname, and verb keys
are all visible to the user during OLE operations. The description appears in the Insert Object dialog
box. The menuname is used in the container's Edit menu when composing the string that pops up the
verb menu, which is where the verb strings appear.
The remaining registration items are used when the application opens a file or uses the clipboard. For
descriptions of individual keys, see the ObjectWindows Reference Guide.

See Also
BuildingRegistrationTables
Registration keys
Registration Macros (OWL.HLP)

Creating the Document List
See Also Registering the Application
The registration tables hold information about your application and its documents, but they are static.
They don't do anything with that information. To register the information in the system, an application
must pass the structures to objects that know how to use them. That object is the registrar, which
records any necessary information in the system registration database.
To accommodate servers with many document types, the registrar accepts a pointer to a linked list of
all the application's document registration structures. Each node in the list is a TRegLink object. Each
node contains a pointer to one document registration structure and another pointer to the next node.
TRegLink *RegLinkHead = 0;
TRegLink regDoc(DocReg, RegLinkHead);
RegLinkHead points to the first node of the linked list. RegDoc is a node in the linked list. The
TRegLink constructor follows RegLinkHead to the end of the list and appends the new node. Each
node contains a pointer to a document registration structure. In CPPOCF2, the list contains only one
node because the server creates only one type of document. The node points to DocReg.
CPPOCF2 declares RegLinkHead as a static variable because it is used in several parts of the code,
as the following sections explain.

See Also
Understanding the TRegLink Document List

Creating the Registrar Object
See Also Registering the Application
The registrar object records application information in the system registration database, processes any
OLE switches on the application's command line, and notifies OLE that the server is running.
CPPOCF2 declares a static pointer for the registrar object:
TOcRegistrar* OcRegistrar = 0;
Create your registrar object as you initialize the application in WinMain. Instead of entering a message
loop, call the registrar's Run method. When Run returns, the application is shutting down. Delete the
registrar before you quit. The CPPOCF2 WinMain function shows all the steps.
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, char far* lpCmdLine,
int nCmdShow)
{
 HInstance = hInstance;
 try {
 TOleAllocator allocator(0); // use default memory allocator

 string cmdLine(lpCmdLine); // put app's command line in a C++
string

 // construct the registrar
 OcRegistrar = new TOcRegistrar(::AppReg, // application registration
structure
 ComponentFactory, // factory callback function
 cmdLine, // application command line
 ::RegLinkHead); // document registration
structure list

 .
 .
 . // application initialization commands go here

 if (OcRegistrar->IsOptionSet(amEmbedding))
 nCmdShow = SW_HIDE;

 .
 .
 . // instance initialization commands go here

 OcRegistrar->Run(); // call factory asking app to create
itself and run
 delete OcRegistrar;
 }
 catch (xmsg& x) {
 MessageBox(GetFocus(), x.why().c_str(), "Exception caught", MB_OK);
 }
 return 0;
}
The TOcRegistrar constructor takes four parameters:

::AppReg, is the application registration structure already built with the registration macros.

ComponentFactory is a callback function. The callback is responsible for creating any of the

application's OLE components, including the application itself, as required. The callback also contains the
application's message loop.

cmdLine is a string object holding the application's command line. The registrar searches the
command line for OLE-related switches such as Automation or Embedding, and it sets internal running
mode flags accordingly.

::RegLinkHead points to the linked list of documentation registration structures.

During its initialization, the server checks whether it was invoked by OLE or directly by the user.
OLE launches the server when the user activates a linked or embedded object that the server created.
OLE sets the -Embedding switch on the server's command line to indicate that the server is running only
to support a client, not as a stand-alone application. When the registrar discovers the -Embedding switch
on the command line, it sets an internal flag. The server tests for this flag by calling IsOptionSet. If OLE
did launch the application, the server will draw only in the container's window and it does not need to
display its own window. CPPOCF2 sets nCmdShow to SW_HIDE to prevent subsequent initialization
code from displaying the main window.

nCmdShow is the parameter Windows passes to WinMain indicating the initial state of the application's
main window. A well behaved Windows application passes the value to ShowWindow immediately after
creating the main window.
The TOcRegistrar::Run function causes the registrar to call the application's factory callback. In this
case, the callback executes the application's message loop and the application runs.

See Also
Creating the Document List
TOcRegistrar
Processing the Command Line

Writing the Factory Callback Function
See Also Registering the Application
The factory callback is a function you implement and pass to the registrar. When it is time for the
application to run, or when a container tries to insert one of the server's objects, ObjectComponents
invokes the callback function.
The factory callback decides what to do by reading the parameters it receives and examining the
running mode flags the registrar has set. The callback is called a factory because it creates OLE
component objects on request.
The requirement that every ObjectComponents application must supply a factory callback function
unifies the process of creating objects. Normally the process varies depending on whether the
application is a container or a server, whether it is automated, whether it is running as a DLL or an
executable program, and whether the application was invoked by the user directly or by OLE. The
factory callback makes it possible to revise and run the application in a variety of ways without
rewriting any code. For more information about factory callbacks, look up "Factory Templates" in the
ObjectWindows Reference Guide.
A set of factory templates such as TOleFactory and TOleAutoFactory make it easy to implement
factories for ObjectWindows programs, but in a straight C++ program you have to write the factory
yourself.
Factory callback procedures can have any name you like, but they must follow this prototype:
IUnknown* ComponentFactory(IUnknown* outer, uint32 options, uint32 id);
outer is used when aggregating OLE objects to make them function as a single unit. The factory's
return value is also used for aggregation. Because containers don't aggregate, CPPOCF1 ignores
outer and returns 0.
options contains the bit flags that indicate the application's running mode. The registrar object sets the
flags when it processes the command line switches, before it calls the factory callback. The factory
tests the flags to find out what it should do. The possible flags are defined by the TOcAppMode
enumerated type, and they have names like amRun and amShutdown.
id is an identifier that tells the factory what kind of object to create.
The factory's parameters can direct the factory to perform one of three actions:

Initialize the application. The first time it runs, the factory creates a TOcModule object.
TOcModule connects the application to the OLE system by creating a TOcApp connector object. The
factory also handles aggregation in this phase.

Run the application. If the amRun flag is set, the factory enters the message loop. If the server is
built as a DLL, then when OLE loads the server the registrar does not set the amRun flag and the server
should not run its own message loop.

Create an object. The id parameter tells the factory what kind of object to create. Because
CPPOCF2 creates only one kind of object, it checks only whether id is greater than 0. In applications that
register multiple document templates, id points to the template for the requested object.

The factory callback in CPPOCF2 refers to four global variables. One is OcRegistrar. Another is
OcApp.
TOcRegistrar* OcRegistrar = 0;
TOcApp* OcApp = 0;
TOcApp is the connector object that implements OLE interfaces on behalf of the application. One of
the factory's jobs is to create the connector object when the application starts and to destroy it when
the application shuts down.
Here is the factory callback from CPPOCF2:
IUnknown*

ComponentFactory(IUnknown* outer, uint32 options, uint32 id)
{
 IUnknown* ifc = 0;

 // start the application or shut it down
 if (!OcApp) {
 if (options & amShutdown) // no app to shutdown!
 return 0;
 OcRegistrar->CreateOcApp(options, OcApp);
 } else if (options & amShutdown) {
 DestroyWindow(HwndMain);
 return 0;
 }

 // aggregate if an outer pointer was passed
 if (id == 0)
 OcApp->SetOuter(outer);

 // enter message loop if the run flag is set
 if (options & amRun) {
 if ((options & amEmbedding) == 0) {
 HwndView = CreateViewWindow(HwndMain);
 }
 MSG msg;
 // Standard Windows message loop
 while (GetMessage(&msg, 0, 0, 0)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 // create a document if the id parameter is non-zero
 if (id) {
 OcDoc = new TOcDocument(*OcApp);
 HwndView = CreateViewWindow(HwndMain);
 OcRemView = new TOcRemView(*OcDoc, &DocReg);
 if (IsWindow(HwndView))
 OcRemView->SetupWindow(HwndView);
 ifc = OcRemView->SetOuter(outer);
 }
 return ifc;
}
The factory's outer parameter is 0 unless some other object is aggregating with the newly created
object. Aggregated objects are components that act together as a single unit. Objects can form
aggregations at run time; you do not need access to an object's source code to aggregate with it.
ObjectComponents supports aggregation by passing outer to the application factory. If outer is non-
zero, it points to the IUnknown interface of anther object that wants the newly created object to
subordinate itself. To allow aggregation, the factory calls the SetOuter method on the object it is
creating, either TOcApp or TOcRemView. SetOuter returns a pointer to the object's own IUnknown
interface. The factory should return the same pointer, too.
Note: TOcApp::SetOuter is only called when an application automates itself. CPPOCF2 includes the

call anyway in case the application later becomes an automation server.

See Also
TOcApp
TOcAppMode enum
TOcDocument
TOcRemView

Creating a View Window
Turning a C++ Application Into an OLE Server
ObjectComponents imposes one design requirement on servers: the server document must have its
own window, separate from the application's main window. To keep the distinction clear, we'll call the
main window the frame window, because it uses the WS_THICKFRAME style and has a visible border
on the screen. The second window has no visible border. We'll call it the view window because that is
where the application displays its data. The view window always exactly fills the frame window's client
area, so from the user's point of view the frame window appears to be the only window.
ObjectComponents needs the view window, though, because it expects to send some event messages
to the application and some to the view.
In an SDI application like the CPPOCF2 sample program, the frame window controls the view window.
When the frame window receivesa WM_SIZE message, it moves the view to keep it aligned with the
frame's client area. When it receives WM_CLOSE, it destroys both itself and the view window.
In an MDI application, each child window creates its own view. The child window does what the SDI
frame does: creates and manages a view for the document it displays.
The following topics discuss tasks needed to create the view window:

Creating, Resizing, and Destroying the View Window

Creating a New Server Document

Handling Wm_Ocevent

Handling Selected View Events

Painting the Document

Creating, Resizing, and Destroying the View Window
Creating a View Window
Before creating the view window, the application must first register a class for the view window.
CPPOCF2 registers both classes in InitApplication.
CPPOCF2 creates the view window in its factory because the factory is in charge of creating new
documents on request. The code for the view window, as you'll see, connects the new document to
OLE by creating some ObjectComponents helper objects. The factory calls this function to create the
view window:
HWND CreateViewWindow(HWND hwndParent)
{
 HWND hwnd = CreateWindow(VIEWCLASSNAME, "",
 WS_CHILD | WS_CLIPCHILDREN | WS_CLIPSIBLINGS | WS_VISIBLE | WS_BORDER,
 10, 10, 300, 300,
 hwndParent, (HMENU)1, HInstance, 0);
 return hwnd;
}
CPPOCF2 resizes and destroys the view window when the frame window receives WM_SIZE and
WM_CLOSE messages.
void
MainWnd_OnSize(HWND hwnd, UINT /*state*/, int /*cx*/, int /*cy*/)
{
 if (IsWindow(HwndView)) {
 TRect rect;
 GetClientRect(hwnd, &rect);
 MoveWindow(HwndView, rect.left, rect.top, rect.right, rect.bottom,
true);
 }
}

void
MainWnd_OnClose(HWND hwnd)
{
 if (IsWindow(HwndView))
 DestroyWindow(HwndView);
 DestroyWindow(hwnd);
}
The view window always fills the frame window's client area exactly. If the user opens and closes
documents or embeds objects, the changes show up in the view window.

Creating a New Server Document
See Also Creating a View Window
For every open document, the server needs to create two helper objects: TOcDocument and
TOcRemView. The document helper manages the collection of objects inserted in the document. (It is
possible for objects to be embedded within objects.) the view helper connects the document to OLE.
More specifically, it implements interfaces that OLE can call to communicate with the document. When
OLE tells the view object that something noteworthy has occurred, the view object sends a message to
the view window. (The next two sections show how to handle the messages.)
The sample CPPOCF2 server creates the two helpers in its factory when asked to create a new
document.
OcDoc = new TOcDocument(*OcApp);
HwndView = CreateViewWindow(HwndMain);
OcRemView = new TOcRemView(*OcDoc, &DocReg);
if (IsWindow(HwndView))
 OcRemView->SetupWindow(HwndView);
The SetupWindow method tells the TOcRemView object where to send event messages. In this case,
it sends messages to HwndView, the view window. The view window now receives WM_OCEVENT
messages.
For each new document a server creates a TOcDocument, a TOcRemView, and a view window. The
same objects are deleted or released when the view window is destroyed:
void
ViewWnd_OnDestroy(HWND hwnd)
{
 .
 .
 . // other document cleanup can go here

 if (OcRemView)
 OcRemView->ReleaseObject(); // do not delete a TOcRemView object

 if (OcDoc) {
 OcDoc->Close(); // release the servers for any embedded
parts
 delete OcDoc; // this is not a COM object, so you can
delete it
 }

 if (IsWindow(HwndMain))
 PostMessage(HwndMain, WM_CLOSE, 0, 0);
 HwndView = 0;
}
When the view window is destroyed, it makes three calls to dispose of the helper objects.
OcRemView->ReleaseObject signals that the view window is through with the TOcRemView connector
object. You shouldn't call delete for a view object because the OLE system might still need more
information before it allows the view to shut down. ReleaseObject decrements an internal reference
count and dissociates the view from its window. When all the clients of the view object have released
it, the count reaches 0 and the object destroys itself.
The TOcDocument view object, on the other hand, is not a connector object and so you can destroy it
with delete in the usual way. First, however, you should call Close to release the server applications
that OLE may have invoked to support objects embedded in the server's document.
Because CPPOCF2 never opens more than one document at a time, it declares OcDoc and

OcRemView as static global pointers.
TOcDocument* OcDoc = 0;
TOcRemView* OcRemView = 0;
A server that supports concurrent clients with a single instance of the application, or one that uses the
multidocument interface (MDI), needs to create a different TOcDocument and TOcRemView pair for
each document window.
Note: When launched to support an object in a container, servers create TOcRemView instead of

TOcView because they are painting in a remote window. For simplicity, CPPOCF2 always
creates a remote view even when it is launched directly by the user. The only penalty is extra
overhead.

See Also
TOcDocument
TOcRemView

Handling WM_OCEVENT
See Also Creating a View Window
Because the TOcRemView::SetupWindow method bound the OcRemView connector to the view
window, the connector sends its event notification messages to the window. All ObjectComponents
events are sent in the WM_OCEVENT message, so the view window procedure must respond to
WM_OCEVENT.
long CALLBACK _export
ViewWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM lParam)
{
 switch (message) {
.
.
. // other message crackers go here
 HANDLE_MSG(hwnd, WM_OCEVENT, ViewWnd_OnOcEvent);
 }
 return DefWindowProc(hwnd, message, wParam, lParam);
}
The HANDLE_MSG message cracker macro for WM_OCEVENT is defined in the ocf/ ocfevx.h
header. The same header also defines a another cracker for use in the WM_OCEVENT message
handler.
// Subdispatch OC_VIEWxxxx messages
long
ViewWnd_OnOcEvent(HWND hwnd, WPARAM wParam, LPARAM /*lParam*/)
{
 switch (wParam) {
 // insert an event cracker for each OC_VIEWxxxx message you want to
handle
 HANDLE_OCF(hwnd, OC_VIEWCLOSE, ViewWnd_OnOcViewClose);
 }
 return true;
}
The WM_OCEVENT message carries an event ID in its wParam, just as WM_COMMAND messages
carry command IDs. OC_VIEWCLOSE is one possible event, indicating that it is time to close this
view. In applications that show only one view per document, OC_VIEWCLOSE also signals the close
of the document. The HANDLE_OCF macro calls the handler you designate for each
ObjectComponents event, just as HANDLE_MSG calls the handler for for a window message.
CPPOCF2 handles only the OC_VIEWCLOSE message. To handle others, add one HANDLE_OCF
macro for each event ID.

See Also
OC_VIEWxxxx Messages
WM_OCEVENT message

Handling Selected View Events
See Also Creating a View Window
Each HANDLE_OCF macro calls a different handler function. In the example, the handler function is
called ViewWnd_OnOcViewClose.
bool
ViewWnd_OnOcViewClose(HWND hwnd)
{
 DestroyWindow(hwnd);
 return true;
}
A server receives this message when a container closes the document that contains the server's
object. CPPOCF2 responds by closing the view window. The WM_DESTROY handler also deletes or
releases the helper objects associated with the server document.

See Also
OC_VIEWxxxx Messages

Painting the Document
Creating a View Window
No special code is required in the server's paint procedure. It always paints its document the same
way, whether or not it is painting an embedded object.
void
ViewWnd_OnPaint(HWND hwnd)
{
 PAINTSTRUCT ps;
 HDC dc = BeginPaint(hwnd, &ps);
 wsprintf(Buffer, "%u", Counter);
 TextOut(dc, 0, 0, Buffer, lstrlen(Buffer));
 EndPaint(hwnd, &ps);
}
When the view window is created, it starts off a timer. Every time the view receives a WM_TIMER
message, it increments the value in the global variable Counter and calls InvalidateRect to make the
view repaint itself. On each call, the paint procedure prints the value of Counter.

Programming the Main Window
Turning a C++ Application Into an OLE Server
The view window manages tasks related to a single document. It opens and closes the document and
draws it on the screen. The frame window manages tasks for the whole application. It responds to
menu commands, and it creates and destroys the view window.
The following topics discuss tasks needed to program the main window:

Creating the Main Window

Handling Wm_Ocevent

Handling Selected Application Events

Creating the Main Window
See Also Programming the Main Window
When the application creates its main window, it must bind the window to its TOcApp object. (The
TOcApp object was created in the factory callback function.)
bool
MainWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* /*lpCreateStruct*/)
{
 if (OcApp)
 OcApp->SetupWindow(hwnd);

 HwndMain = hwnd;
 return true;
}
The TOcApp object sends messges about OLE events to the application's main window. SetupWindow
tells the TOcApp where to direct its event notifications.

See Also
TOcApp

Handling WM_OCEVENT
See Also Programming the Main Window
Like the view window, the frame window also receives WM_OCEVENT messages. The frame window
receives notification of events that concern the application as a whole and not just a particular
document. The frame window procedure sends WM_OCEVENT messages to a handler that identifies
the event and calls the appropriate handler routine. Both routines closely resemble the corresponding
code for the view window.
// Standard message-handler routine for main window
long CALLBACK _export
MainWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM lParam)
{
 switch (message) {
.
.
. // other message crackers go here
 HANDLE_MSG(hwnd, WM_OCEVENT, MainWnd_OnOcEvent);
 }
 return DefWindowProc(hwnd, message, wParam, lParam);
}

// Subdispatch OC_... Messages
long
MainWnd_OnOcEvent(HWND hwnd, WPARAM wParam, LPARAM /*lParam*/)
{
 switch (wParam) {
 HANDLE_OCF(hwnd, OC_APPSHUTDOWN, MainWnd_OnOcViewTitle);
 }
 return true;
}

See Also
WM_OCEVENT message

Handling Selected Application Events
See Also Programming the Main Window
The only ObjectComponents event that CPPOCF2 can handle in its main window is
OC_APPSHUTDOWN. A server receives this message when the last linked or embedded object
closes down. If the server was launched by OLE, it can terminate. If user launched the server directly,
the server doesn't need to do anything.
const char*
MainWnd_OnOcAppShutDown(HWND hwnd)
{
 if (OcRegistrar->IsOptionSet(amEmbedding))
 DestroyWindow(hwnd);
}
The registrar sets the amEmbedding flag at startup if it finds the -Embedding switch on the
application's command line. OLE pass the -Embedding switch when it launches a server to support a
linked or embedded object.

See Also
Processing the Command Line

Building the Server
Turning a C++ Application Into an OLE Server
To build the server, you need to include the right headers, use a supported memory model, and link to
the right libraries.
The following topics discuss tasks needed to build the server:

Including Objectcomponents Headers

Compiling and Linking

Including ObjectComponents Headers
Building the Server
The following list shows the headers needed for an ObjectComponents server that does not use
ObjectWindows.
#include <ocf/ocapp.h> // TOcRegistrar, TOcModule, TOcApp (application
connector)
#include <ocf/ocreg.h> // registration constants and app mode flags
#include <ocf/ocdoc.h> // TOcDocument (compound document manager)
#include <ocf/ocview.h> // TOcView (document view connector)
#include <ocf/ocpart.h> // TOcPart (linked/embedded object connector)
#include <ocf/ocremvie.h> // TOcRemView (document remote view connector)
#include <ocf/ocfevx.h> // WM_OCEVENT message crackers

Compiling and Linking
Building the Server
ObjectComponents applications that do not use ObjectWindows work with either the medium or large
memory model. They must be linked with the OLE and ObjectComponents libraries.
To build CPPOCF0, CPPOCF1, and CPPOCF2, move to the program's directory and type this at the
command prompt:
make MODEL=l
This command builds all three programs using the large memory model.
The make file that builds this example program refers to the OCFMAKE.GEN file

Understanding Registration
See Also Creating an OLE Server
The BEGIN_REGISTRATION and END_REGISTRATION macros declare a structure to hold
registration keys and the values assigned to the keys. The macros that come in between, such as
REGDATA and REGFORMAT, each insert an item in the structure. The main structure is of of type
TRegList and each item in the structures is an entry of type TRegItem. Each item contains a key and a
value for that key.
struct TRegItem {
 char* Key; // standard registry key
 TLocaleString Value; // value you assign to the key
};
The two parameters passed to REGDATA are a key and a value. The macros make it easy to add keys
and values to the structure without having to manipulate TRegList and TRegItem objects directly
yourself. At run time, ObjectComponents scans the tables and confirms that the information is stored
accurately in the system registration database.
The following topics discuss more about understanding registration:

Storing Information in the Registration Database

Registering Localized Entries

Registering Custom Entries

See Also
Registration Macros (OWL.HLP)
BEGIN_REGISTRATION macro (OWL.HLP)
END_REGISTRATION macro (OWL.HLP)
REGDATA macro (OWL.HLP)

Storing Information in the Registration Database
Understanding Registration
ObjectComponents copies information from the program's registration tables to the system's
registration database. The TOcRegistrar object takes care of this chore when it is constructed. Every
time a server constructs its TOcRegistrar object, ObjectComponents confirms that the registration
information is accurately recorded. ObjectComponents compares the program's current progid, clsid,
and executable path with the values previously written in the registration database. Any discrepancy
causes ObjectComponents to reregister the entire program automatically.
Windows 3.1 stores the registration database in the REG.DAT file. Windows NT puts it in the system
registry, a facility managed privately by the operating system. In either location, ObjectComponents
follows the standard logical structure for recording information about an OLE server. To inspect the
entries in your registration database, run RegEdit with the /v command-line option.
Note: In 16-bit Windows, the registration database has a capacity of 64K. If the database fills past its

capacity, OLE behaves unpredicatably, and it might be necessary to erase the your REG.DAT
file. Then you need to reregister the OLE applications in your system. You can register or
unregister any ObjectComponents server by passing the RegServer or UnregServer switch on
its command line. Unregistering unused applications or obsolete versions is a good way to
converve space in the database.

To learn more about the registration database, search for the topic "Registration Database" in the
online Help file for 16-bit Windows programming (WIN31WH.HLP).

Registering Localized Entries
See Also Understanding Registration
The values assigned to registration parameters often need to be localized. Besides putting translations
in your resources, you must also mark the strings so that ObjectComponents can tell which ones have
localized versions.
REGDATA(description, "@myapp_description")
The @ prefix tells ObjectComponents that the string myapp_description is an identifier for an XLAT
resource where the real description is stored in several languages. For more information about
localizing OLE strings, refer to the TLocaleString entry in the ObjectWindows Reference Guide.

See Also
Localizing Symbol Names

Registering Custom Entries
See Also Understanding Registration
databaseThe REGDATA macro associates strings with keys. The registrar scans the list of keys and,
when needed, writes the associates strings in the system registration database. The standard keys
such as progid and clsid correspond to standard entries in the database. If you want to register values
for non-standard keys, use the databaseREGITEM macro. The first parameter for REGITEM is the
complete key exactly as you would pass it to a function like RegOpenKey.
REGITEM("CLSID\\<clsid>\\Conversion\\Readable\\Main","FormatX,FormatY")
As the example shows, the REGITEM arguments can contain embedded parameter names enclosed
in angle brackets. When ObjectComponents registers this item, it first replaces the expression <clsid>
with whatever value the registration block has assigned to the clsid parameter.
For information about RegOpenKey, see the Help file for the Windows API.

See Also
REGDATA macro (OWL.HLP)
Registration Macros (OWL.HLP)

Making a DLL Server
Typically, linking and embedding servers are stand-alone executables that can be launched directly by
the user or invoked indirectly by an OLE container. You can also implement an OLE server in a DLL. A
server built as a DLL is sometimes called an in-process server because DLL code runs in the same
process as its client. The terms EXE server and server application refer specifically to a server
implemented in an EXE. ObjectComponents allows you to create both EXE and DLL servers. If you
are using ObjectWindows, converting from one to the other requires only two simple changes.
Note: The discussion and instructions that follow apply to automation servers as well as linking and

embedding servers.
The following topics discuss more about making a DLL server:

Pros and Cons of DLL Servers

Building a DLL Server

Debugging a DLL Server

Tools for DLL Servers

Pros and Cons of DLL Servers
Making a DLL Server

Advantages
The major advantage of DLL servers is performance. Because a DLL server lives in the address space
of the container,it loads and responds very fast. An EXE server, on the other hand, is a separate
process and requires some form of intertask communication to interact with a container. OLE serializes
intertask calls and marshals the function calls with their parameters, packaging them into the proper
format for the interprocess protocol. (The protocol it uses is called LRPC, for Lightweight Remote
Procedure Call.) the process of serializing the drawing commands in a metafile is particularly slow, so
DLL servers substantially increase the speed of creating presentation data for linked and embedded
objects.

Disadvantages
There are a few disadvantages to using a DLL server, however. While OLE supports interaction
between 16-bit and 32-bit executable applications, a 16-bit Windows application cannot use a 32-bit
DLL server and a Win32 application cannot use a 16-bit DLL server. Also, DLLs do not have message
queues. As a result, a DLL server cannot easily perform a task in the background. ObjectWindows
overcomes this limitation by running a timer so that it can still call the IdleAction methods of objects
derived from TApplication or TOleFrame. (ObjectWindows also uses the timer for internal processes
such as command-enabling for tool bars, deleting condemned windows, and resuming thrown
exceptions.)
Because a DLL server becomes part of the container's process, bugs in one can interfere with the
other, making DLL servers sometimes harder to debug.
DLL servers also present user interface dilemmas. For example, when a container initiates an open
edit session with a server, it doesn't matter to the user whether the server is an EXE or a DLL; the user
interface for open editing is the same either way. But the lifetime of a DLL server is tied to the container
that loads it. When the container quits, the server DLL is unloaded. That can cause problems if the
server's user interface normally allows the user to edit serveral documents at once. If the user were to
create a new document while editing an embedded object, the user might want to continue editing the
new document even after the container quits, but then the server is no longer in memory. This is a
particular problem for MDI servers because the MDI interface allows users to open multiple documents
in a single session. Typically DLL servers do not allow multidocument editing.
Finally, DLL servers have one other disadvantage. While OLE 2 provides a compatibility layer to let
OLE 2 servers interact with OLE 1 clients, the compatibility layer works only for EXE servers. A DLL
server cannot support an OLE 1 client.

Building a DLL Server
Making a DLL Server
Converting an ObjectWindows EXE server to a DLL server requires only a few modifications.
The following topics discuss the tasks involved with building a DLL server.
1. Update Your Document Registration Table
2. Compile and Link

Updating Your Document Registration Table
See Also Building a DLL Server
The document registration tables of DLL servers must contain the serverctx key with the string value
"Inproc." This allows ObjectComponents to register your application as a DLL server with OLE. EXE
servers do not need to use the serverctx key since ObjectComponents defaults to EXE registration.
The following code illustrates the document registration structure of a DLL server. It comes from the
sample Tic Tac Toe program in EXAMPLES/OWL/OCF/TTT.
BEGIN_REGISTRATION(DocReg)
 REGDATA(progid, "TicTacToeDll")
 REGDATA(description,"TicTacToe DLL")
 REGDATA(serverctx, "Inproc")
 REGDATA(menuname, "TicTacToe Game")
 REGDATA(insertable, "")
 REGDATA(extension, "TTT")
 REGDATA(docfilter, "*.ttt")
 REGDOCFLAGS(dtAutoDelete | dtUpdateDir | dtCreatePrompt | dtRegisterExt)
 REGDATA(verb0, "&Play")
 REGFORMAT(0, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
 REGFORMAT(1, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)
END_REGISTRATION
You do not need to modify your application registration structure to convert your EXE server to a DLL
server. It's a good idea, however, to use different clsid and progid values, especially if you intend to
switch frequently from one type to the other. You can test for the BI_APP_DLL macro to declare a
registration structure that works for both DLL and EXE servers; the macro is only defined when you are
building a DLL. The following code shows a sample document registration which supplies two sets of
progid and clsid values.
REGISTRATION_FORMAT_BUFFER(100)

// Application registration structure
BEGIN_REGISTRATION(AppReg)
#if defined(BI_APP_DLL)
 REGDATA(clsid, "{029442B1-8BB5-101B-B3FF-04021C009402}") // DLL
clsid
 REGDATA(progid, "TicTacToe.DllServer") // DLL
progid
#else
 REGDATA(clsid, "{029442C1-8BB5-101B-B3FF-04021C009402}") // EXE
clsid
 REGDATA(progid, "TicTacToe.Application") // EXE
progid
#endif
 REGDATA(description,"TicTacToe Application") //
Description
END_REGISTRATION

// Document registration structure
BEGIN_REGISTRATION(DocReg)
#if defined(BI_APP_DLL)
 REGDATA(progid, "TicTacToeDll")
 REGDATA(description,"TicTacToe DLL")
 REGDATA(serverctx, "Inproc")
#else

 REGDATA(progid, "TicTacToe.Game.1")
 REGDATA(description,"TicTacToe Game")
 REGDATA(debugger, "tdw")
 REGDATA(debugprogid,"TicTacToe.Game.1.D")
 REGDATA(debugdesc, "TicTacToe Game (debug)")
#endif
 REGDATA(menuname, "TicTacToe Game")
 REGDATA(insertable, "")
 REGDATA(extension, "TTT")
 REGDATA(docfilter, "*.ttt")
 REGDOCFLAGS(dtAutoDelete | dtUpdateDir | dtCreatePrompt | dtRegisterExt)
 REGDATA(verb0, "&Play")
 REGFORMAT(0, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
 REGFORMAT(1, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)
END_REGISTRATION
Notice that the debugger keys (debugger, debugprogid, and debugdesc) are not used when building a
DLL server. They are relevant only when your server is an executable that a debugger can load.

See Also
Debugging a DLL Server
debugdesc Registration Key
debugprogid Registration Key

Compiling and Linking
Building a DLL Server
'ObjectWindows DLL servers must be compiled with the large memory model. They must be linked
with the OLE, ObjectComponents, and ObjectWindows libraries.
The integrated development environment (IDE) chooses the right build options for you when you select
Dynamic Library for Target Type and request OWL and OCF support from the list of standard libraries.
You may choose to link with the static or dynamic versions of the standard libraries.
To build an ObjectWindows DLL server from the command line, create a short makefile that includes
the OWLOCFMK.GEN file found in the EXAMPLES subdirectory. Here, for example, is the makefile
that builds the sample program Tic Tac Toe:
MODELS=ld
SYSTEM = WIN16

DLLRES = ttt
OBJDLL = ttt.obj

!include $(BCEXAMPLEDIR)\owlocfmk.gen
DLLRES holds the base name of your resource file and the final DLL name. OBJDLL holds the names
of the object files from which to build the sample. Finally, your makefile should include the
OWLOCFMK.GEN file.
Name your file MAKEFILE and type this at the command-line prompt:
make MODEL=l
Make, using instructions in OWLOCFMK.GEN, builds a new makefile tailored to your project. The
command also runs the new makefile to build the program. If you change the command to define
MODEL as d, the above command will create a new makefile and then build your DLL using the DLL
version of the libraries instead of the large model static libraries.
For more information about how to use OWLOCFMK.GEN, read the instructions at the beginning of
MAKEFILE.GEN, found in the examples directory.

Debugging a DLL Server
Making a DLL Server
The same general techniques used to debug DLLs apply to DLL servers. The steps that follow
describe one approach, using Turbo Debugger for Windows to set breakpoints in a DLL server.
1. Build and register the DLL server.

a. Build your server with debugging information.
b. Register the server using the REGISTER.EXE utility.
c. Verify that the registration was successful by running RegEdit and looking for your servers file

types. (RegEdit is a registration editor included with Windows.)
2. Launch Turbo Debugger for Windows and load a container.

Select the File|Open menu option and enter the container's name in the Program Name field and
click the OK button.
The debugger loads the container. If the container was built without debugging information, you
may receive a warning. You can safely ignore it.

3. Load the server's debugging information.
a. Select View|Module from the debugger's main menu. This activates the dialog titled "Load module

source or DLL symbols." (You can also activate the module dialog by pressing F3.)
b. Enter the full name of DLL server file in the DLL Name field.
c. Select the Yes option in the Debug Startup field and click the Add DLL button. The name of your

DLL server (followed by !!) appears as the selected entry in the DLLs & Programs list.
d. Click the Symbol Load button.
If you receive an error message indicating that the DLL is not loaded , press the Escape key to
return to the debugger's main menu and proceed to the next step. Otherwise, skip the next step and
proceed to step 5.

Note: If you did not receive the error message that the DLL is not loaded, then your DLL server was
already in memory before the container activated it. This happens if another container is
currently running with one of your server's objects. More often, however, it indicates that your
server crashed or was improperly terminated in an earlier session.

4. Run the container and insert one of your server's objects.
a. Select the Run|Run menu option (or press F9) to start the container.
b. Choose Insert Object from the container's Edit menu and insert your server's object.

The debugger pops up as soon as OLE loads your DLL server.
5. Display the DLL source modules and set breakpoints.

a. Choose View|Module from the container's main menu to see the names of the source files used
to build your server. The file names appear in Source Modules list.

b. Select source files by double-clicking the file names.
c. Set breakpoints in your server.
d. Choose the Run|Run menu option (or press F9) to return control to the container application.

6. If you skipped step 4, insert one of your server's objects into the container now.
The debugger stops at the breakpoints set in your source files and allows you to step through your
server, inspect variables, and verify the logic of your code.

Tools for DLL Servers
Making a DLL Server
Before running your DLL server, you must record its registration information in the system registration
database. The Register tool does that for you. Another tool, DllRun, gives you the option of running
your DLL server at any time as a standalone application, which is sometimes convenient for testing.
The following topics discuss these two useful tools:

Registering Your DLL Server

Running Your DLL Server

Registering Your DLL Server
Tools for DLL Servers
The REGISTER.EXE utility registers an ObjectComponents DLL server. On the command line, pass
Register the name of your server followed by the -RegServer switch. Here is the command to register
Tic Tac Toe:
register ttt.dll -RegServer
Even though the Register utility is a Windows application, not a DOS application, you can invoke it
from a Windows DOS box. This ability is useful in makefiles. (To invoke other Windows programs from
a DOS box command line, use the WinRun utility described in UTILS.TXT.)
Register can also unregister your server. Unregistering removes all entries related to your server from
the registration database. It's good practice to unregister one version before you register the next. To
unregister, use the -UnregServer switch. This command unregisters Tic Tac Toe:
register ttt.dll -UnregServer

Running your DLL server
See Also Tools for DLL Servers
The DLLRUN.EXE utility lets you load and run an ObjectComponents DLL server as though it were a
standalone executable program. The ability to run in executable mode is useful for debugging. It also
lets you give customers the choice of running your server either way without having to distribute two
versions of the same application.
on the command line, pass DllRun the progid of the server. This is the value assigned to the progid key
in the server's registration table. This command runs the Tic Tac Toe server:
dllrun TicTacToeDll
DllRun launches the DLL server in the executable running mode. The running mode of an
ObjectComponents application is represented by a set of bit flags that you can test by calling
TOcModule::IsOptionSet. (Remember that the application object of a linking and embedding program
derives from both TApplication and TOcModule.)
The running mode bit flags are defined in the TOcAppMode enum. AmEmbedded is set when the
server is invoked by OLE, not by the user. AmExeModule is set in an application that was built as an
EXE. AmExeMode is set in an application that is running as a stand-alone executable, even if it was
built as a DLL.
This code tests the flags to determine the server's running mode.
void
TMyApp::TestMode()
{
 if (IsOptionSet(amExeMode)) // is server running as an EXE?
 if (!IsOptionsSet(amExeModule)) { // if so, was it built as an EXE?
 // the server is a DLL running in EXE mode
 } else {
 // the server was built as an EXE
 } else {
 // the server is a DLL running in a client's process
}

See Also
TOcAppMode enum
TOcModule

ObjectComponents Libraries
See Also
An ObjectComponents application links to an OCFxxxx library and to the OLE2W16 library.

Library Description
OCFWI.LIB For use with the dynamic library versions of the RTL and class libraries
OCFWIU.LIB For use in a user DLL with the dynamic library versions of the RTL and class

libraries
OCFWL.LIB Large model
OCFWLU.LIB Large model for use in a user DLL
OCFWM.LIB Medium model ObjectComponents
OLE2W16.LIB Import library for OLE system DLLs

See Also
ObjectComponents Framework Language Reference
What is ObjectComponents?
Automating an Application
Creating an OLE Container
Support for OLE in Borland C++

ObjectComponents Header Files
Header files, located in your INCLUDE/OCF subdirectory, contain declarations for class functions and
definitions for data types and constants.

File Contents
appdesc.h TAppDescriptor, TComponentFactory
autodefs.h Classes and structs used for automation
automacr.h Macros for automation declarations and definitions
ocapp.h OC_APPxxxx messages, TOcApp, TOcFormatName, TOcHelp, TOcMenuDescr,

TOcModule, TOcNameList, TOcRegistrar, WM_OCEVENT message
ocapp.rh IDS_CFxxxx resource IDs for strings describing standard Windows clipboard

formats
ocdefs.h TXObjComp, HR_xxxx Return constants, declaration specifiers
ocdoc.h TOcDocument
ocfevx.h Message cracker macros for WM_OCEVENT
ocfpch.h #include statements for all ObjectComponents headers, used with pre-compiled

headers
ocobject.h TOcAspect, TOcDialogHelp, TOcDropAction, TOcInitHow, TOcInitInfo,

TOcInitWhere, TOcInvalidate, TOcPartName, TOcScrollDir
ocpart.h TOcPart, TOcPartCollection, TOcPartCollectionIter, TOcVerb
ocreg.h OCxxxx global functions, ocrxxxx registration constants, TAppMode enum,

TRegistrar, TXRegistry
ocremvie.h TOcRemView
ocstorag.h TOcStream, TOcStorage
ocview.h OC_VIEWxxxx messages, TOcDragDrop, TOcFormat, TOcFormatList,

TOcFormatListIter, TOcSaveLoad, TOcScaleFactor, TOcToolBarInfo, TOcView,
TOcViewPaint

oleutil.h DECLARE_COMBASES# macros, TOleAllocator, TUnknown, TXOle

General OLE Classes, Macros, and Type Definitions

Description
ObjectComponents provides the following utility items for use in building OLE applications, whether
they support linking and embedding or automation.

Item Meaning
HR_xxxx macros Return values from OLE functions
_ICLASS macro Specifier for declaring a class that implements an OLE interface
_IFUNC macro Specifier for declaring OLE functions
_OCFxxxx macros Specifiers for declaring ObjectComponents classes
TComponentFactory typedef Callback function where an application creates objects that OLE

requests
TLocaleId typedef Data type for language setting identifiers
TOleAllocator class Establishes a memory allocator for OLE to use
TUnknown class Implements the fundamental IUnknown interface required of all OLE

objects

Global Utility Functions
The items in this table are utility functions that ObjectComponents declares globally.

Item Purpose
DynamicCast Converts a pointer from one type to another if both types are related through

inheritance
MostDerived Returns a pointer to the most derived class type that fits a given object
OcRegisterClass Writes all the information from one registration table to an output stream
OcRegistryUpdate Merges all the information from an input stream into the registration database
OcRegistryValidate Checks whether information in a registration table matches the corresponding

information already recorded in the registration database
OcSetupDebugReg Takes the information from a registration table and writes to an output stream

the registration entries for a debugging version
OcUnRegisterClass Removes entries from the system's registration database

ObjectComponents Exception Classes
See Also
ObjectComponents throws the types of exceptions shown in this list. All the exception classes derive
from TXBase.

Class Purpose
TXAuto Exceptions that occur during automation
TXObjComp Exceptions that occur during ObjectComponents linking and embedding operations
TXOle Exceptions that occur while processing OLE API commands
TXRegistry Exceptions that occur while using the system registration database

See Also
TXBase Class (OWL.HLP)
Exception Handling in ObjectComponents

Automation Classes
See Also Overview
ObjectComponents provides the following classes that support automation.
TAutoBase Base class for deriving automated objects
TAutoCommand Holds all the data for one command received by an automation server
TAutoEnumerator<> Lets an automation controller enumerate items in a server's collection
TAutoIterator Lets an automation server iterate items in an automated collection
TAutoObject<> Creates a smart pointer to an automated object
TAutoObjectByVal<> Lets an automation server automate a method that returns an object by

value (not by reference)
TAutoObjectDelete Lets an automation server automate a method that returns an object
TAutoProxy Base class for deriving the C++ objects an automation controller creates to

represent the OLE objects it wants to control
TAutoStack Holds a set of TAutoCommand objects each representing a command

received by an automation server
TAutoVal Holds the data from a VARIANT union, the data format OLE uses for

sending automation commands
TRegistrar Manages system registration tasks for an automation application

See Also
Automating an Application
Automation Data Types
Automation Macros
Automation Enumerated Types and Type Definitions
Automation Structs
Overview of Automation Classes
Registration Keys

Automation Enumerated Types and Type Definitions
See Also
ObjectComponents provides the following items that support automation.
AutoDataType enum Identifiers for automation data types
AutoSymFlag enum Flags that describe attributes of an automation command
ObjectPtr typedef void pointer to a C++ object

See Also
Automation Classes
Automation Data Types
Automation Macros
Automation Structs
Registration Keys

Automation Data Types
See Also Declarations and Definitions
ObjectComponents provides the following data types that support automation. To use these data
types, see Declarations and Definitions.
TAutoBool struct
TAutoCurrency struct
TAutoCurrencyRef struct
TAutoDate struct
TAutoDateRef struct
TAutoDouble struct
TAutoDoubleRef struct
TAutoFloat struct
TAutoFloatRef struct
TAutoInt typedef
TAutoLong struct
TAutoLongRef struct
TAutoShort struct
TAutoShortRef struct
TAutoString struct
TAutoVoid struct

See Also
Automation Classes
Automation Enumerated Types and Type Definitions
Automation Macros
Automation Structs
Data Type Specifiers in an Automation Definition
Registration Keys

Declarations and Definitions of Automation Data Types
See Also
An automation data type is a structure that exists solely to describe a single type of data. Automation
definitions use these structures to assist in converting parameters and return values between the
VARIANT unions that OLE uses and the C++ data types that your programs use.
For the most part, although they are structures, you cannot create instances of them because they lack
constructors and contain only a single static member. They all derive from TAutoType and inherit its
GetType method. The only thing most of these structures do is respond to GetType calls by returning
the static ID for a data type.

Header File
ocf/autodefs.h

Description
The following table lists C++ data types that might appear in your programs and the corresponding
data types that you should use in automation declarations (DECLARE_AUTOCLASS) and definitions
(DEFINE_AUTOCLASS).
In the left column, find a type that your automated class uses in its arguments or its return values. The
other columns tell what data type to specify in the corresponding entries of the automation declaration
and definition.
C++ Type Declaration Type Definition Type
 (DECLARE_AUTOCLASS) (DEFINE_AUTOCLASS)

short short TAutoShort
unsigned short short or unsigned TAutoShort or TAutoLong
long long TAutoLong
unsigned long unsigned long TAutoLong (treated as signed long)
int int TAutoInt
unsigned int int or long TAutoInt or TAutoLong
float float TAutoFloat
double double TAutoDouble
bool (or int) TBool TAutoBool
TAutoDate TAutoDate TAutoDate
TAutoCurrency TAutoCurrency TAutoCurrency
char* TAutoString TAutoString
const char* TAutoString TAutoString
char far* TAutoString TAutoString
const char far* TAutoString TAutoString
string string TAutoString
enum short or int TAutoShort, TAutoInt, or user-defined

AUTOENUM
T* TAutoObject<> T (class T must be automated)
T& TAutoObject<> T (class T must be automated)
const T* TAutoObject<> T (class T must be automated)
const T& TAutoObject<> T (class T must be automated)
T* (returned) TAutoObjectDelete<> (C++ object deleted when no refs)

T& (returned) TAutoObjectDelete<> (C++ object deleted when no refs)
T (returned) TAutoObjectByVal<> T (T copied, deleted when no refs)
void (no return) (use AUTOFUNC n V macros) TAutoVoid
short far* short far* TAutoShortRef
long far* long far* TAutoLongRef
float far* float far* TAutoFloatRef
double far* double far* TAutoDoubleRef
TAutoDate far* TAutoDate far* TAutoDateRef
TAutoCurrency far* TAutoCurrency far* TAutoCurrencyRef

See Also
Automation Data Types
Data Type Specifiers in an Automation Definition

Automation Declaration Macros
See Also

Header File
ocf/automacr.h

Description
To make parts of an automated class accessible to OLE, an automation server adds declaration
macros to the declaration of the C++ class and definition macros to the implementation of the C++
class. The declaration macros create command objects for executing commands sent by the controller.
The block of automation declaration macros always begins with DECLARE_AUTOCLASS or
DECLARE_AUTOAGGREGATE macro. There is no need for a matching END macro to close the
declaration.

Macro Meaning
DECLARE_AUTOCLASS(cls) The macros that follow declare automatable members of

the user-defined class cls.
DECLARE_AUTOAGGREGATE(cls) The macros that follow declare automatable members of

a class that is, inherits from, or delegates to a COM
object.

Declaration Macros
After DECLARE_AUTOCLASS comes a series of macros, one for each class member that you choose
to expose. Which particular macros you choose depends on what the members are.

Declaration Macro Member
AUTODATA Data
AUTOFLAG A bit flag
AUTOFUNC Function
AUTOITERATOR Iterator object
AUTOPROP Property
AUTOPROXY Property containing an automated object
AUTOSTAT Static member or global function
AUTOTHIS *this

AUTODETACH macro
In addition, an automation declaration can also include the AUTODETACH Macro. This macro does
not expose a class member. It invalidates external references when the object is destroyed.

See Also
Automation Definition Macros
Automation Hook Macros
Declaring Automatable Methods and Properties
TAutoStack::operator []

Automation Definition Macros
See Also

Header File
ocf/automacr.h

Description
To make parts of an automated class accessible to OLE, an automation server adds declaration
macros to the declaration of the C++ class and definition macros to the implementation of the C++
class.
The block of automation definition macros begins with DEFINE_AUTOCLASS and ends with
END_AUTOCLASS, unless the object is, inherits from, or delegates to a Component Object Model
(COM) object. In that case, the block of automation definition macros begins with
DEFINE_AUTOAGGREGATE and ends with END_AUTOAGGREGATE.

Macro Meaning
DEFINE_AUTOCLASS(cls) The macros that follow define automatable

members of the user-defined class cls.
END_AUTOCLASS(cls, name, doc, help) The C++ class cls is exposed to OLE controllers

under the name name. If the user asks OLE about
the object name, the system returns the string in
doc. If a .HLP file is registered for the object, then
the context ID in help points to a screen that
describes the object.

DEFINE_AUTOAGGREGATE(cls, aggregator) The macros that follow define automatable
members of the user-defined class cls, which is,
inherits from, or delegates to a COM object.

END_AUTOAGGREGATE(cls, name, doc, help) Same as END_AUTOCLASS.

Between the DEFINE and END macros comes a series of other macros describing each exposed data
member or function. The macros implement methods for a class nested within your automated class.
When ObjectComponents receives commands from a controller, it passes them to the nested class.
The macros build wrapper functions in the nested class that enable it to call your own class directly.
Which particular macros you choose depends on what the members are.

Member Declaration Macro
Automated application EXPOSE_APPLICATION Macro
Auxiliary class EXPOSE_DELEGATE Macro
Base class EXPOSE_INHERIT Macro
Collection iterator EXPOSE_ITERATOR Macro
Method EXPOSE_METHOD Macros
Read-only property EXPOSE_PROPRO
Read-write property EXPOSE_PROPRW
Write-only property EXPOSE_PROPWO
Shutdown method EXPOSE_QUIT

See Also
Automation Declaration Macros
Data Type Specifiers in an Automation Definition
Defining External Methods and Properties
OPTIONAL_ARG Macro
REQUIRED_ARG Macro
TAutoStack::operator []

Automation Hook Macros
See Also

Header File
ocf/automacr.h

Description
These macros establish hooks to be invoked every time a particular automation command is executed.
They are never used by themselves but always as the last parameter of some other automation
declaration macro. If you add one of these hooks to the declaration of some exposed class member,
then every time an automation controller attempts to execute that command, ObjectComponents first
executes the code in the hook. The code can be a simple expression or it can contain calls to other
functions.
Most of the macros expect to receive some expression or code as a parameter. Often the code or
expression in the macro needs to refer to the arguments passed in or to the value of an automated
data member. Within the macro expression, write Arg1, Arg2, Arg3... to refer to the received
arguments. Write Val to refer to an automated data member.

Macro Meaning
AUTONOHOOK Use this macro, without arguments, to prevent anyone from hooking the

command. Not even ObjectComponents can monitor the call. (For
advanced uses only.)

AUTOINVOKE(code) The code here is executed each time the automation command is
executed. Create an AUTOINVOKE hook if you want to override the
normal execution sequence.

AUTORECORD(code) The code inserted here creates a record of the commands executed so
that the sequence can be stored and replayed.

AUTOREPORT(code) The code inserted here returns an error code from the automated
member. If code evaluates to 0, OLE assumes the command
succeeded. If code evaluates to a nonzero value, then OLE throws an
exception that returns an error code to the controller.
Within the code expression, use Val to refer to the actual value
returned.

AUTOUNDO(code) The code inserted here creates a TAutoCommand object that will undo
the action of the current command.

AUTOVALIDATE(condition) The code here should evaluate to true if the arguments received are
valid for the command and false otherwise. If the expression returns
false, OLE throws an exception that returns an error code to the
controller application.

Example
This declaration ensures that an automated data member is never assigned a value outside a given
range.
AUTODATA(Number, Number, short,
 AUTOVALIDATE(Val>=NUM_MIN && NotTooBig(Val)));

See Also
Automation Declaration Macros
Providing Optional Hooks for Validation and Filtering

Automation Proxy Macros

Header File
ocf/automacr.h

Description
An automation controller creates a proxy object (derived from TAutoProxy) to represent an automated
OLE object. For every command the controller wants to send the object, it adds a method to the proxy
object. The proxy methods mimic the commands the object supports. When the controller calls proxy
methods, ObjectComponents sends automation commands through OLE.
The implementation of a proxy method always contains three macros: an AUTONAMES macro, an
AUTOARGS macro, and an AUTOCALL macro. AUTONAMES associates names with arguments.
AUTOARGS describes any arguments that do not have names. The use of names makes it possible to
send partial sets of arguments and let the server assign default values to the remaining arguments.
The third macro, AUTOCALL, tells whether the command represents a method or a property of the
automated object and whether the command returns a value.
To generate proxy object declarations and definitions directly, use the TYPEREAD.EXE tool (located in
the OCTOOLS subdirectory.) TYPEREAD scans the type library of an automation server and
generates complete proxy code for controlling the server.
You are free to subsititute your own code for the standard macros in order to handle special situations.

Macro Description
AUTONAMES Associates names with arguments so the caller can choose to pass only selected

arguments
AUTOARGS Describes arguments that do not have names
AUTOCALL Tells whether the command is a method or a property and whether it returns a

value

Registration Keys
See Also
Most ObjectComponents programs build registration tables describing their OLE capabilities. (Only
automation controllers can omit this step.) The registration tables contain keys paired with values. The
keys are standard. You decide which ones to register and you supply values for them.
Which keys you choose depends on whether your application is a server, a container, or an
automation program. Some keys must be registered and some are optional. Furthermore, some apply
only to the application's primary registration table, and others apply to the tables for each of the
application's document types.
A registration table starts with the BEGIN_REGISTRATION macro and ends with
END_REGISTRATION. In between is one macro for each key you want to register. The macro
depends on the key. Most keys use the REGDATA, but there are others such as REGFORMAT and
REGSTATUS. For more information, see Registration Macros in OWL.HLP.
If your application is a server, most of the information in its registration tables is recorded in the
system's registration database. Putting the information there makes it possible for OLE to learn much
about the server without actually loading the application into memory. For example, if an automation
controller asks for information about the commands an automation server supports, OLE can locate
the server's type library from an entry in the database.

Key Meaning
appname A short name for the application.
aspectall Option flags that apply to all presentation aspects.
aspectcontent Option flags for the content view of an object.
aspectdocprint Option flags for the printed document view of an object.
aspecticon Option flags for the iconic view of an object.
aspectthumbnail Option flags for the thumbnail view of an object.
clsid A GUID identifying the application.
cmdline Arguments OLE should place on the command line when it launches the server.
debugclsid A GUID identifying the debugging version of a server. This is always generated

internally. You should never specify it directly.
debugdesc A long string describing the debugging version of a program.
debugger The file name and command line switches for loading your debugger.
debugprogid A string naming the debugging version of a program. Defining this forces

ObjectComponents to register debugging and non-debugging versions.
description A string describing the application.
directory The default directory for browsing document files.
docfilter File specification for listing files created by the application.
docflags Option flags for the application's documents.
extension A three-letter file-name extension for files created by the server.
filefmt Name of default file format.
format n A Clipboard format the application supports. (Use REGFORMAT to register

Clipboard formats.)
handler A full path pointing to a library that can draw objects created by the server.

Defaults to OLE2.DLL.
helpdir Full directory where online Help for the type library resides.
iconindex An index telling which of the icons in the server's resources represents the type

of objects the server produces. (Use REGICON to register an icon.)
insertable Indicates that the application serves its document for linking and embedding in

container documents.
language Locale ID currently in effect. (Set internally during automation.)
menuname A short name for the server, used in a container's menu.
path The path where OLE looks to find the server. This key is set internally during

registration.
permid A string that names the application without indicating any version.
permname A string that describes the application without indicating any version.
progid A string uniquely naming the application.
typehelp Name of the file where online Help for the type library resides.
usage Indicates the whether the server can support concurrent clients with a single

application instance.
verb n A string naming an action the server can perform with its objects.
verb n opt Option flags describing the server's verbs. (Use REGVERBOPT to register verb

options.)
version Version string for the application and type library.

See Also
Localizing Registration Strings
Registering a Linking and Embedding Server
Registering a Container Application
Registering an Automation Server
Registration Macros (OWL.HLP)
Storing Information in the Registration Database
Understanding Registration

Automation struct
See Also
TAutoType

See Also
Automation Classes
Automation Data Types
Automation Enumerated Types and Type Definitions
Automation Macros

Linking and Embedding Classes
SeeAlso Overview
ObjectComponents provides the following classes for use by applications that support linking and
embedding.
TOcApp Connector object that implements BOCOLE interfaces for the application
TOcDataProvider Provides support for serving a portion of a document
TOcDocument Manages the parts in a container's compound document
TOcFormat Holds information about a view's support for a particular Clipboard data

format.
TOcFormatList List of Clipboard data formats a document supports
TOcFormatListIter Iterator for the list of Clipboard data formats a document supports
TOcFormatName Holds strings describing a single data format that an application might

encounter on the Clipboard (see TOcNameList)
TOcInitInfo Holds information a container needs in order to place a new object in its

document
TOcLinkView A connector object that helps containers establish links to a server

document
TOcModule Base class for deriving OLE-enabled application objects
TOcNameList Contains a collection of strings describing all the data formats that an

application might find on the Clipboard
TOcPart Connector object that a container uses to represent an object linked or

embedded in one of its documents
TOcPartChangeInfo Carries information to accompany an OC_VIEWPARTINVALID event
TOcPartCollection Manages a collection of linked or embedded parts
TOcPartCollectionIter Iterator for the collection of parts linked or embedded in a single document
TOcRegistrar Manages OLE registration tasks for a linking and embedding application
TOcRemView Connector object that a server uses to draw an object linked or embedded

in a container's document
TOcScaleFactor Carries information from a container to a server requesting that linked or

embedded objects be drawn to a certain scale
TOcVerb Holds information about an action that a server is able to perform with its

own objects when they are linked or embedded in a container
TOcView A connector object that an application uses to draw its own documents in its

own frame window
TOcViewCollection Manages a set of link views associated with a document
TOcViewCollectionIter Enumerates the views of a compound document

See Also
General OLE Classes, Macros, and typedefs
Linking and Embedding
ObjectComponents Exception Classes
Overview of Linking and Embedding Classes
Registration Keys

Linking and Embedding Enums
ObjectComponents provides the following enumerated types for use by applications that support
linking and embedding.
TOcAppMode Flags identifying the application's running conditions
TOcAspect Flags identifying object presentation aspects
TOcDialogHelp Constants identifying standard OLE dialog boxes where a user can ask for help
TOcDropAction Constants identifying actions that can result from dropping an object on a window
TOcMenuEnable Flags that determine which OLE commands on the Edit menu should be enabled.
TOcInitHow Constants identifying the action a container is to take on receiving a new object--

either link or embed
TOcInitWhere Constants identifying places the data for an object can reside
TOcInvalidate Flags indicating whether an object is invalid because of a change in its data or

just in its appearance
TOcPartName Constants identifying different strings a container might request when asking for

the name of an object linked or embedded in it
TOcScrollDir Constants identifying directions a container might be asked to scroll its window

Linking and Embedding Messages
SeeAlso
ObjectComponents provides the following mesages for use by applications that support linking and
embedding
OC_APPxxxx Messages sent to an application object
OC_VIEWxxxx Messages sent to a view object
WM_OCEVENT Carries event signals from ObjectComponents to an application

See Also
Messages and Windows

Linking and Embedding Structs
ObjectComponents provides the following structs for use by applications that support linking and
embedding.
TOcDragDrop Holds information a container needs in order to receive an object dropped on its

window
TOcFormatInfo Holds information about one view's support for a particular Clipboard data format.
TOcMenuDescr Holds information about a shared menu where the container and server merge

their commands for in-place editing
TOcSaveLoad Carries information an application needs to save or load a linked or embedded

object
TOcToolbarInfo Carries handles to a server's tool bars to be displayed in the container's window

during in-place editing
TOcViewPaint Carries information that tells a server how to repaint a linked or embedded object

when the container invalidates part of the object's surface

ocrxxxx Constants
See Also

Header File
ocf/ocreg.h

Description
The ocreg.h header defines a number of constants used in constructing an application's registration
tables. These constants all begin with ocr. They fall into several groups. Most of them are used with
the REGFORMAT macro to describe the kinds of data transfers a document supports.

Group Meaning
Aspect Constants Data presentation modes (such as icon, content, or thumbnail)
Clipboard Constants Clipboard data formats (such as text, bitmap, or link source)
Direction Constants Data transfer directions (getting or setting)
Limit Constants Maximum number of items that can be registered
Medium Constants Data transfer mediums (such as disk file or Clipboard)
Object Status Constants Aspect options (such as showing icon only or redrawing on resize)
Usage Constants Support for multiple clients (single use or multiple use)
Verb Attributes constants Verb option flags (never dirties and show on menu)
Verb Menu Flags Verb display options (such as grayed, disabled, or menu bar break)

See Also
Registration Macros (OWL.HLP)

Compound File I/O Classes
TOcStorage
TOcStream

Compound File I/O Enumerated Types and Structs
STATSTG
STGC enum

appname Registration Key
See Also Registration Keys

Description
Registers a short name for the application, such as "QuattroPro 6.0" or "Scrapbook." This name
appears in window title bars when the container shows what server an object comes from. The
appname string should be localized.
A server needs an appname string for each document type. Because the string is usually the same for
all document types, ObjectComponents lets you register the appname just once in the application
registration table. It is added to document tables automatically. Including appname explicitly in
document registration tables overrides the string set in the application table.
Containers need appname only if they support being a link source for other containers.
To register an appname string, use the REGDATA macro, passing appname as the first parameter and
the string as the second parameter.
REGDATA(appname, "DrawPad Server")
The appname string is recorded in the system registry under the following key:
CLSID\<clsid>\AuxUserType\3 = <ApplicationName>

See Also
Localizing Symbol Names
REGDATA Macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

aspectall Registration Key
See Also Registration Keys

Description
Registers option flags that affect all views of an object. The flags control how all views of the object are
presented.
Linking and embedding servers can optionally register aspect status in their document registration
tables. Aspect status does not apply to application registration tables, containers, or automation
servers.
To register flags for all aspects, use the REGSTATUS macro, passing "all" as the first parameter and
an ocrxxxx Object Status constant value as the second parameter.
REGSTATUS(all, ocrNoSpecialRendering)

See Also
aspectcontent Registration Key
aspectdocprint Registration Key
aspecticon Registration Key
aspectthumbnail Registration Key
ocrxxxx Object Status Constants
Registration Keys
Registration Macros (OWL.HLP)
REGSTATUS Macro (OWL.HLP)

aspectcontent Registration Key
See Also Registration Keys

Description
Registers option flags for the content view of an object. The content view usually shows all the data in
an object (or as much of the data as fits in the available space.) The option flags control how the
content view is used.
Linking and embedding servers can optionally register aspect status in their document registration
tables. Aspect status does not apply to application registration tables, containers, or automation
servers.
To register flags for the content aspect, use the REGSTATUS macro, passing "content" as the first
parameter and an ocrxxxx Object Status constant value as the second parameter.
REGSTATUS(content, ocrRecomposeOnResize)

See Also
aspectall Registration Key
aspectdocprint Registration Key
aspecticon Registration Key
aspectthumbnail Registration Key
ocrxxxx Object Status Constants
Registration Keys
Registration Macros (OWL.HLP)
REGSTATUS Macro (OWL.HLP)

aspectdocprint Registration Key
See Also Registration Keys

Description
Registers option flags that affect the printed document view of an object. The printed document view
usually approximates how the object will appear if sent to the current printer. The option flags control
how the docprint view is presented.
Linking and embedding servers can optionally register aspect status in their document registration
tables. Aspect status does not apply to application registration tables, containers, or automation
servers.
To register flags for the printed document aspect, use the REGSTATUS macro, passing "docprint" as
the first parameter and an ocrxxxx Object Status constant value as the second parameter.

See Also
aspectall Registration Key
aspectcontent Registration Key
aspecticon Registration Key
aspectthumbnail Registration Key
ocrxxxx Object Status Constants
Registration Keys
Registration Macros (OWL.HLP)
REGSTATUS Macro (OWL.HLP)

aspecticon Registration Key
See Also Registration Keys

Description
Registers option flags that affect the iconic view of an object. The icon view, rather than showing the
object's contents, displays an icon that represents a particular kind of object. The option flags control
how the icon view is presented.
Linking and embedding servers can optionally register aspect status in their document registration
tables. Aspect status does not apply to application registration tables, containers, or automation
servers.
To register flags for the icon aspect, use the REGSTATUS macro, passing "icon" as the first parameter
and an ocrxxxx Object Status constant value as the second parameter.
REGSTATUS(icon, ocrOnlyIconic)

See Also
aspectall Registration Key
aspectcontent Registration Key
aspectdocprint Registration Key
aspectthumbnail Registration Key
ocrxxxx Object Status Constants
Registration Keys
Registration Macros (OWL.HLP)
REGSTATUS Macro (OWL.HLP)

aspectthumbnail Registration Key
See Also Registration Keys

Description
Registers option flags that affect the thumbnail view of an object. The thumbnail view usually shows a
miniature representation of the object's contents. The flags control how the thumbnail view is
presented.
Linking and embedding servers can optionally register aspect status in their document registration
tables. Aspect status does not apply to application registration tables, containers, or automation
servers.
To register flags for the thumbnail aspect, use the REGSTATUS macro, passing "thumbnail" as the first
parameter and an ocrxxxx Object Status constant value as the second parameter.

See Also
aspectall Registration Key
aspectcontent Registration Key
aspectdocprint Registration Key
aspecticon Registration Key
ocrxxxx Object Status Constants
Registration Keys
Registration Macros (OWL.HLP)
REGSTATUS Macro (OWL.HLP)

AUTOARGS Macros
See Also Automation Proxy Macros

Header File
ocf/automacr.h

Description
An automation controller uses AUTOARGS to implement methods in its proxy objects. AUTOARGS
macros list all the arguments that the controller passes to an automation command, identifying them
by the dummy parameter names used in the function definition.
AUTOARGS macros are the second in three sets of macros used to implement methods in proxy
objects. The first, AUTONAMES assigns names to any arguments that the controller wants to
reference by name. The third set, AUTOCALL, tells whether the command is a method or a property
and whether it returns a value.

Macro Meaning

AUTOARGS0() The automation command has no required arguments.
AUTOARGS1(a1) The automation command requires argument a1.
AUTOARGS2(a1, a2) The automation command requires arguments a1 and a2.
AUTOARGS3(a1, a2, a3) The automation command requires arguments a1, a2, and a3.
The automacr.h header defines macros that accept up to ten arguments (AUTOARGS10). To generate
versions that accept more arguments, use the MACROGEN.EXE utility.

See Also
Automation Proxy Macros
AUTOCALL_xxxx Macros
AUTONAMES Macros

AUTOCALL_xxxx Macros
See Also Automation Proxy Macros

Header File
ocf/automacr.h

Description
AUTOCALL is the third of three sets of macros that an automation controller uses to implement
automation commands in proxy objects. The first two sets, AUTONAMES and AUTOARGS, describe
the command's arguments. AUTOCALL macros tell whether the command represents a method or a
property of the automated object and whether the command returns a value. Commands whose return
value is itself an automated object must also be specially marked.

Macro Meaning

AUTOCALL_METHOD_REF(prx) The command is a method that returns a reference to an object.
prx is an object derived from TAutoProxy and receives the return
value.

AUTOCALL_METHOD_RET The command is a method that returns a value.
AUTOCALL_METHOD_VOID The command is a method that returns no value.
AUTOCALL_PROP_GET The command returns the value of a property of the automated

object.
AUTOCALL_PROP_REF(prx) The command returns the value of a property and the value is

itself an object. prx is an object derived from TAutoProxy and
receives the return value.

AUTOCALL_PROP_SET(val) The command assigns val to a property of the automated object.

See Also
Automation Proxy Macros
AUTONAMES macros
AUTOARGS macros
TAutoProxy::Invoke

AutoCallFlag enum
See Also

Header File
ocf/autodefs.h

Syntax
enum AutoCallFlag
Description
These flags identify types of class members. Automation servers use them in their automation
declarations and automation controllers pass them when the invoke commands. Usually you don't
have to use these constants directly because they are set for you by the automation declaration
macros and the Automation Proxy Macros.

Constant Meaning

acMethod Member is a method.
acPropGet Member gets the value of a property.
acPropSet Member sets the value of a property.
acVoidRet Member returns void.
The values are bit flags. Combine them with the bitwise OR operator (|).

See Also
Automation Declaration Macros
Automation Proxy Macros
TAutoProxy::Invoke

_AUTOCLASS Macro

Header File
ocf/autodefs.h

Description
_AUTOCLASS is the class modifier that ObjectComponents uses to declare the base classes and
member objects it creates inside your classes for automation. As long as your own classes use the
application's ambient memory model, you do not have to worry about _AUTOCLASS, which by default
is defined as nothing. If, however, you declare your automation classes with a modifier that differs from
the ambient class model, then the classes (such as TAutoBase) that ObjectComponents defines must
be modified to match. To accomplish the modification, define _AUTOCLASS yourself. For example:
#define _AUTOCLASS __far

AUTODATA Macros
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Description
An automation server uses AUTODATA macros in an automation declaration (after
DECLARE_AUTOCLASS) to make data members of an automated class accessible through OLE.
Both forms take the same four parameters. name is the internal name that you assign to the data
member. ObjectComponents uses the internal names to keep track of all the automated members. The
only other place you use this name is in the subsequent automation definition (after
DEFINE_AUTOCLASS).
member is the C++ name of the data member, the name you normally use in your source code.
In most cases, type should be a normal C++ data type, but if the data member is a string or an object
then specify TAutoString or one of the TAutoObject classes instead. For more details, see Automation
Data Types.
options is a place to insert a hook, code to be called each time the automation command is executed.
Hooks can record, undo, or validate commands. options can be omitted, but a comma must follow the
preceding argument anyway. For more details, see Automation Hook Macros.

Macro Meaning

AUTODATA(name, member, type, options) The command permits read and write access to a data
member.

AUTODATARO(name, member, type, options) The command permits read-only access to a data
member.

See Also
Automation Data Types
Automation Declaration Macros
Automation Hook Macros

AutoDataType enum
See Also Automation Enumerated Types and Type Definitions

Header File
ocf/autodefs.h

Syntax
enum AutoDataType
Description
These flags identify automation data types. The types correspond to standard OLE 2 data types. The
TAutoVal class uses the flags to guide its conversions to and from the VARIANT unions that OLE
passes between programs.

Constant Meaning

atVoid void
atNull SQL-style null
atShort 2-byte signed int
atLong 4-byte signed int
atFloat 4-byte real
atDouble 8-byte real
atCurrency currency
atDatetime datetime as double
atString BSTR, string preceded by length
atObject IDispatch*
atError SCODE
atBool true = -1, false = 0
atVariant VARIANT FAR*
atUnknown IUnknown*
atByte byte or unsigned char
atTypeMask Base type code without bit flags.
atOLE2Mask Type code with bit flags.
The preceding flags are mutually exclusive. A value can belong to only one type. Any of the type flags
can, however, be combined with the following bit flags.

Bit Flag Meaning

atSafeArray The value is a BASIC-type bounded array.
atByRef The value is a reference to an object.
atEnum The value is an enumeration of some type.
atAutoClass The value is a TAutoClass object

See Also
TAutoVal

AUTODETACH Macro
See Also

Header File
ocf/automacr.h

Syntax
AUTODETACH
Description
An automation server uses this macro in its automation declaration (after DECLARE_AUTOCLASS) to
ensure that whenever the automated object is destroyed OLE receives notification. Sending the
object's obituary to OLE prevents crashes should a controller attempt to manipulate the nonexistent
object. The obituary is necessary only if the logic of your program makes it possible for the automated
object to be destroyed by non-automated means while still connected to the controller.
Deriving a class from TAutoBase serves exactly the same purpose. The advantage of AUTODETACH
is that you can use it to automate classes you did not create and whose derivation you cannot control.

See Also
Automation Declaration Macros
TAutoBase
Telling OLE When the Object Goes Away

AUTOENUM Macros
See Also

Header File
ocf/automacr.h

Description
An automation server uses the AUTOENUM macros to expose enumerated values to automation
controllers. For example, if the server wants the controller to pass actions into a DoThis command, the
server might create an enumerated type containing values such as Play, Stop, and Rewind. To make
these values available to the controller, the server must create an AUTOENUM table. In this example,
the table consists of three AUTOENUM macros, one for each enumerated value.
DEFINE_AUTOENUM(TAction, TAutoShort);
 AUTOENUM("Play", Play)
 AUTOENUM("Stop", Stop)
 AUTOENUM("Rewind", Rewind);
END_AUTOENUM(TAction, TAutoShort)
Macro Meaning

DEFINE_AUTOENUM(cls, type) Begins an AUTOENUM table. cls is the name of the automated
enumeration type (not the name of the C++ enumerated type).
You invent this name. The only other place it appears is in the
application's automation definition.
type is the automation data type that describes what kind of
values are being enumerated. For more information, see
Automation Data Types.

AUTOENUM(name, val) name is the public string that a controller uses to refer to one in
a series of enumerated values. val is the internal value the
server associates with name.

END_AUTOENUM(cls, type) Ends an AUTOENUM table. cls and type are the same as for
DEFINE_AUTOENUM.

See Also
Automation Data Types
Automation Definition Macros
Exposing Data for Enumeration

AUTOFLAG Macro
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Syntax
AUTOFLAG(name, data, mask, options)

Description
An automation server uses AUTOFLAG in an automation declaration (after DECLARE_AUTOCLASS)
to expose for automation a single bit from a set of bit flags.
name is an internal name that you assign to the bit. ObjectComponents uses the internal names to
keep track of all the automated members. The only other place you use this name is in the subsequent
automation definition (after DEFINE_AUTOCLASS.)
data is the C++ name of a data member that holds a set of bit flags.
mask is a value with one bit set marking the position of the exposed flag in data.
options is a place to insert a hook, code to be called each time the automation command is executed.
Hooks can record, undo, or validate commands. See Automation Hook Macros for more details.
options can be omitted, but a comma must follow the preceding argument anyway.

See Also
Automation Definition Macros
Automation Hook Macros

AUTOFUNC Macros
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Description
An automation server uses AUTOFUNC macros in an automation declaration (after
DECLARE_AUTOCLASS) to make member functions of an automated class accessible through OLE.
In every version of the macro the first parameter, name, is an internal name that you assign to the
function. ObjectComponents uses the internal names to keep track of all the automated members. The
only other place you use this name is in the subsequent automation definition (after
DEFINE_AUTOCLASS).
func is the C++ name of the member function, the name you normally use in your source code.
ret is the type of data the function returns. type1, t1, t2, t3, and t4 represent the data types of the
parameters. In most cases, all these data types should be normal C++ data types, but if the data
member is a string or an object then specify TAutoString or one of the TAutoObject classes instead.
For more details, see Automation Data Types. Also, automated functions cannot return const values.
Do not use const in a ret type.
options is a place to insert a hook, code to be called each time the automation command is executed.
Hooks can record, undo, or validate commands. For more details, see Automation Hook Macros.
options can be omitted, but a comma must follow the preceding argument anyway.
The automacr.h header defines versions of this macro that accept up to three arguments. To generate
versions that accept more arguments, use the MACROGEN.EXE utility.

Macro Meaning

AUTOFUNC0(name, func, ret, options) The function takes no parameters and returns
a value of type ret.

AUTOFUNC0V(name, func, options) The function takes no parameters and returns
void.

AUTOFUNC1(name, func, ret, type1, options) The function takes one parameter of type type1
and returns a value of type ret.

AUTOFUNC1V(name, func, type1, options) The function takes one parameter of type type1
and returns void.

AUTOFUNC2(name, func, ret, t1, t2, options) The function takes two parameters of types t1
and t2. It returns a value of type ret.

AUTOFUNC2V(name, func, t1, t2, options) The function takes two parameters and returns
void.

AUTOFUNC3(name, func, ret, t1, t2, t3, options) The function takes three parameters and
returns a value.

AUTOFUNC3V(name, func, t1 ,t2, t3, options) The function takes three parameters and
returns void.

AUTOFUNC4(name, func, ret, t1, t2, t3, t4, options) The function takes four parameters and returns
a value.

AUTOFUNC4V(name, func, t1, t2, t3, t4, options) The function takes four parameters and returns
void.

See Also
Automation Declaration Macros
Automation Hook Macros

AUTOINVOKE Macro
See Also Automation Hook Macros

Header File
ocf/automacr.h

Syntax
AUTOINVOKE(code)
Description
An automation server uses AUTOINVOKE in an automation declaration macro to hook in user-defined
code for ObjectComponents to execute every time the application receives a particular automation
command. code is the expression or function call to execute on each command.
Create an AUTOINVOKE hook if you want to override the normal execution sequence.

See Also
Automation Declaration Macros
Automation Hook Macros

AUTOITERATOR Macros
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Description
An iterator is an object used to enumerate a collection of objects. An iterator's methods let the caller
step through a list of objects and examine each one in turn.
An automation server needs to create an iterator in any automated object that represents a collection
of other objects. To create an iterator, the server adds one of the AUTOITERATOR macros to the
class's automation definition (after DEFINE_AUTOCLASS). The iterator must also be exposed in the
automation definition with the EXPOSE_ITERATOR macro.

Macro Meaning

AUTOITERATOR(state, init, test, step, extract) Implements a collection iterator within the
automated class.

AUTOITERATOR_DECLARE(state) Declares but does not implement a collection
iterator within the automated class. Use this if your
iterator's implementation is too complex for
AUTOITERATOR.

The five arguments of AUTOITERATOR define the iteration algorithm for the collection class. Only one
auto-iterator can exist within a class, so there is no need for a special internal name. The five
arguments each represent a code fragment, and they follow the sequence of code in a for loop. As the
examples show, because the iterator object is nested within the automated collection class, it can refer
to members of the class.

Parameter Example Meaning

state int Index Declaration of state variables. This must be the same
declaration previously given in AUTOITERATOR_DECLARE.

init Index = 0 Statements (usually assignments) executed to initialize the
loop.

test Index < This->Total Boolean expression tested each time through the loop.
step Index++ Statements executed each time through the loop.
extract (This->Array)[Index] Expression that returns the successive objects in the

collection.

Within the parameters, This (note the capital T) points to the enclosing collection object, not to the
nested iterator object.
Commas cannot be used except inside parentheses. Semicolons can be used to separate multiple
statements, but not to end a macro argument.
If you use AUTOITERATOR_DECLARE instead of AUTOITERATOR, then you must implement the
state variables and these methods, corresponding to the steps described for AUTOITERATOR.
void Init();
bool Test();
void Step();
void Return(TAutoVal& v);

See Also
Automation Declaration Macros
EXPOSE_PROPxxxx macros
EXPOSE_QUIT Macro

AUTONAMES Macros
See Also Automation Proxy Macros

Header File
ocf/automacr.h

Description
The AUTONAMES macros are the first in three sets of macros that an automation controller uses to
implement methods in its proxy objects. AUTONAMES macros assign names to any arguments that
the controller wants to reference by name. Named parameters have default values and are not
required in a command. If a command has fifteen parameters and ten of them have names and default
values, then the controller must always pass the five unnamed parameters and can choose to pass
any subset of the remaining ten, identifying them by their names.
The second set of macros, AUTOARGS Macros, describe the data types of unnamed arguments that
must always be passed in the command. The third set, AUTOCALL, tells whether the command is a
method or a property and what it returns.
In the macros that follow, id is a numeric ID for a method, fname is a string naming a method, and n1,
n2, n3, and n4 are strings assigned as argument names. Most of the macros need the function name
to identify the function, but if a function has no named arguments, then you can pass its identifying
number instead.

Macro Meaning

AUTONAMES0(id) Function id has no named arguments.
AUTONAMES0(fname) Function fname has no named arguments.
AUTONAMES1(fname, n1) Function fname has one named argument, n1.
AUTONAMES2(fname, n1, n2) Function fname has two named arguments, n1 and n2.
AUTONAMES3(fname, n1, n2, n3) Function fname has three named arguments, n1, n2, and

n3.
The automacr.h header defines macros that accept up to ten arguments (AUTONAMES10). To
generate versions that accept more arguments, use the MACROGEN.EXE utility.

See Also
Automation Proxy Macros
AUTOARGS Macros
AUTOCALL_xxxx Macros

AUTONOHOOK Macro
See Also Automation Hook Macros

Header File
ocf/automacr.h

Syntax
AUTONOHOOK
Description
An automation server uses AUTONOHOOK in an automation declaration macro to prevent anyone
from hooking the command. Not even ObjectComponents can monitor the call.
AUTONOHOOK is for advanced uses only.

See Also
Automation Declaration Macros
Automation Hook Macros

AUTOPROP Macros
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Description
An automation server uses AUTOPROP macros in its automation declaration (after AUTOITERATOR
macros to the class's automation definition (after DEFINE_AUTOCLASS) to make properties of an
automated class accessible to OLE. A property is data that cannot be read or written directly, only
through a set of access functions (for example, GetPosition and SetPosition.)
A server can implement the access functions any way it likes. Because only the access functions are
exposed, the property does not have to be a data member. In other words, GetPosition and
SetPosition would not have to refer to a data member of type TPoint. They might query the system for
the cursor position and return the answer.
The three AUTOPROP macros have similar parameters. name is an internal name you assign to the
property. ObjectComponents uses the name to keep track of all the automated members. The only
other place you use this internal name is in the corresponding automation definition.
get and set are the access functions. A read-only property has just a get function. A write-only property
has just a set function.
type is the property's data type. This is usually a C++ data type, but string and object properties
require special treatment. For more information, see Automation Data Types.
options is a place to insert a hook, code to be called each time the automation command is executed.
Hooks can record, undo, or validate commands. options can be omitted, but a comma must follow the
preceding argument anyway. For more details, see Automation Hook Macros.

Macro Meaning

AUTOPROP(name, get, set, type, options) The property can be read and written.
AUTOPROPRO(name, get, type, options) The property can only be read, not changed.
AUTOPROPWO(name, set, type, options) The property can be changed but not read (rare).

See Also
Automation Declaration Macros
TPoint (OWL.HLP)

AUTOPROXY Macro
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Syntax
AUTOPROXY(name, proxyMember, options)
Description
An automation server uses AUTOPROXY in an automation declaration (after the
DECLARE_AUTOCLASS macro) when automating a property whose value is an external automated
object (one derived from TAutoProxy). AUTOPROXY is useful only in servers that also act as
controllers and so create TAutoProxy-derived classes to send automation commands.
name is an internal name you assign to the property. ObjectComponents uses the name to keep track
of all the automated members. The only other place you use this internal name is in the corresponding
automation definition.
proxyMember is the TAutoProxy-derived class, the data type for the property.
options is a place to insert a hook, code to be called each time the automation command is executed.
options can be omitted, but a comma must follow proxyMember anyway. For more details, see
Automation Hook Macros.

See Also
Automation Declaration Macros
Automation Hook Macros
TAutoProxy

AUTORECORD Macro
See Also Automation Hook Macros

Header File
ocf/automacr.h

Syntax
AUTORECORD(code)
Description
An automation server uses AUTORECORD in an automation declaration to hook in user-defined code
that creates a record of each call made to a particular automation command. code is the expression or
function call to execute on each command. It should store whatever information the application would
need to play back the same command later.
Recording is not supported in the current version of ObjectComponents.

See Also
Automation Declaration Macros
Automation Hook Macros

AUTOREPORT Macro
See Also Automation Hook Macros

Header File
ocf/automacr.h

Syntax
AUTOREPORT(code)
Description
An automation server uses AUTOREPORT in an automation declaration macro to hook in user-defined
code that checks the error code from an automated member function. If code evaluates to 0, OLE
assumes the command succeeded. If code evaluates to a nonzero value, then OLE throws an
exception in the controller. Within the code expression, use Val to refer to the actual value returned.

See Also
Automation Declaration Macros
Automation Hook Macros

AutoSymFlag enum
See Also Automation Enumerated Types and Type Definitions

Header File
ocf/autodefs.h

Syntax
enum AutoSymFlag
Description
These flags are used in the TAutoCommand class to describe attributes of an automation command.
The flags tell whether the command is a method or a property, whether arguments are passed by
value or by reference, and whether it should be visible in type information browsers.

Constant Meaning

asAnyCommand Any command: method, property access, object builder.
asOleType Method or property exposed for OLE.
asMethod Method.
asGet Returns the value of a property.
asIterator Iterator property; used to enumerate items in a collection.
asSet Set property value.
asGetSet Get or set a property value.
asBuild Constructor command (not supported by OLE 2.01).
asFactory For creating objects or determining class.
asClass Extension to another class symbol table.
asArgument Property that returns an object.
asBindable Sends OnChanged notification.
asRequestEdit Sends OnRequest edit before change.
asDisplayBind User-display of bindable.
asDefaultBind This property only is the default (redundant).
asHidden Not visible to normal browsing.
asPersistent Property is persistent.

See Also
TAutoCommand Public Constructor

AUTOSTAT Macros
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Description
Use the AUTOSTAT in an automation declaration (after DEFINE_AUTOCLASS) to make static
member functions and global functions accessible to OLE.
All versions of the AUTOSTAT macro have similar parameters. name is an internal name you assign to
the function. ObjectComponents uses the name to keep track of all the automated members. The only
other place you use this internal name is in the corresponding automation definition.
func is the name of the static or global function.
ret is the type of value the function returns.
type1, t1, t2, t3, and t4 are the types of the function's arguments.
options is a place to insert a hook, code to be called each time the automation command is executed.
Hooks can record, undo, or validate commands. See Automation Hook Macros for more details.
options can be omitted, but a comma must follow the preceding argument anyway.
The return types and argument types are usually normal C++ data types, but string and object values
require special treatment. For more information, see Automation Data Types.

Macro Meaning

AUTOSTAT0(name, func, ret, options) The static function func is assigned the symbol
name. It takes no arguments and returns a
value of type ret.

AUTOSTAT0V(name, func, options) The static function func takes no arguments
and returns no value.

AUTOSTAT1(name, func, ret, type1, options) func takes one argument of type type1 and
returns a value of type ret.

AUTOSTAT1V(name, func, type1, options) func takes one argument of type type1 and
returns no value.

AUTOSTAT2(name, func, ret, t1, t2, options) func takes two arguments of types t1 and t2
and returns a value of type ret.

AUTOSTAT2V(name, func, t1,t2, options) func takes two arguments and returns no
value.

AUTOSTAT3(name, func, ret, t1,t2, t3, options) func takes three arguments and returns a
value.

AUTOSTAT3V(name, func, t1, t2, t3, options) func takes three arguments and returns no
value.

AUTOSTAT4(name, func, ret, t1, t2, t3, t4, options) func takes four arguments and returns a value.
AUTOSTAT4V(name, func, t1, t2, t3, t4, options) func takes four arguments and returns no

value.

See Also
Automation Declaration Macros

AUTOTHIS Macro
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Syntax
AUTOTHIS(name, type, options)

Description
An automation server uses the AUTOTHIS macro in its automation declaration (after
DEFINE_AUTOCLASS) if it wants to expose the C++ object itself as a member of the automated OLE
object.
name is an internal name you assign to the property. ObjectComponents uses the name to keep track
of all the automated members. The only other place you use this internal name is in the corresponding
automation definition.
type must be TAutoObject< T > , where T is the type of the automated class.
options is a place to insert a hook, code to be called each time a controller asks for this property.
Hooks can record, undo, or validate commands. options can be omitted, but a comma must follow the
preceding argument anyway. For more details, see Automation Hook Macros.

See Also
Automation Declaration Macros

AUTOUNDO Macro
See Also Automation Hook Macros

Header File
ocf/automacr.h

Syntax
AUTOUNDO(code)
Description
An automation server uses AUTOUNDO in an automation declaration macro to hook in user-defined
code that records whatever information the application needs to reverse the command later. Usually it
adds information to a user-maintained undo stack. The information might include the parameters that
execute the inverse of the original command, for example. To undo a series of actions, the program
can pop commands off the undo stack and execute them. code is the expression or function that
records information.
Undoing commands is not supported in the current version of ObjectComponents.

See Also
Automation Declaration Macros
Automation Hook Macros

AUTOVALIDATE Macro
See Also Automation Hook Macros

Header File
ocf/automacr.h

Syntax
AUTOVALIDATE(condition)
Description
An automation server uses AUTOVALIDATE in an automation declaration macro to hook in user-
defined code that confirms the validity of received arguments before passing them on to be processed
in a command. condition is an expression or function that evaluates to true if the arguments received
are valid for the command and false if not. If the expression returns false, OLE throws an exception in
the controller application.

See Also
Automation Declaration Macros
Automation Hook Macros

clsid Registration Key
See Also Registration Keys

Description
Registers a globally unique identifier (GUID) for the application's class ID. A GUID is a 16-byte value
and can be represented as a string.
A clsid GUID is required in every application registration table. You never need to specify any others. If
others are needed for your documents, type library, automated classes, or debugging invocation,
ObjectComponents automatically increments the low-order field of the first GUID to produce them. Be
sure to allow for the full range of numbers your application actually uses when determining the next
available GUID for another program.
There are several ways to acquire a clsid. One is to run the GUIDGEN tool in the OCTOOLS directory.
Also, AppExpert automatically generates a GUID for any applications it creates that support OLE.
Another way to get a GUID is to call the OLE API CoCreateGuid, as described in OLE.HLP. Finally,
you can contact Microsoft to have a block of GUIDs assigned to you permanently.
Every application must have its own absolutely unique clsid string, so never use values pasted in from
example programs.
To register a clsid, use the REGDATA macro with clsid as the first parameter and a GUID string as the
second parameter.
REGDATA(clsid, "{CDE7F941-544B-101B-A9C1-04021C007002}")

See Also
REGDATA Macro (OWL.HLP)
Registration Macros (OWL.HLP)
Registration Keys

cmdline Registration Key
See Also Registration Keys

Description
Registers arguments OLE should place on the command line when it launches the server's executable
file.
The cmdline key is valid in application registration tables, but is ignored for DLL servers. Any
application can register it, but normally only automation servers have a use for it.
Automation servers can use the cmdline key to set up the -Automation switch. When the registrar
object sees this switch, it overrides the application's registered usage setting and forces the program
to run in single-use mode. This is useful in a server that supports linking and embedding as well as
automation. As a linking and embedding server, it might support concurrent client applications with a
single instance. When running as an automation server, however, most applications don't want
concurrent client programs to control exactly the same instance of an object.
To register command-line options, use the REGDATA macro with cmdline as the first parameter and a
string containing command-line arguments as the second parameter.
REGDATA(cmdline, "/automation")

See Also
REGDATA Macro (OWL.HLP)
Registration Macros (OWL.HLP)
Registration Keys

debugclsid Registration Key
See Also Registration Keys

Description
A GUID identifying the debugging version of a server. You should never register this key directly. It is
always generated for you automatically if you register debugprogid.
This key is ignored in DLL servers.

See Also
debugprogid Registration Key
Registration Keys

debugdesc Registration Key
See Also Registration Keys

Description
A string describing the debugging version of your program. When used in registering a document, this
string appears in the Insert Object menu. When used in registering an application, it appears in object
browsers. The string can contain up to 40 characters and can be localized.
The debugdesc key is required in application and document registration tables for any program that
registers the debugprogid key. Otherwise it is irrelevant.
To register the debugdesc key, use the REGDATA macro, passing debugdesc as the first parameter
and the descriptive string as the second parameter.
REGDATA(debugdesc, "My Application (debugging)")
This key is ignored in DLL servers.

See Also
debugclsid Registration Key
debugger Registration Key
debugprogid Registration Key
REGDATA macro (OWL.HLP)
Registration Macros (OWL.HLP)
Registration Keys

debugger Registration Key
See Also Registration Keys

Description
Registers the path and file name for loading your debugger.
The debugger key is valid in any registration table. It is required if you also register debugprogid.
Otherwise it is irrelevant.
To register the debugger key, use the REGDATA macro, passing debugger as the first parameter and
the command line string for the debugger application as the second parameter. When OLE invokes the
debugger, it places the second parameter string on the command line ahead of the server's .EXE path.
The debugger string can optionally contain a full path and debugger command line switches.
REGDATA(debugger, "TDW") // assumes TDW is somewhere on the path
This key is ignored in DLL servers.

See Also
debugclsid Registration Key
debugdesc Registration Key
debugprogid Registration Key
REGDATA macro (OWL.HLP)
Registration Macros (OWL.HLP)
Registration Keys

debugprogid Registration Key
See Also Registration Keys
A string identifying the debugging version of a program. Just as a progid string does, this string has
two parts divided by a period. The first part is your programs name, and the second part is .debug.
Assigning a value to the debugprogid key causes ObjectComponents to create two sets of entries for
the server in the registration database. When you choose Insert Object from the Edit menu, both
entries appear in the list. Choosing the debugging entry causes ObjectComponents to invoke your
debugger together with the server. Without the ability to register a duplicate debugging entry, it is
difficult to debug the server when OLE invokes it.
ObjectComponents generates a clsid for the debugger entry automatically.
The debugprogid key is optional for application registration tables and irrelevant for document
registration tables. If you register debugprogid, you also need to register debugdesc and debugger.
To register a debugprogid, use the REGDATA macro, passing debugprogid as the first parameter and
the ID string as the second parameter.
REGDATA(debugprogid, "MyApp.Debug")
This key is ignored in DLL servers.

See Also
debugclsid Registration Key
debugdesc Registration Key
debugger Registration Key
progid Registration Key
REGDATA macro (OWL.HLP)
Registration Macros (OWL.HLP)
Registration Keys
Updating Your Document Registration Table

DECLARE_AUTOAGGREGATE Macro
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Syntax
DECLARE_AUTOAGGREGATE(cls)
Description

DECLARE_AUTOAGGREGATE(cls) introduces the automation declaration for classes that are, inherit
from, or delegate to Component Object Model (COM) objects.
The automation declaration declares automatable members of cls, a a user-defined C++ class. It
belongs with the declaration of cls. Be sure to use DEFINE_AUTOAGGREGATE in the corresponding
automation definition.
The DECLARE_AUTOCLASS macro also introduces automation declarations. Use it for classes that
are not, and do not inherit from or delegate to, COM objects.

See Also
Automation Declaration Macros
DECLARE_AUTOCLASS macro
DEFINE_AUTOAGGREGATE macro

DECLARE_AUTOCLASS Macro
See Also Automation Declaration Macros

Header File
ocf/automacr.h

Syntax
DECLARE_AUTOCLASS(cls)
Description

DECLARE_AUTOCLASS(cls) introduces a block of macros that declare automatable members of the
user-defined class cls.
An automation server uses DECLARE_AUTOCLASS to begin a block of macros that make
automatable members of a user-defined C++ class accessible to OLE. cls is the name of the user's C+
+ class.
The block of declaration macros usually appears in the definition of the automatable C++ class. A
corresponding block of automation definition macros must appear in the implementation of the
automatable C++ class.

See Also
Automation Declaration Macros
Automation Definition Macros
DEFINE_AUTOCLASS macro
END_AUTOCLASS macro

DECLARE_COMBASESn Macros
See Also

Header File
ocf/oleutil.h

Description
Use the COMBASES macros to create C++ objects that conform to the OLE Component Object Model
(COM). COM objects support OLE interfaces and let you derive classes that interact with OLE directly,
not through ObjectComponents. These macros are meant for advanced users.
COM objects are used as base classes for other objects. The derived class must inherit from both your
COM class and from the ObjectComponents TUnknown class. TUnknown implements the controlling
IUnknown interface for your object.
To create a COM class:
1. Precede the declaration of the class with one of the DECLARE_COMBASES macros. Which you

choose depends on how many interfaces (besides IUnknown) the COM class supports.
2. Precede the implementation of your COM class with the corresponding DEFINE_COMBASES

macro.
3. Derive your final class multiply from TUnknown and your new COM class (in that order).
The first macro argument is name. It is the name of the COM class you are creating. i1, i2, i3, and i4
are the names of the interfaces your COM class supports.

Macro Meaning
DECLARE_COMBASES1(name, i1) Declare a COM class name that inherits from the i1

interface class.
DECLARE_COMBASES2(name, i1, i2) Declare a COM class name that inherits from the i1

and i2 interface classes.
DECLARE_COMBASES3(name, i1, i2, i3) Declare a COM class name that inherits from the i1. i2,

and i3 interface classes.
DECLARE_COMBASES4(name, i1, i2, i3, i4) Declare a COM class name that inherits from the i1. i2,

i3, and i4 interface classes.

See Also
DEFINE_COMBASES n Macros
TUnknown

DEFINE_AUTOAGGREGATE Macro
See Also Automation Definition Macros

Header File
ocf/automacr.h

Syntax
DEFINE_AUTOAGGREGATE(cls, AggregatorFunction)
Description
An automation server uses DEFINE_AUTOAGGREGATE to begin a block of macros that define
automatable members of cls, a user-defined C++ class. The block ends with the
END_AUTOAGGREGATE macro.
The DEFINE_AUTOCLASS macro does the same thing but without the extra AggregatorFunction
parameter. Use DEFINE_AUTOAGGREGATE when the C++ class you are automating is, inherits
from, or delegates to a Component Object Model (COM) object. The AggregatorFunction parameter
points to the aggregating function for reaching the COM object. For example, if Aggregate is the name
of the COM object, the aggregater function might be any of these expressions:
Aggregate // automated C++ object is the COM object
OcApp->Aggregate // automated C++ object delegates to COM object
MyBase::Aggregate // automated C++ object inherits from COM object
When the automation definition uses DEFINE_AUTOAGGREGATE, be sure to use
DECLARE_AUTOAGGREGATE in the corresponding automation declaration.

See Also
Automation Definition Macros
DECLARE_AUTOAGGREGATE macro
DEFINE_AUTOCLASS macro
END_AUTOAGGREGATE macro

DEFINE_AUTO CLASS Macro
See Also Automation Definition Macros

Header File
ocf/automacr.h

Syntax
DEFINE_AUTOCLASS(cls)
Description
Introduces a block of macros in an automation server. Each macro in the block defines an automatable
member of cls, a user-defined C++ class. The block ends with the END_AUTOCLASS macro.
The block of definition macros appears in the implementation of the automatable C++ class. A
corresponding block of automation declaration macros must appear in the definition of the same class.

See Also
Automation Declaration Macros
Automation Definition Macros
END_AUTOCLASS Macro

DEFINE_COMBASESn Macros
See Also

Header File
ocf/oleutil.h

Description
Implements the IUnknown interface for each of the OLE interfaces that your COM object supports.
Use the COMBASE macros to create C++ objects that conform to the OLE Component Object Model
(COM). COM objects support OLE interfaces and let you derive classes that interact with OLE directly,
not through ObjectComponents. These macros are meant for advanced users.
Automated objects can delegate to COM objects using the DEFINE_AUTOAGGREGATE and the
DECLARE_AUTOAGGREGATEmacro.
To create a COM class:
1. Precede the declaration of the class with one of the DECLARE_COMBASES macros. Which you

choose depends on how many interfaces (besides IUnknown) the COM class supports.
2. Precede the implementation of your COM class with the corresponding DEFINE_COMBASES

macro.
3. Derive your final class multiply from your new COM class and from TUnknown.
COM objects can delegate to other COM objects using another set of related macros also defined in
oleutil.h. For more information, look in the header file for the DEFINE_QI_xxxx macros.

Macro Meaning
DEFINE_COMBASES1(name, i1) Define IUnknown for the i1 interface in the COM class

name.
DEFINE_COMBASES2(name, i1, i2) Define IUnknown for the i1 and i2 interfaces in the

COM class name.
DEFINE_COMBASES3(name, i1, i2, i3) Define IUnknown for the i1, i2, and i3 interfaces in the

COM class name.
DEFINE_COMBASES4(name, i1, i2, i3, i4) Define IUnknown for the i1, i2, i3, and i4 interfaces in

the COM class name.

See Also
DECLARE_COMBASES n Macros

description Registration Key
See Also Registration Keys

Description
Registers a long descriptive name, up to 40 characters, meant for the user to see. The string appears
in the Insert Object dialog box. It should describe the program and its object together--for example,
"Quattro Pro 6.0 Notebook." This string is often just a concatenation of the appname and menuname
strings.
The value of description should be localized.
A description string is required in document registration tables, and in the application table of
automation servers. To register a description string, use the REGDATA macro, passing description as
the first parameter and the descriptive string as the second parameter.
REGDATA(description, "DrawPad (Step15--Server) Drawing")
The description string is recorded in the system registry under the following keys:
CLSID\<clsid> = <MainUserTypeName>
<progid> = <MainUserTypeName>

See Also
Localizing Symbol Names
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)
version Registration Key

directory Registration Key
See Also Registration Keys

Description
Registers the default directory for document files. The document template class refers to this path
when it invokes a File Open common dialog box. The directory path is not used by OLE.
The directory key is valid in any document registration table. It is always optional.
To register a directory, use the REGDATA macro, passing directory as the first parameter and a path
name as the second parameter.
REGDATA(directory, "C:\\temp")

See Also
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

docfilter Registration Key
See Also Registration Keys

Description
Registers a file specification for listing files created by the application. This information is used by the
document template class when it creates a File Open common dialog box. It is not used by OLE.
docfilter is valid in any document registration table. It is required unless the corresponding docflags
key includes the dtHidden flag. If you register a document filter, you might also want to register the
extension key.
To register a document filter, use the REGDATA macro, passing docflags as the first parameter and a
filter string as the second parameter.
REGDATA(docfilter, "*.txt")

See Also
docflags Registration Key
dtxxxx Document Template Constants (OWL.HLP)
extension Registration Key
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

docflags Registration Key
See Also Registration Keys

Description
Registers document view option flags for the application's documents. This information is used by the
document template class, not by OLE. The document template uses the flags to control its display of
the File Open common dialog box. For a list of all the flags, see the description of dtxxxx Document
View Constants.
The docflags key is valid in any document registration table. It is always optional.
To register document flags, use the REGDOCFLAGS macro.
REGDOCFLAGS(dtAutoOpen | dtAutoDelete | dtUpdateDir | dtCreatePrompt)

See Also
docfilter Registration Key
dtxxxxDocumentTemplateConstants (OWL.HLP)
REGDOCFLAGS Macro (OWL.HLP)
Registration Macros (OWL.HLP)
Registration Keys

DynamicCast function
See Also Global Utility Functions

Header file
ocf/autodefs.h

Syntax
const void far* DynamicCast(const void far* obj, const typeinfo& src, const
typeinfo& dst);

Description
Attempts to convert a pointer from one type to another. The attempt succeeds only if the old type and
the new type are related through inheritance.
obj is the pointer you want to cast to a new type. src is type information about the source object. dst is
information about the destination type.
If the conversion succeeds, DynamicCast returns a pointer to the new type. If it fails, the return is zero.
You can generate the src and dst parameters with the typeid parameter. (ObjectComponents requires
the use of RTTI.)

See Also
MostDerived function
typeid (BCW.HLP)
typeinfo Class (CLASSLIB.HLP)

END_AUTOAGGREGATE Macro
See Also Automation Definition Macros

Header File
ocf/automacr.h

Syntax
END_AUTOAGGREGATE(cls, flags, name, doc, help)
Description

Terminates a block of macros that an automation server uses to define automatable methods in cls, a
user-defined C++ class. The definition block begins with DEFINE_AUTOAGGREGATE Macro.
The related DEFINE_AUTOCLASS and END_AUTOCLASS macros also mark an automation
definition block. Use the aggregation macros when cls is, inherits from, or delegates to a Component
Object Model (COM) object.
name is the string that automation controllers use to identify objects of type cls. If the user asks OLE
about the object name, the system returns the string in doc. If a .HLP file is registered for the object,
then the context ID in help points to a screen that describes the object.
flags combines tfxxxx bit flags to provide type information for the automated class. The flags are
documented with the END_AUTOCLASS macro.

See Also
Automation Definition Macros
DEFINE_AUTOAGGREGATE Macro
END_AUTOCLASS Macro

END_AUTOCLASS Macro
See Also Automation Definition Macros

Header File
ocf/automacr.h

Syntax
END_AUTOCLASS(cls, flags, name, doc, help)
Description
Terminates the block of macros an automation server uses to define automatable methods in cls, a
user-defined C++ class. The definition block begins with DEFINE_AUTOCLASS.
name is the string that automation controllers use to identify objects of type cls. If the user asks OLE
about the object name, the system returns the string in doc. If a .HLP file is registered for the object,
then the context ID in help points to a screen that describes the object.
flags combines tfxxxx bit flags to provide type information for the automated class. Choose the flags
that describe your class. The tfxxxx constants correspond to symbols defined by OLE and documented
in OLE.HLP. The COCLASS, an OLE construct, holds type information for an OLE component, which
might contain several smaller OLE objects. The COCLASS holds type information for all interfaces
exposed at the component level.

Constant Meaning
flags set on the COCLASS object
tfAppObject TYPEFLAG_FAPPOBJECT, set on COCLASS
tfCanCreate TYPEFLAG_FCANCREATE, set on COCLASS
tfLicensed TYPEFLAG_FLICENSED, set on COCLASS
tfPredeclared TYPEFLAG_FPREDECLID, set on COCLASS
tfControl TYPEFLAG_FCONTROL, set on COCLASS
tfCoClassXfer tfAppObject | tfCanCreate | tfLicensed | tfControl | tfPredeclared
flags set on the COCLASS interfaces
tfDefault IMPLTYPEFLAG_FDEFAULT << 12
tfEventSource IMPLTYPEFLAG_FSOURCE << 12
tfRestricted IMPLTYPEFLAG_FRESTRICTED << 12
tfImplFlagXfer tfDefault | tfEventSource | tfRestricted
flags set on individual automated classes
tfHidden TYPEFLAG_FHIDDEN
tfNonextensible TYPEFLAG_FNONEXTENSIBLE
tfAutoClassMask tfHidden | tfNonextensible
flags defined by OLE, but not applicable to IDispatch interfaces
tfDual TYPEFLAG_FDUAL
tfAutomation TYPEFLAG_FOLEAUTOMATION
default flags for a class not exposed as part of the COCLASS
tfNormal automated classes not at application level

See Also
Automation Definition Macros
DEFINE_AUTOCLASS Macros

EXPOSE_APPLICATION Macro
See Also Automation Definition Macros

Header File
ocf/automacr.h
Syntax
EXPOSE_APPLICATION(cls, extName, doc, help)

Description
An automation server uses EXPOSE_APPLICATION in its automation definition (after
DEFINE_AUTOCLASS macro) if it chooses to expose the application itself as a member of its
automated object. OLE conventions suggest that each automation object should have this member.
cls is the class name of the application.
extName is the external, public name you assign to this member. Automation controllers use this string
to refer to the application member. The string can be localized.
doc is a string that describes this member to the user. An automation controller can ask OLE for this
string if the user requests help.
help is a context ID for an .HLP file. This parameter, which can be omitted, is useful only if you register
an .HLP file to document your server. If you do, then when the user asks the controller for help, the
controller passes this context ID to the Help system to display a screen describing the object member.

See also
Automation Definition Macros
Localizing Symbol Names

EXPOSE_DELEGATE Macro
See Also Automation Definition Macros

Header File
ocf/automacr.h
Syntax
EXPOSE_DELEGATE(cls, extName, locator)

Description
An automation server uses EXPOSE_DELEGATE in its automation definition (after
DEFINE_AUTOCLASS macro) in order to combine two unrelated C++ classes into a single OLE
automation object. In effect, the application's primary automated class delegates some tasks to
another automated class. This macro tells ObjectComponents to search both classes to determine
what commands the automated OLE object can perform.
cls is the name of the auxiliary class, which must also be automated. In other words, it must contain its
own automation declaration and definition.
extName is an external, public name that an OLE controller uses to refer to this member of the object.
locator is a function that returns a pointer to an auxiliary object. In order to call members of that class,
ObjectComponents needs a pointer to an object of that type. The conversion function should follow this
prototype:
auxclass *locator(autoclass *this);
where auxclass is the name of the auxiliary class and autoclass is the name of the primary automated
class. locator in effect converts a this pointer to a that pointer.

See Also
Automation Definition Macros
EXPOSE_INHERIT Macro
Localizing Symbol Names

EXPOSE_INHERIT Macro
See Also Automation Definition Macros

Header File
ocf/automacr.h
Syntax
EXPOSE_INHERIT(cls, extName);

Description
An automation server uses EXPOSE_INHERIT in its automation definition (after
DEFINE_AUTOCLASS) in order to combine two related C++ classes into a single OLE automation
object. In effect, the application's primary automated class delegates some tasks to its base class. This
macro tells ObjectComponents to search both classes to determine what commands the automated
OLE object can perform.
cls is the name of the base class, which must also be automated. In other words, it must contain its
own automation declaration and definition.
extName is an external, public name that an OLE controller uses to refer to this member of the object.
It can be localized.

See Also
Automation Definition Macros
EXPOSE_DELEGATE Macro
Localizing Symbol Names

EXPOSE_ITERATOR Macro
See Also Automation Definition Macros

Header File
ocf/automacr.h
Syntax
EXPOSE_ITERATOR(retType, doc, help);

Description
An automation server uses EXPOSE_ITERATOR in its automation definition (after
DEFINE_AUTOCLASS) in order to expose an iterator object to enumerate objects in a collection. An
iterator is useful only when the automated object itself represents a collection of other objects. The
controller uses methods of the nested iterator object to retrieve and examine successive objects in a
list.
retType is an automated data type that describes the type of the objects in the collection. For example,
if the collection is an array of short integers, then retType should be TAutoShort. For more information,
see Automation Data Types.
doc is a string that describes the iterator to the user. An automation controller can ask OLE for this
string if the user requests help.
help is a context ID for an .HLP file. This parameter, which can be omitted, is useful only if you register
an .HLP file to document your server. If you do, then when the user asks the controller for help, the
controller passes this context ID to the Help system to display a screen describing the iterator.

See Also
Automation Data Types
Automation Definition Macros
AUTOITERATOR Macros

EXPOSE_METHOD Macros
See Also Automation Definition Macros

Header File
ocf/automacr.h
Syntax
EXPOSE_METHOD(intName, retType, extName, doc, help);
EXPOSE_METHOD_ID(id, intName, retType, extName, doc, help);
Description
An automation server uses EXPOSE_METHOD macros in its automation definition (after
DEFINE_AUTOCLASS) to expose a member function of an object to OLE for automation.
intName is an internal name that you assign to identify the method. ObjectComponents uses the
internal name to keep track of all the automated members. This name must match the name assigned
to the method with the AUTOFUNC macro in the automation declaration.
retType is a data type that describes the type of value the method returns. For example, if the method
returns a long integer, then retType should be TAutoLong. For more information, see Automation Data
Types.
extName is the external, public name that a controller uses to specify this method. The string can be
localized.
doc is a string that describes this method to the user. An automation controller can ask OLE for this
string if the user requests help. This string can also be localized.
help is a context ID for an .HLP file. This parameter, which can be omitted, is useful only if you register
an .HLP file to document your server. If you do, then when the user asks the controller for help, the
controller passes this context ID to the Help system to display a screen describing the method.
id is a dispatch identifier that you can choose to assign explicitly by using one of the
EXPOSE_METHOD_ID macros. The dispatch ID is what OLE passes to identify commands requested
by a controller. The OLE system header files define several standard dispatch ID values. For example,
-5 is the default evaluation method. Standard dispatch IDs are always negative numbers. By default,
dispatch IDs are assigned low positive numbers incremented from 1. If you want to specify explicit
dispatch IDs for your applications, choose high positive values in order not to collide with the low
positive numbers ObjectComponents assigns to exposed members without explicit IDs.
0 is the ID of the default method or property. ObjectComponents never automatically assigns 0 as a
dispatch ID. To have a default method, you need to assign 0 yourself.
An EXPOSE_METHOD or EXPOSE_METHOD_ID macro must always be followed immediately by
one macro for each of the method's arguments.

Type of Argument Declaration Macro
Required REQUIRED_ARG Macro
Optional OPTIONAL_ARG Macro

See Also
Automation Data Types
Automation Definition Macros
AUTOFUNC Macros
Localizing Symbol Names
OPTIONAL_ARG Macro
REQUIRED_ARG Macro

EXPOSE_PROPxxxx Macros
See Also Automation Definition Macros

Header File
ocf/automacr.h

Description
An automation server uses EXPOSE_PROPxxxx macros in its automation definition (after
DEFINE_AUTOCLASS) to expose properties of an object to OLE for automation. A property is data
that can be read or written only through a set of access functions (for example, GetPosition and
SetPosition.)

Macro Meaning
EXPOSE_PROPRW(intName, type, extName, doc, help) The property can be read and

written.
EXPOSE_PROPRW_ID(id, intName, type, extName, doc, help) The property can be read and

written. Its dispatch ID is id.
EXPOSE_PROPRO(intName, type, extName, doc, help) The property is read-only.
EXPOSE_PROPRO_ID(id, intName, type, extName, doc, help) The property is read-only. Its

dispatch ID is id.
EXPOSE_PROPWO(intName, type, extName, doc, help) The property is write-only and cannot

be read (rarely used).

intName is an internal name that you assign to identify the property. ObjectComponents uses the
internal name to keep track of all the automated members. This name must match the name assigned
to the method with the AUTOPROP macro in the automation declaration.
type is a data type that describes the type of value the property holds. For example, if the property is a
string, then type should be TAutoString. For more information, see Automation Data Types.
extName is the public name that a controller uses to refer to this property. The string can be localized.
doc is a string that describes this property to the user. An automation controller can ask OLE for this
string if the user requests help. This string can also be localized.
help is a context ID for an .HLP file. This parameter, which can be omitted, is useful only if you register
an .HLP file to document your server. If you do, then when the user asks the controller for help, the
controller passes this context ID to the Help system to display a screen describing the property.
id is a dispatch identifier that you can choose to assign explicitly by using one of the
EXPOSE_xxxx_ID macros. The dispatch ID is what OLE passes to identify commands requested by a
controller. The OLE system header files define several standard dispatch ID values. For example, -5 is
the default evaluation method. Standard dispatch IDs are always negative numbers. By default,
dispatch IDs are assigned low positive numbers incremented from 1. If you want to specify explicit
dispatch IDs for your applications, choose high positive values in order not to collide with the low
positive numbers ObjectComponents assigns to exposed members without explicit IDs.
0 is the ID of the default method or property. ObjectComponents never automatically assigns 0 as a
dispatch ID. To have a default property, you need to assign 0 yourself.
Note: A potential ambiguity arises in the type parameter when a read/write property contains an

automated object. In the property setting function, type describes an argument, but in the
property getting function, it describes a return value. According to the table of Automation Data
Types, the value of the type parameter should be TAutoObject<> for a function argument and
TAutoObjectDelete<> for a return value. In such cases, specify TAutoObjectDelete<> for type.
ObjectComponents ignores the deletion information for the argument of the property setting
function.

See Also
Automation Data Types
Automation Definition Macros
AUTOPROP Macros
Localizing Symbol Names

EXPOSE_QUIT Macro
See Also Automation Definition Macros

Header File
ocf/automacr.h

Syntax
EXPOSE_QUIT(extName, docString, helpContext)
Description
An automation server that exposes the application itself as an automated object uses the
EXPOSE_QUIT macro to make a safe shutdown method available to the controller. The shutdown
method implemented by this macro checks whether the application was originally invoked by OLE for
automation. If so, it unregisters the active object and shuts down the server. If the user invoked the
server before the controller connected to it, however, then the shutdown method does nothing because
the application should continue to run.
Every automated application should include EXPOSE_QUIT in the application object's automation
definition (after DEFINE_AUTOCLASS). EXPOSE_QUIT is not needed in the automation definition of
other automated objects the server might create.
extName is the external, public name that a controller uses to call this method. The string can be
localized.
doc is a string that describes the shutdown method to the user. An automation controller can ask OLE
for this string if the user requests help. This string can also be localized.
help is a context ID for an .HLP file. This parameter, which can be omitted, is useful only if you register
an .HLP file to document your server. If you do, then when the user asks the controller for help, the
controller passes this context ID to the Help system to display a screen describing the shutdown
method.

See Also
Automation Definition Macros
Localizing Symbol Names

extension Registration Key
See Also Registration Keys

Description
A file-name extension. This extension becomes the default extension assigned to file names in the File
Open common dialog box. It is also recorded in the system registration database so that OLE can find
the right server for a file based on the file's extension.
extension is valid in document registration tables of servers that support linking and embedding. It is
always optional. If you register an extension, you might also want to register a docfilter.
To register a file extension, use the REGDATA macro, passing extension as the first parameter and the
extension string as the second parameter. In 16-bit Windows, the extension is limited to three
characters.
REGDATA(extension, "TXT")

See Also
docfilter Registration Key
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

filefmt Registration Key
See Also Registration Keys

Description
Registers a name for a servers default file format. This string appears in dialog boxes where the user
selects file types.
filefmt is valid in document registration tables for servers that support linking and embedding. It is
always optional.
To register a file format, use the REGDATA macro, passing filefmt as the first parameter and the name
string as the second parameter.

See Also
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

FILETIME struct
See Also

Header File
ocf/ocstorag.h

Description
This structure holds a 64-bit value that indicates a date and time. One field holds the low half of the
value and the other holds the high half. The complete value represents the number of 100-nanosecond
intervals since January 1, 1601.
OLE uses the FILETIME structure to record the creation and access times for file elements.
To manipulate FILETIME values, call any of the following OLE commands (described in OLE.HLP):
CoDosDateTimeToFileTime, CoFileTimeToDosDateTime, and CoFileTimeNow.

Public Data Members
uint32 dwLowDateTime;
uint32 dwHighDateTime;

See Also
STATSTG struct
TOcStorage::SetElementTimes
TOcStorage::SetTimes

FILETIME::dwLowDateTime
FILETIME

Syntax
uint32 dwLowDateTime;
Description
Contains the low-order half of a 64-bit time counter value.

FILETIME::dwHighDateTime
FILETIME

Syntax
uint32 dwHighDateTime;
Description
Contains the high-order half of a 64-bit time counter value.

formatn Registration Key
See Also Registration Keys

Description
Registers a Clipboard format the application supports. An application registers the formats that it can
put on or take from the Clipboard. A server can register different sets of formats for different document
types.
Clipboard format keys are valid in any document registration table. Any application that supports
linking and embedding should register at least some Clipboard formats. ObjectComponents supports
up to eight formats using the keys format0 through format7. The ocrFormatLimit constant, defined in
ocf/ocreg.h, represents the maximum number of formats allowed (8).
To register a Clipboard format, use the REGFORMAT macro. The first parameter assigns a priority to
the format. Give your preferred format highest priority. Programs that support OLE usually prefer to
export their data as OLE objects, and so they make ocrEmbedSource priority 0. The second parameter
identifies a particular data format. For explanations of the other parameters, see the description of the
REGFORMAT macro.
REGFORMAT(0, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(1, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)

See Also
ocrxxxx Aspect Constants
ocrxxxx Clipboard Constants
ocrxxxx Direction Constants
ocrxxxx Limit Constants
ocrxxxx Medium Constants
REGFORMAT Macro (OWL.HLP)
Registration Keys

handler Registration Key
See Also Registration Keys

Description
A full path pointing to a library that can draw objects created by the server.
A path for the library that OLE can call to draw objects without having to launch the server as a
separate process. By default this value is OLE2.DLL. OLE itself can render cached formats such as
metafiles and bitmaps.
The handler key is valid in document registration tables for servers that support linking and
embedding. It is always optional, but if you omit it OLE cannot use your handler library.
To register a handler, use the REGDATA macro passing handler as the first parameter and the path of
the handler DLL in the second parameter. If the path does not begin with a drive or root directory,
ObjectComponents determines the full path by starting at the place where the server itself is installed.
For example, if the server is at C:\MYDIR and the handler path is HELPERS\MYHANDLR, then the full
path is assumed to be C:\MYDIR\HELPERS\MYHANDLR.DLL.

See Also
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

helpdir Registration Key
See Also Registration Keys

Description
Directory where online Help for the type library resides. (The name of the Help file is registered
separately with the typehelp key.)
This key matters only in the application registration table of an automation controller. It is always
optional. If you register a type library Help file without registering a Help directory, ObjectComponents
automatically assumes the same directory registered for path.
To register a Help directory, use the REGDATA macro passing helpdir as the first parameter and the
path string as the second parameter.
If the path does not begin with a drive or root directory, ObjectComponents determines the full path by
starting at the place where the server itself is installed. For example, if the server is at C:\MYDIR and
the Help path is HELP, then the Help file is assumed to be at C:\MYDIR\HELP.

See Also
path Registration Key
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)
typehelp Registration Key

HR_xxxx Return Constants
General OLE Classes, Macros, and Type Definitions

Header File
ocf/ocdefs.h

Description
OLE system calls return HRESULT values that sometimes encode detailed information about the result
of the call. ObjectComponents sometimes passes HRESULT values back to you. These macros
simplify the task of testing for some common results. Each represents a possible return value. For a
complete listing of HRESULT return values, see the scode.h header file.

Constant Meaning
HR_ABORT The operation was aborted.
HR_FAIL An unspecified error occurred.
HR_FALSE An action did not complete in the usual way but no error occurred. For

example, an enumeration reached the end of its list.
HR_HANDLE A handle is invalid.
HR_INVALIDARG One or more arguments are invalid.
HR_NOERROR No error occurred.
HR_NOINTERFACE The requested interface is not supported.
HR_NOTIMPL The requested service is not implemented.
HR_OK Same as HR_NOERROR.
HR_OUTOFMEMORY Not enough memory is available to complete the operation.
HR_POINTER A pointer is invalid.

_ICLASS Macro
General OLE Classes, Macros, and Type Definitions

Header File
ocf/oleutil.h

Description
Modifies the declaration of an interface class, one that defines or implements an interface for OLE or
for the BOCOLE support library.

iconindex Registration Key
See Also Registration Keys

Description
A zero-based index telling which of the icons in the server's resources represents the type of objects
the server produces.
Use iconindex in the document registration tables of a linking and embedding server. It is always
optional.
To register an icon index, use the REGICON macro, passing the index value as the parameter.
REGICON(1)

See Also
REGICON Macro (OWL.HLP)
Registration Macros (OWL.HLP)
Registration Keys

_IFUNC Macro
General OLE Classes, Macros, and Type Definitions

Header File
ocf/oleutil.h

Description
Modifies the declaration of an OLE function.
The _IFUNC macro controls function calling conventions and export declarations. Placing these
macros in a keyword allows the compiler to choose the right combination of modifiers for a particular
platform.
ObjectComponents uses the macro to declare OLE and BOCOLE functions as well as member
functions that wrap direct OLE and BOCOLE calls.
_IFUNC serves the same purpose in Borland headers that the STDMETHODCALLTYPE serves in
OLE system headers.

insertable Registration Key
See Also Registration Keys

Description
Indicates the application is a server and allows its document to be linked or embedded in other
applications. Registering this key makes the document type show up in dialog boxes listing objects
that can be inserted. The value assigned to this key is ignored.
insertable is valid in the document registration tables of a linking and embedding server. An application
must register insertable for at least one document type in order to be a linking and embedding server.
A server need not make all its document types insertable, however. (Be sure to register a progid for
insertable document types, as well.)
To register the insertable key, use the REGDATA macro, passing insertable as the first parameter and
0 as the second parameter.
REGDATA(insertable, 0)

See Also
progid Registration Key
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

language Registration Key
See Also Registration Keys

Description
Overrides the locale ID currently in effect. By default, the language key takes its value from the
system's default language setting for the current user. Registering a language setting directs
ObjectComponents to choose a particular language for registration strings you have localized.
During automation this value is reset internally at the request of the automation controller.

See Also
Localizing Symbol Names
Registration Keys

menuname Registration Key
See Also Registration Keys

Description
A short name for the server's objects, such as Chart, Notebook, or Drawing. The name appears on the
Edit menu in container programs. For consistency in the user interface, the suggested maximum
length is 15 characters.
menuname is required in the document registration tables of a linking and embedding server. In other
places it is irrelevant. The menuname string can be localized.
To register the menuname key, use the REGDATA macro, passing menuname as the first parameter
and a name string as the second parameter.
REGDATA(menuname, "Drawing")
The menuname string is recorded in the system registry under the following key:
CLSID\<clsid>\AuxUserType\2 = <ShortName>

See Also
Localizing Symbol Names
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

MostDerived function
See Also Global Utility Functions

Header file
ocf/autodefs.h

Syntax
const void far* MostDerived(const void far* obj, const typeinfo& src);
Description
Returns a pointer to the most derived class type that fits the given object. This is useful when dealing
with polymorphic objects. Use it to obtain a consistent pointer to an object, regardless of the type of
pointer used to reach the object.
obj is the pointer whose most derived type you want to determine. src holds type information about the
obj object. The return value points to the most derived class that can be made out of obj. If obj is
already the object's most derived type, then the return value is obj.
Use typeid to generate the src parameter.

See Also
DynamicCast function
typeid (BCW.HLP)
typeinfo class (CLASSLIB.HLP)

ObjectPtr typedef
Automation Enumerated Types and Type Definitions

Header file
ocf/autodefs.h

Syntax
typedef void* ObjectPtr;
Description
ObjectPtr is a void* that points to a C++ object.

OC_APPxxxx Messages
See Also Linking and Embedding Messages

Header File
ocf/ocapp.h

Description
These messages are sent from ObjectComponents to the application's main window. They notify the
application of signals and events that come from the OLE system. The actual message sent is
WM_OCEVENT. The constants in the table below are carried in the message's wParam and identify
particular events. To find out what each message carries in its lParam, see Event Handlers to look up
the corresponding event handlers (such as EvOcAppBorderSpaceSet and EvOcAppMenus) in the
ObjectWindows Help (OWL.HLP).
Applications that use the ObjectWindows Library can set up event handlers in their response tables
using the EV_OC_xxxx macros defined in ocfevent.h. For more information about the data each
message carries, see the descriptions of the corresponding event handlers.
The constants beginning OC_APP indicate events typically handled in the main frame window. Another
set of constants beginning OC_VIEW indicate events typically handled in the view object.

Messages Meaning
OC_APPDIALOGHELP The user pressed the Help button in one of the standard OLE

dialog boxes.
OC_APPBORDERSPACEREQ Asks the container whether it can give the server border space in

its frame window.
OC_APPBORDERSPACESET Asks the container to give the server border space in its frame

window.
OC_APPFRAMERECT Requests coordinates for the inner rectangle of the container's

main window.
OC_APPINSMENUS Asks the container to merge its menu into the shared menu bar.
OC_APPMENUS Asks the container to install the merged menu bar.
OC_APPPROCESSMSG Asks the container to process accelerators and other messages

from the server's message queue.
OC_APPRESTOREUI Tells the container to restore its normal menu and borders because

in-place editing has ended.
OC_APPSHUTDOWN Tells the server when its last linked or embedded object closes

down. If the user did not launch the server directly, the server can
terminate.

OC_APPSTATUSTEXT Passes text for the status bar from the server to the container
during in-place editing.

See Also
Event Handlers (OWL.HLP)
Messages and Windows
ObjectComponents Messages
OC_VIEWxxxx Messages
TOleFrame_EvOcAppBorderSpaceSet (OWL.HLP)
TOleFrame_EvOcAppMenus (OWL.HLP)
WM_OCEVENT Message

_OCFxxxx Macros
See Also General OLE Classes, Macros, and Type Definitions

Header File
ocf/ocfdefs.h

Description
These macros are used internally to declare classes, functions, and data members in
ObjectComponents classes. Their definitions vary depending on whether you build a 16- or 32-bit EXE
or DLL. Some of them also force the declaration to__huge.
These macros closely match the corresponding _OWLxxxx macros.

Constant Meaning
_OCFCLASS Exports or imports classes for DLLs.
_OCFDATA Exports or imports data members for DLLs.
_OCFFUNC Exports or imports member functions for DLLs.

See Also
__huge (BCW.HLP)
_OWLxxxx macros (OWL.HLP)

OC_VIEWxxxx Messages
See Also Linking and Embedding Messages

Header File
ocf/ocview.h

Description
These messages are sent from ObjectComponents to the application's window procedure. They notify
the application of signals and events that come from the OLE system. The actual message sent is
WM_OCEVENT. The constants in the table below are carried in the message's wParam and identify
particular events. To find out what each message carries in its lParam, see Event Handlers to look up
the corresponding event handlers (such as EvOcViewBorderSpaceSet and EvOcViewDrag) in the
ObjectWindows Help (OWL.HLP).
Applications that use the ObjectWindows Library can set up event handlers in their response tables
using the EV_OC_xxxx macros defined in ocfevent.h. For more information about the data each
message carries, see the descriptions of the corresponding event handlers.
The constants beginning OC_VIEW indicate events typically handled in the view object. Another set of
constants beginning OC_APP indicate events that typically concern the application object.

Constant Meaning
OC_VIEWATTACHWINDOW Asks the server window to attach to its own frame window or the

container's window.
OC_VIEWBORDERSPACEREQ Asks whether the server can have space in the container's

window for in-place editing tools.
OC_VIEWBORDERSPACESET Requests border space for in-place editing tools in the container's

view.
OC_VIEWBREAKLINK Asks server to break a link to the currently selected data.
OC_VIEWCLIPDATA Asks the server for Clipboard data in a particular format.
OC_VIEWCLOSE Tells server to close this remote view.
OC_VIEWDRAG Requests visual feedback during a drag operation.
OC_VIEWDROP Accepts a dropped object.
OC_VIEWGETITEMNAME Asks the server for a moniker identifying the currently selected

data.
OC_VIEWGETPALETTE Asks the server for the palette it uses to paint its object.
OC_VIEWGETSCALE Asks the container to give scaling information.
OC_VIEWGETSITERECT Asks container for the site rectangle.
OC_VIEWINSMENUS Asks the server to insert its menus in the menu bar for in-place

editing.
OC_VIEWLOADPART Asks the server to load its document. (The server's document

contains one part.)
OC_VIEWOPENDOC Asks the server for the extents of its open document.
OC_VIEWPAINT Asks the server to paint a remote view of its document.
OC_VIEWPARTACTIVATE Indicates that an embedded part has become active.
OC_VIEWPARTINVALID Indicates that a part needs repainting.
OC_VIEWPARTSIZE Asks the server for the extents of its object.
OC_VIEWSAVEPART Asks the server to save its document. (The server's document

contains one part.)
OC_VIEWSCROLL Asks the client to scroll its view because the user is trying to drag

something off the edge.
OC_VIEWSETSCALE Asks the server to handle scaling.
OC_VIEWSETLINK Asks server to create a link to the currently selected data.
OC_VIEWSETSITERECT Asks the container to set the site rectangle.
OC_VIEWSETTITLE Tells the container to append the name of the server to its

window caption. Sent when beginning in-place editing.
OC_VIEWSHOWTOOLS Asks the server to display its tool bars in the container's window

for in-place editing.
OC_VIEWTITLE Gets the title displayed in the view's window.

See Also
Event Handlers (OWL.HLP)
Messages and Windows
ObjectComponents Messages
OC_APPxxxx Messages
TOleWindow_EvOcViewBorderSpaceSet (OWL.HLP)
TOleWindow_EvOcViewDrag (OWL.HLP)

ocrxxxx Aspect Constants
See Also ocrxxxx Constants

Header File
ocf/ocreg.h

Description
These constants identify modes of presenting data. A server might be able to draw the same object
several different ways, such as displaying its full content, creating a miniature representation of the
content, or representing the type of object with an icon.
When a server registers a data format, it also registers the aspects it supports for each format. The
values of these constants are flags and can be combined with the bitwise OR operator (|).

Constant OLE Equivalent Meaning
ocrContent DVASPECT_CONTENT Show the full content of the object at its normal

size.
ocrThumbnail DVASPECT_THUMBNAIL Show the content of the object shrunk to fit in a

smaller space.
ocrIcon DVASPECT_ICON Show an icon representing the type of object.
ocrDocPrint DVASPECT_DOCPRINT Show the object as it would look if sent to the

printer.

See Also
ocrxxxx Constants
Registration Macros (OWL.HLP)
TOcAspect enum

ocrxxxx Clipboard Constants
See Also ocrxxxx Constants

Header File
ocf/ocreg.h

Description
These constants identify standard data formats for data that applications might share with each other.
Use them in the REGFORMAT macro to describe the formats that your documents can import and
export.

Constant Windows Format Name Meaning
ocrText CF_TEXT Array of text characters
ocrBitmap CF_BITMAP Device-dependent bitmap
ocrMetafilePict CF_METAFILEPICT A Windows metafile wrapped in a

METAFILEPICT structure
ocrSylk CF_SYLK Symbolic Link Format
ocrDif CF_DIF Data Interchange Format
ocrTiff CF_TIFF Tag Image File Format
ocrOemText CF_OEMTEXT Text containing characters in the original

equipment manufacturer's character set
(usually ASCII)

ocrDib CF_DIB Device-independent bitmap
ocrPalette CF_PALETTE GDI palette object
ocrPenData CF_PENDATA Data for pen extensions to the operating

system
ocrRiff CF_RIFF Resource Interchange File Format (often

used for multimedia)
ocrWave CF_WAVE A sound wave file (uses a subset of the

RIFF format)
ocrUnicodeText CF_UNICODETEXT Wide-character Unicode text (32-bit only)
ocrEnhMetafile CF_ENHMETAFILE Enhanced metafile (32-bit only)
ocrRichText "Rich Text Format" RTF tagged text format
ocrEmbedSource "Embed Source" OLE object that can be embedded
ocrEmbeddedObject "Embedded Object" OLE object that is already embedded
ocrLinkSource "Link Source" OLE object that can be linked
ocrObjectDescriptor "Object Descriptor" Descriptive information about an OLE

object that can be embedded
ocrLinkSrcDescriptor "Link Source Descriptor" Descriptive information about an OLE

object that can be linked

See Also
ocrxxxx Constants
Registration Macros (OWL.HLP)

ocrxxxx Direction Constants
See Also ocrxxxx Constants

Header File
ocf/ocreg.h

Description
These constants identify directions for passing data. For example, a server might be able to export and
import bitmaps but only import metafiles. In that case, it uses ocrGetSet for the bitmap format and
ocrGet for metafiles.
When a server registers a data format, it also specifies whether it can get or set each format.

Constant Meaning
ocrGet Imports data in the given format
ocrSet Exports data in the given format
ocrGetSet Both exports and imports data in the given format

See Also
ocrxxxx Constants
Registration Macros (OWL.HLP)

ocrxxxx Limit Constants
See Also ocrxxxx Constants

Header File
ocf/ocreg.h

Description
These constants set the maximum number of verbs and data formats that an application is allowed to
register for any one document type. Currently these limits are both set to 8.

Constant Meaning
ocrVerbLimit Maximum number of verbs a server can register for a document
ocrFormatLimit Maximum number of data formats an application can register for a document

See Also
ocrxxxx Constants

ocrxxxx Medium Constants
See Also ocrxxxx Constants

Header File
ocf/ocreg.h

Description
These constants identify channels for passing data. A server might be able to pass a particular kind of
object as a global memory handle, as a disk file handle, or through a data stream, for example.
When a server registers a data format, it also registers the transfer channels it supports for each
format. The values of these constants are flags and can be combined with the bitwise OR operator (|).

Constant OLE Equivalent Meaning
ocrHGlobal TYMED_HGLOBAL Handle to global memory object
ocrFile TYMED_FILE Handle to disk file
ocrIStream TYMED_ISTREAM Stream object in a compound file
ocrIStorage TYMED_ISTORAGE Storage object in a compound file
ocrGDI TYMED_GDI GDI object (such as a bitmap)
ocrMfPict TYMED_MFPICT METAFILEPICT structure

See Also
ocrxxxx Constants
Registration Macros (OWL.HLP)

ocrxxxx Object Status Constants
See Also ocrxxxx Constants

Header File
ocf/ocreg.h

Description
These constants describe how an object behaves when presented in particular aspects. Register
these options for documents using the REGSTATUS macro.
The values of these constants are flags and can be combined with the bitwise OR operator (|).

Constant Meaning
ocrActivateWhenVisible Applies only if ocrInsideOut is set. Indicates that the object

prefers to be active whenever it is visible. The container is not
obliged to comply.

ocrCanLinkByOle1 Used only in OBJECTDESCRIPTOR. Indicates that an OLE 1
container can link to the object.

ocrCantLinkInside This object, when embedded, should not be made the source
of a link.

ocrInsertNotReplace This object, when placed in a document, should not replace the
current selection but be inserted next to it.

ocrInsideOut The object can be activated and edited without having to install
menus or toolbars. Objects of this type can be active
concurrently.

ocrIsLinkObject Set by an OLE 2 link for OLE 1 compatibility. The system sets
this bit automatically.

ocrNoSpecialRendering Same as ocrRenderingIsDeviceIndependent.
ocrOnlyIconic The only useful way the server can draw this object is as an

icon. The content view looks like the icon.
ocrRecomposeOnResize When container site changes size, the server would like to

redraw its object. (Presumably the server wants to do
something other than scale.)

ocrRenderingIsDeviceIndependent The object makes no presentation decisions based on the
target device. Its presentation data is always the same.

ocrStatic The object is an OLE static object and cannot be edited.

See Also
ocrxxxx Constants
Registration Macros (OWL.HLP)

ocrxxxx Usage Constants
See Also ocrxxxx Constants

Header File
ocf/ocreg.h

Description
These constants tell how a server supports concurrent clients. Use them to register the usage key for a
server.

Constant Meaning
ocrSingleUse One client per application instance
ocrMultipleUse Multiple clients per application instance
ocrMultipleLocal Multiple clients supported by separate in-proc server

See Also
ocrxxxx Constants
usage Registration Key

ocrxxxx Verb Attributes Constants
See Also ocrxxxx Constants

Header File
ocf/ocreg.h

Syntax
enum ocrVerbAttributes
Description
These constants give the container hints about how a verb is used. Register these options for
documents using the REGVERBOPT macro.
The values of these constants are flags and can be combined with the bitwise OR operator (|).

Constant Meaning
ocrNeverDirties The verb never modifies the object in such a way that it needs to be saved

again.
ocrOnContainerMenu The verb should be displayed on the container's menu of object verbs when

the object is active. The standard verbs Hide, Show, and Open should not
have this flag set.

See Also
ocrxxxx Constants
Registration Macros (OWL.HLP)

ocrxxxx Verb Menu Flags
See Also ocrxxxx Constants

Header
ocf/ocreg.h

Description
These constants describe how a server's verbs should appear on the container's menu. Register these
options for documents using the REGVERBOPT macro.
The values of these constants are flags and can be combined with the bitwise OR operator (|).

Constant Windows Equivalent Meaning
ocrGrayed MF_GRAYED Make the verb appear gray on the menu. This also

disables the verb.
ocrDisabled MF_DISABLED Disable the verb so the user cannot choose it.
ocrChecked MF_CHECKED Place a check by the verb.
ocrMenuBarBreak MF_MENUBARBREAK Places the verb in a new column and adds a vertical

line to separate the columns.
ocrMenuBreak MF_MENUBREAK Places the verb in a new column without separating the

columns.

See Also
ocrxxxx Constants
Registration Macros (OWL.HLP)

Ocxxxx Global Functions
See Also

Header File
ocf/ocreg.h

Description
ObjectComponents uses these global functions to register applications in the system registration
database. They are called during construction of the application's registrar object. Because
ObjectComponents performs all the usual registration chores for you, normally you don't need to call
these functions directly. They are global, however, so if you need them you can call them without the
overhead of creating the registrar and its related internal objects.
If they fail, these functions throw TXRegistry exceptions.

Function Purpose
OcRegisterClass Writes all the information from one registration table to an output stream.
OcRegistryUpdate Merges all the information from an input stream into the registration database.
OcRegistryValidate Checks whether information in a registration table matches the corresponding

information already recorded in the registration database.
OcSetupDebugReg Takes the information from a registration table and composes a modified

registration table for registering a debugging version.
OcUnRegisterClass Removes entries from the system's registration database.

The following pseudocode describes the sequence of events ObjectComponents normally follows to
register an application.
for table = 1 to NumTables {
 validate table's registration // OcRegistryValidate
 if invalid
 write reg entries to output stream // OcRegisterClass
}
merge stream into registration database // OcRegistryUpdate

See Also
TXRegistry

OcRegisterClass Function
See Also Oc xxxx Global Functions

Syntax
long OcRegisterClass(TRegList& regInfo, HINSTANCE hInst, ostream& out,
TLangId lang, char* filter = 0, TRegItem* defaults = 0, TRegItem* extra =
0);

Description
Writes all the information from a registration table to an output stream. After writing all registration
tables to the same output stream, call OcRegistryUpdate to merge the stream with the system
registration database. This sequence makes it possible to cancel registration before modifying the
registration database if any of the output operations fails.
regInfo is the registration table you want to record. (Registration tables are built with registration
macros and conventionally have names like AppReg and DocReg.)
hInst identifies the application module. ObjectComponents uses it to discover the full path to the
application's executable in order to provide a default value for the path key.
out is the stream where OcRegisterClass writes the registration information it produces. If you set -
RegServer on the application command line and specify a file name, the output stream is sent to the
file you specify. Otherwise, it is a temporary buffer in memory.
lang is the locale ID for retrieving localized strings from XLAT resources for registration values.
filter lists registration key templates to process. When filter is zero, the function processes all
information in regInfo. A nonzero value restricts processing to just the templates named. For example,
the following command limits processing to three templates.
::OcRegisterClass(RegInfo, AppInstance, vstrm, lang, "\001\002\006");
The three templates are the command line, the progid, and the clsid. To find the numbers for particular
templates, look for the initialization of the OcRegTemplates[] array in OCREG.CPP.
The example command is used in validating an application's existing registration entries. It writes only
three entries to the output stream. ObjectComponents then passes the same stream to
OcRegistryValidate determines whether those three entries match those already in the system.
defaults points to an array of TRegItem structures, each holding a key/value pair. If the regInfo table
omits any of the keys supplied in defaults, OcRegisterClass automatically writes the missing keys with
their default values to the output stream.
extra points to an array of TRegItem structures, each holding a key/value pair. The extra array
overrides any regInfo entries for the same keys.
The return value is the mask of document template flags (dtxxxx constants) written to the output
stream for the docflags key.

See Also
dtxxxx Document Template Constants (OWL.HLP)
Localizing Symbol Names
OcRegistryUpdate
OcRegistryValidate
ostream (CLASSLIB.HLP)
path Registration Key
RegistrationMacros (OWL.HLP)
TLangId (OWL.HLP)
TRegList (OWL.HLP)
TRegItem (OWL.HLP)

OcRegistryUpdate Function
See Also Oc xxxx Global Functions

Syntax
void OcRegistryUpdate(istream& in);
Description
Merges the information from in with the system registration database. To create the input stream, call
OcRegisterClass for each table.

See Also
istream (CLASSLIB.HLP)
OcRegisterClass

OcRegistryValidate Function
See Also Oc xxxx Global Functions

Syntax
int OcRegistryValidate(istream& in);
Description
Searches the registration database for all the registration entries from in. If it finds all the entries, and if
all the entries match exactly, the return value is 0. Otherwise, the return value tells how many in entries
do not have exact matches in the registration database.
To create the input stream, call OcRegisterClass.

See Also
istream (CLASSLIB.HLP)
OcRegisterClass

OcSetupDebugReg Function
See Also Oc xxxx Global Functions

Syntax
int OcSetupDebugReg(TRegList& regInfo, TRegItem* regDebug, TLangId lang,
char* clsid);

Description
Reads registration values from the regInfo structure and builds a new structure containing just the
debug entries.
A registration table can contain keys such as debugger and debugprogid that are used only to register
a debugging version of the same application--one that launches the server directly into a debugger.
The presence of the debugprogid key causes ObjectComponents to register the same table twice,
using different clsid values. OcSetupDebugReg creates the TRegList structure for the second entry by
replacing the progid and adding the -Debug switch to the command line.
regInfo is the original structure containing debug keys.
regDebug points to a new array that the function creates. The size of the array is DebugRegCount.
lang specifies the language to use when retrieving localized strings from XLAT resources.
clsid is the GUID to assign for the debugging version of the structure. ObjectComponents supplies this
value for you. This string overrides the clsid in regInfo.
The return value is nonzero for success. 1 indicates that the value in the clsid parameter was used. -1
indicates that no clsid was passed and regDebug has the same clsid as regInfo.
After creating the debugging registration table, call OcRegisterClass to write the entries to an output
stream and OcRegistryUpdate to merge them into the registration database.

See Also
debugdesc Registration Key
debugger Registration Key
debugprogid Registration Key
OcRegisterClass
TLangId
TRegList (OWL.HLP)
TRegItem (OWL.HLP)

OcUnregisterClass Function
See Also Oc xxxx Global Functions

Syntax
int OcUnregisterClass(TRegList& regInfo, TRegItem* extra=0);
Description
Removes entries from the system registration database.
regInfo is the table whose entries are to be expunged.
extra points to an array of TRegItem entries supplying default values for keys that might not be present
in regInfo.
OcUnregisterClass unregisters only the keys stored in OcUnregParams[]. They are debugclsid,
debugprogid, clsid, progid, extension, and permid. With those entries gone, Windows automatically
deletes any remaining related entries.

See Also
Registration Keys
TRegList (OWL.HLP)
TRegItem (OWL.HLP)

OPTIONAL_ARG Macro
See Also

Header File
ocf/automacr.h

Syntax
OPTIONAL_ARG(cls, extName, default)
Description
An automation server uses this macro in its automation definition (after DEFINE_AUTOCLASS) in
order to describe one argument in an exposed method.
After an EXPOSE_METHOD or EXPOSE_METHOD_ID macro, you need to add a list of argument
macros, one for each parameter in the method. If the argument has a default value, then use the
OPTIONAL_ARG macro.
type is an automation class that describes the argument's data type. For example, if the argument is
Boolean value, then type should be TAutoBool. For more information, see Automation Data Types.
extName is the public name that a controller uses to refer to this argument. The string can be
localized.
default is the default value assigned if the caller chooses to omit the argument.

See Also
Automation Data Types
Automation Definition Macros
EXPOSE_METHOD Macros
Localizing Symbol Names

path Registration Key
See Also Registration Keys

Description
The path where OLE looks to find and load the server.
The path is optional for any server's application registration table. Usually you can omit the path
because by default ObjectComponents records the actual path and file name of the server when it
registers itself.
To register a path, use the REGDATA macro, passing path as the first parameter and the full path
string, including .EXE name, as the second parameter.

See Also
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

permid Registration Key
See Also Registration Keys

Description
A string that names the application without indicating any version. The permid is just like the progid but
without a version number. It always represents the latest installed version of a class.
The permid key is valid in any registration table. It is always optional. If you register permid, you should
also register permname. Like the progid, the permid cannot be localized.
To register permid, use the REGDATA macro, passing permid as the first parameter and the ID string
as the second parameter.

See Also
permname Registration Key
progid Registration Key
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)
version Registration Key

permname Registration Key
See Also Registration Keys

Description
A string that describes the application without indicating any version. The permname is just like the
description but without a version number. It always represents the latest installed version of a class. A
permname value can contain up to 40 characters.
The permname key is valid in any registration table. It is always optional. If you register permname,
you should also register permid. The permname string should be localized.
To register permname, use the REGDATA macro, passing permname as the first parameter and the
descriptive string as the second parameter.

See Also
description Registration Key
Localizing Symbol Names
permid Registration Key
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)
version Registration Key

progid Registration Key
See Also Registration Keys

Description
Registers a string which uniquely identifies the class.
The string can contain up to 39 characters. The first character must be a letter. Subsequent characters
can be letters, digits, or periods (no spaces or other delimiters). Conventionally, the progid value has
three parts separated by periods. They are the program name, an object name, and a version number.
The value of the progid cannot be localized.
To be a linking and embedding server, an application must register a progid and insertable for at least
one document type.
A progid string is required in every application registration table. To register a progid, use the
REGDATA macro, passing progid as the first parameter and the identifier string as the second
parameter.
REGDATA(progid, "DrawingPad.Application.2")

See Also
insertable Registration Key
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

REQUIRED_ARG Macro
See Also

Header File
ocf/automacr.h

Syntax
REQUIRED_ARG(type, extName);
Description
An automation server uses this macro in its automation definition (after DEFINE_AUTOCLASS) in
order to describe one argument in an exposed method.
After an EXPOSE_METHOD or EXPOSE_METHOD_ID macro, you need to add a list of argument
macros, one for each parameter in the method. If the argument does not have a default value and is
not an object, then use the REQUIRED_ARG macro.
type is an automation class that describes the argument's data type. For example, if the argument is
Boolean value, then type should be TAutoBool. For more information, see Automation Data Types.
extName is the external, public name that a controller uses to refer to this argument. The string can be
localized.

See Also
Automation Data Types
Automation Definition Macros
EXPOSE_METHOD Macros
Localizing Symbol Names

STATSTG Struct
See Also Compound File I/O Enumerated Types and Structs

Header File
ocf/ocstorag.h

Description
This structure holds information describing a stream or storage object (one that supports the IStream
or IStorage interface.) The information includes, for example, the size of the file element, its creation
and access times, its operating modes, and its identifiers.

Public Data Members
FILETIME atime;
ULARGE_INTEGER cbSize;
IID clsid;
FILETIME ctime;
uint32 grfLocksSupported;
uint32 grfMode;
uint32 grfStateBits;
FILETIME mtime;
char far* pwcsName;
uint32 reserved;
uint32 type;

See Also
TOcStorage::Stat
TOcStream::Stat

STATSTG::atime
See Also STATSTG

Syntax
FILETIME atime;
Description
atime stores the time when the last access operation was performed on the file element. It is defined
for storages only. Streams do not have time stamps.

See Also
FILETIME struct

STATSTG::cbSize
STATSTG

Syntax
ULARGE_INTEGER cbSize;
Description
cbSize stores the number of bytes in a stream (or a lockbytes array). For storages, this value is not
defined.

STATSTG::clsid
See Also STATSTG

Syntax
IID clsid;
Description
Holds a globally unique identifier (GUID) assigned as the clsid of a storage object. The clsid of any
newly created storage is CLSID_NULL. Streams do not have class identifiers.

See Also
TOcStorage::SetClass

STATSTG::ctime
See Also STATSTG

Syntax
FILETIME ctime;
Description
ctime stores the time when the file element was created. It is defined for storages only. Streams do not
have time stamps.

See Also
FILETIME struct

STATSTG::grfLocksSupported
See Also STATSTG

Syntax
uint32 grfLocksSupported;
Description
Contains bit flags indicating whether a stream or lockbyte object supports particular kinds of locks. The
possible flags are LOCK_WRITE, LOCK_EXCLUSIVE, and LOCK_ONLYONCE. They can be
combined with the bitwise OR operator.
The value of grfLocksSupported is undefined for storage objects because they do not support locks at
all.

See Also
TOcStream::LockRegion
TOcStream::UnlockRegion

STATSTG::grfMode
See Also STATSTG

Syntax
uint32 grfMode;
Description
Contains bit flags indicating the access mode in which the file element was opened. The possible
values are STGM_xxxx flags.

See Also
STGM_xxxx constants
TOcStorage Public Constructors and Destructor
TOcStorage::CreateStorage

STATSTG::grfStateBits
See Also STATSTG

Syntax
uint32 grfStateBits;
Description
Holds information about the current state of a storage. When first created, a storage's state is 0.
Currently no state bits are defined, but all 32 are reserved for system use and applications should not
use them privately.

See Also
TOcStorage::SetStateBits

STATSTG::mtime
See Also STATSTG

Syntax
FILETIME mtime;
Description
mtime stores the time when the file element was last modified. It is defined for storages only. Streams
do not have time stamps.

See Also
FILETIME struct

STATSTG::pwcsName
See Also STATSTG

Syntax
char far* pwcsName;
Description
Points to the name assigned at creation to identify the file element. The Stat function allocates space
for this string, but the caller is responsible for freeing it.

See Also
TOcStorage::Stat
TOcStream::Stat

STATSTG::reserved
STATSTG

Syntax
uint32 reserved;
Description
This field is reserved and should be ignored.

STATSTG::type
STATSTG

Syntax
uint32 type;
Description
The value in this field indicates the type of object the STATSTG structure describes. The possible
values are STGTY_STORAGE, STGTY_STREAM, and STGTY_LOCKBYTES.

STGC enum
See Also Compound File I/O Enumerated Types and Structs

Header File
ocf/ocstorag.h

Description
These flags are used in Commit commands for compound files to control how changes are committed.
They are bit values and can be combined with the bitwise OR operator (|).

Constant Meaning
STGC_DEFAULT Commits changes normally.
STGC_OVERWRITE Allows new data to overwrite old data. Without this flag,

Commit writes to a new area and erases the old data only after
the Write operation succeeds.

STGC_ONLYIFCURRENT Commits changes only if doing so does not overwrite changes
already made by another process.

STGC_DANGEROUSLYCOMMIT-
MERELYTODISKCACHE Commits changes without flushing the disk caching buffer.

Sacrifices security for speed.

For general use, STGC_ONLYIFCURRENT is recommended; STGC_OVERWRITE is not.

See Also
TOcStorage::Commit
TOcStream::Commit

STGMxxxx Constants
See Also

Header File
ocf/ocstorag.h

Description

These constants specify access modes for file elements: streams, storages, and lockbyte arrays. The
constants are bit flags and can be combined with the bitwise OR operator (|).

Constant Meaning
STGM_DIRECT Uses direct access mode (commits each change immediately)
STGM_TRANSACTED Uses transacted mode (buffers changes until committed

explicitly)
STGM_READ Allows read operations
STGM_WRITE Allows write operations
STGM_READWRITE Allows read and write operations
STGM_SHARE_EXCLUSIVE Denies all access to other tasks
STGM_SHARE_DENY_WRITE Denies write access to other tasks
STGM_SHARE_DENY_READ Denies read access to other tasks
STGM_SHARE_DENY_NONE Allows all access to other tasks
STGM_CREATE Creates the file element if it does not already exsit
STGM_CONVERT If the a file element with the given name already exists, copies

its contents to a stream called CONTENTS and creates a new
element with the given name

STGM_PRIORITY Gives the opener exclusive access to the committed version of
the file to reduce the cost of a subsequent copy operation

STGM_DELETEONRELEASE Deletes the file element from the disk as soon as its reference
count reaches 0

For more information about each option, see OLE.HLP.

See Also
TOcStorage Public Constructors and Destructor
TOcStorage::CreateStorage
TOcStorage::CreateStream
TOcStorage::OpenStorage
TOcStorage::OpenStream
TOcStream Public Constructors and Destructor

TAutoBase Class
See Also Automation Classes

Header File
ocf/autodefs.h

Description
TAutoBase is a base class for deriving automatable objects. The class does only one thing: whenever
an object of TAutoBase is destroyed, the destructor notifies OLE that the object is no longer available.
Automated objects are not required to derive from TAutoBase. Doing so is simply a safeguard and
matters only if the logic of the program makes it possible for the automated object to be destroyed by
non-automated means while still connected to an OLE controller.
If you are using TAutoBase to derive classes with explicit class specifiers that do not match the default
specifiers for the application's model, then be sure to define the _AUTOCLASS macro.

Public Destructor
virtual ~TAutoBase();

See Also
_AUTOCLASS Macro
Telling OLE When the Object Goes Away

TAutoBase Public Destructor
TAutoBase

Syntax
virtual ~TAutoBase();
Description
The virtual destructor--the only member of class TAutoBase--sends OLE an obituary when the object is
destroyed. The notification matters in cases where the object might be destroyed by non-automated
means, without the knowledge of OLE, while still connected to an automation controller. Sending the
obituary prevents a crash if OLE subsequently sends a command to the nonexistent object.

TAutoBool struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
Use TAutoBool in an automation definition to describe the parameters and return values of automated
methods.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoBool::ClassInfo
TAutoBool

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoBool holds information that identifies the Boolean data type.

TAutoCommand Class
Automation Classes

Header File
ocf/autodefs.h

Description
TAutoCommand is an abstract base class for automation command objects. An automation server
constructs a command object whenever it receives a command from an automation controller. The
command object receives all parameters as VARIANT unions from OLE. The compiler generates calls
to command object conversion functions in order to extract the proper C++ data type from the union.
All this happens internally. Normally you should not have to construct or manipulate TAutoCommand
objects directly.

Public Destructor
TAutoCommand(int attr);
virtual ~TAutoCommand();
Type DefinitionS
typedef bool (*TCommandHook)(TAutoCommand& cmdObj);
typedef const char* (*TErrorMsgHook)(long errCode);
Public Member Functions
void ClearFlag(int mask);
virtual void Execute();
void Fail(TXAuto::TError);
TAutoSymbol* GetSymbol();
virtual TAutoCommand& Invoke();
bool IsPropSet();
static const char* LookupError(long errCode);
virtual int Record(TAutoStack& q);
virtual long Report();
virtual void Return(TAutoVal& v);
void SetFlag(int mask);
void SetSymbol(TAutoSymbol* sym);
static TErrorMsgHook SetErrorMsgHook(TErrorMsgHook callback);
static TCommandHook SetCommandHook(TCommandHook callback);
bool TestFlag(int mask);
virtual TAutoCommand* Undo();
virtual bool Validate();
Protected Data Members
int Attr;
TAutoSymbol* Symbol;

TAutoCommand Public Constructor and Destructor
See Also TAutoCommand

Syntax

Constructor
TAutoCommand(int attr);
Destructor
virtual ~TAutoCommand();
Description
Creates a command having the attributes set in the attr flag mask. The flags are defined in the
AutoSymFlag enum.

Destructor
Destroys the TAutoCommand object.

See Also
AutoSymFlag enum

TAutoCommand::ClearFlag
See Also TAutoCommand

Syntax
void ClearFlag(int mask);
Description
Clears all the flags in mask. The flags are defined in the AutoSymFlag enum.

See Also
AutoSymFlag enum

TAutoCommand::Execute
TAutoCommand

Syntax
virtual void Execute();
Description
Executes the automation command by invoking the internal C++ member of the automated class to
which the command belongs.

TAutoCommand::Fail
See Also TAutoCommand

Syntax
void Fail(TXAuto::TError);
Description
Throws whatever exception is indicated by the parameter.

See Also
TXAuto::TError enum

TAutoCommand::GetSymbol
TAutoCommand

Syntax
TAutoSymbol* GetSymbol();
Description
Retrieves the symbol that generates this command.

TAutoCommand::Invoke
See Also TAutoCommand

Syntax
virtual TAutoCommand& Invoke();
Description
Initiates the process of executing a command. The user can override the usual process by supplying a
hook with the AUTOINVOKE macro.

See Also
AUTOINVOKE macro
TAutoCommand::SetCommandHook

TAutoCommand::IsPropSet
TAutoCommand

Syntax
bool IsPropSet();
Description
Returns true if the asSet property flag is set. This flag indicates that the command assigns a value to
some property of the automated class and does not return a value.

TAutoCommand::LookupError
See Also TAutoCommand

Syntax
static const char* LookupError(long errCode);
Description
Translates an error code from a function into a message string for the user. errCode is a function
status value sent by Report. LookupError works by calling a function you have installed with
SetErrorMsgHook. You do not have to call LookupError directly. If you have installed an error message
hook, LookupError is called for you at the right time.

See Also
TAutoCommand::Report

TAutoCommand::Record
See Also TAutoCommand

Syntax
virtual int Record(TAutoStack& q);
Description
Records the command and its arguments by calling any hook the programmer might have supplied in
the automation declaration with the AUTORECORD macro.
Recording is not supported in the current version of ObjectComponents.

See Also
AUTORECORD macro

TAutoCommand::Report
See Also TAutoCommand

Syntax
virtual long Report();
Description
The AUTOREPORT macro invokes this function to translate the status code a command returns into
an error code.

See Also
AUTOREPORT Macro
TAutoCommand::SetErrorMsgHook

TAutoCommand::Return
TAutoCommand

Syntax
virtual void Return(TAutoVal& v);
Description
Converts whatever value the internal C++ command returned into a VARIANT union. The converted
value is passed to OLE. This is what the automation controller receives as its return value.

TAutoCommand::SetErrorMsgHook
See Also TAutoCommand

Syntax
static TErrorMsgHook SetErrorMsgHook(TErrorMsgHook callback);
Description
Installs a user-defined callback function of type TErrorMsgHook to be called if the command returns an
error code.

See Also
TAutoCommand::LookupError
TAutoCommand::Report
TAutoCommand::SetCommandHook
TAutoCommand::TErrorMsgHook typedef

TAutoCommand::SetCommandHook
See Also TAutoCommand

Syntax
static TCommandHook SetCommandHook(TCommandHook callback);
Description
Installs a user-defined callback function of type TCommandHook to be called whenever the command
is executed. The command hook is useful for monitoring automation calls.

See Also
TAutoCommand::Invoke
TAutoCommand::SetErrorMsgHook
TAutoCommand::TCommandHook typedef

TAutoCommand::SetFlag
See Also TAutoCommand

Syntax
void SetFlag(int mask);
Description
Sets all the flags in mask. The flags are defined in the TAutoSymFlag enum.

See Also
AutoSymFlag enum

TAutoCommand::SetSymbol
TAutoCommand

Syntax
void SetSymbol(TAutoSymbol* sym);
Description
Assigns a symbol to the command object. The symbol is set internally. It is taken from the tables built
by the automation definition and declaration of the automated class.

TAutoCommand::TestFlag
See Also TAutoCommand

Syntax
bool TestFlag(int mask);
Description
Returns true if any of the flags in mask are set for this command. The flags are defined in the
TAutoSymFlag enum.

See Also
AutoSymFlag enum

TAutoCommand::Undo
See Also TAutoCommand

Syntax
virtual TAutoCommand* Undo();
Description
Generates a command for the undo stack by calling any hook the programmer might have supplied in
the automation declaration with the AUTOUNDO macro.
Undoing commands is not supported in the current version of ObjectComponents.

See Also
AUTOUNDO macro

TAutoCommand::TCommandHook typedef
See Also TAutoCommand

Syntax
typedef bool (*TCommandHook)(TAutoCommand& cmdObj);
Description
Describes the prototype for a user-defined callback function called during Invoke, before executing the
automation command object. cmdObj is the object about to be executed. If the callback returns false,
Invoke does not execute the command.

See Also
TAutoCommand::Invoke
TAutoCommand::SetCommandHook

TAutoCommand::TErrorMsgHook typedef
See Also TAutoCommand

Syntax
typedef const char* (*TErrorMsgHook)(long errCode);
Description
Describes the prototype for a user-defined callback function called after Invoke to process any error
code the command might return. errCode is the status result. The callback is expected to return a
string describing the error for the user.

See Also
TAutoCommand::LookupError
TAutoCommand::SetErrorMsgHook

TAutoCommand::Validate
See Also TAutoCommand

Syntax
virtual bool Validate();
Description
Tests the validity of the command's parameters by executing whatever validation function or
expression the programmer supplied in the automation declaration with the AUTOVALIDATE macro.

See Also
AUTOVALIDATE macro

TAutoCommand::Attr
See Also TAutoCommand

Syntax
int Attr;
Description
Attribute and state flags. The flags are defined in the AutoSymFlag enum.

See Also
AutoSymFlag enum

TAutoCommand::Symbol
TAutoCommand

Syntax
TAutoSymbol* Symbol;
Description
The symbol entry that generates this command. OLE passes this symbol to make this command
execute.

TAutoCurrency struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoCurrency is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoCurrency in an automation definition to
identify currency values.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoCurrency::ClassInfo
TAutoCurrency

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoCurrency holds information that identifies data as a currency value.

TAutoCurrencyRef struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoCurrencyRef is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoCurrencyRef in an automation definition
to identify currency values passed by pointer, not by value.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoCurrencyRef::ClassInfo
TAutoCurrencyRef

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoCurrencyRef holds information that identifies the TAutoCurrency * data
type.

TAutoDate struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoDate is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoDate in an automation definition to
identify date values stored as type double.

Public Data Members
static TAutoType ClassInfo;
double Date;
Public Constructors
TAutoDate(double d);
TAutoDate();
Public Member Function
operator double();

See Also
Automation Data Types
Automation Definition Macros

TAutoDate Public Constructor
TAutoDate

Form 1
TAutoDate();
Form 2
TAutoDate(double d);
Description
Form 1: Creates an empty TAutoDate.
Form 2: Creates a TAutoData that initially holds the value in d, assumed to be a date.

TAutoDate::ClassInfo
TAutoDate

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoDate holds information that identifies the date data type.

TAutoDate::Date
TAutoDate

Syntax
double Date;
Description
Stores a date as a 32-bit value.

TAutoDate::operator double
TAutoDate

Syntax
operator double();
Description
Returns the value stored in the Date field of TAutoDate.

TAutoDateRef struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoDateRef is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoDateRef in an automation definition to
identify double date values passed by pointer, not by value.

Public Data Members
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoDateRef::ClassInfo
TAutoDateRef

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoDateRef holds information that identifies the TAutoDate* data type.

TAutoDouble struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoDouble is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoDouble in an automation definition to
identify double values.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoDouble::ClassInfo
TAutoDouble

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoDouble holds information that identifies the double data type.

TAutoDoubleRef struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoDoubleRef is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoDoubleRef in an automation definition to
identify double values passed by pointer, not by value.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoDoubleRef::ClassInfo
TAutoDoubleRef

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoDoubleRef holds information that identifies the double* data type.

TAutoEnumerator<> class
See Also Automation Classes

Header File
ocf/autodefs.h

Description
An automation controller creates a TAutoEnumerator object to enumerate items in a collection held by
an automation server. A collection can contain any set of similar values or objects that the server
chooses to expose as a group. The items in the collection might be numbers in an array, for example,
or each one might be an automated object.
The type you pass to the template is the type of value the collection holds. If the collection is a set of
integer values, pass int. If the collection holds automated objects, pass the controller's proxy class
(derived from TAutoProxy).
At first, a newly created enumerator is empty. After you call Step, the enumerator holds the first value
in the collection. To see the value, call Value if the collection contains values of intrinsic data types,
such as int or float, or call Object if the collection contains automated objects. Step, Value, and Object
are the most important methods of TAutoEnumerator. The others are generally called for you at the
right time.

Public Constructors and Destructor
~TAutoEnumerator();
TAutoEnumerator(const TAutoEnumerator& copy);
TAutoEnumerator();
Public Member Functions
void Bind(TAutoVal& val);
void Clear();
void Object(TAutoProxy& prx);
bool Step();
void Unbind();
void Value(T& v);

See Also
Enumerating Automated Collections

TAutoEnumerator Public Constructor and Destructor
See Also TAutoEnumerator

Form 1
TAutoEnumerator();
Form 2
TAutoEnumerator(const TAutoEnumerator& copy);
Destructor
~TAutoEnumerator();
Description
However it is constructed, a newly created TAutoEnumerator object does not yet hold any value.
Always call Step to get the first item before calling Value or Object to see the item.
Form 1: Constructs an enumerator object but does not attach it to any automated collection.
Form 2: Constructs a new enumerator object by copying an existing one. Both enumerators are
attached to the same collection of objects.

Destructor
Detaches the enumerator from its collection before allowing the enumerator to be destroyed.

See Also
TAutoEnumerator::Step

TAutoEnumerator::Bind
See Also TAutoEnumerator

Syntax
void Bind(TAutoVal& val);
Description
Connects the enumerator to the collection object, val. Bind is called internally when the controller
passes the enumerator object to a method that returns a collection.

See Also
TAutoEnumerator::Unbind

TAutoEnumerator::Clear
See Also TAutoEnumerator

Syntax
void Clear();
Description
Empties the enumerator so that it no longer points to any item in the collection. This method is called
internally during Step.

See Also
TAutoEnumerator::Step

TAutoEnumerator::Object
See Also TAutoEnumerator

Syntax
void Object(TAutoProxy& prx);
Description
Returns in prx the current object from the collection. Use Object if the items in the collection are
automated objects. If the collection contains data values, then call Value instead.
To advance the enumerator so that Object returns the next object, call Step.

See Also
TAutoEnumerator::Step
TAutoEnumerator::Value

TAutoEnumerator::Step
See Also TAutoEnumerator

Syntax
bool Step();
Description
Advances the enumerator object one step so that Value returns the next item in the collection. Step
returns false when called after the enumerator has reached the last item in the collection.

See Also
TAutoEnumerator::Object
TAutoEnumerator::Value

TAutoEnumerator::Unbind
See Also TAutoEnumerator

Syntax
void Unbind();
Description
Disconnects the enumerator object from the collection it currently enumerates.

See Also
TAutoEnumerator::Bind

TAutoEnumerator::Value
See Also TAutoEnumerator

Syntax
void Value(T& v);
Description
Returns in v the current item from the collection. Use Value if the items in the collection are data
values. If the collection contains objects, then call Object instead.
To advance the enumerator so that Value returns the next item, call Step.

See Also
TAutoEnumerator::Object
TAutoEnumerator::Step

TAutoFloat struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoFloat is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoFloat in an automation definition to
identify float values.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoFloat::ClassInfo
TAutoFloat

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoFloat holds information that identifies the float data type.

TAutoFloatRef struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoFloatRef is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoFloatRef in an automation definition to
identify float values passed by pointer, not by value.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoFloat::ClassInfo
TAutoFloatRef

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoFloatRef holds information that identifies the float* data type.

TAutoInt typedef
See Also Automation Data Types

Header File
ocf/autodefs.h

Syntax
#if (MAXINT==MAXSHORT)
typedef TAutoShort TAutoInt;
#else
typedef TAutoLong TAutoInt;
#endif
Description
TAutoInt is an automation data type that helps ObjectComponents provide type checking for members
of an automated class exposed to OLE. Use TAutoInt in an automation definition to identify int values.
As with int, whether TAutoInt refers to a 16-bit or a 32-bit value depends on the compiler.

See Also
Automation Data Types
TAutoLong
TAutoShort

TAutoIterator Class
See Also Automation Classes

Header File
ocf/autodefs.h

Description
TAutoIterator is a pure virtual base class for iterator objects. An iterator is used to enumerate a
collection of other objects. The iterator's methods let the caller step through a list of objects and
examine each one in turn.
An automation server needs to create an iterator in any automated object that represents a collection
of other objects. To create an iterator, the server usually inserts an AUTOITERATOR macro in the
automation definition of the collection class (after DEFINE_AUTOCLASS).
In most cases, you do not need to work with the iterator class directly because the AUTOITERATOR
macro implements the object for you. In cases where the iterator requires a more complex
implementation, however, you might need to define the class directly yourself.
You can still declare the class using AUTOITERATOR_DECLARE instead of AUTOITERATOR. This is
just a shortcut for writing out all the standard members of an iterator object by hand.
TAutoIterator has five pure virtual members that any derived class must implement. These five
functions compose a standard interface for iterators in automated collection objects. They are Init,
Test, Step, Return, and Copy. The first four correspond to steps in a for loop that steps through the
collection. (See AUTOITERATOR for a description of the correspondence.) Copy creates a duplicate
iterator.
The constructors are protected because TAutoIterator should be constructed only by a derived class.
Besides implementing the inherited virtual functions, a class derived from TAutoIterator also typically
declares one or more data members that record the iterator's current state. Usually the state variable
remembers a position in the sequence of enumerated objects.
TAutoIterator is a COM object and implements the IUnknown interface.

Public Member Functions
virtual TAutoIterator* Copy()=0;
TAutoSymbol* GetSymbol();
virtual void Init()=0;
operator IUnknown;
virtual void Return(TAutoVal& v)=0;
void SetSymbol(TAutoSymbol* sym);
virtual void Step()=0;
virtual bool Test()=0;
Protected Constructors
TAutoIterator(TAutoIterator& copy);
TAutoIterator(TServedObject& owner);
Protected Data Member
TServedObject& Owner;

See Also
Automation Definition Macros
AUTOITERATOR Macros
Implementing an Iterator for the Collection

TAutoIterator Protected Constructors
TAutoIterator

Form 1
TAutoIterator (TServedObject& owner);
Form 2
TAutoIterator (TAutoIterator& copy);
Description
The constructors are protected because only a derived class should construct a TAutoIterator.
Form 1: Constructs an iterator to enumerate items held in the owner class. owner can be any
automated class.
Form 2: Constructs an iterator by creating a copy of another iterator. Both iterators enumerate the
same collection of objects.

TAutoIterator::Copy
See Also TAutoIterator

Syntax
virtual TAutoIterator* Copy()=0;
Description
Returns a copy of the iterator object. Your implementation should copy the iterator's state variables.

See Also
TAutoIterator::Init
TAutoIterator::Return
TAutoIterator::Step
TAutoIterator::Test

TAutoIterator::GetSymbol
See Also TAutoIterator

Syntax
TAutoSymbol* GetSymbol();
Description
Retrieves the automation symbol associated with the iterator. Usually you do not need to call this
function.

See Also
TAutoIterator::SetSymbol

TAutoIterator::Init
See Also TAutoIterator

Syntax
virtual void Init()=0;
Description
Initializes any state variables in the iterator. The primary task of an iterator is to loop through a list of
objects enumerating them one by one. Init tells the iterator to prepare for beginning a new pass
through the loop. For example, if the iterator's state variable is called index, Init might say
index = 0;

See Also
TAutoIterator::Copy
TAutoIterator::Return
TAutoIterator::Step
TAutoIterator::Test

TAutoIterator::operator IUnknown*()
See Also TAutoIterator

Syntax
operator IUnknown*();
Description
Returns a pointer to the iterator's IUnknown OLE interface and calls AddRef on the interface pointer.
This operator is called internally to return the iterator to OLE. Usually you do not need to call it directly
yourself.

See Also
TocStorage::AddRef

TAutoIterator::Return
See Also TAutoIterator

Syntax
virtual void Return(TAutoVal& value)=0;
Description
Extracts one item from a collection and returns a reference to it in the value parameter. The primary
task of an iterator is to loop through a list of objects enumerating them one by one. Return is the
command that retrieves a different item from the collection on each pass through the loop. For
example, Return might look like this:
value = (Collection->Array)[Index]
where value is the function's parameter, Collection points to the enclosing collection object, Array is a
member of Collection, and Index is the iterator's state variable.
value is type TAutoVal and represents a VARIANT union, which is the format in which OLE passes
values. TAutoVal defines conversion operators to handle standard C++ data types as well as C++
strings, TAutoCurrency, TAutoData, and automated C++ objects. The items in a collection can be any
of these types.

See Also
TAutoIterator::Copy
TAutoIterator::Init
TAutoIterator::Step
TAutoIterator::Test

TAutoIterator::SetSymbol
See Also TAutoIterator

Syntax
void SetSymbol(TAutoSymbol* sym);
Description
Associates an automation symbol with the iterator. SetSymbol is called internally during the
construction of the iterator. Usually you do not need to call it directly yourself.

See Also
TAutoIterator::GetSymbol

TAutoIterator::Step
See Also TAutoIterator

Syntax
virtual void Step()=0;
Description
Advances the iterator to point to the next item in a collection. The primary task of an iterator is to loop
through a list of objects enumerating them one by one. Step is like the i++ statement in a for loop. It
changes the state of the iterator to focus on the next item. For example, if the iterator's state variable is
called index, Step might simply say:
index++;

See Also
TAutoIterator::Copy
TAutoIterator::Init
TAutoIterator::Return
TAutoIterator::Test

TAutoIterator::Test
See Also TAutoIterator

Syntax
virtual bool Test()=0;
Description
Tests whether all items have been enumerated. The primary task of an iterator is to loop through a list
of objects, enumerating them one by one. Test returns true if more objects remain to be enumerated
and false when it reaches the end of the list. For example, if the iterator's state variable is called index,
Test might say
return (index >= NUM_ITEMS);

See Also
TAutoIterator::Copy
TAutoIterator::Init
TAutoIterator::Return
TAutoIterator::Step

TAutoIterator::Owner
TAutoIterator

Syntax
TServedObject& Owner;
Description
Holds a reference to the collection object that encloses the iterator. Owner is initialized by the
constructor. The undocumented TServedObject class implements the interfaces that a client expects to
find on an OLE object. ObjectComponents uses this class internally. Owner can be any automated
object.

TAutoLong struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoLong is an automation data type that helps ObjectComponents provide type information for
members of an automated class exposed to OLE. Use TAutoLong in an automation definition to
identify long values.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoLong::ClassInfo
TAutoLong

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoLong holds information that identifies the long data type.

TAutoLongRef struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoLongRef is an automation data type that helps ObjectComponents provide type information for
members of an automated class exposed to OLE. Use TAutoLongRef in an automation definition to
identify long values passed as pointers, not by value.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoLongRef::ClassInfo
TAutoLong

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoLongRef holds information that identifies the long* data type.

TAutoObject <> Class
Automation Classes

Header File
ocf/autodefs.h

Description
TAutoObject holds a pointer to a C++ object. TAutoObject casts the pointer to different data types
appropriately when an automation operation requires conversion. It also retrieves type information
about the object when needed during automation. Think of TAutoObject as a smart pointer.
ObjectComponents often creates smart pointers for you. Usually you do not need to manipulate
TAutoObject objects directly.

Public Constructors
TAutoObject(IDispatch* dispatch);
TAutoObject(T& ref);
TAutoObject(T* point);
TAutoObject();
Public Member Functions
T& operator *();
void operator =(T& ref);
void operator =(T* point);
void operator =(IDispatch* dispatch);
operator T&();
operator T*();
TObjectDescriptor();
Protected Data Member
T* P;

TAutoObject::operator *()
TAutoObject

Syntax
T& operator*();
Description
The dereference operator returns a reference to the object whose pointer TAutoObject holds.

TAutoObject::operator =
See Also TAutoObject

Syntax

Form 1
void operator=(T* point);
Form 2
void operator=(T& ref);
Form 3
void operator=(IDispatch* dispatch);
Description
The assignment operators place a pointer to a C++ object in the TAutoObject. They are usually used to
initialize the TAutoObject after creating it with the default constructor.

Form 1:
Places the point pointer in the TAutoObject.

Form 2:
Places a pointer to the object ref in the TAutoObject.

Form 3:
Attempts to read type information from the object that owns the IDispatch interface. If it succeeds, the
operator places in the TAutoObject a pointer to the C++ object. If it fails, the constructor throws a
TXAuto::xTypeMismatch exception.

See Also
TXAuto::TError enum

TAutoObject::operator T&()
TAutoObject

Syntax
operator T&();
Description
Returns a reference to the object whose pointer TAutoObject holds.

TAutoObject::P
TAutoObject

Syntax
T* P;
Description
Returns the pointer that TAutoObject holds.

TAutoObject Public Constructors
See Also TAutoObject

Form 1
TAutoObject();
Form 2
TAutoObject(T* point);
Form 3
TAutoObject(T& ref);
Form 4
TAutoObject(IDispatch* dispatch);
Description
Form 1: Constructs an empty TAutoObject that contains no pointer.
Form 2: Constructs a TAutoObject that holds the pointer point.
Form 3: Constructs a TAutoObject that holds a pointer to the object ref.
Form 4: Attempts to read type information from the object that owns the IDispatch interface. If it
succeeds, the constructor builds a TAutoObject around a pointer to the C++ object. If it fails, the
constructor throws a TXAuto::xTypeMismatch exception.

See Also
TXAuto::TError enum

TAutoObject::operator TObjectDescriptor()
TAutoObject

Syntax
operator TObjectDescriptor();
Description
Constructs and returns a new object descriptor object based on the pointer that TAutoObject holds.
This operator is called internally to obtain type information for constructing an automation object.

TAutoObject::operator T*
TAutoObject

Syntax
operator T*();
Description
Returns a pointer to the object TAutoObject holds.

TAutoObjectByVal<> Class
See Also Automation Classes

Header File
ocf/autodefs.h

Base Class
TAutoObjectDelete

Description
An automation server uses this class when an automated method needs to return a copy of an object.
Usually you do not have use the class directly because the automation macros make the proper
declarations for you.
To return an object, TAutoObjectByVal clones the object by calling its copy constructor. The clone is
passed to the automation controller as the return value from some automation command.
TAutoObjectByVal holds on to the cloned object until the controller releases it. Then it destroys the
object by calling its destructor.
In other respects, TAutoObjectByVal closely resembles its parent class, TAutoObjectDelete.

Public Data Member
void operator =(T obj);
Public Constructors
TAutoObjectByVal(T obj);
TAutoObjectByVal();

See Also
TAutoObjectDelete
Constructing and Exposing a Collection Class

TAutoObjectByVal <> Public Constructors
TAutoObjectByVal

Form 1
TAutoObjectByVal();
Form 2
TAutoObjectByVal(T obj);
Description
Form 1: Creates an empty TAutoObjectByVal.
Form 2: Creates a TAutoObjectByVal that holds a copy of the object obj. T is the data type passed into
the template.

TAutoObjectByVal::<>operator =
TAutoObjectByVal

Syntax
void operator =(T obj);
Description
This operator creates a new object of type T by copying the original object, obj. The copy is passed to
an automation controller as the return value from an automated method. T is the data type passed into
the template.

TAutoObjectDelete <> Class
See Also Automation Classes

Header File
ocf/autodefs.h

Base Class
TAutoObject

Description
An automation server uses this class when an automated method needs to return an object to an
automation controller. Usually you do not have use the class directly because the automation macros
make the proper declarations for you.
Like its parent class TAutoObject, TAutoObjectDelete exists in order to hold a pointer to an object and
convert it as necessary when the object is passed from server to client through automation calls. The
difference between the two classes is that when the automation controller is through with the
automated object, TAutoObjectDelete informs the connector object that it can let the automated C++
object call its destructor.

Public Constructors
TAutoObjectDelete(T& r);
TAutoObjectDelete(T* p);
TAutoObjectDelete();
Public Member Functions
void operator =(T& r);
void operator =(T* p);
operator TObjectDescriptor();

See Also
TAutoObject

TAutoObjectDelete <> Public Constructors
See Also TAutoObjectDelete

Form 1
TAutoObjectDelete();
Form 2
TAutoObjectDelete(T* p);
Form 3
TAutoObjectDelete(T& r);
Description
The TAutoObjectDelete constructors do nothing but pass their parameters back to the parent class,
TAutoObject.
Form 1: Creates an empty TAutoObjectDelete object.
Form 2: Creates a TAutoObjectDelete object from a pointer to another object.
Form 3: Creates a TAutoObjectDelete object from a reference to another object.

See Also
TAutoObject

TAutoObjectDelete::operator =
TAutoObjectDelete

Syntax

Form 1
void operator =(T& r);
Form 2
void operator =(T* p);
Description
Form 1: Tells TAutoObjectDelete to hold a pointer to the object referred to by r.
Form 2: Tells TAutoObjectDelete to hold the pointer p.

TAutoObjectDelete::operator TObjectDescriptor()
TAutoObjectDelete

Syntax
operator TObjectDescriptor();
Description
Returns type information describing the object.

TAutoProxy Class
See Also Automation Classes

Header File
ocf/autodefs.h

Description
An automation controller derives classes from TAutoProxy to represent automated OLE objects that it
wants to command. To send commands to an automated object, the controller invokes methods on the
proxy that represents the object. ObjectComponents connects the proxy to the original so that invoking
members of the proxy also invokes members of the automated object.
A proxy object must inherit from TAutoProxy. In the derived class, the controller declares one method
for each command it wants to send. The declared methods must match the prototypes of the desired
commands. To implement these proxy methods, the controller uses three macros: AUTONAMES,
AUTOARGS, and AUTOCALL. The macros insert code that calls down to the base class. TAutoProxy
passes the commands to OLE.
Usually you do not have to call anything in TAutoProxy directly. All you have to do is derive your proxy
class from TAutoProxy and implement the methods with the proxy macros.
To generate proxy classes quickly and easily, use the AUTOGEN.EXE tool in the OCTOOLS directory.
AUTOGEN reads the automation server's type library and writes all the necessary headers and source
files for your proxy objects.

Public Destructor
~TAutoProxy();
Public Member Functions
void Bind(IUnknown* obj);
void Bind(IUnknown& obj);
void Bind(const GUID& guid);
void Bind(char far* progid);
void Bind(TAutoVal& val);
void Bind(IDispatch* obj);
void Bind(IDispatch& obj);
operator IDispatch&;
operator IDispatch*;
bool IsBound();
long Lookup(char far* name);
long Lookup(const long id);
void Lookup(const char* names, long* ids, unsigned count);
void MustBeBound();
void SetLang(TLangId lang);
void Unbind();
Protected Constructor
TAutoProxy(TLangId lang);
Protected Member Function
TAutoVal& Invoke(int attr, TAutoProxyArgs& args, long* ids, unsigned
named=0);

See Also
Automation Proxy Macros
Declaring Proxy Classes

TAutoProxy Public Destructor
TAutoProxy

Destructor
~TAutoProxy();
Description
Destroys the TAutoProxy object.
The constructors are protected because only derived proxy classes should call them.

TAutoProxy::Protected Constructor
See Also TAutoProxy

Syntax
TAutoProxy(TLangId lang);
Description
Constructs a TAutoProxy object and sets the object to use the language identified by the lang locale
ID.

See Also
TLangID typedef (OWL.HLP)

TAutoProxy::Bind
TAutoProxy

Syntax

Form 1
void Bind(IUnknown* obj);
Form 2
void Bind(IUnknown& obj);
Form 3
void Bind(const GUID& guid);
Form 4
void Bind(char far* progid);
Form 5
void Bind(TAutoVal& val);
Form 6
void Bind(IDispatch* obj);
Form 7
void Bind(IDispatch& obj);
Description
The Bind function attempts to open a channel of communication to the automation server in order to
send commands. More specifically, Bind requests a pointer to the server's IDispatch interface.
Bind is called internally when the object is passed as the return object for another proxy method.
Which form of Bind is used depends on what information available to identify the server.
Form 1: Binds the proxy object to a server identified by a pointer to its IUnknown interface. Throws a
TXOle exception for failure.
Form 2: Binds the proxy object to a server identified by a reference to its IUnknown interface. Throws
a TXOle exception for failure.
Form 3: Binds the proxy object to a server identified by its globally unique ID (GUID). This is the clsid
that the server registered for objects of the type you want to control. Throws a TXOle exception for
failure.
Form 4: Binds the proxy object to a server identified by its progid. (This is the GUID that the server
registered to identify the application itself.) Throws a TXOle exception for failure.
Form 5: Attempts to intrepret the value in the TAutoVal union as a reference to an IDispatch object
and bind to the IDispatch directly. Throws a TXAuto exception if the object does not support IDispatch.
Form 6: Accepts obj as the proxy object's server.
Form 7: Accepts obj as the proxy object's server.

TAutoProxy::operator IDispatch&()
TAutoProxy

Syntax
operator IDispatch&();
Description
Returns a reference to the IDispatch interface of the proxy object's server.

TAutoProxy::operator IDispatch*()
See Also TAutoProxy

Syntax
operator IDispatch*();
Description
Returns a pointer to the IDispatch interface of the proxy object's server and calls AddRef on the
interface pointer.

See Also
TocStorage::AddRef

TAutoProxy::IsBound
TAutoProxy

Syntax
bool IsBound();
Description
Returns true if the server already has a pointer to the IDispatch interface of its server and false if it
does not.

TAutoProxy::Lookup
TAutoProxy

Syntax

Form 1
long Lookup(char far* name);
Form 2
long Lookup(const long id);
Form 3
void Lookup(const char* names, long* ids, unsigned count);
Description
Given the name of a command or an argument, Lookup calls the server to ask for the corresponding
ID values. Although commands and arguments have names for the convenience of programmers, OLE
actually identifies them by numbers. A server must find out the ID number in order to execute the
command.
Form 1: Calls the server to get the ID that matches the name.
Form 2: Returns the value passed in as id.
Form 3: Looks up a series of names and returns all their IDs at once. names and ids point to two
parallel arrays. count gives the number of elements in both arrays. With a single call to OLE, Lookup
fills the ids array with numbers to identify all the names.

TAutoProxy::MustBeBound
TAutoProxy

Syntax
void MustBeBound();
Description
Throws a TXAuto exception if the TAutoProxy object does not have an IDispatch interface for its
server. TAutoProxy calls this method internally before performing actions that assume the object is
already bound to the server.

TAutoProxy::SetLang
See Also TAutoProxy

Syntax
void SetLang(TLangId lang);
Description
Sets the locale ID that the controller will pass to the server with each command. The locale ID tells the
server what language the controller is using.

See Also
TlangId typedef (OWL.HLP)
TAutoStack

TAutoProxy::Unbind
See Also TAutoProxy

Syntax
void Unbind();
Description
Decrements the reference count of the proxy object's server and erases internal references to the
server.

See Also:
TAutoProxy::Bind

TAutoProxy::Invoke
See Also TAutoProxy

Syntax
TAutoVal& Invoke(int attr, TAutoProxyArgs& args, long* ids, unsigned
named=0);

Description
Sends a command to the automation server. Invoke is called by the AUTOCALL macros.
attr describes the type of command being issued and can be a combination of the AutoCallFlag enum
values.
The args object contains all the values passed as arguments to the command.
ids points to an array of ID values identifying the command and the arguments. There should be one
ID value for each element in the args array.
names tells how many arguments in args are identified by name.

See Also
AutoCallFlag enum
AUTOCALL_xxxx Macros

TAutoShort struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoShort is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoShort in an automation definition to
identify short values.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoShort::ClassInfo
TAutoShort

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoShort holds information that identifies the short data type.

TAutoShortRef struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoShortRef is an automation data type that helps ObjectComponents provide type checking for
members of an automated class exposed to OLE. Use TAutoShortRef in an automation definition to
identify short values passed by pointer, not by value.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
Automation Definition Macros

TAutoShortRef::ClassInfo
TAutoShortRef

Syntax
static TAutoType ClassInfo;
Description
The ClassInfo member of TAutoShortRef holds information that identifies the data type short*.

TAutoStack Class
See Also Automation Classes

Header File
ocf/autodefs.h

Description
TAutoStack processes the command stack that an automation controller sends to an automation
server through OLE. The command stack contains a dispatch ID identifying a particular command and
a set of VARIANT unions containing all the arguments needed to execute the command.
ObjectComponents interprets the dispatch ID and extracts the proper C++ value from each union. It
builds a command object (TAutoCommand) and calls the command's Execute method.
TAutoCommand in turn invokes the methods you have exposed by declaring them and defining them
in your automated classes.
The stack also carries a locale ID identifying the language used in the command. ObjectComponents
takes the locale into account when interpreting strings it extracts from the stack. If you have provided
localization resources, then ObjectComponents translates to the requested language for you.
Usually you do not have to work with TAutoStack directly. ObjectComponents automatically passes a
stack in to the proper command object for you. The command objects are created by the automation
declaration macros.

Public Constructor and Destructor
TAutoStack(TServedObject& owner, VARIANT far* stack, TLocaleId locale,int
argcount, int namedcount, long far* map);

~TAutoStackTAutoStack();
Public Member Function
TAutoVal& operator [](int index);
Public Data Members
const int ArgCountTLangId LangId;
int ArgSymbolCount;
int CurrentArg;
TServedObject& Owner;
TAutoSymbol* Symbol;
Constant
SetValue

See Also
Automation Declaration Macros
Localizing Symbol Names
TAutoCommand

TAutoStack Public Constructor and Destructor
See Also TAutoStack

Constructor
TAutoStack(TServedObject& owner, VARIANT far* stack, TLocaleId locale,int
argcount, int namedcount, long far* map);

Destructor
~TAutoStack();
Description
The constructor is called only internally. You should not need to construct your own stack.
owner is the automated object to which the command is directed.
stack points to a series of contiguous unions of type VARIANT. The unions contain values or object
references passed in automation commands.
locale is a locale ID describing the language the controller is using.
argcount tells how many arguments follow the dispatch ID in the stack.
namedcount tells how many of the arguments were passed with their names. A controller can pass
arguments in any order, and even omit optional arguments, if it identifies the arguments it does pass
explicitly by the name the server gives them.
if namedcount is greater than zero, then map points to an array of ID values corresponding to the
argument names passed by the constructor.
map is a table for translating named argument IDs to argument positions.

Destructor
Destroys the TAutoStack object.

See Also
Localizing Symbol Names
TAutoVal
TLocaleId typedef

TAutoStack::operator []
See Also TAutoStack

Syntax
TAutoVal& operator[](int index);
Description
Extracts individual arguments from the command stack for use as C++ function arguments. index is a
zero-based index into the command's argument list, which follows the order established in the
corresponding EXPOSE macro of the automation definition. This operator is called by the command
objects generated in the automation declaration.
If index is out of range, the operator throws a TXAuto::xNoArgSymbol exception.

See Also
Automation Declaration Macros
Automation Definition Macros
TXAuto::TError enum

TAutoStack::ArgCount
TAutoStack

Syntax
const int ArgCount;
Description
Holds the number of arguments passed on the command stack (named or unnamed).

TAutoStack::LangId
See Also TAutoStack

Syntax
TLangId LangId;
Description
Holds a number that identifies the language the controller is using to send commands.

See Also
TlangID typedef (OWL.HLP)

TAutoStack::ArgSymbolCount
TAutoStack

Syntax
int ArgSymbolCount;
Description
Holds the number of command arguments exposed to automation.

TAutoStack::CurrentArg
TAutoStack

Syntax
int CurrentArg;
Description
As ObjectComponents processes the arguments on the stack one by one, this member indexes the
current argument. When CurrentArg reaches ArgCount, all the arguments have been processed.

TAutoStack::Owner
TAutoStack

Syntax
TServedObject& Owner;
Description
Refers to the automated object that is processing the command on the stack.

TAutoStack::Symbol
See Also TAutoStack

Syntax
TAutoSymbol* Symbol;
Description
Points to the command symbol defined by the corresponding EXPOSE macro in the automation
definition.

See Also
Automation Definition Macros

TAutoStack::SetValue Constant
TAutoStack

Syntax
TAutoStack::SetValue
Description
SetValue is a predefined standard dispatch ID. The dispatch ID is a number that identifies a particular
command that an automated object can execute. The only two standard dispatch IDs used in
ObjectComponents are 0 for an object's default action and -3 for a command that sets the value of a
property. SetValue is -3.

TAutoString struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
An automation server uses TAutoString to describe C string types in an automation definition. The
member functions of the TAutoString structure facilitate copying and assigning string values with
minimal memory reallocations when strings are passed back and forth between servers and
controllers.
You do not need to use TAutoString with C++ string objects. For more information, see Automation
Data Types.
TAutoString works best with const string values. When passed a non-constant string, TAutoString
must make an internal copy. When the string is const, TAutoString knows the value will not change
and can skip the copying step. The performance improvement is significant.

Public Constructors and Destructor
TAutoString(const string& s);
TAutoString(const TAutoString& copy);
TAutoString(TAutoVal& val);
TAutoString(const char far* s = 0);
TAutoString(BSTR s, bool loan);
~TAutoString();
Public Member Functions
operator int()
TAutoString& operator =(char* s);
TAutoString& operator =(const char far* str);
TAutoString& operator =(const TAutoString& copy);
operator char*();
operator const char far*();
Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types

TAutoString::operator int()
TAutoString

Syntax
operator int()
Description
Returns the length of the string value (as strlen would calculate the length).

TAutoString::operator char*()
TAutoString

Syntax
operator char*();
Description
Returns the object's string value in the form of a non-const C-style string. To do this, TAutoString must
create a new copy of the string. It is faster to assign to a const char* where possible.

TAutoString::operator =
TAutoString

Form 1
TAutoString& operator =(const char far* str);
Form 2
TAutoString& operator =(char* s);
Form 3
TAutoString& operator =(const TAutoString& copy)
Description
Form 1: Accepts a C-style const string as the new value of the TAutoString.
Form 2: Accepts a C-style non-const string as the new value of TAutoString. Because the string is not
constant, TAutoString must create a new copy of the string for itself. This makes Form 3 significantly
slower than Form 1. Try to pass const strings where possible.
Form 3: Sets the value of the TAutoString object to be a string copied from another TAutoString object.

TAutoString::ClassInfo
TAutoString

Syntax
static TAutoType ClassInfo;
Description
This static structure holds a number that identifies the data type as a string. All the automation data
types hold a similar static identifier so that ObjectComponents can query any of them to determine
what they are.

TAutoString::operator const char far*()
TAutoString

Syntax
operator const char far*();
Description
Returns the object's string value in the form of a const C-style string.

TAutoString Public Constructors and Destructor
TAutoString

Form 1
TAutoString(const string& s);
Form 2
TAutoString(const TAutoString& copy);
Form 3
TAutoString(TAutoVal& val);
Form 4
TAutoString(const char far* str);
Form 5
TAutoString(BSTR s, bool loan)
Destructor
~TAutoString();
Description
Form 1: Creates a TAutoString and assigns it the string held in a C++ string object.
Form 2: Creates a new TAutoString that holds the same string value as the copy object.
Form 3: Initializes the new object with the value in a TAutoVal union. TAutoVal represents the
VARIANT data type OLE uses to pass values between two applications. It is a union of many types.
This constructor extracts the value from the union as a string.
Form 4: Initializes the new object with the value in a const C string.
Form 5: Initializes the new object with the value in a BASIC-style string, one preceded by its length
and not terminated by null. That is the format OLE uses for passing strings. Set loan to true if the
TAutoString object owns the BSTR and false if it only references the BSTR.

Destructor
TAutoString maintains a reference count on the string object it contains. The destructor decrements
the reference count.

TAutoType struct
See Also

Header File
ocf/autodefs.h

Description
The TAutoType structure is a static data member of all the automation data type classes, such as
TAutoBool and TAutoString. TAutoType makes all these data types self-describing. This is an essential
quality for dealing with the VARIANT unions that OLE uses to pass values during automation. Because
all the automation types derive from TAutoType, ObjectComponents can process values of any type
with the same code. Because TAutoType is self-describing, ObjectComponents can always determine
the actual type of any particular item.
Usually you do not have to work with TAutoType directly, just with the automation types that derive
from it.

Public Member Function
short GetType();

See Also
Automation Data Types

TAutoType::GetType
See Also TAutoType

Syntax
short GetType();
Description
Returns an integer that identifies a particular data type. The identifiers are defined in the AutoDataType
enum.

See Also
AutoDataType enum

TAutoVal Class
See Also Automation Classes

Header File
ocf/autodefs.h

Description
TAutoVal duplicates the VARIANT type that OLE uses to pass values between an automation server
and controller. It also adds access methods to retrieve the value in the VARIANT. A VARIANT can be
cast to type TAutoVal, and TAutoVal can be cast to a VARIANT.
A VARIANT is a large union with fields of many different data types. A large set of overloaded
assignment operators allow many different kinds of values to be stored in a TAutoVal object. Each
assignment operator also records internally a number that identifies the type of value just received. A
similar set of conversion operators allows the value in the object to be cast to different types of values.
Whether a particular conversion succeeds depends on the type of value in the object. A string cannot
be cast to some other object, for example. If the conversion fails, TAutoVal throws an exception of type
TXAuto::xConversionFailure.
ObjectComponents treats the data passed between an automation server and controller as a stack of
unions. The stack is TAutoStack, and the items on the stack are TAutoVal. Because the server and
controller are built separately and can use different programming languages, data passed between
them cannot retain an intrinsic type. Command identifiers and argument values are passed as
VARIANTs. The recipient of a VARIANT value must rely on the item's context in order to determine
what type the value is supposed to be. For example, when it sees a dispatch ID for a command that
expects two integer arguments, the application extracts integers from the next two VARIANTs.

Public Member Functions
void operator =(TObjectDescriptor od);
void operator =(IUnknown* ifc);
void operator =(IDispatch* ifc);
void operator =(TAutoVoid);
void operator =(TAutoDate far* i);
void operator =(TAutoDate i);
void operator =(TAutoCurrency i);
void operator =(TAutoCurrency far* p);
void operator =(TAutoString s);
void operator =(string s);
void operator =(const char far* s);
void operator =(TBool far* p);
void operator =(TBool i);
void operator =(double far* p);
void operator =(double i);
void operator =(float far* p);
void operator =(float i);
void operator =(short far* p);
void operator =(short i);
void operator =(unsigned long far* p);
void operator =(unsigned long i);
void operator =(long far* p);
void operator =(long i);
void operator =(int far* p);
void operator =(int i);
void Clear();
void Copy(const TAutoVal& copy);
operator doublefar*();

operator double();
operator floatfar*();
operator float();
int GetDataType();
IDispatch&();
IDispatch*();
operator intfar*();
operator int();
bool IsRef();
operator IUnknown&();
operator IUnknown*();
operator longfar*();
operator long();
operator shortfar*();
operator short();
string();
operator TAutoCurrency();
operator TAutoCurrencyfar*();
operator TAutoDatefar*();
operator TAutoDate();
operator TBoolfar*();
operator TBool();
operator TUString*();
operator unsignedlong();
operator unsignedlongfar;

See Also
TAutoStack
TXAuto::TError enum

TAutoVal::operator int()
TAutoVal

Syntax
operator int();
Description
Returns the value in the object as an integer.

TAutoVal::operator int far*()
TAutoVal

Syntax
operator int far*();
Description
Returns a pointer to an int.

TAutoVal::operator short()
TAutoVal

Syntax
operator short();
Description
Returns the value in the object as a short integer.

TAutoVal::operator short far*()
TAutoVal

Syntax
operator short far*();
Description
Returns a pointer to a short integer.

TAutoVal::operator long()
TAutoVal

Syntax
operator long();
Description
Returns the value in the object as a long integer.

TAutoVal::operator long far*()
TAutoVal

Syntax
operator long far*();
Description
Returns a pointer to a long integer.

TAutoVal::operator unsigned long()
TAutoVal

Syntax
operator unsigned long();
Description
Returns the value in the object as an unsigned long integer.

TAutoVal::operator unsigned long far*()
TAutoVal

Syntax
operator unsigned long far*();
Description
Returns a pointer to a long integer. (TAutoVal does not distinguish long from unsigned long.)

TAutoVal::operator float()
TAutoVal

Syntax
operator float();
Description
Returns the value in the object as a floating-point value.

TAutoVal::operator float far*()
TAutoVal

Syntax
operator float far*();
Description
Returns a pointer to a floating-point value.

TAutoVal::operator double()
TAutoVal

Syntax
operator double();
Description
Returns the value in the object as a double value.

TAutoVal::operator double far*()
TAutoVal

Syntax
operator double far*();
Description
Returns a pointer to a double value.

TAutoVal::operator TBool()
TAutoVal

Syntax
operator TBool();
Description
Returns the value in the object as a Boolean value.

TAutoVal::operator TBool far*()
TAutoVal

Syntax
operator TBool far*();
Description
Returns a pointer to a Boolean value.

TAutoVal::operator TAutoCurrency()
See Also TAutoVal

Syntax
operator TAutoCurrency();
Description
Returns the value in the object as a currency value.

See Also
TAutoCurrency

TAutoVal::operator TAutoCurrency far*()
See Also TAutoVal

Syntax
operator TAutoCurrency far*();
Description
Returns a pointer to a currency value.

See Also
TAutoCurrency

TAutoVal::operator TAutoDate()
See Also TAutoVal

Syntax
operator TAutoDate();
Description
Returns the value in the object as a date value.

See Also
TAutoDate

TAutoVal::operator TAutoDate far*()
See Also TAutoVal

Syntax
operator TAutoDate far*();
Description
Returns a pointer to a date value.

See Also
TAutoDate

TAutoVal::operator string()
TAutoVal

Syntax
operator string();
Description
Returns the value in the object as a C++ string object.

TAutoVal::operator TUString*()
TAutoVal

Syntax
operator TUString*();
Description
Returns the value in the object as a TUString object. TUString is a reference-counted union of various
string representations. It is used internally by ObjectComponents for implementing TAutoString.

TAutoVal::operator IDispatch*()
See Also TAutoVal

Syntax
operator IDispatch*();
Description
Extracts an IDispatch interface from the value in the TAutoVal object. IDispatch is the standard OLE
interface supported by automatable objects. This function also calls the interface's AddRef method.

See Also
TAutoVal::IDispatch&
TocStorage::AddRef

TAutoVal::operator IDispatch&()
See Also TAutoVal

Syntax
operator IDispatch&();
Description
Extracts an IDispatch interface from the value in the TAutoVal object. IDispatch is the standard OLE
interface supported by automatable objects. This method does not call AddRef on the IDispatch
interface.

See Also
TAutoVal::IDispatch*
TocStorage::AddRef

TAutoVal::operator IUnknown*()
See Also TAutoVal

Syntax
operator IUnknown*();
Description
Extracts an IUnknown interface from the value in the TAutoVal object. IUnknown is the standard OLE
interface supported by all objects. This method calls AddRef on the IUnknown interface.

See Also
TAutoVal::IUnknown&

TAutoVal::operator IUnknown&()
See Also TAutoVal

Syntax
operator IUnknown&();
Description
Extracts an IUnknown interface from the value in the TAutoVal object. IUnknown is the standard OLE
interface supported by all objects. This method does not call AddRef on the IUnknown interface.

See Also
TAutoVal::IUnknown*
TocStorage::AddRef

TAutoVal::operator =
See Also TAutoVal

Syntax
void operator=(int i);
void operator=(int far* p);
void operator=(long i);
void operator=(long far* p);
void operator=(unsigned long i);
void operator=(unsigned long far* p);
void operator=(short i);
void operator=(short far* p);
void operator=(float i);
void operator=(float far* p);
void operator=(double i);
void operator=(double far* p);
void operator=(TBool i);
void operator=(TBool far* p);
void operator=(const char far* s);
void operator=(string s);
void operator=(TAutoString s);
void operator=(TAutoCurrency i);
void far* operator=(TAutoCurrency far* p);
void operator=(TAutoDate i);
void far* operator=(TAutoDate far* i);
void operator=(TAutoVoid);
void operator=(IDispatch* ifc);
void operator=(IUnknown* ifc);
void operator=(TObjectDescriptor od);
Description
Assignment operators initialize TAutoVal by placing in the object both the assigned value and an ID to
show the type of the assigned value.
This table describes those data types that are not standard C types.

Type Description
IDispatch A class ObjectComponents uses internally to implement the standard

OLE interface called IDispatch, supported by automatable objects
IUnknown A class that ObjectComponents uses internally to implement the standard

IUnknown OLE interface, supported by all OLE objects
string C++ string object
TAutoCurrency An automation data type that holds a currency value
TAutoString An automation data type that holds a C-style string value
TAutoVoid An automation data type that represents a void return
TObjectDescriptor A class that ObjectComponents uses internally to hold information about

an OLE object

See Also
AutomationDataTypes
string (CLASSLIB.HLP)

TAutoVal::GetDataType
TAutoVal

Syntax
int GetDataType();
Description
Returns an integer identifying the type of value that was assigned to the union.

TAutoVal::Clear
See Also TAutoVal

Syntax
void Clear();
Description
Clears the value stored in the object, leaving it empty. This method cannot be called on the objects
managed by TAutoStack.

See Also
TAutoStack

TAutoVal::Copy
See Also TAutoVal

Syntax
void Copy(const TAutoVal& copy);
Description
Copies the TAutoVal object into copy. Intelligently allocates space for a string, if needed, and calls
AddRef if the value in the union is an OLE object.

See Also
TocStorage::AddRef

TAutoVal::IsRef
TAutoVal

Syntax
bool IsRef();
Description
Returns true if the value assigned to the union is a reference to a value.

TAutoVoid struct
See Also Automation Data Types

Header File
ocf/autodefs.h

Description
TAutoVoid is an automation data type like TAutoShort and TAutoBool. Use it in an automation
definition to describe functions that return no value.
The purpose of the structure is to implement the assignment of void to a TAutoVal.

Public Data Member
static TAutoType ClassInfo;

See Also
Automation Data Types
TAutoVal Struct

TAutoVoid::ClassInfo
See Also TAutoVoid

Syntax
static TAutoType ClassInfo;
Description
As with any automation data type, the ClassInfo member holds a value that identifies a data type, in
this case void.

See Also
TAutoType Struct

TComponentFactory Type Definition
See Also General OLE Classes, Macros, and Type Definitions

Header file
ocf/ocreg.h

Syntax
typedef IUnknown* (*TComponentFactory)(IUnknown* outer, uint32 options,
uint32 id = 0);

Description
TComponentFactory is a type definition for a callback function.
outer points to the IUnknown interface of an external OLE object under which the application is asked
to aggregate. If outer is 0, then either the new object is independent or it will become the outer object
in an aggregation.
options contains bit flags indicating the application's running state. To test the flags, use the
TOcAppMode enum constants.
id is a number ObjectComponents assigns to identify a particular type of object the application can
create. If id is 0, the application is asked to create itself. To request particular document types,
ObjectComponents passes the document template ID.
The return value is a pointer to the IUnknown interface of whatever object the callback function
creates, either the application itself or one of its objects. During aggregation, the return value becomes
the inner IUnknown pointer in some other object. (IUnknown is a standard OLE type declared in
compobj.h.)
A callback of type TComponentFactory is passed to the constructor of an application's registrar object
(either TOcRegistrar for a linking and embedding application or TRegistrar for an application that
supports automation only). The easiest way to create a factory callback is with a factory template, such
as TOleFactory<>.

See Also
Factory Template Classes (OWL.HLP)
TOcAppMode enum
TOcRegistrar
TRegistrar

TLocaleId Type Definition
See Also General OLE Classes, Macros, and Type Definitions

Header file
ocf/autodefs.h

Syntax
typedef unsigned long TLocaleId;
Description
A locale ID is a 32-bit value that identifies a language. The low half of the value is a 16-bit language ID.
In the current OLE definition, the upper word is reserved, so in effect a locale ID is a 32-bit language
ID.
Windows uses locale IDs to set the system's default language. ObjectComponents uses locale IDs in
automation. An automation controller passes a locale ID to the server with every command. The server
is expected to interpret the commands it receives as strings in the given language.
There are two predefined system locale settings in the olenls.h header.

Constant Meaning
LOCALE_SYSTEM_DEFAULT The default locale set for the system.
LOCALE_USER_DEFAULT The default locale set for a particular user (which can differ from the

system setting on multiuser systems)

See Also
Langxxxx Language ID Constants (OWL.HLP)
Localizing Symbol Names
TLangId typedef (OWL.HLP)

TOcApp Class
See Also Linking and Embedding Classes

Header File
ocf/ocapp.h

Base Class
TUnknown

Description
TOcApp is an ObjectComponents connector object for a linking and embedding application. It
implements the interfaces an application needs for communicating with OLE. Any ObjectComponents
application that supports linking and embedding needs to have a TOcApp object. Usually the registrar
creates it for you when you call TOcRegistrar->Run.
Applications that support automation but do not support linking and embedding do not need a TOcApp
object. They create a TRegistrar instead of a TOcRegistrar.
TOcApp is a COM object and implements the IUnknown interface.

Public Member Functions
void AddUserFormatName(char far* name, char far* resultName, char far* id =
0);

bool Browse(TOcInitInfo& initInfo);
bool BrowseClipboard(TOcInitInfo& initInfo);
bool CanClose();
bool Clip(IBPart far* part, bool link, bool embed, bool delay = false);
bool Convert(TOcPart* ocPart, bool b);
bool Drag(IBPart far* part, TOcDropAction inAction, TOcDropAction&
outAction);

uint EnableEditMenu(TOcMenuEnable enable, IBDataConsumer far* ocview);
void EvActivate(bool active);
void EvResize();
bool EvSetFocus(bool set);
string GetName() const;
TOcNameList& GetNameList();
TOcRegistrar& GetRegistrar();
bool IsOptionSet(uint32 option) const;
bool Paste(TOcInitInfo& initInfo);
bool RegisterClass(const string& progid, BCID classId, bool multiUse);
void RegisterClasses(const TDocTemplate* tplHead =
::DocTemplateStaticHead);

virtual void ReleaseObject();
void SetOption(uint32 bit, bool state);
void SetupWindow(HWND frameWnd);
bool TranslateAccel(MSG far* msg);
bool UnregisterClass(const string& progid);
void UnregisterClasses(const TDocTemplate*
tplHead=::DocTemplateStaticHead);

Protected Constructor and Destructor
TOcApp(TOcRegistrar& registrar, uint32 options = ULONG_MAX, IUnknown* outer
= 0, const TDocTemplate* tplHead = ::DocTemplateStaticHead);

~TOcApp();
Protected Member Functions
uint32 ForwardEvent(int eventId, const void far* param);

uint32 ForwardEvent(int eventId, uint32 param = 0);

See Also
Connector Objects
TOcModule::OcInit
TOcRegistrar::CreateOcApp
TOleFactoryBase (OWL.HLP)
TRegistrar
TUnknown

TOcApp Protected Constructor and Destructor
See Also TOcApp

Syntax

Constructor
TOcApp(TOcRegistrar& registrar, uint32 options = ULONG_MAX, IUnknown* outer
= 0, const TDocTemplate* tplHead = ::DocTemplateStaticHead);

Destructor
~TOcApp();
Description
Usually the creation and destruction of an application's TOcApp object are managed by the
TOcRegistrar object.

Constructor
The constructor for a TOcApp object expands the application's message queue if necessary to
accommodate OLE message traffic and builds the application's list of supported Clipboard formats.
registrar is a registration object that processes the command line. Create the registrar first.
options is a set of application mode bit flags. The TOcApp object is usually created in the
TComponentFactory callback function. The constructor's options parameter is the same as the
callback's options parameter.
outer points to the IUnknown interface of the outer object inside which the new application is asked to
aggregate itself.
tplHead points to the head of an application's list of document templates. The ObjectWindows Library
stores an application's document template list in the global variable DocTemplateStaticHead.

Destructor
The TOcApp destructor notifies OLE that the application is no longer available.

See Also
TComponentFactory typedef
TOcRegistrar
TOcApp::ReleaseObject
TDocTemplateT<D,V>

TOcApp::AddUserFormatName
See Also TOcApp

Syntax
void AddUserFormatName(char far* name, char far* resultName, char far* id =
0);

Description
Call this function to associate a result name with a Clipboard format. The resultName parameter
describes the data format to users and appears in Help text of the Paste Special dialog box. Use one
of the other two parameters to identify the associated Clipboard format. This method is used only if you
have a non-standard, private Clipboard format that you want to associate with names used in the
Paste Special dialog box.
A custom format must first be entered in the application's registration tables using the REGFORMAT
macro. For example:
REGFORMAT(0, "DrawingClip", ocrContent, ocrIStorage, ocrGet);
"DrawingClip" becomes the ID string that Windows uses internally to identify the custom format. To
associate more descriptive strings with the custom format, call AddUserFormatName:
AddUserFormatName("DrawingPad", "a freehand drawing", "DrawingClip");
The name of the "DrawingClip" format is now "DrawingPad". If the user chooses Paste Special when
data of this type is on the Clipboard, the name in the dialog box is "DrawingPad". It is perfectly legal for
the ID and the name to be the same string.
The result string, "a freehand drawing", typically appears in the Help text during a Paste Special
operation.

See Also
Registration Macros (OWL.HLP)

TOcApp::Browse
See Also TOcApp

Syntax
bool Browse(TOcInitInfo& initInfo);
Description
Displays the Insert Object dialog box allowing the user to choose from available servers to create a
new object in the open document. Returns true if the user inserts an object and false if the user
cancels.
Create initInfo first by passing to its constructor the view object where the new object will be inserted.
Browse fills initInfo with information about the object. Then use initInfo to create a new TOcPart.

See Also
TOcInitInfo
TOcPart
TOcView

TOcApp::BrowseClipboard
See Also TOcApp

Syntax
bool BrowseClipboard(TOcInitInfo& initInfo);
Description
Displays the Paste Special dialog box showing the available formats for the data currently on the
Clipboard, allowing the user to choose what format to paste. Returns true if the user pastes data and
false if the user cancels.
Create initInfo first by passing to its constructor the view object where the new object will be inserted.
Browse fills initInfo with information about the object. Then use initInfo to create a new TOcPart.
This function is called by TOcView::BrowseClipboard.

See Also
TOcInitInfo
TOcPart
TOcView

TOcApp::CanClose
TOcApp

Syntax
bool CanClose();
Description
A container calls this function to determine whether it can shut down. CanClose polls all the connected
servers and attempts to close them. It returns true if it is safe to close the application.

TOcApp::Clip
See Also TOcApp

Syntax
bool Clip(IBPart far* part, bool link, bool embed, bool delay = false);
Description
Copies the currently selected object to the Clipboard. Usually you do not have to call Clip directly
because TOcView::Copy does it for you.
part points to the linked or embedded object. You can pass an object of type TOcPart for this
parameter. (TOcPart supports the IBPart interface, which is defined in the BOCOLE library.) If link and
embed are both true, then other applications can either link or embed the object when they paste it
from the Clipboard. Make delay true to have ObjectComponents provide delayed rendering of
alternate data formats. (Delayed rendering saves memory. For more information, refer to the Clipboard
Overview in the API Help file. Look for the topic "Clipboard Operations.")

See Also
TOcPart
TOcView::Copy

TOcApp::Convert
See Also TOcApp

Syntax
bool Convert(TOcPart* ocPart, bool activate);
Description
Displays the Convert dialog box where the user can alter the aspect or format of a linked or embedded
object. ocPart points to the object the user wants to modify.
Make activate true if you want ObjectComponents to activate the object after converting it. Generally
activate should be false if the user has chosen Links from the Edit menu. If the user tries to activate an
object whose server is not present, you can offer the option of converting the object to another server,
and in that case activate should be true.

See Also
TOcPart

TOcApp::Drag
See Also TOcApp

Syntax
bool Drag(IBPart far* part, TOcDropAction inAction, TOcDropAction&
outAction);

Description
A container calls this function when the user wants to drag one of the container's objects. The first
parameter, part, is the object the user is trying to drag. Usually this is an object of type TOcPart.
(TOcPart supports the IBPart interface, which is defined in the BOCOLE library.)
inAction combines bit flags indicating possible drag actions the application supports. The flags indicate
whether the user can move, copy, or link the object. The value returned in outAction contains just one
of the action flags indicating what actually did happen.

See Also
TOcDropAction enum
TOcPart

TOcApp::EnableEditMenu
See Also TOcApp

Syntax
uint EnableEditMenu(TOcMenuEnable enable, IBDataConsumer far* ocview);
Description
An application calls EnableEditMenu to find out which of the OLE-related commands on its Edit menu
should currently be enabled. The flags combined in enable indicate the commands to be tested, and
the return value uses the same bit flags to indicate which commands to enable. ocview is usually an
object of type TOcView. (TOcView supports the IBDataConsumer interface, which is defined in the
BOCOLE library.)
TOleWindow and TOleView call TOcMenuEnable enum in the command enabler functions for the Edit
menu.

See Also
TOcMenuEnable enum
TOcView
TOleWindow (OWL.HLP)
TOleView (OWL.HLP)

TOcApp::EvActivate
See Also TOcApp

Syntax
void EvActivate(bool active);
Description
A container calls this function to tell OLE when its frame window becomes active or inactive. Make
active true if the window was activated or false if it was deactivated.

See Also
TOcApp::EvResize
TOcApp::EvSetFocus

TOcApp::EvResize
See Also TOcApp

Syntax
void EvResize();
Description
A container calls this function to tell OLE when the size of its frame window (the main window) has
changed. OLE might need this information to let a server modify its tool bar during in-place editing.

See Also
TOcApp::EvActivate
TOcApp::EvSetFocus

TOcApp::EvSetFocus
See Also TOcApp

Syntax
bool EvSetFocus(bool set);
Description
A container calls this function to tell OLE that its frame window has either received or yielded the input
focus. Make set true if the window gained the focus or false if it lost the focus.

See Also
TOcApp::EvActivate
TOcApp::EvResize

TOcApp::GetName
TOcApp

Syntax
string GetName() const;
Description
Returns a string object containing the application's name.

TOcApp::GetNameList
See Also TOcApp

Syntax
TOcNameList& GetNameList();
Description
Returns an array of TOcNameList objects containing the names of all the Clipboard formats the
application supports. The TOcView class uses this list when executing the Paste Special command.
The list provides the names and Help strings associated with the formats.

See Also
TOcNameList

TOcApp::GetRegistrar()
See Also TOcApp

Syntax
TOcRegistrar& GetRegistrar();
Description
Returns the application's registrar object. This is the same object passed into the TOcApp constructor.

See Also
TOcApp Protected Constructor and Destructor
TOcRegistrar Class

TOcApp::IsOptionSet
See Also TOcApp

Syntax
bool IsOptionSet(uint32 option) const;
Description
Tests the application mode flags and returns true if those set in option are set for the application. The
application mode flags are defined in the TOcAppMode enum.
Registrar objects also have an IsOptionSet method. In most cases the two return the same results. In
a DLL server, however, the registrar remembers the set of options that the server originally started
with, while TOcApp::IsOptionSet queries the options for the currently active instance of the DLL.
To check options in a linking and embedding application, you should call the IsOptionSet member your
application object inherits from TOcModule. TOcModule::IsOptionSet calls TOcApp::IsOptionSet.
A automation DLL server that does not support linking and embedding does not have a TOcApp
object. It can, however, still find its per-instance options by examining the option flags passed to its
factory callback.

See Also
TOcApp::SetOption
TOcAppMode enum
TOcModule::IsOptionSet
TRegistrar::IsOptionSet

TOcApp::Paste
See Also TOcApp

Syntax
bool Paste(TOcInitInfo& initInfo);
Description
Fills initInfo with information about the object on the Clipboard. Returns true if it succeeds in gathering
information and false if it fails. The information is needed to create a new TOcPart object.
TOcApp::Paste is called by TOcView::Paste. Usually you don't need to call TOcApp::Paste directly
yourself.

See Also
TOcInitInfo
TOcView::Paste

TOcApp::RegisterClass
See Also TOcApp

Syntax
bool RegisterClass(const string& progid, BCID classId, bool multiUse);
Description
Tells OLE that the application is capable of producing objects of a certain type. What objects a server
can produce depend on the types of documents it registers.
progid is the registered string that identifies a type of object.
RegisterClasses loops through the application's document templates and calls RegisterClass once for
each type. The call is made internally and usually you do not need to invoke either function directly.

See Also
TOcApp::RegisterClasses
TOcApp::UnregisterClass
TOcApp::UnregisterClasses

TOcApp::RegisterClasses
See Also TOcApp

Syntax

void RegisterClasses(const TDocTemplate* tplHead
= ::DocTemplateStaticHead);

Description
Announces to OLE that the application is running and tells OLE about each type of document the
application has registered. The document types are exposed to OLE as kinds of objects the application
can produce. RegisterClasses tells OLE who you are and what you can make.
tplHead points to the beginning of the application's list of document templates. ObjectWindows stores
this list in the global variable DocTemplateStaticHead. UnregisterClasses loops through the list of
document types and calls UnregisterClass for each one that has a registered progid.
RegisterClasses loops through the document structures in tplHead and calls RegisterClass once for
each type that has a progid. The call is made internally, and usually you do not need to invoke either
function directly.

See Also
progid Registration Key
TOcApp::RegisterClass
TOcApp::UnregisterClass
TOcApp::UnregisterClasses

TOcApp::ReleaseObject
See Also TOcApp

Syntax
virtual void ReleaseObject();
Description
ReleaseObject notifies the object that the application's main window is gone. If the application is not
serving a client, ReleaseObject also decrements the TOcApp object's internal reference count. The
object will destroy itself when the count reaches zero. The destructor of TOcModule calls this function.

See Also
TOcModule

TOcApp::SetOption
See Also TOcApp

Syntax
void SetOption(uint32 bit, bool state);
Description
Modifies the application's running mode flags. bit contains bit flags from the TOcAppMode enum. If
state is true, SetOption turns the flags on. If state is false, it turns the flags off. You should never have
to call this function because ObjectComponents always maintains the mode flags.

See Also
TOcApp::IsOptionSet
TOcAppMode enum

TOcApp::SetupWindow
TOcApp

Syntax
void SetupWindow(HWND frameWnd);
Description
Tells the TOcApp object what window to associate with the application. Usually frameWnd is the
application's main window. Usually this function is called from the SetupWindow function associated
with the application's main window.

TOcApp::TranslateAccel
TOcApp

Syntax
bool TranslateAccel(MSG far* msg);
Description
A container application adds TranslateAccel to its Windows message loop if it wants to make a DLL
server's accelerator keystrokes available to the user during in-place editing. DLL servers require this
cooperation because they do not have message loops of their own, as an .EXE server does.
If you call TranslateAccel after the usual call to the Windows API TranslateAccelerator, then your own
accelerators will have priority if they happen to conflict with the server's.
msg holds a Windows message structure. The return value is true if the server translates the
accelerator and false if it does not.

TOcApp::UnregisterClass
See Also TOcApp

Syntax
bool UnregisterClass(const string& progid);
Description
Notifies OLE when the application is no longer available to produce objects of a certain type. progid is
the registered string that identifies a type of object.
UnregisterClasses loops through all the documents the application registered and calls
UnregisterClass for each one. The destructor of TOcApp calls UnregisterClasses.

See Also
TOcApp::RegisterClass
TOcApp::RegisterClasses
TOcApp::UnregisterClasses

TOcApp::UnregisterClasses
See Also TOcApp

Syntax

void UnregisterClasses(const TDocTemplate* tplHead
= ::DocTemplateStaticHead);

Description
Announces to the system that the application is no longer available for OLE interactions. tplHead
points to the beginning of the application's list of document templates. ObjectWindows stores this list in
the global variable DocTemplateStaticHead.
UnregisterClasses loops through the list of document types and calls UnregisterClass for each one
that has a registered progid. UnregisterClasses is called from the TOcApp destructor.

See Also
progid Registration Key
TOcApp::RegisterClass
TOcApp::RegisterClasses
TOcApp::UnregisterClass

TOcApp::ForwardEvent
See Also TOcApp

Syntax

Form 1
uint32 ForwardEvent(int eventId, const void far* param);
Form 2
uint32 ForwardEvent(int eventId, uint32 param = 0);
Description
Both forms send a WM_OCEVENT message to the application's main window. The eventId parameter
becomes the message's wParam and should be one of the OC_APPxxxx or OC_VIEWxxxx constants.
The second parameter becomes the message's lParam and can be either a pointer (Form 1) or an
integer (Form 2). Which form you use depends on the information a particular event needs to send in
its lParam.

See Also
WM_OCEVENT message
OC_APPxxxx messages
OC_VIEWxxxx messages
TOcRegistrar class

TOcAppMode enum
See Also Linking and Embedding Enums

Header File
ocf/ocreg.h

Description
The enumerated values of TOcAppMode represent flags that ObjectComponents sets to indicate an
application's running modes. Some flags are set in response to command-line switches that OLE
places on a server's command line. Others are set as the application registers itself.
To determine whether a particular mode flag is set, call TOcApp::IsOptionSet or
TOcModule::IsOptionSet. The TOcApp object holds the mode flags for each instance of the
application. TOcModule simply queries the TOcApp.
The enumerated values are bit flags and can be combined with the bitwise OR operator (|). Flags
marked with an asterisk can differ for each instance of an application.

Constant What the Server Should Do
amAnyRegOption Combine the RegServer, UnregServer, and TypeLib bits.
amAutomation Register itself as single-use (one client only). Always accompanied by

Embedding.
amDebug Enter a debugging session.
amExeMode *Nothing. This flag is set to indicate that the server is running as an .EXE. Either

the server was built as an .EXE, or it is a DLL that was launched by an .EXE
stub and is running as an executable program.

amExeModule Nothing. This flag is set to indicate that the server was built as a .EXE program.
amEmbedding *Consider remaining hidden because it is running for a client, not for itself.
amLangId Use the locale ID that follows this switch when creating registration and type

libraries. (Useless without the -RegServer or -TypeLib switch.)
amNoRegValidate Omit the usual validation check comparing the server's progid, clsid, and path

to those registered with the system. The registrar object responds to this flag.
amRegServer Register itself in the system registration database and quit.
amRun Run its message loop. This is used by the factory callback function.
amServedApp *Avoid deleting itself (a client is using the application and holds a reference to

it).
amShutdown *When the TComponentFactory callback sees this flag, it should terminate the

application.
amSingleUse *Register itself as a single-use (one client only) application.
amTypeLib Create and register a type library.
amUnregServer Remove all its entries from the system registration database and quit.

See Also
TOcModule::IsOptionSet
TOcApp::IsOptionSet

TOcAspect enum
See Also Linking and Embedding Enums

Header File
ocf/ocobject.h

Syntax
enum TOcAspect
Description
A container uses these values to request that objects in its documents be presented in particular ways.
An object might be asked to show all its content, to show a miniature representation of its content, or
an icon that represents the type of object it is. A server is not obliged to support all the possible
aspects.
The values are flags and can be combined with the bitwise OR operator (|).

Constant Meaning
asContent Show the full content of the object at its normal size.
asThumbnail Show the content of the object shrunk to fit in a smaller space.
asIcon Show an icon representing the type of object.
asDocPrint Show the object as it would look if sent to the printer.
asDefault Continue to use the last aspect specified.
asMaintain Preserve the object's original aspect ratio. Do not alter the aspect ratio to fit the

rectangle where the client chooses to show the object.

See Also
TOcPart::Draw
ocrxxxx Aspect Constants

TOcPartChangeInfo class
See Also

Header File
ocf/ocpart.h

Decsription
The OC_VIEWPARTINVALID event uses this class to carry information to the container's view window
when a part needs repainting. The class's two data members tell what part has changed and whether
the change affects just the object's data, just its appearance, or both. The member functions set and
query the data member values.

Public Constructor
TOcPartChangeInfo(TOcPart* part, TOcInvalidate type = invView)
Public Member Functions
TOcPart* GetPart();
bool IsDataChange();
bool IsViewChange();
void SetDataChange();
void SetPart(TOcPart* part);
void SetViewChange();
Protected Data Member
TOcPart* Part;
int Type;

See Also
OC_VIEWxxxx Messages

TOcPartChangeInfo Public Constructor
See Also TOcPartChangeInfo

Syntax
TOcPartChangeInfo(TOcPart* part, TOcInvalidate type = invView)
Description
part points to the object that has become invalid. type is a bit flag indicating whether the part's data, its
appearance, or both are out of date. The possible values are invView and invData.

See Also
TOcInvalidate enum
TOcPart

TOcPartChangeInfo::GetPart
TOcPartChangeInfo

Syntax
TOcPart* GetPart();
Description
Returns a pointer to the part object whose data or appearance are out of date.

TOcPartChangeInfo::IsDataChange
See Also TOcPartChangeInfo

Syntax
bool IsDataChange();
Description
Returns true if the part's data has changed and false if it has not. The result is determined by testing
the Type member for the presence of the invData flag.

See Also
TOcInvalidate enum
TOcPartChangeInfo::Type

TOcPartChangeInfo::IsViewChange
See Also TOcPartChangeInfo

Syntax
bool IsViewChange();
Description
Returns true if the part's appearance has changed and false if it has not. The result is determined by
testing the Type member for the presence of the invView flag.

See Also
TOcInvalidate enum
TOcPartChangeInfo::Type

TOcPartChangeInfo::SetDataChange
See Also TOcPartChangeInfo

Syntax
SetDataChange();
Description
Call this member to indicate that the data in the part has changed and needs updating.
SetDataChange turns on the invData bit in the Type member.

See Also
TOcInvalidate enum
TOcPartChangeInfo::Type

TOcPartChangeInfo::SetPart
See Also TOcPartChangeInfo

Syntax
void SetPart(TOcPart* part);
Description
Call this function to specify the part that has become invalid

See Also
TOcPartChangeInfo::Part

TOcPartChangeInfo::SetViewChange
See Also TOcPartChangeInfo

Syntax
void SetViewChange();
Description
Call this member to indicate that the appearance of the part has changed and needs updating.
SetDataChange turns on the invView bit in the Type member.

See Also
TOcInvalidate enum
TOcPartChangeInfo::Type

TOcPartChangeInfo::Part
See Also TOcPartChangeInfo

Syntax
TOcPart* Part;
Description
Part holds a pointer to the part object whose view or data has become invalid. Part is set by the
constructor or by the SetPart member function.

See Also
TOcPartChangeInfo Public constructor
TOcPartChangeInfo::SetPart

TOcPartChangeInfo::Type
See Also TOcPartChangeInfo

Syntax
int Type;
Description
Type holds bit flags indicating whether the part's data, its appearance, or both have become invalid.
Type is set by the constructor SetViewChange or the SetDataChange members. The bit flags, defined
in the TOcInvalidate enum, are invView and invData.

See Also
TOcInvalidate enum
TOcPartChangeInfo Public constructor
TOcPartChangeInfo::SetDataChange
TOcPartChangeInfo::SetViewChange

TOcDataProvider Class
See Also Linking and Embedding Classes

Header File
ocdata.h

Description
Along with TOcLinkView, TOcDataProvider provides support for serving a portion of a document. With
the functionality of TOcDataProvider, a container can embed or link to a selection in the server.
TOcDataProvider creates a site for this data provider and connects the part and the site. A typical cut
and copy transaction using TOcDataProvider is illustrated in the tutorial program, Step17dv.cpp, on
your distribution disk.
A TOcDataProvider object is created whenever a selection is copied to the clipboard. If a server
supports linking to selection, a moniker (a name an application assigns to the item for linking
purposes) is created for the selection. Therefore, in the constructor of TOcDataProvider, the Rename
function is called.

Public Constructors and Destructors
TOcDataProvider(TOcView& ocView, TRegList* regList, IUnknown* outer = 0,
void* userData, TDeleteUserData callBack);

Public Member Functions
ulong _IFUNC AddRef();
void Disconnect();
void* GetUserData();
HRESULT _IFUNC QueryInterface(const GUID far& iid, void far*far* iface);
ulong _IFUNC Release();
void Rename();
void SetUserData(void* userData);
Protected Members Functions
UINT _IFUNC CountFormats();
HRESULT _IFUNC Draw(HDC dc, const RECTL far* pos, const RECTL far* clip,
TOcAspect aspect, TOcDraw bd);

HRESULT _IFUNC GetFormat(uint index, TOcFormatInfo far* fmt);
HANDLE _IFUNC GetFormatData(TOcFormatInfo far* fmt);
HRESULT _IFUNC GetPartSize(TSize far* size);
HRESULT _IFUNC Save(IStorage*, BOOL sameAsLoad, BOOL remember);

See Also
TOcDocument
TOcView
TOcPart

TOcDataProvider Public Constructor
See Also TOcDataProvider

Syntax
TOcDataProvider(TOcView& ocView, TRegList* regList, IUnknown* outer = 0,
void* userData, TDeleteUserData callBack);

Description
Constructs a TOcDataProvider object associated with the given server view and creates a site for this
remote view. view refers to the TOcView object associated with the data provider object. Calls Rename
to create a moniker, a name an application assigns to the selection for linking purposes.
regList is the registration structure for a particular document. Use the BEGIN_REGISTRATION and
END_REGISTRATION macros to create an object of type TRegList.
outer is the root interface of an outer object inside which the new linked view is asked to aggregate
itself.
userData contains information the application passes in so that it can remember the selection that is
copied. Because TOcDataProvider performs delayed rendering of the selection, the application is
asked to render the selection at paste, rather than at copy time. However, the selection can change
between the time it's copied and then pasted. Therefore, TOcDataProvider needs to remember the
selection at the time the copying took place.
When its time to render or paint the selection, TOcDataProvider gives the userData back to the server
application. It is the responsibility of the application to reestablish the selection through the use of
userData.
callBack is a callback function of type TDeleteUserData. When the TOcDataProvider object is
destroyed, it calls this callback function in the server application to give it a chance to clean up the
userData it passes in.
The TDeleteUserData callback function is defined as
typedef void (*TDeleteUserData)(void* userData);

See Also
TOcDataProvider::Rename
Registration Macros (OWL.HLP)
TOcDocument
TOcView

TOcDataProvider::AddRef
See Also TOcDataProvider

Syntax
ulong _IFUNC AddRef();
Description
Increases the reference count on the linked view object. Initializes the reference count to 1. If this is
not aggregated, AddRef returns the TOcDataProvider object's reference count. The reference count
indicates how many client applications hold pointers to this object.

See Also
TUnknown::GetRefCount

TOcDataProvider::Disconnect
TOcDataProvider

Syntax
void Disconnect();
Description
Called when the user wants the server to render its data right away. This happens when a cut
operation takes place (because the selection no longer exists after the cut is performed) and when a
server application shuts down while it has a selection copied on the clipboard.

TOcDataProvider::GetUserData
See Also TOcDataProvider

Syntax
void* GetUserData();
Description
Returns the user data, which is the information the application uses to remind itself of the attributes of
the selection. It is important for TOcDataProvider to have this information because the selection might
change between the time it is copied and pasted. When it's time to render or paint the selection,
TOcDataProvider gives the userData back to the server application.

See Also
TOcDataProvider::SetUserData

TOcDataProvider::QueryInterface
See Also TOcDataProvider

Syntax
HRESULT _IFUNC QueryInterface(const GUID far& iid, void far*far* iface);
Description
Asks for the interface identified by iid and returns the supported interface through iface. If the given
interface is not supported, iface returns 0.

See Also
TOcLinkView::QueryInterface

TOcDataProvider::Release
TOcDataProvider

Syntax
ulong _IFUNC Release();
Description
 Deletes the object when the reference count reaches zero. Releases the TOcDataProvider object,
which means that the clipboard becomes the owner of this object. The TOcDataProvider object is
destroyed whenever the clipboard releases it when something else is copied to the clipboard.

TOcDataProvider::Rename
TOcDataProvider

Syntax
void Rename();
Description
Establishes the moniker for the server document and then sends an OC_VIEWGETITEMNAME
message to TOleWindow. It is the server applications responsibility to return the moniker for the
selection or the whole document.

TOcDataProvider::SetUserData
See Also TOcDataProvider

Syntax
void SetUserData(void* userData);
Description
Sets the userData, which is the information the application uses to remind itself of the attributes of the
selection. It is important for TOcDataProvider to have this information because the selection might
change between the time it is copied and pasted. When it's time to render or paint the selection,
TOcDataProvider gives the userData back to the server application. It's the application's responsibility
to reestablish the selection through the use of userData.

See Also
TOcDataProvider::GetUserData

TOcDataProvider::CountFormats
TOcDataProvider

Syntax
UINT _IFUNC CountFormats();
Description
CountFormats returns the number of clipboard formats the server application supports.

TOcDataProvider::Draw
See Also TOcDataProvider

Syntax
HRESULT _IFUNC Draw(HDC dc, const RECTL far* pos, const RECTL far* clip,
TOcAspect aspect, TOcDraw bd);

Description
Paints the metafile, sets up the window origin and extent with the proper values, and sends an
OC_VIEWPAINT message to TOleWindow to actually paint the selection into the metafile DC.
TOleWindow uses two data members of the TOcViewPaint structure to determine how to paint the
metafile: PaintSelection and Moniker. PaintSelection is true, only the selection is painted. If Moniker is
not null, the link view corresponding to this Moniker is painted.

See Also
TOleWindowOWL.HLP)

TOcDataProvider::GetFormat
See Also TOcDataProvider

Syntax
HRESULT _IFUNC GetFormat(uint index, TOcFormatInfo far* fmt);
Description
Returns the data format identified by index. This function is primarily used internally to return the
supported clipboard formats from the registration table.

See Also
TOcDataProvider::GetFormatData

TOcDataProvider::GetFormatData
See Also TOcDataProvider

Syntax
HANDLE _IFUNC GetFormatData(TOcFormatInfo far* fmt);
Description
When the user does a paste into the container, this function is called to render native data formats in a
memory handle. (The server application needs to render the selection into a handle.) GetFormatData
also sends an OC_VIEWCLIPDATA message to TOleWindow.

See Also
TOcDataProvider::Save
TOcDataProvider::GetFormat
TOleWindowOWL.HLP)

TOcDataProvider::GetPartSize
TOcDataProvider

Syntax
HRESULT _IFUNC GetPartSize(TSize far* size);
Description
Returns the size of the server document. When a paste operation occurs in a container, the server is
asked to render its data through TOcDataProvider object on the clipboard. To do this, the container
calls GetPartSize to get the size of the server document selection. Once the container has the size of
the document selection, the TOcDataProvider draws the served selection of the document.

TOcDataProvider::Save
See Also TOcDataProvider

Syntax
HRESULT _IFUNC Save(IStorage*, BOOL sameAsLoad, BOOL remember);
Description
For an embedded source, Save renders the selection in IStorage. When the user pastes data into the
container, TOcDataProvider renders the data format in the storage media selected by the user.
The server renders its native data in a handle. To save a selection to the IStorage passed in to
TOcDataProvider, the server needs to send a message: OC_VIEWSAVEPART to TOleView.
(TOleView::EvOcViewSavePart is the handler for this message.) TOcSaveLoad lets TOleView know
whether a selection or whole document needs to be saved.
For native data, GetFormatData is called.

See Also
TOcDataProvider::GetFormatData
TOleViewOWL.HLP)

TOcDialogHelp enum
See Also Linking and Embedding Enums

Header File
ocf/ocobject.h

Syntax
enum TOcDialogHelp
Description
The TOC_APPDIALOGHELP event tells the container when the user clicks the Help button in a
standard OLE dialog box. The lParam of the WM_OCEVENT message carries one of these values to
indicate which dialog box the user has open.

Constant Dialog Box Purpose
dhBrowse Insert Object dialog box Choose an object to insert.
dhBrowseClipboard Paste Special dialog box Choose the data format for pasting an

object.
dhConvert Convert dialog box Convert an object to work with a different

server.
dhBrowseLinks Links dialog box Update links to objects.
dhChangeIcon Change Icon dialog box Used internally by Insert Object and

Paste Special dialog boxes.
dhFileOpen File Open dialog box Choose a file to open.
dhSourceSet Change Source dialog box Assign a new link source to a linked

object.
dhIconFileOpen File Open dialog box Confirm that the chosen file contains an

icon resource.

See Also
ObjectComponents Messages (OWL.HLP)
OC_APPxxxx messages
TOleFrame::EvOcAppDialogHelp (OWL.HLP)
WM_OCEVENT message

TOcDocument Class
See Also Linking and Embedding Classes

Header File
ocf/ocdoc.h

Description
The primary responsibility of a TOcDocument is to save and load data in a compound file using
hierarchically ordered storages. (A storage is a compartment within a file, just as a directory is a
compartment on a disk.) By default the application's native data always goes in the document's root
storage, but the application is free to create its own storages in the same file. TOcDocument creates
new storages below the root as necessary for OLE objects that the user inserts into the compound
document. The new storages take their names from the names of the objects they store. TOcView
automatically assigns a unique string identifier to each new object.
Both servers and containers can create objects of type TOcDocument. In the container, this object
represents an entire compound document. In the server, it represents the data for a single OLE object.
(The server's single OLE object can have other OLE objects linked or embedded in it.)
A TOcDocument object manages the collection of TOcPart objects that are deposited in one of the
container's documents. It does not draw the data on the screen. To do that, every TOcDocument
needs a corresponding TOcView or TOcRemView object. An application can possess multiple pairs of
associated document and view objects, one for each open document.
A container creates a TOcView object to draw its compound document in the container's own window.
Because the window where the server draws belongs to the container (it is a child of the container's
window), the server must create a remote view object (TOcRemView) for each document.
In spite of the similar names, TOcDocument and TOcView are not part of the ObjectWindows
Doc/View model. The nature of OLE makes it useful to separate data from its graphical representation,
and the terms document and view express that separation even outside of ObjectWindows.
To execute its tasks, a TOcDocument must use the standard OLE interfaces IStorage and IStream.
Usually it is not necessary to use these interfaces directly because ObjectComponents implements
them for you in its TOcStorage and TOcStream classes. These classes are thin wrappers around
standard OLE interfaces. The implementation of TOcDocument makes use of both objects.

Public Constructors and Destructor
TOcDocument(TOcApp& app, const char far* fileName = 0);
TOcDocument(TOcApp& app, const char far* fileName, IStorage far* storageI);
~TOcDocument();
Public Member Functions
void Close();
TOcView* GetActiveView();
string GetName() const;
TOcPartCollection& GetParts();
TOcStorage* GetStorage();
bool LoadParts();
void RenameParts(IBRootLinkable far* BLDocumentI);
bool SaveParts(IStorage* storage = 0, bool sameAsLoaded = true);
bool SaveToFile(const char far* newName);
void SetActiveView(TOcView* view);
void SetName(const string& newName);
void SetStorage(IStorage* storage);
void SetStorage(const char far* path);

See Also
Creating ObjectComponents View and Document Objects
TOcPart
TOcRemView
TOcStorage
TOcStream
TOcView

TOcDocument Public Constructors and Destructor
See Also TOcDocument

Form 1
TOcDocument(TOcApp& app, const char far* fileName = 0);
Form 2
TOcDocument(TOcApp& app, const char far* fileName, IStorage far* storageI);
Destructor
~TOcDocument();
Description
Form 1: Creates a new document object for the application and optionally assigns a file name for
storing the document. A container uses this constructor for each document the user opens.
Form 2: Creates a new document object for the application and assigns a particular file and storage
object to hold the document. The container calls this constructor when opening an existing file. The
server and the container each create their own TOcDocument object for the object they share, but both
their objects point to the same file for storing the object.
IStorage is the standard OLE storage interface. ObjectComponents implements this interface in the
TOcStorage class. It is usually not necessary to manipulate the IStorage interface or the TOcStorage
class directly in an ObjectComponents application.
Destructor: Destroys the document object.

See Also
TOcStorage

TOcDocument::Close
See Also TOcDocument

Syntax
void Close();
Description
A container calls TOcPart::Close for each object in the compound document to release its servers.
TOleDocument calls this function automatically when asked to close down.

See Also
TOcPart::Close
TOleDocument (OWL.HLP)

TOcDocument::GetActiveView
See Also TOcDocument

Syntax
TOcView* GetActiveView();
Description
Returns a pointer to the active view. TOcPart calls this method to coordinate changing focus among
active parts.

See Also
TOcDocument::SetActiveView

TOcDocument::GetName
See Also TOcDocument

Syntax
string GetName() const;
Description
Returns the name of the file where the document will be stored. ObjectComponents keeps track of the
name in order to create links correctly.

See Also
TOcDocument::SetName

TOcDocument::GetParts
See Also TOcDocument

Syntax
TOcPartCollection& GetParts();
Description
Returns an object with information about all the parts in the document. Each part corresponds to a
linked or embedded object. Create an iterator of type TOcPartCollectionIter to loop through the
collection and extract information about individual parts.

See Also
TOcPart
TOcPartCollection
TOcPartCollectionIter

TOcDocument::GetStorage
See Also TOcDocument

Syntax
TOcStorage* GetStorage();
Description
Returns the document file's root storage.

See Also
TOcDocument::SetStorage

TOcDocument::LoadParts
See Also TOcDocument

Syntax
bool LoadParts();
Description
Reads all the linked and embedded parts saved in a compound file. LoadParts does not necessarily
load all the data from all the parts into memory immediately. The data is needed only if the object is
visible.
LoadParts returns true if all the parts are read successfully. If no file has yet been assigned to the
document, then there is nothing to load and the function still returns true. (A document can acquire a
file from its constructor, from SaveToFile, or from SetStorage.)

See Also
TOcDocument Public Constructors and Destructors
TOcDocument::SaveParts
TOcDocument::SaveToFile
TOcDocument::SetStorage

TOcDocument::RenameParts
See Also TOcDocument

Syntax
void RenameParts(IBRootLinkable far* BLDocumentI);
Description
Call this whenever the name of the document file changes. RenameParts updates the internal name
stored with each part so that other applications can still link to them correctly.
IBRootLinkable is a custom OLE interface defined in the BOCOLE support library. Objects of type
TOcView implement this interface, so it is usually not necessary to implement it yourself. Simply pass
the document's view object to RenameParts.
TOcView calls this function automatically if the view is renamed.

See Also
TOcDocument::SetName
TOcView::Rename

TOcDocument::SaveParts
See Also TOcDocument

Syntax
bool SaveParts(IStorage* storage = 0, bool sameAsLoaded = true);
Description
Writes all the document's linked and embedded objects to the document's file. storage is the root
storage in the file. A container's TOcDocument creates the storage object when the document is
created or the first time it is saved. Find the object by calling GetStorage. A server gets the storage
object from the container. It is usually not necessary to manipulate the storage object directly.
sameAsLoaded should be true unless the name of the document file has changed since the last time
the document was loaded or saved.
SaveParts returns true if all the objects are successfully written to the file.
LoadParts and SaveParts are called by the Open and Commit methods in TOleDocument.

See Also
TOcDocument::GetStorage
TOcDocument::LoadParts
TOcDocument::SaveToFile
TOleDocument (OWL.HLP)

TOcDocument::SaveToFile
See Also TOcDocument

Syntax
bool SaveToFile(const char far* newName);
Description
Saves the document in the file named by newName. Usually a container calls this function when the
user chooses File|Save for an unnamed document or File|Save As for any document. SaveToFile
creates a new storage object and then calls SaveParts. It returns true if all the linked and embedded
parts are successfully saved

See Also
TOcDocument::SaveParts

TOcDocument::SetActiveView
See Also TOcDocument

Syntax
void SetActiveView(TOcView* view);
Description
A TOcView object calls this method when it is activated so that the document can locate the active
view. TOcDocument communicates only with the active view. The active view sends messages to the
corresponding window, perhaps a TOleView window. This window is responsible for telling other
windows about changes.

See Also
TOcDocument::GetActiveView

TOcDocument::SetName
See Also TOcDocument

Syntax
void SetName(const string& newName);
Description
Tells the document the name of the file where it will be stored. ObjectComponents needs to know the
name in order to create links correctly. More specifically, SetName causes ObjectComponents to
update the OLE moniker that a link server must provide.

See Also
TOcDocument::GetName

TOcDocument::SetStorage
See Also TOcDocument

Syntax

Form 1
void SetStorage(const char far* path);
Form 2
void SetStorage(IStorage* storage);
Description
Assigns the document a storage for writing its data. storage becomes the document's root storage.
Each linked or embedded object gets its own substorage under the root storage.
Form 1: Creates a compound file using the name in path and assigns the root storage of the new file
to be the root storage of the document. Usually a container calls this function when the user chooses
File|Save for an unnamed document or File|Save As for any document.
Form 2: Assigns storage to be the document's root storage. Usually a server calls this function when
the container passes it an IStorage object. (An IStorage object implements the standard OLE interface
IStorage. Usually it is not necessary to manipulate this object directly.)

See Also
TOcDocument::GetStorage

TOcDragDrop struct
See Also Linking and Embedding Structs

Header File
ocf/ocview.h

Description
Holds information that a view or a window needs in order to accept a drag and drop object. The
OC_VIEWDRAG and OC_VIEWDROP messages carry a reference to this structure in their lParams.
TOleView and TOleWindow process these messages for you, so you should not need to use
TOcDragDrop directly unless you are programming without ObjectWindows. For examples of how to
process OC_VIEWDRAG and OC_VIEWDROP messages, look at the source code for the
EvOcViewDrag and EvOcViewDrop methods in TOleWindow.

Public Data Members
TOcInitInfo far* InitInfo();
TRect Pos;
TPoint Where;

See Also
OC_VIEWxxxx Messages
TOleWindow::EvOcViewDrag (OWL.HLP)
TOleWindow::EvOcViewDrop (OWL.HLP)

TOcDragDrop::InitInfo
See Also TOcDragDrop

Syntax
TOcInitInfo far* InitInfo;
Description
When carried in an OC_VIEWDROP message, this field describes an object about to be dropped on
the view. When carried in an OC_VIEWDRAG message, this field is zero.

See Also
OC_VIEWxxxx Messages
TOcInitInfo

TOcDragDrop::Pos
See Also TOcDragDrop

Syntax
TRect Pos;
Description
The coordinates in Pos indicate the area of the view where the user has dropped an object. The
position is given in device coordinates relative to the client area.

See Also
TRect (OWL.HLP)

TOcDragDrop::Where
See Also TOcDragDrop

Syntax
TPoint Where;
Description
The coordinates in Where indicate the point on the view where the mouse released the object. The
position is given in client area coordinates.

See Also
TPoint (OWL.HLP)

TOcDropAction enum
See Also Linking and Embedding Enums

Header File
ocf/ocobject.h

Syntax
enum TOcDropAction
Description
TOcApp::Drag uses these values to describe what actions are allowed and what actions actually occur
during a drag and drop operation. The values are flags and can be combined with the bitwise OR
operator (|).

Constant Meaning
daDropCopy Copy the object to the drop site.
daDropMove Move the object to the drop site.
daDropLink Create a link to the object at the drop site.
daDropNone No action occurred.

See Also
TOcApp::Drag

TOcFormat class
See Also Linking and Embedding Classes

Header File
ocf/ocview.h

Description
Holds information about one Clipboard format that a particular view supports.
TOcFormat, TOcFormatList, and TOcFormatListIter all work together to manage a list of formats.
TOcFormatList adds and deletes TOcFormat objects from the list. TOcFormatListIter enumerates the
items in the list whenever the view needs to examine them one by one. Because TOcView creates and
maintains this list internally, you do not need to use these classes directly.
When ObjectComponents receives your document registration table, it sees entries for each Clipboard
format that the document receives or produces. From these entries, TOcView creates a list of objects
of type TOcFormat, each object representing one format. The view needs this list to know when a
Clipboard command or drag and drop operation can succeed. For example, if the user drags a bitmap
object over a view that accepts only text, TOcView refuses the object and the server adjusts the cursor
accordingly.

Public Constructors
TOcFormat();
TOcFormat(uint fmtId, char far* fmtName, char far* fmtResultName, uint
fmtMedium, bool fmtIsLinkable, uint aspect = 1, uint direction = 1);

Public Member Functions
void operator =(const TOcFormatInfo&);
bool operator ==(const TOcFormat& other);
void Disable(bool disable = true);
uint GetAspect() const;
uint GetDirection() const;
uint GetFormatId() const;
void GetFormatInfo(TOcFormatInfo far& f);
char far* GetFormatName();
uint GetMedium() const;
bool IsDisabled() const;
void SetAspect(uint aspect);
void SetDirection(uint direction);
void SetFormatId(uint id);
void SetFormatName(uint id, TOcApp& ocApp);
void SetFormatName(char far* name, TOcApp& ocApp);
void SetMedium(uint medium);

See Also
TOcFormatList
TOcFormatListIter
TOcView

TOcFormat Public Constructors
Sea Also TOcFormat

Constructor

Form 1
TOcFormat();
Form 2
TOcFormat(uint fmtId, char far* fmtName, char far* fmtResultName, uint
fmtMedium, bool fmtIsLinkable, uint aspect = 1, uint direction = 1);

Description
Form 1: Creates an empty TOcFormat object (default constructor).
Form 2: Creates a TOcFormat object and initializes it with information about a particular Clipboard
format.
fmtId is a number (such as CF_TEXT or CF_SYLK) identifying a particular Clipboard format.
fmtName is the name string identifying a Clipboard format.
fmtResultName is a string that describes this format to the user. For standard Clipboard formats, this
string comes from the OLEVIEW.RC file. For user-defined formats, it comes from the string supplied in
the TOcApp::AddUserFormatName.
fmtMedium is one of the ocrxxxx medium constants specifying the channel the application uses for
transferring data in this format (for example, global handle or disk file).
fmtIsLinkable is true if the application allows containers to link to data in this format and false if it does
not.
aspect combines bit flags to specify the presentation aspects the application supports for the data
format. The flags are defined as ocrxxxx aspect constants.
direction indicates whether the application can both give and receive data in the given format. Possible
values are defined as ocrxxxx direction constants.

See Also
ocrxxxx spect Constants
ocrxxxx Clipboard Constants
ocrxxxx Direction Constants
ocrxxxx Medium Constants

TOcFormat::operator =
TOcFormat

Syntax
void operator = (const TOcFormatInfo& formatInfo);
Description
Takes information from the formatInfo parameter and reinitializes the TOcFormat object.

TOcFormat::operator ==
TOcFormat

Syntax
bool operator ==(const TOcFormat& other);
Description
Returns true if &other is the same as this.

TOcFormat::Disable
TOcFormat

Syntax
void Disable(bool disable = true);
Description
Marks the format as available or unavailable. Disabling a format in effect removes it temporarily from
the view's list. Set disable to true if you decide not to let the view work with a particular data format.

TOcFormat::GetAspect
See Also TOcFormat

Syntax
uint GetAspect() const;
Description
Returns a bit flag mask indicating the presentation aspects that the view supports for the data format.
The bit flags are defined as ocrxxxx aspect constants.

See Also
ocrxxxx Aspect Constants
TOcFormat::SetAspect

TOcFormat::GetDirection
See Also TOcFormat

Syntax
uint GetDirection() const;
Description
Returns a value indicating whether the view can both give and receive data in the format. Possible
values are defined as ocrxxxx direction constants.

See Also
ocrxxxx Direction Constants
TOcFormat::SetDirection

TOcFormat::GetFormatId
See Also TOcFormat

Syntax
uint GetFormatId() const;
Description
Returns the number that identifies the data format for the operating system. For standard formats, the
number is a constant such as CF_TEXT or CF_BITMAP. For custom formats, it is the ID returned from
RegisterClipboardFormat.

See Also
ocrxxxx Clipboard Constants
TOcFormat::SetFormatId

TOcFormat::GetFormatInfo
See Also TOcFormat

Syntax
void GetFormatInfo(TOcFormatInfo far& formatInfo);
Description
Fills the formatInfo structure with information about the data format.

See Also
TOcFormat::operator =
TOcFormatInfo

TOcFormat::GetFormatName
See Also TOcFormat

Syntax
char far* GetFormatName();
Description
Returns the string that names the data format. This is the name that appears in the list box of the
Paste Special dialog box.
The strings associated with standard formats ("Bitmap", "DIF") are defined in OLEVIEW.RC. The
strings associated with custom formats come from TOcApp::AddUserFormatName.

See Also
TOcApp::AddUserFormatName
TOcFormat::SetFormatName

TOcFormat::GetMedium
See Also TOcFormat

Syntax
uint GetMedium() const;
Description
Returns a number indicating the channel the application uses for transferring data in this format (for
example, global handle or disk file). Possible values are defined as ocrxxxx medium constants.

See Also
ocrxxxx Medium Constants
TOcFormat::SetMedium

TOcFormat::IsDisabled
See Also TOcFormat

Syntax
bool IsDisabled() const;
Description
Returns true if the format is currently disabled. A view disables formats if for any reason the view
decides not to support the format after all. Disabling a format signals that the view no longer sends or
receives data in that format. To reenable the format, call Disable.

See Also
TOcFormat::Disable

TOcFormat::SetAspect
See Also TOcFormat

Syntax
void SetAspect(uint aspect);
Description
aspect is a bit flag mask indicating the presentation aspects that the view supports for the data format.
The bit flags are defined as ocrxxxx aspect constants.

See Also
ocrxxxx Aspect Constants
TOcFormat::GetAspect

TOcFormat::SetDirection
See Also TOcFormat

Syntax
void SetDirection(uint direction);
Description
direction indicates whether the view can both give and receive data in the format. Possible values for
direction are defined as ocrxxxx direction constants.

See Also
ocrxxxx Direction Constants
TOcFormat::GetDirection

TOcFormat::SetFormatId
See Also TOcFormat

Syntax
void SetFormatId(uint id);
Description
is identifies the data format for the operating system. For standard formats, id is a constant such as
CF_TEXT or CF_BITMAP. For custom formats, it is the number returned by RegisterClipboardFormat.

See Also
ocrxxxx Clipboard Constants
TOcFormat::GetFormatId
TClipboard::RegisterClipboardFormat (OWL.HLP)

TOcFormat::SetFormatName
See Also TOcFormat

Syntax

Form 1
void SetFormatName(uint id, TOcApp& ocApp);
Form 2
void SetFormatName(char far* name, TOcApp& ocApp);
Description
Both forms of SetFormatName retrieve from the format list in TOcApp two strings to describe a
particular data format: the user-registered name and the format result string. The retrieved strings are
stored internally. Form 1 identifies the format by its ID and Form 2 identifies the format by its Windows-
registered name.
The TOcApp object keeps a list of all the Clipboard formats the application knows about. Each
TOcView keeps a separate list of the Clipboard formats it supports. SetFormatName updates strings
for individual views from the central application list.
The Windows-registered name is the one passed to RegisterClipboardFormat. For standard Clipboard
formats, the name comes from OLEVIEW.RC. The user-registered name can differ from the Windows-
registered name for user-defined formats if you have called TOcApp::AddUserFormatName. The user-
registered name is the one displayed in Clipboard dialog boxes.
The result string is a longer string describing the format to the user.

See Also
TClipboard::RegisterClipboardFormat (OWL.HLP)
TOcApp::AddUserFormatName
TOcFormat::GetFormatName

TOcFormat::SetMedium
See Also TOcFormat

Syntax
void SetMedium(uint medium);
Description
Sets the transfer mechanism that an application uses for transferring data in this format (for example,
global handle or disk file). Possible values for medium are defined as ocrxxxx medium constants.

See Also
ocrxxxx Medium Constants
TOcFormat::GetMedium

TOcFormatInfo struct
See Also Linking and Embedding Structs

Header File
ocf/ocobject.h

Description
Holds information describing a Clipboard format. Used for communicating with the BOCOLE support
library. In ObjectComponents, each TOcView object keeps a list of the data formats it supports in a
TOcFormatList object. The list contains TOcFormat items where the view records its preferences for
each data format. The calls that communicate data format information to the support library place the
information in TOcFormatInfo structures.
Clipboard format data is managed for you inside the TOcApp and TOcView objects. Normally you don't
need to use this structure directly.

Public Data Members
OLECHAR Name[32];
OLECHAR ResultName[32];
WORD Id;
uint Medium;
bool IsLinkable;

See Also
TOcApp
TOcFormat
TOcFormatList
TOcView

TOcFormatInfo::Id
See Also TOcFormatInfo

Syntax
WORD Id;
Description
Holds the number that identifies a Clipboard format. For standard formats, the ID is a constant such as
CF_TEXT. For custom formats, it is the value returned by RegisterClipboardFormat.

See Also
TClipboard::RegisterClipboardFormat (OWL.HLP)

TOcFormatInfo::IsLinkable
TOcFormatInfo

Syntax
bool IsLinkable;
Description
Holds true if the view lets data in this format be the source for a linked object and false if it does not.

TOcFormatInfo::Medium
See Also TOcFormatInfo

Syntax
uint Medium;
Description
Indicates the transfer mechanism the view uses to send or receive data in this format. Possible values
for Medium are defined as ocrxxxx medium constants.

See Also
ocrxxxx Medium Constants

TOcFormatInfo::Name
TOcFormatInfo

Syntax
OLECHAR Name[32];
Description
Holds a string naming the format. OLECHAR changes to a wide character if UNICODE is defined.

TOcFormatInfo::ResultName
TOcFormatInfo

Syntax
OLECHAR ResultName[32];
Description
Holds a string describing the format for the user. OLECHAR changes to a wide character if UNICODE
is defined.

TOcFormatList Class
See Also Linking and Embedding Classes

Header File
ocf/ocview.h

Description
Manages a list of Clipboard formats that a particular view supports.
TOcFormat, TOcFormatList, and TOcFormatListIter all work together to maintain the list of formats.
TOcFormatList adds and deletes TOcFormat objects from the list. TOcFormatListIter enumerates the
items in the list whenever the view needs to examine them one by one. Because TOcView creates and
maintains this list internally, it is usually not necessary for you to use any of these classes directly.
When ObjectComponents receives your document registration table, it sees entries for each Clipboard
format that the document receives or produces. From these entries, TOcView creates a list of objects
of type TOcFormat, each object representing one format. The view needs this list to know when a
Clipboard command or drag and drop operation can succeed. For example, if the user drags a bitmap
over a view that accepts only text, TOcView knows the object cannot be dropped and adjusts the
cursor accordingly.

Public Constructor and Destructor
TOcFormatList();
~TOcFormatList();
Public Member Functions
TOcFormat*& operator [](unsigned index);
int Add(TOcFormat* format);
void Clear(int del = 1);
virtual uint Count() const;
int Detach(const TOcFormat* format, int del = 0);
unsigned Find(const TOcFormat* format) const;
int IsEmpty() const;

See Also
TOcFormat
TOcFormatListIter
TOcView

TOcFormatList Public Constructors and Destructor
See Also TOcFormatList

Constructor
TOcFormatList();
Destructor
~TOcFormatList();
Description
Creates an empty list object. To insert items in the list, call the Add method.

Destructor
Deletes all the items in the list.

See Also
TOcFormatList::Add

TOcFormatList::operator []
TOcFormatList

Syntax
TOcFormat*& operator [](unsigned index);
Description
Retrieves a Clipboard format by its position in the list. If index is 1, for example, the [] returns the
second item in the list. The order of items depends on the priority assigned to them when they are
registered.

TOcFormatList::Add
See Also TOcFormatList

Syntax
int Add(TOcFormat* format);
Description
Inserts a new Clipboard format item in the list. Returns 0 for failure and 1 for success.

See Also
TOcFormatList::Clear

TOcFormatList::Clear
See Also TOcFormatList

Syntax
void Clear(int del = 1);
Description
Removes all the items from the list. If del is 1, Clear also deletes all the TOcFormat objects.

See Also
TOcFormatList::Add
TOcFormatList::Detach

TOcFormatList::Count
See Also TOcFormatList

Syntax
virtual uint Count() const;
Description
Returns the number of items in the list.

See Also
TOcFormatList::IsEmpty

TOcFormatList::Detach
See Also TOcFormatList

Syntax
int Detach(const TOcFormat* format, int del = 0);
Description
Removes one format item from the list. If del is 1, then Detach also deletes the TOcFormat object.

See Also
TOcFormatList::Add
TOcFormatList::Clear

TOcFormatList::Find
TOcFormatList

Syntax
unsigned Find(const TOcFormat* format) const;
Description
Searches the list for the object passed as format. If the object is found, then Find returns the object's
position in the list. (The first position is 0.) If format is not in the list, Find returns UINT_MAX.

TOcFormatList::IsEmpty
See Also TOcFormatList

Syntax
int IsEmpty() const;
Description
Returns 1 if the list object currently contains no TOcFormat items and 0 if the list is not empty.

See Also
TOcFormatList::Count

TOcFormatListIter Class
See Also Linking and Embedding Classes

Header File
ocf/ocview.h

Description
Enumerates all the Clipboard formats that a particular view supports.
TOcFormat, TOcFormatList, and TOcFormatListIter all work together to manage the list of formats.
TOcFormatList adds and deletes TOcFormat objects from the list. TOcFormatListIter enumerates the
items in the list whenever the view needs to examine them one by one. Because TOcView creates and
maintains this list internally, it is usually not necessary for you to use any of these classes directly.
When ObjectComponents receives your document registration table, it sees entries for each Clipboard
format that the document receives or produces. From these entries, TOcView creates a list of objects
of type TOcFormat, each object representing one format. The view needs this list to know when a
Clipboard command or drag and drop operation can succeed. For example, if the user drags a bitmap
object over a view that accepts only text, TOcView knows the object cannot be dropped and adjusts
the cursor accordingly.

Public Constructor
TOcFormatListIter(const TOcFormatList& collection)
Public Member Functions
TOcFormat* operator ++(int);
TOcFormat* operator ++();
TOcFormat* Current() const;
operator int() const;
void Restart();
void Restart(unsigned start, unsigned stop);

See Also
TOcFormat
TOcFormatList
TOcView

TOcFormatListIter::Public Constructor
TOcFormatListIter

Syntax
TOcFormatListIter(const TOcFormatList& collection)
Description
Constructs an iterator to enumerate the Clipboard formats contained in collection.

TOcFormatListIter::operator ++
TOcFormatListIter

Syntax

Form 1
TOcFormat* operator++();
Form 2
TOcFormat* operator++(int);
Description
Form 1: Returns the current format and then advances the iterator to point to the next format (post-
increment).
Form 2: Advances the iterator to point to the next format in the list and then returns that format (pre-
increment).

TOcFormatListIter::Current
TOcFormatListIter

Syntax
TOcFormat* Current() const;
Description
Returns the format that the iterator currently points to.

TOcFormatListIter::operator int
TOcFormatListIter

Syntax
operator int() const;
Description
Converts the iterator to an integer value in order to test whether the iterator has finished enumerating
the collection. If parts remain unenumerated, the operator returns the iterator's current position in the
list of parts. If the iterator has reached the end of the list, the operator returns zero.

TOcFormatListIter::Restart
TOcFormatListIter

Syntax

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Resets the iterator to begin again with the first format in the list.
Form 2: Resets the iterator to enumerate a subset of the format list, beginning with the object at
position start and ending with the object at position stop.

TOcFormatName Class
See Also Linking and Embedding Classes

Header File
ocf/ocapp.h

Description
TOcApp uses this class internally to hold the strings that describe a Clipboard data format such as text
or bitmap. TOcApp displays these strings in standard OLE dialog boxes such as Paste Link.
Every Clipboard format has three associated pieces of information: an ID value, a name string, and a
result name. For standard formats, the ID is a constant such as CF_SYLK. The name string is a short
name such as "Sylk." The result name is a longer string that tells the user what pasting this data
produces--for example, "a spreadsheet". A TOcFormatName object holds all three values for one
format.
TOcApp makes a TOcNameList object to hold all the format names it needs. It loads descriptive
strings into TOcFormatName objects and adds the objects one by one to its name list. Both objects are
created and managed inside TOcApp. Usually you do not have to manipulate either of them directly.

Public Constructors and Destructor
TOcFormatName();
TOcFormatName(char far* fmtName, char far* fmtResultName, char far* id =
0);

~TOcFormatName();
Public Member Functions
bool operator ==(const TOcFormatName& other);
const char far* GetId();
const char far* GetName();
const char far* GetResultName();

See Also
TOcApp
TOcNameList

TOcFormatName Public Constructors and Destructor
TOcFormatName

Form 1
TOcFormatName();
Form 2
TOcFormatName(char far* fmtName, char far* fmtResultName, char far* id =
0);

Destructor
~TOcFormatName();
Description
Form 1: Constructs an empty format name object.
Form 2: Constructs a format name object and initializes it with three values that describe a Clipboard
format. fmtName is the name of the format ("metafile"). fmtResultName describes what the user gets
by pasting this format ("a Windows metafile picture"). id is the value that Windows assigns to identify
the format (CF_METAFILEPICT) but expressed as a string of decimal digits ("3").

Destructor
Releases the object.

TOcFormatName::operator ==
TOcFormatName

Syntax
bool operator==(const TOcFormatName& other);
Description
Returns true if other is the same object as this.

TOcFormatName::GetId
TOcFormatName

Syntax
const char far* GetId();
Description
Returns a pointer to the string that the system uses to designate the format.

TOcFormatName::GetName
TOcFormatName

Syntax
const char far* GetName();
Description
Returns a pointer to the name of the format.

TOcFormatName::GetResultName
TOcFormatName

Syntax
const char far* GetResultName();
Description
Returns the descriptive string that tells the user what pasting data of this format produces.

TOcInitHow enum
See Also Linking and Embedding Enums

Header File
ocf/ocobject.h

Syntax
enum TOcInitHow
Description
These values tell whether a container is to link or embed a new object it is receiving. The container
passes this information to a TOcInitInfo object when it receives a new OLE object.

Constant Meaning
ihLink Link to the object. Create a reference in the container's document that

points to the place in the server's document where the data actually
resides.

ihEmbed Embed the object. Copy the object's data directly into the container's
document.

ihMetafile Embed a static object that draws itself as a metafile.
ihBitmap Embed a static object that draws itself as a bitmap.

See Also
TOcInitInfo Public Constructors
TOcInitWhere enum

TOcInitInfo Class
See Also Linking and Embedding Structs

Header File
ocf/ocobject.h

Description

TOcInitInfo holds information that tells ObjectComponents how to create a new part. When the user
pastes, inserts, or drops an object into a container, ObjectComponents creates a TOcInitInfo object,
initializes it with information about the incoming OLE object, and passes the info object to the TOcPart
constructor. The info object tells the part where to find its data and how to create itself.
If you are using ObjectWindows, TOleWindow manages these details for you. If you are programming
without ObjectWindows, you can find sample code for using TOcInitInfo objects in the TOleWindow
methods that insert objects: look at the code for CmEditInsertObject and CmEditPasteSpecial.

Public Data Members
IBContainer far* Container;
HICON HIcon;
TOcInitHow How;
IStorage far* Storage;
TOcInitWhere Where;
union {
 IDataObject* Data;
 LPCOLESTR Path;
 BCID CId;
 struct{
 HANDLE Data;
 uint DataFormat;
 } Handle;
};
Public Constructors
TOcInitInfo(IBContainer far* container);
TOcInitInfo(TOcInitHow how, TOcInitWhere where, IBContainer far*
container);

Public Member Functions
uint32 ReleaseDataObject();

See Also
TOcPart
TOleWindow::CmEditInsertObject (OWL.HLP)
TOleWindow::CmEditPasteSpecial (OWL.HLP)

TOcInitInfo::Container
See Also TOcInitInfo

Syntax
IBContainer far* Container;
Description
Container is the view object that is about to receive the object. IBContainer is an undocumented
custom OLE interface defined in the BOCOLE support library and implemented in TOcView. The
Container data member can hold an object of type TOcView.

See Also
TOcView

TOcInitInfo::HIcon
TOcInitInfo

Syntax
HICON HIcon;
Description

HIcon holds the icon to draw if the user chooses the Display As Icon option from the Insert Object
dialog box. The HIcon handle is actually a global memory handle to a metafile containing the icon. The
Browse and BrowseClipboard functions in TOcApp handle the Insert Object dialog box for you, so
usually you do not need to display the icon directly yourself.

TOcInitInfo::How
See Also TOcInitInfo

Syntax
TOcInitHow How;
Description
Tells whether the object should be linked or embedded when it is added to the document.

See Also
TOcInitHow enum

TOcInitInfo::Storage
TOcInitInfo

Syntax
IStorage far* Storage;
Description
Storage is the storage object in a compound file. The container provides the storage to hold data
transferred from the server. IStorage is a standard OLE interface. ObjectComponents implements the
IStorage interface in TOcStorage, so Storage usually holds a TOcStorage object.

TOcInitInfo::Where
See Also TOcInitInfo

Syntax
TOcInitWhere Where;
Description
Tells where the server will place the object's data. For example, the server can choose to transfer data
by placing it in a file, in a storage, or in a memory handle.

See Also
TOcInitWhere enum

TOcInitInfo::CId
See Also TOcInitInfo

Syntax
BCID CId;
Description
One of four data fields in an anonymous union, this field is used when Where is iwNew indicating that
the incoming object is brand new, being freshly created. CId is the class ID that the server registered
for one of its document factories. It tells the server what kind of object to create.

See Also
TOcApp::RegisterClasses
TOcInitInfo::Where

TOcInitInfo::Data
TOcInitInfo

Syntax
IDataObject* Data;
Description
One of four data fields in an anonymous union, this field is used when Where is iwDataObject
indicating that the server has created an OLE data object to transfer the data for the incoming object.
Data points to the IDataObject interface on the server's data transfer object. (IDataObject is a standard
OLE interface.) This is the normal transfer method for objects received from the Clipboard or through a
drag-and-drop operation.

TOcInitInfo::Handle
TOcInitInfo

Syntax
struct{
 HANDLE Data;
 uint DataFormat;
} Handle;
Description
One of four data fields in an anonymous union, this structure is used when Where is iwHandle
indicating that the server has placed the data for the incoming object in a memory handle. Data is the
handle itself and DataFormat identifies a Clipboard format for the data in the handle.

TOcInitInfo::Path
TOcInitInfo

Syntax
LPCOLESTR Path;
Description
One of four data fields in an anonymous union, this field is used when Where is iwFile indicating that
the server has placed the data for the incoming object in a file. Path points to the name of the file
where the data is stored.

TOcInitInfo Public Constructors
TOcInitInfo

Form 1
TOcInitInfo(IBContainer far* container);
Form 2
TOcInitInfo(TOcInitHow how, TOcInitWhere where, IBContainer far*
container);

Description
Both forms of the constructor create a TOcInitInfo object for placing a new part in container. container
is the view that will hold the new part. IBContainer is a custom OLE interface defined in the BOCOLE
support library and implemented in TOcView. containercan be an object of type TOcView.
Form 1: Use Form 1 when invoking the server to create a new object from scratch--for example, when
processing the Insert Object command. The new part will be embedded, not linked.
Form 2: Use Form 2 when creating a part to hold an object that already exists--for example, when
loading a part from a storage in a compound document. how tells whether the object will be linked or
embedded. where tells what medium the server will use to transfer data from the existing object.

TOcInitInfo::ReleaseDataObject
See Also TOcInitInfo

Syntax
uint32 ReleaseDataObject();
Description
If the TOcInitInfo object holds a pointer to the data object from which the new part is about to be
created, then ReleaseDataObject decrements the data object's reference count. Call this when you are
through with the data object.

See Also
TOcInitInfo::Data

TOcInitWhere enum
See Also Linking and Embedding Enums

Header File
ocf/ocobject.h

Syntax
enum TOcInitWhere
Description
These values tell where the data for an object resides. A container passes this information to a
TOcInitInfo object when it receives a new OLE object for linking or embedding. The server can choose
any of several available channels for transferring the data in the object.

Constant Meaning

iwFile The server passes the data in a disk file.
iwStorage The server passes the data in a storage object (part of a compound file).
iwDataObject The server passes the data in a data transfer object, one that supports

the standard IDataObject OLE interface. (Objects transferred through the
Clipboard or by dragging support this interface. TOcInitInfo holds a
pointer to the interface.)

iwNew The server will be asked to create a new object.
iwHandle The server passes a memory handle for the data.

See Also
TOcInitInfo Public Constructors
TOcInitHow enum

TOcInvalidate enum
See Also Linking and Embedding Enums

Header File
ocf/ocobject.h

Syntax
enum TOcInvalidate
Description
Functions that invalidate an object use these enumeration values to indicate whether the data in the
object has changed or the appearance of the object has changed. It is possible for the data in an
object to change without invalidating the view of the object. For example, if the object is drawn as an
icon, then editing the data probably does not call for an update to the view. If both the data and the
view change, then combine both flags with the bitwise OR operator (|).
If the view is invalid, the object needs to be redrawn. If the data is invalid, then the object needs
saving. (It is not necessary to save the object right away. invData simply indicates that the object is
dirty and needs to be saved before the document is closed.)

Constant Meaning
invData The data in an object has changed and should be updated in the container.
invView The appearance of an object needs to change and should be updated in the container.

See Also
TOcRemView::Invalidate
TOleWindow::InvalidatePart (OWL.HLP)

TOcLinkView Class
See Also Linking and Embedding Classes

Header File
oclink.h

Description
 Derived from TUnknown, TOcLinkView provides linking support fo a portion of or an entire document.
TOcLinkView is a connector object located between the server application and the container that helps
containers establish links to the server document. TOcLinkView is similar to TOcRemView in that they
both comminicate with the container through OLE interfaces. Application specific operators, such as
saving the selection and painting the selection, are deligated to an OWL OLE class TOLeLinkView.
The main purpose of a class derived from TOcLinkView is to attach a view to a portion of a document
whenever a link is created to a selection within a server document. After this link is established, the
container receives change notification messages via the following sequence of steps:
1. When TOleLinkView receives a notification message, it checks to see if the selection it represents

has changed. If the selection has changed, TOleLinkView notifies TOcLinkView about the change
by calling TOcLinkView::Invalidate() method.

2. When TOcLinkView TOcLinkView::Invalidate in turn notifies the container through OLE interfaces
that the selection has changed..

Public Constructor
TOcLinkView(TOcView* ocView, TRegList* regList = 0, IUnknown* outer = 0);
Public Member Functions
ulong _IFUNC AddRef();
int Detach();
void Disconnect();
void GetLinkRect();
TString& GetMoniker();
void Invalidate(TOcInvalidate);
HRESULT _IFUNC QueryInterface(const GUID far& iid, void far*far* iface)
ulong _IFUNC Release();
void SetMoniker(const char far* name);
Protected Member Functions
HRESULT _IFUNC Close();
uint _IFUNC CountFormats();
HRESULT _IFUNC DoQueryInterface(const IID farpif);
HRESULT _IFUNC Draw(HDC, const RECTL far*, const RECTL far*, TOcAspect,
TOcDraw bd);

HRESULT _IFUNC GetFormat(uint index, TOcFormatInfo far* fmt);
HANDLE _IFUNC GetFormatData(TOcFormatInfo far*);
HRESULT _IFUNC GetPartSize(TSize far*);
HRESULT _IFUNC Open(bool open);
HRESULT QueryObject(const IID far& iid, void far* far* iface);
HRESULT _IFUNC SetPartPos(TRect far*);
HRESULT _IFUNC SetPartSize(TSize far*);

See Also
TOcView
TOcRemView
TOleView

TOcLinkView Public Constructor
See Also TOcLinkView

Syntax
TOcLinkView(TOcView* ocView, TRegList* regList = 0, IUnknown* outer = 0);
Description
Constructs a TOcLinkView object and creates a site for this remote view. view refers to the TOcView
object that corresponds to the link view. TOcView manages the appearance of the document on the
screen, and TOcLinkView manages the appearance of the linked view.
regList is the registration structure for a particular document. Use the BEGIN_REGISTRATION and
END_REGISTRATION macros to create an object of type TRegList.
outer is the root interface of an outer object inside which the new linked view is asked to aggregate
itself.

See Also
Registration Macros (OWL.HLP)
TAutoObject
TOcDocument

TOcLinkView::AddRef
See Also TOcLinkView

Syntax
ulong _IFUNC AddRef();
Description
 Increases the reference count on the linked view object. Initializes the reference count to 1. If this is
not aggregated, then returns the TLinkView object's reference count. The reference count indicates
how many client applications hold pointers to this object, and have linked views to this object.

See Also
TUnknown::GetRefCount

TOcLinkView::Detach
See Also TOcLinkView

Syntax
int Detach();
Description
Detaches the link view from its document and releases the site. Call Detach before cutting and pasting
a document to the clipboard.

See Also
TOcPart::Detach

TOcLinkView::Disconnect
TOcLinkView

Syntax
void Disconnect();
Description
Disconnects this link view from the client application's site (the area the container has alloted for
displaying the linked object)..

TOcLinkView::GetLinkRect
See Also TOcLinkView

Syntax
void GetLinkRect();
Description
Gets the initial size and position of the link view from the application. This is the actual area where the
container application can draw the linked object.

See Also
TOcRemView::GetInitialRect

TOcLinkView::GetMoniker
See Also TOcLinkView

Syntax
TString& GetMoniker();
Description
Returns the moniker (the source file's path name and the object hierarchy) for the selection in a
container document associated with this TOcLinkView server's view.
By looking at the moniker, the application can find the corresponding objects in its document. A
moniker functions much like a map in that it shows where the linked object's data is stored and
explains how to find the data. For example, the moniker returned from a word processor for a selected
range of text could be the start and end offset of a text stream. The moniker returned for a spreadsheet
range could be something like A1:D6. Anything that a server application can use to map to its data can
be used as a moniker.

See Also
TOcLinkView::SetMoniker

TOcLinkView::Invalidate
See Also TOcLinkView

Syntax
void Invalidate(TOcInvalidate);
Description
Invalidates the container's site corresponding to this remote view. Notifies the container's active view
that the server has changed either the appearance or the content of the active linked view.

See Also
TOcRemView::Invalidate

TOcLinkView::QueryInterface
See Also TOcLinkView

Syntax
HRESULT _IFUNC QueryInterface(const GUID far& iid, void far*far* iface)
Description
Asks whether the link view object supports the interface identified by iid. If the object supports the
interface, QueryInterface returns HR_NOERROR and places a pointer to the interface in pif.

See Also
TUnknown::QueryObject

TOcLinkView::Release
TOcLinkView

Syntax
ulong _IFUNC Release();
Description
Releases the server's link views. Deletes the object when the reference count reaches zero.

TOcLinkView::SetMoniker
See Also TOcLinkView

Syntax
void SetMoniker(const char far* name);
Description
Establishes the moniker for this server document's link viewer object.

See Also
TOcLinkView::GetMoniker

TOcLinkView::Close
TOcLinkView

Syntax
HRESULT _IFUNC Close();
Description
Disconnects the linked view from from its container.

TOcLinkView::CountFormats
TOcLinkView

Syntax
uint _IFUNC CountFormats();
Description
CountFormats returns the number of clipboard formats the server supports.

TOcLinkView::DoQueryInterface
See Also TOcLinkView

Syntax
HRESULT _IFUNC DoQueryInterface(const IID farpif);
Description
Call DoQueryInterface on the linked view to do a QueryInterface on the actual server that the view
supports. This function gives sites the ability to ask for server interfaces.

See Also
TOcLinkView::QueryInterface

TOcLinkView::Draw
See Also TOcLinkView

Syntax
HRESULT _IFUNC Draw(HDC, const RECTL far*, const RECTL far*, TOcAspect,
TOcDraw bd);

Description
Draws the linked server objects on the screen.

See Also
TOcPart::Draw

TOcLinkView::GetFormat
See Also TOcLinkView

Syntax
HRESULT _IFUNC GetFormat(uint index, TOcFormatInfo far* fmt);
Description
GetFormat is mainly used internally to return a clipboard format with the given index. The index is the
clipboard format number used in the registration table.

See Also
TOcFormat

TOcLinkView::GetFormatData
TOcLinkView

Syntax
HANDLE _IFUNC GetFormatData(TOcFormatInfo far*);
Description
Request native data for pasting into client application. This function is called only at paste time and not
at copy time.
ect and/or the application.

TOcLinkView::GetPartSize
TOcLinkView

Syntax
HRESULT _IFUNC GetPartSize(TSize far*);
Description
Gets the size of the part object.

TOcLinkView::Open
TOcLinkView

Syntax
HRESULT _IFUNC Open(bool open);
Description
If open is true, Open invokes the server to initiate an out-of-place editing session. That is, it asks the
server to execute its Open verb. If open is false, the function tells the server to hide its open editing
window but does not end the session.

TOcLinkView::QueryObject
See Also TOcLinkView

Syntax
HRESULT QueryObject(const IID far& iid, void far* far* iface);
Description
Does queryInterface on its aggregated helper objects.

See Also
TUnknown::QueryObject

TOcLinkView::SetPartPos
TOcLinkView

Syntax
HRESULT _IFUNC SetPartPos(TRect far*);
Description
Sets the position of the selections.

TOcLinkView::SetPartSize
TOcLinkView

Syntax
HRESULT _IFUNC SetPartSize(TSize far*);
Description
Sets the size of the selection.

TOcMenuDescr struct
See Also Linking and Embedding Structs

Header File
ocf/ocapp.h

Description
The menu descriptor structure is used when merging the menus of a container and server for in-place
editing. The structure holds a handle to a shared Windows menu object and a count of the number of
drop-down menus in each group.
If you are using ObjectWindows, use the information in the structure to construct a TMenuDescr object
for the other application. To merge two menus, call TMenuDescr::Merge. If you are not using
ObjectWindows, call the Windows API routines such as InsertMenu to place your own commands in
the shared menu.
The following messages carry a TOcMenuDescr struct in their lParams: OC_APPINSMENUS,
OC_APPMENUS, and OC_VIEWINSMENUS. The ObjectWindows OLE-enabled window and view
classes process these messages for you. Unless you are programming without ObjectWindows, you
usually will not have to use TOcMenuDescr directly. For examples of how to process the messages,
see the source code for the relevant event handlers in TOleView, TOleWindow, TOleFrame, and
TOleMDIFrame.

Public Data Members
HMENU HMenu;
int Width[6];

See Also
OC_APPxxxx Messages
OC_VIEWxxxx Messages
TMenuDescr (OWL.HLP)

TOcMenuDescr::HMenu
TOcMenuDescr

Syntax
HMENU HMenu;
Description
Holds a handle to the shared menu. The handle is valid only while the menu is constructed. Do not
store it for later use.

TOcMenuDescr::Width
See Also TOcMenuDescr

Syntax
int Width[6];
Description
The Width array contains the number of pop-up menus in each menu group. The groups, in order, are
File, Edit, Container, Object, Windows, and Help.
The array is meant to help you construct a object. The numbers it holds control how the menu is
merged.

See Also
TMenuDescr Public Constructors and Destructor

TOcMenuEnable enum
See Also Linking and Embedding Enums

Syntax
enum TOcMenuEnable
Description
These enumeration values are flags that can be combined with the bitwise OR operator (|). A container
passes them to the TOcApp::EnableEditMenu function in order to determine which OLE commands on
the Edit menu should be enabled. The answer depends on whether the container supports any of the
data formats currently present on the Clipboard.

Constant Menu Command Enabled
meEnablePaste The Paste command places an object from the Clipboard in the open

document. The format of the new data object depends on what the
server prefers and the container supports.

meEnablePasteLink The Paste Link command adds to the open document a link to the
object on the Clipboard.

meEnableBrowseClipboard The Paste Special command invokes a standard dialog box that shows
all the data formats available for the object currently on the Clipboard
and lets the user choose among them.

meEnableBrowseLinks The Links command displays a list of all the linked objects in the open
document, allowing the user to update or delete them.

See Also
Registration Macros (OWL.HLP)
TOcApp::EnableEditMenu

TOcModule class
See Also Linking and Embedding Classes

Header File
ocf/ocapp.h

Description
TOcModule is a mix-in class for deriving OLE-enabled application classes. Any ObjectComponents
application that supports linking and embedding should derive its application class from both
TApplication and TOcModule. The ObjectComponents module class coordinates some basic
housekeeping chores related to registration and memory management. It also holds a pointer to the
TOcApp object that connects your application object to OLE through ObjectComponents. Allowing
TOcModule to do this work also makes it easy to use the same code for both .EXE and .DLL versions
of the same server.

Public Constructor and Destructor
TOcModule();
~TOcModule();
Public Member Functions
TRegistrar& GetRegistrar();
bool IsOptionSet(uint32 option) const;
void OcInit(TOcApp* ocApp, uint32 options = ULONG_MAX);
Public Data Members
TOcApp* OcApp;
TOleAllocator OleMalloc;

See Also
TApplication
TOcApp

TOcModule Public Constructor and Destructor
See Also TOcModule

Constructor
TOcModule();
Destructor
~TOcModule();
Description
Builds a TOcModule. After creating a TOcModule object, you need to call OcInit.

Destructor
Releases the TOcApp object. An application that derives from TOcModule does not need to call the
TOcApp::ReleaseObject method when it closes down.
Note: Never call delete to destroy a TOcApp object.

See Also
TOcModule::OcInit

TOcModule::GetRegistrar
See Also TOcModule

Syntax
TRegistrar& GetRegistrar();
Description
Returns the application's registrar object. Be sure to call OcInit first.

See Also
TOcModule::OcInit
TRegistrar

TOcModule::IsOptionSet
See Also TOcModule

Syntax
bool IsOptionSet(uint32 option) const;
Description
Returns true if the command-line flag indicated by option is set and false if it is not. The registrar sets
the flags for you when it interprets OLE-related switches on the application's command line. The
possible values for option are enumerated in TOcAppMode.
TOcModule::IsOptionSet internally queries the TOcApp object it created in TOcModule::OcInit. The
registrar object also holds mode flags. Usually the registrar and the TOcApp object hold the same set
of flags, but in a DLL server the registrar holds the server's original flags and the TOcApp holds the
flags for the currently active instance of the DLL.

See Also
TOcAppMode enum
TOcApp::IsOptionSet
TOcAppMode enum
TOcModule::OcInit
TRegistrar::IsOptionSet

TOcModule::OcInit
See Also TOcModule

Syntax
void OcInit(TOcRegistrar& registrar, uint32 options);
Description
Initializes ObjectComponents support for the code module. This call causes ObjectComponents to
create the TOcApp connector object that attaches the application to the OLE system. Always call
TOcModule::IsOptionSet right after constructing the module object.
registrar is the application registrar object. It must be created before you call OcInit.
options is a set of bit flags describing command-line options set for this instance of the program. To
test for particular options, call IsOptionSet. The possible option flags are defined in TOcAppMode.

See Also
TOcApp
TOcAppMode enum
TOcModule::IsOptionSet
TOcRegistrar

TOcModule::OcApp
See Also TOcModule

SyntaxModule
TOcApp* OcApp;
Description
Holds the TOcApp object that is the ObjectComponents partner object for your TApplication-derived
class. This member is initialized when you call OcInit.

See Also
TOcApp
TOcModule::OcInit

TOcModule::OleMalloc
See Also TOcModule

Syntax
TOleAllocator OleMalloc;
Description
Sets up an allocator object that initializes the OLE system and sets up the memory allocator. OLE
allows each program to set up a memory manager for OLE to use when allocating and de-allocating
memory on behalf of that application.
TOcModule simply chooses the default allocator. If you have unusual memory management needs and
want to supply your own custom memory allocator, set its IMalloc interface in OleMalloc::Mem.

See Also
TOleAllocator
TOleAllocator::Mem

TOcNameList Class
See Also Linking and Embedding Classes

Header File
ocf/ocapp.h

Description
TOcApp uses this class internally to manage a collection of TOcFormatName. Each format name
object holds three strings that describe a Clipboard data format such as text or bitmap. TOcApp
displays these strings in standard OLE dialog boxes such as Paste Link.
The list of format names is created and managed inside TOcApp. Usually you do not have to
manipulate the list directly. To put your own custom formats in the list, however, you do have to register
them. See TOcApp::AddUserFormatName for more information about setting up custom formats.
Standard Windows Clipboard formats are always added to the list for you. The name and result strings
for standard formats are defined in OLEVIEW.RC. To localize the strings, edit this file. (Standard
formats do not have an identifier string. Instead they have a registration number, such as CF_TEXT.)

Public Constructor and Destructor
TOcNameList();
~TOcNameList();
Public Member Functions
TOcFormatName* operator [](char far*);
TOcFormatName*& operator [](unsigned index);
int Add(TOcFormatName* name);
void Clear(int del = 1);
virtual uint Count() const;
int Detach(const TOcFormatName* name, int del = 0);
unsigned Find(const TOcFormatName* name) const;
int IsEmpty() const;

See Also
LocalizingSymbolNames
TOcApp
TOcApp::AddUserFormatName
TOcFormatName

TOcNameList Public Constructors and Destructor
See Also TOcNameList

Constructor
TOcNameList();
Destructor
~TOcNameList();
Description
Constructs a name list containing no items. To insert names in the list, call Add.

Destructor
Destroys the list and the objects in the list.

See Also
TOcNameList::Add

TOcNameList::operator []
See Also TOcNameList

Syntax

Form 1
TOcFormatName*& operator[](unsigned index);
Form 2
TOcFormatName* operator[](char far* id);
Description
Form 1: Returns the item at position index in the list of format name objects. The first object is at index
0. If index points past the end of the list, the function throws a precondition exception.
Form 2: Returns the format name object whose format ID string matches id. The return value is 0 if no
match is found.

See Also
TOcFormatName

TOcNameList::Add
See Also TOcNameList

Syntax
int Add(TOcFormatName* name);
Description
Inserts the object name into the list. Returns 1 for success and 0 for failure.

See Also
TOcNameList::Clear
TOcNameList::Detach

TOcNameList::Clear
See Also TOcNameList

Syntax
void Clear(int del = 1);
Description
Empties the list. If del is 1, Clear also deletes each object in the list.

See Also
TOcNameList::Add
TOcNameList::Detach

TOcNameList::Count
See Also TOcNameList

Syntax
virtual uint Count() const;
Description
Returns the number of items in the list.

See Also
TOcNameList::IsEmpty

TOcNameList::Detach
See Also TOcNameList

Syntax
int Detach(const TOcFormatName* name, int del = 0);
Description
Removes the single object name from the list. If del is 1, Detach also deletes the object name.

See Also
TOcNameList::Clear
TOcNameList::Add

TOcNameList::Find
TOcNameList

Syntax
unsigned Find(const TOcFormatName* name) const;
Description
Searches the list and returns the position of name. If the name object is not in the list, Find returns
UINT_MAX.

TOcNameList::IsEmpty
See Also TOcNameList

Syntax
int IsEmpty() const;
Description
Returns 1 if the list currently contains no items and 0 if it contains at least one item.

See Also
TOcNameList::Count

TOcPart Class
See Also Linking and Embedding Classes

Header File
ocf/ocpart.h

Base Class
TUnknown

Description

A TOcPart object represents a linked or embedded object in a document. It represents the linked or
embedded object as the container sees it. From the server's side, the same linked or embedded OLE
object has two parts: data (TOcDocument) and a graphical representation of the data (TOcRemView).
TOcPart manages a site in the container's document where a server places an OLE object.
TOcPart is a COM object and implements the IUnknown interface.

Public Constructors
TOcPart(TOcDocument& document, TOcInitInfo far& initInfo, TRect pos, int id
= 0);

TOcPart(TOcDocument& document, const char far* name);
Public Member Functions
bool operator ==(const TOcPart& other);
bool Activate(bool activate);
bool Close();
void Delete();
int Detach();
bool DoVerb(uint whichVerb);
bool Draw(HDC dc, const TRect& pos, const TRect& clip, TOcAspect aspect =
asDefault);

bool EnumVerbs(const TOcVerb&);
LPCOLESTR GetName();
int GetNameLen();
TPoint GetPos() const;
TRect GetRect() const;
LPCOLESTR GetServerName(TOcPartName partName);
TSize GetSize() const;
bool IsActive() const;
bool IsLink() const;
bool IsSelected() const;
bool IsVisible(const TRect& logicalRect) const;
bool IsVisible() const;
bool Load();
bool Open(bool open);
void Rename();
bool Save(bool SameAsLoaded = true);
bool Save(IStorage* storage, bool sameAsLoad, bool remember);
void Select(bool select);
void SetActive();
bool SetHost(IBContainer far* container);
void SetPos(const TPoint& pos);
void SetSize(const TSize& size);
void SetVisible(bool visible);
bool Show(bool show);

void UpdateRect();
Protected Destructor
~TOcPart();

See Also
Activating and Deactivating Objects
Connector Objects
Insert Object command
Painting the Document
TOcDocument
TOcPartCollection
TOcRemView
TUnknown

TOcPart Public Constructors
See Also TOcPart

Form 1
TOcPart(TOcDocument& document, TOcInitInfo far& initInfo, TRect pos, int id
= 0);

Form 2
TOcPart(TOcDocument& document, const char far* name);
Description
Both constructors expect to receive the container's own TOcDocument object. This represents the
compound document where the new object will be placed.
Form 1: document is the container's TOcDocument object representing the compound document that
will hold the newly created part. initInfo contains information about the object being inserted. It is
usually obtained during a paste, drop, or insertion operation. The coordinates in pos designate the
area where the new object will be drawn. id is any arbitrary unique integer used to distinguish this
object from others in the same document. If id is 0, TOcPart generates a new ID automatically.
Form 2: document is the same as for Form 1. The name string is the name of a linked or embedded
part. The second form is used when loading a part from a compound document. The name of the part
is also the name of the storage where the part was written.

See Also
TOcDocument
TOcInitInfo
TOcPart::Delete
TRect (OWL.HLP)

TOcPart::operator ==
TOcPart

Syntax
bool operator==(const TOcPart& other);
Description
Returns true if other is the same TOcPart as this. This operator is defined for the use of the
TOcPartCollection class.

TOcPart::Activate
See Also TOcPart

Syntax
bool Activate(bool activate);
Description
If activate is true, this function activates the part by asking the server to execute its primary (or default)
verb for the object. If the default verb is Edit, for example, Activate initiates an in-place editing session.
If activate is false, then this function de-activates an in-place editing session.
Activate returns true if the server is able to execute the command.

See Also
TOcPart::IsActive
TOcPart::Open

TOcPart::Close
TOcPart

Syntax
bool Close();
Description
Disconnects the embedded object from its server. Returns true if the server closes successfully.

TOcPart::Delete
See Also TOcPart

Syntax
void Delete();
Description
Delete is used when the user selects an embedded object and presses the Delete key (or does a cut
operation.) It first calls Close to disconnect the container from the embedded object. Then it releases
the reference to the embedded part.

See Also
TOcPart::Close

TOcPart::Detach
TOcPart

Syntax
int Detach();
Description
Separates a part from its document. Call Detach before cutting a part to the Clipboard, for example.

TOcPart::DoVerb
See Also TOcPart

Syntax
bool DoVerb(uint whichVerb);
Description
Tells the server to execute one of its commands on the part. A verb is usually an action such as Edit or
Play. One server can support several verbs, and whichVerb identifies a particular verb by its ordinal
value. (The first verb, the primary or default verb, is zero). DoVerb returns true if the server is able to
complete the requested action. Executing a verb can cause the part to become activated.

See Also
TOcPart::EnumVerbs

TOcPart::Draw
See Also TOcPart

Syntax
bool Draw(HDC dc, const TRect& pos, const TRect& clip, TOcAspect aspect =
asDefault);

Description
Draws the part on the screen. If the part has not yet been loaded, Draw loads it first.
dc is a Windows device context where the part is to be drawn. The coordinates in pos tell where in the
window to place the part. The clip rectangle designates an area outside of which the server cannot
draw. clip and pos can be the same. If clip describes an empty rectangle, then the server can draw
anywhere. aspect controls how the data were presented--as an icon, for example.

See Also
TOcAspect enum
TRect (OWL.HLP)

TOcPart::EnumVerbs
TOcPart

Syntax
bool EnumVerbs(const TOcVerb& verb);
Description
Call EnumVerbs to find out what verbs the server supports for a particular part. Each call to
EnumVerbs places another verb in the verb parameter. When all the server's verbs have been
enumerated, EnumVerbs returns false.
TOleWindow calls EnumVerbs in order to place verbs for the active object on the container's Edit
menu.

TOcPart::GetName
See Also TOcPart

Syntax
LPCOLESTR GetName();
Description
Returns the string that identifies the part. Every part in a document has a different name.
ObjectComponents creates the names for you automatically by incrementing an internal ID number for
each new part.

See Also
TOcPart::GetNameLen
TOcPart::Rename

TOcPart::GetNameLen
See Also TOcPart

Syntax
int GetNameLen();
Description
Returns the number of characters in the name string that identifies the part. The count does not
include the terminating null character.

See Also
TOcPart::GetName
TOcPart::Rename

TOcPart::GetPos
See Also TOcPart

Syntax
TPoint GetPos() const;
Description
Returns the part's position within its container document. The position specifies the part's upper left
corner in client area coordinates. The coordinates take into account any scaling set for the TOcView
object that holds the part.

See Also
TOcPart::GetRect
TOcPart::GetSize
TOcPart::SetPos
TPoint (OWL.HLP)

TOcPart::GetRect
See Also TOcPart

Syntax
TRect GetRect() const;
Description
Returns the rectangle that bounds the image of the part in the container's client area. The position of
the rectangle is given in client area coordinates.

See Also
TOcPart::GetPos
TOcPart::GetSize
TOcPart::UpdateRect
TRect (OWL.HLP)

TOcPart::GetServerName
See Also TOcPart

Syntax
LPCOLESTR GetServerName(TOcPartName partName);
Description
Asks OLE for the name of the object or of the object's server, depending on the value of partName. A
container might want to display this information in its title bar.
In the current implementation of ObjectComponents, this function is not used. The TOcView object
automatically updates the container window title.

See Also
TOcPartName enum

TOcPart::GetSize
See Also TOcPart

Syntax
TSize GetSize() const;
Description
Returns the size of the part's image in the container document. The fields of the return value give the
width and height of the part in client area coordinates. If there is scaling, the coordinates take that into
account.

See Also
TOcPart::GetPos
TOcPart::GetRect
TOcPart::SetSize
TSize (OWL.HLP)

TOcPart::IsActive
See Also TOcPart

Syntax
bool IsActive() const;
Description
Returns true if the part is currently active and false if it is not.

See Also
TOcPart::SetActive

TOcPart::IsLink
TOcPart

Syntax
bool IsLink() const;
Description
Returns true if the part represents a linked OLE object and false if it represents an embedded OLE
object. A container might use this method to distinguish visually between linked and embedded
objects. For an example, look at the source code for TOleWindow::PaintParts.

TOcPart::IsSelected
See Also TOcPart

Syntax
bool IsSelected() const;
Description
Returns true if the part is currently selected and false if it is not. This function is frequently called in
loops that process all the selected objects in a document. For example, when TOleView paints the
parts in a document, it calls IsSelected for each one to determine where to paint selection boxes.
Selection state information is maintained entirely in TOcPart and does not affect the OLE object itself.

See Also
TOcPart::Select

TOcPart::IsVisible
See Also TOcPart

Syntax

Form 1
bool IsVisible() const;
Form 2
bool IsVisible(const TRect& logicalRect) const;
Description
Form 1: Returns true if the part is currently visible and false if it is hidden.
Form 2: Returns true if the part is currently visible within the given logicalRect area of the container's
window. Returns false if the part is not visible, perhaps because the user has scrolled to another part
of the document.

See Also
TOcPart::SetVisible

TOcPart::Load
See Also TOcPart

Syntax
bool Load();
Description
Initializes a TOcPart object with information read from a storage.

See Also
TOcPart::Save

TOcPart::Open
See Also TOcPart

Syntax
bool Open(bool open);
Description
If open is true, the Open command invokes the server to initiate an out-of-place editing session. More
specifically, it asks the server to execute its Open verb. If open is false, the command tells the server
to hide its open editing window but does not end the session.
Open returns true for success. If the server does not support editing, Open returns false.
Note: TOcPart::Close is not the opposite of TOcPart::Open. To terminate editing, pass false to Open.

See Also
TOcPart::Activate

TOcPart::Rename
See Also TOcPart

Syntax
void Rename();
Description
Causes the part to update the internal name that ObjectComponents generates to distinguish the parts
in a document. Call Rename whenever you rename the document's file. OLE uses the object's name
when creating links, so the object name must accurately reflect the file name in order for links to work.

See Also
TOcPart::GetName
TOcPart::GetNameLen

TOcPart::Save
See Also TOcPart

Syntax

Form 1
bool Save(bool sameAsLoaded = true);
Form 2
bool Save(IStorage* storage, bool sameAsLoaded, bool remember);
Description
Form 1: Causes the part to write itself into the document's file stream. If sameAsLoaded is true, then
the part saves itself in the same storage where it was last written. Setting sameAsLoaded to false
causes the part to create a new storage for itself under the document's new root storage. Usually
sameAsLoaded should be true in response to a File|Save command and false in response to File|
Save As.
(A storage is a compartment within a compound file. ObjectComponents manages the storages for
you. Usually you do not have to give explicit instructions about where to store parts.)
Form 2: The second form accepts a pointer to an IStorage interface, allowing you to control where the
object is written. sameAsLoaded is the same as in Form 1. remember tells the part whether or not to
remember the object in storage. When saving a part to its usual file, you typically want it to remember
its own storage. When copying a part, on the other hand, you typically want the part to keep its original
storage object, not the one where you are saving the copy. When saving a copy to a file for the
Clipboard, for example, remember should be false.

See Also
TOcPart::Load

TOcPart::Select
See Also TOcPart

Syntax
void Select(bool select);
Description
Tells the part whether or not it is currently selected. Make select true to select the part and false to
deselect it. The user selects objects in order to perform operations on them. For example, the user
selects an object before copying it to the Clipboard. When TOleView paints its parts, it queries each
one and draws a selection box around any that the user has selected.

See Also
TOcPart::IsSelected

TOcPart::SetActive
See Also TOcPart

Syntax
void SetActive();
Description
Synchronizes an internal flag with the object's actual state, active or inactive. Usually you should not
have to call this function. To make a part active, call TOcPart::Activate instead.

See Also
TOcPart::Activate
TOcPart::IsActive

TOcPart::SetHost
TOcPart

Syntax
bool SetHost(IBContainer far* container);
Description
Moves the part from one container to another. container can be an object of type TOcView (or one
derived from TOcView). It designates the view that receives the part. SetHost is not usually called from
within the application.
IBContainer is a custom interface defined within the BOCOLE support library. TOcView implements
this interface.

TOcPart::SetPos
See Also TOcPart

Syntax
void SetPos(const TPoint& pos);
Description
Sets the part's position within its container document. The position specifies the part's upper left corner
in pixels measured from the upper left corner of the container's client window. If there is scaling, the
coordinates take that into account.

See Also
TOcPart::GetPos
TOcPart::SetSize
TOcPart::UpdateRect
TPoint (OWL.HLP)

TOcPart::SetSize
See Also TOcPart

Syntax
void SetSize(const TSize& size);
Description
Sets the size of the part's image in the container document. size sets the width and height of the part
in client area coordinates. The coordinates take into account any scaling set for the TOcView object
that holds the part.

See Also
TOcPart::GetPos
TOcPart::UpdateRect
TSize (OWL.HLP)

TOcPart::SetVisible
See Also TOcPart

Syntax
void SetVisible(bool visible);
Description
Shows or hides the part, according to the value of visible.

See Also
TOcPart::IsVisible

TOcPart::Show
See Also TOcPart

Syntax
bool Show(bool show);
Description
Makes the part visible. Show is used to ask the Link Source to show itself in the container window. If
show is false, the part hides itself. The return value is true for success.

See Also
TOcPart::IsVisible

TOcPart::UpdateRect
See Also TOcPart

Syntax
void UpdateRect();
Description
Sets the part to a new rectangle when its size or position changes. It is called by SetPos and GetRect.

See Also
TOcPart::GetRect
TOcPart::SetPos
TOcPart::SetSize

TOcPart Protected Destructor
TOcPart

Syntax
~TOcPart();
Destructor
Destroys the TOcPart object.

TOcPartCollection Class
See Also Linking and Embedding Classes

Header File
ocf/ocpart.h

Description
Manages a set of TOcPart objects. Every TOcDocument creates a part collection object to maintain
the set of OLE objects linked or embedded in the document. The part collection object adds parts,
deletes parts, finds them, counts them, and generally helps the document keep track of what it has.
Because TOcDocument contains a part collection object, usually you do not have to create or
manipulate the collection directly yourself.

Public Constructor and Destructor
~TOcPartCollection();
TOcPartCollection();
Public Member Functions
int Add(TOcPart* const& part);
void Clear();
virtual unsigned Count() const;
int Detach(TOcPart* const& part, int del = 0);
unsigned Find(TOcPart* const& part) const;
int IsEmpty() const;
TOcPart* Locate(TPoint& point);
bool SelectAll(bool select = false);

See Also
Painting the Document
TOcPart
TOcPartCollectionIter

TOcPartCollection Public Constructor and Destructor
TOcPartCollection

Constructor
TOcPartCollection();
Destructor
~TOcPartCollection();
Description
Creates an empty collection. Call Add to insert parts in the collection.

Destructor
Releases all the servers that supply the linked or embedded objects.

TOcPartCollection::Add
See Also TOcPartCollection

Syntax
int Add(TOcPart* const& part);
Description
Adds a new part to the collection. Returns 1 for success and 0 for failure.

See Also
TOcPart

TOcPartCollection::Clear
TOcPartCollection

Syntax
void Clear();
Description
Disconnects all the parts in the collection from their servers, removes them from the collection, and
releases them. Tells OLE that this collection has no further need for the servers.

TOcPartCollection::Count
TOcPartCollection

Syntax
virtual unsigned Count() const;
Description
Returns the number of parts currently in the collection.

TOcPartCollection::Detach
See Also TOcPartCollection

Syntax
int Detach(TOcPart* const& part, int del = 0);
Description
Removes part from the collection. If del is nonzero, then Detach also releases TOcPart object. If the
part's internal reference count reaches zero as a result, the part deletes itself. Returns 1 for success
and 0 for failure.

See Also
TOcPart

TOcPartCollection::Find
See Also TOcPartCollection

Syntax
unsigned Find(TOcPart* const& part) const;
Description
Searches for part and returns its position in the collection. If part is not in the collection, Find returns
UINT_MAX.

See Also
TOcPart

TOcPartCollection::IsEmpty
TOcPartCollection

Syntax
int IsEmpty() const;
Description
Returns true if the collection currently contains no objects and false if it does contain at least one
object.

TOcPartCollection::Locate
See Also TOcPartCollection

Syntax
TOcPart* Locate(TPoint& point);
Description
Returns the part object visible at a particular point on the screen. The numbers in point are interpreted
as logical coordinates. If no part in the collection occupies the given point, Locate returns 0.

See Also
TPoint (OWL.HLP)

TOcPartCollection::SelectAll
See Also TOcPartCollection

Syntax
bool SelectAll(bool select = false);
Description
Sets the selection state of all the parts in the collection. If select is true, SelectAll selects them all. If
select is false, it deselects all the parts. The user can perform actions (such as dragging, deleting, and
copying) that affect all the selected objects.
The container conventionally marks selected objects by drawing a rectangle with grapples (handles for
moving the rectangle) around each of them. The TOleWindow class does this automatically in
ObjectWindows programs.

See Also
TOleWindow (OWL.HLP)

TOcPartCollectionIter Class
See Also Linking and Embedding Classes

Header File
ocf/ocpart.h

Description
A part collection iterator enumerates the objects embedded in a compound document.
A compound document can contain many linked and embedded objects. Within the container, each
object is represented by an object of type TOcPart. To manage all the parts it contains, TOcDocument
creates a collection object of type TOcPartCollection. The collection object takes care of adding and
deleting members of the collection. In order to walk through the current list of its parts, TOcDocument
also creates a part collection iterator. An iterator basically points to an element in the collection. You
can increment the iterator to walk through the list of objects. The iterator signals when it reaches the
end (the ++ operator returns 0).
Together the collection and its iterator give the document much flexibility in managing its objects.

Public Constructor
TOcPartCollectionIter(const TOcPartCollection& coll);
Public Member Functions
TOcPart* operator ++(int);
TOcPart* operator ++();
TOcPart* Current() const;
operator int() const;
void Restart();
void Restart(unsigned start, unsigned stop);

See Also
Painting the Document
TOcPart
TOcPartCollection

TOcPartCollectionIter Public Constructor
See Also TOcPartCollectionIter

Syntax
TOcPartCollectionIter(const TOcPartCollection& coll);
Description
Constructs an iterator to enumerate the objects contained in the collection coll.

See Also
TOcPartCollection

TOcPartCollectionIter::operator ++
TOcPartCollectionIter

Syntax

Form 1
TOcPart* operator++(int);
Form 2
TOcPart* operator++();
Description
Form 1: Returns the current part and then advances the iterator to point to the next part (post-
increment).
Form 2: Advances the iterator to point to the next part in the list and then returns that part (pre-
increment).

TOcPartCollectionIter::Current
TOcPartCollectionIter

Syntax
TOcPart* Current() const;
Description
Returns the part that the iterator currently points to.

TOcPartCollectionIter::operator int
TOcPartCollectionIter

Syntax
operator int() const;
Description
Converts the iterator to an integer value in order to test whether the iterator has finished enumerating
the collection. Returns zero if the iterator has reached the end of the list and a nonzero value if it has
not.

TOcPartCollectionIter::Restart
TOcPartCollectionIter

Syntax

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Resets the iterator to begin again with the first part in the document.
Form 2: Resets the iterator to enumerate a partial range of objects in the document, beginning with
the object at position start in the list and ending with the object at position stop.

TOcPartName enum
See Also Linking and Embedding Enums

Header File
ocf/ocobject.h

Syntax
enum TOcPartName
Description
When a container asks the server for the name of a part, it might want any of several possible
answers. These values indicate which name the container wants to see.

Constant Meaning
pnLong The string the server registered as the description for this type of object.
pnShort The string the server registered as the progid for this type of object.
pnApp The string the server registered as the description for the server application as a whole.

See Also
description Registration Key
progid Registration Key
TOcPart::GetServerName

TOcRegistrar Class
See Also Linking and Embedding Classes

Header File
ocf/ocapp.h

Base Class
TRegistrar

Description
TOcRegistrar manages all the registration tasks for an application. It processes OLE-related switches
on the command line and records any necessary information about the application in the system
registration database. If the application is already registered in the database, the registrar confirms
that the registered path, progid, and clsid are still accurate. If not, it reregisters the application.
Every ObjectComponents application needs to create a registrar object. If your application supports
linking and embedding, then create a TOcRegistrar object. If your application supports automation but
not linking and embedding, then you should create a TRegistrar object instead. TOcRegistrar extends
TRegistrar by connecting the application to the BOCOLE support library interfaces that support linking
and embedding.
An application's main procedure usually performs these actions with its registrar:

Construct the registrar, passing it a pointer to the application's factory callback.

Call IsOptionSet to check for options that might affect how the application chooses to start (for
example, remaining invisible if invoked for embedding.

Call Run to enter the program's message loop.
TOcRegistrar inherits both IsOptionSet and Run from its base class, TRegistrar.

Protected Constructor and Destructor
TOcRegistrar(TRegList& regInfo, TComponentFactory callback, string&
cmdLine, HINSTANCE hInst = _hInstance);

~TOcRegistrar();
Public Member Functions
HRESULT BOleComponentCreate(IUnknown far* far* retIface, IUnknown far*
outer, BCID idClass);

void CreateOcApp(uint32 options, TOcApp*& ret);
TAppDescriptor& GetAppDescriptor();
Protected Member Functions
bool CanUnload();
void far* GetFactory(const GUID& clsid, const GUID far& iid);
void LoadBOle();

See Also
clsid Registration Key
Creating a Registrar Object
path Registration Key
progid Registration Key
TRegistrar

TOcRegistrar Public Constructor and Destructor
See Also TOcRegistrar

Syntax

Constructor
TOcRegistrar(TRegList& regInfo, TComponentFactory callback, string&
cmdLine, HINSTANCE hInst = _hInstance);

Destructor
~TOcRegistrar();
Description
regInfo is the application registration structure (conventionally named appReg).
callback is the factory callback function that ObjectComponents invokes when it is time for the
application to create an object. An ObjectWindows program can use the TOleFactory class to
implement this callback. For a description of TOleFactory, see Factory Template Classes and
TOleFactoryBase.
cmdLine holds the command line string that invoked the application.
hInst is the application's instance.

Destructor
Destroys objects the registrar uses internally.

See Also
Factory Template Classes (OWL.HLP)
TComponentFactory typedef
TOleFactoryBase (OWL.HLP)

TOcRegistrar::BOleComponentCreate
See Also TOcRegistrar

Syntax
HRESULT BOleComponentCreate(IUnknown far* far* retIface, IUnknown far*
outer, BCID idClass);

Description
Calls the BOCOLE support library to create one of the helper objects that ObjectComponents uses
internally. Usually you do not need to call BOleComponentCreate yourself.
retIface receives an interface to the requested component.
outer is the IUnknown interface of the outer object that you want the new component to become a part
of.
idClass identifies the particular component you want to create. The possible values are defined as
cidBolexxxx constants in ocf/boledefs.h.
The return value is an OLE result, either HR_OK for success or HR_FAIL for failure.

See Also
HR_xxxx Return Constants

TOcRegistrar::CreateOcApp
See Also TOcRegistrar

Syntax
void CreateOcApp(uint32 options, TOcApp*& ret);
Description
Creates the connector object that attaches an application to OLE. options is a set of bit flags indicating
the application's running mode. The possible option flags are defined in TOcAppMode. ret is where
CreateOcApp places a pointer to the newly created TOcApp connector object.
CreateOcApp is called during TOcModule::OcInit. You shouldn't have to call it directly yourself.
The purpose of CreateOcApp is to shield you from the details of the TOcApp connector object.
TOcApp is closely tied to the implementation of ObjectComponents, and the details of initializing an
OLE session are subject to change.

See Also
TDocTemplate (OWL.HLP)
TOcApp
TOcAppMode enum
TOcModule::OcInit

TOcRegistrar::GetAppDescriptor
TOcRegistrar

Syntax
TAppDescriptor& GetAppDescriptor();
Description
Returns the application descriptor. ObjectComponents uses an application descriptor internally to hold
information about a module. (A DLL gets an application descriptor of its own.) TAppDescriptor is
undocumented because it is used only internally and is subject to change. The registrar classes,
TOcRegistrar and TRegistrar, are the supported interfaces to the application descriptor. The registrar
constructs the descriptor and most of its member functions call descriptor functions to perform the
work.
Usually you will not need to call this method yourself.

TOcRegistrar::CanUnload
TOcRegistrar

Syntax
bool CanUnload();
Description
Returns true if the application is not currently serving any OLE clients and false otherwise.

TOcRegistrar::GetFactory
TOcRegistrar

Syntax
void far* GetFactory(const GUID& clsid, const GUID far& iid);
Description
Returns a pointer to the factory interface for creating the type of object indicated by clsid. iid names the
particular interface you want to receive. If the registrar is unable to find an iid interface for clsid objects,
it returns zero.
ObjectComponents calls a DLL's GetFactory member every time a new client loads the DLL. Usually
you do not need to call GetFactory yourself.

TOcRegistrar::LoadBOle
TOcRegistrar

Syntax
void LoadBOle();
Description
Loads and initializes the ObjectComponents support library (BOCOLE.DLL). LoadBOle throws a
TXObjComp exception if it cannot find OCOLE.DLL, or if the installed version is not compatible with
the application's version of the library.

TOcRemView Class
See Also Linking and Embedding Classes

Header File
ocf/ocremvie.h

Base Class
TOcView

Description
A linking and embedding server creates a remote view object in order to draw its OLE object in the
container's window. TOcRemView only draws the object. To load and save the data in the object, the
server also needs to create a TOcDocument object. The document and the remote view together
represent an OLE object as the server sees it.
The container creates a TOcPart object for every OLE object it receives. The container's part object
communicates with the server's document and view objects through OLE. The part tells the server's
view when and where to draw the object. It tells the server's document when and where to load or
save the object.
Do not confuse the two kinds of views, TOcView with TOcRemView. A container creates a single view
(TOcView) for its compound document. This view can contain parts received from other applications.
Each part draws itself by invoking a remote view from its server. Containers create TOcView objects
and servers create TOcRemView objects. (A TOcRemView object can become a container also,
however, if the user embeds objects within objects.)
In spite of the similar names, TOcDocument, TOcView, and TOcRemView are not part of the
ObjectWindows Doc/View model. The nature of OLE makes it beneficial to separate data from its
graphical representation, and the terms document and view express that separation even outside of
ObjectWindows.
TOcRemView is a COM object and implements the IUnknown interface.

Public Constructor
TOcRemView(TOcDocument& doc, TRegList* regList = 0, IUnknown* outer = 0);
Public Member Functions
virtual bool Copy();
virtual void EvClose();
virtual LPCSTR GetContainerTitle();
void GetInitialRect();
void Invalidate(TOcInvalidate);
bool IsOpenEditing() const;
bool Load(IStorage* storageI);
virtual void Rename();
bool Save(IStorage* storageI);

See Also
Connector Objects
Creating Helper Objects for a Document
TOcDocument
TOcView

TOcRemView Public Constructor
See Also TOcRemView

Syntax
TOcRemView(TOcDocument& doc, TRegList* regList = 0, IUnknown* outer = 0);
Description
A remote view is always associated with a TOcDocument object. The document loads and saves data
in an OLE object and the remote view draws the data in the container's window. In both forms of the
constructor, doc is the document to associate with the view. That means the document must always be
created first.
Also, in both forms regList is a document registration table. A server that creates different kinds of
objects needs several document registration tables, one for each type. The regList parameter
determines the type of object that the view represents. outer points to the IUnknown interface of a
master object under which the new object is asked to aggregate itself.
Registration tables are built with the BEGIN_REGISTRATION and END_REGISTRATION macros.
The destructor for TOcRemView is private. ObjectComponents releases the object when it is no longer
needed.

See Also
Registration Macros (OWL.HLP)
TAutoObject
TOcDocument

TOcRemView::Copy
TOcRemView

Syntax
virtual bool Copy();
Description
Copies the object to the Clipboard. Returns true for success.

TOcRemView::EvClose
TOcRemView

Syntax
virtual void EvClose();
Description
The application's remote view window calls this function when it closes. EvClose disconnects the view
from any parts displayed in it.

TOcRemView::GetContainerTitle
TOcRemView

Syntax
virtual LPCOLESTR GetContainerTitle();
Description
Asks the container for its name. The server usually includes this string in its own title bar during out-of-
place editing (when the user edits a linked or embedded object in the server's own window, not in the
container's).

TOcRemView::GetInitialRect
See Also TOcRemView

Syntax
void GetInitialRect();
Description
Requests the initial size and position of the area where the server can draw its object. The function
initializes Extent, a protected data member that TOcRemView inherits from TOcView.

See Also
TOcView::Extent

TOcRemView::Invalidate
See Also TOcRemView

Syntax
void Invalidate(TOcInvalidate invalid);
Description

Notifies the container's active view that the server has changed either the contents or the appearance
of the object. The invalid parameter indicates what needs changing. It can be invData, invView, or both
combined with the OR operator (|). If the container is an ObjectComponents application, its active view
generates an OC_VIEWPARTINVALID message.

See Also
OC_VIEWxxxx messages
TOcInvalidate enum

TOcRemView::IsOpenEditing
TOcRemView

Syntax
bool IsOpenEditing() const;
Description
Returns true if the view is currently engaged in an open editing session. Open editing occurs when the
user chooses an object's Open verb. Open editing takes place in the server's own frame window,
unlike in-place editing, which takes place in the container's window. Remote view objects are used in
both kinds of editing.

TOcRemView::Load
See Also TOcRemView

Syntax
bool Load(IStorage* storageI);
Description
Reads from storageI information specific to the remote view. This information is part of the data the
server stores in the container's file when asked to save an object. Load returns true for success.
IStorage is a pointer to an OLE interface. storageI can be a pointer to a TOcStorage object, the
ObjectComponents implementation of that interface.

See Also
TOcRemView::Save

TOcRemView::Rename
TOcRemView

Syntax
virtual void Rename();
Description
Updates the name string ObjectComponents generates to distinguish the parts in a compound
document. TOcRemView calls Rename during construction to find out what the container wants to call
the object. It is usually not necessary for you to call Rename directly.

TOcRemView::Save
See Also TOcRemView

Syntax
bool Save(IStorage* storageI);
Description
Writes to storageI information specific to the remote view. This information becomes part of the object
data stored in the container's compound document file. Returns true for success.
IStorage is a pointer to an OLE interface. storageI can be a pointer to a TOcStorage object, the
ObjectComponents implementation of that interface.

See Also
TOcRemView::Load

TOcSaveLoad struct
See Also Linking and Embedding Structs

Header File
ocf/ocview.h

Description
Holds information that a view uses when loading and saving its OLE object parts. The
OC_VIEWLOADPART and OC_VIEWSAVEPART messages carry a pointer to this structure in their
lParams.
TOleView processes the load and save messages for you. If you are programming with the
ObjectWindows Doc/View model, then you do not need to use the TOcSaveLoad structure directly. For
examples that show how to process the load and save messages, look at the source code for the
TOleView::EvOcViewLoadPart and TOleView::EvOcViewSavePart methods in TOleView.

Public Data Members
bool Release;
IStorage far* StorageI;

See Also
OC_VIEWxxxx messages
TOleView::EvOcViewLoadPart (OWL.HLP)
TOleView::EvOcViewSavePart (OWL.HLP)

TOcSaveLoad::Release
TOcSaveLoad

Syntax
bool Release;
Description
Is true if the view should keep the storage object for future file operations and false if it should forget
the storage object after using it once.

TOcSaveLoad::StorageI
TOcSaveLoad

Syntax
IStorage far* StorageI;
Description
Points to the storage object assigned to hold the part. ObjectComponents implements the standard
OLE IStorage interface in TOcStorage, so TOcStorage can be used to construct an IStorage.

TOcScaleFactor Class
See Also Linking and Embedding Classes

Header File
ocf/ocview.h

Description
The TOcScaleFactor class carries information from a container to a server about how the container
wants to scale its document. For example, if the container has a Zoom command and the user
chooses to magnify the document to 120%, the server should match the scaling factor when it draws
objects embedded in the container.
ObjectComponents passes a reference to an TOcScaleFactor object in the lParam of
OC_VIEWGETSCALE and OC_VIEWSETSCALE messages. When a container receives
OC_VIEWGETSCALE, it fills in the object with scaling information. When a server receives the
OC_VIEWSETSCALE information, it reads the scaling values and can use them in its paint procedure.
TOcScaleFactor stores scaling information in its two TSize members, SiteSize and PartSize. The
names refer to the area where the container wants to draw an object (the site) and the object itself (the
part.) The values in the members need not be the actual size of the site or the part, however. What
matters is the ratio of the two sizes. If the SiteSize values are twice as large as the PartSize values,
then the server is being asked to draw the object at twice its default size.
If you are programming with ObjectWindows, then the TOleWindow class takes care of scaling for you.
For examples showing how to handle scaling without the benefit of ObjectWindows, look at the source
code for the following TOleWindow methods: EvOcViewGetScale, EvOcViewSetScale, and SetupDC.

Public Data Members
TSize PartSize;
TSize SiteSize;
Public Constructors
TOcScaleFactor(const BOleScaleFactor far& scaleFactor);
TOcScaleFactor
(const RECT& siteRect, const TSize& partSize);
TOcScaleFactor();
Public Member Functions
TOcScaleFactor& operator =(const TOcScaleFactor& scaleFactor);
TOcScaleFactor& operator =(const BOleScaleFactor far& scaleFactor);
uint16 GetScale();
void GetScaleFactor(BOleScaleFactor far& scaleFactor) const;
bool IsZoomed();
void SetScale(uint16 percent);

See Also
OC_VIEWxxxx Messages
TOleWindow::EvOcViewGetScale (OWL.HLP)
TOleWindow::EvOcViewSetScale (OWL.HLP)
TOleWindow::SetupDC (OWL.HLP)
TSize (OWL.HLP)

TOcScaleFactor::PartSize
See Also TOcScaleFactor

Syntax
TSize PartSize;
Description
Holds two values describing the default horizontal and vertical extent of a server's object. The values
in PartSize do not need to be actual measurements. What matters is the ratio of the values here to the
values in SiteSize. That ratio determines how an image should be scaled.

See Also
TOcScaleFactor::SiteSize
TSize (OWL.HLP)

TOcScaleFactor::SiteSize
See Also TOcScaleFactor

Syntax
TSize SiteSize;
Description
Holds two values describing the horizontal and vertical extent of the area a container has allotted for
displaying a linked or embedded object. The values in SiteSize do not need to be actual
measurements. What matters is the ratio of the values here to the values in PartSize. That ratio
determines how an image should be scaled.

See Also
TOcScaleFactor::PartSize
TSize (OWL.HLP)

TOcScaleFactor Public Constructors
See Also TOcScaleFactor

Syntax

Constructors

Form 1
TOcScaleFactor();
Form 2
TOcScaleFactor(const RECT& siteRect, const TSize& partSize);
Form 3
TOcScaleFactor(const BOleScaleFactor far& scaleFactor);
Destructor
~TOcScaleFactor();
Description
Usually you do not have to construct a TOcScaleFactor object directly. ObjectComponents creates it
for you and passes it in the OC_VIEWGETSCALE or OC_VIEWSETSCALE message.
Form 1: Initializes the site and part extents to 1 so the scaling factor is 100%.
Form 2: Bases the initial scaling factor on the values in the given rectangle structure and size object.
Calculates the extents of the rectangle siteRect and sets them in SiteSize. Copies partSize to
PartSize.
Form 3: Bases the initial scaling factor on the values in scaleFactor. BOleScaleFactor is a structure
that the BOCOLE support library uses internally to carry scaling information. You should not have to
use the structure directly.

See Also
OC_VIEWxxxx Messages
TOcScaleFactor::PartSize
TOcScaleFactor::SiteSize
TSize (OWL.HLP)

TOcScaleFactor::operator =
See Also TOcScaleFactor

Syntax

Form 1
TOcScaleFactor& operator =(const BOleScaleFactor far& scaleFactor);
Form 2
TOcScaleFactor& operator =(const TOcScaleFactor& scaleFactor);
Description
Both forms of the assignment operator copy the values from one scaling object into another.
Form 1: Copies the values in a BOleScaleFactor structure. The BOCOLE support library uses this
structure internally to carry scaling information.
Form 2: Copies one TOcScaleFactor into another.

See Also
OC_VIEWxxxx Messages

TOcScaleFactor::GetScale
See Also TOcScaleFactor

Syntax
uint16 GetScale();
Description
Retrieves a percentage value expressing the ratio of the part's size to the site's size. For example, if
the part size is 20 x 20 and the site size is 40 x 40, then GetScale returns 200.

See Also
TOcScaleFactor::SetScale

TOcScaleFactor::GetScaleFactor
TOcScaleFactor

Syntax
void GetScaleFactor(BOleScaleFactor far& scaleFactor) const;
Description
Fills in scaleFactor with values from the TOcScaleFactor object. BOleScaleFactor is a structure that
the BOCOLE library uses to hold the same scaling information. Usually you do not have to call this
function directly.

TOcScaleFactor::IsZoomed
TOcScaleFactor

Syntax
bool IsZoomed();
Description
Returns true if the sizes stored for the part and the site do not match.

TOcScaleFactor::SetScale
See Also TOcScaleFactor

Syntax
void SetScale(uint16 percent);
Description
Sets the ratio of the part's size to the site's size. More specifically, SetScale sets the size of the part to
100 and the size of the site to percent.

See Also
TOcScaleFactor::GetScale

TOcScrollDir enum
See Also Linking and Embedding Enums

Header File
ocf/ocobject.h

Syntax
enum TOcScrollDir
Description
The OC_VIEWSCROLL event tells the container when the user performs a drag movement that should
scroll the window. The lParam of the WM_OCEVENT message carries one of these values to indicate
which direction the window has been asked to scroll.

Constant Meaning
sdScrollUp Scroll toward the top of the document.
sdScrollDown Scroll toward the bottom of the document.
sdScrollLeft Scroll toward the left edge of the document.
sdScrollRight Scroll toward the right edge of the document.

See Also
Object Components Messages (OWL.HLP)
OC_VIEWxxxx messages
TOleWindow::EvOcViewScroll (OWL.HLP)
WM_OCEVENT message

TOcStorage Class
See Also Compound File I/O Classes

Header File
ocf/ocstorag.h

Description
The TOcStorage class encapsulates OLE's IStorage interface. It manages storages in compound files.
A compound file contains storages and streams. Storages are analogous to file directories and
streams to files within a directory. Streams hold data. Storages hold streams and other storages.
Storages have names, just as directories do. The name of the root storage in a compound file is also
the name of the disk file itself, so the rules for naming the root storage are the same as the rules for
naming any file. Names of substorages under the root, however, can be up to 32 characters, including
the terminating null. For more information about names, see the topic Storage Naming Conventions in
OLE.HLP.
When you create a storage, you can choose to open it in transacted mode (the default) or in direct
mode. In direct mode, write operations have immediate effect, just as they do in normal file I/O.
Transacted mode stores all changes in temporary buffers until you call the Commit method. Commit
makes the changes permanent. This makes it possible to undo recent changes by calling Revert,
which simply discards the current change buffers.
Commands that return HRESULT values correspond directly to the IStorage methods with the same
names. The TOcStorage versions sometimes perform error checking and throw exceptions, but
because in other respects they correspond closely to the IStorage versions, you can consult the
IStorage documentation in the OLE.HLP file for more information.

Public Constructors and Destructors
TOcStorage(IStorage* storage);
TOcStorage(ILockBytes far* lkbyt, bool create, uint32 mode =
STGM_READWRITE|STGM_TRANSACTED);

TOcStorage(TOcStorage& parent, const char far* name, bool create, uint32
mode = STGM_READWRITE);

TOcStorage(const char far* fileName, bool create, uint32 mode =
STGM_READWRITE|STGM_TRANSACTED);

~TOcStorage();
Public Member Functions
HRESULT Commit(uint32 grfCommitFlags);
HRESULT CopyTo(uint32 ciidExclude, IID const far* rgiidExclude, SNB
snbExclude, TOcStorage& dest);

HRESULT DestroyElement(const char far* name);
HRESULT EnumElements(uint32 reserved1, void far* reserved2, uint32
reserved3, IEnumSTATSTG far*far* ppenm);

IStorage* GetIStorage();
static HRESULT IsStorageFile(const char far* pwcsName);
static HRESULT IsStorageILockBytes(ILockBytes far* plkbyt);
HRESULT MoveElementTo(char const far* name, TOcStorage& dest, char const
far* newName, uint32 grfFlags);

HRESULT RenameElement(const char far* oldName, const char far* newName);
HRESULT Revert();
HRESULT SetClass(const IID far& clsid);
HRESULT SetElementTimes(const char far* name, FILETIME const far* pctime,
FILETIME const far* patime, FILETIME const far* pmtime);

HRESULT SetStateBits(uint32 grfStateBits, uint32 grfMask);

static HRESULT SetTimes(char const far* lpszName, FILETIME const far*
pctime, FILETIME const far* patime, FILETIME const far* pmtime);

HRESULT Stat(STATSTG far *pstatstg, uint32 grfStatFlag);
HRESULT SwitchToFile(const char far* newPath);
Protected Member Functions
ulong AddRef();
HRESULT CreateStorage(const char far* name, uint32 mode, uint32 rsrvd1,
uint32 rsrvd2, IStorage far*far* storage);

HRESULT CreateStream(const char far* name, uint32 mode, uint32 rsrvd1,
uint32 rsrvd2, IStream far* far* stream);

HRESULT OpenStorage(const char far* name, IStorage far* stgPriority, uint32
mode, SNB snbExclude, uint32 rsrvd, IStorage far*far* storage);

HRESULT OpenStream(const char far* name, void far *rsrvd1, uint32 grfMode,
uint32 rsrvd2, IStream far *far *stream);

ulong Release();

See Also
TOcStream

TOcStorage Public Constructors and Destructor
See Also TOcStorage

Form1
TOcStorage(const char far* fileName, bool create, uint32 mode =
STGM_READWRITE|STGM_TRANSACTED);

Form2
TOcStorage(TOcStorage& parent, const char far* name, bool create, uint32
mode = STGM_READWRITE);

Form3
TOcStorage(ILockBytes far* lkbyt, bool create, uint32 mode =
STGM_READWRITE|STGM_TRANSACTED);

Form4
TOcStorage(IStorage* storage);
Destructor
~TOcStorage();
Description
The create and mode parameters are common to most forms of the constructor.
create determines what happens if a storage with the given name does not exist. If create is true, the
constructor creates the storage. If create is false, the constructor throws the
TXObjComp::xRootStorageOpenError or TXObjComp::xStorageOpenError exception.
mode determines the access modes for the new storage. The possible values are defined as
STGM_xxxx flags. The constructors ignore any share mode flags (such as
STGM_SHARE_EXCLUSIVE) and determine the sharing mode automatically based on other mode
flags.
For root storages, if you specify STGM_READWRITE, the share mode is
STGM_SHARE_DENY_WRITE. If you specify STGM_READONLY, the share mode is
STGM_SHARE_DENY_NONE.
Substorages and streams are always opened in STGM_SHARE_EXCLUSIVE mode.

Form1
Constructs a new root storage object.
fileName is the name of the storage (analogous to a directory name). Because it names a root storage,
fileName must conform to the operating system's restrictions on file names. If fileName is 0, the
constructor creates a temporary storage that is deleted from the disk when the storage object is
released.

Form2
Constructs a substorage within another storage (like a subdirectory within a directory).
parent is the name of the parent storage that contains the new substorage.
name is the name of the new substorage. The name can be up to 32 characters, including the
terminating null. It cannot contain any of the following characters: ! . : / \.

Form3
Constructs a new storage based on the given ILockBytes interface. ILockBytes is OLE's interface for
low-level media access. The new storage performs all its I/O through lkbyt.
If it fails, the constructor throws the TXObjComp::xStorageILockError exception.

Form4

Constructs a new TOcStorage object using the given IStorage interface pointer. Adds a reference
count to the pointer. The new object implements all its standard OLE methods through the pointer.

Destructor
Releases the storage object.

See Also
STGM xxxx constants
TXObjComp

TOcStorage::AddRef
See Also TOcStorage

Syntax
ulong AddRef();
Description
Increments the storage object's reference count. ObjectWindows uses this method internally. Unless
you are passing the storage object between tasks, you probably won't need to use AddRef yourself.
The return value is the object's new reference count. The OLE specifications indicate that the return
value from any AddRef call should be used for diagnostic purposes only, not in shipping code.

See Also
TOcStorage::Release

TOcStorage::Commit
See Also TOcStorage

Syntax
HRESULT Commit(uint32 commitFlags);
Description
Makes permanent any changes made to the storage object since the last Commit command, or, if
Commit was not called, since the storage was opened.
commitFlags controls how the changes are committed. It contains flags from the STGC enum.
If the storage was opened in direct mode, Commit has no effect. The mode is set in the constructor.
Also, changes committed to a substorage do not actually become permanent until the parent commits,
as well. If the parent reverts, its substorages also revert.

See Also
STGC enum
TOcStorage Public Constructors and Destructor
TOcStorage::Revert

TOcStorage::CopyTo
See Also TOcStorage

Syntax
HRESULT CopyTo(uint32 ciidExclude, IID const far* rgiidExclude, SNB
snbExclude, TOcStorage& dest);

Description
Copies one storage to another. The first three parameters allow you to exclude some elements from
the copy operation, identifying them either by interface IDs or by the names of stream and substorage
elements. All subelements nested within the source, down to any level, are copied as well. Copied
elements are added to the existing contents of the destination, overwriting any with the same names.
ciidExclude tells how many items are in the rgiidExclude array. If rgiidExclude is 0, then this parameter
is ignored.
rgiidExclude points to an array of interfaces identifiers that the caller takes responsibility for copying.
CopyTo leaves them alone. If rgiidExclude is 0, all elements are copied. If rgiidExclude is not 0 but
ciidExclude is 0, CopyTo copies only the state of the storage, not its contents.
snbExclude points to a string name block (SNB) naming elements in the storage that should not be
copied. An SNB value points to an array of string pointers. The last element in the array is a null
pointer. The strings themselves follow contiguously in memory after the null pointer. This parameter is
ignored if the rgiidExclude array contains IID_IStorage (the GUID identifier for the IStorage interface).
dest is the TOcStorage object that receives the copied information.

See Also
TOcStorage::MoveElementTo
TOcStorage::SwitchToFile
TOcStream::Write

TOcStorage::CreateStorage
See Also TOcStorage

Syntax
HRESULT CreateStorage(const char far* name, uint32 mode, uint32 rsrvd1,
uint32 rsrvd2, IStorage far*far* storage);

Description
Creates a new substorage (like creating a subdirectory within a directory).
name points to the name of the new storage.
mode combines STGM xxxx flags to set access modes for the new storage.
rsrvd1 and rsrvd2 are reserved for future use and must be set to 0.
storage is where the command returns the IStorage interface to the newly created object. If creation
fails, storage is set to 0.

See Also
STGM xxxx constants
TOcStorage::CreateStream
TOcStorage::DestroyElement
TOcStorage::OpenStorage

TOcStorage::CreateStream
See Also TOcStorage

Syntax
HRESULT CreateStream(const char far* name, uint32 mode, uint32 rsrvd1,
uint32 rsrvd2, IStream far* far* stream);

Description
Creates a new stream within the storage (like a file within a directory).
name points to the name of the new stream.
mode combines STGM xxxx flags to set access modes for the new stream.
rsrvd1 and rsrvd2 are reserved for future use and must be set to 0.
stream is where the command returns the IStream interface to the newly created object. If creation
fails, stream is set to 0.

See Also
STGM xxxx constants
TOcStorage::CreateStorage
TOcStorage::DestroyElement
TOcStorage::OpenStream

TOcStorage::DestroyElement
See Also TOcStorage

Syntax
HRESULT DestroyElement(const char far* name);
Description
Deletes an element (a storage or a stream) from within the storage. name is the identifier assigned to
the element when it was created. If the storage uses transacted mode, this command can be undone
using Revert.

See Also
TOcStorage::CreateStream
TOcStorage::CreateStorage

TOcStorage::EnumElements
See Also TOcStorage

Syntax
HRESULT EnumElements(uint32 reserved1, void far* reserved2, uint32
reserved3, IEnumSTATSTG far*far* ppenm);

Description
Returns an enumerator object whose methods can list all the elements (storages and streams) within
the storage. The first three parameters are reserved and must be 0. ppenm is where the command
returns the IEnumSTATSTG interface to the newly created enumeration object.
For information on the IEnumSTATSTG interface, see OLE.HLP.

See Also
TOcStorage::RenameElement

TOcStorage::GetIStorage
TOcStorage

Syntax
IStorage* GetIStorage();
Description
Returns a pointer to the object's IStorage interface without adding a reference count. This pointer can
be returned in response to QueryInterface.

TOcStorage::IsStorageFile
See Also TOcStorage

Syntax
static HRESULT IsStorageFile(const char far* pwcsName);
Description
Determines whether the file named pwcsName contains an IStorage object. If the file contains a
storage object, the function returns S_OK. If it does not, the function returns S_FALSE.

See Also
TOcStorage::IsStorageILockBytes

TOcStorage::IsStorageILockBytes
See Also TOcStorage

Syntax
static HRESULT IsStorageILockBytes(ILockBytes far* plkbyt);
Description
Determines whether the plkbyt byte array object contains an IStorage object. If the lockbytes object
contains a storage, the function returns S_OK. If it does not, it returns S_FALSE.

See Also
TOcStorage::IsStorageFile

TOcStorage::MoveElementTo
See Also TOcStorage

Syntax
HRESULT MoveElementTo(char const far* name, TOcStorage& dest, char const
far* newName, uint32 grfFlags);

Description
Moves an element from one storage to another (like moving files from one directory to another).
name identifies the element to be moved.
dest is the TOcStorage object where the element will be placed.
newName is the element's new identifier.
grfFlags determines whether the original element is deleted after being copied to dest. The possible
values are STGMOVE_MOVE and STGMOVE_COPY.

See Also
TOcStorage::CopyTo
TOcStorage::DestroyElement
TOcStorage::SwitchToFile

TOcStorage::OpenStorage
See Also TOcStorage

Syntax
HRESULT OpenStorage(const char far* name, IStorage far* stgPriority, uint32
mode, SNB snbExclude, uint32 rsrvd, IStorage far*far* storage);

Description
Opens an existing substorage object within the storage.
name identifies the storage to open.
stgPriority is usually 0. If you have already opened the name storage element, passing the original
IStorage pointer causes OpenStorage to close and reopen the storage using the new mode access
flags.
mode combines STGM_xxxx flags to indicate the access modes for the new storage object.
snbExclude points to an array of elements within the substorage that will be emptied (but not
destroyed) when the storage is opened. This parameter is usually used together with stgPriority.
rsrvd is reserved and must be 0.
storage is where the command returns a pointer to the newly opened storage object's IStorage
interface. If the command fails, storage is 0.
For more information about the priority and exclusion parameters, see the description of
StgOpenStorage in OLE.HLP.

See Also
STGM xxxx constants
TOcStorage::OpenStream

TOcStorage::OpenStream
See Also TOcStorage

Syntax
HRESULT OpenStream(const char far* name, void far *rsrvd1, uint32 grfMode,
uint32 rsrvd2, IStream far *far *stream);

Description
Opens an existing stream object within the storage.
name identifies the stream to open.
rsrvd1 and rsrvd2 are reserved and must be 0.
grfMode combines STGM_xxxx flags to indicate the access modes for the new stream object.
stream is where the command returns a pointer to the newly opened storage object's IStream
interface. If the command fails, stream is 0.

See Also
STGM xxxx constants
TOcStorage::OpenStorage

TOcStorage::Release
See Also TOcStorage

Syntax
ulong Release()
Description
Decrements the object's reference count. ObjectWindows uses this method internally. Unless you are
passing the storage object between tasks, you probably won't need to use Release yourself.
The return value is the object's new reference count. When it reaches 0, the object destroys itself. The
OLE specifications indicate that the return value from any Release call should be used for diagnostic
purposes only, not in shipping code.

See Also
TOcStorage::AddRef

TOcStorage::RenameElement
See Also TOcStorage

Syntax
HRESULT RenameElement(const char far* oldName, const char far* newName);
Description
Changes the identifier assigned to a stream or substorage within the storage.
oldName identifies the element whose name you want to change.
newName is the new identifier to give the element.

See Also
TOcStorage::EnumElements

TOcStorage::Revert
See Also TOcStorage

Syntax
HRESULT Revert();
Description
Revokes any changes made to a storage, or to any elements it contains, since the last Commit
command. If Commit was not called, the storage reverts to the state it was in when opened.

See Also
TOcStorage::Commit

TOcStorage::SetClass
See Also TOcStorage

Syntax
HRESULT SetClass(const IID far& clsid);
Description
Assigns clsid as the globally unique identifier (GUID) for the storage. The intitial GUID for any new
storage is CLSID_NULL. Call Stat to determine the storage's current class ID. The class ID is a
persistent attribute.

See Also
STATSTG::clsid
TOcStorage::Stat

TOcStorage::SetElementTimes
See Also TOcStorage

Syntax
HRESULT SetElementTimes(const char far* name, FILETIME const far* pctime,
FILETIME const far* patime, FILETIME const far* pmtime);

Description
Compound files can record the times of creation, last modification, and last access for each element
within the file. This command sets these values explicitly for any element. Time values are expressed
as FILETIME structures. To determine the values already set for these times, call Stat.
name identifies the element whose time attributes you want to modify.
pctime points to a structure containing the new creation time.
patime points to a structure containing the new time to show for last access to the file.
pmtime points to a structure containing the new time to show for last modification to the file.
Leave any of the FILETIME parameters 0 to avoid changing the existing value.
Not all implementations of compound files support all three times for all elements. The attributes of a
root storage, for example, depend on the underlying file system. Microsoft's OLE implementation does
not support any time stamps for internal streams. If you attempt to assign values for unsupported
attributes, the values are ignored.

See Also
FILETIME struct
TOcStorage::SetTimes
TOcStorage::Stat

TOcStorage::SetStateBits
See Also TOcStorage

Syntax
HRESULT SetStateBits(uint32 grfStateBits, uint32 grfMask);
Description
Stores information about the current state of the storage as bits in a 32-bit value. When first created, a
storage's state is 0. Currently no state bits are defined, but all 32 are reserved for system use and
applications should not use them privately.

See Also
STATSTG::grfStateBits

TOcStorage::SetTimes
See Also TOcStorage

Syntax
static HRESULT SetTimes(char const far* name, FILETIME const far* pctime,
FILETIME const far* patime, FILETIME const far* pmtime);

Description
Sets the times of creation, last modification, and last access for a disk file. Time values are expressed
as FILETIME structures.
name identifies the file whose time attributes you want to modify.
pctime points to a structure containing the new creation time.
patime points to a structure containing the new time to show for last access to the file.
pmtime points to a structure containing the new time to show for last modification to the file.
To avoid changing an existing value, set the corresponding FILETIME parameter to 0.
The underlying operating system determines whether all three of the time attributes are supported. If
you attempt to assign values for unsupported attributes, the values are simply ignored.

See Also
FILETIME struct
TOcStorage::SetElementTimes

TOcStorage::Stat
See Also TOcStorage

Syntax
HRESULT Stat(STATSTG far *pstatstg, uint32 statFlag);
Description
Returns information about the storage. The information includes, for example, the storage's name, its
size, and the times it was created, modified, and last used.
pstatstg points to a STATSTG structure that receives information from Stat.
statFlag controls the level of detail in the information retrieved. It can be either STATFLAG_DEFAULT
or STATFLAG_NONAME. Choosing not to receive the name saves an allocation operation.

See Also
TOcStorage::RenameElement
TOcStorage::SetElementTimes
TOcStorage::SetTimes

TOcStorage::SwitchToFile
See Also TOcStorage

Syntax
HRESULT SwitchToFile(const char far* newPath);
Description
Copies an entire compound file to a new disk file and associates the storage with the new disk file.
newPath names the destination file. SwitchToFile fails if the storage object is not a root storage
(supporting the IRootStorage interface).

See Also
TOcStorage::CopyTo
TOcStorage::MoveElementTo

TOcStream Class
See Also Compound File I/O Classes

Header File
ocf/ocstorag.h

Description
The TOcStream class encapsulates the methods of OLE's IStream interface. It reads and writes data
in compound files.
In compound file I/O, storages are analogous to directories and streams to files. A storage can contain
both streams and other storages. Each stream represents a set of data and each substorage is a
compartment for more streams.
A TOcStream object always works together with the TOcStorage object that contains it.
The streams within a storage have names, just as files do. A stream's name can contain up to 32
characters, including the terminating null. Stream names cannot contain the following
characters: ! . / \ :. For more information about names, see the topic Storage Naming Conventions in
OLE.HLP.
The OLE definition of IStream includes methods such as Commit and Revert, to allow for operation in
transacted mode, where changes are stored in a temporary buffer and become permanent only when
committed. The current implementation of OLE supports transacted only for storages, not for streams.
At present, TOcStream::Commit and TOcStream::Revert have no effect. The LockRegion and
UnlockRegion similarly support features not yet available in OLE.
Commands that return HRESULT values correspond directly to the IStream methods with the same
names. The TOcStream versions sometimes perform error checking and throw exceptions, but
because they correspond closely to the IStream versions, you can consult the IStream documentation
in the OLE.HLP file for supplementary information.

Public Constructors and Destructors
TOcStream(TOcStorage& storage, const char far* name, bool create, uint32
mode = STGM_READWRITE);

TOcStream(TOcStream& stream);
TOcStream(IStream* stream);
~TOcStream();
Public Member Functions
HRESULT Commit(uint32 commitFlags);
HRESULT CopyTo(TOcStream& stream, uint64 cb, uint64 far* read = 0, uint64
far* written = 0);

IStream* GetIStream();
HRESULT LockRegion(uint64 offset, uint64 cb, uint32 lockType);
HRESULT Read(void HUGE* pv, ulong cb, ulong far* pcbRead = 0);
HRESULT Revert();
HRESULT Seek(int64 move, uint32 origin, uint64 far* newPosition = 0);
HRESULT SetSize(uint64 newSize);
HRESULT Stat(STATSTG far* statstg, uint32 statFlag);
HRESULT UnlockRegion(uint64 offset, uint64 cb, uint32 lockType);
HRESULT Write(void const HUGE* pv, ulong cb, ulong far* written = 0);

See Also
TOcStorage

TOcStream Public Constructors and Destructor
See Also TOcStream

Form1
TOcStream(TOcStorage& storage, const char far* name, bool create, uint32
mode = STGM_READWRITE);

Form2
TOcStream(TOcStream& stream);
Form3
TOcStream(IStream* stream);
Destructor
~TOcStream();
Description

Form1
Constructs a new stream object inside the given storage object. name is the name of the stream
(analogous to a file name). create determines what happens if a stream called name does not exist. If
create is true, the constructor creates the stream. If create is false, the constructor throws the
TXObjComp::xStreamOpenError exception. mode is a combination of STGM_xxxx flags (storage
mode flags).
(Internally, the constructor parameters are passed to the storage.OpenStream or
storage.CreateStream method.)

Form2
Creates a new stream object by copying stream. (Internally the constructor calls stream.Clone.)

Form3
Constructs a TOcStream given an existing IStream interface pointer. Does not add a reference count
to the pointer.

Destructor
Releases the stream object.

See Also
STGM xxxx constants
TOcStorage
TXObjComp

TOcStream::Commit
See Also TOcStream

Syntax
HRESULT Commit(uint32 commitFlags);
Description
Commits any changes made to the storage object containing the stream.
commitFlags controls how the changes are committed. It contains flags from the STGC enum.
Currently this command has no effect because OLE does not support transacted mode for stream
objects.

See Also
STGC enum
TOcStream::Revert

TOcStream::CopyTo
See Also TOcStream

Syntax
HRESULT CopyTo(TOcStream& stream, uint64 cb, uint64 far* read = 0, uint64
far* written = 0);

Description
Copies data to another stream. The copy operation begins from the current file pointer and writes to
the pointer position in stream. cb is the number of bytes to copy. read is the number of bytes read from
the source stream, and written is the number of bytes written to the destination.

See Also
TOcStream::Write

TOcStream::GetIStream
TOcStream

Syntax
IStream* GetIStream();
Description
Returns a pointer to the object's IStream interface without adding a reference count. This pointer can
be returned in response to QueryInterface.

TOcStream::LockRegion
See Also TOcStream

Syntax
HRESULT LockRegion(uint64 offset, uint64 cb, uint32 lockType);
Description
Locks a range of bytes in the stream, restricting the access other programs are allowed.
Locking is not supported in the current release of OLE, so the LockRegion command currently has no
effect.
offset is the file position of the first byte to lock. cb is the number of bytes to lock. lockType determines
whether to block all access or only write access. The possible values are LOCK_WRITE,
LOCK_EXCLUSIVE, and LOCK_ONLYONCE.

See Also
STATSTG::grfLocksSupported
TOcStream::UnlockRegion

TOcStream::Read
See Also TOcStream

Syntax
HRESULT Read(void HUGE* pv, ulong cb, ulong far* pcbRead = 0);
Description
Copies bytes from the stream to the pv buffer. cb is the number of bytes to read. After the command
executes, pcbRead points to the number of bytes actually read.
Read alters the position of the seek pointer within the stream. Read fails if the stream object was not
constructed with the STGM_READ mode flag.

See Also
STGM xxxx constants
TOcStream::Write

TOcStream::Revert
See Also TOcStream

Syntax
HRESULT Revert();
Description
Discards all changes since the the last Commit command (or since the stream was opened, if no
Commit has occurred.)
Currently this command has no effect because OLE does not support transacted mode for stream
objects.

See Also
TOcStream::Commit

TOcStream::Seek
See Also TOcStream

Syntax
HRESULT Seek(int64 move, uint32 origin, uint64 far* newPosition = 0);
Description
Moves the seek pointer within the stream. The seek pointer points to the location in the file where the
next read or write operation will begin. The Read and Write commands both move the seek pointer, as
well.
Seek can offset the pointer from its present position or move it to an absolute position measured from
the beginning or the end of the file.
move is a distance measurement within the file. Its interpretation depends on the value of origin.
origin tells whether move measures a distance from the pointer's current position or from one end of
the file.
After Seek, newPosition points to the beginning of the stream.
This table shows the possible values of origin.

Constant Meaning
STREAM_SEEK_SET Set the pointer forward move bytes from the start of the file.
STREAM_SEEK_CUR Offset the pointer move bytes from its current position. (move can be

negative.)
STREAM_SEEK_END Offset the pointer move bytes from the end of the file. (move can be

negative.)
It is legal to move the pointer past the end of the stream (but not to move it before the start.)
To determine the current position of the pointer, call Seek passing 0 for move and
STREAM_SEEK_SET for origin. newPosition then tells the pointer's position measured from the start
of the file.

See Also
TOcStream::Read
TOcStream::Write

TOcStream::SetSize
See Also TOcStream

Syntax
HRESULT SetSize(uint64 newSize);
Description
Changes the size of the stream. If newSize is bigger than the current size, bytes are added to the end.
(The content of the new bytes is undefined.) If newSize is smaller, the stream is truncated.
SetSize does not affect the position of the seek pointer.

See Also
TOcStream::Seek

TOcStream::Stat
See Also TOcStream

Syntax
HRESULT Stat(STATSTG far* statstg, uint32 statFlag);
Description
Returns information about the open stream. The information includes, for example, the stream's
name, its size, and the times it was created, modified, and last used.
statstg points to a STATSTG structure that receives information from Stat.
statFlag controls the level of detail in the information retrieved. It can be either STATFLAG_DEFAULT
or STATFLAG_NONAME. Choosing not to receive the name saves an allocation operation.

See Also
STATSTG struct

TOcStream::UnlockRegion
See Also TOcStream

Syntax
HRESULT UnlockRegion(uint64 offset, uint64 cb, uint32 lockType);
Description
Unlocks a range of bytes previously locked with LockRegion.
Locking is not supported in the current release of OLE, so LockRegion and UnlockRegion currently
have no effect.
offset is the file position of the first byte to unlock. cb is the number of bytes to unlock. lockType
indicates the kind of restriction to remove.
All three parameters must exactly match those set in a previous call to LockRegion. Every call to
LockRegion must have a corresponding UnlockRegion.

See Also
STATSTG::grfLocksSupported
TOcStream::LockRegion

TOcStream::Write
See Also TOcStream

Syntax
HRESULT Write(void const HUGE* pv, ulong cb, ulong far* written = 0);
Description
Copies bytes from the pv buffer to the stream. cb is the number of bytes to write. After the command
executes, written points to the number of bytes actually written.
Write alters the position of the seek pointer within the stream. Write fails if the stream object was not
constructed with the STGM_WRITE mode flag.

See Also
TOcStream::CopyTo
TOcStream::Read
TOcStream::Seek

TOcToolBarInfo struct
See Also Linking and Embedding Structs

Header File
ocf/ocview.h

Description
The OC_VIEWSHOWTOOLS message carries a pointer to this structure in its lParam. The message
asks a server for handles to its tool bars so the container can display them in its own window. This
happens during in-place editing when the user opens an object in the container in order to modify it.
The structure has four fields, allowing the server to return handles for up to four tool bars. Each tool
bar occupies a different edge of the container's client area.
For examples, look at the source code for TOleWindow::EvOcViewShowTools. The default
implementations of these methods allow a single tool bar at the top of the client area. To give the
container more tool bars, handle the OC_VIEWSHOWTOOLS message directly yourself.

Public Data Members
HWND HBottomTB;
HWND HFrame;
HWND HLeftTB;
HWND HRightTB;
HWND HTopTB;
bool Show;

See Also
OC_VIEWxxxx messages
TOleWindow::EvOcViewShowTools (OWL.HLP)

TOcToolBarInfo::HBottomTB
TOcToolBarInfo

Syntax
HWND HBottomTB;
Description
Holds a handle to the tool bar that the server wants to place at the bottom of the container's client
area.

TOcToolBarInfo::HFrame
See Also TOcToolBarInfo

Syntax
HWND HFrame;
Description
If Show is true and the server is being asked to display its tool bar, then HFrame holds a handle to the
frame window where the tool bar is to appear. If Show is false, then HFrame holds a handle to the
server's own frame window.

See Also
TOcToolBarInfo::Show

TOcToolBarInfo::HLeftTB
TOcToolBarInfo

Syntax
HWND HLeftTB;
Description
Holds a handle to the tool bar that the server wants to place at the left edge of the container's client
area.

TOcToolBarInfo::HRightTB
TOcToolBarInfo

Syntax
HWND HRightTB;
Description
Holds a handle to the tool bar that the server wants to place at the right edge of the container's client
area.

TOcToolBarInfo::HTopTB
TOcToolBarInfo

Syntax
HWND HTopTB;
Description
Holds a handle to the tool bar that the server wants to place at the top of the container's client area.

TOcToolBarInfo::Show
TOcToolBarInfo

Syntax
bool Show;
Description
Is true to ask that the server display its tool bar or false to request that the server hide the tool bar.

TOcVerb Class
See Also Linking and Embedding Classes

Header File
ocf/ocpart.h

Description
Holds information about a single verb that a server supports for its objects.
A verb is an action the server can perform with one of its objects. A server that creates text objects, for
example, might support an Edit verb. A server for sound objects might support Edit, Play, and Rewind.
When the user selects an object in a compound document, the container asks the TOcPart object for a
list of the verbs it can execute. The container displays the verbs on its Edit menu. The command for
enumerating verbs is TOcPart::EnumVerbs.
Whenever the user selects a part, the container modifies its Edit menu by adding an item for
manipulating the object. If the object is part of a Quattro Pro spreadsheet, for example, the container
adds the command Notebook Object to its Edit menu. If the user selects this command, then the
container shows a pop-up menu with the notebook's verbs, Edit and Open.
For an example of how to implement these items on the edit menu, look at the source code for
TOleWindow::CeEditObject in OLEWINDO.CPP.

Public Constructor
TOcVerb();
Public Data Members
bool CanDirty;
LPCOLESTR TypeName;
uint VerbIndex;
LPCOLESTR VerbName;

See Also
TOcPart::EnumVerbs

TOcVerb Public Constructor
TOcVerb

Syntax
TOcVerb();
Description
Creates an empty verb object.

TOcVerb::CanDirty
TOcVerb

Syntax
bool CanDirty;
Description
Is true if executing the verb can modify the object so that it might need to be saved or redrawn
afterwards. For example, the CanDirty field of an Edit verb is always true, and the CanDirty field of a
Play verb is usually false.

TOcVerb::TypeName
See Also TOcVerb

Syntax
LPCOLESTR TypeName;
Description
Points to the name of the type of object to which this verb belongs. The container usually shows this
name in the Object item of its Edit menu. For example, if the user has selected an object inserted from
the server in Step 15 of the ObjectWindows tutorial, TypeName is "Drawing Pad," and the container's
Edit menu should have an item saying "Drawing Pad." Choosing this item leads to a pop-up menu with
all the picture's verbs on it.
The TypeName string comes from the value the server registered for the menuname key in its
document registration table.

See Also
TOcPart::EnumVerbs
menuname Registration Key

TOcVerb::VerbIndex
TOcVerb

Syntax
uint VerbIndex;
Description
Holds the index number that identifies this verb in the server's list of possible verbs. The first verb is
always 0 and is considered the default verb. If the user double-clicks the object, the container should
ask the server to execute its default verb.

TOcVerb::VerbName
TOcVerb

Syntax
LPCOLESTR VerbName;
Description
Points to the name of the verb. This is the string that the container adds to its Edit menu.

TOcView Class
See Also Linking and Embedding Classes

Header File
ocf/ocview.h

Base Class
TUnknown

Description
TOcView manages the presentation of a container's compound document containing linked and
embedded objects. Each object in the document is represented by an object of type TOcPart. The
document view knows which parts are selected or activated. It scrolls the window and remembers
which parts are visible. It transfers parts to and from the document through the Clipboard or through
drag-and-drop operations.
Every TOcView has a corresponding TOcDocument. The ObjectComponents document object
implements the OLE interfaces that manipulate the data in a compound document. TOcView
implements the interfaces the manipulate the appearance of a compound document.
TOcView is a COM object and implements the IUnknown interface.

Public Constructor
TOcView(TOcDocument& doc, TRegList* regList = 0, IUnknown* outer=0);
Public Member Functions
bool ActivatePart(TOcPart* part);
bool BrowseClipboard(TOcInitInfo& initInfo);
bool BrowseLinks();
bool Copy(TOcPart* part);
void EvActivate(bool activate);
virtual void EvClose();
void EvResize();
bool EvSetFocus(bool set);
TOcPart* GetActivePart();
TOcDocument& GetOcDocument();
TPoint GetOrigin() const;
TRect GetWindowRect() const;
void InvalidatePart(const TOcPart* part);
bool Paste(bool linking = false);
bool RegisterClipFormats(TRegList& regList);
virtual void ReleaseObject();
virtual void Rename();
void ScrollWindow(int dx, int dy);
void SetLink(bool pasteLink);
void SetupWindow(HWND hWin, bool embedded = false);
Protected Destructor
~TOcView();
Protected Member Functions
uint32 ForwardEvent(int eventId, const void far* param);
uint32 ForwardEvent(int eventId, uint32 param = 0);
void Init(TRegList* regList);
void Shutdown();
Protected Data Members
TOcPart* ActivePart;

TSize Extent;
TOcFormatList FormatList;
int Link;
TOcApp& OcApp;
TOcDocument& OcDocument;
TPoint Origin;
HWND Win;
string WinTitle;

See Also
Connector Objects
Creating ObjectComponents View and Document Objects
TOcApp
TOcDocument
TOcPart
TUnknown

TOcView Public Constructor
See Also TOcView

Syntax
TOcView(TOcDocument& doc, TRegList* regList = 0, IUnknown* outer=0);
Description
doc refers to the TOcDocument object that corresponds to the view. TOcDocument manages the data
in a compound document, and TOcView manages the appearance of the document on the screen.
regList is the registration structure for a particular document. Use the BEGIN_REGISTRATION and
END_REGISTRATION macros to create an object of type TRegList.
outer is the root interface of an outer object inside which the new view is asked to aggregate itself.

See Also
Registration Macros (OWL.HLP)
TAutoObject
TOcDocument

TOcView Protected Destructor
TOcView

Syntax
~TOcView();
Description
Destroys the view object.

TOcView::ActivatePart
See Also TOcView

Syntax
bool ActivatePart(TOcPart* part);
Description
Attempts to activate the given part (by calling TOcPart::Activate). Returns true if the designated part
becomes active and false otherwise. If any other part was already active, it is deactivated first.

See Also
TOcPart::Activate
TOcView::ActivePart
TOcView::GetActivePart

TOcView::BrowseClipboard
See Also TOcView

Syntax
bool BrowseClipboard(TOcInitInfo& initInfo);
Description
Displays the Paste Special dialog box showing the available formats for the data currently on the
Clipboard, allowing the user to choose what format to paste. Returns true if the user pastes data and
false if the user cancels or the dialog box fails.
Create initInfo first by passing the view to the TOcInitInfo constructor. BrowseClipboard fills initInfo with
information about the object. Then use initInfo to create a new TOcPart.
This function calls TOcApp::BrowseClipboard.

See Also
TOcApp::BrowseClipboard
TOcInitInfo
TOcPart

TOcView::BrowseLinks
See Also TOcView

Syntax
bool BrowseLinks();
Description
Displays the Links dialog box showing all the linked objects in the compound document and what they
are linked to. The user can modify the displayed links, perhaps to reconnect with a file that was moved.
Returns false if an error prevents the dialog box from being displayed or if the user cancels the dialog
box.

See Also
TOcApp::BrowseClipboard

TOcView::Copy
TOcView

Syntax
bool Copy(TOcPart* part);
Description
Creates a copy of a linked or embedded object and places it on the Clipboard. Returns true if the
operation succeeds. Call Copy in response to Cut or Copy commands from the Edit menu.

TOcView::EvActivate
See Also TOcView

Syntax
void EvActivate(bool activate);
Description
A container calls this function if any of its windows gains focus while any of its linked or embedded
objects is being edited in place. EvActivate restores focus to the in-place activated view. If the user
clicks in the client window of an MDI frame, for example, the client window needs to shift the focus
back to the view, which in turn restores focus to the activated part. A part engaged in in-place editing
should always retain the focus.
activate should be true if the window is gaining focus and false if it is losing it.

See Also
TOcView::EvClose
TOcView::EvResize
TOcView::EvSetFocus

TOcView::EvClose
See Also TOcView

Syntax
virtual void EvClose();
Description
A container calls this function to tell ObjectComponents that the window associated with the view has
closed.

See Also
TOcView::EvActivate
TOcView::EvResize
TOcView::EvSetFocus

TOcView::EvResize
See Also TOcView

Syntax
void EvResize();
Description
A container calls this function to tell OLE when the window associated with the view changes size.
OLE might need this information to let a server modify its tool bar during in-place editing.

See Also
TOcView::EvActivate
TOcView::EvClose
TOcView::EvSetFocus

TOcView::EvSetFocus
See Also TOcView

Syntax
bool EvSetFocus(bool set);
Description
A container calls this function to tell OLE that the window associated with the view has either received
or lost the input focus. Make set true if the window gained the focus or false if it lost the focus.
The function returns false if the view is unable to receive the focus. That happens if an object in the
view is engaged in in-place editing. Such objects retain the focus until the editing session ends.

See Also
TOcView::EvActivate
TOcView::EvResize
TOcView::EvSetFocus

TOcView::GetActivePart
See Also TOcView

Syntax
TOcPart* GetActivePart();
Description
Returns the currently active part. If the view does not contain an active part, the return value is 0.

See Also
TOcView::ActivePart
TOcView::ActivatePart

TOcView::GetOcDocument
See Also TOcView

Syntax
TOcDocument& GetOcDocument();
Description
Returns the ObjectComponents document associated with the view. Views and documents work in
pairs. TOcView manages the appearance of a compound document and TOcDocument manages the
data in it.

See Also
TOcDocument
TOcView::OcDocument

TOcView::GetOrigin
See Also TOcView

Syntax
TPoint GetOrigin() const;
Description
Returns the physical coordinates currently mapped to the upper left corner of the container window's
client area. ObjectWindows programmers can ignore this method because TOleWindow performs
scrolling for you.

See Also
TOcView::Origin
TOcView::ScrollWindow
TOleWindow (OWL.HLP)
TPoint (OWL.HLP)

TOcView::GetWindowRect
See Also TOcView

Syntax
TRect GetWindowRect() const;
Description
Returns the client rectangle for the view window.

See Also
TOcView::GetOrigin
TRect (OWL.HLP)

TOcView::InvalidatePart
TOcView

Syntax
void InvalidatePart(const TOcPart* part);
Description
Sends an OC_VIEWPARTINVALID message to the container window. If the container window
responds with false to indicate it has not processed the message, InvalidatePart tells the system that
the area inside the part's bounding rectangle is invalid and needs repainting.

TOcView::Paste
TOcView

Syntax
bool Paste(bool linking = false);
Description
Inserts an object from the Clipboard into the compound document. If linking is true, Paste will try to
create a link rather than embedding the new object. Make linking true when processing the Paste Link
command.

TOcView::RegisterClipFormats
See Also TOcView

Syntax
bool RegisterClipFormats(TRegList& regList);
Description
Tells OLE what Clipboard formats the document understands. The list of formats comes from regList,
the document's registration structure. Use the BEGIN_REGISTRATION and END_REGISTRATION to
create regList. Also, the REGFORMAT places Clipboard format entries in the structure. To register
custom Clipboard formats, be sure to call TOcApp::AddUserFormatName as well. For more
information, see Registration Macros in OWL.HLP.
RegisterClipFormats is called automatically when the view is constructed.

See Also
Registration Macros (OWL.HLP)
TOcApp::AddUserFormatName
TOcView::FormatList

TOcView::ReleaseObject
See Also TOcView

Syntax
virtual void ReleaseObject();
Description
Call this instead of delete to destroy a TOcView object when you are through with it. ReleaseObject
decrements the view's internal reference count and dissociates the view from its window.

See Also
TOcView::SetupWindow

TOcView::Rename
TOcView

Syntax
virtual void Rename();
Description
Tells OLE when the name assigned to a compound document has changed. OLE updates its internal
records. Also, the associated TOcDocument object passes the new name to any linked or embedded
objects it contains.

TOcView::ScrollWindow
See Also TOcView

Syntax
void ScrollWindow(int dx, int dy);
Description
Brings new areas of a document into view by adjusting the origin of the container window. dx and dy
are horizontal and vertical offsets added to the origin. This function is usually called in response to
messages from the window scroll bars or from the arrow keys.

See Also
TOcView::GetOrigin
TOcView::Origin

TOcView::SetLink
See Also TOcView

Syntax
void SetLink(bool pasteLink);
Description
Sets an internal flag that determines whether Paste operations create linked or embedded objects.
More specifically, SetLink alters the priority of the document's registered Clipboard formats. You set the
original priorities with the first parameter of the REGFORMAT macro. If pasteLink is true, then SetLink
moves the Link Source format to the top of the list. If pasteLink is false, it restores the Link Source
format to its original position behind Embed Source.
It is usually not necessary to call SetLink directly because the Paste method calls it for you.

See Also
Registration Macros (OWL.HLP)
TOcView::Paste

TOcView::SetupWindow
See Also TOcView

Syntax
void SetupWindow(HWND hWin, bool embedded = false);
Description
Tells the view what window is associated with it. The view sometimes sends notification messages to
its window. Usually this function should be called from the SetupWindow member of the container's
window class. TOleWindow performs this task automatically.
embedded should be true only in a server invoked by OLE to support a container. (Check for this
condition by calling TOcModule::IsOptionSet and looking for the amEmbedded flag.) Passing true for
embedded directs ObjectComponents to execute registration steps in a sequence that permits a
container/server application to embed its own objects within itself.

See Also
OC_VIEWxxxx messages
TOcAppMode
TOcModule::IsOptionSet
TOleWindow::SetupWindow (OWL.HLP)
TOcView::Win

TOcView::ForwardEvent
See Also TOcView

Syntax

Form 1
uint32 ForwardEvent(int eventId, const void far* param);
Form 2
uint32 ForwardEvent(int eventId, uint32 param = 0);
Description
Both forms send a WM_OCEVENT message to the container's window. The eventId parameter
becomes the message's wParam and should be one of the OC_APPxxxx or OC_VIEWxxxx constants.
The second parameter becomes the message's lParam and may be either a pointer (Form 1) or an
integer (Form 2). Which form you use depends on the information a particular event needs to send in
its lParam.

See Also
OC_APPxxxx messages
OC_VIEWxxxx messages
TOcView::Win
WM_OCEVENT message

TOcView::Init
See Also TOcView

Syntax
void Init(TRegList* regList);
Description
Initializes a newly created view object. Init is called by both of the TOcView constructors. Usually you
don't need to call it directly yourself. TRegList is the data type that holds all the registry keys and
associated values for a single registration table. regList must be a document registration table (the
structure created by the registration macrosand conventionally named DocReg.)
Init makes this view the document's active view, connects with the BOCOLE support library, and
registers supported Clipboard formats.

See Also
Registration Macros (OWL.HLP)

TOcView::Shutdown
See Also TOcView

Syntax
void Shutdown();
Description
Called by the destructor of derived classes to release helper objects that the view holds internally.

See Also
TOcView Public Constructors and Destructor

TOcView::ActivePart
See Also TOcView

Syntax
TOcPart* ActivePart;
Description
Remembers which part in a document is the currently active part.

See Also
TOcView::ActivatePart
TOcView::GetActivePart

TOcView::Extent
See Also TOcView

Syntax
TSize Extent;
Description
Holds the current width and height of the container window's client area. Both are measured in device
units.

See Also
TOcView::GetWindowRect
TSize (OWL.HLP)

TOcView::FormatList
See Also TOcView

Syntax
TOcFormatList FormatList;
Description
Holds information about all the Clipboard formats the compound document supports. The list is
generated from information the application registers for the types of documents it supports.

See Also
TOcFormatList
TOcView::RegisterClipFormats

TOcView::Link
TOcView

Syntax
int Link;
Description
Used internally by the Paste method to adjust the priority of link source format.

TOcView::OcApp
TOcView

Syntax
TOcApp& OcApp;
Description
A view stores the application that owns it in this protected data member.

TOcView::OcDocument
See Also TOcView

Syntax
TOcDocument& OcDocument;
Description
A view stores the document object that owns the view in this protected data member. The view object
manages the appearance of a compound document, and the document object manages the data.

See Also
TOcView::GetOcDocument

TOcView::Origin
See Also TOcView

Syntax
TPoint Origin;
Description
Holds the coordinates of the point currently mapped to the upper left corner of the container window's
client area.

See Also
TOcView::GetOrigin

TOcView::Win
See Also TOcView

Syntax
HWND Win;
Description
Holds a handle to the window where the view draws itself. The ForwardEvent method sends messages
to this window.

See Also
TOcView::ForwardEvent
TOcView::SetupWindow

TOcView::WinTitle
TOcView

Syntax
string WinTitle;
Description
Holds the original caption string of the container's window. The caption is usually modified as the user
moves from part to part within the document. When no part is active, the view restores the window's
title to this original string.

TOcViewCollectionIter Class
See Also Linking and Embedding Classes

Header File
oclink.h

Description
A view collection iterator enumerates the views of a compound document. A compound document can
have many views. Within the container, each object is represented by an object of type TOcPart. To
manage all the views it contains, TOcDocument creates a collection object of type TOcViewCollection.
The collection object takes care of adding and deleting members of the collection. In order to walk
through the current list of its views, TOcDocument also creates a view collection iterator. An iterator
basically points to an element in the collection. You can increment the iterator to walk through the list
of objects. The iterator signals when it reaches the end (the ++ operator returns 0).
Together the collection and its iterator give the document much flexibility in managing its objects.

Public Constructor
TOcViewCollectionIter(const TOcViewCollection& c);
Public Member Functions
TOcLinkView* operator ++();
TOcLinkView* operator ++(int);
TOcLinkView* Current() const;
operator int() const;
void Restart();
void Restart(unsigned start, unsigned stop);

See Also
TOcLinkView
TOcViewCollection

TOcViewCollectionIter Public Constructor
See Also TOcViewCollectionIter

Syntax
TOcViewCollectionIter(const TOcViewCollection& c);
Description
 Constructs an iterator to enumerate the view objects contained in the collection c

See Also
TOcViewCollection

TOcViewCollectionIter::operator ++
TOcViewCollectionIter

Syntax
TOcLinkView* operator ++;
TOcLinkView* operator ++(int);
Description

Form 1: Returns the current view and then advances the iterator to point to the next view (post-
increment).
Form 2: Advances the iterator to point to the next view in the list and then returns that view (pre-
increment).

TOcViewCollectionIter::Current
TOcViewCollectionIter

Syntax
TOcLinkView* Current() const;
Description
 Returns the view that the iterator currently points to.

TOcViewCollectionIter::operator int
TOcViewCollectionIter

Syntax
operator int() const;
Description
 Converts the iterator to an integer value in order to test whether the iterator has finished enumerating
the collection. Returns zero if the iterator has reached the end of the list and a nonzero value if it has
not.

TOcViewCollectionIter::Restart
TOcViewCollectionIter

Syntax

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Resets the iterator to begin again with the first view of the document.
Form 2: Resets the iterator to enumerate a partial range of views of the document, beginning with the
object at position start in the list and ending with the object at position stop.

TOcViewCollection Class
See Also Linking and Embedding Classes

Header File
oclink.h

Description
Manages a set of TOcLinkView objects. Every TOcDocument creates a link view collection object to
maintain the set of link views associated with the document. The view collection object adds views,
deletes views, finds them, counts them, and generally helps the document keep track of what views it
has.
Because TOcDocument contains a view collection object, usually you do not have to create or
manipulate the collection directly yourself.

Public Constructors and Destructors
TOcViewCollection();
~TOcViewCollection();
Public Member Functions
int Add(TOcLinkView* const& View);
void Clear();
virtual unsigned Count() const;
void operator delete(void* ptr) ;
int Detach(TOcLinkView* const& view, int del = 0);
unsigned Find(TOcLinkView* const& view) const;
TOcLinkView* Find(TString const moniker) const;
int IsEmpty() const;

See Also
TOcView
TOcLinkView
TOcViewCollectionIter

TOcViewCollection Public Constructor and Destructor
TOcViewCollection

Constructor
TOcViewCollection();
Destructor
~TOcViewCollection();
Description
Creates an empty collection. Call Add to insert link views into the collection.

Destructor
Releases all the servers that supply the link views in this collection.

TOcViewCollection::Add
See Also TOcViewCollection

Syntax
int Add(TOcLinkView* const& View);
Description
Adds a new link view to the collection. Returns 1 for success and 0 for failure.

See Also
TOcView

TOcViewCollection::Clear
TOcViewCollection

Syntax
void Clear();
Description
Disconnects all the link views in the collection from their servers, removes them from the collection,
and releases them. Tells OLE that this collection has no further need for the servers.

TOcViewCollection::Count
TOcViewCollection

Syntax
virtual unsigned Count();
Description
Returns the number of link views currently in the collection.

TOcViewCollection::Delete
TOcViewCollection

Syntax
void operator delete(void* ptr);
Description
Deletes a link view object (ptr) from the collection.

TOcViewCollection::Detach
See Also TOcViewCollection

Syntax
int Detach(TOcLinkView* const& view, int del = 0);
Description
Removes this link view from the collection. If del is nonzero, then Detach also releases the
TOcLinkViewobject. If the view's internal reference count reaches zero as a result, the view deletes
itself. Returns 1 for success and 0 for failure.

See Also
TOcLinkView

TOcViewCollection::Find
See Also TOcViewCollection

Syntax

Form 1
unsigned Find(TOcLinkView* const& view);
Form 2
TOcLinkView* Find(TString const moniker) const;
Description

Form 1
Searches for view and returns its position in the collection. If view is not in the collection, Find returns
UINT_MAX.

Form 2
Search for the view with the given moniker and returns a pointer to the view. If the view is not in the
collection, Find returns 0.

See Also
TOcLinkView

TOcViewCollection::IsEmpty
TOcViewCollection

Syntax
int IsEmpty();
Description
Returns true if the collection currently contains no objects and false if it contains at least one object.

TOcViewPaint struct
See Also Linking and Embedding Structs

Header File
ocf/ocview.h

Description
The OC_VIEWPAINT message carries a pointer to this structure in its lParam. The message notifies a
server that it should update its painting of an object. The structure carries information about the area
that needs repainting. Generally a program should respond by calling paint methods on the window or
view that receives the message. For examples, look at the source code for
TOleWindow::EvOcViewPaint.

Public Data Members
TOcAspect Aspect;
TRect* Clip;
HDC DC;
TOcPart* Part;
TRect* Pos;

See Also
OC_VIEWxxxx Messages
TOleWindow::EvOcViewPaint (OWL.HLP)

TOcViewPaint::Aspect
See Also TOcViewPaint

Syntax
TOcAspect Aspect;
Description
Holds an enumerated value that tells how the part is to be drawn. A single object can often be drawn in
more than one way. For example, the server might show the object's full contents, a miniature
representation of the contents, or an icon that represents the type of object without indicating its
specific contents.

See Also
TOcAspect enum

TOcViewPaint::Clip
See Also TOcViewPaint

Syntax
TRect* Clip;
Description
Designates the area where the part should be allowed to draw. The server can clip the output to this
area to avoid drawing outside its allotted space.

See Also
TRect (OWL.HLP)

TOcViewPaint::DC
TOcViewPaint

Syntax
HDC DC;
Description
Contains a handle to the device context where the repainting should occur.

TOcViewPaint::Part
See Also TOcViewPaint

Syntax
TOcPart* Part;
Description
Points to the part that needs to be redrawn. This member can be used to ask the part to repaint itself.
In the current implementation of ObjectComponents, this member is not used.

See Also
TOcPart

TOcViewPaint::Pos
See Also TOcViewPaint

Syntax
TRect* Pos;
Description
Specifies the upper left corner of the server object that has become invalid and needs repainting.

See Also
TRect (OWL.HLP)

TOleAllocator Class
See Also General OLE Classes, Macros, and Type Definitions

Header File
ocf/oleutil.h

Description
A linking and embedding .EXE application creates a memory allocator object in order to tell OLE what
memory manager the system should use when allocating and deallocating memory on behalf of the
server. Unless you have particular memory management needs, it's easiest to let OLE use its default
allocator.
When writing a linking and embedding application, you usually do not need to create a memory
allocator object directly because your TOcApp object takes care of it for you. The only applications that
create memory allocators directly are automation servers that do not support linking and embedding.
Because automation servers don't create TOcApp objects, they do need to create TOleAllocators.
DLL servers do not need a memory allocator because the system uses whatever allocator the .EXE
client designates.

Public Constructors and Destructor
~TOleAllocator();
TOleAllocator();
TOleAllocator(IMalloc* mem = 0);
Public Member Functions
void far* Alloc(unsigned long size);
void Free(void far* pv);
Public Data Member
IMalloc* Mem;

See Also
Creating a TOleAllocatorObject
TOcApp

TOleAllocator Public Constructors and Destructor
See Also TOleAllocator

Constructor

Form 1
TOleAllocator(IMalloc* mem = 0);
Form 2
TOleAllocator();
Destructor
~TOleAllocator();
Description
Form 1: Initializes the OLE system library and, if mem is nonzero, registers a custom memory
allocator. Unless you have particular memory management needs, it is easiest to let OLE use its
default allocator. To implement your own allocator, refer to the OLE documentation on the IMalloc
interface.
Form 2: Tells OLE to use the custom memory allocator. Does not initialize the OLE system library.
In .EXE applications, the registrar object initializes the OLE library. In DLL servers, the .EXE client
provides the allocator.

Destructor
Releases the memory allocator (either the default allocator or a custom allocator) and uninitializes the
OLE system.

See Also
TOcRegistrar
TRegistrar

TOleAllocator::Alloc
See Also TOleAllocator

Syntax
void far* Alloc(unsigned long size);
Description
Calls the Alloc method on the active memory allocator to request a block of memory. size gives the
size of the block. Unless you have registered a custom memory allocator, Alloc calls OLE's default
allocator. If the request fails, Alloc returns 0.

See Also
TOleAllocator::Free

TOleAllocator::Free
See Also TOleAllocator

Syntax
void Free(void far* block);
Description
Calls the Free method on the active memory allocator to release a block of memory previously
allocated with Alloc. block points to the base of the area to be released. Unless you have registered a
custom memory allocator, Free calls OLE's default allocator.

See Also
TOleAllocator::Alloc

TOleAllocator::Mem
TOleAllocator

Syntax
IMalloc* Mem;
Description
Points to the active memory allocator object. Unless you have registered a custom memory allocator,
Mem points to OLE's default allocator.

TRegistrar Class
See Also Automation Classes

Header File
ocf/ocreg.h

Description
TRegistrar manages all the registration tasks for an application. It processes OLE-related switches on
the command line and records any necessary information about the application in the system
registration database. If the application is already registered in the database, the registrar confirms
that the registered path, progid, and clsid are still accurate. If not, it reregisters the application.
Every ObjectComponents application needs to create a registrar object. If your application supports
automation but not linking and embedding, then create a TRegistrar object. To support linking and
embedding--alone or along with automation--then create a TOcRegistrar instead. TOcRegistrar
extends TRegistrar by connecting the application to the BOCOLE support library interfaces that
support linking and embedding.
An application's main procedure usually performs these actions with its registrar:

Construct the registrar, passing it a pointer to the application's factory callback.

Call IsOptionSet to check for options that might affect how the application chooses to start (for
example, terminating if the application was invoked simply for registration.)

Call Run to enter the program's message loop.

Public Constructor and Destructor
TRegistrar(TRegList& regInfo, TComponentFactory callback, string& cmdLine,
HINSTANCE hInst);

virtual ~TRegistrar();
Public Member Functions
virtual bool CanUnload();
TUnknown* CreateAutoApp(TObjectDescriptor app, uint32 options, IUnknown*
outer=0);

TUnknown* CreateAutoObject(const void* obj, const typeinfo& objInfo, const
void* app, const typeinfo& appInfo);

TUnknown* CreateAutoObject(TObjectDescriptor obj, TServedObject& app);
virtual void far* GetFactory(const GUID& clsid, const GUID far& iid);
uint32 GetOptions() const;
bool IsOptionSet(uint32 option) const;
void ProcessCmdLine(string& cmdLine);
void ReleaseAutoApp(TObjectDescriptor app);
void RegisterAppClass();
virtual int Run();
void SetOption(uint32 bit, bool state);
virtual void Shutdown(IUnknown* releasedObj, uint32 options);
void UnregisterAppClass();
Protected Data Member
TAppDescriptor& AppDesc;
Protected Constructor
TRegistrar(TAppDescriptor& appDesc);

See Also
Creating a Registrar Object
TOcRegistrar

TRegistrar Public Constructor and Destructor
See Also TRegistrar

Syntax

Constructor
TRegistrar(TRegList& regInfo, TComponentFactory callback, string& cmdLine,
HINSTANCE hInst);

Destructor
virtual ~TRegistrar();
Description
regInfo is the application registration structure (conventionally named appReg). callback is the factory
callback function that ObjectComponents invokes when it is time for the application to create a
document. An ObjectWindows program can use the TOleFactory class to create this callback. cmdLine
points to the command line received when the application was invoked. hInst is the application
instance. For more a description of TOleFactory, see Factory Template Classes and TOleFactoryBase.
The constructor processes OLE-related switches and removes them from the command line. (Call
IsOptionSet to determine what switches were found.) It also initializes some settings from the
application registration table. If the application is a DLL, the constructor initializes the global
DllRegistrar variable.

Destructor
Deletes objects the registrar maintains internally.

See Also
Factory Template Classes (OWL.HLP)
string class (CLASSLIB.HLP)
TComponentFactory typedef
TOleFactoryBase (OWL.HLP)
TRegistrar::IsOptionSet

TRegistrar Protected Constructor
See Also TRegistrar

Syntax
TRegistrar(TAppDescriptor& appDesc);
Description
The protected constructor is used only by the derived class TOcRegistrar.TAppDescriptor is a class
that both registrar objects (TRegistrar and TOcRegistrar) use internally to hold information about an
application.

See Also
TOcRegistrar

TRegistrar::CanUnload
TRegistrar

Syntax
virtual bool CanUnload();
Description
Returns true if the application is not currently serving any OLE clients and false otherwise.

TRegistrar::CreateAutoApp
See Also TRegistrar

Syntax
TUnknown* CreateAutoApp(TObjectDescriptor app, uint32 options, IUnknown*
outer = 0);

Description
Creates an instance of an automated application. This method is usually called from the application's
TComponentFactory callback function.
app is the automation server's primary automated class created from the TAutoObjectDelete<>
template.
options contains the application's mode flags. This is usually the same value passed in to the factory
callback function. The possible values are enumerated in TOcAppMode.
outer points to the IUnknown interface of an outer component under which the application is asked to
aggregate.
The return value points to the new OLE application object.

See Also
TAutoObjectDelete<>
TComponentFactory typedef
TRegistrar::CreateAutoObject

TRegistrar::CreateAutoObject
See Also TRegistrar

Syntax

Form 1
TUnknown* CreateAutoObject(TObjectDescriptor obj, TServedObject& app);
Form 2
TUnknown* CreateAutoObject(const void* obj, const typeinfo& objInfo, const
void* app, const typeinfo& appInfo);

Description
CreateAutoObject asks an automated application to instantiate one of its automated objects. It is
usually called from the application's TComponentFactory callback function. Which form you call
depends on what information you have to identify the kind of object you want to create.
Form 1: app is the automated OLE application object.
obj is the automated C++ object.
Form 2: app and obj are the same as in Form 1.
objInfo identifies the type of object in obj. appInfo identifies the type of object in app. Both values can
be obtained using typeid.

See Also
TComponentFactory typedef
TRegistrar::CreateAutoApp
typeid (BCW.HLP)
typeinfo class (CLASSLIB.HLP)

TRegistrar::GetFactory
TRegistrar

Syntax
virtual void far* GetFactory(const GUID& clsid, const GUID far& iid);
Description
Returns a pointer to the factory interface for creating type object indicated by clsid. iid names the
particular interface you want to receive. If the registrar is unable to find an iid interface for clsid objects,
it returns zero.
ObjectComponents calls a DLL's GetFactory member every time a new client loads the DLL. Usually
you do not need to call GetFactory yourself.

TRegistrar::GetOptions
See Also TRegistrar

Syntax
uint32 GetOptions() const;
Description
Returns a 32-bit integer containing bit flags that reflect the application's running mode. Some of the
flags are set in response to command-line switches. Others are set directly by ObjectComponents. For
a list of the mode flags, see the TOcAppMode enum.

See Also
TOcAppMode enum
TRegistrar::IsOptionSet
TRegistrar::ProcessCmdLine
TRegistrar::SetOption

TRegistrar::IsOptionSet
See Also TRegistrar

Syntax
bool IsOptionSet(uint32 option) const;
Description
Returns true if a particular option was set as a flag on the application's command line, and false if the
option was not set. The flags are set by the ProcessCmdLine method.
For a list of possible values option can assume, see the TOcAppMode enum.
TOcApp objects also have an IsOptionSet method. In most cases they return the same results. In a
DLL server, however, the registrar remembers the set of options that the server originally started with,
while TOcApp::IsOptionSet queries the options for the currently active instance of the DLL.
Usually the TOcModule object manages the creation of the TOcApp object for you, so to query per-
instance options it is easiest to call TOcModule::IsOptionSet.

See Also
TOcApp::IsOptionSet
TOcAppMode enum
TOcModule::IsOptionSet
TRegistrar::GetOptions
TRegistrar::ProcessCmdLine
TRegistrar::SetOption

TRegistrar::ProcessCmdLine
See Also TRegistrar

Syntax
void ProcessCmdLine(string& cmdLine);
Description
Locates any OLE-related switches on the application's command line (or passed in to a DLL server
from ObjectComponents.) The switches tell the program whether it has been launched independently
or as a server, whether it should register or unregister itself, whether to create a type library, and signal
other running conditions as well. ProcessCmdLine records the presence of each flag it finds. You can
call IsOptionSet to determine the results.
The command line is always processed for you when the registrar object is constructed. Usually you
do not need to call this function directly.
cmdLine contains the string of arguments passed to the program on its command line.
ProcessCmdLine removes OLE-related switches from the command line. That lets you process
cmdLine afterwards for any of your own arguments without worrying about OLE arguments.

See Also
Processing the Command Line
string (CLASSLIB.HLP)
TRegistrar::IsOptionSet

TRegistrar::RegisterAppClass
See Also TRegistrar

Syntax
void RegisterAppClass();
Description
Tells OLE that an automated application is up and ready to create an application instance. Has no
effect if called from an application that does not support automation.
For convenience, it is recommended that every ObjectComponents application, even those that do not
support automation, call RegisterAppClass on starting up and UnregisterAppClass when closing down.
This habit is harmless even if sometimes unnecessary and ensures that you will not forget to include
registration functions if you later add automation.

See Also
TRegistrar::UnregisterAppClass

TRegistrar::ReleaseAutoApp
See Also TRegistrar

Syntax
void ReleaseAutoApp(TObjectDescriptor app);
Description
This method is used by an application's factory callback function if the application must detach itself
from OLE before it can shut down. Detaching the application is necessary when an automated
application has registered its application object for its class, allowing the controller to manipulate it.

See Also
Factory Template Classes (OWL.HLP)

TRegistrar::Run
See Also TRegistrar

Syntax
virtual int Run();
Description
Call this function to execute your program. If the application was built as an .EXE file, then Run lets the
application enter its message loop. If the application was built as a DLL, then Run returns without
entering the message loop. DLL servers must wait for OLE to call their factory before they run. The
purpose of the Run function is to let you build your applications as either an .EXE or a DLL without
having to modify your code.
In .EXE programs, Run performs the following steps:

If the application is automated, call RegisterAppClass.

Call the factory function to create and run the application. The application enters its message
loop. (In an DLL server, creating and running are separate steps.)

Call the factory function to shut down the application.

Ensure that the application's TOcApp connector object is properly released.

See Also
TOcApp
TRegistrar::RegisterAppClass
TRegistrar::Shutdown

TRegistrar::SetOption
See Also TRegistrar

Syntax
void SetOption(uint32 bit, bool state);
Description
Modifies the application's running mode flags. bit contains bit flags from the TOcAppMode enum. If
state is true, SetOption turns the flags on. If state is false, it turns the flags off. You should never have
to call this function because ObjectComponents always maintains the mode flags.

See Also
TOcAppMode enum
TRegistrar::GetOptions
TRegistrar::IsOptionSet
TRegistrar::ProcessCmdLine

TRegistrar::Shutdown
See Also TRegistrar

Syntax
virtual void Shutdown(IUnknown* releasedObj, uint32 options);
Description
Calls the application's factory function and asks it to make the application stop. Ensures that the
application's TOcApp connector object is properly released. In the normal path of execution, the Run
command performs the same tasks. Call Shutdown to terminate the application directly.

See Also
TOcApp
TRegistrar::Run

TRegistrar::UnregisterAppClass
See Also TRegistrar

Syntax
void UnregisterAppClass();
Description
Announces that the application is no longer available for OLE interactions.

See Also
TRegistrar::RegisterAppClass

TRegistrar::AppDesc
TRegistrar

Syntax
TAppDescriptor& AppDesc;
Description
Holds the application descriptor. ObjectComponents uses an application descriptor internally to
manage information about a component. (Like EXEs, each DLL gets an application descriptor of its
own.) TAppDescriptor is undocumented because it is used only internally and is subject to change.
The registrar classes, TOcRegistrar and TRegistrar, are the supported interfaces to the application
descriptor. The registrar constructs the descriptor, and most of its member functions call descriptor
functions to perform the work.
Usually you will not need to manipulate this data member directly.

TUnknown Class
See Also General OLE Classes, Macros, and Type Definitions

Header File
ocf/oleutil.h

Description
Implements the standard OLE IUnknown interface. ObjectComponents derives some of its own
classes from TUnknown, so usually you do not need to use it directly yourself. Advanced users,
however, might find TUnknown helpful in creating their own custom Component Object Model (COM)
objects.
The TUnknown class is the basis for the ObjectComponents implementation of object aggregation.
With aggregation, you can make distinct components work together as a single OLE object. A single
primary object becomes the outer object, and secondary objects behave as though they are parts of
the primary object. For this to work, whenever any inner object is asked for its IUnknown interface, it
must return the IUnknown that belongs to the outer object. If the outer object is asked for an interface it
does not support, it forwards the request to the chain of attached inner objects. All the interfaces
supported by any object in the aggregation are available through the QueryInterface method of the
outer object.
To add a new object to a chain of aggregated objects, call the Aggregate method from any object
already in the chain. Each new component receives the IUnknown pointer to its outer object and
returns its own IUnknown pointer to be placed in the chain of secondary objects.

Public Member Functions
IUnknown& Aggregate(TUnknown& inner);
IUnknown* GetOuter();
unsigned long GetRefCount();
operator IUnknown&();
operator IUnknown*();
IUnknown* SetOuter(IUnknown* outer);
Protected Constructor and Destructor
TUnknown();
virtual ~TUnknown();
Protected Member Functions
virtual HRESULT QueryObject(const GUID far& iid, void far* far* pif);
IUnknown& ThisUnknown();
Protected Data Member
IUnknown* Outer;

See Also
TComponentFactory typedef

TUnknown::Aggregate
See Also TUnknown

Syntax
IUnknown& Aggregate(TUnknown& inner);
Description
Aggregates a new object under the current object. inner points to the IUnknown interface of the new
object. The current object stores inner for use in responding to future QueryInterface calls. It also calls
AddRef on the inner pointer.
If this is already part of an aggregation, inner is passed down to the last inner object in the chain.
Aggregate returns a reference to the object's own outer IUnknown interface. The newly added object
uses the return value as its Outer pointer. To aggregate this under an object that is not a TUnknown,
call SetOuter instead.
Aggregate increments the reference count of the inner TUnknown object.

See Also
TUnknown::SetOuter
TUnknown::Outer

TUnknown::GetOuter
See Also TUnknown

Syntax
IUnknown* GetOuter();
Description
Returns a pointer to the object's outer IUnknown interface, the one that belongs to the primary object
in a group of aggregated objects. Has no effect on the reference count of the outer object.

See Also
TUnknown::SetOuter
TUnknown::Outer

TUnknown::GetRefCount
TUnknown

Syntax
unsigned long GetRefCount();
Description
Returns the reference count of the outer object. If this is not aggregated, then GetRefCount returns
the object's own reference count.
The reference count tells how many clients hold pointers to the object.

TUnknown::operator IUnknown*()
See Also TUnknown

Syntax
operator IUnknown*();
Description
Returns a pointer to the object's outer IUnknown interface. Increments the object's reference count
first.

See Also
TUnknown::operator IUnknown&

TUnknown::Protected Constructor and Destructor
See Also TUnknown

Constructor
TUnknown();
Destructor
virtual ~TUnknown();
Description
These members are protected because only a derived class should be able to construct a TUnknown
object. TUnknown is meant to be a base for other objects, not an independent object.

Constructor
Creates a TUnknown object with an initial reference count of 0. Initially the object is not aggregated
with any other object.

Destructor
Called when the object's reference counnt reaches zero. The destructor is declared virtual to invoke
the destructors of derived classes.

See Also
TUnknown::Aggregate

TUnknown::operator IUnknown&()
See Also TUnknown

Syntax
operator IUnknown&();
Description
Returns a reference to the object's outer IUnknown interface. Does not increment the object's
reference count.

See Also
TUnknown::operator IUnknown*

TUnknown::SetOuter
See Also TUnknown

Syntax
IUnknown* SetOuter(IUnknown* outer);
Description
Tells the object to aggregate itself under the object outer. When asked for its IUnknown interface, this
always returns outer. SetOuter returns the object's own IUnknown interface to the outer object. It does
not call AddRef before returning the pointer.
If outer is 0, SetOuter ignores outer but still returns its own IUnknown interface.
SetOuter is called to make the object aggregate under an unknown outer object. If the outer object is
also a TUnknown, call Aggregate instead. Aggregate sets the object's inner pointer as well as its outer
pointer.

See Also
TUnknown::Aggregate
TUnknown::GetOuter
TUnknown::Outer

TUnknown::QueryObject
See Also TUnknown

Syntax
virtual HRESULT QueryObject(const GUID far& iid, void far* far* pif);
Description
Asks whether the object supports the interface identified by iid. If the object supports the interface, the
function returns HR_NOERROR and places a pointer to the interface in pif.
The implementation of QueryObject in TUnknown always fails. It always returns HR_NOINTERFACE.
Classes derived from TUnknown must override this function.

See Also
HR_xxxx Return Constants

TUnknown::ThisUnknown
TUnknown

Syntax
IUnknown& ThisUnknown();
Description
Returns a reference to the IUnknown interface for this, not to the outer or inner aggregated objects.

TUnknown::Outer
See Also TUnknown

Syntax
IUnknown* Outer;

Description
Holds a pointer to the IUnknown interface of the outer object in a group of aggregated objects.

See Also
TUnknown::GetOuter
TUnknown::SetOuter

TXAuto Class
See Also ObjectComponents Exception Classes OWL Hierarchy

Header File
ocf/autodefs.h

Base Class
TXBase

Description
TXAuto is the exception object that ObjectComponents throws when it encounters an unexpected error
while processing automation calls. The possible errors are indicated by the TError nested enum
values.

Public Constructor
TXAuto(TXAuto::TError err);
Public Data Member
TError ErrorCode;
Type Definition
enum TError

See Also
Exception Handling in ObjectComponents
TXBase (OWL.HLP)
TXObjComp
TXOle
TXRegistry

TXAuto Public Constructor
See Also TXAuto

Syntax
TXAuto(TXAuto::TError err);
Description
Constructs an exception object to describe the problem indicated by err.

See Also
TXAuto::TError enum

TXAuto::TError enum
See Also TXAuto

Syntax
enum TError
Description
The values of the enumeration identify possible errors that can occur during automation.

Constant Meaning

xNoError No error occurred.
xConversionFailure Problem converting a value from a VARIANT union to the expected data

type.
xNotIDispatch Attempted to send an automation command to an object that does not

execute commands.
xForeignIDispatch Attempted to send an automation command to an automated object that

does not derive from TAutoProxy.
xTypeMismatch A supplied argument cannot be converted to the required type.
xNoArgSymbol A command attempted to use more arguments than the server

recognizes.
xParameterMissing An automation call failed to provide a required argument when setting a

property value.
xNoDefaultValue A parameter is missing and no default value was supplied.
xValidateFailure The code in a user-defined validation hook indicated that the argument

values it received are unacceptable.

See Also
Automation Hook Macros

TXAuto::ErrorCode
See Also TXAuto

Syntax
TError ErrorCode;
Description
Holds the code that identifies the problem this object was constructed to describe.

See Also
TXAuto::TError enum

TXObjComp Class
See Also ObjectComponents Exception Classes

Header File
ocf/ocdefs.h

Base Class
TXBase

Description
TXObjComp is the exception object that ObjectComponents throws when it encounters an unexpected
error while processing its own internal code. The possible errors are indicated by the TError nested
enum values.

Public Constructor
TXObjComp(TXObjComp::TError err, const char* msg = 0);
Public Member Function
TError ErrorCode;
Type Definition
enum TError;

See Also
Exception Handling in ObjectComponents
TXAuto
TXBase
TXOle
TXRegistry

TXObjComp Public Constructor
See Also TXObjComp

Syntax
TXObjComp(TXObjComp::TError err, const char* msg = 0);
Description
Constructs an exception object to describe the problem indicated by err. Associates the optional msg
string with the error.

See Also
TXObjComp::TError

TXObjComp::TError enum
TXObjComp

Syntax
enum TError
Description
The values of the enumeration identify possible errors that can occur inside ObjectComponents.

Application Errors:

Constant Meaning

xNoError No error occurred.
xBOleLoadFail The BOCOLE support library could not be loaded.
xBOleBindFail ObjectComponents could not get a necessary interface from the BOCOLE

support library.
xDocFactoryFail TOcApp was unable to register or unregister the application with OLE.
xRegWriteFail The registrar could not write to the system registration database.

Document and Part Errors:

Constant Meaning

xMissingRootIStorage The document where a part was asked to construct itself does not possess
a root storage object. (Without a storage, the document has nowhere to
store its parts.)

xInternalPartError ObjectComponents was unable to create a part object.
xPartInitError ObjectComponents was unable to initialize a newly created part.
xDocSaveError A TOcDocument could not write itself to a file.

Storage Errors:

Constant Meaning

xStorageOpenError A document was unable to open its storage object.
xStreamOpenError A document was unable to open the stream object it needs for file I/O.
xStreamWriteError A document was unable to write to the stream object it needs for file I/O.

TXObjComp::ErrorCode
See Also TXObjComp

Syntax
TError ErrorCode;
Description
Holds the error code that identifies the problem this object was constructed to describe.

See Also
TXObjComp::TError enum

TXOle Class
See Also ObjectComponents Exception Classes OWL Hierarchy

Header File
ocf/oleutil.h

Base Class
TXBase

Description
TXOle is the exception object that ObjectComponents throws when it encounters an unexpected error
while executing an OLE API call.
The object's Check method is static so that you can call it without actually creating a TXOle object. If
the parameters you pass indicate an error has occurred, Check creates a TXOle object and throws the
exception for you.

Public Constructors and Destructor
TXOle(const char far* msg, HRESULT stat);
TXOle(const TXOle& copy);
~TXOle();
Public Member Functions
static void Check(HRESULT stat, const char far* msg);
static void Check(HRESULT stat);
Public Data Member
long Stat;

See Also
Exception Handling in ObjectComponents
TXAuto
TXBase (OWL.HLP)
TXObjComp
TXOle and Error Codes
TXRegistry

TXOle::Stat
TXOle

Syntax
long Stat;
Description
Stat ("status") holds the result code returned from an OLE API.

TXOle Public Constructors and Destructor
See Also TXOle

Form 1
TXOle(const char far* msg, HRESULT stat);
Form 2
TXOle(const TXOle& copy);
Destructor
~TXOle();
Description
Usually you do not need to construct an OLE exception object directly. Call Check instead.

Form 1:
Creates an OLE exception object. msg points to an error message and stat holds the return value from
an OLE API call.

Form 2:
Constructs a new OLE exception object by copying the one passed as copy.

Destructor
Destroys the TXOle object.

See Also
TXOle::Check

TXOle::Check
TXOle

Syntax

Form 1
static void Check(HRESULT stat, const char far* msg);
Form 2
static void Check(HRESULT stat);
Description
Checks whether an error has occurred and if so throws an exception. stat is the value returned by an
OLE API call. Check is static so that you can call it without actually creating a TXOle object first. If stat
indicates an error, then Check creates a TXOle object and throws an exception.
Form 1: If stat indicates an error, Form 1 throws a TXOle exception containing the msg error string.
Form 2: If stat indicates an error, Form 2 throws a TXOle exception containing the error string "OLE
call FAILED, ErrorCode = stat" where stat is shown as an eight-digit hexadecimal value.
If you see this error message when running programs, you can look it up in the OLE_ERRS.TXT file,
which for convenience matches the error codes to corresponding comments from the OLE system
header files.

TXRegistry Class
See Also ObjectComponents Exception Classes OWL Hierarchy

Header File
ocf/ocdefs.h

Base Class
TXBase

Description
TXRegistry is the exception object that ObjectComponents throws when it encounters an unexpected
error while reading from or writing to the system registration database.
The object's Check method is static so that you can call it without actually creating a TXRegistry
object. If the parameters you pass indicate an error has occurred, Check creates a TXRegistry object
and throws the exception for you.

Public Constructors
TXRegistry(const char* msg, const char* key);
TXRegistry(const TXRegistry& copy);
Public Member Functions
static void Check(long stat, const char* key);
const char* Key;

See Also
Exception Handling in ObjectComponents
TXAuto
TXBase (OWL.HLP)
TXObjComp
TXOle

TXRegistry Public Constructors
See Also TXRegistry

Form 1
TXRegistry(const char* msg, const char* key);
Form 2
TXRegistry(const TXRegistry& copy);
Description
Usually you do not need to construct a registry exception directly. Call Check instead.
Form 1: Creates a registry exception object. msg points to an error message and key points to the
name of the registry key that ObjectComponents was processing when the exception occurred.
Form 2: The copy constructor constructs a new registry exception object by copying the one passed
as copy.

See Also
TXRegistry::Check

TXRegistry::Check
TXRegistry

Syntax
static void Check(long stat, const char* key);
Description
Tests the value of stat to determine if an error has occurred and if so throws an exception. stat is the
return value from a registration command. key is the name of the key that the registration command
was processing.
Check is static so that you can call it without actually creating a TXRegistry object first. If stat is
nonzero, then Check creates a TXRegistry object and throws an exception. The exception carries the
message string "Registry failure on key: key, ErrorCode = stat."

TXRegistry::Key
TXRegistry

Syntax
const char* Key;
Description
Points to the name of the registration key that ObjectComponents was processing when the exception
occurred.

typehelp Registration Key
See Also Registration Keys

Description
Registers the name of a Help file (.HLP) containing information about the methods and properties your
program exposes for automation. If the file is not in the same directory as the executable, be sure to
register helpdir as well.
typehelp is valid in the application registration table of an automation server. It is optional. Also, the file
name can be localized, making it easy to have different Help files for different languages.
To register typehelp, use the REGDATA macro, passing typehelp as the first parameter and file name
as the second parameter.

See Also
helpdir Registration Key
Localizing Symbol Names
REGDATA macro (OWL.HLP)
Registration Macros (OWL.HLP)
Registration Keys

usage Registration Key
See Also Registration Keys

Description
Determines whether a single instance of your application is allowed to support multiple users or
whether a new instance should be launched for each new OLE client. The -Automation command-line
switch overrides this setting and forces single use when an automation server is invoked.
The usage key is valid in any server registration table. It is always optional. If you omit it,
ObjectComponents by default registers the application to support only one client per instance.
To register the usage key, use the REGDATA macro, passing usage as the first parameter and one of
the ocrxxxx Usage constants as the second parameter.
REGDATA(usage, ocrSingleUse) // one client per instance (default)

See Also
ocrxxxx Usage constants
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

verbn Registration Keys
See Also Registration Keys

Description
A string naming an action the server can perform with its objects. Containers add the active objects
verbs to their Edit menus.
verb0 is the name of the primary (default) verb for the class. The primary verb is executed if the user
double-clicks the object. Use verb1 through verb7 to register additional verbs. The ocrVerbLimit
constant, defined in ocf/ocreg.h, represents the maximum number of verbs allowed (8).
The verbn keys are valid in the document registration tables of a server that supports linking and
embedding. Every server should register a default verb. Other verbs are optional.
To register a verb, use the REGDATA macro, passing verbn as the first parameter and a menu item
string as the second parameter.
REGDATA(verb0, "&Edit") // default action
REGDATA(verb1, "&Open") // another possible action (optional)

See Also
ocrxxxx Limit Constants
REGDATA macro (OWL.HLP)
Registration Macros (OWL.HLP)
Registration Keys
verb n opt Registration Keys

verbnopt Registration Keys
See Also Registration Keys

Description
Registers option flags describing the server's verbs. The flags determine how the verbs appear on the
container's menu. They can be grayed or disabled, for example.
Verb options are valid in the document registration table of any server that supports linking and
embedding. They are always optional. Verb options are meaningless unless you also register verbs.
To register verb options, use the REGVERBOPT macro, passing a verb key (such as verb0 or verb1)
as the first parameter. For the second parameter, use ocrxxxx Verb Menu constants. For the third
parameter, use ocrxxxx Verb Attribute constants.
REGVERBOPT(verb2, ocrGrayed, ocrOnContainerMenu | ocrNeverDirties)

See Also
ocrxxxx Verb Menu Flags
ocrxxxx Verb Attributes Constants
REGVERBOPT Macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)
verb n Registration Keys

version Registration Key
See Also Registration Keys

Description
Registers a version string for the application and type library. The string can include minor version
numbers delimited by periods. OLE ignores version numbers after the first two (the major and minor
version numbers).
The version key is valid in any registration table. It is always optional.
To register version, use the REGDATA macro, passing version as the first parameter and a version
number string as the second parameter.
REGDATA(version, "1.0.5")

See Also
description Registration Key
permid Registration Key
permname Registration Key
REGDATA macro (OWL.HLP)
Registration Keys
Registration Macros (OWL.HLP)

WM_OCEVENT Message
See Also Linking and Embedding Messages

Header File
ocf/ocapp.h

Description
ObjectComponents defines the WM_OCEVENT message in order to notify an application's window
when significant OLE-related events occur.

Message Meaning
WM_OCEVENT Notification of an OLE event from ObjectComponents. The wParam value identifies

the particular event.

See Also
Handling WM_OCEVENT
Messages and Windows
ObjectComponents Messages
OC_APPxxxx Messages
OC_VIEWxxxx Messages

