
Windows NT® Server
Server Operating System

Microsoft Security Configuration Manager for
Windows NT 4

White Paper

Abstract

This paper describes Microsoft® Security Configuration Manager for Windows NT 4.0 Service Pack 4.
Microsoft Security Configuration Manager is a Microsoft Management Console (MMC) snap-in tool
designed to reduce costs associated with security configuration and analysis of the Windows NT®
operating system. The Security Configuration Manager allows you to configure security for a
Windows NT-based system, and then perform periodic analysis of the system to ensure that the
configuration remains intact.

®

© 1998 Microsoft Corporation. All rights reserved.
The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.
The BackOffice logo, Microsoft, Windows,Win32 and Windows NT are registered
trademarks of Microsoft Corporation.
Other product or company names mentioned herein may be the trademarks of their
respective owners.
Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA
1098

INTRODUCTION...1
Why Security Configuration Manager is Necessary 1
Security Configuration Manager Design Goals 2
Security Configuration Manager Features 2

Comprehensiveness 2
Flexibility 3
Extendibility 3
Simplicity 3

SECURITY CONFIGURATION MANAGER OVERVIEW................5
Security Configuration Areas 5
Security Configuration Manager User Interface 5
Graphical User Interface 6
Secedit Command Line Tool 7

CONFIGURING SECURITY...9
Account Policies 9
Local Policies 10
Restricted Group Management 11
System Services Security 12
File and Registry Security 13
Environment Variables for File System Security 16

ANALYZING SECURITY...17
Analyzing File System and Registry Security 19

FOR MORE INFORMATION...20

APPENDIX A. IMPLEMENTING SERVICE SECURITY
ATTACHMENTS...21
Introduction 21
Architecture 21
Building the Attachment Engine DLL 22

The Data Structures 23
Security Configuration Tool Set Helper APIs 24
Required Attachment Interfaces 29
Installation and Registration 37

Building the Extension Snap-in 38
The Clipboard Format 40
The Extension Snap-in Interfaces 40
Installation and Registration 41
Initialization – Adding the Attachment Node 42
Implementing ISceSvcAttachmentPersistInfo 44

CONTENTS

This paper describes Microsoft® Security Configuration Manager, a Microsoft
Management Console (MMC) tool designed to reduce costs associated with
security configuration and analysis of Windows NT-based systems.

The Microsoft Management Console is a Windows-based multiple-document
interface (MDI) application that makes extensive use of Internet technologies. MMC
is a core part of Microsoft's management strategy, and is designed to provide a
single host for all management tools, facilitate task delegation, and lower total cost
of ownership for enterprise users of the Windows® and Windows NT® operating
systems. MMC itself does not supply any management behavior, but instead
provides a common environment for snap-ins, which define the actual management
behavior. Snap-ins are administrative components integrated into a common host—
the MMC interface.

Security Configuration Manager is a snap-in component for MMC that is designed to
provide a central repository for security-related administrative tasks. With Security
Configuration Manager, you will be able to use a common tool to configure and
analyze security on one or more Windows NT machines in your network.

Why Security Configuration Manager is Necessary
The current version of Microsoft Windows NT network operating system has
excellent security features built into the system. A single sign-on to the Windows NT
domain allows user access to resources anywhere in the corporate network. The
system provides tools for security policy and account management, and the
Windows NT Domain model is flexible and can support a wide range of network
configurations.

From the administrator’s point of view, Windows NT provides a number of graphical
tools that can be used individually to configure various aspects of system security.
However, these tools are not centralized—an administrator may need to open three
or four applications to configure security for one computer. Using these applications
is therefore considered costly and cumbersome by many security conscious
customers. In addition, security configuration can be complex.

While Windows NT provides adequate (if somewhat inconvenient) configuration
tools, it lacks powerful tools for security analysis. The only tool provided that can be
used to monitor security is Event Viewer, and it was not designed for performing
corporate-level audit analysis. There are third-party tools for such analysis;
however, those tools either lack enterprise-level features or are not comprehensive.

Security Configuration Manager is intended to answer the need for a central
security configuration tool, and will provide the framework for enterprise-level
analysis functionality. Most importantly, it will reduce security-related administration
costs by defining a single point where the entire system’s security can be viewed,
analyzed, and adjusted as necessary. The goal is to provide a comprehensive,
flexible, extensible and simple tool for configuring and analyzing system security.

Microsoft Windows NT Server White Paper

1

INTRODUCTION

Security Configuration Manager Design Goals
The process of configuring security in a Windows NT-based network can be
complex and detailed in terms of the system components involved and the level of
change that may be required. Therefore, Security Configuration Manager is
designed to allow you to perform configuration at a macro level. In other words,
Security Configuration Manager allows you to define a number of configuration
settings and have them applied as one. With this tool, configuration tasks can be
grouped and automated; they no longer require numerous, iterative key presses
and repeat visits to a number of different applications to configure a group of
machines.

Note that Security Configuration Manager is not designed to replace system tools
that address different aspects of system security—such as User Manager, Server
Manager, Access Control List (ACL) Editor, and so forth. Rather its goal is to
complement them by defining an engine that can interpret a standard configuration
file and perform the required operations automatically. Administrators can continue
to use existing tools to change individual security settings whenever necessary.

To address the security analysis gap in security administration in Windows NT,
Security Configuration Manager provides analysis at a micro level. All security
relevant system parameters which can be configured, can also be analyzed for
deviations from some baseline configuration.

Security Configuration Manager Features
Security Configuration Manager is designed to be comprehensive, flexible,
extendible, and simple.

Comprehensiveness
Unlike other operating system features, security is a characteristic of the system as
a whole. Almost every component of the system is responsible for some aspect of
system security. Therefore, questions such as “Is my computer secure?” or “Is my
network secure?” are extremely difficult to answer. Typically, a system administrator
must examine many different system components and use many tools in an attempt
to answer these questions. Microsoft’s goal is to have Security Configuration
Manager be the resource for answering security-related questions, whether they are
general (such as those listed above) or very specific. To provide comprehensive
security administration and information, Security Configuration Manager allows you
to configure and analyze all of the following:

 Account Policies – You can use the tool to set access policy, including
domain or local password policies and domain or local account lockout policies.

 Local Policies – You can configure local audit policy, user rights assignment
and various security relevant system parameters which were previously
managed by locating and setting certain registry values.

 Restricted Groups – You can control group memberships for built-in groups
such as Administrators, Server Operators, Backup Operators, Power Users,
and so forth, as well any other specific group that you would like to configure.

Microsoft Windows NT Server White Paper 2

This should not be used as a general membership management tool—only to
control membership of specific groups that have sensitive capabilities assigned
to them.

 System Services – You can configure startup and security aspects for the
different services installed on a system, such as Alerter, Messenger and so
forth.

 System Registry – You can use the tool set to set the security on system
registry keys.

 System Store – You can use the tool set to set the security for local file system
objects.

Flexibility
Security Configuration Manager allows you to create and edit Security Configuration
Files that contain settings for each of the security areas outlined above. These
configuration files are text based files which can be easily distributed with tools such
as Microsoft Systems Management Server to configure or analyze system security.

Security Configuration Manager also includes a set of predefined security
configuration files which can be customized for your environment. These predefined
security configuration files define three levels of security beyond the default “out of
box” security settings.

The architecture is sufficiently flexible to support new security areas as the system
evolves.

Extendibility
Security Configuration Manager is architected to be extendible. You can add
extensions as new areas of security configuration, or as new attributes within an
existing area. Since the configuration information is stored in a standard .inf file
format, it can be easily extended without affecting backward compatibility.

Additionally, system services is a currently defined area that has been architected to
be extendible within itself. It permits any service writer to implement a Security
Configuration Attachment that can configure security settings for a particular system
service, as well as perform any analysis that may be required. Different
Windows NT-based systems can be configured to run different sets of services.
Also, Microsoft expects that independent software vendors (ISVs) who develop
services will want to add their service’s security configuration and analysis to this
overall security framework.

Simplicity
Because Security Configuration Manager is designed to reduce costs associated
with administering a network, it is vital that the tool be easy to learn and use.
Security Configuration Manager contains no complicated options—only a simple
uniform graphical user interface (GUI) for defining configuration files and viewing
security analysis data. The interface uses the standardized context menus and
views supported by Microsoft Management Console. There are no superfluous

Microsoft Windows NT Server White Paper

3

graphics or statistics, only a simple tabular view of the information with visual cues
to flag security problems. In addition, Security Configuration Manager contains a
command-line utility to allow administrators to run configuration and analysis as part
of a script. Either the command line tool or the GUI can be used to perform a
configuration or an analysis, although the GUI is needed to edit configuration files
and view analysis results graphically.

The next section of this document provides a more in-depth overview of the Security
Configuration Manager, its architecture, and how it fits into Windows NT.

The primary objective of Security Configuration Manager is to make it easier for
customers to secure their Windows NT-based systems. Security Configuration
Manager accomplishes this by allowing administrators to define all security relevant
system parameters in a single location. Once a security configuration has been
defined, the tool can be used to apply that configuration and detect deviations from
that configuration. As mentioned previously, Security Configuration Manager also
includes several predefined security configuration files which can be customized for
site specific security and application requirements.

Security Configuration Areas
Security configuration for a system is subdivided into security areas. Microsoft has
identified several security areas; however, new areas can be added in the future to
support enhanced system functionality without breaking backward compatibility with
existing configuration files. The currently supported security areas are:

Area Configurable Items
Account Policies - Password Policy

- Lockout Policy
Local Policies - Audit Policy

- User Rights and Privilege Assignment
- Security Options (Registry Values)

Event Log - Settings for System, Application, and Security Logs
Restricted
Groups

- Group membership

System Services - Startup Modes and Access Control Lists for all
system services

Registry - Access Control Lists for Registry Keys
File System - Access Control Lists for Folders and Files

Figure 1: Security Configuration areas and the types of items which are configurable in each area

Security Configuration Manager User Interface
The Security Configuration Manager GUI is provided as a Microsoft Management
Console (MMC) snap-in. The graphical interface supports the following
administrative functions:

Microsoft Windows NT Server White Paper 4

SECURITY
CONFIGURATION
MANAGER OVERVIEW

 Defining Security Configuration files—The tool includes a GUI-based editor
that enumerates all of the security areas described above and allows the
administrator to define security settings for each parameter in each area. The
configuration files are ultimately saved as text-based .inf files.

 Configuring system security—Configuration operations are ultimately
performed using a database. To configure a Windows NT-based system, use
the Security Configuration Manager context menus to:

 Select a Database
 Import configuration file(s) as necessary
 Configure the system

Import operations can append to or overwrite database information that has
been previously imported. Appending (which is the default) allows different
configuration files to be combined into a single database for configuration.

 Analyzing system’s security— Similarly, all analysis operations are
performed against a database. To analyze a system’s security, use the context
menus to:

 Select a Database
 Import configuration file(s) as necessary
 Analyze the system

The configuration file(s) that have been imported into the database define the
baseline for the analysis.

 View Security Analysis data—Analysis results are stored back into the same
database that contains the baseline configuration information. The baseline
settings are presented alongside the current system settings, and color, fonts,
and icons are used to highlight differences between the baseline configuration
and the actual system settings. If desired, you can modify the baseline
configuration in lieu of the analysis results. The modified configuration
information may also be exported into a configuration file for subsequent use.

Graphical User Interface
Figure 2 shows the GUI after an analysis has been performed against a database
named secedit.sdb. Before performing the analysis, configuration file information
would have been imported into the database to define the baseline for the analysis:

Microsoft Windows NT Server White Paper

5

Figure 2. Security Configuration Manager Snap-in Graphical User Interface

Highlighted is the fact that membership of the administrators group on the system is
different from the membership defined in the baseline configuration. Investigating
further reveals that the baseline configuration suggests that only the administrator
should be a member of the administrators group, while the actual system settings
includes User1 in the administrators group. If desired, the baseline configuration
can be updated to include User1, or the system can be reconfigured to remove
User1 from the administrators group.

This snapshot also reveals the predefined configuration files that are included with
the Security Configuration Manager. These are listed under the Configurations node
from whence they can be edited.

Secedit Command Line Tool
Security Configuration Manager also includes a command line tool (secedit.exe) for
applying configuration files and performing analyses. Typing secedit with no
command line arguments will expose the syntax for the command line tool. As an
example:

secedit /configure /cfg securws4.inf /db secedit.sdb /areas REGKEYS FILESTORE

 Imports the securws4.inf configuration file into the secedit.sdb database
 Applies only the file system and registry security settings specified in the

Microsoft Windows NT Server White Paper 6

securws4.inf configuration file to the Windows NT-based system where the
program is run.

The command line tool also supports a quiet mode of operation and is useful for
applying configuration files to many systems using distributed systems
management tools such as Microsoft Systems Management Server.

Note that the GUI configures all security areas, while the command line tool is
capable of configuring specific security areas.

This section describes how to use the Security Configuration Manager to configure
various security aspects of a Windows NT 4-based system. Note that this tool relies
entirely on the security features that are already in Windows NT—it does not alter
the security capabilities of the system.

Account Policies
The Account Policies security area contains Password and Lockout Policy settings
normally configured through the user manager:

Figure 3: Account Policy Security Area

Note that configuring a Domain Controller’s Account policy will impact all Domain
Controllers as password and lockout policy is a domain-wide setting enforced by all
Domain Controllers. Configuring Password and Lockout policy on a Workstation or
Server impacts only the local password and lockout policy for that workstation or
server.

Microsoft Windows NT Server White Paper

7

CONFIGURING
SECURITY

Local Policies
Local Policies also includes policy settings that are typically managed from the User
Manager. These include Audit policies such as Audit File and Object Access as
well as User Rights policies such as Access this Computer from the Network or
Log on Locally. In the case of User Rights, Security Configuration Manager allows
the administrator to specify for each user right, exactly which users, local groups or
global groups should be granted that right:

Figure 4: Local Policies—User Rights and Privileges

When the system is configured, Security Configuration Manager ensures that each
user or group has only the rights defined in the configuration file.

Microsoft Windows NT Server White Paper 8

Additionally, Local Policies also allows the administrator to configure Security
Options which consist of well known security relevant system parameters, many of
which are, normally configured by setting registry values using tools like
Regedt32.exe:

Figure 5: Local Policies—Security Options.

Restricted Group Management
Restricted Group Management allows you to manage the membership of built-in
groups that have certain predefined capabilities These groups include local groups
such as Administrators, Power Users, Print Operators, Server Operators, and so
forth, as well as global groups such as Domain Administrators.

You can also add groups that you consider sensitive and/or privileged to the
Restricted Group Management list, along with their membership information. Note
that restricted groups is not intended to define all group memberships, just those
that are considered to be security sensitive.

In addition to group membership, the area tracks and controls reverse membership
of each restricted group in the MemberOf column. This column shows other groups
to which the restricted group can belong. For example, you might say that Domain
Temps can only be a member of the local Users group. The member of feature is
extremely beneficial on Windows NT 5-based systems which support nested groups
and allows administrators to prevent a specific group from achieving privileges
through various levels of inadvertent nesting.

Microsoft Windows NT Server White Paper

9

Figure 6. Configuring Restricted Groups

The configuration engine ensures that group memberships are set as specified in
the configuration file. Groups and users not specified in the configuration are
removed from the restricted group. Groups and users specified in the configuration
are added if they do not exist. In addition, the reverse membership configuration
option ensures that each restricted group is a member of only those groups
specified in the MemberOf column.

System Services Security
System Services include critical functionality such as network, file, and print
services. Security Configuration Manager directly supports general settings for each
system service. These general settings include the service startup settings and
security on the service itself—for example, the ability to Start, Stop and Pause a
service. Service security has always been supported in Windows NT 4, however
there has not previously been a UI for configuring service security:

Figure 7. Configuring System Services Security

Microsoft Windows NT Server White Paper 10

Because of the breadth and diversity of this area, Security Configuration Manager’s
System Services area is architected to be extendable.

To extend this area of the Security Configuration Manager so that it can be used to
configure specific settings for a new service, you need to create and attach a
Security Configuration Manager Attachment (a DLL) as described in Appendix A.

File and Registry Security
Access Control settings for File System and Registry Objects are typically
configured using the ACL Editor in Windows NT Explorer and Regedt32.exe
respectively. Security Configuration Manager also incorporates these important
aspects of system security into the UI:

Figure 8: Configuring Registry ACLs

Since Security Configuration Manager was originally designed for Windows NT 5
which supports a dynamic ACL inheritance model, the Windows NT 5 ACL
Inheritance infrastructure was also back-ported to Windows NT 4 and is available
when the Security Configuration Manager is installed. This is most readily apparent
when setting security through Windows NT Explorer or Security Configuration
Manager after Security Configuration Manager is installed:

Microsoft Windows NT Server White Paper

11

Figure9: The new ACL Editor

Clicking on the advanced tab in the new ACL Editor reveals the following dialog:

Microsoft Windows NT Server White Paper 12

Figure 10: Advanced Tab of the new ACL Editor

Notable in these dialogs is the ability to control whether or not permissions for a
given object are inherited from the parent object or not. This is specified by the
checkbox labeled Allow inheritable permissions from parent to propagate to this
object. If an object (for example, a Folder) does not allow inheritable permissions
from parent to propagate, it is said to be protected, and changes to it’s parent do not
impact the object itself. However, if the object does allow inheritable permissions to
propagate, changes to inheritable permissions defined on its parent will
automatically (dynamically) be propagated by the system.

The degree to which a permission is inheritable is defined by the Apply To dialog.
For example, the Full Control permission for Administrators applies to This Folder,
Subfolders, and Files. When this permission is applied, the ACL inheritance model
will make sure that Administrators have Full Control on This Folder, and all
Subfolders and Files which are not protected (that is which Allow inheritable
permissions to propagate).

As shown in Figure 11 below, Security Configuration Manager allows administrators
to override the normal behavior of the ACL inheritance model by specifying that all
child objects of a given object should be reconfigured whether they are protected
(do not allow inheritable permissions to propagate) or not. In fact, this is the only
mode of operation that is supported in the Windows NT 4 version of Security
Configuration Manager as it is consistent with the “Replace Permissions on
Subdirectories and Files” check boxes in the original Windows NT 4 ACL Editor.

Microsoft Windows NT Server White Paper

13

Figure 11: Configuration Modes

If there is a child object which should not be reconfigured by Security Configuration
Manager, then that child object should be included in the configuration file and
marked with Ignore.

Environment Variables for File System Security
In addition to the comments above which are applicable to both File System and
Registry Objects, Security Configuration Manager also supports the use of
environment variables for File System objects. Use of environment variables can
make configuration files portable across systems which have installed Windows NT
on different volumes.
This section describes how to use the Security Configuration Manager to analyze
various security aspects of a Windows NT 4-based system. Security analysis is the
other half of Security Configuration Manager’s capabilities. Security Configuration
Manager provides a graphical interface which allows you to view the analysis
information collected from the system. Additionally, you can use the graphical user
interface or the command-line utility, secedit, to collect analysis data from the
system. This enables you to collect the data interactively or to schedule data
collection as part of an off-hour batch processing script.

To promote ease of use (and to eliminate the steep learning curve normally
associated with new administration tools), the GUI design of the analysis display
has been kept simple and informational. Instead of complicated graphics or error
alerts, it provides simple visual cues (icons and color) to identify differences
between a provided baseline configuration and actual system settings:

Microsoft Windows NT Server White Paper 14

ANALYZING SECURITY

Figure 12. Security Analysis User Interface

The Security Configuration Manager supports two modes of security analysis for
Windows NT-based systems: configured system analysis and unconfigured system
analysis.

 Configured system analysis refers to situations where the system has
already been configured using a security configuration file prior to performing
the analysis. In this case, the baseline configuration has already been imported
into a database and an analysis can be performed against that same database.
This type of analysis can be used to answer the question: What security
relevant system parameters have changed since the last time this machine was
configured?

 Unconfigured system analysis refers to situations where the system has not
been configured with the baseline configuration. This type of analysis can be
used to answer questions such as, How do current system settings compare
with this baseline configuration? What system settings would change if I were
to apply this configuration? In this case, the baseline security configuration file
is imported into a database prior to performing the analysis. If you later want to
configure the system with the baseline configuration, the created database can
be used.

In both cases, the end result is a database that contains both configuration
information as well as analysis results.

In addition to analyzing the system’s current configuration, the Security
Configuration analysis interface allows interactive changes to the baseline
configuration stored in the database. To modify the baseline configuration stored in
the database, double click on the mismatched item in the result pane:

Microsoft Windows NT Server White Paper

15

Figure 13. Modifying a baseline configuration

This feature is provided to update the baseline configuration after you have
investigated a mismatch and consider the actual system setting to be reasonable. In
the example above, the stored configuration may be modified so that the Do not
display last username in logon screen parameter is disabled (like the actual system
setting) or so that it is Excluded (that is, not configured at all). If the system is
reconfigured using this database, the actual system setting will be retained. If the
system is reanalyzed using this database, this security parameter will no longer be
flagged.

Since interactive updates of analysis information affect only the database, an export
option is available which creates a security configuration file from the configuration
information stored in a database.

Analyzing File System and Registry Security
Analyzing parameters in most security areas is straightforward because only the
security on that specific object needs to be considered. Either the analyzed setting
matches the baseline configuration or it doesn’t. However tree based objects such
as file system and registry objects for which an inheritance mechanism exists, the
security of child objects must also be considered. In the case of Registry and File
System objects, Security Configuration Manager adds an additional column which
indicates whether or not child objects should be further investigated:

Microsoft Windows NT Server White Paper 16

Figure 14. Reviewing security of child objects

In the above figure, we see that the security descriptors for the Program Files and
Windows NT 5 Workstation folder objects are themselves OK, however there are
child objects which may or may not be mismatched. The numbers indicate how
many child objects exist. To further explore these child objects, expand the
corresponding node in the scope pane on the left hand side.

For the latest information on Windows NT Server, check out our World Wide Web
site at http://www.microsoft.com/security/ntprod.htm.

This appendix describes the procedures for building and implementing Service
Security Attachments for the Security Configuration Tool Set.

Introduction
Security Configuration Tool Set handles general security settings for individual
services directly. These general settings include the service invocation policy
(disabled, automatic, or manual) as well as the security descriptors for each service.
Therefore, no Security Configuration Attachment should attempt to configure these
settings. The Service Security Attachment architecture within the Security
Configuration tool set provides an infrastructure to configure and analyze service-
specific security settings for individual services. For example, Spooler is a
Windows NT service that defines private objects (in this case, printers) that need to
be secured. In addition, it has configuration parameters that are security-sensitive.
For Spooler, a Service Security Attachment must allow configuration and analysis of
security settings on printer objects and security-sensitive parameters for the service.

Service Security Attachment architecture requires implementation of the following
two pieces:

 An attachment engine DLL that implements three interfaces (described later in
this appendix).

 A Microsoft Management Console (MMC) extension snap-in that provides the

Microsoft Windows NT Server White Paper

17

FOR MORE
INFORMATION
APPENDIX A.
IMPLEMENTING
SERVICE SECURITY
ATTACHMENTS

http://www.microsoft.com/security/ntprod.htm

configuration editor and manager functionality used to configure and analyze
specific security settings for the service. This extension is exposed as a node
under the Services security area in the Security Configuration Editor and
Manager snap-ins.

Security Configuration tool set provides a set of support APIs that the attachment
engine or extension snap-in can use to query or set service-specific information
contained in the security configuration and analyses database.

Architecture
Figure 1A shows the three pieces of the snap-in architecture where the attachment
infrastructure fits in (the extension snap-ins for attachments, the service attachment
engines, and the inspection database).

Figure 1A. Security Configuration tool set Snap-in, Engine, and Extension Architecture

Security Configuration tool set, which consists of the main engine and the MMC
snap-in, provides the overall framework for configuring and analyzing system
security for Windows NT installations.

In the attachment framework, attachment engine DLLs register with Security
Configuration engine. Security Configuration engine service then loads the
attachment during execution. It calls the attachment’s configuration interface when
the system is configured, the analysis interface when the system is analyzed, and
the update interface when parameters in the database are modified by the

Microsoft Windows NT Server White Paper 18

extension snap-in.

Similarly, the extension snap-in for the service attachment must register as a
Security Configuration Tool Set snap-in extension. The Security Configuration tool
set snap-ins loads the extension snap-in as a node under the Services security area
in both the editing and manager tools. If you are writing an extension snap-in, you
must follow the MMC extension writer’s documentation to implement the overall
extension snap-in. In addition, you must implement the component object model
(COM) interface described below, to communicate with the Security Configuration
Editor or Manager snap-ins.

Building the Attachment Engine DLL
Building the service attachment involves implementing three interfaces and
installing/registering the attachment with the Security Configuration tool set.
Security Configuration tool set will load the attachment and call these interfaces
based on user-invoked operations.

Before describing which interfaces need to be implemented and how to implement
them, it is important to define various data structures and support APIs provided by
Security Configuration tool set.

The Data Structures
Note that the data structures described here are defined in scesvc.h, included in the
Microsoft Win32® SDK.

 SCE Status Codes—various Security Configuration tool set status codes
returned by helper functions and expected from the attachment interfaces.

typedef DWORD SCESTATUS;
#define SCESTATUS_SUCCESS 0L
#define SCESTATUS_INVALID_PARAMETER 1L
#define SCESTATUS_RECORD_NOT_FOUND 2L
#define SCESTATUS_INVALID_DATA 3L
#define SCESTATUS_OBJECT_EXIST 4L
#define SCESTATUS_BUFFER_TOO_SMALL 5L
#define SCESTATUS_PROFILE_NOT_FOUND 6L
#define SCESTATUS_BAD_FORMAT 7L
#define SCESTATUS_NOT_ENOUGH_RESOURCE 8L
#define SCESTATUS_ACCESS_DENIED 9L
#define SCESTATUS_CANT_DELETE 10L
#define SCESTATUS_PREFIX_OVERFLOW 11L
#define SCESTATUS_OTHER_ERROR 12L
#define SCESTATUS_ALREADY_RUNNING 13L
#define SCESTATUS_SERVICE_NOT_SUPPORT 14L

 SCE Handles—the opaque handles provided by Security Configuration tool set
to attachment interfaces for support of callback APIs.

typedef PVOID SCE_HANDLE;
typedef ULONG SCE_ENUMERATION_CONTEXT, *PSCE_ENUMERATION_CONTEXT;

 SCE Service Configuration Information—the information structure to be used
by attachment APIs when querying or setting configuration information to the
database or configuration via the support callback APIs.

Microsoft Windows NT Server White Paper

19

typedef enum _SCESVC_INFO_TYPE {
 SceSvcConfigurationInfo,
 SceSvcAnalysisInfo,
 SceSvcInternalUse // DO NOT USE.
} SCESVC_INFO_TYPE;
typedef struct _SCESVC_CONFIGURATION_LINE_ {
 LPTSTR Key;
 LPTSTR Value;
 DWORD ValueLen; // number of bytes
} SCESVC_CONFIGURATION_LINE, *PSCESVC_CONFIGURATION_LINE;
typedef struct _SCESVC_CONFIGURATION_INFO_ {
 DWORD Count;
 PSCESVC_CONFIGURATION_LINE Lines;
} SCESVC_CONFIGURATION_INFO, *PSCESVC_CONFIGURATION_INFO;

 SCE Service Analysis Information—the information structure to be used by
attachment APIs when querying or setting analysis information to the database
via the support callback APIs.

typedef enum _SCESVC_INFO_TYPE {
 SceSvcConfigurationInfo,
 SceSvcAnalysisInfo,
 SceSvcInternalUse // DO NOT USE
} SCESVC_INFO_TYPE;

typedef struct _SCESVC_ANALYSIS_LINE_ {
 LPTSTR Key;
 PBYTE Value;
 DWORD ValueLen; // number of bytes
} SCESVC_ANALYSIS_LINE, *PSCESVC_ANALYSIS_LINE;
typedef struct _SCESVC_ANALYSIS_INFO_ {
 DWORD Count;
 PSCESVC_ANALYSIS_LINE Lines;
} SCESVC_ANALYSIS_INFO, *PSCESVC_ANALYSIS_INFO;

Security Configuration Tool Set Helper APIs
Security Configuration tool set provides a set of support application programming
interfaces (APIs) that the attachment should use to read or write information to the
configuration file and the database.

These APIs are:

 SceSvcQueryInfo—this API lets the attachment query configuration or
analysis information from the database for a given service.

 SceSvcSetInfo—this API lets the attachment set configuration or analysis
information in the database for a given service.

Microsoft Windows NT Server White Paper 20

 SceSvcFree—this API should be used to free buffers allocated by the Security
Configuration tool set for the attachment.

 SceSvcConvertSDToText—this API takes a binary self-relative Windows NT
security descriptor and returns a text representation for it. This is useful for
storing security descriptors in configuration files.

 SceSvcConvertTextToSD—this API takes a text form security descriptor that
was originally generated via SceSvcConvertSDToText, and returns a self-
relative binary Windows NT security descriptor that represents it. This is useful
in reading a textual security descriptor from configuration file and applying it to
an object on the system.

These APIs are defined in scesvc.h in the Win32 SDK. The static library to link to is
scesvc.lib, available for x86 and Alpha platforms. These APIs are described in
greater detail next.

SceSvcQueryInfo

SCESTATUS
WINAPI
SceSvcQueryInfo(
 IN SCE_HANDLE sceHandle,
 IN SCESVC_INFO_TYPE sceType,
 IN LPTSTR lpPrefix OPTIONAL,
 IN BOOL bExact,
 OUT PVOID *ppvInfo,
 OUT PSCE_ENUMERATION_CONTEXT psceEnumHandle
);

The SceSvcQueryInfo support API allows the attachment to query configuration or
analysis information from the database.

The parameters are:

 sceHandle—the opaque SCE handle passed to the attachment by Security
Configuration tool set. This is used to determine where the information will be
stored.

 sceType—this must be SCE_SERVICE_CONFIGURATION_INFO if
configuration information is being queried, or be
SCE_SERVICE_ANALYSIS_INFO if analysis information is being queried.

 lpPrefix—this parameter may be NULL. If it is NULL, all keys are returned. If a
string is supplied, then information returned contains all keys (and
corresponding values) with the same prefix as the specified string.

 bExact—this parameter is not used if lpPrefix is NULL. If this parameter is
TRUE, the key that matches exactly with the specifed string in lpPrefix is
returned. If this parameter is FALSE, all keys (and their values) that have the
same prefix as the specified string in lpPrefix are returned.

 ppvInfo—this must be a pointer to a pointer of type
SCESVC_CONFIGURATION_INFO if the sceType is
SceSvcConfigurationInfo. Otherwise, it must be
SCESVC_ANALYSIS_INFO if the sceType is SceSvcAnalysisInfo.

Microsoft Windows NT Server White Paper

21

Security Configuration tool set—and not the attachment—will allocate the
buffer; therefore the pointer must point to NULL.

 psceEnumHandle—this contains the handle that must be used in successive
calls to this API. The API may not return all the keys in a single call as there
could be large number of keys. (The maximum number of keys returned in a
single call is 256.)

This API returns the following codes:

 SCESTATUS_SUCCESS
 SCESTATUS_INVALID_PARAMETER
 SCESTATUS_RECORD_NOT_FOUND
 SCESTATUS_BAD_FORMAT
 SCESTATUS_OTHER_ERROR
 SCESTATUS_NOT_ENOUGH_RESOURCE

SceSvcSetInfo

SCESTATUS
WINAPI
SceSvcSetInfo(
 IN SCE_HANDLE sceHandle,
 IN SCESVC_INFO_TYPE sceType,
 IN LPTSTR lpPrefix OPTIONAL,
 IN BOOL bExact,
 IN PVOID pvInfo
);

The SceSvcSetInfo support API allows the attachment to set/overwrite
configuration/analysis information stored in the database about a particular service.

The parameters are:

 SceHandle—the opaque handle that Security Configuration tool set passes to
the attachment. This is used to determine where the information will be stored.

 SceType—this must be SCE_SERVICE_CONFIGURATION_INFO if
configuration information is being set, or SCE_SERVICE_ANALYSIS_INFO if
analysis information is being set.

 lpPrefix—this parameter may be NULL. If it is NULL, all service information is
overwritten with the supplied information. If a string is supplied, then
information overwritten contains all keys (and corresponding values) with the
same prefix as the specified string.

 bExact—this parameter is not used if lpPrefix is NULL. If this parameter is
TRUE, the key that matches exactly with the specified string in lpPrefix is
overwritten. If this parameter is FALSE, all keys (and their values) that have the
same prefix as the specified string in lpPrefix are overwritten.

 pvInfo—this must be a pointer of type SCESVC_CONFIGURATION_INFO if the
sceType is SceSvcConfigurationInfo. Otherwise, it must be
SCESVC_ANALYSIS_INFO if the sceType is SceSvcAnalysisInfo.

Microsoft Windows NT Server White Paper 22

This API returns the following codes:

 SCESTATUS_SUCCESS
 SCESTATUS_INVALID_PARAMETER
 SCESTATUS_RECORD_NOT_FOUND
 SCESTATUS_BAD_FORMAT
 SCESTATUS_NOT_ENOUGH_RESOURCE
 SCESTATUS_ACCESS_DENIED
 SCESTATUS_DATA_OVERFLOW
 SCESTATUS_OTHER_ERROR

SceSvcFree

SCESTATUS
WINAPI
SceSvcFree(
 IN PVOID pvServiceInfo
);

The attachment must call this API to free buffers allocated by Security Configuration
tool set in calls to SceSvcQueryInfo.

The pointer ServiceInfo points to the allocated buffer.

This API returns the following codes:

 SCESTATUS_SUCCESS
 SCESTATUS_INVALID_PARAMETER

SceSvcConvertSDToText

SCESTATUS
WINAPI
SceSvcConvertSDToText (
 IN PSECURITY_DESCRIPTOR pSD,
 IN SECURITY_INFORMATION siSecurityInfo,
 OUT PWSTR *ppwszTextSD,
 OUT PULONG pulTextSize
);

SceSceConvertSDToText is a helper API that allows the attachment to convert a
self-relative security descriptor into a textual form that can be stored in the
configuration file and the database. This API is useful when attachment is
configuring security on a service that supports private objects that have security
descriptors on them.

The parameters are:

 pSD—pointer to the security descriptor. (Refer to the Win32 SDK for APIs that
manipulate security descriptors.)

 siSecurityInfo—the security information part of the security descriptor that
must be converted to textual form. (Refer to the Win32 SDK for value values of

Microsoft Windows NT Server White Paper

23

SECURITY_INFORMATION.)
 ppwszTextSD—the string form of the security descriptor returned by the API.

The buffer is allocated by the API and must be freed using SceSvcFree when it
is no longer needed.

 pulTextSize—pointer to a ULONG which is filled with the length of the string.

The string to return the textual form is allocated by this helper API. It must be freed
using LocalFree.

This API returns the following codes:

 SCESTATUS_SUCCESS
 SCESTATUS_INVALID_PARAMETER
 SCESTATUS_NOT_ENOUGH_RESOURCE

SceSvcConvertTextToSD

SCESTATUS
WINAPI
SceSvcConvertTextToSD (
 IN PWSTR pwszTextSD,
 OUT PSECURITY_DESCRIPTOR *ppSD,
 OUT PULONG pulSDSize,
 OUT PSECURITY_INFORMATION psiSeInfo
);

SceSvcConvertTextToSD is a helper API that allows the attachment to convert a
textual form of a security descriptor (created earlier using
SceSvcConvertSDToText) back to its self-relative binary form.

The parameters are:

 pwszTextSD—the text form of the security descriptor.
 ppSD—pointer to a security descriptor pointer. This API will allocate necessary

memory to create the self-relative security descriptor. It must be freed using
SceSvcFree when it is no longer needed.

 pulSDSize—the size of allocated security descriptor.
 psiSeInfo—the pieces of valid security information in the descriptor. (Refer to

the Win32 SDK for values of SECURITY_INFORMATION.)

The buffer to return security descriptor is allocated by this helper API. It must be
freed using LocalFree.

This API returns the following codes:

 SCESTATUS_SUCCESS
 SCESTATUS_INVALID_PARAMETER
 SCESTATUS_RECORD_NOT_FOUND
 SCESTATUS_NOT_ENOUGH_RESOURCE

Microsoft Windows NT Server White Paper 24

Required Attachment Interfaces
The three interfaces that the attachment must implement are:

 SceSvcAttachmentConfig—Security Manager calls this interface when the
system is configured.

 SceSvcAttachmentAnalyze—Security Manager calls this interface when the
system is analyzed.

 SceSvcAttachmentUpdate—Security Manager calls this interface when it
receives an configuration update request from the MMC snap-in.

SceSvcAttachmentConfig

SCESTATUS
WINAPI
SceSvcAttachmentConfig(
IN SCE_HANDLE sceHandle,
 OUT PWSTR *ppszErrMessage OPTIONAL,
 OUT PDWORD pdErrLength

);

The parameters are:

 sceHandle—the opaque handle that Security Configuration tool set passes to
the attachment for use during callbacks on various support interfaces defined
above. Security Configuration tool set uses this handle to read or write
information passed by the attachment to the database.

 ppszErrMessage—the attachment can allocate a string buffer using
LocalAlloc to return an error message in this optional parameter.

 pdErrLength—the length of the allocated error message buffer (in bytes).
Security Configuration tools will always free this buffer using LocalFree;
therefore, the buffer must be allocated with LocalAlloc.

This interface must do the following:

 Use the Security Configuration tool set support interface SceSvcQueryInfo to
query configuration information from the configuration.

 Configure the service using the configuration information.

This interface returns the following codes:

 SCESTATUS_SUCCESS if the call completes successfully.
 Any other status code defined above.

Microsoft Windows NT Server White Paper

25

Sample Code

SCESTATUS
WINAPI
SceSvcAttachmentConfig(
 IN SCE_HANDLE sceHandle,
 OUT PWSTR *ppszErrMessage,
 OUT PDWORD *pdErrLength
)
{

//
//variable definitions
//
PSCESVC_CONFIGURATION_INFO pConfigInfo = NULL;
SCESTATUS retCode;
SCE_ENUMERATION_CONTEXT EnumContext = 0;

if (sceHandle == NULL) {
return(SCESTATUS_INVALID_PARAMETER);
}
//
// now read the information and configure system using it.
//
// NOTE: you may decide to read all the information first
// and then do the configure, it is implementor’s choice.
//
do {

retCode = SceSvcQueryInfo(
sceHandle,
SceSvcConfigurationInfo,
NULL,
FALSE,
(PVOID *)&pConfigInfo,
&EnumContext
);

if(retCode == SCESTATUS_SUCCESS &&
pConfigInfo != NULL)

{
ULONG i;
//
// We have some information, let’s configure.
//
for(i = 0;i < pConfigInfo->Count; i++)
{

if(pConfigInfo->Line[i].Key == NULL)
continue;

//
// We have a key that we should process.
// This will the core of doing configuration.
//
ProcessConfigurationLine(pConfigInfo->Line[i]);

}
//
// free the data we got back.
//
SceSvcFree((PVOID)pConfigInfo);
PConfigInfo = NULL;

}
//
// handle other return codes, as needed.
//

} while (retCode == SCESTATUS_SUCCESS && CountReturned > 0);
//
// if return code is not success, we should set up

Microsoft Windows NT Server White Paper 26

// error message appropriately.
//
//
// return the retCode.
//
return retCode;
}

SceSvcAttachmentAnalyze

SCESTATUS
WINAPI
SceSvcAttachmentAnalyze(
IN SCE_HANDLE sceHandle,
 OUT PWSTR *ppszErrMessage,
 OUT PDWORD pdErrLength
);

The parameters are:

 sceHandle—the opaque handle that Security Configuration tool set passes to
the attachment to be used during callbacks on various support interfaces.
Security Configuration tool set uses this handle to read and information from
the database and to write the analysis information to the database.

 ppszErrMessage—the attachment can allocate a string buffer using
LocalAlloc to return an error message in this optional parameter.

 pdErrLength—the length of the allocated error message buffer (in bytes).
Security Configuration tool set will always free this buffer using LocalFree;
therefore, the buffer must be allocated with LocalAlloc.

This interface must do the following:

 Query configuration information from the service directly.
 Use the Security Configuration tool set’s support interface SceSvcQueryInfo to

query configuration information from the configuration.
 Compute the differences of the parameters based on type and syntax.
 Use the Security Configuration tool set’s support interface SceSvcSetInfo to

write the differential information to the database.

This interface returns the following codes:

 SCESTATUS_SUCCESS if the call completes successfully.
 Any defined SCESTATUS error codes are accepted.

Microsoft Windows NT Server White Paper

27

Sample Code

SCESTATUS
WINAPI
SceSvcAttachmentAnalyze(
IN SCE_HANDLE sceHandle,
 OUT PWSTR *ppszErrMessage,
 OUT PDWORD pdErrLength
);
{

//
// define various local variables.
//
if(sceHandle == NULL)

return (SCESTATUS_INVALID_PARAMETER);
//
// now read the base config information, query system
// setting corresponding to it, compare them
// and write to the database.
//
//
do {

retCode = SceSvcQueryInfo(
sceHandle,
SceSvcConfigurationInfo,
NULL,
FALSE,
&pConfigInfo,
&EnumContext
);

if(retCode == SCESTATUS_SUCCESS &&

Microsoft Windows NT Server White Paper 28

pConfigInfo != NULL)
{

ULONG i;
//
// We have some information, let’s configure.
//
for(i = 0;i < pConfigInfo->Count; i++)
{

if(pConfigInfo->Line[i].Key == NULL)
continue;

//
// We have a key that we should query.
// This function is expected to query
// the system configuration corresponding
// to the key value.
//
QueryConfigurationLine(pConfigInfo->Line[i].Key,

&SystemValue);
//
// now compare the values.
//
CompareValue(pConfigInfo->Line[i].Key,

Microsoft Windows NT Server White Paper

29

SystemValue,
pConfigInfo-

>Line[i].Value,
&Result

);
//
// Check if there is something that should
// be written to analysis part of the
// database.

if(Result != NULL)
{

//
// we will overwrite exactly one
// value.
// more efficient way to do this
// would be to accumulate a
// set of values and commit.
//
retCode = SceSvcSetInfo(

sceHandle,
SceSvcAnalysisInfo,
PconfigInfo-

>Line[I].Key,
TRUE,
Result
);

if(retCode != SCESTATUS_SUCCESS)
{

// if it doesn’t get set, we
// need to do some cleanup
// here.

}
}

}
//
// free the data we got back.
//
SceSvcFree((PVOID)pConfigInfo);
PConfigInfo = NULL;

//
// should also free possible buffers SystemValue and
// Result, up to each attachment
//

}
//
// handle other return codes, as needed.
//

} while (retCode == SCESTATUS_SUCCESS && pConfigInfo != NULL);
//
// if return code is not success, we should set up
// error message appropriately, if error buffer is not NULL
//
//
// return the retCode.
//
return retCode;
}

SceSvcAttachmentUpdate

Microsoft Windows NT Server White Paper 30

SCESTATUS
WINAPI
SceSvcAttachmentUpdate(

IN SCE_HANDLE sceHandle,
IN SCESVC_CONFIGURATION_INFO *ServiceInfo
);

Security Configuration Editor (or Manager) calls this interface when the Security
Configuration Editor (or Manager) snap-in passes service specific changes to the
configuration settings stored in the database.

The parameters are:

 sceHandle—the opaque handle that Security Configuration tool set passes to
the attachment to be used during callbacks on various support interfaces.
Security Configuration tool set uses this handle to read and information from
the database and to write the analysis information to the database.

 ServiceInfo—the updated configuration information based on user edits and
supplied by the attachment’s extension snap-in. (See the explanation of the
SCESVC_CONFIGURATION_INFO data structure in the data structures
section.)

This attachment interface must do the following:

 Use the Security Configuration tool set’s support interface SceSvcQueryInfo to
query the base information (configuration information) stored in the database.

 Use the Security Configuration tool set’s support interface SceSceQueryInfo to
query the last set of differences (analysis information) stored in the database

 Use the ServiceInfo supplied to compute the new base configuration
information.

 Use the ServiceInfo supplied and the last stored differences to compute the
new differential information.

 Use the Security Configuration tool set’s support interface SceSvcSetInfo to
write the new base configuration information to the database.

 Use the Security Configuration tool set’s support interface SceSvcSetInfo to
write the new differential information to the database.

This interface returns the following codes:

 SCESTATUS_SUCCESS if the call completes successfully.
 Any valid SCESTATUS error codes are accepted.

Microsoft Windows NT Server White Paper

31

Sample Code

SCESTATUS
WINAPI
SceSvcAttachmentUpdate(

IN SCE_HANDLE sceHandle,
IN SCESVC_CONFIGURATION_INFO *ServiceInfo
);

{
if(sceHandle == NULL || ServiceInfo == NULL)

return(SCESTATUS_INVALID_PARAMETER);
//
// process each line of the passed information.
//
for(i=0; i < ServiceInfo->Count; i++)
{

EnumContext = 0;
retCode = SceSvcQueryInfo(

sceHandle,
SceSvcConfigurationInfo,
ServiceInfo->Line[i].Key,
TRUE,
(PVOID *)&pConfigInfo,
&EnumContext
);

if(retCode != SCESTATUS_SUCCESS &&
retCode != SCESTATUS_RECORD_NOT_FOUND)
{

//
// handle the error here.
//
break;

}
//
// if the value specified is NULL, deletion
// of the key is requested.
//

if(ServiceInfo->Line[i].Value == NULL)
{

if(retCode == SCESTATUS_SUCCESS)
{

//
// Lets ensure that analysis is ok.
//
EnumContext = 0;
retCode = SceSvcQueryInfo(

sceHandle,
SceSvcAnalysisInfo,
ServiceInfo-

>Line[i].Key,
TRUE,
(PVOID *)&pAnalInfo,
&EnumContext
);

if(retCode == SCESTATUS_RECORD_NOT_FOUND)
{

//
// Analysis Info was not found,
// this means it was matched during
// actual analysis. Now, we are
// deleting the configuration info,
// hence current configuration is
// what analysis should save.
//
UpdateInfo->Count = 1
UpdateInfo->Line = &UpdateLine;

Microsoft Windows NT Server White Paper 32

UpdateLine.Key = pConfigInfo-
>Line[0].Key;

UpdateLine.Value =
(PBYTE)pConfigInfo->Line[0].Value;

RetCode = SceSvcSetInfo(
SceHandle,

SceSvcAnalysisInfo,
NULL,
TRUE,
&UpdateInfo
);

if(retCode != SCESTATUS_SUCCESS)
{

//
// cleanup, something
// failed.
//

}
}
elseif (retCode == SCESTATUS_SUCCESS)
{

//
// simply delete the configuration.
// we already have analysis info in
// place.

}
else
{

//
// handle other error codes.
//

}
//
// delete the key
//
RetCode = SceSvcSetInfo(

SceHandle,
SceSvcConfigurationInfo,
ServiceInfo->Line[i].Key,
TRUE,
NULL
);

if(retCode != SCESTATUS_SUCCESS)
{

//
// error cleanup.
//

}
}
//
// SCESTATUS_RECORD_NOT_FOUND means nothing more.
// as the key does not even exist.
//

}
else

{
//
// Value to set is non-NULL,
// hence we must compare with current analysis
// if it is same, then delete the current analysis
// if it is different, do nothing to the analysis.
// Simply update the configuration info.
//
// left as exercise to the implementor.
//

}

Microsoft Windows NT Server White Paper

33

SceSvcFree(pConfigInfo);
pConfigInfo = NULL;

SceSvcFree(pAnalInfo);
PAnalInfo = NULL;

}
//
// error cleanup
// set detail error message appropriately if the buffer
// is not NULL
//
return retCode;

}

Installation and Registration
The service DLL must be installed on the Windows NT-based system where it is
expected to be used. In addition, Security Configuration tool set’s needs to be made
aware of the presence of the attachment. This process of installation and
registration should include following steps:

1. Copy the service attachment DLL to a particular directory. The preferred
directory is %windir%\secedit\attachments. You can create this directory if it
does not already exist.

2. Create a registry key under

HKEY_LOCAL_MACHINE\
Software\

Microsoft\
Windows NT\

CurrentVersion\
SecEdit\Services\

[Service Name]

The Service Name used here will be the registered name for the attachment. It
should be unique so as to not collide with other attachments. The service name
must be the same name used in Service Control Manager. The name used in
Service Control Manager is the name to link each service with Security
Configuration tool set.

3. Create the following values in this key:

 Value Name = ServiceAttachmentPath
 Value Type = REG_SZ
 Value = the full path to the service attachment DLL (for example, %windir

%\SecEdit\attachments\foobar.dll).

Building the Extension Snap-in
The Security Configuration tool set snap-ins are designed to be extensible to

Microsoft Windows NT Server White Paper 34

support the service attachment extension snap-ins. The communication between
the Security Configuration tool set snap-ins and the extension snap-ins is handled
by the standard MMC mechanisms and two well-defined Component Object Model
(COM) interfaces, as described in this section. While the service attachment engine
is responsible for configuring and analyzing service security and updating the
service configuration in the database, the service attachment extension allows user
to view, create, and modify configurations and analysis information. To function
correctly, it is imperative that the service snap-in follow the MMC extension snap-in
guidelines and the attachment guidelines provided in this document.

Each service attachment snap-in must be an extension snap-in, and these
extension snap-ins provide functionality only when invoked by the Security
Configuration Editor (or Manager) snap-in. Each service attachment snap-in can
extend a Services node type only. It declares itself as being a subordinate to nodes
of Services, and then for each occurrence of the Services node type, the MMC
console automatically adds the related snap-in extensions. Each service attachment
owns one scope pane node and the related result pane in MMC. Service
attachment extensions must allow the user to create or modify service security
settings in a configuration managed by the Security Configuration Editor (and
Manager) snap-in. It must also be able to display configuration and/or analysis
security settings with analysis status. It must support editing of service configuration
settings for a system, and the analysis results must be updated based on the
updated configuration settings.

It is up to the service attachment extension to determine the format and
implementation logic of its own result pane. COM interfaces provide a way to extend
Security Configuration Editor (and Manager) functionality for services without
dictating how each service extension performs its particular tasks. See the COM
interface layout shown in Figure A2.

Microsoft Windows NT Server White Paper

35

Figure A2. COM Interface Layout for Service Attachment

In this illustration, the Security Configuration Editor (or Manager) Snap-in
implements a COM interface called ISceSvcAttachmentData. The interface
provides the attachment snap-in to query configuration and analysis information
from configurations or the database respectively. The attachment snap-in
implements the COM interface ISceSvcAttachmentPersistInfo, which is used by
the Security Configuration Editor (or Manager) snap-in to get any modified
information that may need to be written to the configuration or the database. he
snap-in will then save this information appropriately.

There are three operations that the attachment snap-in must support:

 Display configuration and/or inspection information—to display
information, the attachment snap-in node extends the Security Configuration
Editor (or Manager) snap-in via the Services node. The Security Configuration
Editor (or Manager) node types that can be extended are:
 Configuration Services NodeType ={24a7f717-1f0c-11d1-affb-

00c04fb984f9}

 Inspection Services NodeType = {678050c7-1ff8-11d1-affb-00c04fb984f9}

When creating or editing a configuration, if the services node is expanded, all
registered extension snap-ins will be notified by the MMC directly. Each
attachment should then insert itself under the Services node, and then
complete the following steps:
 Use the QueryInterface method to query the Security Configuration tool

set interface ISceSvcAttachmentData.
 Call the Initialize method to inform Security Configuration tool set that it is

loaded and to establish a context to communicate for appropriate
information.

Microsoft Windows NT Server White Paper 36

 Either use the GetData method to pull information right away or wait until
its node is selected by the user.

 Modify configuration information in the configurations—the attachment
snap-in must allow the user to modify configuration information about the
service. The modified information must be held by the attachment snap-in until
the Security Configuration Editor (or Manager) uses the
ISceSvcAttachmentPersistInfo interface to pull the information. To avoid
memory leaks, memory allocated is freed by the owner. For this reason, both
interfaces have a FreeBuffer method.

 Modify configuration information in the database—the attachment snap-in
must support modifications to configuration information via the inspection node
also. This is to allow the user to make changes and re-apply the configuration
over time. The logic to do this should be identical to modifying information in
the configuration files. The changes made will take effect on the saved
configuration in the inspection database.

The Clipboard Format

#define CCF_SCESVC_ATTACHMENT (L”CCF_SCESVC_ATTACHMENT”)

This clipboard is used for each attachment snap-in to extract the configuration file
name from Security Configuration Editor (or Manager). The configuration file name
is a PWSTR. This configuration name is used in further communications between
the service attachment and Security Configuration Editor (or Manager) in the
Initialize method.

The Extension Snap-in Interfaces
The extension snap-in queries the following Security Configuration Editor (or
Manager) snap-in interfaces.

ISceSvcAttachmentData

class ISceSvcAttachmentData : public IUnknown
{
public:
 virtual /* [helpstring] */ HRESULT STDMETHODCALLTYPE GetData(
 /* [in] */ SCE_HANDLE sceHandle,
 /* [in] */ SCESVC_INFO_TYPE sceType,
 /* [out] */ PVOID *ppvData,
 /* [in out] */ PSCE_ENUMERATION_CONTEXT psceEnumHandle) = 0;
 virtual /* [helpstring] */ HRESULT STDMETHODCALLTYPE Initialize(
 /* [in] */ LPCTSTR ServiceName,
 /* [in] */ LPCTSTR TemplateName,
 /* [in] */ LPUNKNOWN lpUnknown,
 /* [out] */ SCE_HANDLE *sceHandle) = 0;
 virtual /* [helpstring] */ HRESULT STDMETHODCALLTYPE FreeBuffer(
 /* [in] */ PVOID pvData) = 0;
 virtual /* [helpstring] */ HRESULT STDMETHODCALLTYPE CloseHandle(
 /* [in] */ SCE_HANDLE sceHandle) = 0;
};

Microsoft Windows NT Server White Paper

37

ISceSvcAttachmentData is the COM interface implemented by the Security
Configuration Editor (or Manager) snap-in to support extension snap-ins. The
attachment extension snap-in should use it to retrieve service-specific information
for display user modification.

ISceSvcAttachmentPersistInfo

class ISceSvcAttachmentPersistInfo : public IUnknown
{
public:
 virtual /* [helpstring] */ HRESULT STDMETHODCALLTYPE Save(
 /* [out] */ SCE_HANDLE *sceHandle,
 /* [out] */ PVOID *ppvData,
 /* [out] */ PBOOL pbOverwriteAll) = 0;
 virtual /* [helpstring] */ HRESULT STDMETHODCALLTYPE IsDirty() = 0;
 virtual /* [helpstring] */ HRESULT STDMETHODCALLTYPE FreeBuffer(
 /* [in] */ PVOID pvData) = 0;
};

The IsceSvcAttachmentPersistInfo interface is an abstract class that must be
implemented by each attachment extension snap-in. The Security Configuration
Editor (or Manager) snap-in calls this interface to check if there is modified
information that must be written back to the configuration file or the database (using
IsDirty). If that is the case, it calls the Save method to make the extension snap-in
communicate the information that must be saved.

Installation and Registration
The Security Configuration Editor (or Manager) snap-in provides extensions only
through the Security Configuration Editor (or Manager) namespace. Context menus,
toolbars, toolbar buttons, and property pages are not extensible at this point. The
attachment snap-in must extend the Security Configuration Editor (or Manager)
name space by populating its own node at well-defined places in the namespace.

Attachment snap-ins should be registered under the registry key:

HKEY_LOCAL_MACHINE\
Software\

Microsoft\
MMC\

Snapins

The StandAlone key should NOT be created under the snap-in because each
attachment snap-in must be an extension only.

Attachment snap-ins must also register themselves under the Security
Configuration Editor Services NodeType subkeys as follows:

 To extend the Security Configuration Editor name space, use the registry key:

HKLM\
Software\

Microsoft Windows NT Server White Paper 38

Microsoft\
MMC\

NodeTypes\
24a7f717-1f0c-11d1-affb-00c04fb984f9\

Extensions\
NameSpace

 To extend the Security Configuration Manager inspection (analysis) name
space, use the registry key:

HKLM\
Software\

Microsoft\
MMC\

NodeTypes\
678050c7-1ff8-11d1-affb-00c04fb984f9\

Extensions\
NameSpace

For more information, refer to the public header scesvc.h in the Platforms SDK.

To register the attachment snap-ins as extensions to Security Configuration Editor/
Manager snap-in, create these keys in your DllRegisterServer and
DllUnregisterServer function implementations.

Initialization – Adding the Attachment Node
When a Services node under either Security Configuration Editor or under Security
Configuration Manager is expanded, MMC uses IComponentData::Notify and the
MMCN_EXPAND event to notify Security Configuration Editor/Manager and all of its
extensions. Security Configuration Editor/Manager then extracts its internal format
from the lpDataObject and stop further processing when it sees the Services node
type. The attachment snap-ins (registered as extensions) extract the node type from
the lpDataObject also. If the node type is one of the Services node types defined
earlier, the attachment snap-ins insert their root nodes under the specified parent
node.

Microsoft Windows NT Server White Paper

39

//
// detect which extension node to extend
//

GUID* nodeType = ExtractNodeType(lpDataObject);
if (nodeType == NULL) {
 return S_OK;
}
if (::IsEqualGUID(*nodeType, cNodetypeSceTemplateServices) == TRUE)
 folderType =ATTACHEMNT_STATIC; // defined by attachment writer.
else if (::IsEqualGUID(*nodeType, cNodetypeSceAnalysisServices)
== TRUE)
 folderType =ATTACHMENT_STATIC_ANALYSIS;
// defined by attachment writer
// Free resources
::GlobalFree(reinterpret_cast<HANDLE>(nodeType));
//
// As an extension snapin, the service attachment
// root node should be added
// Insert that node, and remember it
// as the root of the SMB Extension namespace.
//
CheckAndInsertRootNodeToMMCScopePane

The next major step in the initialization is to establish communication with the
Security Configuration Editor/Manager snap-in. This is necessary because the
attachment gets its data, as well any changes made by the user, from the Security
Configuration Editor (or Manager). To do this, follow these steps:

1. Obtain the configuration name. If the Services node type that the attachment is
inserted under was that of a configuration, then the attachment needs to know
which configuration it is. It communicates this information to the Security
Configuration Editor (or Manager) during interface initialization. The
configuration name can be obtained via the clipboard format, as follows:

PWSTR * TemplateName =
ExtractTemplateNameFromDataObject(lpDataObject);

2. Set up the context with the Security Configuration Editor/Manager. Once the
configuration name is known (or if the Service node is of type Inspection), the
attachment snap-in must query the ISceSvcAttachmentData interface and call
Initialize to set up the context.

Microsoft Windows NT Server White Paper 40

//
// QueryInterface for the main snap-in’s IUnkown.
//
LPUNKNOWN pUnk;
hr = lpDataObject->QueryInterface(IID_IUnknown,
 reinterpret_cast<void**>(&pUnk));
//
// QueryInterface ISceSvcAttachmentData
//
if (SUCCEEDED(hr)) {
 hr = pUnk->QueryInterface(IID_ISceSvcAttachmentData,
 reinterpret_cast<void**>(&pSceData));
}
…
//
// QueryInterface the attachment’s IUnknown as
// that is needed by the main snap-in.
//
((LPUNKNOWN)m_pSnapin)->QueryInterface(IID_IUnknown,
reinterpret_cast<void**>(&pUnk));
//
// Call Initialize to setup context with main snap-in.
//
m_pSceData->Initialize(ServiceName, TemplateName, pUnk, &sceHandle);
…

NOTE: You must call CloseHandle to close the sceHandle once you are done.

3. Get the appropriate data. (The previous step really completes the initialization.)
The attachment snap-in can use the established context to query appropriate
data from Security Configuration Editor as needed by using the GetData
interface. The attachment may decide to do this proactively as soon as it
initializes with Security Configuration Editor, or it may wait until the user actually
attempts to expand the attachment node by clicking it. The attachment can
display the information received using any UI controls available.

//
// GetData – we get the configuration information here.
//
m_pSceData->GetData (sceHandle, SceSvcConfigurationInfo, &pData,
 &enumHandle);

NOTE: You must use the FreeBuffer method to free the buffer allocated here by
Security Configuration Editor/Manager.

Implementing ISceSvcAttachmentPersistInfo
After initialization, it is important that the attachment implement the
ISceSvcAttachmentPersistInfo interface. The Security Configuration
Editor/Manager queries this interface at various times, as when saving the
configuration and when closing the snap-in, to allow the attachment to save any
modifications that the user may have made to the inspection database or to the
associated configuration.

Microsoft Windows NT Server White Paper

41

class CSceSvcAttachmentPersistInfo:
 public ISceSvcAttachmentPersistInfo,
 public CComObjectRoot
{
BEGIN_COM_MAP(CSceSvcAttachmentPersistInfo)
 COM_INTERFACE_ENTRY(ISceSvcAttachmentPersistInfo)
END_COM_MAP()
 friend class CDataObject;
 friend class CComponentDataImpl;
 CSceSvcAttachmentPersistInfo();
 ~CSceSvcAttachmentPersistInfo();
public:
 // ISceSvcAttachmentPersistInfo interface members
 STDMETHOD(IsDirty)();
 STDMETHOD(Save)(SCE_HANDLE *sceHandle, PVOID *ppvData,
PBOOL pbOverwriteAll);
 STDMETHOD(FreeBuffer)(PVOID pvData);
 ...
private:
 CString m_TemplateName;
 LPSCESVCATTACHMENTDATA m_pSceData;
 SCE_HANDLE m_sceHandle;
 ...
};
//
// Implementing IsDirty()
//
STDMETHODIMP CSceSvcAttachmentPersistInfo::IsDirty()
{
 if (m_pSnapin == NULL) {
return S_FALSE;
 }
 //
 // just calling the snapin’s main IsDirty.
 //
 return m_pSnapin->IsDirty();
}
//
// Implementing Save()
//
STDMETHODIMP CSceSvcAttachmentPersistInfo::Save(
 SCE_HANDLE *psceHandle,
 PVOID *ppvData,
 PBOOL pbOverwriteAll)
{
 if (psceHandle == NULL || ppvData == NULL ||
pbOverwriteAll == NULL) {
 return E_INVALIDARG;
 }
 if (m_pSnapin != NULL) {
 m_pSnapin->SaveDataInBuffer(ppvData, pbOverwriteAll);
 *psceHandle = m_sceHandle;
 }
 return S_OK;

Microsoft Windows NT Server White Paper 42

}
//
// Implementing FreeBuffer
//
STDMETHODIMP CSceSvcAttachmentPersistInfo::FreeBuffer(PVOID pvData)
{
 if (pvData == NULL) {
 return S_OK;
 }
 PSCESVC_ANALYSIS_INFO pTempInfo=(PSCESVC_ANALYSIS_INFO)pvData;
 if (pTempInfo->Lines != NULL) {
 for (DWORD i=0; i < pTempInfo->Count; i++) {
 if (pTempInfo->Lines[i].Key != NULL)
 LocalFree(pTempInfo->Lines[i].Key);
 if (pTempInfo->Lines[i].Value != NULL)
 LocalFree(pTempInfo->Lines[i].Value);
 }
 LocalFree(pTempInfo->Lines);
 }
 LocalFree(pTempInfo);
 return S_OK;
}

Microsoft Windows NT Server White Paper

43

	Introduction
	Security Configuration Manager Overview
	Configuring Security
	Analyzing Security
	For More Information
	Appendix A. Implementing Service security Attachments
	White Paper
	Why Security Configuration Manager is Necessary
	Security Configuration Manager Design Goals
	Security Configuration Manager Features
	Comprehensiveness
	Flexibility
	Extendibility
	Simplicity

	Security Configuration Areas
	Area

	Security Configuration Manager User Interface
	Graphical User Interface
	Secedit Command Line Tool
	Account Policies
	Local Policies
	Restricted Group Management
	System Services Security
	File and Registry Security
	Environment Variables for File System Security
	Analyzing File System and Registry Security
	Introduction
	Architecture
	Building the Attachment Engine DLL
	The Data Structures
	Security Configuration Tool Set Helper APIs
	Required Attachment Interfaces
	Sample Code
	Sample Code
	Sample Code

	Installation and Registration

	Building the Extension Snap-in
	The Clipboard Format
	The Extension Snap-in Interfaces
	Installation and Registration
	Initialization – Adding the Attachment Node
	Implementing ISceSvcAttachmentPersistInfo

