
POSIX.DOC
Microsoft® Windows NT™ Resource Kit--POSIX Utilities

Windows NTâ Resource Kits
Copyright © Microsoft Corp. 1985-1998

This document contains important information about the POSIX utilities that is not included in
the Windows NT Resource Kit online Help or printed documents.

Using Write to View This Document
If you enlarge the Write window to its maximum size, this document will be easier to read. To do
so, click the Maximize button in the upper-right corner of the window. Or open the Control menu
in the upper-left corner of the Write window (press ALT+SPACEBAR), and then choose the
Maximize command.

To move through the document, press PAGE UP or PAGE DOWN or click the arrows at the top
and bottom of the scroll bar along the right side of the Write window.

To print the document, choose the Print command from the File menu.

For Help on using Write, press F1.

To read other online documents, choose the Open command from the File menu.

Contents
This document contains information on these commands:

ar, page 2
cat, page 5
cc, page 6
chmod, page 21
cp, page 24
find, page 26
ln, page 30
ls, page 31
make, page 34
mkdir, page 42
mv, page 43
rm, page 44
rmdir, page 45
sh, page 46
touch, page 58
wc, page 59

For more details about the ar, cc, devsrv, find, ld, make, sh, and vi commands, see
RKTOOLS.HLP in the Resource Kit program group.

NAME
ar -- create and maintain library archives

SYNOPSIS
ar -d[-Tv] archive file ...
ar -m[-Tv] archive file ...
ar -m[-abiTv] position archive file ...
ar -p[-Tv] archive [file ...]
ar -q[-cTv] archive file ...
ar -r[-cuTv] archive file ...
ar -r[-abciuTv] position archive file ...
ar -t[-Tv] archive [file ...]
ar -x[-ouTv] archive [file ...]

DESCRIPTION
The ar utility creates and maintains groups of files combined into an archive. Once an archive
has been created, new files can be added and existing files can be extracted, deleted, or replaced.

Files are named in the archive by a single component; for example, if a file referenced by a path
containing a slash ("/") is archived, it will be named by the last component of that path. When
matching paths are listed on the command line against file names stored in the archive, only the
last component of the path will be compared.

All information and error messages use the path listed on the command line, if any was specified;
otherwise the name in the archive is used. If multiple files in the archive have the same name
and paths are listed on the command line to "select" archive files for an operation, only the first
file with a matching name will be selected.

The normal use of are is for creating and maintaining libraries that are suitable for use with the
loader (see ld) although it is not restricted to this purpose. The options follow.

-a
A positioning modifier used with the options -r and -m. The files are entered or moved
after the archive member position, which must be specified.

-b
A positioning modifier used with the options -r and -m. The files are entered or moved
before the archive member position, which must be specified.

-c
Whenever an archive is created, an information message to that effect is written to
standard error. If the -c option is specified, ar creates the archive silently.

-d
Deletes the specified archive files.

-i
A positioning modifier used with the options -r and -m. The files are entered or moved
before the archive member position, which must be specified. (Identical to the -b
option.)

-m
Moves the specified archive files within the archive. If one of the options -a, -b, or -i is
specified, the files are moved before or after the position file in the archive. If none of
those options are specified, the files are moved to the end of the archive.

-o

Sets the access and modification times of extracted files to the modification time of the
file when it was entered into the archive. This will fail if the user is not the owner of the
extracted file or the superuser.

-p
Writes the contents of the specified archive files to the standard output. If no files are
specified, the contents of all the files in the archive are written in the order they appear in
the archive.

-q
(Quickly) appends the specified files to the archive. If the archive does not exist, a new
archive file is created. When creating a large archive piece-by-piece, this is much faster
than the -r option, as no checking is done to see if the files already exist in the archive.

-r
Replaces or adds the specified files to the archive. If the archive does not exist, a new
archive file is created. Files that replace existing files do not change the order of the files
within the archive. New files are appended to the archive unless one of the options -a, -
b, or -i is specified.

-T
Selects and/or names archive members using only the first 15 characters of the archive
member or command line file name. The historic archive format had 16 bytes for the
name, but some historic archiver and loader implementations were unable to handle
names that used the entire space. This means that file names that are not unique in their
first 15 characters can subsequently be confused. A warning message is printed to the
standard error output if any file names are truncated.

-t
Lists the specified files in the order in which they appear in the archive, each on a
separate line. If no files are specified, all files in the archive are listed.

-u
Updates files. When used with the -r option, files in the archive will be replaced only if
the disk file has a newer modification time than the file in the archive. When used with
the -x option, files in the archive will be extracted only if the archive file has a newer
modification time than the file on disk.

-v
Provides verbose output. When used with the -d, -m, -q, or -x options, ar gives a file-
by-file description of the archive modification. This description consists of three, white-
space separated fields: the option letter, a dash ("-"), and the file name. When used with
the -r option, ar displays the description as above, but the initial letter is an "a" if the file
is added to the archive and an "r" if the file replaces a file already in the archive.

When used with the -p option, the name of each printed file is written to the standard
output before the contents of the file (preceded by a single newline character and
followed by two newline characters, enclosed in less-than ("<") and greater-than (">")
characters).

When used with the -t option, ar displays an "ls -l" style listing of information about the
members of the archive. This listing consists of eight, white-space separated fields: the
file permissions, the decimal user and group ID's separated by a single slash ("/"), the file
size (in bytes), the file modification time (in the date(1) format "%b %e %H:%M %Y"),
and the name of the file.

-x

Extracts the specified archive members into the files named by the command line
arguments. If no members are specified, all the members of the archive are extracted
into the current directory.
If the file does not exist, it is created; if it does exist, the owner and group will be
unchanged. The file access and modification times are the time of the extraction (also
see the -o option). The file permissions will be set to those of the file when it was
entered into the archive; this will fail if the user is not the owner of the extracted file or
the superuser.

The ar utility exits 0 on success, and >0 if an error occurs.

ENVIRONMENT
TMPDIR

The pathname of the directory to use when creating temporary files.

FILES
/tmp

default temporary file directory

ar.XXXXXX
temporary file names

COMPATIBILITY
By default, ar writes archives that may be incompatible with historic archives, as the format used
for storing archive members with names longer than 15 characters has changed. This
implementation of ar is backward-compatible with previous versions of ar in that it can read and
write (using the -T option) historic archives. The -T option is provided for compatibility only
and will be deleted in a future release.

STANDARDS
The ar utility is expected to offer a superset of the POSIX 1003.2 functionality.

NAME
cat -- concatenate and print files

SYNOPSIS
cat [-b] [-e] [-n] [-s] [-t] [-u] [-v] [file ...]

DESCRIPTION
The cat utility reads files sequentially, writing them to the standard output. The file operands are
processed in command line order. A single dash represents standard input. The options follow.

-b
Implies the -n option but does not number blank lines.

-e
Implies the -v option, and displays a dollar sign ("$") at the end of each line as well.

-n
Numbers the output lines, starting at 1.

-s
Squeezes multiple adjacent empty lines, causing the output to be single-spaced.

-t
Implies the -v option and displays tab characters as "^I" as well.

-u
The -u option guarantees that the output is unbuffered.

-v
Displays nonprinting characters so they are visible. Control characters print line "^X"
for control-X; the delete character (octal 0177) prints as "^?". Non-ASCII characters
(with the high bit set) are printed as "M-" (for meta) followed by the character for the
low 7 bits.

The cat utility exits 0 on success and >0 if an error occurs.

BUGS
Because of the shell language mechanism used to perform output redirection, the command

 cat file1 file2 > file1

will cause the original data in file1 to be destroyed!

HISTORY
A cat command appeared in Sixth Edition AT&T UNIX.
NAME
cc -- GNU project C Compiler

SYNOPSIS
cc [options] file ...

DESCRIPTION
cc is a version of the GNU C compiler. It accepts a dialect of ANSI C with extensions; this
dialect is different from the dialect used in 4.3 BSD and earlier distributions. The -traditional
flag causes the compiler to accept a dialect of extended Classic C, much like the C of these
earlier distributions. If you are not already familiar with ANSI C and its new features, you will
want to build your software with
-traditional.

DIFFERENCES
Most older C compiler flags are supported by cc. Three that are not are -go, to generate symbol
tables for the unsupported sdb debugger; -f, for single precision floating point in expressions
(which is now the default); and -t, for alternate compiler passes.

The differences between ANSI C and Classic C dialects are too numerous to describe here in
detail. The following quick summary is intended to make users aware of potential subtle
problems when converting Classic C code to ANSI C.

The most obvious change is the pervasive use of function prototypes. Under the ANSI C dialect,
the compiler checks number and type of arguments to C library functions when standard header
files are included; calls that fail to match will yield errors. A subtle consequence of adding

prototype declarations is that user code which inadvertently redefines a C library function may
break; for example it is no longer possible to write an abort function that takes different
parameters or returns a different value from the standard abort, when including standard header
files.

Another issue with prototypes is that functions which take different parameter types no longer
have the same type; function pointers now differ by parameter types as well as return types.
Variable argument lists are handled differently; the old varargs(3) package is obsolete; it was
replaced by stdarg(3), which unfortunately is not completely compatible. A subtle change in
type promotion can be confusing: small unsigned types are now widened into signed types rather
than unsigned types. A similar problem can occur with the sizeof operator, which now yields an
unsigned type rather than a signed type. One common problem is due to a change in scoping:
external declarations are now scoped to the block they occur in, so a declaration for (say) errno
inside one block will no longer declare it in all subsequent blocks. The syntax for braces in
structure initializations is now a bit stricter, and it is sometimes necessary to add braces to please
the compiler.

Two very subtle and sometimes very annoying features apply to constant strings and to the
longjmp(3) function. Constant strings in the ANSI dialect are read-only; attempts to alter them
cause protection violations. This ANSI feature permits the compiler to coalesce identical strings
in the same source file; and, since the read-only part of a binary is sharable, it saves space when
multiple copies of a binary are running at the same time. The most common difficulty with read-
only strings lies with the use of the mktemp function, which in the past often altered a constant
string argument. It is now necessary to copy a constant string before it may be altered. The
longjmp function may now destroy any register or stack variable in the function that made the
corresponding call to the setjmp function; to protect a local variable, the new ANSI volatile
modifier must be used. This often leads to confusing situations upon 'return' from setjmp. The
compiler has extended warning flags for dealing with read-only strings and setjmp, but these are
not very effective.

If your code has problems with any of these ANSI features, you will probably want to use -
traditional. Even with -traditional, there are some differences between this dialect of Classic C
and the dialect supported on older distributions.

There are at least two differences that are a consequence of the fact that cc uses an ANSI C style
grammar for both traditional and ANSI modes. The old C dialect permitted a typedef to replace
a simple type in the idiom "unsigned type"; this cc treats such forms as syntax errors. The old C
dialect also permitted formal parameters to have the same names as typedef types; the current
dialect does not.

Some questionable or illegal practices that were supported in the old C dialect are not supported
by
-traditional: noncomment text at the end of a "#include" preprocessor control line is an error,
not ignored; compound assignment operators must not contain white space, e.g. "* =" is not the
same as "*="; the last member declaration in a structure or union must be terminated by a
semicolon; it is not possible to "switch" on function pointers; more than one occurrence of
"#else" at the same level in a preprocessor "#if" clause is an error, not ignored.

Some truly ancient C practices are no longer supported. The idiom of declaring an anonymous
structure and using its members to extract fields from other structures or even nonstructures is

illegal. Integers are not automatically converted to pointers when they are dereferenced. The -
traditional dialect does not retain the so-called "old-fashioned" assignment operators (with the
"=" preceding rather than following the operator) or initializations (with no "=" between
initializer and initializee).

WARNING
The rest of this topic is an extract of the documentation of the GNU C compiler and is limited to
the meaning of the options. It is not kept up to date. If you want to be certain of the
information below, check it in the manual "Using and Porting GCC". Refer to the Info file
gcc.info or the DVI file gcc.dvi, which are made from the Texinfo source file gcc.texinfo.

The GNU C compiler uses a command syntax much like the UNIX C compiler. The cc program
accepts options and file names as operands. Multiple single-letter options may not be grouped: -
dr is very different from -d -r.

When you invoke GNU CC, it normally does preprocessing, compiling, assembly, and linking.
File names which end in .c are taken as C source to be preprocessed and compiled; file names
ending in .i are taken as preprocessor output to be compiled; compiler output files plus any input
files with names ending in .s are assembled; then the resulting object files, plus any other input
files, are linked to produce an executable.
Command options allow you to stop this process at an intermediate stage. For example, the -c
option says not to run the linker. Then the output consists of object files output by the
assembler.

Other command options are passed on to one stage of processing. Some options control the
preprocessor and others the compiler itself. Yet other options control the assembler and linker;
these are not documented here, but you rarely need to use any of them.

OPTIONS
Here are the options to control the overall compilation process, including those that say whether
to link, whether to assemble, and so on.

-o file
Places output in file file. This applies regardless of whatever sort of output is being
produced -- whether it is an executable file, an object file, an assembler file, or
preprocessed C code.
If -o is not specified, the default is to put an executable file in a.out, the object file
source.c in source.o, an assembler file in source.s, and preprocessed C on standard
output.

-c
Compiles or assembles the source files, but does not link. Produces object files with
names made by replacing .c or .s with .o at the end of the input file names. Does nothing
at all for object files specified as input.

-S
Compiles into assembler code but does not assemble. The assembler output file name is
made by replacing .c with .s at the end of the input file name. Does nothing at all for
assembler source files or object files specified as input.

-E
Runs only the C preprocessor. Preprocess all the C source files specified and outputs the
results to standard output.

-v
Compiler driver program prints the commands it executes as it runs the preprocessor,
compiler proper, assembler, and linker. Some of these are directed to print their own
version numbers.

-pipe
Uses pipes rather than temporary files to communicate between the various stages of
compilation. This fails to work on some systems where the assembler is unable to read
from a pipe; but the GNU assembler has no trouble.

-Bprefix
Compiler driver program tries prefix as a prefix for each program it tries to run. These
programs are cpp, cc1, as, and ld.

For each subprogram to be run, the compiler driver first tries the -B prefix, if any. If that
name is not found, or if -B was not specified, the driver tries a standard prefix (which
currently is /usr/libexec/). If this does not result in a file name that is found, the
unmodified program name is searched for using the directories specified in your PATH
environment variable.

You can get a similar result from the environment variable GCC_EXEC_PREFIX; if it
is defined, its value is used as a prefix in the same way. If both the -B option and the
GCC_EXEC_PREFIX variable are present, the -B option is used first and the
environment variable value is used second.

-bprefix
The argument prefix is used as a second prefix for the compiler executables and libraries.
This prefix is optional: the compiler tries each file first with it, then without it. This
prefix follows the prefix specified with -B or the default prefixes.

Thus, -bvax- -Bcc/ in the presence of environment variable GCC_EXEC_PREFIX with
definition /u/foo/ causes GNU CC to try the following file names for the preprocessor
executable.

cc/vax-cpp
cc/cpp
/u/foo/vax-cpp
/u/foo/cpp
/usr/libexec/vax-cpp
/usr/libexec/cpp

The following options control the details of C compilation itself.

-ansi
Supports all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C, such as the
asm, inline, and typeof keywords and predefined macros such as unix and vax that
identify the type of system you are using. It also enables the undesirable and rarely used
ANSI trigraph feature.
The alternate keywords __asm__, __inline__, and __typeof__ continue to work despite -
ansi. You would not want to use them in an ANSI C program, of course; but it useful to
put them in header files that might be included in compilations done with -ansi.

Alternate predefined macros such as __unix__ and __vax__ are also available, with or
without -ansi.

The -ansi option does not cause non-ANSI programs to be rejected gratuitously. For
that,
-pedantic is required in addition to -ansi.

The macro __STRICT_ANSI__ is predefined when the -ansi option is used. Some
header files may notice this macro and refrain from declaring certain functions or
defining certain macros that the ANSI standard does not call for; this is to avoid
interfering with any programs that might use these names for other things.

-traditional
Attempts to support some aspects of traditional C compilers. Specifically:

* All extern declarations take effect globally even if they are written inside of a
function definition. This includes implicit declarations of functions.

* The keywords typeof, inline, signed, const, and volatile are not recognized.

* Comparisons between pointers and integers are always allowed.

* Integer types unsigned short and unsigned char promote to unsigned int.

* Out-of-range floating point literals are not an error.

* All automatic variables not declared register are preserved by longjmp(3C).
Ordinarily, GNU C follows ANSI C: automatic variables not declared volatile may be
clobbered.

* In the preprocessor, comments convert to nothing at all, rather than to a space. This
allows traditional token concatenation.

* In the preprocessor, macro arguments are recognized within string constants in a
macro definition (and their values are stringified, though without additional quote marks,
when they appear in such a context). The preprocessor always considers a string
constant to end at a newline.

* The predefined macro __STDC__ is not defined when you use -traditional, but
__GNUC__ is (since the GNU extensions which __GNUC__ indicates are not affected
by -traditional). If you need to write header files that work differently (depending upon
whether -traditional is in use) you can distinguish four situations by testing both of
these predefined macros: GNU C, traditional GNU C, other ANSI C compilers, and
other old C compilers.

-O
Optimizes. Optimizing compilation takes somewhat more time and a lot more memory
for a large function.

Without -O, the compiler's goal is to reduce the cost of compilation and to make
debugging produce the expected results. Statements are independent--if you stop the
program with a breakpoint between statements, you can then assign a new value to any
variable or change the program counter to any other statement in the function and get
exactly the results you would expect from the source code.

Without -O, only variables declared register are allocated in registers. The resulting
compiled code is a little worse than produced by PCC without -O.

With -O, the compiler tries to reduce code size and execution time.

Some of the -f options described below turn specific kinds of optimization on or off.
-g

Produces debugging information in the operating system's native format (for dbx or sdb).
gdb also can work with this debugging information.

Unlike most other C compilers, GNU CC allows you to use -g with -O. The shortcuts
taken by optimized code may occasionally produce surprising results--some variables
you declared may not exist at all; flow of control may briefly move where you did not
expect it; some statements may not be executed because they compute constant results or
their values were already at hand; some statements may execute in different places
because they were moved out of loops. Nevertheless, it proves possible to debug
optimized output. This makes it reasonable to use the optimizer for programs that might
have bugs.

-w
Inhibits all warning messages.

-W
Prints extra warning messages for the following events.

* An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they require data
flow information that is computed only when optimizing. If you do not specify -O, you
simply will not get these warnings.

These warnings occur only for variables that are candidates for register allocation.
Therefore, they do not occur for a variable that is declared volatile; or whose address is
taken; or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
structures, unions, or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute a value
that itself is never used, because such computations may be deleted by data flow analysis
before the warnings are printed.

These warnings are made optional because GNU CC is not smart enough to see all the
reasons why the code might be correct despite appearing to have an error. Here is one
example of how this can happen:

{
\ \ int x;
\ \ switch (y)
\ \ \ \ {
\ \ \ \ case 1: x = 1;
\ \ \ \ \ \ break;
\ \ \ \ case 2: x = 4;
\ \ \ \ \ \ break;
\ \ \ \ case 3: x = 5;
\ \ \ \ }
\ \ foo (x);
}

If the value of y is always 1, 2, or 3, then x is always initialized; however, GNU CC does
not know this. The following example demonstrates another common case.

{
\ \ int save_y;
\ \ if (change_y) save_y = y, y = new_y;
\ \ ...
\ \ if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.
Some spurious warnings can be avoided if you declare as volatile all the functions you
use that never return.

* A nonvolatile automatic variable might be changed by a call to longjmp(3C). These
warnings are possible only in optimizing compilation.

The compiler sees only the calls to setjmp(3C). It cannot know where longjmp(3C) will
be called; in fact, a signal handler could call it at any point in the code. As a result, you
may get a warning even when there is, in fact, no problem because longjmp(3C) cannot,
in fact, be called at the place that would cause a problem.

* A function can return either with or without a value. (Falling off the end of the
function body is considered returning without a value.) For example, the following
function would evoke such a warning.

foo (a)
{
\ \ if (a > 0)
\ \ \ \ return a;
}

Spurious warnings can occur because GNU CC does not realize that certain functions
(including abort(3C) and longjmp(3C)) will never return.

* An expression statement contains no side effects.

In the future, other useful warnings also may be enabled by this option.

-Wimplicit
Warns whenever a function is implicitly declared.

-Wreturn-type
Warns whenever a function is defined with a return-type that defaults to int. Also warns
about any return statement with no return-value in a function whose return-type is not
void.

-Wunused
Warns whenever a local variable is unused aside from its declaration and whenever a
function is declared static but never defined.

-Wswitch
Warns whenever a switch statement has an index of enumeral type and lacks a case for
one or more of the named codes of that enumeration. (The presence of a default label
prevents this warning.) case labels outside the enumeration range also provoke warnings
when this option is used.

-Wcomment
Warns whenever a comment-start sequence /* appears in a comment.

-Wtrigraphs
Warns if any trigraphs are encountered (assuming they are enabled).

-Wall
All of the above -W options combined. These are all the options that pertain to usage
which we do not recommend and that we believe is always easy to avoid, even in
conjunction with macros.
The other -W... options below are not implied by -Wall because certain kinds of useful
macros are almost impossible to write without causing those warnings.

-Wshadow
Warns whenever a local variable shadows another local variable.

-Wid-clash-len
Warns whenever two distinct identifiers match in the first len characters. This may help
you prepare a program that will compile with certain obsolete, brain-damaged compilers.

-Wpointer-arith
Warns about anything that depends upon the size of a function type or of void. GNU C
assigns these types a size of 1 for convenience in making calculations with void *
pointers and pointers to functions.

-Wcast-qual
Warns whenever a pointer is cast so as to remove a type qualifier from the target type.
For example, warns if a const char * is cast to an ordinary char *.

-Wwrite-strings
Gives string constants the type const char[length] so that copying the address of one into
a non-const char * pointer will get a warning. At compile time, these warnings will
help you find code that can try to write into a string constant, but only if you have been

very careful about using const in declarations and prototypes. Otherwise, it will just be a
nuisance; this is why we did not make
-Wall request these warnings.

-p
Generates extra code to write profile information suitable for the analysis program
prof(1).

-pg
Generates extra code to write profile information suitable for the analysis program
gprof(1).

-a
Generates extra code to write profile information for basic blocks, suitable for the
analysis program tcov(1). Eventually, GNU gprof(1) should be extended to process this
data.

-llibrary
Searchs a standard list of directories for a library named library, which is actually a file
named liblibrary.a. The linker uses this file as if it had been specified precisely by
name.

The directories searched include several standard system directories plus any that you
specify
with -L.

Normally, the files found this way are library files--archive files whose members are
object files. The linker handles an archive file by scanning through it for members that
define symbols which have, so far, been referenced but not defined. But, if the file that
is found is an ordinary object file, it is linked in the usual fashion. The only difference
between using an -l option and specifying a file name is that -l searches several
directories.

-Ldir
Adds directory dir to the list of directories to be searched for -l.

-nostdlib
Does not use the standard system libraries and startup files when linking. Only the files
you specify (plus gnulib) will be passed to the linker.

-mmachinespec
This is a machine-dependent option that specifies something about the type of target
machine. These options are defined by the macro TARGET_SWITCHES in the
machine description. The default for the options is also defined by that macro, which
enables you to change the defaults.
The following -m options are defined in the 68000 machine description:

-m68020
-mc68020

Generates output for a 68020 (rather than a 68000). This is the default if you use
the unmodified sources.

-m68000
-mc68000

Generates output for a 68000 (rather than a 68020).

-m68881
Generates output containing 68881 instructions for floating point. This is the
default if you use the unmodified sources.

-mfpa
Generates output containing Sun FPA instructions for floating point.

-msoft-float
Generates output containing library calls for floating point.

-mshort
Considers type int to be 16 bits wide, like short int.

-mnobitfield
Does not use the bit-field instructions. -m68000 implies -mnobitfield.

-mbitfield
Does use the bit-field instructions. -m68020 implies -mbitfield. This is the
default if you use the unmodified sources.

-mrtd
Uses a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their arguments
while returning. This saves one instruction in the caller since there is no need to
pop the arguments there.
This calling convention is incompatible with the one normally used on UNIX, so
you cannot use it if you need to call libraries compiled with the UNIX compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf(3S)); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010 and 68020 processors but not by the
68000.

The following -m options are defined in the Vax machine description.

-munix
Does not output certain jump instructions (aobleq and so on) that the UNIX
assembler for the Vax cannot handle across long ranges.

-mgnu
Does output those jump instructions, on the assumption that you will assemble
with the GNU assembler.

-mg
Outputs code for g-format floating point numbers instead of d-format.

The following -m switches are supported on the Sparc.

-mfpu
Generates output containing floating point instructions. This is the default if you
use the unmodified sources.

-msoft-float
Generates output containing library calls for floating point.

-mno-epilogue
Generates separate return instructions for return statements. This has both
advantages and disadvantages.

The following -m options are defined in the Convex machine description.

-mc1
Generates output for a C1. This is the default when the compiler is configured for
a C1.

-mc2
Generates output for a C2. This is the default when the compiler is configured for
a C2.

-margcount
Generates code that puts an argument count in the word preceding each argument
list. Some nonportable Convex and Vax programs need this word. (Debuggers do
not; this information is in the symbol table.)

-mnoargcount
Omits the argument count word. This is the default if you use the unmodified
sources.

-fflag
Specifies machine-independent flags. Most flags have both positive and negative forms;
for example, the negative form of -ffoo would be -fno-foo. In the table below, only one
of the forms is listed--the one that is not the default. You can figure out the other form
by either removing no- or adding it.

-fpcc-struct-return
Uses the same convention for returning struct and union values that is used by the usual
C compiler on your system. This convention is less efficient for small structures; and, on

many machines, it fails to be reentrant. However, it has the advantage of allowing
intercallability between GCC-compiled code and PCC-compiled code.

-ffloat-store
Does not store floating-point variables in registers. This prevents undesirable excess
precision on machines such as the 68000 where the floating registers (of the 68881) keep
more precision than a double is supposed to have.

For most programs, the excess precision does only good; however, a few programs rely
upon the precise definition of IEEE floating point. Use -ffloat-store for such programs.

-fno-asm
Does not recognize asm, inline, or typeof as a keyword. These words may then be used
as identifiers. You can use __asm__, __inline__, and __typeof__ instead.

-fno-defer-pop
Always pops the arguments to each function call as soon as that function returns.
Normally, the compiler (when optimizing) lets arguments accumulate on the stack for
several function calls and pops them all at once.

-fstrength-reduce
Optimizes loop strength reduction and eliminates iteration variables.

-fcombine-regs
Allows the combine pass to combine an instruction that copies one register into another.
This might or might not produce better code when used in addition to -O.

-fforce-mem
Forces memory operands to be copied into registers before doing arithmetic on them.
This may produce better code by making all memory references potential common
subexpressions. When they are not common subexpressions, instruction combination
should eliminate the separate register-load.

-fforce-addr
Forces memory address constants to be copied into registers before doing arithmetic on
them. This may produce better code just as -fforce-mem may.

-fomit-frame-pointer
Does not keep the frame pointer in a register for functions that do not need one. This
avoids the instructions to save, set up, and restore frame pointers. It also makes an extra
register available in many functions. It also makes debugging impossible.

On some machines, such as the Vax, this flag has no effect because the standard calling
sequence automatically handles the frame pointer and nothing is saved by pretending it
does not exist. The machine-description macro FRAME_POINTER_REQUIRED
controls whether a target machine supports this flag.

-finline-functions
Integrates all simple functions into their callers. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated and the function is declared static, then the
function is normally not output as assembler code in its own right.

-fcaller-saves
Enables values to be allocated in registers that will be clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code than would otherwise be
produced.

This option is enabled by default on certain machines, usually those that have no call-
preserved registers to use instead.

-fkeep-inline-functions
Outputs a separate run-time callable version of the function, even if all calls to a given
function are integrated and the function is declared static.

-fwritable-strings
Stores string constants in the writable data segment and does not uniquize them. This is
for compatibility with old programs that assume they can write into string constants.
Writing into string constants is a very bad idea; constants should be constant.

-fcond-mismatch
Allows conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void.

-fno-function-cse
Does not put function addresses in registers; instead, it makes each instruction that calls a
constant function contain the function's address explicitly.

This option results in less efficient code, but some strange hacks that alter the assembler
output may be confused by the optimizations performed when this option is not used.

-fvolatile
Considers all memory references through pointers to be volatile.

-fshared-data
Requests that the data and non-const variables of this compilation be shared data rather
than private data. The distinction makes sense only on certain operating systems, where
shared data is shared between processes running the same program, while private data
exists in one copy per process.

-funsigned-char
Lets the type char be the unsigned, like unsigned char.
Each kind of machine has a default for what char should be. It is either like unsigned
char by default or like signed char by default. (Actually, at present, the default is
always signed.)
The type char is always a distinct type from either signed char or unsigned char, even
though its behavior is always just like one of those two.

Note that this is equivalent to -fno-signed-char, which is the negative form of -fsigned-
char.

-fsigned-char
Lets the type char be signed, like signed char.

Note that this is equivalent to -fno-unsigned-char, which is the negative form of -
funsigned-char.

-fdelayed-branch
If supported for the target machine, attempts to reorder instructions to exploit instruction
slots available after delayed branch instructions.

-ffixed-reg
Treats the register named reg as a fixed register; generated code should never refer to it
(except perhaps as a stack pointer, frame pointer, or in some other fixed role).

reg must be the name of a register. The register names accepted are machine-specific
and are defined in the REGISTER_NAMES macro in the machine description macro
file.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg
Treats the register named reg as an allocatable register that is clobbered by function calls.
It may be allocated for temporaries or variables that do not live across a call. Functions
compiled this way will not save and restore the register reg.

Use of this flag for a register that has a fixed pervasive role in the machine's execution
model, such as the stack pointer or frame pointer, will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg
Treats the register named reg as an allocatable register saved by functions. It may be
allocated even for temporaries or variables that live across a call. Functions compiled
this way will save and restore the register reg if they use it.

Use of this flag for a register that has a fixed pervasive role in the machine's execution
model, such as the stack pointer or frame pointer, will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in which
function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

-dletters
Says to make debugging dumps at times specified by letters. The following list defines
the possible letters.

r Dump after RTL generation.
j Dump after first jump optimization.
J Dump after last jump optimization.
s Dump after CSE (including the jump optimization that sometimes follows CSE).
L Dump after loop optimization.
f Dump after flow analysis.
c Dump after instruction combination.
l Dump after local register allocation.
g Dump after global register allocation.
d Dump after delayed branch scheduling.
m Print statistics on memory usage, at the end of the run.

-pedantic
Issues all the warnings demanded by strict ANSI standard C; rejects all programs that use
forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this option
(though a rare few will require -ansi). However, without this option, certain GNU
extensions and traditional C features are supported as well. With this option, they are
rejected. There is no reason to use this option; it exists only to satisfy pedants.

-pedantic does not cause warning messages for use of the alternate keywords whose
names begin and end with __.

-static
On Suns running version 4, this prevents linking with the shared libraries. (-g has the
same effect.)
These options control the C preprocessor, which is run on each C source file before
actual compilation. If you use the '-E' option, nothing is done except C preprocessing.
Some of these options make sense only together with '-E' because they request
preprocessor output that is not suitable for actual compilation.

-C
Tells the preprocessor not to discard comments. Used with the -E option.

-Idir
Searchs directory dir for include files.

-I-
Searches any directories specified with -I options before the -I- option only for the case
of #include "file"; they are not searched for #include <file>.

If additional directories are specified with -I options after the -I-, searches these
directories for all #include directives. (Ordinarily all -I directories are used this way.)

In addition, the -I- option inhibits the use of the current directory as the first search
directory for #include "file". Therefore, the current directory is searched only if it is
requested explicitly with
-I.. Specifying both -I- and -I. allows you to control precisely which directories are
searched before the current one and which are searched after.

-nostdinc
Does not search the standard system directories for header files. Only the directories you
have specified with -I options (and the current directory, if appropriate) are searched.

Between -nostdinc and -I-, you can eliminate all directories from the search path except
those you specify.

-M
Tells the preprocessor to output a rule suitable for make(1) describing the dependencies
of each source file. For each source file, the preprocessor outputs one make-rule whose
target is the object file name for that source file and whose dependencies are all the files
#included in it. This rule may be a single line or, if it is long, may be continued with \\-
newline.

-M implies -E.

-MM
Like -M but the output mentions only the user-header files included with #include
"file". System header files included with #include <file> are omitted.

-MM implies -E.

-Dmacro
Defines macro macro with the empty string as its definition.

-Dmacro=defn
Defines macro macro as defn.

-Umacro
Undefines macro macro.

-trigraphs
Supports ANSI C trigraphs. You do not want to know about this brain damage. The -
ansi option also has this effect.

FILES
file.c C source file
file.s assembly language file
file.o object file
a.out link edited output
/tmp/cc* temporary files
/usr/libexec/cpp preprocessor
/usr/libexec/ccl compiler
/usr/lib/libgnulib.a library needed by GCC on some machines
/usr/lib/crt0.o start-up routine
/usr/lib/libc.a standard C library, see intro(3)
/usr/include standard directory for #include files

BUGS

Bugs should be reported to bug-gcc@prep.ai.mit.edu. Bugs actually tend to get fixed if they
can be isolated, so it is in your interest to report them in such a way that they can be easily
reproduced.

COPYING
Copyright © 1988 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
included in translations approved by the Free Software Foundation instead of in the original
English.

AUTHORS
See the GNU CC Manual for the contributors to GNU CC.
NAME
chmod -- change file modes

SYNOPSIS
chmod [-R] mode file ...

DESCRIPTION
The chmod utility modifies the file mode bits of the listed files as specified by the mode operand.
The options follow.

-R
Traverses a file hierarchy. For each file that is of type directory, chmod changes the
mode of all files in the file hierarchy below it followed by the mode of the directory
itself.
Symbolic links are not indirected through nor are their modes altered.

Only the owner of a file or the superuser is permitted to change the mode of a file.
The chmod utility exits 0 on success and >0 if an error occurs.

MODES
Modes may be absolute or symbolic. An absolute mode is an octal number constructed by oring
the following values.

4000
set-user-ID-on-execution

2000
set-group-ID-on-execution

1000
sticky bit, see chmod(2)

0400
read by owner

0200
write by owner

0100
execute (or search for directories) by owner

0070
read, write, execute/search by group

0007
read, write, execute/search by others

The read, write, and execute/search values for group and others are encoded as described for
owner.
The symbolic mode is described by the following grammar.

mode ::= clause [, clause ...]
clause ::= [who ...] [action ...] last_action
action ::= op [perm ...]
last_action ::= op [perm ...]
who ::= a | u | g | o
op ::= + | - | =
perm ::= r | s | t | w | X | x | u | g | o

The who symbols "u", "g", and "o" specify the user, group, and other parts of the mode bits,
respectively. The who symbol "a" is equivalent to "ugo".

The perm symbols represent the portions of the mode bits, as follows.

r
The read bits.

s
The set-user-ID-on-execution and set-group-ID-on-execution bits.

t
The sticky bit.

w
The write bits.

x
The execute/search bits.

X
The execute/search bits if the file is a directory or if any of the execute/search bits are set
in the original (unmodified) mode. Operations with the perm symbol "X" are only
meaningful in conjunction with the op symbol "+"; it is ignored in all other cases.

The op symbols represent the operation performed, as follows.
+

If no value is supplied for perm, the "+" operation has no effect. If no value is supplied
for who, each permission bit specified in perm (for which the corresponding bit in the
file mode creation mask is clear) is set. Otherwise, the mode bits represented by the
specified who and perm values are set.

-
If no value is supplied for perm, the "-" operation has no effect. If no value is supplied
for who, the mode bits represented by perm are cleared for the owner, group, and other
permissions. Otherwise, the mode bits represented by the specified who and perm values
are cleared.

=
The mode bits specified by the who value are cleared; or, if no who value is specified,
the owner, group, and other mode bits are cleared. Then, if no value is supplied for who,
each permission bit specified in perm (for which the corresponding bit in the file mode
creation mask is clear) is set. Otherwise, the mode bits represented by the specified who
and perm values are set.

Each clause specifies one or more operations to be performed on the mode bits, and each
operation is applied to the mode bits in the order specified.

Operations upon the other permissions only (specified by the symbol "o" by itself), in
combination with the perm symbols "s" or "t", are ignored.

EXAMPLES
644

Makes a file readable by anyone and writable by the owner only.
go-w

Denies write permission to group and others.
=rw,+X

Sets the read and write permissions to the usual defaults but retain any execute
permissions that are currently set.

+X
Makes a directory or file searchable/executable by everyone if it is already
searchable/executable by anyone.

755
u=rwx,go=rx
u=rwx,go=u-w

Makes a file readable/executable by everyone and writeable by the owner only.
go=

Clears all mode bits for group and others.
g=u-w

Sets the group bits equal to the user bits but clears the group write bit.

BUGS
There is no perm option for the naughty bits.

STANDARDS

The chmod utility is expected to be POSIX 1003.2-compatible with the exception of the perm
symbols t and X, which are not included in that standard.

NAME
cp -- copy files

SYNOPSIS
cp [-R] [-f] [-h] [-i] [-p] source_file target_file
cp [-R] [-f] [-h] [-i] [-p] source_file ... target_directory

DESCRIPTION
In the first synopsis form, the cp utility copies the contents of the source_file to the target_file.
In the second synopsis form, the contents of each named source_file is copied to thedestination
target_directory. The names of the files themselves are not changed. If cp detects an attempt to
copy a file to itself, the copy will fail.

The following options are available.
-R

If source_file designates a directory, cp copies the directory and the entire subtree
connected at that point. This option also causes symbolic links to be copied, rather than
indirected through, and for cp to create special files rather than copying them as normal
files. Created directories have the same mode as the corresponding source directory,
unmodified by the process' umask.

-f
For each existing destination pathname, removes it and creates a new file, without
prompting for confirmation regardless of its permissions. (The -i option is ignored if the
-f option is specified.)

-h
Forces cp to follow symbolic links. Provided for the -R option, which does not follow
symbolic links by default.

-i
Causes cp to write a prompt to standard error before copying a file that would overwrite
an existing file. If the response from the standard input begins with the character "y'', the
file is copied if permissions allow the copy.

-p
Causes cp to preserve in the copy as many of the modification times, access times, file
modes, user IDs, and group IDs as allowed by permissions.

If the user ID and group ID cannot be preserved, no error message is displayed and the exit value
is not altered.

If the source file has its set user ID bit on and the user ID cannot be preserved, the set user ID bit
is not preserved in the copy's permissions. If the source file has its set group ID bit on and the
group ID cannot be preserved, the set group ID bit is not preserved in the copy's permissions. If
the source file has both the set user ID and set group ID bits on and either the user ID or group
ID cannot be preserved, neither the set user ID nor the set group ID bits are preserved in the
copy's permissions.

For each destination file that already exists, its contents are overwritten if permissions allow; but
its mode, user ID, and group ID are unchanged.

If the destination file does not exist, the mode of the source file is used as modified by the file
mode creation mask (see sh). If the source file has its set user ID bit on, that bit is removed
unless both the source file and the destination file are owned by the same user.

If the source file has its set group ID bit on, that bit is removed unless both the source file and the
destination file are in the same group and the user is a member of that group. If both the set user
ID and set group ID bits are set, all of the above conditions must be fulfilled or both bits are
removed.

Appropriate permissions are required for file creation or overwriting.

Symbolic links are followed unless the -R option is specified, in which case the link itself is
copied.

cp exits 0 on success; >0 if an error occurred.

HISTORY
The cp command is expected to be POSIX 1003.2 compatible.
NAME
find -- walk a file hierarchy

SYNOPSIS
find [-d] [-s] [-X] [-x] [-f file] file ... expression

DESCRIPTION
find recursively descends the directory tree for each file listed, evaluating an expression
(composed of the "primaries" and "operands" listed below) in terms of each file in the tree.

If file is a symbolic link referencing an existing file, the directory tree referenced by the link is
descended instead of the link itself.

The options follow.
-d

The -d option causes find to perform a depth-first traversal; i.e., directories are visited in
post-order and all entries in a directory will be acted upon before the directory itself. By
default, find visits directories in preorder; i.e., before their contents. Note that the default
is not a breadth-first traversal.

-f
The -f option specifies a file hierarchy for find to traverse. File hierarchies also may be
specified as the operands immediately following the options.

-s
The -s option causes the file information and file type, returned for each symbolic link, to
be those of the file referenced by the link, not the link itself. If the referenced file does
not exist, the file information and type will be for the link itself.

-X
The -X option is a modification to permit find to be safely used in conjunction with
xargs(1). If a file name contains any of the delimiting characters used by xargs, a
diagnostic message is displayed on standard error and the file is skipped. The delimiting

characters include single (" ' ") and double (" " ") quotes, backslash ("\"), space, tab, and
newline characters.

-x
The -x option prevents find from descending into directories that have a device number
different than that of the file from which the descent began.

PRIMARIES
-atime n

True, if the difference between the file last access time and the time find was started
(rounded up to the next full 24-hour period) is n 24-hour periods.

-ctime n
True, if the difference between the time of last change of file status information and the
time find was started (rounded up to the next full 24-hour period) is n 24-hour periods.

-exec utility [argument ...] ;
True, if the program named utility returns a zero value as its exit status. Optional
arguments may be passed to the utility. The expression must be terminated by a
semicolon (";"). If the string "{}" appears anywhere in the utility name or the arguments,
it is replaced by the pathname of the current file. utility will be executed from the
directory from which IfIiInId was executed.

-fstype type
True, if the file is contained in a file system of type type. Currently supported types are
"local", "mfs", "nfs", "pc", "rdonly", and "ufs". The types "local" and "rdonly" are not
specific file system types. The former matches any file system physically mounted on
the system where the find is being executed, and the latter matches any file system which
is mounted read-only.

-group gname
True, if the file belongs to the group gname. If gname is numeric and there is no such
group name, then gname is treated as a group id.

-inum n
True, if the file has inode number n.

-links n
True, if the file has n links.

-ls
This primary always evaluates to true. The following information for the current file is
written to standard output: its inode number, size in 512-byte blocks, file permissions,
number of hard links, owner, group, size in bytes, last modification time, and pathname.
If the file is a block or character-special file, the major and minor numbers will be
displayed instead of the size in bytes. If the file is a symbolic link, the pathname of the
linked-to file will be displayed preceded by "->". The format is identical to that
produced by "ls -dgils".

-mtime n
True, if the difference between the file last modification time and the time find was
started (rounded up to the next full 24-hour period) is n 24-hour periods.

-ok utility [argument ...] ;
The -ok primary is identical to the -exec primary with the exception that find requests
user affirmation for executing the utility by printing a message to the terminal and
reading a response. If the response is other than "y", the command is not executed and
the value of the -ok expression is false.

-name pattern

True, if the last component of the pathname being examined matches pattern. Special
shell pattern matching characters ("[", "]", "*", and "?") may be used as part of pattern.
These characters may be matched explicitly by escaping them with a backslash ("\").

-newer file
True, if the current file has a more recent last modification time than file.

-nouser
True, if the file belongs to an unknown user.

-nogroup
True, if the file belongs to an unknown group.

-path pattern
True, if the pathname being examined matches pattern. Special shell pattern matching
characters ("[", "]", "*", and "?") may be used as part of pattern. These characters may
be matched explicitly by escaping them with a backslash ("\"). Slashes ("/") are treated
as normal characters and do not need to be matched explicitly.

-perm mode
The mode may be either symbolic (see chmod) or an octal number. If the mode is
symbolic, a starting value of zero is assumed and the mode sets or clears permissions
without regard to the process' file mode creation mask. If the mode is octal, only bits
07777 (S_ISUID|S_ISGID|S_ISTXT|S_IRWXU|S_IRWXG|S_IRWXO) of the file's mode
bits participate in the comparison. If the mode is preceded by a dash ("-"), this primary
evaluates to true if at least all of the bits in the mode are set in the file's mode bits. If the
mode is not preceded by a dash, this primary evaluates to true if the bits in the mode
exactly match the file's mode bits. Note that the first character of a symbolic mode may
not be a dash ("-").

-print
This primary always evaluates to true. It prints the pathname of the current file to
standard output. The expression is appended to the user specified expression if neither -
exec, -ls, nor -ok is specified.

-prune
This primary always evaluates to true. It causes find to not descend into the current file.
Note that the -prune primary has no effect if the -d option was specified.

-size n[c]
True, if the file's size (rounded up in 512-byte blocks) is n. If n is followed by a "c",
then the primary is true if the file's size is n bytes.

-type t
True, if the file is of the specified type. Possible file types follow.

b block special
c character special
d directory
f regular file
l symbolic link
p FIFO
s socket

-user uname
True, if the file belongs to the user uname. If uname is numeric and there is no such user
name, then uname is treated as a user id.

All primaries which take a numeric argument allow the number to be preceded by a plus sign
("+") or a minus sign ("-"). A preceding plus sign means "more than n"; a preceding minus sign
means "less than n"; and neither sign means "exactly n".

OPERATORS
The primaries may be combined using the following operators. The operators are listed in order
of decreasing precedence.

(expression)
This evaluates to true if the parenthesized expression evaluates to true.

!expression
This is the unary NOT operator. It evaluates to true if the expression is false.

expression -and expression
expression expression

The -and operator is the logical AND operator. As it is implied by the juxtaposition of
two expressions, it does not need to be specified. The expression evaluates to true if
both expressions are true. The second expression is not evaluated if the first expression
is false.

expression -or expression
The -or operator is the logical OR operator. The expression evaluates to true if either the
first or the second expression is true. The second expression is not evaluated if the first
expression is true.

All operands and primaries must be separate arguments to find. Primaries which themselves take
arguments expect each argument to be a separate argument to find.

EXAMPLES
The following examples are shown as given to the shell.

find / \! -name "*.c" -print
Prints out a list of all the files whose names do not end in ".c".

find / -newer ttt -user wnj -print
Prints out a list of all the files owned by user "wnj" that are newer than the file "ttt".

find / \! \(-newer ttt -user wnj \)
Prints out a list of all the files that are not both newer than "ttt" and owned by "wnj".

find / \(-newer ttt -or -user wnj \)
Prints out a list of all the files that are either owned by "wnj" or that are newer than "ttt".

STANDARDS
The find utility syntax is a superset of the syntax specified by the POSIX 1003.2 standard.

The -s and -X options and the -inum and -ls primaries are extensions to POSIX 1003.2.

Historically, the -d, -s, and -x options were implemented using the primaries "-depth", "-follow",
and "-xdev". These primaries always evaluated to true. As they were really global variables that
took effect before the traversal began, some legal expressions could have unexpected results. An
example is the expression "-print -o -depth". As -print always evaluates to true, the standard
order of evaluation implies that -depth would never be evaluated. This is not the case.

The operator "-or" was implemented as "-o", and the operator "-and" was implemented as "-a".

Historic implementations of the -exec and -ok primaries did not replace the string "{}" in the
utility name or the utility arguments if it had preceding or following nonwhitespace characters.
This version replaces it no matter where in the utility name or arguments it appears.

BUGS
The special characters used by find also are special characters to many shell programs. In
particular, the characters "*", "[", "]", "?", "(", ")", "!", "\", and ";" may have to be escaped from
the shell.

As there is no delimiter separating options and file names or file names and the expression, it is
difficult to specify files named "-xdev" or "!". These problems are handled by the -f option and
the getopt(3) "--" construct.
NAME
ln -- make links

SYNOPSIS
ln [-s] source_file target_file
ln [-s] source_file ... target_directory

DESCRIPTION
The ln utility creates a new directory entry (linked file), which inherits the same modes as the
orginal file. It is useful for maintaining multiple copies of a file in many places at once--without
the "copies"; instead, a link 'points' to the original copy. There are two types of links: hard links
and symbolic links. How a link 'points' to a file is one of the differences between a hard or
symbolic link.

Option available:
-s

Create a symbolic link.

By default ln makes hard links. A hard link to a file is indistinguishable from the original
directory entry; any changes to a file are effective independent of the name used to reference the
file. Hard links may not refer to directories (unless the proper incantations are supplied) and may
not span file systems.

A symbolic link contains the name of the file to which it is linked. The referenced file is used
when an open(2) operation is performed on the link. A stat(2) on a symbolic link will return the
linked-to file; an lstat(2) must be done to obtain information about the link. The readlink(2) call
may be used to read the contents of a symbolic link. Symbolic links may span file systems and
may refer to directories.

Given one or two arguments, ln creates a link to an existing file source_file. If target_file is
given, the link has that name; target_file may also be a directory in which to place the link;
otherwise it is placed in the current directory. If only the directory is specified, the link will be
made to the last component of source_file.

Given more than two arguments, ln makes links in target_directory to all the named source files.
The links made will have the same name as the files being linked to.

HISTORY
An ln command appeared in Sixth Edition AT&T UNIX.
NAME
ls -- list directory contents.

SYNOPSIS
ls [-ACFLRTacdfgiklqrstu1] file ...

DESCRIPTION
For each operand that names a file of a type other than directory, ls displays its name as well as
any requested, associated information. For each operand that names a file of type directory, ls
displays the names of files contained within that directory, as well as any requested, associated
information.

If no operands are given, the contents of the current directory are displayed. If more than one
operand is given, nondirectory operands are displayed first; directory and nondirectory operands
are sorted separately and in lexicographical order.

The following options are available.
-A

Lists all entries except for "." and "..". Always set for the superuser.
-C

Forces multicolumn output; this is the default when output is to a terminal.
-F

Displays a slash (/) immediately after each pathname that is a directory, an asterisk (*)
after each that is executable, and an at sign (@) after each symbolic link.

-L
If argument is a symbolic link, lists the file or directory the link references rather than the
link itself.

-R
Recursively lists subdirectories encountered.

-T
Displays complete time information for the file, including month, day, hour, minute,
second, and year.

-a
Includes directory entries whose names begin with a dot (.).

-c
Uses time when file status was last changed for sorting or printing.

-d
Lists directories as plain files (not searched recursively).

-f
Does not sort output.

-g
Includes the group ownership of the file in a long "l" output "lg". If the group is not a
known group name, the numeric ID is printed.

-i
For each file, prints the file's file serial number (inode number).

-k
Modifies the -s option, causing the sizes to be reported in kilobytes.

-l
(The lowercase letter "ell.") Lists in long format. (See below.) If the output is to a
terminal, a total sum for all the file sizes is output on a line before the long listing.

-q
Forces printing of nongraphic characters in file names as the character '?'; this is the
default when output is to a terminal.

-r
Reverses the order of the sort to get reverse lexicographical order or the oldest entries
first.

-s
Displays the number of file system bytes actually used by each file, in units of 512,
where partial units are rounded up to the next integer value. If the output is to a terminal,
a total sum for all the file sizes is output on a line before the listing.

-t
Sort by time modified (most recently modified first) before sorting the operands by
lexicographical order.

-u
Uses time of last access, instead of last modification of the file for sorting "t" or printing
"l".

-1
(The numeric digit "one.") Forces output to be one entry per line. This is the default
when output is not to a terminal.

The -1, -C, and -l options all override each other; the last one specified determines the format
used.
The -c and -u options override each other; the last one specified determines the file time used.

By default, ls lists one entry per line to standard output; the exceptions are to terminals or when
the
-C option is specified.

File information is displayed with one or more blanks separating the information associated with
the -i, -s, and -l options.

THE LONG FORMAT
If the -l option is given, the following information will be displayed: file mode, number of links,
owner name, number of bytes in the file, abbreviated month, day-of-month file was last
modified, hour file last modified, minute file last modified, and the pathname.

If the owner name is not a known user name, the numeric ID is displayed.

If the file is a character-special or block-special file, the major and minor device numbers for the
file are displayed in the size field. If the file is a symbolic link, the pathname of the linked-to file
is preceded
by "->".

The file mode printed under the -l option consists of the the entry type, owner permissions, and
group permissions. The entry type character describes the type of file, as follows.

b Block special file.

c Character special file.
d Directory.
l Symbolic link.
s Socket link.
- Regular file.

The next three fields are three characters each: owner permissions, group permissions, and other
permissions. Each field has three character positions.

If r, the file is readable; if -, it is not readable.
If w, the file is writable; if -, it is not writable.

The first of the following applies.
S If in the owner permissions, the file is not executable and set-user-ID mode is

set. If in the group permissions, the file is not executable and set-group-ID mode
is set.

s If in the owner permissions, the file is executable and set-user-ID mode is set. If
in the group permissions, the file is executable and set-group-ID mode is set.

x The file is executable or the directory is searchable.

- The file is neither readable, writeable, exectutable, nor set-user-ID nor set-group-
ID mode nor sticky. (See below.)

These next two apply only to the third character in the last group (other permissions).

T The sticky bit is set (mode 1000) but is not executable nor contains search
permission. (See chmod(1) or sticky(8).)

t The sticky bit is set (mode 1000) and is searchable or executable. (See chmod(1)
or sticky(8).)

The ls utility exits 0 on success, and >0 if an error occurs.

ENVIRONMENT
The following environment variables affect the execution of ls:

COLUMNS
If this variable contains a string representing a decimal integer, it is used as the column
position width for displaying multiple- text-column output. The ls utility calculates how
many pathname text columns to display based on the width provided. (See -C.)

HISTORY
An ls command appeared in Sixth Edition AT&T UNIX.

NAME
make -- maintain program dependencies

SYNOPSIS
make [-eiknqrstv] [-D variable] [-d flags] [-f makefile]
[-I directory] [-j max_jobs] [variable=value ...] target ...

DESCRIPTION
make is a program designed to simplify the maintenance of other programs. Its input is a list of
specifications as to the files upon which programs and other files depend. If the file "makefile"
exists, it is read for this list of specifications. If it does not exist, the file "Makefile" is read. If
the file ".depend" exists, it is read. This manual page is intended as a reference document only.

The options follow.
-D variable

Defines variable to be 1, in the global context.
-d flags

Turns on debugging and specifies which portions of make are to print debugging
information. flags is one or more of the following:

A Prints all possible debugging information; equivalent to specifying all
of the debugging flags.

a Prints debugging information about archive searching and caching.

c Prints debugging information about conditional evaluation.

d Prints debugging information about directory searching and caching.

g1 Prints the input graph before making anything.

g2 Prints the input graph after making everything or before exiting on
error.

j Prints debugging information about running multiple shells.

m Prints debugging information about making targets, including
modification dates.

s Prints debugging information about suffix-transformation rules.

t Prints debugging information about target list maintenance.

v Prints debugging information about variable assignment.

-e Specifies that environmental variables override macro assignments
within makefiles.

-f makefile Specifies a makefile to read instead of the default "makefile" and
"Makefile". If makefile is -, standard input is read. Multiple
makefiles may be specified and are read in the order specified.

-I directory Specifies a directory in which to search for makefiles and included
makefiles. The system makefile directory is automatically included as
part of this list.

-i Ignores nonzero exit of shell commands in the makefile. Equivalent to
specifying - before each command line in the makefile.

-j max_jobs Specifies the maximum number of jobs that make may have running at
any one time.

-k Continues processing after errors are encountered but only on those
targets that do not depend upon the target whose creation caused the
error.

-n Displays the commands that would have been executed, but do not
actually execute them.

-q Does not execute any commands but does exit 0 if the specified targets
are up to date; otherwise, it specifies 1.

-r Does not use the built-in rules specified in the system makefile.

-s Does not echo any commands as they are executed. Equivalent to
specifying _B@ before each command line in the makefile.

-t Rather than rebuilding a target as specified in the makefile, creates it or
updates its modification time to make it appear up to date.

variable=value
Set the value of the variable variable to value.

There are six different types of lines in a makefile: file dependency specifications, shell
commands, variable assignments, include statements, conditional directives, and comments.

In general, lines may be continued from one line to the next by ending them with a backslash
("\"). The trailing newline character and initial whitespace on the following line are compressed
into a single space.

FILE DEPENDENCY SPECIFICATIONS
Dependency lines consist of one or more targets, an operator, and zero or more sources. This
creates a relationship where the targets "depend" upon the sources and are usually created from
them. The exact relationship between the target and the source is determined by the operator that
separates them. The three operators are as follows:

:
A target is considered out of date if its modification time is less than those of any of its
sources. Sources for a target accumulate over dependency lines when this operator is
used. The target is removed if make is interrupted.

!

Targets are always re-created but not until all sources have been examined and re-created
as necessary. Sources for a target accumulate over dependency lines when this operator
is used. The target is removed if make is interrupted.

::
If no sources are specified, the target is always re-created. Otherwise, a target is
considered out of date if any of its sources has been modified more recently than the
target. Sources for a target do not accumulate over dependency lines when this operator
is used. The target will not be removed if make is interrupted.

Targets and sources may contain the shell wildcard values "?", "*", "[]", and "{}". The values
"?", "*", and "[]" may only be used as part of the final component of the target or source and
must be used to describe existing files. The value "{}" need not necessarily be used to describe
existing files. Expansion is in directory order not alphabetically as done in the shell.

SHELL COMMANDS
Each target may have associated with it a series of shell commands, normally used to create the
target. Each of the commands in this script must be preceded by a tab. While any target may
appear on a dependency line, only one of these dependencies may be followed by a creation
script, unless the "::" operator is used.

If the first or first two characters of the command line are "@" and/or "-", the command is treated
specially. A "@" causes the command not to be echoed before it is executed. A "-" causes any
nonzero exit status of the command line to be ignored.

VARIABLE ASSIGNMENTS
Variables in make are much like variables in the shell; and, by tradition, consist of all uppercase
letters. The five operators that can be used to assign values to variables are as follows:

=
Assigns the value to the variable. Any previous value is overridden.

+=
Appends the value to the current value of the variable.

?=
Assigns the value to the variable if it is not already defined.

:=
Assigns with expansion, i.e., expands the value before assigning it to the variable.
Normally, expansion is not done until the variable is referenced.

!=
Expands the value and passes it to the shell for execution and assigns the result to the
variable. Any newlines in the result are replaced with spaces.

Any white-space before the assigned value is removed; if the value is being appended, a single
space is inserted between the previous contents of the variable and the appended value.

Variables are expanded by surrounding the variable name with either curly braces ("{}") or
parentheses ("()") and preceding it with a dollar sign ("$"). If the variable name contains only a
single letter, the surrounding braces or parentheses are not required. This shorter form is not
recommended.

Variable substitution occurs at two distinct times, depending upon where the variable is being
used. Variables in dependency lines are expanded as the line is read. Variables in shell
commands are expanded when the shell command is executed.

The four different classes of variables (in order of increasing precedence) are:

Environment variables
Variables defined as part of make's environment.

Global variables
Variables defined in the makefile or in included makefiles.

Command line variables
Variables defined as part of the command line.

Local variables
Variables that are defined specific to a certain target. The seven local variables are as
follows:

.ALLSRC The list of all sources for this target; also known as ">".

.ARCHIVE The name of the archive file.

.IMPSRC The name/path of the source from which the target is to be
transformed (the "implied" source); also known as "<".

.MEMBER The name of the archive member.

.OODATE The list of sources for this target that were deemed out of date; also
known as "?".

.PREFIX The file prefix of the file, containing only the file portion, no suffix or
preceding directory components; also known as "*".

.TARGET The name of the target; also known as "@". The shorter forms "@",
"?", ">", and "*" are permitted for backward compatibility with
historical makefiles and are not recommended. The six variables
"@F", "@D", "<F", "<D", "*F", and "*D" are permitted for
compatibility with AT&T System V makefiles and are not
recommended.

 Four of the local variables may be used in sources on dependency lines
because they expand to the proper value for each target on the line.
These variables are ".TARGET", ".PREFIX", ".ARCHIVE", and
".MEMBER".

In addition, make sets or knows about the following variables:

$
A single dollar sign "$", i.e. "$$" expands to a single dollar sign.

.MAKE
The name that make was executed with (argv[0]).

.CURDIR

A path to the directory where make was executed.
MAKEFLAGS

The environment variable "MAKEFLAGS" may contain anything that may be specified
on make's command line. Anything specified on make's command line is appended to
the "MAKEFLAGS" variable which is then entered into the environment for all
programs which make executes.

Variable expansion may be modified to select or modify each word of the variable (where a
"word" is white-space delimited sequence of characters). The general format of a variable
expansion is:

 {variable[:modifier[:...]]}

Each modifier begins with a colon and one of the following special characters. The colon may be
escaped with a backslash ("\").

E
Replaces each word in the variable with its suffix.

H
Replaces each word in the variable with everything but the last component.

M pattern
Selects only those words that match the rest of the modifier. The standard shell wildcard
characters ("*" and "?") may be used. The wildcard characters may be escaped with a
backslash ("\").

N pattern
This is identical to M, but selects all words that do not match the rest of the modifier.

R
Replaces each word in the variable with everything but its suffix.

S /old_pattern/new_pattern/[g]
Modifies the first occurrence of old_pattern in each word to be replaced with
new_pattern. If a g is appended to the last slash of the pattern, all occurrences in each
word are replaced. If old_pattern begins with a caret ("^"), old_pattern is anchored at
the beginning of each word. If old_pattern ends with a dollar sign ("$"), it is anchored at
the end of each word. Inside new_string, an ampersand ("&") is replaced by old_pattern.
Any character may be used as a delimiter for the parts of the modifier string. The
anchoring, ampersand, and delimiter characters may be escaped with a backslash ("\").

Variable expansion occurs in the normal fashion inside both old_string and new_string
with the single exception that a backslash is used to prevent the expansion of a dollar
sign ("$"), not a preceding dollar sign as is usual.

T
Replaces each word in the variable with its last component.

old_string=new_string

This is the AT&T System V style variable substitution. It must be the last modifier
specified. old_string is anchored at the end of each word, so only suffixes or entire
words may be replaced.

INCLUDE STATEMENTS AND CONDITIONALS
Makefile inclusion and conditional structures reminiscent of the C programming language are
provided in make. All such structures are identified by a line beginning with a single dot (".")
character. Files are included by either ".include <file>" or ".include "file"". Variables between
the angle brackets or double quotes are expanded to form the file name. If angle brackets are
used, the included makefile is expected to be in the system makefile directory. If double quotes
are used, the including makefile's directory and any directories specified using the -I option are
searched before the system makefile directory.

Conditional expressions also are preceded by a single dot as the first chraracter of a line. The
possible conditionals are listed below.

.undef variable
Undefines the specified global variable. Only global variables may be undefined.

.if [!] expression [operator expression ...]
Tests the value of an expression.

.ifdef [!] variable [operator variable ...]
Tests the value of a variable.

.ifndef [!] variable [operator variable ...]
Tests the value of a variable.

.ifmake [!] target [operator target ...]
Tests the target being built.

.ifnmake [!] target [operator target ...]
Tests the target being built.

.else
Reverses the sense of the last conditional.

.elif [!] expression [operator expression ...]
A combination of .else followed by .if.

.elifdef [!] variable [operator variable ...]
A combination of .else followed by .ifdef.

.elifndef [!] variable [operator variable ...]
A combination of .else followed by .ifndef.

.elifmake [!] target [operator target ...]
A combination of .else followed by .ifmake.

.elifnmake [!] target [operator target ...]
A combination of .else followed by .ifnmake.

.endif
Ends the body of the conditional.

The operator may be any one of the following:

|| logical OR
&& Logical AND; of higher precedence than ||.

As in C, make will only evaluate a conditional as far as is necessary to determine its value.
Parentheses may be used to change the order of evaluation. The boolean operator "!" may be
used to logically negate an entire conditional. It is of higher precendence than "&&".

The value of expression may be any of the following.

defined
Takes a variable name as an argument and evaluates to true if the variable has been
defined.

make
Takes a target name as an argument and evaluates to true if the target was specified as
part of make's command line or was declared the default target (either implicitly or
explicitly, see .MAIN) before the line containing the conditional.

empty
Takes a variable, with possible modifiers, and evaluates to true if the expansion of the
variable would result in an empty string.

exists
Takes a file name as an argument and evaluates to true if the file exists. The file is
searched for on the system search path (see .PATH).

target
Takes a target name as an argument and evaluates to true if the target has been defined.

expression also may be an arithmetic or string comparison, with the left-hand side being a
variable expansion. The standard C relational operators are all supported, and the usual
number/base conversion is performed. Note, octal numbers are not supported. If the righthand
value of a "==" or "!=" operator begins with a quotation mark ("") a string comparison is done
between the expanded variable and the text between the quotation marks. If no relational
operator is given, it is assumed that the expanded variable is being compared against 0.

When make is evaluating one of these conditional expressions and it encounters a word it does
not recognize, either the "make" or "defined" expression is applied to it, depending upon the
form of the conditional. If the form is .ifdef or .ifndef, the "defined" expression is applied.
Similarly, if the form is .ifmake or .ifnmake, the "make" expression is applied.

If the conditional evaluates to true, the parsing of the makefile continues as before. If it evaluates
to false, the following lines are skipped. In both cases this continues until a .else or .endif is
found.

COMMENTS
Comments begin with a number sign ("#") character, anywhere but in a shell command line, and
continue to the end of the line.

SPECIAL SOURCES
.IGNORE

Ignores any errors from the commands associated with this target, exactly as if they all
were preceded by a dash ("-").

.MAKE
Executes the commands associated with this target, even if the -n or -t options were
specified. Normally used to mark recursive make's.

.NOTMAIN

Normally, make selects the first target it encounters as the default target to be built if no
target was specified. This source prevents this target from being selected.

.OPTIONAL
If a target is marked with this attribute and make cannot determine how to create it, it
will ignore this fact and assume that the file is not needed or already exists.

.PRECIOUS
When make is interrupted, it removes any partially made targets. This source prevents
the target from being removed.

.SILENT
Does not echo any of the commands associated with this target, exactly as if they all
were preceded by an at sign ("@").

.USE
Turns the target into make's version of a macro. When the target is used as a source for
another target, the other target acquires the commands, sources, and attributes (except for
.USE) of the source. If the target already has commands, the .USE target's commands
are appended to them.

SPECIAL TARGETS
Special targets may not be included with other targets; i.e., they must be the only target specified.

.BEGIN
Any command lines attached to this target are executed before anything else is done.

.DEFAULT
This is sort of a .USE rule for any target (that was used only as a source) that make
cannot figure out any other way to create. Only the shell script is used. The .IMPSRC
variable of a target that inherits .DEFAULT's commands is set to the target's own name.

.END
Any command lines attached to this target are executed after everything else is done.

.IGNORE
Marks each of the sources with the .IGNORE attribute. If no sources are specified, this
is the equivalent of specifying the -i option.

.INTERRUPT
If make is interrupted, the commands for this target will be executed.

.MAIN
If no target is specified when make is invoked, this target will be built.

.MAKEFLAGS
This target provides a way to specify flags for make when the makefile is used. The
flags are as if typed to the shell, though the -f option will have no effect.

.PATH
The sources are directories that are to be searched for files not found in the current
directory. If no sources are specified, any previously specified directories are deleted.

.PRECIOUS
Applies the .PRECIOUS attribute to any specified sources. If no sources are specified,
the .PRECIOUS attribute is applied to every target in the file.

.SILENT
Applies the .SILENT attribute to any specified sources. If no sources are specified, the
.SILENT attribute is applied to every command in the file.

.SUFFIXES
Each source specifies a suffix to make. If no sources are specified, any previously
specified suffixes are deleted.

ENVIRONMENT
make utilizes the following environment variables, if they exist: MAKE, MAKEFLAGS,and
MAKEOBJDIR.

FILES
.depend list of dependencies
Makefile list of dependencies
makefile list of dependencies
sys.mk system makefile
/usr/share/mk system makefile directory

HISTORY
A make command appeared in Seventh Edition AT&T UNIX.
NAME
mkdir -- make directories

SYNOPSIS
mkdir [-p] directory_name ...

DESCRIPTION
mkdir creates the directories named as operands, in the order specified, using mode 0777
modified by the current umask.

The options follow.
-p

Creates intermediate directories as required. If this option is not specified, the full path
prefix of each operand must already exist.

The user must have write permission in the parent directory.

mkdir exits 0 if successful and >0 if an error occurred.

STANDARDS
mkdir is POSIX 1003.2-compliant. This manual page is derived from the POSIX 1003.2 manual
page.
NAME
mv -- move files

SYNOPSIS
mv [-f | -i] source target
mv [-f | -i] source ... directory

DESCRIPTION
In its first form, the mv utility renames the file named by the source operand to the destination
path named by the target operand. This form is assumed when the last operand does not name an
already existing directory.

In its second form, mv moves each file named by a source operand to a destination file in the
existing directory named by the directory operand. The destination path for each operand is the
pathname produced by the concatenation of the last operand, a slash, and the final pathname
component of the named file.

The following options are available.

-f
Does not prompt for confirmation before overwriting the destination path. (The -i option
is ignored if the -f option is specified.)

-i
Causes mv to write a prompt to standard error before moving a file that would overwrite
an existing file. If the response from the standard input begins with the character "y'",
the move is attempted.

It is an error for either the source operand or the destination path to specify a directory unless
both do.
If the destination path does not have a mode that permits writing, mv prompts the user for
confirmation as specified for the -i option.

As the rename(2) call does not work across file systems, mv uses cp(1) and rm(1) to accomplish
the move. The effect is equivalent to:

 rm -f destination_path && \
 cp -pr source destination_path && \
 rm -rf source

The mv utility exits 0 on success and >0 if an error occurs.

STANDARDS
The mv utility is expected to be POSIX 1003.2-compatible.
NAME
rm -- remove directory entries

SYNOPSIS
rm [-f | -i] [-d] [-R] [-r] file ...

DESCRIPTION
The rm utility attempts to remove the nondirectory type files specified on the command line. If
the permissions of the file do not permit writing and the standard input device is a terminal, the
user is prompted (on the standard error output) for confirmation.

The options are listed below.

-d
Attempts to remove directories as well as other types of files.

-f

Attempts to remove the files without prompting for confirmation, regardless of the file's
permissions. If the file does not exist, does not display a diagnostic message nor modify
the exit status to reflect an error. The -f option overrides any previous -i options.

-i
Requests confirmation before attempting to remove each file, regardless of the file's
permissions or whether or not the standard input device is a terminal. The -i option
overrides any previous
-f options.

-R
Attempts to remove the file hierarchy rooted in each file argument. The -R option
implies the
-d option. If the -i option is specified, the user is prompted for confirmation before each
directory's contents are processed (as well as before the attempt is made to remove the
directory). If the user does not respond affirmatively, the file hierarchy rooted in that
directory is skipped.

-r
Equivalent to -R.

The rm utility removes symbolic links, not the files referenced by the links.
It is an error to attempt to remove the files "." and "..".

The rm utility exits 0 if all of the named files or file hierarchies were removed or if the -f option
was specified and all of the existing files or file hierarchies were removed. If an error occurs, rm
exits with a value >0.

COMPATIBILITY
The rm utility differs from historical implementations in that the -f option only masks attempts to
remove nonexistent files instead of masking a large variety of errors.

Also, historical rm implementations prompted on the standard output not the standard error
output.

STANDARDS
The rm command is expected to be POSIX 1003.2-compatible.
NAME
rmdir -- remove directories

SYNOPSIS
rmdir directory ...

DESCRIPTION
The rmdir utility removes the directory entry specified by each directory argument, provided it is
empty.
Arguments are processed in the order given. To remove both a parent directory and a
subdirectory of that parent, the subdirectory must be specified first so that the parent directory is
empty when rmdir tries to remove it.

The rmdir utility exits with one of the following values:

0 Each directory entry specified by a directory operand referred to an empty
directory and was removed successfully.

>0 An error occurred.

STANDARDS
The rmdir function is expected to be POSIX 1003.2-compatible.
NAME
ash -- a shell

SYNOPSIS
ash [-efIijnsxz] [+efIijnsxz] [-c command] [arg] ...

COPYRIGHT
Copyright © 1989 by Kenneth Almquist.

DESCRIPTION
ash is a version of sh(1) with features similar to those of the System V shell. This manual page
lists all the features of ash but concentrates upon the ones not in other shells.

Invocation
If the -c option is given, then the shell executes the specified shell command. The -s flag causes
the shell to read commands from the standard input (after executing any command specified with
the -c option). If neither the -s nor -c options are set, then the first arg is taken as the name of a
file to read commands from. If this is impossible because there are no arguments following the
options, then ash will set the -s flag and will read commands from the standard input.

The shell sets the initial value of the positional parameters from the args remaining after any arg
used as the name of a file of commands is deleted.

The flags (other than -c) are set by preceding them with "-" and cleared by preceding them with
"+"; see the set built-in command for a list of flags. If no value is specified for the -i flag, the -s
flag is set and the standard input and output of the shell are connected to terminals; then, the -i
flag will be set. If no value is specified for the -j flag, then the -j flag will be set if the -i flag is
set.

When the shell is invoked with the -c option, it is good practice to include the -i flag if the
command was entered interactively by a user. For compatibility with the System V shell, the -i
option should come after the -c option.

If the first character of argument zero to the shell is "-", the shell is assumed to be a login shell;
and the files /etc/profile and .profile are read if they exist. If the environment variable SHINIT
is set upon entry to the shell, the commands in SHINIT are normally parsed and executed.
SHINIT is not examined if the shell is a login shell or if it the shell is running a shell procedure.
(A shell is considered to be running a shell procedure if neither the -s nor the -c options are set.)

Control Structures
A list is a sequence of zero or more commands separated by newlines, semicolons, or
ampersands, and optionally terminated by one of these three characters. (This differs from the

System V shell, which, in most cases, requires a list to contain at least one command.) The
commands in a list are executed in the order in which they are written. If a command is followed
by an ampersand, the shell starts the command and immediately proceeds on to the next
command; otherwise it waits for the command to terminate before proceeding to the next one.

"&&" and "||" are binary operators. "&&" executes the first command and then executes the
second command if the exit status of the first command is zero. "||" is similar but executes the
second command if the exit status of the first command is nonzero. "&&" and "||" both have the
same priority.
The "|" operator is a binary operator that feeds the standard output of the first command into the
standard input of the second command. The exit status of the "|" operator is the exit status of the
second command. "|" has a higher priority than "||" or "&&".

An if command looks like the following example.

 if list
 then list
 [elif list
 then list] ...
 [else list]
 fi
A while command looks like the following example.

 while list
 do list
 done
The two lists are executed repeatedly while the exit status of the first list is zero. The until
command is similar; however, it has the word until in place of while and repeats until the exit
status of the first list is zero.

The for command looks like the following example.

 for variable in word...
 do list
 done
The words are expanded; and, then, the list is executed repeatedly with the variable set to each
word in turn. do and done may be replaced with "{" and "}".

The break and continue commands look like the following example.

 break [num]
 continue [num]
break terminates the num'ths innermost for or while loops. continue continues with the next
iteration of the num'ths innermost loop. These are implemented as built-in commands.

The case command looks like the following example.

 case word in
 pattern) list ;;
 ...
 esac
The pattern can actually be one or more patterns (see Patterns below) separated by "|" characters.
Commands may be grouped by writing either one of the following.

 (list)
or

 { list; }
The first of these executes the commands in a subshell.

A function definition looks like the following example.

 name () command
A function definition is an executable statement; when executed it installs a function named
name and returns an exit status of zero. The command is normally a list enclosed between "{"
and "}".

Variables may be declared to be local to a function by using a local command. This should
appear as the first statement of a function; it should looks like the following example.

 local [variable | -] ...
local is implemented as a built-in command.

When a variable is made local, it inherits the initial value and exported and read-only flags from
the variable with the same name in the surrounding scope, if there is one. Otherwise, the variable
is initially unset. ash uses dynamic scoping so that, if you make the variable x local to function f,
which then calls function g, references to the variable x made inside g will refer to the variable x
declared inside f, not to the global variable named x.

The only special parameter that can be made local is "-". Making "-" local sets any shell options
that are changed via the set command inside the function to be restored to their original values
when the function returns.

The return command looks like the following example.

 return [exitstatus]
It terminates the currently executing function. return is implemented as a built-in command.

Simple Commands
A simple command is a sequence of words. The execution of a simple command proceeds as
follows. First, the leading words of the form "name=value" are stripped off and assigned to the
environment of the command. Second, the words are expanded. Third, the first remaining word

is taken as the command name of the command that is located. Fourth, any redirections are
performed. Fifth, the command is executed. We look at these operations in reverse order.

The execution of the command varies with the type of command. There are three types of
commands: shell functions, built-in commands, and normal programs.

When a shell function is executed, all of the shell positional parameters (except $0, which
remains unchanged) are set to the parameters to the shell function. The variables that are
explicitly placed in the environment of the command (by placing assignments to them before the
function name) are made local to the function and are set to values given. Then, the command
given in the function definition is executed. The positional parameters are restored to their
original values when the command completes.
Shell built-ins are executed internally to the shell, without spawning a new process.

When a normal program is executed, the shell runs the program, passing the parameters and the
environment to the program. If the program is a shell procedure, the shell will interpret the
program in a subshell. The shell will reinitialize itself in this case, so that the effect will be as if
a new shell had been invoked to handle the shell procedure, except that the location of commands
located in the parent shell will be remembered by the child. If the program is a file beginning
with "#!", the remainder of the first line specifies an interpreter for the program. In this case, the
shell (or the operating system, under Berkeley UNIX) will run the interpreter. The arguments to
the interpreter will consist of any arguments given on the first line of the program, followed by
the name of the program, followed by the arguments passed to the program.

Redirection
Input/output redirections can be intermixed with the words in a simple command and can be
placed following any of the other commands. When redirection occurs, the shell saves the old
values of the file descriptors and restores them when the command completes. The "<", ">", and
">>" redirections open a file for input, output, and appending, respectively. The "<&digit" and
">&digit" makes the input or output a duplicate of the file descriptor numbered by the digit. If a
minus sign is used in place of a digit, the standard input or the standard output is closed.

The "<< word" redirection takes input from a here document. As the shell encounters "<<"
redirections, it collects them. The next time it encounters an unescaped newline, it reads the
documents in turn. The word following the "<<" specifies the contents of the line that terminates
the document. If none of the quoting methods ('', "", or \) are used to enter the word, then the
document is treated like a word inside double quotes: "$" and backquote are expanded and
backslash can be used to escape these and to continue long lines. The word cannot contain any
variable or command substitutions, and its length (after quoting) must be in the range of 1 to 79
characters. If "<<-" is used in place of "<<", then leading tabs are deleted from the lines of the
document. (This is to allow you to do indent shell procedures containing here documents in a
natural fashion.)

Any of the preceding redirection operators may be preceded by a single digit specifying the file
descriptor to be redirected. There cannot be any white space between the digit and the
redirection operator.

Path Search

When locating a command, the shell first looks to see if it has a shell function by that name.
Then, if PATH does not contain an entry for "%builtin", it looks for a built-in command by that
name. Finally, it searches each entry in PATH in turn for the command.

The value of the PATH variable should be a series of entries separated by colons. Each entry
consists of a directory name, or a directory name followed by a flag beginning with a percent
sign. The current directory should be indicated by an empty directory name.

If no percent sign is present, then the entry causes the shell to search for the command in the
specified directory. If the flag is "%builtin", then the list of shell built-in commands is searched.
If the flag is "%func", then the directory is searched for a file that is read as input to the shell.
This file should define a function whose name is the name of the command being searched for.

Command names containing a slash are simply executed without performing any of the above
searches.

The Environment
The environment of a command is a set of name/value pairs. When the shell is invoked, it reads
these names and values, sets the shell variables with these names to the corresponding values,
and marks the variables as exported. The export command can be used to mark additional
variables as exported.

The environment of a command is constructed by constructing name/value pairs from all the
exported shell variables, and then by modifying this set by the assignments that precede the
command, if any.

Expansion
The process of evaluating words when a shell procedure is executed is called expansion.
Expansion consists of four steps: variable substitution, command substitution, word splitting,
and file name generation. If a word is the expression following the word case in a case
statement, the file name that follows a redirection symbol, or an assignment to the environment
of a command, then the word cannot be split into multiple words. In these cases, the last two
steps of the expansion process are omitted.

Command Substitution
ash accepts two syntaxes for command substitution, as listed below.

 'list'
and

 $(list)
Either of these may be included in a word. During the command substitution process, the
command (syntactically a list) will be executed, and anything that the command writes to the
standard output will be captured by the shell. The final newline (if any) of the output will be
deleted; the rest of the output will be substituted for the command in the word.

Word Splitting
When the value of a variable or the output of a command is substituted, the resulting text is
subject to word splitting, unless the dollar sign introducing the variable or backquotes containing

the text were enclosed in double quotes. In addition, "$@" is subject to a special type of
splitting, even in the presence of double quotes.

ash uses two different splitting algorithms. The normal approach, which is intended for splitting
text separated by white space, is used if the first character of the shell variable IFS is a space.
Otherwise, an alternative experimental algorithm, which is useful for splitting (possibly empty)
fields separated by a separator character, is used.

When performing splitting, the shell scans the replacement text looking for a character (when IFS
does not begin with a space) or a sequence of characters (when IFS does begin with a space),
deletes the character or sequence of characters, and spits the word into two strings at that point.
When IFS begins with a space, the shell deletes either of the strings if they are null. As a special
case, if the word containing the replacement text is the null string, the word is deleted.

The variable "$@" is special in two ways. First, splitting takes place between the positional
parameters, even if the text is enclosed in double quotes. Second, if the word containing the
replacement text is the null string and there are no positional parameters, then the word is
deleted. The result of these rules is that "$@" is equivalent to "$1" "$2" ... "$n", where n is the
number of positional parameters. (Note that this differs from the System V shell. The System V
documentation claims that "$@" behaves this way; in fact on the System V shell "$@" is
equivalent to "" when there are no positional paramteters.)

File Name Generation
Unless the -f flag is set, file name generation is performed after word splitting is complete. Each
word is viewed as a series of patterns, separated by slashes. The process of expansion replaces
the word with the names of all existing files whose names can be formed by replacing each
pattern with a string that matches the specified pattern. There are two restrictions on this: first, a
pattern cannot match a string containing a slash; and, second, a pattern cannot match a string
starting with a period unless the first character of the pattern is a period.

If a word fails to match any files and the -z flag is not set, then the word will be left unchanged
(except that the meta characters will be converted to normal characters). If the -z flag is set, then
the word is only left unchanged if none of the patterns contain a character that can match
anything other than itself. Otherwise, the -z flag forces the word to be replaced with the names
of the files that it matches, even if there are zero names.

Patterns
A pattern consists of normal characters, which match themselves, and meta characters. The meta
characters are "!", "*", "?", and "[". These characters lose there special meanings if they are
quoted. When command or variable substitution is performed and the dollar sign or back quotes
are not double quoted, the value of the variable or the output of the command is scanned for these
characters and they are turned into meta characters.

Two exclamation points at the beginning of a pattern function as a "not" operator, causing the
pattern to match any string that the remainder of the pattern does not match. Other occurrences
of exclamation points in a pattern match exclamation points. Two exclamation points are
required, rather than one, to decrease the incompatibility with the System V shell (which does
not treat exclamation points specially).
An asterisk ("*") matches any string of characters. A question mark matches any single
character. A left bracket ("[") introduces a character class. The end of the character class is

indicated by a "]"; if the "]" is missing, then the "[" matches a "[" rather than introducing a
character class. A character class matches any of the characters between the square brackets. A
range of characters may be specified using a minus sign. The character class may be
complemented by making an exclamation point of the first character of the character class.

To include a "]" in a character class, make it the first character listed (after the "!", if any). To
include a minus sign, make it the first or last character listed.

The /u Directory
By convention, the name "/u/user" refers to the home directory of the specified user. There are
good reasons why this feature should be supported by the file system (using a feature such as
symbolic links) rather than by the shell, but ash is capable of performing this mapping if the file
system does not. If the mapping is done by ash, setting the -f flag will turn it off.

Character Set
ash silently discards NUL characters. Any other character will be handled correctly by ash,
including characters with the high-order bit set.

Job Names and Job Control
The term job refers to a process created by a shell command or, in the case of a pipeline, to the
set of processes in the pipeline. The ways to refer to a job follow.

 %number %string %% process_id

The first form identifies a job by its job number. When a command is run, ash assigns it a job
number (the lowest unused number is assigned). The second form identifies a job by giving a
prefix of the command used to create the job. The prefix must be unique. If there is only one
job, then the null prefix will identify the job, so you can refer to the job by writing "%". The
third form refers to the current job. The current job is the last job to be stopped while it was in
the foreground. (See the next paragraph.) The last form identifies a job by giving the process id
of the last process in the job.

If the operating system that ash is running on supports job control, ash will allow you to use it.
In this case, typing the suspend character (typically ^Z) while running a command will return you
to ash and will make the suspended command the current job. You can then continue the job in
the background by typing bg, or you can continue it in the foreground by typing fg.

ATTY
If the shell variable ATTY is set and the shell variable TERM is not set to "emacs", then ash
generates appropriate escape sequences to talk to atty(1).

Exit Statuses
By tradition, an exit status of zero means that a command has succeeded, and a nonzero exit
status indicates that the command failed. This is better than no convention at all; but, in practice,
it is extremely useful to allow commands that succeed to use the exit status to return information
to the caller. A variety of better conventions have been proposed, but none of them has met with
universal approval. The convention used by ash and all the programs included in the ash
distribution follows.

0 Success

1 Alternate success
2 Failure
129-... Command terminated by a signal

The alternate success return is used by commands to indicate various conditions that are not
errors but which can, with a little imagination, be conceived of as less successful than plain
success. For example, test returns 1 when the tested condition is false and getopts returns 1 when
there are no more options. Because this convention is not used universally, the -e option of ash
causes the shell to exit when a command returns 1, even though that contradicts the convention
described here.

When a command is terminated by a signal, it uses 128 plus the signal number as the exit code
for the command.

Built-in Commands
This concluding section lists the built-in commands that are built in because they need to perform
some operation that cannot be performed by a separate process. In addition to these, there are
several other commands (catf, echo, expr, line, nlecho, test, ":", and true) that can optionally be
compiled into the shell. The built-in commands described below that accept options use the
System V Release 2 getopt(3) syntax.

bg [job] ...
Continues the specified jobs (or the current job if no jobs are given) in the background.
This command is only available on systems with Berkeley job control.

bltin command arg ...
Executes the specified built-in command. (This is useful when you have a shell function
with the same name as a built-in command.)

cd [directory]
Switchs to the specified directory (default $HOME). If an entry for CDPATH appears in
the environment of the cd command or the shell variable CDPATH is set and the
directory name does not begin with a slash, then the directories listed in CDPATH will
be searched for the specified directory. The format of CDPATH is the same as that of
PATH. In an interactive shell, the cd command will print out the name of the directory
that it actually switched to if this is different from the name that the user gave. These
may be different either because the CDPATH mechanism was used or because a
symbolic link was crossed.

. file
The commands in the specified file are read and executed by the shell. A path search is
not done to find the file because the directories in PATH generally contain files that are
intended to be executed, not read.

eval string ...
The strings are parsed as shell commands and executed. (This differs from the System V
shell, which concatenates the arguments (separated by spaces) and parses the result as a
single command.)

exec [command arg ...]

Unless command is omitted, the shell process is replaced with the specified program
(which must be a real program, not a shell built-in or function). Any redirections on the
exec command are marked as permanent so that they are not undone when the exec
command finishes. If the command is not found, the exec command causes the shell to
exit.

exit [exitstatus]
Terminates the shell process. If exitstatus is given, it is used as the exit status of the
shell; otherwise, the exit status of the preceding command is used.

export name ...
The specified names are exported so that they will appear in the environment of
subsequent commands. The only way to unexport a variable is to unset it. ash allows
the value of a variable to be set at the same time it is exported by writing the following.

 export name=value
With no arguments, the export command lists the names of all exported variables.

fg [job]
Moves the specified job or the current job to the foreground. This command is only
available on systems with Berkeley job control.

getopts optstring var
The System V getopts(1) command.

hash [-rv] command ...
The shell maintains a hash table that remembers the locations of commands. With no
arguments whatsoever, the hash command prints out the contents of this table. Entries
that have not been looked at since the last cd command are marked with an asterisk; it is
possible for these entries to be invalid.

With arguments, the hash command removes the specified commands from the hash
table (unless they are functions) and then locates them. With the -v option, hash prints
the locations of the commands as it finds them. The -r option causes the hash command
to delete all the entries in the hash table except for functions.

jobid [job]
Prints the process id's of the processes in the job. If the job argument is omitted, uses the
current job.

jobs
This command lists out all the background processes that are children of the current shell
process.

lc [function-name]
The function name is defined to execute the last command entered. If the function name
is omitted, the last command executed is executed again. This command only works if
the -i flag is set.

pwd
Prints the current directory. The built-in command may differ from the program of the
same name because the built-in command remembers what the current directory is rather
than recomputing it each time. This makes it faster. However, if the current directory is
renamed, the built-in version of pwd will continue to print the old name for the directory.

read [-p prompt] [-e] variable ...
The prompt is printed if the -p option is specified and the standard input is a terminal.
Then, a line is read from the standard input. The trailing newline is deleted from the
line, and the line is split (as described in the section on word splitting above) and the
pieces are assigned to the variables in order. If there are more pieces than variables, the
remaining pieces (along with the characters in IFS that separated them) are assigned to
the last variable. If there are more variables than pieces, the remaining variables are
assigned the null string.

The -e option causes any backslashes in the input to be treated specially. If a backslash
is followed by a newline, the backslash and the newline will be deleted. If a backslash is
followed by any other character, the backslash will be deleted and the following
character will be treated as though it were not in IFS, even if it is.

readonly name ...
The specified names are marked as read only, so that they cannot be subsequently
modified nor unset. ash allows the value of a variable to be set at the same time it is
marked read-only by writing the following.

 readonly name=value
With no arguments, the read-only command lists the names of all read-only variables.

set [{ -options | +options | -- }] [arg ...]
The set command performs three different functions.

With no arguments, it lists the values of all shell variables.

If options are given, it sets the specified option flags, or clears them if the option flags
are introduced with a + rather than a -. Only the first argument to set can contain
options. The possible options are listed below.

-e Causes the shell to exit when a command terminates with a nonzero exit status,
except when the exit status of the command is explicitly tested. The exit status
of a command is considered to be explicitly tested if the command is used to
control an if, elif, while, or until or if the command is the left-hand operand of an
"&&" or "||" operator.

-f Turns off file name generation.

-I Causes the shell to ignore end-of file-conditions. (This does not apply when the
shell is a script source using the "." command.) The shell will, in fact, exit if it
gets 50 EOF's in a row.

-i Makes the shell interactive. This causes the shell to prompt for input, to trap
interrupts, to ignore quit and terminate signals, and to return to the main
command loop rather than exiting upon error.

-j Turns on Berkeley job control on systems that support it. When the shell starts
up, the

 -j is set by default if the -i flag is set.

-n Causes the shell to read commands but not to execute them. (This is marginally
useful for checking the syntax of scripts.)

-s If this flag is set when the shell starts up, the shell reads commands from its
standard input. The shell does not examine the value of this flag at any other
time.

-x If this flag is set, the shell will print out each command before executing it.

-z If this flag is set, the file name generation process may generate zero files. If it is
not set, then a pattern that does not match any files will be replaced by a quoted
version of the pattern.

The third use of the set command is to set the values of the shell's positional parameters
to the specified args. To change the positional parameters without changing any options,
use "--" as the first argument to set. If no args are present, the set command will leave
the value of the positional parameters unchanged. Therefore, to set the positional
parameters to a set of values that may be empty, execute the command

 shift $#
first to clear out the old values of the positional parameters.

setvar variable value
Assigns value to variable. (In general, it is better to write variable=value rather than
using setvar. setvar is intended to be used in functions that assign values to variables
whose names are passed as parameters.)

shift [n]
Shift the positional parameters n times. A shift sets the value of $1 to the value of $2,
the value of $2 to the value of $3, and so on, decreasing the value of $# by one. If there
are zero positional parameters, shifting does not do anything.

trap [action] signal ...
Causes the shell to parse and execute action when any of the specified signals are
received. The signals are specified by signal number. action may be null or omitted;
the former causes the specified signal to be ignored and the latter causes the default
action to be taken. When the shell forks off a subshell, it resets trapped (but not ignored)
signals to the default action. The trap command has no effect upon signals that were
ignored upon entry to the shell.

umask [mask]

Sets the value of umask to the specified octal value. If the argument is omitted, the
umask value is printed.

unset name ...
The specified variables and functions are unset and unexported. If a given name
corresponds to both a variable and a function, both the variable and the function are
unset.

wait [job]
Waits for the specified job to complete and returns the exit status of the last process in
the job. If the argument is omitted, waits for all jobs to complete and then returns an exit
status of zero.

EXAMPLES
The following function redefines the cd command:

 cd() {
 if bltin cd "$@"
 then if test -f .enter
 then . .enter
 else return 0
 fi
 fi
 }

This function causes the file ".enter" to be read when you enter a directory, if it exists. The bltin
command is used to access the real cd command. The "return 0" ensures that the function will
return an exit status of zero if it successfully changes to a directory that does not contain a
".enter" file. Redefining existing commands is not always a good idea, but this example shows
that you can do it if you want to.
The suspend function distributed with ash looks like the following example.

 # Copyright (C) 1989 by Kenneth Almquist. All rights
reserved.
 # This file is part of ash, which is distributed under the
terms
 # specified by the Ash General Public License.

 suspend() {
 local -
 set +j
 kill -TSTP 0
}

This turns off job control and then sends a stop signal to the current process group, which
suspends the shell. (When job control is turned on, the shell ignores the TSTP signal.) Job
control will be turned back on when the function returns because "-" is local to the function. As
an example of what not to do, consider an earlier version of suspend, as illustrated below.

 suspend() {
 suspend_flag=$-

 set +j
 kill -TSTP 0
 set -$suspend_flag
 }

There are two problems with this. First, suspend_flag is a global variable rather than a local one,
which will cause problems in the (unlikely) circumstance that the user is using that variable for
some other purpose. Second, consider what happens if shell received an interrupt signal after it
executes the first set command but before it executes the second one. The interrupt signal will
abort the shell function, so that the second set command will never be executed and job control
will be left off. The first version of suspend avoids this problem by turning job control off only
in a local copy of the shell options. The local copy of the shell options is discarded when the
function is terminated, no matter how it is terminated.

HINTS
Shell variables can be used to provide abbreviations for things that you type frequently. For
example, if you set export h=$HOME in your.profile so that you can type the name of your home
directory simply by typing "$h".

When writing shell procedures, try not to make assumptions about what is imported from the
environment. Explicitly unset or initialize all variables, rather than assuming they will be unset.
If you use cd, it is a good idea to unset CDPATH.

People sometimes use "<&-" or ">&-" to provide no input to a command or to discard the output
of a command. A better way to do this is to redirect the input or output of the command to
/dev/null.
Word splitting and file name generation are performed by default, and you must explicitly use
double quotes to suppress it. This is backwards, but you can learn to live with it. Just get in the
habit of writing double quotes around variable and command substitutions, and omit them only
when you really want word splitting and file-name generation. If you want word splitting but not
file-name generation, use the
-f option.

AUTHORS
Kenneth Almquist

BUGS
When command substitution occurs inside a here document, the commands inside the here
document are run with their standard input closed. For example, the following will not work
because the standard input of the line command will be closed when the command is run.

 cat <<-!
 Line 1: $(line)
 Line 2: $(line)
 !

Unsetting a function that is currently being executed may cause strange behavior.

The shell syntax allows a here document to be terminated by an end-of-file as well as by a line
containing the terminator word that follows the "<<". What this means is that, if you mistype the

terminator line, the shell will silently swallow up the rest of your shell script and stick it in the
here document.
NAME
touch -- update last modification date of a file

SYNOPSIS
touch [-c] [-f] file ...

DESCRIPTION
The touch utility changes the modification and or access times of the given file operands.

Available options:

-c
Does not create a specified file if it does not exist. Does not write any diagnostic
messages concerning this condition.

-f
Attempts to force the touch in spite of read and write permissions on a file.

HISTORY
A touch command appeared in Seventh Edition AT&T UNIX.
NAME
wc -- word, line, and byte count

SYNOPSIS
wc [-c] [-l] [-w] [file ...]

DESCRIPTION
The wc utility reads one or more input text files, and, by default, writes the number of lines,
words, and bytes contained in each input file to the standard output. If more than one input file is
specified, a line of cumulative counts for all named files is output on a separate line following the
last file count. wc considers a word to be a maximal string of characters, delimited by white
space.

The following options are available.

-c
The number of bytes in each input file is written to the standard output.

-l
The number of lines in each input file is written to the standard output.

-w
The number of words in each input file is written to the standard output.

When an option is specified, wc only reports the information requested by that option. The
default action is equivalent to all the flags (-lwc) having been specified.

The following operands are available.

 file A pathname of an input file.

If no file names are specified, the standard input is used and a file name is not output. The
resulting output is one line of the requested count(s), with the cumulative sum of all data read in
via standard input.

By default, the standard output contains a line for each input file of the form:

 lines words bytes file_name

The counts for lines, words, and bytes are integers separated by spaces. The ordering of the
display of the number of lines, words, and/or bytes is the order in which the options were
specified.
The wc utility exits 0 on success and >0 if an error occurs.

STANDARDS
The wc function conforms to POSIX 1003.2.

