
Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open a folder or click the underlined text to see a specific topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.
Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

BITMAP
CURSOR
FONT

ICON

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.
Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.

AUTO3STATE

AUTOCHECKBOX

AUTORADIOBUTTON

CHECKBOX

DEFPUSHBUTTON

PUSHBUTTON

RADIOBUTTON

STATE3

Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.
Text and Data Entry provide the syntax for 
creating static text elements and data entry 



fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

RCDATA

User-Defined Resources

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.
Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

CAPTION

CLASS

CONTROL

DIALOG

FONT

GROUPBOX

MENU

SCROLLBAR

STYLE

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.



Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

#define

#elif

#else

#endif

#error

#ifdef

#if

#ifndef

#include

#line

#pragma

#undef

RCINCLUDE

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.



String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.
Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

ACCELERATOR

MENU

MENUITEM

POPUP

String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.
Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

String and Message Tables provide the 
syntax for creating string tables and message
tables.

MESSAGETABLE

STRINGTABLE

Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.
Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.

BUTTON class styles

COMBOBOX class styles

Control window styles

Dialog window styles

EDIT class styles

Extended window styles

LISTBOX class styles

SCROLLBAR class styles

STATIC class styles



Window styles

Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.
Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.

COMBOBOX

CTEXT

EDITTEXT

LISTBOX

LTEXT

RTEXT

Version Information and Language Support 
provide the syntax for providing version and 



international language support.



Resource Script Language Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific 
topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.
Custom Resources provide the syntax for 
creating custom resources and data.

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

Directives provide the syntax for the 
preprocessor directives.

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

String and Message Tables provide the 
syntax for creating string tables and message
tables.
Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.
Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.
Version Information and Language Support 
provide the syntax for providing version and 
international language support.

CHARACTERISTICS

LANGUAGE

VERSION

VERSIONINFO



Resource Script Language Reference
Click any icon to close all folders or click the underlined text to see a specific topic.

Alphabetical Listing of Language Elements 
lists all of the resource script statements and 
directives in alphabetical order.
Bitmapped Resources provide the syntax for 
creating bitmaps, icons, cursors, and fonts.

BITMAP

CURSOR

FONT

ICON

Buttons and Checkboxes provide the syntax 
for creating push buttons, radio buttons, and 
checkboxes.

AUTO3STATE

AUTOCHECKBOX

AUTORADIOBUTTON

CHECKBOX

DEFPUSHBUTTON

PUSHBUTTON

RADIOBUTTON

STATE3

Custom Resources provide the syntax for 
creating custom resources and data.

RCDATA

User-Defined Resources

Dialog Boxes provide the syntax for creating 
dialog boxes and dialog box controls.

CAPTION



CLASS

CONTROL

DIALOG

FONT

GROUPBOX

MENU

SCROLLBAR

STYLE

Directives provide the syntax for the 
preprocessor directives.

#define

#elif

#else

#endif

#error

#ifdef

#if

#ifndef

#include

#line

#pragma

#undef

RCINCLUDE

Menus and Accelerators provide the syntax 
for creating menus and accelerator tables.

ACCELERATOR

MENU



MENUITEM

POPUP

String and Message Tables provide the 
syntax for creating string tables and message
tables.

MESSAGETABLE

STRINGTABLE

Style Constants provide the syntax for 
specifying the styles for windows, dialog 
boxes, and dialog box controls.

BUTTON class styles

COMBOBOX class styles

Control window styles

Dialog window styles

EDIT class styles

Extended window styles

LISTBOX class styles

SCROLLBAR class styles

STATIC class styles

Window styles

Text and Data Entry provide the syntax for 
creating static text elements and data entry 
fields.

COMBOBOX

CTEXT

EDITTEXT

LISTBOX

LTEXT

RTEXT



Version Information and Language Support 
provide the syntax for providing version and 
international language support.

CHARACTERISTICS

LANGUAGE

VERSION

VERSIONINFO



Bitmapped Resources
See Also
There are four kinds of bitmapped resources:

bitmaps: accessed using the BITMAP statement
cursors: accessed using the CURSOR statement
fonts: accessed using the FONT statement

icons: accessed using the ICON statement
Other than including these resources in your resource script file, you can only edit the hexadecimal 
code for these resources when you use a standard text editor, such as Resource Workhop's Script 
Editor.
In addition to using these resources in a resource script, you can also edit and create these types of 
resources using Resource Workshop's Bitmap Editor.



See Also
Resource Script Language (Overview)



Buttons and Checkboxes
See Also
There are several types of checkboxes and buttons you can use:

Checkboxes

CHECKBOX

AUTOCHECKBOX

STATE3

AUTO3STATE

Push Buttons

PUSHBUTTON

DEFPUSHBUTTON

Radio Buttons

RADIOBUTTON

AUTORADIOBUTTON
You can only use these types of controls in dialog box resources. You can edit the resource script  for 
these controls within a dialog box definition using a standard text editor, such as Resource Workhop's 
Script Editor.
In addition to using these resources in a resource script, you can also edit and create these types of 
resources using Resource Workshop's Dialog Editor.



See Also
Dialog Boxes
Style Constants
Text and Data Entry
Resource Script Language (Overview)



Custom Resources
See Also
You can define your own custom resources and resource types using these statements:

RCDATA

User-Defined Resources



Dialog Boxes
See Also
These are the statements you can use to build dialog box resources:

CAPTION

CLASS

CONTROL

DIALOG

FONT

GROUPBOX

MENU

SCROLLBAR

STYLE
In addition to creating dialog boxes using a resource script, you can also edit and create dialog boxes 
using Resource Workshop's Dialog Editor.



See Also
Buttons and Checkboxes
Style Constants
Text and Data Entry
Resource Script Language (Overview)



Menus and Accelerators
See Also
You can create menu and accelerator resources using these statements:

ACCELERATOR

MENU

MENUITEM

POPUP
In addition to creating menus and accelerators using a resource script,  you can also edit and create 
menus and accelerators using Resource Workshop's Menu Editor and Accelerator Editor.



String and Message Tables
See Also
You can store character strings and messages as resources that your Windows application can call as 
needed:

MESSAGETABLE

STRINGTABLE
In addition to creating string tables and message tables using a resource script,  you can also edit and 
create string tables and message tables using Resource Workshop's String Editor.



Style Constants
See Also
There are predefined constants for class and window styles that you can specify for many of the 
resources you want to create:

BUTTON class styles

COMBOBOX class styles

Control window styles

Dialog window styles

EDIT class styles

Extended window styles

LISTBOX class styles

SCROLLBAR class styles

STATIC class styles

Window styles



Text and Data Entry
See Also
There are several resource statements that allow you to handle static text elements as well as gather 
information from the user of your application:

Static Text

centered text (CTEXT)

left-aligned text (LTEXT)

right-aligned text (RTEXT)

Data Entry

combo box (COMBOBOX)

editable text (EDITTEXT)

list box (LISTBOX)
You can only use these types of controls in dialog box resources. You can edit the resource script  for 
these controls within a dialog box definition using a standard text editor, such as Resource Workhop's 
Script Editor.
In addition to using these resources in a resource script, you can also edit and create these types of 
resources using Resource Workshop's Dialog Editor.



See Also
Buttons and Checkboxes
Dialog Boxes
Style Constants
Resource Script Language (Overview)



Version Information and Language Support
See Also
You can include version information along with your resources, as well as create resources with 
specific language support:

CHARACTERISTICS

LANGUAGE

VERSION

VERSIONINFO



Resource Script Language (Overview)
See Also
When you create resources, Resource Workshop builds a resource script file in your project window. 
Most of the time, you won't need to use this language. Occasionally, however, you might want to edit a 
resource script with a text editor.
Each resource script statement specifies a resource to be included in your executable file. You can list 
the primary statements in any order you choose; there is no "program flow" in a resource script file, 
although you must follow the syntax given for each statement carefully.



See Also
Resource Script Language Reference (Alphabetical Listing)
Resource Script Language Reference (Functional Listing)



Resource Script Language Reference
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is an alphabetical listing of the Resource Script language elements.

For an overview of the Resource Script Language, select Resource Script Language Overview.

For a functional listing of Resource Script Language elements, select Resource Script Language 
Reference (Functional Listing)

#
#define
#elif
#else
#endif
#error
#ifdef
#if
#ifndef
#include
#line
#pragma

A
ACCELERATOR
AUTO3STATE
AUTOCHECKBOX
AUTORADIOBUTTON

B
Binary resource statement
BITMAP



BUTTON class style constants

C
CAPTION
CHARACTERISTICS
CHECKBOX
CLASS
COMBOBOX
COMBOBOX class style constants
Constants
CONTROL
CTEXT
CURSOR

D
DEFPUSHBUTTON
DIALOG
Dialog window style constants
Directives

E
EDIT class style constants
EDITTEXT
Extended window style constants

F
FONT
FONT (DIALOG statement)

G
GROUPBOX

I
ICON

L
LANGUAGE
LISTBOX
LISTBOX class style constants
LTEXT

M
MENU
MENU (DIALOG statement)
MENUITEM
MESSAGETABLE
Multiple-line statements

P
POPUP
PUSHBUTTON



R
RADIOBUTTON
RCDATA
RCINCLUDE
RTEXT

S
SCROLLBAR
SCROLLBAR class style constants
STATE3
STATIC class style constants
STRINGTABLE

U
User-defined resources

V
VERSION
VERSIONINFO

W
Window style constants



Binary Resource Statement
See Also
Binary resource statements identify a resource and name the file that contains the resource.
For example,
pencil CURSOR MOVEABLE pencil.cur
names the resource "pencil" and identifies it as a CURSOR resource located in the file PENCIL.CUR. 
The syntax of all binary resources statements looks like this:
resource-name resource-type [load-type] [memory-option] filename
Binary resource statements specify bitmaps, cursors, fonts, and icons. Each statement has its own 
syntax. The binary resources statements are:
BITMAP
CURSOR
FONT 
ICON 



See Also
Multiple-line statements



Multiple-Line Statements
See Also
Multiple-line statements specify the contents of a resource.
Here's an example of a multiple-line statement for a menu resource:
mainmenu MENU PRELOAD
BEGIN
  POPUP "&File"
  BEGIN
    MENUITEM "&New", 100
    MENUITEM "&Open", 101
    MENUITEM "&Close", 102, GRAYED
    MENUITEM "&Save", 103
    MENUITEM "Save &As", 104
    MENUITEM SEPARATOR
    MENUITEM "&Print", 105
    MENUITEM "&Draft Printing", 107, CHECKED
    MENUITEM SEPARATOR
    MENUITEM "E&xit", 106
  END
    MENUITEM "&Help", 200
END
This example specifies the main menu of an application. The main menu contains the File and Help 
menus.
File is a pop-up menu (commonly known as a drop-down menu) with several options, each defined 
with a MENUITEM substatement contained within the BEGIN and END keywords. This is characteristic
of all multiple-line statements. Like other multiple-line statements, this statement permits you to include
multiple substatements between the words BEGIN and END. 
Multiple-line statements specify accelerators, string resources, raw data resources, dialog boxes, and 
menus. Each statement has its own syntax. The multiple-line statements are:
ACCELERATOR
DIALOG
MENU
RCDATA
STRINGTABLE



See Also
Binary resource statement



ACCELERATOR
See Also Examples
resource-name ACCELERATOR
BEGIN
  keystroke, acc-ID, [keystroke-type] [modifier key] [NOINVERT]
END
Parameters
resource-name Text identifier or numeric ID for this resource. The name or number must be unique 

within the ACCELERATOR resource type. Numeric IDs must be positive integers.
keystroke Value of the character code that activates this accelerator. The field can be either a 

character in double quotes or a numeric value.
- If a character in quotes is used, it can be preceded by a carat (^) to indicate that it

is a control character (for example "^a" indicates Ctrl-A). 
- If a numeric value is used, it is either the ASCII value of the accelerator key or the

value for a virtual key, depending on the keystroke-type.
acc-ID User-assigned integer value that identifies the string. Uniqueness is not required of 

IDs: Two different key combinations can be used to invoke the same command. 
The ID is sent in the wParam of a WM_COMMAND message. The high-order word 
of the lParam of the WM_COMMAND message is set to 1 to indicate the message 
resulted from an accelerator key.

keystroke-type Valid only if the keystroke field contains a numeric value. In such cases, this field 
indicates whether the keystroke number is an ASCII value or virtual key value as 
follows:

ASCII Keystroke field is ASCII value.
VIRTKEY Keystroke field is virtual key value.

modifier key Indicates if any modifier keys must be held down while typing the keystroke to 
activate the accelerator. If this field is missing, no modifier keys are required. 
Valid modifier keys are Shift, Alt, and Ctrl. The SHIFT and CTRL modifiers have no 
effect unless the VIRTKEY keystroke-type is used.

SHIFT Shift key must be held down.
CONTROL Ctrl key must be held down.
ALT Alt key must be held down.

NOINVERT Disables highlighting of the menu title of the accelerated menu item when using 
accelerator keys for actions which have no menu item equivalent. If the NOINVERT 
field is missing, these menu titles are highlighted.

Remarks
ACCELERATOR is a multiple-line statement that defines keyboard shortcuts for menu items and other 
program control actions.
The accelerator resource associates one or more accelerator keys with a corresponding accelerator 
command ID (acc-ID). Although acc-IDs must be numeric, the #define can be used to simplify access 
by the program.



See Also
#define
CHARACTERISTICS
LANGUAGE
VERSION



AUTO3STATE
See Also
AUTO3STATE text, control-ID, x, y, width, height, [c-style]
Parameters
text Text string in double quotes. It is displayed next to the button. It can be specified as a 

keyboard accelerator mnemonic.
control-ID A numeric identifier for this control. This number must be a unique short integer. 

Windows uses the control-ID to indicate which control has been selected.
x, y Horizontal and vertical positions, respectively, of the button relative to the dialog 

window in which it appears. These numbers are specified in dialog units.
width, height The width and height of the control (specified in dialog units).
c-style Specifies styles for the control, which can be a combination of the BUTTON class 

style constant BS_AUTO3STATE and these window style constants: 
WS_TABSTOP
WS_DISABLED
WS_GROUP
The default style is BS_AUTO3STATE and WS_TABSTOP.

Remarks
A DIALOG definition that places a 3-state check box control in a dialog box. It's valid only within a 
DIALOG definition. A 3-state check box is a square button with descriptive text to the left or right of the 
button. Normally, text is displayed to the right of the button.
A 3-state check box control maintains 3 states: It is either checked (in which case, a large X fills the 
square), unchecked or "indeterminate" (grayed). The control sends a message to its parent when it's 
selected. 



See Also
AUTOCHECKBOX
CHECKBOX
CONTROL
DIALOG
STATE3



AUTOCHECKBOX
See Also
AUTOCHECKBOX text,control-ID, x, y, width, height, [c-style]
Parameters
text Text string in double quotes. It is displayed next to the button. It can be specified as a 

keyboard accelerator mnemonic.
control-ID A numeric identifier for this control. This number must be a unique short integer. 

Windows uses the control-ID to indicate which control has been selected.
x, y Horizontal and vertical positions, respectively, of the button relative to the dialog 

window in which it appears. These numbers are specified in dialog units.
width, height The width and height of the control (specified in dialog units).
c-style Specifies the styles of the control. This value can be a combination of the BUTTON 

class style constant BS_AUTOCHECKBOX and these window style constants: 
WS_TABSTOP
WS_GROUP
The default style is BS_AUTOCHECKBOX and WS_TABSTOP.

Remarks
A DIALOG definition that places an automatic check box control in a dialog box. It's valid only within a 
DIALOG definition. An AUTOCHECKBOX is a square rectangle with descriptive text to the left or right 
of the button. When you choose the control, the rectangle is highlighted and a message is sent to the 
parent window.



See Also
AUTO3STATE
CHECKBOX
CONTROL
DIALOG
STATE3



AUTORADIOBUTTON
See Also
AUTORADIOBUTTON text, control-ID, x, y, width, height [c-style]
Parameters
text Text string in double quotes. It is displayed next to the button. It can be specified as a 

keyboard accelerator mnemonic.
control-ID A numeric identifier for this control. This number must be a unique short integer. 

Windows uses the control-ID to indicate which control has been selected.
x, y Horizontal and vertical positions, respectively, of the button relative to the dialog 

window in which it appears. These numbers are specified in dialog units.
width, height The width and height of the control (specified in dialog units).
c-style Specifies the styles of the control. This value can be a combination of the BUTTON 

class style constant BS_AUTORADIOBUTTON and these window style constants: 
WS_DISABLED
WS_TABSTOP
WS_GROUP
The default style is BS_AUTORADIOBUTTON and WS_TABSTOP.

Remarks
A DIALOG definition that places an automatic radio button control in a dialog box. It's valid only within 
a DIALOG definition. An automatic radio button is automatically mutually exclusive with other 
AUTORADIOBUTTON controls in the same group. When you choose an automatic radio button, a 
BN_CLICKED message is sent to the application.



See Also
CONTROL
DIALOG
RADIOBUTTON



BITMAP
See Also Examples
resource-name BITMAP [load-type] [memory-option] filename
Parameters
resource-name Text identifier or numeric ID for this resource. The identifier or number must be 

unique within the BITMAP resource type. Numeric IDs must be positive integers.
load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.
filename The name of the DOS file containing the bitmap data. A relative or full path name 

can be used to specify files which are not in the current working directory. The 
data in the specified file is included in the current project.

Remarks
BITMAP is a binary resource statement that associates a file containing bitmap resource data with a 
resource name and causes the bitmap data to be included in the current project.
You can write a BITMAP statement with the same syntax as RCDATA.



See Also
RCDATA



CHARACTERISTICS
See Also
CHARACTERISTICS dword
Parameter
dword A user-defined doubleword value.

Remarks
You use the CHARACTERISTICS statement to specify a resource's characteristics. The value appears
with the resource in the compiled .RES file and can be used by tools that read and write resource-
definition files. It is not stored in the executable file and has no significance to Windows.
Use the CHARACTERISTICS statement before the BEGIN statement in these resource definitions:

ACCELERATOR

DIALOG

MENU

RCDATA

STRINGTABLE
The characteristic applies only to the specific resource.



See Also
LANGUAGE
VERSION



CHECKBOX
See Also Examples
CHECKBOX text, control-ID, x, y, width, height, [c-style]
Parameters
text Text string in double quotes. It is displayed next to the button. It can be specified as a 

keyboard accelerator mnemonic.
control-ID A numeric identifier for this control. This number must be a unique short integer. 

Windows uses the control-ID to indicate which control has been selected.
x, y Horizontal and vertical positions, respectively, of the button relative to the dialog 

window in which it appears. These numbers are specified in dialog units.
width, height The width and height of the control (specified in dialog units).
c-style The control style constant (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants can be combined with a bitwise OR to apply multiple 
styles to the control. The field can contain these window style constants:
WS_DISABLED
WS_TABSTOP
WS_GROUP
and any of the BUTTON class style constants. The default styles are WS_TABSTOP 
and BS_CHECKBOX.

Remarks
A DIALOG definition that places a check box control in a dialog box. It's valid only within a DIALOG 
definition.
A check box is a square button with descriptive text to the left or right of the button. Normally, text is 
displayed to the right of the button. You can change this to the left side with the appropriate c-style.
A check box control maintains a state: It is either checked (in which case, a large X fills the square) or 
unchecked. Check box controls do not change state automatically: The application programmer must 
change their state in response to BN_CLICKED notification messages. For that reason, it's a good 
idea to use the auto-check box control. 
A check box is a member of the button class. When the user presses the mouse button in the control's 
area, the button is highlighted. When the mouse button is released, it is returned to normal, and a 
message is sent to the parent window indicating that the button has been pressed.



See Also
AUTO3STATE
AUTOCHECKBOX
DIALOG
STATE3



COMBOBOX
Examples
COMBOBOX ID, x, y, width, height, [c-style]
Parameters
ID Numeric identifier for this control. This number must be a unique short integer. 

Windows uses the control ID to indicate which control has been selected.
x, y Integer values that specify the x- and y-coordinates of the upper left corner of the 

COMBOBOX control. These values are specified in dialog units.
width, height Integer values that specify the size of the control. These values are specified in dialog

units.
c-style The control style constant (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants can be combined with a bitwise OR to apply multiple 
styles to the control. The field can contain these window style constants:
WS_DISABLED
WS_GROUP
WS_TABSTOP
WS_VSCROLL
and any of the COMBOBOX class style constants. The default styles are 
WS_TABSTOP and CBS_SIMPLE.

Remarks
A DIALOG definition that creates a combo box, a combination of either a static text field or an edit field 
with a list box. 
If a static text field is used, this field displays the current selection in the list box. If an edit field is used, 
the selection is typed in and the list box highlights the first item that matches the typed entry.



CONTROL
See Also Examples
CONTROL text, control-ID, c-class, c-style, x, y, width, height
Parameters
text Text string in double quotes. This text is displayed, if appropriate, for the type of 

control specified. It can be specified as a keyboard accelerator mnemonic.
control-ID A numeric identifier. This number can be a unique short integer, although 

unreferenced static controls are usually given a control ID of -1 to document that they 
are truly static. Windows uses the control ID to indicate which control has been 
selected.

c-class A byte or a string indicating the control's class. The standard classes have predefined 
constants that can be used to identify them: c-class must be one of these contants:
AUTO3STATE
AUTOCHECKBOX
AUTORADIOBUTTON
BUTTON
COMBOBOX
EDIT
LISTBOX
SCROLLBAR
STATE3
STATIC

c-style The control style constant (an unsigned long integer value that is interpreted as a 
series of bit flags). Constants can be combined with a bitwise OR to apply multiple 
styles to the control. The options available to you depend on the c-class value. There 
is no default style. The high-order word of this field is reserved for Windows. The low-
order word is available for user-defined control styles.

x, y Horizontal and vertical positions of the control relative to the dialog window in which it 
appears. These numbers are specified in dialog units.

width, height The width and height of the control. These numbers are specified in dialog units.

Remarks
CONTROL is a DIALOG definition that places any type of control in a dialog box. It is valid only within 
a DIALOG definition and can duplicate the function of these definitions:
CHECKBOX
COMBOBOX
CTEXT
DEFPUSHBUTTON
EDITTEXT
GROUPBOX
ICON
LISTBOX
LTEXT



PUSHBUTTON
RADIOBUTTON
RTEXT
SCROLLBAR



See Also
DIALOG



CTEXT
See Also Examples
CTEXT text, control-ID, x, y, width, height, [c-style]
Parameters
text A text string, enclosed in quotes, that appears in the dialog window. It can be 

specified as a keyboard accelerator mnemonic.
A common Windows programming technique is to label an edit control by preceding it 
with a static text control. This label contains a mnemonic for the edit field, such as 
"&Name". If the CTEXT control doesn't use the WS_TABSTOP control style, Windows
will set the focus in the next control.

control-ID A numeric identifier. The control ID is used by Windows and an application to identify 
the control within the dialog. If there is no need to refer to the control at run time (as is
most often the case with static controls), usually this field is set to -1 to document that 
it is truly static.

x, y Horizontal and vertical positions of the text relative to the dialog window in which the 
text appears. These numbers are specified in dialog units.

width, height The size of the control. These numbers are specified in dialog units. The static text 
appears centered within the specified area. If the text is too wide to fit on a single line,
Windows automatically word wraps the text to multiple lines.

c-style The control style constant (an unsigned long integer value that is interpreted as a 
series of bit flags). More than one control style can be combined using a bitwise OR. 
Defaults are the STATIC class style constant SS_CENTER and the window style 
constant WS_GROUP.

Remarks
CTEXT is a DIALOG definition that specifies a text string, its attributes, and where it's located in the 
dialog box. CTEXT defines centered static text in a dialog window. The text is centered within the 
specified rectangle. If the text is too wide to fit within the rectangle, it is automatically wrapped. 
CTEXT is valid only in a DIALOG definition.



See Also
DIALOG
LTEXT
RTEXT



CURSOR
Examples
resource-name CURSOR [load-type] [memory-option] filename
Parameters
resource-name Text identifier or numeric ID for this resource. The identifier or number must be 

unique within the CURSOR resource type. Numeric IDs must be positive integers.
load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.

Remarks
CURSOR is a binary resource statement that causes cursor data to be included in the current project.



DEFPUSHBUTTON
See Also Examples
DEFPUSHBUTTON text, control-ID, x, y, width, height, [c-style]
Parameters
text A text string in double quotes. This text is displayed inside the button area. It can be 

specified as a keyboard accelerator mnemonic.
control-ID A numeric identifier for this control. It must be a unique integer. The control ID is used 

by Windows to indicate which control has been selected. By convention, only one 
DEFPUSHBUTTON is included in a dialog. It is given the control ID IDOK (1).
When a user presses the Enter key in a modal dialog box, Windows sends a 
WM_COMMAND message with wParam set to IDOK. Also, when the user presses 
the Esc key, Windows sends a WM_COMMAND with wParam set to IDCANCEL (2).

x, y Horizontal and vertical positions of the button relative to the dialog window in which it 
appears. These numbers are specified in dialog units.

width, height The width and height of the control. These numbers are specified in dialog units.
c-style The control style constant (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants can be combined with a bitwise OR to apply multiple 
styles to the control. The field can contain these window style constants:
WS_DISABLED
WS_GROUP
WS_TABSTOP
and any of the BUTTON class style constants. The default styles are WS_TABSTOP 
and BS_DEFPUSHBUTTON.

Remarks
DEFPUSHBUTTON is a DIALOG definition that places a default push button control in a dialog box. 
A DEFPUSHBUTTON is a square button containing text describing its action. This control is almost 
identical to a normal push button, except it has a heavy border that indicates to the user it is the default
action for this dialog window.
DEFPUSHBUTTON is valid only within a DIALOG definition. A DEFPUSHBUTTON is a member of the 
BUTTON class.



See Also
DIALOG



DIALOG
See Also Examples
resource-name DIALOG [load-type] [memory-option] x, y, width, height 
[STYLE w-style] [CAPTION w-cap]
[MENU res-name] [CLASS w-class]
[FONT f-spec] 
BEGIN
  dialog-controls
END

Parameters
resource-name Text identifier or numeric ID for this resource. The identifier or number must be 

unique within the DIALOG resource type. Numeric IDs must be positive integers.
load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.
x, y Horizontal and vertical positions of the upper left corner of the dialog window's client

area. These coordinates can either be relative to the window's parent or owner 
window, or relative to the origin of the screen. This is determined by the window's 
style setting. Dialog windows are positioned relative to their parent or owner window
unless the dialog window style constant DS_ABSALIGN is used.

width, height The size of the client area of the window in dialog units.
STYLE The window style of the dialog box. The window style specifies whether the box is a

pop-up or a child window.
CAPTION The title of the dialog box. The title appears in the box's caption bar (if it has one). 

The default caption is empty. 
MENU The dialog box's menu. If no statement is given, the dialog box has no menu.
CLASS The class of the dialog box. If no statement is given, the Windows standard dialog 

class will be used as the default. 
FONT The font with which Windows will draw text in the dialog box. The font must have 

been previously loaded, either from the WIN.INI file or by calling the LoadResource 
function.

dialog-controls Definition(s) that specify the content of the dialog windows. This includes static and 
editable text, various boxes and buttons, controls, and icons. Here are the dialog 
control statements:
AUTO3STATE
AUTOCHECKBOX
AUTORADIOBUTTON
CHECKBOX
COMBOBOX
CONTROL
CTEXT
DEFPUSHBUTTON
EDITTEXT
GROUPBOX
ICON
LISTBOX



LTEXT
PUSHBUTTON
RADIOBUTTON
RTEXT
SCROLLBAR
STATE3

Remarks
DIALOG is a multiple-line statement that specifies a dialog window.
A dialog window includes the window style, class, size, location, and the controls which will appear in 
the window. Dialog windows can contain text, check boxes, various buttons, icons, controls, list boxes, 
and so on.



See Also
CHARACTERISTICS
LANGUAGE
VERSION



STYLE (DIALOG statement)
Statement in the DIALOG definition that defines the window style of the dialog box. The window style 
specifies whether the box is a pop-up or a child window. If you don't specify a style, the default values 
WS_POPUP, WS_BORDER, and WS_SYSMENU are used.

Parameter
w-style The window style constant or dialog window style constant. w-style is an integer value or 

a predefined name.



CAPTION (DIALOG statement)
Statement in the DIALOG definition that defines the dialog box title. The title appears in the box's 
caption bar (if it has one). The default caption is empty. 
If CAPTION is not present in the DIALOG definition, the caption bar is empty.

Parameter
w-cap An ASCII character string enclosed in double quotes.



MENU (DIALOG statement)
Statement in the DIALOG definition that associates a menu resource with the dialog.
If MENU is not present in the DIALOG definition, no menu is associated with the dialog box.

Parameter
res-name The resource identifier or numeric ID of the associated menu. 



CLASS (DIALOG statement)
Statement in the DIALOG definition that overrides the normal processing of a dialog box. It converts a 
dialog box to a window of the specified class; and depending on the class, could give undesirable 
results. Do not use the predefined control-class names with this statement. 
Using a custom dialog class provides additional control over the behavior of the dialog window. In 
order to create a custom dialog class, you must set the cbWndExtra field of the WNDCLASS structure 
to at least as many bytes as used by DLGWINDOWEXTRA, the default dialog class. However, the 
additional control provided by the custom class is illusory because much of the Windows dialog 
manager is implemented in the IsDialogMessage function, not the dialog window procedure.
If no CLASS statement is given, the Windows standard dialog class will be used as the default. 

Parameter
w-class An integer or text string that specifies the desired window class. 



FONT (DIALOG statement)
Statement in the DIALOG definition that defines the font with which Windows will draw text in the 
dialog box. The font must have been previously loaded, either from the WIN.INI file or by calling the 
LoadResource function. 

Parameter
f-spec The font specification. It consists of a point size (in points) followed by a font typeface string 

in double quotation marks (for example, 12, "Helv"). 
Windows uses the bold (approximately 700) weight for the font when this field is used. To 
use a lighter-weight attribute, use the WM_SETFONT message at run time to set the font.



EDITTEXT
See Also Examples
EDITTEXT control-ID, x, y, width, height, [c-style]
Parameters
control-ID Numeric identifier for this control. This number must be a unique integer. The control 

ID is used by Windows to indicate which control has been selected.
x, y Horizontal and vertical positions of the edit text control relative to the dialog window 

in which it appears. These numbers are specified in dialog units.
width, height The width and height of the edit text control. These numbers are specified in dialog 

units.
c-style The control style constant (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants can be combined with a bitwise OR to apply multiple 
styles to the control. The field may contain the window style constants:
WS_DISABLED
WS_GROUP
WS_HSCROLL
WS_TABSTOP
WS_VSCROLL
and any of the EDIT class style constants. The default styles are WS_BORDER, 
WS_TABSTOP, and ES_LEFT.

Remarks
EDITTEXT is a DIALOG definition that places an editable text field in a dialog box.
Text can be edited using the mouse, cursor keys, Backspace, and Del. An edit text control belongs to 
the EDIT class.
EDITTEXT is valid only within a    definition.



See Also
DIALOG



FONT
Examples
resource-num FONT [load-type] [memory-option] filename
Parameters
resource-num The resource number. It can be either a unique name (text) or an integer value that 

is unique within the font resource type. This number identifies the font; you can't use 
resource names for fonts.

load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.
filename The name of the DOS file containing the font data. A full path name can be used to 

specify files which are not in the current working directory. The data in the specified 
file is included in the current project.

Remarks
FONT is a binary resource statement definition that associates a file containing font resource data with
a resource number. It also causes the font data to be included in the current project.



GROUPBOX
See Also Examples
GROUPBOX text, control-ID, x, y, width, height, [c-style]
Parameters
text A text string in double quotes. This text is displayed at the top of the group box. It can 

be specified as a keyboard accelerator mnemonic.
control-ID A numeric identifier for this control. This number can be a unique integer, but is often -

1. The control ID is used by Windows to indicate which control has been selected.
x, y Horizontal and vertical positions of the group box relative to the dialog window in 

which it appears. These numbers are specified in dialog units.
width, height The width and height of the group box. These numbers are specified in dialog units.
c-style The control style constants (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants can be combined with a bitwise OR to apply multiple 
styles to the control. The field may contain these window style constants: 
WS_DISABLED
WS_TABSTOP 
and any of the BUTTON class style constants. The default styles are WS_TABSTOP 
and BS_GROUPBOX.

Remarks
GROUPBOX is a DIALOG definition that places a static group box in a dialog box. 
You usually use a group box to visually group a number of related controls. The user can then easily 
see which controls are related. The text field of the group box definition usually describes the group. A 
group box consists of a rectangle of the specified size, with a text title overwriting the left part of the top
line of the rectangle.
GROUPBOX is valid only within a DIALOG definition.



See Also
DIALOG



ICON
Examples
For a type 1 icon definition:
resource-name ICON [load-type] [memory-option] filename
For a type 2 icon definition:
ICON resource-name, control-ID, x, y, width, height, [c-style]
Parameters
For a type 1 icon definition:
resource-name Text identifier or numeric ID for this resource. The identifier or number must be 

unique within the ICON resource type. Numeric IDs must be integers.
load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.
filename The name of the DOS file containing the icon data. A full path name can be used 

to specify files which are not in the current working directory. The data in the 
specified file is included in the current project.

For a type 2 icon definition:
resource-name The identifier of the icon resource to be included in the dialog window. This 

resource identifier is assigned to the icon using a type 1 icon definition. Note that 
this is not the icon's file name. If the resource name is a text identifier, it must be 
enclosed in quotes.

control-ID A numeric identifier for this control. This number must be a unique integer. The 
control ID is used by Windows to indicate which control has been selected.

x, y Horizontal and vertical positions of the icon relative to the dialog window in which 
the icon appears. These numbers are specified in dialog units.

width, height Ignored. The icon is automatically sized.
c-style The control style constant (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants can be combined with a bitwise OR to apply 
multiple styles to the control. The only permissible style is the STATIC class style 
constant, SS_ICON.

Remarks
There are two types of icon definitions:
type 1 icon A binary resource statement that associates a file containing icon resource data with a

resource name.
type 2 icon A DIALOG definition that specifies a static icon control in a dialog box.
The type 1 icon definition tells Resource Workshop in which file an icon's data is contained, and gives 
this icon the specified resource-name. Data from the indicated file is included in the executable file 
when the application is built.
The type 2 icon definition refers to an icon that was specified with a type 1 definition (or defined in a 
free-form resource). Type 2 icon definitions place static icon controls within a dialog window. This type 
of ICON definition is only valid within a DIALOG definition.



LANGUAGE
See Also
LANGUAGE language, sublanguage
Parameters
language Language identifier. Must be one of the constants from WINNT.H.
sublanguage Sublanguage identifier. Must be one of the constants from WINNT.H.

Remarks
You use the LANGUAGE statement to assign the language and the sub-language to resources. The 
definition is active until you use another LANGUAGE statement to change it. 
The specified language applies only to an individual resource when you use the LANGUAGE 
statement before the BEGIN statement in these resource definitions:

ACCELERATOR

DIALOG

MENU

RCDATA

STRINGTABLE



See Also
CHARACTERISTICS
VERSION



LISTBOX
See Also Examples
LISTBOX control-ID, x, y, width, height, [c-style]
Parameters
control-ID Numeric identifier for this control. This number must be a unique integer. The control 

ID is used by Windows to indicate which control has been selected.
x, y Horizontal and vertical positions of the list box relative to the dialog window in which it

appears. These numbers are specified in dialog units.
width, height The width and height of the control. These numbers are specified in dialog units.
c-style The control style constant (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants can be combined with a bitwise OR to apply multiple 
styles to the control. The field may contain these window style constants:
WS_BORDER
WS_DISABLED
WS_VSCROLL
and any of the LISTBOX class style constants. Default values are WS_VSCROLL, 
WS_BORDER, and LBS_NOTIFY.

Remarks
LISTBOX is a DIALOG definition that places a list box control in a dialog box.
A list box is an area where multiple text strings are displayed. A list box is a member of the list box 
class.
LISTBOX is valid only within a DIALOG definition.



See Also
DIALOG



LTEXT
See Also Examples
LTEXT text, control-ID, x, y, width, height, [c-style]
Parameters
text Text string, enclosed in quotes, that appears in the dialog window. It can be specified 

as a keyboard accelerator mnemonic.
A common Windows programming technique is to label an edit control by preceding it 
with a static text control. The static label contains a mnemonic for the edit field, such 
as "&Name". If the LTEXT control does not use the window style constant 
WS_TABSTOP, Windows sets the focus in the next control.

control-ID A numeric identifier for this control. This number must be a unique integer. The control
ID is used by Windows to indicate which control has been selected. If there is no need
to refer to the control at run time (as is most often the case with static controls), this 
field is by convention set to -1 to document that it is truly static.

x, y Horizontal and vertical positions of the text relative to the dialog window in which the 
text appears. These numbers are specified in dialog units.

width, height The size of the control in dialog units. The static text appears centered within the 
specified area.

c-style The control style constant (an unsigned long integer value that is interpreted as a 
series of bit flags). More than one control style can be combined using a bitwise OR. 
The default style is the STATIC class style constants SS_LEFT and the window style 
WS_GROUP. The WS_GROUP style is always set for static text.

Remarks
LTEXT is a DIALOG definition that defines left-aligned static text in a dialog box.
LTEXT specifies a text string, its attributes, and where it is located in the dialog window. The text is 
aligned flush left within the specified rectangle. If the text is too wide to fit within the rectangle, it 
automatically wraps.
This definition can only appear within a DIALOG definition. 



See Also
CTEXT
DIALOG
RTEXT



MENU
See Also Examples
resource-name MENU [load-type] [memory-option]
BEGIN
  item-definitions
END
Parameters
resource-name Text identifier or numeric ID for this resource. The identifier or number must be 

unique within the MENU resource type. Numeric IDs must be integers.
load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.
item-definitions Contain one or more MENUITEM or POPUP definitions. The MENUITEM definition 

specifies individual menu items, and the POPUP definition describes a pop-up 
menu (also known as a drop-down menu).

Remarks
MENU is a multiple-line statement that defines a menu resource and specifies which menu items 
appear on this menu.
A MENU definition contains the item definitions, MENUITEM and POPUP.



See Also
CHARACTERISTICS
LANGUAGE
VERSION



MENUITEM
See Also Examples
MENUITEM [item-text] [item-ID] [item-attributes]
or
MENUITEM SEPARATOR
Parameters
item-text Describes the menu selection. It is a character string enclosed in double quotes. 

The item-text also indicates which character in the menu item serves as the menu
mnemonic.
The item text string can also include the following escape codes: \a and \t. The \a 
escape code aligns the following text flush right. The \t escape code inserts a tab 
in the item text aligning the text. It should only be used within a POPUP definition 
and not for items in the main menu bar.

item-ID An integer value that identifies the menu item. Windows uses the value to indicate
which menu item has been selected.

item-attributes Accepts one or more keywords that describe the menu item's state (active, 
inactive, grayed, checked, etc.) The keywords GRAYED and INACTIVE are 
mutually exclusive. Other keywords can be used together by combining their 
values with a bitwise OR.
GRAYED Item is unavailable for selection.
INACTIVE Item is never available for selection.
CHECKED Checkmark appears next to item. Not supported for top-

level menu items.
HELP Appears on right side of menu bar.
MENUBREAK Item begins a new menu column.
MENUBARBREAK Item begins a new menu row.

SEPARATOR Indicates that this menu item is a separator line, rather than a selectable item. 
Separator lines are horizontal lines separating menu items when used in pop-up 
menus, and vertical lines separating menu titles when used in the menu bar.

Remarks
A MENU definition that defines a single menu item or a menu separator.
The MENUITEM definition associates an item ID with a specific menu element. MENUITEM can be 
used only within a MENU or POPUP definition.



See Also
MENU



MESSAGETABLE
See Also
MESSAGETABLE [load-type] [memory-option]
BEGIN
  message-ID, message
END
Parameters
load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.
string-ID A user-assigned integer value that identifies the string. Each string ID must be 

unique. The string ID is used at run time by the LoadString function to determine 
which string is being requested by the program.

message An ASCII string in standard C language format.

Remarks
MESSAGETABLE is a multiple-line statement that specifies null-terminated ASCII strings that can be 
accessed by the program.
Each string is assigned a unique unsigned short integer string ID. Strings are read in for access at run 
time by calling the LoadString function with the desired string ID.
The message table mechanism is a convenient method to keep text strings separate from code for 
easy update and possible translation into foreign languages.
Although string IDs must be numeric, the #define preprocessor directive can be used to simplify 
access by the program.



See Also
CHARACTERISTICS
LANGUAGE
STRINGTABLE
VERSION



POPUP
See Also Examples
POPUP [popup-name] [popup-attributes]
BEGIN
  item-definitions
END
Parameters
popup-name The name of the pop-up menu. This name is typically shown in the menu bar. 

It is a character string in double quotes. The pop-up name also indicates 
which character in the menu item is to serve as the menu mnemonic.
The item text string can also include the following escape codes: \a and \t. 
The \a escape code aligns the following text flush right. The \t escape code 
inserts a tab in the item text aligning the text. It should be used only within a 
POPUP definition and not for items in the main menu bar.

popup-attributes One or more keywords that describe the pop-up menu's state (active, 
inactive, grayed, checked, etc.).The keywords GRAYED and INACTIVE are 
mutually exclusive. Other keywords can be used together by combining their 
values with a bitwise OR.
GRAYED Item is unavailable for selection.
INACTIVE Item is never available for selection.
CHECKED Checkmark appears next to item. Not supported for 

top-level menu items.
HELP Appears on right side of menu bar.
MENUBREAK Item begins a new menu column.
MENUBARBREAK Item begins a new menu row.

item-definitions One or more MENUITEM or POPUP definitions. The MENUITEM definition 
specifies individual menu items, and the POPUP definition describes a pop-
up menu.

Remarks
POPUP is a MENU definition that defines a pop-up menu (also known as a drop-down menu).
POPUP contains a number of MENUITEM definitions, which specify the individual items in the pop-up 
menu. POPUP can be used only within a MENU definition.



See Also
MENU



PUSHBUTTON
See Also Examples
PUSHBUTTON text, control-ID, x, y, width, height, [c-style]
Parameters
text Text string in double quotes. This text is displayed inside the button area. It can be 

specified as a keyboard accelerator mnemonic.
control-ID A numeric identifier for this control. This number must be a unique integer. The control

ID is used by Windows to indicate which control has been selected.
x, y Horizontal and vertical positions of the button relative to the dialog window in which it 

appears. These numbers are specified in dialog units.
width, height The width and height of the control. These numbers are specified in dialog units.
c-style The control style constant (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants can be combined with a bitwise OR to apply multiple 
styles to the control. The field can    contain any of the window style constants.
WS_TABSTOP
WS_DISABLED
WS_GROUP
and any of the BUTTON class style constants. The default styles are WS_TABSTOP 
and BS_PUSHBUTTON.

Remarks
PUSHBUTTON is a DIALOG definition that places a push button control in a dialog box.
A push button is a square button containing text describing its action. It is a member of the button 
class. PUSHBUTTON is valid only within a DIALOG definition.



See Also
DIALOG



RADIOBUTTON
See Also Examples
RADIOBUTTON text, control-ID, x, y, width, height, [c-style]
Parameters
text Text string in double quotes. This text is displayed next to the button. It can be 

specified as a keyboard accelerator mnemonic.
control-ID A numeric identifier for this control. This number must be a unique integer. The control

ID is used by Windows to indicate which control has been selected.
x, y Horizontal and vertical positions of the button relative to the dialog window in which it 

appears. These numbers are specified in dialog units.
width, height The width and height of the control. These numbers are specified in dialog units.
c-style The control style constant (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants can be combined with a bitwise OR to apply multiple 
styles to the control. The field may contain the window style constants:
WS_DISABLED
WS_GROUP
WS_TABSTOP
and any of the BUTTON class style constants. The default styles are WS_TABSTOP 
and BS_RADIOBUTTON.

Remarks
RADIOBUTTON is a DIALOG definition that places a radio button control in a dialog box.
A radio button is a round button with text to the left or right of the button describing the button. 
Normally, text is displayed to the right of the button. You can change this to the left side with the 
appropriate c-style.
Radio buttons maintain a state: they are either checked or unchecked. A checked radio button has a 
small black circle within the outer circle to show that it is checked. Radio buttons require application 
program intervention to maintain their state. To simplify programming, use the auto-radio button which 
is defined with the CONTROL definition.
A radio button is a member of the button class. When the user presses the mouse button in the 
control's area, the button is highlighted. When the mouse button is released, the radio button is returns
to normal, and a message is sent to the parent window indicating that the button was pressed.
Never perform any action that changes the keyboard focus (or for that matter any action which toggles 
the state of the application) in response to the BN_CLICKED message, since a radio button sends this
notification each time it receives the keyboard focus.
RADIOBUTTON is valid only within a DIALOG definition.



See Also
AUTORADIOBUTTON
DIALOG



RCDATA
See Also Examples
resource-name RCDATA [load-type] [memory-option]
BEGIN
  resource-data
END
Parameters
resource-name The text identifier or numeric ID for this resource. The identifier or number must 

be unique. Numeric IDs must be integers.
load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.
resource-data One or more lines of data in standard C language format. Data can consist of any 

mix of numeric values and strings. Numeric values can be represented in hex, 
octal, or decimal. Strings are placed inside double quotation marks. String values 
are not automatically null terminated. To terminate a string with a null character, 
simply include a \0 at the end of the string.

Remarks
RCDATA is a multiple-line statement that lets the user include any type of data directly in an .RC file.
The resource data is associated with the specified resource name, and is included in the executable 
file for access at run time.



See Also
CHARACTERISTICS
LANGUAGE
VERSION



RCINCLUDE
Examples
rcinclude filename
Parameters
filename Can be absolute or relative to the current directory. The INCLUDE environment path is not

searched for files which are rcincluded.

Remarks
RCINCLUDE is a directive that causes Resource Workshop to open the named source file and 
process directives and resource definitions contained in that file.
RCINCLUDE directives can be nested up to 19 levels. Note, however, that the Microsoft Resource 
Compiler does not support nested RCINCLUDE statements.
The rcinclude keyword is not case sensitive: rcinclude, RCINCLUDE, and RcInClUde are all processed
identically by Resource Workshop.



RTEXT
See Also Examples
RTEXT text, control-ID, x, y, width, height, [c-style]
Parameters
text A text string, enclosed in quotes, that appears in the dialog window. It can be 

specified as a keyboard accelerator mnemonic.
A common Windows programming technique is to label an edit control by preceding it 
with a static text control. The label contains a mnemonic for the edit field, such as 
"&Name". If the CTEXT control does not use the window style constant 
WS_TABSTOP, Windows sets the focus in the next control.

control-ID A numeric identifier for this control. This number can be a unique integer. The control 
ID is used by Windows to indicate which control has been selected. If there is no need
to refer to the control at run time (as is most often the case with static controls), this 
field is by convention set to -1 to document that it is truly static.

x, y Horizontal and vertical positions of the text relative to the dialog window in which the 
text appears. These numbers are specified in dialog units.

width, height The size of the control in dialog units. The static text appears centered within the 
specified area.

c-style The control style constant (an unsigned long integer value that is interpreted as a 
series of bit flags). More than one control style can be combined using a bitwise OR. 
The window style WS_GROUP is always set for static text. The default style is the 
STATIC style constant SS_RIGHT and the window style WS_GROUP.

Remarks
RTEXT is a DIALOG definition that defines right-aligned static text in a dialog box.
RTEXT specifies a text string, its attributes, and where it is located in the window. The text is aligned 
flush right within the specified rectangle. If the text is too wide to fit within the rectangle, it automatically
wraps.
This definition can only appear within a DIALOG definition.



See Also
CTEXT
DIALOG
LTEXT



SCROLLBAR
Examples
SCROLLBAR control-ID, x, y, width, height, [c-style]
Parameters
control-ID A numeric identifier for this control. This number must be a unique identifier. The 

control-ID is used by Windows to indicate which control has been selected.
x, y Horizontal and vertical position of the scroll bar control relative to the dialog window in

which it appears. These numbers are specified in dialog units.
width, height The size of the control in dialog units. 
c-style The control style constant (an unsigned long integer value that is interpreted as a 

series of bit flags). Constants may be combined with a bitwise OR to apply multiple 
styles to the control. The field can combine any of the window style constants:
WS_DISABLED
WS_GROUP
WS_TABSTOP
and any of the SCROLLBAR class style constants. The default style is SBS_HORZ.

Remarks
SCROLLBAR is a DIALOG definition that defines a scroll bar, a rectangular control with direction 
arrows on both ends and a movable scroll box. 
A scroll bar can appear anywhere in a window. When the user clicks the control with a mouse, a 
message is sent to the parent window.



STATE3
See Also
STATE3 text, control-ID, x, y, width, height [c-style]
Parameters
text Text string in double quotes. It is displayed next to the button. It can be specified as a 

keyboard accelerator mnemonic.
control-ID A numeric identifier for this control. This number must be a unique short integer. 

Windows uses the control-ID to indicate which control has been selected.
x, y Horizontal and vertical positions, respectively, of the button relative to the dialog 

window in which it appears. These numbers are specified in dialog units.
width, height The width and height of the control (specified in dialog units).
c-style Specifies the styles of the control. This value can be a combination of the BUTTON 

class style constant BS_3STATE and these window style constants: 
WS_TABSTOP
WS_GROUP
The default style is BS_3STATE and WS_TABSTOP.

Remarks
A DIALOG definition that places a 3-state check box control in a dialog box. It's valid only within a 
DIALOG definition. A 3-state check box is identical to a CHECKBOX control, except that it has three 
states: checked, unchecked, and "indeterminate" (grayed).



See Also
AUTOCHECKBOX
CONTROL
DIALOG



STRINGTABLE
See Also Examples
STRINGTABLE [load-type] [memory-option]
BEGIN
  string-ID, string
END
Parameters
load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.
string-ID A user-assigned integer value that identifies the string. Each string ID must be 

unique. The string ID is used at run time by the LoadString function to determine 
which string is being requested by the program.

string An ASCII string in standard C language format.

Remarks
STRINGTABLE is a multiple-line statement that specifies null-terminated ASCII strings that can be 
accessed by the program.
Each string is assigned a unique unsigned short integer string ID. Strings are read in for access at run 
time by calling the LoadString function with the desired string ID.
The string table mechanism is a convenient method to keep text strings separate from code for easy 
update and possible translation into foreign languages.
Although string IDs must be numeric, the #define preprocessor directive can be used to simplify 
access by the program. (See the second example.)



See Also
CHARACTERISTICS
LANGUAGE
MESSAGETABLE
VERSION



User-Defined Resources
Examples
resource-name type-ID [load-type] [memory-option] filename
Parameters
resource-name Text identifier or numeric ID for this resource. The identifier or number must be 

unique within each user-defined resource type. Numeric IDs must be integers.
type-ID The type-identifier for the custom resource type. This type identifier should be a 

text identifier or an integer number. User-defined type identifier numbers must be 
greater than 255. (Numbers 1 to 255 are reserved by Resource Workshop for 
predefined resource types and future expansion.)

load-type Specifies when the resource is loaded into memory.
memory-option Specifies how the resource is loaded into memory.
filename The name of the DOS file containing the user data. A full path name can be used 

to specify files which are not in the current working directory. The data in the 
specified file is included in the current project.

Remarks
A user-defined resource definition associates a file containing user-defined resource data with a 
resource name and a type ID. 
This definition includes data from the specified file in the current project. This definition can also use 
the syntax of RCDATA.



VERSION
See Also
VERSION dword
Parameter
dword A user-defined doubleword value.

Remarks
You use the VERSION statement to specify version information about a resource. The value appears 
with the resource in the compiled .RES file and can be used by tools that read and write resource-
definition files. It is not stored in the executable file and has no significance to Windows.
Use the VERSION statement before the BEGIN statement in these resource definitions:

ACCELERATOR

DIALOG

MENU

RCDATA

STRINGTABLE
The version information applies only to the specified resource. 



See Also
CHARACTERISTICS
LANGUAGE



VERSIONINFO
versionID VERSIONINFO fixed-info 
BEGIN 
  block-statements
END
The VERSIONINFO resource is a version stamper for Windows 3.1 .EXE files. It is a collection of data 
used by several Windows API functions (i.e. GetFileVersionInfo, VerInstallFile, and so on) that are 
typically used by Windows-based installation programs. 

Parameters
versionID Version information resource identifier. Must be set to 1. 
fixed-info Fixed version information.
block-statements One or more version information blocks. Blocks are either string information or 

variable information. 
String information block: 

BLOCK "StringFileInfo" 
BEGIN 
    BLOCK "lang-charset" 
    BEGIN 
        VALUE "string-name", "value" 
            . 
            . 
            . 
    END 
END 

where: 
lang-charset Hex string for language and character set.
string-name Name of a value in the block.
VALUE Character string specifying value of corresponding string-

name. There can be more than one value statement.
Variable information block: 

BLOCK "VarFileInfo" 
BEGIN 
    VALUE "Translation",
      langID, charsetID
           . 
           . 
           . 
END 

where: 
langID/charsetID Language and character set identifier.There can be more 

than one identifier pair. Each pair must be separated from 
the preceding pair with a comma.

Remarks
VERSIONINFO creates a version information resource. The resource contains the:

file version number



product version number

operating system

file type

file function
This resource is intended for use with File Installation functions. 



fixed-info
Parameter in the VERSIONINFO statement. Can be set to one of the following:

Statement Description

FILEVERSION version Binary version number for file. A 64-bit, integer number. 
PRODUCTVERSION version Binary version number for product that file is distributed with. A 64-bit, 

integer number. 
FILEFLAGSMASK fileflags Specifies valid bits in FILEFLAGS statement. If a bit is set, the 

corresponding bit in FILEFLAGS is valid. 
FILEFLAGS fileflags Boolean attributes of file.
FILEOS fileos Operating system file designed for.
FILETYPE filetype File type.
FILESUBTYPE subtype File function. subtype is 0 unless type parameter in FILETYPE 

VFT_DRV, VFT_FONT, or VFT_VXD. 



fileflags
Parameter used in the VERSIONINFO statement. To use these constants, VER.H must be included in 
your resource-definition file.

Value Meaning

VS_FF_DEBUG Debugging - file contains debugging information or was compiled with 
debugging features enabled. 

VS_FF_INFOINFERRED Incorrect version information - file contains a dynamically-created version 
information resource with possible empty or incorrect blocks. Do not use 
this value in version information resources created with the 
VERSIONINFO statement. 

VS_FF_PATCHED Patch - file has been modified; is not identical to the original shipping file 
of the same version number. 

VS_FF_PRERELEASE Pre-release - file is a development version, not a commercially released 
product. 

VS_FF_PRIVATEBUILD Private build - file was not built using standard release procedures. When 
you use this value, include the PrivateBuild string in the string-name 
parameter.

VS_FF_SPECIALBUILD Special build - file was built by the original company using standard 
release procedures, but is a variation of the standard file of the same 
version number. When you use this value, include the SpecialBuild string 
in the string-name parameter.



fileos
Parameter used in the VERSIONINFO statement. To use these constants, VER.H must be included in 
your resource-definition file.
Value Meaning

VOS_UNKNOWN File designed for unknown operating system.
VOS_DOS File designed for MS-DOS. 
VOS_NT File designed for Windows NT. 
VOS_WINDOWS16 File designed for Windows 3.0 or later. 
VOS_WINDOWS32 File designed for Windows 32-bit. 
VOS_DOS_WINDOWS16 File designed for Windows 3.0 or later running on MS-DOS. 
VOS_DOS_WINDOWS32 File designed for Windows 32-bit running on MS-DOS. 
VOS_NT_WINDOWS32 File designed for Windows 32-bit running on Windows NT. 
The values 0x00002L, 0x00003L, 0x20000L and 0x30000L are reserved. 



filetype
Parameter used in the VERSIONINFO statement. To use these constants, VER.H must be included in 
your resource-definition file.

Value Meaning

VFT_UNKNOWN File type is unknown to Windows. 
VFT_APP File contains an application. 
VFT_DLL File contains a dynamic-link library. 
VFT_DRV File contains a device driver. If you use this constant, include a more specific 

description of the driver in FILESUBTYPE.
VFT_FONT File contains a font. If you use this constant, include a more specific description of

the font file in FILESUBTYPE. 
VFT_VXD File contains a virtual device. If you use this constant, include a more specific 

description of the device in FILESUBTYPE.
VFT_STATIC_LIB File contains a static-link library. 
All other values are reserved for use by Microsoft. 



subtype
Parameter used in the VERSIONINFO statement. To use these constants, VER.H must be included in 
your resource-definition file. 
subtype can be one of the following values if FILETYPE specifies VFT_DRV: 

Value Meaning

VFT2_UNKNOWN Driver type is unknown to Windows. 
VFT2_DRV_COMM File contains a communications driver. 
VFT2_DRV_PRINTER File contains a printer driver. 
VFT2_DRV_KEYBOARD File contains a keyboard driver. 
VFT2_DRV_LANGUAGE File contains a language driver. 
VFT2_DRV_DISPLAY File contains a display driver. 
VFT2_DRV_MOUSE File contains a mouse driver. 
VFT2_DRV_NETWORK File contains a network driver. 
VFT2_DRV_SYSTEM File contains a system driver. 
VFT2_DRV_INSTALLABLE File contains an installable driver. 
VFT2_DRV_SOUND File contains a sound driver. 
subtype can be one of the following values if FILETYPE specifies VFT_FONT: 

Value Meaning

VFT2_UNKNOWN Font type is unknown to Windows. 
VFT2_FONT_RASTER File contains a raster font. 
VFT2_FONT_VECTOR File contains a vector font. 
VFT2_FONT_TRUETYPE File contains a TrueType font. 
subtype must be the virtual-device identifier included in the virtual device control block if 
FILETYPE specifies VFT_VXD. 
All values not listed are reserved.



langID
Parameter used in the VERSIONINFO statement. To use these constants, VER.H must be included in 
your resource-definition file.
langID can be one of the following values: 

Value Language

0x0401 Arabic 
0x0402 Bulgarian 
0x0403 Catalan 
0x0404 Traditional Chinese 
0x0405 Czech 
0x0406 Danish 
0x0407 German 
0x0408 Greek 
0x0409 U.S. English 
0x040A Castilian Spanish 
0x040B Finnish 
0x040C French 
0x040D Hebrew 
0x040E Hungarian 
0x040F Icelandic 
0x0410 Italian 
0x0411 Japanese 
0x0412 Korean 
0x0413 Dutch 
0x0414 Norwegian - Bokmal 
0x0415 Polish 
0x0416 Brazilian Portuguese 
0x0417 Rhaeto-Romanic 
0x0418 Romanian 
0x0419 Russian 
0x041A Croato-Serbian (latin) 
0x041B Slovak 
0x041C Albanian 
0x041D Swedish 
0x041E Thai 
0x041F Turkish 
0x0420 Urdu 
0x0421 Bahasa 
0x0804 Simplified Chinese 
0x0807 Swiss German 
0x0809 U.K. English 
0x080A Mexican Spanish 
0x080C Belgian French 
0x0810 Swiss Italian 
0x0813 Belgian Dutch 
0x0814 Norwegian - Nynorsk 
0x0816 Portuguese 
0x081A Serbo-Croatian (cyrillic) 
0x0c0C Canadian French 
0x100C Swiss French 





charsetID
Parameter used in the VERSIONINFO statement. To use these constants, VER.H must be included in 
your resource-definition file.
charsetID can be one of the following values: 

Value Character set

0 7-bit ASCII 
932 Windows, Japan (Shift - JIS X-0208) 
949 Windows, Korea (Shift - KSC 5601) 
950 Windows, Taiwan (GB5) 
1200 Unicode 
1250 Windows, Latin-2 (Eastern European) 
1251 Windows, Cyrillic 
1252 Windows, Multilingual 
1253 Windows, Greek 
1254 Windows, Turkish 
1255 Windows, Hebrew 
1256 Windows, Arabic 



string-name
Parameter used in the VERSIONINFO statement. To use these constants, VER.H must be included in 
your resource-definition file.

Name Value

Comments Additional information for diagnostic purposes. Optional.
CompanyName The company that produced the file. Required.
FileDescription File description. You can display this string in a list box during installation. Required.
FileVersion File version number. Required.
InternalName File internal name. If file does not have internal name, use original filename, without

extension. Required.
LegalCopyright File copyright notices. Optional.
LegalTrademarks Trademarks and registered trademarks that apply to file. Optional.
OriginalFilename Original file name, not including path. Required.
PrivateBuild Information about private version of file. Required if VS_FF_PRIVATEBUILD is set 

in FILEFLAGS. 
ProductName Name of product file is distributed with. Required.
ProductVersion Version of product file is distributed with. Required.
SpecialBuild Specifies how this version of file differs from standard version. Required if 

VS_FF_SPECIALBUILD is set in FILEFLAGS.



Constants
Here are the predefined constants:
Control window style constants
Dialog window style constants
Extended window style constants
Window style constants



Window style constants
See Also
Here are the predefined constants for window styles.

Style Description

WS_BORDER Window has a thin border (1 pixel wide on EGA and VGA displays).

WS_CAPTION Window has a title bar and thin border, unless WS_EX__DLGMODALFRAME
is set in CreateWindowEx (see DS_MODALFRAME).

WS_CHILD Window is a child window. All controls within a dialog box have this style. This
style cannot be used with WS_POPUP or WS_OVERLAPPED.

WS_CLIPCHILDREN When the programmer obtains a device context for this window using either 
the GetDC or BeginPaint functions, the device context's clipping region 
excludes the area(s) occupied by any child window(s). If this style is not set 
for a window, it's possible for a parent to paint over one or more of its child 
windows.

This style is not normally applicable to dialog windows because the user 
program does not usually paint within a dialog window, leaving that function 
to the Windows dialog manager.

WS_CLIPSIBLINGS When the programmer obtains a device context for this window using either 
the GetDC or BeginPaint functions, the device context's clipping region 
excludes the area(s) occupied by any sibling child window(s). This style 
requires the use of WS_CHILD. If this style is not set for a window, it is 
possible for a child to paint over one or more of its sibling windows.

This style is not normally applicable to dialog controls, because the user 
program does not usually paint within a dialog window, leaving that function 
to the Windows dialog manager.

WS_DISABLED Window is disabled at the time of creation. No user input is allowed in the 
window, thus the control cannot be selected using the keyboard or mouse. 
For some controls, this style causes the text for the control to be grayed.

This style can be changed at run time by calling the EnableWindow function.

WS_DLGFRAME Window has a double border and no title bar.

This style was standard for Windows 2 dialog windows. Windows 3 dialog 
windows, by convention, use the WS_CAPTION, WS_SYSMENU, and 
DS_MODALFRAME styles. The Windows 3 convention lets a user move the 
dialog window in order to see the information underneath.

WS_GROUP This style is used to group controls for user access with the arrow keys. 
WS_GROUP is a start of group marker. Only the first control in each group 
should have the WS_GROUP flag set. The next group begins with the next 
WS_GROUP.

Because this style flag has the same numeric value as WS_MAXIMIZEBOX, 
it can be used only with child windows.

WS_HSCROLL Window has a horizontal scroll bar along the bottom of the window.

The WS_HSCROLL style should not be confused with a scroll bar control. A 
scroll bar control is an independent child window which can be moved 
anywhere within its parent's client area, while the WS_HSCROLL creates a 
scroll bar that is part of the window's frame (also called non-client area).



WS_ICONIC Window is created initially in the iconic state. This style should only be used 
for WS_OVERLAPPED windows.

WS_MAXIMIZE Window is maximized when first shown. This style should only be used for 
WS_OVERLAPPED windows.

WS_MAXIMIZEBOX Window contains a maximize button in the title bar. This style should only be 
used for windows with the WS_CAPTION style.

WS_MINIMIZE Window is minimized when first shown. This style should only be used for 
WS_OVERLAPPED windows.

WS_MINIMIZEBOX Window contains a minimize button in the title bar. This style should only be 
used for windows with the WS_CAPTION style.

WS_OVERLAPPED Window is a top-level window. Usually used for the main window of an 
application. This style cannot be used with WS_POPUP, or WS_CHILD 
styles.

WS_OVERLAPPEDWINDOW Window has WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, and 
WS_THICKFRAME attributes.

WS_POPUP Window is the pop-up type. Cannot be used with WS_CHILD or 
WS_OVERLAPPED styles.

WS_POPUPWINDOW Window has WS_POPUP, WS_BORDER, and WS_SYSMENU attributes.

WS_SIZEBOX Window has a thick frame. Valid only for windows with scroll bars or a title 
bar. 

WS_SYSMENU Window has a system menu in the title bar. Valid only for windows with title 
bars (WS_CAPTION style).

WS_TABSTOP This style indicates that when the user presses Tab in a preceding control, 
the input focus changes to this control. Controls without this style can still be 
activated using the mouse, or using the arrow keys, if part of a group.

WS_THICKFRAME Window has a thick frame and can be sized by the user.

WS_VISIBLE Window is visible when created. All controls within a dialog have this style by 
default.

WS_VSCROLL Window contains a vertical scroll bar at its left side. The WS_VSCROLL style 
should not be confused with a scroll bar control. A scroll bar control is an 
independent child window, which can be moved anywhere within its parent's 
client area, while the WS_VSCROLL style creates a scroll bar that is part of 
the window's frame (also called non-client area).



See Also
Control window style constants
Dialog window style constants
Extended window style constants



Extended window style constants
See Also
Here are the predefined constants for extended window styles:

Style Description

WS_EX_ACCEPTFILES Window accepts drag-drop files. 

WS_EX_DLGMODALFRAME Window has a double border that may (optionally) be created with a title bar 
by specifying the WS_CAPTION style flag in the c-style parameter. 

WS_EX_NOPARENTNOTIFY Specifies that a child window created by using this style will not send the 
WM_PARENTNOTIFY message to its parent window when the child window 
is created or destroyed. 

WS_EX_TOPMOST Specifies that a window created with this style should be placed above all 
non-topmost windows and stay above them even when the window is 
deactivated. An application can use the SetWindowPos function to add or 
remove this attribute. 

WS_EX_TRANSPARENT Specifies that a window created with this style is to be transparent, so that 
any windows beneath the window are not obscured by the window. A window 
created with this style receives WM_PAINT messages only after all sibling 
windows beneath it have been updated. 



See Also
Control window style constants
Dialog window style constants
Window style constants



Dialog window style constants
See Also
Here are the predefined constants for dialog window styles.

Style Description

DS_ABSALIGN This style indicates that the x- and y-coordinates specified for the window's position are 
relative to the screen's origin rather than to the parent or owner window.

DS_SYSMODAL Makes a system modal window. No other windows can be selected by the user when 
this window is displayed.

DS_LOCALEDIT Storage for edit text controls (class "edit") is, by default, allocated in the global heap. By 
using DS_LOCALEDIT, you    can force the Windows dialog manager to create the edit 
text controls in such a way that the storage is allocated on the local heap of the module 
whose instance handle is passed to the dialog manager in the call to DialogBox or 
CreateDialog.

If you want to use the EM_SETHANDLE or EM_GETHANDLE messages in the dialog 
hook or window function, you must use this style.

DS_SETFONT This style must be set by a resource compiler for a dialog window that contains the 
optional font data in the dialog binary data structure. Because it is set by the resource 
compiler, it must never be used by a user.

DS_MODALFRAME This style is used in conjunction with WS_CAPTION to create a movable but unsizeable 
window with a caption and a modal dialog frame for the lower three borders instead of a 
thin border.

DS_NOIDLEMSG When a modal dialog box is displayed by an application, Windows periodically sends the
dialog's owner window function WM_ENTERIDLE messages. If for some reason, a 
programmer wants to suppress these messages, use this style.



See Also
Control window style constants
Extended window style constants
Window style constants



Control window style constants
Here are the predefined constants for control window styles.
BUTTON class style constants
COMBOBOX class style constants
EDIT class style constants
LISTBOX class style constants
SCROLLBAR class style constants
STATIC class style constants



BUTTON class style constants
See Also
The BUTTON class includes controls that function like physical buttons. The user "presses" the control
using the mouse or keyboard, and the control performs some specific action. Buttons include push 
buttons, radio buttons, check boxes, and so on.
The predefined constants for the BUTTON class style are:

Style Description

BS_3STATE A checkbox with three states: checked, not checked, and grayed. When the user 
clicks on the control, Windows sends a BN_CLICKED message to the control's 
parent window indicating that the button has been clicked.

BS_AUTO3STATE A checkbox with three states: checked, not checked, and grayed. When the user 
clicks the mouse button on the control, the button automatically toggles to the 
next state. Windows sends a BN_CLICKED message to the control's parent 
window indicating that the button has been clicked.

BS_AUTOCHECKBOX A checkbox with two states: checked and not checked. When the user clicks the 
mouse button on the control, the button automatically toggles to the next state. 
Windows sends a BN_CLICKED message to the control's parent window 
indicating that the button has been clicked.

BS_AUTORADIOBUTTON A radio button that toggles automatically. When the user clicks on the button, it is 
checked and other buttons in the group are unchecked. Windows notifies the 
control's parent window, indicating that the button has been clicked 
(BN_CLICKED).

BS_CHECKBOX A checkbox with two states: checked and not checked. When the user clicks on 
the control, Windows sends a BN_CLICKED message to the control's parent 
window indicating that the button has been clicked.

BS_DEFPUSHBUTTON Default push button. This style of control is a push button with a heavy border. 
The heavy border informs the user that this button is the default action for the 
window, when the Enter key is pressed. A BN_CLICKED message is sent to the 
parent window when the user clicks the mouse or presses Spacebar inside the 
button area.

Only one button of this type should be used in a dialog window, and you should 
be give it the control ID IDOK (1).

BS_LEFTTEXT This style indicates that the control's text name should be displayed to the left of 
the button, rather than the default right-hand side.

This style can be used with check boxes,    BS_3STATE and BS_AUTO3STATE 
check boxes, and radio buttons.

BS_OWNERDRAW A button drawn by its owner (parent) window.

BS_PUSHBUTTON Push button. This style of control is a rectangle containing text, with a rectangular 
border. A BN_CLICKED message is sent to the parent window when the user 
clicks the mouse or presses Spacebar inside the button area.

With some display drivers the control is partially filled with gray, giving the button 
a shaded appearance.

BS_RADIOBUTTON Radio button. When the user clicks on the button, Windows notifies the control's 
parent window, indicating that the button has been clicked (BN_CLICKED). When 
using radio buttons, you must use the CheckRadioButton function to select and 
deselect radio buttons within a group when the BN_CLICKED notification is sent 



to the parent window or dialog function.



See Also
Control window style constants



COMBOBOX class style constants
See Also
The COMBOBOX class is used for a box that is a combination of a list box and an edit control. The list 
box can be displayed at all times (CBS_SIMPLE) or dropped by clicking in a drop-down button next to 
the edit control. The edit control may or may not allow user entry.
The predefined constants for the COMBOBOX class are:

Style Description

CBS_AUTOHSCROLL A combo box that scrolls the text in the edit control. When a user enters 
text beyond the boundary of the rectangle, the text will scroll.

CBS_DISABLENOSCROLL A combo box with a disabled vertical scroll bar when the list box doesn't 
contain enough items to scroll. If this style is not used, the scroll bar won't 
be displayed. 

CBS_DROPDOWN A combo box with a list box displayed only when the user selects the drop-
down arrow next to the edit control. The edit control displays the current 
selection.

CBS_DROPDOWNLIST A combo box with a list box with a static text item instead of an edit control 
that displays the current selection. The list box is displayed only when the 
user selects the drop-down arrow next to the static text.

CBS_HASSTRINGS An owner-draw combo box with a list box containing items made up of 
strings. Memory and pointers for the strings are handled by the combo box.
Your application can then use CB_GETTEXT to retrieve the text for a 
particular string.

CBS_OEMCONVERT A combo box that converts text typed into the edit control from the ANSI 
character set to the OEM character set and back again to ANSI. When 
your application calls the AnsiToOem function to convert an ANSI string to 
OEM characters, this style ensures characters are converted properly. 
Usually this style is used for combo boxes that contain filenames. Use 
CBS_OEMCONVERT only with combo boxes created with the 
CBS_SIMPLE or CBS_DROPDOWN styles.

CBS_OWNERDRAWFIXED An owner-draw fixed-height combo box. The list box's owner draws the 
contents of the list box. Each list box item is the same height.

CBS_OWNERDRAWVARIABLE An owner-draw variable-height combo box. The list box's owner draws the 
contents of the list box. List box items can be of variable heights.

CBS_SIMPLE A combo box with the list box always displayed. It's edit control displays the
list box's current selection.

CBS_SORT A combo box that sorts all the items displayed in the list box.



See Also
Control window style constants



EDIT class style constants
See Also
The EDIT class is used for editable text fields. These fields are a rectangular area with space for one 
or more lines of text. The text can be edited by the user with the mouse or keyboard.
The predefined constants for the EDIT class are:

Style Description

ES_AUTOHSCROLL Automatic horizontal scroll. When this style is specified and the user enters more text 
than will fit in the control's rectangle, the text is automatically scrolled. Scrolling occurs 
10 characters at a time. If automatic horizontal scrolling is not specified and 
ES_MULTILINE is specified, text will automatically wrap to the next line when the right 
side of the control's rectangle is reached.

The EM_LIMITTEXT message can be used by to place an absolute limit on the number 
of characters allowed in the edit text control.

ES_AUTOVSCROLL Automatic vertical scroll. Text is scrolled vertically when the user presses the Enter key 
on the last line of text which fits in the control's rectangle. Scrolling occurs one page at a 
time. (A page is defined as the number of lines visible in the edit text control.) If 
automatic vertical scrolling is not specified, the control will beep if the user attempts to 
enter more lines than will fit in the control.

Note that the ES_LIMITTEXT message can be used by the programmer to place an 
absolute limit on the number of characters allowed in the edit text control.

ES_CENTER Edit text is centered horizontally in control's rectangle. 

The ES_MULTILINE style must be set for this style to have any effect on the appearance
of the text.

ES_LEFT Edit text is aligned flush left.

ES_LOWERCASE Edit text is converted to lower case.

ES_MULTILINE Edit text can occupy more than one line in the control's rectangle. The number of lines 
allowed by the control is determined by the size of the control's client area.

The ES_MULTILINE flag can be used with ES_AUTOVSCROLL and 
ES_AUTOHSCROLL to make an automatically scrolling window. Additionally, the 
WS_HSCROLL and WS_VSCROLL styles can be specified to give manual scrolling 
ability to the control. In such cases, the edit control manages its own scrolling, with no 
intervention required. If the edit control has no scroll bars, scrolling can be managed by 
sending the control WM_HSCROLL and WM_VSCROLL messages.

ES_NOHIDESEL No hide selection. Normally text selected in an edit text control is highlighted only when 
the control has the input focus. The ES_NOHIDESEL flag specifies that the selected text
in edit control remains highlighted even when the control doesn't have the input focus.

ES_OEMCONVERT Edit text is converted from the ANSI character set to the OEM character set and back 
again to ANSI. When your application calls the AnsiToOem function to convert an ANSI 
string to OEM characters, this style ensures characters are converted properly. Usually 
this style is used for combo boxes that contain filenames. 

ES_PASSWORD Edit text is displayed as an asterisk (*) as it's typed in. 

ES_READONLY Edit text is read-only; the user can't enter or edit text.

ES_RIGHT Edit text is aligned flush right. The text ends at the right side of control's rectangle. 

Note that the ES_MULTILINE style must be set for this style to have any effect on the 
appearance of the text.



ES_UPPERCASE Edit text is converted to upper case.

ES_WANTRETURN When the user presses Enter, ES_WANTRETURN puts Enter in the edit buffer, rather 
than performing the action for the default key. This style applies to multiline text only.



See Also
Control window style constants



LISTBOX class style constants
See Also
The LISTBOX class is used for list boxes. These boxes contain a list of strings or application program 
drawn items from which the user can select. LISTBOX is typically used for lists of file names, fonts, 
styles, etc.
The predefined constants for the LISTBOX class are:

Style Description

LBS_DISABLENOSCROLL A list box with a disabled vertical scroll bar when it doesn't contain enough 
items to scroll. If this style is not used, the scroll bar won't be displayed.

LBS_EXTENDEDSEL A list box with multiple items that are selected using the SHIFT key and the 
mouse or special key combinations. 

LBS_HASSTRINGS An owner-draw list box that contains string items. The list box maintains the 
memory and pointers for the string items. The LB_GETTEXT message 
retrieves the text for a particular item. 

LBS_MULTICOLUMN A multicolumn list box that is scrolled horizontally. The 
LB_SETCOLUMNWIDTH message sets the width of the columns. 

LBS_MULTIPLESEL A list box where more than one string in the list box can be selected.

LBS_NOINTEGRALHEIGHT A list box that is not resized when partial items are displayed. Its size is 
exactly the size specified by the application when it created the list box.

LBS_NOREDRAW The content of the list box is not redrawn when a change is made. This 
setting can be changed at run time by sending a WM_SETREDRAW 
message to the control.

LBS_NOTIFY Notifies the parent window when the user clicks or double clicks in a control.

LBS_OWNERDRAWFIXED A list box where the owner is responsible for drawing the contents of the list 
box. The items in the list box are the same height. The owner window 
receives a WM_MEASUREITEM message when the list box is created. 
When a visual aspect of the list box changes, the owner window receives a 
WM_DRAWITEM message . 

LBS_OWNERDRAWVARIABLE A list box where the owner is responsible for drawing the contents of the list 
obx. The items in the list box are variable in height. The owner window 
receives a WM_MEASUREITEM message when the list box is created. 
When a visual aspect of the list box chnages, the owner windows receives a
WM_DRAWITEM message.

LBS_SORT Strings in the list box are displayed in alphabetical order.

LBS_STANDARD Strings in the list box are displayed in alphabetical order and parent window 
receives an input message when the user clicks or double-clicks a string. 
There are borders on all sides of the list box.

LBS_USETABSTOPS Allows a list box to recognize and expand tab characters when drawing its 
strings. The default tab positions are 32 dialog units.

LBS_WANTKEYBOARDINPUT When the list box has the focus and a user presses a key, the owner of the 
list box receives a WM_VKEYTOITEM or a WM_CHARTOITEM message. 
The application can perform special processing on the keyboard input. 



See Also
Control window style constants



SCROLLBAR class style constants
See Also
The SCROLLBAR class is used for the standard scroll bar control and for size boxes. Scroll bar 
controls have the same appearance as a window's scroll bar, except they can be positioned anywhere 
within a window.
The predefined constants for the SCROLLBAR class are:

Style Description

SBS_BOTTOMALIGN The scroll bar appears the standard height, aligned with the bottom 
side of the control's rectangle. Valid for horizontal scroll bars only.

SBS_HORZ Horizontal scroll bar. If SBS_BOTTOMALIGN or SBS_TOPALIGN is 
not specified, the scroll bar occupies the control's client area.

SBS_LEFTALIGN The scroll bar appears the standard width, aligned with the left side 
of the control's rectangle. Valid for vertical scroll bars only.

SBS_RIGHTALIGN The scroll bar appears the standard width, aligned with the right side
of the control's rectangle. Valid for vertical scroll bars only.

SBS_SIZEBOXTOPLEFTALIGN The size box appears the standard size, aligned in the upper-left 
corner of the control's rectangle. Valid for size boxes only.

SBS_SIZEBOX Size box. If SBS_SIXEBOXTOPLEFTALIGN or 
SBS_SIZEBOXBOTTOMRIGHTALIGN is not specified, the size box 
occupies the control's client area.

SBS_SIZEBOXBOTTOMRIGHTALIGN The size box appears the standard size, aligned in the lower-right 
corner of the control's rectangle. Valid for size boxes only.

SBS_TOPALIGN The scroll bar appears the standard height, aligned with the top side
of the control's rectangle. Valid for horizontal scroll bars only.

SBS_VERT Vertical scroll bar. If SBS_RIGHTALIGN or SBS_LEFTALIGN is not 
specified, the scroll bar occupies the control's client area.



See Also
Control window style constants



STATIC class style constants
See Also
The STATIC class is used for static controls. These controls include non-editable text and icons.
The predefined constants for the STATIC class are:

Style Description

SS_BLACKFRAME Static item's rectangle; displayed with a frame in the system color 
COLOR_WINDOWFRAME.

SS_BLACKRECT Static item's rectangle; filled with the system color COLOR_WINDOWFRAME.

SS_CENTER Static item is text displayed centered in the control's rectangle. Text too long to fit is 
automatically wrapped to the next line.

SS_GRAYRECT Static item's rectangle; filled with the system color COLOR_BACKGROUND.

SS_GRAYFRAME Static item's rectangle; displayed with a frame in the system color 
COLOR_BACKGROUND.

SS_LEFT Static item is text displayed left-aligned in the control's rectangle. Text too long to fit is 
automatically wrapped to the next line.

SS_RIGHT Static item is text displayed right-aligned in the control's rectangle. Text too long to fit is 
automatically wrapped to the next line.

SS_WHITEFRAME Static item's rectangle; displayed with a frame in the system color COLOR_WINDOW.

SS_WHITERECT Static item's rectangle is filled with the system color COLOR_WINDOW.



See Also
Control window style constants



load-type
load-type specifies when resources are loaded into memory.
Use the following keywords for load-type. LOADONCALL is the default load type if no keyword is 
specified.

Keyword Value
PRELOAD Resource loaded at program start.
LOADONCALL Resource is loaded when referenced by the application.

memory-option specifies how resources are loaded into memory.



memory-option
memory-option specifies how resources are loaded into memory.
Use the following keywords for memory-option. The resource can be fixed at the same address at 
which memory-option is loaded, or it can be relocatable. 
Additionally,the resource can be discardable or nondiscardable. MOVEABLE and DISCARDABLE are 
the default values.

Keyword Value
DISCARDABLE Can be purged to make space.
FIXED Resource stays at same address.
IMPURE Resource is modified after loading.
MOVEABLE Resource can be relocated in memory.
NONDISCARDABLE Must stay in memory.
PURE Resource is not modified after it is loaded.

load-type specifies when resources are loaded into memory.



Directives
Overview
Directives are special statements that affect how the resource script file is compiled. They do not 
define resources. Unlike other resource script statements, directives are case sensitive.
You can use directives to:

assign values to names you use in other resource script statements

include the contents of other files

specify how the script file should be compiled
If you are a C or C++ programmer, the directive statements will look familiar to you. They are identical 
to those you use when compiling your programs.
Here are the directives:

Directive Description

#define Assigns a given value to the name you specify.
#elif Controls conditional compilation and marks an optional block. Used with #if.
#else Controls conditional compilation and marks an optional block. Used with #if, #ifdef, 

#ifndef, and #elif.
#endif Controls conditional compilation and    marks the end of a block. Used with #if, #ifdef, 

#ifndef, and #elif.
#error Displays user-defined error message.
#if Marks the start of conditional compilation.
#ifdef Marks the start of conditional compilation if a specified name has been #defined.
#ifndef Marks the start of conditional compilation if a specified name has not been #defined.
#include Puts the contents of the named file into your resource script before it's compiled.
#line Ignores text on the specified line number.
#pragma Directive is ignored.
RCINCLUDE Puts the contents of the named file into your resource script before it's compiled.



#define
See Also Examples
#define identifier text
Parameters
identifier Only recognized and replaced by the compiler when it is followed by whitespace and 

occurs outside a quoted string.
text Can contain any valid character. Is normally terminated by the end of the line on which the

#define occurs. text can also be empty. To continue text onto another line, place a 
backslash character (\) at the end of the source line.

Remarks
#define is a directive that causes the compiler to substitute text for each subsequent reference to 
identifier in the resource source text. Both the #define directive and the identifier are case sensitive.
There are two #define identifiers that are always defined in Resource Workshop: 

RC_INVOKED

WORKSHOP_INVOKED
Testing for these values in an #if or #ifdef directive always yields 1.
The #define directive is a subset of the #define statement.



See Also
#if
#ifdef



#elif
See Also Examples
#elif constant-expression
Parameters
constant-expression Evaluated as a signed long integer. If constant-expression evaluates to a 

nonzero value, the text following the #elif directive is processed by the 
compiler. Otherwise, the text between the #elif and a following #elif or #endif 
directive is ignored by the compiler. 

Remarks
#elif is a directive that is used in conjunction with the #if directive to control conditional compilation. 
This directive is lost if it occurs within a text resource and that resource is edited by Resource 
Workshop.
The #elif keyword is case sensitive; #ELIF causes a compile error.



See Also
#define
#if
#endif



#else
See Also Examples
#else
Remarks
#else is a directive that is used in conjunction with the #if, #ifdef, #ifndef, and #elif directives to control 
conditional compilation.
The compiler processes source code following the #else directive until the next #endif directive only 
when none of the previous conditional directives within the current scope have been processed. 
If any previous conditional directives within the current scope have been processed, the source code 
between the #else and the following #endif will be ignored. This directive is lost if it occurs within a text 
resource and that resource is edited by Resource Workshop.
The #else keyword is case sensitive; #ELSE causes a compile error.



See Also
#define
#elif
#endif 
#if 
#ifdef 
#ifndef 



#endif
See Also Examples
#endif
Remarks
#endif is a directive that marks the end of the scope of the current conditional compilation. It is used in 
conjunction with the #if, #ifdef, #ifndef, #else, and #elifelif directives to control conditional compilation.
This directive is lost if it occurs within a text resource and that resource is edited by Resource 
Workshop.
The #endif keyword is case sensitive; #ENDIF will cause a compile error.



See Also
#elif
#else 
#if 
#ifdef 
#ifndef 



#error
Error: filename line# : #error directive encountered: error text
Remarks
#errors is a directive that displays a user-defined error message.
This directive usually catches an undesired compile-time condition. In the normal case, the condition 
would be false. If the condition is true, you want the compiler to print an error message and stop the 
compilation. You do this by placing an #error directive in a conditional that is true for the undesired 
case.



#if
See Also Examples
#if constant expression
#if [!]defined identifier
#if [!]defined (identifier)
Parameters
When #if is followed by constant expression, the constant expression is evaluated as a signed long 
integer:

If the resulting value is nonzero, the source text following the #if directive until the next #else, 
#elif, or #endif directive is processed by the compiler.

If the resulting value is zero, the source text following the #if directive until the next #else, #elif, or 
#endif directive is ignored by the compiler.

The other formats of the #if directive can be used in place of the #ifdef and #ifndef directives. The 
keyword must be lowercase, but it can be preceded by a ! operator. The following identifier (optionally 
surrounded by parentheses) is searched for in the compiler's table of #defines. If the #define is found, 
the source text following the #if directive is processed. The ! operator reverses the effect of the 
preceding test.

Remarks
#if is a directive that marks the start of conditional compilation. #if directives can be nested. This 
directive is lost if it occurs within a text resource and that resource is edited by Resource Workshop.
The #if keyword is case sensitive; #IF will cause a compile error.



See Also
#define
#elif
#else 
#endif 
#ifdef 
#ifndef 



#ifdef
See Also Examples
#ifdef identifier
Parameters
identifier Searched for in the compiler's table of #defines.

- If identifier is found,    the source text following the #ifdef directive until the next #else, 
#elif, or #endif is processed. 

- If identifier is not found, the source text following the #ifdef directive until the next else, 
#elif, or #endif is ignored.

Remarks
#ifdef is a directive that marks the start of conditional compilation.
The #ifdef keyword is case sensitive; #IFDEF will cause a compile error.



See Also
#define
#elif
#else 
#endif 



#ifndef
See Also Examples
#ifndef identifier
Parameters
identifier Searched for in the compiler's table of #defines.

- If identifier is found, the source text following the #ifndef directive until the next #else, 
#elif, or #endif is ignored. 

- If identifier is not found, the source text following the #ifdef directive until the next #else, 
#elif, or #endif is processed.

Remarks
#ifndef is a directive that marks the start of conditional compilation.
The #ifndef keyword is case sensitive; #IFNDEF will cause a compile error.



See Also
#define
#elif
#else 
#endif 
#ifdef



#include
See Also Examples
#include "filename"
#include <filename>
Parameters
filename Can be absolute, relative to the current directory, or in one of the directories identified by 

the INCLUDE environment variable. Must be surrounded by either a pair of double-quote 
characters ("") or a left angle bracket (<) and a right angle bracket (>).

Resource Workshop treats both forms identically to maintain compatibility with the 
Microsoft RC compiler. Also to maintain compatibility, paired backslash characters ("\\") 
are treated as a single backslash.

Remarks
#include is a directive that causes the Resource Workshop compiler to open the named source file and
process directives and resource definitions contained in that file. 
Only directives of the format #... are processed in a header or C source file that is #included. All other 
data (for example, comments, structure definitions, code, resource definitions) within #included files 
are ignored.
This prevents Resource Workshop from seeing or processing RCINCLUDE directives in an #included 
file in header and C source files.
You can also #include Pascal constants in a Pascal include file or in a unit. The file must not contain 
any data other than constants.
The #include keyword is case sensitive; #INCLUDE will cause a compile error.



See Also
RCINCLUDE 



#line
#line integer_constant
Remarks
#line is a directive that causes the Resource Workshop compiler to ignore text on the specified line.



#pragma
The #pragma directive is ignored by the Resource Workshop compiler.



#undef
#undef identifier
Parameters
identifier Searched for in the compiler's table of #defines.

Remarks
Resource Workshop has limited support for the #undef preprocessor directive. You can use it only with
#defines that are not referenced by a resource.
If you use #undef with a #define that's a resource identifier, you get a fatal compiler error when 
compiling the RC file under Resource Workshop.
The #undef preprocessor directive applies only to the C language. If you're using Resource Workshop 
with a Pascal compiler, you can disregard this.



#define example
See Also
After you compile this example, SelectAll and IDS_SAMPLE have the value 1. IDS_ERROR has the 
value 2.
#define SelectAll  1
#define IDS_SAMPLE 1
#define IDS_ERROR  IDS_SAMPLE + 1
#define MYCAPTION  "hello"



See Also
#define



#elif example
See Also
This example causes #define A to have the value 2.
#if (1 == 0)
#define A 1
#elif (1 == 1)
#define A 2
#endif



See Also
#elif



#else example
See Also
This example causes #define A to have the value 3.
#if (1 == 0)
#define A 1
#elif (1 == 3)
#define A 2
#else
#define A 3
#endif



See Also
#else



#endif example
See Also
#endif in this example marks the end of the scope of conditional compilation.
#if (1==0)
#define A 1
#elif (1==1)
#define A 2
#endif



See Also
#endif



#if example
See Also
After you compile this example, neither A nor B will be defined.
#if (1 == 0)
#define A 1
#endif
#if defined A
#define B 2
#endif



See Also
#if



#ifdef example
See Also
The #define NOATOM will be defined after you compile this example.
#define RC_INVOKED
#ifdef  RC_INVOKED
#define NOATOM
#endif



See Also
#ifdef



#ifndef example
See Also
After you compile this example, the file WINDOWS.H will not be included by Resource Workshop.
#ifndef  WORKSHOP_INVOKED
#include <windows.h>
#endif



See Also
#ifndef



#include examples
See Also
These examples show you how to #include C identifiers: 
#include "w3demo.h"
#include <project.h>
These examples show you how to #include Pascal identifiers:
#include "MYCONSTS.INC"
#include <PROJECT.PAS>



See Also
#include



ACCELERATOR examples
See Also

Example 1
This example shows one way to define Ctrl+A (in hexadecimal), Ctrl+P, and Shift+Q as accelerators.
myaccel ACCELERATORS
BEGIN
  0x41,1, CONTROL, NOINVERT
  "^P",2
  VK_Q,3, VIRTKEY, SHIFT
END
If you want to use identifiers rather than numbers to identify your accelerators, use a C-style header 
file (with an .H extension) or a Pascal include file (with an .INC extension). For Pascal, you can also 
keep your identifiers in a unit.

Example 2
This example uses #defines in the file KEYNAMES.H. 
#define SelectAll  1
#define PrintNow   2
#define Quit       3
Then your script statements in the .RC file can use identifiers rather than numbers to uniquely identify 
each accelerator:
#include "keynames.h"
myaccel ACCELERATORS
BEGIN
  "^a", SelectAll, NOINVERT
  0x50, PrintNow, CONTROL
  "Q",  Quit
END



See Also
ACCELERATOR



BITMAP examples
See Also
The bitmap "image" is in IMAGEF.BMP:
image BITMAP imagef.bmp
The bitmap 200 is in FRAME.BMP. It is loaded when the application starts:
200 BITMAP PRELOAD frame.bmp
The bitmap "bigstar" is in STAR.BMP. It cannot be moved around in memory:
bigstar BITMAP FIXED star.bmp



See Also
BITMAP



CURSOR examples
See Also

Example 1
This example names the cursor resource 20 and tells Resource Workshop that the resource is found in
the file HAND.CUR.
20 CURSOR hand.cur
Example 2
This example names the resource "paintcan" and tells Resource Workshop it can be found in the file 
PAINT.CUR. The resource is loaded into memory when the application begins. It must remain in the 
same place in memory while the application runs. The application can't remove it from memory before 
the application ends. 
paintcan CURSOR PRELOAD FIXED NONDISCARDABLE paint.cur



See Also
CURSOR



DEFPUSHBUTTON example
See Also
This example creates a default push button control labeled "OK." Its control ID is 104. The coordinates 
of the upper-left corner of the dialog box are 11, 71. The button is 24 dialog units wide and 14 high. 
The button class style constant BS_DEFPUSHBUTTON indicates that the button is a default push 
button. WS_TABSTOP indicates that when the user presses Tab in a preceding control, the input focus
changes to this control.
DEFPUSHBUTTON "OK", 104, 11, 71, 24, 14, BS_DEFPUSHBUTTON | WS_TABSTOP



See Also
DEFPUSHBUTTON



DIALOG Examples
Dialog Box with a Combo Box
Dialog Box with a Group Box and Radio Buttons
Dialog Box with a List Box and Check Boxes
Dialog Box with a Scrollbar and Text Entry Field
Dialog Box with Borland Windows Custom Controls



DIALOG, RADIOBUTTON and GROUPBOX example
See Also View Resource Implementation
This example shows how to use the DIALOG statement to display a dialog box that asks the user to 
select an option using radio buttons:

Resource Script
DLG_DIRECTION DIALOG 71, 65, 143, 65
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Choose a Direction"
FONT 8, "MS Sans Serif"
{
 DEFPUSHBUTTON "OK", IDOK, 87, 8, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 87, 26, 50, 14
 PUSHBUTTON "Help", IDHELP, 87, 44, 50, 14
 AUTORADIOBUTTON "&Forward", 2, 13, 20, 44, 12, BS_RADIOBUTTON
 AUTORADIOBUTTON "&Backward", 3, 13, 33, 44, 12, BS_RADIOBUTTON
 GROUPBOX "Direction", IDC_DIRECTION, 5, 8, 67, 42, BS_GROUPBOX
}



See Also
CAPTION
CLASS
FONT
MENU
STYLE



Implementation
To use this resource in a Windows application, use one of these functions or classes:

TDialog (ObjectWindows)

DialogBox() (Windows API)



DIALOG example (displayed resource)
Click on any part of the dialog box to view the resource script behind that element:



DLG_DIRECTION DIALOG 71, 65, 143, 65
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Choose a Direction"



DEFPUSHBUTTON "OK", IDOK, 87, 8, 50, 14



PUSHBUTTON "Cancel", IDCANCEL, 87, 26, 50, 14



PUSHBUTTON "Help", IDHELP, 87, 44, 50, 14



AUTORADIOBUTTON "&Forward", 2, 13, 20, 44, 12, BS_RADIOBUTTON



AUTORADIOBUTTON "&Backward", 3, 13, 33, 44, 12, BS_RADIOBUTTON



GROUPBOX "Direction", IDC_DIRECTION, 5, 8, 67, 42, BS_GROUPBOX



DIALOG, CHECKBOX, LISTBOX and LTEXT example
See Also View Resource Implementation
This example shows how to use the DIALOG statement to display a dialog box that asks the user to 
select an item from a list box:

Resource Script
ListBox DIALOG 16, 24, 163, 102
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "List Box Dialog"
FONT 8, "MS Sans Serif"
{
  DEFPUSHBUTTON "OK", IDOK, 16, 80, 37, 14
  PUSHBUTTON "Cancel", IDCANCEL, 62, 80, 37, 14
  PUSHBUTTON "Help", IDHELP, 109, 80, 37, 14
  LISTBOX 100, 7, 19, 69, 50, LBS_STANDARD | LBS_MULTIPLESEL
  LTEXT "Select an item:", 100, 7, 7, 48, 8, SS_LEFTNOWORDWRAP | WS_GROUP
  AUTOCHECKBOX "Show Predefined", IDC_SHOWPREDEFINED, 83, 19, 70, 12
  AUTOCHECKBOX "Show Unused", IDC_SHOWUNUSED, 83, 32, 70, 12
  AUTOCHECKBOX "Show User-Defined", IDC_USERDEFINED, 83, 45, 70, 12
}



DIALOG example (displayed resource)
Click on any part of the dialog box to view the resource script behind that element:



ListBox DIALOG 16, 24, 163, 102
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "List Box Dialog"



DEFPUSHBUTTON "OK", IDOK, 16, 80, 37, 14



PUSHBUTTON "Cancel", IDCANCEL, 62, 80, 37, 14



PUSHBUTTON "Help", IDHELP, 109, 80, 37, 14



LISTBOX 100, 7, 19, 69, 50, LBS_STANDARD | LBS_MULTIPLESEL



LTEXT "Select an item:", 100, 7, 7, 48, 8, SS_LEFTNOWORDWRAP | WS_GROUP



AUTOCHECKBOX "Show Predefined", IDC_SHOWPREDEFINED, 83, 19, 70, 12



AUTOCHECKBOX "Show Unused", IDC_SHOWUNUSED, 83, 32, 70, 12



AUTOCHECKBOX "Show User-Defined", IDC_USERDEFINED, 83, 45, 70, 12



DIALOG, COMBOBOX and CTEXT example
See Also View Resource Implementation
This example shows how to use the DIALOG statement to display a dialog box that asks the user to 
select a value from a combo box:

Resource Script
ChooseUsers DIALOG 35, 35, 163, 87
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Choose Users"
FONT 8, "MS Sans Serif"
{
  DEFPUSHBUTTON "OK", IDOK, 105, 25, 50, 14
  PUSHBUTTON "Cancel", IDCANCEL, 105, 43, 50, 14
  PUSHBUTTON "Help", IDHELP, 105, 61, 50, 14
  COMBOBOX IDC_Users, 10, 25, 74, 55, CBS_DROPDOWNLIST | WS_TABSTOP
  CTEXT "Select &Users:", -1, 17, 8, 60, 8
}



DIALOG example (displayed resource)
Click on any part of the dialog box to view the resource script behind that element:



ChooseUsers DIALOG 35, 35, 163, 87
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Choose Users"



DEFPUSHBUTTON "OK", IDOK, 105, 25, 50, 14



PUSHBUTTON "Cancel", IDCANCEL, 105, 43, 50, 14



PUSHBUTTON "Help", IDHELP, 105, 61, 50, 14



COMBOBOX IDC_Users, 10, 25, 74, 55, CBS_DROPDOWNLIST | WS_TABSTOP



CTEXT "Select &Users:", -1, 17, 8, 60, 8



DIALOG, SCROLLBAR, EDITTEXT and CONTROL example
See Also View Resource Implementation
This example shows how to use the DIALOG statement to display a dialog box that asks the user to 
select a value using a scrollbar and edit field:

Resource Script
TempControl DIALOG 16, 27, 143, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION
CAPTION "Temperature Control"
FONT 8, "MS Sans Serif"
{
  DEFPUSHBUTTON "OK", IDOK, 57, 99, 36, 14
  PUSHBUTTON "Cancel", IDCANCEL, 101, 99, 36, 14
  SCROLLBAR IDC_VSCROLL1, 40, 22, 9, 91, SBS_VERT | WS_GROUP
  LTEXT "Range", -1, 5, 7, 22, 8
  CONTROL "", -1, "static", SS_BLACKFRAME | WS_CHILD | WS_VISIBLE, 5, 22, 
36, 91
  LTEXT "Log To:", -1, 70, 7, 27, 8
  EDITTEXT IDC_LOGNAME, 70, 22, 60, 11, WS_BORDER | WS_TABSTOP
  CONTROL "Stop Logging", IDC_STOPLOG, "BUTTON", BS_PUSHBUTTON, 70, 41, 60, 
14
  RTEXT "NOTE: Log Is ON By Default", -1, 67, 60, 58, 23
}



DIALOG example (displayed resource)
Click on any part of the dialog box to view the resource script behind that element:



TempControl DIALOG 16, 27, 143, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION
CAPTION "Temperature Control"



DEFPUSHBUTTON "OK", IDOK, 57, 99, 36, 14



PUSHBUTTON "Cancel", IDCANCEL, 101, 99, 36, 14



SCROLLBAR IDC_VSCROLL1, 40, 22, 9, 91, SBS_VERT | WS_GROUP



LTEXT "Range", -1, 5, 7, 22, 8



LTEXT "Log To:", -1, 70, 7, 27, 8



EDITTEXT IDC_LOGNAME, 70, 22, 60, 11, WS_BORDER | WS_TABSTOP



CONTROL "Stop Logging", IDC_STOPLOG, "BUTTON", BS_PUSHBUTTON, 70, 41, 60, 14



RTEXT "NOTE: Log Is ON By Default", -1, 67, 60, 58, 23



DIALOG example (BWCC)
See Also View Resource Implementation
This example shows how to use the DIALOG statement to display a Borland-style dialog box that uses
Borland Windows Custom Controls:

Resource Script
BWCC_Dialog DIALOG PRELOAD MOVEABLE DISCARDABLE 20, 20, 144, 107
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CLASS "BorDlg"
CAPTION "New Project"
FONT 8, "Helv"
{
  CONTROL "Project file type", -1, "BorShade", BSS_GROUP | BSS_CAPTION | 
BSS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 8, 8, 128, 48
  CONTROL ".&RC", 151, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE | WS_GROUP | WS_TABSTOP, 12, 21, 33, 12
  CONTROL ".RE&S", 154, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 12, 37, 33, 12
  CONTROL ".&CUR", 158, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 54, 21, 33, 12
  CONTROL ".&ICO", 159, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 55, 37, 33, 12
  CONTROL ".&BMP", 160, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 99, 21, 33, 12
  CONTROL ".&FNT", 162, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 98, 37, 33, 12
  CONTROL "", -1, "BorShade", BSS_HDIP | BSS_LEFT | WS_CHILD | WS_VISIBLE, 
0, 64, 144, 2
  CONTROL "", 1, "BorBtn", BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | 
WS_GROUP | WS_TABSTOP, 8, 74, 37, 25
  CONTROL "", 2, "BorBtn", BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | 
WS_TABSTOP, 53, 74, 37, 25
  CONTROL "", 998, "BorBtn", BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | 
WS_TABSTOP, 98, 74, 37, 25
}



DIALOG example (displayed resource)
Click on any part of the dialog box to view the resource script behind that element:



BWCC_Dialog DIALOG PRELOAD MOVEABLE DISCARDABLE 20, 20, 144, 107
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CLASS "BorDlg"
CAPTION "New Project"



CONTROL "Project file type", -1, "BorShade", BSS_GROUP | BSS_CAPTION | 
BSS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 8, 8, 128, 48
CONTROL ".&RC", 151, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE 
| WS_GROUP | WS_TABSTOP, 12, 21, 33, 12
CONTROL ".RE&S", 154, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 12, 37, 33, 12
CONTROL ".&CUR", 158, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 54, 21, 33, 12
CONTROL ".&ICO", 159, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 55, 37, 33, 12
CONTROL ".&BMP", 160, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 99, 21, 33, 12
CONTROL ".&FNT", 162, "BorRadio", BS_AUTORADIOBUTTON | WS_CHILD | 
WS_VISIBLE, 98, 37, 33, 12



CONTROL "", -1, "BorShade", BSS_HDIP | BSS_LEFT | WS_CHILD | WS_VISIBLE, 0, 
64, 144, 2



CONTROL "", 1, "BorBtn", BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP
| WS_TABSTOP, 8, 74, 37, 25



CONTROL "", 2, "BorBtn", BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP,
53, 74, 37, 25



CONTROL "", 998, "BorBtn", BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | 
WS_TABSTOP, 98, 74, 37, 25



FONT example
See Also

Example 1
This example identifies a font as 2 and tells Resource Workshop the font is in the file VETICA.FON.
2 FONT vetica.fon
Example 2
This example identifies a font as 27 and tells the Resource Workshop the font is in the file BOOK.FON.
The font resource is loaded when the application starts and remains in memory until the application 
ends:
27 FONT PRELOAD NONDISCARDABLE book.fon



See Also
FONT



ICON examples
See Also

Example 1
This Type 1 example names an icon "myicon" and tells Resource Workshop to look for it in the file 
MYICON.ICO:
myicon ICON myicon.ico
Example 2
This Type 2 example creates an icon named "myicon." The icon will be defined elsewhere in the 
resource file with a Type 1 icon statement. The icon's control ID is 120, and the upper-left corner 
coordinates are 30, 40. Notice that there are no width and height arguments.
ICON "myicon" 120, 20, 20



See Also
ICON



MENU examples
Application main menu
Default File menu
Menu with secondary menu



MENU, MENUITEM and POPUP example
See Also View Resource Implementation
This example specifies the the File menu of an application. File is a pop-up menu (commonly known 
as a drop-down menu) with several options, each defined with a MENUITEM substatement.

Resource Script
The ampersand (&) underlines the letter that immediately follows it. This lets the user choose the 
command from the menu by typing that letter.
mainmenu MENU PRELOAD
BEGIN
  POPUP "&File"
  BEGIN
    MENUITEM "&New", 100
    MENUITEM "&Open", 101
    MENUITEM "&Close", 102, GRAYED
    MENUITEM "&Save",103
    MENUITEM "Save &As", 104
    MENUITEM SEPARATOR
    MENUITEM "&Print", 105
    MENUITEM "&Draft Printing", 107, CHECKED
    MENUITEM SEPARATOR
    MENUITEM "E&xit", 106
  END
  POPUP "&Help"
END



Implementation
To use this resource in a Windows application, use one of these functions or classes:

TMenu (ObjectWindows)

CreateMenu (Windows API)

CreatePopupMenu (Windows API)



MENU, MENUITEM and POPUP example (displayed resource)
Click on any part of the menu to view the resource script behind that element:



See Also
MENU
MENUITEM
POPUP



POPUP "&File"



MENUITEM "&New", 100



MENUITEM "&Open", 101



MENUITEM "&Close", 102, GRAYED



MENUITEM "&Save",103



MENUITEM "Save &As", 104



MENUITEM SEPARATOR



MENUITEM "&Print", 105



MENUITEM "&Draft Printing", 107, CHECKED



MENUITEM "E&xit", 106



MENU, MENUITEM and POPUP example
See Also View Resource Implementation
This example specifies the Options menu of an application. Options is a pop-up menu (commonly 
known as a drop-down menu) with a secondary menu.

Resource Script
The ampersand (&) underlines the letter that immediately follows it. This lets the user choose the 
command from the menu by typing that letter.
OptionsMenu MENU 
{
  POPUP "Options"
  {
    POPUP "&Display"
    {
      MENUITEM "&Editor", 3101
      MENUITEM "&Messages", 3102
      MENUITEM "&Windows", 3103
    }
    MENUITEM "&Save", 3200
  }
}



MENU, MENUITEM and POPUP example (displayed resource)
Click on any part of the menu to view the resource script behind that element:



POPUP "Options"



POPUP "&Display"



MENUITEM "&Editor", 3101



MENUITEM "&Messages", 3102



MENUITEM "&Windows", 3103



MENUITEM "&Save", 3200



MENU, MENUITEM and POPUP example
See Also View Resource Implementation
This example specifies the main menu of an application. The main menu contains the default File, Edit,
and Help menus. Each of these menus are defined as pop-up menus (commonly known as drop-down
menus) with several options, each defined with a MENUITEM substatement.

Resource Script
The ampersand (&) underlines the letter that immediately follows it. This lets the user choose the 
command from the menu by typing that letter.
Main_Menu MENU 
{
  POPUP "&File"
  {
    MENUITEM "&New", CM_FILENEW
    MENUITEM "&Open...", CM_FILEOPEN
    MENUITEM "&Save", CM_FILESAVE
    MENUITEM "Save &as...", CM_FILESAVEAS
    MENUITEM SEPARATOR
    MENUITEM "&Print...", CM_FILEPRINT
    MENUITEM "Page se&tup...", CM_FILEPAGE_SETUP
    MENUITEM "P&rinter setup...", CM_FILEPRINTER_SETUP
    MENUITEM SEPARATOR
    MENUITEM "E&xit", CM_FILEEXIT
  }
  POPUP "&Edit"
  {
    MENUITEM "&Undo\tCtrl+Z", CM_EDITUNDO
    MENUITEM "&Cut\tCtrl+X", CM_EDITCUT
    MENUITEM "&Copy\tCtrl+C", CM_EDITCOPY
    MENUITEM "&Paste\tCtrl+V", CM_EDITPASTE
  }
  POPUP "&Help"
  {
    MENUITEM "&Index\tF1", CM_HELPINDEX
    MENUITEM "&Keyboard", CM_HELPKEYBOARD
    MENUITEM "&Commands", CM_HELPCOMMANDS
    MENUITEM "&Procedures", CM_HELPPROCEDURES
    MENUITEM "&Using help", CM_HELPUSING_HELP
    MENUITEM SEPARATOR
    MENUITEM "&About...", CM_HELPABOUT
  }
}



MENU, MENUITEM and POPUP example (displayed resource)
Click on any part of the menu to view the resource script behind that element:



POPUP "&File"



POPUP "&Edit"
{
  MENUITEM "&Undo\tCtrl+Z", CM_EDITUNDO
  MENUITEM "&Cut\tCtrl+X", CM_EDITCUT
  MENUITEM "&Copy\tCtrl+C", CM_EDITCOPY
  MENUITEM "&Paste\tCtrl+V", CM_EDITPASTE
}



POPUP "&Help"



PUSHBUTTON example
See Also
This example defines an "OK" push button. Its control ID is 108. The coordinates of the upper-left 
corner of the button are 15, 55. The button is 24 dialog units wide and 14    long. 
It uses the defauult window style WS_TABSTOP, indicating that when the user presses Tab in a 
preceding control, the input focus changes to this control. It uses the default button style 
BS_PUSHBUTTON, indicating that the button is a push button.
PUSHBUTTON "OK", 108, 15, 55, 24, 14



See Also
PUSHBUTTON



RCDATA examples
See Also
These examples show you the variety of data you can include in a raw data resource:
// a single string (not null-terminated)
mystring RCDATA PRELOAD
BEGIN
  "Now is the time."
END
// a bunch of data 
mydata RCDATA
BEGIN
  0x1000,
  255,
  "Null-terminated string\0",
  0777,
END



See Also
RCDATA



RCINCLUDE example
See Also
This example opens the source file SEARCH.DLG and processes the directives and resource 
definitions in the file.
RCINCLUDE SEARCH.DLG



See Also
RCINCLUDE



STRINGTABLE example
See Also
This example lists strings an application might use for displaying messages to the user:
STRINGTABLE
BEGIN
  1,  "Press any key to continue..."
  2,  "Click mouse to continue..."
  3,  "All rights reserved"
  4,  "Disk Full"
END
To use the #define, set up the .H file with the proper #define statements. This example calls the file 
STRNAMES.H.
#define PressKey    1
#define PressMouse  2
#define AllRights   3
#define DiskFull    4
Then in the .RC file:
#include strnames.h
/* a single table with defines */
STRINGTABLE
BEGIN
  PressKey,   "Press any key to continue..."
  PressMouse, "Click mouse to continue..."
  AllRights,  "All rights reserved"
  DiskFull,   "Disk Full"
END



See Also
STRINGTABLE



User-Defined Resources example
See Also

Example 1
In the first example, the new resource type is DEFAULTS and is named "defdata". The new resource is
in the file DFLT.RES.
defdata DEFAULTS dflt.res
Example 2
In this example, the resource type is 256 and is named "printertype". The resource is in the file 
PRTYP.RES. The resource can be moved around in memory and then removed from memory when 
the application no longer needs it.
printertype 256 MOVEABLE DISCARDABLE prtyp.res



See Also
User-Defined Resources






