
Class Library Reference
Click the icon above to open all folders. Click an icon below to open a folder or click the underlined text to see a specific topic.

Container Classes describe the classes for
creating and manipulating common data
structures, such as arrays, lists, and queues.
I/O Steam Classes describe the classes for
creating and manipulating stream I/O.

Persistent Stream Classes describe the classes
for creating and manipulating persistent objects.

Mathematical Classes describe the bcd and
complex mathematical classes.

Run-Time Support Classes describe the classes
for exception handling and run-time type
information support.
Class Diagnostic Macros describe the macros
you can use for debugging your C++ code.

Service Classes describe the classes for
handling date, file, string, thread, and time
information.

Class Library Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.

Container Classes describe the classes for
creating and manipulating common data
structures, such as arrays, lists, and queues.

Arrays
Associations
Bags
Binary Trees

Deques

Dictionaries

Double Lists

Hash Tables

Lists

Queues

Sets

Stacks

TShouldDelete

Vectors

I/O Steam Classes describe the classes for
creating and manipulating stream I/O.

Persistent Stream Classes describe the classes
for creating and manipulating persistent objects.

Mathematical Classes describe the bcd and
complex mathematical classes.

Run-Time Support Classes describe the classes
for exception handling and run-time type
information support.
Class Diagnostic Macros describe the macros
you can use for debugging your C++ code.

Service Classes describe the classes for
handling date, file, string, thread, and time
information.

Class Library Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.

Container Classes describe the classes for
creating and manipulating common data
structures, such as arrays, lists, and queues.
I/O Steam Classes describe the classes for
creating and manipulating stream I/O.

conbuf

constream

filebuf

fstreambase

fstream

ifstream

ios

iostream_withassign

iostream

istream_withassign

istream

istrstream

ofstream

ostream_withassign

ostream

ostrstream

streambuf

strstreambase

strstreambuf

strstream

Persistent Stream Classes describe the classes
for creating and manipulating persistent objects.

Mathematical Classes describe the bcd and
complex mathematical classes.

Run-Time Support Classes describe the classes
for exception handling and run-time type
information support.
Class Diagnostic Macros describe the macros
you can use for debugging your C++ code.

Service Classes describe the classes for
handling date, file, string, thread, and time
information.

Class Library Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.

Container Classes describe the classes for
creating and manipulating common data
structures, such as arrays, lists, and queues.
I/O Steam Classes describe the classes for
creating and manipulating stream I/O.

Persistent Stream Classes describe the classes
for creating and manipulating persistent objects.

fpbase

ifpstream

ipstream

ofpstream

opstream

pstream

TStreamableBase

TStreamableClass

TStreamer

Streaming Macros

Mathematical Classes describe the bcd and
complex mathematical classes.

Run-Time Support Classes describe the classes
for exception handling and run-time type
information support.
Class Diagnostic Macros describe the macros
you can use for debugging your C++ code.

Service Classes describe the classes for
handling date, file, string, thread, and time
information.

Class Library Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.

Container Classes describe the classes for
creating and manipulating common data
structures, such as arrays, lists, and queues.
I/O Steam Classes describe the classes for
creating and manipulating stream I/O.

Persistent Stream Classes describe the classes
for creating and manipulating persistent objects.

Mathematical Classes describe the bcd and
complex mathematical classes.

bcd

complex

Run-Time Support Classes describe the classes
for exception handling and run-time type
information support.
Class Diagnostic Macros describe the macros
you can use for debugging your C++ code.

Service Classes describe the classes for
handling date, file, string, thread, and time
information.

Class Library Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.

Container Classes describe the classes for
creating and manipulating common data
structures, such as arrays, lists, and queues.
I/O Steam Classes describe the classes for
creating and manipulating stream I/O.

Persistent Stream Classes describe the classes
for creating and manipulating persistent objects.

Mathematical Classes describe the bcd and
complex mathematical classes.

Run-Time Support Classes describe the classes
for exception handling and run-time type
information support.

Bad_cast class

Bad_typeid class

set_new_handler()

set_terminate()

set_unexpected()

terminate()

typeinfo class

unexpected()

xalloc class

xmsg class

Class Diagnostic Macros describe the macros
you can use for debugging your C++ code.

Service Classes describe the classes for
handling date, file, string, thread, and time
information.

Class Library Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.

Container Classes describe the classes for
creating and manipulating common data
structures, such as arrays, lists, and queues.
I/O Steam Classes describe the classes for
creating and manipulating stream I/O.

Persistent Stream Classes describe the classes
for creating and manipulating persistent objects.

Mathematical Classes describe the bcd and
complex mathematical classes.

Run-Time Support Classes describe the classes
for exception handling and run-time type
information support.
Class Diagnostic Macros describe the macros
you can use for debugging your C++ code.

CHECK

CHECKX

DIAG_DECLARE_GROUP

DIAG_DEFINE_GROUP

DIAG_ENABLE

DIAG_GETLEVEL

DIAG_ISENABLED

DIAG_SETLEVEL

PRECONDITION

PRECONDITIONX

TRACE

TRACEX

WARN

WARNX

Service Classes describe the classes for
handling date, file, string, thread, and time
information.

Class Library Reference
Click the icon above to open all folders. Click an icon below to open or close a folder. Click the underlined text to see a specific
topic.

Container Classes describe the classes for
creating and manipulating common data
structures, such as arrays, lists, and queues.
I/O Steam Classes describe the classes for
creating and manipulating stream I/O.

Persistent Stream Classes describe the classes
for creating and manipulating persistent objects.

Mathematical Classes describe the bcd and
complex mathematical classes.

Run-Time Support Classes describe the classes
for exception handling and run-time type
information support.
Class Diagnostic Macros describe the macros
you can use for debugging your C++ code.

Service Classes describe the classes for
handling date, file, string, thread, and time
information.

Date class

File class

String classes

Thread classes

Time class

Class Library Reference
Click any icon to close all folders or click the underlined text to see a specific topic.

Container Classes describe the classes for
creating and manipulating common data
structures, such as arrays, lists, and queues.

Arrays

Associations

Bags

Binary Trees

Deques

Dictionaries

Double Lists

Hash Tables

Lists

Queues

Sets

Stacks

TShouldDelete

Vectors

I/O Steam Classes describe the classes for
creating and manipulating stream I/O.

conbuf

constream

filebuf

fstreambase

fstream

ifstream

ios

iostream_withassign

iostream

istream_withassign

istream

istrstream

ofstream

ostream_withassign

ostream

ostrstream

streambuf

strstreambase

strstreambuf

strstream

Persistent Stream Classes describe the classes
for creating and manipulating persistent objects.

fpbase

ifpstream

ipstream

ofpstream

opstream

pstream

TStreamableBase

TStreamableClass

TStreamer

Streaming Macros

Mathematical Classes describe the bcd and
complex mathematical classes.

bcd

complex

Run-Time Support Classes describe the classes
for exception handling and run-time type
information support.

Bad_cast class

Bad_typeid class

set_new_handler()

set_terminate()

set_unexpected()

terminate()

typeinfo class

unexpected()

xalloc class

xmsg class

Class Diagnostic Macros describe the macros
you can use for debugging your C++ code.

CHECK

CHECKX

DIAG_DECLARE_GROUP

DIAG_DEFINE_GROUP

DIAG_ENABLE

DIAG_GETLEVEL

DIAG_ISENABLED

DIAG_SETLEVEL

PRECONDITION

PRECONDITIONX

TRACE

TRACEX

WARN

WARNX

Service Classes describe the classes for
handling date, file, string, thread, and time
information.

Date class

File class

String classes

Thread classes

Time class

Virtual Classes
See Also
A virtual class virtual is a base class that is passed to more than one derived class, as might happen
with multiple inheritance.
You cannot specify a base class more than once in a derived class:
class B { ...};
class D : B, B { ... }; // ILLEGAL
However, you can indirectly pass a base class to the derived class more than once:
class X : public B { ... }
class Y : public B { ... }
class Z : public X, public Y { ... } // OK
In this case, each object of class Z has two sub-objects of class B.
If this causes problems, add the keyword "virtual" to the base class specifier. For example,
class X : virtual public B { ... }
class Y : virtual public B { ... }
class Z : public X, public Y { ... }
B is now a virtual base class, and class Z has only one sub-object of class B.

Constructors for Virtual Base Classes
Constructors for virtual base classes are invoked before any non-virtual base classes.
If the hierarchy contains multiple virtual base classes, the virtual base class constructors invoke in the
order they were declared.
Any non-virtual bases are then constructed before the derived class constructor is called.
If a virtual class is derived from a non-virtual base, that non-virtual base will be first, so that the virtual
base class can be properly constructed. For example, this code
class X : public Y, virtual public Z
 X one;
produces this order:
Z(); // virtual base class initialization
Y(); // non-virtual base class
X(); // derived class

See Also
virtual (keyword)
Virtual Functions

Virtual Functions
See Also
Virtual functions let derived classes provide different versions of a base class function.
You can declare a virtual function in a base class, then redefine it in any derived class, even if the
number and type of arguments are the same. The redefined function overrides the base class function.
You can also declare the functions
 int Base::Function(int)
and
 int Derived::Function(int)
even when they are not virtual.
When you declare virtual functions, keep these guidelines in mind:

They can only be member functions.
They can be declared a friend in another class.
They cannot be a static member.

The base class version is available to derived class objects via scope override. If they are virtual, only
the function associated with the actual type of the object is available.
If two functions with the same name and have different arguments, C++ considers them different, and
the virtual function mechanism is ignored.
virtual void gork(void) = 0;
is a pure virtual function. This makes the class an abstract type. gork() must be defined by derived
classes or redeclared as pure.
Generally, when redefining a virtual function, you cannot change just the function return type. To
redefine a virtual function, the new definition (in some derived class) must exactly match the return
type and formal parameters of the initial declaration. If two functions with the same name have
different formal parameters, C++ considers them different, and the virtual function mechanism is
ignored.
However, for certain virtual functions in a base class, their overriding version in a derived class can
have a return type that is different from the overridden function. This is possible only when both of the
following conditions are met:

The overridden virtual function returns a pointer or reference to the base class.
The overriding function returns a pointer or reference to the derived class.

If a base class B and class D (derived publicly from B) each contain a virtual function vf, then if vf is
called for an object d of D, the call made is D::vf(), even when the access is via a pointer or reference
to B. For example,
struct X {}; // Base class.
struct Y : X {}; // Derived class.

struct B {
 virtual void vf1();
 virtual void vf2();
 virtual void vf3();
 void f();
 virtual X* pf(); /* Return type is a pointer to base. */
 /* This can be overridden. */
 };

class D : public B {
public:
 virtual void vf1(); /* Virtual specifier is legal but redundant. */

 void vf2(int); /* Not virtual, since it's using a different */
 /* arg list. This hides B::vf2(). */
 // char vf3();
 // Illegal: return-type-only change!
 void f();
 Y* pf(); /* Overriding function differs only */
 /* in return type. Returns a pointer */
 /* to the derived class. */
 };

 void extf() {
 D d; /* Instantiate D */
 B* bp = &d; /* Standard conversion from D* to B* */
 /* Initialize bp with the table of functions */
 /* provided for object d. If there is no entry */
 /* for a function in thed-table, use the */
 /* function in the B-table. */
 bp->vf1(); /* Calls D::vf1 */
 bp->vf2(); /* Calls B::vf2 since D's vf2 has different args */
 bp->f(); /* Calls B::f (not virtual) */

 X* xptr = bp->pf(); /* Calls D::pf() and converts theresult
 to a pointer to X. */

 D* dptr = &d;
 Y* yptr = dptr->pf(); /* Calls D::pf() and initializes yptr. */
 /* No further conversion is done. */
 }
The overriding function vf1 in D is automatically virtual. The virtual specifier can be used with an
overriding function declaration in the derived class. If other classes will be derived from D, the virtual
keyword is required. If no further classes will be derived from D, these of virtual is redundant.
The interpretation of a virtual function call depends on the type of the object it is called for; with
nonvirtual function calls, the interpretation depends only on the type of the pointer or reference
denoting the object it is called for.
virtual functions exact a price for their versatility: each object in the. derived class needs to carry a
pointer to a table of functions in order to select the correct one at run time (late binding).

See Also
virtual (keyword)
Virtual Classes

Container Classes (C++)

See Also Summary
These topics are an alphabetical reference guide to the Borland C++ container classes.
TArray
TArrayIterator
TArrayAsVector
TArrayAsVectorIterator
TBagAsVector
TBagAsVectorIterator
TBinarySearchTreeImp
TBinarySearchTreeIteratorImp
TCVectorImp
TCVectorIteratorImp
TDDAssociation
TDequeAsDoubleList
TDequeAsDoubleListIterator
TDequeAsVector
TDequeAsVectorIterator
TDIAssociation
TDictionary
TDictionaryAsHashTable
TDictionaryAsHashTableIterator
TDictionaryIterator
TDoubleListImp
TDoubleListIteratorImp
THashTableImp
THashTableIteratorImp
TIArrayAsVector
TIArrayAsVectorIterator
TIBagAsVector
TIBagAsVectorIterator
TIBinarySearchTreeImp
TIBinarySearchTreeIteratorImp

TICVectorImp
TICVectorIteratorImp
TIDAssociation
TIDequeAsDoubleList
TIDequeAsDoubleListIterator
TIDequeAsVector
TIDequeAsVectorIterator
TIDictionaryAsHashTable
TIDictionaryAsHashTableIterator
TIDoubleListImp
TIDoubleListIteratorImp
TIHashTableImp
TIHashTableIteratorImp
TIIAssociation
TIListImp
TIListIteratorImp
TIQueueAsDoubleList
TIQueueAsDoubleListIterator
TIQueueAsVector
TIQueueAsVectorIterator
TISArrayAsVector
TISArrayAsVectorIterator
TISDoubleListImp
TISDoubleListIteratorImp
TISetAsVector
TISetAsVectorIterator
TISListImp
TISListIteratorImp
TIStackAsList
TIStackAsListIterator
TIStackAsVector
TIStackAsVectorIterator
TISVectorImp
TISVectorIteratorImp
TIVectorImp
TIVectorIteratorImp
TListImp
TListIteratorImp
TMArrayAsVector
TMArrayAsVectorIterator
TMBagAsVector
TMBagAsVectorIterator
TMCVectorImp
TMCVectorIteratorImp

TMDDAssociation
TMDequeAsVector
TMDequeAsVectorIterator
TMDequeAsDoubleList
TMDequeAsDoubleListIterator
TMDIAssociation
TMDictionaryAsHashTable
TMDictionaryAsHashTableIterator
TMDoubleListElement
TMDoubleListImp
TMDoubleListIteratorImp
TMHashTableImp
TMHashTableIteratorImp
TMIArrayAsVector
TMIArrayAsVectorIterator
TMIBagAsVector
TMIBagAsVectorIterator
TMICVectorImp
TMICVectorIteratorImp
TMIDAssociation
TMIDequeAsDoubleList
TMIDequeAsDoubleListIterator
TMIDequeAsVector
TMIDequeAsVectorIterator
TMIDictionaryAsHashTable
TMIDictionaryAsHashTableIterator
TMIDoubleListImp
TMIDoubleListIteratorImp
TMIHashTableImp
TMIHashTableIteratorImp
TMIIAssociation
TMIListImp
TMIListIteratorImp
TMIQueueAsDoubleList
TMIQueueAsDoubleListIterator
TMIQueueAsVector
TMIQueueAsVectorIterator
TMISArrayAsVector
TMISDoubleListImp
TMISDoubleListIteratorImp
TMISetAsVector
TMISetAsVectorIterator
TMISListImp
TMISListIteratorImp

TMIStackAsList
TMIStackAsListIterator
TMIStackAsVector
TMIStackAsVectorIterator
TMISVectorImp
TMISVectorImp
TMISVectorIteratorImp
TMIVectorIteratorImp
TMListElement
TMListImp
TMListIteratorImp
TMListIteratorImp
TMQueueAsDoubleList
TMQueueAsDoubleListIterator
TMQueueAsVector
TMQueueAsVectorIterator
TMSArrayAsVector
TMSArrayAsVectorIterator
TMSDoubleListImp
TMSDoubleListIteratorImp
TMSetAsVector
TMSetAsVectorIterator
TMSListImp
TMSListIteratorImp
TMStackAsList
TMStackAsListIterator
TMStackAsVector
TMStackAsVectorIterator
TMSVectorImp
TMSVectorIteratorImp
TMVectorImp
TMVectorIteratorImp
TQueue
TQueueAsDoubleList
TQueueAsDoubleListIterator
TQueueAsVector
TQueueAsVectorIterator
TQueueIterator
TSArray
TSArrayAsVector
TSArrayAsVectorIterator
TSArrayIterator
TSDoubleListImp
TSDoubleListIteratorImp

TSet
TSetAsVector
TSetAsVectorIterator
TSetIterator
TShouldDelete
TSListImp
TSListIteratorImp
TStack
TStackAsList
TStackAsListIterator
TStackAsVector
TStackAsVectorIterator
TStackIterator
TSVectorImp
TSVectorIteratorImp
TVectorImp
TVectorIteratorImp

See Also
Categorical listing of Container classes

Container Classes (by Category)
See Also Summary
These topics are a reference guide to the Borland C++ container classes. Each container class
belongs to one of the following groups:
Arrays Dictionaries Sets
Associations Double Lists Stacks
Bags Hash Tables TShouldDelete
Binary Trees Lists Vectors
Deques Queues

See Also
Alphabetical listing of Container classes

Container Classes Summary
You use containers to store objects. The underlying data structure used for these containers
determines how objects are stored and retrieved.
Containers can store objects either directly or indirectly. Direct storage is done by copying the object
into the container; while indirect storage uses a pointer to store the object in the container. The method
you choose is dependant upon the size of the object you want to store. Smaller objects should be
stored directly and larger objects indirectly.
Borland C++ includes a template-based container class library, that uses encapsulation so you can
maximize container storage with a minimal amount of reprogramming.
These classes build containers from ADTs (abstract data types), and use FDS (fundamental data
structure) as an underlying data structure. Together ADTs and FDSs determine a containers storage
stategy.
Each template must be instantiated with a particular data type as the type of element that it will hold.
These classes provide direct control over the types of objects stored in the container.
The syntax for using the container classes is:
template <class [T,I,V,Alloc,List,Stk,Vect]> class ContainerClassName
A template can use more than one class as the first class parameter declaration.

Class What it means

T template

I indirect (pointer to a class or object)

V virtual

Alloc allocator

List list

Stk stack

Vect vector

Fundamental Data Structures
Fundamental data types are low-level containers you can instantiate. Fundamental data types are the
underlying data structures upon which you build containers and they do not necessarily need an
accompanying abstract data type.
BTree useful for storage and retrieval of large, dynamic objects
DoubleList objects are stored in a linearly linked list which can be searched in both directions
HashTable an unordered collection where storage and retrieval of objects are done by a hash

value
List objects are stored in linearly linked list which can be searched in one direction only
Vector index-based storage beginning with 0; useful when the number of objects to be

stored is known

Abstract Data Types
Abstract data types are high-level containers which have at least one pure virtual function. The
existance of a pure virtual function means that the abstract data type container classes cannot be
instantiated without an underlying fundamental data structure.
Array index-based storage beginning with 1; array size need not be known
Bag objects are stored in no particular order, objects are not sortable and you can have

multiple instances
Deque objects are stored or retrieved at either the head or tail of the container
Dictionary ragged vector storage when objects are not the same size
Queue objects are stored at the tail and retrieved from the head
Set objects are stored in no particular order, objects are not sortable but you can have

only one instance
Stack objects are stored and retrieved from the same end of the list

Array classes
Array containers manage arrays of objects. This family includes nine container classes, together with
their corresponding nine iterator classes.
Containers in this family manage objects and pointers to objects, and can sort objects. All arrays can
be resized. Some arrays can be sorted. Most classes use the default memory manager
TStandardAllocator, but you can pass your own memory manager class to managed container class
templates.
Here is a list of container classes comprising this family:
TArray TArrayIterator

TArrayAsVector TMIArrayAsVector

TArrayAsVectorIterator TMIArrayAsVectorIterator

TIArrayAsVector TMISArrayAsVector

TIArrayAsVectorIterator TMSArrayAsVector

TISArrayAsVector TMSArrayAsVectorIterator

TISArrayAsVectorIterator TSArrayAsVector

TMArrayAsVector TSArrayAsVectorIterator

TMArrayAsVectorIterator

Association classes
Association objects bind a key to a value. When given a specific key-type value, an object returns the
value-type data associated with that key.
This class family includes eight classes. Individual classes in this family can contain data, or pointers
to data. Most classes use the default memory manager TStandardAllocator, but you can pass your
own memory manager class to managed association class templates.
Association classes are not containers. They can not hold an expanding number of elements of your
user type. They are designed to hold only one key and one value.data item. Association classes are
designed to be contained in a dictionary object, and to return value data, given key data as an input
parameter.
Here is a list of container classes comprising this family:
TDDAssociation TMDDAssociation

TDIAssociation TMDIAssociation

TIDAssociation TMIDAssociation

TIIAssociation TMIIAssociation

Bag classes
Bag containers manage bags of objects. A bag is a container which holds any number of objects in any
order, and of any value. The bag is the least structured of all the data structures supported by any
container in the Container class families. The bag family includes four container classes, together with
their corresponding four iterator classes.
Individual containers in this family manage objects and pointers to objects. Most classes use the
default memory manager TStandardAllocator, but you can pass your own memory manager class to
managed container class templates..
Here is a list of container classes comprising this family:
TBagAsVector TMBagAsVector

TBagAsVectorIterator TMBagAsVectorIterator

TIBagAsVector TMIBagAsVector

TIBagAsVectorIterator TMIBagAsVectorIterator

Binary Tree classes
Binary tree containers manage data placed into nodes, where each node can connect to one parent
and up to two child nodes. This family includes two container classes, together with their
corresponding two iterator classes.
Individual containers in this family manage objects and pointers to objects. Binary search tree
templates use the default memory manager TStandardAllocator. You can not pass your own memory
manager to a template in the binary tree family.
By default, binary trees connect nodes in an inorder sequence. This means that binary tree nodes are
connected so that the value placed into a parent node is more than the value placed into the left child
node and less than the value placed into the right child node. Repeated values are placed into right
child nodes on the tree, and the tree is restructured if necessary. This strategy creates an inherently
sorted tree that can be searched more quickly than can array, linked list, or hash table containers. You
can change default sequencing to preorder or postorder node sequencing from the container
constructor, when the container is instantiated.
Binary trees are unbalanced. The order in which you place data into the tree determines the shape of
the tree. Binary tree objects do not adjust themselves in order to build more symmetrical shapes.
Binary tree objects adjust themselves automatically when you add or delete data from the tree. If a
duplicate value is added or a parent node is deleted, the object promotes the appropriate child node
and recursively adjusts the tree.without your intervention.
Here is a list of container classes comprising this family:
TBinarySearchTreeImp
TBinarySearchTreeIteratorImp
TIBinarySearchTreeImp
TIBinarySearchTreeIteratorImp

Dequeue classes
Deque objects manage a train of objects of type T, where objects can be placed or retrieved from
either the head or the tail of the train. The queue structure stores head and tail objects in the order
they were received. A call to the head or the tail surrenders the last object placed at the head or tail.
The queue family includes nine container classes, together with their corresponding nine iterator
classes.
Individual containers in this family manage objects and pointers to objects. Most classes use the
default memory manager TStandardAllocator, but you can pass your own memory manager class to
managed container class templates.
You can implement deque structures as vectors or as double-linked lists. Both kinds of class templates
take the same parameters and present the same list of member functions. For example, if you change
your class usertype from TDequeAsVector to TDequeAsDoubleList, you will not need to change calls
you made to deque member functions in your source code.
A DequeAsVector class can not be resized; a DequeAsList class can be resized.
Here is a list of container classes comprising this family:
TDequeAsDoubleList TMDequeAsDoubleList

TDequeAsDoubleListIterator TMDequeAsDoubleListIterator

TDequeAsVector TMDequeAsVector

TDequeAsVectorIterator TMDequeAsVectorIterator

TIDequeAsDoubleList TMIDequeAsDoubleList

TIDequeAsDoubleListIterator TMIDequeAsDoubleListIterator

TIDequeAsVector TMIDequeAsVector

TIDequeAsVectorIterator TMIDequeAsVectorIterator

Dictionary classes
Dictionary containers manage objects holding data. A dictionary object usually stores objects
instantiated from an association class, which returns value data given key data.
Individual dictionary containers can manage objects or pointers to objects. Two classes use the default
memory manager TStandardAllocator. Two other classes can accept your own memory manager as
an input parameter.
The dictionary class family includes four container classes, together with their corresponding four
iterator classes, and two helper classes. Direct classes are base classes. Indirect classes derive from
the TShouldDelete class.
Here is a list of container classes comprising this family:
TDictionaryAsHashTable TIDictionaryAsHashTableIterator

TDictionaryAsHashTableIterator TMDictionaryAsHashTable

TDictionary TMDictionaryAsHashTableIterator

TDictionaryIterator TMIDictionaryAsHashTable

TIDictionaryAsHashTable TMIDictionaryAsHashTableIterator

Double List classes
A double list container manages a chain of nodes, where each node supports a pointer to the previous
node and a pointer to the next node in the chain. This family includes eight container classes, together
with their corresponding eight iterator classes.
Individual containers in this family manage node objects and pointers to node objects. Some classes
can automatically maintain a sorted double list. Most classes use the default memory manager
TStandardAllocator, but you can pass your own memory manager class to managed list class
templates.
Normally, a list data structure contains a chain of nodes. To build a list, you must define a node.
Containers in this family handle this task for you.
All containers in this family use a protected class, TMDoubleListElement, to define and instantiate a
node object and manage pointers which position it within the list. You never need to instantiate an
object of this class directly.
Here is a list of container classes comprising this family:
TDoubleListImp TMIDoubleListImp

TDoubleListIteratorImp TMIDoubleListIteratorImp

TIDoubleListImp TMISDoubleListImp

TIDoubleListIteratorImp TMISDoubleListIteratorImp

TISDoubleListImp TMSDoubleListImp

TISDoubleListIteratorImp TMSDoubleListIteratorImp

TMDoubleListElement TSDoubleListImp

TMDoubleListImp TSDoubleListIteratorImp

TMDoubleListIteratorImp

Hash Table classes
Hash table containers define a hash table data structure which manages data of type T. All container
classes in this family use a hash function to assign a unique key to data placed in the table.
The hash table class family includes four container classes, together with their corresponding four
iterator classes. Two classes use the default memory manager TStandardAllocator. Two other classes
can accept your own memory manager class as an input parameter.
Hash table classes are used to implement Dictionary classes. Hash table classes can be used
independently, provided that your program provides either a global HashValue function, or a
HashValue member within the class providing objects to be stored. The HashValue function for built-in
types is already provided.
Here is a list of container classes comprising this family:
TMHashTableImp TMIHashTableIm

TMHashTableIteratorImp TMIHashTableIteratorImp

THashTableImp TIHashTableImp

THashTableIteratorImp TIHashTableIteratorImp

List classes
List containers manage a chain of nodes containing data of type T, where each node supports a
pointer to the previous node in the chain. This family includes eight container classes, together with
their corresponding eight iterator classes.
Individual containers in this family manage node objects and pointers to node objects. Some classes
can automatically maintain a sorted list. Most classes use the default memory manager
TStandardAllocator, but you can pass your own memory manager class to managed container class
templates.
Normally, a list data structure contains a chain of nodes. To build a list, you must define a node.
Containers in this family handle this task for you.
All containers in this family use a protected class, TListElement, to define and instantiate a node
object and manage pointers which position it within the list. You never need to instantiate an object of
this class directly.
Here is a list of container classes comprising this family:
TIListImp TMListElement

TIListIteratorImp TMListImp

TISListImp TMListIteratorImp

TListImp TMSListImp

TListIteratorImp TMSListIteratorImp

TMIListImp TSListImp

TMIListIteratorImp TSListIteratorImp

TMISListImp TSListIteratorImp

TMISListIteratorImp

Queue classes
A queue container manages a train of objects, where objects are added to the train from the tail
position, and removed from the train from the head position. This family includes nine container
classes, together with their corresponding nine iterator classes.
Individual containers in this family manage objects and pointers to objects. Most classes use the
default memory manager TStandardAllocator, but you can pass your own memory manager class to
managed container class templates.
You can implement queue structures as vectors or as double-linked lists. Both kinds of class templates
take the same parameters and present the same list of member functions. For example, if you change
your class usertype from TQueueAsVector to TQueueAsDoubleList, you will not need to change calls
you made to queue member functions in your source code.
A QueueAsVector class can not be resized; a QueueAsList class can be resized.
Here is a list of container classes comprising this family:
TIQueueAsDoubleList TMQueueAsDoubleListIterator

TIQueueAsDoubleListIterator TMQueueAsVector

TIQueueAsVector TMQueueAsVectorIterator

TIQueueAsVectorIterator TQueue

TMIQueueAsDoubleList TQueueAsDoubleList

TMIQueueAsVector TQueueAsDoubleListIterator

TMIQueueAsVectorIterator TQueueAsVector

TMQueueAsDoubleList TQueueAsVectorIterator

TMQueueAsDoubleListIterator TQueueIterator

Set classes
Set containers manage data items as an unordered group of non-repeating objects. The set family
includes four container classes, together with their corresponding four iterator classes.
Individual containers in this family manage objects and pointers to objects. Most classes use the
default memory manager TStandardAllocator, but you can pass your own memory manager object to
managed container classes upon instantiation.
Here is a list of container classes comprising this family:
TISetAsVector TMSetAsVectorIterator

TISetAsVectorIterator TSet

TMISetAsVector TSetAsVector

TMISetAsVectorIterator TSetAsVectorIterator

TMSetAsVector TSetIterator

Stack classes
Stack containers manage an ordered chain of objects of type T, where objects are sequenced in the
order they were placed onto the chain, and objects can be added or deleted only from the first (top)
position in the chain. This is commonly called "Last-in, First-out" order. This family includes eight
container classes, together with their corresponding eight iterator classes.
Individual containers in this family manage objects and pointers to objects. Most classes use the
default memory manager TStandardAllocator, but you can pass your own memory manager object to
managed container classes upon instantiation.
You can implement stack structures as vectors or as linked lists. Both kinds of class templates take the
same parameters and present the same list of member functions. For example, if you change your
class usertype from TStackAsVector to TStackAsList, you will not need to change calls you made to
stack member functions in your source code.
A StackAsVector class can not be resized; a StackAsList class can be resized.
Here is a list of container classes comprising this family:
TIStackAsList TMStackAsListIterator

TIStackAsListIterator TMStackAsVector

TIStackAsVector TMStackAsVectorIterator

TIStackAsVectorIterator TStack

TMIStackAsList TStackAsList

TMIStackAsListIterator TStackAsListIterator

TMIStackAsVector TStackAsVector

TMIStackAsVectorIterator TStackAsVectorIterator

TMStackAsList TStackIterator

Vector classes
Vector containers manage contiguous blocks of memory, where each block contains an object of type
T. This family includes thirteen container classes, together with their corresponding thirteen iterator
classes.
Individual containers in this family manage objects and pointers to objects, and can sort and count
objects. Most classes use the default memory manager TStandardAllocator, but you can pass your
own memory manager object to managed container object upon instantiation.
Here is a list of container classes comprising this family:
TCVectorImp TMISVectorImp

TCVectorIteratorImp TMISVectorIteratorImp

TICVectorImp TMIVectorImp

TICVectorIteratorImp TMIVectorIteratorImp

TISVectorImp TMSVectorImp

TISVectorIteratorImp TMSVectorIteratorImp

TIVectorImp TMVectorImp

TIVectorIteratorImp TMVectorIteratorImp

TMCVectorImp TSVectorImp

TMCVectorIteratorImp TSVectorIteratorImp

TMICVectorImp TVectorImp

TMICVectorIteratorImp TVectorIteratorImp

arrays.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TArray TArrayIterator

TArrayAsVector TMIArrayAsVector

TArrayAsVectorIterator TMIArrayAsVectorIterator

TIArrayAsVector TMISArrayAsVector

TIArrayAsVectorIterator TMSArrayAsVector

TISArrayAsVector TMSArrayAsVectorIterator

TISArrayAsVectorIterator TSArrayAsVector

TMArrayAsVector TSArrayAsVectorIterator

TMArrayAsVectorIterator

assoc.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TDDAssociation TMDDAssociation

TDIAssociation TMDIAssociation

TIDAssociation TMIDAssociation

TIIAssociation TMIIAssociation

bags.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TBagAsVector TMBagAsVector

TBagAsVectorIterator TMBagAsVectorIterator

TIBagAsVector TMIBagAsVector

TIBagAsVectorIterator TMIBagAsVectorIterator

binimp.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TBinarySearchTreeImp

TBinarySearchTreeIteratorImp

TIBinarySearchTreeImp

TIBinarySearchTreeIteratorImp

deques.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TDequeAsDoubleListIterator TMDequeAsDoubleListIterator

TDequeAsDoubleList TMDequeAsDoubleList

TDequeAsVectorIterator TMDequeAsVectorIterator

TDequeAsVector TMDequeAsVector

TIDequeAsDoubleListIterator TMIDequeAsDoubleListIterator

TIDequeAsDoubleList TMIDequeAsDoubleList

TIDequeAsVectorIterator TMIDequeAsVectorIterator

TIDequeAsVector TMIDequeAsVector

dict.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TDictionaryAsHashTableIterator TIDictionaryAsHashTable

TDictionaryAsHashTable TMDictionaryAsHashTableIterator

TDictionaryIterator TMDictionaryAsHashTable

TDictionary TMIDictionaryAsHashTableIterator

TIDictionaryAsHashTableIterator TMIDictionaryAsHashTable

dlistimp.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TDoubleListImp TMIDoubleListImp

TDoubleListIteratorImp TMIDoubleListIteratorImp

TIDoubleListImp TMISDoubleListImp

TIDoubleListIteratorImp TMISDoubleListIteratorImp

TISDoubleListImp TMSDoubleListImp

TISDoubleListIteratorImp TMSDoubleListIteratorImp

TMDoubleListElement TSDoubleListImp

TMDoubleListImp TSDoubleListIteratorImp

TMDoubleListIteratorImp

hashimp.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TMHashTableImp TMIHashTableImp

TMHashTableIteratorImp TMIHashTableIteratorImp

THashTableImp TIHashTableImp

THashTableIteratorImp TIHashTableIteratorImp

listimp.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TIListImp TMListElement

TIListIteratorImp TMListImp

TISListImp TMListIteratorImp

TListImp TMSListImp

TListIteratorImp TMSListIteratorImp

TMIListImp TSListImp

TMIListIteratorImp TSListIteratorImp

TMISListImp TSListIteratorImp

TMISListIteratorImp

queues.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TIQueueAsDoubleList TMQueueAsDoubleListIterator

TIQueueAsDoubleListIterator TMQueueAsVector

TIQueueAsVector TMQueueAsVectorIterator

TIQueueAsVectorIterator TQueue

TMIQueueAsDoubleList TQueueAsDoubleList

TMIQueueAsVector TQueueAsDoubleListIterator

TMIQueueAsVectorIterator TQueueAsVector

TMQueueAsDoubleList TQueueAsVectorIterator

TMQueueAsDoubleListIterator TQueueIterator

sets.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TISetAsVector TMSetAsVectorIterator

TISetAsVectorIterator TSet

TMISetAsVector TSetAsVector

TMISetAsVectorIterator TSetAsVectorIterator

TMSetAsVector TSetIterator

stacks.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TIStackAsList TMStackAsListIterator

TIStackAsListIterator TMStackAsVector

TIStackAsVector TMStackAsVectorIterator

TIStackAsVectorIterator TStack

TMIStackAsList TStackAsList

TMIStackAsListIterator TStackAsListIterator

TMIStackAsVector TStackAsVector

TMIStackAsVectorIterator TStackAsVectorIterator

TMStackAsList TStackIterator

vectimp.h
See Also Header Files
This header file contains the template definitions for these classes, their data members and member
functions:
TCVectorImp TMISVectorImp

TCVectorIteratorImp TMISVectorIteratorImp

TICVectorImp TMIVectorImp

TICVectorIteratorImp TMIVectorIteratorImp

TISVectorImp TMSVectorImp

TISVectorIteratorImp TMSVectorIteratorImp

TIVectorImp TMVectorImp

TIVectorIteratorImp TMVectorIteratorImp

TMCVectorImp TSVectorImp

TMCVectorIteratorImp TSVectorIteratorImp

TMICVectorImp TVectorImp

TMICVectorIteratorImp TVectorIteratorImp

shddel.h
See Also Header Files
This header file contains the definitions for these classes, their data members and member functions:
TShouldDelete

See Also
Precompiled Headers

TStandardAllocator class

Syntax
class TStandardAllocator
Description
Provides class-specific operator new and operator delete that simply call the global operator new and
operator delete. That is, TStandardAllocator does not provide any specialized behavior. It is used in
the non-managed versions of the parametrized containers.

TMArrayAsVector template

Syntax
template <class T, class Alloc> class TMArrayAsVector;
Header File
arrays.h

Description
TMArrayAsVector implements a managed array of objects of type T, using a vector as the underlying
implementation. It requires an == operator for type T. The memory manager Alloc provides class-
specific new and delete operators.

Type Definitions
CondFunc
IterFunc

Public Constructor
TMArrayAsVector::TMArrayAsVector

Public Member Functions
Add
AddAt
ArraySize
BoundBase
Destroy
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
Grow
HasMember
InsertEntry
IsEmpty
IsFull
LastThat
LowerBound
Reallocate
RemoveEntry
SetData
UpperBound
ZeroBase

Protected Member Functions
ItemAt

Operators
[]

TMArrayAsVector::CondFunc
TMArrayAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMArrayAsVector::IterFunc
TMArrayAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to the ForEach member function.

TMArrayAsVector::TMArrayAsVector
TMArrayAsVector class

Syntax
TMArrayAsVector(int upper, int lower = 0, int delta = 0)
Description
Creates an array with an upper bound of upper, a lower bound of lower, and a growth delta of delta.

TMArrayAsVector::Add
TMArrayAsVector class

Syntax
int Add(const T& t)
Description
Adds a T object at the next available index at the end of an array. Adding an element beyond the upper
bound leads to an overflow condition. If overflow occurs and delta is nonzero, the array is expanded
(by sufficient multiples of delta bytes) to accommodate the addition. If delta is zero, Add fails. Add
returns 0 if it couldn't add the object.

TMArrayAsVector::AddAt
TMArrayAsVector class

Syntax
int AddAt(const T& t, int loc)
Description
Adds a T object at the specified index. If that index is occupied, it moves the object up to make room
for the added object. If loc is beyond the upper bound, the array is expanded if delta (see the
constructor) is nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives an error.

TMArrayAsVector::ArraySize
TMArrayAsVector class

Syntax
unsigned ArraySize() const;
Description
Returns the current number of cells allocated.

TMArrayAsVector::BoundBase
See Also TMArrayAsVector class

Syntax
int BoundBase(unsigned loc) const;
Description
Boundbase adjust vectors, which are zero-based, to arrays, which aren't zero-based.

See Also
ZeroBase.

TMArrayAsVector::Destroy
TMArrayAsVector class

Form 1
int Destroy(int i)
Form 2
int Destroy(const T& t)
Description
Form 1: Removes the object at the given index. The object will be destroyed.
Form 2: Removes the given object and destroys it.

TMArrayAsVector::Detach
See Also TMArrayAsVector class

Form 1
int Detach(int loc)
Form 2
int Detach(const T& t)
Description
Form 1: Removes the object at loc.
Form 2: Removes the first object that compares equal to the specified object.

See Also
TShouldDelete::ownsElements

TMArrayAsVector::Find
TMArrayAsVector class

Syntax
int Find(const T& t) const;
Description
Finds the specified object and returns the object's index; otherwise returns INT_MAX.

TMArrayAsVector::FirstThat
See Also TMArrayAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the array that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TMArrayAsVector::LastThat

TMArrayAsVector::Flush
See Also TMArrayAsVector class

Syntax
void Flush()
Description
Removes all elements from the array without destroying the array.

See Also
TMArrayAsVector::Detach

TMArrayAsVector::ForEach
TMArrayAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the array. The
args argument lets you pass arbitrary data to this function.

TMArrayAsVector::GetItemsInContainer
TMArrayAsVector class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array, as distinguished from ArraySize, which returns the size of the
array.

TMArrayAsVector::Grow
TMArrayAsVector class

Syntax
void Grow(int loc)
Description
Increases the size of the array, in either direction, so that loc is a valid index.

TMArrayAsVector::HasMember
TMArrayAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found in the array; otherwise returns 0.

TMArrayAsVector::InsertEntry
TMArrayAsVector class

Syntax
void InsertEntry(int loc)
Description
Creates an object and inserts it at loc, moving entries above loc up by one.

TMArrayAsVector::IsEmpty
TMArrayAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the array contains no elements; otherwise returns 0.

TMArrayAsVector::IsFull
TMArrayAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the array is full; otherwise returns 0. The array is full if delta is not equal to 0 and if the
number of items in the container equals the value returned by ArraySize.

TMArrayAsVector::LastThat
See Also TMArrayAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the array that satisfies a given condition. You supply a test
function pointer, f, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
TMArrayAsVector::FirstThat
TMArrayAsVector::ForEach

TMArrayAsVector::LowerBound
TMArrayAsVector class

Syntax
int LowerBound() const;
Description
Returns the array's lowerbound.

TMArrayAsVector::Reallocate
TMArrayAsVector class

Syntax
int Reallocate(unsigned sz, unsigned offset = 0)
Description
If delta (see the constructor) is zero, Reallocate returns 0. Otherwise, Reallocate tries to create a new
array of size sz (adjusted upwards to the nearest multiple of delta). The existing array is copied to the
expanded array and then deleted. In an array of pointers, the entries are zeroed for each unused
element. In an array of objects, the default constructor is invoked for each unused element. offset is
the location in the new vector where the first element of the old vector should be copied. This is
needed when the array has to be extended downward.

TMArrayAsVector::RemoveEntry
TMArrayAsVector class

Syntax
void RemoveEntry(int loc)
Description
Removes element at the loc index into the array, and reduces the array by one element. Elements
from index (loc + 1) upward are copied to positions loc, (loc + 1), and so on. The original element at loc
is lost.

TMArrayAsVector::SetData
TMArrayAsVector class

Syntax
void SetData(int loc, const T& t)
Description
The given t replaces the existing element at the index loc.

TMArrayAsVector::UpperBound
TMArrayAsVector class

Syntax
int UpperBound() const;
Description
Returns the array's current upperbound.

TMArrayAsVector::ZeroBase
TMArrayAsVector class

Syntax
unsigned ZeroBase(int loc) const;
Description
Returns the location relative to lowerbound (loc - lowerbound).

TMArrayAsVector::ItemAt
TMArrayAsVector class

Syntax
T ItemAt(int i) const;
Description
Returns a copy of the object stored at location i.

TMArrayAsVector::operator []
TMArrayAsVector class

Form 1
T& operator [](int loc)
Form 2
T& operator [](int loc) const;
Description
Form 1: Returns a reference to the element at the location specified by loc. The non-const version
resizes the array if it's necessary to make loc a valid index.
Form 2: The const throws an exception in the debugging version on an attempt to index out of
bounds.

TMArrayAsVectorIterator template

Syntax
template <class T, class Alloc> class TMArrayAsVectorIterator;
Header File
arrays.h

Description
Implements an iterator object to traverse TMArrayAsVector objects.

Public Constructor
TMArrayAsVectorIterator::TMArrayAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMArrayAsVectorIterator::TMArrayAsVectorIterator
TMArrayAsVectorIterator class

Syntax
TMArrayAsVectorIterator(const TMArrayAsVector<T,Alloc> & a) :
Description
Creates an iterator object to traverse TMArrayAsVector objects.

TMArrayAsVectorIterator::Current
TMArrayAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TMArrayAsVectorIterator::Restart
TMArrayAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TMArrayAsVectorIterator::operator ++
TMArrayAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMArrayAsVectorIterator::operator int
TMArrayAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TArrayAsVector template

Syntax
template <class T> class TArrayAsVector;
Header File
arrays.h

Description
TArrayAsVector implements an array of objects of type T, using a vector as the underlying
implementation. TStandardAllocator is used to manage memory.

Type Definitions
CondFunc
IterFunc

Public Constructor
TArrayAsVector::TArrayAsVector

Public Member Functions
Add
AddAt
ArraySize
BoundBase
Destroy
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
Grow
HasMember
InsertEntry
IsEmpty
IsFull
LastThat
LowerBound
Reallocate
RemoveEntry
SetData
UpperBound
ZeroBase

Protected Member Functions
ItemAt

Operators
[]

TArrayAsVector::CondFunc
TArrayAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TArrayAsVector::IterFunc
TArrayAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to the ForEach member function.

TArrayAsVector::TArrayAsVector
TArrayAsVector class

Syntax
TArrayAsVector(int upper, int lower = 0, int delta = 0) ;
Description
Creates an array with an upper bound of upper, a lower bound of lower, and a growth delta of delta.

TArrayAsVector::Add
TArrayAsVector class

Syntax
int Add(const T& t)
Description
Adds a T object at the next available index at the end of an array. Adding an element beyond the upper
bound leads to an overflow condition. If overflow occurs and delta is nonzero, the array is expanded
(by sufficient multiples of delta bytes) to accommodate the addition. If delta is zero, Add fails. Add
returns 0 if it couldn't add the object.

TArrayAsVector::AddAt
TArrayAsVector class

Syntax
int AddAt(const T& t, int loc)
Description
Adds a T object at the specified index. If that index is occupied, it moves the object up to make room
for the added object. If loc is beyond the upper bound, the array is expanded if delta (see the
constructor) is nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives an error.

TArrayAsVector::ArraySize
TArrayAsVector class

Syntax
unsigned ArraySize() const;
Description
Returns the current number of cells allocated.

TArrayAsVector::BoundBase
See Also TArrayAsVector class

Syntax
int BoundBase(unsigned loc) const;
Description
Boundbase adjust vectors, which are zero-based, to arrays, which aren't zero-based.

TArrayAsVector::Destroy
TArrayAsVector class

Form 1
int Destroy(int i)
Form 2
int Destroy(const T& t)
Description
Form 1: Removes the object at the given index. The object will be destroyed.
Form 2: Removes the given object and destroys it.

TArrayAsVector::Detach
See Also TArrayAsVector class

Form 1
int Detach(int loc)
Form 2
int Detach(const T& t)
Description
Form 1: Removes the object at loc.
Form 2: Removes the first object that compares equal to the specified object.

See Also
TShouldDelete::ownsElements

TArrayAsVector::Find
TArrayAsVector class

Syntax
int Find(const T& t) const;
Description
Finds the specified object and returns the object's index; otherwise returns INT_MAX.

TArrayAsVector::FirstThat
See Also TArrayAsVector class

Syntax
T *FirstThat(cond CondFunc, void *args) const;
Description
Returns a pointer to the first object in the array that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TArrayAsVector::LastThat

TArrayAsVector::Flush
See Also TArrayAsVector class

Syntax
void Flush()
Description
Removes all elements from the array without destroying the array.

See Also
TArrayAsVector::Detach

TArrayAsVector::ForEach
TArrayAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the array. The
args argument lets you pass arbitrary data to this function.

TArrayAsVector::GetItemsInContainer
TArrayAsVector class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array, as distinguished from ArraySize, which returns the size of the
array.

TArrayAsVector::Grow
TArrayAsVector class

Syntax
void Grow(int loc)
Description
Increases the size of the array, in either direction, so that loc is a valid index.

TArrayAsVector::HasMember
TArrayAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found in the array; otherwise returns 0.

TArrayAsVector::InsertEntry
TArrayAsVector class

Syntax
void InsertEntry(int loc)
Description
Creates an object and inserts it at loc, moving entries above loc up by one.

TArrayAsVector::IsEmpty
TArrayAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the array contains no elements; otherwise returns 0.

TArrayAsVector::IsFull
TArrayAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the array is full; otherwise returns 0. The array is full if delta is not equal to 0 and if the
number of items in the container equals the value returned by ArraySize.

TArrayAsVector::LastThat
See Also TArrayAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the array that satisfies a given condition. You supply a test
function pointer, f, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
TArrayAsVector::FirstThat
TArrayAsVector::ForEach

TArrayAsVector::LowerBound
TArrayAsVector class

Syntax
int LowerBound() const;
Description
Returns the array's lowerbound.

TArrayAsVector::Reallocate
TArrayAsVector class

Syntax
int Reallocate(unsigned sz, unsigned offset = 0)
Description
If delta (see the constructor) is zero, Reallocate returns 0. Otherwise, Reallocate tries to create a new
array of size sz (adjusted upwards to the nearest multiple of delta). The existing array is copied to the
expanded array and then deleted. In an array of pointers, the entries are zeroed for each unused
element. In an array of objects, the default constructor is invoked for each unused element. offset is
the location in the new vector where the first element of the old vector should be copied. This is
needed when the array has to be extended downward.

TArrayAsVector::RemoveEntry
TArrayAsVector class

Syntax
void RemoveEntry(int loc)
Description
Removes element at the loc index into the array, and reduces the array by one element. Elements
from index (loc + 1) upward are copied to positions loc, (loc + 1), and so on. The original element at loc
is lost.

TArrayAsVector::SetData
TArrayAsVector class

Syntax
void SetData(int loc, const T& t)
Description
The given t replaces the existing element at the index loc.

TArrayAsVector::UpperBound
TArrayAsVector class

Syntax
int UpperBound() const;
Description
Returns the array's current upperbound.

See Also
ZeroBase.

TArrayAsVector::ZeroBase
TArrayAsVector class

Syntax
unsigned ZeroBase(int loc) const;
Description
Returns the location relative to lowerbound (loc - lowerbound).

TArrayAsVector::ItemAt
TArrayAsVector class

Syntax
T ItemAt(int i) const;
Description
Returns a copy of the object stored at location i.

TArrayAsVector::operator []
TArrayAsVector class

Form 1
T& operator [](int loc)
Form 2
T& operator [](int loc) const;
Description
Form 1: Returns a reference to the element at the location specified by loc. The non-const version
resizes the array if it's necessary to make loc a valid index.
Form 2: The const throws an exception in the debugging version on an attempt to index out of
bounds.

TArrayAsVectorIterator template

Syntax
template <class T> class TArrayAsVectorIterator;
Header File
arrays.h

Description
Implements an iterator object to traverse TArrayAsVector objects.

Public Constructor
TArrayAsVectorIterator::TArrayAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TArrayAsVectorIterator::TArrayAsVectorIterator
TArrayAsVectorIterator class

Syntax
TArrayAsVectorIterator(const TArrayAsVector<T> & a)
Description
Creates an iterator object to traverse TArrayAsVector objects.

TArrayAsVectorIterator::Current
TArrayAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TArrayAsVectorIterator::Restart
TArrayAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TArrayAsVectorIterator::operator ++
TArrayAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TArrayAsVectorIterator::operator int
TArrayAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMIArrayAsVector template

Syntax
template <class T, class Alloc> class TMIArrayAsVector;
Header File
arrays.h

Description
Implements a managed, indirect array of objects of type T, using a vector as the underlying
implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMIArrayAsVector::TMIArrayAsVector

Public Member Functions
Add
AddAt
ArraySize
Destroy
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
HasMember
IsEmpty
IsFull
LastThat
LowerBound
UpperBound

Protected Member Functions
BoundBase
Grow
InsertEntry
ItemAt
Reallocate
RemoveEntry
SetData
SqueezeEntry
ZeroBase

Operators
[]

TMIArrayAsVector::CondFunc
TMIArrayAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMIArrayAsVector::IterFunc
TMIArrayAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMIArrayAsVector::TMIArrayAsVector
TMIArrayAsVector class

Syntax
TMIArrayAsVector(int upper, int lower = 0, int delta = 0)
Description
Creates an indirect array with an upper bound of upper, a lower bound of lower, and a growth delta of
delta.

TMIArrayAsVector::Add
TMIArrayAsVector class

Syntax
int Add(T *t)
Description
Adds a pointer to a T object at the next available index at the end of an array. Adding an element
beyond the upper bound leads to an overflow condition. If overflow occurs and delta is nonzero, the
array is expanded (by sufficient multiples of delta bytes) to accommodate the addition. If delta is zero,
Add fails. Add returns 0 if the object couldn't be added.

TMIArrayAsVector::AddAt
TMIArrayAsVector class

Syntax
int AddAt(T *t, int loc)
Description
Adds a pointer to a T object at the specified index. If that index is occupied, it moves the object up to
make room for the added object. If loc is beyond the upper bound, the array is expanded if delta (see
the constructor) is nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives an
error. Otherwise it returns 1.

TMIArrayAsVector::ArraySize
TMIArrayAsVector class

Syntax
unsigned ArraySize() const;
Description
Returns the current number of cells allocated.

TMIArrayAsVector::Destroy
TMIArrayAsVector class

Form 1
int Destroy(int i)
Form 2
int Destroy(T *t)
Description
Form 1: Removes the object at the given index. The object will be deleted.
Form 2: Removes the object pointed to by t and deletes it.

TMIArrayAsVector::Detach
See Also TMIArrayAsVector class

Form 1
int Detach(T *t, DeleteType dt = NoDelete)
Form 2
int Detach(int loc, DeleteType dt = NoDelete)
Description
Form 1: Removes the object pointer at loc. The value of dt and the current ownership setting
determine whether the object itself will be deleted. DeleteType is defined in the base class
TShouldDelete as enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means
that the object will not be deleted regardless of ownership. With dt set to Delete, the object will be
deleted regardless of ownership. If dt is set to DefDelete, the object will be deleted only if the array
owns its elements.
Form 2: Removes the specified pointer. The value of dt and the current ownership setting determine
whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as
enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not
be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of
ownership. If dt is set to DefDelete, the object will be deleted only if the array owns its elements.

See Also
TShouldDelete::ownsElements

TMIArrayAsVector::Find
TMIArrayAsVector class

Syntax
int Find(const T *t) const;
Description
Finds the first specified object pointer and returns the index. Returns INT_MAX not found.

TMIArrayAsVector::FirstThat
See Also TMIArrayAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first element in the array that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the container meets the condition.

See Also
TMIArrayAsVector::LastThat

TMIArrayAsVector::Flush
See Also TMIArrayAsVector class

Syntax
void Flush(DeleteType dt = DefDelete)
Description
Removes all elements from the array without destroying the array. The value of dt determines whether
the elements themselves are destroyed. By default, the ownership status of the array determines their
fate, as explained in the Detach member function. You can also set dt to Delete and NoDelete.

See Also
TMIArrayAsVector::Detach

TMIArrayAsVector::ForEach
TMIArrayAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the container.
The args argument lets you pass arbitrary data to this function.

TMIArrayAsVector::GetItemsInContainer
TMIArrayAsVector class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array.

TMIArrayAsVector::HasMember
TMIArrayAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found in the array; otherwise returns 0.

TMIArrayAsVector::IsEmpty
TMIArrayAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the array contains no elements; otherwise returns 0.

TMIArrayAsVector::IsFull
TMIArrayAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the array is full; otherwise returns 0.

TMIArrayAsVector::LastThat
See Also TMIArrayAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last element in the array that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the container meets the condition.

See Also
TMIArrayAsVector::FirstThat
TMIArrayAsVector::ForEach

TMIArrayAsVector::LowerBound
TMIArrayAsVector class

Syntax
int LowerBound() const;
Description
Returns the array's lowerbound.

TMIArrayAsVector::UpperBound
TMIArrayAsVector class

Syntax
int UpperBound() const;
Description
Returns the array's current upperbound.

TMIArrayAsVector::BoundBase
See Also TMIArrayAsVector class

Syntax
int BoundBase(unsigned loc) const;
Description
Boundbase adjust vectors, which are zero-based, to arrays, which aren't zero-based.

See Also
ZeroBase.

TMIArrayAsVector::Grow
TMIArrayAsVector class

Syntax
void Grow(int loc)
Description
Increases the size of the array, in either direction, so that loc is a valid index.

TMIArrayAsVector::InsertEntry
TMIArrayAsVector class

Syntax
void InsertEntry(int loc)
Description
Creates an object and inserts it at loc.

TMIArrayAsVector::ItemAt
TMIArrayAsVector class

Syntax
T ItemAt(int i) const;
Description
Returns a copy of the object stored at location i.

TMIArrayAsVector::Reallocate
TMIArrayAsVector class

Syntax
int Reallocate(unsigned sz, unsigned offset = 0)
Description
If delta (see the constructor) is zero, Reallocate returns 0. Otherwise, Reallocate tries to create a new
array of size sz (adjusted upward to the nearest multiple of delta). The existing array is copied to the
expanded array and then deleted. In an array of pointers the entries are zeroed. In an array of objects
the default constructor is invoked for each unused element. offset is the location in the new vector
where the first element of the old vector should be copied. This is needed when the array has to be
extended downward.

TMIArrayAsVector::RemoveEntry
TMIArrayAsVector class

Syntax
void RemoveEntry(int loc)
Description
Removes element at loc, and reduces the array by one element. Elements from index (loc + 1) upward
are copied to positions loc, (loc + 1), and so on. The original element at loc is lost.

TMIArrayAsVector::SetData
TMIArrayAsVector class

Syntax
void SetData(int loc, const T& t)
Description
The given t replaces the existing element at the index loc.

TMIArrayAsVector::SqueezeEntry
TMIArrayAsVector class

Syntax
void SqueezeEntry(unsigned loc)
Description
Removes element at loc, and reduces the array by one element. Elements from index (loc + 1) upward
are copied to positions loc, (loc + 1), and so on. The original element at loc is lost.

TMIArrayAsVector::ZeroBase
TMIArrayAsVector class

Syntax
unsigned ZeroBase(int loc) const;
Description
Returns the location relative to lowerbound (loc - lowerbound).

TMIArrayAsVector::operator []
TMIArrayAsVector class

Form 1
T * & operator [](int loc)
Form 2
T * & operator [](int loc) const;
Description
Form 1: Returns a reference to the element at the location specified by loc. The non-const version
resizes the array if it's necessary to make loc a valid index.
Form 2: The const throws an exception in the debugging version on an attempt to index out of
bounds.

TMIArrayAsVectorIterator template

Syntax
template <class T, class Alloc> class TMIArrayAsVectorIterator;
Header File
arrays.h

Description
Implements an iterator object to traverse TMIArrayAsVector objects. Based on TMVectorIteratorImp.

Public Constructor
TMIArrayAsVectorIterator::TMIArrayAsVectorIterator

Public Member Functions
Current
Restart

Operators
++

TMIArrayAsVectorIterator::TMIArrayAsVectorIterator
TMIArrayAsVectorIterator class

Syntax
TMIArrayAsVectorIterator(const TMIArrayAsVector<T,Alloc> &a)
Description
Creates an iterator object to traverse TMArrayAsVector objects.

TMIArrayAsVectorIterator::Current
TMIArrayAsVectorIterator class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TMIArrayAsVectorIterator::Restart
TMIArrayAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration from the beginning.
Form 2: Restarts iteration over the specified range.

TMIArrayAsVectorIterator::operator ++
TMIArrayAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIArrayAsVector template

Syntax
template <class T> class TIArrayAsVector;
Header File
arrays.h

Description
Implements an indirect array of objects of type T, using a vector as the underlying implementation.
TStandardAllocator is used to manage memory.

Public Constructor
TIArrayAsVector

Type Definitions
CondFunc
IterFunc

Public Constructors
TIArrayAsVector::TIArrayAsVector

Public Member Functions
Add
AddAt
ArraySize
BoundBase
Destroy
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
Grow
HasMember
InsertEntry
IsEmpty
IsFull
LastThat
LowerBound
Reallocate
RemoveEntry
SetData
UpperBound
ZeroBase

Protected Member Functions
ItemAt

Operators
[]

TIArrayAsVector::CondFunc
TIArrayAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TIArrayAsVector::IterFunc
TIArrayAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TIArrayAsVector::TIArrayAsVector
TIArrayAsVector class

Syntax
TIArrayAsVector(int upper, int lower = 0, int delta = 0)
Description
Creates an array with an upper bound of upper, a lower bound of lower, and a growth delta of delta.

TIArrayAsVector::Add
TIArrayAsVector class

Syntax
int Add(T *t)
Description
Adds a pointer to a T object at the next available index at the end of an array. Adding an element
beyond the upper bound leads to an overflow condition. If overflow occurs and delta is nonzero, the
array is expanded (by sufficient multiples of delta bytes) to accommodate the addition. If delta is zero,
Add fails. Add returns 0 if the object couldn't be added.

TIArrayAsVector::AddAt
TIArrayAsVector class

Syntax
int AddAt(T *t, int loc)
Description
Adds a pointer to a T object at the specified index. If that index is occupied, it moves the object up to
make room for the added object. If loc is beyond the upper bound, the array is expanded if delta (see
the constructor) is nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives an
error.

TIArrayAsVector::ArraySize
TIArrayAsVector class

Syntax
unsigned ArraySize() const;
Description
Returns the current number of cells allocated.

TIArrayAsVector::BoundBase
See Also TIArrayAsVector class

Syntax
int BoundBase(unsigned loc) const;
Description
Boundbase adjust vectors, which are zero-based, to arrays, which aren't zero-based.

See Also
ZeroBase.

TIArrayAsVector::Destroy
TIArrayAsVector class

Form 1
int Destroy(int i)
Form 2
int Destroy(T *t)
Description
Form 1: Removes the object at the given index. The object will be deleted.
Form 2: Removes the object pointed to by t and deletes it.

TIArrayAsVector::Detach
See Also TIArrayAsVector class

Form 1
int Detach(T *t)
Form 2
int Detach(int loc)
Description
Form 1: Removes the object pointer at loc.
Form 2: Removes the specified pointer.

See Also
TShouldDelete::ownsElements

TIArrayAsVector::Find
TIArrayAsVector class

Syntax
int Find(const T *t) const;
Description
Finds the first specified object pointer and returns the index. Returns INT_MAX not found.

TIArrayAsVector::FirstThat
See Also TIArrayAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first element in the array that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the container meets the condition. Note that FirstThat creates its own
internal iterator, so you can treat it as a "search" function.

See Also
TIArrayAsVector::LastThat

TIArrayAsVector::Flush
See Also TIArrayAsVector class

Syntax
void Flush()
Description
Removes all elements from the array without destroying the array.

See Also
TIArrayAsVector::Detach

TIArrayAsVector::ForEach
TIArrayAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the container.
The args argument lets you pass arbitrary data to this function.

TIArrayAsVector::GetItemsInContainer
TIArrayAsVector class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array.

TIArrayAsVector::Grow
TIArrayAsVector class

Syntax
void Grow(int loc)
Description
Increases the size of the array, in either direction, so that loc is a valid index.

TIArrayAsVector::HasMember
TIArrayAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found in the array; otherwise returns 0.

TIArrayAsVector::InsertEntry
TIArrayAsVector class

Syntax
void InsertEntry(int loc)
Description
Creates an object and inserts it at loc.

TIArrayAsVector::IsEmpty
TIArrayAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the array contains no elements; otherwise returns 0.

TIArrayAsVector::IsFull
TIArrayAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the array is full; otherwise returns 0.

TIArrayAsVector::LastThat
See Also TIArrayAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last element in the array that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the container meets the condition.

See Also
TIArrayAsVector::FirstThat
TIArrayAsVector::ForEach

TIArrayAsVector::LowerBound
TIArrayAsVector class

Syntax
int LowerBound() const;
Description
Returns the array's lowerbound.

TIArrayAsVector::Reallocate
TIArrayAsVector class

Syntax
int Reallocate(unsigned sz, unsigned offset = 0)
Description
If delta (see the constructor) is zero, Reallocate returns 0. Otherwise, Reallocate tries to create a new
array of size sz (adjusted upward to the nearest multiple of delta). The existing array is copied to the
expanded array and then deleted. In an array of pointers the entries are zeroed. In an array of objects
the default constructor is invoked for each unused element. offset is the location in the new vector
where the first element of the old vector should be copied. This is needed when the array has to be
extended downward.

TIArrayAsVector::RemoveEntry
TIArrayAsVector class

Syntax
void RemoveEntry(int loc)
Description
Removes element at loc, and reduces the array by one element. Elements from index (loc + 1) upward
are copied to positions loc, (loc + 1), and so on. The original element at loc is lost.

TIArrayAsVector::SetData
TIArrayAsVector class

Syntax
void SetData(int loc, const T& t)
Description
The given t replaces the existing element at the index loc.

TIArrayAsVector::SqueezeEntry
TIArrayAsVector class

Syntax
void SqueezeEntry(unsigned loc)
Description
Removes element at loc, and reduces the array by one element. Elements from index (loc + 1) upward
are copied to positions loc, (loc + 1), and so on. The original element at loc is lost.

TIArrayAsVector::UpperBound
TIArrayAsVector class

Syntax
int UpperBound() const;
Description
Returns the array's current upperbound.

TIArrayAsVector::ZeroBase
TIArrayAsVector class

Syntax
unsigned ZeroBase(int loc) const;
Description
Returns the location relative to lowerbound (loc - lowerbound).

TIArrayAsVector::ItemAt
TIArrayAsVector class

Syntax
T ItemAt(int i) const;
Description
Returns a copy of the object stored at location i.

TIArrayAsVector::operator []
TIArrayAsVector class

Form 1
T * & operator [](int loc)
Form 2
T * & operator [](int loc) const;
Description
Form 1: Returns a reference to the element at the location specified by loc. The non-const version
resizes the array if it's necessary to make loc a valid index.
Form 2: The const throws an exception in the debugging version on an attempt to index out of
bounds.

TIArrayAsVectorIterator template

Syntax
template <class T> class TIArrayAsVectorIterator;
Header File
arrays.h

Description
Implements an iterator object to traverse TIArrayAsVector objects. Uses TStandardAllocator for
memory management.

Public Constructors
TIArrayAsVectorIterator::TIArrayAsVectorIterator

Public Member Functions
Current
Restart

Operators
++

TIArrayAsVectorIterator::TIArrayAsVectorIterator
TIArrayAsVectorIterator class

Syntax
TIArrayAsVectorIterator(const TIArrayAsVector<T> &a) :
TMIArrayAsVectorIterator<T,TStandardAllocator>(a)

Description
Creates an iterator object to traverse TIArrayAsVector objects.

TIArrayAsVectorIterator::Current
TIArrayAsVectorIterator class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TIArrayAsVectorIterator::Restart
TIArrayAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration from the beginning.
Form 2: Restarts iteration over the specified range.

TIArrayAsVectorIterator::operator ++
TIArrayAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMSArrayAsVector template

Syntax
template <class T, class Alloc> class TMSArrayAsVector;
Header File
arrays.h

Description
Implements a sorted array of objects of type T, using a vector as the underlying implementation. With
the exception of the AddAt member function, TMSArrayAsVector inherits its member functions and
operators from TMArrayAsVector.

Type Definitions
CondFunc
IterFunc

Public Constructor
TMSArrayAsVector::TMSArrayAsVector

Public Member Functions
Add
AddAt
ArraySize
BoundBase
Destroy
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
Grow
HasMember
InsertEntry
IsEmpty
IsFull
LastThat
LowerBound
Reallocate
RemoveEntry
SetData
UpperBound
ZeroBase

Protected Member Functions
ItemAt

Operators
[]

TMSArrayAsVector::CondFunc
TMSArrayAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMSArrayAsVector::IterFunc
TMSArrayAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to the ForEach member function.

TMSArrayAsVector::TMSArrayAsVector
TMSArrayAsVector class

Syntax
TMSArrayAsVector(int upper, int lower = 0, int delta = 0)
Description
Creates an array with an upper bound of upper, a lower bound of lower, and a growth delta of delta. It
requires a < operator for type T.

TMSArrayAsVector::Add
TMSArrayAsVector class

Syntax
int Add(const T& t)
Description
Adds a T object at the next available index at the end of an array. Adding an element beyond the upper
bound leads to an overflow condition. If overflow occurs and delta is nonzero, the array is expanded
(by sufficient multiples of delta bytes) to accommodate the addition. If delta is zero, Add fails. Add
returns 0 if it couldn't add the object.

TMSArrayAsVector::AddAt
TMSArrayAsVector class

Syntax
int AddAt(const T& t, int loc)
Description
Adds a T object at the specified index. If that index is occupied, it moves the object up to make room
for the added object. If loc is beyond the upper bound, the array is expanded if delta (see the
constructor) is nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives an error.

TMSArrayAsVector::ArraySize
TMSArrayAsVector class

Syntax
unsigned ArraySize() const;
Description
Returns the current number of cells allocated.

TMSArrayAsVector::BoundBase
See Also TMSArrayAsVector class

Syntax
int BoundBase(unsigned loc) const;
Description
Boundbase adjust vectors, which are zero-based, to arrays, which aren't zero-based.

See Also
ZeroBase.

TMSArrayAsVector::Destroy
TMSArrayAsVector class

Form 1
int Destroy(int i)
Form 2
int Destroy(const T& t)
Description
Form 1: Removes the object at the given index. The object will be destroyed.
Form 2: Removes the given object and destroys it.

TMSArrayAsVector::Detach
See Also TMSArrayAsVector class

Form 1
int Detach(int loc)
Form 2
int Detach(const T& t)
Description
Form 1: Removes the object at loc.
Form 2: Removes the first object that compares equal to the specified object.

See Also
TShouldDelete::ownsElements

TMSArrayAsVector::Find
TMSArrayAsVector class

Syntax
int Find(const T& t) const;
Description
Finds the specified object and returns the object's index; otherwise returns INT_MAX.

TMSArrayAsVector::FirstThat
See Also TMSArrayAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the array that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TMSArrayAsVector::LastThat

TMSArrayAsVector::Flush
See Also TMSArrayAsVector class

Syntax
void Flush()
Description
Removes all elements from the array without destroying the array.

See Also
TMSArrayAsVector::Detach

TMSArrayAsVector::ForEach
TMSArrayAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the array. The
args argument lets you pass arbitrary data to this function.

TMSArrayAsVector::GetItemsInContainer
TMSArrayAsVector class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array, as distinguished from ArraySize, which returns the size of the
array.

TMSArrayAsVector::Grow
TMSArrayAsVector class

Syntax
void Grow(int loc)
Description
Increases the size of the array, in either direction, so that loc is a valid index.

TMSArrayAsVector::HasMember
TMSArrayAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found in the array; otherwise returns 0.

TMSArrayAsVector::InsertEntry
TMSArrayAsVector class

Syntax
void InsertEntry(int loc)
Description
Creates an object and inserts it at loc, moving entries above loc up by one.

TMSArrayAsVector::IsEmpty
TMSArrayAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the array contains no elements; otherwise returns 0.

TMSArrayAsVector::IsFull
TMSArrayAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the array is full; otherwise returns 0. The array is full if delta is not equal to 0 and if the
number of items in the container equals the value returned by ArraySize.

TMSArrayAsVector::LastThat
See Also TMSArrayAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the array that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TMSArrayAsVector::FirstThat
TMSArrayAsVector::ForEach

TMSArrayAsVector::LowerBound
TMSArrayAsVector class

Syntax
int LowerBound() const;
Description
Returns the array's lowerbound.

TMSArrayAsVector::Reallocate
TMSArrayAsVector class

Syntax
int Reallocate(unsigned sz, unsigned offset = 0)
Description
If delta (see the constructor) is zero, Reallocate returns 0. Otherwise, Reallocate tries to create a new
array of size sz (adjusted upwards to the nearest multiple of delta). The existing array is copied to the
expanded array and then deleted. In an array of pointers, the entries are zeroed for each unused
element. In an array of objects, the default constructor is invoked for each unused element. offset is
the location in the new vector where the first element of the old vector should be copied. This is
needed when the array has to be extended downward.

TMSArrayAsVector::RemoveEntry
TMSArrayAsVector class

Syntax
void RemoveEntry(int loc)
Description
Removes element at the loc index into the array, and reduces the array by one element. Elements
from index (loc + 1) upward are copied to positions loc, (loc + 1), and so on. The original element at loc
is lost.

TMSArrayAsVector::SetData
TMSArrayAsVector class

Syntax
void SetData(int loc, const T& t)
Description
The given t replaces the existing element at the index loc.

TMSArrayAsVector::UpperBound
TMSArrayAsVector class

Syntax
int UpperBound() const;
Description
Returns the array's current upperbound.

TMSArrayAsVector::ZeroBase
TMSArrayAsVector class

Syntax
unsigned ZeroBase(int loc) const;
Description
Returns the location relative to lowerbound (loc - lowerbound).

TMSArrayAsVector::ItemAt
TMSArrayAsVector class

Syntax
T ItemAt(int i) const;
Description
Returns a copy of the object stored at location i.

TMSArrayAsVector::operator []
TMSArrayAsVector class

Form 1
T& operator [](int loc)
Form 2
T& operator [](int loc) const;
Description
Form 1: Returns a reference to the element at the location specified by loc. The non-const version
resizes the array if it's necessary to make loc a valid index.
Form 2: The const throws an exception in the debugging version on an attempt to index out of
bounds.

TMSArrayAsVectorIterator template

Syntax
template <class T, class Alloc> class TMSArrayAsVectorIterator;
Header File
arrays.h

Description
Implements an iterator object to traverse TMSArrayAsVector objects.

Public Constructor
TMSArrayAsVectorIterator::TMSArrayAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMSArrayAsVectorIterator::TMSArrayAsVectorIterator
TMSArrayAsVectorIterator class

Syntax
TMSArrayAsVectorIterator(const TMSArrayAsVector<T> & a) :
Description
Creates an iterator object to traverse TSArrayAsVector objects.

TMSArrayAsVectorIterator::Current
TMSArrayAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TMSArrayAsVectorIterator::Restart
TMSArrayAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TMSArrayAsVectorIterator::operator ++
TMSArrayAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMSArrayAsVectorIterator::operator int
TMSArrayAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TSArray template

Header File
arrays.h

Description
A simplified name for TSArrayAsVector.
Implements a sorted array of objects of type T, using a vector as the underlying implementation. With
the exception of the AddAt member function, TSArray inherits its member functions and operators from
TMArrayAsVector.

Type Definitions
CondFunc
IterFunc

Public Constructor
TSArray::TSArray

Public Member Functions
Add
AddAt
ArraySize
BoundBase
Destroy
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
Grow
HasMember
InsertEntry
IsEmpty
IsFull
LastThat
LowerBound
Reallocate
RemoveEntry
SetData
UpperBound
ZeroBase

Protected Member Functions
ItemAt

Operators
[]

TSArray::CondFunc
TSArray class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TSArray::IterFunc
TSArray class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to the ForEach member function.

TSArray::TSArray
TSArray class

Syntax
TSArray(int upper, int lower = 0, int delta = 0)
Description
Creates an array with an upper bound of upper, a lower bound of lower, and a growth delta of delta. It
requires a < operator for type T.

TSArray::Add
TSArray class

Syntax
int Add(const T& t)
Description
Adds a T object at the next available index at the end of an array. Adding an element beyond the upper
bound leads to an overflow condition. If overflow occurs and delta is nonzero, the array is expanded
(by sufficient multiples of delta bytes) to accommodate the addition. If delta is zero, Add fails. Add
returns 0 if it couldn't add the object.

TSArray::AddAt
TSArray class

Syntax
int AddAt(const T& t, int loc)
Description
Adds a T object at the specified index. If that index is occupied, it moves the object up to make room
for the added object. If loc is beyond the upper bound, the array is expanded if delta (see the
constructor) is nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives an error.

TSArray::ArraySize
TSArray class

Syntax
unsigned ArraySize() const;
Description
Returns the current number of cells allocated.

TSArray::BoundBase
See Also TSArray class

Syntax
int BoundBase(unsigned loc) const;
Description
Boundbase adjust vectors, which are zero-based, to arrays, which aren't zero-based.

See Also
ZeroBase

TSArray::Destroy
TSArray class

Form 1
int Destroy(int i)
Form 2
int Destroy(const T& t)
Description
Form 1: Removes the object at the given index. The object will be destroyed.
Form 2: Removes the given object and destroys it.

TSArray::Detach
See Also TSArray class

Form 1
int Detach(int loc)
Form 2
int Detach(const T& t)
Description
Form 1: Removes the object at loc.
Form 2: Removes the first object that compares equal to the specified object.

See Also
TShouldDelete::ownsElements

TSArray::Find
TSArray class

Syntax
int Find(const T& t) const;
Description
Finds the specified object and returns the object's index; otherwise returns INT_MAX.

TSArray::FirstThat
See Also TSArray class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the array that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TSArray::LastThat

TSArray::Flush
See Also TSArray class

Syntax
void Flush()
Description
Removes all elements from the array without destroying the array.

See Also
TSArray::Detach

TSArray::ForEach
TSArray class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the array. The
args argument lets you pass arbitrary data to this function.

TSArray::GetItemsInContainer
TSArray class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array, as distinguished from ArraySize, which returns the size of the
array.

TSArray::Grow
TSArray class

Syntax
void Grow(int loc)
Description
Increases the size of the array, in either direction, so that loc is a valid index.

TSArray::HasMember
TSArray class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found in the array; otherwise returns 0.

TSArray::InsertEntry
TSArray class

Syntax
void InsertEntry(int loc)
Description
Creates an object and inserts it at loc, moving entries above loc up by one.

TSArray::IsEmpty
TSArray class

Syntax
int IsEmpty() const;
Description
Returns 1 if the array contains no elements; otherwise returns 0.

TSArray::IsFull
TSArray class

Syntax
int IsFull() const;
Description
Returns 1 if the array is full; otherwise returns 0. The array is full if delta is not equal to 0 and if the
number of items in the container equals the value returned by ArraySize.

TSArray::LastThat
See Also TSArray class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the array that satisfies a given condition. You supply a test
function pointer, f, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
TSArray::FirstThat
TSArray::ForEach

TSArray::LowerBound
TSArray class

Syntax
int LowerBound() const;
Description
Returns the array's lowerbound.

TSArray::Reallocate
TSArray class

Syntax
int Reallocate(unsigned sz, unsigned offset = 0)
Description
If delta (see the constructor) is zero, Reallocate returns 0. Otherwise, Reallocate tries to create a new
array of size sz (adjusted upwards to the nearest multiple of delta). The existing array is copied to the
expanded array and then deleted. In an array of pointers, the entries are zeroed for each unused
element. In an array of objects, the default constructor is invoked for each unused element. offset is
the location in the new vector where the first element of the old vector should be copied. This is
needed when the array has to be extended downward.

TSArray::RemoveEntry
TSArray class

Syntax
void RemoveEntry(int loc)
Description
Removes element at the loc index into the array, and reduces the array by one element. Elements
from index (loc + 1) upward are copied to positions loc, (loc + 1), and so on. The original element at loc
is lost.

TSArray::SetData
TSArray class

Syntax
void SetData(int loc, const T& t)
Description
The given t replaces the existing element at the index loc.

TSArray::UpperBound
TSArray class

Syntax
int UpperBound() const;
Description
Returns the array's current upperbound.

TSArray::ZeroBase
TSArray class

Syntax
unsigned ZeroBase(int loc) const;
Description
Returns the location relative to lowerbound (loc - lowerbound).

TSArray::ItemAt
TSArray class

Syntax
T ItemAt(int i) const;
Description
Returns a copy of the object stored at location i.

TSArray::operator []
TSArray class

Form 1
T& operator [](int loc)
Form 2
T& operator [](int loc) const;
Description
Form 1: Returns a reference to the element at the location specified by loc. The non-const version
resizes the array if it's necessary to make loc a valid index.
Form 2: The const throws an exception in the debugging version on an attempt to index out of
bounds.

TSArrayAsVector template

Syntax
template <class T> class TSArrayAsVector;
Header File
arrays.h

Description
Implements a sorted array of objects of type T, using a vector as the underlying implementation. With
the exception of the AddAt member function, TSArrayAsVector inherits its member functions and
operators from TMArrayAsVector.

Type Definitions
CondFunc
IterFunc

Public Constructor
TSArrayAsVector::TSArrayAsVector

Public Member Functions
Add
AddAt
ArraySize
BoundBase
Destroy
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
Grow
HasMember
InsertEntry
IsEmpty
IsFull
LastThat
LowerBound
Reallocate
RemoveEntry
SetData
UpperBound
ZeroBase

Protected Member Functions
ItemAt

Operators
[]

TSArrayAsVector::CondFunc
TSArrayAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TSArrayAsVector::IterFunc
TSArrayAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to the ForEach member function.

TSArrayAsVector::TSArrayAsVector
TSArrayAsVector class

Syntax
TSArrayAsVector(int upper, int lower = 0, int delta = 0)
Description
Creates an array with an upper bound of upper, a lower bound of lower, and a growth delta of delta. It
requires a < operator for type T.

TSArrayAsVector::Add
TSArrayAsVector class

Syntax
int Add(const T& t)
Description
Adds a T object at the next available index at the end of an array. Adding an element beyond the upper
bound leads to an overflow condition. If overflow occurs and delta is nonzero, the array is expanded
(by sufficient multiples of delta bytes) to accommodate the addition. If delta is zero, Add fails. Add
returns 0 if it couldn't add the object.

TSArrayAsVector::AddAt
TSArrayAsVector class

Syntax
int AddAt(const T& t, int loc)
Description
Adds a T object at the specified index. If that index is occupied, it moves the object up to make room
for the added object. If loc is beyond the upper bound, the array is expanded if delta (see the
constructor) is nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives an error.

TSArrayAsVector::ArraySize
TSArrayAsVector class

Syntax
unsigned ArraySize() const;
Description
Returns the current number of cells allocated.

TSArrayAsVector::BoundBase
See Also TSArrayAsVector class

Syntax
int BoundBase(unsigned loc) const;
Description
Boundbase adjust vectors, which are zero-based, to arrays, which aren't zero-based.

TSArrayAsVector::Destroy
TSArrayAsVector class

Form 1
int Destroy(int i)
Form 2
int Destroy(const T& t)
Description
Form 1: Removes the object at the given index. The object will be destroyed.
Form 2: Removes the given object and destroys it.

TSArrayAsVector::Detach
See Also TSArrayAsVector class

Form 1
int Detach(int loc)
Form 2
int Detach(const T& t)
Description
Form 1: Removes the object at loc.
Form 2: Removes the first object that compares equal to the specified object.

See Also
TShouldDelete::ownsElements

TSArrayAsVector::Find
TSArrayAsVector class

Syntax
int Find(const T& t) const;
Description
Finds the specified object and returns the object's index; otherwise returns INT_MAX.

TSArrayAsVector::FirstThat
See Also TSArrayAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the array that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TSArrayAsVector::LastThat

TSArrayAsVector::Flush
See Also TSArrayAsVector class

Syntax
void Flush()
Description
Removes all elements from the array without destroying the array.

See Also
TSArrayAsVector::Detach

TSArrayAsVector::ForEach
TSArrayAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the array. The
args argument lets you pass arbitrary data to this function.

TSArrayAsVector::GetItemsInContainer
TSArrayAsVector class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array, as distinguished from ArraySize, which returns the size of the
array.

TSArrayAsVector::Grow
TSArrayAsVector class

Syntax
void Grow(int loc)
Description
Increases the size of the array, in either direction, so that loc is a valid index.

TSArrayAsVector::HasMember
TSArrayAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found in the array; otherwise returns 0.

TSArrayAsVector::InsertEntry
TSArrayAsVector class

Syntax
void InsertEntry(int loc)
Description
Creates an object and inserts it at loc, moving entries above loc up by one.

TSArrayAsVector::IsEmpty
TSArrayAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the array contains no elements; otherwise returns 0.

TSArrayAsVector::IsFull
TSArrayAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the array is full; otherwise returns 0. The array is full if delta is not equal to 0 and if the
number of items in the container equals the value returned by ArraySize.

TSArrayAsVector::LastThat
See Also TSArrayAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the array that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TSArrayAsVector::FirstThat
TSArrayAsVector::ForEach

TSArrayAsVector::LowerBound
TSArrayAsVector class

Syntax
int LowerBound() const;
Description
Returns the array's lowerbound.

TSArrayAsVector::Reallocate
TSArrayAsVector class

Syntax
int Reallocate(unsigned sz, unsigned offset = 0)
Description
If delta (see the constructor) is zero, Reallocate returns 0. Otherwise, Reallocate tries to create a new
array of size sz (adjusted upwards to the nearest multiple of delta). The existing array is copied to the
expanded array and then deleted. In an array of pointers, the entries are zeroed for each unused
element. In an array of objects, the default constructor is invoked for each unused element. offset is
the location in the new vector where the first element of the old vector should be copied. This is
needed when the array has to be extended downward.

TSArrayAsVector::RemoveEntry
TSArrayAsVector class

Syntax
void RemoveEntry(int loc)
Description
Removes element at the loc index into the array, and reduces the array by one element. Elements
from index (loc + 1) upward are copied to positions loc, (loc + 1), and so on. The original element at loc
is lost.

TSArrayAsVector::SetData
TSArrayAsVector class

Syntax
void SetData(int loc, const T& t)
Description
The given t replaces the existing element at the index loc.

TSArrayAsVector::UpperBound
TSArrayAsVector class

Syntax
int UpperBound() const;
Description
Returns the array's current upperbound.

See Also
ZeroBase.

TSArrayAsVector::ZeroBase
TSArrayAsVector class

Syntax
unsigned ZeroBase(int loc) const;
Description
Returns the location relative to lowerbound (loc - lowerbound).

TSArrayAsVector::ItemAt
TSArrayAsVector class

Syntax
T ItemAt(int i) const;
Description
Returns a copy of the object stored at location i.

TSArrayAsVector::operator []
TSArrayAsVector class

Form 1
T& operator [](int loc)
Form 2
T& operator [](int loc) const;
Description
Form 1: Returns a reference to the element at the location specified by loc. The non-const version
resizes the array if it's necessary to make loc a valid index.
Form 2: The const throws an exception in the debugging version on an attempt to index out of
bounds.

TSArrayIterator template

Header File
arrays.h

Description
A simpified name for TSArrayAsVectorIterator. Implements an iterator object to traverse
TSArrayAsVector objects.

Public Constructor
TSArrayIterator::TSArrayIterator

Public Member Functions
Current
Restart

Operators
++
int

TSArrayIterator::TSArrayIterator
TSArrayIterator class

Syntax
TSArrayIterator(const TSArrayAsVector<T> & a) :
Description
Creates an iterator object to traverse TSArrayAsVector objects.

TSArrayIterator::Current
TSArrayIterator class

Syntax
const T& Current();
Description
Returns the current object.

TSArrayIterator::Restart
TSArrayIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TSArrayIterator::operator ++
TSArrayIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TSArrayIterator::operator int
TSArrayIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TSArrayAsVectorIterator template

Syntax
template <class T> class TSArrayAsVectorIterator;
Header File
arrays.h

Description
Implements an iterator object to traverse TSArrayAsVector objects.

Public Constructor
TSArrayAsVectorIterator::TSArrayAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TSArrayAsVectorIterator::TSArrayAsVectorIterator
TSArrayAsVectorIterator class

Syntax
TSArrayAsVectorIterator(const TSArrayAsVector<T> & a) :
Description
Creates an iterator object to traverse TSArrayAsVector objects.

TSArrayAsVectorIterator::Current
TSArrayAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TSArrayAsVectorIterator::Restart
TSArrayAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TSArrayAsVectorIterator::operator ++
TSArrayAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TSArrayAsVectorIterator::operator int
TSArrayAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TISArrayAsVector template

Syntax
template <class T> class TISArrayAsVector;
Header File
arrays.h

Description
Implements an indirect sorted array of objects of type T, using a vector as the underlying
implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TISArrayAsVector::TISArrayAsVector

Public Member Functions
Add
AddAt
ArraySize
Destroy
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
HasMember
IsEmpty
IsFull
LastThat
LowerBound
UpperBound

Protected Member Functions
BoundBase
Grow
InsertEntry
ItemAt
Reallocate
RemoveEntry
SetData
SqueezeEntry
ZeroBase

Operators
[]

TISArrayAsVector::CondFunc
TISArrayAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TISArrayAsVector::IterFunc
TISArrayAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TISArrayAsVector::TISArrayAsVector
TISArrayAsVector class

Syntax
TISArrayAsVector(int upper, int lower = 0, int delta = 0)
Description
Creates an indirect array with an upper bound of upper, a lower bound of lower, and a growth delta of
delta.

TISArrayAsVector::Add
TISArrayAsVector class

Syntax
int Add(T *t)
Description
Adds a pointer to a T object at the next available index at the end of an array. Adding an element
beyond the upper bound leads to an overflow condition. If overflow occurs and delta is nonzero, the
array is expanded (by sufficient multiples of delta bytes) to accommodate the addition. If delta is zero,
Add fails. Add returns 0 if the object couldn't be added.

TISArrayAsVector::AddAt
TISArrayAsVector class

Syntax
int AddAt(T *t, int loc)
Description
Adds a pointer to a T object at the specified index. If that index is occupied, it moves the object up to
make room for the added object. If loc is beyond the upper bound, the array is expanded if delta (see
the constructor) is nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives an
error.

TISArrayAsVector::ArraySize
TISArrayAsVector class

Syntax
unsigned ArraySize() const;
Description
Returns the current number of cells allocated.

TISArrayAsVector::Destroy
TISArrayAsVector class

Form 1
int Destroy(int i)
Form 2
int Destroy(T *t)
Description
Form 1: Removes the object at the given index. The object will be deleted.
Form 2: Removes the object pointed to by t and deletes it.

TISArrayAsVector::Detach
See Also TISArrayAsVector class

Form 1
int Detach(T *t, DeleteType dt = NoDelete)
Form 2
int Detach(int loc, DeleteType dt = NoDelete)
Description
Form 1: Removes the object pointer at loc. The value of dt and the current ownership setting
determine whether the object itself will be deleted. DeleteType is defined in the base class
TShouldDelete as enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means
that the object will not be deleted regardless of ownership. With dt set to Delete, the object will be
deleted regardless of ownership. If dt is set to DefDelete, the object will be deleted only if the array
owns its elements.
Form 2: Removes the specified pointer. The value of dt and the current ownership setting determine
whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as
enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not
be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of
ownership. If dt is set to DefDelete, the object will be deleted only if the array owns its elements.

See Also
TShouldDelete::ownsElements

TISArrayAsVector::Find
TISArrayAsVector class

Syntax
int Find(const T *t) const;
Description
Finds the first specified object pointer and returns the index. Returns INT_MAX not found.

TISArrayAsVector::FirstThat
See Also TISArrayAsVector class

Syntax
T *FirstThat(CondFunc, void *args) const;
Description
Returns a pointer to the first element in the array that satisfies a given condition. You supply a test-
function pointer f that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the container meets the condition. Note that FirstThat creates its own internal
iterator, so you can treat it as a "search" function.

See Also
TISArrayAsVector::LastThat

TISArrayAsVector::Flush
See Also TISArrayAsVector class

Syntax
void Flush(DeleteType dt = DefDelete)
Description
Removes all elements from the array without destroying the array. The value of dt determines whether
the elements themselves are destroyed. By default, the ownership status of the array determines their
fate, as explained in the Detach member function. You can also set dt to Delete and NoDelete.

See Also
TISArrayAsVector::Detach

TISArrayAsVector::ForEach
TISArrayAsVector class

Syntax
void ForEach(IterFunc, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the container.
The args argument lets you pass arbitrary data to this function.

TISArrayAsVector::GetItemsInContainer
TISArrayAsVector class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array.

TISArrayAsVector::HasMember
TISArrayAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found in the array; otherwise returns 0.

TISArrayAsVector::IsEmpty
TISArrayAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the array contains no elements; otherwise returns 0.

TISArrayAsVector::IsFull
TISArrayAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the array is full; otherwise returns 0.

TISArrayAsVector::LastThat
See Also TISArrayAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last element in the array that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the container meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

See Also
TISArrayAsVector::FirstThat
TISArrayAsVector::ForEach

TISArrayAsVector::LowerBound
TISArrayAsVector class

Syntax
int LowerBound() const;
Description
Returns the array's lowerbound.

TISArrayAsVector::UpperBound
TISArrayAsVector class

Syntax
int UpperBound() const;
Description
Returns the array's current upperbound.

TISArrayAsVector::BoundBase
See Also TISArrayAsVector class

Syntax
int BoundBase(unsigned loc) const;
Description
Boundbase adjust vectors, which are zero-based, to arrays, which aren't zero-based.

See Also
ZeroBase.

TISArrayAsVector::Grow
TISArrayAsVector class

Syntax
void Grow(int loc)
Description
Increases the size of the array, in either direction, so that loc is a valid index.

TISArrayAsVector::InsertEntry
TISArrayAsVector class

Syntax
void InsertEntry(int loc)
Description
Creates an object and inserts it at loc.

TISArrayAsVector::ItemAt
TISArrayAsVector class

Syntax
T ItemAt(int i) const;
Description
Returns a copy of the object stored at location i.

TISArrayAsVector::Reallocate
TISArrayAsVector class

Syntax
int Reallocate(unsigned sz, unsigned offset = 0)
Description
If delta (see the constructor) is zero, Reallocate returns 0. Otherwise, Reallocate tries to create a new
array of size sz (adjusted upward to the nearest multiple of delta). The existing array is copied to the
expanded array and then deleted. In an array of pointers the entries are zeroed. In an array of objects
the default constructor is invoked for each unused element. offset is the location in the new vector
where the first element of the old vector should be copied. This is needed when the array has to be
extended downward.

TISArrayAsVector::RemoveEntry
TISArrayAsVector class

Syntax
void RemoveEntry(int loc)
Description
Removes element at loc, and reduces the array by one element. Elements from index (loc + 1) upward
are copied to positions loc, (loc + 1), and so on. The original element at loc is lost.

TISArrayAsVector::SetData
TISArrayAsVector class

Syntax
void SetData(int loc, const T& t)
Description
The given t replaces the existing element at the index loc.

TISArrayAsVector::SqueezeEntry
TISArrayAsVector class

Syntax
void SqueezeEntry(unsigned loc)
Description
Removes element at loc, and reduces the array by one element. Elements from index (loc + 1) upward
are copied to positions loc, (loc + 1), and so on. The original element at loc is lost.

TISArrayAsVector::ZeroBase
TISArrayAsVector class

Syntax
unsigned ZeroBase(int loc) const;
Description
Returns the location relative to lowerbound (loc - lowerbound).

TISArrayAsVector::operator []
TISArrayAsVector class

Form 1
T * & operator [](int loc)
Form 2
T * & operator [](int loc) const;
Description
Form 1: Returns a reference to the element at the location specified by loc. The non-const version
resizes the array if it's necessary to make loc a valid index.
Form 2: The const throws an exception in the debugging version on an attempt to index out of
bounds.

TISArrayAsVectorIterator template

Syntax
template <class T> class TISArrayAsVectorIterator;
Syntax
arrays.h

Description
Implements an iterator object to traverse TISArrayAsVector objects.

Public Constructor
TISArrayAsVectorIterator::TISArrayAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TISArrayAsVectorIterator::TISArrayAsVectorIterator
TISArrayAsVectorIterator class

Syntax
TISArrayAsVectorIterator(const TISArrayAsVector<T> &a)
Description
Creates an iterator object to traverse TISArrayAsVector objects.

TISArrayAsVectorIterator::Current
TISArrayAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TISArrayAsVectorIterator::Restart
TISArrayAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TISArrayAsVectorIterator::operator ++
TISArrayAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TISArrayAsVectorIterator::operator int
TISArrayAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMISArrayAsVector template

Syntax
template <class T, class Alloc> class TMISArrayAsVector;
Header File
arrays.h

Description
Implements a managed, indirect sorted array of objects of type T, using a vector as the underlying
implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMISArrayAsVector::TMISArrayAsVector

Public Member Functions
Add
AddAt
ArraySize
BoundBase
Destroy
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
Grow
HasMember
InsertEntry
IsEmpty
IsFull
LastThat
LowerBound
Reallocate
RemoveEntry
SetData
UpperBound
ZeroBase

Protected Member Functions
ItemAt

Operators
[]

TMISArrayAsVector::CondFunc
TMISArrayAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMISArrayAsVector::IterFunc
TMISArrayAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMISArrayAsVector::TMISArrayAsVector
TMISArrayAsVector class

Syntax
TMISArrayAsVector(int upper, int lower = 0, int delta = 0)
Description
Creates an indirect array with an upper bound of upper, a lower bound of lower, and a growth delta of
delta.

TMISArrayAsVector::Add
TMISArrayAsVector class

Syntax
int Add(T *t)
Description
Adds a pointer to a T object at the next available index at the end of an array. Adding an element
beyond the upper bound leads to an overflow condition. If overflow occurs and delta is nonzero, the
array is expanded (by sufficient multiples of delta bytes) to accommodate the addition. If delta is zero,
Add fails. Add returns 0 if the object couldn't be added.

TMISArrayAsVector::AddAt
TMISArrayAsVector class

Syntax
int AddAt(T *t, int loc)
Description
Adds a pointer to a T object at the specified index. If that index is occupied, it moves the object up to
make room for the added object. If loc is beyond the upper bound, the array is expanded if delta (see
the constructor) is nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives an
error.

TMISArrayAsVector::ArraySize
TMISArrayAsVector class

Syntax
unsigned ArraySize() const;
Description
Returns the current number of cells allocated.

TMISArrayAsVector::BoundBase
See Also TMISArrayAsVector class

Syntax
int BoundBase(unsigned loc) const;
Description
Boundbase adjust vectors, which are zero-based, to arrays, which aren't zero-based.

See Also
ZeroBase

TMISArrayAsVector::Destroy
TMISArrayAsVector class

Form 1
int Destroy(int i)
Form 2
int Destroy(T *t)
Description
Form 1: Removes the object at the given index. The object will be deleted.
Form 2: Removes the object pointed to by t and deletes it.

TMISArrayAsVector::Detach
See Also TMISArrayAsVector class

Form 1
int Detach(T *t)
Form 2
int Detach(int loc)
Description
Form 1: Removes the object pointer at loc.
Form 2: Removes the specified pointer.

See Also
TShouldDelete::ownsElements

TMISArrayAsVector::FirstThat
See Also TMISArrayAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first element in the array that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the container meets the condition. Note that FirstThat creates its own
internal iterator, so you can treat it as a "search" function.

See Also
TMISArrayAsVector::LastThat

TMISArrayAsVector::Find
TMISArrayAsVector class

Syntax
int Find(const T *t) const;
Description
Finds the first specified object pointer and returns the index. Returns INT_MAX not found.

TMISArrayAsVector::Flush
See Also TMISArrayAsVector class

Syntax
void Flush()
Description
Removes all elements from the array without destroying the array.

See Also
TMISArrayAsVector::Detach

TMISArrayAsVector::ForEach
TMISArrayAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the container.
The args argument lets you pass arbitrary data to this function.

TMISArrayAsVector::GetItemsInContainer
TMISArrayAsVector class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array.

TMISArrayAsVector::Grow
TMISArrayAsVector class

Syntax
void Grow(int loc)
Description
Increases the size of the array, in either direction, so that loc is a valid index.

TMISArrayAsVector::HasMember
TMISArrayAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found in the array; otherwise returns 0.

TMISArrayAsVector::InsertEntry
TMISArrayAsVector class

Syntax
void InsertEntry(int loc)
Description
Creates an object and inserts it at loc.

TMISArrayAsVector::IsEmpty
TMISArrayAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the array contains no elements; otherwise returns 0.

TMISArrayAsVector::IsFull
TMISArrayAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the array is full; otherwise returns 0.

TMISArrayAsVector::LastThat
See Also TMISArrayAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last element in the array that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the container meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

See Also
TMISArrayAsVector::FirstThat
TMISArrayAsVector::ForEach

TMISArrayAsVector::LowerBound
TMISArrayAsVector class

Syntax
int LowerBound() const;
Description
Returns the array's lowerbound.

TMISArrayAsVector::Reallocate
TMISArrayAsVector class

Syntax
int Reallocate(unsigned sz, unsigned offset = 0)
Description
If delta (see the constructor) is zero, Reallocate returns 0. Otherwise, Reallocate tries to create a new
array of size sz (adjusted upward to the nearest multiple of delta). The existing array is copied to the
expanded array and then deleted. In an array of pointers the entries are zeroed. In an array of objects
the default constructor is invoked for each unused element. offset is the location in the new vector
where the first element of the old vector should be copied. This is needed when the array has to be
extended downward.

TMISArrayAsVector::RemoveEntry
TMISArrayAsVector class

Syntax
void RemoveEntry(int loc)
Description
Removes element at loc, and reduces the array by one element. Elements from index (loc + 1) upward
are copied to positions loc, (loc + 1), and so on. The original element at loc is lost.

TMISArrayAsVector::SetData
TMISArrayAsVector class

Syntax
void SetData(int loc, const T& t)
Description
The given t replaces the existing element at the index loc.

TMISArrayAsVector::SqueezeEntry
TMISArrayAsVector class

Syntax
void SqueezeEntry(unsigned loc)
Description
Removes element at loc, and reduces the array by one element. Elements from index (loc + 1) upward
are copied to positions loc, (loc + 1), and so on. The original element at loc is lost.

TMISArrayAsVector::UpperBound
TMISArrayAsVector class

Syntax
int UpperBound() const;
Description
Returns the array's current upperbound.

TMISArrayAsVector::ZeroBase
TMISArrayAsVector class

Syntax
unsigned ZeroBase(int loc) const;
Description
Returns the location relative to lowerbound (loc - lowerbound).

TMISArrayAsVector::ItemAt
TMISArrayAsVector class

Syntax
T ItemAt(int i) const;
Description
Returns a copy of the object stored at location i.

TMISArrayAsVector::operator []
TMISArrayAsVector class

Form 1
T * & operator [](int loc)
Form 2
T * & operator [](int loc) const;
Description
Form 1: Returns a reference to the element at the location specified by loc. The non-const version
resizes the array if it's necessary to make loc a valid index.
Form 2: The const throws an exception in the debugging version on an attempt to index out of
bounds.

TArray template

Header File
arrays.h

Description
A simplified name for TArrayAsVector.

TArrayIterator template

Header File
arrays.h

Description
A simplified name for TArrayAsVectorIterator.

TMDDAssociation template

Syntax
template <class K, class V, class A> class TMDDAssociation;
Header File
assoc.h

Description
Implements a managed association, binding a direct key (K) with a direct value (V) . Assumes that K
has a HashValue member function, or that a global function with one of the following prototypes exists:

unsigned HashValue(K);
unsigned HashValue(K &);
unsigned HashValue(const K &);

K also must have a valid == operator. Class A represents the user-supplied storage manager.

Public Constructors
TMDDAssociation::TMDDAssociation

Public Member Functions
DeleteElements
HashValue
Key
Value

Operators
==

TMDDAssociation::TMDDAssociation
TMDDAssociation class

Form 1
TMDDAssociation()
Form 2
TMDDAssociation(const K &k, const V &v)
Description
Form 1: The default constructor.
Form 2: Constructs an object that associates a copy of key object k with a copy of value object v.

TMDDAssociation::DeleteElements
TMDDAssociation class

Syntax
void DeleteElements()
Description
The dictionary containing the associations determines whether pointed-to objects should be deleted,
and if so, calls DeleteElements for each of the associations it holds.

TMDDAssociation::HashValue
TMDDAssociation class

Syntax
unsigned HashValue()
Description
Returns the hash value for the key.

TMDDAssociation::Key
TMDDAssociation class

Syntax
const K& Key()
Description
Returns KeyData.

TMDDAssociation::Value
TMDDAssociation class

Syntax
const V& Value() const;
Description
Returns ValueData.

TMDDAssociation::operator ==
TMDDAssociation class

Syntax
int operator ==
Description
Tests equality between keys.

TDDAssociation template

Syntax
template <class K, class V> class TDDAssociation;
Header File
assoc.h

Description
Standard association (direct key, direct value). Implements an association, binding a direct key (K) with
a direct value (V). Assumes that K has a HashValue member function, or that a global function with the
following prototype exists:
unsigned HashValue(K &);
K also must have a valid == operator.

Public Constructors
TDDAssociation

Public Member Functions
DeleteElements
HashValue
Key
Value

Operators
==

TDDAssociation::TDDAssociation
TDDAssociation class

Form 1
TDDAssociation()
Form 2
TDDAssociation(const K &k, const V &v)
Description
Form 1: The default constructor.
Form 2: Constructs an object that associates key object k with value object v.

TDDAssociation::DeleteElements
TDDAssociation class

Syntax
void DeleteElements()
Description
The dictionary containing the associations determines whether pointed-to objects should be deleted,
and if so, calls DeleteElements for each of the associations it holds.

TDDAssociation::HashValue
TDDAssociation class

Syntax
unsigned HashValue()
Description
Returns the hash value for the key.

TDDAssociation::Key
TDDAssociation class

Syntax
const K& Key()
Description
Returns KeyData.

TDDAssociation::Value
TDDAssociation class

Syntax
const V& Value() const;
Description
Returns ValueData.

TDDAssociation::operator ==
TDDAssociation class

Syntax
int operator == (const TDDAssociation<K,V,A> & a)
Description
Tests equality between keys.

TMDIAssociation template

Syntax
template <class K, class V, class A> class TMDIAssociation;
Header File
assoc.h

Description
Implements a managed association, binding a direct key (K) with a indirect value (V) . Assumes that K
has a HashValue member function, or that a global function with the following prototype exists:
unsigned HashValue(K &);
K also must have a valid == operator. Class A represents the user-supplied storage manager.

Public Constructors
TMDIAssociation::TMDIAssociation

Public Member Functions
HashValue
Key
Value

Operators
==

TMDIAssociation::TMDIAssociation
TMDIAssociation class

Form 1
TMDIAssociation()
Form 2
TMDIAssociation(const K& k, V * v)
Description
Form 1: The default constructor.
Form 2: Constructs an object that associates key object k with value object v.

TMDIAssociation::HashValue
TMDIAssociation class

Syntax
unsigned HashValue()
Description
Returns the hash value for the key.

TMDIAssociation::Key
TMDIAssociation class

Syntax
const K& Key()
Description
Returns the key.

TMDIAssociation::Value
TMDIAssociation class

Syntax
const V * Value()
Description
Returns a pointer to the data.

TMDIAssociation::operator ==
TMDIAssociation class

Syntax
int operator == (const TMDDAssociation<K,V,A> & a)
Description
Tests the equality between keys.

TDIAssociation template

Syntax
template <class K, class V> class TDIAssociation;
Header File
assoc.h

Description
Implements an association, binding a direct key (K) with an indirect value (V). Assumes that K has a
HashValue member function, or that a global function with the following prototype exists:
unsigned HashValue(K &);
K also must have a valid == operator.

Public Constructors
TDIAssociation::TDIAssociation

Public Member Functions
HashValue
Key
Value

Operators
==

TDIAssociation::TDIAssociation
TDIAssociation class

Form 1
TDIAssociation()
Form 2
TDIAssociation(const K& k, V * v)
Description
Form 1: The default constructor.
Form 2: Constructs an object that associates key object k with value object v.

TDIAssociation::HashValue
TDIAssociation class

Syntax
unsigned HashValue()
Description
Returns the hash value for the key.

TDIAssociation::Key
TDIAssociation class

Syntax
const K& Key()
Description
Returns the key.

TDIAssociation::Value
TDIAssociation class

Syntax
const V * Value()
Description
Returns a pointer to the data.

TDIAssociation::operator ==
TDIAssociation class

Syntax
int operator == (const TDIAssociation<K,V,A> & a)
Description
Tests the equality between keys.

TMIDAssociation template

Syntax
template <class K, class V, class A> class TMIDAssociation;
Header File
assoc.h

Description
Implements a managed association, binding an indirect key (K) with a direct value (V) . Assumes that
K has a HashValue member function, or that a global function with the following prototype exists:
unsigned HashValue(K &);
K also must have a valid == operator. Class A represents the user-supplied storage manager.

Protected Data Members
KeyData
ValueData

Public Constructors
TMIDAssociation::TMIDAssociation

Public Member Functions
DeleteElements
HashValue
Key
Value

Operators
==

TMIDAssociation::KeyData
TMIDAssociation class

Syntax
K KeyData;
Description
The key class passed into the template by the user.

TMIDAssociation::ValueData
TMIDAssociation class

Syntax
V ValueData;
Description
The value class passed into the template by the user.

TMIDAssociation::TMIDAssociation
TMIDAssociation class

Form 1
TMIDAssociation()
Form 2
TMIDAssociation(K *k, const V& v)
Description
Form 1: The default constructor.
Form 2: Constructs an object that associates key object k with value object v.

TMIDAssociation::DeleteElements
TMIDAssociation class

Syntax
void DeleteElements()
Description
The dictionary containing the associations determines whether pointed-to objects should be deleted,
and if so, calls DeleteElements for each of the associations it holds.

TMIDAssociation::HashValue
TMIDAssociation class

Syntax
unsigned HashValue()
Description
Returns the hash value for the key.

TMIDAssociation::Key
TMIDAssociation class

Syntax
const K * Key()
Description
Returns a pointer to the key.

TMIDAssociation::Value
TMIDAssociation class

Syntax
const V& Value() const;
Description
Returns a copy of the data.

TMIDAssociation::operator ==
TMIDAssociation class

Syntax
int operator == (const TMIDAssociation<K,V,A> & a)
Description
Tests the equality between keys.

TIDAssociation template

Syntax
template <class K, class V> class TIDAssociation;
Header File
assoc.h

Description
Implements an association, binding an indirect key (K) with a direct value (V) . Assumes that K has a
HashValue member function, or that a global function with the following prototype exists:
unsigned HashValue(K &);
K also must have a valid == operator.

Public Constructors
TIDAssociation::TIDAssociation

Protected Data Members
KeyData
ValueData

Public Member Functions
DeleteElements
HashValue
Key
Value

Operators
==

TIDAssociation::KeyData
TIDAssociation class

Syntax
K KeyData;
Description
The key class passed into the template by the user.

TIDAssociation::ValueData
TIDAssociation class

Syntax
V ValueData;
Description
The value class passed into the template by the user.

TIDAssociation::TIDAssociation
TIDAssociation class

Form 1
TIDAssociation()
Form 2
TIDAssociation(K * k, V v)
Description
Form 1: The default constructor.
Form 2: Constructs an object that associates key object *k with value object v.

TIDAssociation::DeleteElements
TIDAssociation class

Syntax
void DeleteElements()
Description
The dictionary containing the associations determines whether pointed-to objects should be deleted,
and if so, calls DeleteElements for each of the associations it holds.

TIDAssociation::HashValue
TIDAssociation class

Syntax
unsigned HashValue()
Description
Returns the hash value for the key.

TIDAssociation::Key
TIDAssociation class

Syntax
const K * Key()
Description
Returns a pointer to the key.

TIDAssociation::Value
TIDAssociation class

Syntax
const V& Value() const;
Description
Returns a copy of the data.

TIDAssociation::operator ==
TIDAssociation class

Syntax
int operator == (const TIDAssociation<K,V,A> & a)
Description
Tests the equality between keys.

TMIIAssociation template

Syntax
template <class K, class V, class A> class TMIIAssociation;
Header File
assoc.h

Description
Implements a managed association, binding an indirect key (K) with an indirect value (V) . Assumes
that K has a HashValue member function, or that a global function with the following prototype exists:
unsigned HashValue(K &);
K also must have a valid == operator. Class A represents the user-supplied storage manager.

Public Constructors
TMIIAssociation::TMIIAssociation

Public Member Functions
DeleteElements
HashValue
Key
Value

Operators
==

TMIIAssociation::TMIIAssociation
TMIIAssociation class

Form 1
TMIIAssociation()
Form 2
TMIIAssociation(K * k, V * v)
Description
Form 1: The default constructor.
Form 2: Constructs an object that associates key object *k with value object *v.

TMIIAssociation::DeleteElements
TMIIAssociation class

Syntax
void DeleteElements()
Description
The dictionary containing the associations determines whether pointed-to objects should be deleted,
and if so, calls DeleteElements for each of the associations it holds.

TMIIAssociation::HashValue
TMIIAssociation class

Syntax
unsigned HashValue()
Description
Returns the hash value for the key.

TMIIAssociation::Key
TMIIAssociation class

Syntax
const K * Key()
Description
Returns a pointer to the key.

TMIIAssociation::Value
TMIIAssociation class

Syntax
const V * Value()
Description
Returns a pointer to the data.

TMIIAssociation::operator ==
TMIIAssociation class

Syntax
int operator == (const TMIIAssociation<K,V,A> & a)
Description
Tests equality between keys.

TIIAssociation template

Syntax
template <class K, class V> class TIIAssociation;
Header File
assoc.h

Description
Standard association (indirect key, indirect value). Implements an association, binding an indirect key
(K) with an indirect value (V) . Assumes that K has a HashValue member function, or that a global
function with the following prototype exists:
unsigned HashValue(K &);
K also must have a valid == operator.

Public Constructors
TIIAssociation::TIIAssociation

Public Member Functions
DeleteElements
HashValue
Key
Value

Operators
==

TIIAssociation::TIIAssociation
TIIAssociation class

Form 1
TIIAssociation()
Form 2
TIIAssociation(K *k, V * v)
Description
Form 1: The default constructor.
Form 2: Constructs an object that associates key object *k with value object *v.

TIIAssociation::DeleteElements
TIIAssociation class

Syntax
void DeleteElements()
Description
The dictionary containing the associations determines whether pointed-to objects should be deleted,
and if so, calls DeleteElements for each of the associations it holds.

TIIAssociation::HashValue
TIIAssociation class

Syntax
unsigned HashValue()
Description
Returns the hash value for the key.

TIIAssociation::Key
TIIAssociation class

Syntax
const K * Key()
Description
Returns a pointer to the key.

TIIAssociation::Value
TIIAssociation class

Syntax
const V * Value()
Description
Returns a pointer to the data.

TIIAssociation::operator ==
TIIAssociation class

Syntax
int operator == (const TIIAssociation<K,V,A> & a)
Description
Tests equality between keys.

TMBagAsVector template

Syntax
template <class T, class Alloc> class TMBagAsVector;
Header File
bags.h

Description
Implements a managed bag of objects of type T, using a vector as the underlying implementation.
Bags, unlike sets, can contain duplicate objects.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMBagAsVector

Public Member Functions
Add
Detach
Find
FindMember
Flush
ForEach
GetItemsInContainer
HasMember
isEmpty
isFull

TMBagAsVector::CondFunc
TMBagAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMBagAsVector::IterFunc
TMBagAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMBagAsVector::TMBagAsVector
TMBagAsVector class

Syntax
TMBagAsVector(unsigned sz = DEFAULT_BAG_SIZE)
Description
Constructs a managed, empty bag. sz represents the number of items the bag can hold.

TMBagAsVector::Add
TMBagAsVector class

Syntax
int Add(const T& t)
Description
Adds the given object to the bag.

TMBagAsVector::Detach
See Also TMBagAsVector class

Syntax
int Detach(const T& t)
Description
Removes the specified object.

See Also
TShouldDelete::ownsElements

TMBagAsVector::Find
TMBagAsVector class

Syntax
T *Find(const T& t) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TMBagAsVector::FindMember
TMBagAsVector class

Syntax
T* FindMember(const T& t) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TMBagAsVector::Flush
See Also TMBagAsVector class

Syntax
void Flush()
Description
Removes all the elements from the bag without destroying the bag.

See Also
Detach

TMBagAsVector::ForEach
TMBagAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the bag. The
args argument lets you pass arbitrary data to this function.

TMBagAsVector::GetItemsInContainer
TMBagAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of objects in the bag.

TMBagAsVector::HasMember
TMBagAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found; otherwise returns 0.

TMBagAsVector::IsEmpty
TMBagAsVector class

Syntax
int isEmpty() const;
Description
Returns 1 if the bag is empty; otherwise returns 0.

TMBagAsVector::IsFull
TMBagAsVector class

Syntax
int isFull() const;
Description
Returns 0.

TMBagAsVectorIterator template

Syntax
template <class T, class Alloc> class TMBagAsVectorIterator;
Header File
bags.h

Description
Implements an iterator object to traverse TMBagAsVector objects.

Public Constructors
TMBagAsVectorIterator::TMBagAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMBagAsVectorIterator::TMBagAsVectorIterator
TMBagAsVectorIterator class

Syntax
TMBagAsVectorIterator(const TMBagAsVector<T,Alloc> & b)
Description
Constructs an object that iterates on TMBagAsVector objects.

TMBagAsVectorIterator::Current
TMBagAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TMBagAsVectorIterator::Restart
TMBagAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TMBagAsVectorIterator::operator ++
TMBagAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMBagAsVectorIterator::operator int
TMBagAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TBagAsVector template

Syntax
template <class T> class TBagAsVector;
Header File
bags.h

Description
Implements a bag of objects of type T, using a vector as the underlying implementation.
TStandardAllocator is used to manage memory.

Type Definitions
CondFunc
IterFunc

Public Constructors
TBagAsVector::TBagAsVector

Public Member Functions
Add
Detach
Find
FindMember
Flush
ForEach
GetItemsInContainer
HasMember
isEmpty
isFull

TBagAsVector::CondFunc
TBagAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TBagAsVector::IterFunc
TBagAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TBagAsVector::TBagAsVector
TBagAsVector class

Syntax
TBagAsVector(unsigned sz = DEFAULT_BAG_SIZE)
Description
Constructs an empty bag. sz represents the number of items the bag can hold.

TBagAsVector::Add
TBagAsVector class

Syntax
int Add(const T& t)
Description
Adds the given object to the bag.

TBagAsVector::Detach
See Also TBagAsVector class

Syntax
int Detach(const T& t)
Description
Removes the specified object.

See Also
TShouldDelete::ownsElements

TBagAsVector::Find
TBagAsVector class

Form 1
T *Find(const T& t) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TBagAsVector::FindMember
TBagAsVector class

Syntax
T* FindMember(const T& t) const
Description
Returns a pointer to the given object if found; otherwise returns 0.

TBagAsVector::Flush
See Also TBagAsVector class

Syntax
void Flush()
Description
Removes all the elements from the bag without destroying the bag.

See Also
Detach

TBagAsVector::ForEach
TBagAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the bag. The
args argument lets you pass arbitrary data to this function.

TBagAsVector::GetItemsInContainer
TBagAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of objects in the bag.

TBagAsVector::HasMember
TBagAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found; otherwise returns 0.

TBagAsVector::IsEmpty
TBagAsVector class

Syntax
int isEmpty() const;
Description
Returns 1 if the bag is empty; otherwise returns 0.

TBagAsVector::IsFull
TBagAsVector class

Syntax
int isFull() const;
Description
Returns 0.

TBagAsVectorIterator template

Syntax
template <class T> class TBagAsVectorIterator;
Header File
bags.h

Description
Implements an iterator object to traverse TBagAsVector objects. TStandardAllocator is used to
manage memory.

Public Constructors
TBagAsVectorIterator::TBagAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TBagAsVectorIterator::TBagAsVectorIterator
TBagAsVectorIterator class

Syntax
TBagAsVectorIterator(const TBagAsVector<T> & b)
Description
Constructs an object that iterates on TBagAsVector objects.

TBagAsVectorIterator::Current
TBagAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TBagAsVectorIterator::Restart
TBagAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TBagAsVectorIterator::operator ++
TBagAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TBagAsVectorIterator::operator int
TBagAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMIBagAsVector template

Syntax
template <class T, class Alloc> class TMIBagAsVector;
Header File
bags.h

Description
Implements a managed bag of pointers to objects of type T, using a vector as the underlying
implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMIBagAsVector::TMIBagAsVector

Public Member Functions
Add
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
HasMember
isEmpty
isFull
LastThat

TMIBagAsVector::CondFunc
TMIBagAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMIBagAsVector::IterFunc
TMIBagAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMIBagAsVector::TMIBagAsVector
TMIBagAsVector class

Syntax
TMIBagAsVector(unsigned sz = DEFAULT_BAG_SIZE)
Description
Constructs an empty, managed, indirect bag. sz represents the initial number of slots allocated.

TMIBagAsVector::Add
TMIBagAsVector class

Syntax
int Add(T *t)
Description
Adds the given object pointer to the bag.

TMIBagAsVector::Detach
See Also TMIBagAsVector class

Syntax
int Detach(T *t, DeleteType dt = NoDelete)
Description
Removes the specified object pointer. The value of dt and the current ownership setting determine
whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as
enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not
be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of
ownership. If dt is set to DefDelete, the object will only be deleted if the bag owns its elements.

See Also
TShouldDelete::ownsElements

TMIBagAsVector::Find
TMIBagAsVector class

Syntax
T *Find(T *t) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TMIBagAsVector::FirstThat
TMIBagAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the bag that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

TMIBagAsVector::Flush
See Also TMIBagAsVector class

Syntax
void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)
Description
Removes all the elements from the bag without destroying the bag. The value of dt determines
whether the elements themselves are destroyed. By default, the ownership status of the bag
determines their fate, as explained in the Detach member function. You can also set dt to Delete and
NoDelete.

See Also
Detach

TMIBagAsVector::ForEach
TMIBagAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the bag. The
args argument lets you pass arbitrary data to this function.

TMIBagAsVector::GetItemsInContainer
TMIBagAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of objects in the bag.

TMIBagAsVector::HasMember
TMIBagAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found; otherwise returns 0.

TMIBagAsVector::IsEmpty
TMIBagAsVector class

Syntax
int isEmpty() const;
Description
Returns 1 if the bag is empty; otherwise returns 0.

TMIBagAsVector::IsFull
TMIBagAsVector class

Syntax
int isFull() const;
Description
Returns 0.

TMIBagAsVector::LastThat
TMIBagAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const
Description
Returns a pointer to the last object in the bag that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the bag meets the condition.

TMIBagAsVectorIterator template

Syntax
template <class T, class Alloc> class TMIBagAsVectorIterator;
Header File
bags.h

Description
Implements an iterator object to traverse TMIBagAsVector objects.

Public Constructors
TMIBagAsVectorIterator::TMIBagAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMIBagAsVectorIterator::TMIBagAsVectorIterator
TMIBagAsVectorIterator class

Syntax
TMIBagAsVectorIterator(const TMIBagAsVector<T,Alloc> & b)
Description
Constructs an object that iterates on TMBagAsVector objects.

TMIBagAsVectorIterator::Current
TMIBagAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TMIBagAsVectorIterator::Restart
TMIBagAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TMIBagAsVectorIterator::operator ++
TMIBagAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMIBagAsVectorIterator::operator int
TMIBagAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TIBagAsVector template

Syntax
template <class T> class TIBagAsVector;
Header File
bags.h

Description
Implements a bag of pointers to objects of type T, using a vector as the underlying implementation.
TStandardAllocator is used to manage memory.

Public Constructors
TIBagAsVector::TIBagAsVector

Type Definitions
CondFunc
IterFunc

Public Member Functions
Add
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
HasMember
isEmpty
isFull
LastThat

TIBagAsVector::CondFunc
TIBagAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TIBagAsVector::IterFunc
TIBagAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TIBagAsVector::TIBagAsVector
TIBagAsVector class

Syntax
TIBagAsVector(unsigned sz = DEFAULT_BAG_SIZE)
Description
Constructs an empty, managed, indirect bag. sz represents the initial number of slots allocated.

TIBagAsVector::Add
TIBagAsVector class

Syntax
int Add(T *t)
Description
Adds the given object pointer to the bag.

TIBagAsVector::Detach
See Also TIBagAsVector class

Syntax
int Detach(T *t, DeleteType dt = NoDelete)
Description
Removes the specified object pointer. The value of dt and the current ownership setting determine
whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as
enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not
be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of
ownership. If dt is set to DefDelete, the object will only be deleted if the bag owns its elements.

See Also
TShouldDelete::ownsElements

TIBagAsVector::Find
TIBagAsVector class

Syntax
T *Find(T *t) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TIBagAsVector::FirstThat
TIBagAsVector class

Syntax
T *FirstThat(CondFunc, void *args) const;
Description
Returns a pointer to the first object in the bag that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the bag meets the condition.

TIBagAsVector::Flush
See Also TIBagAsVector class

Syntax
void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)
Description
Removes all the elements from the bag without destroying the bag. The value of dt determines
whether the elements themselves are destroyed. By default, the ownership status of the bag
determines their fate, as explained in the Detach member function. You can also set dt to Delete and
NoDelete.

See Also
Detach

TIBagAsVector::ForEach
TIBagAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the bag. The
args argument lets you pass arbitrary data to this function.

TIBagAsVector::GetItemsInContainer
TIBagAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of objects in the bag.

TIBagAsVector::HasMember
TIBagAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found; otherwise returns 0.

TIBagAsVector::IsEmpty
TIBagAsVector class

Syntax
int isEmpty() const;
Description
Returns 1 if the bag is empty; otherwise returns 0.

TIBagAsVector::IsFull
TIBagAsVector class

Syntax
int isFull() const;
Description
Returns 0.

TIBagAsVector::LastThat
TIBagAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the bag that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

TIBagAsVectorIterator template

Syntax
template <class T> class TIBagAsVectorIterator;
Header File
bags.h

Description
Implements an iterator object to traverse TIBagAsVector objects. TStandardAllocator is used to
manage memory.

Public Constructors
TIBagAsVectorIterator::TIBagAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TIBagAsVectorIterator::TIBagAsVectorIterator
TIBagAsVectorIterator class

Syntax
TIBagAsVectorIterator(const TIBagAsVector<T> & s)
Description
Constructs an object that iterates on TIBagAsVector objects.

TIBagAsVectorIterator::Current
TIBagAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TIBagAsVectorIterator::Restart
TIBagAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TIBagAsVectorIterator::operator ++
TIBagAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIBagAsVectorIterator::operator int
TIBagAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TBinarySearchTreeImp template

Syntax
template <class T> class TBinarySearchTreeImp;
Header File
binimp.h

Description
Implements an unbalanced binary tree. Class T must have < and == operators, and must have a
default constructor.

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

Protected Member Functions
EqualTo
LessThan
DeleteNode

TBinarySearchTreeImp::Add
TBinarySearchTreeImp class

Syntax
int Add(const T& t)
Description
Creates a new binary-tree node and inserts a copy of object t into it.

TBinarySearchTreeImp::Detach
TBinarySearchTreeImp class

Syntax
int Detach(const T& t)
Description
Removes the node containing item t from the tree.

TBinarySearchTreeImp::Find
TBinarySearchTreeImp class

Syntax
T * Find(const T& t) const;
Description
Returns a pointer to the node containing item t.

TBinarySearchTreeImp::Flush
TBinarySearchTreeImp class

Syntax
void Flush();
Description
Removes all items from the tree.

TBinarySearchTreeImp::ForEach
TBinarySearchTreeImp class

Syntax
void ForEach(IterFunc iter, void * args, IteratorOrder order = InOrder)
Description
Creates an internal iterator that executes the given function iter for each item in the container. The args
argument lets you pass arbitrary data to this function.

TBinarySearchTreeImp::GetItemsInContainer
TBinarySearchTreeImp class

Syntax
unsigned GetItemsInContainer();
Description
Returns the number of items in the tree.

TBinarySearchTreeImp::IsEmpty
TBinarySearchTreeImp class

Syntax
int IsEmpty();
Description
Returns 1 if the tree is empty; otherwise returns 0.

TBinarySearchTreeImp::EqualTo
TBinarySearchTreeImp class

Syntax
virtual int EqualTo(BinNode *n1, BinNode *n2)
Description
Tests the equality between two nodes.

TBinarySearchTreeImp::LessThan
TBinarySearchTreeImp class

Syntax
virtual int LessThan(BinNode *n1, BinNode *n2)
Description
Tests if node n1 is less than node n2.

TBinarySearchTreeImp::DeleteNode
TBinarySearchTreeImp class

Syntax
virtual void DeleteNode(BinNode *node, int del)
Description
Deletes node. The second parameter is ignored.

TBinarySearchTreeIteratorImp template

Syntax
template <class T> class TBinarySearchTreeIteratorImp;
Header File
binimp.h

Description
Implements an iterator that traverses TBinarySearchTreeImp objects.

Public Constructors
TBinarySearchTreeIteratorImp::TBinarySearchTreeIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

TBinarySearchTreeIteratorImp::TBinarySearchTreeIteratorImp
TBinarySearchTreeIteratorImp class

Syntax
TBinarySearchTreeIteratorImp(TBinarySearchTreeImp<T>& tree,
TBinarySearchTreeBase::IteratorOrder order =
TBinarySearchTreeBase::InOrder)

Description
Constructs an iterator object that traverses a TBinarySearchTreeImp container.

TBinarySearchTreeIteratorImp::Current
TBinarySearchTreeIteratorImp class

Syntax
const T& Current() const;
Description
Returns the current object.

TBinarySearchTreeIteratorImp::Restart
TBinarySearchTreeIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the tree.

TBinarySearchTreeIteratorImp::operator int
TBinarySearchTreeIteratorImp class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TBinarySearchTreeIteratorImp::operator ++
TBinarySearchTreeIteratorImp class

Syntax
const T& operator ++ (int);
Description
Moves to the next object in the tree, and returns the object that was current before the move (post-
increment).
const T& operator ++ ()
Moves to the next object, and returns the object that was current after the move (pre-increment).

TIBinarySearchTreeImp template

Syntax
template <class T> class TIBinarySearchTreeImp;
Header File
binimp.h

Description
Implements an indirect unbalanced binary tree. Class T must have < and == operators, and must have
a default constructor.

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

Protected Member functions
EqualTo
LessThan
DeleteNode

TIBinarySearchTreeImp::Add
TIBinarySearchTreeImp class

Syntax
int Add(T * t)
Description
Creates a new binary-tree node and inserts a pointer to object t into the tree.

TIBinarySearchTreeImp::Detach
TIBinarySearchTreeImp class

Syntax
int Detach(T * t, int del = 0)
Description
Removes the node containing item t from the tree. The item is deleted if del is 1.

TIBinarySearchTreeImp::Find
TIBinarySearchTreeImp class

Syntax
T * Find(T * t) const;
Description
Returns a pointer to the node containing *t.

TIBinarySearchTreeImp::Flush
TIBinarySearchTreeImp class

Syntax
void Flush(int del=0);
Description
Removes all items from the tree. They are deleted if del is 1. If del is 0 the items are not deleted.

TIBinarySearchTreeImp::ForEach
TIBinarySearchTreeImp class

Syntax
void ForEach(IterFunc iter, void * args, IteratorOrder order = InOrder)
Description
Creates an internal iterator that executes the given function iter for each item in the container. The args
argument lets you pass arbitrary data to this function.

TIBinarySearchTreeImp::GetItemsInContainer
TIBinarySearchTreeImp class

Syntax
unsigned GetItemsInContainer();
Description
Returns the number of items in the tree.

TIBinarySearchTreeImp::Parent::IsEmpty
TIBinarySearchTreeImp class

Syntax
int IsEmpty();
Description
Returns 1 if the tree is empty; otherwise returns 0.

TIBinarySearchTreeImp::EqualTo
TIBinarySearchTreeImp class

Syntax
virtual int EqualTo(BinNode *n1, BinNode *n2)
Description
Tests the equality between two nodes.

TIBinarySearchTreeImp::LessThan
TIBinarySearchTreeImp class

Syntax
virtual int LessThan(BinNode *n1, BinNode *n2)
Description
Tests if node n1 is less than node n2.

TIBinarySearchTreeImp::DeleteNode
TIBinarySearchTreeImp class

Syntax
virtual void DeleteNode(BinNode *node, int del)
Description
Deletes node. The second parameter is ignored.

TIBinarySearchTreeIteratorImp template

Syntax
template <class T> class TIBinarySearchTreeIteratorImp;
Header File
binimp.h

Description
Implements an iterator that traverses TIBinarySearchTreeImp objects.

Public Constructors
TIBinarySearchTreeIteratorImp::TIBinarySearchTreeIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

TIBinarySearchTreeIteratorImp::TIBinarySearchTreeIteratorImp
TIBinarySearchTreeIteratorImp class

Syntax
TIBinarySearchTreeIteratorImp(TIBinarySearchTreeImp<T>& tree,
TBinarySearchTreeBase::IteratorOrder order =
TBinarySearchTreeBase::InOrder) :
TBinarySearchTreeIteratorImp<TVoidPointer>(tree,order)

Description
Constructs an iterator object that traverses a TIBinarySearchTreeImp container.

TIBinarySearchTreeIteratorImp::Current
TIBinarySearchTreeIteratorImp class

Syntax
T *Current() const;
Description
Returns a pointer to the current object.

TIBinarySearchTreeIteratorImp::Restart
TIBinarySearchTreeIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the tree.

TIBinarySearchTreeIteratorImp::operator int
TIBinarySearchTreeIteratorImp class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TIBinarySearchTreeIteratorImp::operator ++
TIBinarySearchTreeIteratorImp class

Form 1
T *operator ++ (int i)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object in the tree, and returns a pointer to the object that was current
before the move (post-increment).
Form 2: Moves to the next object, and returns a pointer to the object that was current after the move
(pre-increment).

TMDequeAsVector template

Syntax
template <class T, class Alloc> class TMDequeAsVector;
Header File
deques.h

Description
Implements a managed dequeue of T objects, using a vector as the underlying implementation.

Type Definitions
CondFunc
IterFunc

Public Constructor
TMDequeAsVector::TMDequeAsVector

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
GetLeft
GetRight
IsEmpty
IsFull
LastThat
PeekLeft
PeekRight
PutLeft
PutRight

Protected Data Members
Data
Left
Right

Protected Member Functions
Next
Prev

TMDequeAsVector::CondFunc
TMDequeAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMDequeAsVector::IterFunc
TMDequeAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMDequeAsVector::TMDequeAsVector
TMDequeAsVector class

Syntax
TMDequeAsVector(unsigned max = DEFAULT_DEQUE_SIZE)
Description
Constructs a dequeue of max size.

TMDequeAsVector::FirstThat
See Also TMDequeAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the dequeue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMDequeAsVector::Flush
See Also TMDequeAsVector class

Syntax
void Flush()
Description
Flushes the dequeue without destroying it.

See Also
TShouldDelete::ownsElements

TMDequeAsVector::ForEach
TMDequeAsVector class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each dequeue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMDequeAsVector::GetItemsInContainer
TMDequeAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the dequeue.

TMDequeAsVector::GetLeft
See Also TMDequeAsVector class

Syntax
T GetLeft();
Description
Returns the object at the left end and removes it from the dequeue. The debuggable version throws an
exception when the dequeue is empty.

See Also
PeekLeft

TMDequeAsVector::GetRight
See Also TMDequeAsVector class

Syntax
T GetRight();
Description
Same as GetLeft, except that the right end of the dequeue is returned.

See Also
PeekRight

TMDequeAsVector::IsEmpty
TMDequeAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the dequeue has no elements; otherwise returns 0.

TMDequeAsVector::IsFull
TMDequeAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the dequeue is full; otherwise returns 0.

TMDequeAsVector::LastThat
See Also TMDequeAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the dequeue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TMDequeAsVector::PeekLeft
See Also TMDequeAsVector class

Syntax
Const T& PeekLeft() const;
Description
Returns the object at the left end (head) of the dequeue. The object stays in the dequeue.

See Also
GetLeft

TMDequeAsVector::PeekRight
See Also TMDequeAsVector class

Syntax
Const T& PeekRight() const;
Description
Returns the object at the right end (tail) of the dequeue. The object stays in the dequeue.

See Also
GetRight

TMDequeAsVector::PutLeft
TMDequeAsVector class

Syntax
void PutLeft(const T&);
Description
Adds (pushes) the given object at the left end (head) of the dequeue.

TMDequeAsVector::PutRight
TMDequeAsVector class

Syntax
void PutRight(const T&);
Description
Adds (pushes) the given object at the right end (tail) of the dequeue.

TMDequeAsVector::Data
TMDequeAsVector class

Syntax
Vect Data;
Description
The vector containing the dequeue's data.

TMDequeAsVector::Left
TMDequeAsVector class

Syntax
unsigned Left;
Description
Index to the leftmost element of the dequeue.

TMDequeAsVector::Right
TMDequeAsVector class

Syntax
unsigned Right;
Description
Index to the rightmost element of the dequeue.

TMDequeAsVector::Next
See Also TMDequeAsVector class

Syntax
unsigned Next(unsigned index) const;
Description
Returns index + 1. Wraps around to the head of the dequeue.

See Also
Prev

TMDequeAsVector::Prev
TMDequeAsVector class

Syntax
unsigned Prev(unsigned index) const;
Description
Returns index - 1. Wraps around to the tail of the dequeue.

TMDequeAsVectorIterator template

Syntax
template <class T, class Alloc> class TMDequeAsVectorIterator;
Header File
deques.h

Description
Implements an iterator object for a managed, vector-based dequeue.

Public Constructor
TMDequeAsVectorIterator::TMDequeAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMDequeAsVectorIterator::TMDequeAsVectorIterator
TMDequeAsVectorIterator class

Syntax
TMDequeAsVectorIterator(const TMDequeAsVector<T,Alloc> &d)
Description
Constructs an object that iterates on TMDequeAsVector objects.

TMDequeAsVectorIterator::Current
TMDequeAsVectorIterator class

Syntax
Const T& Current();
Description
Returns the current object.

TMDequeAsVectorIterator::Restart
TMDequeAsVectorIterator class

Syntax
void Restart();
Description
Restarts iteration.

TMDequeAsVectorIterator::operator ++
TMDequeAsVectorIterator class

Form 1
Const T& operator ++ (int);
Form 2
Const T& operator ++ ();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMDequeAsVectorIterator::operator int
TMDequeAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. Iterator converts to
0 if nothing remains in the iterator.

TDequeAsVector template

Syntax
template <class T> class TDequeAsVector;
Header File
deques.h

Description
Implements a dequeue of T objects, using a vector as the underlying implementation.
TStandardAllocator is used to manage memory.

Public Constructor
TDequeAsVector::TDequeAsVector

Type Definitions
CondFunc
IterFunc

Public Constructor
TDequeAsVector::TDequeAsVector

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
GetLeft
GetRight
IsEmpty
IsFull
LastThat
PeekLeft
PeekRight
PutLeft
PutRight

Protected Data Members
Data
Left
Right

Protected Member Functions
Next
Prev

TDequeAsVector::CondFunc
TDequeAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TDequeAsVector::IterFunc
TDequeAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TDequeAsVector::TDequeAsVector
TDequeAsVector class

Syntax
TDequeAsVector(unsigned max = DEFAULT_DEQUE_SIZE)
Description
Constructs a dequeue of max size.

TDequeAsVector::FirstThat
See Also TDequeAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the dequeue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TDequeAsVector::Flush
See Also TDequeAsVector class

Syntax
void Flush()
Description
Flushes the dequeue without destroying it.

See Also
TShouldDelete::ownsElements

TDequeAsVector::ForEach
TDequeAsVector class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each dequeue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TDequeAsVector::GetItemsInContainer
TDequeAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the dequeue.

TDequeAsVector::GetLeft
See Also TDequeAsVector class

Syntax
T GetLeft();
Description
Returns the object at the left end and removes it from the dequeue. The debuggable version throws an
exception when the dequeue is empty.

See Also
PeekLeft

TDequeAsVector::GetRight
See Also TDequeAsVector class

Syntax
T GetRight();
Description
Same as GetLeft, except that the right end of the dequeue is returned.

See Also
PeekRight

TDequeAsVector::IsEmpty
TDequeAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the dequeue has no elements; otherwise returns 0.

TDequeAsVector::IsFull
TDequeAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the dequeue is full; otherwise returns 0.

TDequeAsVector::LastThat
See Also TDequeAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the dequeue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TDequeAsVector::PeekLeft
See Also TDequeAsVector class

Syntax
Const T& PeekLeft() const;
Description
Returns the object at the left end (head) of the dequeue. The object stays in the dequeue.

See Also
GetLeft

TDequeAsVector::PeekRight
See Also TDequeAsVector class

Syntax
Const T& PeekRight() const;
Description
Returns the object at the right end (tail) of the dequeue. The object stays in the dequeue.

See Also
GetRight

TDequeAsVector::PutLeft
TDequeAsVector class

Syntax
void PutLeft(const T&);
Description
Adds (pushes) the given object at the left end (head) of the dequeue.

TDequeAsVector::PutRight
TDequeAsVector class

Syntax
void PutRight(const T&);
Description
Adds (pushes) the given object at the right end (tail) of the dequeue.

TDequeAsVector::Data
TDequeAsVector class

Syntax
Vect Data;
Description
The vector containing the dequeue's data.

TDequeAsVector::Left
TDequeAsVector class

Syntax
unsigned Left;
Description
Index to the leftmost element of the dequeue.

TDequeAsVector::Right
TDequeAsVector class

Syntax
unsigned Right;
Description
Index to the rightmost element of the dequeue.

TDequeAsVector::Next
See Also TDequeAsVector class

Syntax
unsigned Next(unsigned index) const;
Description
Returns index + 1. Wraps around to the head of the dequeue.

See Also
Prev

TDequeAsVector::Prev
TDequeAsVector class

Syntax
unsigned Prev(unsigned index) const;
Description
Returns index - 1. Wraps around to the tail of the dequeue.

TDequeAsVectorIterator template

Syntax
template <class T> class TDequeAsVectorIterator;
Header File
deques.h

Description
Implements an iterator object for a vector-based dequeue.

Public Constructor
TDequeAsVectorIterator::TDequeAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TDequeAsVectorIterator::TDequeAsVectorIterator
TDequeAsVectorIterator class

Syntax
TDequeAsVectorIterator(const TDequeAsVector<T> &d)
Description
Constructs an object that iterates on TMDequeAsVector objects.

TDequeAsVectorIterator::Current
TDequeAsVectorIterator class

Syntax
Const T& Current();
Description
Returns the current object.

TDequeAsVectorIterator::Restart
TDequeAsVectorIterator class

Syntax
void Restart();
Description
Restarts iteration.

TDequeAsVectorIterator::operator ++
TDequeAsVectorIterator class

Form 1
Const T& operator ++ (int);
Form 2
Const T& operator ++ ();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TDequeAsVectorIterator::operator int
TDequeAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. Iterator converts to
0 if nothing remains in the iterator.

TMIDequeAsVector template

Syntax
template <class T, class Alloc> class TMIDequeAsVector;
Header File
deques.h

Description
Implements a managed, indirect dequeue of pointers to objects of type T, using a vector as the
underlying implementation.

Type Definitions
CondFunc
IterFunc

Public Constructor
TMIDequeAsVector::TMIDequeAsVector

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
GetLeft
GetRight
IsEmpty
isFull
LastThat
PeekLeft
PeekRight
PutLeft
PutRight

TMIDequeAsVector::CondFunc
TMIDequeAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMIDequeAsVector::IterFunc
TMIDequeAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMIDequeAsVector::TMIDequeAsVector
TMIDequeAsVector class

Syntax
TMIDequeAsVector(unsigned sz = DEFAULT_DEQUE_SIZE)
Description
Constructs an indirect dequeue of max size.

TMIDequeAsVector::FirstThat
See Also TMIDequeAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the dequeue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMIDequeAsVector::Flush
TMIDequeAsVector class

Syntax
void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete);
Description
Flushes the dequeue without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

TMIDequeAsVector::ForEach
TMIDequeAsVector class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each dequeue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMIDequeAsVector::GetItemsInContainer
TMIDequeAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the dequeue.

TMIDequeAsVector::GetLeft
See Also TMIDequeAsVector class

Syntax
T *GetLeft()
Description
Returns a pointer to the object at the left end and removes it from the dequeue. Returns 0 if the
dequeue is empty.

See Also
PeekLeft

TMIDequeAsVector::GetRight
See Also TMIDequeAsVector class

Syntax
T *GetRight()
Description
Same as GetLeft, except that the right end of the dequeue is returned.

See Also
PeekRight

TMIDequeAsVector::IsEmpty
TMIDequeAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if a dequeue has no elements; otherwise returns 0.

TMIDequeAsVector::IsFull
TMIDequeAsVector class

Syntax
int isFull() const;
Description
Returns 1 if a dequeue is full; otherwise returns 0.

TMIDequeAsVector::LastThat
See Also TMIDequeAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the dequeue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TMIDequeAsVector::PeekLeft
See Also TMIDequeAsVector class

Syntax
T *PeekLeft() const;
Description
Returns a pointer to the object at the left end (head) of the dequeue. The object stays in the dequeue.

See Also
GetLeft

TMIDequeAsVector::PeekRight
See Also TMIDequeAsVector class

Syntax
T *PeekRight() const;
Description
Returns the object at the right end (tail) of the dequeue. The object stays in the dequeue.

See Also
GetRight

TMIDequeAsVector::PutLeft
TMIDequeAsVector class

Syntax
void PutLeft(T *t)
Description
Adds (pushes) the given object pointer at the left end (head) of the dequeue.

TMIDequeAsVector::PutRight
TMIDequeAsVector class

Syntax
void PutRight(T *t)
Description
Adds (pushes) the given object pointer at the right end (tail) of the dequeue.

TMIDequeAsVectorIterator template

Syntax
template <class T, class Alloc> class TMIDequeAsVectorIterator;
Header File
deques.h

Description
Implements an iterator for the family of managed, indirect dequeues implemented as vectors.

Public Constructor
TMIDequeAsVectorIterator::TMIDequeAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMIDequeAsVectorIterator::TMIDequeAsVectorIterator
TMIDequeAsVectorIterator class

Syntax
TMIDequeAsVectorIterator(const TMIDequeAsVector<T,Alloc> &d)
Description
Creates an object that iterates on TMIDequeAsVector objects.

TMIDequeAsVectorIterator::Current
TMIDequeAsVectorIterator class

Syntax
Const T& Current();
Description
Returns the current object.

TMIDequeAsVectorIterator::Restart
TMIDequeAsVectorIterator class

Syntax
void Restart();
Description
Restarts iteration.

TMIDequeAsVectorIterator::operator ++
TMIDequeAsVectorIterator class

Form 1
Const T& operator ++ (int);
Form 2
Const T& operator ++ ();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMIDequeAsVectorIterator::operator int
TMIDequeAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. Iterator converts to
0 if nothing remains in the iterator.

TIDequeAsVector template

Syntax
template <class T> class TIDequeAsVector;
Header File
deques.h

Description
Implements an indirect dequeue of pointers to objects of type T, using a vector as the underlying
implementation.

Public Constructor
TIDequeAsVector::TIDequeAsVector

Type Definitions
CondFunc
IterFunc

Public Constructor
TIDequeAsVector::TIDequeAsVector

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
GetLeft
GetRight
IsEmpty
isFull
LastThat
PeekLeft
PeekRight
PutLeft
PutRight

TIDequeAsVector::CondFunc
TIDequeAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TIDequeAsVector::IterFunc
TIDequeAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TIDequeAsVector::TIDequeAsVector
TIDequeAsVector class

Syntax
TIDequeAsVector(unsigned sz = DEFAULT_DEQUE_SIZE) :
TMIDequeAsVector<T,TStandardAllocator>(sz)

Description
Constructs an indirect dequeue of max size.

TIDequeAsVector::FirstThat
See Also TIDequeAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the dequeue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TIDequeAsVector::Flush
TIDequeAsVector class

Syntax
void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete);
Description
Flushes the dequeue without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

TIDequeAsVector::ForEach
TIDequeAsVector class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each dequeue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TIDequeAsVector::GetItemsInContainer
TIDequeAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the dequeue.

TIDequeAsVector::GetLeft
See Also TIDequeAsVector class

Syntax
T *GetLeft()
Description
Returns a pointer to the object at the left end and removes it from the dequeue. Returns 0 if the
dequeue is empty.

See Also
PeekLeft

TIDequeAsVector::GetRight
See Also TIDequeAsVector class

Syntax
T *GetRight()
Description
Same as GetLeft, except that the right end of the dequeue is returned.

See Also
PeekRight

TIDequeAsVector::IsEmpty
TIDequeAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if a dequeue has no elements; otherwise returns 0.

TIDequeAsVector::IsFull
TIDequeAsVector class

Syntax
int isFull() const;
Description
Returns 1 if a dequeue is full; otherwise returns 0.

TIDequeAsVector::LastThat
See Also TIDequeAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the dequeue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TIDequeAsVector::PeekLeft
See Also TIDequeAsVector class

Syntax
T *PeekLeft() const;
Description
Returns a pointer to the object at the left end (head) of the dequeue. The object stays in the dequeue.

See Also
GetLeft

TIDequeAsVector::PeekRight
See Also TIDequeAsVector class

Syntax
T *PeekRight() const;
Description
Returns the object at the right end (tail) of the dequeue. The object stays in the dequeue.

See Also
GetRight

TIDequeAsVector::PutLeft
TIDequeAsVector class

Syntax
void PutLeft(T *t)
Description
Adds (pushes) the given object pointer at the left end (head) of the dequeue.

TIDequeAsVector::PutRight
TIDequeAsVector class

Syntax
void PutRight(T *t)
Description
Adds (pushes) the given object pointer at the right end (tail) of the dequeue.

TIDequeAsVectorIterator template

Syntax
template <class T> class TIDequeAsVectorIterator;
Header File
deques.h

Description
Implements an iterator for the family of indirect dequeues implemented as vectors.

Public Constructor
TIDequeAsVectorIterator::TIDequeAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TIDequeAsVectorIterator::TIDequeAsVectorIterator
TIDequeAsVectorIterator class

Syntax
TIDequeAsVectorIterator(const TIDequeAsVector<T> &d)
Description
Constructs an object that iterates on TIDequeAsVector objects.

TIDequeAsVectorIterator::Current
TIDequeAsVectorIterator class

Syntax
Const T& Current();
Description
Returns the current object.

TIDequeAsVectorIterator::Restart
TIDequeAsVectorIterator class

Syntax
void Restart();
Description
Restarts iteration.

TIDequeAsVectorIterator::operator ++
TIDequeAsVectorIterator class

Form 1
Const T& operator ++ (int);
Form 2
Const T& operator ++ ();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIDequeAsVectorIterator::operator int
TIDequeAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. Iterator converts to
0 if nothing remains in the iterator.

TMDequeAsDoubleList template

Syntax
template <class T, class Alloc> class TMDequeDoubleList;
Header File
deques.h

Description
Implements a managed dequeue of objects of type T, using a double-linked list as the underlying
implementation.

Type Definitions
CondFunc
IterFunc

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
GetLeft
GetRight
IsEmpty
IsFull
LastThat
PeekLeft
PeekRight
PutLeft
PutRight

TMDequeAsDoubleList::CondFunc
TMDequeAsDoubleList class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMDequeAsDoubleList::IterFunc
TMDequeAsDoubleList class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMDequeAsDoubleList::FirstThat
See Also TMDequeAsDoubleList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the dequeue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMDequeAsDoubleList::Flush
TMDequeAsDoubleList class

Syntax
void Flush(int del)
Description
Flushes the dequeue without destroying it.

TMDequeAsDoubleList::ForEach
TMDequeAsDoubleList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each dequeue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMDequeAsDoubleList::GetItemsInContainer
TMDequeAsDoubleList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the dequeue.

TMDequeAsDoubleList::GetLeft
TMDequeAsDoubleList class

Syntax
T GetLeft()
Description
Returns the object at the left end and removes it from the dequeue.

TMDequeAsDoubleList::GetRight
See Also TMDequeAsDoubleList class

Syntax
T GetRight()
Description
Same as GetLeft, except that the right end of the dequeue is returned.

See Also
PeekRight

TMDequeAsDoubleList::IsEmpty
TMDequeAsDoubleList class

Syntax
int IsEmpty() const;
Description
Returns 1 if a dequeue has no elements; otherwise returns 0.

TMDequeAsDoubleList::IsFull
TMDequeAsDoubleList class

Syntax
int IsFull() const;
Description
Returns 1 if a dequeue is full; otherwise returns 0.

TMDequeAsDoubleList::LastThat
See Also TMDequeAsDoubleList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the dequeue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TMDequeAsDoubleList::PeekLeft
See Also TMDequeAsDoubleList class

Syntax
Const T& PeekLeft() const;
Description
Returns a reference to the object at the left end (head) of the dequeue. The object stays in the
dequeue.

See Also
GetLeft

TMDequeAsDoubleList::PeekRight
See Also TMDequeAsDoubleList class

Syntax
Const T& PeekRight() const;
Description
Returns a reference to the object at the right end (tail) of the dequeue. The object stays in the
dequeue.

See Also
GetRight

TMDequeAsDoubleList::PutLeft
TMDequeAsDoubleList class

Syntax
void PutLeft(const T& t)
Description
Adds (pushes) the given object at the left end (head) of the dequeue.

TMDequeAsDoubleList::PutRight
TMDequeAsDoubleList class

Syntax
void PutRight(const T& t)
Description
Adds (pushes) the given object at the right end (tail) of the dequeue.

TMDequeAsDoubleListIterator template

Syntax
template <class T, class Alloc> class TMDequeAsDoubleListIterator;
Header File
deques.h

Description
Implements an iterator object for a double-list based deques.

Public Constructor
TMDequeAsDoubleListIterator::TMDequeAsDoubleListIterator

Public Member Functions
Current
Restart

Operators
int
++
--

TMDequeAsDoubleListIterator::TMDequeAsDoubleListIterator
TMDequeAsDoubleListIterator class

Syntax
TMDequeAsDoubleListIterator(const TMDequeAsDoubleList<T, Alloc> & s)
Description
Constructs an object that iterates on TMDequeAsDoubleList objects.

TMDequeAsDoubleListIterator::Current
TMDequeAsDoubleListIterator class

Syntax
const T& Current()
Description
Returns the current object.

TMDequeAsDoubleListIterator::Restart
TMDequeAsDoubleListIterator class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMDequeAsDoubleListIterator::operator int
TMDequeAsDoubleListIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMDequeAsDoubleListIterator::operator ++
TMDequeAsDoubleListIterator class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMDequeAsDoubleListIterator::operator - -
TMDequeAsDoubleListIterator class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TDequeAsDoubleList template

Syntax
template <class T> class TMDequeAsDoubleList;
Header File
deques.h

Description
Implements a dequeue of objects of type T, using a double-linked list as the underlying
implementation, and TStandardAllocator as its memory manager.

Type Definitions
CondFunc
IterFunc

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
GetLeft
GetRight
IsEmpty
IsFull
LastThat
PeekLeft
PeekRight
PutLeft
PutRight

TDequeAsDoubleList::CondFunc
TDequeAsDoubleList class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TDequeAsDoubleList::IterFunc
TDequeAsDoubleList class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TDequeAsDoubleList::FirstThat
See Also TDequeAsDoubleList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the dequeue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TDequeAsDoubleList::Flush
TDequeAsDoubleList class

Syntax
void Flush()
Description
Flushes the dequeue without destroying it.

TDequeAsDoubleList::ForEach
TDequeAsDoubleList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each dequeue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TDequeAsDoubleList::GetItemsInContainer
TDequeAsDoubleList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the dequeue.

TDequeAsDoubleList::GetLeft
TDequeAsDoubleList class

Syntax
T GetLeft()
Description
Returns the object at the left end and removes it from the dequeue.

TDequeAsDoubleList::GetRight
See Also TDequeAsDoubleList class

Syntax
T GetRight()
Description
Same as GetLeft, except that the right end of the dequeue is returned.

See Also
PeekRight

TDequeAsDoubleList::IsEmpty
TDequeAsDoubleList class

Syntax
int IsEmpty() const;
Description
Returns 1 if a dequeue has no elements; otherwise returns 0.

TDequeAsDoubleList::IsFull
TDequeAsDoubleList class

Syntax
int IsFull() const;
Description
Returns 1 if a dequeue is full; otherwise returns 0.

TDequeAsDoubleList::LastThat
See Also TDequeAsDoubleList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the dequeue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TDequeAsDoubleList::PeekLeft
See Also TDequeAsDoubleList class

Syntax
Const T& PeekLeft() const;
Description
Returns a reference to the object at the left end (head) of the dequeue. The object stays in the
dequeue.

See Also
GetLeft

TDequeAsDoubleList::PeekRight
See Also TDequeAsDoubleList class

Syntax
Const T& PeekRight() const;
Description
Returns a reference to the object at the right end (tail) of the dequeue. The object stays in the
dequeue.

See Also
GetRight

TDequeAsDoubleList::PutLeft
TDequeAsDoubleList class

Syntax
void PutLeft(const T& t)
Description
Adds (pushes) the given object at the left end (head) of the dequeue.

TDequeAsDoubleList::PutRight
TDequeAsDoubleList class

Syntax
void PutRight(const T& t)
Description
Adds (pushes) the given object at the right end (tail) of the dequeue.

TDequeAsDoubleListIterator template

Syntax
template <class T> class TMDequeAsDoubleListIteratir;
Header File
deques.h

Description
Implements an iterator object for a double-list based dequeue.

Public Constructor
TMDequeAsDoubleListIterator::TMDequeAsDoubleListIterator

TDequeAsDoubleListIterator::TDequeAsDoubleListIterator
TDequeAsDoubleListIterator class

Syntax
TMDequeAsDoubleListIterator(const TMDequeAsDoubleList<T, Alloc> & s)
Description
Constructs an object that iterates on TDequeAsDoubleList objects.

TMIDequeAsDoubleList template

Syntax
template <class T, class Alloc> class TMIDequeAsDoubleList;
Header File
deques.h

Description
Implements a managed dequeue of pointers to objects of type T, using a double-linked list as the
underlying implementation.

Type Definitions
CondFunc
IterFunc

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
GetLeft
GetRight
IsEmpty
IsFull
LastThat
PeekLeft
PeekRight
PutLeft
PutRight

TMIDequeAsDoubleList::CondFunc
TMIDequeAsDoubleList class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMIDequeAsDoubleList::IterFunc
TMIDequeAsDoubleList class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMIDequeAsDoubleList::FirstThat
See Also TMIDequeAsDoubleList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the dequeue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMIDequeAsDoubleList::Flush
TMIDequeAsDoubleList class

Syntax
void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)
Description
Flushes the dequeue without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

TMIDequeAsDoubleList::ForEach
TMIDequeAsDoubleList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each dequeue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMIDequeAsDoubleList::GetItemsInContainer
TMIDequeAsDoubleList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the dequeue.

TMIDequeAsDoubleList::GetLeft
See Also TMIDequeAsDoubleList class

Syntax
T *GetLeft()
Description
Returns a pointer to the object at the left end and removes it from the dequeue. Returns 0 if the
dequeue is empty.

See Also
PeekLeft

TMIDequeAsDoubleList::GetRight
See Also TMIDequeAsDoubleList class

Syntax
T *GetRight()
Description
Same as GetLeft, except that a pointer to the object at the right end of the dequeue is returned.

See Also
PeekRight

TMIDequeAsDoubleList::IsEmpty
TMIDequeAsDoubleList class

Syntax
int IsEmpty() const;
Description
Returns 1 if the dequeue has no elements; otherwise returns 0.

TMIDequeAsDoubleList::IsFull
TMIDequeAsDoubleList class

Syntax
int IsFull() const;
Description
Returns 1 if the dequeue is full; otherwise returns 0.

TMIDequeAsDoubleList::LastThat
See Also TMIDequeAsDoubleList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the dequeue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TMIDequeAsDoubleList::PeekLeft
TMIDequeAsDoubleList class

Syntax
T *PeekLeft() const;
Description
Returns a pointer to the object at the left end (head) of the dequeue. The object stays in the dequeue.

TMIDequeAsDoubleList::PeekRight
TMIDequeAsDoubleList class

Syntax
T *PeekRight() const;
Description
Returns the object at the right end (tail) of the dequeue. The object stays in the dequeue.

TMIDequeAsDoubleList::PutLeft
TMIDequeAsDoubleList class

Syntax
void PutLeft(T *t)
Description
Adds (pushes) the given object pointer at the left end (head) of the dequeue.

TMIDequeAsDoubleList::PutRight
TMIDequeAsDoubleList class

Syntax
void PutRight(T *t)
Description
Adds (pushes) the given object pointer at the right end (tail) of the dequeue.

TMIDequeAsDoubleListIterator template

Syntax
template <class T, class Alloc> class TMDequeAsDoubleListIterator;
Header File
deques.h

Description
Implements an iterator for the family of managed, indirect dequeues implemented as double lists.

Public Constructor
TMIDequeAsDoubleListIterator::TMIDequeAsDoubleListIterator

Public Member Functions
Current
Restart

Operators
int
++
--

TMIDequeAsDoubleListIterator::TMIDequeAsDoubleListIterator
TMIDequeAsDoubleListIterator class

Syntax
TMIDequeAsDoubleListIterator(const TMIDequeAsDoubleList<T,Alloc> s)
Description
Constructs an object that iterates on TMIDequeAsDoubleList objects.

TMIDequeAsDoubleListIterator::Current
TMIDequeAsDoubleListIterator class

Syntax
const T& Current()
Description
Returns the current object.

TMIDequeAsDoubleListIterator::Restart
TMIDequeAsDoubleListIterator class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMIDequeAsDoubleListIterator::operator int
TMIDequeAsDoubleListIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMIDequeAsDoubleListIterator::operator ++
TMIDequeAsDoubleListIterator class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMIDequeAsDoubleListIterator::operator - -
TMIDequeAsDoubleListIterator class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TIDequeAsDoubleList template

Syntax
template <class T> class TIDequeAsDoubleList;
Header File
deques.h

Description
Implements a dequeue of pointers to objects of type T, using a double-linked list as the underlying
implementation.

Type Definitions
CondFunc
IterFunc

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
GetLeft
GetRight
IsEmpty
IsFull
LastThat
PeekLeft
PeekRight
PutLeft
PutRight

TIDequeAsDoubleList::CondFunc
TIDequeAsDoubleList class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TIDequeAsDoubleList::IterFunc
TIDequeAsDoubleList class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TIDequeAsDoubleList::FirstThat
See Also TIDequeAsDoubleList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the dequeue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TIDequeAsDoubleList::Flush
TIDequeAsDoubleList class

Syntax
void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)
Description
Flushes the dequeue without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

TIDequeAsDoubleList::ForEach
TIDequeAsDoubleList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each dequeue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TIDequeAsDoubleList::GetItemsInContainer
TIDequeAsDoubleList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the dequeue.

TIDequeAsDoubleList::GetLeft
See Also TIDequeAsDoubleList class

Syntax
T *GetLeft()
Description
Returns a pointer to the object at the left end and removes it from the dequeue. Returns 0 if the
dequeue is empty.

See Also
PeekLeft

TIDequeAsDoubleList::GetRight
See Also TIDequeAsDoubleList class

Syntax
T *GetRight()
Description
Same as GetLeft, except that a pointer to the object at the right end of the dequeue is returned.

See Also
PeekRight

TIDequeAsDoubleList::IsEmpty
TIDequeAsDoubleList class

Syntax
int IsEmpty() const;
Description
Returns 1 if the dequeue has no elements; otherwise returns 0.

TIDequeAsDoubleList::IsFull
TIDequeAsDoubleList class

Syntax
int IsFull() const;
Description
Returns 1 if the dequeue is full; otherwise returns 0.

TIDequeAsDoubleList::LastThat
See Also TIDequeAsDoubleList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the dequeue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition. Note that LastThat creates its own internal
iterator, so you can treat it as a "search" function.

See Also
FirstThat
ForEach

TIDequeAsDoubleList::PeekLeft
TIDequeAsDoubleList class

Syntax
T *PeekLeft() const;
Description
Returns a pointer to the object at the left end (head) of the dequeue. The object stays in the dequeue.

TIDequeAsDoubleList::PeekRight
TIDequeAsDoubleList class

Syntax
T *PeekRight() const;
Description
Returns the object at the right end (tail) of the dequeue. The object stays in the dequeue.

TIDequeAsDoubleList::PutLeft
TIDequeAsDoubleList class

Syntax
void PutLeft(T *t)
Description
Adds (pushes) the given object pointer at the left end (head) of the dequeue.

TIDequeAsDoubleList::PutRight
TIDequeAsDoubleList class

Syntax
void PutRight(T *t)
Description
Adds (pushes) the given object pointer at the right end (tail) of the dequeue.

TIDequeAsDoubleListIterator template

Syntax
template <class T, class Alloc> class TIDequeAsDoubleListIterator;
Header File
deques.h

Description
Implements an iterator for the family of indirect dequeues implemented as double lists.

Public Constructor
TIDequeAsDoubleListIterator::TIDequeAsDoubleListIterator

Public Member Functions
Current
Restart

Operators
int
++
--

TIDequeAsDoubleListIterator::TIDequeAsDoubleListIterator
TIDequeAsDoubleListIterator class

Syntax
TIDequeAsDoubleListIterator(const TIDequeAsDoubleList<T> & s)
Description
Constructs an object that iterates on TIDequeAsDoubleList objects.

TIDequeAsDoubleListIterator::Current
TIDequeAsDoubleListIterator class

Syntax
const T& Current()
Description
Returns the current object.

TIDequeAsDoubleListIterator::Restart
TIDequeAsDoubleListIterator class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TIDequeAsDoubleListIterator::operator int
TIDequeAsDoubleListIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TIDequeAsDoubleListIterator::operator ++
TIDequeAsDoubleListIterator class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIDequeAsDoubleListIterator::operator - -
TIDequeAsDoubleListIterator class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TMDictionaryAsHashTable template

Syntax
template <class T, class A> class TMDictionaryAsHashTable;
Header File
dict.h

Description
Implements a managed dictionary using a hash table as the underlying FDS, and using the user-
supplied storage allocator A. It assumes that T is one of the four types of associations, and that T has
meaningful copy and == semantics as well as a default constructor.

Protected Data Member
HashTable

Public Constructor
TMDictionaryAsHashTable::TMDictionaryAsHashTable

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

TMDictionaryAsHashTable::HashTable
TMDictionaryAsHashTable class

Syntax
TMHashTableImp<T,A> HashTable;
Description
Implements the underlying hash table.

TMDictionaryAsHashTable::TMDictionaryAsHashTable
TMDictionaryAsHashTable class

Syntax
TMDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE)
Description
Constructs a dictionary with the specified size.

TMDictionaryAsHashTable::Add
TMDictionaryAsHashTable class

Syntax
int Add(const T& t)
Description
Adds item t if not already in the dictionary.

TMDictionaryAsHashTable::Detach
TMDictionaryAsHashTable class

Syntax
int Detach(const T& t, DeleteType dt = DefDelete)
Description
Removes item t from the dictionary. Calls DeleteElements on the association.

TMDictionaryAsHashTable::Find
TMDictionaryAsHashTable class

Syntax
T * Find(constT& t)
Description
Returns a pointer to item t.

TMDictionaryAsHashTable::Flush
TMDictionaryAsHashTable class

Syntax
void Flush(DeleteType dt = DefDelete)
Description
Removes all items from the dictionary. Calls DeleteElements on the association.

TMDictionaryAsHashTable::ForEach
TMDictionaryAsHashTable class

Syntax
void ForEach(void (IterFunc iter, void * args)
Description
Creates an internal iterator that executes the given function iter for each item in the container. The args
argument lets you pass arbitrary data to this function.

TMDictionaryAsHashTable::GetItemsInContainer
TMDictionaryAsHashTable class

Syntax
inline unsigned GetItemsInContainer()
Description
Returns the number of items in the dictionary.

TMDictionaryAsHashTable::IsEmpty
TMDictionaryAsHashTable class

Syntax
inline int IsEmpty()
Description
Returns 1 if the dictionary is empty; otherwise returns 0.

TMDictionaryAsHashTableIterator template

Syntax
template <class T, class A> class TMDictionaryAsHashTableIterator;
Header File
dict.h

Description
Implements an iterator that traverses TMDictionaryAsHashTable objects, using the user-supplied
storage allocator A.

Public Constructor
TMDictionaryAsHashTableIterator::TMDictionaryAsHashTableIterator

Public Member Functions
Current
Restart

Operators
int
++

TMDictionaryAsHashTableIterator::TMDictionaryAsHashTableIterator
TMDictionaryAsHashTableIterator class

Syntax
TMDictionaryAsHashTableIterator(TMDictionaryAsHashTable<T,A> & t)
Description
Constructs an iterator object that traverses a TMDictionaryAsHashTable container.

TMDictionaryAsHashTableIterator::Current
TMDictionaryAsHashTableIterator class

Syntax
Const T& Current()
Description
Returns the current object.

TMDictionaryAsHashTableIterator::Restart
TMDictionaryAsHashTableIterator class

Syntax
void Restart();
Description
Restarts iteration from the beginning of the dictionary.

TMDictionaryAsHashTableIterator::operator int
TMDictionaryAsHashTableIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMDictionaryAsHashTableIterator::operator ++
TMDictionaryAsHashTableIterator class

Form 1
Const T& operator ++ (int)
Form 2
Const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TDictionaryAsHashTable template

Syntax
template <class T> class TDictionaryAsHashTable;
Header File
dict.h

Description
Implements a dictionary objects of type T, using the system storage allocator TStandardAllocator. It
assumes that T is one of the four types of associations, and that T has meaningful copy and ==
semantics as well as a default constructor.

Protected Data Member
HashTable

Public Constructor
TDictionaryAsHashTable::TDictionaryAsHashTable

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

TDictionaryAsHashTable::HashTable
TDictionaryAsHashTable class

Syntax
TMHashTableImp<T,A> HashTable;
Description
Implements the underlying hash table.

TDictionaryAsHashTable::TDictionaryAsHashTable
TDictionaryAsHashTable class

Syntax
TDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE)
Description
Constructs a dictionary with the specified size.

TDictionaryAsHashTable::Add
TDictionaryAsHashTable class

Syntax
int Add(const T& t)
Description
Adds item t if not already in the dictionary.

TDictionaryAsHashTable::Detach
TDictionaryAsHashTable class

Syntax
int Detach(const T& t, DeleteType dt = DefDelete)
Description
Removes item t from the dictionary. Calls DeleteElements on the association.

TDictionaryAsHashTable::Find
TDictionaryAsHashTable class

Syntax
T * Find(constT& t)
Description
Returns a pointer to item t.

TDictionaryAsHashTable::Flush
TDictionaryAsHashTable class

Syntax
void Flush(DeleteType dt = DefDelete)
Description
Removes all items from the dictionary. Calls DeleteElements on the association.

TDictionaryAsHashTable::ForEach
TDictionaryAsHashTable class

Syntax
void ForEach(IterFunc iter, void * args)
Description
Creates an internal iterator that executes the given function iter for each item in the container. The args
argument lets you pass arbitrary data to this function.

TDictionaryAsHashTable::GetItemsInContainer
TDictionaryAsHashTable class

Syntax
inline unsigned GetItemsInContainer()
Description
Returns the number of items in the dictionary.

TDictionaryAsHashTable::IsEmpty
TDictionaryAsHashTable class

Syntax
inline int IsEmpty()
Description
Returns 1 if the dictionary is empty; otherwise returns 0.

TDictionaryAsHashTableIterator template

Syntax
template <class T> class TDictionaryAsHashTableIterator
Header File
dict.h

Description
Implements an iterator that traverses TDictionaryAsHashTable objects, using the system storage
allocator TStandardAllocator.

Public Constructor
TDictionaryAsHashTableIterator::TDictionaryAsHashTableIterator

TDictionaryAsHashTableIterator::TDictionaryAsHashTableIterator
TDictionaryAsHashTableIterator class

Syntax
TDictionaryAsHashTableIterator(TDictionaryAsHashTable<T> & t)
Description
Constructs an iterator object that traverses a TDictionaryAsHashTable container.

TMIDictionaryAsHashTable template

Syntax
template <class T, class A> class TMIDictionaryAsHashTable;
Header File
dict.h

Description
Implements a managed indirect dictionary using a hash table as the underlying FDS, and using the
user-supplied storage allocator A. It assumes that T is an association class.

Public Constructor
TMIDictionaryAsHashTable::TMIDictionaryAsHashTable

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

TMIDictionaryAsHashTable::TMIDictionaryAsHashTable
TMIDictionaryAsHashTable class

Syntax
TMIDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE)
Description
Constructs an indirect dictionary with the specified size.

TMIDictionaryAsHashTable::Add
TMIDictionaryAsHashTable class

Syntax
int Add(T * t)
Description
Adds a pointer to item t if not already in the dictionary.

TMIDictionaryAsHashTable::Detach
TMIDictionaryAsHashTable class

Syntax
int Detach(T * t, int del = 0)
Description
Removes the pointer to item t from the dictionary, and deletes if del is 1. If del is 0 the item is not
deleted.

TMIDictionaryAsHashTable::Find
TMIDictionaryAsHashTable class

Syntax
T * Find(T * t)
Description
Returns a pointer to item t.

TMIDictionaryAsHashTable::Flush
TMIDictionaryAsHashTable class

Syntax
void Flush(int del = 0)
Description
Removes all items from the dictionary. The item is deleted if del is 1. If del is 0 the item is not deleted.

TMIDictionaryAsHashTable::ForEach
TMIDictionaryAsHashTable class

Syntax
void ForEach(IterFunc iter, void * args);
Description
Creates an internal iterator that executes the given function iter for each item in the container. The args
argument lets you pass arbitrary data to this function.

TMIDictionaryAsHashTable::GetItemsInContainer
TMIDictionaryAsHashTable class

Syntax
inline unsigned GetItemsInContainer()
Description
Returns the number of items in the dictionary.

TMIDictionaryAsHashTable::IsEmpty
TMIDictionaryAsHashTable class

Syntax
inline int IsEmpty()
Description
Returns 1 if the dictionary is empty; otherwise returns 0.

TMIDictionaryAsHashTableIterator template

Syntax
template <class T, class A> class TMDictionaryAsHashTableIterator;
Header File
dict.h

Description
Implements an iterator that traverses TMIDictionaryAsHashTable objects, using the user-supplied
storage allocator A.

Public Constructor
TMIDictionaryAsHashTableIterator::TMIDictionaryAsHashTableIterator

Public Member Functions
Current
Restart

Operators
int
++

TMIDictionaryAsHashTableIterator::TMIDictionaryAsHashTableIterator
TMIDictionaryAsHashTableIterator class

Syntax
TMIDictionaryAsHashTableIterator(TMIDictionaryAsHashTable<T,A> & t)
Description
Constructs an iterator object that traverses a TMIDictionaryAsHashTable container.

TMIDictionaryAsHashTableIterator::Current
TMIDictionaryAsHashTableIterator class

Syntax
T *Current()
Description
Returns a pointer to the current object.

TMIDictionaryAsHashTableIterator::Restart
TMIDictionaryAsHashTableIterator class

Syntax
void Restart();
Description
Restarts iteration from the beginning of the dictionary.

TMIDictionaryAsHashTableIterator::operator int
TMIDictionaryAsHashTableIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMIDictionaryAsHashTableIterator::operator ++
TMIDictionaryAsHashTableIterator class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns a pointer to the object that was current before the move
(post-increment).
Form 2: Moves to the next object, and returns a pointer to the object that was current after the move
(pre-increment).

TIDictionaryAsHashTable template

Syntax
template <class T> class TIDictionaryAsHashTable;
Header File
dict.h

Description
Implements an indirect dictionary using a hash table as the underlying FDS, and using the system
storage allocator TStandardAllocator. It assumes that T is one of the four types of associations.

Public Constructor
TIDictionaryAsHashTable::TIDictionaryAsHashTable

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

TIDictionaryAsHashTable::TIDictionaryAsHashTable
TIDictionaryAsHashTable class

Syntax
TIDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE)
Description
Constructs an indirect dictionary with the specified size.

TIDictionaryAsHashTable::Add
TIDictionaryAsHashTable class

Syntax
int Add(T * t)
Description
Adds a pointer to item t if not already in the dictionary.

TIDictionaryAsHashTable::Detach
TIDictionaryAsHashTable class

Syntax
int Detach(T * t, int del = 0)
Description
Removes the pointer to item t from the dictionary, and deletes if del is 1. If del is 0 the item is not
deleted.

TIDictionaryAsHashTable::Find
TIDictionaryAsHashTable class

Syntax
T * Find(T * t)
Description
Returns a pointer to item t.

TIDictionaryAsHashTable::Flush
TIDictionaryAsHashTable class

Syntax
void Flush(int del = 0)
Description
Removes all items from the dictionary. The item is deleted if del is 1. If del is 0 the item is not deleted.

TIDictionaryAsHashTable::ForEach
TIDictionaryAsHashTable class

Syntax
void ForEach(IterFunc iter, void * args);
Description
Creates an internal iterator that executes the given function iter for each item in the container. The args
argument lets you pass arbitrary data to this function.

TIDictionaryAsHashTable::GetItemsInContainer
TIDictionaryAsHashTable class

Syntax
inline unsigned GetItemsInContainer()
Description
Returns the number of items in the dictionary.

TIDictionaryAsHashTable::IsEmpty
TIDictionaryAsHashTable class

Syntax
inline int IsEmpty()
Description
Returns 1 if the dictionary is empty; otherwise returns 0.

TIDictionaryAsHashTableIterator template

Syntax
template <class T> class TIDictionaryAsHashTableIterator;
Header File
dict.h

Description
Implements an iterator that traverses TIDictionaryAsHashTable objects, using the user-supplied
storage allocator A.

Public Constructor
TIDictionaryAsHashTableIterator::TIDictionaryAsHashTableIterator

Public Member Functions
Current
Restart

Operators
int
++

TIDictionaryAsHashTableIterator::TIDictionaryAsHashTableIterator
TIDictionaryAsHashTableIterator class

Syntax
TIDictionaryAsHashTableIterator(TIDictionaryAsHashTable<T> & t)
Description
Constructs an iterator object that traverses a TIDictionaryAsHashTable container.

TIDictionaryAsHashTableIterator::Current
TIDictionaryAsHashTableIterator class

Syntax
T *Current()
Description
Returns a pointer to the current object.

TIDictionaryAsHashTableIterator::Restart
TIDictionaryAsHashTableIterator class

Syntax
void Restart();
Description
Restarts iteration from the beginning of the dictionary.

TIDictionaryAsHashTableIterator::operator int
TIDictionaryAsHashTableIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TIDictionaryAsHashTableIterator::operator ++
TIDictionaryAsHashTableIterator class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns a pointer to the object that was current before the move
(post-increment).
Form 2: Moves to the next object, and returns a pointer to the object that was current after the move
(pre-increment).

TDictionary template

Header File
dict.h

Description
A simplified name for TDictionaryAsHashTable.

Public Constructor
TDictionary::TDictionary

TDictionary::TDictionary
TDictionary class

Syntax
TDictionary(unsigned size = DEFAULT_HASH_TABLE_SIZE)
Description
Constructs a dictionary with the specified size.

TDictionaryIterator template

Header File
dict.h

Description
A simplified name for TDictionaryAsHashTableIterator.

Public Constructor
TDictionaryIterator::TDictionaryIterator

TDictionaryIterator::TDictionaryIterator
TDictionaryIterator class

Syntax
TDictionaryIterator(const TDictionary<T> & a)
Description
Constructs an iterator object that traverses a TDictionary container.

TMDoubleListElement template

Syntax
template <class T, class Alloc> class TMDoubleListElement;
Header File
dlistimp.h

Description
This class defines the nodes for double-list classes TMDoubleListImp and TMIDoubleListImp.

Public Data Members
data
Next
Prev

Public Constructors
TMDoubleListElement::TMDoubleListElement

Operators
delete
new

TMDoubleListElement::data
TMDoubleListElement class

Syntax
T data;
Description
Data object contained in the double list.

TMDoubleListElement::Next
TMDoubleListElement class

Syntax
TMDoubleListElement<T> *Next;
Description
A pointer to the next element in the double list.

TMDoubleListElement::Prev
TMDoubleListElement class

Syntax
TMDoubleListElement<T> *Prev;
Description
A pointer to the previous element in the double list.

TMDoubleListElement::TMDoubleListElement
TMDoubleListElement class

Form 1
TMDoubleListElement();
Form 2
TMDoubleListElement(T& t, TMDoubleListElement<T> *p)
Description
Form 1: Constructs a double-list element.
Form 2: Constructs a double-list element, and inserts after the object pointed to by p.

TMDoubleListElement::operator delete
TMDoubleListElement class

Syntax
void operator delete(void *);
Description
Deletes an object.

TMDoubleListElement::operator new
TMDoubleListElement class

Syntax
void *operator new(size_t sz);
Description
Allocates a memory block of sz amount, and returns a pointer to the memory block.

TMDoubleListImp template

Syntax
template <class T, class Alloc> class TMDoubleListImp;
Header File
dlistimp.h

Description
Implements a managed, double-linked list of objects of type T. Assumes that T has meaningful copy
semantics, operator ==, and a default constructor.

Type Definitions
CondFunc
IterFunc

Public Constructor
TMDoubleListImp::TMDoubleListImp

Public Member Functions
Add
AddAtHead
AddAtTail
Detach
DetachAtHead
FirstThat
Flush
ForEach
IsEmpty
LastThat
PeekHead
PeekTail

Protected Data Members
Head
Tail

Protected Member Functions
FindDetach
FindPred

TMDoubleListImp::CondFunc
TMDoubleListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMDoubleListImp::IterFunc
TMDoubleListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMDoubleListImp::TMDoubleListImp
TMDoubleListImp class

Syntax
TMDoubleListImp()
Description
Constructs an empty, managed, double-linked list.

TMDoubleListImp::Add
TMDoubleListImp class

Syntax
int Add(const T& t);
Description
Add the given object at the beginning of the list.

TMDoubleListImp::AddAtHead
TMDoubleListImp class

Syntax
int AddAtHead(const T& t);
Description
Add the given object at the beginning of the list.

TMDoubleListImp::AddAtTail
TMDoubleListImp class

Syntax
int AddAtTail(const T&);
Description
Adds the given object at the end (tail) of the list.

TMDoubleListImp::Detach
See Also TMDoubleListImp class

Syntax
int Detach(const T&);
Description
Removes the first occurrence of the given object encountered by searching from the beginning of the
list.

See Also
TShouldDelete

TMDoubleListImp::DetachAtHead
TMDoubleListImp class

Syntax
int DetachAtHead();
Description
Removes items from the head of a list without searching for a match.

TMDoubleListImp::FirstThat
TMDoubleListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the double-list that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

TMDoubleListImp::Flush
TMDoubleListImp class

Syntax
void Flush();
Description
Removes all elements from the list without destroying the list.

TMDoubleListImp::ForEach
TMDoubleListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
ForEach creates an internal iterator to execute the given function for each element in the array. The
args argument lets you pass arbitrary data to this function.

TMDoubleListImp::IsEmpty
TMDoubleListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if array contains no elements; otherwise returns 0.

TMDoubleListImp::LastThat
See Also TMDoubleListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the double list that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TMDoubleListImp::FirstThat
TMDoubleListImp::ForEach

TMDoubleListImp::PeekHead
TMDoubleListImp class

Syntax
Const T& PeekHead() const;
Description
Returns a reference to the Head item in the double list, without removing it.

TMDoubleListImp::PeekTail
TMDoubleListImp class

Syntax
Const T& PeekTail() const;
Description
Returns a reference to the Tail item in the double list, without removing it.

TMDoubleListImp::Head
TMDoubleListImp class

Syntax
TMDoubleListElement<T> Head;
Description
The head item of the double list.

TMDoubleListImp::Tail
TMDoubleListImp class

Syntax
TMDoubleListElement<T> Tail;
Description
The tail item of the double list.

TMDoubleListImp::FindDetach
TMDoubleListImp class

Syntax
virtual TMDoubleListElement<T> *FindDetach(const T& t)
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TMDoubleListImp::FindPred
TMDoubleListImp class

Syntax
virtual TMDoubleListElement<T> *FindPred(const T&);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TMDoubleListIteratorImp template

Syntax
template <class T, class Alloc> class TMDoubleListIterator;
Header File
dlistimp.h

Description
Implements a double list iterator. This iterator works with any direct double-linked list.

Public Constructors
TMDoubleListIteratorImp::TMDoubleListIteratorImp

Public Member Functions
Current
Restart

Operators
int
++
--

TMDoubleListIteratorImp::TMDoubleListIteratorImp
TMDoubleListIteratorImp class

Form 1
TMDoubleListIteratorImp(const TMDoubleListImp<T, Alloc> &l)
Form 2
TMDoubleListIteratorImp(const TMSDoubleListImp<T, Alloc> &l)
Description
Constructs an iterator that traverses TMDoubleListImp objects.

TMDoubleListIteratorImp::Current
TMDoubleListIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

TMDoubleListIteratorImp::Restart
TMDoubleListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMDoubleListIteratorImp::operator int
TMDoubleListIteratorImp class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMDoubleListIteratorImp::operator ++
TMDoubleListIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMDoubleListIteratorImp::operator - -
TMDoubleListIteratorImp class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TDoubleListImp template

Syntax
template <class T> class TMDoubleListImp;
Header File
dlistimp.h

Description
Implements a double-linked list of objects of type T, using TStandardAllocator for memory
management. Assumes that T has meaningful copy semantics and a default constructor.

Type Definitions
CondFunc
IterFunc

Public Constructor
TDoubleListImp::TDoubleListImp

Public Member Functions
Add
AddAtHead
AddAtTail
Detach
DetachAtHead
FirstThat
Flush
ForEach
IsEmpty
LastThat
PeekHead
PeekTail

Protected Data Members
Head
Tail

Protected Member Functions
FindDetach
FindPred

TDoubleListImp::CondFunc
TDoubleListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TDoubleListImp::IterFunc
TDoubleListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TDoubleListImp::TDoubleListImp
TDoubleListImp class

Syntax
TDoubleListImp()
Description
Constructs an empty double-linked list.

TDoubleListImp::Add
TDoubleListImp class

Syntax
int Add(const T& t);
Description
Add the given object at the beginning of the list.

TDoubleListImp::AddAtHead
TDoubleListImp class

Syntax
int AddAtHead(const T& t);
Description
Add the given object at the beginning of the list.

TDoubleListImp::AddAtTail
TDoubleListImp class

Syntax
int AddAtTail(const T&);
Description
Adds the given object at the end (tail) of the list.

TDoubleListImp::Detach
See Also TDoubleListImp class

Syntax
int Detach(const T&);
Description
Removes the first occurrence of the given object encountered by searching from the beginning of the
list.

See Also
TShouldDelete

TDoubleListImp::DetachAtHead
TDoubleListImp class

Syntax
int DetachAtHead();
Description
Removes items from the head of a list without searching for a match.

TDoubleListImp::FirstThat
TDoubleListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the double-list that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

TDoubleListImp::Flush
TDoubleListImp class

Syntax
void Flush();
Description
Removes all elements from the list without destroying the list.

TDoubleListImp::ForEach
TDoubleListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
ForEach creates an internal iterator to execute the given function for each element in the array. The
args argument lets you pass arbitrary data to this function.

TDoubleListImp::IsEmpty
TDoubleListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if array contains no elements; otherwise returns 0.

TDoubleListImp::LastThat
See Also TDoubleListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the double list that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TDoubleListImp::FirstThat
TDoubleListImp::ForEach

TDoubleListImp::PeekHead
TDoubleListImp class

Syntax
Const T& PeekHead() const;
Description
Returns a reference to the Head item in the double list, without removing it.

TDoubleListImp::PeekTail
TDoubleListImp class

Syntax
Const T& PeekTail() const;
Description
Returns a reference to the Tail item in the double list, without removing it.

TDoubleListImp::Head
TDoubleListImp class

Syntax
TMDoubleListElement<T> Head;
Description
The head item of the double list.

TDoubleListImp::Tail
TDoubleListImp class

Syntax
TMDoubleListElement<T> Tail;
Description
The tail item of the double list.

TDoubleListImp::FindDetach
TDoubleListImp class

Syntax
virtual TMDoubleListElement<T> *FindDetach(const T& t)
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TDoubleListImp::FindPred
TDoubleListImp class

Syntax
virtual TMDoubleListElement<T> *FindPred(const T&);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TDoubleListIteratorImp template

Syntax
template <class T> class TDoubleListIteratorImp;
Header File
dlistimp.h

Description
Implements a double list iterator. This iterator works with any direct double-linked list.

Public Constructor
TDoubleListIteratorImp::TDoubleListIteratorImp

Public Member Functions
Current
Restart

Operators
int
++
--

TDoubleListIteratorImp::TDoubleListIteratorImp
TDoubleListIteratorImp class

Syntax
TDoubleListIteratorImp(const TDoubleListImp<T> &l)
Description
Constructs an iterator that traverses TDoubleListImp objects.

TDoubleListIteratorImp::Current
TDoubleListIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

TDoubleListIteratorImp::Restart
TDoubleListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TDoubleListIteratorImp::operator int
TDoubleListIteratorImp class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TDoubleListIteratorImp::operator ++
TDoubleListIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TDoubleListIteratorImp::operator - -
TDoubleListIteratorImp class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TMSDoubleListImp template

Syntax
template <class T, class Alloc> class TMSDoubleListImp;
Header File
dlistimp.h

Description
Implements a managed, sorted, double-linked list of objects of type T. It assumes that T has
meaningful copy semantics, a == operator, a < operator, and a default constructor.
In addition to the member functions given here, TMSDoubleListImp inherits member functions from
TMDoubleListImp.

Protected Member Functions
FindDetach
FindPred

Type Definitions
CondFunc
IterFunc

Public Constructor
TMSDoubleListImp::TMSDoubleListImp

Public Member Functions
Add
AddAtHead
AddAtTail
Detach
DetachAtHead
FirstThat
Flush
ForEach
IsEmpty
LastThat
PeekHead
PeekTail

Protected Data Members
Head
Tail

Protected Member Functions
FindDetach
FindPred

TMSDoubleListImp::CondFunc
TMSDoubleListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMSDoubleListImp::IterFunc
TMSDoubleListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMSDoubleListImp::TMSDoubleListImp
TMSDoubleListImp class

Syntax
TMSDoubleListImp()
Description
Constructs an empty, managed, double-linked list.

TMSDoubleListImp::Add
TMSDoubleListImp class

Syntax
int Add(const T& t);
Description
Add the given object at the beginning of the list.

TMSDoubleListImp::AddAtHead
TMSDoubleListImp class

Syntax
int AddAtHead(const T& t);
Description
Add the given object at the beginning of the list.

TMSDoubleListImp::AddAtTail
TMSDoubleListImp class

Syntax
int AddAtTail(const T&);
Description
Adds the given object at the end (tail) of the list.

TMSDoubleListImp::Detach
See Also TMSDoubleListImp class

Syntax
int Detach(const T&, int = 0);
Description
Removes the first occurrence of the given object encountered by searching from the beginning of the
list.

See Also
TShouldDelete

TMSDoubleListImp::DetachAtHead
TMSDoubleListImp class

Syntax
int DetachAtHead();
Description
Removes items from the head of a list without searching for a match.

TMSDoubleListImp::FirstThat
TMSDoubleListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the double-list that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

TMSDoubleListImp::Flush
TMSDoubleListImp class

Syntax
void Flush(int = 0);
Description
Removes all elements from the list without destroying the list.

TMSDoubleListImp::ForEach
TMSDoubleListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
ForEach creates an internal iterator to execute the given function for each element in the array. The
args argument lets you pass arbitrary data to this function.

TMSDoubleListImp::IsEmpty
TMSDoubleListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if array contains no elements; otherwise returns 0.

TMSDoubleListImp::LastThat
See Also TMSDoubleListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the double list that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TMSDoubleListImp::FirstThat
TMSDoubleListImp::ForEach

TMSDoubleListImp::PeekHead
TMSDoubleListImp class

Syntax
Const T& PeekHead() const;
Description
Returns a reference to the Head item in the double list, without removing it.

TMSDoubleListImp::PeekTail
TMSDoubleListImp class

Syntax
Const T& PeekTail() const;
Description
Returns a reference to the Tail item in the double list, without removing it.

TMSDoubleListImp::Head
TMSDoubleListImp class

Syntax
TMDoubleListElement<T> Head;
Description
The head item of the double list.

TMSDoubleListImp::Tail
TMSDoubleListImp class

Syntax
TMDoubleListElement<T> Tail;
Description
The tail item of the double list.

TMSDoubleListImp::FindDetach
TMSDoubleListImp class

Syntax
virtual TMDoubleListElement<T> *FindDetach(const T& t)
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TMSDoubleListImp::FindPred
TMSDoubleListImp class

Syntax
virtual TMDoubleListElement<T> *FindPred(const T&);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TMSDoubleListIteratorImp template

Syntax
template <class T, class Alloc> class TMSDoubleListIteratorImp;
Header File
dlistimp.h

Description
Implements a double list iterator. This iterator works with any direct double-linked list.

Public Constructor
TMSDoubleListIteratorImp::TMSDoubleListIteratorImp

Public Member Functions
Current
Restart

Operators
int
++
--

TMSDoubleListIteratorImp::TMSDoubleListIteratorImp
TMSDoubleListIteratorImp class

Syntax
TMSDoubleListIteratorImp(const TMSDoubleListImp<T,Alloc> &l)
Description
Constructs an iterator that traverses TMSDoubleListImp objects.

TMSDoubleListIteratorImp::Current
TMSDoubleListIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

TMSDoubleListIteratorImp::Restart
TMSDoubleListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMSDoubleListIteratorImp::operator int
TMSDoubleListIteratorImp class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMSDoubleListIteratorImp::operator ++
TMSDoubleListIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMSDoubleListIteratorImp::operator - -
TMSDoubleListIteratorImp class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TSDoubleListImp template

Syntax
template <class T> class TSDoubleListImp;
Header File
dlistimp.h

Description
Implements a sorted, double-linked list of objects of type T. It assumes that T has meaningful copy
semantics, a meaningful < operator, and a default constructor.

Type Definitions
CondFunc
IterFunc

Public Constructor
TSDoubleListImp::TSDoubleListImp

Public Member Functions
Add
AddAtHead
AddAtTail
Detach
DetachAtHead
FirstThat
Flush
ForEach
IsEmpty
LastThat
PeekHead
PeekTail

Protected Data Members
Head
Tail

Protected Member Functions
FindDetach
FindPred

TSDoubleListImp::CondFunc
TSDoubleListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TSDoubleListImp::IterFunc
TSDoubleListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TSDoubleListImp::TSDoubleListImp
TSDoubleListImp class

Syntax
TSDoubleListImp()
Description
Constructs an empty, managed, double-linked list.

TSDoubleListImp::Add
TSDoubleListImp class

Syntax
int Add(const T& t);
Description
Add the given object at the beginning of the list.

TSDoubleListImp::AddAtHead
TSDoubleListImp class

Syntax
int AddAtHead(const T& t);
Description
Add the given object at the beginning of the list.

TSDoubleListImp::AddAtTail
TSDoubleListImp class

Syntax
int AddAtTail(const T&);
Description
Adds the given object at the end (tail) the list.

TSDoubleListImp::Detach
See Also TSDoubleListImp class

Syntax
int Detach(const T&);
Description
Removes the first occurrence of the given object encountered by searching from the beginning of the
list.

See Also
TShouldDelete

TSDoubleListImp::DetachAtHead
TSDoubleListImp class

Syntax
int DetachAtHead();
Description
Removes items from the head of a list without searching for a match.

TSDoubleListImp::FirstThat
TSDoubleListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the double-list that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

TSDoubleListImp::Flush
TSDoubleListImp class

Syntax
void Flush();
Description
Removes all elements from the list without destroying the list.

TSDoubleListImp::ForEach
TSDoubleListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
ForEach creates an internal iterator to execute the given function for each element in the array. The
args argument lets you pass arbitrary data to this function.

TSDoubleListImp::IsEmpty
TSDoubleListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if array contains no elements; otherwise returns 0.

TSDoubleListImp::LastThat
See Also TSDoubleListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the double list that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TSDoubleListImp::FirstThat
TSDoubleListImp::ForEach

TSDoubleListImp::PeekHead
TSDoubleListImp class

Syntax
Const T& PeekHead() const;
Description
Returns a reference to the Head item in the double list, without removing it.

TSDoubleListImp::PeekTail
TSDoubleListImp class

Syntax
Const T& PeekTail() const;
Description
Returns a reference to the Tail item in the double list, without removing it.

TSDoubleListImp::Head
TSDoubleListImp class

Syntax
TMDoubleListElement<T> Head;
Description
The head item of the double list.

TSDoubleListImp::Tail
TSDoubleListImp class

Syntax
TMDoubleListElement<T> Tail;
Description
The tail item of the double list.

TSDoubleListImp::FindDetach
TSDoubleListImp class

Syntax
virtual TMDoubleListElement<T> *FindDetach(const T& t)
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TSDoubleListImp::FindPred
TSDoubleListImp class

Syntax
virtual TMDoubleListElement<T> *FindPred(const T&);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TSDoubleListIteratorImp template

Syntax
template <class T> class TSDoubleListIteratorImp;
Header File
dlistimp.h

Description
Implements a double list iterator. This iterator works with any direct double-linked list.

Public Constructor
TSDoubleListIteratorImp::TSDoubleListIteratorImp

Public Member Functions
Current
Restart

Operators
int
++
--

TSDoubleListIteratorImp::TSDoubleListIteratorImp
TSDoubleListIteratorImp class

Syntax
TSDoubleListIteratorImp(const TSDoubleListImp<T> &l)
Description
Constructs an iterator that traverses TSDoubleListImp objects.

TSDoubleListIteratorImp::Current
TSDoubleListIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

TSDoubleListIteratorImp::Restart
TSDoubleListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TSDoubleListIteratorImp::operator int
TSDoubleListIteratorImp class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TSDoubleListIteratorImp::operator ++
TSDoubleListIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TSDoubleListIteratorImp::operator - -
TSDoubleListIteratorImp class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TMIDoubleListImp template

Syntax
template <class T, class Alloc> class TMIDoubleListImp;
Header File
dlistimp.h

Description
Implements a managed, double-linked list of pointers to objects of type T. The contained objects need
a valid == operator. Since pointers always have meaningful copy semantics, this class can handle any
type of object.

Type Definitions
CondFunc
IterFunc

Public Member Functions
Add
AddAtHead
AddAtTail
Detach
DetachAtHead
DetachAtTail
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
LastThat
PeekHead
PeekTail

Protected Member Functions
FindPred

TMIDoubleListImp::CondFunc
TMIDoubleListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMIDoubleListImp::IterFunc
TMIDoubleListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMIDoubleListImp::Add
TMIDoubleListImp class

Syntax
int Add(T *t)
Description
Adds an object pointer to the double list.

TMIDoubleListImp::AddAtHead
TMIDoubleListImp class

Syntax
int AddAtHead(T *t);
Description
Add the given object at the beginning of the list.

TMIDoubleListImp::AddAtTail
TMIDoubleListImp class

Syntax
int AddAtTail(T *t)
Description
Adds an object pointer to the tail of the double list.

TMIDoubleListImp::Detach
See Also TMIDoubleListImp class

Syntax
int Detach(T *t, int del = 0)
Description
Removes the given object pointer from the list. The second argument specifies whether the object
should be deleted.

See Also
TShouldDelete

TMIDoubleListImp::DetachAtHead
TMIDoubleListImp class

Syntax
int DetachAtHead(int del = 0)
Description
Deletes the object pointer from the head of the list.

TMIDoubleListImp::DetachAtTail
TMIDoubleListImp class

Syntax
int DetachAtTail(int del = 0)
Description
Deletes the object pointer from the tail of the list.

TMIDoubleListImp::FirstThat
See Also TMIDoubleListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the double list that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TMIDoubleListImp::LastThat

TMIDoubleListImp::Flush
TMIDoubleListImp class

Syntax
void Flush(int = 0);
Description
Removes all elements from the list without destroying the list.

TMIDoubleListImp::ForEach
TMIDoubleListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each double-list element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMIDoubleListImp::GetItemsInContainer
TMIDoubleListImp class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array.

TMIDoubleListImp::IsEmpty
TMIDoubleListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if array contains no elements; otherwise returns 0.

TMIDoubleListImp::LastThat
See Also TMIDoubleListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
TMIDoubleListImp::FirstThat
TMIDoubleListImp::ForEach

TMIDoubleListImp::PeekHead
TMIDoubleListImp class

Syntax
T *PeekHead() const;
Description
Returns the object pointer at the Head of the list, without removing it.

TMIDoubleListImp::PeekTail
TMIDoubleListImp class

Syntax
T *PeekTail() const;
Description
Returns the object pointer at the Tail of the list, without removing it.

TMIDoubleListImp::FindPred
TMIDoubleListImp class

Syntax
virtual TDoubleListElement<void *> *FindPred(void *);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TMIDoubleListIteratorImp template

Syntax
template <class T, class Alloc> class TMIDoubleListIteratorImp;
Header File
dlistimp.h

Description
Implements a double list iterator. This iterator works with any indirect double list.

Public Constructor
TMIDoubleListIteratorImp::TMIDoubleListIteratorImp

Public Member Functions
Current
Restart

Operators
++

TMIDoubleListIteratorImp::TMIDoubleListIteratorImp
TMIDoubleListIteratorImp class

Syntax
TMIDoubleListIteratorImp(const TMIDoubleListImp<T,Alloc> &l)
Description
Constructs an object that iterates on TIDoubleListImp objects.

TMIDoubleListIteratorImp::Current
TMIDoubleListIteratorImp class

Syntax
T *Current()
Description
Returns the current object pointer.

TMIDoubleListIteratorImp::Restart
TMIDoubleListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMIDoubleListIteratorImp::operator ++
TMIDoubleListIteratorImp class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIDoubleListImp template

Syntax
template <class T> class TIDoubleListImp;
Header File
dlistimp.h

Description
Implements a double-linked list of pointers to objects of type T, using TStandardAllocator for memory
management. Since pointers always have meaningful copy semantics, this class can handle any type
of object.

Type Definitions
CondFunc
IterFunc

Public Member Functions
Add
AddAtHead
AddAtTail
Detach
DetachAtHead
DetachAtTail
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
LastThat
PeekHead
PeekTail

Protected Member Functions
FindPred

TIDoubleListImp::CondFunc
TIDoubleListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TIDoubleListImp::IterFunc
TIDoubleListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TIDoubleListImp::Add
TIDoubleListImp class

Syntax
int Add(T *t)
Description
Adds an object pointer to the double list.

TIDoubleListImp::AddAtHead
TIDoubleListImp class

Syntax
int AddAtHead(T *t);
Description
Add the given object at the beginning of the list.

TIDoubleListImp::AddAtTail
TIDoubleListImp class

Syntax
int AddAtTail(T *t)
Description
Adds an object pointer to the tail of the double list.

TIDoubleListImp::Detach
See Also TIDoubleListImp class

Syntax
int Detach(T *t, int del = 0)
Description
Removes the given object pointer from the list. The second argument specifies whether the object
should be deleted.

See Also
TShouldDelete

TIDoubleListImp::DetachAtHead
TIDoubleListImp class

Syntax
int DetachAtHead(int del = 0)
Description
Deletes the object pointer from the head of the list.

TIDoubleListImp::DetachAtTail
TIDoubleListImp class

Syntax
int DetachAtTail(int del = 0)
Description
Deletes the object pointer from the tail of the list.

TIDoubleListImp::FirstThat
See Also TIDoubleListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the double list that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TIDoubleListImp::LastThat

TIDoubleListImp::Flush
TIDoubleListImp class

Syntax
void Flush(int = 0);
Description
Removes all elements from the list without destroying the list.

TIDoubleListImp::ForEach
TIDoubleListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each double-list element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TIDoubleListImp::GetItemsInContainer
TIDoubleListImp class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array.

TIDoubleListImp::IsEmpty
TIDoubleListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if array contains no elements; otherwise returns 0.

TIDoubleListImp::LastThat
See Also TIDoubleListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
TIDoubleListImp::FirstThat
TIDoubleListImp::ForEach

TIDoubleListImp::PeekHead
TIDoubleListImp class

Syntax
T *PeekHead() const;
Description
Returns the object pointer at the Head of the list, without removing it.

TIDoubleListImp::PeekTail
TIDoubleListImp class

Syntax
T *PeekTail() const;
Description
Returns the object pointer at the Tail of the list, without removing it.

TIDoubleListImp::FindPred
TIDoubleListImp class

Syntax
virtual TDoubleListElement<void *> *FindPred(void *);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TIDoubleListIteratorImp template

Syntax
template <class T> class TIDoubleListIteratorImp;
Header File
dlistimp.h

Description
Implements a double list iterator. This iterator works with any indirect double list.

Public Constructor
TIDoubleListIteratorImp::TIDoubleListIteratorImp

Public Member Functions
Current
Restart

Operators
++

TIDoubleListIteratorImp::TIDoubleListIteratorImp
TIDoubleListIteratorImp class

Syntax
TIDoubleListIteratorImp(const TIDoubleListImp<T> &l)
Description
Constructs an object that iterates on TIDoubleListImp objects.

TIDoubleListIteratorImp::Current
TIDoubleListIteratorImp class

Syntax
T *Current()
Description
Returns the current object pointer.

TIDoubleListIteratorImp::Restart
TIDoubleListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TIDoubleListIteratorImp::operator ++
TIDoubleListIteratorImp class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMISDoubleListImp template

Syntax
template <class T, class Alloc> class TMISDoubleListImp;
Header File
dlistimp.h

Description
Implements a managed, sorted, double-linked list of pointers to objects of type T. Since pointers
always have meaningful copy semantics, this class can handle any type of object.

Type Definitions
CondFunc
IterFunc

Public Member Functions
Add
AddAtHead
AddAtTail
Detach
DetachAtHead
DetachAtTail
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
LastThat
PeekHead
PeekTail

Protected Member Functions
FindDetach
FindPred

TMISDoubleListImp::CondFunc
TMISDoubleListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMISDoubleListImp::IterFunc
TMISDoubleListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMISDoubleListImp::Add
TMISDoubleListImp class

Syntax
int Add(T *t)
Description
Adds an object pointer to the double list.

TMISDoubleListImp::AddAtHead
TMISDoubleListImp class

Syntax
int AddAtHead(T *t);
Description
Add the given object at the beginning of the list.

TMISDoubleListImp::AddAtTail
TMISDoubleListImp class

Syntax
int AddAtTail(T *t)
Description
Adds an object pointer to the tail of the double list.

TMISDoubleListImp::Detach
See Also TMISDoubleListImp class

Syntax
int Detach(T *t, int del = 0)
Description
Removes the given object pointer from the list. The second argument specifies whether the object
should be deleted.

See Also
TShouldDelete

TMISDoubleListImp::DetachAtHead
TMISDoubleListImp class

Syntax
int DetachAtHead(int del = 0)
Description
Deletes the object pointer from the head of the list.

TMISDoubleListImp::DetachAtTail
TMISDoubleListImp class

Syntax
int DetachAtTail(int del = 0)
Description
Deletes the object pointer from the tail of the list.

TMISDoubleListImp::FirstThat
See Also TMISDoubleListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the double list that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TMISDoubleListImp::LastThat

TMISDoubleListImp::Flush
TMISDoubleListImp class

Syntax
void Flush(int = 0);
Description
Removes all elements from the list without destroying the list.

TMISDoubleListImp::ForEach
TMISDoubleListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each double-list element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMISDoubleListImp::GetItemsInContainer
TMISDoubleListImp class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array.

TMISDoubleListImp::IsEmpty
TMISDoubleListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if array contains no elements; otherwise returns 0.

TMISDoubleListImp::LastThat
See Also TMISDoubleListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
TMISDoubleListImp::FirstThat
TMISDoubleListImp::ForEach

TMISDoubleListImp::PeekHead
TMISDoubleListImp class

Syntax
T *PeekHead() const;
Description
Returns the object pointer at the Head of the list, without removing it.

TMISDoubleListImp::PeekTail
TMISDoubleListImp class

Syntax
T *PeekTail() const;
Description
Returns the object pointer at the Tail of the list, without removing it.

TMISDoubleListImp::FindDetach
TMISDoubleListImp class

Syntax
virtual TMDoubleListElement<void *> *FindDetach(void *);
Description
Determines whether an object is in the list, and returns a pointer to its predecessor.

TMISDoubleListImp::FindPred
TMISDoubleListImp class

Syntax
virtual TDoubleListElement<void *> *FindPred(void *);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TMISDoubleListIteratorImp template

Syntax
template <class T, class Alloc> class TMISDoubleListIteratorImp;
Header File
dlistimp.h

Description
Implements a double list iterator. This iterator works with any indirect, sorted double list.

Public Constructor
TMISDoubleListIteratorImp::TMISDoubleListIteratorImp

Public Member Functions
Current
Restart

Operators
++

TMISDoubleListIteratorImp::TMISDoubleListIteratorImp
TMISDoubleListIteratorImp class

Syntax
TMISDoubleListIteratorImp(const TMISDoubleListImp<T,Alloc> &l)
Description
Constructs an object that iterates on TMISDoubleListImp objects.

TMISDoubleListIteratorImp::Current
TMISDoubleListIteratorImp class

Syntax
T *Current()
Description
Returns the current object pointer.

TMISDoubleListIteratorImp::Restart
TMISDoubleListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMISDoubleListIteratorImp::operator ++
TMISDoubleListIteratorImp class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TISDoubleListImp template

Syntax
template <class T> class TISDoubleListImp;
Header File
dlistimp.h

Description
Implements a sorted, double-linked list of pointers to objects of type T, using TStandardAllocator for
memory management. Since pointers always have meaningful copy semantics, this class can handle
any type of object.

Type Definitions
CondFunc
IterFunc

Public Member Functions
Add
AddAtHead
AddAtTail
Detach
DetachAtHead
DetachAtTail
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
LastThat
PeekHead
PeekTail

Protected Member Functions
FindPred

TISDoubleListImp::CondFunc
TISDoubleListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TISDoubleListImp::IterFunc
TISDoubleListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TISDoubleListImp::Add
TISDoubleListImp class

Syntax
int Add(T *t)
Description
Adds an object pointer to the double list.

TISDoubleListImp::AddAtHead
TISDoubleListImp class

Syntax
int AddAtHead(T *t);
Description
Add the given object at the beginning of the list.

TISDoubleListImp::AddAtTail
TISDoubleListImp class

Syntax
int AddAtTail(T *t)
Description
Adds an object pointer to the tail of the double list.

TISDoubleListImp::Detach
See Also TISDoubleListImp class

Syntax
int Detach(T *t, int del = 0)
Description
Removes the given object pointer from the list. The second argument specifies whether the object
should be deleted.

See Also
TShouldDelete

TISDoubleListImp::DetachAtHead
TISDoubleListImp class

Syntax
int DetachAtHead(int del = 0)
Description
Deletes the object pointer from the head of the list.

TISDoubleListImp::DetachAtTail
TISDoubleListImp class

Syntax
int DetachAtTail(int del = 0)
Description
Deletes the object pointer from the tail of the list.

TISDoubleListImp::FirstThat
See Also TISDoubleListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the double list that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
TISDoubleListImp::LastThat

TISDoubleListImp::Flush
TISDoubleListImp class

Syntax
void Flush(int = 0);
Description
Removes all elements from the list without destroying the list.

TISDoubleListImp::ForEach
TISDoubleListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each double-list element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TISDoubleListImp::GetItemsInContainer
TISDoubleListImp class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the array.

TISDoubleListImp::IsEmpty
TISDoubleListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if array contains no elements; otherwise returns 0.

TISDoubleListImp::LastThat
See Also TISDoubleListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
TISDoubleListImp::FirstThat
TISDoubleListImp::ForEach

TISDoubleListImp::PeekHead
TISDoubleListImp class

Syntax
T *PeekHead() const;
Description
Returns the object pointer at the Head of the list, without removing it.

TISDoubleListImp::PeekTail
TISDoubleListImp class

Syntax
T *PeekTail() const;
Description
Returns the object pointer at the Tail of the list, without removing it.

TISDoubleListImp::FindPred
TISDoubleListImp class

Syntax
virtual TDoubleListElement<void *> *FindPred(void *);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TISDoubleListIteratorImp template

Syntax
template <class T> class TISDoubleListImp;
Header File
dlistimp.h

Description
Implements a double list iterator. This iterator works with any indirect, sorted double list.

Public Constructor
TISDoubleListIteratorImp::TISDoubleListIteratorImp

Public Member Functions
Current
Restart

Operators
++

TISDoubleListIteratorImp::TISDoubleListIteratorImp
TISDoubleListIteratorImp class

Syntax
TISDoubleListIteratorImp(const TISDoubleListImp<T> &l)
Description
Constructs an object that iterates on TMISDoubleListImp objects.

TISDoubleListIteratorImp::Current
TISDoubleListIteratorImp class

Syntax
T *Current()
Description
Returns the current object pointer.

TISDoubleListIteratorImp::Restart
TISDoubleListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TISDoubleListIteratorImp::operator ++
TISDoubleListIteratorImp class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMHashTableImp template

Syntax
template <class T, class Alloc> class TMHashTableImp;
Header File
hashimp.h

Description
Implements a managed hash table of objects of type T, using the user-supplied storage allocator A. It
assumes that T has meaningful copy and == semantics, as well as a default constructor.

Public Constructors
TMHashTableImp::TMHashTableImp

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

TMHashTableImp::TMHashTableImp
TMHashTableImp class

Constructor
TMHashTableImp(unsigned aPrime = DEFAULT::HASH::TABLE::SIZE)
Description
Constructs a hash table.

Description
Calls member function Flush to delete the container.

TMHashTableImp::Add
TMHashTableImp class

Syntax
int Add(const T& t);
Description
Adds item t to the hash table.

TMHashTableImp::Detach
TMHashTableImp class

Syntax
int Detach(const T& t, int del=0);
Description
Removes item t from the hash table. If del is set to 0, t is deleted; if del is set to 1, t is not deleted.

TMHashTableImp::Find
TMHashTableImp class

Syntax
T * Find(const T& t) const;
Description
Returns a pointer to item t.

TMHashTableImp::Flush
TMHashTableImp class

Syntax
void Flush()
Description
Flushes all items in the hash table. The hash table is destroyed if del is nonzero.

TMHashTableImp::ForEach
TMHashTableImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Creates an internal iterator that executes the given function f for each item in the container. The args
argument lets you pass arbitrary data to this function.

TMHashTableImp::GetItemsInContainer
TMHashTableImp class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the hash table.

TMHashTableImp::IsEmpty
TMHashTableImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if the hash table is empty; otherwise returns 0.

TMHashTableIteratorImp template

Syntax
template <class T, class Alloc> class TMHashTableIteratorImp;
Header File
hashimp.h

Description
Implements an iterator for traversing TMHashTableImp containers, using the user-supplied storage
allocator Alloc.

Public Constructor and Destructor
TMHashTableIteratorImp::TMHashTableIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

TMHashTableIteratorImp::TMHashTableIteratorImp
TMHashTableIteratorImp class

Constructor
TMHashTableIteratorImp(const TMHashTableImp<T,A> & h)
Description
Constructs an iterator object that traverses a TMHashTableImp container.

TMHashTableIteratorImp::Current
TMHashTableIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

TMHashTableIteratorImp::Restart
TMHashTableIteratorImp class

Syntax
void Restart();
Description
Restarts iteration from the beginning of the hash table.

TMHashTableIteratorImp::operator int
TMHashTableIteratorImp class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMHashTableIteratorImp::operator ++
TMHashTableIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

THashTableImp template

Syntax
template <class T> class THashTableImp;
Header File
hashimp.h

Description
Implements a hash table of objects of type T, using the system storage allocator TStandardAllocator. It
assumes that T has meaningful copy and == semantics as well as a default constructor.

Public Constructor
THashTableImp::THashTableImp

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

THashTableImp::THashTableImp
THashTableImp class

Syntax
THashTableImp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE)
Description
Constructs a hash table that uses TStandardAllocator for memory management.

THashTableImp::Add
THashTableImp class

Syntax
int Add(const T& t);
Description
Adds item t to the hash table.

THashTableImp::Detach
THashTableImp class

Syntax
int Detach(const T& t, int del=0);
Description
Removes item t from the hash table. If del is set to 0, t is deleted; if del is set to 1, t is not deleted.

THashTableImp::Find
THashTableImp class

Syntax
T * Find(const T& t) const;
Description
Returns a pointer to item t.

THashTableImp::Flush
THashTableImp class

Syntax
void Flush()
Description
Flushes all items in the hash table. The hash table is destroyed if del is nonzero.

THashTableImp::ForEach
THashTableImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Creates an internal iterator that executes the given function f for each item in the container. The args
argument lets you pass arbitrary data to this function.

THashTableImp::GetItemsInContainer
THashTableImp class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the hash table.

THashTableImp::IsEmpty
THashTableImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if the hash table is empty; otherwise returns 0.

THashTableIteratorImp template

Syntax
template <class T> class THashTableIteratorImp;
Header File
hashimp.h

Description
Implements an iterator for traversing THashTableImp containers.

Public Constructor
THashTableIteratorImp::THashTableIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

THashTableIteratorImp::THashTableIteratorImp
THashTableIteratorImp class

Syntax
THashTableIteratorImp(const THashTableImp<T,A> & h)
Description
Constructs an iterator object that traverses a THashTableImp container.

THashTableIteratorImp::Current
THashTableIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

THashTableIteratorImp::Restart
THashTableIteratorImp class

Syntax
void Restart();
Description
Restarts iteration from the beginning of the hash table.

THashTableIteratorImp::operator int
THashTableIteratorImp class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

THashTableIteratorImp::operator ++
THashTableIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMIHashTableImp template

Syntax
template <class T, class Alloc> class TMIHashTableImp;
Header File
hashimp.h

Description
Implements a managed hash table of pointers to objects of type T, using the user-supplied storage
allocator Alloc.

Public Constructor
TMIHashTableImp::TMIHashTableImp

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

TMIHashTableImp::TMIHashTableImp
TMIHashTableImp class

Syntax
TMIHashTableImp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE)
Description
Constructs an indirect hash table.

TMIHashTableImp::Add
TMIHashTableImp class

Syntax
int Add(T * t)
Description
Adds a pointer to item t to the hash table.

TMIHashTableImp::Detach
TMIHashTableImp class

Syntax
int Detach(T * t, int del = 0)
Description
Removes a pointer to item t from the hash table. t is deleted if del is set 1, and not deleted if del is set
to 0.

TMIHashTableImp::Find
TMIHashTableImp class

Syntax
T * Find(const T * t) const;
Description
Returns a pointer to item t.

TMIHashTableImp::Flush
TMIHashTableImp class

Syntax
void Flush(int del = 0)
Description
Flushes all items in the hash table. The hash table is destroyed if del is nonzero.

TMIHashTableImp::ForEach
TMIHashTableImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Creates an internal iterator that executes the given function f for each item in the container. The args
argument lets you pass arbitrary data to this function.

TMIHashTableImp::GetItemsInContainer
TMIHashTableImp class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the hash table.

TMIHashTableImp::IsEmpty
TMIHashTableImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if the hash table is empty; otherwise returns 0.

TMIHashTableIteratorImp template

Syntax
template <class T, class Alloc> class TMIHashTableIteratorImp;
Header File
hashimp.h

Description
Implements an iterator for traversing TMIHashTableImp containers.

Public Constructor
TMIHashTableIteratorImp::TMIHashTableIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

TMIHashTableIteratorImp::TMIHashTableIteratorImp
TMIHashTableIteratorImp class

Syntax
TMIHashTableIteratorImp(const TMIHashTableImp<T,A> & h)
Description
Constructs an iterator object that traverses a TMIHashTableImp container.

TMIHashTableIteratorImp::Current
TMIHashTableIteratorImp class

Syntax
T *Current()
Description
Returns a pointer to the current object.

TMIHashTableIteratorImp::Restart
TMIHashTableIteratorImp class

Syntax
void Restart();
Description
Restarts iteration from the beginning of the hash table.

TMIHashTableIteratorImp::operator int
TMIHashTableIteratorImp class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMIHashTableIteratorImp::operator ++
TMIHashTableIteratorImp class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object pointer that was current before the move
(post-increment).
Form 2: Moves to the next object, and returns the object pointer that was current after the move (pre-
increment).

TIHashTableImp template

Syntax
template <class T> class TIHashTableImp;
Header File
hashimp.h

Description
Implements a hash table of pointers to objects of type T, using the system storage allocator
TStandardAllocator.

Public Constructor
TIHashTableImp::TIHashTableImp

Public Member Functions
Add
Detach
Find
Flush
ForEach
GetItemsInContainer
IsEmpty

TIHashTableImp::TIHashTableImp
TIHashTableImp class

Syntax
TIHashTableImp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE)
Description
Constructs an indirect hash table that uses the system storage allocator.

TIHashTableImp::Add
TIHashTableImp class

Syntax
int Add(T * t)
Description
Adds a pointer to item t to the hash table.

TIHashTableImp::Detach
TIHashTableImp class

Syntax
int Detach(T * t, int del = 0)
Description
Removes a pointer to item t from the hash table. t is deleted if del is set 1, and not deleted if del is set
to 0.

TIHashTableImp::Find
TIHashTableImp class

Syntax
T * Find(const T * t) const;
Description
Returns a pointer to item t.

TIHashTableImp::Flush
TIHashTableImp class

Syntax
void Flush(int del = 0)
Description
Flushes all items in the hash table. The hash table is destroyed if del is nonzero.

TIHashTableImp::ForEach
TIHashTableImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Creates an internal iterator that executes the given function f for each item in the container. The args
argument lets you pass arbitrary data to this function.

TIHashTableImp::GetItemsInContainer
TIHashTableImp class

Syntax
unsigned GetItemsInContainer() const;
Description
Returns the number of items in the hash table.

TIHashTableImp::IsEmpty
TIHashTableImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if the hash table is empty; otherwise returns 0.

TIHashTableIteratorImp template

Syntax
template <class T> class TIHashTableIteratorImp;
Header File
hashimp.h

Description
Implements an iterator object that traverses TIHashTableImp containers, and uses the system memory
allocator TStandardAllocator.

Public Constructor
TIHashTableIteratorImp::TIHashTableIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

TIHashTableIteratorImp::TIHashTableIteratorImp
TIHashTableIteratorImp class

Syntax
TIHashTableIteratorImp(const TMIHashTableImp<T,A> & h)
Description
Constructs an iterator object that traverses a TMIHashTableImp container.

TIHashTableIteratorImp::Current
TIHashTableIteratorImp class

Syntax
T *Current()
Description
Returns a pointer to the current object.

TIHashTableIteratorImp::Restart
TIHashTableIteratorImp class

Syntax
void Restart();
Description
Restarts iteration from the beginning of the hash table.

TIHashTableIteratorImp::operator int
TIHashTableIteratorImp class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TIHashTableIteratorImp::operator ++
TIHashTableIteratorImp class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object pointer that was current before the move
(post-increment).
Form 2: Moves to the next object, and returns the object pointer that was current after the move (pre-
increment).

TMListElement template

Syntax
template <class T, class Alloc> class TMListElement;
Header File
listimp.h

Description
This class defines the nodes for TMListImp and TMIListImp and related classes.

Public Constructors
TMListElement::TMListElement

Public Data Members
Data
Next

Operators
delete
new

TMListElement::data
TMListElement class

Syntax
T Data;
Description
Data object contained in the list.

TMListElement::Next
TMListElement class

Syntax
TMListElement<T,Alloc> *Next;
Description
A pointer to the next element in the list.

TMListElement::TMListElement
TMListElement class

Form 1
TMListElement();
Form 2
TMListElement(T& t, TMListElement<T,Alloc> *p)
Description
Form 1: Constructs a list element.
Form 2: Constructs a list element, and places it after the object at location p.

TMListElement::operator delete
TMListElement class

Syntax
void operator delete(void *);
Description
Deletes an object.

TMListElement::operator new
TMListElement class

Syntax
void *operator new(size_t sz);
Description
Allocates a memory block of sz amount, and returns a pointer to the memory block.

TMListImp template

Syntax
template <class T, class Alloc> class TMListImp;
Header File
listimp.h

Description
Implements a managed list of objects of type T. TMListImp assumes that T has meaningful copy
semantics, and a default constructor.

Type Definitions
CondFunc
IterFunc

Public Constructor
TMListImp::TMListImp

Public Member Functions
Add
Detach
DetachAtHead
FirstThat
Flush
ForEach
IsEmpty
LastThat
PeekHead

Protected Data Members
Head
Tail

Protected Member Functions
FindDetach
FindPred

TMListImp::CondFunc
TMListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMListImp::IterFunc
TMListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMListImp::TMListImp
TMListImp class

Syntax
TMListImp()
Description
Constructs an empty list.

TMListImp::Add
TMListImp class

Syntax
int Add(const T& t);
Description
Adds an object to the list.

TMListImp::Detach
See Also TMListImp class

Syntax
int Detach(const T&);
Description
Removes the given object from the list. Returns 0 for failure, 1 for success in removing the object.

See Also
TShouldDelete

TMListImp::DetachAtHead
TMListImp class

Syntax
int DetachAtHead();
Description
Removes items from the head of a list without searching for a match.

TMListImp::FirstThat
See Also TMListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the list that satisfies a given condition. You supply a test-function
pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMListImp::Flush
TMListImp class

Syntax
void Flush();
Description
Flushes the list without destroying it.

TMListImp::ForEach
TMListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for list element. ForEach creates an internal iterator to execute the given
function for each element in the array. The args argument lets you pass arbitrary data to this function.

TMListImp::IsEmpty
TMListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if the list has no elements; otherwise returns 0.

TMListImp::LastThat
See Also TMListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TMListImp::PeekHead
TMListImp class

Syntax
Const T& PeekHead() const;
Description
Returns a reference to the Head item in the list, without removing it.

TMListImp::Head
TMListImp class

Syntax
TMListElement<T,Alloc> Head;
Description
The element before the first element in the list.

TMListImp::Tail
TMListImp class

Syntax
TMListElement<T,Alloc> Tail;
Description
The element after the last element in the list.

TMListImp::FindDetach
TMListImp class

Syntax
virtual TMListElement<T,Alloc> *FindDetach(const T& t)
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TMListImp::FindPred
TMListImp class

Syntax
virtual TMListElement<T,Alloc> *FindPred(const T&);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TMListIteratorImp template

Syntax
template <class T, class Alloc> class TMListIteratorImp;
Header File
listimp.h

Description
Implements a list iterator that works on direct, managed list. For indirect list iteration see
TMIListIteratorImp.

Public Constructor
TMListIteratorImp::TMListIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

TMListIteratorImp::TMListIteratorImp
TMListIteratorImp class

Syntax
TMListIteratorImp(const TMListImp<T,Alloc> &l)
Description
Constructs an iterator that traverses TMListImp objects.

TMListIteratorImp::Current
TMListIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

TMListIteratorImp::Restart
TMListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMListIteratorImp::operator int
TMListIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMListIteratorImp::operator ++
TMListIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TListImp template

Syntax
template <class T> class TListImp;
Header File
listimp.h

Description
Implements a list of objects of type T. TListImp assumes that T has meaningful copy semantics, and a
default constructor.

Type Definitions
CondFunc
IterFunc

Public Constructor
TListImp::TListImp

Public Member Functions
Add
Detach
DetachAtHead
FirstThat
Flush
ForEach
IsEmpty
LastThat
PeekHead

Protected Data Members
Head
Tail

Protected Member Functions
FindDetach
FindPred

TListImp::CondFunc
TListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TListImp::IterFunc
TListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TListImp::TListImp
TListImp class

Syntax
TListImp()
Description
Constructs an empty list.

TListImp::Add
TListImp class

Syntax
int Add(const T& t);
Description
Adds an object to the list.

TListImp::Detach
See Also TListImp class

Syntax
int Detach(const T&);
Description
Removes the given object from the list. Returns 0 for failure, 1 for success in removing the object.

See Also
TShouldDelete

TListImp::DetachAtHead
TListImp class

Syntax
int DetachAtHead();
Description
Removes items from the head of a list without searching for a match.

TListImp::FirstThat
See Also TListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the list that satisfies a given condition. You supply a test-function
pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
LastThat

TListImp::Flush
TListImp class

Syntax
void Flush();
Description
Flushes the list without destroying it.

TListImp::ForEach
TListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for list element. ForEach creates an internal iterator to execute the given
function for each element in the array. The args argument lets you pass arbitrary data to this function.

TListImp::IsEmpty
TListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if the list has no elements; otherwise returns 0.

TListImp::LastThat
See Also TListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TListImp::PeekHead
TListImp class

Syntax
Const T& PeekHead() const;
Description
Returns a reference to the Head item in the list, without removing it.

TListImp::Head
TListImp class

Syntax
TMListElement<T,Alloc> Head;
Description
The element before the first element in the list.

TListImp::Tail
TListImp class

Syntax
TMListElement<T,Alloc> Tail;
Description
The element after the last element in the list.

TListImp::FindDetach
TListImp class

Syntax
virtual TMListElement<T,Alloc> *FindDetach(const T& t)
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TListImp::FindPred
TListImp class

Syntax
virtual TMListElement<T,Alloc> *FindPred(const T&);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TListIteratorImp template

Syntax
template <class T> class TListIteratorImp;
Header File
listimp.h

Description
Implements a list iterator that works on direct, managed list.

Public Constructor
TListIteratorImp::TListIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

TListIteratorImp::TListIteratorImp
TListIteratorImp class

Syntax
TListIteratorImp(const TMListImp<T,TStandardAllocator> &l)
Description
Constructs an iterator that traverses TListImp objects.

TListIteratorImp::Current
TListIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

TListIteratorImp::Restart
TListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TListIteratorImp::operator int
TListIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TListIteratorImp::operator ++
TListIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMSListImp template

Syntax
template <class T, class Alloc> class TMSListImp;
Header File
listimp.h

Description
Implements a managed, sorted list of objects of type T. TMSListImp assumes that T has meaningful
copy semantics, a meaningful < operator, and a default constructor.

Type Definitions
CondFunc
IterFunc

Public Constructor
TMSListImp::TMSListImp

Public Member Functions
Add
Detach
DetachAtHead
FirstThat
Flush
ForEach
IsEmpty
LastThat
PeekHead

Protected Data Members
Head
Tail

Protected Member Functions
FindDetach
FindPred

TMSListImp::CondFunc
TMSListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMSListImp::IterFunc
TMSListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMSListImp::TMSListImp
TMSListImp class

Syntax
TMSListImp()
Description
Constructs an empty list.

TMSListImp::Add
TMSListImp class

Syntax
int Add(const T& t);
Description
Adds an object to the list.

TMSListImp::Detach
See Also TMSListImp class

Syntax
int Detach(const T&);
Description
Removes the given object from the list. Returns 0 for failure, 1 for success in removing the object.

See Also
TShouldDelete

TMSListImp::DetachAtHead
TMSListImp class

Syntax
int DetachAtHead();
Description
Removes items from the head of a list without searching for a match.

TMSListImp::FirstThat
See Also TMSListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the list that satisfies a given condition. You supply a test-function
pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMSListImp::Flush
TMSListImp class

Syntax
void Flush();
Description
Flushes the list without destroying it.

TMSListImp::ForEach
TMSListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for list element. ForEach creates an internal iterator to execute the given
function for each element in the array. The args argument lets you pass arbitrary data to this function.

TMSListImp::IsEmpty
TMSListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if the list has no elements; otherwise returns 0.

TMSListImp::LastThat
See Also TMSListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TMSListImp::PeekHead
TMSListImp class

Syntax
Const T& PeekHead() const;
Description
Returns a reference to the Head item in the list, without removing it.

TMSListImp::Head
TMSListImp class

Syntax
TMListElement<T,Alloc> Head;
Description
The element before the first element in the list.

TMSListImp::Tail
TMSListImp class

Syntax
TMListElement<T,Alloc> Tail;
Description
The element after the last element in the list.

TMSListImp::FindDetach
TMSListImp class

Syntax
virtual TMListElement<T,Alloc> *FindDetach(const T& t)
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TMSListImp::FindPred
TMSListImp class

Syntax
virtual TMListElement<T,Alloc> *FindPred(const T&);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TMSListIteratorImp template

Syntax
template <class T, class Alloc> class TMSListIteratorImp;
Header File
listimp.h

Description
Implements a list iterator that works on direct, managed, sorted list.

Public Constructor
TMSListIteratorImp::TMSListIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

TMSListIteratorImp::TMSListIteratorImp
TMSListIteratorImp class

Syntax
TMSListIteratorImp(const TMSListImp<T,Alloc> &l)
Description
Constructs an iterator that traverses TMSListImp objects.

TMSListIteratorImp::Current
TMSListIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

TMSListIteratorImp::Restart
TMSListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMSListIteratorImp::operator int
TMSListIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMSListIteratorImp::operator ++
TMSListIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TSListImp template

Syntax
template <class T> class TSListImp;
Header File
listimp.h

Description
Implements a sorted list of objects of type T, using TStandardAllocator for memory management.
TSListImp assumes that T has meaningful copy semantics, a meaningful < operator, and a default
constructor.

Type Definitions
CondFunc
IterFunc

Public Constructor
TSListImp::TSListImp

Public Member Functions
Add
Detach
DetachAtHead
FirstThat
Flush
ForEach
IsEmpty
LastThat
PeekHead

Protected Data Members
Head
Tail

Protected Member Functions
FindDetach
FindPred

TSListImp::CondFunc
TSListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TSListImp::IterFunc
TSListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TSListImp::TSListImp
TSListImp class

Syntax
TSListImp()
Description
Constructs an empty list.

TSListImp::Add
TSListImp class

Syntax
int Add(const T& t);
Description
Adds an object to the list.

TSListImp::Detach
See Also TSListImp class

Syntax
int Detach(const T&);
Description
Removes the given object from the list. Returns 0 for failure, 1 for success in removing the object.

See Also
TShouldDelete

TSListImp::DetachAtHead
TSListImp class

Syntax
int DetachAtHead();
Description
Removes items from the head of a list without searching for a match.

TSListImp::FirstThat
See Also TSListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the list that satisfies a given condition. You supply a test-function
pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
LastThat

TSListImp::Flush
TSListImp class

Syntax
void Flush();
Description
Flushes the list without destroying it.

TSListImp::ForEach
TSListImp class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for list element. ForEach creates an internal iterator to execute the given
function for each element in the array. The args argument lets you pass arbitrary data to this function.

TSListImp::IsEmpty
TSListImp class

Syntax
int IsEmpty() const;
Description
Returns 1 if the list has no elements; otherwise returns 0.

TSListImp::LastThat
See Also TSListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TSListImp::PeekHead
TSListImp class

Syntax
Const T& PeekHead() const;
Description
Returns a reference to the Head item in the list, without removing it.

TSListImp::Head
TSListImp class

Syntax
TMListElement<T,Alloc> Head;
Description
The element before the first element in the list.

TSListImp::Tail
TSListImp class

Syntax
TMListElement<T,Alloc> Tail;
Description
The element after the last element in the list.

TSListImp::FindDetach
TSListImp class

Syntax
virtual TMListElement<T,Alloc> *FindDetach(const T& t)
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TSListImp::FindPred
TSListImp class

Syntax
virtual TMListElement<T,Alloc> *FindPred(const T&);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TSListIteratorImp template

Syntax
template <class T> class TSListIteratorImp;
Header File
listimp.h

Description
Implements a list iterator that works on direct, sorted list.

Public Constructor
TSListIteratorImp::TSListIteratorImp

Public Member Functions
Current
Restart

Operators
int
++

TSListIteratorImp::TSListIteratorImp
TSListIteratorImp class

Syntax
TSListIteratorImp(const TSListImp<T,Alloc> &l)
Description
Constructs an iterator that traverses TSListImp objects.

TSListIteratorImp::Current
TSListIteratorImp class

Syntax
const T& Current()
Description
Returns the current object.

TSListIteratorImp::Restart
TSListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TSListIteratorImp::operator int
TSListIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TSListIteratorImp::operator ++
TSListIteratorImp class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMIListImp template

Syntax
template <class T, class Alloc> class TMIListImp;
Header File
listimp.h

Description
Implements a managed list of pointers to objects of type T. Since pointers always have meaningful
copy semantics, this class can handle any type of object.

Type Definitions
CondFunc
IterFunc

Public Member Functions
Add
Detach
FirstThat
ForEach
LastThat
PeekHead

Protected Member Functions
FindPred

TMIListImp::CondFunc
TMIListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMIListImp::IterFunc
TMIListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMIListImp::Add
TMIListImp class

Syntax
int Add(T *t);
Description
Adds an object pointer to the list.

TMIListImp::Detach
See Also TMIListImp class

Syntax
int Detach(T *t, int del = 0)
Description
Removes the given object pointer from the list. The second argument specifies whether the object
should be deleted.

See Also
TShouldDelete

TMIListImp::FirstThat
See Also TMIListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the list that satisfies a given condition. You supply a test-function
pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMIListImp::ForEach
TMIListImp class

Syntax
void ForEach(IterFunc iter, void *)
Description
Executes function iter for each list element. ForEach creates an internal iterator to execute the given
function for each element in the array. The args argument lets you pass arbitrary data to this function.

TMIListImp::LastThat
See Also TMIListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TMIListImp::PeekHead
TMIListImp class

Syntax
T *PeekHead() const;
Description
Returns the object pointer at the Head of the list, without removing it.

TMIListImp::FindPred
TMIListImp class

Syntax
virtual TMListElement<VoidPointer,Alloc> *FindPred(VoidPointer);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TMIListIteratorImp template

Syntax
template <class T, class Alloc> class TMIListIteratorImp;
Header File
listimp.h

Description
Implements a list iterator that works with any managed indirect list. For direct lists, see
TMListIteratorImp.

Public Constructor
TMIListIteratorImp::TMIListIteratorImp

Public Member Functions
Current
Restart

Operators
++

TMIListIteratorImp::TMIListIteratorImp
TMIListIteratorImp class

Syntax
TMIListIteratorImp(const TMIListImp<VoidPointer,Alloc> &l)
Description
Constructs an object that iterates on TMIListImp objects.

TMIListIteratorImp::Current
TMIListIteratorImp class

Syntax
T *Current()
Description
Returns the current object pointer.

TMIListIteratorImp::Restart
TMIListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMIListIteratorImp::operator ++
TMIListIteratorImp class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIListImp template

Syntax
template <class T> class TIListImp;
Header File
listimp.h

Description
Implements a list of pointers to objects of type T. Since pointers always have meaningful copy
semantics, this class can handle any type of object.

Type Definitions
CondFunc
IterFunc

Public Member Functions
Add
Detach
FirstThat
ForEach
LastThat
PeekHead

Protected Member Functions
FindPred

TIListImp::CondFunc
TIListImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TIListImp::IterFunc
TIListImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TIListImp::Add
TIListImp class

Syntax
int Add(T *t);
Description
Adds an object pointer to the list.

TIListImp::Detach
See Also TIListImp class

Syntax
int Detach(T *t, int del = 0)
Description
Removes the given object pointer from the list. The second argument specifies whether the object
should be deleted.

See Also
TShouldDelete

TIListImp::FirstThat
See Also TIListImp class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the list that satisfies a given condition. You supply a test-function
pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
LastThat

TIListImp::ForEach
TIListImp class

Syntax
void ForEach(IterFunc iter, void *)
Description
Executes function iter for each list element. ForEach creates an internal iterator to execute the given
function for each element in the array. The args argument lets you pass arbitrary data to this function.

TIListImp::LastThat
See Also TIListImp class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the list that satisfies a given condition. You supply a test function
pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args.
Returns 0 if no object in the array meets the condition.

See Also
FirstThat
ForEach

TIListImp::PeekHead
TIListImp class

Syntax
T *PeekHead() const;
Description
Returns the object pointer at the Head of the list, without removing it.

TIListImp::FindPred
TIListImp class

Syntax
virtual TMListElement<VoidPointer,Alloc> *FindPred(VoidPointer);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TIListIteratorImp template

Syntax
template <class T> class TIListIteratorImp;
Header File
listimp.h

Description
Implements a list iterator that works with any indirect list.

Public Constructor
TIListIteratorImp::TIListIteratorImp

Public Member Functions
Current
Restart

Operators
++

TIListIteratorImp::TIListIteratorImp
TIListIteratorImp class

Syntax
TIListIteratorImp(const TIListImp<T> &l)
Description
Constructs an object that iterates on TIListImp objects.

TIListIteratorImp::Current
TIListIteratorImp class

Syntax
T *Current()
Description
Returns the current object pointer.

TIListIteratorImp::Restart
TIListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TIListIteratorImp::operator ++
TIListIteratorImp class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMISListImp template

Syntax
template <class T, class Alloc> class TMISListImp;
Header File
listimp.h

Description
Implements a managed sorted list of pointers to objects of type T. Since pointers always have
meaningful copy semantics, this class can handle any type of object.

Public Member Functions
FindDetach
FindPred

TMISListImp::FindDetach
TMISListImp class

Syntax
virtual TMListElement<TVoidPointer,Alloc> *FindDetach(TVoidPointer);
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TMISListImp::FindPred
TMISListImp class

Syntax
virtual TMListElement<TVoidPointer,Alloc> *FindPred(TVoidPointer);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TMISListIteratorImp template

Syntax
template <class T, class Alloc> class TMISListIteratorImp;
Header File
listimp.h

Description
Implements a list iterator that works with any managed indirect list. For direct lists, see
TMListIteratorImp.

Public Constructor
TMISListIteratorImp::TMISListIteratorImp

TMISListIteratorImp::TMISListIteratorImp
TMISListIteratorImp class

Syntax
TMISListIteratorImp(const TMISListImp<T,Alloc> &l) :
Description
Constructs an object that iterates on TMISListImp objects.

TISListImp template

Syntax
template <class T> class TISListImp;
Header File
listimp.h

Description
Implements a sorted list of pointers to objects of type T, using TStandardAllocator for memory
management. Since pointers always have meaningful copy semantics, this class can handle any type
of object.

Public Member Functions
FindDetach
FindPred

TISListImp::FindDetach
TISListImp class

Syntax
virtual TMListElement<TVoidPointer,Alloc> *FindDetach(TVoidPointer);
Description
Determines whether an object is in the list, and returns a pointer to its predecessor. Returns 0 if not
found.

TISListImp::FindPred
TISListImp class

Syntax
virtual TMListElement<TVoidPointer,Alloc> *FindPred(TVoidPointer);
Description
Finds the element that would be followed by the parameter. The function does not check whether the
parameter is actually there. This can be used for inserting (insert after returned element pointer).

TISListIteratorImp template

Syntax
template <class T> class TISListIteratorImp;
Header File
listimp.h

Description
Implements a list iterator that works with any indirect list.

Public Constructor
TISListIteratorImp::TISListIteratorImp

Public Member Functions
Current
Restart

Operators
++

TISListIteratorImp::TISListIteratorImp
TISListIteratorImp class

Syntax
TISListIteratorImp(const TISListImp<T> &l)
Description
Constructs an object that iterates on TISListImp objects.

TISListIteratorImp::Current
TISListIteratorImp class

Syntax
T *Current()
Description
Returns the current object pointer.

TISListIteratorImp::Restart
TISListIteratorImp class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TISListIteratorImp::operator ++
TISListIteratorImp class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMQueueAsVector template

Header File
queues.h

Description
Implements a managed queue of objects of type T, using a vector as the underlying implementation.
TMQueueAsVector assumes T has meaningful copy semantics, a < operator, and a default
constructor. The memory manager Alloc provides class-specific new and delete operators.

Public Constructors
TMQueueAsVector::TMQueueAsVector

Public Member Functions
FirstThat
Flush
ForEach
Get
GetItemsInContainer
IsEmpty
IsFull
LastThat
Put

TMQueueAsVector::TMQueueAsVector
TMQueueAsVector class

Syntax
TMQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE)
Description
Constructs a managed, vector-implemented queue, of sz size.

TMQueueAsVector::FirstThat
See Also TMQueueAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the queue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMQueueAsVector::Flush
See Also TMQueueAsVector class

Syntax
void Flush()
Description
Flushes the queue without destroying it. The fate of any objects removed depends on the current
ownership status.

See Also
TShouldDelete::ownsElements

TMQueueAsVector::ForEach
TMQueueAsVector class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each queue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMQueueAsVector::Get
TMQueueAsVector class

Syntax
T Get()
Description
Removes the object from the head of the queue. If the queue is empty, it returns 0. Otherwise the
removed object is returned.

TMQueueAsVector::GetItemsInContainer
TMQueueAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the queue.

TMQueueAsVector::IsEmpty
TMQueueAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the queue has no elements; otherwise returns 0.

TMQueueAsVector::IsFull
TMQueueAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the queue is full; otherwise returns 0.

TMQueueAsVector::LastThat
See Also TMQueueAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the queue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the queue meets the condition.

See Also
FirstThat
ForEach

TMQueueAsVector::Put
TMQueueAsVector class

Syntax
void Put(T t)
Description
Adds an object to (the tail of) a queue.

TMQueueAsVectorIterator template

Header File
queues.h

Description
Implements an iterator object for managed, vector-based queues.

Public Constructors
TMQueueAsVectorIterator::TMQueueAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMQueueAsVectorIterator::TMQueueAsVectorIterator
TMQueueAsVectorIterator class

Syntax
TMQueueAsVectorIterator(const TMQueueAsVector<T,Alloc> &q)
Description
Constructs an object that iterates on TMQueueAsVector objects.

TMQueueAsVectorIterator::Current
TMQueueAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TMQueueAsVectorIterator::Restart
TMQueueAsVectorIterator class

Syntax
void Restart();
Description
Restarts iteration.

TMQueueAsVectorIterator::operator ++
TMQueueAsVectorIterator class

Form 1
const T& operator ++ (int);
Form 2
const T& operator ++ ();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMQueueAsVectorIterator::operator int
TMQueueAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. Iterator converts to
0 if nothing remains in the iterator.

TQueueAsVector template

Header File
queues.h

Description
Implements an iterator object for vector-based queues.

Public Constructors
TQueueAsVector::TQueueAsVector

Public Member Functions
FirstThat
Flush
ForEach
Get
GetItemsInContainer
IsEmpty
IsFull
LastThat
Put

TQueueAsVector::TQueueAsVector
TQueueAsVector class

Syntax
TQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE)
Description
Constructs a vector-implemented queue, of sz size.

TQueueAsVector::FirstThat
See Also TQueueAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the queue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TQueueAsVector::Flush
See Also TQueueAsVector class

Syntax
void Flush()
Description
Flushes the queue without destroying it. The fate of any objects removed depends on the current
ownership status.

See Also
TShouldDelete::ownsElements

TQueueAsVector::ForEach
TQueueAsVector class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each queue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TQueueAsVector::Get
TQueueAsVector class

Syntax
T Get()
Description
Removes the object from the end (tail) of the queue. If the queue is empty, it returns 0. Otherwise the
removed object is returned.

TQueueAsVector::GetItemsInContainer
TQueueAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the queue.

TQueueAsVector::IsEmpty
TQueueAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the queue has no elements; otherwise returns 0.

TQueueAsVector::IsFull
TQueueAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the queue is full; otherwise returns 0.

TQueueAsVector::LastThat
See Also TQueueAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the queue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the queue meets the condition.

See Also
FirstThat
ForEach

TQueueAsVector::Put
TQueueAsVector class

Syntax
void Put(T t)
Description
Adds an object to (the tail of) a queue.

TQueueAsVectorIterator template

Header File
queues.h

Description
Implements an iterator object for vector-based queues.

Public Constructors
TQueueAsVectorIterator::TQueueAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TQueueAsVectorIterator::TQueueAsVectorIterator
TQueueAsVectorIterator class

Syntax
TQueueAsVectorIterator(const TQueueAsVector<T> &q)
Description
Constructs an object that iterates on TQueueAsVector objects.

TQueueAsVectorIterator::Current
TQueueAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TQueueAsVectorIterator::Restart
TQueueAsVectorIterator class

Syntax
void Restart();
Description
Restarts iteration.

TQueueAsVectorIterator::operator ++
TQueueAsVectorIterator class

Form 1
const T& operator ++ (int);
Form 2
const T& operator ++ ();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TQueueAsVectorIterator::operator int
TQueueAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. Iterator converts to
0 if nothing remains in the iterator.

TMIQueueAsVector template

Header File
queues.h

Description
Implements a managed queue of pointers to objects of type T, using a vector as the underlying
implementation.

Public Constructors
TMIQueueAsVector::TMIQueueAsVector

Public Member Functions
FirstThat
Flush
ForEach
Get
GetItemsInContainer
IsEmpty
isFull
LastThat
Put

TMIQueueAsVector::TMIQueueAsVector
TMIQueueAsVector class

Syntax
TMIQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE)
Description
Constructs a managed, indirect queue, of sz size.

TMIQueueAsVector::FirstThat
See Also TMIQueueAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the queue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMIQueueAsVector::Flush
TMIQueueAsVector class

Syntax
void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete);
Description
Flushes the queue without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

TMIQueueAsVector::ForEach
TMIQueueAsVector class

Syntax
void ForEach(IterFunc iter, void *args);
Description
Executes function iter for each queue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMIQueueAsVector::Get
TMIQueueAsVector class

Syntax
T *Get()
Description
Removes and returns the object pointer from the queue. If the queue is empty, it returns 0.

TMIQueueAsVector::GetItemsInContainer
TMIQueueAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the queue.

TMIQueueAsVector::IsEmpty
TMIQueueAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if a queue has no elements; otherwise returns 0.

TMIQueueAsVector::IsFull
TMIQueueAsVector class

Syntax
int isFull() const;
Description
Returns 1 if a queue is full; otherwise returns 0.

TMIQueueAsVector::LastThat
See Also TMIQueueAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the queue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the queue meets the condition.

See Also
FirstThat
ForEach

TMIQueueAsVector::Put
TMIQueueAsVector class

Syntax
void Put(T *t)
Description
Adds an object pointer to (the tail of) a queue.

TMIQueueAsVectorIterator template

Header File
queues.h

Description
Implements an iterator object for managed, indirect, vector-based queues.

Public Constructors
TMIQueueAsVectorIterator::TMIQueueAsVectorIterator

TMIQueueAsVectorIterator::TMIQueueAsVectorIterator
TMIQueueAsVectorIterator class

Syntax
TMIQueueAsVectorIterator(const TMIDequeAsVector<T,Alloc> &q)
Description
Constructs an object that iterates on TMIQueueAsVector objects.

TIQueueAsVector template

Header File
queues.h

Description
Implements a queue of pointers to objects of type T, using a vector as the underlying implementation.

Public Constructors
TIQueueAsVector::TIQueueAsVector

TIQueueAsVector::TIQueueAsVector
TIQueueAsVector class

Syntax
TIQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE)
Description
Constructs an indirect queue, of sz size.

TIQueueAsVectorIterator template

Header File
queues.h

Description
Implements an iterator object for indirect, vector-based queues.

Public Constructors
TIQueueAsVectorIterator::TIQueueAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TIQueueAsVectorIterator::TIQueueAsVectorIterator
TIQueueAsVectorIterator class

Syntax
TIQueueAsVectorIterator(const TIQueueAsVector<T> &q)
Description
Constructs an object that iterates on TIQueueAsVector objects.

TIQueueAsVectorIterator::Current
TIQueueAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TIQueueAsVectorIterator::Restart
TIQueueAsVectorIterator class

Syntax
void Restart();
Description
Restarts iteration.

TIQueueAsVectorIterator::operator ++
TIQueueAsVectorIterator class

Form 1
const T& operator ++ (int);
Form 2
const T& operator ++ ();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIQueueAsVectorIterator::operator int
TIQueueAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. Iterator converts to
0 if nothing remains in the iterator.

TMQueueAsDoubleList template

Header File
queues.h

Description
Implements a managed queue of objects of type T, using a double-linked list as the underlying
implementation.

Public Member Functions
FirstThat
Flush
ForEach
Get
GetItemsInContainer
IsEmpty
IsFull
LastThat
Put

TMQueueAsDoubleList::FirstThat
See Also TMQueueAsDoubleList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the queue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMQueueAsDoubleList::Flush
TMQueueAsDoubleList class

Syntax
void Flush()
Description
Flushes the queue without destroying it. The fate of any objects removed depends on the current
ownership status.

TMQueueAsDoubleList::ForEach
TMQueueAsDoubleList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each queue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMQueueAsDoubleList::Get
TMQueueAsDoubleList class

Syntax
T Get()
Description
Removes the object from the end (tail) of the queue. If the queue is empty, it returns 0. Otherwise the
removed object is returned.

TMQueueAsDoubleList::GetItemsInContainer
TMQueueAsDoubleList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the queue.

TMQueueAsDoubleList::IsEmpty
TMQueueAsDoubleList class

Syntax
int IsEmpty() const;
Description
Returns 1 if a queue has no elements; otherwise returns 0.

TMQueueAsDoubleList::IsFull
TMQueueAsDoubleList class

Syntax
int IsFull() const;
Description
Returns 1 if a queue is full; otherwise returns 0.

TMQueueAsDoubleList::LastThat
See Also TMQueueAsDoubleList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the queue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition. Note that LastThat creates its own internal
iterator, so you can treat it as a "search" function.

See Also
FirstThat
ForEach

TMQueueAsDoubleList::Put
TMQueueAsDoubleList class

Syntax
void Put(T t)
Description
Adds an object to (the tail of) a queue.

TMQueueAsDoubleListIterator template

Header File
queues.h

Description
Implements an iterator object for list-based queues.

Public Constructors
TMQueueAsDoubleListIterator::TMQueueAsDoubleListIterator

Public Member Functions
Current
Restart

Operators
int
++
--

TMQueueAsDoubleListIterator::TMQueueAsDoubleListIterator
TMQueueAsDoubleListIterator class

Syntax
TMQueueAsDoubleListIterator(const TMQueueAsDoubleList<T,Alloc> & q)
Description
Constructs an object that iterates on TMQueueAsDoubleList objects.

TMQueueAsDoubleListIterator::Current
TMQueueAsDoubleListIterator class

Syntax
const T& Current()
Description
Returns the current object.

TMQueueAsDoubleListIterator::Restart
TMQueueAsDoubleListIterator class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMQueueAsDoubleListIterator::operator int
TMQueueAsDoubleListIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMQueueAsDoubleListIterator::operator ++
TMQueueAsDoubleListIterator class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMQueueAsDoubleListIterator::operator - -
TMQueueAsDoubleListIterator class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TQueueAsDoubleList template

Header File
queues.h

Description
Implements a queue of objects of type T, using a double-linked list as the underlying implementation.

Public Member Functions
FirstThat
Flush
ForEach
Get
GetItemsInContainer
IsEmpty
IsFull
LastThat
Put

TQueueAsDoubleList::FirstThat
See Also TQueueAsDoubleList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the queue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TQueueAsDoubleList::Flush
TQueueAsDoubleList class

Syntax
void Flush()
Description
Flushes the queue without destroying it. The fate of any objects removed depends on the current
ownership status.

TQueueAsDoubleList::ForEach
TQueueAsDoubleList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each queue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TQueueAsDoubleList::Get
TQueueAsDoubleList class

Syntax
T Get()
Description
Removes the object from the end (tail) of the queue. If the queue is empty, it returns 0. Otherwise the
removed object is returned.

TQueueAsDoubleList::GetItemsInContainer
TQueueAsDoubleList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the queue.

TQueueAsDoubleList::IsEmpty
TQueueAsDoubleList class

Syntax
int IsEmpty() const;
Description
Returns 1 if a queue has no elements; otherwise returns 0.

TQueueAsDoubleList::IsFull
TQueueAsDoubleList class

Syntax
int IsFull() const;
Description
Returns 1 if a queue is full; otherwise returns 0.

TQueueAsDoubleList::LastThat
See Also TQueueAsDoubleList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the queue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition. Note that LastThat creates its own internal
iterator, so you can treat it as a "search" function.

See Also
FirstThat
ForEach

TQueueAsDoubleList::Put
TQueueAsDoubleList class

Syntax
void Put(T t)
Description
Adds an object to (the tail of) a queue.

TQueueAsDoubleListIterator template

Header File
queues.h

Description
Implements an iterator object for list-based queues.

Public Constructors
TQueueAsDoubleListIterator::TQueueAsDoubleListIterator

Public Member Functions
Current
Restart

Operators
int
++
--

TQueueAsDoubleListIterator::TQueueAsDoubleListIterator
TQueueAsDoubleListIterator class

Syntax
TQueueAsDoubleListIterator(const TQueueAsDoubleList<T> &q)
Description
Constructs an object that iterates on TQueueAsDoubleList objects.

TQueueAsDoubleListIterator::Current
TQueueAsDoubleListIterator class

Syntax
const T& Current()
Description
Returns the current object.

TQueueAsDoubleListIterator::Restart
TQueueAsDoubleListIterator class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TQueueAsDoubleListIterator::operator int
TQueueAsDoubleListIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TQueueAsDoubleListIterator::operator ++
TQueueAsDoubleListIterator class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TQueueAsDoubleListIterator::operator - -
TQueueAsDoubleListIterator class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TMIQueueAsDoubleList template

Header File
queues.h

Description
Implements a managed indirect queue of pointers to objects of type T, using a double-linked list as the
underlying implementation.

Public Member Functions
FirstThat
Flush
ForEach
Get
GetItemsInContainer
IsEmpty
IsFull
LastThat
Put

TMIQueueAsDoubleList::FirstThat
See Also TMIQueueAsDoubleList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the queue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TMIQueueAsDoubleList::Flush
TMIQueueAsDoubleList class

Syntax
void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)
Description
Flushes the queue without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

TMIQueueAsDoubleList::ForEach
TMIQueueAsDoubleList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each queue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TMIQueueAsDoubleList::Get
TMIQueueAsDoubleList class

Syntax
T *Get()
Description
Removes and returns the object pointer from the queue. If the queue is empty, it throws the
PRECONDITION exception in the debug version. In the non-debug version, Get returns a meaningless
object is the queue is empty.

TMIQueueAsDoubleList::GetItemsInContainer
TMIQueueAsDoubleList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the queue.

TMIQueueAsDoubleList::IsEmpty
TMIQueueAsDoubleList class

Syntax
int IsEmpty() const;
Description
Returns 1 if the queue has no elements; otherwise returns 0.

TMIQueueAsDoubleList::IsFull
TMIQueueAsDoubleList class

Syntax
int IsFull() const;
Description
Returns 1 if the queue is full; otherwise returns 0.

TMIQueueAsDoubleList::LastThat
See Also TMIQueueAsDoubleList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the queue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the queue meets the condition.

See Also
FirstThat
ForEach

TMIQueueAsDoubleList::Put
TMIQueueAsDoubleList class

Syntax
void Put(T *t)
Description
Adds an object pointer to (the tail of) a queue. If the queue is full, it throws the PRECONDITION
exception in the debug version. If the queue is full, the behavior of the non-debug version of Put is
undefined.

TMIQueueAsDoubleListIterator template

Header File
queues.h

Description
Implements an iterator object for indirect, list-based queues.

Public Constructors
TMIQueueAsDoubleListIterator::TMIQueueAsDoubleListIterator

Public Member Functions
Current
Restart

Operators
int
++
--

TMIQueueAsDoubleListIterator::TMIQueueAsDoubleListIterator
TMIQueueAsDoubleListIterator class

Syntax
TMIQueueAsDoubleListIterator(const TMIQueueAsDoubleList<T,Alloc> & q)
Description
Constructs an object that iterates on TMIQueueAsDoubleList objects.

TMIQueueAsDoubleListIterator::Current
TMIQueueAsDoubleListIterator class

Syntax
const T& Current()
Description
Returns the current object.

TMIQueueAsDoubleListIterator::Restart
TMIQueueAsDoubleListIterator class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMIQueueAsDoubleListIterator::operator int
TMIQueueAsDoubleListIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMIQueueAsDoubleListIterator::operator ++
TMIQueueAsDoubleListIterator class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMIQueueAsDoubleListIterator::operator - -
TMIQueueAsDoubleListIterator class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TIQueueAsDoubleList template

Header File
queues.h

Description
Implements an indirect queue of pointers to objects of type T, using a double-linked list as the
underlying implementation.

Public Member Functions
FirstThat
Flush
ForEach
Get
GetItemsInContainer
IsEmpty
IsFull
LastThat
Put

TIQueueAsDoubleList::FirstThat
See Also TIQueueAsDoubleList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the queue that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition.

See Also
LastThat

TIQueueAsDoubleList::Flush
TIQueueAsDoubleList class

Syntax
void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)
Description
Flushes the queue without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

TIQueueAsDoubleList::ForEach
TIQueueAsDoubleList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each queue element. ForEach creates an internal iterator to execute the
given function for each element in the array. The args argument lets you pass arbitrary data to this
function.

TIQueueAsDoubleList::Get
TIQueueAsDoubleList class

Syntax
T *Get()
Description
Removes and returns the object pointer from the queue. If the queue is empty, it returns 0. If the queue
is empty, it throws the PRECONDITION exception in the debug version. In the non-debug version, Get
returns a meaningless object is the queue is empty.

TIQueueAsDoubleList::GetItemsInContainer
TIQueueAsDoubleList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the queue.

TIQueueAsDoubleList::IsEmpty
TIQueueAsDoubleList class

Syntax
int IsEmpty() const;
Description
Returns 1 if the queue has no elements; otherwise returns 0.

TIQueueAsDoubleList::IsFull
TIQueueAsDoubleList class

Syntax
int IsFull() const;
Description
Returns 1 if the queue is full; otherwise returns 0.

TIQueueAsDoubleList::LastThat
See Also TIQueueAsDoubleList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the queue that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the array meets the condition. Note that LastThat creates its own internal
iterator, so you can treat it as a "search" function.

See Also
FirstThat
ForEach

TIQueueAsDoubleList::Put
TIQueueAsDoubleList class

Syntax
void Put(T *t)
Description
Adds an object pointer to (the tail of) a queue. If the queue is full, it throws the PRECONDITION
exception in the debug version. If the queue is full, the behavior of the non-debug version of Put is
undefined.

TIQueueAsDoubleListIterator template

Header File
queues.h

Description
Implements an iterator object for indirect, list-based queues.

Public Constructors
TIQueueAsDoubleListIterator::TIQueueAsDoubleListIterator

Public Member Functions
Current
Restart

Operators
int
++
--

TIQueueAsDoubleListIterator::TIQueueAsDoubleListIterator
TIQueueAsDoubleListIterator class

Syntax
TIQueueAsDoubleListIterator(const TIQueueAsDoubleList<T> & q)
Description
Constructs an object that iterates on TIQueueAsDoubleList objects.

TIQueueAsDoubleListIterator::Current
TIQueueAsDoubleListIterator class

Syntax
const T& Current()
Description
Returns the current object.

TIQueueAsDoubleListIterator::Restart
TIQueueAsDoubleListIterator class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TIQueueAsDoubleListIterator::operator int
TIQueueAsDoubleListIterator class

Syntax
operator int()
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TIQueueAsDoubleListIterator::operator ++
TIQueueAsDoubleListIterator class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIQueueAsDoubleListIterator::operator - -
TIQueueAsDoubleListIterator class

Form 1
const T& operator -- (int)
Form 2
const T& operator -- ()
Description
Form 1: Moves to the previous object, and returns the object that was current before the move (post-
decrement).
Form 2: Moves to the previous object, and returns the object that was current after the move (pre-
decrement).

TQueue template

Header File
queues.h

Description
A simplified name for TQueueAsVector.

TQueueIterator template

Header File
queues.h

Description
A simplified name for TQueueAsVectorIterator.

TMSetAsVector template

Syntax
template <class T, class Alloc> class TMSetAsVector;
Header File
sets.h

Description
Implements a managed set of objects of type T, using a vector as the underlying implementation. A set,
unlike a bag, cannot contain duplicate items.
TMSetAsVector inherits member functions from TMBagAsVector.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMSetAsVector::TMSetAsVector

Public Member Functions
Add
Detach
Find
FindMember
Flush
ForEach
GetItemsInContainer
HasMember
isEmpty
isFull

TMSetAsVector::TMSetAsVector
TMSetAsVector class

Syntax
TMSetAsVector(unsigned sz = DEFAULT_SET_SIZE)
Description
Constructs a managed, empty set. sz represents the number of items the set can hold.

TMSetAsVector::Add
TMSetAsVector class

Syntax
int Add(const T& t);
Description
Adds an object to the set.

TMSetAsVector::CondFunc
TMSetAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMSetAsVector::IterFunc
TMSetAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMSetAsVector::Detach
See Also TMSetAsVector class

Syntax
int Detach(const T& t)
Description
Removes the specified object. The value of dt and the current ownership setting determine whether
the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as enum
{ NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not be
deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of
ownership. If dt is set to DefDelete, the object will be deleted only if the set owns its elements.

See Also
TShouldDelete::ownsElements

TMSetAsVector::Find
TMSetAsVector class

Syntax
virtual T *Find(const T&) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TMSetAsVector::FindMember
TMSetAsVector class

Syntax
T* FindMember(const T& t) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TMSetAsVector::Flush
See Also TMSetAsVector class

Syntax
void Flush()
Description
Removes all the elements from the set without destroying the set. The value of dt determines whether
the elements themselves are destroyed. By default, the ownership status of the set determines their
fate, as explained in the Detach member function. You can also set dt to Delete and NoDelete.

See Also
Detach

TMSetAsVector::ForEach
TMSetAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the set. The args
argument lets you pass arbitrary data to this function.

TMSetAsVector::GetItemsInContainer
TMSetAsVector class

Syntax
int GetItemsInContainer() const
Description
Returns the number of objects in the set.

TMSetAsVector::HasMember
TMSetAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found; otherwise returns 0.

TMSetAsVector::IsEmpty
TMSetAsVector class

Syntax
int isEmpty() const;
Description
Returns 1 if the set is empty; otherwise returns 0.

TMSetAsVector::IsFull
TMSetAsVector class

Syntax
int isFull() const;
Description
Returns 0.

TMSetAsVectorIterator template

Syntax
template <class T, class Alloc> class TMSetAsVectorIterator;
Header File
sets.h

Description
Implements an iterator object to traverse TMSetAsVector objects.

Public Constructors
TMSetAsVectorIterator::TMSetAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMSetAsVectorIterator::TMSetAsVectorIterator

Syntax
TMSetAsVectorIterator(const TMSetAsVector<T,Alloc> &s) :
Description
Constructs an object that iterates on TMSetAsVector objects.

TMSetAsVectorIterator::Current
TMSetAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TMSetAsVectorIterator::Restart
TMSetAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TMSetAsVectorIterator::operator ++
TMSetAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMSetAsVectorIterator::operator int
TMSetAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TSetAsVector template

Syntax
template <class T> class TSetAsVector;
Header File
sets.h

Description
Implements a set of objects of type T, using a vector as the underlying implementation.
TStandardAllocator is used to manage memory.

Type Definitions
CondFunc
IterFunc

Public Constructors
TSetAsVector::TSetAsVector

Public Member Functions
Add
Detach
Find
FindMember
Flush
ForEach
GetItemsInContainer
HasMember
isEmpty
isFull

TSetAsVector::CondFunc
TSetAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TSetAsVector::IterFunc
TSetAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TSetAsVector::TSetAsVector

Syntax
TSetAsVector(unsigned sz = DEFAULT_SET_SIZE) :
Description
Constructs an empty set. sz represents the number of items the set can hold.

TSetAsVector::Add
TSetAsVector class

Syntax
int Add(const T& t)
Description
Adds the given object to the set.

TSetAsVector::Detach
See Also TSetAsVector class

Syntax
int Detach(const T& t)
Description
Removes the specified object. The value of dt and the current ownership setting determine whether
the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as enum
{ NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not be
deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of
ownership. If dt is set to DefDelete, the object will be deleted only if the set owns its elements.

See Also
TShouldDelete::ownsElements

TSetAsVector::Find
TSetAsVector class

Syntax
virtual T *Find(const T&) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TSetAsVector::FindMember
TSetAsVector class

Syntax
T* FindMember(const T& t) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TSetAsVector::Flush
See Also TSetAsVector class

Syntax
void Flush()
Description
Removes all the elements from the set without destroying the set. The value of dt determines whether
the elements themselves are destroyed. By default, the ownership status of the set determines their
fate, as explained in the Detach member function. You can also set dt to Delete and NoDelete.

See Also
Detach

TSetAsVector::ForEach
TSetAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the set. The args
argument lets you pass arbitrary data to this function.

TSetAsVector::GetItemsInContainer
TSetAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of objects in the set.

TSetAsVector::HasMember
TSetAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found; otherwise returns 0.

TSetAsVector::IsEmpty
TSetAsVector class

Syntax
int isEmpty() const;
Description
Returns 1 if the set is empty; otherwise returns 0.

TSetAsVector::IsFull
TSetAsVector class

Syntax
int isFull() const;
Description
Returns 0.

TSetAsVectorIterator template

Syntax
template <class T> class TSetAsVectorIterator;
Header File
sets.h

Description
Implements an iterator object to traverse TSetAsVector objects.

Public Constructors
TSetAsVectorIterator::TSetAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TSetAsVectorIterator::TSetAsVectorIterator

Syntax
TSetAsVectorIterator(const TSetAsVector<T> &s)
Description
Constructs an object that iterates on TMSetAsVector objects.

TSetAsVectorIterator::Current
TSetAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TSetAsVectorIterator::Restart
TSetAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TSetAsVectorIterator::operator ++
TSetAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TSetAsVectorIterator::operator int
TSetAsVectorIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMISetAsVector template

Syntax
template <class T, class Alloc> class TMISetAsVector;
Header File
sets.h

Description
Implements a managed set of pointers to objects of type T, using a vector as the underlying
implementation.
TMISetAsVector inherits member functions from TMIBagAsVector.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMISetAsVector::TMISetAsVector

Public Member Functions
Add
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
HasMember
isEmpty
isFull
LastThat

TMISetAsVector::CondFunc
TMISetAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMISetAsVector::IterFunc
TMISetAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMISetAsVector::TMISetAsVector

Syntax
TMISetAsVector(unsigned sz = DEFAULT_SET_SIZE) :
Description
Constructs an empty, managed, indirect set. sz represents the initial number of slots allocated.

TMISetAsVector::Add

Syntax
int Add(T *);
Description
Adds an object pointer to the set.

TMISetAsVector::Detach
See Also TMISetAsVector class

Syntax
int Detach(T *t, DeleteType dt = NoDelete)
Description
Removes the specified object pointer. The value of dt and the current ownership setting determine
whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as
enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not
be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of
ownership. If dt is set to DefDelete, the object will only be deleted if the set owns its elements.

See Also
TShouldDelete::ownsElements

TMISetAsVector::Find
TMISetAsVector class

Syntax
T *Find(T *t) const;
Description
Returns a pointer to the object if found; otherwise returns 0.

TMISetAsVector::FirstThat
TMISetAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the set that satisfies a given condition. You supply a test-function
pointer f that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0
if no object in the set meets the condition.

TMISetAsVector::Flush
See Also TMISetAsVector class

Syntax
void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)
Description
Removes all the elements from the set without destroying the set. The value of dt determines whether
the elements themselves are destroyed. By default, the ownership status of the set determines their
fate, as explained in the Detach member function. You can also set dt to Delete and NoDelete.

See Also
Detach

TMISetAsVector::ForEach
TMISetAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the set. The args
argument lets you pass arbitrary data to this function.

TMISetAsVector::GetItemsInContainer
TMISetAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of objects in the set.

TMISetAsVector::HasMember
TMISetAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found; otherwise returns 0.

TMISetAsVector::IsEmpty
TMISetAsVector class

Syntax
int isEmpty() const;
Description
Returns 1 if the set is empty; otherwise returns 0.

TMISetAsVector::IsFull
TMISetAsVector class

Syntax
int isFull() const;
Description
Returns 0.

TMISetAsVector::LastThat
TMISetAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the set that satisfies a given condition. You supply a test function
pointer, f, that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0
if no object in the set meets the condition.

TMISetAsVectorIterator template

Syntax
template <class T, class Alloc> class TMISetAsVectorIterator;
Header File
sets.h

Description
Implements an iterator object to traverse TMISetAsVector objects.

Public Constructors
TMISetAsVectorIterator::TMISetAsVectorIterator

Public Member Functions
Current
Restart

Operators
++

TMISetAsVectorIterator::TMISetAsVectorIterator
TMISetAsVectorIterator class

Syntax
TMISetAsVectorIterator(const TMISetAsVector<T,Alloc> &s)
Description
Constructs an object that iterates on TMISetAsVector objects.

TMISetAsVectorIterator::Current
TMISetAsVectorIterator class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TMISetAsVectorIterator::Restart
TMISetAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration from the beginning.
Form 2: Restarts iteration over the specified range.

TMISetAsVectorIterator::operator ++
TMISetAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TISetAsVector template

Syntax
template <class T> class TISetAsVector;
Header File
sets.h

Description
Implements a set of pointers to objects of type T, using a vector as the underlying implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TISetAsVector::TISetAsVector

Public Member Functions
Add
Detach
Find
FirstThat
Flush
ForEach
GetItemsInContainer
HasMember
isEmpty
isFull
LastThat

TISetAsVector::CondFunc
TISetAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TISetAsVector::IterFunc
TISetAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TISetAsVector::TISetAsVector

Syntax
TISetAsVector(unsigned sz = DEFAULT_SET_SIZE)
Description
Constructs an empty, indirect set. sz represents the initial number of slots allocated.

TISetAsVector::Add
TISetAsVector class

Syntax
int Add(T *t)
Description
Adds the given object pointer to the set.

TISetAsVector::Detach
See Also TISetAsVector class

Syntax
int Detach(T *t, DeleteType dt = NoDelete)
Description
Removes the specified object pointer. The value of dt and the current ownership setting determine
whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as
enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not
be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of
ownership. If dt is set to DefDelete, the object will only be deleted if the set owns its elements.

See Also
TShouldDelete::ownsElements

TISetAsVector::Find
TISetAsVector class

Syntax
T *Find(T *t) const;
Description
Returns a pointer to the object if found; otherwise returns 0.

TISetAsVector::FirstThat
TISetAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the set that satisfies a given condition. You supply a test-function
pointer f that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0
if no object in the set meets the condition.

TISetAsVector::Flush
See Also TISetAsVector class

Syntax
void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)
Description
Removes all the elements from the set without destroying the set. The value of dt determines whether
the elements themselves are destroyed. By default, the ownership status of the set determines their
fate, as explained in the Detach member function. You can also set dt to Delete and NoDelete.

See Also
Detach

TISetAsVector::ForEach
TISetAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the set. The args
argument lets you pass arbitrary data to this function.

TISetAsVector::GetItemsInContainer
TISetAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of objects in the set.

TISetAsVector::HasMember
TISetAsVector class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found; otherwise returns 0.

TISetAsVector::IsEmpty
TISetAsVector class

Syntax
int isEmpty() const;
Description
Returns 1 if the set is empty; otherwise returns 0.

TISetAsVector::IsFull
TISetAsVector class

Syntax
int isFull() const;
Description
Returns 0.

TISetAsVector::LastThat
TISetAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the set that satisfies a given condition. You supply a test function
pointer, f, that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0
if no object in the set meets the condition. Note that LastThat creates its own internal iterator, so you
can treat it as a "search" function.

TISetAsVectorIterator template

Syntax
template <class T> class TISetAsVectorIterator;
Header File
sets.h

Description
Implements an iterator object to traverse TISetAsVector objects.

Public Constructors
TISetAsVectorIterator::TISetAsVectorIterator

Public Member Functions
Current
Restart

Operators
++

TISetAsVectorIterator::TISetAsVectorIterator
TISetAsVectorIterator class

Syntax
TISetAsVectorIterator(const TISetAsVector<T> &s)
Description
Constructs an object that iterates on TISetAsVector objects.

TISetAsVectorIterator::Current
TISetAsVectorIterator class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TISetAsVectorIterator::Restart
TISetAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration from the beginning.
Form 2: Restarts iteration over the specified range.

TISetAsVectorIterator::operator ++
TISetAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TSet template

Header File
sets.h

Description
A simplified name for TSetAsVector.

Type Definitions
CondFunc
IterFunc

Public Constructors
TSet::TSet

Public Member Functions
Add
Detach
Find
FindMember
Flush
ForEach
GetItemsInContainer
HasMember
isEmpty
isFull

TSet::CondFunc
TSet class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TSet::IterFunc
TSet class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TSet::TSet
TSet class

Syntax
TSet(unsigned sz = DEFAULT_SET_SIZE) :
Description
Constructs an empty set. sz represents the number of items the set can hold.

TSet::Add
TSet class

Syntax
int Add(const T& t)
Description
Adds the given object to the set.

TSet::Detach
See Also TSet class

Syntax
int Detach(const T& t)
Description
Removes the specified object. The value of dt and the current ownership setting determine whether
the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as enum
{ NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not be
deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of
ownership. If dt is set to DefDelete, the object will be deleted only if the set owns its elements.

See Also
TShouldDelete::ownsElements

TSet::Find
TSet class

Syntax
virtual T *Find(const T&) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TSet::FindMember
TSet class

Syntax
T* FindMember(const T& t) const;
Description
Returns a pointer to the given object if found; otherwise returns 0.

TSet::Flush
See Also TSet class

Syntax
void Flush()
Description
Removes all the elements from the set without destroying the set. The value of dt determines whether
the elements themselves are destroyed. By default, the ownership status of the set determines their
fate, as explained in the Detach member function. You can also set dt to Delete and NoDelete.

See Also
Detach

TSet::ForEach
TSet class

Syntax
void ForEach(IterFunc iter, void *args)
Description
ForEach creates an internal iterator to execute the given function for each element in the set. The args
argument lets you pass arbitrary data to this function.

TSet::GetItemsInContainer
TSet class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of objects in the set.

TSet::HasMember
TSet class

Syntax
int HasMember(const T& t) const;
Description
Returns 1 if the given object is found; otherwise returns 0.

TSet::IsEmpty
TSet class

Syntax
int isEmpty() const;
Description
Returns 1 if the set is empty; otherwise returns 0.

TSet::IsFull
TSet class

Syntax
int isFull() const;
Description
Returns 0.

TSetIterator template

Header File
sets.h

Description
A simplified name for TSetAsVectorIterator.

Public Constructors
TSetIterator::TSetIterator

Public Member Functions
Current
Restart

Operators
++
int

TSetIterator::TSetIterator
TSetIterator class

Syntax
TSetIterator(const TSet<T> &s)
Description
Constructs an object that iterates on TMSetAsVector objects.

TSetIterator::Current
TSetIterator class

Syntax
const T& Current();
Description
Returns the current object.

TSetIterator::Restart
TSetIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Restarts iteration from the beginning, or over the specified range.

TSetIterator::operator ++
TSetIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TSetIterator::operator int
TSetIterator class

Syntax
operator int() const;
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TShouldDelete class

Syntax
class TShouldDelete;
Header File
shddel.h

Description
TShouldDelete maintains the ownership state of an indirect container. The fate of objects that are
removed from a container can be made to depend on whether the container owns its elements or not.
Similarly, when a container is destroyed, ownership can dictate the fate of contained objects that are
still in scope. As a virtual base class, TShouldDelete provides ownership control for all containers
classes. The member function OwnsElements can be used either to report or to change the ownership
status of a container. The member function DelObj is used to determine if objects in containers should
be deleted or not.

Public Constructors
TShouldDelete

Public Data Members
DeleteType

Public Member Functions
OwnsElements

Protected Member Functions
DelObj

TShouldDelete::TShouldDelete
See Also TShouldDelete class

Syntax
TShouldDelete(DeleteType dt = Delete)
Description
Creates a TShouldDelete object.

See Also
TShouldDelete::DelObj

TShouldDelete::DeleteType
TShouldDelete class

Syntax
enum DeleteType { NoDelete, DefDelete, Delete };
Description
Enumerates values to determine whether or not an object should be deleted upon removal from a
container.

TShouldDelete::OwnsElements
TShouldDelete class

Form 1
int OwnsElements()
Form 2
void OwnsElements(int del)
Description
Form 1: Returns 1 if the container owns its elements; otherwise returns 0.
Form 2: Changes the ownership status as follows: if del is 0, ownership is turned off; otherwise
ownership is turned on.

TShouldDelete::DelObj
See Also TShouldDelete class

Syntax
int DelObj(DeleteType dt)
Description
Tests the state of ownership and returns 1 if the contained objects should be deleted or 0 if the
contained elements should not be deleted. The factors determining this are the current ownership
state, and the value of dt, as shown in the following table.

delObj
ownsElements No Yes
NoDelete No No
DefDelete No Yes
Delete Yes Yes

delObj returns 1 if (dt is Delete) or (dt is DefDelete and the container currently owns its elements).
Thus a dt of NoDelete returns 0 (don't delete) regardless of ownership; a dt of Delete return 1 (do
delete) regardless of ownership; and a dt of DefDelete returns 1 (do delete) if the elements are owned,
but a 0 (don't delete) if the objects are not owned.

See Also
TShouldDelete::OwnsElements

TMStackAsVector template

Syntax
template <class T, class Alloc> class TMStackAsVector;
Header File
stacks.h

Description
Implements a managed stack of objects of type T, using a vector as the underlying implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMStackAsVector::TMStackAsVector

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
IsFull
LastThat
Pop
Push
Top

TMStackAsVector::CondFunc
TMStackAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMStackAsVector::IterFunc
TMStackAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMStackAsVector::TMStacAsVector
TMStackAsVector class

Syntax
TMStackAsVector(unsigned max = DEFAULT_STACK_SIZE)
Description
Constructs a managed, vector-implemented stack, with max indicating the maximum stack size.

TMStackAsVector::FirstThat
See Also TMStackAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the stack that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
LastThat

TMStackAsVector::Flush
See Also TMStackAsVector class

Syntax
void Flush()
Description
Flushes the stack without destroying it.

See Also
TShouldDelete::ownsElements

TMStackAsVector::ForEach
TMStackAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each stack element. ForEach creates an internal iterator to execute the given
function for each element in the stack. The args argument lets you pass arbitrary data to this function.

TMStackAsVector::GetItemsInContainer
TMStackAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the stack.

TMStackAsVector::IsEmpty
TMStackAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the stack has no elements; otherwise returns 0.

TMStackAsVector::IsFull
TMStackAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the stack is full; otherwise returns 0.

TMStackAsVector::LastThat
See Also TMStackAsVector class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the stack that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
FirstThat
ForEach

TMStackAsVector::Pop
See Also TMStackAsVector class

Syntax
T Pop()
Description
Removes the object from the top of the stack and returns the object. The fate of the popped object is
determined by ownership.

See Also
TShouldDelete

TMStackAsVector::Push
TMStackAsVector class

Syntax
void Push(const T& t)
Description
Pushes an object on the top of the stack.

TMStackAsVector::Top
TMStackAsVector class

Syntax
Const T& Top() const;
Description
Returns but does not remove the object at the top of the stack.

TMStackAsVectorIterator template

Syntax
template <class T, class Alloc> class TMStackAsVectorIterator;
Header File
stacks.h

Description
Implements an iterator object for managed, vector-based stacks.

Public constructor
TMStackAsVectorIterator::TMStackAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMStackAsVectorIterator::TMStacAsVectorIterator
TMStackAsVectorIterator class

Syntax
TMStackAsVectorIterator(const TMStackAsVector<T,Alloc> & s) :
Description
Constructs an object that iterates on TMStackAsVector objects.

TMStackAsVectorIterator::Current
TMStackAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TMStackAsVectorIterator::Restart
TMStackAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TMStackAsVectorIterator::operator ++
TMStackAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMStackAsVectorIterator::operator int
TMStackAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TStackAsVector template

Syntax
template <class T> class TStackAsVector;
Header File
stacks.h

Description
Implements a stack of objects of type T, using a vector as the underlying implementation, and
TStandardAllocator for memory management.

Public Constructors
TStackAsVector::TStackAsVector

TStackAsVector::TStacAsVector
TStackAsVector class

Syntax
TStackAsVector(unsigned max = DEFAULT_STACK_SIZE)
Description
Constructs a vector-implemented stack, with max indicating the maximum stack size.

TStackAsVectorIterator template

Syntax
template <class T> class TStackAsVectorIterator;
Header File
stacks.h

Description
Implements an iterator object for managed, vector-based stacks.

Public Constructors
TStackAsVectorIterator::TStackAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TStackAsVectorIterator::TStacAsVectorIterator
TStackAsVectorIterator class

Syntax
TStackAsVectorIterator(const TStackAsVector<T> & s) :
Description
Constructs an object that iterates on TStackAsVector objects.

TStackAsVectorIterator::Current
TStackAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TStackAsVectorIterator::Restart
TStackAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TStackAsVectorIterator::operator ++
TStackAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TStackAsVectorIterator::operator int
TStackAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMIStackAsVector template

Syntax
template <class T, class Alloc> class TMIStackAsVector;
Header File
stacks.h

Description
TMIStackAsVector implements a managed stack of pointers to objects of type T, using a vector as the
underlying implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMIStackAsVector::TMIStackAsVector

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
IsFull
LastThat
Pop
Push
Top

TMIStackAsVector::CondFunc
TMIStackAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMIStackAsVector::IterFunc
TMIStackAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMIStackAsVector::TMIStacAsVector
TMIStackAsVector class

Syntax
TMIStackAsVector(unsigned max = DEFAULT_STACK_SIZE)
Description
Constructs a managed, indirect, vector-implemented stack, with max indicating the maximum stack
size.

TMIStackAsVector::FirstThat
See Also TMIStackAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the stack that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
LastThat

TMIStackAsVector::Flush
See Also TMIStackAsVector class

Syntax
void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete)
Description
Flushes the stack without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

See Also
TShouldDelete::ownsElements

TMIStackAsVector::ForEach
TMIStackAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each stack element. ForEach creates an internal iterator to execute the given
function for each element in the stack. The args argument lets you pass arbitrary data to this function.

TMIStackAsVector::GetItemsInContainer
TMIStackAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the stack.

TMIStackAsVector::IsEmpty
TMIStackAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the stack has no elements; otherwise returns 0.

TMIStackAsVector::IsFull
TMIStackAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the stack is full; otherwise returns 0.

TMIStackAsVector::LastThat
See Also TMIStackAsVector class

Syntax
T *LastThat(CondFunc, void *args) const;
Description
Returns a pointer to the last object in the stack that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
FirstThat
ForEach

TMIStackAsVector::Pop
See Also TMIStackAsVector class

Syntax
T *Pop()
Description
Removes the object from the top of the stack and returns a pointer to the object. The fate of the
popped object is determined by ownership.

See Also
TShouldDelete

TMIStackAsVector::Push
TMIStackAsVector class

Syntax
void Push(T *t)
Description
Pushes a pointer to an object on the top of the stack.

TMIStackAsVector::Top
TMIStackAsVector class

Syntax
T *Top() const;
Description
Returns but does not remove the object pointer at the top of the stack.

TMIStackAsVectorIterator template

Syntax
template <class T, class Alloc> class TMIStackAsVectorIterator;
Header File
stacks.h

Description
Implements an iterator object for managed, indirect, vector-based stacks.

Public Constructors
TMIStackAsVectorIterator::TMIStackAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TMIStackAsVectorIterator::TMIStacAsVectorIterator
TMIStackAsVectorIterator class

Syntax
TMIStackAsVectorIterator(const TMIStackAsVector<T,Alloc> & s)
Description
Constructs an object that iterates on TMIStackAsVector objects.

TMIStackAsVectorIterator::Current
TMIStackAsVectorIterator class

Syntax
const T& Current();
Description
Returns the current object.

TMIStackAsVectorIterator::Restart
TMIStackAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TMIStackAsVectorIterator::operator ++
TMIStackAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMIStackAsVectorIterator::operator int
TMIStackAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TIStackAsVector template

Syntax
template <class T> class TIStackAsVector;
Header File
stacks.h

Description
Implements an indirect stack of pointers to objects of type T, using a vector as the underlying
implementation.

Public Constructors
TIStackAsVector::TIStackAsVector

Type Definitions
CondFunc
IterFunc

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
IsFull
LastThat
Pop
Push
Top

TIStackAsVector::CondFunc
TIStackAsVector class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TIStackAsVector::IterFunc
TIStackAsVector class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TIStackAsVector::TIStacAsVector
TIStackAsVector class

Syntax
TIStackAsVector(unsigned max = DEFAULT::STACK::SIZE) :
TMIStackAsVector<T,TStandardAllocator>(max)

Description
Constructs an indirect, vector-implemented stack, with max indicating the maximum stack size.

TIStackAsVector::FirstThat
See Also TIStackAsVector class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the stack that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
LastThat

TIStackAsVector::Flush
See Also TIStackAsVector class

Syntax
void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete)
Description
Flushes the stack without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

See Also
TShouldDelete::ownsElements

TIStackAsVector::ForEach
TIStackAsVector class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each stack element. ForEach creates an internal iterator to execute the given
function for each element in the stack. The args argument lets you pass arbitrary data to this function.

TIStackAsVector::GetItemsInContainer
TIStackAsVector class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the stack.

TIStackAsVector::IsEmpty
TIStackAsVector class

Syntax
int IsEmpty() const;
Description
Returns 1 if the stack has no elements; otherwise returns 0.

TIStackAsVector::IsFull
TIStackAsVector class

Syntax
int IsFull() const;
Description
Returns 1 if the stack is full; otherwise returns 0.

TIStackAsVector::LastThat
See Also TIStackAsVector class

Syntax
T *LastThat(CondFunc, void *args) const;
Description
Returns a pointer to the last object in the stack that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
FirstThat
ForEach

TIStackAsVector::Pop
See Also TIStackAsVector class

Syntax
T *Pop()
Description
Removes the object from the top of the stack and returns a pointer to the object. The fate of the
popped object is determined by ownership.

See Also
TShouldDelete

TIStackAsVector::Push
TIStackAsVector class

Syntax
void Push(T *t)
Description
Pushes a pointer to an object on the top of the stack.

TIStackAsVector::Top
TIStackAsVector class

Syntax
T *Top() const;
Description
Returns but does not remove the object pointer at the top of the stack.

TIStackAsVectorIterator template

Syntax
template <class T> class TIStackAsVector;
Header File
stacks.h

Description
Implements an iterator object for indirect, vector-based stacks.

Public Constructors
TMIStackAsVectorIterator::TMIStackAsVectorIterator

Public Member Functions
Current
Restart

Operators
++
int

TIStackAsVectorIterator::TIStacAsVectorIterator
TIStackAsVectorIterator class

Syntax
TMIStackAsVectorIterator(const TMIStackAsVector<T,Alloc> & s)
Description
Constructs an object that iterates on TIStackAsVector objects.

TIStackAsVectorIterator::Current
TIStackAsVectorIterator class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TIStackAsVectorIterator::Restart
TIStackAsVectorIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TIStackAsVectorIterator::operator ++
TIStackAsVectorIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1:Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2:Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIStackAsVectorIterator::operator int
TIStackAsVectorIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMStackAsList template

Syntax
template <class T, class Alloc> class TMStackAsList;
Header File
stacks.h

Description
Implements a managed stack of objects of type T, using a list as the underlying implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMStackAsList::TMStackAsList

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
IsFull
LastThat
Pop
Push
Top

TMStackAsList::CondFunc
TMStackAsList class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMStackAsList::IterFunc
TMStackAsList class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMStackAsList::TMStacAsList
TMStackAsList class

Syntax
TMStackAsList(unsigned max = DEFAULT_STACK_SIZE)
Description
Constructs a managed, vector-implemented stack, with max indicating the maximum stack size.

TMStackAsList::FirstThat
See Also TMStackAsList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the stack that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
LastThat

TMStackAsList::Flush
See Also TMStackAsList class

Syntax
void Flush()
Description
Flushes the stack without destroying it.

See Also
TShouldDelete::ownsElements

TMStackAsList::ForEach
TMStackAsList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each stack element. ForEach creates an internal iterator to execute the given
function for each element in the stack. The args argument lets you pass arbitrary data to this function.

TMStackAsList::GetItemsInContainer
TMStackAsList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the stack.

TMStackAsList::IsEmpty
TMStackAsList class

Syntax
int IsEmpty() const;
Description
Returns 1 if the stack has no elements; otherwise returns 0.

TMStackAsList::IsFull
TMStackAsList class

Syntax
int IsFull() const;
Description
Returns 1 if the stack is full; otherwise returns 0.

TMStackAsList::LastThat
See Also TMStackAsList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the stack that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
FirstThat
ForEach

TMStackAsList::Pop
See Also TMStackAsList class

Syntax
T Pop()
Description
Removes the object from the top of the stack and returns the object. The fate of the popped object is
determined by ownership.

See Also
TShouldDelete

TMStackAsList::Push
TMStackAsList class

Syntax
void Push(const T& t)
Description
Pushes an object on the top of the stack.

TMStackAsList::Top
TMStackAsList class

Syntax
const T& Top() const;
Description
Returns but does not remove the object at the top of the stack.

TMStackAsListIterator template

Syntax
template <class T, class Alloc> class TMStackAsListIterator;
Header File
stacks.h

Description
Implements an iterator object for managed, list-based stacks.

Public Constructors
TMStackAsListIterator::TMStackAsListIterator

Public Member Functions
Current
Restart

Operators
int
++

TMStackAsListIterator::TMStacAsListIterator
TMStackAsListIterator class

Syntax
TMStackAsListIterator(const TMStackAsList<T,Alloc> & s) :
TMListIteratorImp<T,Alloc>(s.Data)

Description
Constructs an object that iterates on TMStackAsList objects.

TMStackAsListIterator::Current
TMStackAsListIterator class

Syntax
const T& Current()
Description
Returns the current object.

TMStackAsListIterator::Restart
TMStackAsListIterator class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMStackAsListIterator::operator int
TMStackAsListIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMStackAsListIterator::operator ++
TMStackAsListIterator class

Form 1
const T& operator ++ (int)
Form 2
const T& operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TStackAsList template

Syntax
template <class T> class TStackAsList;
Header File
stacks.h

Description
Implements a managed stack of objects of type T, using a list as the underlying implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TStackAsList::TStackAsList

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
IsFull
LastThat
Pop
Push
Top

TStackAsList::CondFunc
TStackAsList class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TStackAsList::IterFunc
TStackAsList class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TStackAsList::TStacAsList
TStackAsList class

Syntax
TStackAsList(unsigned max = DEFAULT_STACK_SIZE)
Description
Constructs a managed, vector-implemented stack, with max indicating the maximum stack size.

TStackAsList::FirstThat
See Also TStackAsList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the stack that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
LastThat

TStackAsList::Flush
See Also TStackAsList class

Syntax
void Flush()
Description
Flushes the stack without destroying it.

See Also
TShouldDelete::ownsElements

TStackAsList::ForEach
TStackAsList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each stack element. ForEach creates an internal iterator to execute the given
function for each element in the stack. The args argument lets you pass arbitrary data to this function.

TStackAsList::GetItemsInContainer
TStackAsList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the stack.

TStackAsList::IsEmpty
TStackAsList class

Syntax
int IsEmpty() const;
Description
Returns 1 if the stack has no elements; otherwise returns 0.

TStackAsList::IsFull
TStackAsList class

Syntax
int IsFull() const;
Description
Returns 1 if the stack is full; otherwise returns 0.

TStackAsList::LastThat
See Also TStackAsList class

Syntax
T *LastThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the last object in the stack that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
FirstThat
ForEach

TStackAsList::Pop
See Also TStackAsList class

Syntax
T Pop()
Description
Removes the object from the top of the stack and returns the object. The fate of the popped object is
determined by ownership.

See Also
TShouldDelete

TStackAsList::Push
TStackAsList class

Syntax
void Push(const T& t)
Description
Pushes an object on the top of the stack.

TStackAsList::Top
TStackAsList class

Syntax
const T& Top() const;
Description
Returns but does not remove the object at the top of the stack.

TStackAsListIterator template

Syntax
template <class T> class TStackAsListIterator;
Header File
stacks.h

Description
Implements an iterator object for list-based stacks.

Public Constructor
TStackAsListIterator::TStackAsListIterator

Public Member Functions
Current
Restart

Operators
++
int

TStackAsListIterator::TStacAsListIterator
TStackAsListIterator class

Syntax
TStackAsListIterator(const TStackAsList<T> & s) :
TMStackAsListIterator<T,TStandardAllocator>(s)

Description
Constructs an object that iterates on TIStackAsVector objects.

TStackAsListIterator::Current
TStackAsListIterator class

Syntax
const T& Current();
Description
Returns the current object.

TStackAsListIterator::Restart
TStackAsListIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TStackAsListIterator::operator ++
TStackAsListIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TStackAsListIterator::operator int
TStackAsListIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMIStackAsList template

Syntax
template <class T, class Alloc> class TMIStackAsList;
Header File
stacks.h

Description
Implements a managed stack of pointers to objects of type T, using a linked list as the underlying
implementation.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMIStackAsList::TMIStackAsList

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
IsFull
LastThat
Pop
Push
Top

TMIStackAsList::CondFunc
TMIStackAsList class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMIStackAsList::IterFunc
TMIStackAsList class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMIStackAsList::TMIStacAsList
TMIStackAsList class

Syntax
TMIStackAsList(unsigned max = DEFAULT_STACK_SIZE)
Description
Constructs a managed, indirect, vector-implemented stack, with max indicating the maximum stack
size.

TMIStackAsList::FirstThat
See Also TMIStackAsList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the stack that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
LastThat

TMIStackAsList::Flush
See Also TMIStackAsList class

Syntax
void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete)
Description
Flushes the stack without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

See Also
TShouldDelete::ownsElements

TMIStackAsList::ForEach
TMIStackAsList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each stack element. ForEach creates an internal iterator to execute the given
function for each element in the stack. The args argument lets you pass arbitrary data to this function.

TMIStackAsList::GetItemsInContainer
TMIStackAsList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the stack.

TMIStackAsList::IsEmpty
TMIStackAsList class

Syntax
int IsEmpty() const;
Description
Returns 1 if the stack has no elements; otherwise returns 0.

TMIStackAsList::IsFull
TMIStackAsList class

Syntax
int IsFull() const;
Description
Returns 1 if the stack is full; otherwise returns 0.

TMIStackAsList::LastThat
See Also TMIStackAsList class

Syntax
T *LastThat(CondFunc, void *args) const;
Description
Returns a pointer to the last object in the stack that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
FirstThat
ForEach

TMIStackAsList::Pop
See Also TMIStackAsList class

Syntax
T *Pop()
Description
Removes the object from the top of the stack and returns a pointer to the object. The fate of the
popped object is determined by ownership.

See Also
TShouldDelete

TMIStackAsList::Push
TMIStackAsList class

Syntax
void Push(T *t)
Description
Pushes a pointer to an object on the top of the stack.

TMIStackAsList::Top
TMIStackAsList class

Syntax
T *Top() const;
Description
Returns but does not remove the object pointer at the top of the stack.

TMIStackAsListIterator template

Syntax
template <class T, class Alloc> class TMIStackAsListIterator;
Header File
stacks.h

Description
Implements an iterator object for managed, indirect, list-based stacks.

Public Constructors
TMIStackAsListIterator::TMIStackAsListIterator

Public Member Functions
Current
Restart

Operators
++

TMIStackAsListIterator::TMIStacAsListIterator
TMIStackAsListIterator class

Syntax
TMIStackAsListIterator(const TMIStackAsList<T,Alloc> & s)
Description
Constructs an object that iterates on TMIStackAsList objects.

TMIStackAsListIterator::Current
TMIStackAsListIterator class

Syntax
T *Current()
Description
Returns the current object pointer.

TMIStackAsListIterator::Restart
TMIStackAsListIterator class

Syntax
void Restart()
Description
Restarts iteration from the beginning of the list.

TMIStackAsListIterator::operator ++
TMIStackAsListIterator class

Form 1
T *operator ++ (int)
Form 2
T *operator ++ ()
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIStackAsList template

Syntax
template <class T> class TIStackAsList;
Header File
stacks.h

Description
Implements TMIStackAsList with the standard allocator TStandardAllocator.

Type Definitions
CondFunc
IterFunc

Public Constructors
TIStackAsList::TIStackAsList

Public Member Functions
FirstThat
Flush
ForEach
GetItemsInContainer
IsEmpty
IsFull
LastThat
Pop
Push
Top

TIStackAsList::CondFunc
TIStackAsList class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TIStackAsList::IterFunc
TIStackAsList class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TIStackAsList::TIStacAsList
TIStackAsList class

Syntax
TIStackAsList(unsigned max = DEFAULT_STACK_SIZE)
Description
Constructs a managed, indirect, vector-implemented stack, with max indicating the maximum stack
size.

TIStackAsList::FirstThat
See Also TIStackAsList class

Syntax
T *FirstThat(CondFunc cond, void *args) const;
Description
Returns a pointer to the first object in the stack that satisfies a given condition. You supply a test-
function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
LastThat

TIStackAsList::Flush
See Also TIStackAsList class

Syntax
void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete)
Description
Flushes the stack without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the dt argument.

See Also
TShouldDelete::ownsElements

TIStackAsList::ForEach
TIStackAsList class

Syntax
void ForEach(IterFunc iter, void *args)
Description
Executes function iter for each stack element. ForEach creates an internal iterator to execute the given
function for each element in the stack. The args argument lets you pass arbitrary data to this function.

TIStackAsList::GetItemsInContainer
TIStackAsList class

Syntax
int GetItemsInContainer() const;
Description
Returns the number of items in the stack.

TIStackAsList::IsEmpty
TIStackAsList class

Syntax
int IsEmpty() const;
Description
Returns 1 if the stack has no elements; otherwise returns 0.

TIStackAsList::IsFull
TIStackAsList class

Syntax
int IsFull() const;
Description
Returns 1 if the stack is full; otherwise returns 0.

TIStackAsList::LastThat
See Also TIStackAsList class

Syntax
T *LastThat(CondFunc, void *args) const;
Description
Returns a pointer to the last object in the stack that satisfies a given condition. You supply a test
function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the stack meets the condition.

See Also
FirstThat
ForEach

TIStackAsList::Pop
See Also TIStackAsList class

Syntax
T *Pop()
Description
Removes the object from the top of the stack and returns a pointer to the object. The fate of the
popped object is determined by ownership.

See Also
TShouldDelete

TIStackAsList::Push
TIStackAsList class

Syntax
void Push(T *t)
Description
Pushes a pointer to an object on the top of the stack.

TIStackAsList::Top
TIStackAsList class

Syntax
T *Top() const;
Description
Returns but does not remove the object pointer at the top of the stack.

TIStackAsListIterator template

Syntax
template <class T> class TIStackAsListIterator;
Header File
stacks.h

Description
Implements an iterator object for indirect, list-based stacks.

Public Constructors
TIStackAsListIterator::TIStackAsListIterator

Public Member Functions
Current
Restart

Operators
++
int

TIStackAsListIterator::TIStacAsListIterator
TIStackAsListIterator class

Syntax
TIStackAsListIterator(const TIStackAsList<T> & s)
Description
Constructs an object that iterates on TIStackAsList objects.

TIStackAsListIterator::Current
TIStackAsListIterator class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TIStackAsListIterator::Restart
TIStackAsListIterator class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TIStackAsListIterator::operator ++
TIStackAsListIterator class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1:Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2:Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIStackAsListIterator::operator int
TIStackAsListIterator class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TStack template

Header File
stacks.h

Description
A simplified name for TStackAsVector.

TStackIterator template

Header File
stacks.h

Description
A simplified name for TStackAsVectorIterator.

TMVectorImp template

Syntax
template <class T, class Alloc> class TMVectorImp;
Header File
vectimp.h

Description
Implements a managed vector of objects of type T. TMVectorImp assumes that T has meaningful copy
semantics, and a default constructor.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMVectorImp::TMVectorImp

Public Member Functions
FirstThat
Flush
ForEach
GetDelta
LastThat
Limit
Resize
Top

Operators
[]
=

Protected Data Members
Lim

Protected Member Functions
Zero

TMVectorImp::CondFunc
TMVectorImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMVectorImp::IterFunc
TMVectorImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMVectorImp::TMVectorImp
TMVectorImp class

Form 1
TMVectorImp();
Form 2
TMVectorImp(unsigned sz, unsigned = 0);
Form 3
TMVectorImp(const TMVectorImp<T,Alloc> &);
Description
Form 1: Constructs a vector with no entries.
Form 2: Constructs a vector of sz objects, initialized by default to 0.
Form 3: Constructs a vector copy.

TMVectorImp::FirstThat
See Also TMVectorImp class

Form 1
T *FirstThat(CondFunc cond, void *args) const;
Form 2
T *FirstThat(CondFunc cond, void *args, unsigned start, unsigned stop)
const;

Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition. You supply a
test-function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the vector meets the condition.
Form 2: This version of FirstThat allows you to specify a range to be searched. Returns a pointer to
the first object in the vector that satisfies a given condition. You supply a test-function pointer cond that
returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in
the vector meets the condition.

See Also
LastThat

TMVectorImp::Flush
See Also TMVectorImp class

Syntax
void Flush(unsigned stop = UINT_MAX, unsigned start = 0);
Description
Flushes the vector without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the first argument.

See Also
TShouldDelete::ownsElements

TMVectorImp::ForEach
See Also TMVectorImp class

Form 1
void ForEach(IterFunc iter, void *args)
Form 2
void ForEach(IterFunc iter, void *args, unsigned start, unsigned stop);
Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition. ForEach
creates an internal iterator to execute the given function for each element in the vector. The args
argument lets you pass arbitrary data to this function.
Form 2: This version allows you to specify a range.

See Also
LastThat

TMVectorImp::GetDelta
TMVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns the growth delta for the vector.

TMVectorImp::LastThat
See Also TMVectorImp class

Form 1
T *LastThat(CondFunc cond, void *args) const;
Form 2
T *LastThat(CondFunc cond, void *args, unsigned start, unsigned stop)
const;

Description
Form 1: Returns a pointer to the last object in the vector that satisfies a given condition. You supply a
test function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments
via args. Returns 0 if no object in the vector meets the condition.
Form 2: This version allows you to specify a range.

See Also
FirstThat
ForEach

TMVectorImp::Limit
TMVectorImp class

Syntax
unsigned Limit() const;
Description
Returns the number of items that the vector can hold.

TMVectorImp::Resize
TMVectorImp class

Syntax
void Resize(unsigned sz, unsigned offset = 0);
Description
Creates a new vector of size sz. The existing vector is copied to the expanded vector, then deleted. In
a vector of pointers the entries are zeroed. In an vector of objects the default constructor is invoked for
each unused element. offset is the location in the new vector where the first element of the old vector
should be copied. This is needed when the vector has to be extended downward.

TMVectorImp::Top
TMVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns the index of the current top element. For plain vectors Top returns Lim; for counted and sorted
vectors Top returns the current insertion point.

TMVectorImp::operator []
TMVectorImp class

Syntax
T & operator [] (unsigned index) const;
Description
Returns a reference to the object at index.

TMVectorImp::operator =
TMVectorImp class

Syntax
const TMVectorImp<T,Alloc> & operator = (const TMVectorImp<T,Alloc> &);
Description
Provides the vector assignment operator.

TMVectorImp::Lim
TMVectorImp class

Syntax
unsigned Lim;
Description
Lim stores the upper limit for indexes into the vector.

TMVectorImp::Zero
TMVectorImp class

Syntax
virtual void Zero(unsigned, unsigned)
Description
Provides for zeroing vector contents within the specified range.

TMVectorIteratorImp template

Syntax
template <class T, class Alloc> class TMVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with any direct, managed vector of objects of type T. For
indirect vector iterators, see TMIVectorIteratorImp.

Public Constructors
TMVectorIteratorImp::TMVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TMVectorIteratorImp::TMVectorIteratorImp
TMVectorIteratorImp class

Form 1
TMVectorIteratorImp(const TMVectorImp<T,Alloc> &v)
Form 2
TMVectorIteratorImp(const TMVectorImp<T,Alloc> &v, unsigned start,
unsigned stop)

Description
Form 1: Creates an iterator object to traverse TMVectorImp objects.
Form 2: Creates an iterator object to traverse TMVectorImp objects. A range can be specified.

TMVectorIteratorImp::Current
TMVectorIteratorImp class

Syntax
const T& Current();
Description
Returns the current object.

TMVectorIteratorImp::Restart
TMVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TMVectorIteratorImp::operator ++
TMVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMVectorIteratorImp::operator int
TMVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TVectorImp template

Syntax
template <class T> class TVectorImp;
Header File
vectimp.h

Description
Implements a vector of objects of type T. TVectorImp assumes that T has meaningful copy semantics,
and a default constructor.

Type Definitions
CondFunc
IterFunc

Public Constructors
TVectorImp::TVectorImp

Public Member Functions
FirstThat
Flush
ForEach
GetDelta
LastThat
Limit
Resize
Top

Operators
[]
=

Protected Data Members
Lim

Protected Member Functions
Zero

TVectorImp::CondFunc
TVectorImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TVectorImp::IterFunc
TVectorImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TVectorImp::TVectorImp
TVectorImp class

Form 1
TVectorImp()
Form 2
TVectorImp(unsigned sz, unsigned = 0)
Form 3
TVectorImp(const TVectorImp<T> &v)
Description
Form 1: Constructs a vector with no entries.
Form 2: Constructs a vector of sz objects, initialized by default to 0.
Form 3: Constructs a vector copy.

TVectorImp::FirstThat
See Also TVectorImp class

Form 1
T *FirstThat(CondFunc cond, void *args) const;
Form 2
T *FirstThat(CondFunc cond, void *args, unsigned start, unsigned stop)
const;

Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition. You supply a
test-function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the vector meets the condition.
Form 2: This version of FirstThat allows you to specify a range to be searched. Returns a pointer to
the first object in the vector that satisfies a given condition. You supply a test-function pointer cond that
returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in
the vector meets the condition.

See Also
LastThat

TVectorImp::Flush
See Also TVectorImp class

Syntax
void Flush(unsigned stop = UINT_MAX, unsigned start = 0);
Description
Flushes the vector without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the first argument.

See Also
TShouldDelete::ownsElements

TVectorImp::ForEach
See Also TVectorImp class

Form 1
void ForEach(IterFunc iter, void *args)
Form 2
void ForEach(IterFunc iter, void *args, unsigned start, unsigned stop);
Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition. ForEach
creates an internal iterator to execute the given function for each element in the vector. The args
argument lets you pass arbitrary data to this function.
Form 2: This version allows you to specify a range.

See Also
LastThat

TVectorImp::GetDelta
TVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns the growth delta for the vector.

TVectorImp::LastThat
See Also TVectorImp class

Form 1
T *LastThat(CondFunc cond, void *args) const;
Form 2
T *LastThat(CondFunc cond, void *args, unsigned start, unsigned stop)
const;

Description
Form 1: Returns a pointer to the last object in the vector that satisfies a given condition. You supply a
test function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments
via args. Returns 0 if no object in the vector meets the condition.
Form 2: This version allows you to specify a range.

See Also
FirstThat
ForEach

TVectorImp::Limit
TVectorImp class

Syntax
unsigned Limit() const;
Description
Returns the number of items that the vector can hold.

TVectorImp::Resize
TVectorImp class

Syntax
void Resize(unsigned sz, unsigned offset = 0);
Description
Creates a new vector of size sz. The existing vector is copied to the expanded vector, then deleted. In
a vector of pointers the entries are zeroed. In an vector of objects the default constructor is invoked for
each unused element. offset is the location in the new vector where the first element of the old vector
should be copied. This is needed when the vector has to be extended downward.

TVectorImp::Top
TVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns the index of the current top element. For plain vectors Top returns Lim; for counted and sorted
vectors Top returns the current insertion point.

TVectorImp::operator []
TVectorImp class

Syntax
T & operator [] (unsigned index) const;
Description
Returns a reference to the object at index.

TVectorImp::operator =
TVectorImp class

Syntax
const TVectorImp<T,Alloc> & operator = (const TVectorImp<T,Alloc> &);
Description
Provides the vector assignment operator.

TVectorImp::Lim
TVectorImp class

Syntax
unsigned Lim;
Description
Lim stores the upper limit for indexes into the vector.

TVectorImp::Zero
TVectorImp class

Syntax
virtual void Zero(unsigned, unsigned)
Description
Provides for zeroing vector contents within the specified range.

TVectorIteratorImp template

Syntax
template <class T> class TVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with any direct vector of objects of type T.

Public Constructors
TVectorIteratorImp::TVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TVectorIteratorImp::TVectorIteratorImp
TVectorIteratorImp class

Form 1
TVectorIteratorImp(const TVectorImp<T> &v)
Form 2
TVectorIteratorImp(const TVectorImp<T> &v, unsigned start, unsigned stop)
Description
Form 1: Creates an iterator object to traverse TVectorImp objects.
Form 2: Creates an iterator object to traverse TVectorImp objects. A range can be specified.

TVectorIteratorImp::Current
TVectorIteratorImp class

Syntax
const T& Current();
Description
Returns the current object.

TVectorIteratorImp::Restart
TVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TVectorIteratorImp::operator ++
TVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TVectorIteratorImp::operator int
TVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMCVectorImp template

Syntax
template <class T, class Alloc> class TMCVectorImp;
Header File
vectimp.h

Description
Implements a managed, counted vector of objects of type T. TMCVectorImp assumes that T has
meaningful copy semantics, and a default constructor.

Public Constructors
TMCVectorImp::TMCVectorImp

Public Member Functions
Add
AddAt
Count
Detach
Find
GetDelta

Protected Data Members
Count_
Delta
Top

TMCVectorImp::TMCVectorImp
TMCVectorImp class

Form 1
TMCVectorImp();
Form 2
TMCVectorImp(unsigned sz, unsigned = 0);
Description
Form 1: Constructs a vector with no entries.
Form 2: Constructs a vector of sz objects, initialized by default to 0.

TMCVectorImp::Add
TMCVectorImp class

Syntax
int Add(const T& t);
Description
Adds an object to the vector and increments Count_.

TMCVectorImp::AddAt
TMCVectorImp class

Syntax
int AddAt(const T&, unsigned);
Description
Adds an object to the vector at the specified location, and increments Count_.

TMCVectorImp::Count
TMCVectorImp class

Syntax
unsigned Count() const;
Description
Returns Count_.

TMCVectorImp::Detach
TMCVectorImp class

Form 1
int Detach(unsigned loc);
Form 2
int Detach(const T& loc);
Description
Remove by specifying the object or its index.

TMCVectorImp::Find
TMCVectorImp class

Syntax
virtual unsigned Find(const T&) const;
Description
Finds the specified object and returns the object's index; otherwise returns INT_MAX.

TMCVectorImp::GetDelta
TMCVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns Delta.

TMCVectorImp::Count_
TMCVectorImp class

Syntax
unsigned Count_;
Description
Maintains the number of objects in the vector.

TMCVectorImp::Delta
TMCVectorImp class

Syntax
unsigned Delta;
Description
Specifies the size increment to be used when the vector grows.

TMCVectorImp::Top
TMCVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns Count_.

TMCVectorIteratorImp template

Syntax
template <class T, class Alloc> class TMCVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with any direct, managed, counted vector of objects of type T.

Public Constructors
TMCVectorIteratorImp::TMCVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TMCVectorIteratorImp::TMCVectorIteratorImp
TMCVectorIteratorImp class

Form 1
TMCVectorIteratorImp(const TMCVectorImp<T,Alloc> &v)
Form 2
TMVectorIteratorImp(const TMCVectorImp<T,Alloc> &v, unsigned start,
unsigned stop)

Description
Form 1: Creates an iterator object to traverse TMCVectorImp objects.
Form 2: Creates an iterator object to traverse TMCVectorImp objects. A range can be specified.

TMCVectorIteratorImp::Current
TMCVectorIteratorImp class

Syntax
const T& Current();
Description
Returns the current object.

TMCVectorIteratorImp::Restart
TMCVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TMCVectorIteratorImp::operator ++
TMCVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMCVectorIteratorImp::operator int
TMCVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TCVectorImp template

Syntax
template <class T> class TCVectorImp;
Header File
vectimp.h

Description
Implements a counted vector of objects of type T. TCVectorImp assumes that T has meaningful copy
semantics, and a default constructor.

Public Constructors
TCVectorImp::TCVectorImp

Public Member Functions
Add
AddAt
Count
Detach
Find
GetDelta

Protected Data Members
Count_
Delta
Top

TCVectorImp::TCVectorImp
TCVectorImp class

Form 1
TCVectorImp();
Form 2
TMCVectorImp(unsigned sz, unsigned = 0);
Description
Form 1: Constructs a vector with no entries.
Form 2: Constructs a vector of sz objects, initialized by default to 0.

TCVectorImp::Add
TCVectorImp class

Syntax
int Add(const T& t);
Description
Adds an object to the vector and increments Count_.

TCVectorImp::AddAt
TCVectorImp class

Syntax
int AddAt(const T&, unsigned);
Description
Adds an object to the vector at the specified location, and increments Count_.

TCVectorImp::Count
TCVectorImp class

Syntax
unsigned Count() const;
Description
Returns Count_.

TCVectorImp::Detach
TCVectorImp class

Form 1
int Detach(unsigned loc);
Form 2
int Detach(const T& loc);
Description
Remove by specifying the object or its index.

TCVectorImp::Find
TCVectorImp class

Syntax
virtual unsigned Find(const T&) const;
Description
Finds the specified object and returns the object's index; otherwise returns INT_MAX.

TCVectorImp::GetDelta
TCVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns Delta.

TCVectorImp::Count_
TCVectorImp class

Syntax
unsigned Count_;
Description
Maintains the number of objects in the vector.

TCVectorImp::Delta
TCVectorImp class

Syntax
unsigned Delta;
Description
Specifies the size increment to be used when the vector grows.

TCVectorImp::Top
TCVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns Count_.

TCVectorIteratorImp template

Syntax
template <class T> class TCVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with any direct, counted vector of objects of type T.

Public Constructors
TCVectorIteratorImp::TCVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TCVectorIteratorImp::TCVectorIteratorImp
TCVectorIteratorImp class

Form 1
TCVectorIteratorImp(const TCVectorImp<T> &v)
Form 2
TCVectorIteratorImp(const TCVectorImp<T> &v, unsigned start, unsigned stop
)

Description
Form 1: Creates an iterator object to traverse TCVectorImp objects.
Form 2: Creates an iterator object to traverse TCVectorImp objects. A range can be specified.

TCVectorIteratorImp::Current
TCVectorIteratorImp class

Syntax
const T& Current();
Description
Returns the current object.

TCVectorIteratorImp::Restart
TCVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TCVectorIteratorImp::operator ++
TCVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TCVectorIteratorImp::operator int
TCVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMSVectorImp template

Syntax
template <class T, class Alloc> class TMSVectorImp;
Header File
vectimp.h

Description
Implements a managed, sorted vector of objects of type T. TMSVectorImp assumes that T has
meaningful copy semantics, a meaningful < operator, and a default constructor.

Public Constructors
TMSVectorImp::TMSVectorImp

Public Member Functions
Add
AddAt
Count
Detach
Find
GetDelta

Protected Data Members
Count_
Delta
Top

TMSVectorImp::TMSVectorImp
TMSVectorImp class

Form 1
TMSVectorImp()
Form 2
TMSVectorImp(unsigned sz, unsigned d = 0)
Description
Form 1: Constructs a vector with no entries.
Form 2: Constructs a vector of sz objects, initialized by default to 0.

TMSVectorImp::Add
TMSVectorImp class

Syntax
int Add(const T& t);
Description
Adds an object to the vector and increments Count_.

TMSVectorImp::AddAt
TMSVectorImp class

Syntax
int AddAt(const T&, unsigned);
Description
Adds an object to the vector at the specified location, and increments Count_.

TMSVectorImp::Count
TMSVectorImp class

Syntax
unsigned Count() const;
Description
Returns Count_.

TMSVectorImp::Detach
TMSVectorImp class

Form 1
int Detach(unsigned loc);
Form 2
int Detach(const T& loc);
Description
Remove by specifying the object or its index.

TMSVectorImp::Find
TMSVectorImp class

Syntax
virtual unsigned Find(const T&) const;
Description
Finds the specified object and returns the object's index; otherwise returns INT_MAX.

TMSVectorImp::GetDelta
TMSVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns Delta.

TMSVectorImp::Count_
TMSVectorImp class

Syntax
unsigned Count_;
Description
Maintains the number of objects in the vector.

TMSVectorImp::Delta
TMSVectorImp class

Syntax
unsigned Delta;
Description
Specifies the size increment to be used when the vector grows.

TMSVectorImp::Top
TMSVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns Count_.

TMSVectorIteratorImp template

Syntax
template <class T, class Alloc> class TMSVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with any direct, managed, sorted vector of objects of type T.

Public Constructors
TMSVectorIteratorImp::TMSVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TMSVectorIteratorImp::TMSVectorIteratorImp
TMSVectorIteratorImp class

Form 1
TMSVectorIteratorImp(const TMSVectorImp<T,Alloc> &v)
Form 2
TMSVectorIteratorImp(const TMSVectorImp<T,Alloc> &v, unsigned start,
unsigned stop)

Description
Form 1: Creates an iterator object to traverse TMSVectorImp objects.
Form 2: Creates an iterator object to traverse TMSVectorImp objects. A range can be specified.

TMSVectorIteratorImp::Current
TMSVectorIteratorImp class

Syntax
const T& Current();
Description
Returns the current object.

TMSVectorIteratorImp::Restart
TMSVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TMSVectorIteratorImp::operator ++
TMSVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMSVectorIteratorImp::operator int
TMSVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TSVectorImp template

Syntax
template <class T> class TSVectorImp;
Header File
vectimp.h

Description
Implements a sorted vector of objects of type T. TMSVectorImp assumes that T has meaningful copy
semantics, a meaningful < operator, and a default constructor.

Public Constructors
TSVectorImp::TSVectorImp

Public Member Functions
Add
AddAt
Count
Detach
Find
GetDelta

Protected Data Members
Count_
Delta
Top

TSVectorImp::TSVectorImp
TSVectorImp class

Form 1
TSVectorImp()
Form 2
TSVectorImp(unsigned sz, unsigned d = 0)
Description
Form 1: Constructs a vector with no entries.
Form 2: Constructs a vector of sz objects, initialized by default to 0.

TSVectorImp::Add
TSVectorImp class

Syntax
int Add(const T& t);
Description
Adds an object to the vector and increments Count_.

TSVectorImp::AddAt
TSVectorImp class

Syntax
int AddAt(const T&, unsigned);
Description
Adds an object to the vector at the specified location, and increments Count_.

TSVectorImp::Count
TSVectorImp class

Syntax
unsigned Count() const;
Description
Returns Count_.

TSVectorImp::Detach
TSVectorImp class

Form 1
int Detach(unsigned loc);
Form 2
int Detach(const T& loc);
Description
Remove by specifying the object or its index.

TSVectorImp::Find
TSVectorImp class

Syntax
virtual unsigned Find(const T&) const;
Description
Finds the specified object and returns the object's index; otherwise returns INT_MAX.

TSVectorImp::GetDelta
TSVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns Delta.

TSVectorImp::Count_
TSVectorImp class

Syntax
unsigned Count_;
Description
Maintains the number of objects in the vector.

TSVectorImp::Delta
TSVectorImp class

Syntax
unsigned Delta;
Description
Specifies the size increment to be used when the vector grows.

TSVectorImp::Top
TSVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns Count_.

TSVectorIteratorImp template

Syntax
template <class T> class TSVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with any direct, sorted vector of objects of type T.

Public Constructors
TSVectorIteratorImp::TSVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TSVectorIteratorImp::TSVectorIteratorImp
TSVectorIteratorImp class

Form 1
TSVectorIteratorImp(const TSVectorImp<T> &v)
Form 2
TSVectorIteratorImp(const TSVectorImp<T> &v, unsigned start, unsigned stop
)

Description
Form 1: Creates an iterator object to traverse TSVectorImp objects.
Form 2: Creates an iterator object to traverse TSVectorImp objects. A range can be specified.

TSVectorIteratorImp::Current
TSVectorIteratorImp class

Syntax
const T& Current();
Description
Returns the current object.

TSVectorIteratorImp::Restart
TSVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TSVectorIteratorImp::operator ++
TSVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1: Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2: Moves to the next object, and returns the object that was current after the move (pre-
increment).

TSVectorIteratorImp::operator int
TSVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMIVectorImp template

Syntax
template <class T, class Alloc> class TMIVectorImp;
Header File
vectimp.h

Description
Implements a managed vector of pointers to objects of type T. Since pointers always have meaningful
copy semantics, this class can handle any type of object.

Type Definitions
CondFunc
IterFunc

Public Constructors
TMIVectorImp::TMIVectorImp

Public Member Functions
FirstThat
Flush
ForEach
GetDelta
LastThat
Limit
Resize
Top
Zero

Operators
[]

TMIVectorImp::CondFunc
TMIVectorImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMIVectorImp::IterFunc
TMIVectorImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMIVectorImp::TMIVectorImp
TMIVectorImp class

Syntax
TMIVectorImp(unsigned sz);
Description
Constructs a managed vector of pointers to objects. sz represents the vector size.

TMIVectorImp::FirstThat
TMIVectorImp class

Form 1
T *FirstThat(CondFunc cond, void *args) const;
Form 2
T *FirstThat(int (*)(const T &, void *), void *, unsigned, unsigned)
const;

Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition. You supply a
test-function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the vector meets the condition.
Form 2: This version allows specifying a range to be searched. You supply a test-function pointer cond
that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the vector meets the condition.

TMIVectorImp::Flush
TMIVectorImp class

Syntax
void Flush(unsigned stop = UINT_MAX, unsigned start = 0);
Description
Flushes the vector without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the first argument. A range to be flushed can be specified with the
last two arguments.

TMIVectorImp::ForEach
TMIVectorImp class

Form 1
void ForEach(IterFunc iter, void *args)
Form 2
void ForEach(IterFunc iter, void *args, unsigned start, unsigned stop);
Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TMIVectorImp::FirstThat

TMIVectorImp::GetDelta
TMIVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns the growth delta for the vector.

TMIVectorImp::LastThat
TMIVectorImp class

Form 1
T *LastThat(CondFunc cond, void *args) const;
Form 2
T *LastThat(CondFunc cond, void *args, unsigned start, unsigned stop)
const;

Description
Form 1: Returns a pointer to the last object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TMArrayAsVector::LastThat

TMIVectorImp::Limit
TMIVectorImp class

Syntax
unsigned Limit() const;
Description
Returns the number of items that the vector can hold.

TMIVectorImp::Resize
TMIVectorImp class

Syntax
void Resize(unsigned sz, unsigned offset = 0);
Description
Creates a new vector of size sz. The existing vector is copied to the expanded vector, then deleted. In
a vector of pointers the entries are zeroed. In an vector of objects the default constructor is invoked for
each unused element. offset is the location in the new vector where the first element of the old vector
should be copied. This is needed when the vector has to be extended downward.

TMIVectorImp::Top
TMIVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns the index of the current top element. For plain vectors, Top returns Lim; for counted and sorted
vectors, Top returns the current insertion point.

TMIVectorImp::Zero
TMIVectorImp class

Syntax
virtual void Zero(unsigned, unsigned);
Description
Provides for zeroing vector contents within the specified range.

TMIVectorImp::operator []
TMIVectorImp class

Form 1
T * & operator [] (unsigned index)
Form 2
T * & operator [] (unsigned index) const;
Description
Returns a reference to the object at index.

TMIVectorIteratorImp template

Syntax
template <class T, class Alloc> class TMIVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with an indirect, managed vector.

Public Constructors
TMIVectorIteratorImp::TMIVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TMIVectorIteratorImp::TMIVectorIteratorImp
TMIVectorIteratorImp class

Form 1
TMIVectorIteratorImp(const TMIVectorImp<T,Alloc> &v)
Form 2
TMIVectorIteratorImp(const TMIVectorImp<T,Alloc> &v, unsigned l, unsigned
u)

Description
Form 1: Creates an iterator object to traverse TMIVectorImp objects.
Form 2: Creates an iterator object to traverse TMIVectorImp objects. A range can be specified.

TMIVectorIteratorImp::Current
TMIVectorIteratorImp class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TMIVectorIteratorImp::Restart
TMIVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TMIVectorIteratorImp::operator ++
TMIVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1:Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2:Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMIVectorIteratorImp::operator int
TMIVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TIVectorImp template

Syntax
template <class T> class TIVectorImp;
Header File
vectimp.h

Description
Implements a vector of pointers to objects of type T. Since pointers always have meaningful copy
semantics, this class can handle any type of object.

Public Constructors
TIVectorImp::TIVectorImp

Type Definitions
CondFunc
IterFunc

Public Member Functions
FirstThat
Flush
ForEach
GetDelta
LastThat
Limit
Resize
Top
Zero

Operators
[]

TIVectorImp::CondFunc
TIVectorImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TIVectorImp::IterFunc
TIVectorImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TIVectorImp::TIVectorImp
TIVectorImp class

Syntax
TIVectorImp(unsigned sz, unsigned d = 0)
Description
Constructs an indirect vector of sz size, with default initialization of 0.

TIVectorImp::FirstThat
TIVectorImp class

Form 1
T *FirstThat(CondFunc cond, void *args) const;
Form 2
T *FirstThat(int (*)(const T &, void *), void *, unsigned, unsigned)
const;

Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition. You supply a
test-function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the vector meets the condition.
Form 2: This version allows specifying a range to be searched. You supply a test-function pointer cond
that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the vector meets the condition.

TIVectorImp::Flush
TIVectorImp class

Syntax
void Flush(unsigned stop = UINT_MAX, unsigned start = 0);
Description
Flushes the vector without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the first argument. A range to be flushed can be specified with the
last two arguments.

TIVectorImp::ForEach
TIVectorImp class

Form 1
void ForEach(IterFunc iter, void *args)
Form 2
void ForEach(IterFunc iter, void *args, unsigned start, unsigned stop);
Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TIVectorImp::FirstThat

TIVectorImp::GetDelta
TIVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns the growth delta for the vector.

TIVectorImp::LastThat
TIVectorImp class

Form 1
T *LastThat(CondFunc cond, void *args) const;
Form 2
T *LastThat(CondFunc cond, void *args, unsigned start, unsigned stop)
const;

Description
Form 1: Returns a pointer to the last object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TIVectorImp::LastThat

TIVectorImp::Limit
TIVectorImp class

Syntax
unsigned Limit() const;
Description
Returns the number of items that the vector can hold.

TIVectorImp::Resize
TIVectorImp class

Syntax
void Resize(unsigned sz, unsigned offset = 0);
Description
Creates a new vector of size sz. The existing vector is copied to the expanded vector, then deleted. In
a vector of pointers the entries are zeroed. In an vector of objects the default constructor is invoked for
each unused element. offset is the location in the new vector where the first element of the old vector
should be copied. This is needed when the vector has to be extended downward.

TIVectorImp::Top
TIVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns the index of the current top element. For plain vectors, Top returns Lim; for counted and sorted
vectors, Top returns the current insertion point.

TIVectorImp::Zero
TIVectorImp class

Syntax
virtual void Zero(unsigned, unsigned);
Description
Provides for zeroing vector contents within the specified range.

TIVectorImp::operator []
TIVectorImp class

Form 1
T * & operator [] (unsigned index)
Form 2
T * & operator [] (unsigned index) const;
Description
Returns a reference to the object at index.

TIVectorIteratorImp template

Syntax
template <class T> class TIVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with an indirect, managed vector.

Public Constructors
TIVectorIteratorImp::TIVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TIVectorIteratorImp::TIVectorIteratorImp
TIVectorIteratorImp class

Form 1
TIVectorIteratorImp(const TIVectorImp<T> &v)
Form 2
TIVectorIteratorImp(const TIVectorImp<T> &v, unsigned l, unsigned u)
Description
Form 1: Creates an iterator object to traverse TIVectorImp objects.
Form 2: Creates an iterator object to traverse TIVectorImp objects. A range can be specified.

TIVectorIteratorImp::Current
TIVectorIteratorImp class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TIVectorIteratorImp::Restart
TIVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TIVectorIteratorImp::operator ++
TIVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1:Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2:Moves to the next object, and returns the object that was current after the move (pre-
increment).

TIVectorIteratorImp::operator int
TIVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMICVectorImp template

Syntax
template <class T, class Alloc> class TMICVectorImp;
Header File
vectimp.h

Description
Implements a managed, counted vector of pointers to objects of type T. Since pointers always have
meaningful copy semantics, this class can handle any type of object.

Public Constructors
TMICVectorImp::TMICVectorImp

Public Member Functions
Add
Find

Protected Data Members
Find

TMICVectorImp::TMICVectorImp
TMICVectorImp class

Syntax
TMICVectorImp(unsigned sz, unsigned d = 0)
Description
Default constructor.

TMICVectorImp::Add
TMICVectorImp class

Syntax
int Add(T *t);
Description
Adds an object to the vector.

TMICVectorImp::Find
TMICVectorImp class

Form 1
unsigned Find(T *t) const;
Form 2
virtual unsigned Find(void *) const; // PROTECTED
Description
Form 1: Finds the specified object pointer, and returns its index.
Form 2: Finds the specified pointer and returns its index.

TMICVectorIteratorImp template

Syntax
template <class T, class Alloc> class TMICVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with an indirect, managed, counted vector.

Public Constructors
TMICVectorIteratorImp::TMICVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TMICVectorIteratorImp::TMICVectorIteratorImp
TMICVectorIteratorImp class

Form 1
TMICVectorIteratorImp(const TMICVectorImp<T,Alloc> &v)
Form 2
TMICVectorIteratorImp(const TMICVectorImp<T,Alloc> &v, unsigned l,
unsigned u)

Description
Form 1: Creates an iterator object to traverse TMICVectorImp objects.
Form 2: Creates an iterator object to traverse TMICVectorImp objects. A range can be specified.

TMICVectorIteratorImp::Current
TMICVectorIteratorImp class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TMICVectorIteratorImp::Restart
TMICVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TMICVectorIteratorImp::operator ++
TMICVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1:Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2:Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMICVectorIteratorImp::operator int
TMICVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TICVectorImp template

Syntax
template <class T> class TICVectorImp;
Header File
vectimp.h

Description
Implements a counted vector of pointers to objects of type T. Since pointers always have meaningful
copy semantics, this class can handle any type of object.

Public Constructors
TICVectorImp::TICVectorImp

Type Definitions
CondFunc
IterFunc

Public Member Functions
FirstThat
Flush
ForEach
GetDelta
LastThat
Resize
Top
Zero

Operators
[]

TICVectorImp::CondFunc
TICVectorImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TICVectorImp::IterFunc
TICVectorImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TICVectorImp::TICVectorImp
TICVectorImp class

Syntax
TICVectorImp(unsigned sz, unsigned d = 0)
Description
Constructs a counted vector of pointers to objects. sz represents the vector size. d represents the
initialization value.

TICVectorImp::FirstThat
TICVectorImp class

Form 1
T *FirstThat(CondFunc cond, void *args) const;
Form 2
T *FirstThat(int (*)(const T &, void *), void *, unsigned, unsigned)
const;

Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition. You supply a
test-function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the vector meets the condition.
Form 2: This version allows specifying a range to be searched. You supply a test-function pointer cond
that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the vector meets the condition.

TICVectorImp::Flush
TICVectorImp class

Syntax
void Flush(unsigned stop = UINT_MAX, unsigned start = 0);
Description
Flushes the vector without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the first argument. A range to be flushed can be specified with the
last two arguments.

TICVectorImp::ForEach
TICVectorImp class

Form 1
void ForEach(IterFunc iter, void *args)
Form 2
void ForEach(IterFunc iter, void *args, unsigned start, unsigned stop);
Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TICVectorImp::FirstThat

TICVectorImp::GetDelta
TICVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns the growth delta for the vector.

TICVectorImp::LastThat
TICVectorImp class

Form 1
T *LastThat(CondFunc cond, void *args) const;
Form 2
T *LastThat(CondFunc cond, void *args, unsigned start, unsigned stop)
const;

Description
Form 1: Returns a pointer to the last object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TICVectorImp::LastThat

TICVectorImp::Limit
TICVectorImp class

Syntax
unsigned Limit() const;
Description
Returns the number of items that the vector can hold.

TICVectorImp::Resize
TICVectorImp class

Syntax
void Resize(unsigned sz, unsigned offset = 0);
Description
Creates a new vector of size sz. The existing vector is copied to the expanded vector, then deleted. In
a vector of pointers the entries are zeroed. In an vector of objects the default constructor is invoked for
each unused element. offset is the location in the new vector where the first element of the old vector
should be copied. This is needed when the vector has to be extended downward.

TICVectorImp::Top
TICVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns the index of the current top element. For plain vectors, Top returns Lim; for counted and sorted
vectors, Top returns the current insertion point.

TICVectorImp::Zero
TICVectorImp class

Syntax
virtual void Zero(unsigned, unsigned);
Description
Provides for zeroing vector contents within the specified range.

TICVectorImp::operator []
TICVectorImp class

Form 1
T * & operator [] (unsigned index)
Form 2
T * & operator [] (unsigned index) const;
Description
Returns a reference to the object at index.

TICVectorIteratorImp template

Syntax
template <class T> class TICVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with an indirect, managed, counted vector.

Public Constructors
TICVectorIteratorImp::TICVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TICVectorIteratorImp::TICVectorIteratorImp
TICVectorIteratorImp class

Form 1
TICVectorIteratorImp(const TICVectorImp<T> &v)
Form 2
TICVectorIteratorImp(const TICVectorImp<T> &v, unsigned l, unsigned u)
Description
Form 1: Creates an iterator object to traverse TICVectorImp objects.
Form 2: Creates an iterator object to traverse TICVectorImp objects. A range can be specified.

TICVectorIteratorImp::Current
TICVectorIteratorImp class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TICVectorIteratorImp::Restart
TICVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TICVectorIteratorImp::operator ++
TICVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1:Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2:Moves to the next object, and returns the object that was current after the move (pre-
increment).

TICVectorIteratorImp::operator int
TICVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TMISVectorImp template

Syntax
template <class T, class Alloc> class TMISVectorImp;
Header File
vectimp.h

Description
Implements a managed, sorted vector of pointers to objects of type T. Since pointers always have
meaningful copy semantics, this class can handle any type of object.

Public Constructors
TMISVectorImp::TMISVectorImp

Type Definitions
CondFunc
IterFunc

Public Member Functions
Add
Find
FirstThat
Flush
ForEach
GetDelta
LastThat
Resize
Top
Zero

Operators
[]

TMISVectorImp::CondFunc
TMISVectorImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TMISVectorImp::IterFunc
TMISVectorImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TMISVectorImp::TMISVectorImp
TMISVectorImp class

Syntax
TMISVectorImp(unsigned sz, unsigned d = 0);
Description
Constructs a managed, sorted vector of pointers to objects. sz represents the vector size. d represents
the initialization value.

TMISVectorImp::Add
TMISVectorImp class

Syntax
int Add(T *t);
Description
Adds an object to the vector.

TMISVectorImp::Find
TMISVectorImp class

Form 1
unsigned Find(T *t) const;
Form 2
virtual unsigned Find(void *) const;
Description
Form 1: Finds the specified object pointer, and returns its index.
Form 2: Finds the specified pointer and returns its index.

TMISVectorImp::FirstThat
TMISVectorImp class

Form 1
T *FirstThat(CondFunc cond, void *args) const;
Form 2
T *FirstThat(int (*)(const T &, void *), void *, unsigned, unsigned)
const;

Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition. You supply a
test-function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the vector meets the condition.
Form 2: This version allows specifying a range to be searched. You supply a test-function pointer cond
that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the vector meets the condition.

TMISVectorImp::Flush
TMISVectorImp class

Syntax
void Flush(unsigned stop = UINT_MAX, unsigned start = 0);
Description
Flushes the vector without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the first argument. A range to be flushed can be specified with the
last two arguments.

TMISVectorImp::ForEach
TMISVectorImp class

Form 1
void ForEach(IterFunc iter, void *args)
Form 2
void ForEach(IterFunc iter, void *args, unsigned start, unsigned stop);
Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TMISVectorImp::FirstThat

TMISVectorImp::GetDelta
TMISVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns the growth delta for the vector.

TMISVectorImp::LastThat
TMISVectorImp class

Form 1
T *LastThat(CondFunc cond, void *args) const;
Form 2
T *LastThat(CondFunc cond, void *args, unsigned start, unsigned stop)
const;

Description
Form 1: Returns a pointer to the last object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TMISVectorImp::LastThat

TMISVectorImp::Limit
TMISVectorImp class

Syntax
unsigned Limit() const;
Description
Returns the number of items that the vector can hold.

TMISVectorImp::Resize
TMISVectorImp class

Syntax
void Resize(unsigned sz, unsigned offset = 0);
Description
Creates a new vector of size sz. The existing vector is copied to the expanded vector, then deleted. In
a vector of pointers the entries are zeroed. In an vector of objects the default constructor is invoked for
each unused element. offset is the location in the new vector where the first element of the old vector
should be copied. This is needed when the vector has to be extended downward.

TMISVectorImp::Top
TMISVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns the index of the current top element. For plain vectors, Top returns Lim; for counted and sorted
vectors, Top returns the current insertion point.

TMISVectorImp::Zero
TMISVectorImp class

Syntax
virtual void Zero(unsigned, unsigned);
Description
Provides for zeroing vector contents within the specified range.

TMISVectorImp::operator []
TMISVectorImp class

Form 1
T * & operator [] (unsigned index)
Form 2
T * & operator [] (unsigned index) const;
Description
Returns a reference to the object at index.

TMISVectorIteratorImp template

Syntax
template <class T, class Alloc> class TMISVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with an indirect, managed, sorted vector.

Public Constructors
TMISVectorIteratorImp::TMISVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TMISVectorIteratorImp::TMISVectorIteratorImp
TMISVectorIteratorImp class

Form 1
TMISVectorIteratorImp(const TMISVectorImp<T,Alloc> &v)
Form 1
TMISVectorIteratorImp(const TMISVectorImp<T,Alloc> &v, unsigned l,
unsigned u)

Description
Form 1: Creates an iterator object to traverse TMISVectorImp objects.
Form 2: Creates an iterator object to traverse TMISVectorImp objects. A range can be specified.

TMISVectorIteratorImp::Current
TMISVectorIteratorImp class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TMISVectorIteratorImp::Restart
TMISVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TMISVectorIteratorImp::operator ++
TMISVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1:Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2:Moves to the next object, and returns the object that was current after the move (pre-
increment).

TMISVectorIteratorImp::operator int
TMISVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

TISVectorImp template

Syntax
template <class T> class TISVectorImp;
Header File
vectimp.h

Description
Implements a sorted vector of pointers to objects of type T. Since pointers always have meaningful
copy semantics, this class can handle any type of object.

Public Constructors
TISVectorImp::TISVectorImp

Type Definitions
CondFunc
IterFunc

Public Member Functions
Add
Find
FirstThat
Flush
ForEach
GetDelta
LastThat
Resize
Top
Zero

Operators
[]

TISVectorImp::CondFunc
TISVectorImp class

Syntax
typedef int (*CondFunc)(const T &, void *);
Description
Function type used as a parameter to FirstThat and LastThat member functions.

TISVectorImp::IterFunc
TISVectorImp class

Syntax
typedef void (*IterFunc)(T &, void *);
Description
Function type used as a parameter to ForEach member function.

TISVectorImp::TISVectorImp
TISVectorImp class

Syntax
TISVectorImp(unsigned sz, unsigned d = 0)
Description
Constructs a managed, sorted vector of pointers to objects. sz represents the vector size. d represents
the initialization value.

TISVectorImp::Add
TISVectorImp class

Syntax
int Add(T *t);
Description
Adds an object to the vector.

TISVectorImp::Find
TISVectorImp class

Form 1
unsigned Find(T *t) const;
Form 2
virtual unsigned Find(void *) const;
Description
Form 1: Finds the specified object pointer, and returns its index.
Form 2: Finds the specified pointer and returns its index.

TISVectorImp::FirstThat
TISVectorImp class

Form 1
T *FirstThat(CondFunc cond, void *args) const;
Form 2
T *FirstThat(int (*)(const T &, void *), void *, unsigned, unsigned)
const;

Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition. You supply a
test-function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via
args. Returns 0 if no object in the vector meets the condition.
Form 2: This version allows specifying a range to be searched. You supply a test-function pointer cond
that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the vector meets the condition.

TISVectorImp::Flush
TISVectorImp class

Syntax
void Flush(unsigned stop = UINT_MAX, unsigned start = 0);
Description
Flushes the vector without destroying it. The fate of any objects removed depends on the current
ownership status and the value of the first argument. A range to be flushed can be specified with the
last two arguments.

TISVectorImp::ForEach
TISVectorImp class

Form 1
void ForEach(IterFunc iter, void *args)
Form 2
void ForEach(IterFunc iter, void *args, unsigned start, unsigned stop);
Description
Form 1: Returns a pointer to the first object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TISVectorImp::FirstThat

TISVectorImp::GetDelta
TISVectorImp class

Syntax
virtual unsigned GetDelta() const;
Description
Returns the growth delta for the vector.

TISVectorImp::LastThat
TISVectorImp class

Form 1
T *LastThat(CondFunc cond, void *args) const;
Form 2
T *LastThat(CondFunc cond, void *args, unsigned start, unsigned stop)
const;

Description
Form 1: Returns a pointer to the last object in the vector that satisfies a given condition.
Form 2: This version allows specifying a range.

See Also
TISVectorImp::LastThat

TISVectorImp::Limit
TISVectorImp class

Syntax
unsigned Limit() const;
Description
Returns the number of items that the vector can hold.

TISVectorImp::Resize
TISVectorImp class

Syntax
void Resize(unsigned sz, unsigned offset = 0);
Description
Creates a new vector of size sz. The existing vector is copied to the expanded vector, then deleted. In
a vector of pointers the entries are zeroed. In an vector of objects the default constructor is invoked for
each unused element. offset is the location in the new vector where the first element of the old vector
should be copied. This is needed when the vector has to be extended downward.

TISVectorImp::Top
TISVectorImp class

Syntax
virtual unsigned Top() const;
Description
Returns the index of the current top element. For plain vectors, Top returns Lim; for counted and sorted
vectors, Top returns the current insertion point.

TISVectorImp::Zero
TISVectorImp class

Syntax
virtual void Zero(unsigned, unsigned);
Description
Provides for zeroing vector contents within the specified range.

TISVectorImp::operator []
TISVectorImp class

Form 1
T * & operator [] (unsigned index)
Form 2
T * & operator [] (unsigned index) const;
Description
Returns a reference to the object at index.

TISVectorIteratorImp template

Syntax
template <class T> class TISVectorIteratorImp;
Header File
vectimp.h

Description
Implements a vector iterator that works with an indirect, managed, sorted vector.
members.

Public Constructors
TISVectorIteratorImp::TISVectorIteratorImp

Public Member Functions
Current
Restart

Operators
++
int

TISVectorIteratorImp::TISVectorIteratorImp
TISVectorIteratorImp class

Form 1
TISVectorIteratorImp(const TISVectorImp<T> &v)
Form 2
TISVectorIteratorImp(const TISVectorImp<T> &v, unsigned l, unsigned u)
Description
Form 1: Creates an iterator object to traverse TISVectorImp objects.
Form 2: Creates an iterator object to traverse TISVectorImp objects. A range can be specified.

TISVectorIteratorImp::Current
TISVectorIteratorImp class

Syntax
T *Current();
Description
Returns a pointer to the current object.

TISVectorIteratorImp::Restart
TISVectorIteratorImp class

Form 1
void Restart();
Form 2
void Restart(unsigned start, unsigned stop);
Description
Form 1: Restarts iteration over the whole vector.
Form 2: Restarts iteration over the given range.

TISVectorIteratorImp::operator ++
TISVectorIteratorImp class

Form 1
const T& operator ++(int);
Form 2
const T& operator ++();
Description
Form 1:Moves to the next object, and returns the object that was current before the move (post-
increment).
Form 2:Moves to the next object, and returns the object that was current after the move (pre-
increment).

TISVectorIteratorImp::operator int
TISVectorIteratorImp class

Syntax
operator int();
Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator
converts to 0 if nothing remains in the iterator.

iostream Classes (C++)
Hierarchy
The stream class library in C++ consists of several classes distributed in two separate hierarchical
trees. This reference presents some of most useful details of these classes, in alphabetical order.
To get Help about an iostream class, choose it from the list below:
conbuf
constream
filebuf
fstream
fstreambase
ifstream
ios
iostream_withassign
iostream
istream_withassign
istream
istrstream
ofstream
ostream_withassign
ostream
ostrstream
streambuf
strstream
strstreambase
strstreambuf

constrea.h
See Also Header Files
The constrea.h header file defines the class constream, which writes output to the screen using the
iostream interface.

Includes
CONIO.H
IOMANIP.H
IOSTREAM.H

Classes
conbuf
constream

fstream.h
See Also Header Files
Declares the C++ stream classes that support file input and output.
Replaces the older, now outdated stdiostr.h.

Includes
IOSTREAM.H

Classes
To get more Help on the classes in the fstream.h header file (and their attendant member functions
and data members), choose one of these Help links:
filebuf
fstream
fstreambase
ifstream
ofstream

iostream.h
See Also Header Files
Declares the basic C++ streams (I/O) routines.

Includes
MEM.H

Classes
Choose one of the following topics for more information on the classes in the iostream.h header file:
ios
iostream
iostream_withassign
istream
istream_withassign
ostream
ostream_withassign
streambuf

See Also
I/O Stream Classes
Precompiled Headers

strstrea.h
See Also Header Files
Declares the C++ stream classes for use with byte arrays in memory.

Includes
IOSTREAM.H

Classes
To get more Help on the classes in the strstrea.h header file (and their attendant member functions
and data members), choose one of these Help links:
istrstream
ostrstream
strstream
strstreambase
strstreambuf

conbuf class
See Also Hierarchy

Header File
constrea.h

Description
Specializes streambuf to handle console output.
Note: conbuf is available only for console-mode applications.

Public Constructor
conbuf::conbuf

Public Member Functions
clreol
clrscr
delline
gotoxy
highvideo
insline
lowvideo
normvideo
overflow
setcursortype
textattr
textbackground
textcolor
textmode
wherex
wherey
window

See Also
constream class

conbuf::conbuf
conbuf class

Syntax
conbuf()
Description
Makes an unattached conbuf.

conbuf::clreol
conbuf class

Syntax
void clreol()
Description
Clears to end of line in text window.

conbuf::clrscr
conbuf class

Syntax
void clrscr()
Description
Clears the defined screen.

conbuf::delline
conbuf class

Syntax
void delline()
Description
Deletes a line in the window.

conbuf::gotoxy
conbuf class

Syntax
void gotoxy(int x, int y)
Description
Positions the cursor in the window at the specified location.

conbuf::highvideo
conbuf class

Syntax
void highvideo()
Description
Selects high-intensity characters.

conbuf::insline
conbuf class

Syntax
void insline()
Description
Inserts a blank line.

conbuf::lowvideo
conbuf class

Syntax
void lowvideo()
Description
Selects low-intensity characters.

conbuf::normvideo
conbuf class

Syntax
void normvideo()
Description
Selects normal-intensity characters.

conbuf::overflow
conbuf class

Syntax
virtual int overflow(int = EOF)
Description
Flushes the conbuf to its destination.

conbuf::setcursortype
conbuf class

Syntax
void setcursortype(int cur_type)
Description
Selects the cursor appearance.

conbuf::textattr
conbuf class

Syntax
void textattr(int newattribute)
Description
Selects the cursor appearance.

conbuf::textbackground
conbuf class

Syntax
void textbackground(int newcolor)
Description
Selects the text background color.

conbuf::textcolor
conbuf class

Syntax
void textcolor(int newcolor)
Description
Selects character color in text mode.

conbuf::textmode
conbuf class

Syntax
static void textmode(int newmode)
Description
Puts the screen in text mode.

conbuf::wherex
conbuf class

Syntax
int wherex()
Description
Gets the horizontal cursor position.

conbuf::wherey
conbuf class

Syntax
int wherey()
Description
Gets the vertical cursor position.

conbuf::window
conbuf class

Syntax
void window(int left, int top, int right, int bottom)
Description
Defines the active window.

constream class
See Also Hierarchy

Header File
constrea.h

Description
Provides console output streams. This class is derived from ostream.
Note: constream is available only for console-mode applications.

Constructor
constream::constream

Public Member Functions
clrscr
rdbuf
textmode
window

See Also
conbuf class

constream::constream
constream class

Syntax
constream()
Description
Provides an unattached output stream to the console.

constream::clrscr
constream class

Syntax
void clrscr()
Description
Clears the screen.

constream::rdbuf
constream class

Syntax
conbuf *rdbuf()
Description
Returns a pointer to this constream's assigned conbuf.

constream::textmode
constream class

Syntax
void textmode(int newmode)
Description
Puts the screen in text mode.

constream::window
constream class

Syntax
void window(int left, int top, int right, int bottom)
Description
Defines the active window.

fstreambase class
Hierarchy

Header File
fstream.h

Description
fstreambase provides access to filebuf functions not accessible through ios::bp to fstreambase and its
derived classes.
If a member function of filebuf is not a virtual member of filebuf's base class (streambuf), it is not
accessible. For example: attach, open and close are not accessible.
The constructors of fstreambase initialize the ios::bp data member to point to the filebuf.

Constructors
fstreambase::fstreambase

Member Functions
attach
close
open
rdbuf
setbuf

fstreambase::fstreambase
fstreambase class

Form 1
fstreambase();
Form 2
fstreambase(const char *name, int mode, int = filebuf::openprot);
Form 3
fstreambase(int fd);
Form 4
fstreambase(int fd, char *buf, int len);
Description
Form 1: Makes an fstreambase that is not attached to a file.
Form 2: Makes an fstreambase, opens a file specified by name in the mode specified by mode, and
connects to it.
Form 3: Makes an fstreambase and connects to an open file descriptor specified by fd.
Form 4: Makes an fstreambase connected to an open file descriptor specified by fd and uses a buffer
specified by buf with a size specified by len.

fstreambase::attach
fstreambase class

Syntax
void attach(int);
Description
Connects to an open file descriptor.

fstreambase::close
fstreambase class

Syntax
void close();
Description
Closes the associated filebuf and file.

fstreambase::open
fstreambase class

Syntax
void open(const char *name, int mode,int prot=filebuf::openprot);
Description
Opens a file for the specific class object.
The mode parameter can be set using the open_mode enumeration defined in class ios.

Class mode parameter

fstream ios::in
ofstream ios::out
prot corresponds to the DOS access permission, and it is used unless ios::nocreate is specified in
mode. The default parameter is set to read and write permission.

fstreambase::rdbuf
fstreambase class

Syntax
filebuf* rdbuf();
Description
Returns the buffer used.

fstreambase::setbuf
fstreambase class

Syntax
void setbuf(char*, int);
Description
Assigns a user-specified buffer to the filebuf.

fstream class
Hierarchy Example

Header File
fstream.h

Description
Provides for simultaneous input and output on a filebuf.
Input and output are initiated using the functions of the base classes istream and ostream. For
example, fstream can use the function istream::getline() to extract characters from the file.

Constructors
fstream::fstream

Member Functions
open
rdbuf

fstream::fstream
fstream class

Form 1
fstream();
Form 2
fstream(const char *name, int mode = ios::in, int prot =
filebuf::openprot);

Form 3
fstream(int fd);
Form 4
fstream(int fd, char *buf, int n);
Description
Form 1: Makes an fstream that is not attached to a file.
Form 2: Makes an fstream, opens a file with access specified by mode, and connects to it.
Form 3: Makes an fstream, and connects to an open file descriptor specified by fd.
Form 4: Makes an fstream specified by the file descriptor fd, and uses buf as the storage area. The
size of buf is sufficient to store n bytes. If buf is NULL or n is non-positive, the fstream is unbuffered.

fstream::open
fstream class

Syntax
void open(const char *name, int mode,int prot=filebuf::openprot);
Description
Opens a file for the specific class object.
The mode parameter can be set using the open_mode enumeration defined in class ios.

Class mode parameter

fstream ios::in
ofstream ios::out
prot corresponds to the DOS access permission, and it is used unless ios::nocreate is specified in
mode. The default parameter is set to read and write permission.

fstream::rdbuf
fstream class

Syntax
filebuf* rdbuf();
Description
Returns the buffer used.

fstream Example
// Create a file stream.
#include <fstream.h>

void main(void) {
 char ch;
 const char *name = "_junk_.$$$";
 int mode = ios::in | ios::app;

 fstream outf(name, mode); // Output file stream.
 cout << "Ready for input: Use Control-Z to end.";
 while (cin.get(ch))
 outf.put(ch);
 }

filebuf class
Hierarchy Example

Header File
fstream.h

Description
Specializes streambuf to handle files for input and output of characters. (Since streambuf does not
provide streams for input or output, the derived classes of streambuf must do so.)
The I/O functions of classes istream and ostream make calls to the functions of filebuf to do the actual
insertion or extraction on the streams. This occurs if the 'bp' (pointer to streambuf) fdata member of
class ios has been assigned a pointer to class filebuf.

Constructors
filebuf::filebuf

Data Members
openprot

Member Functions
attach
close
fd
is_open
open
overflow
seekoff
setbuf
sync
underflow

filebuf::filebuf
filebuf class

Form 1
filebuf::filebuf();
Form 2
filebuf::filebuf(int fd);
Form 3
filebuf::filebuf(int fd, char *, int n);
Description
Form 1: Makes a filebuf that isn't attached to a file.
Form 2: Makes a filebuf attached to a file by file descriptor fd.
Form 3: Makes a filebuf attached to a file specified by the file descriptor fd, and uses buf as the
storage area. The size of buf is sufficient to store n bytes. If buf is NULL or n is non-positive, the filebuf
is unbuffered.

filebuf::openprot
filebuf class

Syntax
static const int openprot;
Description
The openprot data member is the default file protection. It sets the permissions to read and write.

filebuf::attach
filebuf class

Syntax
filebuf* attach(int);
Description
Attaches this closed filebuf to opened file descriptor.

filebuf::close
filebuf class

Syntax
filebuf* close();
Description
Flushes and closes the file. Returns 0 on error.

filebuf::fd
filebuf class

Syntax
int fd();
Description
The fd member function returns the file descriptor or EOF.

filebuf::is_open
filebuf class

Syntax
int is_open();
Description
The is_open member function returns nonzero if the file is open.

See Also
filebuf class

filebuf::open
filebuf class

Syntax
filebuf* open(const char *name, int mode, int prot = filebuf::openprot);
Description
Opens a file for the specific class object. The mode parameter can be set using the open_mode
enumeration defined in class ios.

Class mode Parameter
fstream ios::in
ofstream ios::out
prot corresponds to the DOS access permission, and it is used unless ios::nocreate is specified in
mode. The default parameter is set to read and write permission.

filebuf::overflow
filebuf class

Syntax
virtual int overflow(int = EOF);
Description
Flushes a buffer to its destination. Every derived class should define the actions to be taken.

filebuf::seekoff
filebuf class

Syntax
virtual streampos seekoff(streamoff offset, ios::seek_dir, int mode);
Description
Moves the file pointer relative to the current position in the direction of seek_dir.
seek_dir is set using the seek_dir enumeration definition in class ios.
ios::beg seek from beginning of file

ios::cur seek from current location

ios::end seek from end of file

Since the long can be a negative value, seeking can occur "backward" in the file from the end or
current location.
mode specifies the type of move in the get or put area of the internal buffer by using ios::in, ios::out, or
both.
When this virtual member function is redefined in a derived class, it could be seeking into the stream
and not streambuf's internal buffer.

filebuf::setbuf
filebuf class

Syntax
virtual streambuf* setbuf(char*, int);
Description
Specifies a buffer of a specified size for the class object. When used as a strstreambuf and the
function is overloaded, the first argument is not meaningful and should be set to zero.

filebuf::sync
filebuf class

Syntax
virtual int sync();
Description
Syncronizes the internal data structures and the external stream representation.

filebuf::underflow
filebuf class

Form 1
virtual int underflow();
Description
Makes input available. This is called when no more data exists in the input buffer. Every derived class
should define the actions to be taken.

filebuf class Example
filebuf class

// OPERATIONS WITH filebuf

#include <fstream.h>
const char *OUTF = "_junk_.$$$";

int main(void) {
 filebuf fbuf; // Unattached file buffer.

 fbuf.open(OUTF, ios::out);
 if (!fbuf.is_open()) {
 cerr << "Error opening input file " << OUTF;
 return(-1);
 }
 return(0);
 }

//**
// OPERATIONS WITH filebuf(fd)
#include <fstream.h>
#include <io.h>
#include <fcntl.h>

int main(void) {
 const char *filename = "_junk_.$$$";
 int fd; // The file descriptor.

 fd = open(filename, O_RDWR | O_CREAT); // Open file; get descriptor

 // Make a filebuf; use file descriptor.
 filebuf iofile(fd);

 if (!iofile.is_open()) {
 cerr << "The filebuf is not open.";
 return(1);
 }

 // Do things with filebuf.
 iofile.sputn("Borland International", 21);

 return(0);
 }

ofstream class
Hierarchy

Header File
fstream.h

Description
Provides an output stream to extract from a file using a filebuf.

Constructors
ofstream::ofstream

Member Functions
open
rdbuf

ofstream::ofstream
ofstream class

Form 1
ofstream();
Form 2
ofstream(const char *name, int mode = ios::out, int prot =
filebuf::openprot);

Form 3
ofstream(int fd);
Form 4
ofstream(int fd, char *buf, int len);
Description
Form 1: Makes an ofstream that is not attached to a file.
Form 2: Makes an ofstream, opens a file for writing, and connects to it.
Form 3: Makes an ofstream, connects to an open file descriptor specified by fd.
Form 4: Makes an ofstream connected to an open file descriptor specified by fd. The buffer specified
by buf of len is used by the ofstream.

ofstream::open
ofstream class

Syntax
void open(const char *name, int mode,int prot=filebuf::openprot);
Description
Opens a file for the specific class object.
The mode parameter can be set using the open_mode enumeration defined in class ios.

Class mode parameter

fstream ios::in
ofstream ios::out
prot corresponds to the DOS access permission, and it is used unless ios::nocreate is specified in
mode. The default parameter is set to read and write permission.

ofstream::rdbuf
ofstream class

Syntax
filebuf* rdbuf();
Description
Returns the buffer used.

ifstream class
Hierarchy

Header File
fstream.h

Description
Provides an input stream to input from a file using a filebuf.

Constructors
ifstream::ifstream

Member Functions
open
rdbuf

ifstream::ifstream
ifstream class

Form 1
ifstream();
Form 2
ifstream(const char *name, int mode = ios::in, int = filebuf::openprot);
Form 3
ifstream(int fd);
Form 4
ifstream(int fd, char *buf, int buf_len);
Description
Form 1: Makes an ifstream that is not attached to a file.
Form 2: Makes an ifstream, opens an input file in protected mode, and connects to it. The existing file
contents are preserved; new writes are appended. By default, a file is not created if it does not exist.
Form 3: Makes an ifstream, connects to an open file descriptor fd.
Form 4: Makes an ifstream connected to an open file specified by its descriptor, fd. The ifstream uses
the buffer specified by buf of length buf_len.

ifstream::open
ifstream class

Syntax
void open(const char *name, int mode,int prot=filebuf::openprot);
Description
Opens a file for the specific class object.
The mode parameter can be set using the open_mode enumeration defined in class ios.

Class mode parameter

fstream ios::in
ofstream ios::out
prot corresponds to the DOS access permission, and it is used unless ios::nocreate is specified in
mode. The default parameter is set to read and write permission.

ifstream::rdbuf
ifstream class

Syntax
filebuf* rdbuf();
Description
Returns the buffer used.

iostream_withassign class
See Also Hierarchy

Header File
iostream.h

Description
This class is an iostream that overloads the = operator which allows you to reassign ios::bp to a
different derived class of streambuf.

Constructors
iostream_withassign::iostream_withassign

Member Functions
None (although the = operator is overloaded).

See Also
Overloading Operators

iostream_withassign::iostream_withassign
iostream_withassign class

Syntax
iostream_withassign();
Description
Null constructor (calls the default constructor for iostream).

iostream class
Hierarchy

Header File
iostream.h

Description
This class, derived from istream and ostream, is a mixture of its base classes, allowing both input and
output on a stream. It is a base for fstream and strstream.
The stream is implemented by the class ios::bp is pointing to. Depending on which derived class of
streambuf bp is pointing to, determines if the input stream and output stream will be the same.
For example, iostream using a filebuf will input and output to the same file. Yet iostream using a
strstreambuf can have the input and output stream go to the same or different memory locations.

Constructors
iostream::iostream

Member Functions
None.

iostream::iostream
iostream class

Syntax
iostream(streambuf *);
Description
Associates a given streambuf with the class.

istream_withassign class
See Also Hierarchy

Header File
iostream.h

Description
This class is an istream that overloads the = operator and lets you reassign the pointer ios::bp to a
different derived class of streambuf.

Constructors
istream_withassign::istream_withassign

Member Functions
None (although the = operator is overloaded).

istream_withassign::istream_withassign
istream_withassign class

Syntax
istream_withassign()
Description
Null constructor (calls the default constructor for istream).

See Also
Overloading Operators

ostream_withassign class
See Also Hierarchy

Header File
iostream.h

Description
This class is an ostream that overloads the = operator and allows you to reassign the pointer ios::bp to
a different derived class of streambuf.

Constructors
ostream_withassign::ostream_withassign

Member Functions
None (although the = operator is overloaded).

See Also
Overloading Operators

ostream_withassign::ostream_withassign
ostream_withassign class

Syntax
ostream_withassign();
Description
Null constructor (calls the default constructor for ostream).

istream class
See Also Hierarchy Example

Header File
iostream.h

Description
Provides formatted and unformatted input from a derived class of class streambuf via ios::bp.
An instance of class istream does not perform the actual input, but the member functions of class
istream call the member functions of the class bp is pointing to extract the characters from the input
stream.
The >> operator, which is overloaded for all fundamental types, can then format the data.
istream provides the generic code for formatting the data after it is extracted from the input stream.

Constructors
istream::istream

Protected Member Functions
eatwhite

Public Member Functions
gcount
get
getline
ignore
ipfx
peek
putback
read
seekg
tellg

See Also
Operator >>

istream::istream
istream class

Syntax
istream(streambuf *);
Description
Associates a given derived class of streambuf to the class thus providing an input stream. This is done
by assigning ios::bp to the parameter of the constructor.

istream::eatwhite
istream class

Syntax
void eatwhite(); // PROTECTED
Description
Extracts consecutive whitespace.

istream::gcount
Example istream class

Syntax
int gcount();
Description
The gcount member function returns the number of unformatted characters last extracted. Unformatted
extraction occurs within the member functions get, getline, and read.

// istream::gcount and istream::getline Example
#include <iostream.h>

void main(void) {
 char *name;
 int buf_size = 100;
 int count = 0; // Character counter.

 name = new char[buf_size];

 // Notice that the output buffer is flushed.
 cout << "\n Enter your name:" << endl;
 cin.getline(name, buf_size);

 count = cin.gcount();
 // Since getline() retains the linefeed, gcount()
 // will count it as input.
 cout << "\nName character count: " << count - 1;
}

istream::get
istream class

Form 1
int get();
Form 2
istream& get(char*, int len, char = '\n');
istream& get(signed char*, int len, char = '\n');
istream& get(unsigned char*, int len, char = '\n')
Form 3
istream& get(char&);
istream& get(signed char&);
istream& get(unsigned char&);
Form 4
istream& get(streambuf&, char = '\n');
Description
Form 1: Extracts the next character or EOF.
Form 2: Extracts characters into the given char * until the delimiter (third parameter) or end-of-file is
encountered, or until (len - 1) bytes have been read. A terminating null is always placed in the output
string. The delimiter is not extracted from the input stream. Fails only if no characters were extracted.
Form 3: Extracts a single character into the given character reference.
Form 4: Extracts characters into the given streambuf until the delimiter is encountered.

istream::getline
Example istream class

Syntax
istream& getline(char*, int, char = '\n');
istream& getline(signed char*, int, char = '\n');
istream& getline(unsigned char*, int, char = '\n');
Description
The getline member function extracts up to the delimiter, puts the characters in the buffer, removes the
delimiter from the input stream and does not put the delimiter into the buffer.

istream::ignore
istream class

Syntax
istream& ignore(int n = 1, int delim = EOF);
Description
The ignore member function causes up to n characters in the input stream to be skipped; stops if delim
is encountered.
The deliminator is extracted from the stream.

See Also
istream class

istream::ipfx
istream class

Syntax
istream& ipfx(int n = 0);
Description
The ipfx function is called by input functions prior to fetching from an input stream. Functions which
perform formatted input call ipfx(0); unformatted input functions call ipfx(1).

istream::peek
istream class

Syntax
int peek();
Description
The peek member function returns the next character without extraction.

istream::putback
istream class

Syntax
istream& putback(char);
Description
The putback member function pushes back a character into the stream.

istream::read
istream class

Syntax
istream& read(char*, int);
istream& read(signed char*, int);
istream& read(unsigned char*, int);
Description
The read member function extracts a given number of characters into an array. Use gcount() for the
number of characters actually extracted if an error occurred.

istream::seekg
istream class

Form 1
istream& seekg(streampos pos);
Form 2
istream& seekg(streamoff offset, seek_dir dir);
Description
Form 1: Moves to an absolute position (as returned from tellg).
Form 2: Moves offset number of bytes relative to the current position for the input stream. The offset is
in the direction specified by dir following the definition: enum seek_dir {beg, cur, end};
Use ostream::seekp for positioning in an output stream.
Use seekpos or seekoff for positioning in a stream buffer.

istream::tellg
istream class

Syntax
long tellg();
Description
The tellg member function returns the current stream position.

istream Example
// Illustrates positioning within an input stream.
#include <iostream.h>
#include <fstream.h>

void main(void) {
 const char *filename = "_junk_.$$$";
 int size = 0;
 ifstream inf(filename, ios::in | ios::nocreate);

 inf.seekg(0L, ios::end);
 if ((size = inf.tellg()) < 0) {
 cerr << filename << " not found";
 return;
 }
 cout << filename << " size = " << size;
 }

ostream class
Hierarchy

Header File
iostream.h

Description
ostream provides formatted and unformatted output to a streambuf.
An instance of class ostream will not perform the actual output, but the member functions of ostream
will call the member functions of the class bp is pointing to and insert the characters to the output
stream.
The overloaded operator << formats the data before it is sent to bp.
ostream provides the generic code for formatting the data before it is inserted to the output stream.

Constructors
ostream::ostream

Member Functions
flush
opfx
osfx
put
seekp
tellp
write

ostream::ostream
ostream class

Syntax
ostream(streambuf *buf);
Description
Associates a given streambuf to the class, providing an output stream. This is done by assigning the
pointer ios::bp to buf.

ostream::flush
ostream class

Syntax
ostream& flush();
Description
This member function flushes the stream.

ostream::opfx
ostream class

Syntax
int opfx();
Description
The opfx function is called by output functions prior to inserting to an output stream. opfx returns 0 if
the ostream has a nonzero error state. Otherwise, opfx returns a nonzero value.

ostream::osfx
ostream class

Syntax
void osfx();
Description
The osfx function performs post output operations. If ios::unitbuf is on, osfx flushes the ostream. On
failure, osfx sets ios::failbit.

ostream::seekp
ostream class

Form 1
ostream& seekp(streampos);
Form 2
ostream& seekp(streamoff, seek_dir);
Description
Form 1: Moves to an absolute position (as returned from tellp).
Form 2: Moves to a position relative to the current position, following the definition: enum seek_dir
beg, cur, end.

ostream::put
ostream class

Syntax
ostream& put(char ch);
ostream& put(signed char ch);
ostream& put(unsigned char ch);
Description
The put member function inserts the character.

ostream::tellp
ostream class

Syntax
streampos tellp();
Description
The tellp member function returns the current stream position.

ostream::write
ostream class

Syntax
ostream& write(const char*, int n);
ostream& write(const signed char*, int n);
ostream& write(const unsigned char*, int n);
Description
The write member function inserts n characters (nulls included).

ostrstream class
Hierarchy

Header File
strstrea.h

Description
Provides an output stream to insert from an array using a strstreambuf.

Constructors
ostrstream::ostrstream

Member Functions
pcount
str

ostrstream::ostrstream
ostrstream class

Form 1
ostrstream();
Form 2
ostrstream(char *buf, int len, int mode = ios::out);
ostrstream(signed char *buf, int len, int mode = ios::out);
ostrstream(unsigned char *buf, int len, int mode = ios::out);
Description
Form 1: Makes an ostrstream with a dynamic array for the input stream.
Form 2: Makes an ostrstream with a buffer specified by buf and size specified by len. If mode is
ios::app or ios::ate, the get/put pointer is positioned at the null character of the string.

ostrstream::pcount
ostrstream class

Syntax
int pcount();
Description
Returns the number of bytes currently stored in the buffer.

ostrstream::str
ostrstream class

Syntax
char *str();
Description
Returns and freezes the buffer. The user must deallocate it if the buffer was dynamic.

strstream class
Hierarchy

Header File
strstrea.h

Description
Provides simultaneous input and output to and from an array using a strstreambuf. Input and output is
initiated using the functions of the base classes istream and ostream.
For example, strstream can use the function istream::getline() to extract characters from the buffer.

Constructors
strstream::strstream

Member Functions
str

strstream::strstream
strstream class

Form 1
strstream();
Form 2
strstream(char*, int sz, int mode);
Form 3
strstream(signed char*, int sz, int mode);
Form 4
strstream(unsigned char*, int sz, int mode);
Description
Form 1: Makes a strstream with the base class strstreambase's streambuf data member's buffer
dynamically allocated the first time it is used. The put area and get areas are the same.
Form 2: Makes a strstream with a specified n-byte buffer. If mode is ios::app or ios::ate, the get/put
pointer is positioned at the null character of the string.
Form 3: Makes a strstream with a specified n-byte buffer. If mode is ios::app or ios::ate, the get/put
pointer is positioned at the null character of the string.
Form 4: Makes a strstream with a specified n-byte buffer. If mode is ios::app or ios::ate, the get/put
pointer is positioned at the null character of the string.

strstream::str
strstream class

Syntax
char *str();
Description
Returns and freezes the buffer. The user must de-allocate it if the buffer was dynamic.

strstreambase class
Hierarchy

Header File
strstrea.h

Description
Specializes ios to string streams by initializing ios::bp to point to a strstreambuf. This provides the
condition checks necessary for any string I/O in memory. For this reason, strstreambase is almost
entirely protected and accessible only to derived classes which perform I/O. It makes virtual use of ios.

Constructors
strstreambase::strstreambase

Member Functions
rdbuf

strstreambase::strstreambase
strstreambase class

Form 1
strstreambase();
Form 2
strstreambase(const char*, int, char *start);
Description
Form 1: Makes a strstreambase with its streambuf data member's buffer dynamically allocated the first
time it is used. The put area and get areas are the same.
Form 2: Makes an strstreambase with a specified buffer and starting position.

strstreambase::rdbuf
strstreambase class

Syntax
strstreambuf * rdbuf();
Description
Returns a pointer to the strstreambuf associated with this object.

ios class
Hierarchy

Header File
iostream.h

Description
Provides operations common to both and input and output. Its derived classes (istream, ostream, and
iostream) specialize I/O with high-level formatting operations. The ios base class is a base for istream,
ostream, fstreambase, and strstreambase.

Protected Constructors
ios::ios

Public Constructors
ios::ios

Protected Data Members
bp
state
x_fill
x_flags
x_precision
*x_tie
x_width

Public Data Members
seek_dir
open_mode
adjustfield
basefield
floatfield

Protected Member Functions
init
setstate

Public Member Functions
bad
bitalloc
clear
eof
fail
fill
flags
flags
good
precision
rdbuf
rdstate

setf
sync_with_stdio
tie
unsetf
width
xalloc

ios::ios
ios class

Form 1
ios(); // PROTECTED
Form 2
ios(streambuf *);
Description
Form 1: Constructs an ios object that has no corresponding streambuf. A derived class should call
ios::init(streambuf *) to provide a streambuf.
Form 2: Associates a given streambuf with the stream by assigning the pointer ios::bp to point to the
streambuf passed in as a parameter.

ios::seek_dir
ios class

Syntax
enum seek_dir { beg=0, cur=1, end=2 };
Description
Stream seek direction.

ios::open_mode
ios class

Syntax
enum open_mode {
 app, // Append data--always write at end of file.
 ate, // Seek to end of file upon original open.
 in, // Open for input (default for ifstreams).
 out, // Open for output (default for ofstreams).
 binary, // Open file in binary mode.
 trunc, // Discard contents if file exists (default if out
 // is specified and neither ate nor app is specified).
 nocreate, // If file does not exist, open fails.
 noreplace, // If file exists, open for output fails unless ate or app
is set.

};
Description
Stream operation mode. These parameters can be logically ORed.

ios::adjustfield
ios class

Syntax
static const long adjustfield;
Description
Use the adjustfield data member with setf to control padding to the left, right, or for internal fill.

Examples
cout<<setf(ios::left, ios::adjustfield)<<hex<<0xFE;
Result: 000xFE left filled

cout<<setf(ios::internal, ios::adjustfield)<<hex<<0xFE;
Result: 0x00FE internal filled

ios::basefield
ios class

Syntax
static const long basefield;
Description
Use the basefield data member with setf to set the notation to a decimal, octal, or hexidecimal base.

Example
The following example sets a decimal base.
cout<<setf(ios::dec, ios::basefield)<<i;

ios::bp
ios class

Syntax
streambuf *bp(); // PROTECTED
Description
The bp data member points to the associated streambuf.

ios::floatfield
ios class

Syntax
static const long floatfield;
Description
Use the floatfield data member with setf to set the floating-point notation to scientific or fixed.

Example
The following example sets scientific notation.
cout<<setf(ios::scientific, ios::floatfield)<<f;

ios::state
ios class

Syntax
int state; // PROTECTED
Description
The state data member is the current state of the streambuf.

ios::x_fill
ios class

Syntax
int x_fill; // PROTECTED
Description
Use the x_fill data member for padding character on output.

ios::x_flags
ios class

Syntax
long x_flags; // PROTECTED
Description
Use the x_flags data member for formatting flag bits.

ios::x_precision
ios class

Syntax
int x_precision; // PROTECTED
Description
Use the x_precision data member for floating-point precision on output.

ios::*x_tie
ios class

Syntax
ostream *x_tie
Description
Use the *x_tie data member to specify the tied ostream, if any.

ios::x_width
ios class

Syntax
int x_width; // PROTECTED
Description
Use the x_width data member to specify the field width on output.

ios::bad
ios class

Syntax
int bad();
Description
The bad member function returns nonzero if error occured by checking ios::badbit and ios::hardfail in
ios::state.

ios::bitalloc
ios class

Syntax
static long bitalloc();
Description
The bitalloc member function acquires a new flag bit set.
The return value may be used to set, clear, and test the flag. This is for user-defined formatting flags.

ios::clear
ios class

Syntax
void clear(int = 0);
Description
The clear member function sets the stream state to the given value by setting ios::state to the given
value.
The constants of the io_state enumeration in class ios are normally used as the parameter.
The values of io_state can be ORed together to set more than one bit in state.

ios::eof
ios class

Syntax
int eof();
Description
The eof member function returns nonzero on end of file by checking the ios::eofbit in ios::state.

ios::fail
ios class

Syntax
int fail();
Description
The fail member function returns nonzero if an operation failed by checking the ios::failbit, ios::badbit,
or ios::hardfail bits in ios::state.

ios::fill
ios class

Form 1
char fill();
Form 2
char fill(char);
Description
Form 1: Returns the current fill character.
Form 2: Resets the fill character; returns the previous one.

ios::flags
ios class

Form 1
long flags();
Form 2
long flags(long);
Description
Form 1: Returns the current format flags. The format flags can be compared to the values in the
formatting flags enumeration of class ios. flags(0) resets the formatting flags as the default value.
Form 2: Sets the format flags to be identical to the given long. The flags of the long are set using the
values in the formatting flags enumeration in class ios. It returns the previous flags. flags(0) resets the
default format.

ios::good
ios class

Syntax
int good();
Description
The good member function returns nonzero if no state bits were set (no errors occurred) in ios::state.

ios::init
ios class

Syntax
void init(streambuf *); // PROTECTED
Description
The init member function associates the ios with the specified streambuf.

ios::precision
ios class

Form 1
int precision(int);
Form 2
int precision();
Description
Form 1: Sets the floating-point precision, and returns the previous setting. This must be reset for each
data item being output if a precision other than the default is desired.
Form 2: Returns the current floating-point precision.

ios::rdbuf

Syntax
streambuf* rdbuf();
Description
Returns a pointer to this stream's assigned streambuf.

ios::rdstate
ios class

Syntax
int rdstate();
Description
Returns the stream state by returning the value of the data member state of class ios.

ios::setf
ios class

Form 1
long setf(long _setbits, long _field);
Form 2
long setf(long);
Description
Form 1: Clears the bits corresponding to those marked in _field in the data member x_flags, and then
resets those marked in _setbits. _setbits can be specifed by using the constants in the format flags.
enumeration of class ios.
Form 2: Sets the flags corresponding to those marked in the given long. The flags are set in
ios::x_flags. The long can be specified by using the constants in the formatting flags enumeration of
class ios. It returns the previous settings.

ios::setstate
ios class

Syntax
void setstate(int); // PROTECTED
Description
Sets specified status bits.

ios::sync_with_stdio
ios class

Syntax
static void sync_with_stdio();
Description
The sync_with_stdio member function synchronizes stdio files and iostreams.
Note: Do not use in new code. It will slow performance.

ios::tie
ios class

Form 1
ostream* tie();
Form 2
ostream* tie(ostream*);
Description
Form 1: Returns the tied stream, or 0 if none. Tied streams are stream that are connected so that
when one is used, the other is affected in some way. For example, cin and cout are tied; when cin is
used, it flushes cout first.
Form 2: Ties another stream to this one and returns the previously tied stream, if any. When an input
stream has characters to be consumed, or if an output stream needs more characters, the tied stream
is first flushed automatically. By default, cin, cerr and clog are tied to cout.

ios::unsetf
ios class

Syntax
long unsetf(long);
Description
The unsetf member function clears the bits corresponding to those marked in the given long.
The bits are cleared in ios::x_flags.
The flags of the long can be set using the constants in the format flags. enumeration of class ios.
unsetf returns the previous settings.

ios::width
ios class

Form 1
int width();
Form 2
int width(int);
Description
Form 1: Returns the current width setting.
Form 2: Sets the width, and returns the previous width. This must be reset for each data item input or
output if a width other than the default is desired.

ios::xalloc
ios class

Syntax
static int xalloc();
Description
The xalloc member function returns an array index of previously unused words that can be used as
user-defined formatting flags.

Format Flags
enum {
 skipws, Skip whitespace on input.

 left, Left-adjust output.

 right, Right-adjust output.

 internal, Pad after sign or base indicator.

 dec, Decimal conversion.

 oct, Octal conversion.

 hex, Hexadecimal conversion.

 showbase, Show base indicator on output.

 showpoint, Show decimal point for floating-point output.

 uppercase, Uppercase hex output.

 showpos, Show '+' with positive integers.

 scientific, Suffix floating-point numbers with exponential (E) notation on output.

 fixed, Use fixed decimal point for floating-point numbers.

 unitbuf, Flush all streams after insertion.

 stdio, Flush stdout, stderr after insertion.
};

istrstream class
Hierarchy

Header File
strstrea.h

Description
Provides input operations on a strstreambuf.
The cluster (ios, istream, ostream, iostream, and streambuf), provides a base for specialized cluster
that deals with memory.

Constructors
istrstream::istrstream

Member Functions
None.

istrstream::istrstream
istrstream class

Form 1
istrstream(unsigned char *);
istrstream(char *);
istrstream(signed char *);
Form 2
istrsteam(signed char *str, int);
istrstream(char *str, int n);
istrstream(unsigned char *str, int);
Description
Form 1: Makes an istrstream with a specified string (a null character is never extracted).
Form 2: Makes an istrstream using up to n bytes of str.

streambuf class
Hierarchy Example

Header File
iostream.h

Description
.This is a base class for all other buffering classes. It provides a buffer interface between your data and
storage areas such as memory or physical devices. The buffers created by streambuf are referred to
as get, put, and reserve areas. The contents are accessed and manipulated by pointers that point
between characters.
Buffering actions performed by streambuf are rather primitive. Normally, applications gain access to
buffers and buffering functions through a pointer to streambuf that is set by ios. Class ios provides a
pointer to streambuf that provides a transparent access to buffer services for high-level classes. The
high-level classes provide I/O formatting.

Constructors
streambuf::streambuf

Protected Member Functions
allocate
base
blen
eback
ebuf
egptr
epptr
gbump
gptr
pbase
pptr
setg
setb
setp
unbuffered

Public Member Functions
in_avail
out_waiting
pbump
sbumpc
seekoff
seekpos
setbuf
sgetc
sgetn
snextc
sputbackc

sputc
sputn
stossc

streambuf::streambuf
streambuf class

Form 1
streambuf();
Form 2
streambuf(char *buf, int size);
Description
Form 1: Creates an empty buffer object.
Form 2: Constructs an empty buffer buf and sets up a reserve area for size number of bytes.

streambuf::allocate
streambuf class

Syntax
int allocate(); // PROTECTED
Description
The allocate member function sets up a buffer area.

streambuf::base
streambuf class

Syntax
char *base(); // PROTECTED
Description
The base member function returns the start of the buffer area.

streambuf::blen
streambuf class

Syntax
int blen(); // PROTECTED
Description
The blen member function returns the length of the buffer area.

streambuf::eback
streambuf class

Syntax
char *eback(); // PROTECTED
Description
The eback member function returns the base of putback section of get area.

streambuf::ebuf
streambuf class

Syntax
char *ebuf(); // PROTECTED
Description
The ebuf member function returns the end+1 of the buffer area.

streambuf::egptr
streambuf class

Syntax
char *egptr(); // PROTECTED
Description
The egptr member function returns the end+1 of the get area.

streambuf::epptr
streambuf class

Syntax
char *epptr(); // PROTECTED
Description
The epptr member function returns the end+1 of the put area.

streambuf::gbump
streambuf class

Syntax
void gbump(int n); // PROTECTED
Description
The gbump member function advances the get pointer by n which may be positive or negative.
No checks are performed on the new value.

streambuf::gptr
streambuf class

Syntax
char *gptr(); // PROTECTED
Description
The gptr member function returns the next location in get area.

streambuf::in_avail
streambuf class

Syntax
int in_avail();
Description
The in_avail member function returns the number of characters remaining in the internal input buffer.
This may be the input stream, depending on which derived class of streambuf the function call
originated from.

streambuf::out_waiting
streambuf class

Syntax
int out_waiting();
Description
The out_waiting member function returns the number of characters remaining in the internal output
buffer.
This may be the output stream, depending on which derived class of streambuf the function call
originated from.

streambuf::pbase
streambuf class

Syntax
char *pbase(); // PROTECTED
Description
The pbase member function returns the start of put area.

streambuf::pbump
streambuf class

Syntax
void pbump(int); // PROTECTED
Description
The pbump member function increments the put pointer pptr() by n which may be positive or negative.
No checks are performed on the new value of pptr().

streambuf::pptr
streambuf class

Syntax
char *pptr(); // PROTECTED
Description
The pptr member function returns a pointer to the next location in the put area.

streambuf::sbumpc
streambuf class

Syntax
int sbumpc();
Description
The sbumpc member function returns the current character from the internal input buffer, then
advances.
This may be the input stream depending on which derived class of streambuf the function call
originated from.

streambuf::seekpos
streambuf class

Syntax
virtual streampos seekpos(streampos, int = (ios::in | ios::out));
Description
The seekpos member function moves the get and/or put pointer to an absolute position in the internal
buffer of the streambuf.
Because seekpos is virtual, it may be redefined in a derived class to reposition in the input and/or
ouput stream.

streambuf::setb
streambuf class

Syntax
void setb(char *, char *, int = 0); // PROTECTED
Description
The setb member function sets the buffer area.

streambuf::setg
streambuf class

Syntax
void setg(char *, char *, char *); // PROTECTED
Description
The setg member function initializes the get pointers.

streambuf::setp
streambuf class

Syntax
void setp(char *, char *); // PROTECTED
Description
The setp member function initializes the put pointers.

streambuf::sgetc
streambuf class

Syntax
int sgetc();
Description
The setc member function peeks at the next character in the internal input buffer.

streambuf::sgetn
streambuf class

Syntax
int sgetn(char*, int n);
Description
The sgetn member function gets the next n characters from the internal input buffer.

streambuf::snextc
streambuf class

Syntax
int snextc();
Description
The snextc member function advances to and returns the next character from the internal input buffer.

streambuf::sputbackc
streambuf class

Syntax
int sputbackc(char);
Description
The sputbackc member function returns a character to the internal input buffer.

streambuf::sputc
streambuf class

Syntax
int sputc(int);
Description
The sputc member function puts one character into the internal output buffer.

streambuf::sputn
streambuf class

Syntax
int sputn(const char*, int n);
Description
The sputn member function puts n characters into the internal output buffer.

streambuf::stossc
streambuf class

Syntax
void stossc();
Description
The stossc member function advances to the next character in the internal input buffer.

streambuf::unbuffered
streambuf class

Form 1
void unbuffered(int);
Form 2
int unbuffered(); // PROTECTED
Description
Form 1: Sets the buffering state.
Form 2: Returns non-zero if not buffered.

streambuf::seekoff
streambuf class

Syntax
virtual streampos seekoff(streamoff offset, ios::seek_dir, int mode);
Description
Moves the file pointer relative to the current position in the direction of seek_dir.
seek_dir is set using the seek_dir enumeration definition in class ios.
ios::beg seek from beginning of file

ios::cur seek from current location

ios::end seek from end of file

Since the long can be a negative value, seeking can occur "backward" in the file from the end or
current location.
mode specifies the move to be in get or put area of the internal buffer by using ios::in, ios::out or both.
When this virtual member function is redefined in a derived class, it could be seeking into the stream
and not streambuf's internal buffer.

streambuf::setbuf
streambuf class

Syntax
streambuf* setbuf(unsigned char*, int);
Description
Uses the specified array for the internal buffer.

streambuf Example
// Operations with streambufs.
#include <iostream.h>
#include <fstream.h>

int main(void) {
 int c;
 const char *filename = "_junk_.$$$";
 ofstream outfile;
 streambuf *out, *input = cin.rdbuf();

 // Position at the end of file. Append all text.
 outfile.open(filename, ios::ate | ios::app);
 if (!outfile) {
 cerr << "Could not open " << filename;
 return(-1);
 }

 out = outfile.rdbuf(); // Connect ofstream and streambuf.

 clog << "Input some text. Use Control-Z to end." << endl;
 while ((c = input -> sbumpc()) != EOF) {
 cout << char(c); // Echo to screen.
 if (out -> sputc(c) == EOF)
 cerr << "Output error";
 }
 return(0);
 }

strstreambuf class
Hierarchy

Header File
strstrea.h

Description
strstreambuf specializes streambuf to create a buffer for in-memory string formatting.
strstreambuf is one of the two classes defined in the C++ stream library which provide a place for input
to be gathered from and a place for output to go. The other class is filebuf.
The I/O functions of istream and ostream make calls to the functions of strstreambuf to do the actual
insertion or extraction on the streams.

Constructors
strstreambuf::strstreambuf

Member Functions
doallocate
freeze
overflow
seekoff
setbuf
str
sync
underflow

strstreambuf::strstreambuf
strstreambuf class

Form 1
strstreambuf();
Form 2
strstreambuf(void * (*alloc)(long n), void (*release)(void *buffer));
Form 3
strstreambuf(int n);
Form 4
strstreambuf(char *buf, int n, char *strt = 0);
strstreambuf(signed char *buf, int n, signed char *strt = 0);
strstreambuf(unsigned char *buf, int n, unsigned char *strt = 0);
Description
Form 1: Makes a dynamic strstreambuf. Memory will be dynamically allocated as needed. The put
area and get areas are the same.
Form 2: Makes a dynamic buffer with specified allocation and free functions.
Form 3: Makes a dynamic strstreambuf, initially allocating a buffer of at least n bytes.
Form 4: This strstreambuf constructor creates a static strstreambuf. The streambuf uses n bytes
starting at the position pointed to by buf. The buf pointer indicates the get area.
N = 0 buf points to a null-terminated string which constitutes the strstreambuf
N < 0 strstreambuf is not terminated and continues indefinitely
N > 0 indicates the number of bytes used by strstreambuf beginning at the position pointed to

by buf
When pstrt is NULL the array is only available for get options.

strstreambuf::doallocate
strstreambuf class

Syntax
virtual int doallocate ();
Description
Performs low-level buffer allocation.

strstreambuf::freeze
strstreambuf class

Syntax
void freeze(int = 1);
Description
The freeze member function disallows storing any characters in the buffer, if the input parameter is
nonzero.
Unfreeze the buffer by passing a zero.

strstreambuf::overflow
strstreambuf class

Syntax
virtual int overflow(int = EOF);
Description
Flushes a buffer to its destination. Every derived class should define the actions to be taken.

strstreambuf::seekoff
strstreambuf class

Syntax
virtual streampos seekoff(streamoff offset, ios::seek_dir, int mode);
Description
Moves the file pointer relative to the current position in the direction of seek_dir.
seek_dir is set using the seek_dir enumeration definition in class ios.
ios::beg seek from beginning of file

ios::cur seek from current location

ios::end seek from end of file

Since the long can be a negative value, seeking can occur "backward" in the file from the end or
current location.
Mode specifies the move to be in get or put area of the internal buffer by using ios::in, ios::out or both.
When this virtual member function is redefined in a derived class, it could be seeking into the stream
and not streambuf's internal buffer.

strstreambuf::setbuf
strstreambuf class

Syntax
virtual streambuf* setbuf(char*, int);
Description
Specifies a buffer of a specified size for the class object. When used as a strstreambuf and the
function is overloaded, the first argument is not meaningful and should be set to zero.

strstreambuf::str
strstreambuf class

Syntax
char *str();
Description
Returns and freezes the buffer. The user must deallocate it if the buffer was dynamic.

strstreambuf::sync
strstreambuf class

Syntax
virtual int sync();
Description
Establishes consistency between internal data structures and the external stream representation.

strstreambuf::underflow
strstreambuf class

Syntax
virtual int underflow();
Description
Makes input available. This is called when no more data exists in the input buffer. Every derived class
should define the actions to be taken.

Persistent Streams (C++)
Streamable Class Hierarchy
Borland support for persistent streams consists of a class hierarchy and macros to help you develop
streamable objects. These topics are a reference for these classes and macros. They alphabetically
list and describe all the public classes that support persistent objects.
To get Help about an persistent stream class, choose it from the list below:
fpbase
ifpstream
ipstream
ofpstream
opstream
pstream
TStreamableBase
TStreamableClass
TStreamer

Streaming Macros

Persistent Stream Class Hierarchy
See Also
In this persistent streams hierarchy diagram, parenthood proceeds from left-to-right. persistent stream
classes have multiple inheritance.

The gray arrows connecting TStreamableClass indicate a friend class of ipstream and opstream.

See Also
Streaming Macros

fpbase class
Hierarchy

Syntax
class fpbase : virtual public pstream
Header File
objstrm.h

Description
Provides the basic operations common to all object file stream I/O. It is a base class for handling
streamable objects on file streams.

Constructors
fpbase::fpbase

Member Functions
attach
close
open
rdbuf
setbuf

fpbase::fpbase
fpbase class

Form 1
fpbase();
Form 2
fpbase(const char *name, int omode, int prot = filebuf::openprot);
Form 3
fpbase(int f);
Form 4
fpbase(int f, char *b, int len);
Description
Form 1: Creates a buffered fpbase object.
Form 2: Creates a buffered fpbase object. It opens the file specified by name, using the mode omode
and protection prot; and attaches this file to the stream.
Form 3: Creates a buffered fpbase object, and attaches the file specified by the file descriptor f to the
stream.
Form 4: Creates a buffered fpbase object. It initializes the file buffer to be associated with the file
descriptor f, and to use the buffer specified by b with a length of len.

fpbase::attach
fpbase class

Syntax
void attach(int f);
Description
Attaches the file with descriptor f to this stream if possible and sets ios::state accordingly.

fpbase::close
fpbase class

Syntax
void close();
Description
Closes the stream and associated file.

fpbase::open
fpbase class

Syntax
void open(const char *name, int mode, int prot = filebuf::openprot);
Description
Opens the named file in the given mode (app, ate, in, out, binary, trunc, nocreate, or noreplace) and
protection. The opened file is attached to this stream.

fpbase::rdbuf
fpbase class

Syntax
filebuf * rdbuf();
Description
Returns a pointer to the current file buffer.

fpbase::setbuf
fpbase class

Syntax
void setbuf(char *buf, int len);

Description
Sets the location of the buffer to buf and the buffer size to len.

ifpstream class
Hierarchy

Syntax
class ifpstream : public fpbase, public ipstream

Header File
objstrm.h

Description
ifpstream is a simple "mix" of its bases, fpbase and ipstream. It provides the base class reading
(extracting) streamable objects from file streams.

Constructors
ifpstream::ifpstream

Member Functions
open
rdbuf

ifpstream::ifpstream
ifpstream class

Form 1
ifpstream();
Form 2
ifpstream(const char *name, int mode=ios::in, int prot =
filebuf::openprot);

Form 3
ifpstream(int f);
Form 4
ifpstream(int f, char *b, int len);
Description
Form 1: Creates a buffered ifpstream object using a default buffer.
Form 2: Creates a buffered ifpstream object. It opens the file specified by name using the mode mode
and protection prot; and attaches this file to the stream.
Form 3: Creates a buffered ifpstream object and attaches the file specified by the file descriptor, f to
the stream.
Form 4: Creates a buffered ifpstream object. It initializes the file buffer to be associated with the file
descriptor f and to use the buffer specified by b with a length of len.

ifpstream::open
ifpstream class

Syntax
void open(const char *name, int mode, int prot = filebuf::openprot);
Description
It opens the named file in the given mode (app, ate, in, out, binary, trunc, nocreate, or noreplace) and
protection. The default mode for ifpstream is ios::in (input) with openprot protection. The opened file is
attached to this stream.

ifpstream::rdbuf
ifpstream class

Syntax
filebuf * rdbuf();
Description
Returns a pointer to the current file buffer.

ipstream class
Hierarchy

Syntax
class ipstream : virtual public pstream

Header File
objstrm.h

Description
ipstream, a specialized input stream derivative of pstream, is the base class for reading (extracting)
streamable objects.

Public Constructors
ipstream::ipstream

Protected Constructors
ipstream::ipstream

Public Member Functions
find
freadBytes
freadString
getVersion
readByte
readBytes
readString
readWord
readWord16
readWord32
registerObject
seekg
tellg

Protected Member Functions
readData
readPrefix
readSuffix
readVersion

Operators
operator >>

Friend Operators
operator >>

ipstream::ipstream
ipstream class

Form 1
ipstream(streambuf *buf);
Form 2
ipstream(); // PROTECTED
Description
Form 1: Creates a buffered ipstream with the given buffer. The state is set to 0.
Form 2: Creates a buffered ipstream without initializing the buffer pointer, bp. Use psteam::init to set
the buffer and state.

ipstream::find
ipstream class

Syntax
TStreamableBase _BIDSFAR * find(P_id_type Id);
Description
Returns a pointer to the object corresponding to Id.

ipstream::freadBytes
ipstream class

Syntax
void freadBytes(void _BIDSFARDATA *data, size_t sz);

Description
Reads the number of bytes specified by sz into the supplied buffer (data).

ipstream::freadString
ipstream class

Form 1
char _BIDSFARDATA *freadString();

Form 2
char _BIDSFARDATA *freadString(char _BIDSFARDATA *buf, unsigned maxLen);

Description
Form 1: Reads a string from the stream. It determines the length of the string and allocates a far
character array of the appropriate length. It reads the string into this array and returns a pointer to the
string. The caller is expected to free the allocated memory block.
Form 2: Reads a string from the stream into the supplied far buffer (buf). If the length of the string is
greater than maxLen-1, it reads nothing. Otherwise, it reads the string into the buffer and appends a
null-terminating byte.

ipstream::getversion
ipstream class

Syntax
getVersion() const;
Description
Returns the object version number.

ipstream::readByte
ipstream class

Syntax
uint8 readByte();
Description
Returns the byte at the current stream position.

ipstream::readBytes
ipstream class

Syntax
void readBytes(void data, size_t sz);
Description
Reads sz bytes from current stream position, and writes them to data.

ipstream::readData
See Also ipstream class

Syntax
void _BIDSFAR * readData(const ObjectBuilder _BIDSFAR* ,TStreamableBase
_BIDSFAR *& mem);

Description
If mem is 0, it calls the appropriate build function to allocate memory and initialize the virtual table
pointer for the object.
Finally, it invokes the appropriate read function to read the object from the stream into the memory
pointed to by mem.

See Also
ipstream class
TStreamableClass

ipstream::readPrefix
ipstream class

Syntax
const ObjectBuilder _BIDSFAR * readPrefix();
Description
Returns the TStreamableClass object corresponding to the class name stored at the current position in
the stream.

ipstream::readString
ipstream class

Form 1
char _BIDSFAR * readString();

Form 2
char _BIDSFAR * readString(char _BIDSFAR *buf, unsigned maxLen);

Description
Form 1: Allocates a buffer large enough to contain the string at the current stream position and reads
the string into the buffer. The caller must free the buffer.
Form 2: Reads the string at the current stream position into the buffer specified by buf. If the length of
the string is greater than maxLen - 1, it reads nothing. Otherwise, it reads the string into the buffer and
appends a null-terminating byte.

ipstream::readSuffix
See Also ipstream class

Syntax
void readSuffix();
Description
Reads and checks the suffix of the object.

See Also
ipstream class::readPrefix

ipstream::readWord
ipstream class

Syntax
uint32 readWord();
Description
Returns the word at the current stream position.

ipstream::readWord16
ipstream class

Syntax
uint16 readWord16();
Description
Returns the 16-bit word at the current stream position.

ipstream::readWord32
ipstream class

Syntax
uint32 readWord32();
Description
Returns the 32-bit word at the current stream position.

ipstream::registerObject
ipstream class

Syntax
void registerObject(TStreamableBase * adr);
Description
Registers the object pointed to by adr.

ipstream::seekg
ipstream class

Form 1
ipstream& seekg(streampos pos);
Form 2
ipstream& seekg(streamoff off, ios::seek_dir);
Description
Form 1: Moves the stream position to the absolute position given by pos.
Form 2: Moves to a position relative to the current position by an offset off (+ or -) starting at
ios::seek_dir. You can set ios::seek_dir to one of the following:
 beg(start of stream)
 cur (current stream position)

end (end of stream).

ipstream::tellg
ipstream class

Syntax
streampos tellg();
Description
Returns the (absolute) current stream position.

ipstream::readVersion
ipstream class

Syntax
void readVersion();
Description
Reads the version number of the input stream.

ipstream::operator >>
ipstream class

Syntax
ipstream _BIDSFAR& operator >> (ipstream _BIDSFAR& is, string _BIDSFAR&
str);

Description
This operator of ipstream extracts (reads) from the ipstream is, to the string str. It returns a reference
to the stream that lets you chain >> operations in the usual way.

operator >>
ipstream class

Syntax
friend ipstream& operator >> (ipstream& ps, signed char _BIDSFAR & ch);
friend ipstream& operator >> (ipstream& ps, unsigned char _BIDSFAR & ch);
friend ipstream& operator >> (ipstream& ps, signed short _BIDSFAR & sh);
friend ipstream& operator >> (ipstream& ps, unsigned short _BIDSFAR & sh);
friend ipstream& operator >> (ipstream& ps, signed int _BIDSFAR & i);
friend ipstream& operator >> (ipstream& ps, unsigned int _BIDSFAR & i);
friend ipstream& operator >> (ipstream& ps, signed long _BIDSFAR & l);
friend ipstream& operator >> (ipstream& ps, unsigned long _BIDSFAR & l);
friend ipstream& operator >> (ipstream& ps, float _BIDSFAR & f);
friend ipstream& operator >> (ipstream& ps, double _BIDSFAR & d);
friend ipstream& operator >> (ipstream& ps, long double _BIDSFAR & d);
friend ipstream& operator >> (ipstream& ps, TStreamableBase t);
friend ipstream& operator >> (ipstream& ps, void *t);
Description
This friend operator of ipstream extracts (reads) from the ipstream ps, to the given argument. It returns
a reference to the stream that lets you chain >> operations in the usual way.
The data type of the argument determines how the read is performed. For example, reading a signed
char is implemented using readByte.

ofpstream class
Hierarchy

Header File
objstrm.h

Syntax
class ofpstream : public fpbase, public opstream
Description
Provides the base class for writing (inserting) streamable objects to file streams.

Constructors
ofpstream::ofpstream

Member Functions
open
rdbuf

ofpstream::ofpstream
ofpstream class

Form 1
ofpstream();
Form 2
ofpstream(const char *name, int mode = ios::out, int prot =
filebuf::openprot);

Form 3
ofpstream(int f);
Form 4
ofpstream(int f, char *b, int len);
Description
Form 1: Creates a buffered ofpstream object using a default buffer.
Form 2: Creates a buffered ofpstream object. It opens the file specified by name, using the mode
mode, and protection prot; and attaches this file to the stream
Form 3: Creates a buffered ofpstream object and attaches the file specified by the file descriptor, f to
the stream.
Form 4: Creates a buffered ofpstream object. It initializes the file buffer to be associated with the file
descriptor f and to use the buffer specified by b with a length of len.

ofpstream::open
ofpstream class

Syntax
void open(char *name, int mode = ios::out, int prot = filebuf::openprot);
Description
Opens the named file in the given mode (app, ate, in, out, binary, trunc, nocreate, or noreplace) and
protection. The default mode for ofpstream is ios::out (output) with openprot protection. The opened
file is attached to this stream.

ofpstream::rdbuf
ofpstream class

Syntax
filebuf * rdbuf();
Description
Returns a pointer to the current file buffer.

opstream class
Hierarchy

Header
objstrm.h

Syntax
class opstream : virtual public pstream
Description
opstream, a specialized derivative of pstream, is the base class for writing (inserting) streamable
objects.

Public Constructors
opstream::opstream

Protected Constructors
opstream::opstream

Public Member Functions
findObject
findVB
flush
fwriteBytes
fwriteString
registerObject
registerVB
seekp
tellp
writeByte
writeBytes
writeObject
writeObjectPointer
writeString
writeWord
writeWord16
writeWord32

Public Member Functions
writeData
writePrefix
writeSuffix

Friend Operator
opstream::<<

opstream::opstream
opstream class

Form 1
opstream(streambuf *buf);
Form 2
opstream(); // PROTECTED
Description
Form 1: Creates a buffered opstream with the given buffer and sets the bp data member to buf. The
state is set to 0.
Form 2: Creates an opstream object without initializing the buffer pointer, bp. Use pstream::init to set
the buffer and state.

opstream::findObject
opstream class

Syntax
P_id_type findObject(TStreamableBase *adr);
Description
Returns the type ID for the object pointed to by adr.

opstream::findVB
opstream class

Syntax
P_id_type findVB(TStreamableBase *adr);
Description
Returns a pointer to the virtual base.

opstream::flush
opstream class

Syntax
opstream& flush();
Description
Flushes the stream.

opstream::fwriteBytes
opstream class

Syntax
void fwriteBytes(const void *data, size_t sz);
Description
Writes the specified number of bytes (sz) from the supplied buffer (data) to the stream.

opstream::fwriteString
opstream class

Syntax
void fwriteString(const char *str);
Description
Writes the specified far character string (str) to the stream.

opstream::registerObject
opstream class

Syntax
void registerObject(TStreamableBase *adr);
Description
Registers the class of the object pointed to by adr.

opstream::registerVB
opstream class

Syntax
void registerVB(TStreamableBase *adr);
Description
Registers a virtual base class.

opstream::seekp
opstream class

Form1
opstream& seekp(streampos pos);
Form2
opstream& seekp(streamoff off,ios::seek_dir);
Description
Form 1: Moves the current position of the stream to the absolute position given by pos.
Form 2: Moves to a position relative to the current position by an offset off (+ or -) starting at
ios::seek_dir. You can set ios::seek_dir to one if the following:

beg (start of stream)
cur (current stream position)
end (end of stream).

opstream::tellp
opstream class

Syntax
streampos tellp();
Description
Returns the (absolute) current stream position.

opstream::writeByte
opstream class

Syntax
void writeByte(uint8 ch);
Description
Writes the byte ch to the stream.

opstream::writeBytes
opstream class

Form 1
void writeBytes(const void *data, size_t sz);
Form 2
void writeBytes(const void far *data, size_t sz);
Description
Writes sz bytes from the data buffer to the stream.

opstream::writeObject
opstream class

Syntax
void writeObject(const TStreamableBase *t, int isPtr = 0, ModuleId mid =
GetModuleId());

Description
Writes the object, pointed to by t, to the output stream. The isPtrargument indicates whether the object
was allocated from the heap.

opstream::writeObjectPointer
opstream class

Syntax
void writeObjectPointer(const TStreamableBase *t, ModuleId mid =
GetModuleId());

Description
Writes the object pointer t to the output stream.

opstream::writeString
opstream class

Syntax
void writeString(const char *str);
Description
Writes str to the stream.

opstream::writeWord
opstream class

Syntax
void writeWord(uint32 us);
Description
Writes the 32-bit word us to the stream.

opstream::writeWord16
opstream class

Syntax
void writeWord16(uint16 us);
Description
Writes the 16-bit word us to the stream.

opstream::writeWord32
opstream class

Syntax
void writeWord32(uint32 us);
Description
Writes the 32-bit word us to the stream.

opstream::writeData
See Also opstream class

Syntax
void writeData(TStreamableBase *t);
Description
Writes data to the stream by calling the write member function of the appropriate class for the object
being written.

See Also
opstream class
TStreamableBase

opstream::writePrefix
See Also opstream class

Syntax
void writePrefix(const TStreamableBase *t);
Description
Writes the class name prefix to the stream. The << operator uses this function to write a prefix and
suffix around the data written with writeData. The prefix/suffix is used to ensure type-safe stream I/O.

See Also
opstream class
ipstream::readPrefix

opstream::writeSuffix
See Also opstream class

Syntax
void writeSuffix(const TStreamableBase *t);
Description
Writes the class name suffix to the stream. The << operator uses this function to write a prefix and
suffix around the data written with writeData. The prefix/suffix is used to ensure type-safe stream I/O.

opstream::<<
opstream class

Syntax
friend opstream& operator << (opstream& ps, signed char ch);
friend opstream& operator << (opstream& ps, unsigned char ch);
friend opstream& operator << (opstream& ps, signed short sh);
friend opstream& operator << (opstream& ps, unsigned short sh);
friend opstream& operator << (opstream& ps, signed int i);
friend opstream& operator << (opstream& ps, unsigned int i);
friend opstream& operator << (opstream& ps, signed long l);
friend opstream& operator << (opstream& ps, unsigned long l);
friend opstream& operator << (opstream& ps, float f);
friend opstream& operator << (opstream& ps, double d);
friend opstream& operator << (opstream& ps, long double d);
friend opstream& operator << (opstream& ps, TStreamableBase& t);
Description
This friend operator of opstream inserts (writes) the given argument to the given ipstream object.
The data type of the argument determines the form of write operation employed.

pstream class
Hierarchy

Header File
objstrm.h

Syntax
class pstream

Description
Provides the base class for handling streamable objects.

Public Constructors
pstream::pstream

Protected Constructors
pstream::pstream

Public Data Members
PointerTypes

Protected Data Members
bp
state

Public Member Functions
bad
clear
eof
fail
good
rdbuf
rdstate

Protected Member Functions
init
setstate

Operators
void
!

pstream::pstream
pstream class

Form 1
pstream(streambuf *buf);
Form 2
pstream(); // PROTECTED
Description
Form 1: Creates a buffered pstream with the given buffer. The state is set to 0.
Form 2: Creates a pstream without initializing the buffer pointer bp or state. Use init to set the buffer
and setstate to set the state.

pstream::bp
pstream class

Syntax
streambuf *bp;
Description
The bp data member is a pointer to the stream buffer.

pstream::state
pstream class

Syntax
int state;
Description
Formats state flags. Use rdstate to access the current state.

pstream::PointerTypes
pstream class

Syntax
enum PointerTypes {ptNull, ptIndexed, ptObject};
Description
Enumerates object pointer types.

pstream::bad
pstream class

Syntax
int bad() const;
Description
Returns nonzero if an error occurs.

pstream::clear
pstream class

Syntax
void clear(int aState = 0);
Description
Sets the stream state to the given value (defaults to 0).

pstream::eof
pstream class

Syntax
int eof() const;
Description
Returns nonzero on end of stream.

pstream::fail
pstream class

Syntax
int fail() const;
Description
Returns nonzero if a previous stream operation failed.

pstream::good
pstream class

Syntax
int good() const;
Description
Returns nonzero if no error states have been recorded for the stream (that is, no errors have
occurred).

pstream::init
pstream class

Syntax
void init(streambuf *sbp);
Description
The init member function initializes the stream and sets state to 0 and bp to sbp.

pstream::operator void *()
See Also pstream class

Syntax
operator void * () const;
Description
Converts to a void pointer.

See Also
pstream::fail

pstream::operator ! ()
pstream class

Syntax
int operator ! () const;
Description
Overloads the NOT operator. Returns 0 if the operation has failed (that is, if pstream::fail returned
nonzero); otherwise, returns nonzero.

pstream::rdbuf

Syntax
streambuf * rdbuf() const;
Description
Returns the pb pointer to the buffer assigned to the stream.

pstream::rdstate
pstream class

Syntax
int rdstate() const;
Description
Returns the current state value.

pstream::setstate
pstream class

Syntax
void setstate(int b);
Description
Updates the state data member with state |= (b & 0xFF).

TStreamableBase class

Syntax
class _RTTI TStreamableBase

Header File
objstrm.h

Description
Classes that inherit from TStreamableBase are known as streamable classes (their objects can be
written to and read from streams). If you develop your own streamable classes, make sure that
TStreamableBase is somewhere in their ancestry.
Using an existing streamable class as a base is the easiest way to create a streamable class. If your
class must also fit into an existing class hierarchy, you can use multiple inheritance to derive a class
from TStreamableBase .

Type Definitions
Type_id

Member Functions
CastableID
FindBase
MostDerived

TStreamableBase::Type_id
TStreamableBase class

Syntax
typedef const char *Type_id;

Description
Describes type identifiers.

TStreamableBase::CastableID
TStreamableBase class

Syntax
virtual Type_id CastableID() const = 0Description
Description
Provides support for typesafe downcasting. Returns string containing the type name.
Note: This function is available only when the library is built without run-time type information (RTTI).

TStreamableBase::FindBase
TStreamableBase class

Syntax
virtual void *FindBase(Type_id id) const;
Description
Returns a pointer to the base class.
Note: This function is available only when the library is built without run-time type information (RTTI).

TStreamableBase::MostDerived
TStreamableBase class

Syntax
virtual void *MostDerived() const = 0;
Description
Returns a void pointer to the actual streamed object.
Note: This function is available only when the library is built without run-time type information (RTTI).

TStreamableClass class
See Also

Syntax
class TStreamableClass : public ObjectBuilder
Header File
streambl.h

Description
TStreamableClass is used by the private database class and pstream in the registration of streamable
classes.

Constructor
TStreamableClass::TStreamableClass

Friend Classes
ipstream
opstream

TStreamableClass::TStreamableClass
TStreamableClass class

Syntax
TStreamableClass(const char *n, BUILDER b, int d=NoDelta, ModuleId
mid=GetModuleId());

Description
Creates a TStreamableClass object with the given name (n) and the given builder function (b), then
registers the type.
For example, each streamable has a Build member function of type BUILDER. For type-safe object-
stream I/O, the stream manager needs to access the names and the type information for each class.
To ensure that the appropriate functions are linked into any application using the stream manager, you
must provide a reference such as:
TStreamableClass RegClassName;

where TClassName is the name of the class for which objects need to be streamed. (Note that
RegClassName is a single identifier.) This not only registers TClassName (telling the stream manager
which Build function to use), it also automatically registers any dependent classes. You can register a
class more than once without any harm or overhead.
Invoke this function to provide raw memory of the correct size into which an object of the specified
class can be read. Because the Build procedure invokes a special constructor for the class, all virtual
table pointers are initialized correctly.
The distance, in bytes, between the base of the streamable object and the beginning of the
TStreamableBase component of the object is d. Calculate d by using the _ _DELTA macro.

Example
TStreamableClass RegTClassName = TStreamableClass("TClassName",
TClassName::build, _ _DELTA(TClassName));

See Also
TStreamableBase class

TStreamer class

Header File
objstrm.h

Syntax
class _RTTI TStreamer
Description
Provides a base class for all streamable objects.

Protected Constructor
TStreamer::TStreamer

Member Functions
GetObject
Read
StreamableName
Write

TStreamer::TStreamer
TStreamer class

Syntax
TStreamer(TStreamableBase *obj) : object(obj) {} // PROTECTED
Description
Constructs the TStreamer object, and initializes the streamable object pointer.

TStreamer::GetObject
TStreamer class

Syntax
TStreamableBase *GetObject() const
Description
Returns the address of the TStreamableBase component of the streamable object.

TStreamer::Read
TStreamer class

Syntax
virtual void *Read(ipstream&, uint32) const = 0;
Description
This pure virtual member function must be redefined for every streamable class. It must read the
necessary data members for the streamable class from the supplied ipstream.

TStreamer::StreamableName
TStreamer class

Syntax
virtual const char *StreamableName() const = 0;
Description
This pure virtual member function must be redefined for every streamable class. It returns the name of
the streamable class, which is used by the stream manager to register the streamable class. The
name returned must be a zero-terminated string.

TStreamer::Write
TStreamer class

Syntax
virtual void Write(opstream&) const = 0;
Description
This pure virtual function must be redefined for every streamable class. It must write the necessary
streamable class data members to the supplied opstream object. Write is usually implemented by
calling the Write member function (if available) of a base class, and then inserting any additional data
members for the derived class.

Streaming Macros
See Also
These macros are provided to simplify the declaration and definition of streamable classes.
DECLARE_STREAMABLE
DECLARE_STREAMABLE_FROM_BASE
DECLARE_ABSTRACT_STREAMABLE
DECLARE_STREAMER
DECLARE_STREAMER_FROM_BASE
DECLARE_ABSTRACT_STREAMER
DECLARE_CASTABLE
DECLARE_STREAMABLE_OPS
DECLARE_STREAMABLE_CTOR
IMPLEMENT_STREAMABLE
IMPLEMENT_STREAMABLE_CLASS
IMPLEMENT_STREAMABLE_CTOR
IMPLEMENT_STREAMABLE_POINTER
IMPLEMENT_CASTABLE_ID
IMPLEMENT_CASTABLE
IMPLEMENT_STREAMER
IMPLEMENT_ABSTRACT_STREAMABLE
IMPLEMENT_STREAMABLE_FROM_BASE

See Also
Persistent Streams

DECLARE_STREAMABLE macro
See Also Streaming Macros

Syntax
DECLARE_STREAMABLE(exp, cls, ver)
Header File
objstrm.h

Description
The DECLARE_STREAMABLE macro is used within a class definition to add the members that are
needed for streaming. Since it contains access specifiers, it should be followed by an access specifier
or be used at the end of the class definition.

The first parameter should be a macro, which in turn should conditionally expand to either _
_import and _ _export, depending on whether the class is to be imported or exported from a DLL.

The second parameter is the streamable class name.
The third parameter is the object version number.

DECLARE_STREAMABLE_FROM_BASE macro
See Also Streaming Macros

Header File
objstrm.h

Syntax
DECLARE_STREAMABLE_FROM_BASE(exp, cls, ver)
Description
This macro is used in the same way as DECLARE_STREAMABLE, but in the case where the class
being defined can be written and read using Read and Write functions defined in its base class without
change. This usually occurs when a derived class overrides virtual functions in its base or provides
different constructors, but does not add any data members.
If you used DECLARE_STREAMABLE in this case, you would have to write Read and Write functions
that merely called the base's Read and Write functions. Using
DECLARE_STREAMABLE_FROM_BASE prevents this.

DECLARE_ABSTRACT_STREAMABLE macro
See Also Streaming Macros

Syntax
DECLARE_ABSTRACT_STREAMABLE(exp, cls, ver)
Header File
objstrm.h

Description
This macro is used in an abstract class. DECLARE_STREAMABLE doesn't work with an abstract
class because an asbtract class can never be instantiated, and the code that attempts to instantiate
the object (Build) causes compiler errors.

DECLARE_STREAMER macro
See Also Streaming Macros

Syntax
DECLARE_STREAMER(exp, cls, ver)
Header File
objstrm.h

Description
This macro defines a nested class within your streamable class, and contains the core of the
streaming code. DECLARE_STREAMER declares the Read and Write function declarations, whose
definitions you must provide, and the Build function that calls the TStreamableClass constructor.

The first parameter should be a macro, which in turn should conditionally expand to either _
_import and _ _export, depending on whether or not the class is to be imported or exported from a DLL.

The second parameter is the streamable class name.
The third parameter is the object version number.

DECLARE_STREAMER_FROM_BASE macro
See Also Streaming Macros

Syntax
DECLARE_STREAMER_FROM_BASE(exp, cls, ver)
Header File
objstrm.h

Description
This macro is used by DECLARE_STREAMABLE_FROM_BASE. It declares a nested Streamer class
without the Read and Write functions.

The first parameter should be a macro, which in turn should conditionally expand to either _
_import and _ _export, depending on whether or not the class is to be imported or exported from a DLL.

The second parameter is the streamable class name.
The third parameter is the object version number.

DECLARE_ABSTRACT_STREAMER macro
See Also Streaming Macros

Syntax
DECLARE_ABSTRACT_STREAMER (exp, cls, ver)
Header File
objstrm.h

Description
This macro is used by DECLARE_ABSTRACT_STREAMABLE. It declares a nested Streamer class
without the Build function.

The first parameter should be a macro, which in turn should conditionally expand to either _
_import and _ _export, depending on whether or not the class is to be imported or exported from a DLL.

The second parameter is the streamable class name.
The third parameter is the object version number.

DECLARE_CASTABLE macro
See Also Streaming Macros

Syntax
DECLARE_CASTABLE
Header File
objstrm.h

Description
This macro provides declarations that provide a rudimentary typesafe downcast mechanism. This is
useful for compilers that don't support run-time type information.

DECLARE_STREAMABLE_OPS macro
See Also Streaming Macros

Syntax
DECLARE_STREAMABLE_OPS(cls)
Header File
objstrm.h

Description
Declares the inserters and extractors. For template classes, DECLARE_STREAMABLE_OPS must
use class<...> as the macro argument, other DECLAREs take only the class name.

DECLARE_STREAMABLE_CTOR macro
See Also Streaming Macros

Syntax
DECLARE_STREAMABLE_CTOR(cls)
Header File
objstrm.h

Description
Declares the constructor called by the Streamer::Build function.

IMPLEMENT_STREAMABLE macros
See Also Streaming Macros

Syntax
IMPLEMENT_STREAMABLE(cls)
IMPLEMENT_STREAMABLE1(cls, base1)
IMPLEMENT_STREAMABLE2(cls, base1, base2)
IMPLEMENT_STREAMABLE3(cls, base1, base2, base3)
IMPLEMENT_STREAMABLE4(cls, base1, base2, base3, base4)
IMPLEMENT_STREAMABLE5(cls, base1, base2, base3, base4, base5)
Header File
objstrm.h

Description
These macros generate the registration object for the class via IMPLEMENT_STREAMABLE_CLASS,
and generate the various member functions that are needed for a streamable class via
IMPLEMENT_ABSTRACT_STREAMABLE.
IMPLEMENT_STREAMABLE is used when the class has no base classes other than
TStreamableBase. Its only parameter is the name of the class. The numbered versions
(IMPLEMENT_STREAMABLE1, IMPLEMENT_STREAMABLE2, etc.) are for classes that have bases.
Each base class, including all virtual bases, must be listed in the IMPLEMENT_STREAMABLE macro
invocation.
The individual components comprising the above macros can be used separately for special
situations, such as custom constructors.

IMPLEMENT_STREAMABLE_CLASS macro
See Also Streaming Macros

Syntax
IMPLEMENT_STREAMABLE_CLASS(cls)
Header File
objstrm.h

Description
Constructs a TStreamableClass class instance.

IMPLEMENT_STREAMABLE_CTOR macros
See Also Streaming Macros

Syntax
IMPLEMENT_STREAMABLE_CTOR(cls)
IMPLEMENT_STREAMABLE_CTOR1(cls, base1)
IMPLEMENT_STREAMABLE_CTOR2(cls, base1, base2)
IMPLEMENT_STREAMABLE_CTOR3(cls, base1, base2, base3)
IMPLEMENT_STREAMABLE_CTOR4(cls, base1, base2, base3, base4)
IMPLEMENT_STREAMABLE_CTOR5(cls, base1, base2, base3, base4, base5)
Header File
objstrm.h

Description
Defines the constructor called by the Build function. All base classes must be listed in the appropriate
macro.

IMPLEMENT_STREAMABLE_POINTER macro
See Also Streaming Macros

Syntax
IMPLEMENT_STREAMABLE_POINTER(cls)
Header File
objstrm.h

Description
Creates the instance pointer extraction operator (>>).

IMPLEMENT_CASTABLE_ID macro
See Also Streaming Macros

Syntax
IMPLEMENT_CASTABLE_ID(cls)
Header File
objstrm.h

Description
Sets the typesafe downcast identifier.

IMPLEMENT_CASTABLE macros
See Also Streaming Macros

Syntax
IMPLEMENT_CASTABLE(cls)
IMPLEMENT_CASTABLE1(cls)
IMPLEMENT_CASTABLE2(cls)
IMPLEMENT_CASTABLE3(cls)
IMPLEMENT_CASTABLE4(cls)
IMPLEMENT_CASTABLE5(cls)
Header File
objstrm.h

Description
These macros implement code that supports the typesafe downcast mechanism.

IMPLEMENT_STREAMER macro
See Also Streaming Macros

Syntax
IMPLEMENT_STREAMER(cls)
Header File
objstrm.h

Description
Defines the Streamer constructor.

IMPLEMENT_ABSTRACT_STREAMABLE macros
See Also Streaming Macros

Syntax
IMPLEMENT_ABSTRACT_STREAMABLE(cls)
IMPLEMENT_ABSTRACT_STREAMABLE1(cls)
IMPLEMENT_ABSTRACT_STREAMABLE2(cls)
IMPLEMENT_ABSTRACT_STREAMABLE3(cls)
IMPLEMENT_ABSTRACT_STREAMABLE4(cls)
IMPLEMENT_ABSTRACT_STREAMABLE5(cls)
Header File
objstrm.h

Description
Expands to
IMPLEMENT_STREAMER (defines the Streamer constructor)

IMPLEMENT_STREAMABLE_CTOR (defines the TStreamableClass constructor)
IMPLEMENT_STREAMABLE_POINTER (defines the instance pointer extraction operator)

IMPLEMENT_STREAMABLE_FROM_BASE macro
See Also Streaming Macros

Syntax
IMPLEMENT_STREAMABLE_FROM_BASE(cls, base1)
Header File
objstrm.h

Description
This macro expands to
IMPLEMENT_STREAMABLE_CLASS (constructs a TStreamableClass instance)
IMPLEMENT_STREAMABLE_CTOR1 (defines a one base class constructor that is called by Build)
IMPLEMENT_STREAMABLE_POINTER (defines the instance pointer extraction operator)

Mathematical Classes (C++)
See Also
The C++ mathematical classes provide mathematical operations that are available only in C++
programs. C++ programs, however, that use these classes, the numerical types that they define, or
any of their friend and member functions can use any of the ANSI C standard mathematical routines.
These classes construct numerical types, define the functions used to carry out operations with their
respective types (for example, converting to and from the BCD and complex type), and overload all
necessary operators. These classes are independent of any hierarchy, but each class includes the
iostream.h header file.
The C++ mathematical classes are:
bcd
complex

See Also
bcd
complex
real
iostream.h

bcd class
See Also Example Portability

Header File
bcd.h

Purpose
Creates binary-coded decimals (BCD) from integers or floating-point numerical types. The friend
function real converts bcd numbers back to long double.

Constructors
bcd::bcd

Friend Functions
real
You can also use BCD numbers in any of the ANSI C standard math functions. The following ANSI C
math functions are overloaded to operate with BCD types:
friend bcd abs(bcd &);
friend bcd acos(bcd &);
friend bcd asin(bcd &);
friend bcd atan(bcd &);
friend bcd cos(bcd &);
friend bcd cosh(bcd &);
friend bcd exp(bcd &);
friend bcd log(bcd &);
friend bcd log10(bcd &);
friend bcd pow(bcd & base, bcd & expon);
friend bcd sin(bcd &);
friend bcd sinh(bcd &);
friend bcd sqrt(bcd &);
friend bcd tan(bcd &);
friend bcd tanh(bcd &);
Operators
The bcd class overloads the operators +, -, *, /, +=, -=, *=, /=, =, ==, and !=. These operators provide
BCD arithmetic manipulation as when used with the standard mathematical functions.
The operators << and >> are overloaded for stream input and output of BCD numbers, as they are for
other data types in iostream.h..

Range

The BCD numbers have about 17 decimal digits precision, and a range of
(approximately).
Note: The number is rounded according to the rules of banker's rounding, which means round to

nearest whole number, with ties being rounded to an even digit.

See Also
complex
real
iostream.h
Math Routines
Mathematical Classes

Portability

DOS UNIX Win16 Win 32 ANSI C ANSI C++ OS/2
+ + + +

bcd::bcd
bcd class

Form 1
bcd();
Form 2
bcd(int x);
Form 3
bcd(unsigned int x);
Form 4
bcd(long x);
Form 5
bcd(unsigned long x);
Form 6
bcd(double x, int decimals = Max);
Form 7
bcd(long double x, int decimals = Max);
Description
Once you construct BCD numbers, you can freely mix them in expressions with ints, doubles, and
other numeric types.
Form 1: Default used to declare a variable of type BCD.
bcd i; // Construct a bcd-type number.
bcd j = 37; // Construct and initialize a bcd-type number.
Form 2: Defines a BCD variable from an int variable or directly from an integer. This example
produces i = 15, j = 15, k = 12.
int i = 15;
bcd j = bcd(i); // Initialize j with a previously declared type.
bcd k = bcd(12); // Construct k from the integer provided.
Form 3: Defines a BCD variable from one that was previously declared to be an unsigned int type. An
unsigned integer can be provided directly to the constructor.
Form 4: Defines a BCD variable from an long variable or directly from a long value.
Form 5: Defines a BCD variable from one that was previously declared to be an unsigned long type.
Form 6: Defines a BCD variable from one that was previously declared to be a floating point double
type. The constructor also creates a variable directly from a double value.
To specify a precision level (that is, the number of digits after the decimal point) that is different from
the default, use the variable decimals. For example,
double x = 1.2345; // Declare and initialize in the usual manner.
bcd y = bcd(x, 2); // Create a bcd numerical type from x.
The precision level for y is set to 2. Therefore, y is initialized with 1.23.
Form 7: Defines a BCD variable from one that was previously declared to be a floating point long
double type. Alternately, you can supply a long double value directly in the place of x.
To specify a precision level (that is, the number of digits after the decimal point) that is different from
the default, use the variable decimals.

/* bcd and complex example */
/* Show that an ANSI math function can handle the bcd, */
/* complex, and double types. Use the tan() function. */
#include <bcd.h>
#include <complex.h>

void main(void) {
 double PI = 3.1416; /* Use to define radian angles. */

 double x = (PI * 0.250); /* 45 degree angle approximation. */
 bcd y = bcd(x);
 complex z = complex(x);

 cout << " double x = " << x << "\t\t tan(x) = " << tan(x)
 << "\n bcd y = " << y << "\t\t\t tan(y) = " << tan(y)
 << "\n complex z = " << z << "\t tan(z) = " << tan(z);
 }

/*
Program Output
double x = 0.7854 tan(x) = 1.000004
bcd y = 0.7854 tan(y) = 1.000004
complex z = (0.7854, 0) tan(z) = (1.000004, 0)
*/

complex class
See Also Example Portability

Header File
complex.h

Purpose
Creates complex numbers. The real function converts complex numbers back to long double. The
friend function returns the real part of a complex number or converts a complex number back to
double. The data associated to a complex number consists of two floating-point numbers. real returns
the one considered to be the real part.

Constructors
complex::complex

Friend Functions
You can also use complex numbers in any of the ANSI C standard mathematical functions.
abs log
acos log10
arg polar
asin pow
atan real
conj sin
cos sinh
cosh sqrt
exp tan
imag tanh
norm

Operators
The complex class overloads the operators +, -, *, /, +=, -=, *=, /=, =, ==, and !=. These operators
provide complex arithmetic manipulation in the usual sense.
The operators << and >> are overloaded for stream input and output of complex numbers, as they are
for other data types in iostream.h.

See Also
bcd
real
math.h
iostream.h.
Mathematical Classes

complex::complex
complex class

Form 1
complex();
Form 2
complex(double real, double imag = 0);
Description
Once you construct complex numbers, you can freely mix them in expressions with ints, doubles, and
other numeric types.
Note: If you do not want to program in C++, but instead want to program in C, the only constructs

available to you are struct complex and cabs, which give the absolute value of a complex
number. Both of these alternates are defined in math.h.

Form 1: The default typically used to declare a variable of type complex. For example:
complex i; /* Construct a complex-type number. */
complex j = 37; /* Construct and initialize a complex-type number. */
Form 2: Creates a complex numerical type out of a double. Upon construction, a real and an
imaginary part are provided. The imaginary part is taken to be zero if imag is omitted.

complex abs
See Also Portability Mathematical Classes

Syntax
friend double abs(complex& val);
Description
Returns the absolute value of a complex number.
The complex version of abs returns a double. All other math functions return a complex type when val
is complex type.

complex acos
See Also Portability Mathematical Classes

Syntax
friend complex acos(complex& z);
Description
Calculates the arc cosine.
The complex inverse cosine is defined by:
acos(z) = -i * log(z + i sqrt(1 - z2))
arg

arg
See Also Example Portability Mathematical Classes

Syntax
double arg(complex x);
Description
arg gives the angle, in radians, of the number in the complex plane.
The positive real axis has angle 0, and the positive imaginary axis has angle pi/2. If the argument
passed to arg is complex 0 (zero), arg returns zero.
arg(x) returns atan2(imag(x), real(x)).

/* arg example */
// Illustrate the use of each of the complex friend functions.
#include <complex.h> // This also includes iostream.h.

int main(void)
{
 complex z(3.1, 4.2);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";

 double mag = sqrt(norm(z));
 double ang = arg(z);

 cout << "The polar form of z is:\n";
 cout << " magnitude = " << mag << "\n";
 cout << " angle (in radians) = " << ang << "\n";
 cout << "Reconstructing z from its polar form gives:\n";
 cout << " z = " << polar(mag,ang) << "\n";
 return 0;
}
Program Output
z = (3.1, 4.2)
 has real part = 3.1
 and imaginary part = 4.2
z has complex conjugate = (3.1, -4.2)
The polar form of z is:
 magnitude = 5.220153
 angle (in radians) = 0.934958
Reconstructing z from its polar form gives:
 z = (3.1, 4.2)

complex asin
See Also Portability Mathematical Classes

Syntax
friend complex asin(complex& z);
Description
Calculates the arc sine.
The complex inverse sine is defined by
asin(z) = -i * log(i * z + sqrt(1 - z2))
atan

complex atan
See Also Portability Mathematical Classes

Syntax
friend complex atan(complex& z);
Calculates the arc tangent.

Description
Calculates the arc tangent.
The complex inverse tangent is defined by
atan(z) = -0.5 i log((1 + i z)/(1 - i z))

conj
See Also Portability Mathematical Classes

Syntax
complex conj(complex z);
Description
Returns the complex conjugate of a complex number.
conj(z) is the same as complex(real(z), -imag(z)).

complex cos
See Also Portability Mathematical Classes

Syntax
friend complex cos(complex& z);
Description
Calculates the cosine of a value.
The complex cosine is defined by
cos(z) = (exp(i * z) + exp(-i * z)) / 2

complex cosh
See Also Portability Mathematical Classes

Syntax
friend complex cosh(complex& z);
Description
Calculates the hyperbolic cosine of a value.
The complex hyperbolic cosine is defined by
cosh(z) = (exp(z) + exp(-z)) / 2
exp

complex exp
See Also Portability Mathematical Classes

Syntax
friend complex exp(complex& y);
Description
Calculates the exponential e to the y.
The complex exponential function is defined by
exp(x + y * i) = exp(x) (cos(y) + i * sin(y))

imag
See Also Portability Mathematical Classes

Syntax
double imag(complex x);
Description
Returns the imaginary part of a complex number.
The data associated to a complex number consists of two floating-point (double) numbers. imag
returns the one considered to be the imaginary part.

complex log
See Also Portability Mathematical Classes

Syntax
friend complex log(complex& z);
Description
Calculates the natural logarithm of z.
The complex natural logarithm is defined by
log(z) = log(abs(z)) + i * arg(z)

complex log10
See Also Portability Mathematical Classes

Syntax
friend complex log10(complex& z);
Description
Calculates log10(z).
The complex common logarithm is defined by
log10(z) = log(z) / log(10)

norm
See Also Portability Mathematical Classes

Syntax
double norm(complex x);
Description
Returns the square of the absolute value. norm(x) returns the magnitude real(x) * real(x) + imag(x) *
imag(x).
norm can overflow if either the real or imaginary part is sufficiently large.

polar
See Also Portability Mathematical Classes

Syntax
complex polar(double mag, double angle = 0);
Description
Returns a complex number with a given magnitude (absolute value) and angle.
polar(mag, angle) is the same as complex(mag * cos(angle), mag * sin(angle)).

complex pow
See Also Portability Mathematical Classes

Syntax
friend complex pow(complex& base, double expon);
Description
friend complex pow(double base, complex& expon);
friend complex pow(complex& base, complex& expon);
Calculates base to the power of expon.
The complex pow is defined by
pow(base, expon) = exp(expon * log(base))

real
See Also Examples Portability Mathematical Classes

Syntax
long double real(bcd number);
double real(complex x);
Description
Converts a bcd or complex number back to a long double or returns the real part of complex number.
The data associated to a complex number consists of two floating-point numbers; real returns the one
considered to be the real part.

See Also
bcd
complex
Math Routines
Mathematical Classes

Real Examples
bcd version
complex version

/* real example for bcd */
/* Construct a bcd number and restrict its precision. */
#include <bcd.h> /* The iostream header is also included. */

int main(void)
{
 int k = 0;
 double x = 10000.0; /* ten thousand dollars */
 bcd a = bcd(x/3, 2); /* a third, rounded to nearest penny */

 cout << "Share of fortune = $" << a << "\n";

 k = real(a); /* Now, assign bcd to an int. */
 cout << "The integer version of variable a:" << k;
 return 0;
}
Program Output
Share of fortune = $3333.33
The integer version of variable a:3333

/* real example for complex */
/* Show the components of a complex number. */
#include <complex.h> /* This also includes iostream.h. */

int main(void)
{
 complex z(3.1, 4.2);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";
 return 0;
}
Program Output
z = (3.1, 4.2)
 has real part = 3.1
 and imaginary real part = 4.2

z has complex conjugate = (3.1, -4.2)

complex sin
See Also Portability Mathematical Classes

Syntax
friend complex sin(complex& z);
Description
Calculates the trignometric sine.
The complex sine is defined by
sin(z) = (exp(i * z) - exp(-i * z)) / (2 * i)

complex sinh
See Also Portability Mathematical Classes

Syntax
friend complex sinh(complex& z);
Description
Calculates the hyperbolic sine.
The complex hyperbolic sine is defined by
sinh(z) = (exp(z) - exp(-z)) / 2
sqrt

complex sqrt
See Also Portability Mathematical Classes

Syntax
friend complex sqrt(complex& x);
Description
Calculates the positive square root.
For any complex number x, sqrt(x) gives the complex root whose arg is arg(x)/2.
The complex square root is defined by
sqrt(x) = sqrt(abs(x)) (cos(arg(x) / 2) + i * sin(arg(x)/2))

complex tan
See Also Portability Mathematical Classes

Syntax
friend complex tan(complex& z);
Description
Calculates the trignometric tangent.
The complex tangent is defined by
tan(z) = sin(z) / cos(z)

complex tanh
See Also Portability Mathematical Classes

Syntax
friend complex tanh(complex& z);
Description
Calculates the hyperbolic tangent.
The complex hyperbolic tangent is defined by
tanh(z) = sinh(z) / cosh(z)

See Also
complex
Math Routines
Mathematical Classes

bcd.h
See Also Header Files
Declares the C++ class bcd, plus the overloaded operators for class bcd and for BCD math functions.

Functions
abs
acos
asin
atan
cos
cosh
exp
log
log10
pow
pow10
real
sin
sinh
sqrt
tan
tanh

Constants, Data Types and Global Variables
_BCD_H
_BcdMaxDecimals
bcdexpo (enum)
__cplusplus

Overloaded Operators
!= += +
-= - *=
* == <
<= > >=
/= /

complex.h
See Also Header Files
Declares the C++ complex math functions.
All function names, member names, and operators have been borrowed from AT&T C++, except for
the addition of acos, asin, atan, log10, tan, and tanh.

Includes
IOSTREAM.H
MATH.H

Functions
abs
acos
arg
asin
atan
conj
cos
cosh
exp
imag
log
log10
norm
polar
pow
pow10
real
sin
sinh
sqrt
tan
tanh

Constants, Data Types and Global Variables
_COMPLEX_H
__cplusplus

Overloaded Operators
+ += - -=
* *= / /=
== != << >>

Run-Time Support
These topics provide a detailed description of the functions and classes that provide run-time support.
Any class operators or member functions are listed immediatedly after the class constructor.

Classes
Bad_cast class
Bad_typeid class
typeinfo class
xalloc class
xmsg class

Functions
set_new_handler
set_terminate
set_unexpected
terminate
unexpected

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + + +

See Also
C++ Exception Handling
Run-time Support

See Also
Run-time Support

Bad_cast class
See Also Portability Example

Header File
typeinfo.h

Description
When dynamic_cast fails to make a cast to reference, the expression can throw Bad_cast. Note that
when dynamic_cast fails to make a cast to pointer type, the result is the null pointer.

Bad_typeid class
See Also Portability Example

Header File
typeinfo.h

Description
When the operand of typeid is a dereferenced null pointer, the typeid operator can throw Bad_typeid.

set_new_handler
See Also Portability

Header File
new.h

Syntax
typedef void (new * new_handler)() throw(xalloc);
new_handler set_new_handler(new_handler my_handler);
Description
set_new_handler installs the function to be called when the global operator new() or operator new[]()
cannot allocate the requested memory. By default the new operators throw an xalloc exception if
memory cannot be allocated. You can change this default behavior by calling set_new_handler to set a
new handler. To retain the traditional version of new, which does not throw exceptions, you can use
set_new_handler(0).
If new cannot allocate the requested memory, it calls the handler that was set by a previous call to
set_new_handler. If there is no handler installed by set_new_handler, new returns 0. my_handler
should specify the actions to be taken when new cannot satisfy a request for memory allocation. The
new_handler type, defined in new.h, is a function that takes no arguments and returns void. A
new_handler can throw an xalloc exception.
The user-defined my_handler should do one of the following:

return after freeing memory
throw an xalloc exception or an exception derived from xalloc
call abort or exit functions

If my_handler returns, then new will again attempt to satisfy the request.
Ideally, my_handler would free up memory and return. new would then be able to satisfy the request
and the program would continue. However, if my_handler cannot provide memory for new, my_handler
must throw an exception or terminate the program. Otherwise, an infinite loop will be created.
Preferably, you should overload operator new() and operator new[]() to take appropriate actions for
your applications.

Return Value
set_new_handler returns the old handler, if one has been registered.
The user-defined argument function, my_handler, should not return a value.

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + + + +

set_terminate
See Also Portability

Header File
except.h

Syntax
typedef void (*terminate_function)();
terminate_function set_terminate(terminate_function t_func);
Description
set_terminate lets you install a function that defines the program's termination behavior when a
handler for the exception cannot be found. The actions are defined in t_func, which is declared to be a
function of type terminate_function. A terminate_function type, defined in except.h, is a function that
takes no arguments, and returns void.
By default, an exception for which no handler can be found results in the program calling the terminate
function. This will normally result in a call to abort. The program then ends with the message Abnormal
program termination. If you want some function other than abort to be called by the terminate
function, you should define your own t_func function. Your t_func function is installed by set_terminate
as the termination function. The installation of t_func lets you implement any actions that are not taken
by abort.

Return Value
The previous function given to set_terminate will be the return value.
The definition of t_func must terminate the program. Such a user-defined function must not return to its
caller, the terminate function. An attempt to return to the caller results in undefined program behavior. It
is also an error for t_func to throw an exception.

See Also
abort
C++ Exception Handling
Run-time Support
set_unexpected
terminate

set_unexpected
See Also Portability

Header File
except.h

Syntax
typedef void (* unexpected_function)();
unexpected_function set_unexpected(unexpected_function unexpected_func);
Description
set_unexpected lets you install a function that defines the program's behavior when a function throws
an exception not listed in its exception specification. The actions are defined in unexpected_func,
which is declared to be a function of type unexpected_function. An unexpected_function type, defined
in except.h, is a function that takes no arguments, and returns void.
By default, an unexpected exception causes unexpected to be called. If is defined, it is subsequently
called by unexpected. Program control is then turned over to the user-defined unexpected_func.
Otherwise, terminate is called.

Return Value
The previous function given to set_unexpected will be the return value.
The definition of unexpected_func must not return to its caller, the unexpected function. An attempt to
return to the caller results in undefined program behavior.
unexpected_func can also call abort, exit, or terminate.

See Also
abort
C++ Exception Handling
exit
Run-time Support
set_terminate
terminate

terminate
See Also Portability

Header File
except.h

Syntax
void terminate();
Description
The function terminate can be called by unexpected or by the program when a handler for an
exception cannot be found. The default action by terminate is to call abort. Such a default action
causes immediate program termination.
You can modify the way that your program will terminate when an exception is generated that is not
listed in the exception specification. If you do not want the program to terminate with a call to abort,
you can instead define a function to be called. Such a function (called a terminate_function) will be
called by terminate if it is registered with set_terminate.

Return Value
None.

typeinfo class
See Also Portability Example

Header File
typeinfo.h

Description
Provides information about a type.

Constructor
Only a private constructor is provided. You cannot create typeinfo objects. By declaring your objects to
be _ _rtti types, or by using the -RT compiler switch, the compiler provides your objects with the
elements of typeinfo. typeinfo references are generated by the typeid operator.

Public Member Functions
name
before

Operators
==
!=

typeinfo::name
typeinfo class

Syntax
const char* name() const;
Description
This function returns a printable string that identifies the type name of the operand to typeid. The
space for the character string is overwritten on each call.

typeinfo::before
typeinfo class

Syntax
int before(const typeinfo&);
Description
Use this function to compare the lexical order of types. For example, to compare two types, T1 and T2,
use the following syntax:
typeid (T1).before(typeid(T2));

The before function returns 0 or 1.

typeinfo::operator ==
typeinfo class

Syntax
int operator==(const typeinfo &) const;
Description
Provides comparison of typeinfos.

typeinfo::operator !=
typeinfo class

Syntax
int operator!=(const typeinfo &) const;
Description
Provides comparison of typeinfos.

// Example
// HOW TO GET RUNTIME TYPE INFORMATION.
#include <iostream.h>
#include <typeinfo.h>

class __rtti Alpha {
 virtual void func() {}; // This makes Alpha a polymorphic class type.
};

class B : public Alpha {};

int main(void) {
 B Binst; // Instantiate class B
 B *Bptr; // Declare a B-type pointer
 Bptr = &Binst; // Initialize the pointer

 // THESE TESTS ARE DONE AT RUNTIME

 if (typeid(*Bptr) == typeid(B))
 // Ask "WHAT IS THE TYPE FOR *Bptr?"
 cout << "Name is " << typeid(*Bptr).name();

 if (typeid(*Bptr) != typeid(Alpha))
 cout << "\nPointer is not an Alpha-type.";

 return 0;
 }

// Program Output
// Name is B
// Pointer is not an Alpha-type.

unexpected
See Also Portability

Header File
except.h

Syntax
void unexpected();
Description
The unexpected function is called when a function throws an exception not listed in its exception
specification. The program calls unexpected, which by default calls any user-defined function
registered by set_unexpected. If no function is registered with set_unexpected, the unexpected
function then calls terminate.

Return Value
None, although unexpected may throw an exception.

xalloc class
See Also Portability

Header File
except.h

Description
Reports an error on allocation request.

Constructor
xalloc::xalloc

Public Member Functions
raise
requested

xalloc::xalloc
xalloc class

Syntax
xalloc(const string &msg, size_t size);
Description
The xalloc class has no default constructor. Every use of xalloc must define the message to be
reported when a size allocation cannot be fulfilled. The string type is defined in cstring.h header file.

xalloc::raise
xalloc class

Syntax
void raise() throw(xalloc);
Description
Calling raise causes an xalloc to be thrown. In particular, it throws *this.

xalloc::requested
xalloc class

Syntax
size_t requested() const;
Description
Returns the number of bytes that were requested for allocation.

xmsg class
See Also Portability

Header File
except.h

Description
Reports a message related to an exception.

Constructor
xmsg::xmsg

Public Member Functions
raise
why

xmsg::xmsg
xmsg class

Syntax
xmsg(string msg);
Description
There is no default constructor for xmsg. Every xmsg object must have a string message explicitly
defined. The string type is defined in cstring.h header file.

xmsg::raise
xmsg class

Syntax
void raise() throw(xmsg);
Description
Calling raise causes an xmsg to be thrown. In particular, it throws *this.

xmsg::why
xmsg class

Syntax
const string _FAR & why() const;
Description
Reports the string used to construct an xmsg. Because every xmsg must have its message explicitly
defined, every instance should have a unique message.

except.h
See Also Header Files
The except.h header file contains the declarations and prototypes for exception-handling functions and
classes, their data members, and member functions.

Includes
STDLIB.H

Classes
xalloc class
xmsg class

Functions
set_terminate
set_unexpected
terminate
unexpected

typeinfo.h
See Also Header Files
The typeinfo.h header file contains the declarations and prototypes for the run-time type information
classes, their data members, and member functions.

Classes
Bad_cast class
Bad_typeid class
typeinfo class

Class Diagnostic Macros
See Also
Borland provides a set of macros for debugging C++ code. They are located in checks.h. There are
two types of macros, default and extended.
The default macros are

CHECK
PRECONDITION
TRACE
WARN

The extended macros are
CHECKX
PRECONDITIONX
TRACEX
WARNX

See Also
Extended Diagnostic Macros
Macro Message Output
Run-time Macro Control
Using Preprocessor Symbols

Default Macros
Default macros provide straightforward value checking and message output.

Using Preprocessor Symbols
See Also
Three preprocessor symbols control diagnostic macro expansion: _ _DEBUG, _ _TRACE, and _
_WARN. If one of these symbols is defined when compiling, then the corresponding macros expand
and diagnostic code is generated. If none of these symbols is defined, then the macros do not expand
and no diagnostic code is generated. These symbols can be defined on the command line using the -D
switch, or by using #define statements within your code.

__DEBUG=1 __DEBUG=2 __TRACE __WARN

PRECONDITION X X
PRECONDITIONX X X
CHECK X
CHECKX X
TRACE X
TRACEX X
WARN X
WARNX X

To create a diagnostic version of an executable, place the diagnostic macros at strategic points within
the program code and compile with the appropriate preprocessor symbols defined. Diagnostic versions
of the Borland class libraries are built in a similar manner.

See Also
Extended Diagnostic Macros
Macro Message Output
Run-time Macro Control

CHECK
See Also

Syntax
CHECK(<cond>)
Header File
checks.h

Description
Outputs <msg> and throws an exception if <cond> equals 0. Use CHECK to perform value checking
within a function.

See Also
CHECKX

PRECONDITION
See Also

Syntax
PRECONDITION(<cond>)
Header File
checks.h

Description
Outputs <msg> and throws an exception if <cond> equals 0. Use PRECONDITION on entry to a
function to check the validity of the arguments and to do any other checking to determine if the function
has been invoked correctly.

See Also
PRECONDITIONX

TRACE
See Also Example Class Diagnostic Macros

Syntax
TRACE(<msg>)
Header File
checks.h

Description
Outputs <msg>. TRACE is used to output general messages that are not dependent upon a particular
condition.

See Also
TRACEX

WARN
See Also Example Class Diagnostic Macros

Syntax
WARN(<cond>,<msg>)
Header File
checks.h

Description
Outputs <msg> if <cond> is nonzero. It is used to output conditional messages.

See Also
WARNX

TRACE and WARN Example
The following program illustrates the use of the default TRACE and WARN macros:
#include <checks.h>

int main()
{
 TRACE("Hello World");
 WARN(5 != 5, "Math is broken!");
 WARN(5 != 7, "Math still works!");

 return 0;
}
When the above code is compiled with _ _TRACE and _ _WARN defined, it produces the following
output when run:
Trace PROG.C 5: [Def] Hello World
Warning PROG.C 7: [Def] Math still works!
The above output indicates that the message "Hello World" was output by the default TRACE macro
on line 5 of PROG.C, and the message "Math still works!" was output by the default WARN macro on
line 7 of PROG.C.
Default diagnostic macros expand to extended diagnostic macros with the group set to "Def" and the
level set to 0. This "Def" group controls the behavior of the default macros and is initially enabled with
a threshold level of 0.

CHECKX
See Also Class Diagnostic Macros

Syntax
CHECKX(<cond>,<msg>)
Header File
checks.h

Description
Outputs <msg> and throws an exception if <cond> equals 0. Use CHECKX to perform value checking
within a function.

See Also
CHECK

PRECONDITIONX
See Also Class Diagnostic Macros

Syntax
PRECONDITIONX(<cond>,<msg>)
Header File
checks.h

Description
Outputs <msg> and throws an exception if <cond> equals 0. Use PRECONDITIONX on entry to a
function to check the validity of the arguments and to do any other checking to determine if the function
has been invoked correctly.

See Also
PRECONDITION

TRACEX
See Also Example Class Diagnostic Macros

Syntax
TRACEX(<group>,<level>,<msg>)
Header File
checks.h

Description
Trace only if <group> and <level> are enabled.

See Also
TRACE
DIAG_DECLARE_GROUP
DIAG_DEFINE_GROUP
DIAG_ENABLE
DIAG_ISENABLED
DIAG_SETLEVEL
DIAG_GETLEVEL

WARNX
See Also Class Diagnostic Macros

Syntax
WARNX(<group>,<cond>,<level>,<msg>)
Header File
checks.h

Description
Warn only if <group> and <level> are enabled.

See Also
WARN
DIAG_DECLARE_GROUP
DIAG_DEFINE_GROUP
DIAG_ENABLE
DIAG_ISENABLED
DIAG_SETLEVEL
DIAG_GETLEVEL

DIAG_DECLARE_GROUP
See Also Class Diagnostic Macros

Syntax
DIAG_DECLARE_GROUP(<name>)
Header File
checks.h

Description
Declare a group named <name>. You cannot use DIAG_DECLARE_GROUP and
DIAG_DEFINE_GROUP in the same compilation unit.

See Also
DIAG_DEFINE_GROUP

DIAG_DEFINE_GROUP
See Also Class Diagnostic Macros

Syntax
DIAG_DEFINE_GROUP(<name>,<enabled>,<level>)
Header File
checks.h

Description
Define a group named <name>. You cannot use DIAG_DECLARE_GROUP and
DIAG_DEFINE_GROUP in the same compilation unit.

See Also
DIAG_DECLARE_GROUP

See Also
DIAG_DECLARE_GROUP
DIAG_DEFINE_GROUP

DIAG_ENABLE
See Also Class Diagnostic Macros

Syntax
DIAG_ENABLE(<group>,<state>)
Header File
checks.h

Description
Sets <group>'s enable flag to <state>.

See Also
DIAG_DECLARE_GROUP
DIAG_DEFINE_GROUP
DIAG_ISENABLED

DIAG_ISENABLED
See Also Class Diagnostic Macros

Syntax
DIAG_ISENABLED(<group>)
Header File
checks.h

Description
Returns nonzero if <group> is enabled.

See Also
DIAG_DECLARE_GROUP
DIAG_DEFINE_GROUP
DIAG_ENABLE

DIAG_SETLEVEL
See Also Class Diagnostic Macros

Syntax
DIAG_SETLEVEL(<group>,<level>)
Header File
checks.h

Description
Sets <group>'s threshold level to <level>.

See Also
DIAG_DECLARE_GROUP
DIAG_DEFINE_GROUP
DIAG_ENABLE
DIAG_ISENABLED
DIAG_GETLEVEL

DIAG_GETLEVEL
See Also Class Diagnostic Macros

Syntax
DIAG_GETLEVEL(<group>)
Header File
checks.h

Description
Gets <group>'s threshold level.
Threshold levels are arbitrary numeric values that establish a threshold for enabling macros. A macro
with a level greater than the group threshold level will not be executed. For example, if a group has a
threshold level of 0 (the default value), all macros that belong to that group and have levels of 1 or
greater are ignored.

See Also
DIAG_DECLARE_GROUP
DIAG_DEFINE_GROUP
DIAG_ENABLE
DIAG_ISENABLED
DIAG_SETLEVEL

Extended Diagnostics Macros Example
The following PROG.C example defines two diagnostic groups, Group1 and Group2, which are used
as arguments to extended diagnostic macros:
#include <checks.h>

DIAG_DEFINE_GROUP(Group1,1,0);
DIAG_DEFINE_GROUP(Group2,1,0);

void main(int argc, char **argv)
{
 TRACE("Always works, argc=" << argc);

 TRACEX(Group1, 0, "Hello");
 TRACEX(Group2, 0, "Hello");

 DIAG_DISABLE(Group1);

 TRACEX(Group1, 0, "Won't execute - group is disabled!");
 TRACEX(Group2, 3, "Won't execute - level is too high!");
}
When the above code is compiled with _ _TRACE defined and run, it produces the following output:
Trace PROG.C 8: [Def] Always works, argc=1
Trace PROG.C 10: [Group1] Hello
Trace PROG.C 11: [Group2] Hello
Note that the last two macros are not executed. In the first case, the group Group1 is disabled. In the
second case, the macro level exceeds Group2's threshold level (set by default to 0).

Extended Diagnostic Macros
See Also Class Diagnostic Macros
The extended macros CHECKX and PRECONDITIONX augment CHECK and PRECONDITION by
letting you provide a message to be output when the condition fails.
The extended macros TRACEX and WARNX augment TRACE and WARN by providing a way to
specify macro groups that can be independently enabled or disabled. TRACEX and WARNX require
additional arguments that specify the group to which the macros belongs, and the threshold level at
which the macro should be executed. The macro is excuted only if the specified group is enabled and
has a threshold level which is greater than or equal to the threshhold level argument used in the
macro.

See Also
Macro Message Output
Run-time Macro Control
Using Preprocessor Symbols

Macro Message Output
See Also Class Diagnostic Macros
The TRACE, TRACEX, WARN, and WARNX macros take a <msg> argument that is conditionally
inserted into an output stream. This means a sequence of objects can be inserted in the output stream
(for example TRACE("Mouse @ " << x << "," << y);). The use of streams is extensible to
different object types and allows for parameters within trace messages.
Diagnostic macro message output can be viewed while the program is running. If the target
environment is Windows, the output is sent to the OutputDebugString function, and can be viewed
with the DBWIN.EXE or OX.SYS utilities. If Turbo Debugger is running, the output will be sent to its log
window. If the target environment is DOS, the output is sent to the standard output stream and can be
easily redirected at the command line.

See Also
Extended Diagnostic Macros
Run-time Macro Control
Using Preprocessor Symbols

Run-Time Macro Control
See Also Class Diagnostic Macros
Diagnostic groups can be controlled at runtime by using the control macros within your program or by
directly modifying the group information within the debugger.
This group information is contained in a template class named
TDiagGroup<TDiagGroupClass##Group>, where ##Group is the name of the group. This class
contains a static structure Flags, which in turn contains the enabled flag and the threshold level. For
example, to enable the group Group1, you would set the variable
TDiagGroup<TDiagGroupClassGroup1>::Flags.Enabled to 1.

See Also
Extended Diagnostic Macros
Macro Message Output
Using Preprocessor Symbols

checks.h
See Also Header Files
The checks.h header file contains the declarations and prototypes for the class diagnostic macros.

Includes
CSTRING.H
EXCEPT.H
STRSTREA.H
SYS\TYPES.H

Macros
CHECK
CHECKX
PRECONDITION
PRECONDITIONX
TRACE
TRACEX
WARN
WARNX

See Also
Precompiled Headers

Service Classes (C++)
These are the C++ service classes you can use for accessing and manipulating time, date, file, and
thread classes.

Class Type Header File
Date class date.h
File class file.h
String classes cstring.h, regexp.h
Thread classes thread.h
Time class time.h

The header files for these classes are found in either \BC4\INCLUDE or \BC4\INCLUDE\CLASSLIB.

Thread classes
These are the thread-related utility classes:
TCriticalSection class
TMutex class
TSync class
TThread class

String classes (C++)
These are the string-related classes:
string class
TSubstring class
TRegexp class (helper class)

classlib\date.h
See Also Header Files
The date.h header file contains the declarations and prototypes for the date class, their data members,
and member functions.

Includes
_DEFS.H

Classes
TDate class

file.h
See Also Header Files
The thread.h header file contains the declarations and prototypes for the file class, their data
members, and member functions.

Includes
DATE.H
_DEFS.H
FCNTL.H
STDLIB.H
STDIO.H
SHARE.H
SYS\STAT.H
SYS\TYPES.H
THREAD.H
TIME.H

Classes
TFile class

cstring.h
See Also Header Files
The cstring.h header file contains the declarations and prototypes for the string and exception classes,
their data members, and member functions.
If you are using cstring.h in a Windows program, you must either #define STRICT before you include
windows.h or include cstring.h before you include windows.h (STRICT is defined in cstring.h).

Includes
CTYPE.H
EXCEPT.H
REF.H
STDDEF.H
STRING.H
WINDOWS.H

Classes
string
TSubstring

thread.h
See Also Header Files
The thread.h header file contains the declarations and prototypes for the thread classes, their data
members, and member functions.

Includes
CSTRING.H
CHECKS.H
_DEFS.H

Classes
TCriticalSection class
TSync class
TThread class

See Also
Precompiled Headers

TDate class

Syntax
class TDate
Header File
date.h

Description
The TDate class represents a date. It has members that read, write, and store dates, and that convert
dates to Gregorian calendar dates.

Type Definitions
DayTy
HowToPrint
JulTy
MonthTy
YearTy

Public Constructors
TDate::TDate

Public Member Functions
AsString
Between
CompareTo
Day
DayName
DayOfMonth
DayOfWeek
DaysInYear
DayWithinMonth
FirstDayOfMonth
Hash
IndexOfMonth
IsValid
Jday
Leap
Max
Min
Month
MonthName
NameOfDay
NameOfMonth
Previous
SetPrintOption
WeekDay
Year

Protected Member Functions
AssertIndexOfMonth
AssertWeekDayNumber

Operators
<
<=
>
>=
==
!=
-
+
++
--
+=
-=
<<
>>

Friend Operators
-

TDate::DayTy
TDate class

Syntax
typedef unsigned DayTy;
Description
Day type.

TDate::HowToPrint
TDate class

Syntax
enum HowToPrint{ Normal, Terse, Numbers, EuropeanNumbers, European };
Description
Lists different print formats.

TDate::JulTy
TDate class

Syntax
typedef unsigned long JulTy;
Description
Julian calendar type.

TDate::MonthTy
TDate class

Syntax
typedef unsigned MonthTy;
Description
Month type.

TDate::YearTy
TDate class

Syntax
typedef unsigned YearTy;
Description
Year type.

TDate::TDate
TDate class

Form 1
TDate();
Form 2
TDate(DayTy day, YearTy year);
Form 3
TDate(DayTy day, const char* month, YearTy year);
Form 4
TDate(DayTy day, MonthTy month, YearTy year);
Form 5
TDate(istream& is);
Form 6
TDate(const TTime& time);
Description
Form 1: Constructs a TDate object with the current date.
Form 2: Constructs a TDate object with the given day and year. The base date for this computation is
December 31 of the previous year. If year == 0, it constructs a TDate with January 1, 1901, as the "day
zero." For example, TDate(-1,0) = December 31, 1900, and TDate(1,0) = January 2, 1901.
Form 3: Constructs a TDate object for the given day, month, and year.
Form 4: Constructs a TDate object for the given day, month, and year.
Form 5: Constructs a TDate object, reading the date from input stream is.
Form 6: Constructs a TDate object from TTime object time.

TDate::AsString
TDate class

Syntax
string AsString() const;
Description
Converts the TDate object to a string object.

TDate::Between
TDate class

Syntax
int Between(const TDate& d1, const TDate& d2) const;
Description
Returns 1 if this TDate object is between d1 and d2, inclusive.

TDate::CompareTo
TDate class

Syntax
int CompareTo(const TDate &) const;
Description
Returns 1 if the target TDate is greater than parameter TDate, -1 if the target is less than the
parameter, and 0 if the dates are equal.

TDate::Day
TDate class

Syntax
DayTy Day() const;
Description
Returns the day of the year (1-365).

TDate::DayName
TDate class

Syntax
const char *DayName(DayTy weekDayNumber);
Description
Returns a string name for the day of the week, where Monday is 1 and Sunday is 7.

TDate::DayOfMonth
TDate class

Syntax
DayTy DayOfMonth() const;
Description
Returns the day of the month (1-31).

TDate::DayOfWeek
TDate class

Syntax
DayTy DayOfWeek(const char* dayName);
Description
Returns the number associated with a string naming the day of the week, where Monday is 1 and
Sunday is 7.

TDate::DaysInYear
TDate class

Syntax
DayTy DaysInYear(YearTy);
Description
Returns the number of days in the year specified (365 or 366).

TDate::DayWithinMonth
TDate class

Syntax
int DayWithinMonth(MonthTy, DayTy, YearTy);
Description
Returns 1 if the given day is within the given month for the given year.

TDate::FirstDayOfMonth
TDate class

Form 1
DayTy FirstDayOfMonth() const;
Form 2
DayTy FirstDayOfMonth(MonthTy month) const;
Description
Form 1: Returns the number of the first day of the month for this TDate.
Form 2: Returns the number of the first day of a given month. Returns 0 if month is outside the range
1 through 12.

TDate::Hash
TDate class

Syntax
unsigned Hash() const;
Description
Returns a hash value for the date.

TDate::IndexOfMonth
TDate class

Syntax
MonthTy IndexOfMonth(const char *monthName);
Description
Returns the number (1-12) of the month monthname.

TDate::IsValid
TDate class

Syntax
int IsValid() const;
Description
Returns 1 if this TDate is valid, 0 otherwise.

TDate::Jday
TDate class

Syntax
JulTy Jday(MonthTy, DayTy, YearTy);
Description
Converts the given Gregorian calendar date to the corresponding Julian day number. Gregorian
calendar started on Sep. 14, 1752. This function is not valid before that date. Returns 0 if the date is
invalid.

TDate::Leap
TDate class

Syntax
int Leap() const;
Description
Returns 1 if this TDate's year is a leap year, 0 otherwise.

TDate::Max
TDate class

Syntax
TDate Max(const TDate& dt) const;
Description
Compares this TDate with dt and returns the date with the greater Julian number.

TDate::Min
TDate class

Syntax
TDate Min(const TDate& dt) const;
Description
Compares this TDate with dt and returns the date with the lesser Julian number.

TDate::Month
TDate class

Syntax
MonthTy Month() const;
Description
Returns the month number for this TDate.

TDate::MonthName
TDate class

Syntax
const char *MonthName(MonthTy monthNumber);
Description
Returns the string name for the given monthNumber (1-12). Returns 0 for an invalid monthNumber.

TDate::NameOfDay
TDate class

Syntax
const char *NameOfDay() const;
Description
Returns this TDate's day string name.

TDate::NameOfMonth
TDate class

Syntax
const char *NameOfMonth() const;
Description
Returns this TDate's month string name.

TDate::Previous
TDate class

Form 1
TDate Previous(const char *dayName) const;
Form 2
TDate Previous(DayTy day) const;
Description
Form 1: Returns the TDate of the previous dayName.
Form 2: Returns the TDate of the previous day.

TDate::SetPrintOption
See Also TDate class

Syntax
HowToPrint SetPrintOption(HowToPrint h);
Description
Sets the print option for all TDate objects and returns the old setting.

See Also
HowToPrint

TDate::WeekDay
TDate class

Syntax
DayTy WeekDay() const;
Description
Returns 1 (Monday) through 7 (Sunday).

TDate::Year
TDate class

Syntax
YearTy Year() const;
Description
Returns the year of this TDate.

TDate::AssertIndexOfMonth
TDate class

Syntax
static int AssertIndexOfMonth(MonthTy m);
Description
Returns 1 if m is between 1 and 12 inclusive, otherwise returns 0.

TDate::AssertWeekDayNumber
TDate class

Syntax
static int AssertWeekDayNumber(DayTy d);
Description
Returns 1 if d is between 1 and 7 inclusive, otherwise returns 0.

TDate::operator <
TDate class

Syntax
int operator < (const TDate& date) const;
Description
Returns 1 if this TDate precedes date. otherwise returns 0.

TDate::operator <=
TDate class

Syntax
int operator <= (const TDate& date) const;
Description
Returns 1 if this TDate is less than or equal to date, otherwise returns 0.

TDate::operator >
TDate class

Syntax
int operator > (const TDate& date) const;
Description
Returns 1 if this TDate is greater than date. otherwise returns 0.

TDate::operator >=
TDate class

Syntax
int operator >= (const TDate& date) const;
Description
Returns 1 if this TDate is greater than or equal to date, otherwise returns 0.

TDate::operator ==
TDate class

Syntax
int operator == (const TDate& date) const;
Description
Returns 1 if this TDate is equal to date, otherwise returns 0.

TDate::operator !=
TDate class

Syntax
int operator != (const TDate& date) const;
Description
Returns 1 if this TDate is not equal to date, otherwise returns 0.

TDate::operator -
TDate class

Syntax
JulTy operator - (const TDate& dt) const;
Description
Subtracts dt from this TDate and returns the difference.

TDate::operator +
TDate class

Form 1
friend TDate operator + (const TDate& dt, int dd);
Form 2
friend TDate operator + (int dd, const TDate& dt);
Description
Returns a new TDate containing the sum of this TDate and dd.

TDate::operator -
TDate class

Syntax
friend TDate operator - (const TDate& dt, int dd);
Description
Subtracts dd from this TDate and returns the difference.

TDate::operator ++
TDate class

Syntax
void operator ++ ();
Description
Increments this TDate by 1.

TDate::operator --
TDate class

Syntax
void operator -- ();
Description
Decrements this TDate by 1.

TDate::operator +=
TDate class

Syntax
void operator += (int dd);
Description
Adds dd to this TDate.

TDate::operator -=
TDate class

Syntax
void operator -= (int dd);
Description
Subtracts dd from this TDate.

TDate::operator <<
TDate class

Syntax
friend ostream& operator << (ostream& os, const TDate& date);
Description
Inserts date into output stream os.

TDate::operator >>
TDate class

Syntax
friend istream& operator >> (istream& is, TDate& date);
Description
Extracts date from input stream is.

TFile class

Syntax
class TFile
Header File
file.h

Description
The TFile class encapsulates standard file characteristics and operations.

Constructors
TFile::TFile

Public Data Members
FileNull
File Flags

Member Functions
Close
Flush
GetHandle
GetStatus
IsOpen
Length
LockRange
Open
Position
Read
Remove
Rename
Seek
SeekToBegin
SeekToEnd
SetStatus
UnlockRange
Write

TFile::TFile
TFile class

Form 1
TFile();
Form 2
TFile(int handle);
Form 3
TFile(const TFile& file);
Form 4
TFile(const char* name, uint16 access=ReadOnly, uint16 permission=PermRdWr
);

Description
Form 1: Creates a TFile object with a file handle of FileNull.
Form 2: Creates a TFile object with a file handle of handle.
Form 3: Creates a TFile object with the same file handle file.
Form 4: Creates a TFile object and opens file name with the given attributes. The file is created if it
does not exist.

TFile::FileNull
TFile class

Syntax
enum { FileNull };
Description
Represents a null file handle.

File Flags
TFile class
File Translation Modes and Sharing Capabilities
File Read and Write Permissions
File Types
File Pointer Seek Direction

File Translation Modes and Sharing Capabilities
enum{
 ReadOnly = O_RDONLY,
 ReadWrite = O_RDWR,
 WriteOnly = O_WRONLY,
 Create = O_CREAT | O_TRUNC,
 CreateExcl = O_CREAT | O_EXCL,
 Append = O_APPEND,
#if defined(__FLAT__)
 Compat = SH_COMPAT,
 DenyNone = SH_DENYNONE,
#else
 DenyRead = SH_DENYRD,
 DenyWrite = SH_DENYWR,
#endif
 DenyRdWr = SH_DENYRW,
 NoInherit = O_NOINHERIT
 };

File Read and Write Permissions
enum{
 PermRead = S_IREAD,
 PermWrite = S_IWRITE,
 PermRdWr = S_IREAD | S_IWRITE
 };

File Types
enum{
 Normal = 0x00,
 RdOnly = 0x01,
 Hidden = 0x02,
 System = 0x04,
 Volume = 0x08,
 Directory = 0x10,
 Archive = 0x20
 };

File Pointer Seek Direction
enum seek_dir
 {
 beg = 0,
 cur = 1,
 end = 2
 };

TFileStatus structure
struct TFileStatus
{
 TTime createTime;
 TTime modifyTime;
 TTime accessTime;
 long size;
 uint8 attribute;
 char fullName[_MAX_PATH];
};

TFile::Close
TFile class

Syntax
int Close();
Description
Closes the file. Returns nonzero if successful, 0 otherwise.

TFile::Flush
TFile class

Syntax
void Flush();
Description
Performs any pending I/O functions.

TFile::GetHandle
TFile class

Syntax
int GetHandle() const;
Description
Returns the file handle.

TFile::GetStatus
TFile class

Form 1
int GetStatus(TFileStatus& status) const;
Form 2
int GetStatus(const char *name, TFileStatus& status);
Description
Form 1: Fills status with the current file status. Returns nonzero if successful, 0 otherwise.
Form 2: Fills status with the status for name. Returns nonzero if successful, 0 otherwise.

TFile::IsOpen
TFile class

Syntax
int IsOpen() const;
Description
Returns 1 if the file is open, 0 otherwise.

TFile::Length
TFile class

Form 1
long Length() const;
Form 2
void Length(long newLen);
Description
Form 1: Returns the file length.
Form 2: Resizes file to newLen.

TFile::LockRange
See Also TFile class

Syntax
void LockRange(long position, uint32 count);
Description
Locks count bytes, beginning at position of the associated file.

See Also
TFile::UnlockRange

TFile::Open
TFile class

Syntax
int Open(const char* name, uint16 access, uint16 permission);
Description
Opens file name with the given attributes. The file will be created if it does not exist. Returns 1 if
successful, 0 otherwise.

TFile::Position
TFile class

Syntax
long Position() const;
Description
Returns the current position of the file pointer. Returns -1 to indicate an error.

TFile::Read
TFile class

Form 1
int Read(void *buffer, int numBytes);
Form 2
long Read(void huge *buffer, long numBytes);
Description
Form 1: Reads numBytes from the file into buffer.
Form 2: Reads numBytes from the file into buffer. (32-bit Windows version)

TFile::Remove
TFile class

Syntax
static void Remove(const char *name);
Description
Removes file name. Returns 0 if successful, -1 if unsuccessful.

TFile::Rename
TFile class

Syntax
static void Rename(const char *oldName, const char *newName);
Description
Renames file oldName to newName.

TFile::Seek
TFile class

Syntax
long Seek(long offset, int origin = beg);
Description
Repositions the file pointer to offset bytes from the specified origin.

TFile::SeekToBegin
TFile class

Syntax
long SeekToBegin();
Description
Repositions the file pointer to the beginning of the file.

TFile::SeekToEnd
TFile class

Syntax
long SeekToEnd();
Description
Repositions the file pointer to the end of the file.

TFile::SetStatus
TFile class

Syntax
static int SetStatus(const char *name, const TFileStatus& status);
Description
Sets file name's status to status.

TFile::UnlockRange
See Also TFile class

Syntax
void UnlockRange(long Position, uint32 count);
Description
Unlocks the range at the given Position.

See Also
TFile::LockRange

TFile::Write
TFile class

Form 1
int Write(const void *buffer, int numBytes);
Form 2
long Write(const void huge *buffer, long numBytes);
Description
Form 1: Writes numbytes of buffer to the file.
Form 2: Writes numbytes of buffer to the file. (32-bit Windows version)

TCriticalSection class

Header File
thread.h

Syntax
class TCriticalSection
Description
TCriticalSection provides a system-independent interface to critical sections in threads.
TCriticalSection objects can be used in conjunction with TCriticalSection::Lock objects to guarantee
that only one thread can be executing any of the code sections protected by the lock at any given time.

Constructor
TCriticalSection

Destructor
~TCriticalSection

TCriticalSection::TCriticalSection
TCriticalSection class

Syntax
TCriticalSection();
Description
Constructs a TCriticalSection object.

TCriticalSection::~TCriticalSection
TCriticalSection class

Syntax
~TCriticalSection();
Description
Destroys a TCriticalSection object.

TCriticalSection::Lock class
Example TCriticalSection class

Header File
thread.h

Syntax
class Lock
Description
This nested class handles locking and unlocking critical sections.

Constructor
Lock

Destructors
~Lock

Example
Only one thread of execution will be allowed to execute the critical code inside function f at any one
time.
TCriticalSection LockF;
void f()
{
 TCriticalSection::Lock(LockF);

 // critical processing here
}

TCriticalSection::Lock
TCriticalSection::Lock class

Syntax
Lock(const TCriticalSection&);
Description
Requests a lock on the TCriticalSection object. If no other Lock object holds a lock on that
TCriticalSection object, the lock is allowed and execution continues. If another Lock object holds a lock
on that object, the requesting thread is blocked until the lock is released.

TCriticalSection::~Lock
TCriticalSection::Lock class

Syntax
~Lock();
Description
Releases the lock.

TMutex class

Header File
thread.h

Description
TMutex provides a system-independent interface to critical sections in threads. TMutex objects can be
used in conjunction with TMutex::Lock class objects to guarantee that only one thread can be
executing any of the code sections protected by the lock at any given time.
The differences between the classes TCriticalSection and TMutex are that a timeout can be specified
when creating a Lock on a TMutex object, and that a TMutex object has a HMTX that can be used
outside the class. This mirrors the distinction made in Windows NT between a CRITICALSECTION
and a Mutex. Under NT a TCriticalSection object is much faster than a TMutex object. Under operating
systems that do not make this distinction a TCriticalSection object can use the same underlying
implementation as a TMutex, losing the speed advantage that it has under NT.

Public Constructor
TMutex

Public Destructor
~TMutex

Operator
HMTX

TMutex::TMutex
TMutex class

Syntax
TMutex();
Description
Constructs a TMutex object.

TMutex::~TMutex
TMutex class

Syntax
~TMutex();
Description
Destroys a TMutex object.

TMutex::HMTX
TMutex class

Syntax
operator HMTX() const;
Description
Returns a handle to the underlying TMutex object, for use in operating system calls that require it.

TMutex::Lock class
TMutex class

Header File
thread.h

Description
This nested class handles locking and unlocking TMutex objects.

Public Constructor
Lock

Public Member Function
Release

TMutex::Lock
TMutex::Lock class

Syntax
Lock(const TMutex&, unsigned long timeOut = NoLimit);
Description
Requests a lock on the TMutex object. If no Lock object in another thread holds a lock on that TMutex
object, the lock is allowed and execution continues. If a Lock object in another thread holds a lock on
that object, the requesting thread is blocked until the lock is released.

TMutex::Release
TMutex::Lock class

Syntax
void Release();
Description
Releases the lock on the TMutex object.

TSync class
See Also Example

Header File
thread.h

Description
TSync provides a system-independent interface for building classes that act like monitors--classes in
which only one member can execute on a particular instance at any one time. TSync uses
TCriticalSection, has no public members, and can only be used as a base class.

Protected Constructors
TSync

Protected Operator
=

See Also
class TSync::Lock

// TSync Example
class ThreadSafe : private TSync
{
public:
 void f();
 void g();
private:
 int i;
};

void ThreadSafe::f()
{
 Lock(this);
 if(i == 2)
 i = 3;
}

void ThreadSafe::g()
{
 Lock(this);
 if(i == 3)
 i = 2;
}

TSync::TSync
TSync class

Form 1
TSync();
Form 2
TSync(const TSync&);
Description
Form 1: Default constructor.
Form 2: Copy constructor. Does not copy the TCriticalSection object.

TSync::Operator =
TSync class

Syntax
const TSync& operator = (const TSync& s)
Description
Assigns s to the target, and does not copy the TCriticalSection object.

TSync::Lock class
TSync class

Header File
thread.h

Syntax
class Lock : private TCriticalSection::Lock
Description
This nested class handles locking and unlocking critical sections.

Constructor
Lock

Destructor
~Lock

TSync::Lock
TSync::Lock class

Syntax
Lock(const TSync *s);
Description
Requests a lock on the critical section of the TSync object pointed to by s. If no other Lock object holds
a lock on that TCriticalSection object, the lock is allowed and execution continues. If another Lock
object holds a lock on that object, the requesting thread is blocked until the lock is released.

TSync::~Lock
TSync::Lock class

Syntax
~Lock();
Description
Releases the lock.

TThread class
See Also Example

Syntax
class TThread
Header File
thread.h

Description
The TThread class provides a system-independent interface to threads.

Protected Constructors
TThread

Protected Destructor
~TThread

Type Definition
Status

Public Member Functions
GetPriority
GetStatus
Resume
SetPriority
Start
Suspend
Terminate
TerminateAndWait
WaitForExit

Protected Member Function
ShouldTerminate

Protected Operator
=

See Also
TThread::TThreadError class

// TThread class Example
class TimerThread : private TThread
{
public:
 TimerThread() : Count(0) {}
private:
 unsigned long Run();
 int Count;
};

unsigned long TimerThread::Run()
{
 // loop 10 times
 while(Count++ < 10)
 {
 sleep(1000); // delay 1 second
 cout << "Iteration " << Count << endl;
 }
 return 0L;
}

int main()
{
 TimerThread timer;
 timer.Start();
 Sleep(20000); // delay 20 seconds
 return 0;
}

TThread::Status
TThread class

Syntax
enum Status { Created, Running, Suspended, Finished, Invalid };
Description
Describes the state of the thread, as follows:

Thread State Description

Created The object has been created but its thread has not been started. The only valid
transition from this state is to Running, which happens on a call to Start. In particular,
a call to Suspend or Resume when the object is in this state is an error and will throw
an exception.

Running The thread has been started successfully. There are two transitions from this state:
When the user calls Suspend, the object moves into the Suspended state.

When the thread exits the object moves into the Finished state.
Calling Resume on an object that is in the Running state is an error and will throw an
exception.

Suspended The thread has been suspended by the user. Subsequent calls to Suspend nest, so
there must be as many calls to Resume as there were to Suspend before the thread
resumes execution.

Finished The thread has finished executing. There are no valid transitions out of this state. This
is the only state from which it is legal to invoke the destructor for the object. Invoking
the destructor when the object is in any other state is an error and will throw an
exception.

TThread::TThread
TThread class

Form 1
TThread();
Form 2
TThread(const TThread&);
Description
Form 1: Constructs an object of type TThread.
Form 2: Copy constructor. Puts the target object into the Created state.

TThread::~TThread
TThread class

Syntax
virtual ~TThread();
Description
Destroys the TThread object.

TThread::GetPriority
See Also TThread class

Syntax
int GetPriority() const;
Description
Gets the thread priority.

See Also
TThread::SetPriority

TThread::GetStatus
TThread class

Syntax
Status GetStatus() const;
Description
Returns the current status of the thread:

Thread State Description

Created The object has been created but its thread has not been started. The only valid
transition from this state is to Running, which happens on a call to Start. In particular,
a call to Suspend or Resume when the object is in this state is an error and will throw
an exception.

Running The thread has been started successfully. There are two transitions from this state:
When the user calls Suspend, the object moves into the Suspended state.

When the thread exits the object moves into the Finished state.
Calling Resume on an object that is in the Running state is an error and will throw an
exception.

Suspended The thread has been suspended by the user. Subsequent calls to Suspend nest, so
there must be as many calls to Resume as there were to Suspend before the thread
resumes execution.

Finished The thread has finished executing. There are no valid transitions out of this state. This
is the only state from which it is legal to invoke the destructor for the object. Invoking
the destructor when the object is in any other state is an error and will throw an
exception.

TThread::Resume
TThread class

Syntax
unsigned long Resume();
Description
Resumes execution of a suspended thread.

TThread::SetPriority
See Also TThread class

Syntax
int SetPriority(int);
Description
Sets the thread priority.

See Also
TThread::GetPriority

TThread::Start
TThread class

Syntax
HANDLE Start();
Description
Begins execution of the thread, and returns the thread handle.

TThread::Suspend
TThread class

Syntax
unsigned long Suspend();
Description
Suspends execution of the thread.

TThread::Terminate
TThread class

Syntax
void Terminate();
Description
Sets an internal flag that indicates that the thread should exit. The derived class can check the state of
this flag by calling ShouldTerminate.

TThread::TerminateAndWait
TThread class

Syntax
void TerminateAndWait(unsigned long timeout = NoLimit);
Description
Combines the behavior of Terminate and WaitForExit. Sets an internal flag that indicates that the
thread should exit and blocks the calling thread until the internal thread exits or until the time specified
by timeout, in milliseconds, expires. A timeout of -1 says to wait indefinitely.

TThread::WaitForExit
TThread class

Syntax
void WaitForExit(unsigned long timeout = NoLimit);
Description
Blocks the calling thread until the internal thread exits or until the time specified by timeout, in
milliseconds, expires. A timeout of -1 says wait indefinitely.

TThread::ShouldTerminate
TThread class

Syntax
int ShouldTerminate() const;
Description
Returns a nonzero value to indicate that Terminate or TerminateAndWait has been called and that the
thread will finish its processing and exit.

TThread::Operator =
TThread class

Syntax
const TThread& operator = (const TThread&);
Description
The TThread assignment operator. The target object must be in either the Created or Finished state. If
so, assignment puts the target object into the Created state. If the object is not in either state, an
exception will be thrown.

TThread::TThreadError class
TThread class

Syntax
class TThreadError
Header File
thread.h

Description
TThreadError defines the exceptions that are thrown when a threading error occurs.

Type Definition
ErrorType

Public Member Function
GetErrorType

TThread::ErrorType
TThread::TThreadError class

Syntax
enum ErrorType
 {
 SuspendBeforeRun,
 ResumeBeforeRun,
 ResumeDuringRun,
 SuspendAfterExit,
 ResumeAfterExit,
 CreationFailure,
 DestroyBeforeExit,
 AssignError
 };
Description
Identifies the type of error that occurred. The following list explains each error type:

Error Type Description

SuspendBeforeRun The user called Suspend on an object before calling Start.
ResumeBeforeRun The user called Resume on an object before calling Start.
ResumeDuringRun The user called Resume on a thread that was not suspended.
SuspendAfterExit The user called Suspend on an object whose thread had already exited.
ResumeAfterExit The user called Resume on an object whose thread had already exited.
CreationFailure The operating system was unable to create the thread.
DestroyBeforeExit The destructor of the object was invoked before its thread had exited.
AssignError An attempt was made to assign to an object that was not in either the

Created or Finished state.

TThread::GetErrorType
TThread::TThreadError class

Syntax
ErrorType GetErrorType() const;
Description
Returns the ErrorType for the error that occurred.

TTime class

Header File
time.h

Syntax
class TTime
Description
The TTime class encapsulates time functions and characteristics.

Type Definitions
HourTy
MinuteTy
SecondTy
ClockTy

Constructors
TTime::TTime

Protected Data Members
MaxDate
RefDate

Public Member Functions
AsString
BeginDST
Between
CompareTo
EndDST
Hash
Hour
HourGMT
IsDST
IsValid
Max
Min
Minute
MinuteGMT
PrintDate
Second
Seconds

Protected Member Functions
AssertDate

Operators
<
<=
>

>=
==
!=
++
--
+=
-=
+
+
-
-
<<
<<
>>

TTime::MaxDate
TTime class

Syntax
static const TDate MaxDate;
Description
The maximum valid date for TTime objects.

TTime::RefDate
TTime class

Syntax
static const TDate RefDate;
Description
The minimum valid date for TTime objects: January 1, 1901.

TTime::TTime
TTime class

Form 1
TTime();
Form 2
TTime(ClockTy s);
Form 3
TTime(HourTy h, MinuteTy m, SecondTy s = 0);
Form 4
TTime(const TDate&, HourTy h=0, MinuteTy m=0, SecondTy s=0);
Description
Form 1: Constructs a TTime object with the current time.
Form 2: Constructs a TTime object with the given s (seconds since January 1, 1901).
Form 3: Constructs a TTime object with the given time and today's date.
Form 4: Constructs a TTime object with the given time and date.

TTime::AsString
TTime class

Syntax
string AsString() const;
Description
Returns a string object containing the time.

TTime::BeginDST
TTime class

Syntax
static TTime BeginDST(unsigned year);
Description
Returns the start of daylight saving time for the given year.

TTime::Between
TTime class

Syntax
int Between(const TTime& a, const TTime& b) const;
Description
Returns 1 if the target date is between TTime a and TTime b, 0 otherwise.

TTime::CompareTo
TTime class

Syntax
int CompareTo(const TTime &) const;
Description
Compares t to this TTime object and returns 0 if the times are equal, 1 if t is earlier, and -1 if t is later.

TTime::EndDST
TTime class

Syntax
static TTime EndDST(unsigned year);
Description
Returns the time when daylight saving time ends for the given year.

TTime::Hash
TTime class

Syntax
unsigned Hash() const;
Description
Returns seconds since January 1, 1901.

TTime::Hour
TTime class

Syntax
HourTy Hour() const;
Description
Returns the hour in local time.

TTime::HourGMT
TTime class

Syntax
HourTy HourGMT() const;
Description
Returns the hour in Greenwich mean time.

TTime::IsDST
TTime class

Syntax
int IsDST() const;
Description
Returns 1 if the time is in daylight saving time, 0 otherwise.

TTime::IsValid
TTime class

Syntax
int IsValid() const;
Description
Returns 1 if this TTime object contains a valid time, 0 otherwise.

TTime::Max
TTime class

Syntax
TTime Max(const TTime& t) const;
Description
Returns either this TTime object or t, whichever is greater.

TTime::Min
TTime class

Syntax
TTime Min(const TTime& t) const;
Description
Returns either this TTime object or t, whichever is less.

TTime::Minute
TTime class

Syntax
MinuteTy Minute() const;
Description
Returns the minute in local time.

TTime::MinuteGMT
TTime class

Syntax
MinuteTy MinuteGMT() const;
Description
Returns the minute in Greenwich Mean Time.

TTime::PrintDate
TTime class

Syntax
static int PrintDate(int flag);
Description
Set flag to 1 to print the date along with the time; set to 0 to not print the date. Returns the old setting.

TTime::Second
TTime class

Syntax
SecondTy Second() const;
Description
Returns seconds.

TTime::Seconds
TTime class

Syntax
ClockTy Seconds() const;
Description
Returns seconds since January 1, 1901.

TTime::AssertDate
TTime class

Syntax
static int AssertDate(const TDate& d);
Description
Returns 1 if d is between the earliest valid date (RefDate) and the latest valid date (MaxDate).

TTime::Operator <
TTime class

Syntax
int operator < (const TTime& t) const;
Description
Returns 1 if the target time is less than time t, 0 otherwise.

TTime::Operator <=
TTime class

Syntax
int operator <= (const TTime& t) const;
Description
Returns 1 if the target time is less than or equal to time t, 0 otherwise.

TTime::Operator >
TTime class

Syntax
int operator > (const TTime& t) const;
Description
Returns 1 if the target time is greater than time t, 0 otherwise.

TTime::Operator >=
TTime class

Syntax
int operator >= (const TTime& t) const;
Description
Returns 1 if the target time is greater than or equal to time t, 0 otherwise.

TTime::Operator ==
TTime class

Syntax
int operator == (const TTime& t) const;
Description
Returns 1 if the target time is equal to time t, 0 otherwise.

TTime::Operator !=
TTime class

Syntax
int operator != (const TTime& t) const;
Description
Returns 1 if the target time is not equal to time t, 0 otherwise.

TTime::Operator ++
TTime class

Syntax
void operator++();
Description
Increments the time by 1 second.

TTime::Operator --
TTime class

Syntax
void operator--();
Description
Decrements the time by 1 second.

TTime::Operator +=
TTime class

Syntax
void operator+=(long s);
Description
Adds s seconds to the time.

TTime::Operator -=
TTime class

Syntax
void operator-=(long s);
Description
Subtracts s seconds from the time.

TTime::Operator +
TTime class

Syntax
friend TTime operator + (const TTime& t, long s);
friend TTime operator + (long s, const TTime& t);
Description
Adds s seconds to time t.

TTime::Operator -
TTime class

Syntax
friend TTime operator - (const TTime& t, long s);
friend TTime operator - (long s, const TTime& t);
Description
Performs subtraction, in seconds, between s and t.

TTime::Operator <<
TTime class

Form 1
friend ostream& operator << (ostream& os, const TTime& t);
Form 2
friend opstream& operator << (opstream& s, const TTime& d);
Description
Form 1: Inserts time t into output stream os.
Form 2: Inserts time t into persistent stream s.

TTime::Operator >>
TTime class

Syntax
friend ipstream& operator >> (ipstream& s, TTime& d);
Description
Extracts time t from persistent stream s.

TTime Type Definitions
TTime class

Syntax
typedef unsigned HourTy;
typedef unsigned MinuteTy;
typedef unsigned SecondTy;
typedef unsigned long ClockTy;
Header File
time.h

Description
Type definitions for hours, minutes, seconds, and seconds since January 1, 1901.

string class
See Also

Header File
cstring.h

Syntax
class string;
Description
This class uses a technique called "copy-on-write". Multiple instances of a string can refer to the same
piece of data so long as it is in a "read only" situation. If a string writes to the data, then a copy is
automatically made if more than one string is referring to it.

Constructors
string::string

Data Members
StripType

Public Member Functions
ansi_to_oem
append
assign
compare
contains
copy
c_str
find
find_first_of
find_first_not_of
find_last_of
find_last_not_of
get_at
get_case_sensitiveFlag
get_initial_capacity
get_max_waste
get_paranoid_check
get_resize_increment
get_skipwhitespace_flag
hash
initial_capacity
insert
is_null
length
MaxWaste
oem_to_ansi
prepend
put_at

read_file
read_line
read_string
read_to_delim
read_token
rfind
remove
replace
reserve
resize
resize_increment
set_case_sensitive
set_paranoid_check
skip_whitespace
strip
substr
substring
to_lower
to_upper

Protected Member Functions
assert_element
assert_index
cow
valid_element
valid_index

Operators
=
+=
+=
+
[]
()
==
!=
<
<=
>
>=

Related Global Operators and Functions
>>
<<
+
getline
to_lower

to_upper

See Also
TRegexp class

string::StripType
See Also string class

Syntax
enum StripType { Leading, Trailing, Both };
Description
Enumerates type of stripping.

See Also
string::strip

string::string
string class

Form 1
string();
Form 2
string(const string _FAR &s);
Form 3
string(const string _FAR &s, size_t start, size_t n = NPOS);
Form 4
string(const char _FAR *cp);
Form 5
string(const char _FAR *cp, size_t start, size_t n = NPOS);
Form 6
string(char c);
Form 7
string(char c, size_t n = NPOS);
Form 8
string(signed char c);
Form 9
string(signed char c, size_t n = NPOS);
Form 10
string(unsigned char c);
Form 11
string(unsigned char c, size_t n = NPOS);
Form 12
string(const TSubString _FAR &ss);
Form 13
string(const char __far *cp);
Form 14
string(const char __far *cp, size_t start, size_t n = NPOS);
Form 15
string(HINSTANCE instance, UINT id, int len = 255);
Description
Form 1: The default constructor. Creates a string of length zero.
Form 2: Copy constructor. Creates a string that contains a copy of the contents of string s.
Form 3: A string containing a copy of the n bytes beginning at position start of string s is created.
Form 4: A string containing a copy of the bytes from the location pointed to by cp through the first 0
byte is created (conversion from char*).
Form 5: A string containing a copy of the n bytes beginning at the location pointed to by cp is created.
Form 6: Constructs a string containing the character c.
Form 7: Constructs a string containing the character c repeated n times.
Form 8: Constructs a string containing the character c.

Form 9: Constructs a string containing the character c repeated n times.
Form 10: Constructs a string containing the character c.
Form 11: Constructs a string containing the character c repeated n times.
Form 12: Constructs a string from the substring ss.
Form 13: Constructs strings for Windows small and medium memory model.
Form 14: Constructs strings for Windows small and medium memory model.
Form 15: Windows version for constructing a string from a resource.

string::ansi_to_oem
string class

Syntax
void ansi_to_oem();
Description
Converts the target string from the ANSI character set into the OEM-defined character set.

string::append
string class

Form 1
string _FAR & append(const string _FAR &s);
Form 2
string _FAR & append(const string _FAR &s, size_t start, size_t n =
NPOS);

Form 3
string _FAR & append(const char _FAR *cp, size_t start, size_t n = NPOS);
Description
Form 1: Appends string s to the target string.
Form 2: Beginning from the start position in s, appends the next n characters of string s to the target
string.
Form 3: Beginning from the start position of the character array cp, appends the next n characters to
the target string.

string::assign
See Also string class

Form 1
string _FAR & assign(const string _FAR &s);
Form 2
string _FAR & assign(const string _FAR &s, size_t start, size_t n =
NPOS);

Description
Form 1: Assigns string s to target string.
Form 2: Beginning from the start position in s, copies n characters to target string.

See Also
operator =

string::compare
string class

Form 1
int compare(const string _FAR &s) const throw();
Form 2
int compare(const string _FAR &s, size_t orig, size_t n = NPOS) const
throw();

Description
Form 1: Compares the target string to the string s. compare returns an integer less than, equal to, or
greater than 0, depending on whether the target string is less than, equal to, or greater than s.
Form 2: Compares not more than n characters of string s, beginning at character position orig, with
this string.

string::contains
string class

Form 1
int contains(const char _FAR * pat) const;
Form 2
int contains(const string _FAR & s) const;
Description
Form 1: Returns 1 if pat is found in the target string, 0 otherwise.
Form 2: Returns 1 if string s is found in the target string, 0 otherwise.

string::copy
string class

Form 1
size_t copy(char _FAR *cb, size_t n = NPOS);
Form 2
size_t copy(char _FAR *cb, size_t n, size_t pos);
Form 3
string copy() const throw(xalloc).;
Description
Form 1: Copies at most n characters from the target string into the char array pointed to by cb. copy
returns the number of characters copied.
Form 2: Copies at most n characters beginning at position pos from the target string into the char
array pointed to by cb. copy returns the number of characters copied.
Form 3: Returns a distinct copy of the string.

string::c_str
string class

Syntax
const char _FAR *c_str() const;
Description
Returns a pointer to a zero-terminated character array, that holds the same characters contained in the
string. The returned pointer may point to the actual contents of the string, or it may point to an array
that the string allocates for this function call. The effects of any direct modification to the contents of
this array are undefined, and the results of accessing this array after the execution of any non-const
member function on the target string are undefined.
Conversions from a string object to a char* are inherently dangerous, because they violate the class
boundary and can lead to dangling pointers. For this reason class string does not have an implicit
conversion to char*, but provides c_str for use when this conversion is needed.

string::find
See Also string class

Form 1
size_t find(const string _FAR &s);
Form 2
size_t find(const string _FAR &s, size_t pos);
Form 3
size_t find(const TRegexp _FAR &pat, size_t i = 0);
Form 4
size_t find(const TRegexp _FAR &pat, size_t _FAR *ext, size_t i = 0)
const;

Description
Form 1: Locates the first occurrence of the string s in the target string. If the string is found, it returns
the position of the beginning of s within the target string. If the string s is not found, it returns NPOS.
Form 2: Locates the first occurrence of the string s in the target string, beginning at the position pos. If
the string is found, it returns the position of the beginning of s within the target string. If s is not found, it
returns NPOS, and does not change pos.
Form 3: Searches the string for patterns matching regular expression pat beginning at location i. It
returns the position of the beginning of pat within the target string. If the pat is not found, it returns
NPOS, and does not change pos.
Form 4: Searches the string for patterns matching regular expression pat beginning at location i.
Parameter ext returns the length of the matching string if found. It returns the position of the beginning
of pat within the target string. If the pat is not found, it returns NPOS, and does not change pos.

See Also
string::rfind

string::find_first_of
string class

Form 1
size_t find_first_of(const string _FAR &s) const;
Form 2
size_t find_first_of(const string _FAR &s, size_t pos) const;
Description
Form 1: Locates the first occurrence in the target string of any character contained in string s. If the
search is successful find_first_of returns the character location. If the search fails, find_first_of returns
NPOS.
Form 2: Locates the first occurrence in the target string of any character contained in string s. If the
search is successful, the function returns the character position within the target string, and
find_first_of returns 1. If the search fails or if pos > length(), find_first_of returns NPOS.

string::find_first_not_of
string class

Form 1
size_t find_first_not_of(const string _FAR &s) const;
Form 2
size_t find_first_not_of(const string _FAR &s, size_t pos) const;
Description
Form 1: Locates the first occurrence in the target string of any character not contained in string s. If
the search is successful, find_first_not_of returns the character position within the target string. If the
search fails it returns NPOS.
Form 2: Locates the first occurrence in the target string of any character not contained in string s. If
the search is successful, find_first_not_of returns the character position within the target string. If the
search fails or if pos > length(), find_first_not_of returns NPOS.

string::find_last_of
string class

Form 1
size_t find_last_of(const string _FAR &s) const;
Form 2
size_t find_last_of(const string _FAR &s, size_t pos) const;
Description
Form 1: Locates the last occurrence in the target string of any character contained in string s. If the
search is successful find_last_of returns the character position within the target string. If the search
fails it returns NPOS.
Form 2: Locates the last occurrence in the target string of any character contained in string s after
position pos. If the search is successful, find_last_of returns the character position within the target
string. If the search fails or if pos > length(), find_last_of returns NPOS.

string::find_last_not_of
string class

Form 1
size_t find_last_not_of(const string _FAR &s) const;
Form 2
size_t find_last_not_of(const string _FAR &s, size_t pos) const;
Description
Form 1: Locates the last occurrence in the target string of any character not contained in string s. If
the search is successful find_last_not_of returns the character position within the target string. If the
search fails it returns NPOS.
Form 2: Locates the last occurrence in the target string of any character not contained in string s after
position pos. If the search is successful, find_last_not_of returns the character position within the
target string. If the search fails or if pos > length(), find_last_not_of returns NPOS.

string::get_at
See Also string class

Syntax
char get_at(size_t pos) const throw(outofrange);
Description
Returns the character at the specified position. If pos > length()-1 an outofrange exception is
thrown.

See Also
string:put_at

string::get_case_sensitive_flag
string class

Syntax
static int get_case_sensitive_flag();
Description
Returns 0 if the string comparisons are case sensitive, 1 if not.

string::get_initial_capacity
string class

Syntax
static unsigned get_initial_capacity();
Description
Returns the number of characters that will fit in the string without resizing.

string::get_max_waste
string class

Syntax
static unsigned get_max_waste();
Description
After a string is resized, returns the amount of free space available.

string::get_paranoid_check
string class

Syntax
static int get_paranoid_check();
Description
Returns 1 if paranoid checking is enabled, 0 if not.

string::get_resize_increment
string class

Syntax
static unsigned get_resize_increment();
Description
Returns the string resizing increment.

string::get_skipwhitespace_flag
string class

Syntax
static int get_skipwhitespace_flag();
Description
Returns 1 if whitespace is skipped, 0 if not.

string::hash
string class

Syntax
unsigned hash() const;
Description
Returns hash value.

string::initial_capacity
string class

Syntax
static size_t initial_capacity(size_t ic = 63);
Description
Sets initial string allocation capacity.

string::insert
string class

Form 1
string _FAR &insert(size_t pos, const string _FAR &s);
Form 2
string _FAR &insert(size_t pos, const string _FAR &s, size_t start, size_t
n = NPOS);

Description
Form 1: Inserts string s at position pos in the target string. insert returns a reference to the resulting
string.
Form 2: Beginning at position start in s, the insert function inserts not more than n characters from the
target string to the string s at position pos in the target string. insert returns a reference to the resulting
string. If pos is invalid, insert throws the outofrange exception.

string::is_null
string class

Syntax
int is_null() const;
Description
Returns 1 if the string is empty, 0 otherwise.

string::length
string class

Syntax
unsigned length() const;
Description
Returns the number of characters in the target string. Since null characters can be stored in a string,
length() might be greater than strlen(c_str()).

string::MaxWaste
string class

Syntax
static size_t MaxWaste(size_t mw = 63);
Description
Sets the maximum empty space size and resizes the string.

string::oem_to_ansi
string class

Syntax
void oem_to_ansi();
Description
Windows function for converting the target string from the ANSI character set to the OEM-defined
character set.

string::prepend
string class

Form 1
string _FAR &prepend(const string _FAR &s);
Form 2
string _FAR &prepend(const string _FAR &s, size_t start, size_t n =
NPOS);

Form 3
string _FAR &prepend(const char _FAR *cp);
Form 4
string _FAR &prepend(const char _FAR *cp, size_t start, size_t n = NPOS);
Description
Form 1: Prepends string s to the target string.
Form 2: Beginning from start position in s, the prepend function prefixes the target string with n
characters taken from string s.
Form 3: Prepends the character array cp to the target string.
Form 4: Beginning from start position in cp, the prepend function prefixes the target string with n
characters taken from character array cp.

string::put_at
string class

Syntax
void put_at(size_t pos, char c) throw(outofrange);
Description
Replaces the character at pos with c. If pos is greater than or equal to length() an outofrange
exception is thrown.

string::read_file
string class

Syntax
istream _FAR &read_file(istream _FAR &is);
Description
Reads from input stream is until an EOF or a null terminator is reached.

string::read_line
string class

Syntax
istream _FAR &read_line(istream _FAR &is);
Description
Reads from input stream is until an EOF or a newline is reached.

string::read_string
string class

Syntax
istream _FAR &read_string(istream _FAR &is);
Description
Reads from input stream is until an EOF or a null terminator is reached.

string::read_to_delim
string class

Syntax
istream _FAR &read_to_delim(istream _FAR &is, char delim = '\n');
Description
Reads from input stream is until an EOF or a delim is reached.

string::read_token
string class

Syntax
istream _FAR &read_token(istream _FAR &is);
Description
Reads from input stream is until whitespace is reached. Note that this function skips any initial
whitespace.

string::rfind
See Also string class

Form 1
size_t rfind(const string _FAR &s);
Form 2
size_t rfind(const string _FAR &s, size_t pos);
Description
Form 1: Locates the last occurrence of the string s in the target string. If the string is found, it returns
the position of the beginning of the string s within the target string. If s is not found, it returns NPOS.
Form 2: Locates the last occurrence of the string s, that is not beyond the position pos in the target
string. If the string is found, it returns the position of the beginning of s within the target string. If s is not
found it returns NPOS, and does not change pos.

See Also
string::find

string::remove
string class

Form 1
string _FAR &remove(size_t pos);
Form 2
string _FAR &remove(size_t pos, size_t n = NPOS);
Description
Form 1: Removes the characters from pos to the end of the target string and returns a reference to the
resulting string.
Form 2: Removes at most n characters from the target string beginning at pos and returns a reference
to the resulting string.

string::replace
string class

Form 1
string _FAR &replace(size_t pos, size_t n = NPOS, const string _FAR &s);
Form 2
string _FAR &replace(size_t pos, size_t n1, const string _FAR &s, size_t
start, size_t n2);

Description
Form 1: Removes at most n characters from the target string beginning at pos, and replaces them with
a copy of the string s. replace returns a reference to the resulting string.
Form 2: Removes at most n1 characters from the target string beginning at pos, and replaces them
with n2 characters of string s beginning at start. replace returns a reference to the resulting string.

string::reserve
string class

Form 1
size_t reserve() const;
Form 2
void reserve(size_t ic);
Description
Form 1: Returns an implementation-dependent value that indicates the current internal storage size.
The returned value is always greater than or equal to length().

Form 2: Suggests to the implementation that the target string may eventually require ic bytes of
storage.

string::resize
string class

Syntax
void resize(size_t m);
Description
Resizes the string to m characters, truncating or adding blanks as necessary.

string::resize_increment
string class

Syntax
static size_t resize_increment(size_t ri = 64);
Description
Sets the resize increment for automatic resizing.

string::set_case_sensitive
string class

Syntax
static int set_case_sensitive(int tf = 1);
Description
Sets case sensitivity. 1 is case sensitive; 0 is not case sensitive.

string::set_paranoid_check
string class

Syntax
static int set_paranoid_check(int ck = 1);
Description
String searches use a hash value scheme to find the strings. There is a possibility that more than one
string could hash to the same value. Calling set_paranoid_check with ck set to 1 forces checking the
string found against the desired string with the C library function strcmp. When set_paranoid_check is
called with ck set to 0, this final check is not made.

string::skip_whitespace
string class

Syntax
static int skip_whitespace(int sk = 1);
Description
Set to 1 to skip whitespace after a token read, 0 otherwise.

string::strip
string class

Syntax
TSubString strip(StripType s = Trailing, char c=' ');
Description
Strips away c characters from the beginning, end, or both (beginning and end) of string s, depending
on StripType.

string::substr
string class

Form 1
string substr(size_t pos) const;
Form 2
string substr(size_t pos, size_t n = NPOS) const;
Description
Form 1: Creates a string containing a copy of the characters from pos to the end of the target string.
Form 2: Creates a string containing a copy of not more than n characters from pos to the end of the
target string.

string::substring
string class

Form 1
TSubString substring(const char _FAR *cp);
Form 2
const TSubString substring(const char _FAR *cp) const;
Form 3
TSubString substring(const char _FAR *cp, size_t start);
Form 4
const TSubString substring(const char _FAR *cp, size_t start) const;
Description
Form 1: Creates a TSubString object containing a copy of the characters pointed to by *cp.
Form 2: Creates a TSubString object containing a copy of the characters pointed to by *cp.
Form 3: Creates a TSubString object containing a copy of the characters pointed to by *cp, starting at
character start.
Form 4: Creates a TSubString object containing a copy of the characters pointed to by *cp, starting at
character start.

string::to_lower
string class

Syntax
void to_lower();
Description
Changes the string to lowercase.

string::to_upper
string class

Syntax
void to_upper();
Description
Changes target string to uppercase.

string::assert_element
string class

Syntax
void assert_element(size_t pos) const;
Description
Throws an outofrange exception if an invalid element is given.

string::assert_index
string class

Syntax
void assert_index(size_t pos) const;
Description
Throws an outofrange exception if an invalid index is given.

string::cow
string class

Syntax
void cow();
Description
Copy-on-write. Multiple instances of a string can refer to the same piece of data as long as it is in a
read-only situation. If a string writes to the data, then cow (copy-on-write) is called to make a copy if
more than one string is referring to it.

string::valid_element
string class

Syntax
int valid_element(size_t pos) const;
Description
Returns 1 if pos is an element of the string, 0 otherwise.

string::valid_index
string class

Syntax
int valid_index(size_t pos) const;
Description
Returns 1 if pos is a valid index of the string, 0 otherwise.

string::operator =
string class

Syntax
string _FAR & operator=(const string _FAR &s);
Description
If the target string is the same object as the parameter passed to the assignment, the assignment
operator does nothing. Otherwise it performs any actions necessary to free up resources allocated to
the target string, then copies s into the target string.

string::operator +=
string class

Form 1
string _FAR & operator += (const string _FAR &s);
Form 2
string _FAR & operator+=(const char _FAR *cp);
Description
Form 1: Appends the contents of the string s to the target string.
Form 2: Appends the contents of cp to the target string.

string::operator +
string class

Syntax
friend string _Cdecl _FARFUNC operator+(const string _FAR &s, const char
_FAR *cp);

Description
Concatenates string s and cp.

string::operator []
string class

Form 1
char _FAR & operator[](size_t pos);
Form 2
char operator[](size_t pos) const;
Description
Form 1: Returns a reference to the character at position pos.
Form 2: Returns the character at position pos.

string::operator ()
string class

Form 1
char _FAR & operator()(size_t pos);
Form 2
TSubString operator()(size_t start, size_t len);
Form 3
TSubString operator()(const TRegexp _FAR & re);
Form 4
TSubString operator()(const TRegexp _FAR & re, size_t start);
Form 5
char operator()(size_t pos) const;
Form 6
const TSubString operator()(size_t start, size_t len) const;
Form 7
const TSubString operator()(const TRegexp _FAR & pat) const;
Form 8
const TSubString operator()(const TRegexp _FAR & pat, size_t start) const;
Description
Form 1: Returns a reference to the character at position pos.
Form 2: Returns the substring beginning at location start and spanning len bytes.
Form 3: Returns the first occurrence of a substring matching regular expression re.
Form 4: Returns the first occurrence of a substring matching regular expression re, beginning at
location start.
Form 5: Returns the character at position pos.
Form 6: Returns the substring beginning at location start and spanning len bytes.
Form 7: Returns the first occurrence of a substring matching regular expression re.
Form 8: Returns the first occurrence of a substring matching regular expression re, beginning at
location start.

string::operator ==
string class

Form 1
friend int operator == (const string _FAR &s1, const string _FAR &s2);
Form 2
friend int operator == (const string _FAR &s, const char _FAR *cp);
Form 3
friend int operator == (const char _FAR *cp, const string _FAR &s);
Description
Form 1: Tests for equality of string s1 and string s2. Two strings are equal if they have the same
length, and if the same location in each string contains characters that compare equally. operator ==
returns a 1 to indicate that the strings are equal, and a 0 to indicate that they are not equal.
Form 2: Tests for equality of string s1 and char *cp. The two are equal if they have the same length,
and if the same location in each string contains characters that compare equally. operator == returns a
1 to indicate that the strings are equal, and a 0 to indicate that they are not equal.
Form 3: Tests for equality of string s1 and char *cp. The two are equal if they have the same length,
and if the same location in each string contains characters that compare equally. operator == returns a
1 to indicate that the strings are equal, and a 0 to indicate that they are not equal.

string::operator !=
string class

Form 1
friend int operator != (const string _FAR &s1, const string _FAR &s2);
Form 2
friend int operator != (const string _FAR &s, const char _FAR *cp);
Form 3
friend int operator != (const char _FAR *cp, const string _FAR &s);
Description
Form 1: Tests for inequality of strings s1 and s2. Two strings are equal if they have the same length,
and if the same location in each string contains characters that compare equally. operator != returns a
1 to indicate that the strings are not equal, and a 0 to indicate that they are equal.
Form 2: Tests for inequality between string s and char *cp. The two are equal if they have the same
length, and if the same location in each string contains characters that compare equally. operator !=
returns a 1 to indicate that the strings are not equal, and a 0 to indicate that they are equal.
Form 3: Tests for inequality between string s and char *cp. The two are equal if they have the same
length, and if the same location in each string contains characters that compare equally. operator !=
returns a 1 to indicate that the strings are not equal, and a 0 to indicate that they are equal.

string::operator <
string class

Form 1
friend int operator < (const string _FAR &s1, const string _FAR &s2);
Form 2
friend int operator < (const string _FAR &s, const char _FAR *cp);
Form 3
friend int operator < (const char _FAR *cp, const string _FAR &s);
Description
Form 1: Compares the string s1 to string s2. Returns 1 if string s1 is less than s2, 0 otherwise.
Form 2: Compares the string s1 to *cp2. Returns 1 if the left side of the expression is less than the
right side, 0 otherwise.
Form 3: Compares the string s1 to *cp2. Returns 1 if the left side of the expression is less than the
right side, 0 otherwise.

string::operator <=
string class

Form 1
friend int operator <= (const string _FAR &s1, const string _FAR &s2);
Form 2
friend int operator <= (const string _FAR &s, const char _FAR *cp);
Form 3
friend int operator <= (const char _FAR *cp, const string _FAR &s);
Description
Form 1: Compares the string s1 to string s2. Returns 1 if string s1 is less than or equal to s2, 0
otherwise.
Form 2: Compares string s1 to *cp. Returns 1 if the left side of the expression is less than or equal to
the right side, 0 otherwise.
Form 3: Compares string s1 to *cp. Returns 1 if the left side of the expression is less than or equal to
the right side, 0 otherwise.

string::operator >
string class

Form 1
friend int operator > (const string _FAR &s1, const string _FAR &s2);
Form 2
friend int operator > (const string _FAR &s, const char _FAR *cp);
Form 3
friend int operator > (const char _FAR *cp, const string _FAR &s);
Description
Form 1: Compares the string s1 to string s2. Returns 1 if string s1 is greater than s2, 0 otherwise.
Form 2: Compares string s1 to *cp2. Returns 1 if the left side of the expression is greater than the
right side, 0 otherwise.
Form 3: Compares string s1 to *cp2. Returns 1 if the left side of the expression is greater than the
right side, 0 otherwise.

string::operator >=
string class

Form 1
friend int operator >= (const string _FAR &s1, const string _FR &s2);
Form 2
friend int operator >= (const string _FAR &s, const char _FAR *cp);
Form 3
friend int operator >= (const char _FAR *cp, const string _FAR &s);
Description
Form 1: Compares string s1 to string s2. Returns 1 if string s1 is greater than or equal to s2, 0
otherwise.
Form 2: Compares string s1 to *cp. Returns 1 if the left side of the expression is greater than or equal
to the right side, 0 otherwise.
Form 3: Compares string s1 to *cp. Returns 1 if the left side of the expression is greater than or equal
to the right side, 0 otherwise.

string::operator >>
string class

Form 1
friend ipstream _FAR & operator >> (ipstream _FAR & is, string _FAR &
str);

Form 2
istream _FAR & _Cdecl _FARFUNC operator>>(istream _FAR &is, string _FAR
&s);

Description
Form 1: Extracts string str from input stream is.
Form 2: Behaves the same as operator >> (istream&, char *), and returns a reference to is.

string::operator <<
string class

Form 1
ostream _FAR & _Cdecl _FARFUNC operator<<(ostream _FAR &os, const string
_FAR & s);

Form 2
opstream _FAR& _Cdecl operator << (opstream _FAR & os, const string _FAR &
str);

Description
Form 1: Behaves the same as operator << (ostream&,const char *) except that it does not
terminate when it encounters a null character in the string. Returns a reference to os.
Form 2: Inserts string str into persistent output stream os.

string::operator +
string class

Form 1
string _Cdecl _FARFUNC operator + (const char _FAR *cp, const string _FAR
& s);

Form 2
string _Cdecl _FARFUNC operator + (const string _FAR &s1, const string
_FAR &s2);

Description
Form 1: Concatenates *cp and string s.
Form 2: Concatenates string s1 and s2.

string::getline
string class

Form 1
istream _FAR & _Cdecl getline(istream _FAR &is, string _FAR &s);
Form 2
istream _FAR & _Cdecl getline(istream _FAR &is, string _FAR &s, char c);
Description
Form 1: Behaves the same as istream::getline(chptr, NPOS), except that instead of storing
into a char array, it stores into a string. getline returns a reference to is.
Form 2: Behaves the same as istream::getline(cb, NPOS, c), except that instead of storing
into a char array, it stores into a string. getline returns a reference to is.

string::to_lower
string class

Syntax
string _Cdecl _FARFUNC to_lower(const string _FAR &s);
Description
Changes string s to lowercase.

string::to_upper
string class

Syntax
string _Cdecl _FARFUNC to_upper(const string _FAR &s);
Description
Changes string s to uppercase.

TSubString class

Header File
cstring.h

Syntax
class TSubString;
Description
The TSubString class allows selected substrings to be addressed.

Public Member Functions
get_at
is_null
length
put_at
start
to_lower
to_upper

Protected Member Functions
assert_element

Operators
=
==
!=
()
[]
!

TSubString::get_at
See Also TSubString class

Syntax
char get_at(size_t pos) const;
Description
Returns the character at the specified position. If pos > length()-1, an exception is thrown.

See Also
TSubString::put_at

TSubString::is_null
TSubString class

Syntax
int is_null() const;
Description
Returns 1 if the string is empty, 0 otherwise.

TSubString::length
TSubString class

Syntax
size_t length() const;
Description
Returns the substring length.

TSubString::put_at
TSubString class

Syntax
void put_at(size_t pos, char c);
Description
Replaces the character at pos with c. If pos == length(), put_at appends c to the target string. If
pos > length() an exception is thrown.

TSubString::start
TSubString class

Syntax
int start() const;
Description
Returns the index of the starting character.

TSubString::to_lower
TSubString class

Syntax
void to_lower();
Description
Changes the substring to lowercase.

TSubString::to_upper
TSubString class

Syntax
void to_upper();
Description
Changes the substring to uppercase.

TSubString::assert_element
TSubString class

Syntax
int assert_element(size_t pos) const;
Description
Returns 1 if pos represents a valid index into the substring, 0 otherwise.

TSubString::operator =
TSubString class

Syntax
TSubString _FAR & operator=(const string _FAR &s);
Description
Copies s into the target substring.

TSubString::operator ==
TSubString class

Form 1
int operator==(const char _FAR * cp) const;
Form 2
int operator==(const string _FAR & s) const;
Description
Form 1: Tests for equality between the target substring and *cp. The two are equal if they have the
same length, and if the same location in each string contains the same character. operator == returns
a 1 to indicate that the strings are equal, and a 0 to indicate that they are not equal.
Form 2: Tests for equality between the target substring and string s. Two are equal if they have the
same length, and if the same location in each string contains the same character. operator == returns
a 1 to indicate that the strings are equal, and a 0 to indicate that they are not equal.

TSubString::operator !=
TSubString class

Form 1
int operator!=(const char _FAR * cp) const;
Form 2
int operator!=(const string _FAR & s) const;
Description
Form 1: Tests for inequality between the target string and *cp. Two strings are equal if they have the
same length, and if the same location in each string contains the same character. operator != returns a
1 to indicate that the strings are not equal, and a 0 to indicate that they are equal.
Form 2: Tests for inequality between the target string and string s. Two strings are equal if they have
the same length, and if the same location in each string contains the same character. operator !=
returns a 1 to indicate that the strings are not equal, and a 0 to indicate that they are equal.

TSubString::operator ()
TSubString class

Form 1
char _FAR & operator()(size_t pos);
Form 2
char operator()(size_t pos) const;
Description
Form 1: Returns a reference to the character at position pos.
Form 2: Returns the character at position pos.

TSubString::operator []
TSubString class

Form 1
char _FAR & operator[](size_t pos);
Form 2
char operator[](size_t pos) const;
Description
Form 1: Returns a reference to the character at position pos.
Form 2: Returns the character at position pos.

TSubString::operator !
TSubString class

Syntax
int operator!() const;
Description
Detects null substrings. Returns 1 if the substring is not null.

TRegexp class

Header File
regexp.h

Description
This class represents regular expressions. TRegexp is a support class used by the string class for
string searches.
Regular expressions use these special characters:
. [] - ^ * ? + $
General Rules
Characters other than the special characters match themselves. For example "yardbird"
matches "yardbird".
A backslash (\) followed by a special character, matches the special character itself. For example
"Pardon\?" matches "Pardon?".

The following escape codes can be used to match control characters:
\b backspace
\e Esc
\f formfeed
\n newline
\r carriage return
\t tab
\xddd the literal hex number 0xddd
\^x where x matches some control-code (for example \^c, \^c)

One-Character Regular Expressions
The . special character matches any single character except a newline character. For example
".ive" would match "jive" or "five".

The [and] special characters are used to denote one-character regular expressions that will
match any of the characters within the brackets. For example, "[aeiou]" would match either "a",
"e", "i", "o", or "u".
The - special character is used within the [] special characters to denote a range of characters to
match. For example, "[a-z]" would match on any lowercase alphabetic character between a
and z.
The ^ special character is used to specify search for any character but those specified. For
example, "[^g-v]" would match on any lowercase alphabetic character NOT between g and v.

Multiple-Character Regular Expressions
The * special character following a one-character regular expression matches zero or more
occurrences of that regular expression. For example, "[a-z]*" matches zero or more
occurrences of lowercase alphabetic characters.
The + special character following a one-character regular expression matches one or more
occurrences of that regular expression. For example, "[0-9]+" matches one or more
occurrences of lowercase alphabetic characters.
The ? special character specifies that the following character is optional. For example "xy?z"
matches on "xy" or "xyz".
Regular expressions can be concatentated. For example, "[A-Z][a-z]*" matches

capitalized words.

Matching at the Beginning and End of a Line
If the ^ special character is at the beginning of a regular expression, then a match occurs only if the
string is at the beginning of a line. For example, "^[A-Z][a-z]*" matches capitalized words
at the beginning of a line.
If the $ special character is at the end of a regular expression, the then a match occurs only if the
string is at the end of a line. For example, "[A-Z][a-z]*$" matches capitalized words at the
end of a line.

Type Definitions
StatVal

Public Constructors
TRegexp::TRegexp

Public Member Functions
find
status

Operators
=

TRegexp::StatVal
TRegexp class

Syntax
enum StatVal{OK=0, ILLEGAL, TOOLONG};
Description
StatVal enumerates the status conditions returned by TRegexp::status, where:

Status Description

OK Means the given regular expression is legal
ILLEGAL Means the pattern was illegal
TOOLONG Means the pattern exceeded maximum length (128)

TRegexp::TRegexp
TRegexp class

Form1:
TRegexp(const char far* cp);
Form2:
TRegexp(const TRegexp far& r);
Description
Form 1: Constructs a regular expression object using the pattern given pointed to by cp.
Form 2: Constructs a copy of regular expression object r.

TRegexp::find
TRegexp class

Syntax
size_t find(const string& s, size_t* len, size_t start=0)
Description
Finds the first instance in string s that matches this regular expression. The search begins at index
start, and len returns the length of the matching string if found. The return value contains the index of
the the beginning of the matching string. If no match is found, len is 0, and -1 is returned.

TRegexp::operator =
TRegexp class

Form 1
TRegexp& operator=(const TRegexp& r)
Form 2
TRegexp& operator=(const char* cp)
Description
Form 1: Sets this regular expression to a copy of r, using value semantics.
Form 2: Sets this regular expression to the pattern given by cp.

TRegexp::status
See Also TRegexp class

Syntax
StatVal status()
Description
Returns the status of this regular expression. Status values are:

Status Description

OK means the given regular expression is legal
ILLEGAL means the pattern was illegal
TOOLONG means the pattern exceeded maximum length (128)

See Also
TRegexp::StatVal

