

Getting Started with Microsoft Transaction Server
Microsoft® Transaction Server (MTS) is a component-based transaction processing system for
developing, deploying, and managing high-performance, scalable, and robust enterprise, Internet,
and intranet server applications. MTS defines a programming model for developing distributed,
component-based applications. It also provides a run-time infrastructure and a graphical tool for
deploying and managing these applications.

This section provides an overview of the new features in MTS, gives a brief tour of the
documentation, and contains a glossary of terms. The following topics are contained in this section:

· What's New in MTS
· MTS Documentation Roadmap
· MTS Glossary
· MTS Utilities
· MTS Frequently Asked Questions (FAQs)

What's New in MTS
Microsoft Transaction Server (MTS) version 2.0 contains many new features that facilitate deploying
robust and scalable Internet and intranet applications. This section provides a summaries of new
features in MTS.

Complete integration with Internet Information Server (IIS) version 4.0
MTS 2.0 is tightly integrated with IIS 4.0, creating the best platform for business applications on the
Web. New features from the integration of MTS and IIS include:

· Transactional Active Server Pages
Scripts in Active Server Pages can now execute within an MTS-managed transaction. This extends
the benefits of MTS transaction protection to the entire Web application.

· Crash Protection for IIS Applications
IIS Web applications can now execute within their own MTS package, providing process isolation
and crash protection for Web applications.

· Transactional Events
Developers can embed commands into scripts on Active Server Pages, enabling customization of
Web application response based on transaction outcome.

· Object Context for IIS Built-In Objects
The MTS object context mechanism, which masks the complexity of tracking user state information
from the application developer, can now track state information managed by the IIS built-in objects.
This extends the simplicity of the MTS programming model to Web developers.

· Common Installation and Management
MTS and IIS now share common installation and a common management console, lowering the
complexity of deploying and managing business applications on the Web.

Support for the XA transaction protocol, including native support for Oracle
· MTS 2.0 supports the XA transaction protocol, which enables MTS applications to work with IBM

DB2, Informix, and other XA-compliant databases running on Windows NT Server and non-
Microsoft operating systems (including versions of UNIX) via ODBC.

· Vendors of XA-compliant databases are in the process of testing their ODBC drivers for XA
interoperability with MTS 2.0; contact your database vendor for more information.

· MTS 2.0 includes a revision to Microsoft’s ODBC driver for Oracle, enabling MTS applications to
directly manage transactions with Oracle version 7.3 or greater via ODBC.

Desktop Operating System Support
MTS 2.0 can be used with both the Windows NT version 4.0 and Windows 95 operating systems.
MTS support for Microsoft’s desktop operating systems enables businesses to deploy stand-alone
versions of their MTS applications.

· Windows 95 can be used as a development platform for developing MTS components prior to
deployment on a Windows NT server. A Windows 95 computer can also be used as an
administration client for a MTS server application running on Windows NT. In addition, MTS
provides the runtime environment for the Personal Web Server (PWS), which runs on Windows 95.

· Due to the differences between Windows NT and Windows 95, MTS on Windows 95 does not
support Microsoft Cluster Server or MTS role-based security. You cannot remotely administer a
Windows 95 machine running MTS from a computer running Windows NT or Windows 95. Also,
the Microsoft Visual Basic Scripting Edition (VBScript) samples demonstrating how to automate
MTS administration are not installed with MTS on Windows 95 computers.

Microsoft Cluster Server Support
MTS 2.0 supports Microsoft Cluster Server (MSCS), which enables automatic failover of MTS

packages in a cluster. Automatic failover enables high availability for MTS applications.

Support for CICS and IMS transactions via LU 6.2 Sync Level 2
MTS 2.0 enables businesses to deploy MTS applications that support CICS and IMS transactions on
MVS. MTS offers full support for beta 2 or later of Cedar, the SNA Server component that provides
interoperability between MTS and CICS/MVS and IMS/MVS.

Administration Enhancements
MTS 2.0 provides administration enhancements that facilitate deploying and administering MTS
packages, including:

· Snap-in MTS Explorer
The MTS Explorer is now a Microsoft Management Console (MMC) snap-in. You can manage your
MTS packages in the same administrative console as other products, such as IIS. For more
information about MMC and using snap-ins, see the MMC documentation.

· Shut-down of individual server processes
In MTS 2.0, you can shut down individual packages in the MTS Explorer without shutting down the
MTS server process. Shutting down a package terminates that application’s server process.

· Improved activation settings for packages
In MTS 2.0, activation is only set at the package level. MTS no longer allows mixed activation for
components in a package. In addition, you cannot run your package with the remote activation
setting. Packages are either set at Server (local activation of components) or Library (client caller
process activation of components).
MTS 1.0 packages containing components that are all marked in-process will be automatically
upgraded to a Library package when installing MTS 2.0. MTS 1.0 packages containing
components that are all marked with the local activation setting will be automatically upgraded to a
Server package. MTS 1.0 packages with mixed component activation must be manually configured
as a Library or Server package.

· Multi-select capability for updating properties
You can select and modify the properties of multiple items in the MTS Explorer at the same time.

· Move components between packages
Components can be moved between packages by dragging and dropping the component from one
package to another.

Programming enhancements
MTS 2.0 has made it easier to build MTS applications with programming enhancements that include:

· New and updated MTS sample applications
Along with an updated Sample Bank application, MTS now offers two new sample applications.
The Tic-Tac-Toe sample application demonstrates non-transactional components managing shared
state in a simple multiuser game. The administrative sample scripts show you how to use the
scriptable administration objects to automate procedures in the Explorer in a Windows Scripting
Host script.

· Scriptable Administration Objects
Package deployment and maintenance in the MTS Explorer can be automated using the scriptable
administration objects. Using any Automation-compatible language, you can automate
administrative procedures such as installing a package using a simple script.

· MTS application design and implementation documentation
The MTS Programmer’s Guide provides design and implementation guidance for creating an MTS
application. Topics range from enacting business logic in components todiagnosing and debugging
problems.

See Also
Road Map to the Administrator ’ s Guide , MTS Overview and Concepts

MTS Documentation Roadmap
Microsoft Transaction Server (MTS) contains documentation that helps you learn how to design, build,
deploy, and administer MTS applications.

Book Description
Setting Up MTS Describes how to set up MTS and

MTS components, including
instructions for accessing Oracle
databases from MTS application and
installing MTS sample applications.

Getting Started with MTS Provides an overview of the new
features in MTS, gives a brief tour of
the documentation, and contains a
glossary of terms.

Quick Tour of MTS Provides an overview of MTS.
MTS Administrator's Guide

Roadmap to the MTS
Administrator ’ s Guide

Describes the different ways to use
the MTS Explorer to deploy and
administer applications, and gives an
overview of the MTS Explorer
graphical interface.

Creating MTS Packages Provides task-oriented documentation
for creating and assembling MTS
packages.

Distributing MTS Packages Provides task-oriented documentation
for distributing MTS packages.

Installing MTS Packages Provides task-oriented documentation
for installing and configuring MTS
packages.

Maintaining MTS Packages Provides task-oriented information for
maintaining and monitoring MTS
packages.

Managing MTS Transactions Describes distributed transactions
and the management of transactions
using the MTS Explorer.

Automating MTS
Administration

Provides a conceptual overview,
procedures, and sample code
explaining how to use the MTS
scriptable objects to automate
procedures in the MTS Explorer.

MTS Programmer's Guide
Overview and Concepts Provides an overview of the product

and how the product components
work together, explains how MTS
addresses the needs of client/server
developers and system
administrators, and provides in-depth
coverage of programming concepts
for MTS components.

Building Applications for MTS Provides task-oriented information for
developing ActiveX™ components for

MTS.
MTS Administrative Reference Provides a reference for using the

MTS scriptable objects to automate
procedures in the MTS Explorer.

MTS Reference Provides a reference for the MTS
application programming interface
(API).

MTS Administrative Reference Provides a reference for using the
MTS scriptable objects to automate
procedures in the MTS Explorer.

MTS Utilities
MTS provides command-line utilities that you can use to automate certain tasks in a batch file (these
utilities are available directly from the command prompt).

Command-Line Utilities
The following table is a quick reference to command-line utilities that are installed with MTS.

Utility Function
MTXSTOP.exe Shut down all MTS processes. This is the command-

line version of the Shut Down Server Processes
option on the My Computer right-click menu.

MTXTEST.exe Test component marshaling code outside the MTS run-
time environment.

MTXTSTOP.exe Stop MTXTEST.exe. This tool is installed only with the
development installation option.

SAMPDTCC.exe Test the MS DTC installation with a sample client.
SAMPDTCS.exe Test the MS DTC installation with a sample server.
MTXREREG.exe Refresh all components registered on your computer.

This is the command-line version of the Refresh
Components option that you can access by right-
clicking on a selected package.

MTXREPL.exe Replicate an MTS server. Both the master and
destination computers must be running.

TestOracleXAConfig
.Exe

Test Oracle configuration to validate distributed
transactions involving MTS components.
If this utility fails, distributed transactions with Oracle
databases will not work.

Windows NT Administrative Tools
Windows NT also provides several tools that you can use to administer your MTS applications. To use
these tools, click the Start button, point to Programs, and then point to the Administrative Tools
(Common) menu.

Tool Function
Event Viewer In Windows NT, an event is any significant

occurrence in the system or in a program that
requires you to be notified. Event Viewer either
notifies you or puts the event in a log. Refer to the
Event Viewer as the first step in diagnosing a
problem in your MTS application.

Performance
Monitor

Performance Monitor is a tool for monitoring the
performance of your computer or other computers
on a network.

Server
Manager

Server Manager displays a list of workstations and
servers in your domain.

User Manager
for Domains

User Manager for Domains enables you to
establish, delete, or disable domain user
accounts. You can also set security policies and
add user accounts to groups.

Windows NT
Diagnostics

Windows NT Diagnostics displays information
about your computer's resources.

Caution Many of these Windows NT Administrative Tools require that you be logged onto that
machine with administrative privileges.

See Also
Roadmap to the MTS Administrator ’ s Guide

MTS Frequently Asked Questions (FAQs)
Frequently Asked Questions for the Microsoft Transaction Server are located on
http://www.microsoft.com/support/transaction/content/faq/.

Quick Tour of Microsoft Transaction Server
Microsoft Transaction Server (MTS) is a component-based transaction processing system for
developing, deploying, and managing high-performance, scalable, and robust enterprise, Internet,
and intranet server applications.

The following sections introduce the features of Microsoft Transaction Server:

· What is Microsoft Transaction Server?
· Microsoft Transaction Server Run-Time Environment
· Microsoft Transaction Server Explorer
· Microsoft Transaction Server APIs
· Microsoft Transaction Server Sample Applications

What Is Microsoft Transaction Server?
MTS is a component-based transaction processing system for building, deploying, and administering
robust Internet and intranet server applications. In addition, MTS allows you to deploy and administer
your MTS server applications with a rich graphical tool (MTS Explorer).

MTS provides the following features:‹
The MTS run-time environment.

The MTS Explorer, a graphical user interface for deploying and
managing application components.
Application programming interfaces and resource dispensers for
making applications scalable and robust. Resource dispensers are
services that manage non-durable shared state on behalf of the
application components within a process.
Three sample applications that demonstrate how to use the
application programming interface (API) to build MTS components,
and use scriptable administration objects to automate deployment
procedures in the MTS Explorer.

The MTS programming model provides a framework for developing components that encapsulate
business logic. The MTS run-time environment is a middle-tier platform for running these
components. You can use the MTS Explorer to register and manage components executing in the
MTS run-time environment.

The three-tiered programming model provides an opportunity for developers and administrators to
move beyond the constraints of two-tier client/server applications. You have more flexibility for
deploying and managing three-tiered applications because:

· The three-tier model emphasizes a logical architecture for applications, rather than a physical one.
Any service may invoke any other service and may reside anywhere.

· These applications are distributed, which means you can run the right components in the right
places, benefiting users and optimizing use of network and computer resources.

See Also
MTS Documentation Roadmap

Microsoft Transaction Server Run-Time Environment
The MTS run-time infrastructure makes application development, deployment, and management easy
by providing the application developer and system administrator a comprehensive but easy-to-use set
of system services that include:

· Distributed transactions. A transaction is a unit of work that is done as an atomic operation ¾ that
is, the operation succeeds or fails as a whole.

· Automatic management of processes and threads.
· Object instance management.
· A distributed security service to control object creation and use.
· A graphical interface for system administration and component management.

Application developers who rely upon these system services to make their applications scalable and
robust can focus on solving their business problems rather than on developing a system
infrastructure.

MTS works with any application development tool capable of producing ActiveX dynamic-link libraries
(DLLs). For example, developers can use Microsoft Visual Basic, Microsoft Visual C++, Microsoft
Visual J++, or any other ActiveX tool to develop MTS applications.

MTS is designed to work with a wide variety of resource managers, including relational database
systems, file systems, and document storage systems. This allows developers and independent
software vendors to select from a wide range of resource managers and to easily use two or more
resource managers within a single application while enjoying the benefits of local or distributed
transactions.

See Also
MTS Overview and Concepts

Microsoft Transaction Server Explorer
The MTS Explorer is a graphical user interface for managing and deploying MTS components.
System and web administrators as well as developers can use the MTS Explorer to administer,
distribute, install, deploy, and test packages. Developers use the MTS Explorer to assemble
components into pre-built packages, distribute and test components in the MTS environment.
Administrators or developers also use the Explorer to install, deploy, and maintain components and
packages. In addition, the Explorer allows you to monitor and manage transactions for your
transactional components.

The Explorer hierarchy depicts how the following items in the run-time environment are organized:

· Computers
· Packages
· Components
· Roles
· Interfaces
· Methods

MTS packages are installed on computers, contain components, and define roles. Components in a
package define interfaces and methods. You can use special purpose windows to view transaction
and trace message information.

The following diagram shows how the hierarchy is displayed in the left pane of the Explorer:

You can use the properties window to view the properties of components in a package(see the
following diagram) or to view packages installed on a computer.

You can also use the Transaction Statistics window to view summary descriptive statistics for recent
transactions.

Navigating the MTS Explorer
The MTS Explorer window has a left pane that displays a hierarchy and a right pane that displays the
contents of the item you click in the left pane. The hierarchy is a tree structure that contains folders
and all the items you can configure with the MTS Explorer.

You can navigate through the MTS Explorer hierarchy by double-clicking a folder or item in the right
pane to expose its contents. You can also view those contents by clicking the folder or item in the left
pane, which displays the contents in the right pane. To expand any item in the hierarchy, click the plus
(+) sign beside it, and the MTS Explorer displays the hierarchy of that item in the left pane. Double-
clicking a folder or item in the left pane will also display its contents in the right pane so that you can
switch between the expanded and collapsed views of the hierarchy.

Use arrows keys in either pane to select an item. Pressing the ENTER key will display the contents of
an item. You can move between the Explorer's two panes by pressing the TAB key.

Note that on Windows 95, the tree in the left pane in the MTS Explorer does not appear. To navigate,
double-click icons to move down the hierarchy and then click the Up one level toolbar button to move
up the hierarchy. For more information about using the MTS Explorer on Windows 95, see the
Roadmap to the MTS Administrator ’ s Guide .

Setting or Viewing an Item's Properties
Basic information about an item that has been added to the MTS Explorer hierarchy is displayed in
the item's property sheet. What information appears on a property sheet varies from item to item. For
example, the property sheet for a computer item contains the computer's name, location of the log
file, and update settings, whereas the property sheet for a package item contains information
regarding security and other process-specific settings.

You can view property sheets by selecting an item and choosing the Properties command from the
Action menu, or right-clicking the item and selecting Properties. Each property sheet is divided into
individual pages, which you can access by clicking the appropriate tab.

Monitoring and Resolving Transactions
Extensive support for transaction processing is a major feature of the MTS run-time environment.
Microsoft Distributed Transaction Coordinator (MS DTC) provides the support for transaction
processing in MTS. MS DTC is a Windows NT service that MTS uses to ensure that all parties in a
transaction are in agreement before it is finalized.

Transaction support is provided in the MTS Explorer hierarchy through three windows:

You use the Transaction List window to monitor the state of an active
transaction.
You use the Transaction Statistics window to view summary statistics for
recent transactions.

 You use the Trace Messages window to view trace messages relating to
transaction processing.

See Also
Roadmap to the MTS Administrator ’ s Guide

Microsoft Transaction Server APIs
You can use MTS application programming interfaces (APIs) to develop scalable and robust
applications that take advantage of the features of the MTS run-time environment, and to automate
administration of packages and components.

Developing Client Applications
Client applications that run outside the MTS run-time environment instantiate MTS objects by using
the standard COM library functions (CoCreateInstance in C++; the Visual Basic CreateObject
method performs the same function).

Developing Components
If you are developing MTS components (server components that will be registered in the MTS run-
time environment), you can use the MTS IObjectContext, ISharedPropertyGroupManager,
ISharedPropertyGroup, and ISharedProperty interfaces to:

· Declare that an object's work is complete
· Prevent a transaction from being committed
· Create other MTS objects
· Include other objects' work within the scope of the current object's transaction
· Determine if a caller is in a particular role
· Determine if security is enabled

Automating MTS Administration
You can automate administration of packages and components using the MTS administrative objects.
Using Visual Basic, Visual Basic Scripting Edition (VBScript), or any other Automation-compatible
language, you can automate procedures in the MTS Explorer ranging from installing a prebuilt
package to enumerating through related collections.

See Also
Roadmap to the MTS Administrator ’ s Guide , MTS Overview and Concepts,MTS Reference, MTS
Administrative Reference

Microsoft Transaction Server Sample Applications
In addition to the documentation, MTS includes useful sample applications that are valuable learning
tools. You can copy any part of them into your own applications and modify them as necessary.

Throughout the MTS Programmer’s Guide, sample code and applications illustrate MTS
programming techniques. Many of the files for these applications are included with your installation.
You can find the source files for the applications in the \Samples folder of your MTS installation.

MTS provides the following sample applications.

Sample Description
Sample Bank Sample Bank is a simple transactional

database application that demonstrates how to
use the MTS application programming
interfaces

Tic-Tac-Toe Tic-Tac-Toe is a simple multiuser game that
shows nontransactional components managing
shared state.

Administrative
Sample Scripts

The administrative object scripts demonstrate
how to automate MTS Explorer procedures
using VBScript.

See Also
Installing MTS Development Samples and Documentation, Setting Up the MTS Sample Bank
Application, Setting Up the MTS Tic-Tac-Toe Sample Application, Setting Up the MTS Administrative
Sample Scripts, MTS Overview and Concepts,Visual Basic Script Sample for Automating MTS
Administration

Setting Up Microsoft Transaction Server
Welcome to Microsoft Transaction Server (MTS), a powerful environment that makes it easier to
develop and deploy high performance, scalable, and robust enterprise, Internet, and intranet
applications. MTS defines an application programming model for developing distributed, component-
based applications. It also provides a run-time infrastructure for deploying and managing these
applications.

Refer to the following topics to learn how to install and set up MTS:

· MTS System Requirements
· Installing MTS Development Samples and Documentation
· Configuring Your MTS Server
· Configuring MTS with Microsoft Cluster Server
· Setting Up MTS to Access Oracle
· Setting Up the MTS Sample Bank Application
· Setting Up the MTS Tic-Tac-Toe Sample Application
· Setting Up the MTS Administrative Object Sample Scripts
· Getting Assistance While You Work with MTS

MTS System Requirements
This section describes the hardware and software requirements for installing MTS, discusses other
setup considerations, and describes MTS support on Alpha platforms.

You can install MTS on your computer by:

· Using the Windows NT 4.0 Option Pack to install MTS with Internet Information Server (IIS) or
other Option Pack components.

· Using the Windows NT 4.0 Option Pack to install MTS without any other Option Pack components.

MTS runs on Windows NT and Windows 95 with DCOM support.

To install MTS without other Option Pack components:

1 Run the Option Pack Setup program. Choose Custom install.
2 Uncheck all Option Pack components.
3 Select, but do not click the check box, for Transaction Server.
4 Click Show Subcomponents.
5 Check Transaction Server Core Components. This will also check Microsoft Management

Console.
Note that choosing the Development Option also installs the Data Access components.

6 Click OK and continue the setup program.

Hardware Requirements
Before you install Microsoft Transaction Server, make sure that your computer meets the following
minimum requirements:

· Any Windows NT or Windows 95 with DCOM support i386-compatible computer or Alpha AXP™
computer. See the MTS Release Notes for the latest information on hardware requirements.

· A hard disk with a minimum of 30 megabytes available space for a full installation.
· A CD drive.
· Any display supported by Windows NT version 4.0 or Windows 95.
· At least 32 megabytes of memory.
· A mouse or other suitable pointing device.

You can run MTS setup unattended using the Windows NT 4.0 Option Pack setup. Before you run
setup unattended, modify the setup file with your setup selections. The unattended setup file
(unattend.txt) is located in your \MTS directory.

To run setup unattended, click the Start button, select Run and type the following:
setup /u:unattend.txt.

Software Requirements
MTS software requirements include:

· Before you install MTS, you must install Microsoft Windows NT version 4.0 or later, or Windows 95
with DCOM support on your computer. Failure to install DCOM support for Windows 95 before
setting up MTS will result in the following error message:
Setup library mtssetup.dll could not be loaded or the function
MTSSetupProc could not be found.
You can install DCOM support for Windows 95 from http://www.microsoft.com/oledev. Note that
DCOM support for Windows 95 is installed by Internet Explorer 4.0.

If you uninstall MTS on a Windows 95 computer, do not uninstall DCOM support for Windows 95.
The Microsoft Distributed Transaction Coordinator (MS DTC), which is installed but not removed by
the MTS setup program, requires DCOM support on Windows 95.

· If you want to remotely administer a Windows NT computer from a Windows 95 computer, you
must install the Remote Registry service for Windows 95. The Remote Registry service allows you
to change registry entries for a remote Windows NT computer (given the appropriate permissions).
To obtain the Remote Registry service, go to the \Admin\Nettols\RemoteReg subdirectory on the
Windows 95 CD. Read the Regserv.txt file for instructions on installing the Remote Registry
service.

· If you want to use a Microsoft Windows 95 client with MTS, install DCOM for Windows 95. For the
latest information on DCOM support for Windows 95, see http://www.microsoft.com/oledev/.

· If you are using Windows NT Server, you must install Windows NT Service Pack 3. You can
download Windows NT Service Pack 3 from http://www.microsoft.com/support.

· If you want your components to access databases, use Microsoft SQL Server, version 6.5 or later,
or another Microsoft Transaction Server-compatible database. Note that SQL Server requires the
Windows NT operating system.

· It is strongly recommended that you install the SQL Server Service Pack 3 on computers running
MTS software. This Service Pack resolves several known problems. You can install SQL Server
Service Pack 3 from http://www.microsoft.com/support/.

· If you plan to create components with Microsoft Visual Basic, use Microsoft Visual Basic,
Enterprise Edition, version 4.0 or later. It is strongly recommended that you use Visual Basic
version 5.0 to build your MTS components.

· If you plan to create components with Microsoft Visual C++®, use version 4.1 or later with the
Active Template Libraries (ATL), version 1.1 or later. If you use Visual C++ version 4.1, you must
have the Win32 SDK.

· If you plan to create and run Java components with MTS, use the Microsoft Virtual Machine for
Java installed with IE 4.0 or later. You can download Internet Explorer from
http://www.microsoft.com/ie/.

· If you plan to create Internet applications, you must use Microsoft Internet Information Server
version 4.0 or later and Microsoft Internet Explorer version 4.0 or later.

· To use MTS with an Oracle 7.3.3 or an Oracle 8 database, install Oracle patch 7.3.3.2.0 or later
from Oracle. To obtain this patch your must contact the Oracle support organization. In addition,
please see the Setting Up MTS to Access Oracle topic, which provides essential information for
making Oracle work with Microsoft Transaction Server.

Use the Advanced Data Connector 1.1 Client
Windows NT 4.0 Option Pack installs Advanced Data Connector (ADC) version 1.5. The ADC 1.5
client only works with the Internet Explorer (IE) 4.0. The ADC 1.5 client will not work with any version
of Internet Explorer before IE 4.0.

For users of the MTS Adventure Works sample application, check http://www.microsoft.com/adc for
an updated ADC 1.1 client that will work with Internet Explorer version 3.0 or later. You will need to
recompile the MTS Adventure Works sample to set a reference to the new ADC 1.5 recordset library
(Msador15.dll).

Installing SQL Server with MTS
If you install both SQL Server and MTS, you must install SQL Server first. If you later reinstall SQL
Server, you must then reinstall MTS. This limitation will be eliminated in a future release of SQL
Server.

Installing MTS 1.0 over MTS 2.0
To install MTS 1.0 on a computer with MTS 2.0 installed, you must remove the following files from

your system directory before running MTS 1.0 setup:

%WINDIR%\system32\adme.dll
%WINDIR%\system32\dac.exe
%WINDIR%\system32\dacdll.dll
%WINDIR%\system32\dtccm.dll
%WINDIR%\system32\dtctrace.dll
%WINDIR%\system32\dtctrace.exe
%WINDIR%\system32\dtcuic.dll
%WINDIR%\system32\dtcuis.dll
%WINDIR%\system32\dtcutil.dll
%WINDIR%\system32\dtcxatm.dll
%WINDIR%\system32\enudtc.dll
%WINDIR%\system32\logmgr.dll
%WINDIR%\system32\msdtc.exe
%WINDIR%\system32\msdtc.dll
%WINDIR%\system32\msdtcprx.dll
%WINDIR%\system32\msdtctm.dll
%WINDIR%\system32\dtccfg.cpl
%WINDIR%\system32\svcsrvl.dll
%WINDIR%\system32\xolehlp.dll
%WINDIR%\system32\mmc.exe
%WINDIR%\system32\mmc.ini
%WINDIR%\system32\mmclv.dll
%WINDIR%\system32\mmcndmgr.dll
%WINDIR%\system32\mtxinfr1.dll
%WINDIR%\system32\mtxinfr2.dll
%WINDIR%\system32\mtxclu.dll
%WINDIR%\system32\mtxrn.dll
%WINDIR%\system32\mtxdm.dll

Uninstall Option Removes User-Defined Packages
If you are using a previous version of MTS and would like to retain your user-defined packages, do
not use the Uninstall option in the setup program or the Add/Remove Programs service icon in the
Control Panel. Uninstalling MTS results in the removal of all user-defined packages. To preserve user-
defined packages when upgrading, install MTS over your existing version of MTS.

Incorrect System Package Identity Passwords
If you incorrectly specify a password for the System Package Identity on setup, the Microsoft
Transaction Server Explorer will not run. You will get a 80008005 error (server exec failure) back from
the catalog server (System package). To fix a bad system password, reinstall Microsoft Transaction
Server.

In addition, if you incorrectly specify the password on a System Package Identity, the package won’t
run. You will get the same 80008005 error. But this time, the client will see this failure HRESULT on a
CoCreateInstance or equivalent. To fix this, go back to the Explorer and adjust the package's identity
(through the package's Identity tab). User IDs are verified, but passwords are not because of security
restrictions in Windows NT.

Alpha Platforms
MTS is supported on Alpha AXP™ computers. However, this release of Microsoft Transaction Server
for Alpha platforms does not include the following:

· Microsoft Visual J++ components and samples
· Support for accessing Oracle databases

You can find sample Microsoft Visual C++ and Visual Basic components as well as the administrative
sample scripts in the \Samples folder.

For the latest information on Alpha platform support, see http://www.microsoft.com/transaction.

To validate your MTS installation on Alpha platforms, you can run the Sample Bank application using
two computers, an Alpha computer (as a server), and an X86 computer (as a client). See the Setting
Up the MTS Sample Bank Application topic for more details.

Installing MTS Development Samples and Documentation
You install Microsoft Transaction Server (MTS) development samples and documentation by using the
Custom setup option. The following list describes the MTS components installed with each setup
option.

· Minimal
Installs the MTS run-time environment and MTS Explorer.

· Typical
Installs the MTS run-time environment, MTS Explorer, and MTS core documentation.

· Custom
Installs the MTS run-time environment, MTS Explorer, MTS core documentation, MTS
development samples, and MTS development documentation.

It is highly recommended that you use the Custom install option in order to obtain MTS development
samples and documentation. Reviewing the MTS development samples and documentation will
provide a more thorough understanding of the packages and components that you manage. For
example, you can use the MTS Sample Bank and Tic-Tac-Toe development samples to practice
deploying and administrating packages in the MTS Explorer. The sample applications also help you
confirm that you have correctly installed MTS.

The MTS development documentation explains the design decisions that determine how components
are packaged, such as activation settings and transactional properties. Along with discussions of MTS
programming concepts (such as sharing state), the MTS Programmer’s Guide also contains an
tutorial that describes how to install and configure the Sample Bank application.

To obtain MTS development samples and documentation after you have already installed
the Minimum or Typical install:

1 Open the Start menu, click Settings, and then Control Panel.
2 Select the Add/Remove Programs option, click Microsoft Transaction Server, and then the

Add/Remove button.
Note that if you uninstall MTS, user-defined packages will be removed. If you want to maintain your
user-defined packages, install MTS without removing the previous installation.

3 From the setup program, select the Reinstall/Add button.
4 Select the Microsoft Transaction Server option, and click the Show Subcomponents button.
5 Verify that all MTS subcomponent checkboxes have been selected.
6 Click OK.

Configuring Your MTS Server
After you install MTS, configure your MTS server so that you can deploy and manage MTS packages
using the MTS Explorer. Before you start deploying and administering packages, set your MTS server
up for deployment by doing the following:

· Configuring roles and package identity on the System package
· Setting up computers to administer

Configuring Roles on the System Package
You must map the System package Administrator role to the appropriate user in order to safely deploy
and manage MTS packages. When MTS is installed, the System package does not have any users
mapped to the administrator role. Therefore, security on the System package is disabled, and any
user can use the MTS Explorer to modify package configuration on that computer. If you map users to
System package roles, MTS will check roles when a user attempts to modify packages in the MTS
Explorer.

By default, the System Package has an Administrator role and a Reader role. Users mapped to the
Administrator role of the System package can use any MTS Explorer function. Users that are mapped
to the Reader role can view all objects in the MTS Explorer hierarchy but cannot install, create,
change, or delete any objects, shut down server processes, or export packages. For example, if you
map your Windows NT domain user name to the System Package Administrator role, you will be able
to add, modify, or delete any package in the MTS Explorer. If MTS is installed on a server whose role
is a primary or backup domain controller, a user must be a domain administrator in order to manage
packages in the MTS Explorer.

For more information on how to map users to roles, see the Mapping MTS Roles to Users and
Groups topic.

You can also set up new roles for the System package. For example, you can configure a Developer
role that allows users to install and run packages, but not delete or export them. The Windows NT
user accounts or groups that you map to that role will be able to test installation of packages on that
computer without having full administrative privileges over the computer. For more information on
setting up new roles, see the Adding a New MTS Role topic.

Once you have configured roles for your computer’s System package, enable authorization checking
by selecting the check box in the Package Security property sheet. See the Enabling MTS Package
Security for a complete description of how to enable authorization checking.

Note that the following MS DTC administrative functions do not use the System package or the
System package role:

· Transaction Statistics window
· Transaction List window
· Trace Messages window
· Start/Stop MS DTC commands

Setting Up Computers to Administer with the MTS Explorer
By default, the computer on which you install MTS is managed in the MTS Explorer as “My
Computer”. You can also use the MTS Explorer to manage other computers. Add any new computers
that you need to administer to the Computers folder in the Explorer by selecting the Computer icon
and doing one of the following:

· Selecting New from the Action menu
· Clicking the Create a new object icon on the MTS Explorer toolbar
· Right-clicking My Computer and choosing New and then Computer

Then enter a computer name in your Windows NT domain in the dialog box to add the remote
computer as a top-level folder. You must be mapped to the Administrator role on the remote computer.

For more information on managing objects in the MTS Explorer Hierarchy, see the MTS Explorer
Hierarchy topic.

Important You can not remotely administer MTS on a Windows 95 computer from MTS on a
Windows NT server.

Configuring MTS with Microsoft Cluster Server
Microsoft Cluster Server (MSCS) is the clustering solution for computers running Windows NT Server.
MSCS version 1.0 supports clusters of two specially linked servers running Windows NT Server. If
one server in a cluster fails or is taken offline, the other server takes over the failed server's
operations.

If you wish to use Microsoft Transaction Server with MSCS, first install Windows NT Server 4.0
Enterprise. Then install Microsoft Cluster Server 1.0. Finally, install Microsoft Transaction Server 2.0
as described below.

Note MTS 2.0 cluster support does not work with pre-release versions of Microsoft Cluster Server
1.0. Installing MTS 2.0 with a pre-release version of Microsoft Cluster Server will prevent MSCS from
functioning properly.
For more information on MSCS, see Windows NT Books Online.

 To install Microsoft Transaction Server 2.0 with Microsoft Cluster Server 1.0
1 Install Windows NT Server 4.0 Enterprise.
2 Install MSCS 1.0 on all computers in the cluster.
3 Use the MSCS Cluster Administrator to configure a Group to contain a Network Name Resource

and a Shared Disk Resource.
4 Install Microsoft Transaction Server 2.0 on the node that owns the Group configured above. See

Setting Up Microsoft Transaction Server for more information.
5 When MTS setup detects that MSCS is present on the system, it will display a dialog box asking

you to specify the name of the Virtual Server on which Microsoft Distributed Transaction
Coordinator should be installed. Specify the name of the Network Name Resource configured in
step 3.

6 In the same dialog box, specify the location for the MS DTC log file on the shared disk configured
in step 3.

7 Click NEXT to continue MTS setup.
8 Install MTS on the second computer in the cluster. You will not be prompted for the virtual server

and log file location during setup.

Do not run MTS setup in parallel on cluster nodes. Completely install MTS on one node, then install
MTS on the second node without rebooting the first node. When both nodes have MTS installed,
reboot them.

Note You do not not need to uninstall Microsoft Transaction Server 1.0 before Microsoft Transaction
Server 2.0 with Microsoft Cluster Server 1.0. Follow the instructions for installing MTS 2.0 with MCS
1.0.

 To upgrade from Microsoft Transaction Server 1.1 to Microsoft Transaction Server 2.0 with
Microsoft Cluster Server

1 Delete all Microsoft Transaction Server package resources that you created when using Microsoft
Transaction Server 1.1 with Microsoft Cluster Server.

2 Run the Microsoft Transaction Server 2.0 setup program on the cluster node that owns the
Microsoft Distributed Transaction Coordinator resource. This will automatically perform the upgrade
on this node. Ensure that Microsoft Transaction Server setup runs to completion before starting
the next step.

3 Run the Microsoft Transaction Server 2.0 setup program on the second node of the cluster.
4 Reboot both cluster nodes.

Uninstalling Microsoft Cluster Server on an MTS Server
If you want to uninstall Microsoft Cluster Server from one of the nodes in a cluster, follow these

steps:

1 Using the Cluster Administrator to take the Microsoft Distributed Transaction Coordinator resource
offline.

2 Uninstall Microsoft Cluster Server from the node and reboot the node.
3 Change the location of the Microsoft Distributed Transaction Coordinator log file using the

Transaction Server Explorer. The log file must be placed on a non-shared disk. Failing to do this
may result in a corrupted log file or access violations in Microsoft Distributed Transaction
Coordinator.

Resetting the MS DTC Log File on Clustered Servers
To reset the MS DTC log file on a clustered server, you must run the MTS Explorer on the node that
currently owns the shared disk containing the log file.

Starting and Stopping MS DTC on Clustered Servers
On a clustered server, you can start and stop MS DTC by either using the MTS Explorer or using the
MSCS administrative utility. Using the "net start msdtc" or "net stop msdtc" command does not work.
To start and stop MS DTC on an MSCS cluster from the command line, use "msdtc -start" and "msdtc
-stop", respectively.

Calling MTS Objects after MSCS Failover
Microsoft Transaction Server client applications must always release all references to MTS
components on the failing node, and re-instantiate the components. The components are instantiated
on the second node.

Using the Remote Components Folder with Clustered Servers
You can use the Remote Components folder to pull components from a Microsoft Cluster Server
(MSCS) node by following these steps:

1 On the server computer from which you will pull components, right-click on My Computer and
select Properties.

2 Click the Options tab and enter the name of the virtual server in the Remote Server Name field.
Click OK.

3 On the client computer to which you will pull components, add the MSCS computer to the
Computers folder using the physical name of the server.

4 Select the Remote Components folder and choose New from the Action menu. You can also right-
click the Remote Components folder, select New and then Component.

5 Follow the instructions in the remote component installation wizard. Note that during the installation
of remote components, the physical name of the server will be displayed rather than the virtual
name (as specified in the Remote Server Name field of the server computer).

6 Select the Remote Components folder and click the Property View button on the MTS Explorer
toolbar. The Server column in the Property View window displays the virtual server name.

Note If you change the remote server name on the MSCS computer, you must also reinstall the
remote components on client computers.

Replicating Empty Packages
MTS replication does not replicate empty packages.

Setting Up MTS to Access Oracle
You can enable transactional MTS components to access an Oracle 7.3.3 database through ODBC.
MTS works with Oracle 7 Workgroup Server for Windows NT, Oracle 7 Enterprise Server for Windows
NT, Oracle 7 Enterprise Servers on UNIX, and Oracle Parallel Server on UNIX.

Your MTS component may access an Oracle 8 database on either Windows NT or Unix provided your
Microsoft Transaction Server component uses the Oracle 7 client software. MTS does not support
Oracle 8 client software.

This section includes the following topics:

Required Software

Setting Up Oracle Support

Testing Installation and Configuration of MTS Support for Oracle

Validating Oracle Installation and Configuration Using the Sample Bank Application

Known Limitations of MTS Support for Oracle

Required Software
Refer to the following table for a list of the software required to access an Oracle database from MTS
components running on either the Windows NT or UNIX platform.

Component Version
Oracle for Windows NT 7.3.1 (with patch 2 or later)
Oracle SQL*Net 2.3.3
Oracle OCIW32.DLL 1, 0, 0, 5
Oracle for UNIX 7.3.1 (with patches)
Microsoft Transaction Server 2.0 2.0
Microsoft ODBC Driver for Oracle
(MSORCL32.DLL)

2.0

ActiveX Data Objects (ADO) 1.5

Important Earlier versions of the software will not work properly. Please ensure you install the
correct versions of the software. Failing to do this is by far the most common source of problems
when trying to use MTS with Oracle.

Oracle for Windows NT
You must install either the Oracle 7.3.3 Workgroup Server release for Windows NT or the Oracle 7.3.3
Enterprise Server release for Windows NT. The Oracle 7.3.2 and earlier releases of Oracle for
Windows NT are not supported and will not work in conjunction with MTS transactions.

You must install Oracle 7.3.3 patch release 2 or later. This patch is required for all Oracle 7.3.3 clients
accessing an Oracle 7.3.3 or Oracle 8 database. Oracle patch release 2 contains fixes that are
required to make Oracle XA transaction support work properly on Windows NT. The Oracle 7.3.3
release will not work with MTS unless Oracle 7.3.3 patch release 2 or later is installed.

Note If you encounter problems setting up Oracle patch release 2 on Windows 95, contact Oracle
for support.

To obtain Oracle 7.3.3 patch releases from the Oracle customer support organization you must submit
a problem report to the Oracle Customer Support Organization. These patch releases were not
available from the Oracle public web site at the time this note was written.

Oracle SQL*Net
You must install the Oracle SQL*Net 2.3.3 release for Windows NT. You can obtain this release from
Oracle. Earlier versions of Oracle SQL*Net may not work.

Oracle OCIW32.DLL
You must ensure that the correct version of the Oracle OCIW32.DLL is installed. Be very careful to
check the version installed on your computer.

The correct version of the Oracle OCIW32.DLL is:
Version 1, 0, 0, 5
Tuesday, March 18, 1997 2:47:52 PM
Size 18KB.
The improper version of the Oracle OCIW32.DLL is:
Version 7.x
Thursday, February 01, 1996 12:50:06 AM
Size 36 KB
You can obtain the correct version of this DLL from the Oracle 7.3.3 installation CD from the \WIN32\
V7\RSF73 directory.

Oracle for UNIX
In order for transactional MTS components to access an Oracle database on UNIX, you must install
the Oracle 7.3.3 release (or later) for that UNIX platform. In most cases, you will also be required to
install an Oracle 7.3.3 patch release for Oracle on UNIX.

You must check with Oracle Customer Support to determine if an Oracle 7.3.3 patch release is
required for your UNIX platform. Explain that you are going to access your Oracle database on UNIX
using the new XA transaction support that is now included in the Oracle 7.3.3 release on Windows
NT.

The following patch releases are known to work:

Platform Oracle Patch
HP 9000 7.3.3.3
IBM AIX 7.3.3.2
Sun Solaris 7.3.3.2

Microsoft Transaction Server 2.0
You must install Microsoft Transaction Server 2.0 if you wish to access an Oracle database using
MTS.

Microsoft ODBC Driver for Oracle
The Microsoft ODBC 2.0 Driver for Oracle (MSORCL32.DLL) is required. The Windows NT 4.0 Option
Pack program automatically installs this DLL.

If you wish to access an Oracle database, we strongly suggest that you use the new Microsoft ODBC
Driver for Oracle 2.0 even if you do not require transaction support. This new driver offers better
performance than the ODBC 1.0 driver it replaces. The ODBC 1.0 driver serialized all activity at the
driver level; requests were single-threaded through the driver. The ODBC 2.0 driver serializes all
activities at the connection level. This allows different database connections to be used in parallel.

ActiveX Data Objects (ADO)

If your applications use ADO, you must install the ADO version 1.5. Earlier ADO releases will not work
with the new ODBC 3.5 Driver Manager. ADO 1.5 is included in the Windows NT 4.0 Option Pack
setup program.

Setting Up Oracle Support
 To set up Oracle support for MTS transactional components
1 Install the Oracle 7.3.3 release on Windows NT.

If your Oracle database is located on a UNIX system, install the Oracle 7.3.3 release on that
system.

2 Install the Oracle 7.3.3 patch 2 or later on Windows NT. The resulting Oracle version will be Oracle
7.3.3.2 or later depending upon which Oracle patch you install. You must install Oracle 7.3.3 patch
2 or later if you wish to access any Oracle 7 or Oracle 8 database on either Windows NT or Unix.
These Oracle patches correct problems that affect Oracle clients.
If you are using UNIX, install any Oracle 7.3.3 patch releases that are required for your UNIX
system. I

3 Ensure that the correct version of the Oracle OCIW32.DLL is installed as described in the Required
Software section.

4 Install the Microsoft Transaction Server 2.0 version 3.0, which automatically installs the following:
· Microsoft Transaction Server 2.0, including the Microsoft OCI Interface
· Microsoft ODBC 3.5
· Microsoft ODBC 2.0 driver for Oracle
· ADO 1.5

1 Delete the DTCXATM.LOG. Use the Explorer to locate and delete this file if found. Note that the
Microsoft Distributed Transaction Coordinator service must be stopped before the DTCXATM.LOG
file can be deleted.

5 Enable Oracle XA Support
 To enable an Oracle database to work with MTS transactions

1 The system administrator must create views known as V$XATRANS$. To do this, the
administrator must run an Oracle-supplied script, named "xaview.sql". This file can usually be
found in C:\ORANT\RDBMS73\ADMIN.

2 The system administrator must grant SELECT access to the public on these views.
Grant Select on V$XATRANS$ to public.

3 In the Oracle Instance Manager, click Advanced Mode on the View menu and select
Initialization Parameters in the left pane.

4 In the right pane, select Advanced Tuning and increase the "distributed_transactions"
parameter to allow for more concurrent MTS transactions to update the database at a single
time.

See your Oracle Server documentation for more information about configuring Oracle support for XA
transactions.

Testing Installation and Configuration of MTS Support for Oracle
After installing and configuring Oracle support, you should validate your Oracle installation using the
Oracle test program installed with MTS. The Oracle test program uses Oracle's OCI XA interfaces in
much the same way that MTS uses them.

The Oracle test program determines whether you can connect to an Oracle database using Oracle's
XA facility. The Oracle test program uses standard Oracle interfaces and transaction facilities. It
makes no use of Microsoft Transaction Server or Microsoft Distributed Transaction Coordinator.
Therefore, failure of the test program indicates that your Oracle is installed or configured improperly.

Reinstall and reconfigure Oracle, or contact your Oracle representative.

 To run the Oracle test program
1 Verify that you have installed all of the correct versions of the software as described in Required

Software.
2 Create an ODBC DSN that refers to your Oracle database. Ensure that your DSN uses the new

Microsoft Oracle ODBC 2.0 driver.
3 Ensure that you have enabled Oracle XA support.
4 Delete all existing Oracle trace files from the machine containing the MTS components that access

the Oracle database. The easiest way to do this is to use the Windows Explorer to locate and
delete all *.TRC files.

5 Delete the DTCXATM.LOG file, if found, from the computer hosting the MTS components that
access the Oracle database. Use the Windows Explorer to locate and delete the DTCXATM.LOG
file (if it is located on your computer).

6 From the MS-DOS Command Prompt run the Oracle test program (TestOracleXaConfig.exe) and
supply your Oracle server user ID, password, and server name. For example:
c:>TestOracleXaConfig.exe -U<user id> -P<Password>
-S<Server name as in the TNS file>.
If you run the test program with no parameters, the program will display help information that
describes the required parameters. The test program will display information about each Oracle
operation performed and will indicate whether each operation was successful.

7 If the Oracle test program is able to connect to your Oracle database server without error, then it is
very likely that MTS will work with Oracle also. If the Oracle test program reports any errors, follow
these steps:
· Document the exact error message that the Oracle test program displays.
· Examine the Oracle trace file produced when running the Oracle test program. The Oracle trace

information is located in the *.TRC file. The Oracle trace file contains extended error information
that is extremely helpful in diagnosing problems.

· Contact your Oracle support representative for assistance.

Validating Oracle Installation and Configuration Using the Sample Bank
Application
After you have validated your Oracle installation and configuration using the Oracle test program, you
can use the Sample Bank Application supplied with Microsoft Transaction Server to ensure that
Microsoft Transaction Server can access your Oracle database.

 To validate Oracle support using Sample Bank
1 Ensure that you have verified that your Oracle support is installed and configured correctly using

the Oracle test program provided by MTS.
2 On the server, create a table named "Account". The following example demonstrates how to set up

the Account table.
Owner scott
Name of Table Account
Column 1 Name AccountNo of type NUMBER
Column 2 Name Balance of type NUMBER

3 Populate the table with at least two rows. The following table illustrates how to populate the table.
AccountNo Balance
1 1000
2 1000

4 Create a file DSN using the ODBC configuration utility. Name the file DSN "MTSSamples". Then
manually update the DSN file to add the password of the user. The following example

demonstrates how to add the user password to a file DSN.
[ODBC]
DRIVER=Microsoft ODBC for Oracle
UID=scott
PWD=mypassword
ConnectString=myserver
SERVER=myserver

5 Save the file DSN and run the Sample Bank client.

Known Limitations of MTS Support for Oracle

ADO 1.5 Beta Release Is Required When Using ADO with ODBC 3.5
If your applications use ADO, make certain that you install the ADO 1.5. Refer to the Required
Software section for more information.

No Oracle Support on Digital Alpha Platform
Oracle database connectivity is not supported from Digital Alpha platforms running Microsoft
Transaction Server.

Oracle OCIW32.DLL Version Problem
It is important that the correct version of the OCIW32.DLL is installed on your computer. You should
check the version of the DLL any time you reinstall Oracle or Microsoft Transaction Server.

DLL Name Changes in Future Releases of Oracle
Oracle sometimes changes DLL names when they release new versions of their product. Microsoft
Transaction Server relies upon knowing the names of some Oracle DLLs. Currently, MTS looks for
the DLL names provided with Oracle version 7.3.3. As MTS cannot predict future names of these
DLLs, you may need to modify the values in the following registry key when you upgrade your Oracle
installation:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Transaction Server\Local Computer\My
Computer
Under this key there are two string-named values.

· OracleXaLib "xa73.dll"
· OracleSqlLib "sqllib18.dll"

Configuring Oracle to Support a Large Number of Connections
If you want to create more than a few dozen connections to an Oracle database, you must configure
the Oracle server to support additional database connections.

You may experience one or more of the following errors if you fail to do this:

· Failures on SQLConnect calls.
· Failures to enlist on the calling objects transaction, which may result in any of the following errors

in the Oracle trace file:
· Too many sessions
· TNS server failed to locate the server name
· Too many distributed transactions

· Timeouts while waiting for database locks. This is likely to occur if the configured number of locks
is insufficient for the number of concurrently active transactions.

· Record collision due to locks held by in-doubt transactions.

If you experience any of these problems, increase the following Oracle server configuration
parameters:

· Session count (This is typically three times the number of expected connections)
· Distributed transaction count
· Process count
· Lock count

Setting Up the MTS Sample Bank Application
The Sample Bank application is a banking services application that credits, debits, and transfers
money between accounts. Running the Sample Bank application allows you to test your installation of
MTS with SQL Server 6.5 as well as practice package deployment and administration. Sample Bank
has components written in Visual Basic, Visual C++, and Visual J++, and is located in the \MTS\
Samples subdirectory. In addition, MTS provides an Active Server Page (ASP) that calls the Sample
Bank components. This sample is called Bank.asp and is located in the \MTS\Samples\asp sub-
directory.

The MTS Programmer’s Guide provides an extensive tutorial describing how to build Sample Bank
components.

To run the Sample Bank application, you must:

· Select the Custom setup option and choose all MTS sub-components. See the Installing MTS
Development Samples and Documentation topic for more information.

· Set up the DSN.
· Install the Sample Bank package.
· Set up the MTS Explorer to monitor the Sample Bank package.
· Run the Bank Client.

Setting Up the Sample Bank Application
MTS automatically configures the ODBC data source for Sample Bank during setup. Since the local
machine is used by default, you must have SQL Server 6.5 installed on your local machine.

By default, the MTS DSN points to SQL Server 6.5. If you are using a database other than SQL
Server 6.5, you must delete the DSN and add a new DSN called MTSSamples that points to your
database.

If you want to use a SQL Server installation on another machine, use the ODBC service icon in the
Control Panel to modify your data source as follows:

· In the Data Sources dialog box, click the File DSN tab, and select the MTSSamples data source.
· Click Configure and enter the name of the server you want to use.

Note that the Login ID and Password specified by the MTSSamples DSN are not used by Sample
Bank. Sample Bank uses the "sa" account and null password. If your system administrator password
is non-null or you want to specify a different login ID, you will have to modify the ODBC connection
string in the Sample Bank source code.

To monitor the Sample Bank package components and transactions
1 Double-click the Sample Bank package icon in the right pane of the MTS Explorer.
2 Double-click the Components folder.
3 On the View menu, click Status View to display usage information for the various components in

the package.
4 On the Window menu, click New Window.
5 Re-arrange the new window so the two windows do not overlap. You can stack different windows

by selecting either the Cascade or Tile Horizontally options from the Window menu.
6 Click Transaction Statistics in the left pane of the new window.
7 On the Action menu, click Scope to clear the check mark and hide the left pane. Now transactions

statistics are displayed when transactional components are used.

To run the Bank client
1 Make sure that Microsoft Distributed Transaction Coordinator (MS DTC) is running. Select My

Computer in the left pane of the Transaction Server Explorer. Open the Action menu and click

Start MS DTC if that option is enabled.
2 Make sure that SQL Server is running. You can start SQL Server from Control Panel.
2 On the Start menu, point to Programs, point to Microsoft Transaction Server, point to Samples,

and click Bank Client. Arrange the Bank Client window so that it does not overlap the MTS
Explorer windows.

3 The form will default to credit $1 to account number 1. Click Submit. You should see a response
with the new balance.

4 Observe the MTS Explorer windows. You will notice that the component usage and transaction
statistics windows have been updated.

5 Experiment with the bank client and observe the statistics using different transaction types,
servers, and iterations. The first transaction takes longer than subsequent transaction for the
following reasons:
· The first transaction is creating the sample bank database tables and inserting temporary

records.
· Beginning the server process consumes system resources.
· Opening database connections for the first time is a costly server operation.

Setting Up the MTS Tic-Tac-Toe Sample Application
The Tic-Tac-Toe sample application is a game that can be played with the computer or with another
user on a remote MTS computer. Running the Tic-Tac-Toe application allows you to test your
installation of MTS without SQL Server as well as practice package deployment and administration.
The Tic-Tac-Toe sample application is located in the \MTS\Samples sub-directory.

To run the Tic-Tac-Toe sample application, you need to:

· Install Microsoft Transaction Server.
· Run the Tic-Tac-Toe client, and play against the computer or another user.

To start the Tic-Tac-Toe client
1 Run tClient.exe, located in the top-level of your MTS installation.
2 Type your name in the Your Name is… box, and choose if you would like to play against the

computer (Deep Viper) or another user. To learn how to play against a remote user, refer to the
Working with Remote MTS Computers topic.

After you start playing the game, go back to the MTS Explorer. Notice that the Tic-Tac-Toe server
component icon is now spinning, indicating that it is activated and that your MTS installation is
correct. If you stop the game, the icon stops spinning because the Tic-Tac-Toe client is no longer
using the Tic-Tac-Toe server component.

If you click the Status view command on the View menu, you can see usage information about the
Tic-Tac-Toe component.

Setting Up the MTS Administrative Sample Scripts
The administration object sample scripts demonstrate how to write scripts in an Automation-
compatible language (such as Visual Basic Scripting Edition (VBScript) that automate procedures in
the MTS Explorer. The sample scripts automate deployment for the Sample Bank application.

In order to run the sample scripts, you must first install the Windows Scripting Host (WSH). Note that
these scripts will only run on Microsoft Windows NT and Alpha platforms.

To install the Windows Scripting Host from the Windows NT 4.0 Option Pack:
1 If you have not already installed WSH, open the Start menu, choose the Microsoft Internet

Information Server option, and click Internet Information Server Setup.
2 Choose the Add/Remove option from the setup program.
3 Find the Windows Scripting Host option in the list of components, and select the checkbox.
4 Click Finish. The Windows NT 4.0 Option Pack setup program will install WSH on your computer.

Once you have WSH installed, you can use the administration object sample scripts. The following
sample scripts are located in your \MTS\Samples\WSH sub-directory:

· InstDLL.vbs
Deletes existing versions of Sample Bank, creates a new package named Sample Bank, installs
components from the Sample Bank Visual Basic, Visual C++, and Visual J++ DLLs into the new
package, changes transaction attributes, and adds a new role. You must modify the file path before
running the script.
Note this script requires that the computer registry contain all components’ programmatic
identifiers (progIDs). Therefore, you must use the Visual Studio 97 ActiveX Wizard to register your
Java components before you run this script.

· InstPak.vbs
Installs the Sample Bank package into the MTS run-time environment. You must modify the file
path before running the script.

· Uninst.vbs
Uninstalls the Sample Bank package from the MTS run-time environment. You must modify the file
path before running the script.

· InstDllCLI.vbs
Allows you to run the InstDll.vbs script from a console window and enter the file path as a
parameter to delete existing versions of Sample Bank, create a new package named Sample Bank,
install components from the Sample Bank Visual Basic, Visual C++, and Visual J++ DLLs into the
new package, change transaction attributes, and add a new role.

· InstPakCLI.vbs
Allows you to run the InstPak.vbs script from a console window and enter the file path as a
parameter to install the Sample Bank package into the MTS run-time environment.

For more information about the scriptable administration objects and the sample scripts, refer to the
Automating MTS Administration topic in the MTS Administrator’s Guide.

Limitations of the Administrative Sample Scripts
· Java components must be registered using the Visual Studio 97 ActiveX Wizard before running the

InstDLL.vbs script.
· Installing Java components using the sample scripts is only supported on an Alpha or i386

computer. Alpha users should remove the Java component importing code from InstDLL.vbs before
running the script.

Getting Assistance While You Work with MTS
You can get assistance while you work by:

· Consulting the documentation.
· Visiting the Microsoft Transaction Server home page at http://www.microsoft.com/transaction/.
· Contacting product support services.

Consulting the Documentation
The MTS documentation contains conceptual, task-oriented, and reference information about MTS
features. You can also access Help by pressing F1 to get context-sensitive Help while using the MTS
Explorer and programming language keywords. Context-sensitive means that you can get Help
directly without having to go through the Help menu—you just press F1.

See Also MTS Documentation Roadmap

Product Support Services
Microsoft offers a variety of support options to help you get the most from MTS.

If you have a question about the product, first look in Help. If you cannot find the answer, contact
Microsoft Product Support Services.

Support services are available both within the United States and through subsidiary offices worldwide.

Roadmap to the MTS Administrator’s Guide
The MTS Administrator’s Guide describes how and when to use the Microsoft® Transaction Server
Explorer to create, install, distribute, and maintain packages. This guide contains information for the
following users:

· System administrators
· Web administrators
· Application developers

Developers can refer to the procedures when creating, deploying, and distributing MTS applications.
System and Web administrators can use the task-oriented procedures for the MTS Explorer to deploy,
administer and maintain MTS applications.

The following sections describe what it means to deploy and administer packages with the MTS
Explorer, and provide links to more detailed procedural topics:

What Does Creating an MTS Package Mean?
What Does Distributing an MTS Package Mean?
What Does Installing an MTS Package Mean?
What Does Maintaining an MTS Package Mean?
What Does Managing an MTS Transaction Mean?
What Does Automating MTS Administration Mean?

MTS Explorer on Windows 95
You can manage your MTS packages using the MTS Explorer on the Windows® 95 operating system.
However, MTS administration on Windows 95 has the following limitations:

· You can use a Windows NT computer to remotely administer a Windows 95 computer if you run the
Remote Registry service on the Windows 95 computer. The Remote Registry service allows you to
change registry entries for a remote Windows 95 computer (given the appropriate permissions).
To obtain the Remote Registry service, go to the \Admin\Nettols\Remotereg sub-directory on the
Windows 95 CD. Review the Regserv.txt file for instructions on installing the Remote Registry
service, and then run the Remote Registry setup program (Regserv.exe).

· You cannot remotely administer MTS running on Windows 95 from another Windows 95 computer
nor a Windows NT computer.

· The left tree pane in the MTS Explorer does not appear. To navigate, double-click icons to move
down the hierarchy and then click the Up one level toolbar button to move up the hierarchy.

· Because the application executable utility is not supported on Windows 95, you cannot use the
MTS Explorer to generate executables. For more information on the application executable utility,
see the Generating MTS Executables topic.

· Windows 95 administration does not support MTS security properties or roles. Therefore, you will
not be able to view the Roles, Role Membership, or Users folders in the Explorer.

· Components running on Windows 95 cannot be accessed remotely from a client on another
computer.

· Because Windows 95 does not have a system event log, event log entries are written to an HTML
file named Transaction Server.html, which is located in the \MTSLogs subdirectory in the Windows
directory. You can use this HTML file to monitor any significant occurrence in the system or a
program.

See Also
Quick Tour of Microsoft Transaction Server, Getting Started with Microsoft Transaction Server

What Does Creating an MTS Package Mean?
Creating packages is the final step in the development process. Package developers and advanced
system and Web administrators use the MTS Explorer to create and deploy packages. You use the
Explorer to implement package and component configuration that is determined during development
of the application.

For more information about how to design and build MTS applications, see the Building MTS
Applications section of the MTS Programmer’s Guide.

Procedures:
Creating an Empty MTS package
Adding a Component to an MTS Package
Importing a Component into an MTS Package
Removing a Component from an MTS Package
Building an MTS Package for Export
Setting MTS Package Properties
Setting MTS Activation Properties
Setting MTS Transaction Properties
Setting MTS Authentication Levels
Locking Your MTS Package

See Also
Quick Tour of Microsoft Transaction Server, Getting Started with Microsoft Transaction Server , What
Does Distributing an MTS Package Mean?, What Does Installing an MTS Package Mean?, What
Does Maintaining an MTS Package Mean?, What Does Managing an MTS Transaction Mean?, What
Does Automating Administration for Packages Mean?

What Does Distributing an MTS Package Mean?
After the components of an MTS application have been built and packaged, you then distribute the
application to clients.You distribute applications in the following ways:

· Push components from your server computer to a system or Web site administrator’s server
computer using the MTS Explorer. In this case, it is required that both server computers be running
MTS.

· Use the application executable utility in the MTS Explorer to automatically generate application
executables that reference a remote server. The client application does not have be running MTS.

It is recommended that you use the MTS Explorer application executable utility to distribute your
server package to clients who may or may not have MTS on their computers. The application
executable automatically configures a client computer to access components running on a remote
MTS server. You can also configure remote components manually using the MTS Explorer.

Although using the application executable utility does not require programming knowledge, MTS
application distributors should be thoroughly familiar with the implications of packaging and shipping
client and server applications. For example, improper packaging of your application may result in
providing clients with server application code in the client executable.

Procedures:
Working with Remote MTS Computers

Exporting MTS packages

Generating MTS Executables

See Also
Quick Tour of MTS, Getting Started with Microsoft Transaction Server , What Does Creating an MTS
Package Mean?, What Does Installing an MTS Package Mean?, What Does Maintaining an MTS
Package Mean?, What Does Managing an MTS Transaction Mean?, What Does Automating MTS
Administration Mean?

What Does Installing an MTS Package Mean?
After you build a package, you install and deploy it, which requires familiarity with the package and
components properties. For example, after installing a package, a system or Web administrator must
map Windows NT users to the roles associated with the package. The system or Web site
administrator should thoroughly understand role-based declarative security and the roles associated
with an application before mapping application users and groups to roles.

Procedures:
Installing Pre-built MTS packages
Upgrading MTS Packages
Enabling MTS Package Security
Setting MTS Package Identity
Adding a New MTS Role
Mapping MTS Roles to Users and Groups

See Also
Quick Tour of Microsoft Transaction Server, Getting Started with Microsoft Transaction Server , What
Does Creating an MTS Package Mean?, What Does Distributing an MTS Package Mean?, What
Does Maintaining an MTS Package Mean?, What Does Managing an MTS Transaction Mean?, What
Does Automating MTS Administration Mean?

What Does Maintaining an MTS Package Mean?
You can use the MTS Explorer to maintain MTS applications by monitoring the status of installed
packages and re-configuring component and package properties if applicable. This section describes
how you can re-configure packages that are already installed and deployed.

Procedures:
Monitoring Status and Properties in the MTS Explorer
Using Property Sheets in the MTS Explorer
Managing Users for MTS Roles
Using MTS Replication

See Also
Quick Tour of Microsoft Transaction Server, Getting Started with Microsoft Transaction Server , What
Does Creating an MTS Package Mean?, What Does Distributing an MTS Package Mean?, What
Does Installing an MTS Package Mean?, What Does Managing an MTS Transaction Mean?, What
Does Automating MTS Administration Mean?

What Does Managing MTS Transactions Mean?
As an administrator, you should understand how distributed transactions work in order to understand
the context in which you are managing transactions in the MTS Explorer. This section discusses
transactions and transaction states, and how monitor and manage the transactions that you are
administering.

Procedures:
Understanding MTS Transactions

Managing MS DTC

Monitoring MTS Transactions

Monitoring MTS Transactions on Windows 95

Understanding MTS Transaction States

Resolving MTS Transactions

See Also
Quick Tour of Microsoft Transaction Server, Getting Started with Microsoft Transaction Server , What
Does Creating an MTS Package Mean?, What Does Distributing an MTS Package Mean?, What
Does Installing an MTS Package Mean?, What Does Maintaining an MTS Package Mean?, What
Does Automating MTS Administration Mean?

What Does Automating MTS Administration Mean?
Scriptable administration enables you to automate MTS Explorer configuration of packages and
components. If you know a scripting language such as Microsoft Visual Basic, you can use the
scripting objects to automate administration tasks in the Explorer. For example, tool developers can
also use the scriptable objects to create MTS Explorer add-ins such as an object that automatically
configures remote clients.

Note Using the scriptable objects requires a working knowledge of an Automation scripting
language.

You must install MTS development samples and documentation in order to obtain the administrative
sample scripts and MTS Administrative Reference, which contains Microsoft Visual Basic and
Microsoft Visual C++® API reference pages and sample code for the scriptable objects. The
administrative sample scripts are written in Visual Basic Script and take advantage of the Windows
Scripting Host, which can be installed using the the Windows NT 4.0 Option Pack setup program. See
the Setting Up the MTS Administrative Sample Scripts topic for more information about using the MTS
administrative scripts.

Procedures:
MTS Administration Objects

Visual Basic Script Sample for Automating MTS Administration

Visual Basic Sample Application for Automating MTS Administration

Automating MTS Administration with Visual Basic

Automating Advanced MTS Administration with Visual Basic

See Also
Quick Tour of Microsoft Transaction Server, Getting Started with Microsoft Transaction Server , What
Does Creating an MTS Package Mean?, What Does Distributing an MTS Package Mean?, What
Does Installing an MTS Package Mean?, What Does Maintaining an MTS Package Mean?, What
Does Managing an MTS Transaction Mean?

MTS Explorer Hierarchy
The MTS Explorer is the visual tool used to manage MTS packages and components executing in the
MTS run-time environment. You use the MTS Explorer to perform tasks ranging from installing
components into packages to monitoring the status of transactions.

The MTS Explorer is a snap-in hosted by the Microsoft Management Console (MMC) on Windows NT
and an executable file (mtxpd.exe) on Windows 95. The Explorer contains the following folders in the
left tree view hierarchy:

· Computers
Contains the computers managed from this server. The local computer is named My Computer.

· Packages Installed
Contains the packages installed on a given computer.

· Remote Components
Contains the components on remote computers used by packages on a given computer.

· Transaction List
Displays the current transactions in which an MTS application participates.

· Transaction Statistics
Displays statistics on the transactions in which the local computer participates.

· Trace Messages
Lists current trace messages issued by the Microsoft Distributed Transaction Coordinator (MS
DTC).

Note The MTS Explorer on Windows 95 has a single pane. To navigate in the MTS Explorer
hierarchy on Windows 95, double-click the icons to move down the hierarchy and then click the Up
One Level toolbar button to move up the hierarchy.

In addition, you cannot use the Remote Components folder or the application executable utility on
Windows 95.
See the MTS Explorer on Windows 95 section of the Road Map to the MTS Administrator's Guide
topic for limitations of the MTS Explorer on Windows 95.

Remote computers administered by the MTS Explorer list the Packages Installed, Remote
Components, Transaction List, Transaction Statistics, and Trace Messages windows in the hierarchy
below the computer icon.

Each package installed in the MTS Explorer contains the following sub-folders:

· Components
Contains the components installed in the selected package

· Roles
Contains the roles available within a package.

· Role Membership
Contains the roles assigned to the selected component or component interface.

· Users
Contains the users mapped to the role for the package.

· Interfaces
Contains the interface(s) for the selected component.

· Methods
Contains the methods for the selected interface.

See Also
Quick Tour of Microsoft Transaction Server

Computers Folder
The Computers folder contains My Computer and other computers that you have added to your
Computers folder. By default, My Computer corresponds to the local computer on which MTS is
installed.

You can add a computer to the Computers folder by doing one of the following:

· Right-clicking the Computers folder and choose New and then Computer.
· Selecting the Computers folder and clicking on the Create new object icon in the right pane

toolbar
· Selecting the Computers folder, opening the Action menu in the left pane of the Explorer, and

choosing New.

In the Add Computer dialog box, type the name of the server that you would like to administer from
your computer. The new server is added to the Computers folder below the My Computer icon in the
MTS Explorer hierarchy.

See Also
 My Computer, Computer Properties

My Computer
My Computer corresponds to the local computer on which MTS is installed.

See the following topics for procedures can be done at the Computer folder level:

Using MTS Replication

Managing MS DTC

All Computer folders contain the following folders:

Packages Installed

Contains the user-installed and system packages managed on this computer.
Remote Components

Contains the components on remote computers invoked by packages on the local computer.
Transaction List

Lists the current transactions being managed on this computer.
Transaction Statistics

Displays statistics on the transactions in which a computer participates.
Trace Messages

Lists current trace messages issued by the Microsoft Distributed Transaction Coordinator (MS
DTC).

As with every computer in the Computers folder, the properties for My Computer can be configured
using the following property sheets:

· General
· Options
· Advanced

See Also
 Computers Folder

Packages Installed Folder
The Packages Installed folder lists all the packages that you have added to a given computer. You
can perform the following functions at the package level:

Creating an Empty MTS Package
Installing Pre-built MTS Packages
Upgrading MTS Packages
Setting MTS Package Properties
Setting MTS Activation Properties
Setting MTS Package Identity
Enabling MTS Package Security
Setting MTS Transaction Properties
Locking Your MTS Package
Exporting MTS Packages
Monitoring Status and Properties in the MTS Explorer
Using Property Sheets in the MTS Explorer

The Packages Installed folder also contains the following system packages:

System

Utilities

Note These are internal MTS packages, and generally should not be altered or configured by users.
However, you may have to configure an internal MTS package in order to extend or restrict privileges
for your MTS server. For example, in order to set up administrative privileges for a user on an MTS
server, you add the user to the Administrator role for the System package.

You can install any number of packages in the Packages Installed folder. Each installed package
contains the following subfolders.

· Components
Contains the components installed in the selected package

· Roles
Contains the roles assigned to the selected package.

Package properties can be configured using the following property sheets:

· General
· Security
· Advanced
· Identity
· Activation

If you are using MTS with Internet Information Server (IIS) version 4.0, the Packages Installed folder
also contains the following IIS-specific system packages:

· IIS In-Process Applications
The IIS In-Process Applications folder contains the components for each Internet Information
Server (IIS) application running in the IIS process. An IIS application can run in the IIS process or
in a separate application process. If an IIS application is running in the IIS process, the IIS
application will appear as a component in the IIS In-Process Applications folder. If the IIS
application is running in an individual application process, the IIS application will appear as a
separate package in the MTS Explorer hierarchy.

· IIS Utilities
The IIS Utilities Folder contains the ObjectContext component required to enable transactions in
Active Server Pages (ASPs). For more information about transactional ASPs, refer to the Internet
Information Server (IIS) documentation.
Microsoft Transaction Server uses the ObjectContext component for internal functions. You can
view but not set this component’s properties.

Utilities Package

The Utilities package includes two components, TransactionContext and TransactionContextEx.
You can use TransactionContext/TransactionContextEx in your base clients to compose the work
of one or more Microsoft Transaction Server objects into an atomic transaction, and to abort or
commit the transaction.

See Also
Managing MTS Transactions

System Package
The System package includes components that cannot be modified. Microsoft Transaction Server
uses these components for internal functions. You can view but not set System component properties.

In order for a user to be able to delete and modify packages managed by the MTS Explorer, that user
must be mapped to the Administrator role on the System package. If MTS is installed on a server
whose role is a primary or backup domain controller, a user must be a domain administrator in order
to manage packages in the MTS Explorer.

See Also
Configuring Your MTS Server, Enabling MTS Package Security, Mapping MTS Roles to Users and
Groups, Users Folder

Components Folder
The Components folder contains the components in a selected package.

See the following topics for procedures at the component level:

Adding a Component to an MTS Package
Importing a Component into an MTS Package
Removing a Component from a Package
Monitoring Status and Properties in the MTS Explorer
Using Property Sheets in the MTS Explorer
Setting MTS Transaction Properties
Configuring MTS Roles for Declarative Security

The Components folder contains the following subfolders:

· Interfaces
Contains the interface(s) associated with the selected component

· Role Membership (Components)
Contains the roles and users associated with roles for the selected component

Component properties can be configured using the following property sheets:

· General
· Transaction
· Security

See Also
Setting MTS Activation Properties

Roles Folder
The Roles folder contains the roles assigned for a selected package. MTS allows you to define roles
that determine user access for a package, component, or interface. Any role you add to the Role
folder for the selected package you can also add to the Role Membership folder for a component or
an interface in that package.

You can perform the following functions at the Roles level:

Mapping MTS Roles to Users and Groups
Enabling MTS Package Security
Adding a New MTS Role

The Roles folder has one subfolder:

· Users

Role properties can be configured using the following property sheet:

· General

See Also
Configuring Your MTS Server, System Package

Interfaces Folder
The Interfaces folder contains the interfaces defined for a selected component.

The Interfaces Folder contains two subfolders:

· Methods
· Role Membership

Interface properties can be viewed using the following property sheets:

· General
· Proxy

Note that you cannot configure interface properties aside from providing a description of the interface
on the General property sheet.

See Also
Enabling MTS Package Security

Methods Folder
The Methods folder contains the methods defined in a selected interface.

Method properties have a single property sheet:

· General

You cannot configure a method other than adding a description of the method in the General property
sheet.

See Also
InterfacesFolder

Role Membership Folder
The Role Membership folder contains the roles that you associated with a component or interface.
When you add these roles the Role Membership folder from a package's Roles folder, you control
who can access an interface or component.

You set the properties for Roles Membership at the Role folder level. For example, the description
that you enter for a role for the package will be displayed for that role at the Role Membership level.

See the Enabling MTS Package Security topic to learn about declarative security.

See Also
Interfaces Folder

Users Folder
The Users folder contains the Windows NT users or groups that you associate with a role. Each user
represents a Windows NT user account that you add to the Roles folder of a package. You can control
access to packages, components, and interfaces by adding Windows NT user accounts or groups to
the Roles folder.

You can perform the following functions at the Users level:

Adding a new user to a role
Removing a user from a role

There are no property sheets associated with the Users folder.

See Also
Enabling MTS Package Security, Mapping MTS Roles to Users and Groups

Remote Components Folder
The Remote Components folder contains the components that are registered locally on this computer
to run remotely on another computer. Using the Remote Components folder requires that you have
MTS installed on the client machines that you want to configure. If you want to configure remote
computers manually using the Explorer, add the components that will be accessed by remote
computers to the Remote Components folder.

Note that before you can configure remote components, you must add to your Computers folder any
additional servers that will run remote components.

See the following topics to learn more about working with remote computers that are running MTS:

Exporting MTS Packages
Working with Remote MTS Computers

Note Components running on Windows 95 cannot be accessed remotely from a client on another
computer. See the MTS Explorer on Windows 95 section of Road Map to the MTS Administrator's
Guide.

See Also
Generating MTS Executables

Transaction List
The Transaction List window displays the current transactions in which this computer participates,
including:

· Transactions whose status is in-doubt.
· Transactions that have remained in the same state for the period of time specified on the

Advanced tab on the Computer property sheets.

See the Transaction Icons topic for a description of the icons displayed in Transaction List

See the following topics for an overview of managing transactions:

· Understanding MTS Transactions
· Understanding MTS Transaction States

You can use the Transaction List window for to do the following tasks:

· Monitoring MTS Transactions
· Monitoring MTS Transactions with Windows 95
· Resolving MTS Transactions

You can also view properties of a transaction by right-clicking on the selected transaction and clicking
the Properties option.

See Also
 Transaction Icons, Managing MS DTC

Transaction Statistics
The Transaction Statistic window displays statistics on the transactions in which a computer
participates. Some of the statistics are cumulative; others reflect current performance.

See the following topics for an overview of managing transactions:

· Understanding MTS Transactions
· Understanding MTS Transaction States

You can use the Transaction Statistics window for the following tasks:

· Monitoring MTS Transactions
· Monitoring MTS Transactions with Windows 95
· Resolving MTS Transactions

Note that you are using the MTS Explorer on Windows NT, you can only open one Transaction
Statistics window for a given server.

Current
· Active — The current number of transactions that have not yet completed the two-phase commit

protocol.
· Max. Active — The highest number of active transactions at any time during the current Microsoft

Distributed Transaction Coordinator (MS DTC) session.
· In Doubt — The current number of transactions that are unable to commit because of a

communication failure between the local database server and the commit coordinator.

Aggregate
· Committed — The cumulative total of committed transactions. This number does not include

forced (manually resolved) commits.
· Aborted — The cumulative total of aborted transactions. This number does not include forced

aborts.
· Forced Commit — The cumulative total of manually committed transactions.
· Forced Abort — The cumulative total of transactions that were manually aborted.
· Total — The cumulative total of all transactions.

Response Times
This group shows the minimum, average, and maximum transaction response times in milliseconds.
The response time is the duration of a transaction from the point when it began to the point when it
was committed.

MS DTC Started/MS DTC Stopped
This group shows the date and time that the current MS DTC session started. The date and time
started will not appear unless MS DTC is started. The group will also show that MS DTC is stopped.

Some statistics are cumulative; others reflect current performance.

When you stop the MS DTC service, the values of all cumulative statistics are reset to zero.

See Also
Managing MS DTC

Trace Messages
The Trace Messages window lists current trace messages issued by the Microsoft Distributed
Transaction Coordinator (MS DTC). Tracing allows you to view the current status of various MS DTC
activities, such as start up and shut down, and to trace potential problems by viewing additional
debugging information.

For an overview of managing transactions, see the following topics:

· Understanding MTS Transactions
· Understanding MTS Transaction States

You can use the Trace Messages window for the following tasks:

· Monitoring MTS Transactions
· Monitoring MTS Transactions with Windows 95

You can use the Trace slider on the Advanced tab of a computer's property sheet to specify the level
of tracing that is displayed in this window.

Severity
Icon Description

Errors
Something has happened that requires restarting
MS DTC. For example, a corrupt log file is
detected.
Warnings
Something could go wrong soon.
Information
Information is provided about infrequent events,
such as start up and shut down.
Trace
Debugging information is provided about events
such as new client connections or resource
manager enlistments.

Source
Displays the source of the trace message:

· SVC — The MS DTC Service is the source of the trace message.
· LOG — The MS DTC log is the source of the trace message.
· CM — The MS DTC network connection manager is the source of the trace message.

The tracer and the Windows NT event log tag each message with its source.

Message
Displays the message.

See Also
Managing MS DTC

Transaction Icons
The following icons are displayed in the Transaction List:

Icon Description
Active
The transaction has been started
Aborting
The transaction is aborting. MS DTC is notifying
all participants that the transaction must abort.
It is not possible to change the transaction
outcome at this point.
Aborted
The transaction has aborted. All participants have
been notified. Once a transaction has aborted, it
is immediately removed from the list of
transactions in the MS DTC Transactions window.
It is not possible to change the transaction
outcome at this point.
Preparing
The client application has issued a commit
request. MS DTC is collecting prepare responses
from all participants.
Prepared
All participants have responded yes to prepare.
In Doubt
The transaction is prepared, is coordinated by a
different MS DTC, and the coordinating MS DTC
is inaccessible. The system administrator can
force the transaction to commit or abort by right-
clicking in the Transactions window and choosing
the Resolve/Commit or Resolve/Abort
command. Once an outcome is forced, the
transaction is designated as forced commit or
forced abort.

Caution Do not manually force an in-doubt
transaction until you have read the Resolving
MTS Transactions topic.
Forced Commit
The administrator forced the in-doubt transaction
to commit (see the Resolving MTS Transactions
topic).
Forced Abort
The administrator forced the in-doubt transaction
to abort (see the Resolving MTS Transactions
topic).
Committing
The transaction has prepared successfully and
MS DTC is notifying participants that the

transaction has been committed. MS DTC does
not end the transaction until all participants have
acknowledged receiving (and logging) the commit
request.
It is not possible to change the transaction
outcome at this point.
Cannot Notify Aborted
MS DTC has notified all connected participants
that the transaction has aborted. The only
participants not notified are those that are
currently inaccessible.
This transaction state occurs when MS DTC must
inform any resource manager (such as an IBM LU
6.2 system) that a transaction has aborted but is
unable to do so because the connection to the
IBM system is down.
The system administrator can force MS DTC to
forget the transaction by right-clicking in the
Transactions window and choosing the
Resolve/Forget command.

Caution Do not manually forget a transaction
until you have read the Resolving MTS
Transactions topic.
Cannot Notify Committed
MS DTC has notified all connected participants
that the transaction has committed. The only
participants not notified are those that are
currently inaccessible.
The system administrator can force MS DTC to
forget the transaction by right-clicking in the
Transactions window and choosing the
Resolve/Forget command.

Caution Do not manually forget a transaction
until you have read the Resolving MTS
Transactions topic.
Committed
The transaction has committed and all
participants have been notified. Once a
transaction commits, it is immediately removed
from the list of transactions in the MS DTC
Transactions window.
It is not possible to change the transaction
outcome at this point.

See Also
Managing MS DTC

Computer Properties
Computer properties determine general information about the computer and control how Microsoft
Transaction Server updates the computer.

 General

 Options

 Advanced

See Also

Computers Folder

General Tab (Computer)
The General tab defines the computer's name and description.

Name
Displays the name of the computer.

Description
Displays a description of the computer. You can type a description to help you identify and manage
the computer.

See Also
Computers Folder

Options Tab (Computer)
The Options tab is used to set the computer's transaction timeout property and replication
information.

The transaction timeout value is measured in seconds and indicates the maximum time period that
transactions started on this computer can remain active. Transactions that remain active beyond the
specified time are automatically aborted by the system. The default value is 60 seconds. You can
disable transaction timeouts by specifying the value 0; this setting is particularly useful when
debugging MTS applications.

Use the Replication section of the Options tab to provide replication information for your MTS
computer. In the Replication share box, enter the name of your Microsoft Cluster Server (MSCS)
virtual server name to ensure failover support. You cannot replicate an MTS catalog on a Windows 95
computer.

You can also specify a computer that you want your client executables to access. Enter the name of
the physical server for your clients to access in the Remote server name box before you generate
the application executable. If this string is blank or empty, the physical computer name of the
exporting computer will be used. If you put the name of the remote server as the string, the
application executable generated by the MTS Explorer will point to that remote server name.

See Also
Using MTS Replication, Generating MTS Executables, Computers Folder

Advanced Tab (Computer)
The Advanced tab is used to configure properties for the Microsoft Distributed Transaction
Coordinator (DTC). These settings only apply to the Transaction List, Transaction Statistics, and
Trace Messages windows.

Note You will not be able to access the Help documentation from the Advanced tab of the My
Computer property sheet.

View
· Display Refresh — Ranges from Infrequently to Frequently with a slider bar. Infrequently

means the transaction windows are updated every 20 seconds, whereas Frequently means
they're updated every 1 second. More frequent updates increase administrative overhead on the
running transactions but also provide more current information.

· Transactions Shown — Ranges from Very Old to New + Old with a slider bar. Selecting Very
Old displays transactions only after they have been active for 5 minutes, while selecting New +
Old displays transactions that have been active for 1 second or more.

· Trace — Ranges from Less (faster MS DTC) to More (slower MS DTC) with a slider bar. The
settings are as follows:
· Send no traces.
· Send only error traces.
· Send error and warning traces.
· Send error, warning, and informational traces (default).
· Send all traces.

Log Properties
· Location — Where to store the log file.
· Capacity — The maximum size of the log file.

Reset Log
Used to update the log file after any changes have been made.

Caution Do not reset the MS DTC log file while there are unresolved transactions.

See the following topics for an overview of managing transactions:

· Understanding MTS Transactions
· Understanding MTS Transaction States

See the following topics to learn how to use the Transaction Statistics, Trace Messages, and
Transaction List windows in the Explorer:

· Monitoring MTS Transactions
· Monitoring MTS Transactions with Windows 95

See Also
Managing MS DTC

Package Properties
Package properties control how a package is accessed.

 General

 Security

 Advanced

 Identity

 Activation
Important You cannot modify Security or Identity properties (or shut down a package) using the
property sheets for Library packages.

On Windows 95 computers, the package property sheets do not include the Security tab, as role-
based security is only supported on Windows NT.

See Also
 Packages Installed Folder

General Tab (Package)
The General tab displays general information about the selected package.

Name
Displays the name of the package.

Description
Displays a description of the package. You can type a description to help you identify and manage the
package.

Package ID
Displays the package identification number, a unique number that is generated when you create the
package. You can use the Package ID to identify particular versions of a package on a computer.

See Also
Packages Installed Folder, Package Properties

Security Tab (Package)
The Security tab displays security information about the selected package.

Enable authorization checking
If selected, Microsoft Transaction Server checks the security credentials of any client that calls the
package. Authorization checking is enabled by default.

Authentication level for calls
The level of authentication for clients calling the package.

See Also
Packages Installed Folder, Package Properties, Setting MTS Authentication Properties, Enabling
MTS Package Security

Advanced Tab (Package)
The Advanced tab determines whether the server process associated with a package always runs, or
whether it shuts down after a certain period of time.

If you want the package to shut down automatically after a certain period of inactivity, you can use the
Shut down after being idle for selection to set when the server process should be shut down.

If you want the server process always to be available, you should select the Leave running when
idle option.

You can use the Shut Down Server Processes command from the Tools menu to shut down all
server processes running on the selected computer.

See Also
Packages Installed Folder

Identity Tab (Package)
The Identity tab is used to set the user identity for all components running in a given package. The
default value is Interactive User, which is the user who logged on to the Windows NT server account.
If you want to select another user, you can select the This user option and specify an account name
and password.

Important If you specify another user and password, Microsoft Transaction Server does not
validate the password when it is specified. Running a package with an invalid password results in a
run-time error and a message in the event log.

To set the This user option to a user or group, you must be logged on to the computer that either
maps to that user or is included in the specified group.

See Also
Configuring MTS Roles for Declarative Security, Packages Installed Folder

Activation Tab (Package)
The Activation tab is used to determine how components are activated in your package.

You can select a package to run in process of the client that called it (as a Library package) or in a
dedicated local process (as a Server package).

Library Package
Select this option to run the package as a Library package. A Library package runs in the process
of the client that creates it. This option is only available for clients on the computer on which the
package is being installed and configured. Note that Library packages offer no component tracking,
role checking, or process isolation.
Server Package
Select this option to run this package as a Server package. A server package runs in its own
process on the local computer. Server packages support role-based security, resource sharing,
process isolation, and process management (such as package tracking).

See Also
Packages Installed Folder, Package Properties

Component Properties
Component properties control transaction support and security settings. You can also use the
Properties tab to view the component's identifying properties, such as its Name, programmatic
identifier (ProgID), and class identification (CLSID).

 General

 Transaction

 Security

See Also

Components Folder, Enabling MTS Package Security

General Tab (Component)
The General tab displays general information about the selected component.

Component ProgID
Displays the programmatic identifier (ProgID).

Description
Displays a description of the component. You can type a description to identify and manage the
component.

DLL
Displays the path of the DLL containing the class and interface definitions for the component.

CLSID
Displays the unique class identifier (CLSID) of the selected component. You can use a CLSID in code
to identify and access a component.

Package
Displays the name of the package where the selected component is installed.

See Also
Components Folder, Component Properties

Security Tab (Component)
The Security tab is used to configure security for the selected component. See the Enabling MTS
Package Security topic for learn about declarative security.

Enable authorization checking
Select this box to check the security credentials of any client that calls the component.

See Also
Components Folder, MTS Component Properties

Transaction Tab (Component)
The Transaction tab determines how a component supports transactions.

· Requires a transaction — This indicates that the component's objects must execute within the
scope of a transaction. When a new object is created, its object context inherits the transaction
from the context of the client. If the client does not have a transaction, MTS automatically creates a
new transaction for the object.

· Requires a new transaction — This indicates that the component's objects must execute within
their own transactions. When a new object is created, MTS automatically creates a new transaction
for the object, regardless of whether its client has a transaction.

· Supports transactions — This indicates that the component's objects can execute within the
scope of their client's transactions. When a new object is created, its object context inherits the
transaction from the context of the client. If the client does not have a transaction, the new context
is also created without one.

· Does not support transactions — This indicates that the component's objects should not run
within the scope of transactions. When a new object is created, its object context is created without
a transaction, regardless of whether the client has a transaction.

See Also
Components Folder, MTS Component Properties, Managing MTS Transactions

Remote Component Properties
Remote component properties are used to display information about the components that have been
added to the Remote Components folder. You cannot configure remote component properties other
than to provide a description of the component in the General tab.

 General Tab

See Also
Remote Components Folder, Distributing MTS Packages

General Tab (Remote Component)
The General tab displays identification information about the selected remote component.

Name
Displays the name of the remote component.

Description
Displays a description of the remote component. You can type a description to help you identify and
manage the remote component.

CLSID
The class ID for the component.

Runs On
Identifies the name of the computer the component was installed from.

See Also
Remote Components Folder

Role Properties
Role properties are used to view the name, description, and Role ID for a particular role.

 General

See Also
Roles Folder, Enabling MTS Package Security, Mapping MTS Roles to Users and Groups

General Tab (Role)
The General tab displays general information about the selected role.

Name
Displays the name of the role.

Description
Displays a description of the role. You can type a description to help you identify and manage the role.

Role ID
Displays the role identification number that MTS generates when you add a role. You can use this
number to distinguish between roles with similar names that you have identified for different
packages.

See the Roles Folder topic for an overview of the objects in the Roles folder and the functions
performed at the role level.

See Also
Roles Folder, MTS Role Properties, Enabling MTS Package Security, Mapping MTS Roles to Users
and Groups

Role Member Properties
Role member properties are used to display information about the roles that have been added to a
component or interface.

 General

See Also
Roles Membership Folder, Enabling MTS Package Security, Mapping MTS Roles to Users and
Groups

General Tab (Role Member)
The General tab displays general information about the selected role.

Name
Displays the name of the role.

Description
Displays a description of the role. You can type a description to help you identify and manage the role.

Role ID
Displays the role identification number that MTS generates when you add a role. You can use this
number to distinguish between roles with similar names that you have identified for different
packages.

See Also
Roles Membership Folder, Role Properties, Enabling MTS Package Security, Mapping MTS Roles to
Users and Groups

Interface Properties
Interface properties are used to display information about an interface exposed by a component.

 General

 Proxy

See Also
Interfaces Folder

General Tab (Interface)
The General tab displays identification information about the selected interface.

Name
Displays the name of the interface.

Description
Displays a description of the interface. You can type a description to help you identify and manage the
interface.

IID
Displays the interface identifier.

See Also
Interfaces Folder, Interface Properties

Proxy Tab (Interface)
Displays identification information about the selected proxy/stub.

Proxy/Stub
Displays the CLSID and file name of the proxy/stub DLL.

Type Library
Displays the Library ID and file location for the type library.

See Also
Interfaces Folder, Interface Properties

Method Properties
Method properties are used to display information about the methods exposed by an interface.

 General

See Also
Methods Folder

General Tab (Method)
The General tab displays identification information about the selected method.

Name
Displays the name of the method.

Description
Displays a field in which you can type a description of the method.

See Also
Methods Folder, Method Properties

Creating MTS Packages

Creating packages is the final step in the MTS application development process. Package design
decisions dictate the organization and properties of components. Although creating MTS packages
does not require programming knowledge, you should be thoroughly familiar with the design and
implementation specifications of the application.

It is highly recommended that you review this section of the MTS Administrator’s Guide in conjunction
with the MTS Programmer’s Guide so that you understand the design-time implications for packaging
components using the Microsoft Transaction Server Explorer.

Packaging components enacts development decisions that include resource pooling, activation
settings, and support for transactions. For example, when you create a package, you should try to
group components that share resources in the same package. Consider the type of resources that
components are sharing in your package, and group components that share "expensive" resources,
like connections to a specific database.

Packaging components to take advantage of resource pooling results in more efficient MTS
applications. If you review the MTS Programmer’s Guide in conjunction with the MTS Administrative
Guide, you can learn more about the development concerns that motivate creating and populating
packages using the Explorer. See the Installing MTS Development Samples and Documentation topic
for instructions on obtaining the MTS Programmer’s Guide.

This section discusses the following topics:

Creating an Empty MTS package
Adding a Component to an MTS Package
Importing a Component into an MTS Package
Removing a Component from an MTS Package
Building an MTS Package for Export
Setting MTS Package Properties
Setting MTS Activation Properties
Setting MTS Transaction Properties
Setting MTS Authentication Levels
Locking Your MTS Package

Creating an Empty MTS Package
The first step in using the MTS Explorer is to create a package. A package, which can easily be
created in the MTS Explorer, is a collection of components that run in the same process. You can
either create an empty package and then add components, or you can install a pre-built package. Add
packages by using the Package wizard or by dragging a package file (.pak) from the Windows NT
Explorer and dropping it into the right pane of the MTS Explorer.

Packages define the boundaries for a server process running on a server computer. For example, if
you group a sales component and a purchasing component in two different packages, these two
components will run in separate processes with process isolation. Therefore, if one of the server
processes terminates unexpectedly (such as an application fatal error), the other package can
continue to execute in its separate process.

To create an empty package
1 In the left pane of MTS Explorer, select the computer for which you want to create a package.
2 Open the Packages Installed folder for that computer.
3 On the Action menu, click New. You can also select the Package Installed folder and either right-

click and select New and then Package from the right-click menu, or select the Create a new
object button on the MTS toolbar.

4 Use the Package wizard to install either a pre-built package or create an empty package. If you
create an empty package, you must add components and roles before it will be functional.

5 Click the Create an empty package button.
6 Type a name for the new package, and click Next.
7 Specify the package identity in the Set Package Identity dialog box, and then click the Finish

button.

The default selection for package identity is Interactive User. The interactive user is the user that
logged on to the server computer on which the package is running. You can select a different user by

selecting the This user option and entering a specific Windows NT user or group.

See Also
Adding a Component to an MTS Package, Importing a Component into an MTS Package, Building an
MTS Package for Export, Enabling MTS Package Security

Adding a Component to an MTS Package
An MTS component is a reusable piece of code and data that is built to the Component Object Model
(COM) specification. Components enact business logic in an application.

You can add a component to a package by:

· using the component wizard
· moving a component from an existing package

To add components to the Components folder of a package, you can either use the component wizard
in MTS Explorer or you can drag dynamic-link libraries (DLL) that contain the components you want
from Windows NT Explorer and drop them in the package . If you use the Component wizard, you can
either install a new component, which adds the component to the system registry, or import
components that have already been registered. Components can be added to empty packages or
existing packages.

To move a component from an existing package, simply drag and drop the component from the
existing package to the new component.

Note that a single MTS application can contain components that can be installed in multiple
packages. You can place different components that are housed in the same DLL into completely
separate packages.

To add a component to a
package

1 In the left pane of MTS Explorer, select the computer on which you want to install the component.
2 Open the Packages Installed folder, and select the package in which you want to install the

component.
3 Open the Components folder.
4 On the Action menu, click New. You can also select the Components folder, right-click, and select

New and then Component from the right-click menu, or select the Create a new object button on
the MTS toolbar.

5 Click the Install new component(s) button.
6 In the dialog box that appears, click Add Files to select the files you want to install. You should

select the DLL that contains the component you want to install. If the component has an external
type library or proxy/stub DLL, also add those files. Make sure that in your Windows NT Explorer,
the Hidden files option is set to Show all files. If this option is set to hide files with the .dll file
name extension, you will not see the DLLs that contain your component in the Component wizard
Add Files dialog box. You will have to restart the MTS Explorer if you change this setting.

7 In the dialog box that appears, select the file or files you want to add, and click Open. You can
display all available files, just DLLs, or just type libraries by clicking the appropriate option in the
Files of type box.

8 After you add the files, the Install Components dialog box displays the files you have added and
their associated components. If you select the Details check box, you will see more information
about file contents and the components that were found. Microsoft Transaction Server components
must have a type library. If MTS cannot find your component's type library, your component will not
appear in the list. You can also remove a file from the Files to install list by selecting it and clicking
Remove Files.

9 Click the Finish button to install the component. It is important to note that installing a component
allows you to view the interfaces and methods on that component. When you import a component,
the imported component’s interfaces and methods are not visible in MTS Explorer.

See Also
Creating an Empty MTS Package, Importing a Component into an MTS Package, Removing a
Component from an MTS Package, Building an MTS Package for Export

Importing an MTS Component into a Package
You can use the Microsoft Transaction Server Explorer to import into packages specific components
that have already been registered on your computer as COM (Component Object Model)
components. Importing a component does not install the interface or method information required to
set interface properties or to configure access to the component from a remote client. If possible,
install rather than import components.

To import a component into a
package

1 In the left pane of MTS Explorer, select the computer on which you want to import the component.
2 Open the Packages Installed folder, and select the package into which you want to import the

component.
3 Open the Components folder.
4 On the Action menu, click New. You can also select the Components folder and either right-click

and select New and then Component from the right-click menu, or select the Create a new object
button on the MTS toolbar.

5 Click the Import component(s) that are already registered button.
6 Select the components you want to import.
7 Click Finish.

See Also
Creating an Empty MTS package, Adding a Component to an MTS Package

Removing an MTS Component from a Package
You can use Microsoft Transaction Server Explorer to remove components from a package. The
impact of deleting a component depends on how the component was added to the MTS run-time
environment. If you installed the component, deleting the component completely removes registry
information from both the MTS run-time environment and your computer. If you imported the
component, the component will be removed from the MTS run-time environment, but will remain
registered on the deployment computer as a COM (Component Object Model) component. You must
then manually remove the COM component registry entries and component files from your
deployment computer.

To remove a component from
a package

1 In the right pane of the Explorer, select the package that contains the component you want to
remove.

2 Open the Components folder.
3 Select the component you want to remove.
4 On the Action menu, click Delete. You can also select the component and either right-click and

select Delete from the right-click menu, or select the Delete button on the MTS toolbar.
5 Click Yes in the dialog box that appears.

See Also
Creating an Empty MTS package

Building an MTS Package for Export
To export packages, your components must be properly configured so that MTS can automate
package registration on a server or client computer. When building a package, therefore, you should
consider how the package might be distributed.

You can use the package export option in the Microsoft Transaction Server Explorer to export your
package to another server computer running MTS. You can also generate application executables for
remote client computers running Windows NT or Windows 95 (with DCOM support) to access your
server application. Consider the requirements for package export while you are creating and
configuring packages.

By default, application executables configure client machines to access the remote MTS server on
which the executable was generated. You can modify the location of the server application by
configuring the Option tab of the Computer property sheets. Before you generate the executable,
select My Computer in the MTS Explorer, right-click, and choose Properties from the right-click
menu. Click the Options tab and enter the machine name of the server that you want the client
computer to access in the Remote server name box. Note that the machine name that you enter
must be the MTS server running the package. Then click OK. When you generate the client
executable, the executable will configure that client to access the server that you specified in the
Remote server name box. This allows you to statically load balance your application by having
multiple clients point to more than one machine running the same package.

Requirements for Package Export
Package developers, or advanced system or Web administrators who deploy packages must observe
the following requirements while building and deploying MTS packages:

· Remove the descriptions of standard COM interfaces from the client-only application type libraries.
For example, the package developer may have defined an interface such as IObjectSaftey in a
type library in order to use that interface with Visual Basic. Removing descriptions of the interface
before exporting will prevent the interface from being improperly registered and unregistered on
client machines. Failure to remove standard COM interface descriptions from the client-only type
library could lead to the failure of any other application using those standard interfaces.

· If any of the globally unique identifiers (GUIDs) that are in the server package (including class,
interface, or type-library identifiers) and are used by clients change, you will need to re-export the
package if you want to generate an updated client install executable. Clients of your application will
not be able to access the server application until they run the new client install executable. Note
that some development tools (such as Microsoft® Visual Basic™) may change these GUIDs without
notifying the developer.

For more information about using the MTS Explorer to distribute MTS packages, see the Distributing
MTS Packages section.

See Also
Creating an Empty MTS package, Adding a Component to an MTS Package, Importing a Component
into an MTS Package

Setting MTS Package Properties
Package properties determine package configuration. To access these property sheets, right-click the
package in the Microsoft Transaction Server Explorer, or select the package and choose the
Properties option from the Action menu.

There are five package property sheets:

· General
Displays the name and description the computer.

· Security
Enables authorization checking. The default security setting enables authorization checking. See
the Enabling MTS Package Security topic for more information.

· Advanced
Determines whether the server process associated with a package always runs, or whether it shuts
down after a certain period of time.

· Identity
Used to set which user is allowed to access a package. The default value is Interactive User, which
is the user that is currently logged on to the Windows NT server account. If you want to select
another user, you can select the This user option and specify an account name and password.

· Activation
Used to set the activation level for the package and its components. You can either set the
activation level to Library Package so components are activated in the creator’s process, or to
Server Package so that the package runs in a dedicated server process.
See the Setting MTS Activation Properties topic for more information.

To modify package or component properties, you must use property sheets.

To access property sheets:

1 Right-click the package or component that you would like to configure and choose Properties. You
can also select the item, open the Action Menu, and select Properties.

2 Select the tab of the sheet that you will use.
3 Update the property setting.
4 Click OK to save the setting and return to the Explorer.

Refreshing Component Settings
It is important to refresh the MTS settings for components each time you recompile your project.
Refreshing component settings prevents your component registry settings from being rewritten.

 To refresh your component
settings

1 In the left pane of the MTS Explorer, select the computer that contains the components you would
like to refresh.

2 On the Action menu, click Refresh All Components. This updates Transaction Server with any
changes to the system registry, component CLSIDs, or interface identifiers (IIDs). You can also
refresh components by selecting the computer in the left pane of the Explorer and clicking the
Refresh button on the MTS toolbar.
The Refresh All Components command works if any item below a computer in the MTS Explorer
hierarchy has been selected. The command will apply to the selected computer.

See Also
Setting MTS Activation Properties, Setting MTS Transaction Properties, Setting MTS Authentication
Levels, Locking Your MTS Package

Setting MTS Activation Properties
Activation properties should be determined at package design time. You can select a package to run
in process of the client that called it (as a library package) or in a dedicated server process (as a
server package).

Library Package
Select this option to run the package as a library package. A library package runs in the process of
the client that creates it. This option is only available for clients on the computer on which the
package is being installed and configured. Note that library packages offer no component tracking,
role checking, or process isolation.
Server Package
Select this option to run this package as a server package. A server package runs in its own
process on the local computer. Server packages support role-based security, resource sharing,
process isolation, and process management (such as package tracking).

To set the package activation
property

1 Select the package you want to configure.
2 On the Action menu, click Properties, and select the Activation tab. You can also access the

property sheets by selecting the item and either right-clicking and choosing Properties, or clicking
the Properties button on the MTS toolbar.

3 Click the Activation tab and specify the appropriate activation property.
4 Click OK to return to the Explorer.

See Also
Setting MTS Package Properties, Setting MTS Transaction Properties, Setting MTS Authentication
Levels, Locking Your MTS Package

Setting MTS Transaction Properties
You should determine if you want your application to support transaction at design time, and then use
the Microsoft Transaction Server Explorer during deployment to set the component transaction
property. The Transaction tab on the property sheet determines how a component supports
transactions. You can select one of the following settings for component transaction properties:

· Requires a transaction This indicates that the component's objects must execute within the scope
of a transaction. When a new object is created, its object context inherits the transaction from the
context of the client. If the client doesn't have a transaction, MTS automatically creates a new
transaction for the object.

· Requires a new transaction This indicates that the component's objects must execute within their
own transactions. When a new object is created, Transaction Server automatically creates a new
transaction for the object, regardless of whether its client has a transaction.

· Supports transactions This indicates that the component's objects can execute within the scope
of their client's transactions. When a new object is created, its object context inherits the
transaction from the context of the client. If the client doesn't have a transaction, the new context is
also created without one.

· Does not support transactions This indicates that the component's objects shouldn't run within
the scope of transactions. When a new object is created, its object context is created without a
transaction, regardless of whether the client has a transaction.

Whenever an instance of a component is created, MTS checks the component's transaction attribute
to determine whether the instance should run in a transaction.

Not all components are designed to support transaction processing. If your component is not
designed to use transaction processing, make sure that the transaction attribute on the component's
Transaction tab is set to Does not support transactions.

Note that you cannot modify transaction attributes if components in the package have been locked.
For more details, see Locking Your Package.

To set component transaction
properties

1 Select the component you want to configure.
2 On the Action menu, click Properties, and select the Transaction tab. You can also access the

property sheets by selecting the item and either right-clicking and choosing Properties, or clicking
the Properties button on the MTS toolbar.

3 Click the appropriate transaction attribute box.
4 Click OK.

For an overview of distributed transactions and instructions on how to monitor and manage
transactions, see the Managing MTS Transactions.

See Also
Setting MTS Package Properties, Setting MTS Activation Properties, Setting MTS Authentication
Levels, Locking Your MTS Package

Setting MTS Authentication Levels
An application’s authentication level indicates the level of security used to authenticate client
requests. If authentication is not required for clients of an application, select the Anonymous option
on the Security tab of the Package property sheet. If you want to require authentication of clients,
use the Impersonate setting. The server process will set the authentication level to that specified
level and the impersonation level to impersonate so it is not affected by distributed COM (DCOM).

Unless you have a thorough understanding of DCOM authentication levels, it is recommended that
you leave your package authentication setting at the MTS default setting, which is Packet level.

The following table describes the different DCOM authentication settings:

Level Description
None No security checking occurs on communication

between this package and another package or a
client application.

Connect Security checking occurs only for the initial
connection.

Call Security checking occurs on every call for the
duration of the connection.

Packet The sender's identity is encrypted
 to ensure the .

Packet Integrity The sender's identity and signature are encrypted
to ensure that packets haven't been changed
during transit.

Packet Privacy The entire packet, including the data, and the
sender's identity and signature, are encrypted for
maximum security.

To set authentication levels
for a computer

1 In the MTS Explorer, select the package you want to configure.
2 In the Action menu, click Properties, and select the Security tab. You can also access the

property sheets by selecting the package and either right-clicking and choosing Properties, or
clicking the Properties button on the MTS toolbar.

3 Select the level of authentication you want to configure for this package under Authentication level
for calls.

4 Click OK.

See Also
Setting MTS Package Properties, Setting MTS Activation Properties, Setting MTS Transaction
Properties, Locking Your MTS Package

Locking Your MTS Package
After you have developed, installed, or deployed your application, consider locking your package so
component configuration cannot be modified. You can lock your package before exporting a server
application to another MTS computer that is maintained by a system or Web administrator, or before
you distribute a server application to customers.

You can lock your package against:

· Changes
This setting ensures that administrators cannot modify package configuration without disabling the
lock.

· Deletions
This setting ensures that administrators cannot delete a package without disabling the lock.

To lock your package
1 Once you have finished configuring your package, select the Advanced tab in the package

property sheets.
2 In the Permissions section of the Advanced property sheet, select either the Disable deletion

option (which prohibits users from deleting the package) or the Disable changes option (which
blocks users from making any changes to the package properties.

You can unlock a package by clearing the Advanced property sheet check-boxes.

See Also
Setting MTS Package Properties, Setting MTS Activation Properties, Setting MTS Transaction
Properties, Setting MTS Authentication Levels

Distributing MTS Packages
You can use the Microsoft Transaction Server Explorer to distribute packages to clients running MTS
as well as to clients that are not running MTS. If both the client and server computer are running MTS,
you can use the MTS Explorer to create application executables, or push and pull components using
the Remote Components folder. If the client computer is not running MTS, use the MTS Explorer to
generate application executables that automatically install and configure clients to access remote
MTS server applications over distributed COM (DCOM).

This section discusses the following topics:

Working with Remote MTS Computers
Exporting MTS Packages
Generating MTS Executables

See Also
MTS Remote Components Folder

Working with Remote MTS Computers
If both the server and client computer are running MTS, you can distribute a package by "pulling" and
"pushing" components between one or more computers. You can also generate an application
executable using the application executable utility in the Microsoft Transaction Server Explorer. See
the Generating MTS Executables topic for more information on using the MTS Explorer to generate
application executables.

Pushing components means creating remote component entries on remote computers. Once the
remote component entries are created, you have to add those component entries to your Remote
Components folder on your local machine (pull the components).

The following diagram illustrates how pushing and pulling components configure a remote computer
running MTS.

In the diagram, MTS is installed on all three computers. GetReceipt and MoveMoney are both
installed in a package on your computer (Server A). When you add the GetReceipt and MoveMoney
components to the Remote Components folders of Server B and Server C, two things happen. First,
the appropriate DLL files are copied across the network to Server B and Server C. These files will be
copied to a subdirectory with the same name as the Package on Server A. This subdirectory will be
created under the \<Microsoft Transaction Server Install directory>\Remote directory (for example, C:\
Program Files\MTx\Remote\Sample Bank). Second, the Server B and Server C system registries are
updated with information from the system registry on Server A.

You can push and pull components only if a shared network directory has been established for
storage and delivery of DLLs and type library files. (You can choose any shared directory as long as
the component files are contained within one of the folders or subfolders of the shared directory.) The
MTS Explorer will automatically locate available shared network directories on servers. On a given
server you can have multiple shared directories to access different sets of component files.

In addition, you must ensure that:

· You logged on using a Windows NT account that is a member of the Administrators role of the
System Package on the target computer.

· The target computer's System Package identity maps to an NT account that is in the Reader role
for your System Package.

· Security is enabled for the System package on both computers. See the Enabling MTS Package
Security topic for more information.

To push components, you must first add the appropriate computer or computers to your MTS Explorer
and then add your components to the remote computer’s Remote Components folder. See the
Configuring Your MTS Server topic for information on adding a computer to the Explorer.

Then you must add components to the remote computer's Remote Computer folder.

To add components to the
remote computer's Remote Components folder

1 Add the remote computer by selecting the Computers folder and clicking New in the Action menu.

2 Type a name for the computer you want to add, and then click OK. If you do not know the name,
you can click the Browse button to select a computer.

3 In the MTS Explorer, open the Remote Components folder of the computer to which you want to
add remote components.

4 On the Action menu, click New. You can also right-click and select New and then Component
from the right-click menu.

5 In the dialog box that appears, select the remote computer and package that contain the
component you want to invoke remotely.

6 From the Available Components list, select the component that you want to invoke remotely, and
click the down arrow (Add). This adds the component and the computer on which it resides to the
Components to configure on box. If you click the Details checkbox, the Remote Computer,
Package, and Path for DLLs are displayed in the Components to configure on box.

7 Click OK.

Note When you add components that are stored on a remote computer, the required files are
stored in the \install directory\remote directory. (The default MTS installation directory is \Program
Files\MTS.)

See Also
MTS Remote Components Folder

Exporting MTS Packages
Exporting packages allows you to copy a package from one MTS computer to another. For example,
you can use the Microsoft Transaction Server Explorer to export a package from a server on which
the package was developed to another MTS server for testing.

To export a package:
1 Select the package you want to export in the left pane of the Explorer.
2 On the Action menu, click Export. You can also right-click and select the Export option.
3 In the Export Package dialog box, enter or browse for the package file to create. The component

files will be copied to the same directory as the package file.
4 If you want to include any roles that you have identified for the package, click the Save Windows

NT user ids associated with roles checkbox.
5 Click Export.

When you export a package, Microsoft Transaction Server creates a package file (with the .pak
extension) containing information about the components and roles (if any) included in the original
package, and copies the associated component files (dynamic-link libraries (DLL), type libraries, and
any proxy/stub DLLs) to the same directory in which the package file was created. Only component
DLLs are copied. Package locks against changes or deleting will be exported with the package.

Important If a component's class ID (CLSID), type library identifier (TypeLibId), or interface identifier
(IID) change after you have exported a package, you must export the package again.

See Also
Building an MTS package for Export, Locking Your MTS Package, Mapping MTS Roles to Users and
Groups

Generating MTS Executables
Using the MTS Explorer, you can generate an application executable that installs and configures a
client computer to access a remote server application. The client computer that installs the executable
must have distributed COM (DCOM) support, but does not require any MTS server files other than the
executable to access a remote MTS server application.

The application executable utility is part of the exporting packages feature in the MTS Explorer. This
utility allows you to automatically generate application executables that install a client application and
configure the client computer to access a server application on a remote MTS servers. Executables
generated by the application executable utility by default will configure a client computer to access the
deployment server on which the executable was generated.

You can also configure the Options tab on the Computer property sheet to point client applications to
a server other than the deployment server. If you do not enter the name of another server computer
before exporting the package to generate an executable, application executables created on the local
computer will automatically configure client computers to access server packages on the local
computer.

To configure a client
application executable to access a server computer other than the local computer:

1 Select My Computer.
2 Right-click and select Properties from the right-click menu.
3 Select the Options tab and enter the name of the remote server in the Remote server name field

in the Replication section.
4 Click OK, and export the package to create the application executable.

On the MTS server, the application executable utility automatically creates an executable for the client
application.

On the client, the executable automates the following steps:

1. Copies to a temporary directory on the client or server machine and then extracts the necessary
client-side files, including type libraries and custom proxy-stub DLLs.

1. Transfers type libraries and proxy-stub DLLs for the server application to the Remote Applications
directory in the \Program Files sub-directory. All remote applications are stored in the Remote
Applications directory. Each remote application has an individual directory named by the package
globally unique identifier (GUID).

1. Updates the system registry with the entries that either enable clients to use the server application
remotely (including information that is related to application, class, programmatic, interface, and
library identifiers) or allows the server application to run on the server computer.

1. Registers the application so that a user can use the Add/Remove Programs icon in Control Panel
to remove it at a later date. All remote applications are prefaced with “Remote Application” so that
you can easily find your application in the list of installed components.

1. Deletes files in the temporary directory generated during installation of the application.

When run on a client computer, the client executable copies the necessary proxy-stub DLLs and type
libraries to that computer and updates the client’s system registry with information needed by DCOM,
including the name of the server computer. Client applications can then access a remote server
application.

Before you export a package to create an executable, you must configure your client installation file
(clients.ini). You can customize the installation of your client to include additional files, such as client
executables, application documentation, or a simple readme. For example, the clients.ini file, which
is in the \Clients sub-directory, can be modified to combine installation of client executables for
several different applications.

To customize installation:
1 Open the clients.ini file, which is located in the \clients sub-directory.
2 Below the Client Application Files heading, enter the path to the directory in which you want the

source code installed on the client computer. For example,
Source Path=c:\pgram files\mtx\test\vb bank

3 Below the ClientApplicationInstallCommands heading, enter the names of the files that you wish to
install. Use triple-brackets to enclose the names of the files that you want to install. For example:
1=notepad {{{readme.txt}}}
2={{{vbbank.ex}}}}

4 Below the ClientApplicationSetup heading, indicate if you would like to enable the
ExploreApplication setup option by typing “Y” for yes or “N” for no. For example, the following
entry would display the application immediately after setup so that the client could create a shortcut
to the desktop:
ExploreApplication=Y

After you have customized the clients.ini file, you can use the MTS Explorer to export the server
package to create a client executable.

To create a client executable:
1 Install the server application using the Package Wizard if you have not already done so.
2 If you would like your clients to access a server other than the deployment server on which you are

creating the executable, follow these steps.
· Select My Computer in the left pane of the Explorer.
· Right-click and choose the Properties option from the right-click menu.
· Click the Options tab. In the Remote Server Name box, enter the server name that you want

clients to access. For example:
\\anotherservermachine

1 Export your package from the server on which your server application is installed to another server.
Specify a new filename (YourNewFileName) as the package export filename, and place the
exported package in your MTS directory.

2 Locate the folder into which you exported your package. You will see a Clients subdirectory that
contains a single file named YourNewFileName.exe. Exporting an existing package in the MTS
Explorer generates a "Clients" subdirectory beneath the directory to which you exported the
package. The Clients sub-directory contains a single executable with the name specified during

package export. When run on any client supporting DCOM, this executable installs all the
necessary information for remote clients to access the server application.

Important Do not run this client executable file on your server computer. Running the client
executable on the server computer removes the registry entries required to run the server package. If
you make this mistake, you must remove the application using the Add/Remove Programs property
sheets in the Control Panel. Then delete and re-install the package using the MTS Explorer.

Distributing the Client Executable
The MTS Explorer automates packaging and installing client applications into executables for
distribution. Distribute those executables by using one of the following methods:

· Sharing a directory so that clients can copy the executable and run it on their computers.
· Sending an email attachment so that clients can save and run the executable on their computers.
· Incorporating an executable into an HTML script using the <OBJECT> tag. The <OBJECT> tag

allows the browser to download the application from a specified object store location to the client
machine if the client initiates an event on the HTML page (such as clicking a button). Using the
<OBJECT> tag to distribute executables facilitates upgrading executables, since the browser
automatically checks the client’s registry for the current version of the application. If the existing
executable is outdated, the browser downloads the latest version from the object store.

· Using Microsoft System Management Server (SMS) to “push” the distribution of your application
from a central location to tens or hundreds of computers at once. Note that you must install the
client application itself after installing the application on remote computers.

Removing the Client Executable
Clients can remote the client executable through the Add/Remove option in the Control Panel.
Applications installed by MTS executables begin with "Remote Application" in the Install/Uninstall list.
To remove the executable, select the appropriate application and click Remove.

See Also
Exporting MTS Packages, Building an MTS Package for Export

Installing MTS Packages
Installing MTS packages consists of installing and deploying packages in the MTS run-time
environment using the MTS Explorer. Installation and deployment procedures are closely linked with
design considerations, such as setting the appropriate package identity.

When you deploy applications, make sure that you thoroughly understand the design of the package
and its components. Refer to the MTS Programmer’s Guide for more information about designing and
building MTS components.

You can easily deploy pre-built packages using the MTS Explorer. This section discusses the
following topics:

Installing Pre-built MTS Packages
Upgrading MTS Packages
Enabling MTS Package Security
Setting MTS Package Identity
Adding a New MTS Role
Mapping MTS Roles to Users and Groups

See Also
Identity Tab (Package), Packages Installed Folder, Roles Folder, Users Folder, Role Membership
Folder, Managing Users for MTS Roles

Installing Pre-built MTS Packages
A pre-built package consists of a package file and the component files (.dll and .tlb) associated with
the package. Use the MTS Explorer to install and deploy pre-built packages developed by third party
or enterprise developers.

Note that after you install any package, the minimum configuration for your package includes
controlling access to objects stored by MTS, mapping users to roles, and setting security levels for
packages. See the Enabling MTS Package Security topic for more information on how to configure
security for your package.

To install a pre-built package:
1 In the left pane of the Explorer, select the computer on which you want to create a package.
2 Open the Packages Installed folder for that computer.
3 On the Action menu, click New. You can also select the Create new object button on the MTS

toolbar, or right-click on the Packages Installed folder and select New and then Package.
4 Click the Install pre-built packages button.
5 In the Select Package Files dialog box, click Add to browse the network for available package

files. Select a package file (.pak), click Open, and then click Next. Note that you can install multiple
packages at the same time. The component files that are included in the package must be located
in the same directory as the package file.

6 Specify the package identity in the Set Package Identity dialog box, and then click Next. The
default selection is Interactive User. The interactive user is the user that logged on to the
Windows NT account for the computer that runs a package. You can select a different user by
selecting the This user option and entering details for a specific Windows NT user or group.

7 In the Installation Options dialog box, specify the installation directory. The component files are
copied from the package file directory to the installation directory. You can accept the default
directory, or click Browse to search for another location.

8 If the package file you are installing contains defined Windows NT users, the Add Windows NT

users saved in the Package File option will be available. Clicking this box adds these users to the
new package.

9 Click Finish. The Explorer hierarchy now shows the new package in the right pane. If you install
multiple packages, the options you choose in steps 6 and 7 apply to all the packages.

On Windows NT, you can also install a pre-built package by dragging a package file from the
Windows NT Explorer to the right pane of the MTS Explorer while the Packages folder of a computer
is open.

See Also
Packages Installed Folder

Upgrading MTS Packages
If you want to upgrade an MTS package, you must first delete the previous version and then install
the updated package.

To delete a package:
1 In the left pane of the Explorer, select the computer for which you want to delete a package.
2 Open the Packages Installed folder for the specified computer to display all the packages.
3 Select the package you want to remove.
4 On the Action menu, click Delete. You can also right-click and select the Delete option from the

right-click menu.
5 Click Yes to remove the package.

Deleting the package also deletes any components contained in the package. You can also delete a
package by selecting it and pressing the DELETE key.

Refer to the Installing Pre-built MTS Packages topic for instructions on installing the upgraded
package.

See Also
Packages Installed Folder

Enabling MTS Package Security
MTS offers two types of package security:

· Programmatic security
Provides interfaces that you can use to create customized security within your application logic.
See the MTS Programmer’s Guide for more information about using programmatic security.

· Declarative security
Allows you to define roles and assign Windows NT users or groups of users to roles using the MTS
Explorer.

Important Library package do not support role checking. In order to enable security, you must change
the activation setting to a server package. See the Setting MTS Activation Properties topic for more
information about library and server packages.
Administrators use declarative security to secure packages, ensuring that only clients with access
privileges can run the package. Access is granted through the Explorer using MTS roles and
Windows NT-based user and group accounts. Note that since declarative security uses Windows NT
accounts for authentication, you will not be able to use declarative security for a package running on a
Windows 95 computer.

To set up declarative security for a package, perform the following steps:

1. Define roles at the package level using the New Role dialog box.

See the Adding a New MTS Role topic for a description of how to add a new role.
1. Map users to roles using the Add New Users to Roles dialog box. Note that a package with no valid

users in any Role cannot be called.

See the Mapping MTS Roles to Users and Groups topic to learn how to add users and groups to a
role.

1. Assign the role that you defined to the Role Membership folder of a component or interface if you
want to restrict access to a specific component or interface.

2. Enable security for the package on the Security tab of the Package property sheets. This topic
contains a description for how to enable authorization checking.

If you do not map the user account you're currently using to the Administrator role before enabling
System package security, you will be refused access to MTS Explorer functions that modify
configuration (such as adding users to roles). If this happens, you need to log on as a user that has
been mapped to the Administrator role. To protect administrators from being locked out of the System
package, the MTS Explorer displays an error message if you try to:
· Enable security for the System package when no users are mapped to the administrator role
· Delete the last user from the Administrator role when security has been enabled for the System

package

Note If MTS is installed on a server whose role is a primary or backup domain controller, a user must
be a domain administrator in order to manage packages in the MTS Explorer.

If you do not enable security for the package, then roles for the component or interface will not be
checked by MTS. In addition, if you do not have security enabled for a component, MTS will not check
roles for the component's interface.

See the Adding a New MTS Role topic for a description of how to assign a role to the Role
Membership folder.

Note Turning off declarative security for individual components or the package is useful during
debugging of your package.

Consider setting up access restrictions to an inventory server package. As the system administrator,
you may want to restrict access to the Inventory package to members of the sales department. In

order to do so, first select the Role folder for the Inventory package, click the New option on the
Action menu, and type "Sales" as the name of the new role. Then select the Users folder, click New
on the Action menu, and enter the name of the Windows NT group account for the sales department.
Add the Sales role to each component's Role Membership folder. At this point, only members of the
sales department are allowed to access the Inventory package. Finally, select that package, go to the
Security tab of the property sheets, and select the Enable authorization checking checkbox in order
to turn on the new security settings for the package.

If you want to restrict access to a specific component within a package, you must understand how
components in the package call one another. If a component is directly called by a base client, MTS
will check roles for the component. If one component calls another component in the same package,
MTS will not check roles because components within the same package are assumed to "trust" one
another.

Let's say that you wanted to configure roles to permit a client to call the CheckInventory component,
and restrict the client from calling the Backorder component directly. Both the CheckInventory and
Backorder components are in the Inventory package. You must first set the appropriate role on the
CheckInventory component for the client. Then ensure that the Backorder component has no roles
that could map to the client identity. Since the CheckInventory and Backorder components share a
package, no role checking will be performed when the CheckInventory component calls the
Backorder component.

The CheckInventory component may call the Backorder component on behalf of the client, though, if
the following conditions are fulfilled:

· The client identity maps to the appropriate CheckInventory role
· Any programmatic security requirements are satisfied.

This allows you to create packages containing mutually trusted components while restricting access
to select components.

To set up role checking for original callers that directly call the Backorder component, select the Role
Membership folder for the Backorder component, click New on the Action menu, and choose the
Sales role. Now that the Sales role (with mapped users) is assigned to the Backorder component,
only members of the sales department will be able to run the Backorder component to view out-of-
stock items. To activate the new security setting, select the Enable authorization checking
checkbox for the Inventory package as well as the Backorder component.

For more information about role checking, see the Programmatic Security topic in the MTS
Programmer's Guide.

To enable security
authorization:

1 Map your user account to the Administrator role of the System Package if you have not already
done so.

2 Select the System Package, and choose Properties from the Action or right-click menu.
3 Go to the security tab and select the Enable authorization checking checkbox.
4 Stop the System Package server process by selecting System Package, right-clicking, and

choosing the Shut Down option.
You can also shut down all server packages at one time, which combines steps 4 and 7. To shut
down all server packages, select My Computer and choose the Shut Down Server Processes
option in the Action menu.

5 Select the package for which you want to enable security.
6 Go to the security tab and select the Authorization checking enabled checkbox.
7 Stop the System Package server process by selecting that package, right-clicking, and choosing

the Shut Down option.

After you install and configure your package on the deployment server, you may want to lock your
package so that component configurations cannot be modified. Refer to the Locking Your Package
topic for more information about locking your package configuration.

See Also
System Package, Roles Folder, Users Folder, Role Membership Folder, Managing Users for MTS
Roles, Microsoft Transaction Server Programmer's Guide

Setting MTS Package Identity
You can configure a package (which is a single server process) to run as one of the following package
identities:

· Interactive User
· A specified Windows NT user account

By default, MTS packages run as Interactive User.

In many deployment scenarios, it is preferable to run a package as an Windows NT user account. If a
package runs as a single Windows NT user account, you can configure database access for that
account rather than for every client that uses the package. Permitting access to accounts rather than
individual clients improves the scalability of your application.

For example, consider an Accounting package that updates a SQL Server database with billing and
sales information. You can configure the database Accounting table to allow read access for users in
the Windows NT accounting clerk group account. You can then set the package identity to the
accounting clerk group account, which allows members of that account to run the package and read
data from the Accounting table.

To set package identity to a
specified user account:

1 Select the package whose identity you want to change.
2 On the Action menu, click Properties and select the Identity tab.
3 Select the This user option and enter the user domain followed by a backslash (\), user name, and

password for the Windows NT user account.
Note that if you want to use package identity to restrict access to a database, you must set
database access privileges for the user account.

See Also

Mapping MTS Roles to Users and Groups, Enabling MTS Package Security, Adding a New MTS
Role, Identity Tab (Package)

Adding a New MTS Role
Although new roles are usually added during package development, you may have to add a new role
to an existing package. Roles represent a set of system-level privileges that are required for a
particular business function. Roles are set at the package level. You can use the MTS Explorer to
map Windows NT users or groups of users to the roles that you create.

To create a new role:
1 In the left pane of the Explorer, select the package that will include the role.
2 Open the Roles folder.
3 On the Action menu and click New. You can also select the Roles folder and click the Create new

object button, or right-click the Roles folder and select New and then Role.
4 In the dialog box that appears, type the name of the new role.
5 Click OK.

Caution Package security will not be enabled unless you map a valid user to a package role.

See Also
Mapping MTS Roles to Users and Groups, Enabling MTS Package Security, Setting MTS Package
Identity, Roles Folder, Managing Users for MTS Roles

Mapping MTS Roles to Users and Groups
When you install and deploy your application, you must map Windows NT users and groups to any
existing roles. Roles determine user access for components and interfaces.

To assign users to roles:
1 In the left pane of the Explorer, select the package that contains the component to which you want

to assign roles.
2 Open the Roles folder.
3 Double-click the role to which you want to assign users.
4 Open the Users folder.
5 On the Action menu, click New. You can also select the Users folder and click the Create new

object button, or right-click the Users folder and select New and then Users.
6 In the dialog box that appears, add user names or groups to the role. You can use the Show Users

and Search buttons to locate a user account.
7 Click OK.

See Also
Adding a New MTS Role, Enabling MTS Package Security, Setting MTS Package Identity, Roles
Folder, Users Folder, Managing Users for MTS Roles

Maintaining MTS Packages
After a package has been successfully built, distributed, and deployed, administrators can use the
MTS Explorer to maintain MTS packages. Maintaining MTS packages entails monitoring the status
and properties of packages and their components, and reconfiguring package and component
properties if required.

This section discusses the following topics:

Monitoring Status and Properties in the MTS Explorer
Using Property Sheets in the MTS Explorer
Managing Users for MTS Roles
Using MTS Replication

Monitoring Status and Properties in the MTS Explorer
You can use the MTS Explorer Status View and Property View settings to monitor the status and
properties of active packages and their components. You can view the status or properties of items in
the Explorer by selecting the item and then clicking the Status View or Property View button in the
MTS Explorer toolbar.

The Status View lets you see the status of computers, packages, and components in the Explorer.
For example, Status View for the Computers folder indicates if Microsoft Distributed Transaction
Coordinator (MS DTC) has been started, while Status View for the Packages Installed folder
indicates which package is running. Status View for components in a package allows you to see the
component’s programmatic identifier (progID), objects activated, and the objects in call. You can use
the Status View to quickly see the status of computers and application processes that you are
managing.

To use the Status View in the
MTS Explorer

1 Select the Packages Installed folder or Components folder.
2 Choose the Status View icon on the MTS toolbar in the right pane of the MTS Explorer.

Note Status View does not display the status of the Utilities and System packages.

Use the Property View to quickly gather information about the properties of packages and
components. For example, the property view for components displays the component’s ProgID,
transaction setting, dynamic-link library (DLL) location, class ID (CLSID), threading model, and
security authorization settings. For example, you can use the Property View to quickly view the
transaction properties for all components in a package.

To use Property View in the
MTS Explorer

1 In the right pane of the MTS Explorer, select the folder whose status you would like to view, such
as the Packages Installed or Components folder

2 Click the Property View button on the MTS Explorer toolbar. The properties for items in that folder
will be displayed in columns in the right pane of the MTS Explorer.

See Also
Using MTS Property Sheets

Using Property Sheets in the MTS Explorer
Package and component property sheets allow you to change the configuration of MTS packages.
For example, if you would like to change the transaction property for a component, you can modify
the component property sheet for transaction settings. Before you re-configure a specific property
setting, review the Creating MTS Packages and Installing MTS Packages topics for descriptions and
procedures on setting different properties in the MTS Explorer.

Packages can be locked against modification or deletion of the package and its components. If a
package has been locked during installation or deployment, you will have to unlock the package
before modifying component properties. For more information about locking, see Locking Your MTS
Package .

To configure package and
application properties using property pages

1 Right-click the item whose properties you want to set. You can also select the item in the left pane
of the MTS Explorer and choose Properties from the Action menu.

2 Modify the appropriate property sheet and click either OK or Apply.
3 Refresh all components of My Computer by selecting the My Computer icon and choosing Refresh

all components from the Action menu. You can also refresh individual packages by selecting the
Packages Installed folder and clicking the Refresh icon on the MTS toolbar in the right pane of the
MTS Explorer.
Note If you change the activation level of your package, you have to shut down that package
process before the change will take effect. You can shut down the package process by right-
clicking the package and choosing the Shut down option.

See Also
Monitoring Status and Properties in the MTS Explorer

Managing Users for MTS Roles
As an administrator, you will have manage a role's Windows NT users and groups of users by:

· Adding a new user or group to a role
· Removing a user or group from a role
· Moving a user or group from one role to another

As clients of your server packages increase, use the MTS Explorer to map the new users to roles for
the package. For more information about mapping new users to a role, refer to the Mapping MTS
Roles to Users and Groups topic.

You may have to remove users from a role, or move users or groups of users from an existing role to
a newly created role. For example, if an employee leaves the company, you would remove that user
from the roles with which the former employee was associated.

When you create new roles for an existing package, you may have to move a user or a group of users
from one role to another. For example, if you create a Clerk role for an Accounting package, you may
have to move some users or a group of users from the existing Manager role (with read and write
privileges for Accounting data) to the Clerk role (with read-only privileges). In order to move users or
groups of users, you must remove the user or group of users from the role and then map them to the
new role.

To remove a user from a role
1 Locate the package that contains the role from which you want to remove a group or a user. In the

left pane of the MTS Explorer, select that package.
2 Open the Roles folder.
3 Double-click the role that has been defined for the user you want to remove.
4 Open the Users folder.
5 Select the user you want to remove.

6 On the Action menu, click Delete. You can also right-click and select Delete from the right-click
menu.

7 Click Yes in the dialog box that appears. You can also remove a user by selecting the icon for that
user and pressing Delete.

See Also
Roles Folder, Users Folder, Enabling MTS Package Security, Setting MTS Package Identity, Adding
a New MTS Role, Mapping MTS Roles to Users and Groups

Using MTS Replication
MTS provides replication for use with Microsoft Cluster Server (MSCS). If an MTS server in a cluster
fails or is taken offline, the other server takes over the failed server's operations.

How to Replicate an MTS Server

 To replicate an MTS server
1 Install MTS on both computers. For more information, see Configuring MTS with Microsoft Cluster

Server.
2 Designate a master computer and install your packages on that computer.
3 Register any imported components on both computers.
4 Ensure dependencies such as runtime libraries are installed on both computers. (See the

Limitations section in this topic.)
5 Specify a Replication Share name for the master on the Options tab on the My Computer

property sheet (see the Package Contents Replication section in this topic).
6 Run the MTXREPL.EXE command-line utility.

You use the MTXREPL.EXE command-line utility to replicate an MTS server. Both the master and
destination computers must be running. MTXREPL.EXE takes the following arguments:
MTXREPL.EXE master destination
MTS replication uses a single-master approach, copying MTS catalog information from a master
computer to a destination computer. To replicate to another destination computer, run the
MTXREPL.EXE utility again. The single-master approach is not strictly enforced, however, so you can
in turn use the destination computer as the master for another MTS server replication.

During replication, MTS completely replaces the catalog on the destination with the catalog on the
source, except where noted below in the What MTS Replication Does Not Do section in this topic.

You cannot do partial replication. If MTS replication fails, run the MTXREPL.EXE utility again.

Administrators are responsible for initiating MTS replication and must ensure that package changes to
the master server are replicated to all computers within the cluster.

It is recommended that replication be performed when the destination is not currently running MTS
components. There is a window of failure on MTS startup while reading catalog information. If the
replication were to occur at this time, package startup will fail, requiring the client to retry.

Replicating IIS Packages
Use the Microsoft Internet Information Server (IIS) version 4.0 replication utility to replicate IIS
packages. IIS replication copies all MTS catalog information automatically. Because of this, running
the MTS replication utility is not necessary; in fact, it will not run if IIS 4.0 is installed.

Package Contents Replication
MTS replication copies all necessary component dynamic-link libraries (DLL)s, type type libraries, and
proxy-stub DLLs. To allow destination computers to access these files, you must specify a
Replication Share name for the master on the Options tab on the My Computer property sheet.
You must create this share on the master and grant read-only privileges to destination computers.
The Replication Share name is the share name, not the directory that the share name maps to. For
example, if you have d:\mtx\repl shared as MyReplPoint, then Replication Share should be
MyReplPoint, not d:\mtx\repl.

The Replication Share must grant read-only permission to the identity of the destination computer's
System package. If the destination's System package performs role checking, then the identity of the
System package on the master must belong to the Administrator role in the destination's System
package.

The location of the first component DLL in a package determines where files are installed on the
destination computer. If this component is located in a subdirectory beneath the default package
directory, the subdirectory is mirrored on the destination computer. The default package directory is
determined during MTS setup; for example, if you install MTS into c:\program files\mtx, then the
default package install directory is c:\program files\mtx\packages.

If your packages are installed beneath this directory, they will be installed in the same location relative
to the default package install directory on the destination computer. For example:

Computer Default Package Directory Package Install Directory
Master c:\program files\mtx\packages c:\program files\mtx\packages\MyPak
Destination d:\mts\packages d:\mts\packages\MyPak

Packages installed outside the default package install directory are installed in the "external"
subdirectory on the destination computer. For the above example:

Computer Package Install Directory
Master Package A in c:\program files\mtx\packages\MyPak

Package B in d:\misc
Destination Package A and B in d:\mts\packages\MyPak

It is recommended you install packages beneath the default package directory. It is also
recommended that all files of the same package reside in the same directory.

Administering MTS Server Clusters
Administrators must always use physical computer names for administration in an MSCS cluster. If
you are on the master computer in an MSCS cluster and you want to view the copy, use its physical
computer name. To replicate between the master and copy, use the physical computer names.

You must specify the virtual server name in the Remote Server Name on the Options tab on the My
Computer property sheet for deploying MTS applications on an MSCS cluster. When you export a
package using the application executable utility, clients which then install the application will be
directed to the virtual server. If you do not set the Remote Server Name, clients will be directed to the
physical computer, which is not the proper configuration for failover protection.

You can also perform static load balancing with failover protection by specifying different virtual server
names. By having two virtual server names, one for each physical computer, you can create a client
installation executable for a package installed on both computers. By dividing their distribution among
clients, static load balancing is achieved.

 To load balance an MTS
application using virtual servers

1 Decide on how you want to balance load.
For example, you can run all packages on only one computer at a time, run all packages on both
computers, or run some packages on one computer and some on the other.

2 Use the MSCS Cluster Administrator to create virtual server names for both computers.
3 Export packages using the virtual server names that you created in Step 2.

If you want to run all packages on only a single computer at a time, export all packages under a
single virtual server name. If you want to run all packages on both computers at the same time,
export all packages twice, one for each virtual server name You must then distribute the two
different sets of client installation executables to among your clients. If you want to run half the
packages on one computer and half the packages on the other, export each half using a different
virtual server name.

4 Run the client executables on the client machines. Depending on how you chose to load balance in
Step 1, you may have several executables to run on each client.

What MTS Replication Does Not Do
MTS replication does not do the following:

· Install MTS. You must setup MTS on each destination computer before running MTS replication.
· Replace MTS system and utilities packages and the IIS utilities packages. You must configure

these packages identically on the master and destination (although file paths can differ). MTS does
not enforce this; it is the responsibility of the administrator to synchronize both sets of packages as
needed.

· Replicate computer-specific information such as the Replication Share and Remote Server
Name properties.

· Replicate MTS component dependencies that cannot be detected by MTS such as run-time
libraries. You must copy these files on each destination computer in order for applications to
execute properly.

· Replicate local computer security accounts. Such accounts are not recommended for use within
clusters for roles or package identities.

· Replicate persisted data that your application relies on. For example, SQL Server provides
automatic failover for its databases; you must ensure that the database is configured to failover for
your application.

Limitations
· MTS replication to or from Windows 95 computers is not supported.
· MTS replication will fail if there are any remote components on the master which are set to run on

the destination computer.
· Imported components can only be replicated if they are already registered on the destination

computers. Installed components are automatically registered and configured on the copy by the
replication utility. When replicating components that were imported on the master, the replication
utility expects to find the components already registered on the copy. It is your responsibly to
manually register imported components on each destination computer prior to running the
replication utility.

· Replication to or from versions of MTS prior to MTS 2.0 is not supported.

See Also
Configuring MTS with Microsoft Cluster Server, Options Tab (Computer)

Managing MTS Transactions
Understanding how distributed transactions work helps you effectively manage transactions for
Microsoft Transaction Server (MTS) packages. This section describes how transactions work, and
how to monitor and manage transactions in the MTS Explorer.

This section discusses the following topics:

Understanding MTS Transactions
Managing MS DTC
Monitoring MTS Transactions
Monitoring MTS Transactions with Windows 95
Understanding MTS Transaction States
Resolving MTS Transactions

See Also
Transaction List, Transaction Statistics, Transaction Icons, Trace Messages

Understanding MTS Transactions
Microsoft Transaction Server (MTS) enables you to easily use, monitor, and administer distributed
transactions in your applications. A distributed transaction is a transaction involving updates to
transaction-protected resources on more than one system. The MTS transaction manager, Microsoft
Distributed Transaction Coordinator (MS DTC), provides a distributed transaction facility for Windows
NT and Windows 95 systems. MS DTC also makes it possible to update two or more transaction-
protected resources on a single system.

See Also
Managing MS DTC, Monitoring MTS Transactions, Monitoring MTS Transactions with Windows 95,
Understanding MTS Transaction States, Resolving MTS Transactions

Managing MS DTC
In order to manage transactions, you must first start Microsoft Distributed Transaction Coordinator
(MS DTC). If you have not started MS DTC on your MTS server, clients cannot access the
transactional packages that you are managing.

To configure and run MS DTC clients on a Windows NT machine, the user must have write access to
the local registry and remote read access to the server's Software\Classes key.

To start or stop MS DTC:
1 In the right pane of the MTS Explorer, select the computer on which you are managing

transactional packages.
2 Open the Action menu and select Start MS DTC or Stop MS DTC. You can also right-click and

select Start MS DTC or Stop MS DTC in the right-click menu.

You can also configure DTC settings, such as the location and size of the DTC log file, using the
Advanced tab of the Computer property sheets.

To configure MS DTC
settings:

1 In the right pane of the MTS Explorer, select the computer on which you are managing
transactional packages.

2 Open the Action menu and select Properties. You can also right-click and select the Properties
option from the right-click menu.

3 Select the Advanced tab. You can adjust how transactions are displayed in the Transaction List
and Trace Message windows. You can also change the location or size of the MS DTC log.
Increasing the size of the MS DTC log lets you run more concurrent transactions.

Important MS DTC has an upper limit on the size of the log file:

· On Windows NT, the maximum log size is 512 MB.
· On Windows 95, the maximum log size is 64 MB.

Do Not Compress the MS DTC Log File
The MS DTC log file cannot be compressed.

Removing DTCXATM.LOG Files
Before upgrading your installation of MTS 2.0, delete the DTCXATM.LOG file. Note that you must
stop the MS DTC service before deleting DTCXATM.LOG.

See Also
Understanding MTS Transactions, Monitoring MTS Transactions, Monitoring MTS Transactions with
Windows 95, Advanced Tab (MTS Computer), Transaction List, Transaction Statistics, Transaction
Icons, Trace Messages

Monitoring MTS Transactions
You can administer transactions in MTS applications by using the transaction windows in the MTS
Explorer. The Trace Message, Transaction Statistics, and Transaction List windows provide valuable
information about the status of transactions managed by the Microsoft Distributed Transaction
Coordinator (MS DTC).

You can use the Transaction List window to resolve transaction states. For more information, see the
Resolving MTS Transactions topic.

To monitor transactions using
the Transaction List

1 In the left pane of the MTS Explorer, select the computer that is hosting the transactions.
2 Double-click the Transaction List icon.
3 Right-click anywhere in the right pane, and point to the View command on the shortcut menu.
4 On the View submenu, click one of the following:

· Large Icon
Displays transactions as large icons.

· Small Icon
Displays transactions as small icons.

· Properties
Lists transactions in a single column and provides a column that contains the unit-of-work ID
associated with each transaction. This is the transaction's global unique identifier, and is
generated by MS DTC when the transaction begins. Also listed are the parent and subordinate
transactions.

· List
Displays transactions sequentially in a column.

Note The Small Icon and List commands display the most transactions at any one time.

Properties provides the most information about the transactions, and Large Icon displays
transactions in the most readable format.

To view transaction statistics
1 In the left pane of the MTS Explorer, select the computer where you want to view transaction

statistics.
2 Double-click the Transaction Statistics icon.

To view trace messages
1 In the left pane of the MTS Explorer, select the computer that is hosting the transactions.
2 Double-click the Trace Messages icon.

The MS DTC Transaction Statistics window is displayed in the right pane.

Transaction Properties
You can view transaction properties by selecting the Properties command after right-clicking a
selected transaction. The Properties command lists all transaction managers that are involved in the
transaction. For a child transaction, the Properties command lists the immediate parent of
transactions. If the transaction is a parent transaction, then the immediate child transaction(s) are
listed.

See Also
Understanding MTS Transactions, Monitoring MTS Transactions with Windows 95, Understanding
MTS Transaction States, Resolving MTS Transactions, Transaction List, Transaction Statistics,
Transaction Icons, Trace Messages

Monitoring MTS Transactions on Windows 95
You can manage MTS transactions on Windows 95 or Windows NT computers using the following
MTS Explorer windows:

· Transaction Statistics
· Transaction List
· Trace Message.

By default, the Microsoft Distributed Transaction Coordinator (MS DTC) is configured to start
automatically when a Windows NT or Windows 95 system starts. To prevent MS DTC from
automatically starting after rebooting a Windows 95 computer, use the Registry Editor to find the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices
registry key and then delete the registry value named MSDTC. If you want to enable automatic startup
of MS DTC again, use the Registry Editor to create a registry value named MSDTC with the value
msdtc-start under the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\RunServices registry key .

Note To configure and run MS DTC clients on a Windows NT machine, the user must have write
access to the local registry and remote read access to the server's Software\Classes key.

If you want to administer a Windows NT computer remotely from a Windows 95 computer, you must
install the Remote Registry service for Windows 95. The Remote Registry service allows you to
change registry entries for a remote Windows NT computer (given the appropriate permissions). To
obtain the Remote Registry service, go to the \Admin\Nettols\Remotereg sub-directory on the
Windows 95 CD. Review the Regserv.txt file for instructions on installing the Remote Registry service.
Since Windows 95 does not have an event log, MS DTC events are stored in a text file named
msdtc.txt. The msdtc.txt file is located in the \MTSLogs sub-directory of the Windows directory, and
contains information about MS DTC events.

See Also
Understanding MTS Transactions, Monitoring MTS Transactions, MTS Transaction List, Transaction
Statistics, Transaction Icons, Trace Messages

Understanding MTS Transaction States
In order to manage transactions, you must understand the different transaction states and their
implications for the MTS package that you are administering. Transaction states are represented by
the following icons in the Large Icon view of the Microsoft Distributed Transaction Coordinator (MS
DTC) Transaction List window:

Icon Description
Active
The transaction has been started

Aborting
The transaction is aborting. MS DTC is notifying
all participants that the transaction must abort.
It is not possible to change the transaction
outcome at this point.

Aborted
The transaction has aborted. All participants have
been notified. Once a transaction has aborted, it
is immediately removed from the list of
transactions in the MS DTC Transactions window.
It is not possible to change the transaction
outcome at this point.

Preparing
The client application has issued a commit
request. MS DTC is collecting prepare responses
from all participants.

Prepared
All participants have responded yes to prepare.

In Doubt
The transaction is prepared, is coordinated by a
different MS DTC, and the coordinating MS DTC
is inaccessible. The system administrator can
force the transaction to commit or abort by right-
clicking in the Transactions window and choosing
the Resolve/Commit or Resolve/Abort
command. Once an outcome is forced, the
transaction is designated as forced commit or
forced abort.

Caution Do not manually force an in-doubt
transaction until you have read the Resolving
MTS Transactions topic.

Forced Commit
The administrator forced the in-doubt transaction
to commit (see the Resolving MTS Transactions
topic).

Forced Abort
The administrator forced the in-doubt transaction
to abort (see the Resolving MTS Transactions
topic).

Committing
The transaction has prepared successfully and
MS DTC is notifying participants that the
transaction has been committed. MS DTC does
not end the transaction until all participants have
acknowledged receiving (and logging) the commit
request.
It is not possible to change the transaction
outcome at this point.

Cannot Notify Aborted
MS DTC has notified all connected participants
that the transaction has aborted. The only
participants not notified are those that are
currently inaccessible.
This transaction state occurs when MS DTC must
inform any resource manager (such as an IBM LU
6.2 system) that a transaction has aborted but is
unable to do so because the connection to the
IBM system is down.
The system administrator can force MS DTC to
forget the transaction by right-clicking in the
Transactions window and choosing the
Resolve/Forget command.

Caution Do not manually forget a transaction
until you have read the Resolving MTS
Transactions topic.

Cannot Notify Committed
MS DTC has notified all connected participants
that the transaction has committed. The only
participants not notified are those that are
currently inaccessible.
The system administrator can force MS DTC to
forget the transaction by right-clicking in the
Transactions window and choosing the
Resolve/Forget command.

Caution Do not manually forget a transaction
until you have read the Resolving MTS
Transactions topic.
Committed
The transaction has committed and all
participants have been notified. Once a
transaction commits, it is immediately removed
from the list of transactions in the MS DTC
Transactions window.
It is not possible to change the transaction
outcome at this point.

See Also
Understanding MTS Transactions, Monitoring MTS Transactions, Monitoring MTS Transactions with
Windows 95, Resolving MTS Transactions, Transaction List

Resolving MTS Transactions
If you administer MTS transactions, you may have to manually resolve a transaction for an MTS
application. You can use the Transaction List window in the MTS Explorer to resolve a transaction by
choosing one of the following commands:

· Commit This command forces the transaction to commit.
· Abort This command forces the transaction to abort and roll back to its original state.
· Forget This command deletes a committed or aborted transaction from the Microsoft Distributed

Transaction Coordinator (MS DTC) log. You should always force an outcome for a transaction
before using this command.

Occasionally, you need to force a transaction either to commit or abort to release locks and make
database resources available to other network users and applications.

This can be necessary, for example, when a communication line fails between two computers on the
network. Once a transaction has been manually committed or aborted, often it is necessary also to
manually force a computer to “forget” the transaction, which deletes the transaction from the local MS
DTC log file.

The following illustration shows a case in which a transaction is committed manually. In this example,
the following conditions are assumed:

· The MS DTC on computer A is the commit coordinator.
· The lines of communication along which the two-phase commit protocol is conducted proceed

sequentially from computer A to computer D.
· The first phase of the two-phase commit protocol has concluded, and MS DTC has written a

COMMITTED record to its log.
· Communication fails between computers B and C during the second phase of the two-phase

commit protocol.

The transaction is left in the following unresolved state:

Because the line of communication between computers A and B is still intact, B also has committed
the transaction. Both computers, however, must retain the COMMITTED records in their log files until
computers C and D confirm that they also have committed the transaction. To resolve the transaction
(and thereby release the database locks on computers C and D), the system administrator forces
computer C to commit the transaction (see the next illustration).

Because the line of communication between computers C and D is still intact, the forced commit on
computer C allows the transaction to commit on computer D. Computer D can now release its
database locks and forget the transaction. Once computer D confirms to computer C that it has
committed and forgotten the transaction, computer C can also release its locks and forget the
transaction.

The transaction is now committed on all computers. However, because computer C cannot
communicate its commit to computer B, computer B must continue to remember the transaction.
Because computer B has not forgotten the transaction, computer A must also remember it. To
complete the transaction, the system administrator forces computer B to forget the transaction (see
the next illustration). Computer B's forced forget allows computer A also to forget the transaction. The
two-phase commit protocol has been manually concluded, and the transaction is complete.

Important Because of the outgoing-incoming communication pattern of the two-phase commit
protocol, it is recommended that you manually resolve transactions on computers immediately
adjacent to the break in communications. Therefore, in the preceding example, the forced commit
occurs on computer C (not D), and the forced forget occurs on computer B (not A).

Generally, when systems involved in transactions are restarted and connections restored after a
system or connection failure, MS DTC will automatically resolve the transactions. MS DTC cannot
resolve transactions if the systems are down or connections are not reestablished. In this case, you
can manually resolve transactions that are in the In Doubt, Cannot Notify Aborted, or Cannot Notify
Committed state if you have a system or connection failure

In Doubt State
The in-doubt state indicates that the transaction is on a child, that MS DTC is prepared, and that the
parent MS DTC is inaccessible. To resolve the in-doubt transaction, follow these steps:

1 Use the Transaction List window to locate the in-doubt transaction's immediate parent. To do this,
right-click the transaction and select the Properties command. This displays the parent MS DTC
and child MS DTC computers for the transaction.

2 Locate the parent MS DTC and use the Transaction List window on the parent computer to
determine the outcome of the in-doubt transaction.
· If the transaction does not appear in the Transaction List window, then the transaction has been

aborted, and you can abort the transaction on the child computer manually.
· If the transaction appears on the parent computer as Cannot Notify Committed, then the

transaction has committed, and you can commit the transaction on the child computer manually.
· If the transaction appears on the parent computer as Cannot Notify Aborted, then the transaction

has aborted, and you can abort the transaction on the child computer manually.
· If the transaction is shown as In Doubt on the parent computer, use the Transaction List window

on the parent computer to locate the transaction's next immediate parent. Continue to follow the
transaction up the commit tree until you locate the parent on which the transaction is either not
shown (indicating that it aborted), in the Cannot Notify Aborted (indicating that it aborted) state,
or in the Cannot Notify Committed (indicating that it committed) state. If the transaction is
aborted on the parent computer, manually force the transaction to abort on that computer's
immediate child. If the transaction is committed on the parent computer, manually force the
transaction to commit on the child computer.

3 Once you have either manually committed or aborted the transaction on the child computer,
manually force the immediate parent to forget the transaction.

Cannot Notify Committed
The Cannot Notify Committed state indicates that the transaction has committed, but some
subordinate MS DTCs have not been notified. You can manually resolve the transaction as follows.
Right-click on the transaction that is in the Cannot Notify Committed state. This displays the parent
and subordinate MS DTCs for the transaction. Having located the subordinate MS DTCs, force the
transaction to commit on each one. Once you have manually committed the transaction on all
subordinate MS DTCs, return to the MS DTC that shows the transaction in the Cannot Notify
Committed state, and force that MS DTC to forget the transaction.

Caution Do not manually forget a transaction until all subordinate MS DTCs have been notified of
the transaction outcome.

Cannot Notify Aborted
The Cannot Notify Aborted state indicates that the transaction has aborted, but some subordinate MS
DTCs have not been notified. This state is identical to the Aborting state. You can manually resolve
the transaction as follows. Right-click the transaction that is in the Cannot Notify Aborted state. This
displays the parent MS DTC and subordinate MS DTCs for the transaction. Having located the
subordinate MS DTCs, force the transaction to abort on each one. Once you have manually aborted
the transaction on all subordinate MS DTCs, return to the MS DTC that shows the transaction in the
Cannot Notify Aborted state, and force that MS DTC to forget the transaction.

Caution Do not manually forget a transaction until all subordinate MS DTCs have been notified of
the transaction outcome.

To resolve transactions
1 In the left pane of the MTS Explorer, select the computer where you want to resolve a transaction.
2 Double-click the Transaction List icon.
3 In the right pane, right-click over the transaction you want to resolve.
4 In the Resolve submenu, click Commit, Abort, or Forget.

See Also
Understanding MTS Transactions, Managing MS DTC, Monitoring MTS Transactions, Monitoring
MTS Transactions with Windows 95, Understanding MTS Transaction States, Transaction List

Automating MTS Administration
Microsoft Transaction Server (MTS) developers and advanced web administrators can use scriptable
administration objects to automate MTS application deployment and administration. The scriptable
objects correspond to the Microsoft Transaction Server Explorer collection hierarchy. You can
automate administrative procedures by calling interfaces on the appropriate scriptable administration
object. The following diagram shows the types of collections administered and deployed by the MTS
Explorer:

In order to effectively use the scriptable administration objects, you should have a thorough
understanding of the tasks that your application automates in the MTS Explorer. You can use any
OLE Automation-compatible language to develop your application because the scriptable
administration objects are derived from the IDispatch interface. Microsoft Visual Basic™ version 5.0
and Microsoft Visual C++ version 5.0, which support ActiveX technology, are recommended
development tools. See the MTS Administrative Reference for a complete Visual Basic sample that
demonstrates how to use the scriptable administration objects.

This section discusses the following topics:

MTS Administration Objects
Visual Basic Script Sample for Automating MTS Administration
Visual Basic Sample Application for Automating MTS Administration
Automating MTS Administration with Visual Basic
Automating Advanced MTS Administration with Visual Basic

See Also

MTS Administrative Reference

MTS Administration Objects
The following scriptable objects are used for administration:

Catalog Object
CatalogObjec t Object
CatalogCollection Object
PackageUtil Object
ComponentUtil Object
RemoteComponentUtil Object
RoleAssociationUtil Object

These scriptable objects provide general and utility interfaces for your different scripting needs. The
Catalog, CatalogObject, and CatalogCollection objects comprise the catalog collection object layer,
and provide top-level functionality such as creating and modifying objects. The Catalog object enables
you to connect to specific servers and access collections. Call the CatalogCollection object to
enumerate, create, delete, and modify objects, as well as to access related collections. The
CatalogObject object is used to get and set properties on an object.

In the catalog utility object layer, the PackageUtil, ComponentUtil, RemoteComponentUtil, and
RoleAssociationUtil objects enable more specific task automation, such as installing components and
exporting packages. This utility layer allows you to program very specific tasks for collection types,
such as associating a role with a user or class of users.

The following diagram illustrates how your configuration program uses methods on the administrative
objects to read and write data to the catalog.

To learn how to obtain the administrative samples and reference documentation, see the Installing
MTS Development Samples and Documentation topic.

See Also
MTS Administrative Reference

See Also
MTS Administration Objects, Using MTS Collection Types, MTS Administration Object Methods

Using MTS Catalog Collection Objects
Each folder in the MTS Explorer corresponds to a collection stored in the catalog. The Catalog,
CatalogObject, and CatalogCollection objects comprise the catalog collection object layer. These
objects enable you to automate general administrative procedures into your applications such as
creating, deleting, or modifying objects.

See Also
MTS Administration Objects, Using MTS Collection Types, MTS Administration Object Methods

Instantiating an MTS CatalogCollection Object
You can instantiate a CatalogCollection object in order to access any type of collection or data from
any MTS Explorer folder. To instantiate a CatalogCollection object, use the GetCollection method
and supply a collection name. The CatalogCollection object is a generic object used to access any
type of collection (such as data from any Explorer folder). You can call the GetCollection method
from a Catalog object to get a top-level collection. You can also call the GetCollection method from a
CatalogCollection object to get a related collection.

See Also
MTS Administration Objects, Using MTS Collection Types, MTS Administration Object Methods

Populating an MTS CatalogCollection Object
Use the administrative objects to populate a CatalogCollection object with data from the catalog. Note
that instantiating the object does not read any data from the catalog. To browse or change the data in
the collection, call the Populate or PopulateByKey method first. Populate will read all the data into
the collection. PopulateByKey will only read the objects that you specify. You do not need to populate
the collection to add data to the collection or use a utility object interface.

See Also
MTS Administration Objects, Using MTS Collection Types, MTS Administration Object Methods

Retrieving MTS Objects and Getting/Setting Properties
The CatalogCollection object supports methods for iterating through the objects in the collection. If
you are using Visual Basic as your development tool, you can iterate using the For Each statement. If
you use Visual C++, invoke the Item and Count methods to enumerate through a collection. Access
object properties using the object's Value property, and supply a property name as a parameter.

See Also
MTS Administration Objects, Using MTS Collection Types, MTS Administration Object Methods

Creating New MTS Objects
Some collections support the Add method to create a new object. Other collections require that you
use a utility interface to install objects (such as a component). See the Using MTS Catalog Utility
Objects topic for more details.

See Also
MTS Administration Objects, Using MTS Collection Types, MTS Administration Object Methods

Saving Changes to MTS Objects
Property changes and new objects (created using the Add method) and object removal (deleted
using the Remove method, which most collections support to delete an object) are held in-memory
until you call the SaveChanges method. When you call the SaveChanges method, any changes in
the CatalogCollection object are applied to the catalog. If you release the CatalogCollection object
before you call the SaveChanges method or call the Populate or PopulateByKey method before
calling the SaveChanges method, all pending changes will be lost.

See Also
MTS Administration Objects, Using MTS Collection Types, MTS Administration Object Methods

Using MTS Catalog Utility Objects
The utility object layer consists of the PackageUtil, ComponentUtil, RemoteComponentUtil, and
RoleAssociationUtil objects. These objects are used to perform specific actions directly on the catalog
(such as installing components or installing pre-built packages). Utility objects are specific to a
particular type of collection. Obtain a utility object by calling the GetUtilInterface method on the
CatalogCollection object.

When using a utility object, the changes made to the catalog do not affect the CatalogCollection
object from which you obtained the utility object. You must call the Populate or PopulateByKey
method on the CatalogCollection object in order to view any changes. There is no need to call the
SaveChanges method after using a utility method, as changes are written immediately to the catalog.

See Also
MTS Administration Objects, Using MTS Collection Types, MTS Administration Object Methods

Handling MTS Catalog Errors
The catalog collection and catalog utility methods return HRESULTS that indicate success or failure.
In Visual Basic, you use the On Error handler and the Err object to trap these errors and access the
failure code. Methods that deal with many objects (such as the SaveChanges or InstallPackage
methods) may capture multiple error codes to describe specific object failures. You access this set of
codes through a collection called ErrorInfo. You can use the GetCollection method to access an
ErrorInfo collection. Each CatalogCollection object that you instantiate maintains an ErrorInfo
collection that stores failure codes for the last method call that failed. If you are installing a package,
you can see which components are already installed by accessing the ErrorInfo collection for that
object.

It is recommended that you program your application to check each method call for success or failure.
Your program should especially test for the E_INVALIDARG return code (run-time error 5 in Visual
Basic) when supplying collection names or property names. This code indicates that one or more of
the supplied collection or property names is not supported.

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, MTS
ErrorInfo Collection

Visual Basic Script Samples for Automating MTS Administration
You can use an OLE-Automation compatible language (such as VBScript) to call the scriptable
administration objects. MTS provides administrative sample scripts to demonstrate how to use the
scriptable objects to automate MTS Explorer procedures.

In order to run an Automation script outside of an HTML page, you must have the Windows Scripting
Host (WSH) installed on your computer. WSH is a command-line scripting utility that can be installed
by the Window NT 4.0 Option Pack for Windows NT computers. WSH enables scripts to be executed
directly on the Windows desktop or command console. You do not need to embed those scripts in an
HTML document; instead, scripts can be run directly from the desktop by clicking a script file, or from
the command console. For more detailed information, see the Windows Scripting Host
documentation.

To demonstrate how to use the administration objects in a script, run the sample scripts contained in
the \program files\mtx\samples\WSH sub-directory. The WSH sub-directory contains the following five
sample scripts written in VB Script:

· InstDLL.vbs
· InstPak.vbs
· Uninst.vbs
· InstDllCLI.vbs
· InstPakCLI.vbs

These scripts automate administrative procedures for Sample Bank. For example, the InstDLL.vbs
script calls scriptable objects to first delete existing versions of Sample Bank, create a new package
named Sample Bank, install components from the Sample Bank Visual Basic, Visual C++, and Visual
J++ DLLs into the new package, change transaction attributes, and add a new role. The InstPak.vbs
script also uses the scriptable objects to install Sample Bank, while Uninst.vbs automates uninstalling
the Sample Bank package from MTS. After running a script, you can see the results of the script in
the MTS Explorer after clicking the Refresh toolbar button.

In order to use the InstDLL.vbs, InstPak.vbs, and Uninst.vbs scripts, you must modify the file path in
the script to point to the location of the required files on your computer. For example, the file path in
the InstPak.vbs script is the default location for the Sample Bank package, which is:
path="C:\Program Files\Samples\Packages\"
If you have the Sample Bank package installed in a difference location, modify that line in the script to
point to the current location of the package.

The InstDllCLI.vbs and InstPakCLI.vbs scripts support command line parameters so you can include
the file location as a parameter when running your script in a console window. At the command
prompt, open the directory containing the script you want to use, and type the name of the script and
the location of the package or DLLs. For example, to install the Sample Bank package located in the
default directory, open the directory containing the samples scripts and use the following command at
the command prompt:
InstPakCLI.vbs "C:\Program Files\MTX\Samples\Packages\"
To use the InstDLL.vbs script, you must first do one of the following to register the Java components
in the vjacct.dll file:

· Install the package by running the InstDLL.vbs script
· Register the Java components using the Microsoft Visual Studio 97 ActiveX Wizard.

See Also
Setting Up the MTS Administrative Sample Scripts

Visual Basic Sample Application for Automating MTS Administration
The Visual Basic version 5.0 sample application demonstrates how to use the methods on the
Catalog, CatalogObject, and CatalogCollections objects to automate basic administration functionality
for a package named “Scriptable Admin Demo.”

Note You must configure your Visual Basic project to reference the MTS administrative type library
(MTSAdmin type library). To reference the MTSAdmin type library, select the References option from
the Visual Basic Project toolbar. Then browse the available reference files for the “MTS 2.0 Admin
Type Library.” For late-binding variables (binding that occurs when you run the program), Visual Basic
will locate the type library without further configuration if the MTXADMIN.DLL file is registered on your
local machine.

To delete any existing packages named “Scriptable Admin Demo”
1 Call the CreateObject method to instantiate a catalog object.
Dim catalog As Object
Set catalog = CreateObject("MTSAdmin.Catalog.1")

2 Get a Packages collection object by calling the GetCollection method. The Packages collection
returns without retrieving any data from the catalog so that the collection will be empty upon return
from the GetCollection method.
Dim packages As Object
Set packages = catalog.GetCollection("Packages")

3 Find the previous version of the "Scriptable Admin Demo" package by populating the Packages
collection to read in all packages and search for "Scriptable Admin Demo." Enumerate through the
collection, starting at the highest index so the Remove method can be called from within the loop.
The Remove method releases the object, removes the object from the collection, and shifts the
objects in the collection so that object(n+1) becomes object(n) for all n greater than or equal to the
index being removed. The effect of Remove method on the collection object is immediate. The
Item and Count methods called any time after the Remove method will reflect the change in the
index. However, the removal of the package is not applied to the catalog until the SaveChanges
method is called (see step 4).
packages.Populate
Dim pack As Object
n = packages.Count
For i = n - 1 To 0 Step -1
 If packages.Item(i).Value("Name") = "Scriptable Admin Demo" Then
 packages.Remove (i)
End If
Next

4 Call the SaveChanges method to save changes to the data store.
packages.SaveChanges

To create a new package named “Scriptable Admin Demo Package”
1 Add a new package using the Add method, and note the package ID assigned. The Add method

adds the object to the collection but does not apply the changes to the catalog until the
SaveChanges method is called (see step 3). Note that the Add method will apply default values to
all properties. The default ID will be a new unique identifier.
Dim newPack As Object
Dim newPackID As Variant
Set newPack = packages.Add
newPackID = newPack.Value("ID")

2 Update the Name and SecurityEnabled properties.
newPack.Value("Name") = "Scriptable Admin Demo"
newPack.Value("SecurityEnabled") = "N"

3 Call the SaveChanges method to save the new package to the catalog. The return value of this
call is the number of objects changed, added, or deleted. If no changes were pending, the method
returns 0.
n = packages.SaveChanges

To update the “Scriptable Admin Demo” package properties and get the
ComponentsInPackage collection.

1 Call the PopulateByKey method to read the package back from the catalog. Pass an array
containing the keys of the objects to read. In the sample code, we use an array containing a
single element (the ID of the package just created).
Dim keys(0) as Variant
keys(0) = newPackId
packages.PopulateByKey keys

2 Get the package object from the collection
Dim package As Object
Set package = packages.Item(0)

3 Update the SecurityEnabled property for the package.
package.Value("SecurityEnabled") = "Y"

4 Call the GetCollection method to retrieve the ComponentsInPackage collection. Supply the key of
the "Scriptable Admin Demo package as a parameter.
Set components = packages.GetCollection("ComponentsInPackage",_
package.Key)

5 Call the SaveChanges method to save the changes to the catalog.
packages.SaveChanges

To install a componentasdefcomponent into the "Scriptable Admin Demo package":
1 Call the GetUtilInterface method to get the component utility object. This object is used to install

components.
Dim util As Object
Set util = components.GetUtilInterface
On Error GoTo installFailed

2 Call the InstallComponent method, passing in a string containing the name of the dynamic-link
library (DLL) of the component to be installed. If the component does not have an external type
library or a proxy-stub DLL, pass in empty strings as the second and third arguments. Note that
you do not have to call the SaveChanges method after installing a new component. All
components contained in a DLL will be installed by this method, and are immediately written to the
catalog. Call the GetCLSIDs method to get the CLSIDs of the components installed.
Form2.Show 1
Dim thePath As String
thePath = Form2.MTSPath + "\samples\packages\vbacct.dll"
util.InstallComponent thePath, "", ""
Dim installedCLSIDs() as Variant
util.GetCLSIDs thePath, “”, installedCLSIDs
On Error GoTo 0

3 Call the PopulateByKey method to read back the components just installed. Note that the
components installed into the package via the InstallComponent method are not visible in the
collection until the Populate or PopulateByKey method is called to read the data from the catalog.
components.PopulateByKey installedCLSIDs

To find and delete the Bank.CreateTable component from the "Scriptable Admin Demo
package":

1 Iterate through the components and change transaction attributes using the Item and Count
methods.

Dim component As Object
n = components.Count
For i = n - 1 To 0 Step -1
 Set component = components.Item(i)
 component.Value("Transaction") = "Required"

2 Find and delete the Bank.CreateTable component by index. Note that you must iterate though
the collection backwards in order to call the Remove method during the loop.
If component.Value("ProgID") = "Bank.CreateTable" Then
 components.Remove (i)
 End If
Next

3 Retrieve a new count and iterate through the collection again. Note that the Bank.CreateTable
component will not be deleted from the data store until the SaveChanges method is called. Display
a message box that informs the user if the installation succeeded.
n = components.Count
For i = 0 To n - 1
 Set component = components.Item(i)
 Debug.Print component.Value("ProgID")
 Debug.Print component.Value("DLL")
Next

n = components.SaveChanges
MsgBox "Scriptable Admin Demo package installed and configured."
Exit Sub

installFailed:
 MsgBox "Error code " + Str$(Err.Number) + " installing " + thePath +
" Make sure the MTS path you entered is correct and that vbacct.dll is
not already installed."
End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
MTS Administration with Visual Basic, Automating Advanced MTS Administration with Visual Basic

Automating MTS Administration with Visual Basic
The scriptable administration objects can be used to install, delete, and update properties for
packages and components. These topics provide a sample procedure and Visual Basic version 5.0
sample code using methods on the scriptable administration objects to automate the following
administrative tasks:

· Automating Installation of a Pre-Built MTS Package
· Automating a New MTS Package and Installing Components
· Automating Enumerating Through Installed MTS Packages to Update Properties
· Automating Enumerating Through Installed MTS Packages to Delete a Package
· Automating Enumerating Through Installed MTS Components to Delete a Component

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
Advanced MTS Administration with Visual Basic

Automating Installation of a Pre-Built MTS Package
To install a pre-built package named “Test.pak” into the MTS Explorer:
1 Declare the objects that you will be using to install a pre-built package.

Private Sub InstallPackage_Click()
 Dim catalog As Object
 Dim packages As Object
 Dim util As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.

On Error GoTo failed
3 Call the CreateObject method to instantiate the Catalog object. Retrieve the top level Packages

collection by calling the GetCollection method.
Set catalog = CreateObject("MTSAdmin.Catalog.1")

 Set packages = catalog.GetCollection("Packages")
4 Instantiate the PackageUtil object, and call the InstallPackage method to install a package named

“test.pak.”
Set util = packages.GetUtilInterface

 util.InstallPackage "c:\test.pak", "", 0
 Exit Sub

5 Use the Err object to display an error message if the installation of the package fails.
failed:

 MsgBox "Failure code " + Str$(Err.Number)
End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
Advanced MTS Administration with Visual Basic

Automating Creating a New MTS Package and Installing
Components

To create a new package named “My Package” and install the components in that
package:

1 Declare the objects that you will be using to create a new package and install components into that
package.

Dim catalog As Object
 Dim packages As Object
 Dim newPack As Object
 Dim componentsInNewPack As Object
 Dim util As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.

On Error GoTo failed
3 Call the CreateObject method to instantiate the Catalog object. Retrieve the top level Packages

collection from the CatalogCollection object by calling the GetCollection method. Then call the
Add method to add a new package.

Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set packages = catalog.GetCollection("Packages")
Set newPack = packages.Add
Dim newPackID As String

4 Set the package name to “My Package” and save changes to the Packages collection.
 newPackID = newPack.Key
 newPack.Value("Name") = "My Package"
 packages.SaveChanges

5 Call the GetCollection method to access the ComponentsInPackage collection. Then instantiate
the ComponentUtil object in order to call the InstallComponent method to populate the new
package with components.

Set componentsInNewPack =
packages.GetCollection("ComponentsInPackage", newPackID)

 Set util = componentsInNewPack.GetUtilInterface
 util.InstallComponent"d:\dllfilepath", "", ""
 Exit Sub

6 Use the Err object to display an error message if the installation of the package fails.
failed:
 MsgBox "Failure code " + Str$(Err.Number)

End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
Advanced MTS Administration with Visual Basic

Automating Enumerating Through Installed MTS Packages to
Update Properties

To enumerate through installed packages in order to update properties in the package
named “My Package”:

1 Declare the objects that you will be using to enumerate through installed packages to update
package properties.
Private Sub BrowseUpdate_Click()
Dim catalog As Object
Dim packages As Object
Dim pack As Object
Dim componentsInNewPack As Object
Dim util As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to instantiate the Catalog object. Retrieve the Packages collection
by calling the GetCollection method. Then call the Populate method to fill the collection with
packages from the catalog.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set packages = catalog.GetCollection("Packages")
packages.Populate

4 Enumerate through a collection to find the package named “My Package.” When “My Package” is
located, set the SecurityEnabled property to “Y.” Call the SaveChanges method to save the
property update for the package.
For Each pack In packages
 If pack.Name = "My Package" Then
 pack.Value("SecurityEnabled") = "Y"
 Exit For
 End If
 Next
packages.SaveChanges

 Exit Sub

5 Use the Err object to display an error message if the installation of the package fails.
failed:
 MsgBox "Failure code " + Str$(Err.Number)

 End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
Advanced MTS Administration with Visual Basic

Automating Enumerating Through Installed MTS Packages to
Delete a Package
To enumerate through installed packages to delete the package named “My Package”:
1 Declare the objects that you will be using to enumerate through installed packages to delete a

specific package.
Dim catalog As Object
Dim packages As Object
Dim pack As Object
Dim componentsInPack As Object
Dim util As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to instantiate the Catalog object. Retrieve the Packages collection
by calling the GetCollection method. Then call the Populate method to fill the collection with
packages installed in the catalog.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set packages = catalog.GetCollection("Packages")
packages.Populate

4 Use the Count and Item methods to enumerate through the package collection to find the package
named “My Package.” When “My Package” is located, call the Remove method to delete the
package. Then save changes to the collection by calling the SaveChanges method.
For i = 0 To packages.Count-1
 Set pack = packages.Item(i)
 If pack.Name = "My Package" Then
 packages.Remove (i)
 packages.savechanges
 Exit For
 End If
 Next

 Exit Sub

5 Use the Err object to display an error message if the installation of the package fails.
failed:
 MsgBox "Failure code " + Str$(Err.Number)

End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
Advanced MTS Administration with Visual Basic

Automating Enumerating Through Installed MTS Components to
Delete a Component

To enumerate through installed components to delete a component:
1 Declare the objects that you will be using to enumerate through installed components to delete a

specific component.
Dim catalog As Object
Dim packages As Object
Dim pack As Object
Dim componentsInPack As Object
Dim util As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to instantiate the Catalog object. Retrieve the Packages collection
by calling the GetCollection method. Then call the Populate method to fill the collection with
packages installed in the catalog.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set packages = catalog.GetCollection("Packages")
packages.Populate

4 Enumerate through the collection to look for the package named “My Package.” Then call the
GetCollection method to get the ComponentsInPackage collection. Fill the ComponentInPackages
collection using the Populate method, and then enumerate through the collection to find the
“Bank.Account” component. Call the Remove method to delete the component, and save changes
to the collection by calling the SaveChanges method.
For Each pack In packages
 If pack.Name = "My Package" Then
 Set componentsInPack =
packages.GetCollection("ComponentsInPackage", pack.Key)
 componentsInPack.Populate
 For i = 0 To componentsInPack.Count
 Set comp = componentsInPack.Item(i)
 If comp.Name = "Bank.Account" Then
 componentsInPack.Remove (i)
 componentsInPack.savechanges
 Exit For
 End If
Next
 Exit For
 End If
 Next

 Exit Sub

5 Use the Err object to display an error message if the installation of the package fails.
failed:
 MsgBox "Failure code " + Str$(Err.Number)

End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
Advanced MTS Administration with Visual Basic

Automating Advanced MTS Administration with Visual Basic
The scriptable administration objects can be used to configure clients and roles, export packages,
and access the names of collections and properties supported by the catalog. The following topics
provide a procedure and Visual Basic version 5.0 sample code using methods on the scriptable
administration objects to automate the following administrative tasks:

· Automating Access to MTS Related Collection Names
· Automating Access to MTS Property Information
· Automating MTS Role Configuration
· Automating MTS Package Export
· Automating Configuration of an MTS Client to Use Remote Components
· Automating MTS Package Property Updates on Remote Servers

Automating Access to MTS Related Collection Names
The RelatedCollectionInfo collection provides a list of related collections that you can access from a
given collection. See the RelatedCollectionInfo topic in the MTS Administrative Reference for a list of
properties supported by this collection.

To access and display related collection names:
1 Declare the objects that you will be using to access the object that provides the names of related

collections
Dim catalog As Object
Dim packages As Object
Dim RelatedCollectionInfo As Object
Dim collName As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to instantiate the Catalog object. Retrieve the Packages collection
by calling the GetCollection method. Then call the GetCollection method on the Packages
collection object to obtain the RelatedCollectionInfo collection. Note that the key value is left blank
when calling GetCollection to access the RelatedCollectionInfo collection. The key value is not
used because the information in RelatedCollectionInfo will be the same for all packages. Fill the
RelatedCollectionInfo collection with information from the catalog by calling the Populate method.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set packages = catalog.GetCollection("Packages")
Set RelatedCollectionInfo =_
packages.GetCollection("RelatedCollectionInfo", "")
RelatedCollectionInfo.Populate

4 Enumerate through the RelatedCollectionInfo collection and display the names of each collection.
For Each collName In RelatedCollectionInfo
 Debug.Print collName.Name
Next

Exit Sub

5 Use the Err object to display an error message if the installation of the package fails.
failed:
 MsgBox "Failure code " + Str$(Err.Number)

End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
MTS Administration with Visual Basic

Automating Access to MTS Property Information
The PropertyInfo collection stores information about each property in a collection. See the
PropertyInfo topic in the MTS Administrative Reference for more information about this collection.

To access and list the name of each property in a collection:
1 Declare the objects that you will be using to access property information stored in the catalog.
Dim catalog As Object
Dim packages As Object
Dim propertyInfo As Object
Dim property As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to instantiate the Catalog object. Retrieve the Packages collection
by calling the GetCollection method. Call the GetCollection method on the Packages collection
to obtain the PropertyInfo collection. Note that the key value is left blank when calling
GetCollection to access the PropertyInfo collection. The key value is not used because the
information in PropertyInfo will be the same for all packages. Fill the PropertyInfo collection with
information from the Catalog by using the Populate method.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set packages = catalog.GetCollection("Packages")
Set propertyInfo = packages.GetCollection("PropertyInfo", "")
propertyInfo.Populate

4 Enumerate through the PropertyInfo collection and list the names of each property in the collection.
For Each property In propertyInfo
 Debug.Print property.Name
 Next

 Exit Sub

5 Use the Err object to display an error message if the installation of the package fails.
failed:
 MsgBox "Failure code " + Str$(Err.Number)

End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
MTS Administration with Visual Basic

Automating MTS Role Configuration
To configure a role a package and component, and assign administrative privileges to a

user:
1 Declare the objects that you will be using to configure a role for a specific component.
Dim catalog As Object
Dim packages As Object
Dim pack As Object
Dim comp As Object
Dim newUser As Object
Dim newRole As Object
Dim componentsInPack As Object
Dim RolesInPackage As Object
Dim usersInRole As Object
Dim rolesForComponent As Object
Dim util As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to instantiate the Catalog object. Retrieve the Packages collection
by calling the GetCollection method. Then populate the Packages collections with data from the
catalog.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set packages = catalog.GetCollection("Packages")
packages.Populate

4 Enumerate through the Packages collection to look for the package named “My Package.” When
“My Package” is located, call the GetCollection method to obtain the RolesInPackage collection.
Add a new role to package using the Add method. Name the new role “R1,” and save changes to
the collection.
 If pack.Name = "My Package" Then
 Set rolesInPack = packages.GetCollection("RolesInPackage", pack.Key)

 Set newRole = rolesInPack.Add
 newRole.Value("Name") = "R1"
 rolesInPack.savechanges

5 Call the GetCollection method on the RolesInPackage collection to get the UsersInRole collection.
Use the Add function to add an existing NT user to the role. Set the user name to “administrator.”
Save changes to the UsersInRole collection.
 Set usersInRole = RolesInPackage.GetCollection("UsersInRole",

newRole.Key)
 Set newUser = usersInRole.Add
 newUser.Value("User") = "administrator"
 usersInRole.savechanges

6 Get the ComponentsInPackage collection using the GetCollection method. Populate the
ComponentsInPackage collection, and enumerate through the collection to find the Bank.Account
component. To associate the new role with the component, instantiate the RoleAssociationUtil
object using the GetUtilInterface method. Then associate the new role with the component by
calling the AssociateRole method.
Set componentsInPack = packages.GetCollection("ComponentsInPackage",
pack.Key)
 componentsInPack.Populate
 For Each comp In componentsInPack
 If comp.Name = "Bank.Account" Then

 Set rolesForComponent =
componentsInPack.GetCollection("RolesForPackageComponent", comp.Key)
 Set util = rolesForComponent.GetUtilInterface
 util.associateRole (newRole.Key)
 Exit For
 End If
 Next
 Exit For
 End If
 Next

 Exit Sub

7 Use the Err object to display an error message if the installation of the component fails.
failed:

 MsgBox "Failure code " + Str$(Err.Number)

End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
MTS Administration with Visual Basic

Automating MTS Package Export
To export a package named “test.pak”:

1 Declare the objects that you will be using to export a package.
Dim catalog As Object
Dim packages As Object
Dim util As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to instantiate the Catalog object. Retrieve the Packages collection
by calling the GetCollection method. Call the Populate method to fill the package with data from
the catalog.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set packages = catalog.GetCollection("Packages")
packages.Populate

4 Enumerate through the Packages collection to find the package named “My Package.” Once that
package is located, instantiate the package utility object and call the ExportPackage method.
For Each pack In packages
 If pack.Name = "My Package" Then
 Set util = packages.GetUtilInterface
 util.ExportPackage pack.Key, "c:\test.pak", 0
 Exit For
 End If
 Next

Exit Sub

5 Use the Err object to display an error message if the installation of the component fails.
failed:
 MsgBox "Failure code " + Str$(Err.Number)

End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
MTS Administration with Visual Basic

Automating Configuration of an MTS Client to Use Remote
Components

To configure a client to use the Bank.CreateTable remote component:
1 Declare the objects that you will be using to configure a client (running MTS) to run remote

components.
Dim catalog As Object
Dim remoteComps As Object
Dim util As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to instantiate the Catalog object. Retrieve the RemoteComponents
collection by calling the GetCollection method. Then instantiate the RemoteComponentUtil object
by using the GetUtilInterface method. To install the remote component, call the
InstallRemoteComponentByName method and supply the name of the server computer, the
package name on the server, and the component name.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set remoteComps = catalog.GetCollection("RemoteComponents")
Set util = remoteComps.GetUtilInterface

util.InstallRemoteComponentByName "remote1", "New","Bank.CreateTable"
Exit Sub

4 Use the Err object to display an error message if the installation of the component fails.
failed:

 MsgBox "Failure code " + Str$(Err.Number)

End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
MTS Administration with Visual Basic

Automating MTS Package Property Updates on Remote Servers
To update package properties on a remote computer named “remote1”:

1 Declare the objects that you will be using to configure a client (running MTS) to deploy and
administrator remote components.
Dim catalog As Object
Dim packages As Object
Dim pack As Object
Dim root As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to instantiate the Catalog object. Call the Connect method to
access the root collection on the computer named “remote1.” The root collection is a collection
object that can be used to access top-level collections on the given computer. The root collection
contains no objects and has no properties. Note that the key value is not used when calling
GetCollection from a root collection. Get the Packages collection on the remote computer by
calling the GetCollection method. Then use the Populate method to fill the packages collection.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set root = catalog.Connect("remote1")
Set packages = root.GetCollection("Packages", "")
packages.Populate

4 Set the SecurityEnabled setting to “Y” for “My Package” and save changes to the package
collection.
 For Each pack In packages
 If pack.Name = "My Package" Then
 pack.Value("SecurityEnabled") = "Y"
 Exit For
 End If
 Next
 packages.savechanges

 Exit Sub

5 Use the Err object to display an error message if the installation of the component fails.
failed:

 MsgBox "Failure code " + Str$(Err.Number)

End Sub

See Also
MTS Administration Objects, MTS Collection Types, MTS Administration Object Methods, Automating
MTS Administration with Visual Basic

MTS Overview and Concepts
How Does MTS Work?
Explains the elements of Microsoft Transaction Server and how they work together to provide the
infrastructure and programming model to develop and deploy components.

MTS Programming Concepts
Explains the key concepts that a component application developer needs to understand for
developing applications.

How Does MTS Work?
This topic describes the elements of Microsoft Transaction Server (MTS) and explains how they
provide the infrastructure and programming model to develop and deploy MTS components.

Elements of MTS

Contents
Application Components

MTS Executive

Server Processes

Resource Managers

Resource Dispensers

Microsoft Distributed Transaction Coordinator

MTS Explorer

Application Components
Application components model the activity of a business. These components implement the business
rules, providing views and transformations of the application state. Consider, for example, the case of
an online bank. Records in one or more database systems represent the durable state of the
business, such as the amount of money in an account. The application components update that state
to reflect such changes as debits and credits.

MTS shelters developers from complex server issues, allowing them to focus on implementing
business functions. Because components running in the MTS run-time environment can take
advantage of transactions, developers can write applications as if they run in isolation. MTS handles
the concurrency, resource pooling, security, context management, and other system-level
complexities. The transaction system, working in cooperation with database servers and other types
of resource managers, ensures that concurrent transactions are atomic, consistent, have proper
isolation, and that, once committed, the changes are durable. For more information on the benefits of
transactions, see Transactions.

MTS also makes it easier to build distributed applications by providing location transparency. MTS
automatically loads the component into a process environment. An MTS component can be loaded
into a client application process (in-process component), or into a separate surrogate server process
environment, either on the client's computer (local component) or on another computer (remote
component).

In-process, local, and remote components

MTS Components and COM
MTS components are COM in-process server components contained in (DLLs). They are
distinguished from other COM components in that they execute in the MTS run-time environment. You
can create and implement these components with Visual Basic, Visual C++, Visual J++, or any
ActiveX-compatible development tool.

Note that the term component represents the code that implements a COM object. For example,
Visual C++ components are implemented as classes. Likewise, Visual Basic components are
implemented by class modules.

MTS imposes specific requirements on components beyond those required by COM (see MTS
Component Requirements). This allows MTS to provide services to the component that would not
otherwise be possible. These include increased scalability and robustness and simplified system
management.

See Also
Base Clients vs. MTS Components, MTS Objects, Business Logic in MTS Components, Server
Processes

MTS Executive
The MTS Executive is a dynamic-link library (DLL) that provides run-time services for MTS
components, including thread and context management. This DLL loads into the processes that host
application components and runs in the background.

MTS also provides a set of resource dispensers that simplify access to shared resources in a server
process. For more information, see Resource Dispensers.

See Also
Application Components

Server Processes
A server process is a system process that hosts the execution of an application component. A server
process can host multiple components and can service tens, hundreds, or potentially thousands of
clients. You can configure multiple server processes to execute on a single computer. Each server
process reflects a separate trust boundary and fault isolation domain.

Other process environments can also host application components. As a result, you can deploy
applications that meet varying distribution, performance, and fault isolation requirements. For
example, you can configure MTS components to be loaded directly into Microsoft Internet Information
Server (IIS). You can also configure them to load directly into client processes.

Server Process

Resource Managers
A resource manager is a system service that manages durable data. Server applications use resource
managers to maintain the durable state of the application, such as the record of inventory on hand,
pending orders, and accounts receivable. Resource managers work in cooperation with the Microsoft
Distributed Transaction Coordinator to guarantee atomicity and isolationto an application.

MTS supports resource managers, such as Microsoft SQL Server version 6.5, that implement the
OLE Transactions protocol.

See Also
Resource Dispensers, Microsoft Distributed Transaction Coordinator

Resource Dispensers
A resource dispenser manages nondurable shared state on behalf of the application components
within a process. Resource dispensers are similar to resource managers, but without the guarantee of
durability. MTS provides two resource dispensers:

· The ODBC resource dispenser
· The Shared Property Manager

ODBC Resource Dispenser
The ODBC resource dispenser manages pools of database connections for MTS components that
use the standard ODBC interfaces, allocating connections to objects quickly and efficiently.
Connections are automatically enlisted on an object's transactions, and the resource dispenser can
automatically reclaim and reuse connections. The ODBC 3.0 Driver Manager is the ODBC resource
dispenser; the Driver Manager DLL is installed with MTS.

Shared Property Manager
The Shared Property Manager provides synchronized access to application-defined, process-wide
properties (variables). For example, you can use it to maintain a Web-page hit counter or to maintain
the shared state for a multiuser game.

See Also
ISharedPropertyGroupManager Interface, Creating a Simple ActiveX Component, Sharing State

Microsoft Distributed Transaction Coordinator
The Microsoft Distributed Transaction Coordinator (MS DTC) is a system service that coordinates
transactions. Work can be committed as an atomic transaction even if it spans multiple resource
managers, potentially on separate computers.

MS DTC was first released as part of Microsoft SQL Server version 6.5 and is included in MTS,
providing a low-level infrastructure for transactions. MS DTC implements a two-phase commit
protocol to ensure that the transaction outcome (either commit or abort) is consistent across all
resource managers involved in a transaction. MS DTC ensures atomicity, regardless of failures.

See Also
Resource Managers

MTS Explorer
You can use the MTS Explorer to deploy application components. You can also use it to view and
manipulate items in the MTS run-time environment.

For a complete discussion of using the MTS Explorer for application administration, see the
Administrator's Guide.

MTS Programming Concepts
This topic explains the key concepts that a component application developer needs to understand to
develop Microsoft Transaction Server (MTS) applications.

Contents
Transactions

MTS Objects

MTS Clients

Activities

Components and Threading

Programmatic Security

Error Handling

Transactions
MTS simplifies the task of developing application components by allowing you to perform work with
transactions. This protects applications from anomalies caused by concurrent updates or system
failures.

Transactions maintain the ACID properties:

· Atomicity ensures that all the updates completed under a specific transaction are committed and
made durable, or that they get aborted and rolled back to their previous state.

· Consistency means that a transaction is a correct transformation of the system state, preserving
the state invariants.

· Isolation protects concurrent transactions from seeing each other's partial and uncommitted
results, which might create inconsistencies in the application state. Resource managers use
transaction-based synchronization protocols to isolate the uncommitted work of active transactions.

· Durability means that committed updates to managed resources, such as a database record,
survive failures, including communication failures, process failures, and server system failures.
Transactional logging even allows you to recover the durable state after disk media failures.

The intermediate states of a transaction are not visible outside the transaction, and either all the work
happens or none of it does. This allows you to develop application components as if each transaction
executes sequentially and without regard to concurrency. This is a tremendous simplification for
application developers.

You can declare that a component is transactional, in which case MTS associates transactions with
the component's objects. When an object's method is executed, the services that resource managers
and resource dispensers perform on its behalf execute under a transaction. This can also include
work that it performs for other MTS objects. Work from multiple objects can be composed into a single
atomic transaction.

Multiple objects composed into a transaction

Without transactions, error recovery is extremely difficult, especially when multiple objects update
multiple databases. The possible combinations of failure modes are too great even to consider.
Transactions simplify error recovery. Resource managers automatically undo the transaction's work,
and the application retries the entire business transaction.

Transactions also provide a simple concurrency model. Because a transaction's isolation prevents
one client's work from interfering with other clients, you can develop components as though only a
single client executes at a time.

Components Declare Transactional Requirements
Every MTS component has a transaction attribute that is recorded in the MTS catalog. MTS uses this
attribute during object creation to determine whether the object should be created to execute within a
transaction, and whether a transaction is required or optional. For more information on transaction
attributes, see Transaction Attributes.

Components that make updates to multiple transactional resources, such as database records, for
example, can ensure that their objects are always created within a transaction. If the object is created
from a context that has a transaction, the new context inherits that transaction; otherwise, the system
automatically initiates a transaction.

Components that only perform a single transactional update can be declared to support, but not
require, transactions. If the object is created from a context that has a transaction, the new context
inherits that transaction. This allows the work of multiple objects to be composed into a single atomic
transaction. If the object is created from a context that does not have a transaction, the object can rely
on the resource manager to ensure that the single update is atomic.

How Work Is Associated with a Transaction
An object's associated context object indicates whether the object is executing within a transaction
and, if so, the identity of the transaction.

Resource dispensers can use the context object to provide transaction-based services to the MTS
object. For example, when an object executing within a transaction allocates a database connection
by using the ODBC resource dispenser, the connection is automatically enlisted on the transaction.
All database updates using this connection become part of the transaction, and are either atomically
committed or aborted. For more information, see Enlisting Resources in Transactions.

Stateful and Stateless Objects
Like any COM object, MTS objects can maintain internal state across multiple interactions with a
client. Such an object is said to be stateful. MTS objects can also be stateless, which means the
object does not hold any intermediate state while waiting for the next call from a client.

When a transaction is committed or aborted, all of the objects that are involved in the transaction are
deactivated, causing them to lose any state they acquired during the course of the transaction. This
helps ensure transaction isolation and database consistency; it also frees server resources for use in
other transactions.

Completing a transaction enables MTS to deactivate an object and reclaim its resources, thus
increasing the scalability of the application. Maintaining state on an object requires the object to
remain activated, holding potentially valuable resources such as database connections. Stateless
objects are more efficient and are thus recommended. For more information on object deactivation,
see Deactivating Objects.

How Objects Can Participate in Transaction Outcome
You can use methods implemented on the IObjectContext interface to enable an MTS object to
participate in determining a transaction's outcome. The SetComplete, SetAbort, DisableCommit,
and EnableCommit methods work in conjunction with the component's transaction attribute to allow
one or more objects to be composed simply and safely within transactions.

· SetComplete indicates that the object has successfully completed its work for the transaction. The
object is deactivated upon return from the method that first entered the context.

· SetAbort indicates that the object's work can never be committed. The object is deactivated upon
return from the method that first entered the context.

· EnableCommit indicates that the object's work is not necessarily done, but that its transactional
updates can be committed in their current form.

· DisableCommit indicates that the object's transactional updates can not be committed in their
current form.

Both SetComplete and SetAbort deactivate the object on return from the method. MTS reactivates
the object on the next call that requires object execution.

Objects that need to retain state across multiple calls from a client can protect themselves from
having their work committed prematurely by the client. By calling DisableCommit before returning
control to the client, the object can guarantee that its transaction cannot successfully be committed
without the object doing its remaining work and calling EnableCommit.

Client-Controlled vs. Automatic Transactions
Transactions can either be controlled directly by the client, or automatically by the MTS run-time
environment.

Clients can have direct control over transactions by using a transaction context object. The client uses
the ITransactionContext interface to create MTS objects that execute within the client's transactions,
and to commit or abort the transactions.

Transactions can automatically be initiated by the MTS run-time environment to satisfy the
component's transaction expectations. MTS components can be declared so that their objects always
execute within a transaction, regardless of how the objects are created. This feature simplifies
component development, because you do not need to write application logic to handle the special
case where an object is created by a client not using transactions.

This feature also reduces the burden on client applications. Clients do not need to initiate a
transaction simply because the component that they are using requires it.

MTS automatically initiates transactions as needed to satisfy a component's requirements. This event
occurs, for example, when a client that is not using transactions creates an object in an MTS
component that is declared to require transactions.

MTS completes automatic transactions when the MTS object that triggered their creation has
completed its work. This event occurs when returning from a method call on the object after it has
called SetComplete or SetAbort. SetComplete causes the transaction to be committed; SetAbort
causes it to be aborted.

A transaction cannot be committed while any method is executing in an object that is participating in
the transaction. The system behaves as if the object disables the commit for the duration of each
method call.

See Also
Building Transactional Components, Multiple Transactions

Transaction Attributes
Every MTS component has a transaction attribute. The transaction attribute can have one of the
following values:

· Requires a transaction. This value indicates that the component's objects must execute within the
scope of a transaction. When a new object is created, its object context inherits the transaction
from the context of the client. If the client does not have a transaction, MTS automatically creates a
new transaction for the object.

· Requires a new transaction. This value indicates that the component's objects must execute
within their own transactions. When a new object is created, MTS automatically creates a new
transaction for the object, regardless of whether its client has a transaction.

· Supports transactions. This value indicates that the component's objects can execute within the
scope of their client's transactions. When a new object is created, its object context inherits the
transaction from the context of the client. If the client does not have a transaction, the new context
is also created without one.

· Does not support transactions. This value indicates that the component's objects do not run
within the scope of transactions. When a new object is created, its object context is created without
a transaction, regardless of whether the client has a transaction.

Most MTS components are declared as either Supports transactions or Requires a transaction.
These values allow an object to execute within the scope of its client's transaction. You can see the
difference between these values when an object is created from a context that does not have a
transaction. If the component's transaction attribute is Supports transactions, the new object runs
without a transaction. If it is declared as Requires a transaction, MTS automatically initiates a
transaction for the new object.

Declaring a component as Requires a new transaction is similar to using Requires a transaction in
that the component's objects are guaranteed to execute within transactions. However, when you
declare the transaction attribute this way, an object never runs inside the scope of its client's
transaction. Instead, the system always creates independent transactions for the new objects. For
example, you can use this for auditing components that record work done on behalf of another
transaction regardless of whether the original transaction commits or aborts.

Specifying Does not support transactions ensures that an object's context does not contain a
transaction. This value is the default setting and is primarily used with versions of COM components
that precede MTS.

Setting the Transaction Attribute
The transaction attribute is part of a component definition. The component developer determines it,
and changes to it are not recommended.

You can set a transaction attribute at development time by:

· Using values defined in Mtxattr.h. You can specify these values in an .odl file to encode them into
the component's type library.

· Using the MTS Explorer to create a package file for deploying your components.

Because Because Microsoft Visual Basic automatically generates a type library, Visual Basic
developers must use the MTS Explorer to set the transaction attribute.

See Also
Application Components, Transactions

Enlisting Resources in Transactions
MTS provides automatic transactions, which means that transaction requirements are declared as
component properties. MTS automatically begins transactions and commits or aborts these
transactions on behalf of the component, based on the component's transaction property.

Automatic transactions work because resource dispensers pass transactions to the resource
manager. For example, the ODBC Driver Manager is a resource dispenser for ODBC database
connections. When a database connection is requested from a transactional component, the ODBC
Driver Manager obtains the transaction from the object's context. The ODBC Driver Manager then
associates (enlists) the database connection with the transaction.

If you do not have a resource dispenser, you can build your own using the Microsoft Transaction
Server Beta Software Development Kit (SDK), available at
http://www.microsoft.com/support/transactions/. For more information, see the Resource Dispenser
Guide and the samples included with the MTS Beta SDK.

For a resource manager to participate in an MTS transaction, it must support one of the following
protocols:

· OLE Transactions
· The X/Open DTP XA standard

OLE Transactions, the object-oriented, two-phase commit protocol defined by Microsoft, is the
preferred protocol. OLE Transactions is based on the Component Object Model (COM) and is used
by resource managers in order to participate in distributed transactions coordinated by Microsoft
Distributed Transaction Coordinator (DTC). OLE Transactions is supported by Microsoft SQL Server
version 6.5. For more information on supporting OLE Transactions, see the Resource Manager Guide
and the samples included with the MTS Beta SDK.

XA is the two-phase commit protocol defined by the X/Open DTP group. XA is natively supported by
many Unix databases, including Informix, Oracle, and DB2.

For MTS to work with XA-compliant resource managers, an OLE Transactions-to-XA mapper,
provided by the MTS Beta SDK, makes it relatively straightforward for XA-compliant resource
managers to provide resource dispensers that can accept OLE Transactions from MTS and translate
to XA. For more information, see "Mapping OLE Transactions to the XA Protocol" in the MTS Beta
SDK, or contact your resource manager vendor.

See Also
Resource Dispensers, Transactions

Determining Transaction Outcome
This section discusses how applications determine whether a transaction will commit or abort.

First, it is important to understand that the MTS objects involved in a transaction do not need to know
the transaction outcome. All objects involved in a transaction are automatically deactivated.
Deactivation causes the objects to lose any state that they acquired during the transaction.
Consequently, their behavior is not affected by the outcome of the transaction.

Each object can participate in determining the outcome of a transaction. Objects call SetComplete,
SetAbort, EnableCommit, and DisableCommit, based on the desired component behavior. For
example, an object would typically call SetAbort after receiving an error from a database operation,
on a method call to another object, or due to a violation of a business rule such as an overdrawn
account.

The client of the transaction determines its success or failure (commit or abort) based on values
returned from the method call that caused the transaction to complete. The client can be either a base
client or another MTS object that exists outside the transaction. The client must know which methods
cause transactions to complete and how the method output values can be used to determine success
(commit) or failure (abort).

An object method that intends to commit a transaction typically returns an HRESULT value of S_OK
after calling SetComplete. On return, MTS automatically completes the transaction. If the transaction
commits, the S_OK value is returned to the client. If it aborts, the HRESULT value is changed to
CONTEXT_E_ABORTED. The client can use these two values to determine the outcome.

An object method typically notifies its client that it has forced the transaction to abort by calling
SetAbort in one of two ways:

· Return S_OK and use an output parameter to indicate the failure.
· Return an HRESULT error code. Different codes could be used to distinguish different causes, or

the generic CONTEXT_E_ABORTED error could be used.

For example, the Sample Bank application uses an output parameter to indicate failure:
Public Function Perform(lngPrimeAccount As Long, _
 lngSecondAccount As Long, lngAmount As Long, _
 strTranType As String, ByRef strResult As String) _
 As Long

' get our object context
Dim ctxObject As ObjectContext
Set ctxObject = GetObjectContext()

On Error GoTo ErrorHandler

' check for security
If (lngAmount > 500 Or lngAmount < -500) Then
 If Not ctxObject.IsCallerInRole("Managers") Then
 Err.Raise Number:=ERROR_NUMBER, _
 Description:="Need 'Managers' role " + _
 "for amounts over $500"
 End If
End If
.
.
.
ctxObject.SetComplete ' we are finished and happy
Perform = 0

Exit Function

ErrorHandler:

ctxObject.SetAbort ' we are unhappy
strResult = Err.Description ' return the error message
Perform = -1 ' indicate that an error occured

End Function
It is also important to note that there are failure scenarios where the client cannot determine the
transaction outcome. This situation results, for example, when a call failure occurs due to a transport
error such as RPC_E_CONNECTION_TERMINATED). In such cases, it is necessary to use an
application-defined protocol to determine the transaction outcome.

On clustered servers, MTS will not automatically reconnect to MS DTC in the event of a failover. Not
enough information exists about the transaction composition and state to determine the appropriate
course of action. Retries remain the responsibility of the client application. The client cannot
differentiate an error caused by failover from other errors.

Resource managers are guaranteed to get transaction outcomes as part of the two-phase commit
protocol managed by the Microsoft Distributed Transaction Coordinator. This feature allows resource
managers to manage locks and to determine whether it is necessary to make state changes
permanent or to discard them.

MTS Objects
An MTS object is an instance of an MTS component. MTS maintains context for each object. This
context, which is implicitly associated with the object, contains information about the object's
execution environment, such as the identity of the object's creator and, optionally, the transaction
encompassing the work of the object. The object context is similar in concept to the process context
that an operating system maintains for an executing program.

An MTS object and its associated context object

An MTS object and its associated context object have corresponding lifetimes. MTS creates the
context before it creates the MTS object. MTS destroys the context after it destroys the MTS object.

See Also
Application Components, MTS Component Requirements, Context Objects,
asconCreatingTransactionServerObjects, Passing Object References, Deactivating Objects

Context Objects
Each MTS object has an associated context object. A context object is an extensible MTS object that
provides context for the execution of an instance, including transaction, activity, and security
properties. When an MTS object is created, MTS automatically creates a context object for it. When
the MTS object is released, MTS automatically releases the context object.

An MTS object and its associated context object

An MTS object's context has intrinsic properties that are determined during object creation. These
properties include the identity of the client that initiated the object's creation and whether or not the
object executes within the scope of a transaction.

The properties established for the new object context are determined by a combination of:

· The transaction attributes of the component as specified in the MTS catalog.
· The properties of the context from which the new object is created. For example, the client's

context may contain a transaction.

If your application uses Microsoft Internet Information Server (IIS), you can retrieve IIS intrinsic
objects as follows:

· Using Visual Basic, by calling the Item method of the context object.
· Using Microsoft Visual C++ or Microsoft Visual J++, by calling the GetProperty method of the

IGetContextProperties interface.

For more information on IIS intrinsic objects, see the IIS documentation.

Contexts Are Implicit
MTS maintains an implicit relationship between an MTS object and its context. This feature eliminates
the need for you to pass explicitly a context object through your application.

You can access an MTS object's context by calling the GetObjectContext function. This function
returns a reference to the IObjectContext interface. Resource dispensers and other context-aware
services can also access the object's context. This permits the ODBC resource dispenser
automatically to enlist connections on the object's transaction.

Before a method of an MTS object is dispatched for execution, that object's context becomes the
current context for the thread. This context remains current as long as the object remains within the
context. Calling a method in a different context causes that context to become current; the caller's
context is automatically restored on return from the method.

Managing References to the Context Object
You must not pass a reference to the context object outside the object. You must explicitly release
every reference that you acquire on the object context.

The context object is not available during calls to the component's class factory. This means, for
example, that a Visual C++ class implementation cannot access a context object during calls to a
constructor or destructor. Objects that require access to the context object during initialization or
destruction should implement IObjectControl. For more information, see Deactivating Objects.

See Also

MTS Objects, GetObjectContext, IObjectContext

Creating MTS Objects
You can create MTS objects by:

· Using context objects.
· Using transaction context objects.
· Using standard COM functions like CoCreateInstance or CreateObject.

Note If you are using Visual C++ and running an MTS component in-process, you must:
· Call CoInitialize(NULL) before requesting services from MTS or creating an MTS object.
· Call CoInitializeSecurity to initialize process-specific security. MTS security is disabled when

loading an MTS object in-process.
· Call CoUninitialize only after you have finished using MTS or MTS objects, preferably just prior to

terminating your application. You cannot call CoInitialize again and invoke more MTS services.
Once CoUninitialize has been called, your application no longer executes in the MTS run-time
environment.

Creating Objects Using a Context Object
You can create an MTS object by calling the CreateInstance method on the IObjectContext
interface of an object's context object. The new MTS object's context inherits the activity, possibly a
transaction, and all security identities from the creating object's context.

Creating an object using a context object

Creating Objects Using a Transaction Context Object
If you want your base client to control transaction boundaries, use a transaction context object. You
can create an MTS object by calling the CreateInstance method of the ITransactionContext
interface. The new MTS object's context inherits the activity, possibly a transaction, and the identity of
the initial client from the transaction context object. You can call the Commit method to commit an
object's work and the Abort method to abort its work.

Creating an object using a transaction context object

Creating Objects Using CoCreateInstance
You can create MTS objects by using CoCreateInstance or any equivalent method based on
CoGetClassObject and IClassFactory::CreateInstance. While this approach should suffice for
many base client applications, there are some significant limitations for the client, including the
inability to control transaction boundaries. Base clients that need this additional level of control can
use a transaction context object.

Instantiating an object with CoCreateInstance

When you use CoGetClassObject with a component that is registered to run under MTS, it returns a
reference to an MTS-provided class factory. This allows MTS to participate in the client's calls to

IClassFactory::CreateInstance. The MTS class factory creates the context object and then calls the
component's real class factory.

For clustered servers, if you are using the CoCreateInstanceEx function, use the name of the virtual
server containing the MSDTC resource in the pwszName field of the COSERVERINFO structure.
(See the Microsoft Platform SDK documentation for more details about CoCreateInstanceEx.)

Important It is recommended that you do not call CoCreateInstance to create MTS objects from
within MTS objects. When you do so, the new object's context cannot inherit any properties from its
client's context. In particular, the new object cannot execute within the scope of its client's transaction.

Aggregation
You cannot use an MTS object as part of an aggregate of other objects. CoCreateInstance returns
CLASS_E_NOAGGREGATION to indicate an attempt to create an MTS object with another
controlling IUnknown.

You can, however, create an MTS object that is implemented as an aggregation of objects.

Creating Objects Using Visual Basic
You can use the following object creation methods in Microsoft Visual Basic to create MTS objects:

· The CreateObject function
· The GetObject function
· The New keyword (see the Important note for limitations)
· Automatically if the object is an Application object

Using Visual Basic object creation methods results in the same limitations as using
CoCreateInstance. To inherit a transaction from the creating object's context, use CreateInstance.

Important Do not use the New operator, or a variable declared As New, to create an instance of a
class that is part of the active project. In this situation, Visual Basic uses an implementation of object
creation that does not use COM. To prevent this occurrence, it is recommended that you mark all
objects passed out from a Visual Basic componentas Public Creatable, or its equivalent, and created
with either the CreateObject function or the CreateInstance method of the ObjectContext object.

See Also
MTS Objects, Calling MTS Components, Context Objects, Passing Object References, Deactivating
Objects, CreateInstance

Transaction Context Objects
The transaction context object allows base clients to combine the work of multiple MTS objects into a
single transaction, without having to develop a new component specifically for that purpose.

The transaction context object's methods use its context object as follows:

· CreateInstance ¾ Calls CreateInstance and returns a reference to the newly created object.

· Commit ¾ Calls SetComplete and returns.

· Abort ¾ Calls SetAbort and returns.

The transaction context component is defined as Requires a New Transaction. You cannot use the

transaction context object to enlist in an existing transaction.

For example, suppose you have two components, Walk and ChewGum. Each component is defined
as Supports Transactions and calls SetComplete when it is finished with its work. A base client
could compose the work done by each component in a single transaction.
Dim objTxCtx As TransactionContext
Dim objWalk As MyApp.Walk
Dim objChewGum As MyApp.ChewGum

' Get TransactionContext
Set objTxCtx = _

CreateObject("TxCtx.TransactionContext")

' Create instances of Walk and ChewGum
Set objWalk = _

objTxCtx.CreateInstance("MyApp.Walk")
Set objChewGum = _

objTxCtx.CreateInstance("MyApp.ChewGum")

' Both components do work
objWalk.Walk
objChewGum.ChewGum

' Commit the transaction
objTxCtx.Commit

Transaction Context Object Limitations
Note the following limitations when using a transaction context object:

· Transaction composition
· Location transparency
· Base client does not have context

Transaction Composition
When using a transaction context object, the application logic that composes the work into a single
transaction is tied to a specific base client implementation and the advantages of using MTS
components are lost. These implementations include:

· Ability to reuse the application logic as part of an even larger transaction
· Imposition of declarative security
· Flexibility to run the logic remotely from the client

Location Transparency
The transaction context object runs in-process with the base client, which means that MTS must exist
on the base client computer. This may not be a problem, for example when the transaction context
object is used from an Active Server Page (ASP) that is running on the same server as MTS.

Base Client Does Not Have Context
You do not get a context for the base client when you create a transaction context object.
Transactional work can only be done indirectly, through MTS objects created by using the transaction
context object. In particular, the base client cannot use MTS resource dispensers (such as ODBC)
and have the work included in of the transaction. For example, developers may be familiar with the
following syntax for doing transactional work on relational database systems:

BEGIN TRANSACTION
DoWork

COMMIT TRANSACTION
Using the transaction context object in a similar way does not yield the desired result:
Set objTxCtx = CreateObject("TxCtx.TransactionContext")

DoWork
objTxCtx.Commit

Set objTxCtx = Nothing
The call to DoWork in this example will not be enlisted in a transaction. You must build an MTS
component that calls DoWork, create an object instance of that component using the transaction
context object, then call that object from the base client in order for the work to be part of the client-
controlled transaction.

See Also
Transactions, TransactionContext Object

Passing Parameters
This topic covers the following:

· Parameter types and marshaling
· Objects as parameters
· Passing large data

Parameter Types and Marshaling
MTS object interfaces must be able to be marshaled. Marshaling interfaces allows calls across
thread, process, and machine boundaries.

Standard COM marshaling is used. This means MTS object interfaces must either:

· Have method parameters which are Automation data types and be described in a type library, or
· Use custom interfaces with a MIDL-generated proxy-stub DLL.

For more information on type libraries and proxy-stub DLLs, see MTS Component Requirements.

Custom marshaling is not used. Even if a component supports the IMarshal interface, its IMarshal
methods are never called by the MTS run-time environment.

VBScript Parameters
Components that are intended for use from Active Server Pages (ASPs) using Microsoft Visual Basic®

Scripting Edition (VBScript) should support IDispatch and limit method parameter types as follows:

· VBScript version 1.0—Any Automation type may be passed by value, but not by reference.
Method return values must be of type Variant.

· VBScript version 2.0—Same as VBScript version 1.0, except parameters of type Variant may
now be passed by reference.

Objects as Parameters
Whether an object is passed by value or by reference is not specified by the client, but is a
characteristic of the object itself. Basic COM objects can either be passed by reference or by value,
depending on their implementation. If the COM object uses standard marshaling, then it is passed by
reference. COM objects can also implement IMarshal to copy data by value. MTS objects are always
passed by reference.

Additionally, the function of the object affects how it should be passed as a parameter. When deciding
whether to pass objects by value or by reference, it is useful to classify the objects as follows:

· Recordset Objects—Encapsulate raw data, such an ADO recordset. Recordset objects are not
registered as MTS objects.

· Business Object—Encapsulate business logic; for example, an order-processing component.
Business objects should be registered as MTS objects.

The following table describes when to pass recordset objects by value or by reference:

Pass Parameter If Client Requirements
By value Data is relatively small Recipient requires all data

and can get data without
reaccessing caller.

By reference Data is relatively large Recipient does not require all
data and must reaccess
caller, possibly many times.

Note Whether data is "small" or "large" also depends on the speed of the connection. For example,
if the component is accessed over a corporate intranet, a much larger recordset can be passed to the
client in one call than in a call made by a client accessing the component on an Internet server over a
modem.

Because business objects are MTS objects, they are always passed by reference.

Passing Large Data
When returning a large amount of data, consider using a Microsoft Active Data Objects (ADO)
Recordset object. In particular, the Microsoft Advanced Data Connector (ADC) provides a recordset
implementation that can be disconnected from the server and marshaled by value to the client.

The disconnected recordset moves state to the client, allowing server resources to be freed. The
client can make changes to the recordset and reconnect to the server to submit updates. For more
information on state, see Holding State in Objects.

Another method of packaging large amounts of data is to use safe arrays. For example, when using
Microsoft Remote Data Objects (RDO), you can use the rdoResultSet.GetRows method to copy
rows into an array, and then pass the array back to the client. This requires fewer calls and is more
efficient than issuing MoveNext calls across the network for each row.

Passing Object References
You must ensure that MTS object references are only exchanged in the following ways:

· Through return from an object creation interface, such as CoCreateInstance (or its equivalent),
ITransactionContext::CreateInstance, or IObjectContext::CreateInstance.

· Through a call to QueryInterface.
· Through a method that has called SafeRef to obtain the object reference.

An object reference that is obtained in these ways is called a safe reference. MTS ensures that
methods invoked using safe references execute within the correct context.

Using SafeRef to pass a reference to an object

Note It is not safe to exchange references by any other means. In particular, do not pass interfaces
outside the object by using global variables. These restrictions are similar to those imposed by COM
for references passed between apartments.

Calls that use safe references always pass through the MTS run-time environment. This allows MTS
to manage context switches and allows MTS objects to have lifetimes that are independent of client
references. For more information, see Deactivating Objects.

Callbacks
It is possible to make callbacks to clients and to other MTS components. For example, you can have
an object that creates another object. The creating object can pass a reference to itself to the created
object; the created object can then use this reference to call the creating object.

If you choose to use callbacks, note the following restrictions:

· Calling back to the base client or another package requires Access-level security on the client.
Additionally, the client must be a DCOM server.

· Intervening firewalls may block calls back to the client.
· Work done on the callback executes in the environment of the object being called. It may be part of

the same transaction, a different transaction, or no transaction.
· The creating object must call SafeRef and pass the returned reference to the created object in

order to call back to itself.

See Also
SafeRef

Deactivating Objects
MTS extends COM to allow object deactivation, even while client references are maintained. This
makes server applications more scalable by allowing server resources to be used more efficiently.

MTS objects are initially created in the deactivated state. When a client invokes a method on an
object that is in a deactivated state, MTS automatically activates the object. During activation, the
object is put into its initial state.

Note For Visual C++ developers, calls to QueryInterface, AddRef, or Release do not cause
activation.

This ability for an object to be deactivated and reactivated while clients hold references to it is called
just-in-time activation. From the client's perspective, only a single instance of the object exists from
the time the client creates it to the time it is finally released. In actuality, it is possible that the object
has been deactivated and reactivated many times.

Just-in-time activation

The context object exists for the entire lifetime of its MTS object, even across one or more
deactivation and reactivation cycles.

Object deactivation allows clients to hold references for long periods of time with limited consumption
of server resources. Consider, for example, a client application that spends 99 percent of its time
between transactions. In this case, the MTS objects are activated less than 1 percent of the time.

When is an object deactivated?
An MTS object is deactivated when any of the following occurs:

· The object requests deactivation.
An object can request deactivation by using the IObjectContext interface. You can use the
SetComplete method to indicate that the object has successfully completed its work and that the
internal object state doesn't need to be retained for the next call from the client. Similarly, SetAbort
indicates that the object cannot successfully complete its work and that its state does not need to
be retained.
You can develop stateless objects by using MTS objects that deactivate on return from every
method.

· A transaction is committed or aborted.

MTS does not allow an object to maintain private state that it acquired during a transaction. When
an object's transaction is committed or aborted, the object is deactivated. Of these deactivated
objects, the only ones that can continue to exist are the ones that have references from clients
outside the transaction. Subsequent calls to these objects reactivate them and cause them to
execute in the next transaction.

· The last client releases the object.
This occurrence is listed here for completeness. The object is deactivated and never reactivated.
The object's context is also released.

How are objects deactivated?
MTS deactivates an object by releasing all its references to the object. This causes properly
developed components to destroy the object; this feature also requires the component to follow the
MTS reference passing rules (see Passing Object References) and the COM reference counting
rules.

Note MTS writes an Informational message to the event log when objects that do not report their
reference count are deactivated.

Application components are responsible for releasing object resources on deactivation. This includes:

· Resources that are allocated with MTS resource dispensers, such as ODBC database
connections.

· All other resources, including references to other objects (including MTS objects and context
objects) and memory held by any instances of the component, such as using delete this in C++).

Doing Additional Work on Activation and Deactivation
If an object is not already activated and it supports IObjectControl, MTS calls the Activate method
prior to initiating the client request. Components can use the Activate method to initialize objects.
This is especially important for initialization that requires access to the context object. Here, keep in
mind that the context is not available during calls to the component's class factory. Having access to
the context object through Activate allows you to pass a reference to the context object to other
methods; this reference can then be released in the Deactivate method. The Activate method is also
useful for objects that support pooling (see Object Pooling and Recycling).

For objects that support the IObjectControl interface, MTS calls the Deactivate method when it
deactivates the object. You can use this method to free resources held by the object. The Deactivate
method is also useful for objects that support pooling. Like the Activate method, the Deactivate
method has access to the object context.

See Also
Building Scalable Components, Stateful Components, Object Pooling and Recycling, SetComplete,
SetAbort, IObjectControl

Object Pooling and Recycling
Objects that support the IObjectControl interface can participate in object recycling and pooling,
which can increase the efficiency of activation and deactivation. After MTS calls the Deactivate
method, it calls the CanBePooled method, allowing the object to be pooled for reuse. If the object
returns TRUE, the object is added to the object pool. Objects that return FALSE or that do notsupport
the IObjectControl interface are destroyed.

On activation, MTS uses an object from the pool if one is available. Only if the pool is empty will it use
the component's class factory to create a new object.

Components that support object pooling must ensure that an object activated using an object from the
pool is indistinguishable to the client from an object that is activated by creating a new object.
Component developers must provide the appropriate code in the Activate and Deactivate method
implementations to ensure this behavior.

The following table summarizes MTS run-time actions for client call processing.

IObjectControl implemented by component
No Yes

Step 1
Activate the object if
needed (just-in-time
activation).

Use the component class
factory to create an object.

Allocate an object from the pool. If
pooling is not supported or the
pool is empty, then use the
component class factory to create
an object.

Call the object's Activate method.

Step 2
Execute the call. Call the object method. Call the object method.

Step 3
Deactivate the object if
requested
(SetComplete or
SetAbort called before
return).

Call object's Deactivate method

Release the last reference
held by the MTS run-time
environment.

If the system supports pooling,
then call CanBePooled. If it
returns TRUE, then add the object
to the pool. Otherwise, release the
last reference held by the MTS
run-time environment.

Important Object pooling and recycling is not available in this release. MTS calls CanBePooled as
described here, but no pooling takes place. This forward-compatibility encourages developers to use
CanBePooled in their applications now in order to benefit from a future release without having to
modify their applications later.

See Also
Deactivating Objects, IObjectControl

MTS Clients
An application or object that uses an MTS object is referred to as a client of the object. It is important
to understand that this is a relative term, and describes a relationship with a specific object. For
example, when MTS object A uses MTS object B, the object A, while still an object, is also a client.

Clients that run outside the direct control of the MTS run-time environment are referred to as base
clients.

Clients and base clients: The Order object is a client of the Payment object

See Also
Base Clients, Base Clients vs. MTS Components

Base Clients
Base clients are the primary consumers of MTS objects, although base clients execute outside of the
MTS run-time environment. One common role of a base client is to provide the application's user
interface, and to map the end-user's requests to the business functions exposed by the MTS
components.

You can create base clients with a variety of programming languages, including Microsoft Visual C++,
Microsoft Visual Basic, Microsoft Visual J++, COBOL, and even Transact SQL. Base client programs
can execute in a variety of environments, from application processes to general system services such
as Microsoft Internet Information Server (IIS) or SQL Server. In fact, you can use any programming
environment in which you can create COM objects and invoke methods on them.

See Also
MTS Clients, Base Clients vs. MTS Components

Base Clients vs. MTS Components
The following table contrasts MTS components with base client applications.

MTS components Base clients
MTS components are contained in COM
dynamic-link libraries (DLLs); MTS loads
DLLs into processes on demand.

Base clients can be written as executable files
(.exe) or dynamic-link libraries (.dll); MTS is
not involved in their initiation or loading.

MTS manages server processes that host
MTS components.

MTS does not manage base client processes.

MTS creates and manages the threads used
by components.

MTS does not create or manage the threads
used by base client applications.

Every MTS object has an associated context
object. MTS automatically creates, manages,
and releases context objects.

Base clients do not have implicit context
objects. They can use transaction context
objects, but they must explicitly create,
manage, and release them.

MTS objects can use resource dispensers.
Resource dispensers have access to the
context object, allowing acquired resources to
be automatically associated with the context.

Base clients cannot use resource dispensers.

See Also
MTS Clients, Application Components

Activities
An activity is a set of objects executing on behalf of a base client application. Every MTS object
belongs to one activity. This is an intrinsic property of the object and is recorded in the object's
context. The association between an object and an activity cannot be changed. An activity includes
the MTS object created by the base client, as well as any MTS objects created by that object and its
descendants. These objects can be distributed across one or more processes, executing on one or
more computers.

For example, an online banking application may have an MTS object dispatch credit and debit
requests to various accounts, each represented by a different object. This dispatch object may use
other objects as well, such as a receipt object to record the transaction. This results in several MTS
objects that are either directly or indirectly under the control of the base client. These objects all
belong to the same activity.

MTS tracks the flow of execution through each activity, preventing inadvertent parallelism from
corrupting the application state. This feature results in a single logical thread of execution throughout
a potentially distributed collection of objects. By having one logical thread, applications are
significantly easier to write.

Whenever you use CoCreateInstance or its equivalent to create an MTS object, a new activity is
created; note that this includes a base client creating a transaction context object.

When an MTS object is created from an existing context, using either a transaction context object or
an MTS object context, the new object becomes a member of the same activity. In other words, the
new context inherits the activity identifier of the context used to create it.

MTS only allows a single logical thread of execution within an activity. This is similar in behavior to a
COM apartment, except that the objects can be distributed across multiple processes. When a base
client calls into an activity, all other requests for work in the activity (such as from another client
thread) are blocked until after the initial thread of execution returns back to the client.

Callbacks and Reentrancy
While MTS does not allow multiple threads of execution within an MTS object, reentrancy is possible
via callbacks. Suppose you have an object that creates another object. If the creating object passes a
reference to itself to the created object, either directly or indirectly, cycles can occur in the call graph.
MTS objects that do this must be prepared to receive a method invocation while blocked waiting for a
call to complete. MTS ensures that the incoming call belongs to the same logical thread by using the
COM logical thread identifier. COM uses the logical thread identifier for a similar purpose in apartment
objects.

Limitation
While no parallel execution can exist within the activity on any individual computer, the MTS run-time
environment does not protect against clients entering into the same activity through objects on two
different computers. This can result in two parallel threads of execution on different computers.
However, if the thread of execution on one computer calls an object in the same activity on the other,
the call will be blocked.

This behavior is based on the belief that the cost outweighs the benefits of providing fully distributed
activity protection, both in terms of development and run-time performance.

See Also
Components and Threading, Passing Object References

Components and Threading
The MTS run-time environment manages threads for you. MTS components need not, and, in fact,
should not, create threads. Components must never terminate a thread that calls into a DLL.

Every MTS component has a ThreadingModel Registry attribute, which you can specify when you
develop the component. This attribute determines how the component's objects are assigned to
threads for method execution. You can view the threading-model attribute in the MTS Explorer by
clicking the Property view in the Components folder. The possible values are Single, Apartment, and
Both.

Single-Threaded Components
All objects of a single-threaded component execute on the main thread. This is compatible with the
default COM threading model, which is used for components that do not have a ThreadingModel
Registry attribute.

The main threading model provides compatibility with COM components that are not reentrant.
Because objects always execute on the main thread, method execution is serialized across all objects
in the component. In fact, method execution is serialized across all components in a process that
uses this policy. This allows components to use libraries that are not reentrant, but it has very limited
scalability.

Limitations for Single-Threaded Components
Single-threaded, stateful components are prone to deadlocks. You can eliminate this problem by
using stateless objects and calling SetComplete before returning from any method.

The following scenario describes how such a deadlock can occur. Suppose you have a single-
threaded Account component, which is written to be both transactional and stateful. The following
scenario describes how two clients, Client 1 and Client 2, could call objects in a way that causes an
application deadlock:

· Client 1 creates Account object A and calls it to update an account record. The database update is
done under object A's transaction (Transaction 1). Because the object does not call SetComplete
before returning to the client, Transaction 1 remains active.

· Next, Client 2 creates Account object B and calls it to update the same account. Because its work
is done under a different transaction (Transaction 2), the attempt to update the account record will
block while waiting for Transaction 1 to complete.

· Client 1 makes another call to object A, for instance, to have it make another change to the account
record and complete the transaction. However, the call must wait for the main thread, which is still
busy servicing the call from Client 2.

· The two clients are now deadlocked. Client 1 holds a lock on the account record, while waiting for
the server's main thread so that it can complete Transaction 1. Client 2 holds the server's main
thread, while waiting for Transaction 1 to complete so that it can update the account record.

Note that this is not a deadlock from the SQL perspective because A's and B's connections are in
different transactions.

Apartment-Threaded Components
Each object of an apartment-threaded component is assigned to a thread its apartment, for the life of
the object; however, multiple threads can be used for multiple objects. This is a standard COM
concurrency model. Each apartment is tied to a specific thread and has a Windows message pump.

The apartment threading model provides significant concurrency improvements over the main
threading model. Activities determine apartment boundaries; two objects can execute concurrently as
long as they are in different activities. These objects may be in the same component or in different

components.

See Also
Activities

Programmatic Security
The MTS security model consists of declarative security and programmatic security. Developers can
build both declarative and programmatic security into their components prior to deploying them on a
Windows NT security domain.

Important Security is not supported on Windows 95. Note the following application behavior when
running MTS on Windows 95:
· All identities are mapped to "Windows 95".
· Role configuration is not supported.
· Checking roles always return success.

Roles are central to the MTS security model. A role is an abstraction that defines a logical group of
users. At development time, you use roles to define declarative authorization and programmatic
security logic. At deployment time, you bind these roles to specific groups and users.

You can administer package security with the MTS Explorer. This is a form of declarative security,
which does no't require any component programming is based on standard Windows NT security.

MTS also allows component applications to implement additional access control programmatically.
MTS security is integrated with DCOM and Windows NT security. See the Microsoft Platform SDK for
further information on COM security APIs.

See Also
Basic Security Methods, Advanced Security Methods

Basic Security Methods
The IObjectContext interface provides two methods for basic programmatic security:

· IsCallerInRole
· IsSecurityEnabled

The key to understanding how MTS security works is to understand roles, as discussed in the
following sections.

Roles from a Development Perspective
A role is a symbolic name that defines a logical group of users for a package of components. For
example, an online banking application might define roles for Manager and Teller.

You can define authorization for each component and component interface by assigning roles. For
example, in the online banking application, only the Manager may be authorized to perform bank
transactions above a certain amount of money.

Roles are defined during application development. These roles are then assigned to specific users at
deployment time.

Important Roles on a dual interface are not enforced when IDispatch (late-binding) is used.

Checking If a Caller Is in a Role
The IsCallerInRole method determines if a caller is assigned to a role. The caller is the direct caller,
which is the identity of the process (base client or server process) calling into the current server
process.

The following illustration shows an application used to order supplies for a business.

You can use roles to determine whether the base client has access to objects in the server process.
In this scenario, the server process would check to see if the base client is allowed to place an order.
Calling IsCallerInRole on the Order object context checks if the direct caller, which is in this case the
base client, is in a given role. Such a role might be Purchaser, to restrict the placing of orders to
employees within that role.

Security checks are made when a process boundary is crossed. If the Payment object accesses a
database, the access rights to the database are derived from the identity of the server process, not
the base client. The database would use its own proprietary authorization checking.

Server-process security does not use impersonation. IsCallerInRole has the same semantics
regardless of how many calls have taken place within the server process. The identity of the direct
caller is always used to make the check. For more information on impersonation, see Advanced
Security Methods.

Security for In-Process Components
Because the level of trust is process-wide, running MTS components in-process is not recommended
for secure applications. Access checks are not made on calls between components in the same
server process. Configuring MTS components to run in-process with the base client gives the base
client access to all components within that server process.

The IsSecurityEnabled method determines if security checking is enabled. This method returns
FALSE when running in-process. IsSecurityEnabled can be a useful check to make before using

IsCallerInRole. IsCallerInRole will always return TRUE when called on an object that is running in-
process, which may have unintended effects.

When an MTS component is part of a Library package (in-process), it effectively becomes part of the
hosting Server package that creates it. If you create Library packages with components that call
IsCallerInRole, you should instruct installers of your Library packages to define the Library package's
roles on the hosting Server package. Otherwise, IsCallerInRole will always fail.

See Also
IsCallerInRole, IsSecurityEnabled, Secured Components

Advanced Security Methods
MTS objects can use the ISecurityProperty interface to obtain security-related information from the
object context, including the identity of the client that created the object, as well as the identity of the
current calling client. Applications can use this information to implement custom access control, such
as using the Win32 security interfaces.

Note Visual Basic programmers can use the SecurityProperty object. The methods for
SecurityProperty return user name strings instead of security identifiers (SIDs).

Security Identifiers (SIDs)
A Windows NT security identifier (SID) is a unique value that identifies a user or group. You can use
SIDs to determine the exact identity of a user. Because of their uniqueness, SIDs do not have the
flexibility of roles.

Callers and Creators
The following figure shows which SIDs are returned by the various methods on ISecurityProperty
after a certain sequence of method calls.

Calling the following methods on Object Y returns SIDs associated with these users:

· GetDirectCallerSID returns the SID associated with User B.
· GetDirectCreatorSID returns the SID associated with User B.
· GetOriginalCallerSID returns the SID associated with User D.
· GetOriginalCreatorSID returns the SID associated with User A.

Impersonation

Impersonation allows a thread to execute in a security context different from that of the process that
owns the thread. Consider the following application scenario.

Basic Security Methods described an order-entry scenario in which the base client represents an
employee submitting an order. In this scenario, the client is not authorized to use the Payment object
and its associated database directly.

Suppose the base client were a report writer for an accounting program. In this case, you want to
allow access to the Payment object's database. One way to accomplish this is for the Order object to
impersonate the base client, allowing the database to use its own security checking to determine
access privileges.

MTS does not promote the use of impersonation, but encourages role-based security. Security is
simplified by the single-level of authorization provided by MTS, whereas the impersonation model has
an n-level authorization architecture. The report-writer scenario can be simplified by defining a role,
such as Accountant, to allow access to the database.

Error Handling

Fault Isolation and Failfast
MTS performs extensive internal integrity and consistency checks. If MTS encounters an unexpected
internal error condition, it immediately terminates the process. This policy, called failfast, facilitates
fault containment and results in more reliable and robust systems.

Consider a case in which MTS detects that one of its data structures is in a corrupted state. At this
point, both the cause and the magnitude of the corruption are unknown. Unfortunately, MTS cannot
tell how far the damage has spread. Certainly MTS is in an indeterminate state. But it does not run in
isolation. Like other DLLs, it is hosted in a process environment and shares a single address space
with the main program executable and many other DLLs. Consequently, it is safe to assume that the
entire process has been corrupted. The process is immediately terminated to prevent it from
spreading potentially corrupted information to other processes or, worse yet, from allowing corrupted
data to be committed and made durable.

As a developer or administrator, you should inspect the Windows NT Event Viewer Application Log for
details on any failfast or serious application errors.

Exceptions in MTS Objects
MTS does not allow exceptions to propagate outside of a context. If an exception occurs while
executing within an MTS context and the application doesn't catch the exception before returning from
the context, MTS catches the exception and terminates the process. Using the failfast policy in this
case is based on the assumption that the exception has put the process into an indeterminate state—
it is not safe to continue processing.

MTS Object Method Error Return Codes
MTS never changes the value of an HRESULT error code, such as E_UNEXPECTED or E_FAIL,
returned by an MTS object method.

When an MTS object returns an HRESULT status code, such as S_OK or S_FALSE, MTS may
convert the status code into an MTS error code before it returns to the caller. This occurs, for
example, when the application returns S_OK after calling SetComplete; if the object is the root of an
automatic transaction that fails to commit, the HRESULT is converted to CONTEXT_E_ABORTED.

When MTS converts a status code to an error code, it clears all of the method's output parameters.
Returned references are released and the values of the returned object pointers are set to NULL.

See Also
MTS Error Diagnosis, MTS Error Codes

Developing Applications for MTS
Building MTS Applications
Explains the key concepts that a component application developer needs to understand for
developing Microsoft Transaction Server (MTS) applications.

Creating a Simple ActiveX Component
Demonstrates how to create a component and register the component in the Microsoft Transaction
Server run-time environment.

Building Scalable Components
Demonstrates how to use just-in-time activation to use server resources efficiently, resulting in more
scalable applications and improved performance.

Building Transactional Components
Introduces transactional components and the benefits of running components within the same
transaction.

Sharing State
Demonstrates how to use the Shared Property Manager to share state among multiple Transaction
Server objects running in the same process.

Stateful Components
Discusses stateful components and outlines some of the issues associated with writing stateful
application components.

Multiple Transactions
Explains the benefits of distributing work among multiple transactions.

Secured Components
Shows how to use Microsoft Transaction Server's security features to restrict the use of application
features to designated users.

Building MTS Applications
This topic contains information that a component application developer needs to understand before
building Microsoft Transaction Server (MTS) applications.

MTS Component Requirements

Business Logic in MTS Components

Packaging MTS Components

Calling MTS Components

Holding State in Objects

Database Access Interfaces with MTS

Developing MTS Components with Java

Debugging MTS Components

Automating MTS Deployment

MTS Error Diagnosis

MTS Component Requirements
An MTS component is a type of COM component that executes in the MTS run-time environment. In
addition to the COM requirements, MTS requires that the component must be a dynamic-link library
(DLL). Components that are implemented as executable files (.exe files) cannot execute in the MTS
run-time environment. For example, if you build a Remote Automation server executable file with
Microsoft Visual Basic, you must rebuild it as a DLL.

Additional Requirements for Visual C++ Components
· The component must have a standard class factory.

The component DLL must implement and export the standard DllGetClassObject function and
support the IClassFactory interface. MTS uses this interface to create objects.
IClassFactory::CreateInstance must return a unique instance of an MTS object.

· The component must only export interfaces that use standard marshaling. For more information,
see Passing Parameters.

· All component interfaces and coclasses must be described by a type library. The information in the
type library is used by the MTS Explorer to extract information about the installed components.

· For custom interfaces that cannot be marshaled using standard Automation support, you must
build the proxy-stub DLL with MIDL version 3.00.44 or later (provided with in the Microsoft Platform
SDK for Windows NT version 4.0); use the –Oicf compiler switch; and link the DLL with the
mtxih.lib library provided by MTS. The mtxih.lib library must be the first file that you link into your
proxy-stub DLL. If the component has both a type library and a proxy-stub DLL, MTS will use the
proxy-stub DLL.

· The component must export the DllRegisterServer function and perform self-registration of its
CLSID, ProgID, interfaces, and type library in this routine.

Development tools such as Visual Basic and the ActiveX™ Template Library, which is available with
Microsoft Visual C++, allow you to generate interfaces that COM can marshal automatically. These
interfaces, known as dual interfaces, are derived from IDispatch and use the built-in Automation
marshaling support.

Registering MTS Components
You manage MTS components by using the MTS Explorer. Before a component can run with context
in the MTS run-time environment, you must use the MTS Explorer to define the component in the
MTS catalog. In addition to keeping track of a component's basic COM attributes, such as the name
of the implementation DLL, the MTS catalog maintains a set of MTS–specific attributes. MTS uses
these attributes to provide capabilities in addition to those provided by COM. For example, the
transaction attribute controls the transactional characteristics of a component.

The MTS Explorer assigns components to a package that controls the assignment of components to
server processes and control client access to components.

Note MTS allows only a single server process associated with a given package to run on a
computer at a time. MTS writes a warning event message to the log if you attempt to start a second
instance of an already active package. However, COM does not explicitly disallow multiple servers
running the same COM classes. MTS writes a warning message to the log in the event that two
threads try to start the package at the same time. This event is especially likely on a symmetric
multiprocessing (SMP) computer where the two package invocations are concurrent. In these cases,
MTS enforces a rule of one server process for each package by terminating one of the extra
packages. COM then connects to the one server process still running and successfully returns.

Running COM Components Under MTS

Exercise caution when registering a standard COM component (one developed without regard to
MTS) to execute under MTS control.

First, ensure that references are safely passed between contexts (see Passing Object References).

Second, if the component uses other components, consider running them under MTS. Rewrite the
code for creating objects in these components to use CreateInstance (see Creating MTS Objects).

Third, you can effectively use automatic transactions only with components that indicate the
completion of their work by calling either the SetComplete or SetAbort methods. If a component
does not use these methods, an automatic transaction can only be completed when the client
releases the object. MTS will attempt to commit the transaction, but there is no way for the client to
determine whether the transaction has been committed or aborted. Therefore, it is recommended
that you do not register components as Requires a transaction or Requires a new transaction
unless they use SetComplete and SetAbort.

Including Multiple Components in DLLs
You can implement multiple components in the same DLL. The MTS Explorer allows components
from the same DLL to be installed in separate packages.

Including Type Libraries and Proxy-Stub DLLs in MTS Components
Development tools supporting ActiveX components can merge your type library or proxy-stub DLL
with your implementation DLL. If you do not want to distribute your implementation DLL to client
computers, keep your type libraries and proxy-stub DLLs separate from your implementation DLLs.
The client only needs a type library or custom proxy-stub DLL to use your server application remotely.

Business Logic in MTS Components
This topic describes how to enact business logic in MTS components.

Granularity is determined by the number of tasks performed by a component. The granularity of a
component affects the performance, debugging, and reusability of your MTS components. A fine-
grained component performs a single task, such as calculating tax on a sales order. Fine-grained
components consume and release resources quickly after completing a task. A component that
enacts a single business rule can facilitate testing packages, because isolating individual tasks in
components makes testing your applications easier. In addition, fine-grained components are easily
reused in other packages. In the following example, a component performs a single task: adding a
customer record to the database.
Function Update(ByVal strEmail As String, _
ByVal bNewCust As Boolean, ByVal strContact As String,_
ByVal strPhoneNumber As String, _
ByVal strNightPhoneNumber As String)

 Dim ctxObject As ObjectContext
 Set ctxObject = GetObjectContext

 On Error GoTo ErrorHandler

' Code accesses the customer row from the database.
' Customer information is updated with information
' that was passed in.
'
 ctxObject.SetComplete

 Exit Function
This simple component uses system resources efficiently (passing parameters by value), is easy to
debug (single function), and also reusable in any other application that maintains customer data.

A coarse-grained component performs multiple tasks. Coarse-grained components are generally
harder to debug and reuse in applications. For example, a PlaceOrder component might add a new
order, update inventory, and update customer information. PlaceOrder is a more coarsely grained
component because it performs more "work" by adding, updating, and deleting customer, inventory
and order information.

For more information about components' shared resources, see Holding State in Objects.

Packaging MTS Components
This document describes how you should package your MTS components. Consider the following
design issues when defining package boundaries:

· Activation
· Shared resources
· Fault isolation
· Security isolation

Activation
You can select either of the following Activation levels for your packages:

· Library (running within the same process as the client that creates the object)
· Server (on the same computer but in a different process)

MTS provides a way to set up remote components by using the Remote Computer and Remote
Component folders in the MTS Explorer hierarchy. For more information about "pulling" or "pushing"
components between computers, see the Administrator's Guide.

By default, components run in a server process on the local computer. If you run your components
within the MTS server process, you enable resource sharing, security, and easier administration by
using the MTS Explorer for your component. Running components in-process provides an immediate
performance benefit, because you do not have to marshal parameters cross-process. However, in-
process components do not support declarative security and you lose fault isolation.

Sidebar: In-process Components and Security
Note that in-process components do not support declarative security or offer the benefits of process
isolation. In-process components will run in any process that creates the component. Role checking is
disabled between in-process components because IsCallerInRole returns True. In other words, the
direct caller always passes the authorization check.

Also, it is recommended that you place your components as close as possible to the data source. If
you are building a distributed application with a number of packages running on local and remote
servers, try to group your components according to the location of your data. For example, in the
following figure, the Accounting server hosts an Accounting package and Accounting database.

Shared Resources
Sharing resources in a multiuser environment results in faster applications that scale more easily.
Note that only components marked with the Local activation setting can share resources. Package
your components to take advantage of the resource sharing and pooling that MTS provides for your
application.

Pool your resources by server process.Note that MTS runs each hosted package in a separate server
process. The fewer pools you have running on your server, the more efficiently you pool resources, so
try to group components that share "expensive" resources, such as connections to a specific
database. If you reuse the expensive resources within your package, you can greatly improve the

performance and scaling of your application. For example, if you have a database lookup and a
database update component running in a customer maintenance application, package those
components together so that they can share database connections.

Fault Isolation
Fault isolation requires separating components into packages that can operate in their own server
process. Components in the same package share the same server process if all the activation
settings are the same. By placing components in separate packages, you can mitigate the impact of a
component failure because each package runs in a separate server process.

You can also use fault isolation to test new components. You can stage updates to MTS applications
by introducing new components. Fault isolation for packages greatly reduces the risk of your local
server package failing when you introduce a new component to a shared environment.

Security Isolation
MTS security roles represent a logical group of user accounts which are mapped to Microsoft
Windows NT® domain users and groups during the deployment of the package. You can use the MTS
Explorer to define declarative authorization checking by applying roles to components and component
interfaces. Applying a security role to a component defines access privileges for any user assigned as
a member of that security role. Users not assigned to a role with access privileges to a package
cannot use the package. Because security authorization occurs between packages rather than
between components within a package, it is recommended that you consider the MTS security model
when determining your package boundaries. Note that security isolation only applies to packages with
components running under the Server activation setting.

Security authorization is checked when a method call crosses a package boundary, such as when a
client calls into a package or one package calls another. When you package your components, make
sure you group components that can safely call each other without requiring security checks within
one package.

All components within a package run under the identity established for the package. If you run under
different identities, separate them into two different packages.

You can use declarative security between the client and server, and database security based on
package identity between the server and data source. You can restrict access to a data source by
assigning an identity to a package, and configuring the database to accept updates according to
package identity.

If you use package identity to set up your database security, the database recognizes the package
identity as a single user. If database access occurs under an identity set by the package, the
database connection set up for the package identity name can be used by all the users mapped to
role or roles for that package. This kind of resource sharing improves application performance and
scalability.

Calling MTS Components
This topic covers the following:

· Calling MTS Components using DCOM
· Calling MTS Components from an Active Server Page
· Calling MTS Components from a Web Browser-Resident Component

For more information on the methods for creating MTS objects, see Creating MTS Objects.

Calling MTS Components from a Client Application
MTS components can be located on a separate computer from the client. A client can call a remote
MTS component using DCOM, HTTP, or Remote Automation. To run an MTS component on the client
computer, the client computer must have MTS installed.

Calling MTS Components through DCOM
DCOM is the standard transport for calling MTS components. To enable DCOM calls to MTS
components, you must configure the following:

Client Registry Settings ¾ The easiest way to configure your client application to call a remote
MTS component is to use the application executable utility, which automatically configures client
registry settings. For more information,see the Administrator's Guide.
DCOM Security Settings ¾ You may have to configure the Impersonation Level and
Authentication Level on both client and server computers. MTS works properly using the default
values for these settings: Identify for Impersonation Level and Connect for Authentication Level.
Make the necessary changes in the MTS Explorer at the package level. Changing default settings
by using the DCOM configuration utility (dcomcnfg.exe) is not recommended.

If you want to use Microsoft Windows 95 clients with MTS, install DCOM for Windows® 95. For the
latest information on DCOM support for Windows 95, see http://www.microsoft.com/oledev on the
World Wide Web.

Calling MTS Components through Remote Automation
Remote Automation was introduced with Visual Basic version 4.0, before the introduction of DCOM. It
is useful for 16-bit clients, because DCOM works only in 32-bit environments. To use Remote
Automation with MTS, the Remote Automation Manager (RACMAN) must be running on the server
where the MTS components are installed. For more information, see the Visual Basic documentation.

Note You cannot use MTS security Remote Automation since all calls are made using the
RACMAN identity. Because RACMAN does not impersonate when calling the components on the
server, the client identity cannot be determined.

Calling MTS Components through HTTP
There are two ways a client can call an MTS component through HTTP:

· Call an Active Server Page (ASP), which in turn calls the MTS component using DCOM.
· Call the MTS component from a Web browser – resident component using the ActiveX Data

Objects (ADO) Remote Data Service (RDS), which in turn uses HTTP. For more information about
RDS, see http://www.microsoft.com/adc.

Calling MTS Components from an Active Server Page
You can call MTS components from Active Server Pages (ASPs). You can create an MTS object from
an ASP by calling Server.CreateObject. Note that if the MTS component has implemented the
OnStartPage and OnEndPage methods, the OnStartPage method is called at this time.

You can run your MTS components in-process with or out-of-process with Internet Information Server
(IIS). If you run your MTS components in-process with IIS, be aware that if MTS encounters an
unexpected internal error condition or an unhandled application error such as a general-protection
fault inside a component method call, it immediately results in a failfast, thus terminating the process
and IIS.

By default, IIS 3.0 disables calling out-of-process components. To enable calling out-of-process
components, modify the following registry entry

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\ASP\Parameters
by setting the AllowOutOfProcCmpnts key to 1.

Calling MTS Components from a Web Browser-Resident Component
You can call an MTS component from a Web browser – resident component. Use the application
executable utility to configure that client, and then use the HTML <OBJECT> tag to call that
component. You can also use the <OBJECT> tag to create an MTS object in-process with the
browser client. Remember that MTS must be installed on the client computer for an MTS component
to run in-process.

The component should be made safe for scripting, either through a component category entry in the
registry, or by supporting the IObjectSafety interface.

Remote Data Service (RDS) also allows you to create web browser – resident components using the
<OBJECT> tag. RDS supports the following:

· HTTP
· HTTPS (HTTP over Secure Socket Layer)
· DCOM
· In-process server

Except for in-process objects, the CreateObject method of the DataSpace object creates a proxy for
the MTS object that runs in a local or remote server process.

You must configure the following registry key to the Prog ID of the object that you want to call:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters\
ADCLaunch

Holding State in Objects
Although there are many benefits to using stateless MTS objects, there are cases where holding state
is desirable. This topic provides some guidelines in deciding where state is held in your application.

The following diagram shows a three-tier architecture:

Typically, the latency between tiers differs greatly. Calls between the presentation tier and business
tier are often an order of magnitude slower than calls between the business tier and data tier. As a
result, held state is more costly when calling into the business tier.

However, it often makes sense to hold state within the transaction boundary itself. For example, the
objects in the data tier may represent a complex join across many tables in separate databases.
Reconstructing the data object state is potentially more inefficient than the cost of the resources held
by those objects while they remain active.

Since objects lose state on transaction boundaries, if you need to hold state across transactions, use
the Shared Property Manager or store the state in a database.

Example: Order-Entry Application
There are two separate issues when considering the effects of holding state in an application:

· Network roundtrips ¾ More frequent network roundtrips and slower connections extend the lifetime
of the called MTS object.

· Held resources ¾ Holding state often means holding onto a resource, such as a database
connection, and potentially, locks on the database.

Consider the example of an online shopping application. The client chooses items from a catalog and
submits an order. Order processing is handled by a business object, which in turn stores the order in
a database (not shown).

One way of building the application is for the client to call an Order object, with each call adding or
removing an item from the order:

This application has the following properties:

· Client maintains no state.

· Server maintains state across multiple calls.
· Many network roundtrips.
· High contention for resources. The database connection is held for the lifetime of the Order object.

This is not a very scalable solution.

You can require that the client cache the items in an array or recordset:

This application has the following properties:

· Stateful client.
· Server is virtually stateless with one call to the server.
· Fewer network roundtrips.
· Less contention for resources. This is a scalable solution.

Concurrency
In addition to network bandwidth and resources, concurrency affects application performance. There
are two types of concurrency:

· Pessimistic ¾ As soon as editing begins, the database locks the records being changed. The
records are unlocked when all changes are complete. No two users can access the same record at
the same time.

· Optimistic ¾ The database locks the records being changed only when the changes are
committed. Two users can access the same record at the same time, and the database must be
able to reconcile, or simply reject, changed records that have been edited by multiple users prior to
commit.

Implementing a server cache implies optimistic concurrency. The server does not have to hold locks
on the database, thus freeing resources.

However, if there is high contention for the resource, pessimistic concurrency may be preferred. It is
easier to reject a request to access a database and have the server try again than it is to reconcile
cached, out-of-date data with a rapidly changing database.

Database Access Interfaces with MTS
This topic describes the database access interface options for MTS applications. You can use the
Open Database Connectivity (ODBC) Application Programming Interface (API) to access a resource
manager (which is a system service that manages durable data), or a data access model that
functions over the ODBC layer. Because the ODBC version 3.0 Driver Manager is an MTS resource
dispenser, data accessed via ODBC is automatically protected by your object's transaction. For object
transactions, an ODBC-compliant database must support the following:

· The database's ODBC driver must be thread safe. It also must be able to connect to the driver from
one thread, use the connection from another thread, and disconnect from another thread.

· If ODBC is used from within a transactional component, then the ODBC driver must also support
the SQL_ATTR_ENLIST_IN_DTC connection attribute. This is how the ODBC Driver Manager
asks the ODBC driver to enlist a connection on a transaction. You can make your component
transactional by setting the transaction property for your component in the MTS Explorer. If you are
using a database without a resource dispenser that can recognize MTS transactions, contact your
database vendor to obtain the required support.

The following table summarizes database requirements for full MTS support.

Requirements Description Resources (if applicable)
Support for the OLE
transactions
specification, or support
for XA protocol

Enables direct interaction with
Distributed Transaction
Coordinator (DTC). Use the
XA Mapper to interact with
DTC

MTS Beta SDK

ODBC driver Platform requirement for MTS
server components

ODBC version 3.0 SDK

ODBC driver support for
the ODBC version 3.0
SetConnectAttr
SQL_ATTR_ENLIST_
IN_DTC call.

MTS uses this call to pass the
transaction identifier to the
ODBC driver. The ODBC
driver then passes the
transaction identifier to the
database engine.

ODBC version 3.0 SDK

Fully thread-safe ODBC
driver

ODBC driver must be able to
handle concurrent calls from
any thread at any time.

ODBC version 3.0 SDK

ODBC driver must not
require thread affinity

ODBC driver must be able to
connect to the driver from one
thread, use the connection
from another thread, and
disconnect from another
thread.

ODBC version 3.0 SDK

If a memory access violation in the mtx.exe process occurs within the driver after 60 seconds of
inactivity, you may be using an ODBC driver that is not thread safe or requires thread affinity. The fault
occurs in the driver when the inactive connections are being disconnected.

MTS Distributed Transaction Coordinator
MTS uses the services of the Microsoft Distributed Transaction Coordinator (DTC) for transaction
coordination. DTC is a system service that coordinates transactions that span multiple resource
managers. Work can be committed as a single transaction, even if it spans multiple resource
managers, potentially on separate computers. DTC was initially released as part of Microsoft SQL
Server version 6.5, and is included as part of MTS. DTC implements a two-phase commit protocol

that ensures that the transaction outcome (either commit or abort) is consistent across all resource
managers involved in a transaction. DTC supports resource managers that implement OLE
Transactions, X/Open XA protocols, and LU 6.2 Sync Level 2.

Choosing your Data Access Model
The following table summarizes commonly used data access models supported by MTS.

Interface Description
Microsoft ActiveX
Data Objects
(ADO), Remote
Data Service (RDS)

ADO offers one common yet extensible programming model for
accessing data. ADO includes the ability to pass query results
(Recordsets) between server and client, and the ability to pass updated
Recordsets from client to server using RDS.

OLE DB OLE DB is a low-level interface that provides uniform access to any
tabular data source. You cannot call OLE DB interfaces directly from
Microsoft® Visual Basic® because OLE DB is a pointer-based interface.
A Visual Basic client can access an OLE DB data source through ADO.

Open DataBase
Connectivity
(ODBC)

ODBC is a recognized standard interface to relational data sources.
ODBC is fast and provides a universal interface that is not optimized for
any specific data source.

Remote Data
Objects (RDO)

RDO is a thin object layer interface to the ODBC API. It is specifically
designed to access remote ODBC relational data sources.

The diagram below illustrates how MTS components interact with the different data access interfaces:

ADO is not specifically designed for relational or ISAM databases, but as an object interface to any data
source. ADO can access relational databases, ISAM, text, hierarchical, or any type of data source, as
long as a data access provider exists. ADO is built around a set of core functions that all data sources are
expected to implement. ADO can access native OLE DB data sources, including a specific OLE DB
provider that provides access to ODBC drivers. ADO ships with the OLE DB Software Development Kit
(SDK).

RDO does have some functionality that is not currently implemented in ADO, including the following:

· Events on the Engine, Connection, Resultset, and Column objects
· Asynchronous operations
· Queries as methods

· Enhanced batch-mode error and contingency handling
· Tight integration with Visual Basic, as in the Query Connection designer and TSQL debugger.

Future versions of ADO will provide a superset of RDO version 2.0 functionality and provide a far
more sophisticated interface, in addition to an easier programming model. Because ADO is an
Automation-based component, any application or language capable of working with Automation
objects can use it.

Developing MTS Components with Java
You can develop Java MTS components using tools provided by MTS and Visual J++. It is also
recommended that you install the latest version of the Microsoft SDK for Java, available at
http://www.microsoft.com/java.

This section contains the following topics:

· Implementing a Component in Java
· Using an MTS Component from Java
· Using the Java Sample Bank Components

Implementing a Component in Java
To implement a component in Java, follow these steps

1 Run the ActiveX Component Wizard for Java (available with Visual J++) for each Java class file.
Use the wizard to create new IDL files.

2 Modify the IDL files to add JAVACLASS and PROGID to the coclass attributes. See "Using IDL
Files with Java Components."

3 Run the ActiveX Component Wizard for Java again. Use the IDL files that you created in Step 1 to
create type libraries for your components.
This will create a set of Java class files, typically under \%systemroot%\Java\Trustlib. It will create
one class file for each custom interface, and one class file for each coclass in the library.

4 Run JAVAGUID against each class file generated in Step 3. See "Working with GUIDs in Java" for
more information.

5 Recompile your Java implementation classes.
6 Run EXEGEN to convert the type libraries and class files into a DLL. See "Using EXEGEN to

Create DLLs."
7 Use the MTS Explorer to install the DLL.

Using IDL Files with Java Components
To specify the custom attributes in a type library, add the following in your IDL or ODL file:
#include <JavaAttr.h>
Within the attributes section of a coclass, specify the JAVACLASS:
JAVACLASS("package.class")
You may optionally specify a PROGID:
PROGID("Progid")
For example:

[
uuid(a2cda060-2d38-11d0-b94b-0080c7394688),
helpstring("Account Class"),
JAVACLASS("Account.AccountObj"),
PROGID("Bank.Account.VJ"),
TRANSACTION_REQUIRED

]
coclass CAccount
{

[default] interface IAccount;
};

Using EXEGEN to Create DLLs
EXEGEN is the Java executable file generator. To use this file, copy it to the appropriate destination
folders (usually \JavaSDK\bin). This version of EXEGEN.EXE is capable of creating DLL files from
Java classes, and can also include user-specified resources in its output files. This version of
EXEGEN no longer supports the /base: directive. Class files are always included with the proper
name. It supports a new /D directive that causes it to generate a DLL file instead of an EXE.

EXEGEN is now capable of reading five types of input files:

· Java class files
· RES files containg resources to be included
· Executable files containg resources to be included
· TLB files containing type libraries to be included
· Text files describing which classes should be registered (DLL only).

If you use EXEGEN to create a DLL, the DLL can self-register any included Java classes that
implement COM objects. There are two ways to tell EXEGEN which classes should be registered:

· Include a type library that contains custom attributes for the classes. This is the preferred method.
– or –

· Include a text file as input that gives EXEGEN the necessary directions. Each line of the text file
describes one Java class, using the following keywords:
· class:JavaClassName

Required keyword.
· clsid:{.....}

Optional keyword that specifies the clsid GUID. If omitted, EXEGEN chooses a unique GUID.
· progid:ProgId

Optional keyword. If omitted, the class will be registered without a progid.

Working with GUIDs in Java
When an MTS method uses a GUID parameter, you must pass an instance of class
com.ms.com._Guid. Do not use class Guid, CLSID or IID from package com.ms.com; they will not
work and they are deprecated. The definition of class _Guid is:
package com.ms.com;
public final class _Guid {

// Constructors
public _Guid (String s);
public _Guid (byte[] b);
public _Guid (int a, short b, short c,

byte b0, byte b1, byte b2, byte b3,
byte b4, byte b5, byte b6, byte b7);

public _Guid ();

// methods
public void set(byte[] b);
public void set(String s);
public void set(int a, short b, short c,

byte b0, byte b1, byte b2, byte b3,
byte b4, byte b5, byte b6, byte b7);

public byte[] toByteArray();
public String toString();

}
Instances of this class can be constructed from a String (in the form “{00000000-0000-0000-0000-
000000000000}”), from an array of 16 bytes, or from the usual parts of a Guid. Once constructed, the
value can also be changed. Method toByteArray will return an array of 16 bytes as stored in the Guid,
and method toString will return a string in the same form used by the constructor.

JAVAGUID.EXE
Microsoft Transaction Server supplies a tool, JAVAGUID.EXE, that will post-process the output of
JAVATLB. The following occurs for each class file:

· If any method takes a GUID as a parameter, the class of that parameter will be changed to
com.ms.com._Guid.

· If the class file is an interface derived from a type library, a public static final member named iid will
be added to the class. This member will contain the interface ID of the interface.

· If the class file represents a coclass derived from a type library, a public static final member named
clsid will be added to the class. This member will contain the CLSID of the class.

The clsid and iid members that JAVAGUID adds are useful as parameters to
IObjectContext.CreateInstance and ITransactionContextEx.CreateInstance.

JAVAGUID can only be executed from the command line. It takes one or more parameters which are
names of class files to update.

JAVATLB will eventually be updated to make JAVAGUID unnecessary.

Using an MTS Component from Java
To use an MTS component from Java, run the Java Type Library Wizard against the type library for
the component. This will create several Java class files, typically under \%systemroot%\Java\TrustLib.
It will create one class file for each custom interface, and one class file for each coclass in the library.

Assume, for example, that the type library contained one interface named IMyInterface, and one
coclass, named CMyClass.

From Java, you can create a new instance of the component by executing
new CMyClass()
If you want to control transaction boundaries in the class, you can execute
ITransactionContextEx.CreateInstance (CMyClass.clsid, IMyInterface.iid)
You should never call Java’s new operator on the class that you implemented. Instead, use one of the
following techniques:

· Use Java's new operator on the class created by the Java Type Library Wizard. This will cause the
Java VM to call CoCreateInstance.

· Call MTx.GetObjectContext().CreateInstance (clsid, iid);
This will create a new instance in the same activity as the current instance. This only works if the
calling code is itself an MTS component.

· If you have a reference to an ITransactionContextEx object, call its CreateInstance method. This
will create a new instance in the transaction owned by the ITransactionContextEx object.

All of these techinques will result in the creation of a new instance of the class that you implemented.

Using the Java Sample Bank Components
The Java Sample Bank components are automatically configured by MTS Setup and require no
additional steps in order to run them.

If you want to recompile the Java Sample Bank components, follow these steps:

1 Run the SetJavaDev.bat file located in the \mts\Samples\Account.VJ folder. Javatlb.exe must be in
your path for this batch file to run properly.

2 Recompile your Java component implementation classes.
3 After you recompile the component classes, use the mkdll.bat file located in the \mts\Samples\

Account.VJ folder to generate and register vjacct.dll. Exegen.exe must be in your path for this
batch file to run properly. You can also add running mkdll.bat as a build step to your Visual J++
project to simplify recompiling.

4 Using the MTS Explorer, import the new components into the Sample Bank package.

Debugging MTS Components
This document describes techniques for debugging MTS components written in Microsoft® Visual
Basic®, Microsoft Visual C++®, and Microsoft Visual J++™. These techniques are just suggestions for
successfully debugging MTS components; you can choose your debugging environment and
techniques according to your application needs.

If you are using MTS components in a distributed environment, it is recommended that you debug
your components on a single computer before deploying to multiple servers. Components that
function without error in a package on a local computer usually run successfully over a distributed
network. If you do encounter problems with distributed components, you must test and debug both
the client and server machines to determine the problem. It is also recommended that you stress test
your application with as many clients as possible. You can build a test client that simulates multiple
clients to perform the stress test on your application.

For debugging MTS components written in a specific language, see the following topics:

Debugging Visual Basic MTS Components

Debugging Visual C++ MTS Components

Debugging Java Classes

Debugging Visual Basic MTS Components
Microsoft Transaction Server components written in Visual Basic version 5.0 or Visual C++ version
5.0 can be debugged in the Microsoft Visual Studio 97 Integrated Development Environment (IDE).

If you want to debug your components after they are compiled, you cannot use the Visual Basic 5.0
debugger, which only debugs at design time. To debug a compiled Visual Basic component, you will
need to use the functionality of the Visual Studio 97 debugger.

Follow these steps to configure Visual Studio to debug MTS components built with Visual Basic 5.0:

1 In Visual Basic, click Properties on the Project menu and then click the Compile tab to select the
Compile to Native Code and the Create Symbolic Debug Info checkbox. It is also recommended
that you select the No Optimization checkbox while debugging.

2 In the MTS Explorer, right-click the package in which your component is installed, and select the
Properties option. Place your cursor over the Package ID, and select and copy the GUID to the
clipboard.

3 Open Visual Studio. On the File menu, click Open and select the DLL containing the component
that you want to debug.

4 Select Project Settings, and then click the Debug tab. Select the MTS executable for the debug
session (\mtx\mtx.exe). Enter the program arguments as /p:{<package GUID>} for the package
GUID that you copied from the package properties. MTS 2.0 allows for the package name to be
used in place of the GUID. Open the .cls files containing the code that you want to debug and then
set your breakpoints. If you also want to display variable information in the debug environment, go
to the Visual Studio Tools menu, select Options, and then select the Debug tab. In the Debug tab,
place a check next to Display Unicode strings.

5 In the MTS Explorer, shut down all server processes.
6 In Visual Studio, select Build, then select Start Debug. Then select Go to run the server process

that will host your component(s), and set breakpoints to step through your code.
7 Run your client application to access and debug your components in Visual Studio.
8 Before you deploy your application, remember to select one of the optimizing options in the

Compile tab on the Project menu of Visual Basic (set to No Optimization in Step 1), clear the
Create Symbolic Debug Info checkbox, and recompile the project.

To facilitate application debugging using Visual Basic 5.0, a component that uses ObjectContext can
be debugged by enabling a special version of the object context. This debug-only version is enabled
by creating the registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Transaction Server\Debug\RunWithoutContext
Note that when running in debug mode, none of the functionality of MTS is enabled.
GetObjectContext will return the debug ObjectContext rather than returning Nothing.

When running in this debug mode, the ObjectContext operates as follows:

· ObjectContext.CreateInstance - calls COM CoCreateInstance (no context flows, no
transactions, and so on)

· ObjectContext.SetComplete - no effect
· ObjectContext.SetAbort - no effect
· ObjectContext.EnableCommit - no effect
· ObjectContext.DisableCommit - no effect
· ObjectContext.IsInTransaction - returns FALSE
· ObjectContext.IsSecurityEnabled - returns FALSE
· ObjectContext.IsCallerInRole - returns TRUE (same as normal when IsSecurityEnabled is

FALSE)

You can also develop your own testing message box functions to generate an assert in an MTS
Visual Basic component. The following sample code can to used to display error messages while
debugging Visual Basic code. You can also use this in conjunction with the Microsoft Windows NT®
debugger (WinDbg.exe), which is a 32-bit application that, along with a collection of DLLs, is used for
debugging the Kernel, device drivers, and applications. Note that you must enter DEBUGGING = -1 in
the Conditional Compilation dialog box (located on the Make tab of the Project Properties dialog
box) to enable the assert.

The following code provides an example.
#If DEBUGGING Then
 'API Functions
 Private Declare Sub OutputDebugStringA _
 Lib "KERNEL32" (ByVal strError As String)
 Private Declare Function MessageBoxA _
 Lib "USER32" (ByVal hwnd As Long, _
 ByVal lpText As String, _
 ByVal lpCaption As String, _
 ByVal uType As Long) As Long
 'API Constants
 Private Const API_NULL As Long = 0
 Private Const MB_ICONERROR As Long = &H10
 Private Const MB_SERVICE_NOTIFICATION As Long = &H200000

Public Sub DebugPrint(ByVal strError As String)
 Call OutputDebugStringA(strError)
End Sub

Public Sub DebugMessage(ByVal strError As String)
Dim lngReturn As Long

 lngReturn = MessageBoxA(API_NULL, strError, "Error In Component", _
 MB_ICONERROR Or MB_SERVICE_NOTIFICATION)
End Sub
#End If
You can then run checks through your code to aid stress debugging, such as in the following code:
SetobjObjectContext=GetObjectContext()
#If DEBUGGING Then
If objObjectContext Is Nothing Then Call DebugMessage("Context is Not
Available")
#End If

Debugging Visual C++ MTS Components
You can use Visual Studio 97 to debug MTS components written in Visual C++, including components
that call SQL Server functions or stored procedures. For more information, see Debugging Visual
Basic MTS Components.

The following information applies to components that have their activation property set to In a
dedicated server process.

Microsoft Transaction Server supports the COM transparent remote debugging infrastructure. If
transparent remote debugging is enabled, then stepping into a client process will automatically stop at
the actual object's code in the server process, even if the server is on a different computer on the
network. A debugging session is automatically started on the server process if necessary. Similarly,
single stepping past the return address of code in a server object will automatically stop just past the
corresponding call site in the client's process.

In Microsoft Visual C++, selecting the OLE RPC debugging check box (on the Tools menu, select
the Options submenu and choose the Debug property sheet) enables transparent remote
debugging. It is not known at this time whether other debuggers support this infrastructure.

You can also debug your Microsoft Transaction Server component DLL in Visual C++ by performing
the following steps. Each of these steps is made either inside the MTS Explorer or inside of a Visual
C++ session with your MTS DLL project.

1 Shutdown server processes using the MTS Explorer. To do this, right-click My Computer, and
select Shutdown Server Process.

3 In your Visual C++ session, under Project, Settings, Debug, General, set the program arguments
to the following string: "/p: PackageName", for example:
/p: "Sample Bank"

4 In the same property sheet, set the executable to the full path of the Mtx.exe process, for example:
"c:\MTx\MTx.exe".

5 Set breakpoints in your component DLL, and you are ready to debug.
6 Run the server process (in the Build menu, select Start Debug and click Go.)

The following information applies to in-process component DLLs that have their activation property
set to In the creator's process.

You can debug your in-process MTS component DLL in Visual C++ by performing the following steps.
Each of these steps is made inside a Visual C++ session with your base process project.

1 Set the component DLL under Build, Settings, Debug, Additional DLLs.
2 Now you are ready to step into or set breakpoints in your component DLL at will.

If you are using Visual Studio and Microsoft Foundation Classes (MFC) to debug, the TRACE macro
can facilitate your debugging. The TRACE macro is an output debug function that traces debugging
output to evaluate argument validity. The TRACE macro expressions specify a variable number of
arguments that are used in exactly the same way that a variable number of arguments are used in the
run-time function printf. The TRACE macro provides similar functionality to the printf function by
sending a formatted string to a dump device such as a file or debug monitor. Like printf for C
programs under MS-DOS, the TRACE macro is a convenient way to track the value of variables as
your program executes. In the Debug environment, the TRACE macro output goes to afxDump. In the
Release environment, the TRACE macro output does nothing.

Example:
// example for TRACE
int i = 1;
char sz[] = "one";
TRACE("Integer = %d, String = %s\n", i, sz);

// Output: 'Integer = 1, String = one'
The TRACE macro is available only in the debug version of MFC, but a similar function could be
written for use without MFC. For more information on using the TRACE macro, see the "MFC
Debugging Support" section in Microsoft Visual C++ Programmer's Guide.

Note that you should avoid using standard ASSERT code in Visual C++. Instead, it is recommended
that you write assert macros like a MessageBox using the MB_SERVICE_NOTIFICATION flag, and
TRACE macro statements using the OutputDebugString function call.

Debugging Java Classes
Debug your Java classes as thoroughly as possible before converting the Java classes into MTS
components. Note that once your Java class is converted into an MTS component, it is not possible to
step through the code in the Visual J++ debugger, or in any current debugging tool as well.

Sidebar: Using Visual J++ to Debug Java Classes
Microsoft Visual J++ (VJ++) provides a Java debugger that you can use to set breakpoints in your
code. Note that when you are using VJ++ to debug, if you set a breakpoint in a Java source file
before starting the debugging session, Visual J++ may not stop on the breakpoint. For performance
reasons, the debugger preloads only the main class of your project. The main class is either the class
with the same name as the project or the class you specify in VJ++. If you use the editor to set
breakpoints in other classes before the classes are loaded, the breakpoints are disabled.

You can choose one of the following options to load the correct class so that the debugger stops at
breakpoints.

· Select the class in the category Additional Classes, located on the Debug tab of the Project
Settings dialog box, and make sure the first column is checked. This loads the class when the
debugging session starts.

· Right-click a method in the ClassView pane of the Project Workspace and select Set Breakpoint
from the Shortcut menu. This causes a break when program execution enters the method.

· Set the breakpoint after Visual J++ has loaded the class during debugging. You may need to step
through your Java source until the class is loaded.

When a method has one or more overloaded versions and shows up as a called method in the Call
Stack window, the type and value for the parameters are not displayed in some cases. It appears as
though the method takes no parameters. This occurs when the called method is not defined as the
first version of the overloaded method in the class definition. For example, see the following class
definition:
public class Test
 {
 int method(short s)
 {
 return s;
 }

 int method(int i)
 {
 return i;
 }
 }
If you were looking at a call to the second version of the method in the Call Stack window, it would
appear without the type and value for the method:
method()
To view the method’s parameters, change the order of the method overloads so that the method that
you are currently debugging is first in the class definition.

printf-style Debugging
You can use printf-style debugging to debug your Java classes without using a debugger. printf-style
debugging involves including status text messages into your code, allowing you to "step through" your
code without a debugger. You can also use printf-style debugging to return error information. The
following code shows how you can add a System.out.println call to the try clause of the

Hellojtx.HelloObj.SayHello sample.
try
{
System.out.println("This message is from the HelloObj implementation");

result[0] = "Hello from simple MTS Java sample";
MTx.GetObjectContext().SetComplete();
return 0;

}
The client must be a Java client class, and you must use the JVIEW console window to run that class.
Note that you need to configure your component to run in the process of its caller, which is in this
case JVIEW. Otherwise, this debugging technique results in your component running in the MTS
server process (mtx.exe), which would put the println output in the bit bucket rather than the JVIEW
console window.

Use the MTS Explorer to configure your component to run in the caller's process by following these
steps.

1 Right-click the component.
2 Click the Properties option.
3 Click the Activation tab and clear the In a server process on this computer checkbox.
4 Select the In the creator’s process... checkbox.
5 Reload the Client class. Your component's println calls will be visible in the JVIEW console

window.

Using the AWT Classes
You can also use the AWT (Abstract Window Toolkit) classes to display intermediate results, even if
your component is running in a server process. The java.awt package provides an integrated set of
classes to manage user interface components such as windows, dialog boxes, buttons, checkboxes,
lists, menus, scrollbars, and text fields.

The following example demonstrates how to use the AWT classes to display intermediate results in a
dialog box:
import java.awt.*;

public final class MyMessage extends Frame
{

private Button closeButton;
private Label textLabel;

// constructor
public MyMessage(String msg)
{

super("Debug Window");

Panel panel;

textLabel = new Label (msg, Label.CENTER);
closeButton = new Button ("Close");

setLayout (new BorderLayout (15, 15));
add ("Center", textLabel);

add ("South", closeButton);

pack();
show();

}

public boolean action (Event e, Object arg)
{

if (e.target == closeButton)
{

hide();
dispose();
return true;

}

return false;
}

}

Asynchronous Java Garbage Collection
Note that garbage collection for Java components is asynchronous to program execution and can
cause unexpected behavior. This behavior especially affects MTS components that perform functions
such as enumerating through the collections in the catalog because the collection count will be too
high (garbage collection is not synchronized). To force synchronous release of references to COM or
MTS objects, you can use the release method defined in class com.ms.com.ComLib.

Example:
Import com.ms.com.ComLib
…
ComLib.release(someMTSObject);
This method releases the reference to the object when the call is executed. Release the object
reference when you are sure that the reference is no longer needed. Note that if you fail to release
the reference, an application error is not returned. However, an incorrect collection count results
because the object reference is released asynchronously when the garbage collector eventually runs.

You can also force the release of your reference and not call that released reference again.

Example:
myHello = null;

System.gc();
Note that forcing the release of an object reference consumes extensive system resources. It is
recommended that you use the release method defined in com.ms.com.ComLib class to release
references to MTS objects in a synchronous fashion.

Automating MTS Deployment
This document describes how you can use the scriptable administration objects to automate
deployment and distribution of your MTS packages. The MTS Explorer lets you configure and deploy
packages by using a graphical user interface rather than by programming code. However, you can
use the scriptable administrative objects to automate administration tasks, such as program
configuration and deployment. Note that the scriptable administrative objects support the same
collection hierarchy as the MTS Explorer. The following figure shows the MTS Explorer collection
hierarchy.

For more information about MTS Explorer functionality, see the Administrator's Guide.

Using the Scriptable Administration Objects
Microsoft Transaction Server contains Automation objects that you can use to program administrative
and deployment procedures, including:

· Installing a Pre-Built Package
· Creating a New Package and Installing Components
· Enumerating Through Installed Packages to Update Properties
· Enumerating Through Installed Packages to Delete a Package
· Enumerating Through Installed Components to Delete a Component
· Accessing Related Collection Names
· Accessing Property Information
· Configuring a Role
· Exporting a Package
· Configuring a Client to Use Remote Components

Note that you can use the scriptable administration objects to automate any task in the MTS Explorer.
The scriptable administration objects are derived from the IDispatch interface, so you can use any
Automation language to develop your package, such as Microsoft® Visual Basic® version 5.0,
Microsoft Visual C++® version 5.0, Microsoft Visual Basic® Scripting Edition (VBScript), and Microsoft
JScript™.

Each folder in the MTS Explorer hierarchy corresponds to a collection stored in the catalog data store.
The following scriptable objects are used for administration:

· Catalog
· CatalogObject
· CatalogCollection
· PackageUtil
· ComponentUtil
· RemoteComponentUtil

The Catalog, CatalogObject, and CatalogCollection scriptable objects provide top-level functionality
such as creating and modifying objects. The Catalog object enables you to connect to specific servers
and access collections. Call the CatalogCollection object to enumerate, create, delete, and modify
objects, as well as to access related collections. CatalogObject allows you to retrieve and set
properties on an object. The Package, Component, Remote Component, and Role objects enable
more specific task automation, such as installing components and exporting packages. This utility
layer allows you to program very specific tasks for collection types, such as associating a role with a
user or class of users.

The following diagram illustrates how the MTS scriptable administration objects interact with the MTS

Explorer catalog:

Interface Description
ICatalog The Catalog object enables you to connect to

specific servers and access collections.
ICatalogCollection The CatalogCollection object can be used to

enumerate objects, create, delete, and modify
objects, and access related collections.

ICatalogObject The CatalogObject object provides methods to get
and set properties on an object.

IPackageUtil The IPackageUtil object enables a package to be
installed and exported within the Packages
collection.

IComponentUtil The IComponentUtil object provides methods to
install a component in a specific collection and to
import components registered as an in-process
server.

IRemoteComponentUtil You can use the IRemoteComponentUtil object to
program your application to pull remote
components from a package on a remote server.

IRoleAssociationUtil Call methods on the IRoleAssociationUtil object to
associate roles with a component or component
interface.

For example, you can automate creating a new package and installing components into the new
package by using the scriptable objects in the utility layer (Package, Component, Remote
Component, and Role objects).

The following Visual Basic sample shows how to use the scriptable administration objects to create
and install components into a new package named "My Package."

1 Declare the objects that you will be using to create and install components into a new package.
Dim catalog As Object
Dim packages As Object
Dim newPack As Object
Dim componentsInNewPack As Object
Dim util As Object

2 Use the On Error statement to handle run-time errors if a method returns a failure HRESULT. You
can test and respond to MTS trappable errors using the On Error statement and the Err object.
On Error GoTo failed

3 Call the CreateObject method to create an instance of the Catalog object. Retrieve the top level
Packages collection from the CatalogCollection object by calling the GetCollection method. Then
call the Add method to add a new package.
Set catalog = CreateObject("MTSAdmin.Catalog.1")
Set packages = catalog.GetCollection("Packages")
Set newPack = packages.Add
Dim newPackID As String

4 Set the package name to "My Package" and save changes to the Packages collection.
newPackID = newPack.Key
newPack.Value("Name") = "My Package"
packages.savechanges

5 Call the GetCollection method to access the ComponentsInPackage collection. Then instantiate

the ComponentUtil object in order to call the InstallComponent method to populate the new
package with components.
Set componentsInNewPack =
 packages.GetCollection("ComponentsInPackage",
 newPackID)
Set util = componentsInNewPack.GetUtilInterface
util.InstallComponent"d:\dllfilepath", "", ""
Exit Sub

6 Use the Err object to display an error message if the installation of the package fails.
failed:
 MsgBox "Failure code " + Str$(Err.Number)

End Sub
For a complete description of how to program these procedures and more sample code, refer to the
Administrator’s Guide.

MTS Error Diagnosis
This topic describes how to determine the source of an error in your MTS application. You can
diagnose the source and obtain a description of application errors by using a combination of
Microsoft® Windows NT®, MTS, and other tools. If you discover that the application error is caused by
MTS, you can interpret the error message using the Win32 (Win32.h) or MTS header files (mts.h), or
the Microsoft Visual C++® error utility.

For more information on debugging an MTS application, see Debugging MTS Components.

Finding the Source of the Error
If your server application is failing or causing unexpected behavior, you must first determine where
your error occurred. Windows NT provides a system Event Viewer that tracks application, security,
and system events. Refer to the Application Log in the Event Viewer first to check the application
associated with the event message. (Because you can also archive event logs, you can track an
event history of the error.) Selecting an entry in your log activates an Event Detail, which provides
further information about the system event. If you attempt to run the Sample Bank client without
starting the Microsoft Distributed Transaction Coordinator (MS DTC), you will be returned the
following Automation error.

Since this error does not indicate which application caused the failure, you can reference the
Application Log in the Event viewer, which shows the error was caused by MTS.

Note If you are using MTS for Windows 95, events are written to text files in the \Windows\
MTSLogs directory.

Interpreting Error Messages
The Event Viewer helps you determine the application source of the problem. You can use other tools
to interpret individual error messages. Success, warning, and error values are returned using a 32-bit
number known as a result handle, or HRESULT. HRESULTs are 32-bit values with several fields
encoded in the value. A zero result indicates failure if that bit is set. A non-zero result can be a
warning or informational message.

HRESULTs work differently, depending on the platform you are using. On 16-bit platforms, an
HRESULT is generated from a 32-bit value known as a status code, or SCODE. On 32-bit platforms,
an HRESULT is the same as an SCODE. Note that if you are returning HRESULTs from Java, you
should throw an instance of com.ms.com.ComFailException to indicate failure. You can specify a
particular HRESULT when constructing the ComFailException object. The HRESULT is used as the
return value for the COM method. To indicate successful completion, you do not need to do anything;
just return normally. To return S_FALSE, indicating a successful completion but a return value of
Boolean False, throw an instance of com.ms.com.ComSuccessException. In Visual Basic, you use
the Err.Raise function to set and the On Error… / Err.Number to retrieve HRESULTs.

For a list of the values of common system-defined HRESULTs, see ComFailException. For a

complete list of system-defined HRESULT values, see the header file Winerror.h included with the
Platform SDK.

MTS never changes the value of an HRESULT error code, such as E_UNEXPECTED or E_FAIL,
returned by an MTS object method. When an MTS object returns an HRESULT status code (such as
S_OK or S_FALSE), MTS may convert the status code into an MTS error code before it returns to the
caller. This occurs, for example, when the application returns S_OK after calling the SetComplete
function; if the object is the root of an automatic transaction that fails to commit, the HRESULT is
converted to CONTEXT_E_ABORTED. When MTS converts a status code to an error code, all the
method's output parameters are cleared. Returned references are released and the values of the
returned object pointers are set to NULL.

The Mtx.h header file contains the MTS specific error codes. Winerror.h contains the error code
definitions for the Win32 API. For an overview of error codes, see "Error Handling" in the COM portion
of the Microsoft Platform SDK

You can also use the ERRLOOK utility in Microsoft Visual Studio™ 97 to retrieve a system error
message or module error message based on the value entered. ERRLOOK retrieves the error
message text automatically if you drag-and-drop a hexadecimal or decimal value from the Visual
Studio debugger or other Automation-enabled application. You can also enter a value either by typing
it in or pasting it from the IDE clipboard and clicking the Look Up option.

Contacting MTS Support
If you run into a problem that you cannot solve, you can contact Microsoft support with the following
information:

· Topography of the application where the error occurred, such as a description of packages,
components, and interfaces

· Application event log on all computers
· Reproduction of the error, if possible

Troubleshooting
If you are having trouble diagnosing your problem, refer to the list of troubleshooting tips below:

· Make sure that the Distributed Transaction Coordinator (DTC) is running on all servers.
· Check network communication by first testing on a local computer to verify that the application

works. If you are running TCP/IP on your network, you can then use the Windows NT Ping.exe
utility to verify that the machines are on the network.

· Make sure that SQL and DTC are either located on the same computer or that the DTC Client
Configuration program specifies that the DTC is on another computer. If not, SQLConnect will
return an error internally when called from a transactional component.

· Set the MTS transaction timeout to a higher number than the default 60 seconds, otherwise MTS
aborts the transaction after this time has lapsed. All subsequent calls to the component return
immediately with CONTEXT_E_ABORTED.

· Make sure that your ODBC drivers are thread-safe and do not have thread affinity.
· If you have difficulty getting an application to work over several servers, reboot the client and then

verify that your Windows NT domain controller is configured properly.
· Turning off resource pooling may reveal that a resource dispenser used by your application is the

source of the problem. You can turn off resource pooling by setting the following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Transaction Server\Local Computer\My
Computer:Resource Pooling=N

See the DCOM documentation and DCOM-related Knowledge Base articles if you are experiencing
application errors that you suspect are caused by DCOM.

Creating a Simple ActiveX Component
This section gets you started quickly with a simple ActiveX™ component (Account). You then install,
run, and monitor Account with the Microsoft Transaction Server (MTS) Explorer and a sample client
(Bank).

Scenario: Creating and Using a Simple ActiveX Component
First, create your component (Account) and run it in the MTS run-time
environment by using the Bank client. Then, add a database connection to
Account and run it again.
Creating the Account Component
Create a new ActiveX component, Account.
Creating the Bank Package
Use the MTS Explorer to create a new package for your component.
Installing the Account Component in the Bank Package
Use the MTS Explorer to install your component in a package.
Running and Monitoring the Account Component
Use the Bank client to run your component, and use the MTS Explorer to
monitor it.
Modifying the Account Component: Add a Database Connection
Modify your component so that it connects to a database. The connection
will be pooled by the ODBC resource dispenser. Then use the Bank client
to re-run the modified component.
Application Design Notes: Sharing Resources
Learn how to efficiently share resources, such as database connections,
through the MTS Resource Dispenser Manager and resource dispensers.

See Also
Programming Concepts, Transaction Server Components, Building Scalable Components

Scenario: Creating and Using a Simple ActiveX Component
This scenario has two implementation stages. The initial stage consists of building a simple
component: the Account component. You can implement Account by creating a project (Account.vbp)
with a class module (Account.cls). The Account class module exposes one method, Post, that passes
back a string indicating that it was called successfully. The following illustration depicts the first stage
of this scenario.

The second stage of this scenario adds a database connection to get the appropriate account
information from a database and update it. This demonstrates using a resource dispenser ¾ in this
case, the ODBC resource dispenser, which enables efficient connection pooling. The following
illustration depicts the second stage of this scenario.

The rest of this section provides step-by-step instructions for creating, installing, and running the
Account component in this scenario. You can find the Microsoft Visual Basic projects for each of these
steps in the Step1 through Step8 folders in the \Samples\Account.VB folder of your Microsoft
Transaction Server installation.

See Also
Programming Concepts, Application Design Notes: Sharing Resources, Transaction Server
Components, Building Scalable Components, Creating the Account Component, Run and Monitor the
Account Component, Modifying the Account Component, Application Design Notes: Resource Usage,
Creating a Simple ActiveX Component

Creating the Account Component
The first step toward building a simple application that you can use with Microsoft Transaction Server
(MTS) is to create a simple ActiveX™ component DLL (VBAcct.dll); the Account component provides
one method, Post.

The information presented here assumes a basic understanding of how to use Microsoft Visual Basic
to create ActiveX components.

Note You cannot install executable files (.exe) in MTS. If you have a component built as an
executable file, you must rebuild it as a dynamic-link library (DLL).

To create the Account component
1 Start Microsoft® Visual Basic™ and open the \Mts\Samples\Account.VB\Step1\Account.vbp project.
 Click here to see the code for the Account component
2 Build the component as a DLL and save it as \Mts\Samples\Account.VB\Step1\VBAcct.dll.

See Also
Programming Concepts, Transaction Server Components, Building Scalable Components,
Transaction Server Component Requirements, Run and Monitor the Account Component, Application
Design Notes: Sharing Resources, Modifying the Account Component, Application Design Notes:
Resource Usage, Creating a Simple ActiveX Component

Creating the Bank Package
To run your component in the MTS run-time environment, you need to create a package. For this
scenario, you will create a package with a single component.

A package is a collection of components that you can deploy and manage as a unit. By grouping
components into packages, you define the security and process boundaries for components running
on a computer. The criteria for deciding how to group components into packages require achieving
the optimum balance between performance, fault isolation, and load balancing.

You will create a package called Bank that will contain the Account component.

To create the Bank package
1 On the Start menu, point to Programs, point to Microsoft Transaction Server, and then click

Transaction Server Explorer.
2 Create a new package named Bank. In the Set Package Identity dialog box, select Interactive

user.
 How?
You can use the General, Security, Advanced, Identity, and Activation tabs to configure a
package. For this scenario, you will use the default settings for the package you just created.

See Also
What Does Creating a Package Mean?, Package Properties , Programming Concepts, Installing the
Account Component in the Bank Package, Creating a Simple ActiveX Component

Installing the Account Component
To run your components in the Microsoft Transaction Server run-time environment, you first need to
install them in a package. This means you need to install the Account component in the Bank
package.

To install the Account component
· Install the Account component into the Bank package you created in Creating the Bank Package.

Use the Account component that you built in \Mts\Samples\Step1\Account.VB\VBAcct.dll.
 How?
You can use the General, Transaction, and Security tabs to configure a component. For this
scenario, you will use the default settings for the component you just installed.

See Also
Adding A Component to a Package, Component Properties , Creating the Bank Package, Creating a
Simple ActiveX Component

Running and Monitoring the Account Component
Now that you have created the Bank package and installed the Account component in the Microsoft
Transaction Server Explorer, you can run the Account component with the Bank client and monitor the
component status in the Explorer.

Running your component in MTS brings immediate benefits to your application, even if it doesn't
implement any of the MTS APIs. Such benefits include:

· Simplified management of your components though an easy-to-use graphical tool, the MTS
Explorer.

· Location transparency—the ability to run your components in-process, locally, or remotely.
· Thread management and component tracking.
· Database connection pooling through the Resource Dispenser Manager and the ODBC resource

dispenser (automatically provided if you call the ODBC API).

To run and monitor your component
1 In the left pane of the MTS Explorer, click the Components folder where you installed the

Bank.Account component.
2 On the View menu, click Status view to display usage information for the Bank.Account

component.
3 On the Start menu, point to Programs, point to Microsoft Transaction Server, and then click

Bank Client.
Arrange the windows so that you can see the Bank Client window and the MTS Explorer window
simultaneously. The form will default to credit $1 to account number 1.

4 In the Bank client, click the Account component.
5 Click Submit.

You should see the response Hello from Account.
6 In the Bank client, change the iterations from 1 of 0 to 1 of 100 and click Submit.

In the right pane of the MTS Explorer, you should see the values under the Objects and Activated
columns change to 1 and back to 0.

See Also
Status View, Creating the Bank Package, Installing the Account Component in the Bank Package,
Microsoft Transaction Server APIs, Maintaining MTS Packages, Creating a Simple ActiveX
Component

Modifying the Account Component to Use the ODBC Resource
Dispenser
In this section, you enhance the Account component by adding a database connection. You revise the
Post method to access a database using ActiveX Data Objects (ADO) to obtain the appropriate
account information. This demonstrates using a resource dispenser ¾ in this case, the ODBC
resource dispenser, which enables connections to be pooled for efficiency. You will also add a new
class module, CreateTable, to the Account project.

To modify the Account component
1 Open the \Mts\Samples\Account.VB\Step2\Account.vbp project.
 Click here to see the modified Account component
2 Build the component as a DLL and save it as \Mts\Samples\Account.VB\Step2\VBAcct.dll.

By adding a new class module, you have added a new COM component to this DLL. Therefore, you
will need to delete the Account component in the Microsoft Transaction Server Explorer and then
install the Account and the MoveMoney components.

To reinstall your components
1 Remove the Account component.
 How?
2 Add the new components.
 How?

Use the DLL you created in \Mts\Samples\Account.VB\Step2\VBAcct.dll.
You can now run the new component by using the Bank client. You should see a response Credit,
balance is $ 1. (VB).
See Also
Creating the Account Component, Application Design Notes: Resource Usage, Programming
Concepts, Creating a Simple ActiveX Component

Application Design Notes: Sharing Resources
Each time the Account object's Post method is called, it obtains, uses, and then releases its
database connection. A database connection is a valuable resource. The most efficient model for
resource usage in scalable applications is to use them sparingly, acquire them only when you really
need them, and return them as soon as possible.

Historically, acquiring resources has been an expensive operation in terms of system performance.
Many programs have adopted a strategy of acquiring resources and holding onto them until program
termination. While this strategy is effective for single-user systems, building scalable server
applications requires sharing these resources.

Microsoft Transaction Server provides an architecture for resource sharing through its Resource
Dispenser Manager and resource dispensers. The Resource Dispenser Manager works with specific
resource dispensers to automatically pool and recycle resources. The ODBC version 3.0 Driver
Manager is a Microsoft Transaction Server resource dispenser, also referred to as the ODBC
resource dispenser.

Although the Account component hasn't implemented any of the MTS-specific APIs, when you run it,
MTS uses the ODBC resource dispenser. This happens automatically when the Post method uses
ActiveX Data Objects (ADO) to access the database, because ADO in turn uses ODBC. Whenever
any component running in the MTS run-time environment uses ODBC directly or indirectly, the
component automatically uses the ODBC resource dispenser.

When the Account object releases the database connection, the connection is returned to a pool.
When the Post method is called again, it requests the same database connection. Instead of creating
a new connection, the ODBC resource dispenser recycles the pooled connection, which saves time
and server resources.

The topic Building Scalable Components, shows you how to use just-in-time activation to use server
resources even more efficiently, resulting in more scalable applications and improved performance.

See Also
Application Design Notes: Resource Usage, Building Scalable Components, Modifying the Account
Component, Creating the Account Component, Creating a Simple ActiveX Component

Building Scalable Components
In this section, you'll learn how you can use just-in-time activation to use server resources efficiently,
resulting in more scalable applications and improved performance. You'll also see how a simple
change to the Account component allows it to scale efficiently and support a large number of clients,
without requiring you to make any changes to the client.

Scenario: Adding Just-In-Time Activation to the Account Component
Add code to your Account component to take advantage of just-in-time
activation, which releases the component's resources when Account has
completed its work.
Adding Code to Call GetObjectContext, SetComplete, and SetAbort
Add code to call GetObjectContext, SetComplete, and SetAbort.
Application Design Notes: Just-In-Time Activation
Learn how to reuse resources efficiently so you can build scalable
applications.

See Also
Context Objects, Deactivating Objects, Creating a Simple ActiveX Component, GetObjectContext
method, SetAbort method , SetComplete method

Scenario: Adding Just-In-Time Activation to the Account Component
In this scenario, the Bank client creates an Account object from the Account component and calls its
Post method, just as in Creating a Simple ActiveX Component. This time, Account obtains a reference
to its context object. When it successfully completes its work on behalf of the client, it uses its context
object to call SetComplete. If Account encounters an error and is unable to complete its work
successfully, it uses its context object to call SetAbort. When Account calls either SetComplete or
SetAbort, it indicates that it's finished with its work and that it doesn't need to maintain any private
state for its client. This allows the MTS run-time environment to reclaim and reuse the Account
object's resources.

See Also
Context Objects, Deactivating Objects, Application Design Notes: Just-In-Time Activation,
GetObjectContext method , SetAbort method

Adding Code to Call GetObjectContext, SetComplete, and SetAbort
Every Transaction Server object has a context object associated with it. The context object is
automatically created at the same time the object itself is created. You can use an object's context to
declare when the object's work is complete, as shown in the following illustration.

Calling either of these methods notifies the MTS run-time environment that it can safely deactivate the
object, making its resources available for reuse.

To implement the scenario for this chapter, you will modify the Post method to use the Account
object's context object. Then you will use SetComplete and SetAbort to enable just-in-time
activation.

First, you call GetObjectContext to get a reference to the context object. When an object has
completed its work successfully, it should call SetComplete:
GetObjectContext.SetComplete
SetComplete notifies the MTS run-time environment that the Account object should be deactivated
as soon as it returns control to the Bank client.

If the object encountered an error, it should call SetAbort. SetAbort also notifies the MTS run-time
environment that the Account object should be deactivated as soon as it returns control to the Bank
client.
GetObjectContext.SetAbort

To obtain a reference to an object's context
1 Open the \Mts\Samples\Account.VB\Step3\Account.vbp project.
 Click here to see the Post method
2 Build the component as a DLL and save it as \Mts\Samples\Account.VB\Step3\VBAcct.dll.

Before you can run your new component again in MTS, the registry needs to be updated with the new
component information. To do this, refresh the MTS Explorer window.

If you install the Development version of Microsoft Transaction Server, you will get a Visual
Basic – compatible add-in that automates this process for you (select the VB Addin box during Setup).
The next time you run Visual Basic, the add-in is automatically installed in Visual Basic. The add-in
automatically refreshes all of your MTS component DLLs whenever you recompile your project.

You can also turn this feature on and off on a per-project basis by using the toggle command on the
Visual Basic Add-Ins menu. To turn it on, on the Visual Basic Add-Ins menu, point to MS
Transaction Server, and click AutoRefresh after compile of active project. This puts a check mark
next to the command, indicating that the feature is activated. If you want to refresh all of your MTS
components at any given time, on the Visual Basic Add-Ins menu, point to MS Transaction Server,
and then click Refresh all components now.

Now you'll run the Account component again from the Bank client, and monitor its execution in the
MTS Explorer's Status window. Follow the same steps as in "Running and Monitoring the Account
Component."

When the Bank client creates the Account object, the number 1 will appear under Objects and
Activated. This indicates that one object is executing in the MTS run-time environment, and that it is
currently activated. When the client calls the Post method, the number 1 appears, briefly, under In
Call. This indicates that one object is currently executing a method call. When the Post method
returns control to the client, the number under Objects is still 1, but the numbers under Activated
and In Call return to 0. This is because after calling SetComplete, the object is deactivated as soon
as it returns from the current method call.

Note Because the Post method executes so quickly, you may not actually see this sequence
appear.

See Also
Context Objects, Deactivating Objects, Creating a Simple ActiveX Component, GetObjectContext
method, SetAbort method , SetComplete method

Application Design Notes: Just-In-Time Activation
When you design a traditional application, you have two options:

· A client can create, use, and release an object. The next time it needs the object, it creates it again.
The advantage to this technique is that it conserves server resources. The disadvantage is that, as
your application scales up, your performance slows down. If the object is on a remote computer,
each time an object is created, there must be a network round-trip, which negatively affects
performance.

· A client can create an object and hold onto it until the client no longer needs it.
The advantage of this approach is that it's faster. The problem with it is that, in a large-scale
application, it quickly becomes expensive in terms of server resources.

While either of these approaches might be fine for a small-scale application, as your application
scales up, they're both inefficient. Just-in-time activation provides the best of both approaches, while
avoiding the disadvantages of each.

In Creating a Simple ActiveX Component, the Bank client controlled the Account object's life cycle.
Clients held onto server resources even when the clients were idle. As you added more clients, you
saw a proportional increase in the number of allocated objects and database connections. A quick
look at the Account component shows that each call to the Post method is independent of any
previous calls. An Account object doesn't need to maintain any private state to correctly process new
requests from its client. It also doesn't need to maintain its database connection between calls. The
only problem is that, in this scenario, the MTS run-time environment can't reclaim the object's
resources until the client explicitly releases the object. If you have to depend on your clients to
manage your object's resources, you can't build a scalable component.

By adding just a few lines of code, you were able to implement just-in-time activation in the Account
component. When an Account object calls SetComplete, it notifies the MTS run-time environment
that it should be deactivated as soon as it returns control to the client. This allows the MTS run-time
environment to release the object's resources, including any database connection it holds prior to the
object's release. The Bank client continues to hold a reference to the deactivated Account object.

When a client calls a method on a deactivated object, the client's reference is automatically bound to
a new object. Thus, the client has the illusion of a continuous reference to a single object, without

tying up server resources unnecessarily.

Although the call to SetAbort has a similar effect, it isn't apparent in this scenario why it is used when
errors occur. The next chapter, Building Transactional Components, shows you how transactions can
make your applications more robust in the event of an error.

See Also
Context Objects, Deactivating Objects, Creating a Simple ActiveX Component, GetObjectContext
method, SetAbort method , SetComplete method

Building Transactional Components
This section introduces transactional components and the benefits of running components within the
same transaction.

Scenario: Composing Work from Multiple Components Under the
Same Transaction
Add new functionality to transfer money between accounts by adding a
new component, MoveMoney, which uses the existing Account component.
Creating the MoveMoney Component
Use the CreateInstance method to run the MoveMoney and Account
components within the same transaction.
Monitoring Transactions
Use the Bank client to run your components, and use the Microsoft
Transaction Server Explorer to monitor transactions.
Application Design Notes: Using Context and Transactions
Using transactional components provides atomicity and simplified error
recovery.

See Also
Transactions, Transaction Attributes, ObjectContext object , CreateInstance method

Scenario: Composing Work from Multiple Components Under the
Same Transaction
For this scenario, you will add new functionality that allows you to transfer money between two
accounts. To implement this, you add a new component, MoveMoney. MoveMoney creates Account
and then calls it once for a credit or debit, or twice for a transfer, as shown here.

Because either MoveMoney or Account could fail at any point, all database updates need to be in the
same transaction to ensure that the database remains consistent. To do this, you configure the
MoveMoney and Account components in the Microsoft Transaction Server Explorer to require a
transaction. Transaction Server ensures that all their objects' work is automatically done in the same
transaction.

See Also
Transactions, Transaction Attributes

Creating the MoveMoney Component
To implement this scenario, you will add a new class module, MoveMoney, to the Account project.
MoveMoney has a single method, Perform, which creates an Account object to perform the credit,
debit, or transfer.

To create the MoveMoney component
1 Open the \Mts\Samples\Account.VB\Step4\Account.vbp project.
 Click here to see the Perform method
2 Build the component as a dynamic-link library (DLL) and save it as \Mts\Samples\Account.VB\

Step4\VBAcct.dll.

By adding a new class module, you have added a new COM component to this DLL. Therefore, you
will need to delete the Account component in the Microsoft Transaction Server Explorer and then
install the Account and the MoveMoney components.

To reinstall your components
1 Remove the Account and CreateTable components.
 How?
2 Add the new components.
 How?

Use the DLL you created in the previous procedure. You can find it in \Mts\Samples\Account.VB\Step4\
VBAcct.dll.

MTS enlists a component in a transaction as specified by the component's transaction attribute. For
this scenario, Account and MoveMoney run within the same transaction.

To set the transaction attributes for your components
1 For the Account and MoveMoney components, set the transaction attribute to Requires a

transaction.
2 For the CreateTable component, set the transaction attribute to Requires a new transaction.
 How?
The MoveMoney object uses CreateInstance to create the Account object. CreateInstance is a
method on the context object. By using CreateInstance, the Account object created by MoveMoney
shares context with MoveMoney.
Dim objAccount As Bank.Account
Set objAccount = _
 GetObjectContext.CreateInstance("Bank.Account")
Transactions are associated with an object's context. Because both MoveMoney and Account have a
transaction attribute of Requires a transaction, the Account object will be enlisted within the same
transaction as MoveMoney.

In Building Scalable Components, you learned how to use SetComplete to indicate that an object has
finished its work and can be deactivated. For transactional components, calling SetComplete
indicates that a transaction can be committed.
GetObjectContext.SetComplete
When the Perform method returns, the transaction attempts to commit. There is no guarantee that it
will commit, however. If an error occurs, Perform instead calls SetAbort.
GetObjectContext.SetAbort
SetAbort also indicates that an object has finished its work, but that it isn't in a consistent state.
When the Perform method returns after calling SetAbort, the attempt to commit the transaction won't
succeed.

See Also

Transactions, Transaction Attributes, Context Objects, Creating MTS Objects, ObjectContext object ,
CreateInstance method , GetObjectContext method , SetAbort method , SetComplete method

Monitoring Transaction Statistics
You can use the Microsoft Transaction Server Explorer to monitor commit and abort statistics for
transactions.

You can experiment with the MoveMoney and Account components to see how transactions are
committed and aborted as you provide user input with the Bank client.

To monitor transactions
1 On the Window menu of the Transaction Server Explorer, click New Window.
2 In the left pane, click Transaction Statistics.
3 On the Action menu, click Scope Pane to hide the left pane of the Explorer.
4 Make sure that the Microsoft Distributed Transaction Coordinator (MS DTC) is running on your

SQL Server computer. You can start MS DTC from the Transaction Server Explorer or from SQL
Server.

5 Also make sure that you have the ODBC data source set up, and that SQL Server is running. Click
 to get information on how to do this.

6 Start the Bank client.
Rearrange the windows so that you see the two Microsoft Transaction Server Explorer windows
and the Bank client window.

To monitor a commit, click Submit in the Bank client. The Transaction Statistics window first indicates
that one transaction is active, and indicates that one transaction was committed.

To monitor an abort, click Debit in the Bank client, and enter an amount for the transaction that is
greater than the balance on your account. Click Submit. The Transaction Statistics window first
indicates that one transaction is active, and then indicates that one transaction was aborted.

Try experimenting with Transfer. Verify that both objects are running within the same transaction by
checking the balance of two accounts and performing a transfer that would overdraw from an
account. Notice that both the credit and the debit are aborted.

See Also
Monitoring Transactions in MTS

Application Design Notes: Using Context and Transactions
Context simplifies defining transactions. A transaction is automatically started when a component is
declared as transactional. Components don't need to add additional code to indicate the start and end
of a transaction. Using context allows you to define the scope of a transaction.

Besides simplifying building components, automatic transaction enlistment also allows for reuse of
existing components. Changing the transaction attribute is the only change to the Account component
from the previous section, Building Scalable Components.

Creating the Account object from MoveMoney establishes MoveMoney as the root of the transaction.
The root transaction attempts to commit after it has completed its work. If an Account object calls
SetAbort to indicate that it cannot successfully commit its work, then when the root transaction
attempts to commit, the entire transaction will fail.

In the case of a money transfer, this provides atomicity. If a credit succeeds, but insufficient funds
prevent the debit from succeeding, then the credit will be rolled back from the database automatically.
Thus, SetAbort provides simplified error recovery.

Context simplifies the development of the component. Each object independently acquires its own
resources, performs its work, and indicates its own internal state by using SetComplete or SetAbort
before returning.

See Also
Transactions, Transaction Attributes, Context Objects, CreateInstance method , ObjectContext
object, SetAbort method , SetComplete method

Sharing State
This chapter shows you how to use the Shared Property Manager to share state among multiple
Microsoft Transaction Server objects running in the same process.

Scenario: A Receipt Number Generator That Uses the Shared Property
Manager
Create a component that uses the Shared Property Manager to generate a unique
receipt number for each bank transaction.
Creating the Receipt Component
Create a SharedProperty object to get a new receipt number, with appropriate
isolation and release modes for this scenario.
Application Design Notes: Sharing State by Using the Shared Property
Manager
Learn some of the advantages of using the Shared Property Manager to manage
shared state within a process.

See Also
Resource Dispensers, Stateful Components, SharedPropertyGroupManager object

Scenario: A Receipt Number Generator That Uses the Shared
Property Manager
This chapter introduces the Receipt component, which dispenses unique receipt numbers for fund
transfers. When a bank transaction takes place, the MoveMoney object creates a Receipt object. The
Receipt component contains a single method, GetNextReceipt.

GetNextReceipt uses the Shared Property Manager to get a unique receipt number. The Shared
Property Manager has an object hierarchy as shown in the following figure:

Within a server process, there is only one instance of the SharedPropertyGroupManager object. The
value of the receipt number is maintained by a SharedProperty object, which provides locking
mechanisms to ensure that no two calls to GetNextReceipt retrieve the same value.

See Also
Resource Dispensers, Creating the Receipt Component, Application Design Notes: Sharing State by
Using the Shared Property Manager, SharedPropertyGroupManager object ,
SharedPropertyGroup object , SharedProperty object

Creating the Receipt Component
The Receipt component contains a single method, GetNextReceipt. The Receipt object itself doesn't
maintain the value of the receipt number between calls. The Shared Property Manager maintains
these values. The Receipt object calls a SharedProperty object to get a new receipt number.

You will also add code to the MoveMoney component to call the Receipt component.

To create the Receipt Component
1 Start Microsoft Visual Basic and open the \Mts\Samples\Account.VB\Step5\Account.vbp project.
 Click here to see the code for the Receipt component
 Click here to see the code for the MoveMoney component
2 Build the component as a DLL and save it as \Mts\Samples\Account.VB\Step5\VBAcct.dll.

By adding a new class module, you add a new COM component to this DLL. Therefore, you need to
delete the existing components in the Microsoft Transaction Server Explorer and then install the new
components.

To reinstall your components
1 Remove the Account, MoveMoney, and CreateTable components from the Transaction Server

Explorer.
 How?
2 Add the new components. Use the DLL you created in \Mts\Samples\Account.VB\Step5\VBAcct.dll.
 How?

To set the transaction attributes for your components
1 For the Account and MoveMoney components, set the transaction attribute to Requires a

transaction.
 How?
2 For the CreateTable component, set the transaction attribute to Requires a new transaction.
3 For the Receipt component, set the transaction attribute to Does not support transactions. This

is the default value.
Note that the Receipt component is not transactional because the receipts are maintained as
properties in memory and aren't durable.

When you run the Bank Client, select the MoveMoney button under Component. You should see the
response Credit, balance is $ 1. (VB); Receipt No: #####.

The various object creation methods for Shared Property Manager objects are designed for simplified
coding. If the object doesn't exist, it will be created. If it already exists, the object is returned.
GetNextReceipt makes the following method call to access the shared property group manager:
Set spmMgr = CreateObject _
 ("MTxSpm.SharedPropertyGroupManager.1")
This code works every time it is called. There is no need to check if the shared property group
manager has already been created. Such behavior also ensures that only one instance of the
SharedPropertyGroupManager object exists per server process.

For the SharedPropertyGroup and SharedProperty objects, a flag is returned to indicate whether
the property group or property already exists. The following code shows how this flag is used to
determine if the property needs to be initialized:
Set spmPropNextReceipt = _
 spmGroup.CreateProperty("Next", bResult)

' Set the initial value of the SharedProperty to
' 0 if the SharedProperty didn't already exist.
If bResult = False Then

 spmPropNextReceipt.Value = 0
End If
Access to shared properties is controlled through the CreatePropertyGroup method:
Set spmGroup = _
 spmMgr.CreatePropertyGroup("Receipt", _
 LockMethod, Process, bResult)
CreatePropertyGroup has two parameters, isolation mode and release mode. The isolation mode for
the Receipt property group is set to LockMethod, which ensures that two instances of the Receipt
object can't read or write to the same property during a call to GetNextReceipt. The release mode for
the Receipt property group is set to Process, which maintains the property group until the server
process is terminated.

See Also
Application Design Notes: Sharing State by Using the Shared Property Manager,
SharedPropertyGroupManager object , CreateProperty method asmthCreatePropertyvb,
CreatePropertyGroup method asmthCreatePropertyGroupvb

Application Design Notes: Sharing State by Using the Shared
Property Manager
Using the Shared Property Manager makes sharing state in a multiuser environment as easy as it is
in a single-user environment. Without the use of the Shared Property Manager, the application would
require much more code that has nothing to do with the business problem at hand.

One alternate way to create the same functionality would be to maintain the receipt number as a
member variable of the Receipt component. However, this complicates coding the Receipt component
immensely. The Receipt component would have to remain persistent in memory during the life of the
server process. This would require the following additional code:

· Referencing all instances of MoveMoney to the Receipt object.
· Maintaining a locking mechanism to prevent concurrent access to the Receipt object.

Even after adding this code, the application wouldn't be extensible for additional shared properties.
The Shared Property Manager is another example of how Microsoft Transaction Server provides the
infrastructure for server applications so that you can concentrate on coding business logic.

Location Transparency and the Shared Property Manager
For objects to share state, they all must be running in the same server process with the Shared
Property Manager.
To maintain location transparency, it's a good idea to limit the use of a shared property group to
objects created by the same component, or to objects created by components implemented within the
same DLL. When components provided by different DLLs use the same shared property group, you
run the risk of an administrator moving one or more of those components into a different package.
Because components in different packages generally run in different processes, objects created by
those components would no longer be able to share properties.

See Also
Resource Dispensers, Stateful Components, SharedPropertyGroupManager object

Stateful Components
This section discusses stateful components and outlines some of the issues associated with writing
stateful application components.

Scenario: Holding State in the MoveMoney Component
Consider the design alternative of holding state within objects.
Adding a New Method to the MoveMoney Component
Add the StatefulPerform method, which uses MoveMoney to maintain
account number values.
Application Design Notes: The Trade-offs of Using Stateful Objects
Learn how holding state in objects affects the application behavior within
the Microsoft Transaction Server run-time environment.

See Also
Transactions

Scenario: Holding State in the MoveMoney Component
Building stateful objects is a useful approach in application design. However, such design can have
performance trade-offs. This section demonstrates how holding state in objects affects the application
behavior within the Microsoft Transaction Server run-time environment.

You will modify the MoveMoney component to be stateful by adding the StatefulPerform function to
MoveMoney. StatefulPerform is called when you click Stateful MoveMoney on the Sample Bank
client. This new function causes MoveMoney to retain data in member variables between method
calls.

See Also
Transactions, Deactivating Objects, Context Objects, Stateful Components

Adding a New Method to the MoveMoney Component
To implement the scenario for this section, you will add a method similar to Perform, named
StatefulPerform, which uses class member variables to set account numbers. Thus, MoveMoney
becomes a stateful object when StatefulPerform is called.

 To add a new function to the MoveMoney component
1 Open the \Mts\Samples\Account.VB\Step6\Account.vbp project.
 Click here to see the StatefulPerform method
2 Build the component as a dynamic-link library (DLL) and save it as \Mts\Samples\Account.VB\

Step6\VBAcct.dll.

The code for StatefulPerform calls the Perform method. The methods differ in how the account
numbers are set. Class member variables for each account must be set before calling
StatefulPerform, whereas Perform passes the account numbers by value through function
parameters.

When you click the MoveMoney option in the Sample Bank client, it calls the following code to
initialize the function:
StatefulPerform = Perform(PrimeAccount, SecondAccount, lngAmount,
lngTranType)
When you click the Stateful MoveMoney option, the Sample Bank client calls the following code to
initialize the function:
obj.PrimeAccount = PrimeAcct
obj.SecondAccount = lSecondAcct
Res = obj.StatefulPerform(CLng(Amount), TranType)
The PrimeAccount and SecondAccount properties are actually separate class member variables on
the MoveMoney object. Note that the PrimeAccount and SecondAccount properties aren't accessed
through the Shared Property Manager properties; the MoveMoney object controls getting and setting
the account number values, thus making the MoveMoney object stateful.

Run the Bank client with the MoveMoney option. Then run it again with the Stateful MoveMoney
option. You should notice that the stateless version is slightly faster. Try running multiple Bank clients
with concurrent transactions. You should notice that the stateless version performs significantly better.
The next section explains why.

See Also
Transactions, Deactivating Objects, Context Objects, Stateful Components

Application Design Notes: The Trade-offs of Using Stateful Objects
This section explains the trade-offs of using stateful objects in your applications.

Why does MoveMoney outperform Stateful MoveMoney?
In the previous section, you saw that the time per transaction in MoveMoney and Stateful
MoveMoney using a single Sample Bank client is nearly the same. However, as the number of
concurrent transactions increases, MoveMoney begins to outperform Stateful MoveMoney
significantly . At first glance, the code doesn't seem to account for the lag.

Class member variables for each account must be set before calling StatefulPerform, whereas
Perform passes the account numbers by value through function parameters. The call to return the
value of the account number in the MoveMoney object isn't an intensive operation. So what explains
the performance degradation?

The reason is that Microsoft Transaction Server cannot commit transactions until it completes a
method call. To maintain internal state, additional method calls are made on the MoveMoney object,
thereby delaying the object from completing its work. This delay may cause server resources, such as
database connections, to be held longer, therefore decreasing the amount of resources available for
other clients. In other words, the application won't scale well.

The following diagram illustrates this point. The arrow on the left indicates time, which translates into
performance. The arrow on the right indicates the server resources consumed, which translates into
throughput. Transaction A represents a call made to stateless objects. On return from the method call,
Transaction Server determines that the transaction can be committed, allowing the object to release
its resources and be deactivated. On the other hand, Transaction B holds state between method calls,
which increases the time that the server holds onto resources for that transaction. As the number of
clients increases, so does the time required for transactions to be completed.

Another Pitfall When Using Stateful Objects
Examine the following excerpt from the Sample Bank client code (some code has been omitted for
clarity).

For i = 1 To nTrans
.
.
.
obj.PrimeAccount = PrimeAcct
obj.SecondAccount = lSecondAcct
Res = obj.StatefulPerform(CLng(Amount), TranType
.
.
.

Next i
Because the account numbers don't change, you might be inclined to rearrange the code as follows:
obj.PrimeAccount = PrimeAcct
obj.SecondAccount = lSecondAcct

For i = 1 To nTrans
Res = obj.StatefulPerform(CLng(Amount), TranType

Next i
If you modify the code and then run the Sample Bank client for multiple transactions, the application
fails on the second transaction. Why?

The answer is subtle. MoveMoney uses SetComplete to notify Transaction Server that it has
completed its work. At this point, the MoveMoney object is deactivated. In the process of deactivation,
all of the object's member variables are reinitialized. The next call to MoveMoney causes just-in-time
activation. The activated object is now in its initial state, meaning the values of PrimeAccountNo and
SecondAccountNo are both zero. Thus, the next call to StatefulPerform fails because of an invalid
account number.

This is yet another reason to be careful when maintaining state in objects. Clients of application
objects must be aware of how an object uses SetComplete to ensure that any state the object
maintains won't be needed after the object undergoes just-in-time activation.

See Also
Transactions, Deactivating Objects, Context Objects, Stateful Components, ObjectContext object ,
SetComplete method

Multiple Transactions
This section explains the benefits of distributing work among multiple transactions.

Scenario: Storing Receipt Numbers in a Database
Add the UpdateReceipt component, which stores a maximum receipt
number in a database and runs in a new transaction.
Creating the UpdateReceipt Component
Create the UpdateReceipt component, and modify the Receipt component
to use UpdateReceipt.
Application Design Notes: Using Separate Transactions
Learn why this scenario requires separate transactions.

See Also
Transactions, Transaction Attributes, Activities

Scenario: Storing Receipt Numbers in a Database
In Sharing State, you added the Receipt component, which assigns a unique receipt number to each
monetary transaction. The Shared Property Manager maintains these values, so they exist for the
duration of the server process. In this section, you will add code to store a maximum receipt number
in a database. Storing them makes receipt numbers unique beyond the life of the server process.

You will create the UpdateReceipt component, which stores a maximum receipt number in a
database. When this maximum is reached, which happens on every one-hundredth transaction,
UpdateReceipt adds 100 to the maximum receipt value and updates the database.

You will install the UpdateReceipt component so that it creates a new transaction, separate from
those of the Account objects. The section will then discuss the advantages of using multiple
transactions in this scenario. The application looks like the following figure (the Shared Property
Manager and its associated objects are omitted for clarity):

See Also
Transactions, Transaction Attributes, Activities, Sharing State

Creating the UpdateReceipt Component
To implement the scenario for this section, you will build the UpdateReceipt component. You will also
modify the Receipt component's Update method to use UpdateReceipt. Update adds 100 to the
maximum receipt value stored in the database.

 Click here to see the Update method
You also need to add code to the GetNextReciept method of the Receipt component to check whether the
maximum receipt value has been reached. If so, the Update method is called.
 Click here to see the GetNextReceipt method

To create the UpdateReceipt component
1 Open the \Mts\Samples\Account.VB\Step7\Account.vbp project.
2 Build the component as a dynamic-link library (DLL) and save it as \Mts\Samples\Account.VB\

Step7\VBAcct.dll.

By adding a new class module, you add a new COM component to this DLL. Therefore, you need to
delete the existing components in the Microsoft Transaction Server Explorer and then install the new
components.

To reinstall your components
1 Remove the Account, MoveMoney, CreateTable, and Receipt components from the Transaction

Server Explorer.
 How?
2 Add the new components. Use the DLL you created in \Mts\Samples\Account.VB\Step7\VBAcct.dll.
 How?

To set the transaction attributes for your components
1 For the Account and MoveMoney components, set the transaction attribute to Requires a

transaction.
 How?
2 For the Receipt component, set the transaction attribute to Does not support transactions. This

is the default value.
3 For the CreateTable and UpdateReceipt components, set the transaction attribute to Requires a

new transaction.

The code you added here is similar to the code you added in "Building Transactional Components."
However, choosing Requires a new transaction causes the UpdateReceipt component to run in a
new transaction. The next section discusses how this affects application behavior.

See Also
Transactions, Transaction Attributes

Application Design Notes: Using Separate Transactions
In Building Transactional Components, you saw the benefits of composing work under a transaction.
The scenario in this section demonstrates a case in which using multiple transactions within an
activity is required.

The major functional change in this scenario is the addition of the UpdateReceipt component, which
makes the maximum receipt number durable by storing it in a database. As in Sharing State, the
Shared Property Manager stores the receipt number. On every 100 transactions, the value in the
database is incremented by 100. This dispenses a block of receipt numbers that are assigned to the
next 100 transactions.

The UpdateReceipt component has a transaction attribute of Requires a new transaction. This
guarantees that UpdateReceipt's work happens in a separate transaction. Thus, there is no
connection between the success or failure of Account's work and UpdateReceipt's work.

This might appear to lower the fault tolerance of the application. For example, if the Account object
aborts the transaction, a receipt number is still assigned. Therefore, skips in the receipt number
sequence are possible. However, the application doesn't really need consecutively increasing receipt
numbers—it just requires that there be no duplicate receipts. In this scenario, it's more important for
the monetary transaction to be completed properly. Furthermore, requesting an update on every one-
hundredth transaction improves performance by conserving calls to the database.

Composing both database updates under a single transaction would reduce the application's
scalability. Even though UpdateReceipt is a simple update, it would consume more server resources
because the database connection would have to be maintained until the Account object has
completed its work. Thus, locks would be held longer than necessary, preventing other clients from
writing to the database. Only when all work has been completed could these resources be freed.

See Also
Transactions, Transaction Attributes

Secured Components
This chapter shows how to use Microsoft Transaction Server's security features to restrict the use of
application features to designated users.

Scenario: Adding Role Checking to the MoveMoney and Account Components
Add role checking to the MoveMoney and Account components to limit the
transaction amount for designated users.
Using IsCallerInRole in the MoveMoney and Account Components
Use the IsCallerInRole method in the MoveMoney and Account components to
verify that the user running the Bank client is a manager.
Application Design Notes: Using Roles
Learn how roles are useful in building secured components and how security
boundaries are determined.

See Also
Programmatic Security

Scenario: Adding Role Checking to the MoveMoney and Account
Components
For this scenario, you will limit which users have the ability to perform transactions of more than $500.
You will add code to the MoveMoney and Account components that checks to see if the user of the
Bank client is a manager. This is accomplished by defining a Manager role. Roles provide the
flexibility a developer needs to build secured components without tying the implementation to a
specific deployment domain.

See Also
Programmatic Security, Application Design Notes: Using Roles

Using IsCallerInRole in the MoveMoney and Account Components
You will add the IsCallerInRole method to the MoveMoney and Account components to verify that the
user running the Bank client is a manager. This additional code is the same for both components. You
must modify both components because clicking Account in the Bank client doesn't use the
MoveMoney component when the Sample Bank application runs.

To use IsCallerInRole in the MoveMoney and Account components
1 Open the \Mts\Samples\Account.VB\Step8\Account.vbp project.
 Click here to see the modified MoveMoney component
 Click here to see the modified Account component
2 Build the component as a DLL and save it as \Mts\Samples\Account.VB\Step8\VBAcct.dll.

IsCallerInRole is a method on an object's context. IsCallerInRole returns TRUE if the direct caller of
that object is assigned to a given role. You will use IsCallerInRole in the MoveMoney and Account
components to verify if the caller of an object ¾ in this case the user running the Bank client ¾ is a
manager.
If (lngAmount > 500 Or lngAmount < -500) Then
 If Not GetObjectContext.IsCallerInRole("Managers") Then
 Err.Raise Number:=APP_ERROR, _
 Description:="Need 'Managers' role for amounts over $500"
 End If
End If
Before you can use the new MoveMoney and Account components, you must create the role. The
Manager role must exist before the call to IsCallerInRole; otherwise, you will get an error.

Note that the source code is bound to a role name scoped to a package. This creates a dependancy
between the source and the package definition that must be considered when making modifications to
a Package's security configuration, such as deleting a role.

To define a role for the Sample Bank package
1 Start the Microsoft Transaction Server Explorer.

If you are currently running Sample Bank, you must shut down the associated server process to
change security properties.

 How?
2 Create a role named Manager.
 How?
3 Assign users to the role. If you have access to more than one Windows NT account, you may want

to exclude some user accounts from the Manager role to see the role checking in effect.
 How?
Run the Bank client. If you are logged on as a user in the Manager role, you will be able to perform
transactions of any amount. However, if you are logged on as a user who isn't in the Manager role,
you will get a warning message when attempting a transaction of more than $500. The transaction will
then abort. If you don't have access to more than one account, try removing your user account from
the role to see the role checking enforced.

 How?
See Also
Programmatic Security, Enabling MTS Package Security, Application Design Notes: Using Roles,
IsCallerInRole method

Application Design Notes: Using Roles
This section explains how roles are useful in building secured components. It also discusses how
deployment configuration determines security boundaries.

Roles
A role is a symbolic name that defines a group of users for a package of components. Roles extend
Windows NT security to allow a developer to build secured components in a distributed application. In
this scenario, the Manager role is defined at development time, but not yet bound to specific users.
For each deployment of the application, the administrator can then assign the users and groups to a
role in order to customize the application for his or her business.

In this scenario, role checking is done by the MoveMoney and Account objects. When both
MoveMoney and Account objects are used, the second check (on the Account object) is redundant.
However, it yields the same result, because IsCallerInRole applies to the direct caller, and both the
MoveMoney and Account objects run in the same server process.

If you place the MoveMoney and Account components into separate packages, the components run
in separate server processes. In this scenario, calling IsCallerInRole on the Account object context
would check if the MoveMoney object's associated server process is running in the Manager role.
MoveMoney is now the direct caller because a process boundary has been crossed.

The Account object runs under a package identity that gives that process full access to the bank
account database. Account objects have the authority to update any account for any amount. Roles
provide a means of permitting and denying access to objects. Once this permission is granted, the
client, in effect, has the same access rights as the server process.

When you configured the package, you chose a package identity of Interactive User. In a real-world
scenario, packages are more likely to run as a specific user, such as SampleBank, which has access
rights to the database.

Returning to the scenario where you split the MoveMoney and Account components into separate
packages, running as the SampleBank user solves the role checking problem. Adding the
SampleBank user to the Manager role would allow the second IsCallerInRole check (on the Account
object) to always succeed.

Security Boundaries Are Process-Wide

Transaction Server security is enabled only within a server process. Because the MoveMoney
component is configured to run within a server process, role checking is enabled.

If you configure the Sample Bank components to run in-process, role checking would be disabled. In
this case, IsCallerInRole always returns TRUE, which means the direct caller would always pass the
authorization check.

You could use the IsSecurityEnabled method to check if Transaction Server security can be used.
IsSecurityEnabled returns FALSE when the object runs in-process. Using IsSecurityEnabled, you
could rewrite the role-checking code to disable transactions when objects aren't running in a secured
environment.

In-process components share the same level of trust as the base client. Because of this, it isn't
recommended that you deploy your secured components to be loaded in-process with their clients.

See Also
Programmatic Security, Enabling MTS Package Security, IsCallerInRole method ,
IsSecurityEnabled method

MTS Reference

Visual Basic
Functions
Methods
Objects
Properties
Language Summary

Visual C++
Functions
Interfaces
Methods
Language Summary

Visual J++
Interfaces
Methods
Language Summary

Functions (Visual Basic)
GetObjectContext
SafeRef

Objects (Visual Basic)
You use the following object in base clients:

TransactionContext

You use the following objects in components:

ObjectContext
SecurityProperty
SharedProperty
SharedPropertyGroup
SharedPropertyGroupManager

Methods (Visual Basic)
Abort
Activate
CanBePooled
Commit
Count
CreateInstance
CreateInstance (Transaction Context)

CreatePropertyGroup
CreateProperty
CreatePropertyByPosition
Deactivate
DisableCommit
EnableCommit
GetDirectCallerName
GetDirectCreatorName
GetOriginalCallerName
GetOriginalCreatorName
IsCallerInRole
IsInTransaction
IsSecurityEnabled
Item
SetAbort
SetComplete

Properties (Visual Basic)
Group
Property
PropertyByPosition
Value

Language Summary (Visual Basic)
Abort method

Activate method
CanBePooled method
Commit method
Count method

CreateInstance method
CreateInstance method (Transaction Context)

CreateProperty method
CreatePropertyByPosition method
CreatePropertyGroup method
Deactivate method
DisableCommit method
EnableCommit method
GetDirectCallerName method
GetDirectCreatorName method
GetObjectContext function
GetOriginalCallerName method
GetOriginalCreatorName method
Group property

IsCallerInRole method
IsInTransaction method
IsSecurityEnabled method
Item method

ObjectContext object
Property property
PropertyByPosition property
SafeRef function
SecurityProperty object
SetAbort method
SetComplete method
SharedProperty object
SharedPropertyGroup object
SharedPropertyGroupManager object
TransactionContext object
Value property

Functions (Visual C++)
GetObjectContext
SafeRef

Interfaces (Visual C++)
You use the following object in base clients:

ITransactionContext

You use the following objects in components:

IGetContextProperties
IObjectContext
IObjectContextActivity
IObjectControl
ISecurityProperty
ISharedProperty
ISharedPropertyGroup
ISharedPropertyGroupManager

Methods (Visual C++)
Abort
Activate
CanBePooled
Commit
Count
CreateInstance
CreateInstance (Transaction Context)

CreatePropertyGroup
CreateProperty
CreatePropertyByPosition
Deactivate
DisableCommit
EnableCommit
EnumNames
get__NewEnum
get_Group
get_Property
get_PropertyByPosition
get_Value
GetActivityId
GetDirectCallerSID
GetDirectCreatorSID
GetOriginalCallerSID
GetOriginalCreatorSID
GetProperty
IsCallerInRole
IsInTransaction
IsSecurityEnabled
put_Value
ReleaseSID
SetAbort
SetComplete

Language Summary (Visual C++)
Abort method

Activate method
CanBePooled method
Commit method
Count method

CreateInstance method
CreateInstance method (Transaction Context)

CreateProperty method
CreatePropertyByPosition method
CreatePropertyGroup method
Deactivate method
DisableCommit method
EnableCommit method
EnumNames method
get__NewEnum method
get_Group method
get_Property method
get_PropertyByPosition method
get_Value method
GetActivityId method
GetDirectCallerSID method
GetDirectCreatorSID method
GetObjectContext function
GetOriginalCallerSID method
GetOriginalCreatorSID method
GetProperty method
IGetContextProperties interface
IObjectContext interface
IObjectContextActivity interface
IObjectControl interface
IsCallerInRole method
ISecurityProperty interface
ISharedProperty interface
ISharedPropertyGroup interface
ISharedPropertyGroupManager interface
IsInTransaction method

IsSecurityEnabled method
ITransactionContextEx interface
put_Value method
ReleaseSID method
SafeRef function
SetAbort method
SetComplete method

Interfaces (Visual J++)
You use the following object in base clients:

ITransactionContext
You use the following objects in components:

IGetContextProperties
IObjectContext
IObjectControl
ISharedProperty
ISharedPropertyGroup
ISharedPropertyGroupManager

Methods (Visual J++)
Abort
Activate
CanBePooled
Commit
Count
CreateInstance
CreateInstance (Transaction Context)

CreatePropertyGroup
CreateProperty
CreatePropertyByPosition
Deactivate
DisableCommit
EnableCommit
EnumNames
get_NewEnum
getGroup
getProperty
GetProperty
getPropertyByPosition
getValue
IsCallerInRole
IsInTransaction
IsSecurityEnabled
MTx.GetObjectContext
MTx.SafeRef
putValue
SetAbort
SetComplete

Language Summary (Visual J++)
Abort method

Activate method
CanBePooled method
Commit method
Count method

CreateInstance method
CreateInstance method (Transaction Context)

CreateProperty method
CreatePropertyByPosition method
CreatePropertyGroup method
Deactivate method
DisableCommit method
EnableCommit method
EnumNames method
get_NewEnum method
getGroup method
getProperty method
GetProperty method
getPropertyByPosition method
getValue method
IObjectContext interface
IObjectControl interface
IsCallerInRole method
ISharedProperty interface
ISharedPropertyGroup interface
ISharedPropertyGroupManager interface
IsInTransaction method
IsSecurityEnabled method
ITransactionContextEx interface
MTx.GetObjectContext method
MTx.SafeRef method
putValue method
SetAbort method
SetComplete method

IGetContextProperties Interface
The IGetContextProperties interface provides access to context object properties.

Remarks
The header file for the IGetContextProperties interface is mtx.h.

The IGetContextProperties interface exposes the following methods.

Method Description
Count Returns the number of properties associated with the

context object.
EnumNames Returns a reference to an enumerator that you can use to

iterate through all the context object properties.
GetProperty Returns a context object property.

See Also
Context Objects

IGetContextProperties::Count Method
Returns the number of context object properties.

Provided By
IGetContextProperties

HRESULT IGetContextProperties::Count (
long * plCount);

Parameters
plCount

[out] The number of properties.

Return Values
S_OK

A valid count is returned in the plCount parameter.
E_INVALIDARG

The valid count could not be returned.

Example

IGetContextProperties::EnumNames Method
Returns a reference to an enumerator that you can use to iterate through all the context object
properties.

Provided By
IGetContextProperties

HRESULT IGetContextProperties::EnumNames (
IEnumNames ** ppenum);

Parameters
ppenum

[out] A reference to the IEnumNames interface on a new enumerator object that you can use to
iterate through all the context object properties.

Return Values
S_OK

A reference to the requested enumerator is returned in the ppenum parameter.
E_INVALIDARG

The requested enumerator could not be returned.

Remarks
You use the EnumNames method to obtain a reference to an enumerator object. The returned
IEnumNames interface exposes several methods you can use to iterate through a list of BSTRs
representing context object properties. Once you have a name, you can use the GetProperty method
to obtain a reference to the context object property it represents. See the COM documentation for
information on enumerators.

As with any COM object, you must release an enumerator object when you're finished using it.

Example

IGetContextProperties::GetProperty Method
Returns a context object property.

Provided By
IGetContextProperties

HRESULT IGetContextProperties::GetProperty (
BSTR name
VARIANT * pProperty);

Parameters
name

[in] The name of the context object property to be retrieved.
pProperty

[out] The returned pointer to the property.

Return Values
S_OK

The property was returned successfully.
S_FALSE

The property was not found.
E_INVALIDARG

The name parameter was invalid.

Remarks
You can use GetProperty to retrieve the following Microsoft Internet Information Server (IIS) intrinsic
objects:

· Request

· Response

· Server

· Application

· Session

For more information, see the IIS documentation.

To retrieve an IIS object, call QueryInterface using the VT_DISPATCH member of the returned
VARIANT for the interface to the IIS object (for example IReponse for the Response object).

Note Context properties are not available in MTS 1.0 server processes.

Example

Count, EnumNames, GetProperty Methods Example
#include "stdafx.h"
#include <initguid.h>
#include "asptlb.h"
#include "mtx.h"

HRESULT hr = NOERROR;

// Get the context object
CComPtr<IObjectContext> pObjectContext;
hr = GetObjectContext(&pObjectContext);

// Get the Response object
CComVariant v;
CComBSTR bstr(L"Response");
CComQIPtr<IGetContextProperties, &IID_IGetContextProperties>
pProps(pObjectContext);
hr = pProps->GetProperty(bstr, &v);
CComPtr<IDispatch> pDisp;
pDisp = V_DISPATCH(&v);
CComQIPtr<IResponse, &IID_IResponse> pResponse(pDisp);

// Print number of properties
long lCount;
hr = pProps->Count(&lCount);
bstr = L"<p>Number of properties: ";
CComBSTR bstrCount;
VarBstrFromI4(lCount, 0, 0, &bstrCount);
bstr.Append(bstrCount);
bstr.Append(L"</p>");
v = bstr;
hr = pResponse->Write(v);

// Iterate over properties collection and print the
// names of the properties
CComPtr<IEnumNames> pEnum;
CComBSTR bstrTemp;
pProps->EnumNames(&pEnum);
for (int i = 0; i < lCount; ++i)
{

pEnum->Next(1, &bstr, NULL);
bstrTemp = L"<p>";
bstrTemp.Append(bstr);
bstrTemp.Append(L"</p>");
v = bstrTemp;
hr = pResponse->Write(v);

}

IGetContextProperties Interface
The IGetContextProperties interface provides access to context object properties.

Remarks
The IGetContextProperties interface is declared in the package com.ms.mtx.
The IGetContextProperties interface exposes the following methods.

Method Description
Count Returns the number of properties associated with the

context object.
EnumNames Returns a reference to an enumerator that you can use to

iterate through all the context object properties.
GetProperty Returns a context object property.

See Also
Context Objects

IGetContextProperties.Count Method
Returns the number of context object properties.

Provided By
IGetContextProperties

int Count();
Return Value
The number of properties.

Example

IGetContextProperties.EnumNames Method
Returns a reference to an enumerator that you can use to iterate through all the context object
properties.

Provided By
IGetContextProperties

IEnumNames EnumNames ();
Return Value
A reference to the IEnumNames interface on a new enumerator object that you can use to iterate
through the list of all the shared property groups in the process.

Remarks
You use the EnumNames method to obtain a reference to an enumerator object. The returned
IEnumNames interface exposes several methods you can use to iterate through a list of string
expressions representing context object properties. Once you have a name, you can use the
GetProperty method to obtain a reference to the context object property it represents. See the COM
documentation for information on enumerators.

Example

IGetContextProperties.GetProperty Method
Returns a context object property.

Provided By
IGetContextProperties

Variant GetProperty(
String name);

Parameters
name

[in] The name of the context object property to be retrieved.

Return Value
The requested context object property.

Remarks
You can use GetProperty to retrieve the following Microsoft Internet Information Server (IIS) intrinsic
objects:

· Request

· Response

· Server

· Application

· Session

For more information, see the IIS documentation.

To retrieve an IIS object, use the getDispatch method of returned Variant and cast this value to the
interface to the IIS object (for example IReponse for the Response object).

Note Context properties are not available in MTS 1.0 server processes.

Example

Count, EnumNames, GetProperty Methods Example
import com.ms.com.*;
import com.ms.mtx.*;
import asp.*;

// Get the context object
IGetContextProperties icp;
IResponse iresp;
Variant av = new Variant();
icp = (IGetContextProperties)MTx.GetObjectContext();

// Get the Response object
av = icp.GetProperty("Response");
iresp = (IResponse) av.getDispatch();
av.VariantClear();

// Print number of properties
String str;
int pc;
pc = icp.Count();
str = "<p>Number of properties: " + pc + "</p>";
av.putString(str);
iresp.Write (av);
av.VariantClear();

// Iterate over properties collection and print the
// names of the properties
IEnumNames iEnum = null;
int howmany = 1;
String[] names = new String[1];
int fetched;
iEnum = icp.EnumNames();
for (int i = 0; i < pc; ++i)
{

fetched = iEnum.Next(howmany, names);
str = "<p>" + names[0] + "</p>";
av.putString(str);
iresp.Write (av);
av.VariantClear();

}

ObjectControl Object
You implement the ObjectControl interface when you want to define context-specific initialization and
cleanup procedures for your MTS objects and specify whether or not the objects can be recycled.
Implementing the ObjectControl interface is optional.

Remarks
To use the ObjectControl object, you must set a reference to the Microsoft Transaction Server Type
Library (MTxAS.dll).

If you implement the ObjectControl interface in your component, the MTS run-time environment
automatically calls the ObjectControl methods on your objects at the appropriate times.

When an object supports the ObjectControl interface, MTS calls its Activate method once for each
time the object is activated. The Activate method is called before any of the object's other methods
are called. You can use this method to perform any context-specific initialization an object may
require.

MTS calls the object's Deactivate method each time the object is deactivated. This can be the result
of the object returning from a method in which it calls SetComplete or SetAbort, or due to the root of
the object's transaction, causing the transaction to complete. You use the Deactivate method to clean
up state that you initialized in the Activate method.

After calling the Deactivate method, the MTS run-time environment calls the CanBePooled method.
If this method returns True, the deactivated object is placed in an object pool for reuse. If the
CanBePooled method returns False, the object is released in the usual way.

Note On systems that don't support object pooling, the value returned by this method is ignored.

The ObjectControl interface is not accessible to an object's clients or to the object itself. Only the
MTS run-time environment can invoke the ObjectControl methods.

The ObjectControl interface provides the following methods.

Method Description
Activate Allows an object to perform context-specific

initialization whenever it's activated. This method is
called by the MTS run-time environment before any
other methods are called on the object.

CanBePooled Allows an object to notify the MTS run-time
environment of whether it can be pooled for reuse.
Return True if you want instances of this component to
be pooled, or False if not.

Deactivate Allows an object to perform whatever cleanup is
necessary before it's recycled or destroyed. This
method is called by the MTS run-time environment
whenever an object is deactivated.

See Also
Deactivating Objects, Object Pooling and Recycling

Activate Method
Implementing this method allows an MTS object to perform context-specific initialization whenever it's
activated. This method is called by the MTS run-time environment before any other methods are
called on the object.

Applies To
ObjectContext Object

Syntax
objectcontrol.Activate
The objectcontrol placeholder represents is an object variable that evaluates to an ObjectControl
object.

Remarks
To use the ObjectControl object, you must set a reference to the Microsoft Transaction Server Type
Library (MTxAS.dll).

Whenever a client calls an MTS object that isn't already activated, the MTS run-time environment
automatically activates the object. This is called just-in-time activation. For components that support
the ObjectControl interface, MTS invokes the object's Activate method before passing the client's
method call on to the object. This allows objects to do context-specific initialization.

If you need to perform any initialization that involves the ObjectContext, you should implement the
Activate method and place all your context-specific initialization procedures there.

For example, you can use the Activate method to obtain a reference to an object's context and store
it in a member variable. Then the context is available to any method that requires it, and you don't
have to acquire a new one and then release it every time you use it. Once you have a reference to
the object's context, you can use the IObjectContext methods to check whether security is enabled,
whether the object is executing in a transaction, or whether the caller is in a particular role.

If you're enabling object recycling (returning True from the CanBePooled method), the Activate
method must be able to handle both newly created and recycled objects. When the Activate method
returns, there should be no distinguishable difference between a new object and a recycled one.

Example

See Also
Deactivating Objects, Object Pooling and Recycling

Activate Method Example

Implements ObjectControl
Dim context As ObjectContext
Option Explicit

Private Sub ObjectControl_Activate()
' Get a reference to the object's context here,
' so it can be used by any method that may be
' called during this activation of the object.
Set context = GetObjectContext()

End Sub

CanBePooled Method
Implementing this method allows an MTS object to notify the MTS run-time environment of whether it
can be pooled for reuse. Return True if you want the object to be pooled for reuse, or False if not.

Applies To
ObjectContext Object

Syntax
objectcontrol.CanBePooled (True | False)
The objectcontrol placeholder represents is an object variable that evaluates to an ObjectControl
object.

Return Values
True

Notifies the MTS run-time environment that it can pool this object on deactivation for later reuse.
False

Notifies the MTS run-time environment that it should not pool this object on deactivation, but should
release its last reference to the object so that the object will be destroyed.

Remarks
To use the ObjectControl object, you must set a reference to the Microsoft Transaction Server Type
Library (MTxAS.dll).

When an object returns True from the CanBePooledmethod, it indicates to the MTS run-time
environment that it can be added to an object pool after deactivation rather than being destroyed.
Whenever an instance is required, one is drawn from the pool rather than created.

The way recycling works is that an object cleans itself up in its Deactivate method and is returned to
an object pool. Later, when an instance of the same component is needed, the cleaned up object can
be reused. For this to work, an object must be accessible on different threads each time it's activated.
Recycling isn't possible under the apartment threading model because, in that model, although an
object can be instantiated on any thread, it can only be used by the thread on which it was
instantiated. If you want instances of a component to be recyclable, you should register the
component with the ThreadingModel Registry value set to Both. This indicates to MTS that the
component's objects can be called from different threads.

In MTS, these objects will run under the apartment threading model and won't be recycled even if
they return True from the CanBePooled method. However, if you configure a component to support
both threading models, the component will run under the current version of MTS and will also be able
to take advantage of recycling as soon as it becomes available, without any changes to the code.

Deciding whether to enable recycling is a matter of weighing the costs and benefits. Recycling
requires writing additional code, and there's a risk that some state may be inadvertently retained from
one activation to the next. When you allow objects to be pooled, you have to be very careful in your
Activate and Deactivate methods to ensure that a recycled object is always restored to a state
that's equivalent to the state of a newly created object. Another consideration to take into account is
the amount of resources required to maintain an object pool. Objects that hold a lot of resources can
be expensive to pool. However, in certain situations, recycling can be extremely efficient, resulting in
improved performance and increased scalability. The trade-off is between the cost of holding onto
resources while objects are pooled (and inactive) versus the cost of creating and destroying the
resources.

It's usually best to enable recycling for objects that cost more to create than they cost to reinitialize.

For example, if a component contains a complex structure, and that structure can be reused, it could
save a lot of time if the structure didn't have to be recreated every time an instance of the component
was activated. This is a case in which you might want to enable recycling, which you would do by
returning True from the CanBePooled method.

The Activate method is called whether a new instance is created or a recycled instance is drawn
from the pool. Similarly, the Deactivate method is called every time the object is deactivated, whether
it's being destroyed or returned to the pool for recycling.

So, in this example, you'd use the object's Activate method to initialize, or reinitialize, the structure
that's being reused, and you'd use the Deactivate method to restore the object to a state that the
Activate method can handle. (The Activate method must be able to handle both new objects and
reused objects drawn from the pool.) This combined use of the Activate, Deactivate, and
CanBePooled methods eliminates the need to recreate reusable resources every time an instance is
activated.

For some objects, recycling isn't efficient. For example, if an object acquires a lot of state during its
lifetime that isn't reusable, and has little to do during its construction, it's usually cheaper to create a
new instance whenever one is needed. In that case, you would return False from the CanBePooled
method.

Note Returning True from the CanBePooled method doesn't guarantee that objects will be
recycled; it only gives the MTS run-time environment permission to recycle them. On systems that
don't support object pooling, a return value of True is ignored. Returning False from the
CanBePooled method guarantees that instances of a component aren't recycled.

Example

See Also
Deactivating Objects, Object Pooling and Recycling

CanBePooled Method Example

Implements ObjectControl
Dim context As ObjectContext
Option Explicit

Private Function ObjectControl_CanBePooled() As Boolean
' This object should not be recycled,
' so return false.
ObjectControl_CanBePooled = False

End Function

Deactivate Method
Implementing this method allows an MTS object to perform any cleanup required before it's recycled
or destroyed. This method is called by the MTS run-time environment whenever an object is
deactivated.

Applies To
ObjectContext Object

Syntax
objectcontrol.Deactivate
The objectcontrol placeholder represents is an object variable that evaluates to an ObjectControl
object.

Remarks
To use the ObjectControl object, you must set a reference to the Microsoft Transaction Server Type
Library (MTxAS.dll).

The MTS run-time environment calls the Deactivate method whenever an object that supports the
ObjectControl interface is deactivated. An object is deactivated when it returns from a method in
which it called SetComplete or SetAbort, when the transaction in which it executed is committed or
aborted, or when the last client to hold a reference on it releases its reference.

If the component supports recycling (returns True from the CanBePooled method), you should use
the Deactivate method to reset the object's state to the state in which the Activate method expects to
find it. You can also use the Deactivate method to release the object's ObjectContext or to do other
context-specific cleanup. Even if an object supports recycling, it can be beneficial to release certain
reusable resources in its Deactivate method. For example, ODBC provides its own connection
pooling. It's more efficient to pool a database connection in a general connection pool where it can be
used by other objects than it is to keep it tied to a specific object in an object pool.

Example

See Also
Deactivating Objects, Object Pooling and Recycling

Deactivate Method Example

Implements ObjectControl
Dim objcontext As ObjectContext
Option Explicit

Private Sub ObjectControl_Deactivate()
' Perform any necessary cleanup here.
Set objcontext = Nothing

End Sub

IObjectControl Interface
You implement the IObjectControl interface when you want to define context-specific initialization
and cleanup procedures for your MTS objects and specify whether or not the objects can be recycled.
Implementing the IObjectControl interface is optional.

Remarks
The header file for the IObjectControl interface is mtx.h.

If you implement the IObjectControl interface in your component, the MTS run-time environment
automatically calls the IObjectControl methods on your objects at the appropriate times.

When an object supports the IObjectControl interface, MTS calls its Activate method once for each
time the object is activated. The Activate method is called before any of the object's other methods
are called. You can use this method to perform any context-specific initialization an object may
require.

Note An object's context isn't available during object construction (from the object's class factory),
so context-specific initialization can't be performed in an object's constructor.
MTS calls the object's Deactivate method each time the object is deactivated. This can be the result
of the object returning from a method in which it calls SetComplete or SetAbort, or due to the root of
the object's transaction, causing the transaction to complete. You use the Deactivate method to clean
up state that you initialized in the Activate method.

After calling the Deactivate method, the MTS run-time environment calls the CanBePooled method.
If this method returns TRUE, the deactivated object is placed in an object pool for reuse. If the
CanBePooled method returns FALSE, the object is released in the usual way and its destructor is
invoked.

Note On systems that don't support object pooling, the value returned by this method is ignored.

The IObjectControl interface is not accessible to an object's clients or to the object itself. Only the
MTS run-time environment can invoke the IObjectControl methods. If a client queries for the
IObjectControl interface, QueryInterface will return E_NOINTERFACE.

The IObjectControl interface exposes the following methods.

Method Description
Activate Allows an object to perform context-specific

initialization whenever it's activated. This method is
called by the MTS run-time environment before any
other methods are called on the object.

CanBePooled Allows an object to notify the MTS run-time
environment of whether it can be pooled for reuse.
Return TRUE if you want instances of this component
to be pooled, or FALSE if not.

Deactivate Allows an object to perform whatever cleanup is
necessary before it's recycled or destroyed. This
method is called by the MTS run-time environment
whenever an object is deactivated.

See Also
Deactivating Objects, Object Pooling and Recycling

IObjectControl::Activate Method
Implementing this method allows an MTS object to perform context-specific initialization whenever it's
activated. This method is called by the MTS run-time environment before any other methods are
called on the object.

Provided By
IObjectContext

HRESULT IObjectControl::Activate ();

Return Values
S_OK

The Activate method succeeded.
Failure HRESULT

Any error code indicating why an object was unable to activate itself.

Remarks
Whenever a client calls an MTS object that isn't already activated, the MTS run-time environment
automatically activates the object. This is called just-in-time activation. For components that support
the IObjectControl interface, MTS invokes the object's Activate method before passing the client's
method call on to the object. This allows objects to do context-specific initialization.

Because an object's context isn't available during object construction, you can't perform any
initialization that involves the ObjectContextinside the constructor. Instead, you should implement
the Activate method and place all your context-specific initialization procedures there.

For example, you can use the Activate method to obtain a reference to an object's context and store
it in a member variable. Then the context reference is available to any method that requires it, and
you don't have to acquire a new one and then release it every time you use it. Once you have a
reference to the object's context, you can use the IObjectContext methods to check whether security
is enabled, whether the object is executing in a transaction, or whether the caller is in a particular role.
You can also use the Activate method to obtain a reference to the object's SecurityProperty and
check the security ID of the object's creator before any methods are called.

If you're enabling object recycling (returning TRUE from the CanBePooled method), the Activate
method must be able to handle both newly created and recycled objects. When the Activate method
returns, there should be no distinguishable difference between a new object and a recycled one.

Example

See Also
Deactivating Objects, Object Pooling and Recycling

IObjectControl::Activate Method Example

#include <mtx.h>

IObjectContext* m_pObjectContext;

HRESULT MyObject::Activate()
{

// Get a reference to the object's context here,
// so it can be used by any method that may be
// called during this activation of the object.
HRESULT hr = GetObjectContext(&m_pObjectContext);
if (SUCCEEDED(hr))

return S_OK;
return hr;

}

IObjectControl::CanBePooled Method
Implementing this method allows an MTS object to notify the MTS run-time environment of whether it
can be pooled for reuse. Return TRUE if you want the object to be pooled for reuse, or FALSE if not.

Provided By
IObjectContext

BOOL IObjectControl::CanBePooled ();

Return Values
TRUE

Notifies the MTS run-time environment that it can pool this object on deactivation for later reuse.
FALSE

Notifies the MTS run-time environment that it should not pool this object on deactivation, but should
release its last reference to the object so that the object will be destroyed.

Remarks
When an object returns TRUE from the CanBePooledmethod, it indicates to the MTS run-time
environment that it can be added to an object pool after deactivation rather than being destroyed.
Whenever an instance is required, one is drawn from the pool rather than created by the class
factory.

The way recycling works is that an object cleans itself up in its Deactivate method and is returned to
an object pool. Later, when an instance of the same component is needed, the cleaned up object can
be reused. For this to work, an object must be accessible on different threads each time it's activated.
Recycling isn't possible under the apartment threading model because, in that model, although an
object can be instantiated on any thread, it can only be used by the thread on which it was
instantiated. If you want instances of a component to be recyclable, you should register the
component with the ThreadingModel Registry value set to Both. This indicates to MTS that the
component's objects can be called from different threads.

In MTS, these objects will run under the apartment threading model and won't be recycled even if
they return TRUE from the CanBePooled method. However, if you configure a component to support
both threading models, the component will run under the current version of MTS and will also be able
to take advantage of recycling as soon as it becomes available, without any changes to the code.

Deciding whether to enable recycling is a matter of weighing the costs and benefits. Recycling
requires writing additional code, and there's a risk that some state may be inadvertently retained from
one activation to the next. When you allow objects to be pooled, you have to be very careful in your
Activate and Deactivate methods to ensure that a recycled object is always restored to a state that's
equivalent to the state of a newly created object. Another consideration to take into account is the
amount of resources required to maintain an object pool. Objects that hold a lot of resources can be
expensive to pool. However, in certain situations, recycling can be extremely efficient, resulting in
improved performance and increased scalability. The trade-off is between the cost of holding onto
resources while objects are pooled (and inactive) versus the cost of creating and destroying the
resources.

It's usually best to enable recycling for objects that cost more to create than they cost to reinitialize.
For example, if a component contains a complex structure, and that structure can be reused, it could
save a lot of time if the structure didn't have to be recreated every time an instance of the component
was activated. This is a case in which you might want to enable recycling, which you would do by
returning TRUE from the CanBePooled method.

You could still create the structure in the object's constructor and release it in the destructor. The
constructor is only called once, when a new object is created by the class factory. When recycling is

enabled, that only happens when the object pool is empty. The Activate method, on the other hand,
is called whether a new instance is created by the class factory or a recycled instance is drawn from
the pool. Similarly, the object's destructor is only called when no further instances are needed, for
example, when the server is shutting down. The Deactivate method is called every time the object is
deactivated, whether it's being destroyed or returned to the pool for recycling.

So, in this example, you'd use the object's Activate method to initialize, or reinitialize, the structure
that's being reused, and you'd use the Deactivate method to restore the object to a state that the
Activate method can handle. (The Activate method must be able to handle both new objects created
by the class factory and reused objects drawn from the pool.) This combined use of the Activate,
Deactivate, and CanBePooled methods eliminates the need to recreate reusable resources every
time an instance is activated.

For some objects, recycling isn't efficient. For example, if an object acquires a lot of state during its
lifetime that isn't reusable, and has little to do during its construction, it's usually cheaper to create a
new instance whenever one is needed. In that case, you would return FALSE from the CanBePooled
method.

Note Returning TRUE from the CanBePooled method doesn't guarantee that objects will be
recycled; it only gives the MTS run-time environment permission to recycle them. On systems that
don't support object pooling, a return value of TRUE is ignored. Returning FALSE from the
CanBePooled method guarantees that instances of a component aren't recycled.

Example

See Also
Deactivating Objects, Object Pooling and Recycling

IObjectControl::CanBePooled Method Example

#include <mtx.h>

BOOL MyObject::CanBePooled()
{

// This object should not be recycled,
// so return false.
return FALSE;

}

IObjectControl::Deactivate Method
Implementing this method allows an MTS object to perform any cleanup required before it's recycled
or destroyed. This method is called by the MTS run-time environment whenever an object is
deactivated.

Provided By
IObjectContext

void IObjectControl::Deactivate ();.

Remarks
The MTS run-time environment calls the Deactivate method whenever an object that supports the
IObjectControl interface is deactivated. An object is deactivated when it returns from a method in
which it called SetComplete or SetAbort, when the transaction in which it executed is committed or
aborted, or when the last client to hold a reference on it releases its reference.

If the component supports recycling (returns TRUE from the CanBePooled method), you should use
the Deactivate method to reset the object's state to the state in which the Activatemethod expects to
find it. You can also use the Deactivate method to release the object's ObjectContext reference or to
do other context-specific cleanup. You can't do this in the Release method or the destructor, because
the IObjectContext interface isn't accessible from the destructor or any of the IUnknown methods.
Even if an object supports recycling, it can be beneficial to release certain reusable resources in its
Deactivate method. For example, ODBC provides its own connection pooling. It's more efficient to
pool a database connection in a general connection pool where it can be used by other objects than it
is to keep it tied to a specific object in an object pool.

Example

See Also
Deactivating Objects, Object Pooling and Recycling

IObjectControl::Deactivate Method Example

#include <mtx.h>

void MyObject::Deactivate(void)
{

// This object is no longer associated with this
// context, so release the reference it acquired in
// its Activate method.
m_pObjectContext->Release();

}

IObjectControl Interface
You implement the IObjectControl interface when you want to define context-specific initialization
and cleanup procedures for your MTS objects and specify whether or not the objects can be recycled.
Implementing the IObjectControl interface is optional.

Remarks
The IObjectControl interface is declared in the package com.ms.mtx.
If you implement the IObjectControl interface in your component, the MTS run-time environment
automatically calls the IObjectControl methods on your objects at the appropriate times.

When an object supports the IObjectControl interface, MTS calls its Activate method once for each
time the object is activated. The Activate method is called before any of the object's other methods
are called. You can use this method to perform any context-specific initialization an object may
require.

Note An object's context isn't available during object construction (from the object's class factory),
so context-specific initialization can't be performed in an object's constructor.
MTS calls the object's Deactivate method each time the object is deactivated. This can be the result
of the object returning from a method in which it calls SetComplete or SetAbort, or due to the root of
the object's transaction, causing the transaction to complete. You use the Deactivate method to clean
up state that you initialized in the Activate method.

After calling the Deactivate method, the MTS run-time environment calls the CanBePooled method.
If this method returns true, the deactivated object is placed in an object pool for reuse. If the
CanBePooled method returns false, the object is released in the usual way.

Note On systems that don't support object pooling, the value returned by this method is ignored.

The IObjectControl interface is not accessible to an object's clients or to the object itself. Only the
MTS run-time environment can invoke the IObjectControl methods.

The IObjectControl interface exposes the following methods.

Method Description
Activate Allows an object to perform context-specific

initialization whenever it's activated. This method is
called by the MTS run-time environment before any
other methods are called on the object.

CanBePooled Allows an object to notify the MTS run-time
environment of whether it can be pooled for reuse.
Return true if you want instances of this component
to be pooled, or false if not.

Deactivate Allows an object to perform whatever cleanup is
necessary before it's recycled or destroyed. This
method is called by the MTS run-time environment
whenever an object is deactivated.

See Also
Deactivating Objects, Object Pooling and Recycling

IObjectControl.Activate Method
Implementing this method allows an MTS object to perform context-specific initialization whenever it's
activated. This method is called by the MTS run-time environment before any other methods are
called on the object.

Provided By
IObjectContext

void Activate ();

Remarks
Whenever a client calls an MTS object that isn't already activated, the MTS run-time environment
automatically activates the object. This is called just-in-time activation. For components that support
the IObjectControl interface, MTS invokes the object's Activate method before passing the client's
method call on to the object. This allows objects to do context-specific initialization.

Because an object's context isn't available during object construction, you can't perform any
initialization that involves the ObjectContextinside the constructor. Instead, you should implement
the Activate method and place all your context-specific initialization procedures there.

For example, you can use the Activate method to obtain a reference to an object's context and store
it in a member variable. Then the context reference is available to any method that requires it, and
you don't have to acquire a new one and then release it every time you use it. Once you have a
reference to the object's context, you can use the IObjectContext methods to check whether security
is enabled, whether the object is executing in a transaction, or whether the caller is in a particular role.

If you're enabling object recycling (returning true from the CanBePooled method), the Activate
method must be able to handle both newly created and recycled objects. When the Activate method
returns, there should be no distinguishable difference between a new object and a recycled one.

Example

See Also
Deactivating Objects, Object Pooling and Recycling

IObjectControl.Activate Method Example

import com.ms.mtx.*;

void Activate()
{

// Get a reference to the object's context here,
// so it can be used by any method that may be
// called during this activation of the object.
m_ObjectContext = MTx.GetObjectContext()

}

IObjectControl.CanBePooled Method
Implementing this method allows an MTS object to notify the MTS run-time environment of whether it
can be pooled for reuse. Return true if you want the object to be pooled for reuse, or false if not.

Provided By
IObjectContext

boolean CanBePooled ();

Return Values
true

Notifies the MTS run-time environment that it can pool this object on deactivation for later reuse.
false

Notifies the MTS run-time environment that it should not pool this object on deactivation, but should
release its last reference to the object so that the object will be destroyed.

Remarks
When an object returns true from the CanBePooledmethod, it indicates to the MTS run-time
environment that it can be added to an object pool after deactivation rather than being destroyed.
Whenever an instance is required, one is drawn from the pool rather than created by the class
factory.

The way recycling works is that an object cleans itself up in its Deactivate method and is returned to
an object pool. Later, when an instance of the same component is needed, the cleaned up object can
be reused. For this to work, an object must be accessible on different threads each time it's activated.
Recycling isn't possible under the apartment threading model because, in that model, although an
object can be instantiated on any thread, it can only be used by the thread on which it was
instantiated. If you want instances of a component to be recyclable, you should register the
component with the ThreadingModel Registry value set to Both. This indicates to MTS that the
component's objects can be called from different threads.

In MTS, these objects will run under the apartment threading model and won't be recycled even if
they return true from the CanBePooled method. However, if you configure a component to support
both threading models, the component will run under the current version of MTS and will also be able
to take advantage of recycling as soon as it becomes available, without any changes to the code.

Deciding whether to enable recycling is a matter of weighing the costs and benefits. Recycling
requires writing additional code, and there's a risk that some state may be inadvertently retained from
one activation to the next. When you allow objects to be pooled, you have to be very careful in your
Activate and Deactivate methods to ensure that a recycled object is always restored to a state that's
equivalent to the state of a newly created object. Another consideration to take into account is the
amount of resources required to maintain an object pool. Objects that hold a lot of resources can be
expensive to pool. However, in certain situations, recycling can be extremely efficient, resulting in
improved performance and increased scalability. The trade-off is between the cost of holding onto
resources while objects are pooled (and inactive) versus the cost of creating and destroying the
resources.

It's usually best to enable recycling for objects that cost more to create than they cost to reinitialize.
For example, if a component contains a complex structure, and that structure can be reused, it could
save a lot of time if the structure didn't have to be recreated every time an instance of the component
was activated. This is a case in which you might want to enable recycling, which you would do by
returning true from the CanBePooled method.

You could still create the structure in the object's constructor because the constructor is only called
once, when a new object is created by the class factory. When recycling is enabled, that only happens

when the object pool is empty. The Activate method, on the other hand, is called whether a new
instance is created by the class factory or a recycled instance is drawn from the pool. Similarly, the
Deactivate method is called every time the object is deactivated, whether it's being destroyed or
returned to the pool for recycling.

So, in this example, you'd use the object's Activate method to initialize, or reinitialize, the structure
that's being reused, and you'd use the Deactivate method to restore the object to a state that the
Activate method can handle. (The Activate method must be able to handle both new objects created
by the class factory and reused objects drawn from the pool.) This combined use of the Activate,
Deactivate, and CanBePooled methods eliminates the need to recreate reusable resources every
time an instance is activated.

For some objects, recycling isn't efficient. For example, if an object acquires a lot of state during its
lifetime that isn't reusable, and has little to do during its construction, it's usually cheaper to create a
new instance whenever one is needed. In that case, you would return false from the CanBePooled
method.

Note Returning true from the CanBePooled method doesn't guarantee that objects will be
recycled; it only gives the MTS run-time environment permission to recycle them. On systems that
don't support object pooling, a return value of true is ignored. Returning false from the
CanBePooled method guarantees that instances of a component aren't recycled.

Example

See Also
Deactivating Objects, Object Pooling and Recycling

IObjectControl.CanBePooled Method Example

import com.ms.mtx.*;

boolean CanBePooled()
{

// This object should not be recycled,
// so return false.
return false;

}

IObjectControl.Deactivate Method
Implementing this method allows an MTS object to perform any cleanup required before it's recycled
or destroyed. This method is called by the MTS run-time environment whenever an object is
deactivated.

Provided By
IObjectContext

void Deactivate ();.

Remarks
The MTS run-time environment calls the Deactivate method whenever an object that supports the
IObjectControl interface is deactivated. An object is deactivated when it returns from a method in
which it called SetComplete or SetAbort, when the transaction in which it executed is committed or
aborted, or when the last client to hold a reference on it releases its reference.

If the component supports recycling (returns true from the CanBePooled method), you should use
the Deactivate method to reset the object's state to the state in which the Activatemethod expects to
find it. You can also use the Deactivate method to release the object's ObjectContext reference or to
do other context-specific cleanup. Even if an object supports recycling, it can be beneficial to release
certain reusable resources in its Deactivate method. For example, ODBC provides its own
connection pooling. It's more efficient to pool a database connection in a general connection pool
where it can be used by other objects than it is to keep it tied to a specific object in an object pool.

Example

See Also
Deactivating Objects, Object Pooling and Recycling

IObjectControl.Deactivate Method Example

import com.ms.mtx.*;

void Deactivate()
{

// Perform any necessary cleanup here.
}

SafeRef Function
Used by an object to obtain a reference to itself that's safe to pass outside its context.

Syntax
Set safeobject = SafeRef(Me)

Part
safeobject

An object variable representing the current object that's safe to pass to another object or client.

Remarks
When an MTS object wants to pass a self-reference to a client or another object (for example, for use
as a callback), it should always call SafeRef first and then pass the reference returned by this call.

To use the SafeRef function, you must set a reference to Microsoft Transaction Server Type Library
(mtxas.dll).

Example

See Also
Passing Object References

SafeRef Function Example

Dim anotherObject As New ObjectThatCallsBack
Dim safeMe As My.Class

' Get a safe reference.
Set safeMe = SafeRef(Me)

' Invoke a method on another object, passing the
' safe reference so it can call back.
If Not safeMe Is Nothing Then

Call anotherObject.CallMeBack(safeMe)
Set safeMe = Nothing

GetObjectContext Function
Obtains a reference to the ObjectContext that's associated with the current MTS object.

To use the GetObjectContext function, you must set a reference to Microsoft Transaction Server
Type Library (mtxas.dll).

Syntax
Set objectcontext = GetObjectContext ()

Parameters
objectcontext

An object variable that evaluates to the ObjectContext belonging to the current object.

Remarks
An object should never attempt to pass its ObjectContext reference to another object. If you pass an
ObjectContext reference to another object, it will no longer be a valid reference.

When an object obtains a reference to its ObjectContext, it must release the ObjectContext object
when it's finished with it.

Example

See Also
Building Scalable Components, Context Objects, CreateInstance Method

GetObjectContext Function, CreateInstance Method Example

Dim ctxObject As ObjectContext
Dim objAccount As Bank.Account

' Get the object's ObjectContext.
Set ctxObject = GetObjectContext()

' Use it to instantiate another object.
Set objAccount = _

ctxObject.CreateInstance("Bank.Account")

ObjectContext Object
The ObjectContext object provides access to the current object's context.

Remarks
To use the ObjectContext object, you must set a reference to Microsoft Transaction Server Type
Library (mtxas.dll).

You obtain a reference to the ObjectContext object by calling the GetObjectContext function. As
with any COM object, you must release an ObjectContext object when you're finished using it,
unless it's a local variable.

You can use an object's ObjectContext to:

· Declare that the object's work is complete.
· Prevent a transaction from being committed, either temporarily or permanently.
· Instantiate other MTS objects and include their work within the scope of the current object's

transaction.
· Find out if a caller is in a particular role.
· Find out if security is enabled.
· Find out if the object is executing within a transaction.
· Retrieve Microsoft Internet Information Server (IIS) built-in objects.

The ObjectContext object provides the following methods.

Method Description
Count Returns the number of context object properties.
CreateInstance Instantiates another MTS object.
DisableCommit Declares that the object hasn't finished its work and

that its transactional updates are in an inconsistent
state. The object retains its state across method calls,
and any attempts to commit the transaction before
the object calls EnableCommit or SetComplete will
result in the transaction being aborted.

EnableCommit Declares that the object's work isn't necessarily
finished, but its transactional updates are in a
consistent state. This method allows the transaction
to be committed, but the object retains its state
across method calls until it calls SetComplete or
SetAbort, or until the transaction is completed.

IsCallerInRole Indicates whether the object's direct caller is in a
specified role (either directly or as part of a group).

IsInTransaction Indicates whether the object is executing within a
transaction.

IsSecurityEnabled Indicates whether security is enabled. MTS security is
enabled unless the object is running in the client's
process.

Item Returns a context object property.
Security Returns a reference to an object's SecurityProperty

object.
SetAbort Declares that the object has completed its work and

can be deactivated on returning from the currently
executing method, but that its transactional updates

are in an inconsistent state or that an unrecoverable
error occurred. This means that the transaction in
which the object was executing must be aborted. If
any object executing within a transaction returns to its
client after calling SetAbort, the entire transaction is
doomed to abort.

SetComplete Declares that the object has completed its work and
can be deactivated on returning from the currently
executing method. For objects that are executing
within the scope of a transaction, it also indicates that
the object's transactional updates can be committed.
When an object that is the root of a transaction calls
SetComplete, MTS attempts to commit the
transaction on return from the current method.

Note When an object calls DisableCommit, EnableCommit, SetComplete, or SetAbort from
within a method, two flags (Done and Consistent) are set in its ObjectContext. (See the following
table for an explanation.) These flags aren't evaluated by the MTS run-time environment until the
object's currently executing method returns to its caller. This means that an object can call these
methods any number of times from within one of its own methods, but the last call before the object
returns to its client is the one that will be in effect.

Method Done Consistent
SetAbort TRUE FALSE
SetComplete TRUE TRUE
DisableCommit FALSE FALSE
EnableCommit FALSE TRUE

The Done flag, which allows an object to be deactivated and its transaction to commit or abort, is only
evaluated after the object returns from the call that first entered its context. For example, suppose
client A calls into object B. Object B calls SetComplete and then calls into object C (passing it a safe
reference for a callback). Object C calls back to object B, and then object B returns to client A. Object
B won't be deactivated when it returns to object C; it will be deactivated when it returns to client A.

See Also
Basic Security Methods, Passing Object References, Context Objects, Transactions, Deactivating
Objects

Count Method
Returns the number of context object properties.

Applies To
ObjectContext Object

Syntax
objectcontext.Count
The objectcontext placeholder represents an object variable that evaluates to the ObjectContext
associated with the current object.

Return Value
The number of properties.

Example

CreateInstance Method
Instantiates an MTS object.

Applies To
ObjectContext Object

Syntax
Set object = objectcontext.CreateInstance("progID")

Part
object

An object variable that evaluates to an MTS object.
objectcontext

An object variable that represents the ObjectContext from which to instantiate the new object.
progID

A string expression that is the programmatic ID of the new object's component.

Remarks
CreateInstance creates a COM object. However, the object will have context only if its component is
registered with MTS.

When you create an object by using CreateInstance, the new object's context is derived from the
current object's ObjectContext and the declarative properties of the new object's component. The
new object always executes within the same activity as the object that created it. If the current object
has a transaction, the transaction attribute of the new object's component determines whether or not
the new object will execute within the scope of that transaction.

If the component's transaction attribute is set to either Requires a transaction or Supports
transactions, the new object inherits its creator's transaction. If the component's transaction attribute
is set to Requires a new transaction, MTS initiates a new transaction for the new object. If the
component's transaction attribute is set to Does not support transactions, the new object doesn't
execute under any transaction.

Example

See Also
Creating MTS Objects, Transaction Attributes, MTS Component Requirements

DisableCommit Method
Declares that the object's transactional updates are inconsistent and can't be committed in their
present state.

Applies To
ObjectContext Object

Syntax
objectcontext.DisableCommit
The objectcontext placeholder represents an object variable that evaluates to the ObjectContext
associated with the current object.

Remarks
An object that invokes DisableCommit is stateful.

You can use the DisableCommit method to prevent a transaction from committing prematurely
between method calls in a stateful object. When an object invokes DisableCommit, it indicates that
its work is inconsistent and that it can't complete its work until it receives further method invocations
from the client. It also indicates that it needs to maintain its state to perform that work. This prevents
the MTS run-time environment from deactivating the object and reclaiming its resources on return
from a method call. Once an object has called DisableCommit, if a client attempts to commit the
transaction before the object has called EnableCommit or SetComplete, the transaction will abort.

For example, suppose you have a General Ledger component that updates a database. A client
makes multiple calls to a General Ledger object to post entries to various accounts. There's an
integrity constraint that says the debits must equal the credits when the final method invocation
returns, or the transaction must abort. The General Ledger object has an initialization method in which
the client informs it of the sequence of calls the client is going to make, and the General Ledger object
calls DisableCommit. The object maintains its state between calls so that after the final call in the
sequence is made the object can make sure the integrity constraint is satisfied before allowing its
work to be committed.

Example

See Also
Transactions

DisableCommit Method Example

Dim objContext As ObjectContext

Set objContext = GetObjectContext()
objContext.DisableCommit

EnableCommit Method
Declares that the current object's work is not necessarily finished, but that its transactional updates
are consistent and could be committed in their present form.

Applies To
ObjectContext Object

Syntax
objectcontext.EnableCommit
The objectcontext placeholder represents an object variable that evaluates to the ObjectContext
associated with the current object.

Remarks
When an object calls EnableCommit, it allows the transaction in which it's participating to be
committed, but it maintains its internal state across calls from its clients until it calls SetComplete or
SetAbort or until the transaction completes.

EnableCommit is the default state when an object is activated. This is why an object should always
call SetComplete or SetAbort before returning from a method, unless you want the object to
maintain its internal state for the next call from a client.

Example

See Also
Transactions

EnableCommit Method Example

Dim objContext As ObjectContext

Set objContext = GetObjectContext()
objContext.EnableCommit

IsCallerInRole Method
Indicates whether an object's direct caller is in a specified role (either individually or as part of a
group).

Applies To
ObjectContext Object

Syntax
objectcontext.IsCallerInRole(role)

The objectcontext placeholder represents an object variable that evaluates to the ObjectContext
associated with the current object.

Parameters
objectcontext

An object variable that represents the ObjectContext belonging to the current object.
role

A string expression that contains the name of the role in which to determine if the caller is acting.

Return Values
True

Either the caller is in the specified role, or security is not enabled.
False

The caller is not in the specified role.

Remarks
You use this method to determine whether the direct caller of the currently executing method is
associated with a specific role. A role is a symbolic name that represents a user or group of users who
have specific access permissions to all components in a given package. Developers define roles
when they create a component, and roles are mapped to individual users or groups at deployment
time.

IsCallerInRole only applies to the direct caller of the currently executing method. (The direct caller is
the process calling into the current server process. It can be either a base client process or a server
process.) IsCallerInRole doesn't apply to the process that initiated the call sequence from which the
current method was called, or to any other callers in that sequence.

Because IsCallerInRole returns True when the object that invokes it is executing in a client's
process, it's a good idea to call IsSecurityEnabled before calling IsCallerInRole. If security isn't
enabled, IsCallerInRole won't return an accurate result.

Example

See Also
Programmatic Security, Basic Security Methods, Secured Components

IsCallerInRole, IsSecurityEnabled Methods Example

Dim objContext As ObjectContext
Set objContext = GetObjectContext()

If Not objContext Is Nothing Then
' Find out if Security is enabled.
If objContext.IsSecurityEnabled Then

' Find out if the caller is in the right role.
If Not objContext.IsCallerInRole("Manager") Then

' If not, do something appropriate here.
Else

' If so, execute the call normally.
End If

Else
' If security's not enabled, do something
' appropriate here.
End If

End If

IsInTransaction Method
Indicates whether the current object is executing in a transaction.

Applies To
ObjectContext Object

Syntax
objectcontext.IsInTransaction
The objectcontext placeholder represents an object variable that evaluates to the ObjectContext
associated with the current object.

Return Values
True

The current object is executing within a transaction.
False

The current object is not executing within a transaction.

Remarks
You can use this method to make sure that an object that requires a transaction never runs without
one. For example, if a component that requires a transaction is improperly configured in the MTS
Explorer, you can use this method to determine that the object doesn't have a transaction. Then you
can return an error to alert the user to the problem, or take whatever action is appropriate.

Example

See Also
Transaction Attributes, Transactions

IsInTransaction Method Example

Dim objContext As ObjectContext
Set objContext = GetObjectContext()

If Not objContext Is Nothing Then
' Find out if the object is in a transaction.
If Not objContext.IsInTransaction Then

' If not, do something appropriate here.
End If

End If

IsSecurityEnabled Method
Indicates whether or not security is enabled for the current object. MTS security is enabled unless the
object is running in the client's process.

Applies To
ObjectContext Object

Syntax
objectcontext.IsSecurityEnabled
The objectcontext placeholder represents an object variable that evaluates to the ObjectContext
associated with the current object.

Return Values
True

Security is enabled for this object.
False

Security is not enabled for this object.

Remarks
MTS security is enabled only if an object is running in a server process. This could be either because
the object's component was configured to run in a client's process, or because the component and
the client are in the same package. If the object is running in the client's process, there is no security
checking and IsSecurityEnabled will always return False.

Example

See Also
Programmatic Security, Basic Security Methods, Secured Components

Item Method
Returns a context object property.

Applies To
ObjectContext Object

Syntax
objectcontext.Item(name)

Part
objectcontext

An object variable that evaluates to the ObjectContext associated with the current object.
name

The name of the context object property to be retrieved.

Return Value
The requested context object property.

Remarks
You can use Item to retrieve the following Microsoft Internet Information Server (IIS) built-in objects:

· Request

· Response

· Server

· Application

· Session

For more information, see the IIS documentation.

The Item method is the default method for a collection. Therefore, the following lines of code are
equivalent:
oc("Response").Write "<p>" & prop & "</p>"
oc.Item("Response").Write "<p>" & prop & "</p>"

Example

Count, Item Methods Example

' Get the context object
Dim oc As ObjectContext
Dim str As String
Set oc = GetObjectContext()

' Get the Response object
' Print number of properties
oc("Response").Write "<p>Number of properties: " & oc.Count & "</p>"

' Iterate over properties collection and print the
' names of the properties
For Each prop In oc
 oc("Response").Write "<p>" & prop & "</p>"
Next

Security Property
Returns a reference to an object's SecurityProperty object.

Applies To
ObjectContext Object

Syntax
Set objectsecurity = objectcontext.Security

Part
objectcontext

An object variable that evaluates to the ObjectContext associated with the current object.
objectsecurity

An object variable that evaluates to the SecurityProperty object associated with the current
object.

Example

See Also
Programmatic Security, Advanced Security Methods

Security Property Example

Public Function UsingSecurityMethod() As String

 Dim objCtx As ObjectContext
 Dim objSP As SecurityProperty

 Set objCtx = GetObjectContext()
 Set objSP = objCtx.Security
 UsingSecurityMethod = _
 objSP.GetOriginalCreatorName()

End Function

SetAbort Method
Declares that the transaction in which the object is executing must be aborted, and that the object
should be deactivated on returning from the currently executing method call.

Applies To
ObjectContext Object

Syntax
objectcontext.SetAbort
The objectcontext placeholder represents an object variable that evaluates to the ObjectContext
associated with the current object.

Remarks
The object is deactivated automatically on return from the method in which it called SetAbort. If the
object is the root of an automatic transaction, MTS aborts the transaction. If the object is
transactional, but not the root of an automatic transaction, the transaction in which it's participating is
doomed to abort. (An object is the root of a transaction if the MTS run-time environment has to initiate
a new transaction for it. This is the case when the component that provides the object is configured to
require a transaction and the object's creator doesn't have one, or when the component is configured
to require a new transaction.)

You can call SetAbort in error handlers to ensure that a transaction aborts when an error occurs. You
can also call SetAbort at the beginning of a method to protect your object from committing
prematurely in the event of an unexpected return and then call SetComplete just before the method
returns, if all goes well.

Example

See Also
Transactions, Context Objects, Deactivating Objects

SetAbort, SetComplete Methods Example

Dim ctxObject As ObjectContext
Set ctxObject = GetObjectContext()
On Error GoTo ErrorHandler

' Do some work here. If the work was successful,
' call SetComplete.
ctxObject.SetComplete
Set ctxObject = Nothing
Perform = 0
Exit Function

' If an error occurred, call SetAbort in the error
' handler.
ErrorHandler:

ctxObject.SetAbort
Set ctxObject = Nothing
Perform = -1
Exit Function

SetComplete Method
Declares that the current object has completed its work and should be deactivated when the currently
executing method returns to the client. For objects that are executing within the scope of a
transaction, it also indicates that the object's transactional updates can be committed.

Applies To
ObjectContext Object

Syntax
objectcontext.SetComplete
The objectcontext placeholder represents an object variable that evaluates to the ObjectContext
associated with the current object.

Remarks
The object is deactivated automatically on return from the method in which it called SetComplete. If
the object is the root of an automatic transaction, MTS attempts to commit the transaction. However, if
any object that was participating in the transaction has called SetAbort, or has called
DisableCommit and has not subsequently called EnableCommit or SetComplete, the transaction
will be aborted. (An object is the root of a transaction if the MTS run-time environment has to initiate a
new transaction for it. This is the case when the component that provides the object is configured to
require a transaction and the object's creator doesn't have one, or when the component is configured
to require a new transaction.)

If an object doesn't need to maintain its state after it returns from a method call, it should call
SetComplete so that it can be automatically deactivated as soon as it returns and its resources can
be reclaimed.

Example

See Also
Transactions, Context Objects, Deactivating Objects

SafeRef Function
Used by an object to obtain a reference to itself that's safe to pass outside its context.

The header file for the SafeRef function is mtx.h.

void* SafeRef (
REFIID riid
UNKNOWN* pUnk

);

Parameter
riid

[in] A reference to the interface ID of the interface that the current object wants to pass to another
object or client.

pUnk
[in] A reference to an interface on the current object.

Return Values
Non-NULL

A pointer to the interface specified in the riid parameter that's safe to pass outside the current
object's context.

NULL
The object is requesting a safe reference on an object other than itself, or the interface requested
in the riid parameter is not implemented.

Remarks
When an MTS object wants to pass a self-reference to a client or another object (for example, for use
as a callback), it should always call SafeRef first and then pass the reference returned by this call. An
object should never pass a this pointer, or a self-reference obtained through an internal call to
QueryInterface, to a client or to any other object. Once such a reference is passed outside the
object's context, it's no longer a valid reference.

Calling SafeRef on a reference that is already safe returns the safe reference unchanged, except that
the reference count on the interface is incremented.

When a client calls QueryInterface on a reference that's safe, MTS automatically ensures that the
reference returned to the client is also a safe reference.

An object that obtains a safe reference must release the safe reference when it's finished with it.

Note Safe references have different pointer values than their unsafe counterparts. For example,
this and the safe version of this do not have the same value. It's important to be aware of this when
testing whether two pointers refer to the same object. Calling QueryInterface for IID_IUnknown on
each of the pointers and comparing the value of the returned pointers may result in the wrong
conclusion. It's possible that both pointers refer to the same object, but that one is a safe reference
and the other isn't. If both references are safe references, they can be compared in the usual way.
This is only a consideration for MTS objects, because clients should never have access to unsafe
references.

Example

See Also
Passing Object References

SafeRef Function Example

#include <mtx.h>

IMyInterface* pSafeMyObject = NULL;
IAnotherObject* pOtherObject = NULL;
HRESULT hr;

// Get a safe reference.
pSafeMyObject = SafeRef(IID_IMyInterface,

(IUnknown*)this);

// Invoke a method on another object, passing the
// safe reference so it can call back.
hr = pOtherObject->CallMeBack(pSafeMyObject);

// Release the safe reference.
safeMyObject->Release();

GetObjectContext Function
Obtains a reference to the IObjectContext interface on the ObjectContext that's associated with the
current MTS object.

The header file for the GetObjectContext function is mtx.h.

HRESULT GetObjectContext (
IObjectContext** ppInstanceContext

);

Parameters
ppInstanceContext

[out] A reference to the IObjectContext interface on the object's context. If the object's component
hasn't been imported into an MTS package, or if GetObjectContext is called from a constructor or
an IUnknown method, this will be set to a NULL pointer.

Return Values
S_OK

A reference to the IObjectContext interface on the current object's context is returned in the
ppInstanceContext parameter.

E_INVALIDARG
The argument passed in the ppInstanceContext parameter is invalid.

E_UNEXPECTED
An unexpected error occurred.

CONTEXT_E_NOCONTEXT
The current object doesn't have a context associated with it, because either the component wasn't
imported into a package or the object wasn't created with one of the MTS CreateInstance
methods. This error will also be returned if the GetObjectContext method was called from the
constructor or from an IUnknown method.

Remarks
An object's context is not accessible from an object's constructor or from any IUnknown method
(QueryInterface, AddRef, or Release).

An object should never attempt to pass its ObjectContext reference to another object. If you pass an
ObjectContext reference to another object, it will no longer be a valid reference.

When an object obtains a reference to its ObjectContext, it must release the ObjectContext object
when it's finished with it.

Example

See Also
Building Scalable Components, Context Objects, IObjectContext::CreateInstance Method

GetObjectContext Function, IObjectContext::CreateInstance Method Example

#include <mtx.h>

IObjectContext* pObjectContext = NULL;
IAccount* pAccount = NULL;
HRESULT hr;

// Get the object's ObjectContext.
hr = GetObjectContext(&pObjectContext);

// Use it to instantiate another object.
hr = pObjectContext->CreateInstance(CLSID_CAccount,

IID_IAccount, (void**)&pAccount);

IObjectContext Interface
The IObjectContext interface provides access to the current object's context.

Remarks
The header file for the IObjectContext interface is mtx.h.

You obtain a reference to the IObjectContext interface by calling the GetObjectContext function. As
with any COM object, you must release an ObjectContext object when you're finished using it.

You can use an object's ObjectContext to:

· Declare that the object's work is complete.
· Prevent a transaction from being committed, either temporarily or permanently.
· Instantiate other MTS objects and include their work within the scope of the current object's

transaction.
· Find out if a caller is in a particular role.
· Find out if security is enabled.
· Find out if the object is executing within a transaction.

The IObjectContext interface exposes the following methods.

Method Description
CreateInstance Instantiates another MTS object.
DisableCommit Declares that the object hasn't finished its work and

that its transactional updates are in an inconsistent
state. The object retains its state across method calls,
and any attempts to commit the transaction before
the object calls EnableCommit or SetComplete will
result in the transaction being aborted.

EnableCommit Declares that the object's work isn't necessarily
finished, but its transactional updates are in a
consistent state. This method allows the transaction
to be committed, but the object retains its state
across method calls until it calls SetComplete or
SetAbort, or until the transaction is completed.

IsCallerInRole Indicates whether the object's direct caller is in a
specified role (either directly or as part of a group).

IsInTransaction Indicates whether the object is executing within a
transaction.

IsSecurityEnabled Indicates whether security is enabled. MTS security is
enabled unless the object is running in the client's
process.

SetAbort Declares that the object has completed its work and
can be deactivated on returning from the currently
executing method, but that its transactional updates
are in an inconsistent state or that an unrecoverable
error occurred. This means that the transaction in
which the object was executing must be aborted. If
any object executing within a transaction returns to its
client after calling SetAbort, the entire transaction is
doomed to abort.

SetComplete Declares that the object has completed its work and

can be deactivated on returning from the currently
executing method. For objects that are executing
within the scope of a transaction, it also indicates that
the object's transactional updates can be committed.
When an object that is the root of a transaction calls
SetComplete, MTS attempts to commit the
transaction on return from the current method.

Note When an object calls DisableCommit, EnableCommit, SetComplete, or SetAbort from
within a method, two flags (Done and Consistent) are set in its ObjectContext. (See the following
table for an explanation.) These flags aren't evaluated by the MTS run-time environment until the
object's currently executing method returns to its caller. This means that an object can call these
methods any number of times from within one of its own methods, but the last call before the object
returns to its client is the one that will be in effect.

Method Done Consistent
SetAbort TRUE FALSE
SetComplete TRUE TRUE
DisableCommit FALSE FALSE
EnableCommit FALSE TRUE

The Done flag, which allows an object to be deactivated and its transaction to commit or abort, is only
evaluated after the object returns from the call that first entered its context. For example, suppose
client A calls into object B. Object B calls SetComplete and then calls into object C (passing it a safe
reference for a callback). Object C calls back to object B, and then object B returns to client A. Object
B won't be deactivated when it returns to object C; it will be deactivated when it returns to client A.

See Also
Basic Security Methods, Passing Object References, Context Objects, Transactions, Deactivating
Objects

IObjectContext::CreateInstance Method
Instantiates an MTS object.

Provided By
IObjectContext
HRESULT IObjectContext::CreateInstance (

REFCLSID rclsid,
REFIID riid,
LPVOID FAR* ppvObj

);

Parameter
rclsid

[in] A reference to the CLSID of the type of object to instantiate.
riid

[in] A reference to the interface ID of the interface through which you want to communicate with the
new object.

ppvObj
[out] A reference to the requested interface on the new object.

Return Values
S_OK

The object was created and a reference to it is returned in the ppvObj parameter.
REGDB_E_CLASSNOTREG

The component specified by rclsid is not registered as a COM component.
E_OUTOFMEMORY

There's not enough memory available to instantiate the object.
E_INVALIDARG

The argument passed in the ppvObj parameter is invalid.
E_UNEXPECTED

An unexpected error occurred. This can happen if one object passes its IObjectContext pointer to
another object, and the other object calls CreateInstance using this pointer. An IObjectContext
pointer is not valid outside the context of the object that originally obtained it.

Remarks
CreateInstance creates a COM object. However, the object will have context only if its component is
registered with MTS.

When you create an object by using CreateInstance, the new object's context is derived from the
current object's ObjectContext and the declarative properties of the new object's component. The
new object always executes within the same activity as the object that created it. If the current object
has a transaction, the transaction attribute of the new object's component determines whether or not
the new object will execute within the scope of that transaction.

If the component's transaction attribute is set to either Requires a transaction or Supports
transactions, the new object inherits its creator's transaction. If the component's transaction attribute
is set to Requires a new transaction, MTS initiates a new transaction for the new object. If the
component's transaction attribute is set to Does not support transactions, the new object doesn't
execute under any transaction.

If the Microsoft Distributed Transaction Coordinator is not running and the object is transactional, the
object is successfully created. However, method calls to that object will fail with

CONTEXT_E_TMNOTAVAILABLE. Objects cannot recover from this condition and should be
released.

MTS always uses standard marshaling. Even if a component exposes the IMarshal interface, its
IMarshal methods will never be called by the MTS run-time environment.

You can't create MTS objects as part of an aggregation. In this respect, using CreateInstance is like
using CoCreateInstance and specifying NULL for the controlling IUnknown interface (pUnkOuter).

Example

See Also
Creating MTS Objects, Transaction Attributes, MTS Component Requirements

IObjectContext::DisableCommit Method
Declares that the object's transactional updates are inconsistent and can't be committed in their
present state.

Provided By
IObjectContext
HRESULT IObjectContext::DisableCommit ();

Return Values
S_OK

The call to DisableCommit succeeded. The object's transactional updates can't be committed until
the object calls either EnableCommit or SetComplete.

E_UNEXPECTED
An unexpected error occurred. This can happen if one object passes its IObjectContext pointer to
another object and the other object calls DisableCommit using this pointer. An IObjectContext
pointer is not valid outside the context of the object that originally obtained it.

CONTEXT_E_NOCONTEXT
The current object doesn't have a context associated with it. This is probably because it wasn't
created with one of the MTS CreateInstance methods.

Remarks
An object that invokes DisableCommit is stateful.

You can use the DisableCommit method to prevent a transaction from committing prematurely
between method calls in a stateful object. When an object invokes DisableCommit, it indicates that
its work is inconsistent and that it can't complete its work until it receives further method invocations
from the client. It also indicates that it needs to maintain its state to perform that work. This prevents
the MTS run-time environment from deactivating the object and reclaiming its resources on return
from a method call. Once an object has called DisableCommit, if a client attempts to commit the
transaction before the object has called EnableCommit or SetComplete, the transaction will abort.

For example, suppose you have a General Ledger component that updates a database. A client
makes multiple calls to a General Ledger object to post entries to various accounts. There's an
integrity constraint that says the debits must equal the credits when the final method invocation
returns, or the transaction must abort. The General Ledger object has an initialization method in which
the client informs it of the sequence of calls the client is going to make, and the General Ledger object
calls DisableCommit. The object maintains its state between calls so that after the final call in the
sequence is made the object can make sure the integrity constraint is satisfied before allowing its
work to be committed.

Example

See Also
Transactions

IObjectContext::DisableCommit Method Example

#include <mtx.h>

IObjectContext* pObjectContext = NULL;
HRESULT hr;

hr = GetObjectContext(&pObjectContext);
hr = pObjectContext->DisableCommit();

IObjectContext::EnableCommit Method
Declares that the current object's work is not necessarily finished, but that its transactional updates
are consistent and could be committed in their present form.

Provided By
IObjectContext
HRESULT IObjectContext::EnableCommit ();

Return Values
S_OK

The call to EnableCommit succeeded and the object's transactional updates can now be
committed.

E_UNEXPECTED
An unexpected error occurred. This can happen if one object passes its IObjectContext pointer to
another object and the other object calls EnableCommit using this pointer. An IObjectContext
pointer is not valid outside the context of the object that originally obtained it.

Remarks
When an object calls EnableCommit, it allows the transaction in which it's participating to be
committed, but it maintains its internal state across calls from its clients until it calls SetComplete or
SetAbort or until the transaction completes.

EnableCommit is the default state when an object is activated. This is why an object should always
call SetComplete or SetAbort before returning from a method, unless you want the object to
maintain its internal state for the next call from a client.

Example

See Also
Transactions

IObjectContext::EnableCommit Method Example

#include <mtx.h>

IObjectContext* pObjectContext = NULL;
HRESULT hr;

hr = GetObjectContext(&pObjectContext);
hr = pObjectContext->EnableCommit();

IObjectContext::IsCallerInRole Method
Indicates whether an object's direct caller is in a specified role (either individually or as part of a
group).

Provided By
IObjectContext
HRESULT IObjectContext::IsCallerInRole (

BSTR bstrRole,
BOOL* pfIsInRole

);

Parameters
bstrRole

[in] The name of the role in which you want to determine whether the caller is acting.
pfIsInRole

[out] TRUE if the caller is in the specified role, FALSE if not. This parameter will also be set to
TRUE if security is not enabled.

Return Values
S_OK

The role specified in the bstrRole parameter is a recognized role, and the Boolean result returned
in the pfIsInRole parameter indicates whether or not the caller is in that role.

CONTEXT_E_
ROLENOTFOUND
The role specified in the bstrRole parameter does not exist.

E_INVALIDARG
One or more of the arguments passed in is invalid.

E_UNEXPECTED
An unexpected error occurred. This can happen if one object passes its IObjectContext pointer to
another object and the other object calls IsCallerInRole using this pointer. An IObjectContext
pointer is not valid outside the context of the object that originally obtained it.

Remarks
You use this method to determine whether the direct caller of the currently executing method is
associated with a specific role. A role is a symbolic name that represents a user or group of users who
have specific access permissions to all components in a given package. Developers define roles
when they create a component, and roles are mapped to individual users or groups at deployment
time.

IsCallerInRole only applies to the direct caller of the currently executing method. (The direct caller is
the process calling into the current server process. It can be either a base client process or a server
process.) IsCallerInRole doesn't apply to the process that initiated the call sequence from which the
current method was called, or to any other callers in that sequence.

Because IsCallerInRole returns TRUE when the object that invokes it is executing in a client's
process, it's a good idea to call IsSecurityEnabled before calling IsCallerInRole. If security isn't
enabled, IsCallerInRole won't return an accurate result.

Example

See Also

Programmatic Security, Basic Security Methods, Secured Components

IObjectContext::IsCallerInRole, IObjectContext::IsSecurityEnabled Methods Example

#include <mtx.h>

IObjectContext* pObjectContext = NULL;
BSTR stRole = SysAllocString(L"Manager");
VARIANT_BOOL fIsInRole;
HRESULT hr;

hr = GetObjectContext(&pObjectContext);

// Find out if security is enabled.
if (pObjectContext->IsSecurityEnabled()) {

//Then find out if the caller is in the right role.
fIsInRole = pObjectContext->IsCallerInRole

(stRole, &fIsInRole)
SysFreeString(stRole);
if (!fIsInRole) {

// If not, do something appropriate here.
}

}
else {

// If security's not enabled, do something
// appropriate here.

}

IObjectContext::IsInTransaction Method
Indicates whether the current object is executing in a transaction.

Provided By
IObjectContext
BOOL IObjectContext::IsInTransaction ();

Return Values
TRUE

The current object is executing within a transaction.
FALSE

The current object is not executing within a transaction.

Remarks
You can use this method to make sure that an object that requires a transaction never runs without
one. For example, if a component that requires a transaction is improperly configured in the MTS
Explorer, you can use this method to determine that the object doesn't have a transaction. Then you
can return an error to alert the user to the problem, or take whatever action is appropriate.

Example

See Also
Transaction Attributes, Transactions

IObjectContext::IsInTransaction Method Example

#include <mtx.h>

IObjectContext* pObjectContext = NULL;
VARIANT_BOOL fInTransaction;
HRESULT hr;

hr = GetObjectContext(&pObjectContext);

// Find out if the object is in a transaction.
fInTransaction = pObjectContext->IsInTransaction();

if (!fInTransaction) {
// If not, do something appropriate here.

}

IObjectContext::IsSecurityEnabled Method
Indicates whether or not security is enabled for the current object. MTS security is enabled unless the
object is running in the client's process.

Provided By
IObjectContext
BOOL IObjectContext::IsSecurityEnabled ();
Return Values
TRUE

Security is enabled for this object.
FALSE

Security is not enabled for this object.

Remarks
MTS security is enabled only if an object is running in a server process. This could be either because
the object's component was configured to run in a client's process, or because the component and
the client are in the same package. If the object is running in the client's process, there is no security
checking and IsSecurityEnabled will always return FALSE.

Example

See Also
Programmatic Security, Basic Security Methods, Secured Components

IObjectContext::SetAbort Method
Declares that the transaction in which the object is executing must be aborted, and that the object
should be deactivated on returning from the currently executing method call.

Provided By
IObjectContext
HRESULT IObjectContext::SetAbort ();
Return Values
S_OK

The call to SetAbort succeeded and the transaction will be aborted.
E_UNEXPECTED

An unexpected error occurred. This can happen if one object passes its IObjectContext pointer to
another object and the other object calls SetAbort using this pointer. An IObjectContext pointer is
not valid outside the context of the object that originally obtained it.

Remarks
The object is deactivated automatically on return from the method in which it called SetAbort. If the
object is the root of an automatic transaction, MTS aborts the transaction. If the object is
transactional, but not the root of an automatic transaction, the transaction in which it's participating is
doomed to abort. (An object is the root of a transaction if the MTS run-time environment has to initiate
a new transaction for it. This is the case when the component that provides the object is configured to
require a transaction and the object's creator doesn't have one, or when the component is configured
to require a new transaction.)

You can call SetAbort in error handlers to ensure that a transaction aborts when an error occurs. You
can also call SetAbort at the beginning of a method to protect your object from committing
prematurely in the event of an unexpected return and then call SetComplete just before the method
returns, if all goes well.

Example

See Also
Transactions, Context Objects, Deactivating Objects

IObjectContext::SetAbort, IObjectContext::SetComplete Methods Example

#include <mtx.h>

IObjectContext* pObjectContext = NULL;
HRESULT hr;

hr = GetObjectContext(&pObjectContext);
// Do some work here.
// If the work was successful, call SetComplete.
if (SUCCEEDED(hr)) {

if (pObjectContext)
pObjectContext->SetComplete();

}
// Otherwise, call SetAbort.
else {

if (pObjectContext)
pObjectContext->SetAbort();

}

IObjectContext::SetComplete Method
Declares that the current object has completed its work and should be deactivated when the currently
executing method returns to the client. For objects that are executing within the scope of a
transaction, it also indicates that the object's transactional updates can be committed.

Provided By
IObjectContext
HRESULT IObjectContext::SetComplete ();

Return Values
S_OK

The call to SetComplete succeeded.
E_UNEXPECTED

An unexpected error occurred. This can happen if one object passes its IObjectContext pointer to
another object and the other object calls SetComplete using this pointer. An IObjectContext
pointer is not valid outside the context of the object that originally obtained it.

Remarks
The object is deactivated automatically on return from the method in which it called SetComplete. If
the object is the root of an automatic transaction, MTS attempts to commit the transaction. However, if
any object that was participating in the transaction has called SetAbort, or has called
DisableCommit and has not subsequently called EnableCommit or SetComplete, the transaction
will be aborted. (An object is the root of a transaction if the MTS run-time environment has to initiate a
new transaction for it. This is the case when the component that provides the object is configured to
require a transaction and the object's creator doesn't have one, or when the component is configured
to require a new transaction.)

If an object doesn't need to maintain its state after it returns from a method call, it should call
SetComplete so that it can be automatically deactivated as soon as it returns and its resources can
be reclaimed.

Example

See Also
Transactions, Context Objects, Deactivating Objects

MTx.SafeRef Method
Used by an object to obtain a reference to itself that's safe to pass outside its context.

SafeRef is a static method of the MTx class, which is declared in the package com.ms.mtx.
Note The class MTx has only static methods and has no public constructor. You can't create an
instance of this class.
IUnknown SafeRef (

IUnknown obj
);

Parameter
obj

[in] A reference to an interface on the current object.

Return Value
A reference to the IUnknown interface on the current object that's safe to pass outside the current
object's context.

Remarks
When an MTS object wants to pass a self-reference to a client or another object (for example, for use
as a callback), it should always call SafeRef first and then pass the reference returned by this call. An
object should never pass a reference to this to a client or to any other object. Once such a reference
is passed outside the object's context, it's no longer a valid reference.

Regardless of the interface ID you pass to SafeRef, it always returns the IUnknown interface on the
object that calls it. You should immediately cast the returned value to the interface that you want to
pass outside the object.

Calling SafeRef on a reference that is already safe returns the safe reference unchanged, except that
the reference count on the interface is incremented.

Example

See Also
Passing Object References

MTx.SafeRef Method Example

import com.ms.mtx.*;

IMyInterface safeMyObject = null;
IAnotherObject someOtherObject = null;

// Get a safe reference.
safeMyObject = (IMyInterface) MTx.SafeRef(this);

// Invoke a method on another object, passing the
// safe reference so it can call back.
someOtherObject.CallMeBack(safeMyObject);

MTx.GetObjectContext Method
Obtains a reference to the IObjectContext interface on the ObjectContext that's associated with the
current MTS object.

GetObjectContext is a static method of the MTx class, which is declared in the package
com.ms.mtx.
Note The MTx class has only static methods and has no public constructor. You can't create an
instance of this class.
IObjectContext GetObjectContext ();
Return Value
A reference to the IObjectContext interface on the current object's context. GetObjectContext will
return null if it is called from a constructor or finalizer, or if the object's component hasn't been
imported into an MTS package.

Remarks
An object should never attempt to pass its ObjectContext reference to another object. If you pass an
ObjectContext reference to another object, it will no longer be a valid reference.

Example

See Also
Building Scalable Components, Context Objects, IObjectContext.CreateInstance Method

MTx.GetObjectContext Method, IObjectContext.CreateInstance Method Example

import com.ms.mtx.*;

IAccount account = null;

// Get the object's ObjectContext and
// use it to instantiate another object.
account = (IAccount) MTx.GetObjectContext().

CreateInstance(CAccount.clsid, IAccount.iid);

IObjectContext Interface
The IObjectContext interface provides access to the current object's context.

Remarks
The IObjectContext interface is declared in the package com.ms.mtx.
You obtain a reference to the IObjectContext interface by calling the MTx.GetObjectContext
method. As with any COM object, you must release an ObjectContext object when you're finished
using it, unless it's a local variable.

You can use an object's ObjectContext to:

· Declare that the object's work is complete.
· Prevent a transaction from being committed, either temporarily or permanently.
· Instantiate other MTS objects and include their work within the scope of the current object's

transaction.
· Find out if a caller is in a particular role.
· Find out if security is enabled.
· Find out if the object is executing within a transaction.

The IObjectContext interface exposes the following methods.

Method Description
CreateInstance Instantiates another MTS object.
DisableCommit Declares that the object hasn't finished its work and

that its transactional updates are in an inconsistent
state. The object retains its state across method calls,
and any attempts to commit the transaction before
the object calls EnableCommit or SetComplete will
result in the transaction being aborted.

EnableCommit Declares that the object's work isn't necessarily
finished, but its transactional updates are in a
consistent state. This method allows the transaction
to be committed, but the object retains its state
across method calls until it calls SetComplete or
SetAbort, or until the transaction is completed.

IsCallerInRole Indicates whether the object's direct caller is in a
specified role (either directly or as part of a group).

IsInTransaction Indicates whether the object is executing within a
transaction.

IsSecurityEnabled Indicates whether security is enabled. MTS security is
enabled unless the object is running in the client's
process.

SetAbort Declares that the object has completed its work and
can be deactivated on returning from the currently
executing method, but that its transactional updates
are in an inconsistent state or that an unrecoverable
error occurred. This means that the transaction in
which the object was executing must be aborted. If
any object executing within a transaction returns to its
client after calling SetAbort, the entire transaction is
doomed to abort.

SetComplete Declares that the object has completed its work and
can be deactivated on returning from the currently
executing method. For objects that are executing
within the scope of a transaction, it also indicates that
the object's transactional updates can be committed.
When an object that is the root of a transaction calls
SetComplete, MTS attempts to commit the
transaction on return from the current method.

Note When an object calls DisableCommit, EnableCommit, SetComplete, or SetAbort from
within a method, two flags (Done and Consistent) are set in its ObjectContext. (See the following
table for an explanation.) These flags aren't evaluated by the MTS run-time environment until the
object's currently executing method returns to its caller. This means that an object can call these
methods any number of times from within one of its own methods, but the last call before the object
returns to its client is the one that will be in effect.

Method Done Consistent
SetAbort TRUE FALSE
SetComplete TRUE TRUE
DisableCommit FALSE FALSE
EnableCommit FALSE TRUE

The Done flag, which allows an object to be deactivated and its transaction to commit or abort, is only
evaluated after the object returns from the call that first entered its context. For example, suppose
client A calls into object B. Object B calls SetComplete and then calls into object C (passing it a safe
reference for a callback). Object C calls back to object B, and then object B returns to client A. Object
B won't be deactivated when it returns to object C; it will be deactivated when it returns to client A.

See Also
Basic Security Methods, Passing Object References, Context Objects, Transactions, Deactivating
Objects

IObjectContext.CreateInstance Method
Instantiates an MTS object.

Provided By
IObjectContext Interface

IUnknown CreateInstance (
_Guid clsid,
_Guid iid,

);

Parameter
clsid

[in] The clsid of the type of object to instantiate.
iid

[in] Any interface that's implemented by the object you want to instantiate.

Return Value
A reference to the IUnknown interface on the newly created object.

Remarks
CreateInstance creates a COM object. However, the object will have context only if its component is
registered with MTS.

When you create an object by using CreateInstance, the new object's context is derived from the
current object's ObjectContext and the declarative properties of the new object's component. The
new object always executes within the same activity as the object that created it. If the current object
has a transaction, the transaction attribute of the new object's component determines whether or not
the new object will execute within the scope of that transaction.

If the component's transaction attribute is set to either Requires a transaction or Supports
transactions, the new object inherits its creator's transaction. If the component's transaction attribute
is set to Requires a new transaction, MTS initiates a new transaction for the new object. If the
component's transaction attribute is set to Does not support transactions, the new object doesn't
execute under any transaction.

CreateInstance always returns the IUnknown interface on the newly instantiated object. You should
immediately cast the returned value to the interface through which you want to communicate with the
new object. The interface ID you pass in the iid parameter doesn't have to be the same interface as
the one to which you cast the returned value, but it must be an interface that's implemented by the
object you're instantiating.

MTS always uses standard marshaling. Even if a component exposes the IMarshal interface, its
IMarshal methods will never be called by the MTS run-time environment.

You can't create MTS objects as part of an aggregation.

Example

See Also
Creating MTS Objects, Transaction Attributes, MTS Component Requirements

IObjectContext.DisableCommit Method
Declares that the object's transactional updates are inconsistent and can't be committed in their
present state.

Provided By
IObjectContext
void DisableCommit ();

Remarks
An object that invokes DisableCommit is stateful.

You can use the DisableCommit method to prevent a transaction from committing prematurely
between method calls in a stateful object. When an object invokes DisableCommit, it indicates that
its work is inconsistent and that it can't complete its work until it receives further method invocations
from the client. It also indicates that it needs to maintain its state to perform that work. This prevents
the MTS run-time environment from deactivating the object and reclaiming its resources on return
from a method call. Once an object has called DisableCommit, if a client attempts to commit the
transaction before the object has called EnableCommit or SetComplete, the transaction will abort.

For example, suppose you have a General Ledger component that updates a database. A client
makes multiple calls to a General Ledger object to post entries to various accounts. There's an
integrity constraint that says the debits must equal the credits when the final method invocation
returns, or the transaction must abort. The General Ledger object has an initialization method in which
the client informs it of the sequence of calls the client is going to make, and the General Ledger object
calls DisableCommit. The object maintains its state between calls so that after the final call in the
sequence is made the object can make sure the integrity constraint is satisfied before allowing its
work to be committed.

Example

See Also
Transactions

IObjectContext.DisableCommit Method Example

import com.ms.mtx.*;

MTx.GetObjectContext().DisableCommit();

IObjectContext.EnableCommit Method
Declares that the current object's work is not necessarily finished, but that its transactional updates
are consistent and could be committed in their present form.

Provided By
IObjectContext
void EnableCommit ();

Remarks
When an object calls EnableCommit, it allows the transaction in which it's participating to be
committed, but it maintains its internal state across calls from its clients until it calls SetComplete or
SetAbort or until the transaction completes.

EnableCommit is the default state when an object is activated. This is why an object should always
call SetComplete or SetAbort before returning from a method, unless you want the object to
maintain its internal state for the next call from a client.

Example

See Also
Transactions

IObjectContext.EnableCommit Method Example

import com.ms.mtx.*;

MTx.GetObjectContext().EnableCommit();

IObjectContext.IsCallerInRole Method
Indicates whether an object's direct caller is in a specified role (either individually or as part of a
group).

Provided By
IObjectContext
boolean IsCallerInRole (

String bstrRole
);

Parameters
bstrRole

[in] The name of the role in which you want to determine whether the caller is acting.

Return Values
true

Either the caller is in the specified role, or security is not enabled.
false

The caller is not in the specified role.

Remarks
You use this method to determine whether the direct caller of the currently executing method is
associated with a specific role. A role is a symbolic name that represents a user or group of users who
have specific access permissions to all components in a given package. Developers define roles
when they create a component, and roles are mapped to individual users or groups at deployment
time.

IsCallerInRole only applies to the direct caller of the currently executing method. (The direct caller is
the process calling into the current server process. It can be either a base client process or a server
process.) IsCallerInRole doesn't apply to the process that initiated the call sequence from which the
current method was called, or to any other callers in that sequence.

Because IsCallerInRole returns true when the object that invokes it is executing in a client's
process, it's a good idea to call IsSecurityEnabled before calling IsCallerInRole. If security isn't
enabled, IsCallerInRole won't return an accurate result.

Example

See Also
Programmatic Security, Basic Security Methods, Secured Components

IObjectContext.IsCallerInRole, IObjectContext.IsSecurityEnabled Methods Example

import com.ms.mtx.*;

IObjectContext objContext = null;

objContext = MTx.GetObjectContext();

// Find out if Security is enabled.
if (objContext.IsSecurityEnabled()) {

//Then find out if the caller is in the right role.
if (!objContext.IsCallerInRole("Manager")) {

// If not, do something appropriate here.
}

}
else {

// If security's not enabled, do something
// appropriate here.

}

IObjectContext.IsInTransaction Method
Indicates whether the current object is executing in a transaction.

Provided By
IObjectContext
boolean IsInTransaction ();

Return Values
true

The current object is executing within a transaction.
false

The current object is not executing within a transaction.

Remarks
You can use this method to make sure that an object that requires a transaction never runs without
one. For example, if a component that requires a transaction is improperly configured in the MTS
Explorer, you can use this method to determine that the object doesn't have a transaction. Then you
can return an error to alert the user to the problem, or take whatever action is appropriate.

Example

See Also
Transaction Attributes, Transactions

IObjectContext.IsInTransaction Method Example

import com.ms.mtx.*;

// Find out if the object is in a transaction.
if (!MTx.GetObjectContext().IsInTransaction()) {

// If not, do something appropriate here.
}

IObjectContext.IsSecurityEnabled Method
Indicates whether or not security is enabled for the current object. MTS security is enabled unless the
object is running in the client's process.

Provided By
IObjectContext
boolean IsSecurityEnabled ();
Return Values
true

Security is enabled for this object.
false

Security is not enabled for this object.

Remarks
MTS security is enabled only if an object is running in a server process. This could be either because
the object's component was configured to run in a client's process, or because the component and
the client are in the same package. If the object is running in the client's process, there is no security
checking and IsSecurityEnabled will always return false.

Example

See Also
Programmatic Security, Basic Security Methods, Secured Components

IObjectContext.SetAbort Method
Declares that the transaction in which the object is executing must be aborted, and that the object
should be deactivated on returning from the currently executing method call.

Provided By
IObjectContext
void SetAbort ();
Remarks
The object is deactivated automatically on return from the method in which it called SetAbort. If the
object is the root of an automatic transaction, MTS aborts the transaction. If the object is
transactional, but not the root of an automatic transaction, the transaction in which it's participating is
doomed to abort. (An object is the root of a transaction if the MTS run-time environment has to initiate
a new transaction for it. This is the case when the component that provides the object is configured to
require a transaction and the object's creator doesn't have one, or when the component is configured
to require a new transaction.)

You can call SetAbort in error handlers to ensure that a transaction aborts when an error occurs. You
can also call SetAbort at the beginning of a method to protect your object from committing
prematurely in the event of an unexpected return and then call SetComplete just before the method
returns, if all goes well.

Example

See Also
Transactions, Context Objects, Deactivating Objects

IObjectContext.SetAbort, IObjectContext.SetComplete Methods Example

import com.ms.mtx.*;

boolean success = false;
// Do some work here.
// If the work was successful, call SetComplete
if (success)

MTx.GetObjectContext().SetComplete();
// Otherwise, call SetAbort.
else

MTx.GetObjectContext().SetAbort();

IObjectContext.SetComplete Method
Declares that the current object has completed its work and should be deactivated when the currently
executing method returns to the client. For objects that are executing within the scope of a
transaction, it also indicates that the object's transactional updates can be committed.

Provided By
IObjectContext
void SetComplete ();

Remarks
The object is deactivated automatically on return from the method in which it called SetComplete. If
the object is the root of an automatic transaction, MTS attempts to commit the transaction. However, if
any object that was participating in the transaction has called SetAbort, or has called
DisableCommit and has not subsequently called EnableCommit or SetComplete, the transaction
will be aborted. (An object is the root of a transaction if the MTS run-time environment has to initiate a
new transaction for it. This is the case when the component that provides the object is configured to
require a transaction and the object's creator doesn't have one, or when the component is configured
to require a new transaction.)

If an object doesn't need to maintain its state after it returns from a method call, it should call
SetComplete so that it can be automatically deactivated as soon as it returns and its resources can
be reclaimed.

Example

See Also
Transactions, Context Objects, Deactivating Objects

IObjectContextActivity Interface
The IObjectContextActivity interface is used to retrieve a unique identifier associated with the
current activity. This activity identifier is a GUID, and is only valid for the lifetime of the current activity.

Remarks
The header file for the IObjectContextActivity is mtx.h. You must also link mtxguid.lib to your project
to use this interface.

You obtain a reference to an object's IObjectContextActivity interface by calling QueryInterface on
the object's ObjectContext. For example:
m_pIObjectContext->QueryInterface
 (IID_IObjectContextActivity,
 (void**)&m_pIObjectContextActivity));
The IObjectContextActivity interface provides the following methods.

Method Description
GetActivityId Retrieves the GUID associated with the current activity.

IObjectContextActivity::GetActivityId Method
Retrieves the GUID associated with the current activity.

Provided By
IObjectContextActivity
HRESULT IObjectContextActivity::GetActivityId(

GUID * pActivityId);

Parameters
pActivityId

[out] A reference to the GUID associated with the current activity.

Return Values
S_OK

The GUID of the current activity is returned in the parameter pActivityId.
E_INVALIDARG

The argument passed in the pActivityId parameter is a NULL pointer.
E_UNEXPECTED

An unexpected error occurred.

Example

GetActivityId Method Example

#include <mtx.h>

HRESULT hr = S_OK;
IObjectContext *pIObjectContext = NULL;
IObjectContextActivity *pIObjectContextActivity = NULL;
GUID activityId;

// Get object context
hr = GetObjectContext(&pIObjectContext);
// Get IObjectContextActivity interface
hr = pIObjectContext->
 QueryInterface(IID_IObjectContextActivity,
 (void**)&pIObjectContextActivity);
// Use IObjectContextActivity to retrieve
// the activity GUID.
hr = pIObjectContextActivity->
 GetActivityId(&activityId);

// Do something with the activity GUID here.

// Release the IObjectContextActivity
// and the IObjectContext pointers
pIObjectContextActivity->Release();
pIObjectContext->Release();

SharedPropertyGroupManager Object
The SharedPropertyGroupManager object is used to create shared property groups and to obtain
access to existing shared property groups.

Remarks
To use the SharedPropertyGroupManager object, you must set a reference to the Shared Property
Manager Type Library (mtxspm.dll).

You can access the SharedPropertyGroupManager object by using either the CreateObject
function or the CreateInstance method of the ObjectContext object. It makes no difference which
you use.

The Shared Property Manager is a resource dispenser that you can use to share state among
multiple objects within a server process. You can't use global variables in a distributed environment
because of concurrency and name collision issues. The Shared Property Manager eliminates name
collisions by providing shared property groups, which establish unique name spaces for the shared
properties they contain. The Shared Property Manager also implements locks and semaphores to
protect shared properties from simultaneous access, which could result in lost updates and could
leave the properties in an unpredictable state.

Shared properties can be shared only by objects running in the same process. If you want instances
of different components to share properties, you have to install the components in the same MTS
package. Because there is a risk that administrators will move components from one package to
another, it's safest to limit the use of a shared property group to instances of components that are
defined in the same DLL.

It's also important for components sharing properties to have the same activation attribute. If two
components in the same package have different activation attributes, they generally won't be able to
share properties. For example, if one component is configured to run in a client's process and the
other is configured to run in a server process, their objects will usually run in different processes, even
though they're in the same package.

You should always instantiate the SharedPropertyGroupManager, SharedPropertyGroup, and
SharedProperty objects from MTS objects rather than from a base client. If a base client creates
shared property groups and properties, the shared properties are inside the base client's process, not

in a server process. This means MTS objects can't share the properties unless the objects, too, are
running in the client's process (which is generally not a good idea).

Note When you set the isolation mode to LockMethod, the Shared Property Manager requires
access to the calling object's ObjectContext. You can't use this isolation mode to create a shared
property group from within an object's constructor or from a non-MTS object because ObjectContext
isn't available during object construction and a non-MTS object doesn't have an ObjectContext.

The SharedPropertyGroupManager object provides the following methods and properties.

Method Description
CreatePropertyGroup Creates a new SharedPropertyGroup

with a string name as an identifier. If a
group with the specified name already
exists, CreatePropertyGroup returns a
reference to the existing group.

Group Returns a reference to an existing shared
property group, given a string name by
which it can be identified.

See Also
Sharing State

CreatePropertyGroup Method
Creates and returns a reference to a new shared property group. If a property group with the specified
name already exists, CreatePropertyGroup returns a reference to the existing group.

Applies To
SharedPropertyGroupManager Object

Syntax
Set propertygroup = sharedpropertygroupmanager.CreatePropertyGroup(name, dwIsoMode,

dwrelmode, fExists)

Parameters
propertygroup

An object variable that evaluates to a SharedPropertyGroup object.
sharedpropertygroupmanager

An object variable that represents the SharedPropertyGroupManager with which to create the
shared property group.

name
A string expression that contains the name of the shared property group to create.

dwIsoMode
A Long value that specifies the isolation mode for the properties in the new shared property group.
See the table that lists dwIsoMode constants later in this topic. If the value of the fExists parameter
is set to True on return from this method, the dwIsoMode value you passed in is ignored and the
value returned in this parameter is the isolation mode that was assigned when the property group
was created.

dwRelMode
A Long value that specifies the release mode for the properties in the new shared property group.
See the table that lists dwRelMode constants later in this topic. If the value of the fExists parameter
is set to True on return from this method, the dwRelMode value you passed in is ignored and the
value returned in this parameter is the release mode that was assigned when the property group
was created.

fExists
A Boolean value that's set to True on return from this method if the shared property group
specified in the name parameter existed prior to this call, and False if the property group was
created by this call.

Settings
The following constants are used in the dwIsoMode parameter to specify the effective isolation mode
for a shared property group.

Constant Value Description
LockSetGet 0 Default. Locks a property during a Value call,

assuring that every get or set operation on a
shared property is atomic.
This ensures that two clients can't read or write
to the same property at the same time, but it
doesn't prevent other clients from concurrently
accessing other properties in the same group.

LockMethod 1 Locks all of the properties in the shared property
group for exclusive use by the caller as long as

the caller's current method is executing.
This is the appropriate mode to use when there
are interdependencies among properties, or in
cases where a client may have to update a
property immediately after reading it before it
can be accessed again.

Note When you set the isolation mode to LockMethod, the Shared Property Manager requires
access to the calling object's ObjectContext. You can't use this isolation mode to create a shared
property group from within an object's constructor or from a non-MTS object because ObjectContext
isn't available during object construction and a base client doesn't have an ObjectContext.

The following constants are used in the dwRelMode parameter to specify the effective release mode
for a shared property group.

Constant Value Description
Standard 0 When all clients have released their references

on the property group, the property group is
automatically destroyed.

Process 1 The property group isn't destroyed until the
process in which it was created has terminated.
You must still release all
SharedPropertyGroup objects by setting them
to Nothing.

Remarks
The CreatePropertyGroup method sets the value in fExists to True if the property group it returns
existed prior to the current call. This occurs when another object in the same process has already
called CreatePropertyGroup with the same property group name. The CreatePropertyGroup
method sets the value in fExists to False if the returned property group was created by the current
call.

The isolation mode and release mode are assigned when the property group is originally created and
aren't changed if a subsequent call passes different values in these parameters. The caller should
always check the value of fExists on return from this method. If fExists is set to True, the caller should
check the values returned in dwIsoMode and dwRelMode to determine the isolation and release
modes in effect for the property group. For example:
Dim isolationMode As Long
Dim releaseMode As Long

Set isolationMode = LockMethod
Set releaseMode = Process
Set spmGroup = spmMgr.CreatePropertyGroup _

("Counter", isolationMode, releaseMode, fExists)

If fExists Then
If isolationMode <> LockMethod _

Or releaseMode <> Process Then
' Do something appropriate.

EndIf
EndIf
You can pass the constants, LockGetSet or LockMethod as the dwIsoMode argument, and
Standard or Process as the dwRelMode argument, directly to the CreatePropertyGroup method.
However, when you pass a constant instead of a variable, the CreatePropertyGroup method can't
return the isolation and release modes currently in effect if the requested property group already

exists.

Note An object should never attempt to pass a shared property group reference to another object.
If the reference is passed outside of the object that acquired it, it's no longer a valid reference.

Example

See Also
Sharing State, IObjectContext Interface , SharedPropertyGroup Object

Group Property
Returns a reference to an existing shared property group.

Applies To
ISharedPropertyGroupManager Interface

Syntax
Set propertygroup = sharedpropertygroupmanager.Group(name)

Parameters
propertygroup

An object variable that evaluates to a SharedPropertyGroup object.
sharedpropertygroupmanager

An object variable that represents the SharedPropertyGroupManager for the current process.
name

A string expression that contains the name of the shared property group to retrieve.

Example

See Also
Sharing State, SharedPropertyGroupManager Object

SharedPropertyGroup Object
The SharedPropertyGroup object is used to create and access the shared properties in a shared
property group.

Remarks
To use the SharedPropertyGroup object, you must set a reference to the Shared Property Manager
Type Library (mtxspm.dll)

You can create a SharedPropertyGroup object with the CreatePropertyGroup method of the
SharedPropertyGroupManager object.

As with any COM object, you must release a SharedPropertyGroup object when you're finished
using it, unless it's a local variable. For example:
Set myPropertyGroup = Nothing
The SharedPropertyGroup object provides the following methods and properties.

Method/Property Description
CreateProperty Creates a new shared property identified

by a string expression that's unique
within its property group.

CreatePropertyByPosition Creates a new shared property identified
by a numeric index within its property
group.

Property Returns a reference to a shared
property, given the string name by which
the property is identified.

PropertyByPosition Returns a reference to a shared
property, given its numeric index in the
shared property group.

See Also
Sharing State, ISharedPropertyGroupManager Object

CreateProperty Method
Creates and returns a reference to a new SharedProperty with a specified name. If a shared
property by that name already exists, CreateProperty returns a reference to the existing property.

Applies To
SharedPropertyGroup Object

Syntax
Set property = propertygroup.CreateProperty(name, fExists)

Parameters
propertygroup

An object variable that represents the SharedPropertyGroup to which the new SharedProperty
object will belong.

property
An object variable that evaluates to a SharedProperty object.

name
A string expression that contains the name of the property to create. You can use this name later to
obtain a reference to this property.

fExists
A Boolean value that's set to True on return from this method if the shared property specified in the
name parameter existed prior to this call, and False if the property was created by this call.

Remarks
When you create a shared property, its value is set to the default, which is 0.

If you create a shared property with the CreateProperty method, you can access that property only
by using Property. You can't assign a numeric index to the same property and then access it by using
PropertyByPosition.

The same shared property group can contain some shared property objects that are identified by
name and others that are identified by position.

Example

See Also
Sharing State, ISharedPropertyGroup::CreatePropertyByPosition Method ,
ISharedPropertyGroup::get_PropertyByPosition Method , ISharedPropertyGroup::get_Property
Method

CreatePropertyByPosition Method
Creates a new shared property identified by a numeric index that's unique within the property group. If
a shared property with the specified index already exists, CreatePropertyByPosition returns a
reference to the existing one.

Applies To
SharedPropertyGroup Object

Syntax
Set property = propertygroup.CreatePropertyByPosition (index, fExists)

Parameters
property

An object variable that evaluates to a SharedProperty object.
propertygroup

An object variable that represents the SharedPropertyGroup to which the new SharedProperty
object will belong.

index
A Long value that represents the numeric index within the SharedPropertyGroup by which the
new property will be referenced. You can use this index later to retrieve the shared property with
PropertyByPosition.

fExists
A Boolean value. If fExists is set to True on return from this method, the shared property specified
by index existed prior to this call. If it's set to False, the property was created by this call.

Remarks
When you create a shared property, its value is set to the default, which is 0.

If you create a SharedProperty object with the CreatePropertyByPosition method, you can access
that property only by using PropertyByPosition. You can't assign a string name to the same property
and then access it by using Property. Accessing a property by position is faster than accessing a
property by using a string name because it requires less overhead.

The same shared property group can contain some SharedProperty objects that are identified by
position and others that are identified by name.

Example

See Also
Sharing State, ISharedPropertyGroup::CreateProperty Method ,
ISharedPropertyGroup::get_PropertyByPosition Method , ISharedPropertyGroup::get_Property
Method

CreatePropertyByPosition Method Example

Dim spmMgr As SharedPropertyGroupManager
Dim spmGroup As SharedPropertyGroup
Dim spmPropNextNumber As SharedProperty
Dim bExists As Boolean
Dim iNextValue As Integer

' Create the SharedPropertyGroupManager,
' SharedPropertyGroup, and SharedProperty.
Set spmMgr = CreateObject _

("MTxSpm.SharedPropertyGroupManager.1")
Set spmGroup = spmMgr.CreatePropertyGroup _

("Counter", LockSetGet, Process, bExists)
Set spmPropNextNumber = _

spmGroup.CreatePropertyByPosition(0, bExists)

' Get the next number and increment it.
iNextValue = spmPropNextNumber.Value
spmPropNextNumber.Value = _

spmPropNextNumber.Value + 1

Property Property
Returns a reference to an existing shared property identified by a string name.

Applies To
SharedPropertyGroup Object

Syntax
Set property = propertygroup.Property(name)

Parameters
propertygroup

An object variable that represents the SharedPropertyGroup to which the SharedProperty object
belongs.

property
An object variable that evaluates to a SharedProperty object.

name
A string expression that contains the name of the shared property to retrieve.

Remarks
You can use only Property to access properties that were created with the CreateProperty method.
To access properties that were created with the CreatePropertyByPosition method, use
PropertyByPosition.

Example

See Also
Sharing State, ISharedPropertyGroup::CreateProperty Method ,
ISharedPropertyGroup::CreatePropertyByPosition Method ,
ISharedPropertyGroup::get_PropertyByPosition Method

Property, Group Properties Example

Dim spmMgr As SharedPropertyGroupManager
Dim spmGroup As SharedPropertyGroup
Dim spmPropNextNumber As SharedProperty
Dim iNextValue As Integer

' Get the SharedPropertyGroupManager,
' SharedPropertyGroup, and SharedProperty.
Set spmMgr = CreateObject _

("MTxSpm.SharedPropertyGroupManager.1")
Set spmGroup = spmMgr.Group("Counter")
Set spmPropNextNumber = spmGroup.Property("Next")

' Get the next number and increment it.
iNextValue = spmPropNextNumber.Value
spmPropNextNumber.Value = _

spmPropNextNumber.Value + 1

PropertyByPosition Property
Returns a reference to an existing shared property identified by its numeric index within the property
group.

Applies To
SharedPropertyGroup Object

Syntax
Set sharedproperty = propertygroup.PropertyByPosition(index)

Parameters
propertygroup

An object variable that represents the SharedPropertyGroup object to which the SharedProperty
object belongs.

sharedproperty
An object variable that evaluates to a SharedProperty object.

index
A Long value that represents the numeric index within the SharedPropertyGroup of the property
to retrieve.

Remarks
You can use only PropertyByPosition to access properties that were created with the
CreatePropertyByPosition method. To access properties that were created with the CreateProperty
method, use Property.

Example

See Also
Sharing State, ISharedPropertyGroup::CreateProperty Method ,
ISharedPropertyGroup::CreatePropertyByPosition Method ,
ISharedPropertyGroup::get_Property Method

PropertyByPosition Property Example

Dim spmMgr As SharedPropertyGroupManager
Dim spmGroup As SharedPropertyGroup
Dim spmPropNextNumber As SharedProperty
Dim iNextValue As Integer

' Get the SharedPropertyGroupManager,
' SharedPropertyGroup, and SharedProperty.
Set spmMgr = CreateObject _

("MTxSpm.SharedPropertyGroupManager.1")
Set spmGroup = spmMgr.Group("Counter")
Set spmPropNextNumber = spmGroup.PropertyByPosition(0)

' Get the next number and increment it.
iNextValue = spmPropNextNumber.Value
spmPropNextNumber.Value = _

spmPropNextNumber.Value + 1

SharedProperty Object
The SharedProperty object is used to set or retrieve the value of a shared property. A shared
property can contain any data type that can be represented by a variant.

Remarks
To use the SharedProperty object, you must set a reference to the Shared Property Manager Type
Library (mtxspm.dll).

You can create a SharedProperty object with the CreateProperty method or the
CreatePropertyByPosition method.

A SharedProperty object can be created or accessed only from within a SharedPropertyGroup.

As with any COM object, you must release a SharedProperty object when you're finished using it,
unless it's a local variable. For example:
Set myProperty = Nothing
The SharedProperty object provides the following property.

Property Description
Value Sets or retrieves the value of a shared

property.

See Also
Sharing State, MTS Supported Variant Types

Value Property
Sets or retrieves the value of a shared property.

Applies To
SharedProperty Object

Syntax
property.Value = value

Parameters
property

An object variable that represents a SharedProperty object.
value

A Variant containing the value to assign to the SharedProperty object, or the SharedProperty's
current value.

Example

See Also
MTS Supported Variant Types, Sharing State

CreatePropertyGroup Method, CreateProperty Method, Value Property Example

Dim spmMgr As SharedPropertyGroupManager
Dim spmGroup As SharedPropertyGroup
Dim spmPropNextNumber As SharedProperty
Dim bExists As Boolean
Dim iNextValue As Integer

' Create the SharedPropertyGroupManager,
' SharedPropertyGroup, and SharedProperty.
Set spmMgr = CreateObject _

("MTxSpm.SharedPropertyGroupManager.1")
Set spmGroup = spmMgr.CreatePropertyGroup _

("Counter", LockSetGet, Process, bExists)
Set spmPropNextNumber = _

spmGroup.CreateProperty("Next", bExists)

' Get the next number and increment it.
iNextValue = spmPropNextNumber.Value
spmPropNextNumber.Value = _

spmPropNextNumber.Value + 1

ISharedPropertyGroupManager Interface
The ISharedPropertyGroupManager interface is used to create shared property groups and to
obtain access to existing shared property groups.

Remarks
The header file for the ISharedPropertyGroupManager interface is mtxspm.h. You must also link
mtxguid.lib to your project to use this interface.

You can access the ISharedPropertyGroupManager interface by creating an instance of the
SharedPropertyGroupManager by using either IObjectContext::CreateInstance or
CoCreateInstance. It makes no difference which you use.

CreateInstance method of the ObjectContext object. It makes no difference which you use.

The Shared Property Manager is a resource dispenser that you can use to share state among
multiple objects within a server process. You can't use global variables in a distributed environment
because of concurrency and name collision issues. The Shared Property Manager eliminates name
collisions by providing shared property groups, which establish unique name spaces for the shared
properties they contain. The Shared Property Manager also implements locks and semaphores to
protect shared properties from simultaneous access, which could result in lost updates and could
leave the properties in an unpredictable state.

Shared properties can be shared only by objects running in the same process. If you want instances
of different components to share properties, you have to install the components in the same MTS
package. Because there is a risk that administrators will move components from one package to
another, it's safest to limit the use of a shared property group to instances of components that are
defined in the same DLL.

It's also important for components sharing properties to have the same activation attribute. If two
components in the same package have different activation attributes, they generally won't be able to
share properties. For example, if one component is configured to run in a client's process and the
other is configured to run in a server process, their objects will usually run in different processes, even
though they're in the same package.

You should always instantiate the SharedPropertyGroupManager, SharedPropertyGroup, and
SharedProperty objects from MTS objects rather than from a base client. If a base client creates

shared property groups and properties, the shared properties are inside the base client's process, not
in a server process. This means MTS objects can't share the properties unless the objects, too, are
running in the client's process (which is generally not a good idea).

Note When you set the isolation mode to LockMethod, the Shared Property Manager requires
access to the calling object's ObjectContext. You can't use this isolation mode to create a shared
property group from within an object's constructor or from a non-MTS object because ObjectContext
isn't available during object construction and a non-MTS object doesn't have an ObjectContext.

The ISharedPropertyGroupManager interface exposes the following methods and properties.

Method Description
CreatePropertyGroup Creates a new SharedPropertyGroup

with a string name as an identifier. If a
group with the specified name already
exists, CreatePropertyGroup returns a
reference to the existing group.

get_Group Returns a reference to an existing shared
property group, given a string name by
which it can be identified.

get__NewEnum Returns a reference to an enumerator that
iterates through a list of all the shared
property groups in a given process.

See Also
Sharing State

ISharedPropertyGroupManager::CreatePropertyGroup Method
Creates and returns a reference to a new shared property group. If a property group with the specified
name already exists, CreatePropertyGroup returns a reference to the existing group.

Provided By
ISharedPropertyGroupManager Interface

HRESULT ISharedPropertyGroup::CreatePropertyGroup (
BSTR name,
LONG* plIsoMode,
LONG* plRelMode,
VARIANT_BOOL* pfExists,
ISharedPropertyGroup** ppGroup,

);

Parameters
name

[in] The name of the shared property group to create.
plIsoMode

[in, out] A reference to a LONG that specifies the isolation mode for the properties in the new
shared property group. See the table that lists plIsoMode constants later in this topic. If the value of
the pfExists parameter is set to VARIANT_TRUE on return from this method, the plIsoMode value
you passed in is ignored and the value returned in this parameter is the isolation mode that was
assigned when the property group was created.

plRelMode
[in, out] A reference to a LONG that specifies the release mode for the properties in the new shared
property group. See the table that lists plRelMode constants later in this topic. If the value of the
pfExists parameter is set to VARIANT_TRUE on return from this method, the plRelMode value you
passed in is ignored and the value returned in this parameter is the release mode that was
assigned when the property group was created.

pfExists
[out] A reference to a BOOL that's set to VARIANT_TRUE on return from this method if the shared
property group specified in the name parameter existed prior to this call, and VARIANT_FALSE if
the property group was created by this call.

ppGroup
[out] A reference to a shared property group identified by the BSTR passed in the name parameter,
or NULL if an error is encountered.

Settings
The following constants are used in the plIsoMode parameter to specify the effective isolation mode
for a shared property group.

Constant Value Description
LockSetGet 0 Default. Locks a property during a get_Value or

put_Valuecall, assuring that every get or set
operation on a shared property is atomic.
This ensures that two clients can't read or write
to the same property at the same time, but it
doesn't prevent other clients from concurrently
accessing other properties in the same group.

LockMethod 1 Locks all of the properties in the shared property

group for exclusive use by the caller as long as
the caller's current method is executing.
This is the appropriate mode to use when there
are interdependencies among properties, or in
cases where a client may have to update a
property immediately after reading it before it
can be accessed again.

Note When you set the isolation mode to LockMethod, the Shared Property Manager requires
access to the calling object's ObjectContext. You can't use this isolation mode to create a shared
property group from within an object's constructor or from a non-MTS object because ObjectContext
isn't available during object construction and a base client doesn't have an ObjectContext.

The following constants are used in the plRelMode parameter to specify the effective release mode
for a shared property group.

Constant Value Description
Standard 0 When all clients have released their references

on the property group, the property group is
automatically destroyed. (This is the default
COM mode.)

Process 1 The property group isn't destroyed until the
process in which it was created has terminated.
(Objects that hold references on a property
group must still call Release on their
references).

Return Values
S_OK

A reference to the shared property group specified in the name parameter is returned in the
ppGroup parameter.

CONTEXT_E_NOCONTEXT
The caller isn't executing under the MTS run-time environment. A caller must be executing under
MTS to use the Shared Property Manager.

E_INVALIDARG
At least one of the parameters is invalid, or the same object is attempting to create the same
property group more than once.

Remarks
The CreatePropertyGroup method sets the value in pfExists to VARIANT_TRUE if the property
group it returns in the ppGroup parameter existed prior to the current call. This occurs when another
object in the same process has already called CreatePropertyGroup with the same property group
name. The CreatePropertyGroup method sets the value in pfExists to VARIANT_FALSE if the
returned property group was created by the current call.

The isolation mode and release mode are assigned when the property group is originally created and
aren't changed if a subsequent call passes different values in these parameters. The caller should
always check the value of pfExists on return from this method. If pfExists is set to VARIANT_TRUE,
the caller should check the values returned in plIsoMode and plRelMode to determine the isolation
and release modes in effect for the property group. For example:
hr = pPropGpMgr->CreatePropertyGroup(stName,

&lIsolationMode, &lReleaseMode, &fAlreadyExists,
&pPropGp);

if (fAlreadyExists) {

if ((lIsolationMode != LockMethod) ||
(lReleaseMode != Process)) {
// Do something appropriate.

}
}
If*
Note An object should never attempt to pass a shared property group reference to another object.
If the reference is passed outside of the object that acquired it, it's no longer a valid reference.

Example

See Also
Sharing State, IObjectContext Interface , ISharedPropertyGroup Interface

ISharedPropertyGroupManager::get_Group Method
Returns a reference to an existing shared property group.

Provided By
ISharedPropertyGroupManager Interface

HRESULT ISharedPropertyGroupManager::get_Group (
BSTR name,
ISharedPropertyGroup** ppGroup,

);

Parameters
name

[in] The name of the shared property group to retrieve.
ppGroup

[out] A reference to the shared property group specified in the name parameter, or NULL if the
property group doesn't exist.

Return Values
S_OK

The shared property group exists, and a reference to it is returned in the ppGroup parameter.
E_INVALIDARG

The shared property group with the name specified in the name parameter doesn't exist.

Example

See Also
Sharing State, ISharedPropertyGroupManager Interface

ISharedPropertyGroupManager::get__NewEnum Method
Returns a reference to an enumerator that you can use to iterate through all the shared property
groups in a process.

Provided By
ISharedPropertyGroupManager Interface
HRESULT ISharedPropertyGroupManager::get__NewEnum (

IUnknown** ppEnumerator
);

Parameters
ppEnumerator

[out] A reference to the IUnknown interface on a new enumerator object that you can use to iterate
through the list of all the shared property groups in the process.

Return Values
S_OK

A reference to the requested enumerator is returned in the ppEnumerator parameter.

Remarks
You use the get__NewEnum method to obtain a reference to an enumerator object. You should
immediately call QueryInterface on the returned IUnknown for the IEnumVARIANT interface. This
interface exposes several methods you can use to iterate through a list of BSTRs representing shared
property group names. Once you have a name, you can use the get_Group method to obtain a
reference to the shared property group it represents.

As with any COM object, you must release an enumerator object when you're finished using it. When
you enumerate the shared property groups, all groups will be included. However, if you then call
CreatePropertyGroup to add a new group, the existing enumerator won't include the new group
even if you call Reset or Clone. To include the new group, you must create a new enumerator by
calling get__NewEnum again.

Note get__NewEnum has two underscore characters between get and NewEnum.

Example

See Also
ISharedPropertyGroupManager::get_Group Method , ISharedPropertyGroup Interface

ISharedPropertyGroupManager::get__NewEnum Method Example

#include <mtxspm.h>

ISharedPropertyGroupManager* pspgm = NULL;
IUnknown* pUnknown = NULL;
IEnumVARIANT* pEnum = NULL;
VARIANT v;
ULONG cElementsFetched;
int i;
HRESULT hr;

// Get the enumerator object.
hr = pspgm->get__NewEnum(&pUnknown);

// Query for the IEnumVARIANT interface.
hr = pUnknown->QueryInterface(IID_IEnumVARIANT, (void**) &pEnum);

// Use the enumerator to iterate through
// the property group names.
for(i = 0; i < 10; i++)
{

VariantInit(&v);
pEnum->Next(1, &v, &cElementsFetched);
// Do something with the returned
// property group names.

}

ISharedPropertyGroup Interface
The ISharedPropertyGroup interface is used to create and access the shared properties in a shared
property group.

Remarks
The header file for the ISharedPropertyGroup interface is mtxspm.h. You must also link mtxguid.lib
to your project to use this interface.

You can access the ISharedPropertyGroup interface by creating a SharedPropertyGroup object
with the ISharedPropertyGroupManager::CreatePropertyGroup method.

As with any COM object, you must release a SharedPropertyGroup object when you're finished
using it.

The ISharedPropertyGroup interface exposes the following methods.

CreateProperty Creates a new shared property identified
by a string expression that's unique
within its property group.

CreatePropertyByPosition Creates a new shared property identified
by a numeric index within its property
group.

get_Property Returns a reference to a shared
property, given the string name by which
the property is identified.

get_PropertyByPosition Returns a reference to a shared
property, given its numeric index in the
shared property group.

See Also
Sharing State, ISharedPropertyGroupManager Interface

ISharedPropertyGroup::CreateProperty Method
Creates and returns a reference to a new SharedProperty with a specified name. If a shared
property by that name already exists, CreateProperty returns a reference to the existing property.

Provided By
ISharedPropertyGroup Interface

HRESULT ISharedPropertyGroup::CreateProperty (
BSTR name,
VARIANT_BOOL* pfExists;
ISharedProperty** ppProp,

);

Parameters
name

[in] The name of the property to create. You can use this name later to obtain a reference to this
property by using the get_Property method.

pfExists
[out] A reference to a Boolean value that's set to VARIANT_TRUE on return from this method if the
shared property specified in the name parameter existed prior to this call, and VARIANT_FALSE if
the property was created by this call.

ppProp
[out] A reference to a SharedProperty object with the name specified in the name parameter, or
NULL if an error is encountered.

Return Values
S_OK

A reference to a shared property with the name specified in the name parameter is returned in the
parameter ppProp.

E_INVALIDARG
One or more of the arguments passed in is invalid.

Remarks
When you create a shared property, its value is set to the default, which is a VARIANT of type VT_I4,
with a value of 0.

If you create a shared property with the CreateProperty method, you can access that property only
by using the get_Property method. You can't assign a numeric index to the same property and then
access it by using the get_PropertyByPosition method.

The same shared property group can contain some shared property objects that are identified by
name and others that are identified by position.

Example

See Also
Sharing State, ISharedPropertyGroup::CreatePropertyByPosition Method ,
ISharedPropertyGroup::get_PropertyByPosition Method , ISharedPropertyGroup::get_Property
Method

ISharedPropertyGroup::CreatePropertyByPosition Method
Creates a new shared property identified by a numeric index that's unique within the property group. If
a shared property with the specified index already exists, CreatePropertyByPosition returns a
reference to the existing one.

Provided By
ISharedPropertyGroup Interface

HRESULT ISharedPropertyGroup::CreatePropertyByPosition (
INT index,
VARIANT_BOOL* pfExists;
ISharedProperty** ppProp,

);

Parameters
index

[in] The numeric index within the SharedPropertyGroup by which the new property will be
referenced. You can use this index later to retrieve the shared property with the
get_PropertyByPosition method.

pfExists
[out] A reference to a Boolean value. If pfExists is set to VARIANT_TRUE on return from this
method, the shared property specified by index existed prior to this call. If it's set to
VARIANT_FALSE, the property was created by this call.

ppProp
[out] A reference to a shared property object identified by the numeric index passed in the index
parameter, or NULL if an error is encountered.

Return Values
S_OK

A reference to the shared property occupying the position specified in the index parameter is
returned in the ppProp parameter.

E_INVALIDARG
One or more of the arguments passed in is invalid.

Remarks
When you create a shared property, its value is set to the default, which is a VARIANT of type VT_I4,
with a value of 0.

If you create a SharedProperty object with the CreatePropertyByPosition method, you can access
that property only by using the get_PropertyByPosition method. You can't assign a string name to
the same property and then access it by using the get_Property method. Accessing a property by
position is faster than accessing a property by using a string name because it requires less overhead.

The same shared property group can contain some SharedProperty objects that are identified by
position and others that are identified by name.

Example

See Also
Sharing State, ISharedPropertyGroup::CreateProperty Method ,
ISharedPropertyGroup::get_PropertyByPosition Method , ISharedPropertyGroup::get_Property
Method

ISharedPropertyGroup::CreatePropertyByPosition Method Example

#include <mtx.h>
#include <mtxspm.h>

IObjectContext* pObjectContext = NULL;
ISharedPropertyGroupManager* pPropGpMgr = NULL;
ISharedPropertyGroup* pPropGp = NULL;
ISharedProperty* pPropNextNum = NULL;
VARIANT_BOOL fAlreadyExists = VARIANT_FALSE;
LONG lIsolationMode = LockMethod;
LONG lReleaseMode = Process;
BSTR stName;
VARIANT vNext;
LONG lNextValue = 0L;
HRESULT hr = S_OK;

hr = GetObjectContext(&pObjectContext);

// Create the SharedPropertyGroupManager,
// SharedPropertyGroup, and SharedProperty.
hr = pObjectContext->CreateInstance

(CLSID_SharedPropertyGroupManager,
IID_ISharedPropertyGroupManager,
(void**)&pPropGpMgr);

stName = SysAllocString(L"Counter");
hr = pPropGpMgr->CreatePropertyGroup(stName,

&lIsolationMode, &lReleaseMode, &fAlreadyExists,
&pPropGp);

SysFreeString(stName);

hr = pPropGp->CreatePropertyByPosition
(0, &fAlreadyExists, &pPropNextNum);

// Get the next number and increment the counter.
VariantInit(&vNext);
vNext.vt = VT_I4;
hr = pPropNextNum->get_Value(&vNext);
lNextValue = vNext.lVal++;
hr = pPropNextNum->put_Value(vNext);

ISharedPropertyGroup::get_Property Method
Returns a reference to an existing shared property identified by a string name.

Provided By
ISharedPropertyGroup Interface

HRESULT ISharedPropertyGroup::get_Property (
BSTR name,
ISharedProperty** ppProperty,

);

Parameters
name

[in] The name of the shared property to retrieve.
ppProperty

[out] A reference to the shared property specified in the name parameter, or NULL if the property
doesn't exist.

Return Values
S_OK

The shared property specified by name was found and a reference to it is returned in the
ppProperty parameter.

E_INVALIDARG
Either the argument passed in the ppProperty parameter was a null pointer, or there is no property
in the shared property group with the name specified in the name parameter.

Remarks
You can use only the get_Property method to access properties that were created with the
CreateProperty method. To access properties that were created with the CreatePropertyByPosition
method, use the get_PropertyByPosition method.

Example

See Also
Sharing State, ISharedPropertyGroup::CreateProperty Method ,
ISharedPropertyGroup::CreatePropertyByPosition Method ,
ISharedPropertyGroup::get_PropertyByPosition Method

ISharedPropertyGroupManager::get_Group, ISharedPropertyGroup::get_Property Methods
Example

#include <mtx.h>
#include <mtxspm.h>

IObjectContext* pObjectContext = NULL;
ISharedPropertyGroupManager* pPropGpMgr = NULL;
ISharedPropertyGroup* pPropGp = NULL;
ISharedProperty* pPropNextNum = NULL;
BSTR stName, stNextNumber;
VARIANT vNext;
LONG lNextValue = 0L;
HRESULT hr = S_OK;

hr = GetObjectContext(&pObjectContext);

// Get the SharedPropertyGroupManager,
// SharedPropertyGroup, and SharedProperty.
hr = pObjectContext->CreateInstance

(CLSID_SharedPropertyGroupManager,
IID_ISharedPropertyGroupManager,
(void**)&pPropGpMgr);

stName = SysAllocString(L"Counter");
hr = pPropGpMgr->get_Group(stName, &pPropGp);
SysFreeString(stName);

stNextNumber = SysAllocString(L"NextNum");
hr = pPropGp->get_Property

(stNextNumber, &pPropNextNum);
SysFreeString(stNextNumber);

// Get the next number and increment the counter.
VariantInit(&vNext);
vNext.vt = VT_I4;
hr = pPropNextNum->get_Value(&vNext);
lNextValue = vNext.lVal++;
hr = pPropNextNum->put_Value(vNext);

ISharedPropertyGroup::get_PropertyByPosition Method
Returns a reference to an existing shared property identified by its numeric index within the property
group.

Provided By
ISharedPropertyGroup Interface

HRESULT ISharedPropertyGroup::get_PropertyByPosition (
INT index,
ISharedProperty** ppProperty,

);

Parameters
index

[in] The numeric index within the SharedPropertyGroup of the property to retrieve.
ppProperty

[out] A reference to the shared property specified by the index parameter, or NULL if the property
doesn't exist.

Return Values
S_OK

The shared property specified by index was found and a reference to it is returned in the
ppProperty parameter.

E_INVALIDARG
Either the argument passed in the ppProperty parameter was a null pointer, or there is no property
in the shared property group with the index number specified in the index parameter.

Remarks
You can use only the get_PropertyByPosition method to access properties that were created with
the CreatePropertyByPosition method. To access properties that were created with the
CreateProperty method, use the get_Property method.

Example

See Also
Sharing State, ISharedPropertyGroup::CreateProperty Method ,
ISharedPropertyGroup::CreatePropertyByPosition Method ,
ISharedPropertyGroup::get_Property Method

ISharedPropertyGroup::get_PropertyByPosition Method Example

#include <mtx.h>
#include <mtxspm.h>

IObjectContext* pObjectContext = NULL;
ISharedPropertyGroupManager* pPropGpMgr = NULL;
ISharedPropertyGroup* pPropGp = NULL;
ISharedProperty* pPropNextNum = NULL;
BSTR stName;
VARIANT vNext;
LONG lNextValue = 0L;
HRESULT hr = S_OK;

hr = GetObjectContext(&pObjectContext);

// Get the SharedPropertyGroupManager,
// SharedPropertyGroup, and SharedProperty.
hr = pObjectContext->CreateInstance

(CLSID_SharedPropertyGroupManager,
IID_ISharedPropertyGroupManager,
(void**)&pPropGpMgr);

stName = SysAllocString(L"Counter");
hr = pPropGpMgr->get_Group(stName, &pPropGp);
SysFreeString(stName);

hr = pPropGp->get_PropertyByPosition
(0, &pPropNextNum);

// Get the next number and increment the counter.
VariantInit(&vNext);
vNext.vt = VT_I4;
hr = pPropNextNum->get_Value(&vNext);
lNextValue = vNext.lVal++;
hr = pPropNextNum->put_Value(vNext);

ISharedProperty Interface
The ISharedProperty interface is used to set or retrieve the value of a shared property. A shared
property can contain any data type that can be represented by a variant.

Remarks
The header file for the ISharedProperty interface is mtxspm.h. You must also link mtxguid.lib to your
project to use this interface.

You can access the ISharedProperty interface by creating a SharedProperty object with the
ISharedPropertyGroup::CreateProperty method or the
ISharedPropertyGroup::CreatePropertyByPosition method.

A SharedProperty object can be created or accessed only from within a SharedPropertyGroup.

As with any COM object, you must release a SharedProperty object when you're finished using it.

The ISharedProperty interface exposes the following methods.

Method Description
get_Value Retrieves the value of a shared property.
put_Value Sets the value of a shared property.

See Also
Sharing State, MTS Supported Variant Types

ISharedProperty::get_Value Method
Retrieves the value of a shared property.

Provided By
ISharedProperty Interface

HRESULT ISharedProperty::get_Value (
VARIANT* pVal

);

Parameters
pVal

[out] A reference to a variant in which the value of the shared property will be returned.

Return Values
S_OK

A reference to a VARIANT containing the value of the shared property is returned in the pVal
parameter.

E_INVALIDARG
The argument passed in the pval parameter is invalid.

Example

See Also
MTS Supported Variant Types, Sharing State

ISharedProperty::put_Value Method
Assigns a value to a shared property.

Provided By
ISharedProperty Interface

HRESULT ISharedProperty::put_Value (
VARIANT value

);

Parameters
value

[in] A VARIANT containing the value to assign to the SharedProperty object.

Return Values
S_OK

The shared property's value has been set to value.
E_INVALIDARG

The argument passed in the value parameter has the VT_BYREF bit set.
DISP_E_ARRAYISLOCKED

The argument passed in the value parameter contains an array that's locked.
DISP_E_BADVARTYPE

The argument passed in the value parameter isn't a valid VARIANT type.

Example

See Also
MTS Supported Variant Types, Sharing State

CreatePropertyGroup, CreateProperty, put_Value, get_Value Methods Example

#include <mtx.h>
#include <mtxspm.h>

IObjectContext* pObjectContext = NULL;
ISharedPropertyGroupManager* pPropGpMgr = NULL;
ISharedPropertyGroup* pPropGp = NULL;
ISharedProperty* pPropNextNum = NULL;
VARIANT_BOOL fAlreadyExists = VARIANT_FALSE;
LONG lIsolationMode = LockMethod;
LONG lReleaseMode = Process;
LONG lNextValue = 0L;
BSTR stName, stNextNumber;
VARIANT vNext;
HRESULT hr = S_OK;

hr = GetObjectContext(&pObjectContext);

// Create the SharedPropertyGroupManager,
// SharedPropertyGroup, and SharedProperty.
hr = pObjectContext->CreateInstance

(CLSID_SharedPropertyGroupManager,
IID_ISharedPropertyGroupManager,
(void**)&pPropGpMgr);

stName = SysAllocString(L"Counter");
hr = pPropGpMgr->CreatePropertyGroup(stName,

&lIsolationMode, &lReleaseMode, &fAlreadyExists,
&pPropGp);

SysFreeString(stName);

stNextNumber = SysAllocString(L"NextNum");
hr = pPropGp->CreateProperty

(stNextNumber, &fAlreadyExists, &pPropNextNum);
SysFreeString(stNextNumber);

// Get the next number and increment the counter.
VariantInit(&vNext);
vNext.vt = VT_I4;
hr = pPropNextNum->get_Value(&vNext);
lNextValue = vNext.lVal++;
hr = pPropNextNum->put_Value(vNext);

ISharedPropertyGroupManager Interface
The ISharedPropertyGroupManager interface is used to create shared property groups and to
obtain access to existing shared property groups.

Remarks
The ISharedPropertyGroupManager interface is declared in the package com.ms.mtx.
You can access the ISharedPropertyGroupManager interface by creating an instance of the
SharedPropertyGroupManager by using either IObjectContext.CreateInstance or new
SharedPropertyGroupManager. It makes no difference which you use.

CreateInstance method of the ObjectContext object. It makes no difference which you use.

The Shared Property Manager is a resource dispenser that you can use to share state among
multiple objects within a server process. You can't use global variables in a distributed environment
because of concurrency and name collision issues. The Shared Property Manager eliminates name
collisions by providing shared property groups, which establish unique name spaces for the shared
properties they contain. The Shared Property Manager also implements locks and semaphores to
protect shared properties from simultaneous access, which could result in lost updates and could
leave the properties in an unpredictable state.

Shared properties can be shared only by objects running in the same process. If you want instances
of different components to share properties, you have to install the components in the same MTS
package. Because there is a risk that administrators will move components from one package to
another, it's safest to limit the use of a shared property group to instances of components that are
defined in the same DLL.

It's also important for components sharing properties to have the same activation attribute. If two
components in the same package have different activation attributes, they generally won't be able to
share properties. For example, if one component is configured to run in a client's process and the
other is configured to run in a server process, their objects will usually run in different processes, even
though they're in the same package.

You should always instantiate the SharedPropertyGroupManager, SharedPropertyGroup, and
SharedProperty objects from MTS objects rather than from a base client. If a base client creates
shared property groups and properties, the shared properties are inside the base client's process, not
in a server process. This means MTS objects can't share the properties unless the objects, too, are
running in the client's process (which is generally not a good idea).

Note When you set the isolation mode to LOCKMODE_METHOD, the Shared Property Manager
requires access to the calling object's ObjectContext. You can't use this isolation mode to create a
shared property group from within an object's constructor or from a non-MTS object because
ObjectContext isn't available during object construction and a non-MTS object doesn't have an
ObjectContext.

The ISharedPropertyGroupManager interface exposes the following methods and properties.

Method Description
CreatePropertyGroup Creates a new SharedPropertyGroup

with a string name as an identifier. If a
group with the specified name already
exists, CreatePropertyGroup returns a
reference to the existing group.

getGroup Returns a reference to an existing shared
property group, given a string name by
which it can be identified.

get_NewEnum Returns a reference to an enumerator that
iterates through a list of all the shared
property groups in a given process.

See Also
Sharing State

ISharedPropertyGroupManager.CreatePropertyGroup Method
Creates and returns a reference to a new shared property group. If a property group with the specified
name already exists, CreatePropertyGroup returns a reference to the existing group.

Provided By
ISharedPropertyGroupManager Interface

ISharedPropertyGroup CreatePropertyGroup (
String name,
int[] lockmode,
int[] releasemode,
boolean[] exists,

);

Parameters
name

[in] The name of the shared property group to create.
lockmode

[in, out] An array of one integer that specifies the isolation mode for the properties in the new
shared property group. See the table that lists lockmode constants later in this topic. If the value of
the exists parameter is set to true on return from this method, the lockmode value you passed in
is ignored and the value returned in this parameter is the isolation mode that was assigned when
the property group was created.

releasemode
[in, out] An array of one integer that specifies the release mode for the properties in the new shared
property group. See the table that lists releasemode constants later in this topic. If the value of the
exists parameter is set to true on return from this method, the releasemode value you passed in
is ignored and the value returned in this parameter is the release mode that was assigned when
the property group was created.

exists
[out] An array of one boolean that's set to true on return from this method if the shared property
group specified in the name parameter existed prior to this call, and false if the property group
was created by this call.

Settings
The following constants are used in the lockmode parameter to specify the effective isolation mode for
a shared property group. These constants are static final members of the
ISharedPropertyGroupManager interface.

Constant Value Description
LOCKMODE
_SETGET

0 Default. Locks a property during a getValue or
putValuecall, assuring that every get or set
operation on a shared property is atomic.
This ensures that two clients can't read or write
to the same property at the same time, but it
doesn't prevent other clients from concurrently
accessing other properties in the same group.

LOCKMODE
_METHOD

1 Locks all of the properties in the shared property
group for exclusive use by the caller as long as
the caller's current method is executing.
This is the appropriate mode to use when there

are interdependencies among properties, or in
cases where a client may have to update a
property immediately after reading it before it
can be accessed again.

Note When you set the isolation mode to LOCKMODE_METHOD, the Shared Property Manager
requires access to the calling object's ObjectContext. You can't use this isolation mode to create a
shared property group from within an object's constructor or from a non-MTS object because
ObjectContext isn't available during object construction and a base client doesn't have an
ObjectContext.

The following constants are used in the releasemode parameter to specify the effective release mode
for a shared property group. These constants are static final members of the
ISharedPropertyGroupManager interface.

Constant Value Description
RELEASE
MODE_
STANDARD

0 When all clients have released their references
on the property group, the property group is
automatically destroyed. (This is the default
COM mode.)

RELEASE
MODE_
PROCESS

1 The property group isn't destroyed until the
process in which it was created has terminated.

Return Value
A reference to a shared property group identified by the string expression passed in the name
parameter, or null if an error is encountered.

Remarks
The CreatePropertyGroup method sets the value in exists to true if the property group it returns
existed prior to the current call. This occurs when another object in the same process has already
called CreatePropertyGroup with the same property group name. The CreatePropertyGroup
method sets the value in exists to false if the returned property group was created by the current
call.

The isolation mode and release mode are assigned when the property group is originally created and
aren't changed if a subsequent call passes different values in these parameters. The caller should
always check the value of exists on return from this method. If exists is set to true, the caller should
check the values returned in lockmode and releasemode to determine the isolation and release
modes in effect for the property group. For example:
propGp = propGpMgr.CreatePropertyGroup

("Counter", aiIsolationMode,
aiReleaseMode, afAlreadyExists);

if (afAlreadyExists[0]) {
if ((aiIsolationMode[0] !=

ISharedPropertyGroupManager.LOCKMODE_METHOD) ||
(aiReleaseMode[0] ISharedPropertyGroupManager.
RELEASEMODE_PROCESS)) {
// Do something appropriate.

}
}
If*
Note An object should never attempt to pass a shared property group reference to another object.
If the reference is passed outside of the object that acquired it, it's no longer a valid reference.

Example

See Also
Sharing State, IObjectContext Interface , ISharedPropertyGroup Interface

ISharedPropertyGroupManager.getGroup Method
Returns a reference to an existing shared property group.

Provided By
ISharedPropertyGroupManager Interface

ISharedPropertyGroup getGroup (
String name,

);

Parameters
name

[in] The name of the shared property group to retrieve.

Return Value
A reference to the shared property group specified in the name parameter, or null if the property
group doesn't exist.

Example

See Also
Sharing State, ISharedPropertyGroupManager Interface

ISharedPropertyGroupManager.get_NewEnum Method
Returns a reference to an enumerator that you can use to iterate through all the shared property
groups in a process.

Provided By
ISharedPropertyGroupManager Interface

IUnknown get_NewEnum ();

Return Value
A reference to the IUnknown interface on a new enumerator object that you can use to iterate
through the list of all the shared property groups in the process.

Remarks
You use the get_NewEnum method to obtain a reference to an enumerator object. You should
immediately cast the returned value to the IEnumVariant interface. This interface exposes several
methods you can use to iterate through a list of string expressions representing shared property
group names. Once you have a name, you can use the getGroup method to obtain a reference to the
shared property group it represents. When you enumerate the shared property groups, all groups will
be included. However, if you then call CreatePropertyGroup to add a new group, the existing
enumerator won't include the new group even if you call Reset or Clone. To include the new group,
you must create a new enumerator by calling NewEnum again.

Example

See Also
ISharedPropertyGroupManager.getGroup Method , ISharedPropertyGroup Interface

get_NewEnum Method Example

import com.ms.mtx.*;

ISharedPropertyGroupManager spgm = null;
IEnumVariant myEnum = null;
Variant v;
int i;

// Get the enumerator object and
// cast the returned interface to IEnumVariant.
myEnum = (IEnumVariant)spgm.get_NewEnum();

// Use the enumerator to iterate through
// the property group names.
for(i = 0; i < 10; i++){

v = Enum.Next(1);
// Do something with the returned
// property group names.

}

ISharedPropertyGroup Interface
The ISharedPropertyGroup interface is used to create and access the shared properties in a shared
property group.

Remarks
The ISharedPropertyGroup interface is declared in the package com.ms.mtx.
You can access the ISharedPropertyGroup interface by creating a SharedPropertyGroup object
with the ISharedPropertyGroupManager.CreatePropertyGroup method.

The ISharedPropertyGroup interface exposes the following methods.

CreateProperty Creates a new shared property identified
by a string expression that's unique
within its property group.

CreatePropertyByPosition Creates a new shared property identified
by a numeric index within its property
group.

getProperty Returns a reference to a shared
property, given the string name by which
the property is identified.

getPropertyByPosition Returns a reference to a shared
property, given its numeric index in the
shared property group.

See Also
Sharing State, ISharedPropertyGroupManager Interface

ISharedPropertyGroup.CreateProperty Method
Creates and returns a reference to a new SharedProperty with a specified name. If a shared
property by that name already exists, CreateProperty returns a reference to the existing property.

Provided By
ISharedPropertyGroup Interface

ISharedProperty CreateProperty (
String name,
boolean[] exists;

);

Parameters
name

[in] The name of the property to create. You can use this name later to obtain a reference to this
property by using the getProperty method.

exists
[out] An array of one Boolean value that's set to true on return from this method if the shared
property specified in the name parameter existed prior to this call, and false if the property was
created by this call.

Return Value
A reference to a shared property object with the name specified in the name parameter, or null if an
error is encountered.

Remarks
When you create a shared property, its value is set to the default, which is a Variant with an integer
value of 0.

If you create a shared property with the CreateProperty method, you can access that property only
by using the getProperty method. You can't assign a numeric index to the same property and then
access it by using the getPropertyByPosition method.

The same shared property group can contain some shared property objects that are identified by
name and others that are identified by position.

Example

See Also
Sharing State, I SharedPropertyGroup::CreatePropertyByPosition Method ,
ISharedPropertyGroup::get_PropertyByPosition Method , ISharedPropertyGroup::get_Property
Method

ISharedPropertyGroup.CreatePropertyByPosition Method
Creates a new shared property identified by a numeric index that's unique within the property group. If
a shared property with the specified index already exists, CreatePropertyByPosition returns a
reference to the existing one.

Provided By
ISharedPropertyGroup Interface

ISharedProperty CreatePropertyByPosition (
int index,
boolean[] exists;

);

Parameters
index

[in] The numeric index within the SharedPropertyGroup by which the new property will be
referenced. You can use this index later to retrieve the shared property with the
getPropertyByPosition method.

exists
[out] An array of one boolean value. If exists is set to true on return from this method, the shared
property specified by index existed prior to this call. If it's set to false, the property was created by
this call.

Return Value
A reference to a shared property object that's identified by the numeric index passed in the index
parameter, or null if an error is encountered.

Remarks
When you create a shared property, its value is set to the default, which is a Variant with an integer
value of 0.

If you create a SharedProperty object with the CreatePropertyByPosition method, you can access
that property only by using the getPropertyByPosition method. You can't assign a string name to the
same property and then access it by using the getProperty method. Accessing a property by position
is faster than accessing a property by using a string name because it requires less overhead.

The same shared property group can contain some SharedProperty objects that are identified by
position and others that are identified by name.

Example

See Also
Sharing State, ISharedPropertyGroup::CreateProperty Method ,
ISharedPropertyGroup::get_PropertyByPosition Method , ISharedPropertyGroup::get_Property
Method

ISharedPropertyGroup.CreatePropertyByPosition Method Example

import com.ms.mtx.*;

ISharedPropertyGroupManager propGpMgr = null;
ISharedPropertyGroup propGp = null;
ISharedProperty propNextNum = null;
Variant vNext;
int iNextValue = 0;
boolean[] afAlreadyExists = new boolean[1];
int[] aiIsolationMode = new int[1];
aiIsolationMode[0] =

ISharedPropertyGroupManager.LOCKMODE_SETGET;
int[] aiReleaseMode = new int[1];
aiReleaseMode[0] =

ISharedPropertyGroupManager.RELEASEMODE_PROCESS;

// Create the SharedPropertyGroupManager,
// SharedPropertyGroup, and SharedProperty.
propGpMgr = new SharedPropertyGroupManager();
propGp = propGpMgr.CreatePropertyGroup

("Counter", aiIsolationMode,
aiReleaseMode, afAlreadyExists);

propNextNum = propGp.CreatePropertyByPosition
(0, fAlreadyExists);

// Get the next number and increment it.
VariantInit(&vNext);
vNext = propNextNum.getValue();
iNextValue = vNext.getInt();
vNext.putInt(iNextValue + 1);
propNextNum.putValue(vNext);

ISharedPropertyGroup.getProperty Method
Returns a reference to an existing shared property identified by a string name.

Provided By
ISharedPropertyGroup Interface

ISharedProperty getProperty (
String name,

);

Parameters
name

[in] A string expression that contains the name of the shared property to retrieve.

Return Value
A reference to the shared property specified in the name parameter, or null if the property doesn't
exist.

Remarks
You can use only the getProperty method to access properties that were created with the
CreateProperty method. To access properties that were created with the CreatePropertyByPosition
method, use the getPropertyByPosition method.

Example

See Also
Sharing State, ISharedPropertyGroup::CreateProperty Method ,
ISharedPropertyGroup::CreatePropertyByPosition Method ,
ISharedPropertyGroup::get_PropertyByPosition Method

ISharedPropertyGroupManager.getGroup, ISharedPropertyGroup.getProperty Methods
Example

import com.ms.mtx.*;

ISharedPropertyGroupManager propGpMgr = null;
ISharedPropertyGroup propGp = null;
ISharedProperty propNextNum = null;
Variant vNext;
int iNextValue = 0;

// Get the SharedPropertyGroupManager,
// SharedPropertyGroup, and SharedProperty.
propGpMgr = new SharedPropertyGroupManager();
propGp = propGpMgr.getGroup("Counter");
propNextNum = propGp.getProperty("NextNum");

// Get the next number and increment it.
VariantInit(&vNext);
vNext = propNextNum.getValue();
iNextValue = vNext.getInt();
vNext.putInt(iNextValue + 1);
propNextNum.putValue(vNext);

ISharedPropertyGroup.getPropertyByPosition Method
Returns a reference to an existing shared property identified by its numeric index within the property
group.

Provided By
ISharedPropertyGroup Interface

ISharedProperty getPropertyByPosition (
INT index,

);

Parameters
index

[in] The numeric index within the SharedPropertyGroup of the property to retrieve.

Return Value
A reference to the shared property specified by the index parameter, or null if the property doesn't
exist.

Remarks
You can use only the getPropertyByPosition method to access properties that were created with the
CreatePropertyByPosition method. To access properties that were created with the CreateProperty
method, use the getProperty method.

Example

See Also
Sharing State, ISharedPropertyGroup::CreateProperty Method ,
ISharedPropertyGroup::CreatePropertyByPosition Method ,
ISharedPropertyGroup::get_Property Method

ISharedPropertyGroup.getPropertyByPosition Method Example

import com.ms.mtx.*;

ISharedPropertyGroupManager propGpMgr = null;
ISharedPropertyGroup propGp = null;
ISharedProperty propNextNum = null;
Variant vNext;
int iNextValue = 0;

// Get the SharedPropertyGroupManager,
// SharedPropertyGroup, and SharedProperty.
propGpMgr = new SharedPropertyGroupManager();
propGp = propGpMgr.getGroup("Counter");
propNextNum = propGp.getPropertyByPosition(0);

// Get the next number and increment it.
VariantInit(&vNext);
vNext = propNextNum.getValue();
iNextValue = vNext.getInt();
vNext.putInt(iNextValue + 1);
propNextNum.putValue(vNext);

ISharedProperty Interface
The ISharedProperty interface is used to set or retrieve the value of a shared property. A shared
property can contain any data type that can be represented by a variant.

Remarks
The ISharedProperty interface is declared in the package com.ms.mtx.
You can access the ISharedProperty interface by creating a SharedProperty object with the
ISharedPropertyGroup.CreateProperty method or the
ISharedPropertyGroup.CreatePropertyByPosition method.

A SharedProperty object can be created or accessed only from within a SharedPropertyGroup.

The ISharedProperty interface exposes the following methods.

Method Description
getValue Retrieves the value of a shared property.
putValue Sets the value of a shared property.

See Also
Sharing State, MTS Supported Variant Types

ISharedProperty.getValue Method
Retrieves the value of a shared property.

Provided By
ISharedProperty Interface

Variant getValue ();

Return Value
A Variant in which the value of the shared property will be returned.

Example

See Also
MTS Supported Variant Types, Sharing State

ISharedProperty.putValue Method
Assigns a value to a shared property.

Provided By
ISharedProperty Interface

void putValue (
Variant value

);

Parameters
value

[in] A Variant containing the value to assign to the SharedProperty object.

Example

See Also
MTS Supported Variant Types, Sharing State

CreatePropertyGroup, CreateProperty, putValue, getValue Methods Example

import com.ms.mtx.*;

ISharedPropertyGroupManager propGpMgr = null;
ISharedPropertyGroup propGp = null;
ISharedProperty propNextNum = null;
Variant vNext;
int iNextValue = 0;
boolean[] afAlreadyExists = new boolean[1];
int[] aiIsolationMode = new int[1];
aiIsolationMode[0] =

ISharedPropertyGroupManager.LOCKMODE_SETGET;
int[] aiReleaseMode = new int[1];
aiReleaseMode[0] =

ISharedPropertyGroupManager.RELEASEMODE_PROCESS;

// Create the SharedPropertyGroupManager,
// SharedPropertyGroup, and SharedProperty.
propGpMgr = new SharedPropertyGroupManager();
propGp = propGpMgr.CreatePropertyGroup

("Counter", aiIsolationMode,
aiReleaseMode, afAlreadyExists);

propNextNum = propGp.CreateProperty
("NextNum", afAlreadyExists);

// Get the next number and increment it.
VariantInit(&vNext);
vNext = propNextNum.getValue();
iNextValue = vNext.getInt();
vNext.putInt(iNextValue + 1);
propNextNum.putValue(vNext);

TransactionContext Object
The TransactionContext object is used by a base client to compose the work of one or more MTS
objects into an atomic transaction and to commit or abort the transaction.

Remarks
To use the TransactionContext object, you must set a reference to the Transaction Context Type
Library (txctx.dll).

You can use a TransactionContext object to scope a transaction from a base client. You begin the
transaction by instantiating a TransactionContext object, and you end the transaction by calling
Commit or Abort on the object. The base client itself never executes within the transaction.

The TransactionContext component is a standard MTS component. The component's transaction
attribute is set to Requires a new transaction, which means that a TransactionContext object is
always the root of a transaction. When a base client instantiates an object by using the
TransactionContext object's CreateInstance method, the new object and its descendants will
participate in theTransactionContext object's transaction unless the new object's transaction
attribute is set to Requires a new transaction or Does not support transactions.

You could easily write your own TransactionContext component. You would simply create a
component that implements the methods Commit, Abort, and CreateInstance, and set the
component's transaction attribute to Requires a new transaction. The three methods would do
nothing more than call GetObjectContext and invoke their ObjectContext object's SetComplete,
SetAbort, and CreateInstance methods, respectively.

Before you use TransactionContext to compose the work of existing components in a transaction,
you should consider implementing a separate component that not only composes their work but
encapsulates it into a reusable unit. This new component would not only serve the needs of the
current base client, but other clients could also use it. In one approach, the base client instantiates a
TransactionContext object, calls its CreateInstance method to instantiate other objects, calls
various methods on those objects, and finally calls Commit or Abort on the TransactionContext
object. In the other approach, you create a new component that requires a transaction. This new
component instantiates the other objects using its ObjectContext object's CreateInstance method,
calls the relevant methods on those other objects itself, and then calls SetComplete or SetAbort on
its ObjectContext when it's done. Using this approach, the base client only needs to instantiate this
one object, and invoke one method on it, and the object does the rest of the work. When other clients
require the same functionality, they can reuse the new component.

You obtain a reference to a TransactionContext object with CreateObject. For example:
Set objTransactionContext = _

CreateObject("TxCtx.TransactionContext")
The TransactionContext object provides the following methods.

Method Description
Abort Aborts the work of all MTS objects participating in the current

transaction. The transaction is completed on return from this
method.

Commit Attempts to commit the work of all MTS objects participating in the
current transaction. If any of the MTS objects participating in the
transaction have called SetAbort or DisableCommit, or if a
system error has occurred, the transaction will be aborted.
Otherwise, the transaction will be committed. In either case, the
transaction is completed on return from this method.

CreateInstance Instantiates another MTS object. If the component that provides the
object is configured to support or require a transaction, then the

new object runs under the transaction of the
TransactionContextobject.

See Also
Transaction Context Objects, Base Clients, Transactions

Abort Method
Aborts the current transaction.

Applies To
TransactionContext Object

Syntax
transactioncontextobject.Abort
The transactioncontextobject placeholder represents an object variable that evaluates to a
TransactionContext object.

Remarks
When a base client calls Abort, all objects that participated in the transaction are automatically
deactivated. Any database updates made by those objects are rolled back. The transaction is
completed on return from this method. If another call is made on the TransactionContext object after
the TransactionContext object has returned from a call in which it called the Abort method, a new
transaction is started.

Example

See Also
Transaction Context Objects, Base Clients, Transactions, SetAbort

Abort, Commit Methods Example

Dim objTxCtx As TransactionContext
Dim objMyObject As MyCompany.MyObject
Dim userCanceled As Boolean

' Get TransactionContext.
Set objTxCtx = _

CreateObject("TxCtx.TransactionContext")

' Create an instance of some component.
Set objMyObject= _

objTxCtx.CreateInstance("MyCompany.MyObject")

' Do some work here.

' If something goes wrong, abort the transaction.
If userCanceled Then

objTxCtx.Abort

' Otherwise, commit it.
Else

objTxCtx.Commit
End If

Commit Method
Attempts to commit the current transaction.

Applies To
TransactionContext Object

Syntax
transactioncontextobject.Commit
The transactioncontextobject placeholder represents an object variable that evaluates to a
TransactionContext object.

Remarks
Calling Commit doesn't guarantee that a transaction will be committed. If any MTS object that was
part of the transaction has returned from a method after calling SetAbort, the transaction will be
aborted. If any object that was part of the transaction has called DisableCommit and hasn't yet called
EnableCommit or SetComplete, the transaction will also be aborted. Any error that causes Microsoft
Distributed Transaction Coordinator to abort a transaction will also abort an MTS transaction.

When a base client calls Commit, regardless of whether the transaction commits or aborts, the
transaction is completed on return from this method and all objects that participated in the transaction
are automatically deactivated. If another call comes in after the TransactionContext object has
returned from a call in which it called the Commit method, a new transaction is started.

Example

See Also
Transaction Context Objects, Base Clients, Transactions, SetComplete

CreateInstance Method
Instantiates an MTS object that will execute within the scope of the transaction that was initiated with
the creation of the TransactionContext object.

Applies To
TransactionContext Object

Syntax
Set object = transactioncontextobject.CreateInstance(programmaticID)

Part
object

An object variable that evaluates to an MTS object.
transactioncontextobject

An object variable that represents the TransactionContext object from which to create the new
object.

programmaticID
The programmatic Id of the new object's component.

Remarks
When a base client uses the TransactionContext object's CreateInstance method to instantiate an
MTS object, the new object executes within the transaction context object's activity. If the transaction
attribute of the new object's component is set to either Supports transactions or Requires a
transaction, the new object also inherits the transaction initiated with the creation of the
TransactionContext object. However, if the component that provides the new object has its
transaction attribute set to Does not support transactions, the object neither inherits the transaction
nor passes it on to objects it subsequently creates. If the component that provides the new object has
its transaction attribute set to Requires a new transaction, the MTS run-time environment initiates a
new transaction for the new object, and that transaction is the one that's inherited by objects it
subsequently creates.

In this respect, using CreateInstance is comparable to using CoCreateInstance and specifying
NULL for the controlling IUnknown interface (pUnkOuter).

Example

See Also
Transaction Context Objects, Base Clients, Transactions, CreateInstance

CreateInstance Method, TransactionContext Object Example

Dim objTxCtx As TransactionContext
Dim objMyObject As MyCompany.MyObject

' Get TransactionContext.
Set objTxCtx = _

CreateObject("TxCtx.TransactionContext")

' Create an instance of MyObject.
Set objMyObject= _

objTxCtx.CreateInstance("MyCompany.MyObject")

ITransactionContextEx Interface
The ITransactionContextEx interface is used by a base client to compose the work of one or more
MTS objects into an atomic transaction and to commit or abort the transaction.

Remarks
The header file for the ITransactionContextEx interface is txctx.h. You must also link mtxguid.lib to
your project to use this interface.

You can use a TransactionContextEx object to scope a transaction from a base client. You begin the
transaction by instantiating a TransactionContextEx object, and you end the transaction by calling
Commit or Abort on the object. The base client itself never executes within the transaction.

The TransactionContextEx component is a standard MTS component. The component's transaction
attribute is set to Requires a new transaction, which means that a TransactionContextEx object is
always the root of a transaction. When a base client instantiates an object by using the
ITransactionContextEx::CreateInstance method, the new object and its descendants will participate
in theTransactionContextEx object's transaction unless the new object's transaction attribute is set
to Requires a new transaction or Does not support transactions.

You could easily write your own TransactionContextEx component. You would simply create a
component that implements the methods Commit, Abort, and CreateInstance, and set the
component's transaction attribute to Requires a new transaction. The three methods would do
nothing more than call GetObjectContext and invoke their ObjectContext object's SetComplete,
SetAbort, and CreateInstance methods, respectively.

Before you use TransactionContextEx to compose the work of existing components in a transaction,
you should consider implementing a separate component that not only composes their work but
encapsulates it into a reusable unit. This new component would not only serve the needs of the
current base client, but other clients could also use it. In one approach, the base client instantiates a
TransactionContextEx object, calls its CreateInstance method to instantiate other objects, calls
various methods on those objects, and finally calls Commit or Abort on the TransactionContextEx
object. In the other approach, you create a new component that requires a transaction. This new
component instantiates the other objects using its ObjectContext object's CreateInstance method,
calls the relevant methods on those other objects itself, and then calls SetComplete or SetAbort on
its ObjectContext when it's done. Using this approach, the base client only needs to instantiate this
one object, and invoke one method on it, and the object does the rest of the work. When other clients
require the same functionality, they can reuse the new component.

You obtain a reference to the ITransactionContextEx interface by creating a TransactionContextEx
object with a call to CoCreateInstance. For example:
CoCreateInstance(CLSID_TransactionContextEx, NULL, CLSCTX_INPROC,
IID_ITransactionContextEx, (void**)&m_pTransactionContext);
The ITransactionContextEx interface exposes the following methods.

Method Description
Abort Aborts the work of all MTS objects participating in the current

transaction. The transaction is completed on return from this
method.

Commit Attempts to commit the work of all MTS objects participating in the
current transaction. If any of the MTS objects participating in the
transaction have called SetAbort or DisableCommit, or if a
system error has occurred, the transaction will be aborted.
Otherwise, the transaction will be committed. In either case, the
transaction is completed on return from this method.

CreateInstance Instantiates another MTS object. If the component that provides the

object is configured to support or require a transaction, then the
new object runs under the transaction of the
TransactionContextExobject.

See Also
Transaction Context Objects, Base Clients, Transactions

ITransactionContextEx::Abort Method
Aborts the current transaction.

Provided By
ITransactionContextEx Interface

HRESULT ITransactionContextEx::Abort ();

Return Values
S_OK

The transaction was aborted.
E_FAIL

The TransactionContextEx object isn't running under a MTS process. This could happen if the
TransactionContextEx component's Registry entry has been corrupted.

E_UNEXPECTED
An unexpected error occurred.

Remarks
When a base client calls Abort, all objects that participated in the transaction are automatically
deactivated. Any database updates made by those objects are rolled back. The transaction is
completed on return from this method. If another call is made on the TransactionContextEx object
after the TransactionContextEx object has returned from a call in which it called the Abort method,
a new transaction is started.

Example

See Also
Transaction Context Objects, Base Clients, Transactions, SetAbort

ITransactionContextEx::Abort, ITransactionContextEx::Commit Methods Example

#include <Txctx.h>

ITransactionContextEx* pTransactionContext = NULL;
IMyObject* pMyObject = NULL;
boolean bUserCanceled = FALSE;
HRESULT hr;

// Get TransactionContextEx.
hr = CoCreateInstance(CLSID_ITransactionContextEx,

NULL, CLSCTX_INPROC, IID_ITransactionContextEx,
(void**) &pTransactionContext);

// Create an instance of MyObject.
hr = pTransactionContext->CreateInstance

(CLSID_CMyObject, IID_IMyObject,
(void**) &pMyObject);

// Do some work here.

// If something goes wrong, abort the transaction.
if (bUserCanceled)

pTransactionContext->Abort();

// Otherwise, commit it.
else

pTransactionContext->Commit();

ITransactionContextEx::Commit Method
Attempts to commit the current transaction.

Provided By
ITransactionContextEx Interface

HRESULT ITransactionContextEx::Commit ();

Return Values
S_OK

The transaction was committed.
E_FAIL

The TransactionContextEx object isn't running under a MTS process. This could happen if the
TransactionContextEx component's Registry entry has been corrupted.

E_UNEXPECTED
An unexpected error occurred.

CONTEXT_E_ABORTED
The transaction was aborted.

Remarks
Calling Commit doesn't guarantee that a transaction will be committed. If any MTS object that was
part of the transaction has returned from a method after calling SetAbort, the transaction will be
aborted. If any object that was part of the transaction has called DisableCommit and hasn't yet called
EnableCommit or SetComplete, the transaction will also be aborted. Any error that causes Microsoft
Distributed Transaction Coordinator to abort a transaction will also abort an MTS transaction.

When a base client calls Commit, regardless of whether the transaction commits or aborts, the
transaction is completed on return from this method and all objects that participated in the transaction
are automatically deactivated. If another call comes in after the TransactionContextEx object has
returned from a call in which it called the Commit method, a new transaction is started.

Example

See Also
Transaction Context Objects, Base Clients, Transactions, SetComplete

ITransactionContextEx::CreateInstance Method
Instantiates an MTS object that will execute within the scope of the transaction that was initiated with
the creation of the TransactionContextEx object.

Provided By
ITransactionContextEx Interface

HRESULT ITransactionContextEx::CreateInstance (
REFCLSID rclsid,
REFIID riid,
LPVOID FAR* ppvObj

);

Parameter
rclsid

[in] A reference to the CLSID of the type of object to instantiate.
riid

[in] A reference to the interface ID of the interface through which you want to communicate with the
new object.

ppvObj
[out] A reference to a new object of the type specified by the rclsid argument, through the interface
specified by the riid argument.

Return Values
S_OK

A reference to the object is returned in the ppvObj parameter.
REGDB_E_CLASSNOTREG

The component specified by rclsid is not registered as a COM component.
E_OUTOFMEMORY

There's not enough memory available to instantiate the object.
E_INVALIDARG

The argument passed in the ppvObj parameter is invalid.
E_UNEXPECTED

An unexpected error occurred.

Remarks
When a base client uses the ITransactionContextEx::CreateInstance method to instantiate an MTS
object, the new object executes within the transaction context object's activity. If the transaction
attribute of the new object's component is set to either Supports transactions or Requires a
transaction, the new object also inherits the transaction initiated with the creation of the
TransactionContextEx object. However, if the component that provides the new object has its
transaction attribute set to Does not support transactions, the object neither inherits the transaction
nor passes it on to objects it subsequently creates. If the component that provides the new object has
its transaction attribute set to Requires a new transaction, the MTS run-time environment initiates a
new transaction for the new object, and that transaction is the one that's inherited by objects it
subsequently creates.

If the Microsoft Distributed Transaction Coordinator is not running and the object is transactional, the
object is successfully created. However, method calls to that object will fail with
CONTEXT_E_TMNOTAVAILABLE. Objects cannot recover from this condition and should be
released.

MTS always uses standard marshaling. Even if a component exposes the IMarshal interface, its
IMarshal methods will never be called by the MTS run-time environment.

Note You can't create MTS objects as part of an aggregation. In this respect, using CreateInstance
is comparable to using CoCreateInstance and specifying NULL for the controlling IUnknown
interface (pUnkOuter).

Example

See Also
Transaction Context Objects, Base Clients, Transactions, CreateInstance

ITransactionContextEx::CreateInstance Method Example

#include <Txctx.h>

ITransactionContextEx* pTransactionContext = NULL;
IMyObject* pMyObject = NULL;
HRESULT hr;

// Get TransactionContextEx.
hr = CoCreateInstance(CLSID_ITransactionContextEx,

NULL, CLSCTX_INPROC, IID_ITransactionContextEx,
(void**) &pTransactionContext);

// Create an instance of MyObject.
hr = pTransactionContext->CreateInstance

(CLSID_CMyObject, IID_IMyObject,
(void**) &pMyObject);

ITransactionContextEx Interface
The ITransactionContextEx interface is used by a base client to compose the work of one or more
MTS objects into an atomic transaction and to commit or abort the transaction.

Remarks
The ITransactionContextEx interface is declared in the package com.ms.mtx.
You can use a TransactionContextEx object to scope a transaction from a base client. You begin the
transaction by instantiating a TransactionContextEx object, and you end the transaction by calling
Commit or Abort on the object. The base client itself never executes within the transaction.

The TransactionContextEx component is a standard MTS component. The component's transaction
attribute is set to Requires a new transaction, which means that a TransactionContextEx object is
always the root of a transaction. When a base client instantiates an object by using the
ITransactionContextEx.CreateInstance method, the new object and its descendants will participate
in theTransactionContextEx object's transaction unless the new object's transaction attribute is set
to Requires a new transaction or Does not support transactions.

You could easily write your own TransactionContextEx component. You would simply create a
component that implements the methods Commit, Abort, and CreateInstance, and set the
component's transaction attribute to Requires a new transaction. The three methods would do
nothing more than call GetObjectContext and invoke their ObjectContext object's SetComplete,
SetAbort, and CreateInstance methods, respectively.

Before you use TransactionContextEx to compose the work of existing components in a transaction,
you should consider implementing a separate component that not only composes their work but
encapsulates it into a reusable unit. This new component would not only serve the needs of the
current base client, but other clients could also use it. In one approach, the base client instantiates a
TransactionContextEx object, calls its CreateInstance method to instantiate other objects, calls
various methods on those objects, and finally calls Commit or Abort on the TransactionContextEx
object. In the other approach, you create a new component that requires a transaction. This new
component instantiates the other objects using its ObjectContext object's CreateInstance method,
calls the relevant methods on those other objects itself, and then calls SetComplete or SetAbort on
its ObjectContext when it's done. Using this approach, the base client only needs to instantiate this
one object, and invoke one method on it, and the object does the rest of the work. When other clients
require the same functionality, they can reuse the new component.

You obtain a reference to the ITransactionContextEx interface by creating a TransactionContextEx
object. For example:
new TransactionContextEx();
The ITransactionContextEx interface exposes the following methods.

Method Description
Abort Aborts the work of all MTS objects participating in the current

transaction. The transaction is completed on return from this
method.

Commit Attempts to commit the work of all MTS objects participating in the
current transaction. If any of the MTS objects participating in the
transaction have called SetAbort or DisableCommit, or if a
system error has occurred, the transaction will be aborted.
Otherwise, the transaction will be committed. In either case, the
transaction is completed on return from this method.

CreateInstance Instantiates another MTS object. If the component that provides the
object is configured to support or require a transaction, then the
new object runs under the transaction of the

TransactionContextExobject.

See Also
Transaction Context Objects, Base Clients, Transactions

ITransactionContextEx.Abort Method
Aborts the current transaction.

Provided By
ITransactionContextEx Interface

void Abort ();

Remarks
When a base client calls Abort, all objects that participated in the transaction are automatically
deactivated. Any database updates made by those objects are rolled back. The transaction is
completed on return from this method. If another call is made on the TransactionContextEx object
after the TransactionContextEx object has returned from a call in which it called the Abort method,
a new transaction is started.

Example

See Also
Transaction Context Objects, Base Clients, Transactions, SetAbort

ITransactionContext.Abort, ITransactionContext.Commit Methods Example

import com.ms.mtx.*;

ITransactionContextEx myTransactionContext = null;
IMyObject myObject = null;
boolean userCanceled = false;

// Get TransactionContextEx.
myTransactionContext = new TransactionContextEx();

// Create an instance of MyObject.
myObject = myTransactionContext.CreateInstance (CMyObject.clsid,
IMyObject.iid);

// Do some work here.

// If something goes wrong, abort the transaction.
if (userCanceled)

myTransactionContext.Abort();

// Otherwise, commit it.
else

pTransactionContext.Commit();

ITransactionContextEx.Commit Method
Attempts to commit the current transaction.

Provided By
ITransactionContextEx Interface

void Commit ();

Remarks
Calling Commit doesn't guarantee that a transaction will be committed. If any MTS object that was
part of the transaction has returned from a method after calling SetAbort, the transaction will be
aborted. If any object that was part of the transaction has called DisableCommit and hasn't yet called
EnableCommit or SetComplete, the transaction will also be aborted. Any error that causes Microsoft
Distributed Transaction Coordinator to abort a transaction will also abort an MTS transaction.

When a base client calls Commit, regardless of whether the transaction commits or aborts, the
transaction is completed on return from this method and all objects that participated in the transaction
are automatically deactivated. If another call comes in after the TransactionContextEx object has
returned from a call in which it called the Commit method, a new transaction is started.

Example

See Also
Transaction Context Objects, Base Clients, Transactions, SetComplete

ITransactionContextEx.CreateInstance Method
Instantiates an MTS object that will execute within the scope of the transaction that was initiated with
the creation of the TransactionContextEx object.

Provided By
ITransactionContextEx Interface

IUnknown CreateInstance (
_Guid clsid,
_Guid iid,

);

Parameter
clsid

[in] A reference to the CLSID of the type of object to instantiate.
iid

[in] Any interface that's implemented by the object you want to instantiate.

Return Value
A reference to the IUnknown interface on a new instance of the MTS component specified in the clsid
parameter.

Remarks
When a base client uses the ITransactionContextEx.CreateInstance method to instantiate an MTS
object, the new object executes within the transaction context object's activity. If the transaction
attribute of the new object's component is set to either Supports transactions or Requires a
transaction, the new object also inherits the transaction initiated with the creation of the
TransactionContextEx object. However, if the component that provides the new object has its
transaction attribute set to Does not support transactions, the object neither inherits the transaction
nor passes it on to objects it subsequently creates. If the component that provides the new object has
its transaction attribute set to Requires a new transaction, the MTS run-time environment initiates a
new transaction for the new object, and that transaction is the one that's inherited by objects it
subsequently creates.

CreateInstance always returns the IUnknown interface on the newly instantiated object. You should
immediately cast the returned value to the interface with which you want to communicate with the new
object. The interface ID you pass in the iid parameter doesn't have to be the same interface to which
you cast the returned value, but it must be an interface that's implemented by the object you want to
instantiate.

MTS always uses standard marshaling. Even if a component exposes the IMarshal interface, its
IMarshal methods will never be called by the MTS run-time environment.

Note You can't create MTS objects as part of an aggregation.

Example

See Also
Transaction Context Objects, Base Clients, Transactions, CreateInstance

ITransactionContext.CreateInstance Method Example

import com.ms.mtx.*;

ITransactionContextEx myTransactionContext = null;
IMyObject myObject = null;

// Get TransactionContextEx.
myTransactionContext = new TransactionContextEx();

// Create an instance of MyObject.
myObject = (IMyObject)

myTransactionContext.CreateInstance
(CMyObject.clsid, IMyObject.iid);

SecurityProperty Object
The SecurityProperty object is used to determine the current object's caller or creator.

Remarks
To use the SecurityProperty object, you must set a reference to Microsoft Transaction Server Type
Library (mtxas.dll).

You obtain a reference to an object's SecurityProperty object by calling Security on the object's
ObjectContext. For example:
Set secObject = ctxObject.Security
The SecurityProperty object provides the following methods.

Method Description
GetDirectCallerName Retrieves the user name associated with

the external process that called the
currently executing method.

GetDirectCreatorName Retrieves the user name associated with
the external process that directly created
the current object.

GetOriginalCallerName Retrieves the user name associated with
the base process that initiated the call
sequence from which the current method
was called.

GetOriginalCreatorName Retrieves the user name associated with
the base process that initiated the activity
in which the current object is executing.

See Also
Programmatic Security, Advanced Security Methods, ObjectContext Object

GetDirectCallerName Method
Retrieves the user name associated with the external process that called the currently executing
method.

Applies To
SecurityProperty Object

Syntax
username = securityproperty.GetDirectCallerName()

Part
username

The user name associated with the process from which the current method was invoked.
securityproperty

An object variable that evaluates to a SecurityProperty object.

Remarks
You use the GetDirectCallerName method to determine the user name associated with the process
that called the object's currently executing method. The following scenarios illustrate the functionality
of the GetDirectCallerName method.

A base process running on server A, as user A, calls into object X on server B, running as user B.
Then object X calls into object Y, running on server C. If object Y calls GetDirectCallerName, the
name of user B is returned.

Security can only be enforced across process boundaries. This means that the name returned by

GetDirectCallerName is the name associated with the process that called into the process in which
the current object is running, not necessarily the immediate caller into the object itself. If an object
calls into another object within the same process, when the second object calls
GetDirectCallerName, it will get the name of the most immediate caller outside its own process
boundary, not the name of the object that directly called into it.

A base process, running on server A as user A, calls into object X on server B, running as user B.
Then object X calls into object Y, running in the same process as object X, also on server B. When
object Y calls GetDirectCallerName, the name of user A is returned , not the name of user B.

Example

See Also
Programmatic Security, Advanced Security Methods, ObjectContext Object

GetDirectCallerName Method Example

Public Function ComponentDirectCaller() As String

 Dim objCtx As ObjectContext

 Set objCtx = GetObjectContext()
 ComponentDirectCaller = _
 objCtx.Security.GetDirectCallerName()

End Function

GetDirectCreatorName Method
Retrieves the user name associated with the current object's immediate (out-of-process) creator.

Applies To
SecurityProperty Object

Syntax
username = securityproperty.GetDirectCreatorName()

Part
username

The user name associated with the process that directly created the current object.
securityproperty

An object variable that evaluates to a SecurityProperty object.

Remarks
You use the GetDirectCreatorName method to determine the user name associated with the process
that created the current object. The following scenarios illustrate the functionality of the
GetDirectCreatorName method.

A base process running on server A, as user A, creates object X on server B, running as user B. Then
object X creates object Y, running on server C. If object Y calls GetDirectCreatorName, the name of
user B is returned.

Security can only be enforced across process boundaries. This means that if an object creates
another object within the same process, when the second object calls GetDirectCreatorName, it will

get the name of the most immediate creator outside its own process boundary, not the user name
associated with the object that actually created it.

A base client running on server A, as user A, creates object X on server B, running as user B. Then
object X creates object Y, running in the same process as object X, also on server B. When object Y
calls GetDirectCreatorName, the name of user A is returned, not the name of user B.

Example

See Also
Programmatic Security, Advanced Security Methods, ObjectContext Object

GetDirectCreatorName Method Example

Public Function ComponentDirectCreator() As String

 Dim objCtx As ObjectContext

 Set objCtx = GetObjectContext()
 ComponentDirectCreator = _
 objCtx.Security.GetDirectCreatorName()

End Function

GetOriginalCallerName Method
Retrieves the user name associated with the base process that initiated the sequence of calls from
which the call into the current object originated.

Applies To
SecurityProperty Object

Syntax
username = securityproperty.GetOriginalCallerName()

Part
username

The user name associated with the base process that initiated the call sequence from which the
current method was called.

securityproperty
An object variable that evaluates to a SecurityProperty object.

Remarks
You use the GetOriginalCallerName method to determine the user name associated with the original
process that initiated the call sequence from which the current method was called. The following
scenario illustrates the functionality of the GetOriginalCallerName method.

Base process 1, running on server A as user A, creates object X on server B, running as user B. Then
base process 1 passes its reference on object X to base process 2, running on server D as user D.
Base process 2 uses that reference to call into object X. object X then calls into object Y, running on
server C. If object Y then calls GetOriginalCallerName, the name of user D is returned.

Note Usually, an object's original caller is the same process as its original creator. The only
situation in which the original caller and the original creator would be different is one in which the
original creator passes a reference to another process, and the other process initiates the call
sequence (as in the preceding example).

Note The path to the original caller is broken if any object along the chain was created by some
other means than IObjectContext::CreateInstance or ITransactionContext::CreateInstance. For
example, if base process 1 uses CoCreateInstance to create X, when Y calls
GetOriginalCallerName, the name it gets back will be the name of user B, not user D. This is
because the call sequence is traced back through the objects' context and MTS can only create a
context for an object that's created with either IObjectContext::CreateInstance or
ITransactionContext::CreateInstance.

Example

See Also
Programmatic Security, Advanced Security Methods, ObjectContext Object

GetOriginalCallerName Method Example

Public Function ComponentOriginalCaller() As String

 Dim objCtx As ObjectContext

 Set objCtx = GetObjectContext()
 ComponentOriginalCaller = _
 objCtx.Security.GetOriginalCallerName()

End Function

GetOriginalCreatorName Method
Retrieves the user name associated with the original base process that initiated the activity in which
the current object is executing.

Applies To
SecurityProperty Object

Syntax
username = securityproperty.GetOriginalCreatorName()

Part
username

The user name associated with the base process that initiated the activity in which the current
object is executing.

securityproperty
An object variable that evaluates to a SecurityProperty object.

Remarks
You use the GetOriginalCreatorName method to determine the user name associated with the
process that initiated the activity in which the current object is executing. The following scenario
illustrates the functionality of the GetOriginalCreatorName method.

A base process running on server A, as user A, creates object X on server B, running as user B. Then
object X creates object Y, running on server C. If object Y calls GetOriginalCreatorName, the name
of user A is returned.

Note The path to the original creator is broken if an object is created by some other means than
IObjectContext::CreateInstance or ITransactionContext::CreateInstance. For example, if the
base process on server A uses CoCreateInstance to create X, when Y calls
GetOriginalCreatorName, the name it gets back will be the name of user B, not user A. This is
because the creation sequence is traced back through the objects' context and MTS can only create a
context for an object that's created with either IObjectContext::CreateInstance or
ITransactionContext::CreateInstance.

Example

See Also
Programmatic Security, Advanced Security Methods, ObjectContext Object

GetOriginalCreatorName Method Example

Public Function ComponentOriginalCreator() As String

 Dim objCtx As ObjectContext

 Set objCtx = GetObjectContext()
 ComponentOriginalCreator = _
 objCtx.Security.GetOriginalCreatorName()

End Function

ISecurityProperty Interface
The ISecurityProperty interface is used to determine the security ID of the current object's caller or
creator.

Remarks
The header file for the ISecurityProperty interface is mtx.h. You must also link mtxguid.lib to your
project to use this interface.

You obtain a reference to an object's ISecurityProperty interface by calling QueryInterface on the
object's ObjectContext. For example:
m_pIObjectContext->QueryInterface (IID_ISecurityProperty,
(void**)&m_pISecurityProperty);
The ISecurityProperty interface provides the following methods.

Method Description
GetDirectCallerSID Retrieves the security ID of the external

process that called the currently
executing method.

GetDirectCreatorSID Retrieves the security ID of the external
process that directly created the current
object.

GetOriginalCallerSID Retrieves the security ID of the base
process that initiated the call sequence
from which the current method was
called.

GetOriginalCreatorSID Retrieves the security ID of the base
process that initiated the activity in which
the current object is executing.

ReleaseSID Releases the security ID returned by one
of the other ISecurityProperty methods.

See Also
Programmatic Security, Advanced Security Methods, IObjectContext Interface

ISecurityProperty::GetDirectCallerSID Method
Retrieves the security ID of the external process that called the currently executing method.

Provided By
ISecurityProperty Interface

HRESULT ISecurityProperty::GetDirectCallerSID (
PSID* ppSid

);

Parameters
ppSid

[out] A reference to the security ID of the process from which the current method was invoked.

Return Values
S_OK

The security ID of the process that called the current method is returned in the parameter ppSid.
E_INVALIDARG

The argument passed in the ppSid parameter is a NULL pointer.
E_UNEXPECTED

An unexpected error occurred.

Remarks
You use the GetDirectCallerSID method to determine the security ID of the process that called the
object's currently executing method. The following scenarios illustrate the functionality of the
GetDirectCallerSID method.

A base process running on server A, as user A, calls into object X on server B, running as user B.
Then object X calls into object Y, running on server C. If object Y calls GetDirectCallerSID, the the
security ID of user B is returned.

Security can only be enforced across process boundaries. This means that the the security ID
returned by GetDirectCallerSID is the the security ID associated with the process that called into the
process in which the current object is running, not necessarily the immediate caller into the object
itself. If an object calls into another object within the same process, when the second object calls
GetDirectCallerSID, it will get the the security ID of the most immediate caller outside its own
process boundary, not the the security ID of the object that directly called into it.

A base process, running on server A as user A, calls into object X on server B, running as user B.
Then object X calls into object Y, running in the same process as object X, also on server B. When
object Y calls GetDirectCallerSID, the the security ID of user A is returned , not the the security ID of
user B.

You must call ReleaseSID on a security ID when you finish using it.

Example

See Also
Programmatic Security, Advanced Security Methods, IObjectContext Interface

GetDirectCallerSID Method Example

#include <mtx.h>

IObjectContext* pIObjectContext = NULL;
ISecurityProperty* pISecurityProperty = NULL;
PSID pSid = NULL;
HRESULT hr;

// Get a reference to the ISecurityProperty interface.
pIObjectContext->QueryInterface(IID_ISecurityProperty,

(void**)&pISecurityProperty);

// Obtain the caller's security ID.
hr = pISecurityProperty->GetDirectCallerSID(&pSid)

// Do some security checking here.

// Release the security ID.
pISecurityProperty->ReleaseSID(pSid);

ISecurityProperty::GetDirectCreatorSID Method
Retrieves the security ID of the current object's immediate (out-of-process) creator.

Provided By
ISecurityProperty Interface

HRESULT ISecurityProperty::GetDirectCreatorSID (
PSID* ppSid

);

Parameters
ppSid

[out] A reference to the security ID of the process that directly created the current object.

Return Values
S_OK

The security ID of the process that directly created the current object is returned in the parameter
ppSid.

E_INVALIDARG
The argument passed in the ppSid parameter is a NULL pointer.

E_FAIL
An unexpected error occurred.

Remarks
You use the GetDirectCreatorSID method to determine the security ID of the process that created
the current object. The following scenarios illustrate the functionality of the GetDirectCreatorSID
method.

A base process running on server A, as user A, creates object X on server B, running as user B. Then
object X creates object Y, running on server C. If object Y calls GetDirectCreatorSID, the the security
ID of user B is returned.

Security can only be enforced across process boundaries. This means that if an object creates
another object within the same process, when the second object calls GetDirectCreatorSID, it will
get the the security ID of the most immediate creator outside its own process boundary, not the
security ID of the object that actually created it.

A base client running on server A, as user A, creates object X on server B, running as user B. Then
object X creates object Y, running in the same process as object X, also on server B. When object Y
calls GetDirectCreatorSID, the the security ID of user A is returned, not the the security ID of user B.

You must call ReleaseSID on a security ID when you finish using it.

Example

See Also
Programmatic Security, Advanced Security Methods, IObjectContext Interface

GetDirectCreatorSID Method Example

#include <mtx.h>

IObjectContext* pIObjectContext = NULL;
ISecurityProperty* pISecurityProperty = NULL;
PSID pSid = NULL;
HRESULT hr;

// Get a reference to the ISecurityProperty interface.
pIObjectContext->QueryInterface(IID_ISecurityProperty,

(void**)&pISecurityProperty);

// Obtain the creator's security ID.
hr = pISecurityProperty->GetDirectCreatorSID(&pSid)

// Do some security checking here.

// Release the security ID.
pISecurityProperty->ReleaseSID(pSid);

ISecurityProperty::GetOriginalCallerSID Method
Retrieves the security ID of the base process that initiated the sequence of calls from which the call
into the current object originated.

Provided By
ISecurityProperty Interface

HRESULT ISecurityProperty::GetOriginalCallerSID (
PSID* ppSid

);

Parameters
ppSid

[out] A reference to the security ID of the base process that initiated the call sequence from which
the current method was called.

Return Values
S_OK

The security ID of the base process that originated the call into the current object is returned in the
parameter ppSid.

E_INVALIDARG
The argument passed in the ppSid parameter is a NULL pointer.

E_FAIL
An unexpected error occurred.

Remarks
You use the GetOriginalCallerSID method to determine the security ID of the original process that
initiated the call sequence from which the current method was called. The following scenario
illustrates the functionality of the GetOriginalCallerSID method.

Base process 1, running on server A as user A, creates object X on server B, running as user B. Then
base process 1 passes its reference on object X to base process 2, running on server D as user D.
Base process 2 uses that reference to call into object X. object X then calls into object Y, running on
server C. If object Y then calls GetOriginalCallerSID, the the security ID of user D is returned.

Note Usually, an object's original caller is the same process as its original creator. The only
situation in which the original caller and the original creator would be different is one in which the
original creator passes a reference to another process, and the other process initiates the call
sequence (as in the preceding example).

Note The path to the original caller is broken if any object along the chain was created by some
other means than IObjectContext::CreateInstance or ITransactionContext::CreateInstance. For
example, if base process 1 uses CoCreateInstance to create X, when Y calls GetOriginalCallerSID,
the the security ID it gets back will be the the security ID of user B, not user D. This is because the
call sequence is traced back through the objects' context and MTS can only create a context for an
object that's created with either IObjectContext::CreateInstance or
ITransactionContext::CreateInstance.

You must call ReleaseSID on a security ID when you finish using it.

Example

See Also

Programmatic Security, Advanced Security Methods, IObjectContext Interface

GetOriginalCallerSID Method Example

#include <mtx.h>

IObjectContext* pIObjectContext = NULL;
ISecurityProperty* pISecurityProperty = NULL;
PSID pSid = NULL;
HRESULT hr;

// Get a reference to the ISecurityProperty interface.
pIObjectContext->QueryInterface(IID_ISecurityProperty,

(void**)&pISecurityProperty);

// Obtain the original caller's security ID.
hr = pISecurityProp->GetOriginalCallerSID(&pSid)

// Do some security checking here.

// Release the security ID.
pISecurityProperty->ReleaseSID(pSid);

ISecurityProperty::GetOriginalCreatorSID Method
Retrieves the security ID of the original base process that initiated the activity in which the current
object is executing.

Provided By
ISecurityProperty Interface

HRESULT ISecurityProperty::GetOriginalCreatorSID (
PSID* ppSid

);

Parameters
ppSid

[out] A reference to the security ID of the base process that initiated the activity in which the current
object is executing.

Return Values
S_OK

The security ID of the original creator is returned in the parameter ppSid.
E_INVALIDARG

The argument passed in the ppSid parameter is a NULL pointer.
E_FAIL

An unexpected error occurred.

Remarks
You use the GetOriginalCreatorSID method to determine the security ID of the process that initiated
the activity in which the current object is executing. The following scenario illustrates the functionality
of the GetOriginalCreatorSID method.

A base process running on server A, as user A, creates object X on server B, running as user B. Then
object X creates object Y, running on server C. If object Y calls GetOriginalCreatorSID, the the
security ID of user A is returned.

Note The path to the original creator is broken if an object is created by some other means than
IObjectContext::CreateInstance or ITransactionContext::CreateInstance. For example, if the
base process on server A uses CoCreateInstance to create X, when Y calls GetOriginalCreatorSID,
the the security ID it gets back will be the the security ID of user B, not user A. This is because the
creation sequence is traced back through the objects' context and MTS can only create a context for
an object that's created with either IObjectContext::CreateInstance or
ITransactionContext::CreateInstance.

You must call ReleaseSID on a security ID when you finish using it.

Example

See Also
Programmatic Security, Advanced Security Methods, IObjectContext Interface

GetOriginalCreatorSID, ReleaseSID Methods Example

#include <mtx.h>

IObjectContext* pIObjectContext = NULL;
ISecurityProperty* pISecurityProperty = NULL;
PSID pSid = NULL;
HRESULT hr;

// Get a reference to the ISecurityProperty interface.
pIObjectContext->QueryInterface(IID_ISecurityProperty,

(void**)&pISecurityProperty);

// Obtain the original creator's security ID.
hr = pISecurityProp->GetOriginalCreatorSID(&pSid)

// Do some security checking here.

// Release the security ID.
pISecurityProperty->ReleaseSID(pSid);

ISecurityProperty::ReleaseSID Method
Releases a security ID that was obtained from the GetDirectCallerSID, GetDirectCreatorSID,
GetOriginalCallerSID, or GetOriginalCreatorSID method.

Provided By
ISecurityProperty Interface

HRESULT ISecurityProperty::ReleaseSID (
PSID pSid

);

Parameters
pSid

[in] A reference to a security ID that was obtained by invoking one of the ISecurityProperty
methods.

Return Values
S_OK

The security ID, passed in the pSid parameter, was released.
E_INVALIDARG

The argument passed in the pSid parameter is not a reference to a security ID.

Remarks
You should always invoke the ReleaseSID method to release any security ID pointers returned by the
GetDirectCallerSID, GetDirectCreatorSID, GetOriginalCallerSID, and GetOriginalCreatorSID
methods of the ISecurityProperty interface.

See Also
Programmatic Security, Advanced Security Methods, IObjectContext Interface

MTS Error Codes
The following errors can be returned by Microsoft Transaction Server (MTS) objects.

S_OK
The call succeeded.

E_INVALIDARG
One or more of the arguments passed in is invalid.

E_UNEXPECTED
An unexpected error occurred.

CONTEXT_E_NOCONTEXT
The current object doesn't have a context associated with it. This is probably either because its
component hasn't been installed in a package or it wasn't created with one of the MTS
CreateInstance methods.

CONTEXT_E_ROLENOTFOUND
The role specified in the szRole parameter in the IObjectContext::IsCallerInRole method does
not exist.

E_OUTOFMEMORY
There's not enough memory available to instantiate the object. This error code can be returned by
IObjectContext::CreateInstance or ITransactionContext::CreateInstance.

REGDB_E_CLASSNOTREG
The specified component is not registered as a COM component. This error code can be returned
by IObjectContext::CreateInstance or ITransactionContext::CreateInstance.

DISP_E_ARRAYISLOCKED
One or more of the arguments passed in contains an array that is locked. This error code can be
returned by the ISharedProperty::put_Value method.

DISP_E_BADVARTYPE
One or more of the arguments passed in isn't a valid VARIANT type. This error code can be
returned by the ISharedProperty::put_Value method.

MTS Supported Variant Types
The following Automation types are supported by Microsoft Transaction Server.

VT_BOOL VT_LPSTR
VT_BSTR VT_LPWSTR
VT_CARRAY VT_NULL
VT_CLSID VT_PTR
VT_CY VT_R4
VT_DATE VT_R8
VT_DECIMAL VT_SAFEARRAY
VT_DISPATCH VT_UINT
VT_EMPTY VT_UI1
VT_ERROR VT_UI2
VT_HRESULT VT_UI4
VT_INT VT_UI8
VT_I1 VT_UNKNOWN
VT_I2 VT_USERDEFINED
VT_I4 VT_VARIANT
VT_I8 VT_VOID

The following types are not supported and will cause the server process to terminate with an error.

VT_FILETIME VT_BLOB
VT_STREAM VT_STORAGE
VT_STREAMED_OBJECT VT_STORED_OBJECT
VT_BLOB_OBJECT VT_CF

MTS Administrative Reference
The Microsoft Transaction Server (MTS) Administrative reference provides object and method
information for Microsoft® Visual Basic or Microsoft Visual Basic Scripting Edition (VBScript)
programmers, and interface and function information for Microsoft Visual C++® programmers. In
addition, this technical reference provides a detailed description of the collections used by the
administration objects.

This section contains the following sections:

Using MTS Administration Objects

Using MTS Collection Types

Automating MTS Administration With Visual Basic

MTS Administration Object Methods

Automating MTS Administration With Visual C++

See Also
Automating MTS Administration

Automating MTS Administration With Visual Basic
This reference topic provides guidance for Microsoft® Visual Basic or Microsoft Visual Basic Scripting
Edition (VBScript) programmers who want to use the administration objects to automate tasks that an
administrator performs using the Microsoft Transaction Server (MTS) Explorer. The MTS Visual Basic
reference contains the following topics:

MTS Visual Basic Error Codes
MTS Administration Object Methods

See Also
Automating MTS Administration

Using MTS Administration Objects
Use the MTS administration objects to automate administration for MTS packages.

This section describes how the following administration objects are used:

MTS Catalog Object
MTS CatalogObjec t Object
MTS CatalogCollection Object
MTS PackageUtil Object
MTS ComponentUtil Object
MTS RemoteComponentUtil Object
MTS RoleAssociationUtil Object

MTS Catalog Object
The Catalog object enables you to connect to an MTS catalog and access collections. This general
administration object supports the following methods.

Method Description
GetCollection Gets a collection on the catalog without reading any objects from the

catalog.
Connect Connects to a remote catalog and returns a root collection.
MajorVersion Returns the major version number of the catalog.
MinorVersion Returns the minor version number of the catalog.

See Also
MTS CatalogObjec t Object , MTS CatalogCollection Object, MTS PackageUtil Object, MTS
ComponentUtil Object, MTS RemoteComponentUtil Object, MTS RoleAssociationUtil Object

MTS CatalogObject Object
The CatalogObject object allows you to get and set object properties. This general administration
interface supports the following methods.

Method Description
Value Gets and sets a property value
Key Gets the value of the key property
Name Gets the name of the object
IsPropertyReadOnly True if the property cannot be set
IsPropertyWriteOnly True if the property only supports set
Valid True if all properties were successfully read from the catalog data

store

See Also
MTS Catalog Object, MTS CatalogCollection Object, MTS PackageUtil Object, MTS
ComponentUtil Object, MTS RemoteComponentUtil Object, MTS RoleAssociationUtil Object

MTS CatalogCollection Object
Use the CatalogCollection object to enumerate, add, delete, and modify catalog objects and to
access related collections This general administration interface supports the following methods.

Method Description
Item Returns an object by index. The index is zero-based.
Count Returns number of objects in the collection.
Remove Removes an item according to its index position.
Add Adds an object to the collection.
Populate Reads all the collection objects from the catalog data store.
SaveChanges Saves changes made to the collection into the catalog data

store.
GetCollection Gets a collection related to a specific object.
Name Gets the name of a collection.
AddEnabled Returns true if the Add method is enabled.
RemoveEnabled Returns true if the Remove method is enabled.
GetUtilInterface Gets the utility interface for the collection.
PopulateByKey Reads the selected collection objects from the catalog data

store.
DataStoreMajorVersion Returns the major version number of the catalog data store.
DataStoreMinorVersion Returns the minor version number of the catalog data store.

See Also
Add Method (CatalogCollection), Remove Method (CatalogCollection), MTS Catalog Object,
MTS CatalogObjec t Object , MTS PackageUtil Object, MTS ComponentUtil Object, MTS
RemoteComponentUtil Object, MTS RoleAssociationUtil Object

MTS PackageUtil Object
The PackageUtil object enables installing and exporting a package. Instantiate this object by calling
GetUtilInterface on a Packages collection.

This utility administration interface supports the following methods:

Method Description
InstallPackage Installs a pre-built package.
ExportPackage Exports a package.
ShutdownPackage Shuts down a package, thereby terminating that server process.

See Also
MTS Catalog Object, MTS CatalogObjec t Object , MTS CatalogCollection Object, MTS
ComponentUtil Object, MTS RemoteComponentUtil Object, MTS RoleAssociationUtil Object

MTS ComponentUtil Object
Call the ComponentUtil object to install a component in a specific collection and import components
registered as in-process servers. Create this object by calling GetUtilInterface on a
ComponentsInPackage collection. This utility administrationinterface supports the following
methods.

Method Description
InstallComponent Installs a component from a DLL.
ImportComponent Imports a component that is already registered as an in-

process server. Supply the CLSID of the component.
ImportComponentByName Imports a component that is already registered as an in-

process server. Supply the ProgID of the component.
GetCLSIDS Returns an array of installable CLSIDs in the DLL/type library.

Note that changes are not made to the data store.

See Also
MTS Catalog Object, MTS CatalogObjec t Object , MTS CatalogCollection Object, MTS
PackageUtil Object, MTS RemoteComponentUtil Object, MTS RoleAssociationUtil Object

MTS RemoteComponentUtil Object
Using the RemoteComponentUtil object, you can program your application to pull remote
components from a package on a remote server. Instantiate this object by calling GetUtilInterface on
a RemoteComponents collection. This utility administration interface supports the following methods.

Method Description
InstallRemoteComponent Pulls remote components from a package on a

remote server. Supply the package ID and CLSID.
InstallRemoteComponentByName Pulls remote components from a package on a

remote server. Supply the package name and
ProgID.

See Also
GetUtilInterface Method (CatalogCollection), MTS Catalog Object, MTS CatalogObjec t Object ,
MTS CatalogCollection Object, MTS PackageUtil Object, MTS ComponentUtil Object, MTS
RoleAssociationUtil Object

MTS RoleAssociationUtil Object
Call methods on the RoleAssociationUtil object to associate roles with a component or interface.
Create this object by calling the GetUtilInterface method on a RolesForPackageComponent or
RolesForPackageComponentInterface collection. This utility administration interface supports the
following methods.

Method Description
AssociateRole Associates the role by role ID with the component or interface.
AssociateRoleByName Associates the role by role name with the component or interface.

See Also
GetUtilInterface Method (CatalogCollection), MTS Catalog Object, MTS CatalogObjec t Object ,
MTS CatalogCollection Object, MTS PackageUtil Object, MTS ComponentUtil Object, MTS
RemoteComponentUtil Object

Using MTS Collection Types
This topic describes the collections and collection properties supported by the MTS catalog.
Additional collections and properties may be added in future versions. Use the
DataStoreMajorVersion and DataStoreMinorVersion properties of a collection to distinguish
between catalog versions.

The MTS catalog data store supports the following collection types:

MTS LocalComputer Collection
MTS ComputerList Collection
MTS Packages Collection
MTS ComponentsInPackage Collection
MTS RemoteComponents Collection
MTS InterfacesForComponent and InterfacesForRemoteComponent Collections
MTS RolesForPackageComponent and RolesForPackageComponentInterface Collections
MTS MethodsForInterface Collection
MTS RolesInPackage Collection
MTS UsersInRole Collection
MTS ErrorInfo Collection
MTS PropertyInfo Collection
MTS RelatedCollectionInfo Collection

MTS LocalComputer Collection
The LocalComputer contains a single object that corresponds to the computer whose catalog that
you are accessing. If you call the Connect method on the Catalog object, the LocalComputer
collection contains information about the computer whose catalog you are accessing. This collection
does not support the Add, Remove or GetUtilInterface methods.

The following table provides a list of the properties supported by the LocalComputer collection.

Property Description
Name “My Computer”.

Data Type: String
Default value: N/A
Access: Read only.

Description Description of the computer.
Data Type: String
Default value: Empty string
Access: Read/write

Transaction
Timeout

The transaction timeout setting in seconds.
Data Type: Integer
Default value: 60
Access: Read/write

RemoteComponent
InstallPath

The path in which remote component files will be installed when
remote components are configured
Data Type: String
Default value: the subdirectory “Remote” in the MTS install path
Access: Read/write

PackageInstall
Path

The default path in which component files will be installed when
pre-built packages are installed.
Data Type: String
Default value: the subdirectory “Packages” in the MTS install path
Access: Read/write

ResourcePooling
Enabled

“Y” enables resource pooling. “N” disables resource pooling. Note
that resource pooling is currently only supported by the ODBC
resource dispenser.
Data Type: String
Default value: “Y”
Access: Read/write

ReplicationShare When replicating the MTS catalog, the name of a share that the
target system should use to access installed packages.
Data Type: String
Default value: Empty string
Access: Read/write

RemoteServer
Name

The computer name to be generated when you use the MTS
Explorer to create a client executable. If this string is blank or
empty, the physical computer name of the exporting computer is
used. If you put the name of the remote server as the string, the
application executable generated by the MTS Explorer points to
that remote server name.
Data Type: String
Default value: Empty string
Access: Read/write

See Also
RelatedCollectionInfo, PropertyInfo, ErrorInfo

MTS ComputerList Collection
The ComputerList collection provides access to the list of computers shown in the MTS Explorer
Computers folder. This collection supports the Add and Remove methods. This collection does not
support the GetUtilInterface method.

The following table provides a list of the properties supported by the ComputerList collection.

Property Description
Name The name of the computer.

Data Type: String
Default value: “NewComputer”
Access: Read/Write while using the Add method. After adding, read-only.

See Also
RelatedCollectionInfo, PropertyInfo, ErrorInfo, Add Method (CatalogCollection), Remove
Method (CatalogCollection)

MTS Packages Collection
As the top-level collection managed by the MTS Explorer, the Packages collection contains the
packages installed on the local machine running MTS. Packages contain a set of components that
run in the same server process, and define declarative security constructs that determine access to
components at run time. The Packages collection supports the Add method and Remove method on
the CatalogCollection object. In addition, the GetUtilInterface method of this collection returns a
PackageUtil object which can be used to install and export packages.

The following table provides a list of the properties supported by the CatalogObject objects within the
Packages collection.

Property Description
Name Name of the package.

Data Type: String
Default value: “New package”
Access: Read/Write

ID A universally unique identifier (UUID) for the package.
Data Type: String
Default value: A unique identifier is generated
Access: Read/Write when using the Add method. Read-only
after using the Add method.

Description Describes the package. Description fields hold a maximum of 500
characters.
Data Type: String
Default value: None
Access: Read/Write

IsSystem Identifies an MTS system package. “N” signifies that the package is not
a Transaction Server system package, and “Y” indicates that package
is an MTS system package.
Data Type: String
Default value: “N”
Access: Read only

Authentication Sets authentication level for calls. Possible values are 0 through 6,
which correspond to the Remote Procedure Call (RPC) authentication
settings.
Data Type: Long
Default value: 4
Access: Read/Write

ShutdownAfter Sets the delay before shutting down a server process after it becomes
idle. Shutdown latency ranges from 0 to 1440 minutes.
Data Type: Long
Default value: 3
Access: Read/Write

RunForever Enables a server process to continue if a package is idle. If value is set
to “Y”, the server process will not shut down when left idle. If set to
“N”, the process will shut down according the value set by the
ShutDownAfter property.
Data Type: String
Default value: “N”
Access: Read/Write

SecurityEnabled Checks the security credentials of any client that calls the package if
value is set to “Y.”
Data Type: String

Default value: “N”
Access: Read/Write

Identity Sets the server process identity for the package. Specify a valid
Windows NT user account or "Interactive User" to have the package
assume the identity of the current logged-on user.
Data Type: String
Default value: “Interactive User”
Access: Read/Write

Password Sets the password used by the server process to log on under the
identity above.
Data Type: String
Default value: None
Access: Write only

Activation Sets the package level activation property to either “Local” or “Inproc”.
The Local setting determines that objects within the package will run
within a dedicated local server process. A package running under the
Local activation setting is a “server package”. The Inproc activation
setting means objects run in their creator’s process. A package running
under the Inproc activation setting is a “library package”
Data Type: String
Default Value: “Local”
Access: Read/Write

Changeable Sets whether changes to the package settings, or those of its
components, are allowed (either programmatically, or through the MTS
UI).
Data Type: String
Default Value: Y
Access: Read/Write

Deleteable Sets whether the package or its components can be deleted (either
programmatically, or through the MTS UI).
Data Type: String
Default Value: “Y”
Access: Read/Write

CreatedBy Informational string to describe the package creator.
Data Type: String
Default Value: Empty string
Access: Read/Write

See Also
ComponentsInPackage, RolesInPackage, RelatedCollectionInfo, PropertyInfo, ErrorInfo

MTS ComponentsInPackage Collection
The ComponentsInPackage collection contains the set of components that run in the same server
process and compose a package. This collection supports the Remove method. The Add method is
not supported. You must use the ComponentUtil object to install components into the package.

The following table provides a list of the properties supported by the CatalogObjects within the
ComponentsInPackage collection.

Property Description
ProgID The name that identifies the component.

Data Type: String
Default value: None
Access: Read only

CLSID The universally unique identifier (UUID) for the component.
Data Type: String
Default value: None
Access: Read only

Transaction Determines how a component supports transactions. Must be one of the
following transaction settings:

“Required”
“Requires New”
“Not Supported”
“Supported”

Data Type: String
Default value: “Not supported”
Access: Read/Write

Description Describes the component. Description fields hold a maximum of 500
characters.
Data Type: String
Default value: None
Access: Read/Write

PackageID Defines the identity of the owning package.
Data Type: String
Default value: None
Access: Read only

PackageName Defines the name of the owning package.
Data Type: String
Default value: “New Package”
Access: Read only

ThreadingModel Determines how instances of the component are assigned to threads for
method execution. Possible values are those supported by Component
Object Model (COM).
Data Type: String
Default value: None
Access: Read only

SecurityEnabled Checks the security credentials of any client that calls the component if
value is set to “Y.”
Data Type: String
Default value: “Y”
Access: Read/Write

DLL Displays the name of the DLL containing the component implementation.
Data Type: String
Default value: None

Access: Read only
IsSystem Identifies an MTS system component. “N” signifies that the package is

not a Transaction Server system component, and “Y” indicates that
package is an MTS system component.
Data Type: String
Default value: “N”
Access: Read only

See Also
InterfacesForComponent, RolesForPackageComponent, RelatedCollectionInfo, PropertyInfo,
ErrorInfo

MTS RemoteComponents Collection
Use the Microsoft Transaction Server (MTS) Explorer on a client computer to add remote component
entries that see components installed on a remote server. This is often described as "pulling" remote
component information from a server. Configuring remote components automatically copies
proxy/stub DLLs and type libraries from the server to the client. The RemoteComponents collection
supports the Remove method. This collection does not support the Add method on the
CatalogCollection object. Instead you must call GetUtilInterface to obtain the
RemoteComponentUtil object in order to add new remote components.

The following table provides a list of the properties supported by the CatalogObjects within the
RemoteComponents collection.

Property Description
ProgID The name that identifies the remote component.

Data Type: String
Default value: None
Access: Read only

CLSID The universally unique identifier (UUID) for the component.
Data Type: String
Default value: None
Access: Read only

Description Describes the remote component. Description fields hold a maximum of 500
characters.
Data Type: String
Default value: None
Access: Read/Write

Server Name of the server hosting the remote component.
Data Type: String
Default value: None
Access: Read only

See Also
InterfacesForRemoteComponent, RelatedCollectionInfo, PropertyInfo, ErrorInfo

MTS InterfacesForComponent and
InterfacesForRemoteComponent Collections
The InterfacesForComponent and InterfacesForRemoteComponent collections provide
information about a selected interface. InterfacesForComponent or
InterfacesForRemoteComponent collections are listed for each component, and can be used by an
administrator to identify or manage the interface. These collections do not support the Add, Remove,
or GetUtilInterface methods.

The following table provides a list of the properties supported by the CatalogObjects within the
InterfacesForComponent and the InterfacesForRemoteComponent collections.

Property Description
Name Displays the friendly name of the interface.

Data Type: String
Default value: None
Access: Read only

ID Displays the unique interface identifier (IID).
Data Type: String
Default value: None
Access: Read only

Description Describes the interface. Description fields hold a maximum of
500 characters.
Data Type: String
Default value: None
Access: Read/Write

ProxyCLSID Displays the CLSID of the proxy/stub.
Data Type: String
Default value: None
Access: Read only

ProxyDLL Displays the file name of the proxy/stub DLL.
Data Type: String
Default value: None
Access: Read only

ProxyThreadingModel Displays the threading model of the selected proxy/stub.
Data Type: String
Default value: None
Access: Read only

TypeLibID Displays the UUID of the type library.
Data Type: String
Default value: None
Access: Read only

TypeLibVersion Displays the version of the type library.
Data Type: String
Default value: None
Access: Read only

TypeLibLangID Displays the language identification number of the type library.
Data Type: String
Default value: None
Access: Read only

TypeLibPlatform Displays the platform of the type library.
Data Type: String

Default value: None
Access: Read only

TypeLibFile Displays the file name of the type library.
Data Type: String
Default value: None
Access: Read only

See Also
MethodsForInterface (InterfacesForComponent only), RolesForPackageComponentInterface
(InterfacesForComponent only), RelatedCollectionInfo, PropertyInfo, ErrorInfo

MTS RolesForPackageComponent and
RolesForPackageComponentInterface Collections
The RoleForPackageComponent and RolesForPackageComponentInterface collections contain
the roles associated with a component or interface. You add existing roles to these collections from a
package's RolesInPackage collection. The Add method is not supported by this collection. Use the
RoleAssociationUtil methods to add roles to this collection. The CatalogCollection Remove method is
supported by this collection.

The following table provides a list of the properties supported by the CatalogObject(s) within the
RolesForPackageComponent and the RolesForPackageComponentInterface collections.

Property Description
Name Displays the name of the role associated with a component.

Data Type: String
Default value: None
Access: Read only

ID Displays the universally unique identifier (UUID) of the role.
Data Type: String
Default value: None
Access: Read only

Description Describes the role. Description fields hold a maximum of 500 characters.
Data Type: String
Default value: None
Access: Read only

See Also
RelatedCollectionInfo, PropertyInfo, ErrorInfo

MTS MethodsForInterface Collection
The MethodsForInterface collection contains the methods defined in an interface. Method properties
are used to display information about the methods exposed by an interface. This collection does not
support the Add, Remove, or GetUtilInterface methods.

The following table provides a list of the properties supported by the CatalogObjects within the
MethodsForInterface collection.

Property Description
Name Displays the name of a method.

Data Type: String
Default value: None
Access: Read only

Description Describes the method. Description fields hold a maximum of 500 characters.
Data Type: String
Default value: None
Access: Read only

See Also
RelatedCollectionInfo, PropertyInfo, ErrorInfo

MTS RolesInPackage Collection
The RolesInPackage collection defines a class of users for a set of components in a package. Each
role defines a set of users allowed to invoke interfaces on a component. Roles can be applied to both
components and component interfaces. This collection supports the Add and Remove methods. This
collection does not support the GetUtilInterface method.

The following table provides a list of the properties supported by the CatalogObjects within the
RolesInPackage collection.

Property Description
Name The role name.

Data Type: String
Default value: “New Role”
Access: Read/write

ID The universally unique identifier (UUID) for the role.
Data Type: String
Default value: A unique identifier is generated.
Access: Read/Write while using the Add method. After adding an object, Read-
only.

Description Describes the new Role. Description fields hold a maximum of 500 characters.
Data Type: String
Default value: None
Access: Read/write

See Also
UsersInRole, RelatedCollectionInfo, PropertyInfo, ErrorInfo

MTS UsersInRole Collection
The UsersInRole collection lists the members of the class of users that have been authorized to
invoke methods on the component or component interface associated with the role. This collection
supports the Add and Remove methods. This collection does not support the GetUtilInterface
method.

The following table provides a list of the properties supported by the CatalogObjects within the
UsersInRole collection.

Property Description
User The name of an NT user account or group.

Data Type: String
Default value: “New User”
Access: Read/Write while using the Add method. After adding, read-only.

See Also
RelatedCollectionInfo, PropertyInfo, ErrorInfo

MTS ErrorInfo Collection
The ErrorInfo collection is used to retrieve extended error information about methods that deal with
multiple objects. This collection does not support the Add, Remove, or GetUtilInterface methods.
Use the GetCollection method on a collection to access the ErrorInfo collection associated with the
original collection. The ErrorInfo collection is accessible from any collection except ErrorInfo,
RelatedCollectionInfo, and PropertyInfo. When calling methods on a utility object, extended error
information may be created in the ErrorInfo collection associated with the collection used to create
the utility object.

The following table provides a list of the properties supported by the CatalogObjects within the
ErrorInfo collection.

Property Description
Name Name of the object or file.

Data Type: String
Default value: None
Access: Read only.

ErrorCode Error code for the object or file.
Data Type: Long
Default value: None
Access: Read only

See Also
MTS LocalComputer Collection, MTS ComputerList Collection, MTS Packages Collection, MTS
ComponentsInPackage Collection, MTS RemoteComponents Collection, MTS
InterfacesForComponent and InterfacesForRemoteComponent Collections, MTS
RolesForPackageComponent and RolesForPackageComponentInterface Collections, MTS
MethodsForInterface Collection, MTS RolesInPackage Collection, MTS UsersInRole Collection,
MTS PropertyInfo Collection, MTS RelatedCollectionInfo Collection

MTS PropertyInfo Collection
The PropertyInfo collection is used to retrieve information about the properties that a specified
collection supports. This collection does not support the Add, Remove, or GetUtilInterface methods.
The PropertyInfo collection is accessible from any collection by using the GetCollection method.

The following table provides a list of the properties supported by the CatalogObject(s) within the
PropertyInfo collection.

Property Description
Name Name of the property.

Data Type: String
Default value: None
Access: Read only

See Also
MTS LocalComputer Collection, MTS ComputerList Collection, MTS Packages Collection, MTS
ComponentsInPackage Collection, MTS RemoteComponents Collection, MTS
InterfacesForComponent and InterfacesForRemoteComponent Collections, MTS
RolesForPackageComponent and RolesForPackageComponentInterface Collections, MTS
MethodsForInterface Collection, MTS RolesInPackage Collection, MTS UsersInRole Collection,
MTS ErrorInfo Collection, MTS RelatedCollectionInfo Collection

MTS RelatedCollectionInfo Collection
The RelatedCollectionInfo collection is used to retrieve information about other collections related to
the collection from which this collection is called. The RelatedCollectionInfo collection is accessible
from any collection by using the GetCollection method. The RelatedCollectionInfo collection will
contain one object for each collection that is accessible from the original collection. Related
collections follow the MTS Explorer folder hierarchy. This collection does not support the Add,
Remove, or GetUtilInterface methods.

The following table provides a list of the properties supported by the CatalogObjects within the
RelatedCollectionInfo collection.

Property Description
Name Name of the related collection.

Data Type: String
Default value: None
Access: Read only

See Also
MTS LocalComputer Collection, MTS ComputerList Collection, MTS Packages Collection, MTS
ComponentsInPackage Collection, MTS RemoteComponents Collection, MTS
InterfacesForComponent and InterfacesForRemoteComponent Collections, MTS
RolesForPackageComponent and RolesForPackageComponentInterface Collections, MTS
MethodsForInterface Collection, MTS RolesInPackage Collection, MTS UsersInRole Collection,
MTS ErrorInfo Collection, MTS PropertyInfo Collection

MTS Visual Basic Error Codes
The following table lists the error codes returned by methods called on the MTS catalog collection and
catalog utility objects.

Error code Description
Visual Basic run-time
error 5

Indicates one of the following:
An invalid collection or property name was entered.
An out parameter was NULL.
The value is not one of the supported values or falls outside
the supported range.
The property is read-only.
The property cannot be changed after the object is created.
An invalid index was entered.

Visual Basic run-time
error 445

Object has been removed from the collection or the method is
not supported on this object.

mtsErrObjectErrors Errors were encountered processing some objects or file.
See the ErrorInfo collection for object and file-specific error
codes.

mtsErrNoUser User ID for user in role is not valid.
mtsErrUserPasswdNotValid

Package identity user ID and/or password are not valid.

mtsErrAuthenicationLevel Required authentication level (package privacy) could not be
set for package updates.

mtsErrPDFReadFail An error occurred reading the package file.

mtsErrPDFVersion Package file version is invalid.

mtsErrBadPath Package file path is invalid.

mtsErrPackageExists Package with the same ID is already installed.

mtsErrRoleExists A role with the same ID is already installed. The role ID in the
package file is likely corrupted.

mtsErrCantCopyFile Errors occurred copying one or more files to the install
directory.

mtsErrInvalidUserids One or more user IDS for roles were invalid.

mtsErrCLSIDOrIIDMismatch One or more component or interface identifiers in a
component DLL do not match the identifiers saved in the
package file. The package file is out of date.

mtsErrPackDirNotFound Package install directory is invalid due to general registry
read/write errors.

mtsErrPDFWriteFail An error occurred writing the package file.

mtsErrNoTypeLib Could not find the type library for one or more components.

The following table lists the object or file-specific error codes returned in ErrorInfo collections.

Error code Description
mtsErrObjectInvalid One or more object properties is corrupted or invalid.

mtsErrKeyMissing One or more objects is not found in the catalog data store.

mtsErrAlreadyInstalled Component is already installed.

mtsErrDownloadFailed One or more component files could not be copied to the
client.

mtsErrRemoteInterface No interface information is available for the component.
Component files could not be downloaded.

mtsErrCoReqCompInstalled Component in the same DLL file is already installed.

mtsErrNoRegistryCLSID Component’s CLSID is corrupted.

mtsErrBadRegistryProgID Component’s ProgID is corrupted.

mtsErrDllLoadFailed Component’s DLL could not be loaded.

mtsErrDllRegisterServer DllRegisterServer method failed during component self-
registration.

mtsErrNoServerShare No file share is available on the server to copy component
files from the network path.

mtsErrNoAccessToUNC Network path registered for this component could not be
accessed.

mtsErrBadRegistryLibID Component type library ID is corrupted.

mtsErrTreatAs Component TreatAs key was found, but is not supported.

mtsErrBadForward IID forward entry is corrupted.

mtsErrBadIID IID is corrupted.

mtsErrRegistrarFailed Component registrar method failed during component install.

mtsErrCompFileDoesNotExist Component file does not exist.

mtsErrCompFileLoadDLLFail DLL file could not be loaded.

mtsErrCompFileGetClassObj DllGetClassObject function call failed during the DLL self-
registration process.

mtsErrCompFileClassNotAvail Class coded in the type library was not supported.

mtsErrCompFileBadTLB Type library was corrupted.

mtsErrCompFileNotInstallable File does not contain COM components or type library
information.

mtsErrNotChangeable Changes to this object and sub-objects have been disabled.

mtsErrNotDeletable Delete function for this object has been disabled.

mtsErrSession Catalog version is not supported.

The following tables lists general read and write registry errors.

Error Code Description
mtsErrNoRegistryRead Access control failure reading a registry key.

mtsErrNoRegistryWrite Access control failure writing a registry key.

mtsErrNoRegistryRepair Access control failure writing a registry key.

MTS Administration Object Methods
The following topics list the methods of the MTS administration objects:

Add Method (CatalogCollection)
AddEnabled Property (CatalogCollection)
AssociateRole Method (RoleAssociationUtil)
AssociateRoleByName Method (RoleAssociationUtil)
Connect Method (Catalog)
Count Property (CatalogCollection)
DataStoreMajorVersion Property (CatalogCollection)
DataStoreMinorVersion Property (CatalogCollection)
ExportPackage Method (PackageUtil)
GetCLSIDs Method (ComponentUtil)
GetCollection Method (Catalog)
GetCollection Method (CatalogCollection)
GetUtilInterface Method (CatalogCollection)
ImportComponent Method (ComponentUtil)
ImportComponentByName Method (ComponentUtil)
InstallComponent Method (ComponentUtil)
InstallPackage Method (PackageUtil)
InstallRemoteComponent Method (RemoteComponentUtil)
InstallRemoteComponentByName Method (RemoteComponentUtil)
IsPropertyReadOnly Property (CatalogObject)
IsPropertyWriteOnly Property (CatalogObject)
Item Property (CatalogCollection)
Key Property (CatalogObject)
MajorVersion Property (Catalog)
MinorVersion Property (Catalog)
Name Property (CatalogObject)
Name Property (CatalogCollection)
Populate Method (CatalogCollection)
PopulateByKey Method (CatalogCollection)
Remove Method (CatalogCollection)
RemoveEnabled Property (CatalogCollection)
SaveChanges Method (CatalogCollection)
ShutdownPackage Method
Valid Property (CatalogObject)
Value Property (CatalogObject)

See the Automating MTS Administration topic for sample code that demonstrates how these methods
are used to program administration using Microsoft® Visual Basic or Microsoft Visual Basic Scripting
Edition (VBScript).

Add Method (CatalogCollection)
Adds a member to a collection object and returns the CatalogObject object.

Syntax
object.Add

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.

Remarks
Call the Add method to create a new object in a collection. This method is supported in the following
collections:

Packages
RolesInPackage
UsersInRole

To install or create objects in other collections, use the catalog utility interfaces. Note that you must
call the SaveChanges method to write the new object to the catalog data store.

For a list of the MTS collections and their properties, see Using MTS Collections.

See Also
MTS Packages Collection, MTS RolesInPackage Collection, MTS UsersInRole Collection,
AddEnabled Property (CatalogCollection)

AddEnabled Property (CatalogCollection)
Returns a Boolean value indicating whether the Add method is enabled on this collection.

Syntax
object.AddEnabled

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.

Remarks
If the value returned is True, then you can call the Add method to create a new object in a collection.
If the value returned is False, you must use the catalog utility object methods to create a new object.

For a list of the MTS collections and their properties, see the Using MTS Collections topic.

See Also
Add Method (CatalogCollection)

AssociateRole Method (RoleAssociationUtil)
Associates a role with a component or component interface.

Syntax
object.AssociateRole(ID)

Parameters
object

Required. An object variable that evaluates to a RoleAssociationUtil object.
ID

Required. A String expression that specifies the role ID of the roles to associate with the object.

Remarks
The changes are applied immediately to the catalog.

For a list of properties supported by Role collections,see the Using MTS Collections topic.

See Also
AssociateRoleByName Method (RoleAssociationUtil)

AssociateRoleByName Method (RoleAssociationUtil)
The AssociateRoleByName method associates a role with a specified component or component
interface.

Syntax
object.AssociateRoleByName(name)

Parameters
object

Required. An object variable that evaluates to a RoleAssociationUtil utility object.
name

Required; String. An expression providing the name of the role to associate with a component or
component interface.

Remarks
The changes are applied immediately to the catalog. For a list of properties supported by Role
collections,see the Using MTS Collections topic.

See Also
AssociateRole Method (RoleAssociationUtil)

Connect Method (Catalog)
Connects to a catalog and returns a root collection.

Syntax
set root object.Connect(name)

Parameters
root

Required. String containing the root collection that serves as a starting point to locate top-level
collections.

object
Required. An object variable that evaluates to a catalog object.

name
Required; String. String containing the name of a remote computer. To connect to a local
computer, supply an empty string as this argument.

Remarks
The Connect method returns a root collection, which is bound to the connected computer. A root
collection serves as a starting point to locate top-level collections, and does not contain any objects or
properties.

Note that you can also use the GetCollection method to locate a package on the local computer
without first having to call the Connect method.

You can get the following collections from the root collection:

Packages
RemoteComponents
RelatedCollectionInfo
ComputerList
LocalComputer
PropertyInfo

For a list of the MTS collections and their properties, see the Using MTS Collections topic.

See Also
GetCollection Method (CatalogCollection)

Count Property (CatalogCollection)
Returns an integer value indicating the number of objects in a collection.

Syntax
object.Count

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.

Remarks
Upon instantiation, a CatalogCollection object returns a count of zero. Call the Populate method to
read from the CatalogCollection object, and then use the Count method to return the number of
objects in the collection.

for a list of the MTS collections and their properties, see the Using MTS Collections topic.

See Also
Populate Method (CatalogCollection)

DataStoreMajorVersion Property (CatalogCollection)
Returns an integer value indicating the major version number of the catalog.

Syntax
object.DataStoreMajorVersion

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.

See Also
DataStoreMinorVersion Property (CatalogCollection),

DataStoreMinorVersion Property (CatalogCollection)
Returns an integer value indicating the minor version number of the catalog.

Syntax
object.DataStoreMajorVersion

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.

See Also
DataStoreMajorVersion Property (CatalogCollection)

ExportPackage Method (PackageUtil)
Exports a package.

Syntax
object.ExportPackage(PackID, FileName, Options)

Parameters
object

Required. An object variable that evaluates to a PackageUtil object.
PackID

Required; String. An object variable that specifies the package ID of the package to export.
FileName

Required; String. An object variable that provides the name of the package file to export.
Options

Required; Long. An integer value specifying export options. This parameter can be 0 or
MtsExportUsers, which includes users in roles in the package file.

GetCLSIDs Method(ComponentUtil)
Returns an array of installable class identifiers (CLSIDs) in the component DLL and/or type library.

Syntax
object.GetCLSIDs(bstrDLLFile, bstrTypeLibFile, aCLSIDs)

Parameters
BstrDLLFile

Required; String. A string variable that evaluates to the path of the DLL that you want checked.
BstrTypeLibFile

Required; String. A string variable that evaluates to the path of the type library that you want
checked. If the type library is embedded with the DLL (as is the case with DLLs generated by
Microsoft Visual Basic), this parameter should be an empty string).

aCLSIDS
Required; Variant. An output array of CLSIDs (VARIANTS) that can be installed from the supplied
DLL and/or type library.

GetCollection Method (Catalog)
Instantiates a CatalogCollection object.

Syntax
set x object.GetCollection(Name)

Parameters
x

Required. An object variable (a variant, or object variable, or a CatalogCollection variable) for the
returned collection.

object
Required. An object variable that evaluates to a catalog object.

Name
Required; String. A string expression containing the name of the collection to instantiate.

Remarks
You can use this method to get the following collections:

Packages
ComputerList
LocalComputer
RemoteComponents
RelatedCollectionInfo

After using the GetCollection method, you must fill the object by calling the Populate method. See
the Populate method topic for further detail.

For a list of the MTS collections and their properties, see the Using MTS Collections topic..

GetCollection Method (CatalogCollection)
Retrieves a collection from the catalog.

Syntax
set x object.GetCollection(name, key)

Parameters
x

Required. An object variable (a variant, or object variable, or a CatalogCollection variable) for the
returned collection.

object
Required. An object variable that evaluates to a CatalogCollection object.

name
Required. A String expression containing the name of the collection to instantiate.

key
Required. A Variant expression containing the key of the object from which to navigate.

Remarks
Note that the GetCollection method gets an empty collection; you must call the Populate method to
fill the collection.

For a list of the MTS collections and their properties, see the Using MTS Collections topic.

See Also
Populate Method (CatalogCollection),

GetUtilInterface Method (CatalogCollection)
Instantiates a utility object for the collection.

Syntax
set util object.GetUtilInterface

Parameters
util

Required. An object variable that evaluates to a catalog utility object.
object

Required. An object variable that evaluates to a CatalogCollection object.

Remarks
Call the GetUtilInterface method to instantiate any one of the PackageUtil, ComponentUtil,
RemoteComponentUtil, and RoleAssociationUtil utility objects. This method is only supported on
Packages, ComponentsInPackage, RemoteComponents, RolesForPackageComponent, and
RolesForPackageComponentInterface collections.

For a list of the MTS collections and their properties, see the Using MTS Collections topic.

ImportComponent Method (ComponentUtil)
Imports a component that is already registered as an in-process (in-proc) server.

Syntax
object.ImportComponent(CLSID)

Parameters
object

Required. An object variable that evaluates to a ComponentUtil object.
CLSID

Required; String. An expression containing the CLSID of the component to be installed.

Remarks
The changes are applied immediately to the catalog.

For a description of the Component collection and its associated properties, see the Using MTS
Collections topic.

See Also
ImportComponentByName Method (ComponentUtil)

ImportComponentByName Method (ComponentUtil)
Imports a component that is already registered as an in-process server by the component’s
programmatic identifier (ProgID).

Syntax
object.ImportComponentByName(ProgID)

Parameters
object

Required. An object variable that evaluates to a ComponentUtil object.
ProgID

Required. A String expression identifying the ProgID of the component to be installed.

Remarks
The changes are applied immediately to the catalog. For a description of the Component collection
and its associated properties, see the Using MTS Collections topic.

See Also
ImportComponent Method (ComponentUtil)

InstallComponent Method (ComponentUtil)
Installs a component into a package.

Syntax
object.InstallComponent(filepath, typelibrary, proxy-stub)

Parameters
object

Required. An object variable that evaluates to a ComponentUtil object.
filepath

Required. A String expression that provides the file path of the DLL containing the components to
install.

typelibrary
Required. A String expression that provides the file path of the type library to use. Pass an empty
string as this argument if the type library is embedded in the DLL.

proxy-stub
Required. A String expression that provides the file path of a custom proxy-stub DLL to use. Pass
an empty string as this argument if there is no custom proxy-stub DLL.

Remarks
The changes are applied immediately to the catalog.

For a description of the Components collection and its associated properties, see the Using MTS
Collections topic.

See Also
InstallRemoteComponent Method (RemoteComponentUtil), InstallRemoteComponentByName
Method (RemoteComponentUtil)

InstallPackage Method (PackageUtil)
Installs a component or components that are valid within a package's collection.

Syntax
object.InstallPackage(FileName, InstallPath, options)

Parameters
object

Required. An object variable that evaluates to a Package utility object.
FileName

Required; String. String expression evaluating to the name of the package to install.
InstallPath

Required; String. String expression evaluating to the install path for component files.
options

Required; Long. A long value specifying install options. This parameter can be 0 or
mtsInstallUsers, which adds users saved in the package file. If this option is not specified, users
saved in the package file are not installed.

Remarks
All component files must be in the same directory of the package file. Component files arecopied to
the install path specified as an argument of the InstallPackage method.

The changes are applied immediately to the catalog.

For a description of the Components collection and its associated properties, see the Using MTS
Collections topic..

InstallRemoteComponent Method (RemoteComponentUtil)
Pulls remote components from a package on a remote server.

Syntax
object.InstallRemoteComponent(computer, PackID, CLSID)

Parameters
object

Required. An object variable that evaluates to a RemoteComponentUtil object.
computer

Required; String. A string expression providing the name of the remote computer.
PackID

Required; String. A string expression providing the package identification of the package
containing the remote component.

CLSID
Required; String. A string expression containing the CLSID of the remote component.

Remarks
The changes are applied immediately to the catalog.

See the Working with Remote MTS Computers topic for a complete description of how to pull
components from a remote server.

See Also
InstallRemoteComponentByName Method (RemoteComponentUtil)

InstallRemoteComponentByName Method (RemoteComponentUtil)
Pulls remote components by name from the package on a remote server.

Syntax
object.InstallRemoteComponentByName(computer, PackName, ProgID)

Parameters
object

Required. An object variable that evaluates to a RemoteComponentUtil object.
computer

Required; String. A string expression providing the name of the remote computer.
PackName

Required; String. A string expression providing the name of the package containing the remote
component.

ProgID
Required; String. A string value containing the ProgID of the remote component.

Remarks
The changes are applied immediately to the catalog. See the Working with Remote MTS Computers
topic for a complete description of how to pull components from a remote server.

See Also
InstallRemoteComponent Method (RemoteComponentUtil)

IsPropertyReadOnly Property (CatalogObject)
Returns a Boolean value that indicates if the property for an object is set to read-only.

Syntax
object.IsPropertyReadOnly(value)

Parameters
object

Required. An object variable that evaluates to a catalog object property.
value

Required. The name of the value for which to check the read-only property.

Remarks
If the value returned by the IsPropertyReadOnly method is True, then you cannot modify the
property. If the value returned is False, you can modify the property using the Value property.

IsPropertyWriteOnly Property (CatalogObject)
Returns a Boolean value that indicates if the property for an object is set to write-only.

Syntax
object.IsPropertyWriteOnly(propertyname)

Parameters
object

Required. An object variable that evaluates to a catalog object property.
propertyname

Required. The name of the property for which to check the write-only status.

Remarks
If the value returned by the IsPropertyWriteOnly method is True, then you can write but not read the
property value. If the value returned is False, you can read the property value.

See Also
IsPropertyReadOnly Property (CatalogObject)

Item Property (CatalogCollection)
Gets a specific object in a collection.

Syntax
object.Item(index)

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.
index

Required; Long. A zero-based index that specifies the position of a member of the collection. Must
be a number from 0 through the value of the collection's Count property -1.

Key Property (CatalogObject)
Gets the value of the key of the object.

Syntax
object.Key

Parameters
object

Required. An object variable that evaluates to a CatalogObject object.

Remarks
All catalog objects have a key. The object key is a single property that uniquely identifies the object.
To access a related collection using the GetCollection method, provide the key of the object from
which you want to navigate (such as the package identifier). The following table provides the key
property for each collection supported:

Collection Key Property
Packages ID
ComponentsInPackage CLSID
RolesInPackage ID
RolesForPackageComponent ID
RolesForPackageComponentInterface ID
UsersInRole User
InterfacesForComponent IID
InterfacesForRemoteComponent IID
RemoteComponents CLSID
MethodsForInterface Name

MajorVersion Property (Catalog)
Returns an integer value indicating the major version number of the catalog.

Syntax
object.MajorVersion

Parameters
object

Required. An object variable that evaluates to a catalog object.

See Also
MinorVersion Property (Catalog)

MinorVersion Property (Catalog)
Returns an integer value indicating the minor version number of the catalog.

Syntax
object.MinorVersion

Parameters
object

Required. An object variable that evaluates to a catalog object.

See Also
MajorVersion Property (Catalog)

Name Property (CatalogObject)
Gets the name of an object.

Syntax
object.Name

Parameters
object

Required. An object variable that evaluates to a catalog object.

Remarks
All catalog objects have a name property. The following table provides the name property for each
collection supported:

Collection Name Property
Packages Name
ComponentsInPackage ProgID
RolesInPackage Name
RolesForPackageComponent Name
RolesForPackageComponentInterface Name
UsersInRole User
InterfacesForComponent Name
InterfacesForRemoteComponent Name
RemoteComponents ProgID
MethodsForInterface Name

Name Property (CatalogCollection)
Gets the name of the collection.

Syntax
object.Name

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.

Remarks
See the Using MTS Collections topic for a list of properties supported by each MTS collection.

Populate Method (CatalogCollection)
Fills a collection with objects from the catalog.

Syntax
object.Populate

Parameters
object

Required. An object variable that evaluates to the CatalogCollection object that you would like to
fill.

Remarks
The Populate method reads the contents of the CatalogCollection object. Any changes that are still
pending (such as property changes, objects added, or objects removed) are lost. See the
SaveChanges method topic for instruction on how to preserve changes made to a
CatalogCollection object.

PopulateByKey Method (CatalogCollection)
Populates the collection with information for the specified objects.

Syntax
object.PopulateByKey(aCLSIDs)

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.
aCLSIDS

Required; Variant. An array of object keys (VARIANTS) denoting which objects should have their
information read from the catalog.

Remove Method (CatalogCollection)
Removes an item from an object given the index position.

Syntax
object.Remove(index)

Parameters
object

Required; String. An object variable that evaluates to a CatalogCollection object.
index

Required; Long. A zero-based index indicating the position of the object to remove.

Remarks
The object is removed from the collection and all objects with higher indices are shifted up. Note that
the Count property of a collection changes after the Remove method has been called.

Call the SaveChanges method to save the changes made to the collection using the Remove
method.

RemoveEnabled Property (CatalogCollection)
Returns a Boolean value indicating that you can use the Remove method to delete an object from the
collection.

Syntax
object.RemoveEnabled

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.

Remarks
If the value returned is True, then you can call the Remove method to remove an object from the
collection. If the value returned is False, objects cannot be removed from the collection.

SaveChanges Method (CatalogCollection)
Saves changes to a collection in the catalog, and returns an integer indicating the number of changes
applied to the collection.

Syntax
object.SaveChanges

Parameters
object

Required. An object variable that evaluates to a CatalogCollection object.

Remarks
The SaveChanges method works exclusively on the collection on which you call it, and applies all
pending changes to the catalog. If no changes are pending, then the method returns zero.

See the Using MTS Collections topic for a list of the MTS collections and their properties.

ShutdownPackage Method (PackageUtil)
Initiates the shutting down of a package. Shutting down a package terminates that application’s
process.

Syntax
object.ShutdownPackage(bstrPackageID)

Parameters
object

Required. An object variable that evaluates to a PackageUtil object.
BstrPackageID

Required. A string variable that evaluates to the PackageID of a Package CatalogObject.

Remarks
The ShutdownPackage method shuts down a single package process.

See the Using MTS Collections topic for a list of the MTS collections and their properties.

Valid Property (CatalogObject)
Returns a Boolean value indicating whether all the object properties were successfully read from the
catalog.

Syntax
object.Valid

Parameters
object

Required. An object variable that evaluates to a CatalogObject.

Remarks
If this property is False it indicates that one or more object properties could not be read from the
catalog during a call to Populate. This property will be True for objects that have been added to the
collection using the Add method.

Value Property (CatalogObject)
Gets or sets a value for an object property.

Syntax
object.Value(property) value

Parameters
object

Required. An object variable that evaluates to a CatalogObject.
property

Required. A String expression of any type that specifies the name of the property whose value to
get or set.

value
Required. A String expression that specifies the value of the property to get or set.

Remarks
See the Using MTS Collections topic for a description the properties supported by the MTS
administration objects.

Automating MTS Administration With Visual C++
The topics in this section describe administration interfaces supported by Microsoft Transaction
Server (MTS). This reference describes the following topics:

MTS Visual C++ Error Codes
ICatalog
ICatalogObject
ICatalogCollection
IPackageUtil
IComponentUtil
IRemoteComponentUtil
IRoleAssociationUtil

The ICatalog, ICatalogObject, and ICatalogCollection interfaces provide top-level functionality such
as creating and modifying objects. The ICatalog interface enables you to connect to specific servers
and access collections. Call the ICatalogCollection interface to enumerate, create, delete, and
modify objects, as well as to access related collections. The ICatalogObject interface is used to get
and set properties on an object.

The utility interfaces (IRemoteComponentUtil and IRoleAssociationUtil) allows you to program
very specific tasks for collection types, such as associating a role with a user or class of users.

MTS Visual C++ Error Codes
The following is a list of the error codes returned by methods called on the catalog collection and
catalog utility interfaces.

E_INVALIDARG
Indicates one of the following:

An invalid collection or property name was entered.
An out parameter was NULL.
The value is not one of the supported values or falls outside the supported range.
The property is read-only.
The property cannot be changed after the object is created.
An invalid index was entered.

E_NOTIMPL
Object has been removed from the collection and is not supported on this collection.

E_MTS_OBJECTERRORS
Errors were encountered processing some objects or file. See the ErrorInfo collection for
object/file-specific error codes.

E_MTS_NOUSER
User ID for user in role is not valid.

E_MTS_USERPASSWDNOTVALID
Package identity user ID and/or password are not valid

E_MTS_AUTHENICATIONLEVEL
Required authentication level (package privacy) could not be set for package updates.

E_MTS_PDFREADFAIL
An error occurred reading the package file.

E_MTS_PDFVERSION
Package file version is invalid.

E_MTS_BADPATH
Package file path is invalid.

E_MTS_PACKAGEEXISTS
Package with the same ID is already installed.

E_MTS_ROLEEXISTS
A role with the same ID is already installed. The role ID in the package file is likely corrupted.

E_MTS_CANTCOPYFILE
Errors occurred copying one or more files to the install directory.

E_MTS_INVALIDUSERIDS
One or more user IDS for roles were invalid.

E_MTS_CLSIDORIIDMISMATCH
One or more component/interface identifiers in a component DLL does not match the identifiers
saved in the package file. The package file is out of date.

E_MTS_PACKDIRNOTFOUND
Package install directory is invalid due to general registry read/write errors.

E_MTS_PDFWRITEFAIL
An error occurred writing the package file.

E_MTS_NOTYPELIB
Could not find the type library for one or more components.

The following is a list of the object or file-specific error codes returned in ErrorInfo collections:

E_OBJECTINVALID

One or more object properties is corrupted or invalid.
E_KEYMISSING

One or more objects is not found in the catalog.
E_ALREADYINSTALLED

Component is already installed.
E_DOWNLOADFAILLED

One or more component files could not be copied to the client.
E_REMOTEINTERFACE

No interface information is available for the component. Component files could not be downloaded.
E_COREQCOMPINSTALLED

Component in the same DLL file is already installed.
E_NOREGISTRYCLSID

Component’s CLSID is corrupted.
E_BADREGISTRYPROGID

Component’s ProgID is corrupted.
E_DLLLOADFAILED

Component’s DLL could not be loaded.
E_DLLREGISTERSERVER

DllRegisterServer method failed during component self-registration.
E_NOSERVERSHARE

No file share is available on the server to copy component files from the network path.
E_NOACCESSTOUNC

Network path registered for this component could not be accessed.
E_BADREGISTRYLIBID

Component type library ID is corrupted.
E_TREATAS

Component TreatAs key was found, but is not supported.
E_BADFORWARD

IID forward entry is corrupted.
E_BADIID

IID is corrupted.
E_REGISTRARFAILED

Component registrarmethod failed during component install.
E_COMFILE_DOESNOTEXIST

Component file does not exist.
E_COMFILE_LOADDLLFAIL

DLL file could not be loaded.
E_COMFILE_GETCLASSOBJ

DllGetClassObject method call failed during the DLL self-registration process.
E_COMFILE_CLASSNOTAVAIL

Class coded in the type library was not supported.
E_COMFILE_BADTLB

Type library was corrupted.
E_COMFILE_NOTINSTALLABLE

File does not contain COM components or type library information.

The following is a list of general read and write registry errors:

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE

Access control failure writing a registry key.
E_MTS_NOREGISTRYREPAIR

Access control failure writing a registry key.
E_MTS_NOTCHANGEABLE

Changes to this object and sub-objects have been disabled.
E_MTS_NOTDELETABLE

Delete function for this object has been disabled.
E_MTS_SESSION

Server catalog version is not supported.

MTS ICatalog Interface
The Catalog object enables you to connect to specific servers and access collections. The ICatalog
interface contains the following methods:

ICatalog::GetCollection
ICatalog::Connect
ICatalog::get_MajorVersion
ICatalog::get_MinorVersion

ICatalog::GetCollection
The GetCollection method retrieves a local collection without reading any objects from the catalog.

Syntax
HRESULT ICatalog::GetCollection(
BSTR bstrCollName
IDispatch ** ppCatalogCollection);

Parameters
bstrCollName [in]

BSTR containing the name of the collection to retrieve from the catalog.
ppCatalogCollection [out]

Pointer to a pointer to the CatalogCollection object.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Invalid collection name passed as a parameter. Can also indicate that an Out parameter is NULL.

ICatalog::Connect
The Connect method connects to a remote computer and returns a root collection, which is bound to
a remote computer.

HRESULT ICatalog::Connect(
BSTR bstrCollName
IDispatch ** ppCatalogCollection);

Parameters
bstrConnectString [in]

BSTR expression containing the name of a remote computer.
PpCatalogCollection [out]

Pointer to a pointer to the CatalogCollection object.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

Comments
A root collection serves as a starting point to locate packages, and contains neither objects nor
properties. Note that you can also use the GetCollection method to get a top-level collection on a
local server without using the Connect method.

ICatalog::get_MajorVersion
The get_MajorVersion method returns the major version number of an administration object.

HRESULT ICatalog::get_MajorVersion(
long* retval);

Parameters
retval [out]

Pointer to the major version number of the MTS object.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

Comments
Call the get_MajorVersion method and the get_MinorVersion method to determine if you are using
the most current version of MTS

ICatalog::get_MinorVersion
The get_MinorVersion method retrieves the minor version number of an MTS administration object.

HRESULT ICatalog::get_MinorVersion(
long* retval
);

Parameters
retval [out]

Pointer to the minor version number of the MTS object.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

Comments
Call the get_MajorVersion method and the get_MinorVersion method to determine if you are using
the most current version of MTS

MTS ICatalogCollection Interface
The CatalogCollection object can be used to enumerate objects, create, delete, and modify objects,
and access related collections. The ICatalogCollection interface contains the following methods:

ICatalogCollection::get_NewEnum
ICatalogCollection::get_Item
ICatalogCollection::get_Count
ICatalogCollection::Remove
ICatalogCollection::Add
ICatalogCollection::Populate
ICatalogCollection::SaveChanges
ICatalogCollection::GetCollection
ICatalogCollection::get_Name
ICatalogCollection::get_AddEnabled
ICatalogCollection::get_RemoveEnabled
ICatalogCollection::GetUtilInterface
ICatalogCollection::get_DataStoreMajorVersion
ICatalogCollection:: get_DataStoreMinorVersion
ICatalogCollection::PopulateByKey

ICatalogCollection::get_NewEnum
The get_NewEnum method returns the IEnumVariant enumerator interface.

HRESULT ICatalogCollection::get_NewEnum(
IUnknown** ppEnumVariant);

Parameters
ppEnumVariant [out]

Pointer to a pointer to the IEnumVariant interface.

Return Values
S_OK

Method completed successfully.
INVALIDARG

Out parameter is NULL.

ICatalogCollection::get_Item
The get_Item method returns an object from the collection represented by the index.

HRESULT ICatalogCollection::get_Item(
long 1Index
IDispatch** ppCatalogObject);

Parameters
1Index [in]

Index to the object in the collection.
PpCatalogObject [out]

Pointer to a pointer to the Catalog object.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out of range of index.

Comments
A collection object contains zero or more items (all MTS collections are zero-based).

See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::get_Count
The get_Count method returns the number of objects in the collection.

HRESULT ICatalogCollection::get_Count(
long* retval);

Parameters
retval [out]

Pointer to the number of elements in the object collection.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

Remarks
See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::Add
The Add method adds a default object to the collection and returns a pointer to the new object.

HRESULT ICatalogCollection::Add(
IDispatch** ppCatalogObject);

Parameters
ppCatalogObject [out]

Pointer to a pointer to the new Catalog object.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.
E_NOTIMPL

Not supported on this collection.

Remarks
To update the objects in a collection, call the Add method to create a new object either before or after
populating a collection.

See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::Populate
The Populate method reads the collection objects from the catalog.

HRESULT ICatalogCollection::Populate();

Return Values
S_OK

Method completed successfully.
REGDB_E_CLASSNOTREG

The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

E_MTS_OBJECTERRORS
Collection was read but some objects were invalid. See the ErrorInfo collection for object-specific
error codes.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

Remarks
You call the Populate method to fill a package collection with objects from the catalog. This method
uses the CoCreateInstance function internally, so CoCreateInstance error codes are included in the
Populate method’s return values.

See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::SaveChanges
The SaveChanges method saves changes to the collection into the catalog.

HRESULT ICatalogCollection::SaveChanges(
long* retval);

Parameters
retval [out]

Number of changes applied to the collection.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.
E_MTS_OBJECTERRORS

Errors were encountered processing some objects. See the ErrorInfo collection for object-specific
error codes.

E_MTS_NOUSER
User ID is invalid.

E_MTS_USERPASSWDNOTVALID
Package identity user ID and/or password are invalid.

E_MTS_AUTHENTICATIONLEVEL
Required authentication level (package privacy) could not be set for package updates.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

CLASS_E_NOAGGREGATION
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

Remarks
Note that you must call this method after modifying any object in the collection. The SaveChanges
method works exclusively on the collection on which it is called. This method also applies all pending
changes to objects within a given collection. This method uses the CoCreateInstance function
internally, so CoCreateInstance error codes are included in the SaveChanges method’s return
values.

See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::GetCollection
The GetCollection method retrieves a collection related to a specific object. Data is not read from the
catalog. See the Populate method topic for more information.

HRESULT ICatalogCollection::GetCollection(
BSTR bstrCollName
VARIANT varObjectKey
IDispatch** ppCatalogCollection);

Parameters
bstrCollName [in]

BSTR containing the name of the collection.
VarObjectKey [in]

Value of the object key.
retval [out]

Pointer to a pointer to the CatalogCollection object.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Invalid collection name passed as a parameter. Can also indicate that an Out parameter is NULL.

Remarks
See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::get_Name
The get_Name method gets the name of a collection.

HRESULT ICatalogCollection::get_Name(
VARIANT*retval);

Parameters
retval [out]

Pointer to the name of the collection.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

Remarks
See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::get_AddEnabled
The get_AddEnabled method returns a value that indicates if the Add method is supported in this
collection.

HRESULT ICatalogCollection::get_AddEnabled(
VARIANT_BOOL* varAddEnabled);

Parameters
VarObjectKey [out]

Boolean value indicating if the Add method is supported in this collection.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

Remarks
See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::Remove
The Remove method removes an item from a collection, given the index of the item.

HRESULT ICatalogCollection::Remove(
long 1Index);

Parameters
1Index [in]

Index position of the object to remove.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Invalid index was entered.
E_NOTIMPL

Collection does not support removing objects.

Remarks
See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::get_RemoveEnabled
The get_RemoveEnabled method returns a value that indicates if the Remove method is supported
in this collection.

HRESULT ICatalogCollection:: get_RemoveEnabled(
VARIANT_BOOL* boolRemoveEnabled);

Parameters
boolRemoveEnabled [out]

Boolean value indicating if the Remove method is supported in this collection.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

Remarks
See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::GetUtilInterface
The GetUtilInterface method returns a pointer to the interface of the utility object for a package,
component, remote component, or role collection.

HRESULT ICatalogCollection::GetUtilInterface(
IDispatch** ppUtil);

Parameters
ppUtil [out]

Pointer to a pointer to the interface on a utility object.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.
E_NOTIMPL

Not supported on this collection.

Remarks
Call the GetUtilInterface method to program your application for specific administration tasks, such
as creating a package or installing a component.

See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogCollection::get_DataStoreMajorVersion
The get_DataStoreMajorVersion method returns the major version number of the catalog from
which you get the collection.

HRESULT ICatalogCollection::get_DataStoreMajorVersion(
long* retval);

Parameters
retval [out]

Pointer to a pointer to the MTS major version number.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

See Also
get_DataStoreMinorVersion

ICatalogCollection::get_DataStoreMinorVersion
The get_DataStoreMinorVersion method returns the minor version number of the catalog from
which you get a collection.

HRESULT ICatalogCollection:: get_DataStoreMinorVersion(
long* retval);

Parameters
retval [out]

Pointer to a pointer to the MTS minor version number.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

See Also
get_DataStoreMajorVersion

ICatalogCollection::PopulateByKey
The PopulateByKey method populates the collection with information for the specified objects.

HRESULT ICatalogCollection::PopulateByKey(
SAFEARRAY* saKeys);

Parameters
saKeys [in]

Pointer to a safearray of VARIANTS containing the CLSIDs of components for which the collection
object should refresh its information.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.

Remarks
See the Using MTS Collections topic for a list of the MTS collections and their properties.

MTS ICatalogObject Interface
The CatalogObject object provides methods to get and set properties on an object. The
ICatalogObject interface contains the following methods:

ICatalogObject::get_Value
ICatalogObject::put_Value
ICatalogObject::get_Key
ICatalogObject::get_Name
ICatalogObject::IsPropertyReadOnly
ICatalogObject::IsPropertyWriteOnly
ICatalogObject::get_Valid

ICatalogObject::get_Value
The get_Value method gets a property value of an object in a collection.

HRESULT ICatalogObject::get_Value(
BSTR bstrPropName
VARIANT* retval);

Parameters
bstrPropName [in]

BSTR expression containing the name of the property.
retval [out]

Pointer to the value of the property.

Return Values
S_OK
Method completed successfully.

E_INVALIDARG
Invalid property name passed as a parameter. Can also indicate that an Out parameter is NULL.

E_NOTIMPL
Object has been removed from the collection.

Remarks
See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogObject::put_Value
The put_Value method sets the property value of an object in a collection.

HRESULT ICatalogObject::put_Value(
BSTR bstrPropName
VARIANT val);

Parameters
bstrPropName [in]

BSTR containing the name of the property to set.
val [in]

Variant containing the new value for the property.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Invalid property name entered. Can also indicate either the property value is not one of the
supported values or falls outside the supported range, the property is read-only, or the property
cannot be changed after the object is created.

E_NOTIMPL
Object has been removed from the collection.

Remarks
See the Using MTS Collections topic for a list of the MTS collections and their properties.

ICatalogObject::get_Key
The get_Key method gets the value of the Key property.

HRESULT ICatalogObject::get_Key(
VARIANT* retval);

Parameters
retval [out]

Pointer to the value of the Key property.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.
E_NOTIMPL

Object has been removed from the collection.

Comments
All MTS objects have a key. The object key is a single property that uniquely identifies the object. To
create a related collection in your Package collection object, provide the key of the object from which
you want to navigate (such as the package identifier). The following table provides the key property
for each collection supported by the MTS Explorer.

Collection Key Property
Packages ID
ComponentsInPackage CLSID
RolesInPackage ID
RolesForPackageComponents ID
UsersInRole User
InterfacesForComponent IID
InterfacesForRemoteComponent IID

ICatalogObject::get_Name
The get_Name method provides the name of an object in the catalog.

HRESULT ICatalogObject::get_Name(
VARIANT* retval);

Parameters
retval [out]

Pointer to the name of the object.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.
E_NOTIMPL

Object has been removed from the collection.

All MTS objects have a name property. The following table provides the name property for each
collection supported by the MTS Explorer:

Collection Name Property
Packages Name
ComponentsInPackage ProgID
RolesInPackage Name
RolesForPackageComponents Name
UsersInRole User
InterfacesForComponent Name
InterfacesForRemoteComponent Name
RemoteComponents ProgID
MethodsForInterface Name

ICatalogObject::IsPropertyReadOnly
The IsPropertyReadOnly method determines if a property is read-only.

HRESULT ICatalogObject::IsPropertyReadOnly(
BSTR bstrPropName
VARIANT_BOOL* retval);

Parameters
bstrPropName [in]

BSTR containing the name of the property.
retval [out]

Boolean indicating if the property is read-only.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Invalid property name passed as a parameter. Can also indicate that an Out parameter is NULL.

Remarks
For more information about read-only property values and collections, see the Using MTS Collections
topic.

See Also
IsPropertyWriteOnly

ICatalogObject::IsPropertyWriteOnly
The IsPropertyWriteOnly method indicates if a property can be written but not read.

HRESULT ICatalogObject::IsPropertyWriteOnly(
BSTR bstrPropName
VARIANT_BOOL* retval);

Parameters
bstrPropName [in]

BSTR containing the name of the property that may or may not be write-only.
retval [out]

Boolean indicating if the property is write-only.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Invalid property name passed as a parameter. Can also indicate that an Out parameter is NULL.

Remarks
For more information about read-only property values and collections, see the Using MTS Collections
topic.

See Also
IsPropertyReadOnly

ICatalogObject::get_Valid
The get_Valid method determines if properties on an object were successfully read from the catalog.

HRESULT ICatalogObject::get_Valid(
VARIANT_BOOL* retval);

Parameters
retval [out]

Boolean indicating if properties were successfully read. If this method returns True, all properties
on an object were read from the catalog.

Return Values
S_OK

Method completed successfully.
E_INVALIDARG

Out parameter is NULL.
E_NOTIMPL

Object removed from the collection.

MTS IPackageUtil Interface
The IPackageUtil object enables a package to be installed and exported within the Packages
collection. The IPackageUtil interface contains the following methods:

IPackageUtil::InstallPackage
IPackageUtil::ExportPackage
IPackageUtil::ShutdownPackage

See the Using MTS Collections topic for a list of the MTS collections and their properties.

IPackageUtil::InstallPackage
The InstallPackages method installs a pre-built package.

HRESULT IPackageUtil::InstallPackage(
BSTR bstrPackageFile
BSTR bstrInstallPath
long 1Options);

Parameters
bstrPackageFile [in]

BSTR containing the name of the package file to install.
bstrInstallPath [in]

BSTR containing component install path.
1Options [in]

Integer specifying export options. This method supports MtsExportUsers, which includes users in
roles in the package file.

Return Values
S_OK

Method completed successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing objects and/or files. See the ErrorInfo collection for object-
specific error codes.

E_MTS_PDFREADFAIL
Error occurred reading the package file.

E_MTS_PDFVERSION
Package file version is invalid.

E_MTS_BADPATH
Package file path is invalid.

E_MTS_PACKAGEEXISTS
Package with the same ID is already installed.

E_MTS_ROLEEXISTS
Role with the same ID is already installed. The role ID in the package file is likely corrupted.

E_MTS_CANTCOPYFILE
Errors occurred copying one or more files to the install directory.

E_MTS_INVALIDUSERIDS
One or more user IDs for roles were invalid.

E_MTS_CLSIDORIIDMISMATCH
One or more component/interface identifiers in a component DLL do not match the identifiers
saved in the package file. The package file is likely out of date.

E_MTS_PACKDIRNOTFOUND
The package install directory is invalid.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not

installed properly on the target computer.

Remarks
Because this method uses the CoCreateInstance function internally, CoCreateInstance error codes
are included in the InstallPackage method’s return values.

IPackageUtil::ExportPackage
The ExportPackage method exports a package according to its package identifier.

HRESULT IPackageUtil::ExportPackage(
BSTR bstrPackageID
BSTR bstrPackageFile
long 1Options);

Parameters
bstrPackageID [in]

BSTR containing the unique identifier of the package to export.
bstrPackageFile [in]

BSTR containing the name of the package file to export.
1Options [in]

Either zero (for no option selected) or MtsExportUsers, which includes users in roles in the
package file.

Return Values
S_OK

Method completed successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing objects and/or files. See the ErrorInfo collection for object-
specific error codes.

E_MTS_PDFWRITEFAIL
Error occurred writing the package file.

E_MTS_NOTYPELIB
Could not find the type library for one or more components.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

Remarks
Because this method uses the CoCreateInstance function internally, CoCreateInstance error codes
are included in the ExportPackage method’s return values.

IPackageUtil::ShutdownPackage
The ShutdownPackage method shuts down a single package, thereby terminating that application
process.

HRESULT IPackageUtil::ShutdownPackage(
BSTR bstrPackageID

Parameters
bstrPackageID [in]

BSTR containing the unique identifier of the package to shut down.

Return Values
S_OK

Method completed successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing objects and/or files. See the ErrorInfo collection for object-
specific error codes.

E_MTS_PDFWRITEFAIL
Error occurred writing the package file.

E_MTS_NOTYPELIB
Could not find the type library for one or more components.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

MTS IComponentUtil Interface
The IComponentUtil object provides methods to install a component in a specific collection and to
import components registered as an in-proc server. The IComponentUtil interface contains the
following methods:

IComponentUtil::InstallComponent
IComponentUtil::ImportComponent
IComponentUtil::ImportComponentByName
IComponentUtil::GetCLSIDs

IComponentUtil::InstallComponent
The InstallComponent method installs a component.

HRESULT IComponentUtil::InstallComponent(
BSTR bstrDLLFile
BSTR bstrTypelibFile
BSTR bstrProxyStubDLL);

Parameters
bstrDLLFile [in]

BSTR containing the name of the DLL file providing the components to install.
bstrTypelibFile [in]

BSTR containing the name of the external type library file. If the type library file is embedded in the
DLL, pass in an empty string for this parameter.

bstrProxyStubDLL [in]
BSTR containing the name of the proxy-stub DLL file. If there is no proxy-stub DLL associated with
the component, pass in an empty string for this parameter.

Return Values
S_OK

Method completed successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing components and/or files. See the ErrorInfo collection for
object-specific error codes.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

Remarks
Because this method uses the CoCreateInstance function internally, CoCreateInstance error codes
are included in the InstallComponent method’s return values.

IComponentUtil::ImportComponent
The ImportComponent method imports a component that is already registered as an in-process (in-
proc) server.

HRESULT IComponentUtil::ImportComponent(
BSTR bstrCLSID);

Parameters
bstrCLSID [in]

BSTR containing the CLSID of the component to import.

Return Values
S_OK

Method completed successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing components and/or files. See the ErrorInfo collection for
object-specific error codes.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

Remarks
Because this method uses the CoCreateInstance function internally, CoCreateInstance error codes
are included in the ImportComponent method’s return values.

See Also
ImportComponentByName

IComponentUtil::ImportComponentByName
The ImportComponentByName method imports a component that is already registered as an in-
process (in-proc) server. This method uses the component’s programmatic identifier (ProgID) for the
import procedure.

HRESULT IComponentUtil::ImportComponentByName(
BSTR bstrProgID);

Parameters
bstrProgID [in]

BSTR containing the ProgID of the component to import.

Return Values
S_OK

Method completed successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing components and/or files. See the ErrorInfo collection for
object-specific error codes.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

Remarks
Because this method uses the CoCreateInstance function internally, CoCreateInstance error codes
are included in the ImportComponentByName method’s return values.

See Also
ImportComponent

IComponentUtil::GetCLSIDs
The GetCLSIDs method fills an array with the installable component CLSIDs from a DLL and/or type
library.

HRESULT IComponentUtil::GetCLSIDs(
BSTR bstrDLLFile
BSTR bstrTypeLibFile
SAFEARRAY** ppsaCLSIDs)

Parameters
bstrDLLFile [in]

BSTR containing the name of the DLL file providing the components to check for allowable
installation.

bstrTypeLibFile [in]
BSTR containing the name of the external type library file to check for installable components.

ppsaCLSIDs [out]
Pointer to a pointer to a SAFEARRAY containing VARIANTS which contain the CLSIDs of
installable components in the given DLL and/or type library.

Return Values
S_OK

Method completed successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing components and/or files. See the ErrorInfo collection for
object-specific error codes.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

MTS IRemoteComponentUtil Interface
You can use the IRemoteComponentUtil object to program your application to pull remote
components from a package on a remote server. The IRemoteComponentUtil interface contains the
following methods:

IRemoteComponentUtil::InstallRemoteComponent
IRemoteComponentUtil::InstallRemoteComponentByName

IRemoteComponentUtil::InstallRemoteComponent
The InstallRemoteComponent method pulls a component to install from a package on a remote
server.

HRESULT IRemoteComponentUtil::InstallRemoteComponent(
BSTR bstrServer
BSTR bstrPackageID
BSTR bstrCLSID);

Parameters
bstrServer [in]

BSTR containing the name of the remote server from which to pull the component to install.
PackageID [in]

BSTR containing the identifier of the package containing the remote component.
bstrCLSID [in]

BSTR containing the class identifier (CLSID) of the remote component.

Return Values
S_OK

Method returned successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing components and/or files. See the ErrorInfo collection for
object-specific error codes.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

Remarks
Because this method uses the CoCreateInstance function internally, CoCreateInstance error codes
are included in the InstallRemoteComponent method’s return values.

See Also
InstallRemoteComponentByName

IRemoteComponentUtil::InstallRemoteComponentByName
The InstallRemoteComponentByName method pulls remote components from the package on a
remote server and installs the component by package name and programmatic ID (ProgID).

HRESULT IRemoteComponentUtil::InstallRemoteComponentByName(
BSTR bstrSever
BSTR PackageName
BSTR bstrProgID);

Parameters
bstrSever [in]

BSTR containing the name of the remote server from which to pull the component to install.
PackageName [in]

BSTR containing the name of the package containing the remote component.
bstrProgID [in]

BSTR containing the ProgID of the component to install.

Return Values
S_OK

Method completed successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing objects. See the ErrorInfo collection for object-specific error
codes.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

Remarks
Because this method uses the CoCreateInstance function internally, CoCreateInstance error codes
are included in the InstallRemoteComponentByName method’s return values.

See Also
InstallRemoteComponent

MTS IRoleAssociationUtil Interface
Call methods on the IRoleAssociationUtil object to associate roles with a component or component
interface. The IRoleAssociationUtil interface contains the following methods:

IRoleAssociationUtil::AssociateRole
IRoleAssociationUtil::AssociateRoleByName

IRoleAssociationUtil::AssociateRole
The AssociateRole method associates a role with a component or component interface.

HRESULT IRoleAssociationUtil::AssociateRole(
BSTR bstrRoleID
);

Parameters
bstrRoleID [in]

BSTR containing the ID of the role to associate with a component or component interface.

Return Values
S_OK

Method returned successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing objects. See the ErrorInfo collection for object-specific error
codes.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

Remarks
Because this method uses the CoCreateInstance function internally, CoCreateInstance error codes
are included in the AssociateRole method’s return values.

See Also
AssociateRoleByName

IRoleAssociationUtil::AssociateRoleByName
The AssociateRoleByName method associates a role by its name with a specified component or
component interface.

HRESULT IRoleAssociationUtil::AssociateRoleByName(
BSTR bstrRoleName);

Parameters
bstrRoleName [in]

BSTR containing the name of the role to associate with a component or component interface.

Return Values
S_OK

Method returned successfully.
E_MTS_OBJECTERRORS

Errors were encountered processing components and/or files. See the ErrorInfo collection for
object-specific error codes.

E_MTS_NOREGISTRYREAD
Access control failure reading a registry key.

E_MTS_NOREGISTRYWRITE
Access control failure writing a registry key.

E_MTS_NOREGISTRYREPAIR
Access control failure writing a registry key.

REGDB_E_CLASSNOTREG
The MTXCatEx.CatalogServer.1 component is not registered on the target computer. MTS is not
installed properly on the target computer.

Remarks
Because this method uses the CoCreateInstance function internally, CoCreateInstance error codes
are included in the AssociateRoleByName method’s return values.

See Also
AssociateRole

GetObjectContext
Visual Basic GetObjectContext Function
Visual C++ GetObjectContext Function
Visual J++ MTx.GetObjectContext Method

SafeRef
Visual Basic SafeRef Function

Visual C++ SafeRef Function
Visual J++ MTx.SafeRef Method

IObjectContext Interface, ObjectContext Object
Visual Basic ObjectContext Object
Visual C++ IObjectContext Interface
Visual J++ IObjectContext Interface

SetAbort Method
Visual Basic SetAbort Method
Visual C++ IObjectContext::SetAbort Method
Visual Basic IObjectContext.SetAbort Method

SetComplete Method
Visual Basic SetComplete Method
Visual C++ IObjectContext::SetComplete Method
Visual J++ IObjectContext.SetComplete Method

EnableCommit Method
Visual Basic EnableCommit Method
Visual C++ IObjectContext::EnableCommit Method
Visual J++ IObjectContext.EnableCommit Method

DisableCommit Method
Visual Basic DisableCommit Method
Visual C++ IObjectContext::DisableCommit Method
Visual J++ IObjectContext.DisableCommit Method

CreateInstance Method
Visual Basic CreateInstance Method
Visual C++ IObjectContext::CreateInstance Method
Visual J++ IObjectContext.CreateInstance Method

IsInTransaction Method
Visual Basic IsInTransaction Method
Visual C++ IObjectContext::IsInTransaction Method
Visual J++ IObjectContext.IsInTransaction Method

IsCallerInRole Method
Visual Basic IsCallerInRole Method
Visual C++ IObjectContext::IsCallerInRole Method
Visual J++ IObjectContext.IsCallerInRole Method

IsSecurityEnabled Method
Visual Basic IsSecurityEnabled Method
Visual C++ IObjectContext::IsSecurityEnabled Method
Visual J++ IObjectContext.IsSecurityEnabled Method

ITransactionContextEx Interface, TransactionContext Object
Visual Basic TransactionContext Object
Visual C++ ITransactionContextEx Interface
Visual J++ ITransactionContextEx Interface

Abort Method
Visual Basic Abort Method

Visual C++ ITransactionContextEx::Abort Method
Visual J++ ITransactionContextEx.Abort Method

Commit Method
Visual Basic Commit Method
Visual C++ ITransactionContextEx::Commit Method
Visual J++ ITransactionContextEx.Commit Method

IObjectControl Interface
Visual Basic ObjectControl Interface
Visual C++ IObjectControl Interface
Visual J++ IObjectControl Interface

Activate Method
Visual Basic Activate Method
Visual C++ IObjectControl::Activate Method
Visual J++ IObjectControl.Activate Method

CanBePooled Method
Visual Basic CanBePooled Method
Visual C++ IObjectControl::CanBePooled Method
Visual J++ IObjectControl.CanBePooled Method

Deactivate Method
Visual Basic Deactivate Method
Visual C++ IObjectControl::Deactivate Method
Visual J++ IObjectControl.Deactivate Method

ISharedProperty Interface, SharedProperty Object
Visual Basic SharedProperty Object
Visual C++ ISharedProperty Interface
Visual J++ ISharedProperty Interface

Value
Visual Basic Value Property

Visual C++ ISharedProperty::get_Value Method
Visual C++ ISharedProperty::put_Value Method
Visual J++ ISharedProperty.getValue Method
Visual J++ ISharedProperty.putValue Method

ISharedPropertyGroup Interface, SharedPropertyGroup Object
Visual Basic SharedPropertyGroup Object
Visual C++ ISharedPropertyGroup Interface
Visual J++ ISharedPropertyGroup Interface

CreateProperty Method
Visual Basic CreateProperty Method
Visual C++ ISharedPropertyGroup::CreateProperty Method
Visual J++ ISharedPropertyGroup.CreateProperty Method

CreatePropertyByPosition Method
Visual Basic CreatePropertyByPosition Method
Visual C++ ISharedPropertyGroup::CreatePropertyByPosition Method
Visual J++ ISharedPropertyGroup.CreatePropertyByPosition Method

Property
Visual Basic Property Property
Visual C++ ISharedPropertyGroup::get_Property Method
Visual J++ ISharedPropertyGroup.getProperty Method

PropertyByPosition
Visual Basic PropertyByPosition Property
Visual C++ ISharedPropertyGroup::get_PropertyByPosition Method
Visual J++ ISharedPropertyGroup.getPropertyByPosition Method

ISharedPropertyGroupManager Interface,
SharedPropertyGroupManager Object
Visual Basic SharedPropertyGroupManager Object
Visual C++ ISharedPropertyGroupManager Interface
Visual J++ ISharedPropertyGroupManager Interface

CreatePropertyGroup Method
Visual Basic CreatePropertyGroup Method
Visual C++ ISharedPropertyGroupManager::CreatePropertyGroup Method
Visual J++ ISharedPropertyGroupManager.CreatePropertyGroup Method

Group
Visual Basic Group Property

Visual C++ ISharedPropertyGroupManager::get_Group Method
Visual J++ ISharedPropertyGroupManager.getGroup Method

get_NewEnum, get__NewEnum Methods
Visual C++ ISharedPropertyGroupManager::get__NewEnum Method
Visual J++ ISharedPropertyGroupManager.get_NewEnum Method

IGetContextProperties Interface
Visual C++ IGetContextProperties Interface
Visual J++ IGetContextProperties Interface

Count Method
Visual Basic Count Method

Visual C++ Count Method

Visual J++ Count Method

EnumNames Method
Visual C++ EnumNames Method
Visual J++ EnumNames Method

GetProperty Method
Visual C++ GetProperty Method
Visual J++ GetProperty Method

ISecurityProperty Interface
Visual Basic SecurityProperty Object
Visual C++ ISecurityProperty Interface

GetDirectCallerName Method
Visual Basic GetDirectCallerName Method
Visual C++ GetDirectCallerSID Method

GetDirectCreatorName Method
Visual Basic GetDirectCreatorName Method
Visual C++ GetDirectCreatorSID Method

GetOriginalCallerName Method
Visual Basic GetOriginalCallerName Method
Visual C++ GetOriginalCallerSID Method

GetOriginalCreatorName Method
Visual Basic GetOriginalCreatorName Method
Visual C++ GetOriginalCreatorSID Method

Post Method, Step1 (Visual Basic)
Public Function Post(ByRef lngAccount As Long, _
 ByRef lngAmount As Long) As String

 On Error GoTo ErrorHandler
 Post = "Hello from Account!!!"
 Exit Function
' Return the error message indicating that
' an error occurred.
ErrorHandler:
 Err.Raise Err.Number, "Bank.Account.Post", _
 Err.Description
End Function

Post Method, Step2 (Visual Basic)
Public Function Post(ByVal lngAccountNo As Long, _
 ByVal lngAmount As Long) As String

 Dim strResult As String

 On Error GoTo ErrorHandler

 ' obtain the ADO environment and connection
 Dim adoConn As New ADODB.Connection
 Dim varRows As Variant

 adoConn.Open strConnect

 On Error GoTo ErrorCreateTable

 ' update the balance
 Dim strSQL As String
 strSQL = "UPDATE Account SET Balance = Balance + "_
 + Str$(lngAmount) + " WHERE AccountNo = "
 + Str$(lngAccountNo)

TryAgain:
 adoConn.Execute strSQL, varRows

 ' if anything else happens
 On Error GoTo ErrorHandler

 ' get resulting balance which may have been
 ' further updated via triggers
 strSQL = "SELECT Balance FROM Account " _
 + "WHERE AccountNo = " + Str$(lngAccountNo)

 Dim adoRS As ADODB.Recordset
 Set adoRS = adoConn.Execute(strSQL)
 If adoRS.EOF Then
 Err.Raise Number:=APP_ERROR, _
 Description:="Error. Account " _
 + Str$(lngAccountNo) + " not on file."
 End If

 Dim lngBalance As Long
 lngBalance = adoRS.Fields("Balance").Value

 ' check if account is overdrawn
 If (lngBalance) < 0 Then
 Err.Raise Number:=APP_ERROR, _
 Description:="Error. Account " _
 + Str$(lngAccountNo) _
 + " would be overdrawn by " _
 + Str$(lngBalance) + ". Balance is still "
 + Str$(lngBalance - lngAmount) + "."
 Else
 If lngAmount < 0 Then
 strResult = strResult _
 & "Debit from account "

 & lngAccountNo & ", "
 Else
 strResult = strResult _
 & "Credit to account "
 & lngAccountNo & ", "
 End If
 strResult = strResult + "balance is $"
 & Str$(lngBalance) & ". (VB)"
 End If

 ' cleanup
 Set adoRS = Nothing
 Set adoConn = Nothing

 Post = strResult

Exit Function

ErrorCreateTable:
 On Error GoTo ErrorHandler

 ' create the account table
 Dim objCreateTable As CreateTable
 Set objCreateTable = _
 GetObjectContext.CreateInstance("Bank.CreateTable")
 objCreateTable.CreateAccount

 GoTo TryAgain

ErrorHandler:
 ' cleanup
 If Not adoRS Is Nothing Then
 Set adoRS = Nothing
 End If
 If Not adoConn Is Nothing Then
 Set adoConn = Nothing
 End If

 Post = "" ' indicate that an error occurred
 Err.Raise Err.Number, "Bank.Accout.Post", _
 Err.Description

End Function

Post Method, Step3 (Visual Basic)
Public Function Post(ByVal lngAccountNo As Long, _
 ByVal lngAmount As Long) As String

 Dim strResult As String

 On Error GoTo ErrorHandler

 ' obtain the ADO environment and connection
 Dim adoConn As New ADODB.Connection
 Dim varRows As Variant

 adoConn.Open strConnect

 On Error GoTo ErrorCreateTable

 ' update the balance
 Dim strSQL As String
 strSQL = "UPDATE Account SET Balance = Balance + "_
 + Str$(lngAmount) + " WHERE AccountNo = "
 + Str$(lngAccountNo)

TryAgain:
 adoConn.Execute strSQL, varRows

 ' if anything else happens
 On Error GoTo ErrorHandler

 ' get resulting balance which may have been
 ' further updated via triggers
 strSQL = "SELECT Balance FROM Account " _
 + "WHERE AccountNo = " + Str$(lngAccountNo)

 Dim adoRS As ADODB.Recordset
 Set adoRS = adoConn.Execute(strSQL)
 If adoRS.EOF Then
 Err.Raise Number:=APP_ERROR, _
 Description:="Error. Account " _
 + Str$(lngAccountNo) + " not on file."
 End If

 Dim lngBalance As Long
 lngBalance = adoRS.Fields("Balance").Value

 ' check if account is overdrawn
 If (lngBalance) < 0 Then
 Err.Raise Number:=APP_ERROR, _
 Description:="Error. Account " _
 + Str$(lngAccountNo) _
 + " would be overdrawn by " _
 + Str$(lngBalance) + ". Balance is still "
 + Str$(lngBalance - lngAmount) + "."
 Else
 If lngAmount < 0 Then
 strResult = strResult _
 & "Debit from account "

 & lngAccountNo & ", "
 Else
 strResult = strResult _
 & "Credit to account "
 & lngAccountNo & ", "
 End If
 strResult = strResult + "balance is $"
 & Str$(lngBalance) & ". (VB)"
 End If

 ' cleanup
 Set adoRS = Nothing
 Set adoConn = Nothing

 ' we are finished and happy
 GetObjectContext.SetComplete

 Post = strResult

Exit Function

ErrorCreateTable:
 On Error GoTo ErrorHandler

 ' create the account table
 Dim objCreateTable As CreateTable
 Set objCreateTable = _
 GetObjectContext.CreateInstance("Bank.CreateTable")
 objCreateTable.CreateAccount

 GoTo TryAgain

ErrorHandler:
 ' cleanup
 If Not adoRS Is Nothing Then
 Set adoRS = Nothing
 End If
 If Not adoConn Is Nothing Then
 Set adoConn = Nothing
 End If

 GetObjectContext.SetAbort ' we are unhappy

 Post = "" ' indicate that an error occurred
 Err.Raise Err.Number, "Bank.Accout.Post", _
 Err.Description

End Function

Perform Method, Step4 (Visual Basic)
Public Function Perform(ByVal lngPrimeAccount As Long,_
 ByVal lngSecondAccount As Long, ByVal lngAmount _
 As Long, ByVal lngTranType As Long) As String

 Dim strResult As String

 On Error GoTo ErrorHandler

 ' create the account object using our context
 Dim objAccount As Bank.Account
 Set objAccount = _
 GetObjectContext.CreateInstance("Bank.Account")

 If objAccount Is Nothing Then
 Err.Raise ERROR_NUMBER, _
 Description:="Could not create account object"
 End If

 ' call the post function based on the
 ' transaction type
 Select Case lngTranType

 Case 1
 strResult = objAccount.Post(lngPrimeAccount, 0 - lngAmount)
 If strResult = "" Then
 Err.Raise ERROR_NUMBER, _
 Description:=strResult
 End If

 Case 2
 strResult = objAccount.Post(lngPrimeAccount, lngAmount)
 If strResult = "" Then
 Err.Raise ERROR_NUMBER, _
 Description:=strResult
 End If

 Case 3
 Dim strResult1 As String, strResult2 As String
 ' do the credit
 strResult1 = objAccount.Post(lngSecondAccount, lngAmount)
 If strResult1 = "" Then
 Err.Raise ERROR_NUMBER, _
 Description:=strResult1
 Else
 ' then do the debit
 strResult2 = objAccount.Post(lngPrimeAccount, 0 -
lngAmount)
 If strResult2 = "" Then
 ' debit failed
 Err.Raise ERROR_NUMBER, _
 Description:=strResult2
 Else
 strResult = strResult1 + " " + strResult2
 End If
 End If

 Case Else
 Err.Raise ERROR_NUMBER, _
 Description:="Invalid Transaction Type"

 End Select

 ' we are finished and happy
 GetObjectContext.SetComplete

 Perform = strResult

 Exit Function

ErrorHandler:

 GetObjectContext.SetAbort ' we are unhappy

 Perform = "" ' indicate that an error occured

 Err.Raise Err.Number, "Bank.MoveMoney.Perform", _
 Err.Description

End Function

GetNextReceipt Method, Step5 (Visual Basic)
Public Function GetNextReceipt() As Long

 On Error GoTo ErrorHandler

 ' If Shared property does not already exist
 ' it will be initialized
 Dim spmMgr As SharedPropertyGroupManager
 Set spmMgr = CreateObject("MTxSpm.SharedPropertyGroupManager.1")

 Dim spmGroup As SharedPropertyGroup
 Dim bResult As Boolean
 Set spmGroup = _
 spmMgr.CreatePropertyGroup("Receipt", _
 LockMethod, Process, bResult)

 Dim spmPropNextReceipt As SharedProperty
 Set spmPropNextReceipt = _
 spmGroup.CreateProperty("Next", bResult)

 ' Set the initial value of the Shared Property to
 ' 0 if the Shared Property didn’t already exist.
 ' This is not entirely necessary but demonstrates
 ' how to initialize a value.
 If bResult = False Then
 spmPropNextReceipt.Value = 0
 End If

 ' Get the next receipt number and update property
 spmPropNextReceipt.Value = spmPropNextReceipt.Value + 1

 ' we are finished and happy
 GetObjectContext.SetComplete

 GetNextReceipt = spmPropNextReceipt.Value

 Exit Function

ErrorHandler:
 GetObjectContext.SetAbort ' we are unhappy

 ' indicate that an error occured
 GetNextReceipt = -1

 Err.Raise Err.Number, _
 "Bank.GetReceipt.GetNextReceipt", _
 Err.Description

End Function

Perform Method, Step5 (Visual Basic)
Public Function Perform(ByVal lngPrimeAccount As Long,_
 ByVal lngSecondAccount As Long, ByVal lngAmount _
 As Long, ByVal lngTranType As Long) As String

 Dim strResult As String

 On Error GoTo ErrorHandler

 ' create the account object using our context
 Dim objAccount As Bank.Account
 Set objAccount = _
 GetObjectContext.CreateInstance("Bank.Account")

 If objAccount Is Nothing Then
 Err.Raise ERROR_NUMBER, _
 Description:="Could not create account object"
 End If

 ' call the post function based on the
 ' transaction type
 Select Case lngTranType

 Case 1
 strResult = objAccount.Post(lngPrimeAccount, 0 - lngAmount)
 If strResult = "" Then
 Err.Raise ERROR_NUMBER, _
 Description:=strResult
 End If

 Case 2
 strResult = objAccount.Post(lngPrimeAccount, lngAmount)
 If strResult = "" Then
 Err.Raise ERROR_NUMBER, _
 Description:=strResult
 End If

 Case 3
 Dim strResult1 As String, strResult2 As String
 ' do the credit
 strResult1 = objAccount.Post(lngSecondAccount, lngAmount)
 If strResult1 = "" Then
 Err.Raise ERROR_NUMBER, _
 Description:=strResult1
 Else
 ' then do the debit
 strResult2 = objAccount.Post(lngPrimeAccount, 0 -
lngAmount)
 If strResult2 = "" Then
 ' debit failed
 Err.Raise ERROR_NUMBER, _
 Description:=strResult2
 Else
 strResult = strResult1 + " " + strResult2
 End If
 End If

 Case Else
 Err.Raise ERROR_NUMBER, _
 Description:="Invalid Transaction Type"

 End Select

 ' Get Receipt Number for the transaction
 Dim objReceiptNo As Bank.GetReceipt
 Dim lngReceiptNo As Long

 Set objReceiptNo = GetObjectContext.CreateInstance("Bank.GetReceipt")
 lngReceiptNo = objReceiptNo.GetNextReceipt
 If lngReceiptNo > 0 Then
 strResult = strResult & "; Receipt No: " _
 & Str$(lngReceiptNo)
 End If

 ' we are finished and happy
 GetObjectContext.SetComplete

 Perform = strResult

 Exit Function

ErrorHandler:

 GetObjectContext.SetAbort ' we are unhappy

 Perform = "" ' indicate that an error occured

 Err.Raise Err.Number, "Bank.MoveMoney.Perform", _
 Err.Description

End Function

StatefulPerform Method, Step6 (Visual Basic)
Public PrimeAccount As Long
Public SecondAccount As Long

Public Function StatefulPerform(ByVal lngAmount _
 As Long, ByVal lngTranType As Long) As String
 StatefulPerform = Perform(PrimeAccount, _
 SecondAccount, lngAmount, lngTranType)
End Function

Update Method, Step7 (Visual Basic)
Public Function Update() As Long

 On Error GoTo ErrorHandler

 ' get result set and then update table
 ' with new receipt number
 Dim adoConn As New ADODB.Connection
 Dim adoRsReceipt As ADODB.Recordset
 Dim lngNextReceipt As Long
 Dim strSQL As String

 strSQL = "Update Receipt set NextReceipt = NextReceipt + 100"

 adoConn.Open strConnect

 ' Assume that if there is an ado error then
 ' the receipt table does not exist
 On Error GoTo ErrorCreateTable

TryAgain:

 adoConn.Execute strSQL

 strSQL = "Select NextReceipt from Receipt"
 Set adoRsReceipt = adoConn.Execute(strSQL)
 lngNextReceipt = adoRsReceipt!NextReceipt

 Set adoConn = Nothing
 Set adoRsReceipt = Nothing

 ' we are finished and happy
 GetObjectContext.SetComplete

 Update = lngNextReceipt

 Exit Function

ErrorCreateTable:

 On Error GoTo ErrorHandler

 ' create the receipt table
 Dim objCreateTable As CreateTable
 Set objCreateTable = CreateObject("Bank.CreateTable")
 objCreateTable.CreateReceipt

 GoTo TryAgain

ErrorHandler:

 If Not adoConn Is Nothing Then
 Set adoConn = Nothing
 End If
 If Not adoRsReceipt Is Nothing Then
 Set adoRsReceipt = Nothing

 End If

 GetObjectContext.SetAbort ' we are unhappy

 Update = -1 ' indicate that an error occured

 Err.Raise Err.Number, "Bank.UpdateReceipt.Update", Err.Description

End Function

GetNextReceipt Method, Step7 (Visual Basic)
Public Function GetNextReceipt() As Long

 On Error GoTo ErrorHandler

 ' If Shared property does not already exist
 ' it will be initialized
 Dim spmMgr As SharedPropertyGroupManager
 Set spmMgr = CreateObject("MTxSpm.SharedPropertyGroupManager.1")

 Dim spmGroup As SharedPropertyGroup
 Dim bResult As Boolean
 Set spmGroup = _
 spmMgr.CreatePropertyGroup("Receipt", _
 LockMethod, Process, bResult)

 Dim spmPropNextReceipt As SharedProperty
 Set spmPropNextReceipt = _
 spmGroup.CreateProperty("Next", bResult)

 ' Set the initial value of the Shared Property to
 ' 0 if the Shared Property didn’t already exist.
 ' This is not entirely necessary but demonstrates
 ' how to initialize a value.
 If bResult = False Then
 spmPropNextReceipt.Value = 0
 End If

 Dim spmPropMaxNum As SharedProperty
 Set spmPropMaxNum = spmGroup.CreateProperty("MaxNum", bResult)

 Dim objReceiptUpdate As Bank.UpdateReceipt
 If spmPropNextReceipt.Value >= spmPropMaxNum.Value Then
 Set objReceiptUpdate =
GetObjectContext.CreateInstance("Bank.UpdateReceipt")
 spmPropNextReceipt.Value = objReceiptUpdate.Update
 spmPropMaxNum.Value = spmPropNextReceipt.Value + 100
 End If

 ' Get the next receipt number and update property
 spmPropNextReceipt.Value = spmPropNextReceipt.Value + 1

 ' we are finished and happy
 GetObjectContext.SetComplete

 GetNextReceipt = spmPropNextReceipt.Value

 Exit Function

ErrorHandler:
 GetObjectContext.SetAbort ' we are unhappy

 ' indicate that an error occured
 GetNextReceipt = -1

 Err.Raise Err.Number, "Bank.GetReceipt.GetNextReceipt", Err.Description

End Function

Perform Method, Step8 (Visual Basic)
Public Function Perform(ByVal lngPrimeAccount As Long,_
 ByVal lngSecondAccount As Long, ByVal lngAmount _
 As Long, ByVal lngTranType As Long) As String

 Dim strResult As String

 On Error GoTo ErrorHandler

 ' check for security
 If (lngAmount > 500 Or lngAmount < -500) Then
 If Not GetObjectContext.IsCallerInRole("Managers") Then
 Err.Raise Number:=APP_ERROR, _
 Description:="Need 'Managers' role for amounts over $500"
 End If
 End If

 ' create the account object using our context
 Dim objAccount As Bank.Account
 Set objAccount = _
 GetObjectContext.CreateInstance("Bank.Account")

 If objAccount Is Nothing Then
 Err.Raise ERROR_NUMBER, _
 Description:="Could not create account object"
 End If

 ' call the post function based on the
 ' transaction type
 Select Case lngTranType

 Case 1
 strResult = objAccount.Post(lngPrimeAccount, 0 - lngAmount)
 If strResult = "" Then
 Err.Raise ERROR_NUMBER, _
 Description:=strResult
 End If

 Case 2
 strResult = objAccount.Post(lngPrimeAccount, lngAmount)
 If strResult = "" Then
 Err.Raise ERROR_NUMBER, _
 Description:=strResult
 End If

 Case 3
 Dim strResult1 As String, strResult2 As String
 ' do the credit
 strResult1 = objAccount.Post(lngSecondAccount, lngAmount)
 If strResult1 = "" Then
 Err.Raise ERROR_NUMBER, _
 Description:=strResult1
 Else
 ' then do the debit
 strResult2 = objAccount.Post(lngPrimeAccount, 0 -
lngAmount)

 If strResult2 = "" Then
 ' debit failed
 Err.Raise ERROR_NUMBER, _
 Description:=strResult2
 Else
 strResult = strResult1 + " " + strResult2
 End If
 End If

 Case Else
 Err.Raise ERROR_NUMBER, _
 Description:="Invalid Transaction Type"

 End Select

 ' Get Receipt Number for the transaction
 Dim objReceiptNo As Bank.GetReceipt
 Dim lngReceiptNo As Long

 Set objReceiptNo = GetObjectContext.CreateInstance("Bank.GetReceipt")
 lngReceiptNo = objReceiptNo.GetNextReceipt
 If lngReceiptNo > 0 Then
 strResult = strResult & "; Receipt No: " _
 & Str$(lngReceiptNo)
 End If

 ' we are finished and happy
 GetObjectContext.SetComplete

 Perform = strResult

 Exit Function

ErrorHandler:

 GetObjectContext.SetAbort ' we are unhappy

 Perform = "" ' indicate that an error occured

 Err.Raise Err.Number, "Bank.MoveMoney.Perform", _
 Err.Description

End Function

Post Method, Step8 (Visual Basic)
Public Function Post(ByVal lngAccountNo As Long, _
 ByVal lngAmount As Long) As String

 Dim strResult As String

 On Error GoTo ErrorHandler

 ' check for security
 If (lngAmount > 500 Or lngAmount < -500) Then
 If Not GetObjectContext.IsCallerInRole("Managers") Then
 Err.Raise Number:=APP_ERROR, _
 Description:="Need 'Managers' role for amounts over $500"
 End If
 End If

 ' obtain the ADO environment and connection
 Dim adoConn As New ADODB.Connection
 Dim varRows As Variant

 adoConn.Open strConnect

 On Error GoTo ErrorCreateTable

 ' update the balance
 Dim strSQL As String
 strSQL = "UPDATE Account SET Balance = Balance + "_
 + Str$(lngAmount) + " WHERE AccountNo = "
 + Str$(lngAccountNo)

TryAgain:
 adoConn.Execute strSQL, varRows

 ' if anything else happens
 On Error GoTo ErrorHandler

 ' get resulting balance which may have been
 ' further updated via triggers
 strSQL = "SELECT Balance FROM Account " _
 + "WHERE AccountNo = " + Str$(lngAccountNo)

 Dim adoRS As ADODB.Recordset
 Set adoRS = adoConn.Execute(strSQL)
 If adoRS.EOF Then
 Err.Raise Number:=APP_ERROR, _
 Description:="Error. Account " _
 + Str$(lngAccountNo) + " not on file."
 End If

 Dim lngBalance As Long
 lngBalance = adoRS.Fields("Balance").Value

 ' check if account is overdrawn
 If (lngBalance) < 0 Then
 Err.Raise Number:=APP_ERROR, _
 Description:="Error. Account " _

 + Str$(lngAccountNo) _
 + " would be overdrawn by " _
 + Str$(lngBalance) + ". Balance is still "
 + Str$(lngBalance - lngAmount) + "."
 Else
 If lngAmount < 0 Then
 strResult = strResult _
 & "Debit from account "
 & lngAccountNo & ", "
 Else
 strResult = strResult _
 & "Credit to account "
 & lngAccountNo & ", "
 End If
 strResult = strResult + "balance is $"
 & Str$(lngBalance) & ". (VB)"
 End If

 ' cleanup
 Set adoRS = Nothing
 Set adoConn = Nothing

 ' we are finished and happy
 GetObjectContext.SetComplete

 Post = strResult

Exit Function

ErrorCreateTable:
 On Error GoTo ErrorHandler

 ' create the account table
 Dim objCreateTable As CreateTable
 Set objCreateTable = _
 GetObjectContext.CreateInstance("Bank.CreateTable")
 objCreateTable.CreateAccount

 GoTo TryAgain

ErrorHandler:
 ' cleanup
 If Not adoRS Is Nothing Then
 Set adoRS = Nothing
 End If
 If Not adoConn Is Nothing Then
 Set adoConn = Nothing
 End If

 GetObjectContext.SetAbort ' we are unhappy

 Post = "" ' indicate that an error occurred
 Err.Raise Err.Number, "Bank.Accout.Post", _
 Err.Description

End Function

Create a New Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"asNewC;ashowaddcomponents;ashowaddobjects"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"asNewS"}

Adds items to the Microsoft Transaction Server Explorer window. The impact of the New command is
determined by which folder you are currently viewing in the right pane. For example, when the
Computers folder is open, clicking New adds a new computer.

Toolbar shortcut:

To learn how to add a computer to your Computers folder, see the Configuring Your MTS Deployment
Server topic.
To learn how to create a new package, see the Creating an Empty Package topic.

To learn how to create a new role, see the Adding a New Role topic.

Large Icons
{ewc HLP95EN.DLL,DYNALINK,"See Also":"asLargeIconsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"asLargeIconsS"}

Displays the items in the right pane of the hierarchy view in their larger format.

Toolbar shortcut:

Small Icons
{ewc HLP95EN.DLL,DYNALINK,"See Also":"asSmallIconsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"asSmallIconsS"}

Displays the items in the right pane of the hierarchy view in their smaller format.

Toolbar shortcut:

List View
{ewc HLP95EN.DLL,DYNALINK,"See Also":"asListviewC"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"asListviewS"}

Displays the items in the right pane of the hierarchy view in their list format.

Toolbar shortcut:

Property View
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"asPropertiesListC;ashowComponentProperties;ashowComputerProperties;ashowInterfaceProperties;ashowPackagePro
perties;ashowRoleProperties;asProperties"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"asPropertiesListS"}

Displays the property settings for the items in the currently selected folder. The properties are
displayed in a column format in the Microsoft Transaction Server Explorer's right pane.

Toolbar shortcut:

Which properties are displayed depends on the type of object that is selected. The following table
summarizes the properties that are displayed for the different folders.
Folder Properties
Computers Name The name that has been assigned to the

computer and that is recognized within a Windows NT
domain. The computer where you are running
Transaction Server, however, is referred to as My
Computer.
Timeout

Packages
Installed

Name The name that you have assigned to a
package.
Security Indicates if security has been enabled for
the package.
Authentication The level of authentication checks.
Shutdown The period of time before the package
shuts down when there is no activity.
Run Always Indicates the package doesn't shut
down when inactive.
Account The Windows NT account that has been
set for the package identity.
Package ID The Universally Unique Identifier that is
assigned to a package.

Components Prog ID The name that has been assigned to a
component.
Transaction Indicates whether the component
supports transactions.
DLL
CLSID
Use MTX Indicates whether the component runs in
the Transaction Server environment.
In Process Indicates that the component runs in a
different server process.
Local Indicates that the component runs in a server
process on the local computer.
Remote Indicates that the component runs in a
server process on a remote computer.
Server The name of the remote computer the
component runs on.
Threading The component's threading model.
Security Indicates whether security has been
enabled for the component.

Roles Name The name that has been assigned to the role.
Role ID The unique identifier that has been
assigned to the role.

Interfaces Name The name that has been assigned to the
interface.
Interface ID The unique identifier that has been
assigned to the interface.
Proxy DLL
TypeLib File The name of the file that contains the
type library.

Methods Name The name that has been assigned to the
method.

Role Membership Name The name that has been assigned to the role
that has been added to a component or interface.
Role ID The unique identifier that has been
assigned to a role.

Status View
{ewc HLP95EN.DLL,DYNALINK,"See Also":"asStatusC;ashowRunandMonitortheAccountComponent"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"asStatusS"}

Displays the current state of a component or computer.

Toolbar shortcut:

Computer Status
· Name The name that has been assigned to a computer.
· DTC Indicates whether MS DTC has been started.

Component Status
· Prog ID The name that has been assigned to a component.
· Objects The total number of objects that have been allocated within the server process.
· Activated The total number of objects that are being used by clients.
· In Call The total number of objects that are currently executing a client call.

Refresh Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"asRefreshC;asRefreshAllComponentsTools"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"asRefreshS"}

Manually updates the information displayed in the Microsoft Transaction Server Explorer's right pane.

Toolbar shortcut:

Glossary

ACID

ActiveX

activity

administrator

aggregation

apartment thread

application executable utility

atomicity

authentication

automatic transaction

base client

base process

Boolean

business rule

caller

catalog

class

class factory

class ID (CLSID)

client

client/server

cluster

COM (Component Object Model)

component

concurrency

consistency

constructor

context

context object properties

creator

data source name (DSN)

deadlock

declarative security

direct caller

direct creator

distributed COM (DCOM)

domain

durability

dynamic-link library (DLL)

exception

failfast

fault isolation

fault tolerance

global account

group

identity

in-doubt transaction

in-process component

instance

interface

isolation

interactive logon user

just-in-time activation

library package

load balancing

local account

main thread

marshaling

method

Microsoft Distributed Transaction Coordinator (MS DTC)

Microsoft Transaction Server component

Microsoft Transaction Server Explorer

Microsoft Transaction Server object

Null

object

object variable

ODBC resource dispenser

OLE Transactions

Open Database Connectivity (ODBC)

original caller

original creator

out-of-process component

package

package file

pooling

pre-built package

process isolation

programmatic identifier (progID)

programmatic security

proxy

remote component

Remote Procedure Call (RPC)

replication

resource dispenser

Resource Dispenser Manager

resource manager

role

safe reference

security ID (SID)

semaphore

server process

server package

shared property

snap-in

stateful object

stateless object

string expression

stub

thread

trace message

transaction

transaction context

transaction manager

transaction timeout

two-phase commit

type library

user name

XA protocol

ACID
The basic transaction properties of atomicity, consistency, isolation, and durability.

ActiveX
A set of technologies that enables software components to interact with one another in a networked environment,
regardless of the language in which they were created. ActiveX is built on the Component Object Model (COM).

activity
A collection of Microsoft Transaction Server objects that has a single distributed logical thread of execution.
Every Microsoft Transaction Server object belongs to one activity.

administrator
A user that uses the Microsoft Transaction Server Explorer to install, configure, and manage Microsoft
Transaction Server components and packages.

aggregation
A composition technique for implementing component objects whereby a new object can be built using one or
more existing objects that support some or all of the new object's required interfaces.

apartment thread
A thread used to execute calls to objects of components configured as "apartment threaded." Each object "lives
in an apartment" (thread) for the life of the object. All calls to that object execute on the apartment thread. This
threading model is used, for example, for component implementations that keep object state in thread local
storage (TLS). A component's objects can be distributed over one or more apartments. See also main thread.

application executable utility
A feature in the MTS Explorer that allows you to create an application executable by exporting a package.

atomicity
A feature of a transaction that indicates that either all actions of the transaction happen or none happen.

authentication
The process of determining the identity of a user attempting to access a system. For example, passwords are
commonly used to authenticate users.

automatic transaction
A transaction that is created by the Microsoft Transaction Server run-time environment for an object based on the
component's transaction attribute.

Boolean
A true/false or yes/no value.

base client
A client that runs outside the Microsoft Transaction Server run-time environment, but that instantiates Microsoft
Transaction Server objects.

base process
An application process in which a base client executes. A base client runs outside the Microsoft Transaction
Server run-time environment, but instantiates Microsoft Transaction Server objects.

business rule
The combination of validation edits, logon verifications, database lookups, policies, and algorithmic
transformations that constitute an enterprise's way of doing business. Also known as business logic.

caller
A client that invokes a method of an object. An object's caller isn't necessarily the object's creator. For example,
client A could create object X and pass this reference to client B, and then client B could use that reference to call
a method of object X. In this case, client A is the creator, and client B is the caller. See also creator.

catalog
The Microsoft Transaction Server data store that maintains configuration information for components, packages,
and roles. You can administer the catalog by using the Microsoft Transaction Server Explorer.

class
A type that defines interfaces of a particular type of object. A class defines the properties of the object and the
methods used to control the object's behavior.

class factory
An object that implements the IClassFactory interface, which allows it to create objects of a specific class.

class ID (CLSID)
A universally unique identifier (UUID) that identifies a COM component. Each COM component has its CLSID in
the Windows Registry so that it can be loaded by other applications.

client
An application or process that requests a service from some process or component.

client/server
A distributed application model in which client applications request services from a server application. A server
can have many clients at the same time, and a client can request data from multiple servers. An application can
be both a client and a server.

cluster
Two or more independent computer systems that are addressed and managed as a single system using
Microsoft Cluster Server.

COM (Component Object Model)
An open architecture for cross-platform development of client/server applications based on object-oriented
technology. Clients have access to an object through interfaces implemented on the object. COM is language
neutral, so any language that produces ActiveX components can also produce COM applications.

component
A discrete unit of code built on ActiveX technologies that delivers a well-specified set of services through well-
specified interfaces. Components provide the objects that clients request at run time.

concurrency
The appearance of simultaneous execution of processes or transactions by interleaving the execution of multiple
pieces of work.

consistency
A state where durable data matches the state expected by the business rules that modified the data.

constructor
In C++ and Java, a special initialization function that is called automatically whenever an instance of a class is
declared. This function prevents errors that result from the use of unitialized objects. The constructor has the
same name as the class itself and can't return a value.

context
State that is implicitly associated with a given Microsoft Transaction Server object. Context contains information
about the object's execution environment, such as the identity of the object's creator and, optionally, the
transaction encompassing the work of the object. An object's context is similar in concept to the process context
that an operating system maintains for an executing program. The Microsoft Transaction Server run-time
environment manages a context for each object.

context object properties
Properties which can be obtained from the context object, such as Internet Information Server intrinsic objects.

creator
A client that creates an object provided by a component (using CreateObject, CoCreateInstance, or the
CreateInstance method). When a client creates an object, it is given an object reference that can be used to call
the methods of that object. See also caller.

data source name (DSN)
The name that applications use to request a connection to an ODBC data source.

deadlock
A situation in which two or more threads are permanently blocked (waiting), with each thread waiting for a
resource exclusively held by one of the other threads that is blocked. For example, if thread A locks record 1 and
waits to lock record 2, while thread B has locked record 2 and waits to lock record 1, the two threads are
deadlocked.

declarative security
Security that is configured with the Microsoft Transaction Server Explorer. You can control access to packages,
components, and interfaces by defining roles. Roles determine which users are allowed to invoke interfaces in a
component. See also programmatic security.

direct caller
The identity of the process (base client or server process) calling into the current server process.

direct creator
The identity of the process (base client or server process) that directly created the current object.

distributed COM (DCOM)
DCOM is an object protocol that enables ActiveX components to communicate directly with each other across a
network. DCOM is language neutral, so any language that produces ActiveX components can also produce
DCOM applications.

domain
In Windows NT, a collection of computers defined by the administrator of a Windows NT server network that
share a common directory database. A domain provides access to the centralized user accounts and group
accounts maintained by the domain administrator. Each domain has a unique name.

durability
A state that survives failures.

dynamic-link library (DLL)
A file that contains one or more functions that are compiled, linked, and stored separately from the processes
that use them. The operating system maps the DLLs into the address space of the calling process when the
process is starting or while it's running.

exception
An abnormal condition or error that occurs during the execution of a program and that requires the execution of
software outside the normal flow of control.

failfast

A policy of Microsoft Transaction Server that facilitates fault containment. When the Transaction Server
encounters an unexpected internal error condition, it immediately terminates the process and logs messages to
the Windows NT event log for details about the failure.

fault isolation
Containing the effects of a fault within a component, rather than propagating the fault to other components in the
system.

fault tolerance
The ability of a system to recover from an error, a failure, or a change in environmental conditions (such as loss
of power). True fault tolerance provides for fully automatic recovery without disruption of user tasks or files, in
contrast to manual means of recovery such as restoring data loss with backup files.

global account
A normal user account in the user's home domain. Most accounts are global accounts, which is the default
setting. If multiple domains are available, it's best if each user in the network has only one global account in only
one domain.

group
A name that identifies a set of one or more Windows NT users accounts.

identity
A package property that specifies the user accounts that are allowed to access the package. It can be a specific
user account or a group of users within a Windows NT domain.

in-doubt transaction
A transaction that has been prepared but hasn't received a decision to commit or abort because the server
coordinating the transaction is unavailable.

in-process component
A component that runs in a client's process space. This is typically a dynamic-link library (DLL).

instance
An object of a particular component class. Each instance has its own private data elements or member variables.
A component instance is synonymous with object.

interactive logon user
The user that is currently logged on a Windows Transaction Server computer.

interface
A group of logically related operations or methods that provides access to a component object.

isolation
A characteristic whereby two transactions running in parallel produce the illusion that there is no concurrency. It
appears that the system runs one transaction at a time.

just-in-time activation
The ability for a Microsoft Transaction Server object to be activated only as needed for executing requests from
its client. Objects can be deactivated even while clients hold references to them, allowing otherwise idle server
resources to be used more productively.

library package
A package that runs in the process of the client that creates it. Library packages do not support component
tracking, role checking, or process isolation. MTS supports two types of packages: Library package and server
package.

load balancing
Distribution of the processing load among several servers carrying out network tasks to increase overall network
performance.

local account
An account provided in a local domain for a user whose regular account isn't in a trusted domain. Local accounts
cannot be used to log on interactively. Local accounts created in one domain cannot be used in trusted domains.

main thread
A single thread used to run all objects of components marked as "single threaded." See also apartment thread.

marshaling
The process of packaging and sending interface method parameters across thread or process boundaries.

method
A procedure (function) that acts on an object.

Microsoft Distributed Transaction Coordinator (MS DTC)
A transaction manager that coordinates transactions that span multiple resource managers. Work can be
committed as an atomic transaction even if it spans multiple resource managers, potentially on separate
computers.

Microsoft Transaction Server component
A COM component that executes in the Microsoft Transaction Server run-time environment. A Transaction Server
component must be a dynamic-link library (DLL), implement a class factory to create objects, and describe all of
the component's interfaces in a type library for standard marshaling.

Microsoft Transaction Server Explorer
An application to configure and manage Microsoft Transaction Server components within a distributed computer
network.

Microsoft Transaction Server object
A COM object that executes in the Microsoft Transaction Server run-time environment and follows the
Transaction Server programming and deployment model.

Null
A value that indicates missing or unknown data.

object
A run-time instance of a COM component. An object is created by a component's class factory. Object is
synonymous with instance.

object variable
A variable that contains a reference to an object.

ODBC resource dispenser
A resource dispenser that manages pools of database connections for Microsoft Transaction Server components
that use the standard ODBC programming interfaces.

OLE Transactions
OLE Transactions is an object-oriented, two-phase commit protocol based on the Component Object Model
(COM). It is used by resource managers in order to participate in distributed transactions coordinated by
Microsoft Distributed Transaction Coordinator (DTC).

Open Database Connectivity (ODBC)
A standard programming language interface used to connect to a variety of data sources.

original caller
The identity of the base client that initiated the activity.

original creator
The identity of the base client that created the current object. The original caller and original creator are different
only if the original creator passed the object to another base client. See also original caller.

out-of-process component
A component that runs in a separate process space from its client. The Microsoft Transaction Server enables
components implemented as DLLs to be used out-of-process from the client, by loading the components into
surrogate server processes.

package
A set of components that perform related application functions. All components in a package run together in the
same Microsoft Transaction Server server process. A package is a trust boundary that defines when security
credentials are verified, and a deployment unit for a set of components. You can create packages with the
Transaction Server Explorer. Packages can be either a library package or server package.

package file
A file that contains information about the components and roles of a package. A package file is created using the
package export function of the Transaction Server Explorer. When you create a pre-built package, the associated
component files (DLLs, type libraries, and proxy-stub DLLs, if implemented) are copied to the same directory
where the package file was created.

pooling
A performance optimization based on using collections of pre-allocated resources, such as objects or database
connections. Pooling results in more efficient resource allocation.

pre-built package
A package file that contains information about the components and roles of a package. A package file is created
using the package export function of the Transaction Server Explorer. When you create a pre-built package, the
associated component files (DLLs, type libraries, and proxy-stub DLLs, if implemented) are copied to the same
directory where the package file was created.

process isolation
The technique of running a server process in a separate memory space in order to isolate that process from
other server processes. Process isolation protects a server process from other fatal application errors. Isolating a
server process also prevents the isolated process from terminating another server process with an application
fatal error. An MTS package that supports process isolation is called a Server package.

programmatic identifier (progID)
A name that identifies a COM component. For example, a programmatic ID could be Bank.MoveMoney.

programmatic security
Procedural logic provided by a component to determine if a client is authorized to perform the requested
operation. See also declarative security.

proxy
An interface-specific object that provides the parameter marshaling and communication required for a client to
call an application object that is running in a different execution environment, such as on a different thread or in
another process. The proxy is located with the client and communicates with a corresponding stub that is located
with the application object that is being called.

remote component
A component used by a client on a different computer.

Remote Procedure Call (RPC)
A standard that allows one process to make calls to functions that are executed in another process. The process
can be on the same computer or on a different computer in the network.

replication
An operation which copies the catalog from one computer to another. Replication is used to synchronize
clustered MTS servers.

resource dispenser
A service that provides the synchronization and management of nondurable resources within a process,
providing for simple and efficient sharing by Microsoft Transaction Server objects. For example, the ODBC
resource dispenser manages pools of database connections.

Resource Dispenser Manager
A dynamic-link library (DLL) that coordinates work among a collection of resource dispensers.

resource manager
A system service that manages durable data. Server applications use resource managers to maintain the durable
state of the application, such as the record of inventory on hand, pending orders, and accounts receivable. The
resource managers work in cooperation with the transaction manager to provide the application with a guarantee
of atomicity and isolation (using the two-phase commit protocol). Microsoft SQL Server is an example of a
resource manager.

role
A symbolic name that defines a class of users for a set of components. Each role defines which users are
allowed to invoke interfaces on a component.

safe reference
A reference to the current object that is safe to pass outside the current object's context.

security ID (SID)
A unique name that identifies a logged-on user to the security system. SIDs can identify one user or a group of
users.

semaphore

A locking mechanism used inside resource managers or resource dispensers. Semaphores have no symbolic
names, only shared and exclusive mode access, no deadlock detection, and no automatic release or commit.

server package
A package that runs isolated in its own process on the local computer. Server packages support role-based
security, resource sharing, process isolation, and process management (such as package tracking). MTS
supports two types of packages: library and server package.

server process
A process that hosts Microsoft Transaction Server components.

A Microsoft Transaction Server component can be loaded into a surrogate server process, either on the client's
computer or into a client application process.

shared property
A variable that is available to all objects in the same server process via the Shared Property Manager. The value
of the property can be any type that can be represented by a variant.

snap-in
An administrative program hosted by the Microsoft Management Console (MMC). The MTS Explorer on
Windows NT is a snap-in.

stateful object
An object that holds private state accumulated from the execution of one or more client calls.

stateless object
An object that doesn't hold private state accumulated from the execution of one or more client calls.

string expression
Any expression that evaluates to a sequence of contiguous characters.

stub
An interface-specific object that provides the parameter marshaling and communication required for an
application object to receive calls from a client that is running in a different execution environment, such as on a
different thread or in another process. The stub is located with the application object and communicates with a
corresponding proxy that is located with the client that calls it.

thread
The basic entity to which the operating system allocates CPU time. A thread can execute any part of the
application's code, including a part currently being executed by another thread. All threads of a process share the
virtual address space, global variables, and operating-system resources of the process.

transaction
A unit of work that is done as an atomic operation—that is, the operation succeeds or fails as a whole.

transaction context
An object used to allow a client to dynamically include one or more objects in one transaction.

transaction manager
A system service responsible for coordinating the outcome of transactions in order to achieve atomicity. The
transaction manager ensures that the resource managers reach a consistent decision on whether the transaction
should commit or abort.

trace message
A message that includes the current status of various Microsoft Transaction Server activities, such as startup and
shutdown.

transaction timeout
The maximum period of time that a transaction can remain active before it's automatically aborted by the
transaction manager.

type library
A file containing standard descriptions of data types, modules, and interfaces that can be used to fully expose
objects with ActiveX technology.

two-phase commit
A protocol that ensures that transactions that apply to more than one server are completed on all servers or none
at all. Two-phase commit is coordinated by the transaction manager and supported by resource managers.

user name
The name that identifies a Windows NT user account.

XA protocol
The two-phase commit protocol defined by the X/Open DTP group. XA is natively supported by many Unix
databases, including Informix, Oracle, and DB2.

