
AbsoluteReference
Syntax
 AbsoluteReference()
Description
Lets you convert relative cell addresses to absolute addresses. Number provides control over what part of the
formula converts to an absolute address.

ACTIVATE
Syntax
 Activate(WindowName As String)
Description
{ACTIVATE} makes the window specified by the string WindowName active. You can find the name of a window
on its title bar.
Example
To make the named chart PROFITS (in the notebook REPORT.WB3) active, use
{ACTIVATE "C:\SALES\REPORT.WB3:PROFITS"}

Use the same syntax for activating dialog windows. To make the notebook itself active, use
{ACTIVATE "C:\SALES\REPORT.WB3"}

Parameters
WindowNam
e

Name of the window to make active

ADDMENU
Syntax
AddMenu(MenuPath As String, MenuBlock As String)
Description
{ADDMENU} lets you add menus to the active menu system. (Use {ADDMENUITEM} to add individual menu
items to the active menu system.) MenuPath is a string that specifies where the new menu should appear. For
example, to insert a menu before the Edit menu, use /Edit; to insert a menu before the Copy command on the
Edit menu, use /Edit/Copy. You can use <- and -> to place a menu at the top or before the bottom of a menu,
respectively. For example, /File/<- specifies the first item on the File menu.
You can also use numbers to identify menu items. For example, /File/0 specifies the first item on the File menu
(the ID numbers start at zero). When identifying a menu item with numbers, divider lines are considered menu
items (for example, /File/5 specifies the first divider line on the File menu, not Properties).
MenuBlk includes the cells containing a menu definition. MenuBlk must include all cells in the new menu.

Tips
¨ You can add new menus only to the menu bar on either side of the Edit and Tools menus--that is, one position

to the left or right of the Edit menu and one position to the left or right of the Tools menu. The area between
these menu positions is reserved for menus that change depending on the active window. Likewise, you
cannot delete menus within this menu, either. You can add menu items to menus between the Edit and Tools
menus, but the new menu items will be swapped out of the menu when the context changes.

¨ Changes made to the menu system using this command are not saved; they are lost when you exit Quattro
Pro. Each time you run a macro containing {ADDMENU}, the menu changes appear again.

¨ To restore the original menu bar, use the macro command {SETMENUBAR} without an argument.

Parameters
MenuPat
h

Location in the menu system to insert a new menu

MenuBlk Location in the menu system to insert a new menu
 Related topics

ADDMENUITEM
Syntax
AddMenuItem(MenuPath As String, ItemName As String, [Link As String], [Hint As String], [HotKey As String],
[DependString As String], [Checked_ As _AddMenuItem_Checked__enum])
Description
{ADDMENUITEM} is like {ADDMENU}, but inserts a single menu item before MenuPath instead of a new menu.
See the description of {ADDMENU} for the syntax of MenuPath. Name is the name of the new menu item; if it is
a command, precede its underlined letter with an ampersand (&).
Link specifies the actions the menu item performs (for example, "MACRO _remove_file" runs the macro
_remove_file).
Example
The following macro adds the menu item Find Object above Edit Go To. Find Object runs a macro command
called _FINDOBJ.
{ADDMENUITEM "/Edit/Go To","Find Object", "MACRO _FINDOBJ", "Finds a floating object on the notebook sheet",

"Ctrl+Shift+F", "No, Yes, No, No, No, No", "No"}
Parameters

MenuPath Location in the menu system to insert a new menu item; enter the
sequence of menu items separated by forward slashes (/); you can use <-
and -> to place a menu at the top or before the bottom of a menu,
respectively. For example, /File/<- specifies the first item on the File menu.
You can also use numbers to identify menu items. For example, /File/0
specifies the first item on the File menu (the ID numbers start at zero).

Name Name of the command to add; if you want a letter of the name to appear
underlined, precede it with an ampersand (&); to add a divider line, type a
series of hyphens (-).

Link Action to perform when the command is chosen (optional); this argument
can specify a link command or a macro command to run when the menu
item is chosen; click here for details.

Hint Help text to display in a pop-up window when the command is highlighted
(optional)

HotKey Shortcut key that chooses the command (optional); separate key
combinations with a plus sign (+), for example, Alt+F4.

DependStri
ng

Areas in which the command is available (optional); enter Yes or No for
each area, separated by commas, in the following order: desktop,
notebook, chart Window, dialog window, input line, Objects sheet.
Example: "No, No, Yes, No, No, No" makes the menu item available only
when the chart window is active.

Checked Type "Yes" if the command should have a checkmark display by it
(optional)

Tips
¨ You can add menu items to any menu, but if you change a context-sensitive menu (all menus between Edit

and Tools on the menu bar), the change applies only to the menu in the active window. For example, suppose
you use a macro to change the View menu when the notebook window is active. If you then open a chart
window, the chart View menu appears--without the change. If you want the change to apply to that View menu
as well, you must run the macro again.

¨ Changes made to the menu system using this command are not saved; they are lost when you exit Quattro
Pro. Each time you run a macro containing {ADDMENUITEM}, the menu changes appear again.

¨ To restore the original menu bar, use the macro command {SETMENUBAR} without an argument.
 Related topics

ADDSERIES
Syntax
 AddSeries(Block As String, Name As String)
Description
{ADDSERIES} adds a data series to a floating chart. Use {ADDSERIES} as an equivalent to dragging cells onto a
chart on a notebook sheet to add a series.
Example
The following macro adds the series contained in the cells A:E3..E13 to the floating chart named BUDGET:
{ADDSERIES A:E3..E13, BUDGET}
Parameters

Block Cells containing a data series
Name Name of the chart to which you want to add a series

 Related topics

ADDSUBMENUITEM
Syntax
AddSubMenuItem(MenuPath As String, ItemName As String, [Link As String], [Hint As String], [HotKey As String],
[DependString As String], [Checked_ As _AddSubMenuItem_Checked__enum])
Description
{ADDSUBMENUITEM} is like {ADDMENUITEM}, but converts the command indicated by MenuPath into a
submenu and adds the new command to the submenu.
Link specifies the actions the submenu item performs (for example, "MACRO _remove_file" runs the macro
_remove_file).
Parameters

MenuPath Location in the menu system to insert a new menu item; enter the
sequence of menu items separated by forward slashes (/); you can use
<- and -> to place a menu at the top or before the bottom of a menu,
respectively. For example, /File/<- specifies the first item on the File
menu. You can also use numbers to identify menu items. For example,
/File/0 specifies the first item on the File menu (the ID numbers start at
zero).

Name Name of the command to add; if you want a letter of the name to
appear underlined, precede it with an ampersand (&)

Link Action to perform when the command is chosen (optional); this
argument can specify a link command or a macro command to run when
the menu item is chosen; click here for details.

Hint Help text to display on the status line when the command is highlighted
(optional)

HotKey Shortcut key that chooses the command (optional); separate key
combinations with a plus sign (+), for example, Alt+F4.

DependStri
ng

Areas in which the command is available (optional); enter Yes or No for
each area, separated by commas, in the following order: desktop,
notebook, chart window, dialog window, input line, Objects sheet.
Example: "No, No, Yes, No, No, No" makes the menu item available only
when the chart window is active.

Checked Type "Yes" if the command should have a checkmark display by it
(optional)

Tips
¨ You can add menu items to any menu, but if you change a context-sensitive menu (all menus between Edit

and Tools on the menu bar), the change applies only to the menu in the active window. For example, suppose
you use a macro to change the View menu when the notebook window is active. If you then open a chart
window, the chart View menu appears--without the change. If you want the change to apply to that View menu
as well, you must run the macro again.

¨ Changes made to the menu system using this command are not saved; they are lost when you exit Quattro
Pro. Each time you run a macro containing {ADDSUBMENUITEM}, the menu changes appear again.

 Related topics

Alert
Syntax
Alert(Title_ As String, Message_ As String, OKExit_ As String, [Type_ As Integer], [Icon_ As Integer], [DefaultBtn_
As Integer])
Description
Message displays a dialog box "message" for the user of the macro to manipulate. You set the title and message
text of the dialog via the Title and Message arguments.
OKExit stores the result of the dialog box, so the macro can determine which button was pushed to close it.
Type specifies what type of message box will appear. It can be a message box with just an OK button, or one with
both an OK and Cancel, etc.
Icon specifies which graphic to use on the above dialog. Zero represents the Error icon you would see on a
regular error message under Windows. One is for the Question Mark icon, etc.
DefaultBtn determines which button (if there are multiple) is the "default" button. If this argument is a number
greater than the number of buttons on the dialog, then the first button will be default.
Parameters

Title Title of resultant dialog.
Message Message text of resultant dialog.
OKExit? Cell to store how the dialog box closed (1 for OK, 2 for Cancel, 3 for

Abort, 4 for Retry, 5 for Ignore, 6 for Yes, 7 for No).
Type 0 for dialog with just an OK button, 1 for OK/Cancel, 2 for

Abort/Retry/Ignore,3 for Yes/No/Cancel, 4 for Yes/No, and 5 for
Retry/Cancel (optional; 0 is default).

Icon 0 for icon of type Error, 1 for Question, 2 for Warning, 3 for Info
(optional; 0 is the default).

DefaultBtn 0 for first button being default, 1 for second, etc... (optional; 0 is the
default).

AnalysisExpert
Syntax
AnalysisExpert()
Description
{AnalysisExpert} performs a number of advanced statistical, numerical, and financial analysis tasks. The macro
has no arguments. {AnalysisExpert} displays the first Analysis Tools Expert dialog box.
Before you use an analysis tool, make sure the input cells you are analyzing are arranged properly and contain
the right kind of data (that is, numeric data, not strings). The analysis tools have varying restrictions on the
contents of the input cells and size of the cell area.

{ANOVA1}
Syntax
ANOVA1(InBlock As String, OutBlock As String, [Grouped As String], [Labels_ As _ANOVA1_Labels__enum], [Alpha
As Double])
Description
{ANOVA1} performs a one-way analysis of variance. Use {ANOVA1} to test whether two or more samples come
from the same population. {ANOVA1} is equivalent to the Anova: One-Way analysis tool.
Parameters

InBlock Input cells containing two or more sets of numeric data arranged in
columns or rows

OutBlock Upper left cell of the output cells
Grouped "C" to group results by column or "R" to group results by row; the

default is "C"
Labels 1 if labels are located in the first column or row of the input cells; 0

if the input cells do not contain labels; the default is 0
Alpha The significance level at which to evaluate values for the F-

statistic; the default is 0.05
 Related topics

ANOVA2
Syntax
ANOVA2(InBlock As String, OutBlock As String, SampleRows As Integer, [Alpha As Double])
Description
{ANOVA2} performs a two-way analysis of variance, with more than one sample for each group of data.
{ANOVA2} is equivalent to the Anova: Two-Way with Replication analysis tool.
Parameters

InBlock Input cells containing two or more sets of numeric data arranged
in columns; the first row must contain labels for each group; the
first column must contain row labels indicating the beginning of
each sample

OutBlock Upper-left cell of the output cells
SampleRow
s

The number of rows in each sample

Alpha The significance level at which to evaluate values for the F-
statistic; the default is 0.05

 Related topics

{ANOVA3}
Syntax
ANOVA3(InBlock As String, OutBlock As String, [Labels_ As _ANOVA3_Labels__enum], [Alpha As Double])
Description
{ANOVA3} performs a two-way analysis of variance, with only one sample for each group of data. {ANOVA3} is
equivalent to the Anova: Two-Way Without Replication analysis tool.
Parameters

InBlock Input cells containing two or more sets of numeric data arranged in
columns or rows

OutBloc
k

Upper-left cell of the output cells

Labels 1 if labels are located in the first column or row of the input cells; 0
if the input cells do not contain labels; the default is 0

Alpha The significance level at which to evaluate the F-statistic; the
default is 0.05

 Related topics

ANSIREAD
Syntax
{ANSIREAD #Bytes, Location}
Description
{ANSIREAD} reads #Bytes bytes of characters from a file previously opened using OPEN starting at the current
position of the file pointer), and stores them as a label in Location, like {READ} but without any character
mapping. This macro is provided for international users.
Parameters

#Bytes Number of bytes of characters to read from a file
Location Cell in which to store the characters read

 Note
¨ This command is obsolete.
 Related topics

{ANSIREADLN}
Syntax
{ANSIREADLN Location}
Description
{ANSIREADLN} is like {ANSIREAD}, but instead of using a number of bytes to determine the amount of text to
read, {ANSIREADLN} reads forward from the current file pointer location up to and including the
carriage-return/linefeed at the end of the line, like {READLN} but without any character mapping. This macro is
provided for international users.
Parameters

Location Cell in which to store the characters read

{ANSIWRITE}
Syntax
{ANSIWRITE String,<String2>,<String3,...>}
Description
{ANSIWRITE} copies String(s) to a file opened with the OPEN command, starting at the location of the file
pointer, like {WRITE} but without any character mapping. This macro is provided for international users.
Parameters

String String of characters to be written into the open file
 Related topics

{ANSIWRITELN}
Syntax
{ANSIWRITELN String,<String2>,<String3,...>}
Description
{ANSIWRITELN} copies String(s) to a file opened with OPEN starting at the location of the file pointer, and ends
the string(s) with the carriage-return and linefeed characters, like {WRITELN} but without any character
mapping. This macro is provided for international users.
Parameters

String String of characters to be written into the open file as a single line
 Note

¨ This command is obsolete.

{Application}
Syntax
{Application.Property}
Description
{Application} changes application properties such as compatibility options, display options, international
options, macro and menu options, file options, and general options. Some settings appear only in Developer
mode.
0 You can use {Application?} or {Application!} to display the Application dialog box. {Application?} lets the
user manipulate the dialog box, whereas {Application!} relies on the macro to manipulate it.

{Application.Compatibility.Option}
Syntax
{Appliction.Compatibility<.Option>}
PerfectScript Syntax
Application_Compatibility(<.Option>)
Description
Equivalent to Tools Settings

 Compatibility
Parameters

AlternateMenuBar
[String]

Lets you specify which menu to use.
0 "Quattro Pro 8/9"
1 "Quattro Pro 7"
2 "Excel 97"
3 "Custom"

AutoArrayWrap
[Boolean]

Lets you specify whether CTRL+SHIFT+ENTER
generates an @ARRAY function, or whether Quattro
Pro automatically determines whether one is
needed.
5 0 CTRL+SHIFT+ENTER generates an @ARRAY
function
6 1 Quattro Pro automatically determines whether
one is needed

CompatibilityMode
[String]

Lets you specify which compatibility default is used.
8 "Quattro Pro 9"
9 "Quattro Pro 8"
10 "Excel 97"
11 "Custom"

Def_Columns_Limit
[Numeric]

Lets you specify the maximum number of columns a
notebook can contain.

Def_Rows_Limit
[Numeric]

Lets you specify the maximum number of rows a
notebook can contain.

Def_Sheets_Limit
[Numeric]

Lets you specify the maximum number of sheets a
notebook can contain.

File_Extension [String] Lets you specify the default file format.
Min_Number_Sheets
[Numeric]

Lets you specify the minimum number of sheets a
notebook can contain.

Range_Syntax [String] Equivalent to Tools Settings Compatibility 3D
Syntax.

Sheet_Tab_Label
[Boolean]

Equivalent to Tools Settings Sheet Tab Display
Display as Numbers. This option is obsolete.

 Related topics

{Application.Country_Settings}
Syntax
{Application.Country_Settings "Symbol, Prefix|Suffix, Country"}
PerfectScript Syntax
Application_Country_Settings (Settings:String)
Description
{Application.Country_Settings} sets the type of currency symbol and its placement before or after values for a
particular country.
0 This macro replaces previous Quattro Pro macros, {Application.International.Currency_Symbol} and
{Application.International.Placement}.
Example
The following macro sets the currency symbol to $ and places the symbol before values for United States
currency values.
{Application.Country_Settings "$,Prefix,United States"}
 Related topics

{Application.Current_File}
Description
{Application.Current_File} returns the name of the active notebook. This command equivalent is used only with
@COMMAND.
 Related topics

{Application.Display}
Syntax
{Application.Display<Option>}
PerfectScript Syntax
Application_Display (Settings:String)
Description
{Application.Display} lets you specify cell syntax and display parts of the Quattro Pro user interface. The
arguments of {Application.Display} (which sets all options of the Display property in one command) use the
same syntax as those in the {Application.Display.Option} commands.
Example
The following macro command hides the time, hides the standard Toolbar, displays the input line and status line,
sets the cell syntax to standard, hides the Property Bar, and displays the scroll indicators and QuickTips.
{Application.Display "None,No,Yes,Yes,A..B:A1..B2,No,Yes,Yes"}

Options
{Application.Display "Toolbar, InputLine,
Status, RangeSyntax, PropBand,
ScrollIndicator, Hint, DefaultView,
SheetTabLabel, MinNumSheets,
ShowGroupboxAsLine, ShowPreselection,
ShowHistoryList"}

Lets you specify whether to show or hide portions of
the Quattro Pro window, and switches between 3-D
syntax schemes.

{Application.Display.Clock_Display Yes|No} Lets you specify whether to show the Clock Display.
This option is obsolete.
1 0 Do not show the Clock Display.
2 1 Show the Clock Display.

{Application.Display.CommentMarkers Yes|
No}

Lets you specify whether to show the Comment
Markers
4 0 Do not show the Comment Markers.
5 1 Show the Comment Markers.

{Application.Display.Default_View Draft|
Page}

Lest you specify whether new Notebooks come up in
Draft view or Page Preview view. This option is
obsolete.

{Application.Display.Default_Zoom Yes|No} Lets you specify whether to enable the Default
Zoom. This option is obsolete.
8 0 Do not enable the Default Zoom.
9 1 Enable the Default Zoom.

{Application.Display.FormulaMarkers Yes|
No}

Lets you specify whether to display the Formula
Markers.
11 0 Do not display the Formula Markers.
12 1 Display the Formula Markers.

{Application.Display.History_List Yes|No} Lets you specify whether to display the File History
List off the File menu.
14 0 Do not display the File History List.
15 1 Display the File History List.

{Application.Display.Min_Number_Sheets
N}

Lets you specify the default number of sheets on
new Notebooks. This option is obsolete.

{Application.Display.Range_Syntax
"A..B:A1..B2"|"A:A1..B:B2"}

Lets you switch between 3-D syntax schemes. This
option is obsolete.

{Application.Display.RealTime_Prev Yes|No} Lets you specify whether to enable the RealTime
Preview.
19 0 Do not enable the RealTime Preview.
20 1 Enable the RealTime Preview.

{Application.Display.Sheet_Tab_Label
Letters|Numbers}

Allows you to choose whether your default sheet tab
names are letters (A..IV) or numeric
(Sheet1..Sheet256). This option is obsolete.

{Application.Display.Sheet_Tab_Label
Letters|Numbers}

Toggles dialog Group Boxes between being 'boxes'
or just a line above the group. This option is
obsolete.

{Application.Display.Shortcut_Keys Yes|No} Lets you specify whether to display shortcut keys.

24 0 Display shortcut keys.
25 1 Do not display shortcut keys.

{Application.Display.Show_GroupBox_As_Li
ne Yes|No}

Toggles dialog Group Boxes between being a 'box',
or just a line above the group. This option is
obsolete.

{Application.Display.Show_InputLine Yes|
No}

Lets you specify whether to show the Input Line.
28 0 Do not show the Input Line
29 1 Show the Input Line.

{Application.Display.Show_PreSelection Yes|
No}

Toggles Windows buttons and other controls
between being 3-D and flat. This option is obsolete.

{Application.Display.Show_Property_Band
Yes|No}

Lets you specify whether to show the Property Bar.
This option is obsolete.
32 0 Do not show the Property Bar
33 1 Show the Property Bar

{Application.Display.Show_Scroll_Indicator
Yes|No}

Lets you specify whether to show the Scroll
Indicators.
35 0 Do not show the Scroll Indicators.
36 1 Show the Scroll Indicators.

{Application.Display.Show_StatusLine Yes|
No}

Lets you specify whether to show the the
Application Bar. This option is obsolete.
38 0 Do not show the Application Bar.
39 1 Show the Application Bar.

{Application.Display.Show_Tool_Hint Yes|
No}

Lets you specify whether to show QuickTips.
41 0 Do not show QuickTips
42 1 Show QuickTips

{Application.Display.Show_Toolbar Yes|No} Lets you specify whether to show the toolbar. This
option is obsolete.
44 0 Do not show the toolbar
45 1 Show the toolbar

 Related topics

{Application.Enable_Inspection}
Syntax
{Application.Enable_Inspection Yes|No}
PerfectScript Syntax
Application_Enable_Inspection (Enable?:Enumeration {Yes!; No!})
Description
{Application.Enable_Inspection} enables (Yes) or disables (No) Object Inspector menus. It is available only in
Developer mode.
 Related topics

{Application.File_Options}
Syntax
{Application.File_Options<Option>}
PerfectScript Syntax
Application_File_Options (Settings:String)
Description
{Application.File_Options} includes information that is used every time you start Quattro Pro. It lets you specify
the startup folder, autoload file, default file extension, and other options. The arguments of
{Application.File_Options} (which sets all options of the File Options property in one command) use the same
syntax as those in the {Application.File_Options.Option} commands.
¨ {Application.File_Options.AutoBack_Enabled} and {Application.File_Options.AutoBack_Time} enable the

creation of temporary backup files at a specified time interval.
0 ¨ {Application.File_Options.Autoload_File} sets the file to be loaded every time Quattro Pro is started.
1 ¨ {Application.File_Options.File_Extension} sets the default file extension to be used with file-handling

commands.
2 ¨ {Application.File_Options.Full_Path_Titles} shows the full path of notebook files in the title bar of the

notebook window.
3 ¨ {Application.File_Options.QuickTemplates} enables or disables the use of notebook templates when you

create a new notebook.
4 ¨ {Application.File_Options.Startup_Directory} sets the directory initially displayed by file-handling

commands.
5 ¨ {Application.File_Options.TempDir} specifies the directory containing QuickTemplate files.

Example
The following macro command sets the startup directory to C:\COREL\SUITE8, sets the autoload file to
QUATTRO.WB3, sets the file extension to .WB3, enables autobackup at 15-minute intervals, enables the display
of full path titles, enables QuickTemplates, sets the QuickTemplate directory, and sets the custom @function
directory.
{Application.File_Options "C:\COREL\SUITE8\, QUATTRO.WB3, WB3, Yes, 15,
Yes,, Yes,

0 C:\COREL\SUITE8\TEMPLATE, C:\COREL\SUITE8"}
Options

{Application.File_Options StartupDir,
AutoFile, FileExt, AutoBackup?(Yes|
No),AutoBackupTime, FullPathTitles?(Yes|
No), AutoBack,QuickTemplates?(Yes|No),
QuickTemplateDir, URLUpdateTime,
UpdateURL}

Open File Options dialog box.

{Application.File_Options.AutoBack_Enabled
Yes|No}

Create timed backup files at specified intervals.

{Application.File_Options.AutoBack_Time
Integer}

Set the amount of time between automatic backups.

{Application.File_Options.Autoload_File
String}

Open a file automatically when you start Quattro Pro.

{Application.File_Options.AutoRefreshTime
N}

Specify how many minutes should pass before URLs
refresh. This option is obsolete.

{Application.File_Options.DoRefresh Yes|No} Refresh URLs at specified time intervals. This option is
obsolete.

{Application.File_Options.File_Extension
String}

Specify a default file extension. This option is
obsolete.

{Application.File_Options.Full_Path_Titles
Yes|No}

Show full folder paths in title bars.

{Application.File_Options.QuickTemplates
Yes|No}

Enable QuickTemplates. This option is obsolete.

{Application.File_Options.Startup_Directory
String}

Specify a default folder.

{Application.File_Options.TempDir Path} Specify a folder for QuickTemplates. This option is

obsolete.
{Application.File_Options.WPDialogs Yes|
No}

Use enhanced file dialogs.

 Related topics

{Application.General}
Syntax
{Application.General<Option>}
PerfectScript Syntax
Application_General (Settings:String)
Description
{Application.General} lets you:
¨ enable the Edit Undo command

0 ¨ make a variety of keys work in the same way as in Quattro Pro for DOS
1 ¨ set the behavior of the cell selector when you press Enter
2 ¨ specify how long to wait before changing from cell selection to Drag-and-Drop mode
3 ¨ specify whether to use formula entry from Quattro Pro version 5
Example
The following macro command enables Undo, makes the cell selector move down when you enter data, sets the
cell drag and drop delay time to 400 milliseconds, and uses Quattro Pro formula entry.
{Application.General "Yes,No,Yes,Yes,400,No,No,No,No"}
Options

{Application.General "UseUndo?(Yes|No),
CompatibleKeys?(Yes|No), MoveCellOnEnter?
(Yes|No),, DelayTime,
Compatible_Formula_Entry?(Yes|No), Fit-As-You-
Go?(Yes|No), Calc-As-You-Go?(Yes|
No),QuickType?(Yes|No), CellReferenceChecker?
(Yes|No)}

Opens the General Options tab.

{Application.General.Calc-As-You-Go Yes|No} Turns on/off Calc As You Go.
{Application.General.Cell_Reference_Checker
Yes|No}

Turns on/off the Cell Reference Checker.

{Application.General.Compatible_Formula_Entry
Yes|No}

Sets how you want to enter formulas.

{Application.General.Compatible_Keys Yes|No} Makes a variety of keys work the same way as in
Quattro Pro for DOS.

{Application.General.Delay_Time Integer} Specifies how long to wait before changing from
cell selection to Drag and Drop mode.

{Application.General.Direction Down|Up|Left|
Right}

Equivalent to Tools Settings General
Direction.

{Application.General.Fit-As-You-Go Yes|No} Turns on/off Fit-As-You-Go, which automatically
sizes columns on data entry.

{Application.General.MoveCellOnEnterKey Yes|
No}

Makes the selector move down a cell every time
you enter data.

{Application.General.QuickType Yes|No} Turns on/off QuickType, which as you type a label
or function, finds the closest match.

{Application.General.Undo Yes|No} Enables the Undo feature.

 Related topics

{Application.International}
Syntax
{Application.International<Option>}
PerfectScript Syntax
Application_International (Settings:String)
Description
{Application.International} lets you specify the punctuation, sort order, and numeric formats used by Quattro
Pro. The arguments of {Application.International} (which sets all options of the International property in one
command) use the same syntax as those in the {Application.International.Option} commands. For example, the
Negative argument can be Signed or Parens, the same settings that {Application.International.Negative}
accepts.
0 To set the currency symbol and its placement either before or after values, use the
{Application.Country_Settings} macro.
Example
The following macro command specifies that the Quattro Pro currency format is used with parentheses to
indicate negative values, sets the punctuation, sets the date and time formats to Windows defaults, sets the sort
order to English, disables LICS conversion, and sets the country used for currency to United States. The entire
string must be enclosed within a set of quotes. (Enter all of the example into one cell.)
{Application.International ", Quattro Pro,, Parens,""1,234.56 (a1,a2)"",

Windows Default, Windows Default, Quattro Pro, English (American), No,
United States"}
Options

{Application.International ", Currency, ,
Negative, Punctuation, DateFmt, TimeFmt,
Language, Conversion, Country"}

Opens the International tab

{Application.International.Currency
"Windows Default"|"Quattro Pro"}

Sets the default currency symbol

{Application.International.Date_Format
String}

Determines the international formats given as options
for date display

{Application.International.Language String} Equivalent to Tools Settings International
LanguageMode

{Application.International.Language String} Selects an interface language
{Application.International.LanguageMode
SuiteDefault| Quattro Pro}

Equivalent to Tools Settings International
Language.

{Application.International.LICS_Conversion
Yes|No}

Converts Lotus International Character Set characters
into standard ANSI characters

{Application.International.Negative Signed|
Parens}

Controls whether negative values are preceeded by a
minus sign or surrounded by parentheses. This option
is obsolete.

{Application.International.Punctuation
"1 234,56 (a1.a2)" | "1 234,56 (a1;a2)" |
"1 234.56 (a1,a2)" | "1 234.56 (a1;a2)" |
"1,234.56 (a1,a2)"| "1,234.56 (a1;a2)" |
"1.234,56 (a1;a2)" | "1.234,56 (a1.a2)" |
"Windows Default"}

Controls the characters used as thousands, decimal,
and argument separators

{Application.International.Time_Format
String}

Determines the international formats given as options
for time display

 Related topics

{Application.Macro}
Syntax
{Application.Macro<Option>}
PerfectScript Syntax
Application_Macro (Settings:String)
Description
{Application.Macro.Option} lets you control screen updates, display alternative menu systems, and run startup
macros when you open a notebook. The arguments of {Application.Macro} (which sets all options of the Macro
property in one command) use the same syntax as those in the {Application.Macro.Option} commands.
Example
The following macro command specifies that windows should not display when a macro runs, makes the slash
key display the Quattro Pro for DOS menu system, and sets the startup macro to BUDGET (Quattro Pro will run a
macro named BUDGET whenever a notebook is opened containing a macro by that name).
{Application.Macro "Window,,Quattro Pro - DOS,BUDGET"}

Options
{Application.Macro "MacSuppress,,
SlashKey, StartupMacro"}

Opens the Macro tab

{Application.Macro.Macro_Redraw
Both|None|Panel|Window}

Suppresses redrawing of the window, panels, or both

{Application.Macro.Slash_Key
MenuName}

Controls which menu system displays when you
press the slash key. This option is obsolete.

{Application.Macro.Startup_Macro
String}

Sets the macro to run every time you open a
notebook containing a macro with this name

 Related topics

{Application.Title}
Syntax
{Application.Title Title}
PerfectScript Syntax
Application_Title (Title:String)
Description
{Application.Title Title} changes the title displayed on Quattro Pro's title bar. This property is available only after
starting Quattro Pro in developer mode (with /D parameter).
 Related topics

{ASSIGN}
Syntax
{ASSIGN VarExpr, ValExpr}
Description
The {ASSIGN} macro command is equivalent to the assignment statement variable=value in a programming
language.
Example
{ASSIGN calc, CreateObject("DispCalc.Application")} creates an object of the DispCalc application and assigns it

to a named variable calc.
0 {ASSIGN calc.accum, 0}clears the accumulated value of DispCalc.
1 {ASSIGN calc.accum, @SUM(A1..A10)}assigns the sum of A1..A10 to the accumulated value of DispCalc.
For more details on using {ASSIGN} and other OLE automation macro commands, see Using OLE Automation
Features.
Parameters

VarExpr A variable expression
ValExpr A value expression

 Note
¨ This command is obsolete.
 Related topics

{Audit.Remove_All_Arrows}
Description
Removes all precedent and dependent arrows.
 Related topics

{Audit.Trace_Dependents}
Description
Traces dependents of current formula.
 Related topics

{Audit.Trace_Precedents}
Description
Traces precedents to current formula.
Tip
· Equivalent to Tools Auditing
 Trace Precedents.

 Related topics

BEEP
Syntax
Beep()
Description
{BEEP} sounds the computer's built-in speaker.
Number dictates the tone of the beep. If Number is omitted, {BEEP 1} sounds. If Number is larger than 10, the
pattern repeats; for example, {BEEP 11} is the same as {BEEP 1}.
Use {BEEP} to catch your attention. You can use it in interactive macros to introduce a prompt for information or
to indicate a macro has finished.
Example
The following macro checks a cell area named error_check for an error condition (indicated by error_check
containing zero). If there is no error, it branches to a macro called _continue, which carries on the previous
procedure. If there is an error, it gives a low beep, then a medium beep, and moves the selector to the cell area
called message_area, where an error message is stored.
{IF error_check = 0}{BRANCH _continue}
{BEEP 1}{BEEP 5}{EditGoto message_area}

 Related topics

BLANK
Syntax
 Blank(Blocks As String)
Description
{BLANK} erases the contents of the cells referred to as Location. You can also use the command equivalents
{ClearContents} and {EditClear} to erase the contents of the currently selected cells.
Example
This macro erases the cells named part_list:
\F {BLANK part_list}

Parameters
Locatio
n

Cell(s) you want erased

 Related topics

BlockCopy
Syntax
BlockCopy(SourceBlock As String, DestBlock As String, [ModelCopy_ As _BlockCopy_ModelCopy__enum],
[Formulas_ As _BlockCopy_Formulas__enum], [Values_ As _BlockCopy_Values__enum], [Properties_ As
_BlockCopy_Properties__enum], [Objects_ As _BlockCopy_Objects__enum], [RowCol_Sizes_ As
_BlockCopy_RowCol_Sizes__enum], [Labels_ As _BlockCopy_Labels__enum], [Numbers_ As
_BlockCopy_Numbers__enum])
Description
{BlockCopy} copies the source cells to the specified destination. If ModelCopy? is 1, absolute references to cells
within the copied cells adjust to reflect the new location. Formula?, Values?, Properties?, Object?,
Row/Col_Sizes?, Labels?, and Numbers? apply only if ModelCopy? is 1.
You can use {BlockCopy?} or {BlockCopy!} to display the Copy Cells dialog box. {BlockCopy?} lets you
manipulate the dialog box, whereas {BlockCopy!} relies on the macro to manipulate it.
Parameters

SourceBlock Cells to copy
DestBlock Location to copy cells
ModelCopy? Whether to use Model Copy option; 0 = no,

1 = yes; the default is 0
Formula? Whether to copy formula cells; 0 = no, 1 =

yes; the default is 1
Values? Whether to copy value cells; 0 = no, 1 =

yes; the default is 1
Properties? Whether to copy properties; 0 = no, 1 = yes;

the default is 1
Object? Whether to copy objects; 0 = no, 1 = yes;

the default is 1
Row/Col_Sizes? Whether to copy row and column sizes; 0 =

no, 1 = yes; the default is 1
Labels? Whether to copy label cells; 0 = no, 1 = yes;

the default is 1
Numbers? Whether to copy number cells; 0 = no, 1 =

yes; the default is 1 (reserved for Cell
Comments)

BlockDelete
Syntax
{BlockDelete.Option}
Description
{BlockDelete.Option} deletes entire or partial columns, rows, and sheets. Block is the 2-D or 3-D selection where
material is deleted.
You can use {BlockDelete?} or {BlockDelete!} to display the Delete dialog box. {BlockDelete?} lets you
manipulate the dialog box, whereas {BlockDelete!} relies on the macro to manipulate it.
Options

{BlockDelete.Columns Block, Entire|
Partial}

Deletes entire or partial column

{BlockDelete.Pages Block, Entire|
Partial}

Deletes entire or partial page

{BlockDelete.Rows Block, Entire|
Partial}

Deletes entire or partial row

BlockFill
Syntax
BlockFill_Block(Block As String)

Description
{BlockFill.Option} fills Block with sequential data. You can use numbers, dates, times, or even formulas for Value.
If {BlockFill.Start} is a number or formula, you can enter one of these strings for {BlockFill.Series}:
¨ "Linear" adds the step value to the previous value (defined at first to be the start value).
¨ "Growth" multiplies the step value by the previous value.
¨ "Power" uses the step value as the exponent of the previous value.
If {BlockFill.Start} is a date or time, the fill operation is always linear, but you can specify the step unit as "Year,"
"Month," "Week," "Weekday," "Day," "Hour," "Minute," or "Second". For example, with a start value of 6/20/92, a
step value of 2, and "Month" as the {BlockFill.Series Option} setting, the second cell in the filled cells contains
August.
You can enter the date and time directly as a serial number or use one of the date and time @functions.
You can use {BlockFill?} or {BlockFill!} to display the Fill Series dialog box. {BlockFill?} lets you manipulate the
dialog box, whereas {BlockFill!} relies on the macro to manipulate it.
Example
The following macro uses @DATEVALUE to enter 6/20/92 as the start value. The 3-D selection to fill is B..C:B1..D4
with a step value of 2. Fill order is "Row."
{BlockFill.Block B:B1..C:D4}
{BlockFill.Start @DATEVALUE("6/20/92")}
{BlockFill.Step 2}
{BlockFill.Stop @DATEVALUE("12/31/2099")}
{BlockFill.Order Row}
{BlockFill.Series Month}
{BlockFill.Go}

Options
{BlockFill.Block Block} Specifies the cells to fill with values.
{BlockFill.Go} Fill the specified cells.
{BlockFill.Order Column|Row} Specifies whether to fill down columns or

across rows.
{BlockFill.Series Linear | Growth |
Power | Year | Month | Week |
Weekday |Day | Hour | Minute |
Second}

Specifies the type of fill operation to
perform.

{BlockFill.Start Value} Sets the first value in the series.
{BlockFill.Step Value} Sets the constant value to add to the

Start value or the last value.
{BlockFill.Stop Value} Sets the limit for the fill values.

BlockInsert
Syntax
{BlockInsert.Option}
Description
{BlockInsert} inserts entire or partial columns, rows, and sheets, or complete files. Block is the 2-D or 3-D
selection where material is inserted. In {BlockInsert.File}, Filename is inserted into the active notebook before
BeforeBlock.
You can use {BlockInsert?} or {BlockInsert!} to display the Insert Cells dialog box. {BlockInsert?} lets you
manipulate the dialog box, whereas {BlockInsert!} relies on the macro to manipulate it.
Options

{BlockInsert.Columns Block, Entire|
Partial}

Inserts complete or partial columns.

{BlockInsert.File FileName, BeforeBlock} Inserts a complete file.
{BlockInsert.Pages Block, Entire|Partial} Inserts complete or partial pages.
{BlockInsert.Rows Block, Entire|Partial} Inserts complete or partial rows.

{BlockMove}
Syntax
BlockMove(SrcBlock As String, DstBlock As String)
Description
Lets you move a block.
Parameters

SrcBlock The block you want to move
DstBlock New location for SrcBlock

 Related topics

BlockMovePages
Syntax
BlockMovePages(SrcPages As String, BeforePage As String, [CopyOption_ As
_BlockMovePages_CopyOption__enum])}
Description
{BlockMovePages} reorders sheets within a notebook. Moved sheets appear before BeforePage.
You can use {BlockMovePages?} or {BlockMovePages!} to display the Move Sheets dialog box.
{BlockMovePages?} lets you manipulate the dialog box, whereas {BlockMovePages!} relies on the macro to
manipulate it.
Example
The following macro will move the page named July to the position before the page named August.
Example:
{BlockMovePages July; August}

Parameters
SrcPages Range of sheets to move
BeforePage New location for SrcPages

 Related topics

BlockName
Syntax
{BlockName.Option}
PerfectScript Syntax
BlockName_AutoGenerate (Block:String; LabelsTop?:Enumeration {Yes!; No!};
LabelsLeft?:Enumeration {Yes!; No!}; LabelsBottom?:Enumeration {Yes!; No!};
LabelsRight?:Enumeration {Yes!; No!}; Intersection?:Enumeration {Yes!; No!})
BlockName_Create (BlockName:String; Block:String)
BlockName_Delete (BlockName:String)
BlockName_Labels (Block:String; Where:Enumeration {Right!; Down!; Left!; Up!})
BlockName_MakeTable (Block:String)
BlockName_Reset ()
Description
{BlockName} creates, deletes, and displays names for contiguous and noncontiguous selections.
BlockName is the cell name to create or delete. In {BlockName.Create}, Block refers to the cells to name; in
{BlockName.MakeTable}, Block indicates where to create the name table. {BlockName.Reset} clears all cell
names in the notebook.
You can use {BlockName?} or {BlockName!} to display the Cell Names dialog box. {BlockName?} lets you
manipulate the dialog box, whereas {BlockName!} relies on the macro to manipulate it.
Options

{BlockName.Autogenerate Block,
LabelsTop?(0|1), LabelsLeft?(0|1),
LabelsBottom?(0|1), LabelsRight?(0|1),
Intersection?(0|1)}

Creates cell names from adjacent
labels.

{BlockName.Create BlockName, Block} Adds a name for the specified cell to
the cell name list.

{BlockName.Delete BlockName} Deletes a selected cell name.
{BlockName.Labels Block,Left|Right|Up|
Down}

Assigns names to single cells using
adjacent labels.

{BlockName.MakeTable Block} Creates a table in the notebook listing
all named cells by name and location.

{BlockName.Reset} Deletes all existing cell names from
the notebook.

{BlockReformat}
Syntax
BlockReformat(Block As String)
Description
{BlockReformat} adjusts word wrapping in a series of label entries (contained in Block) as though they were in a
paragraph.
Parameters

Block The cells to reformat

BlockTranspose
Syntax
BlockTranspose(SrcBlock As String, DstBlock As String)
Description
{BlockTranspose} copies SourceBlock to another location and reverses its rows and columns. Existing data in

DestBlock is overwritten.
You can use {BlockTranspose?} or {BlockTranspose!} to display the Transpose Cells dialog box.
{BlockTranspose?} lets you manipulate the dialog box, whereas {BlockTranspose!} relies on the macro to
manipulate it.
Parameters

SourceBloc
k

Cells to transpose

DestBlock Cells to hold transposed copy

BlockValues
Syntax
 BlockValues(SrcBlock As String, DstBlock As String)
Description
{BlockValues} copies cells to another location and converts their formulas to values. Existing data in DestBlock
is overwritten.
You can use {BlockValues?} or {BlockValues!} to display the Convert to Values dialog box. {BlockValues?} lets
you manipulate the dialog box, whereas {BlockValues!} relies on the macro to manipulate it.
Parameters

SourceBloc
k

Cells to copy as values

DestBlock Cells to hold converted copy

BudgetExpert
Syntax
BudgetExpert()
Description
{BudgetExpert} displays the first Budget Expert dialog box.

CALC
Syntax
Calc()
Description
{CALC} is equivalent to the Calc key, F9, which recalculates the active notebook, or converts the formula on the
input line into its result when editing a cell.
 Related topics

CAPOFF and {CAPON}
Syntax
CapOff()
Description
{CAPOFF} and {CAPON} are equivalent to Caps Lock off and Caps Lock on, respectively.
 Related topics

ChartExpert
Syntax
ChartExpert()
Description
{ChartExpert} displays the first Chart Expert dialog box.

 CLEAR
Syntax
Clear()
Description
{CLEAR} is the equivalent of Ctrl+Backspace, which erases any previous entry in a prompt line or on the input
line in Edit mode. This command is useful when loading or retrieving files.
 Related topics

ClearComments
Syntax
 ClearComments([PageOnly_ As Integer])
PerfectScript Syntax
ClearComments ([PageOnly?:Numeric])
Description
{ClearComments} deletes the comment in the active cell. PageOnly? flat refers to Group Mode. If Group mode is
off, enter 0; if Group mode is on, and the active sheet belongs to a group, enter 1 to operate on only the active
sheet or 0 to act on all sheets in the group. Equivalent to Rt-Clicking on the current cell, and choosing Delete
Comment.

ClearContents
Syntax
ClearContents([PageOnly_ As _ClearContents_PageOnly__enum])
PerfectScript Syntax
ClearContents ([PageOnly?:Enumeration {Yes!; No!}])
Description
{ClearContents} erases the contents of the selected cells but leaves cell property settings intact.
Parameters

PageOnly
?

If Group mode is off, enter 0; if Group mode is on, and the active sheet
belongs to a group, enter 1 to operate on only the active sheet or 0 to
act on all sheets in the group

ClearFormats
Syntax
 ClearFormats([PageOnly_ As _ClearFormats_PageOnly__enum])
PerfectScript Syntax
ClearFormats ([PageOnly?:Enumeration {Yes!; No!}])
Description
{ClearFormats} resets the properties of cells but retains the values.
Parameters

PageOnly
?

If Group mode is off, enter 0; if Group mode is on, and the active sheet
belongs to a group, enter 1 to operate on only the active sheet or 0 to
act on all sheets in the group

 Related topics

{COLUMNWIDTH}
Syntax
ColumnWidth(Block As String, FirstPane_ As _ColumnWidth_FirstPane__enum, Mode As
_ColumnWidth_Mode_enum, Size As Double)
PerfectScript Syntax
ColumnWidth (Block:String; FirstPane?:Enumeration {Yes!; No!}; Mode:Enumeration {Set!; Reset!; Auto!};
Size:Numeric)
Description
{COLUMNWIDTH} provides three ways to change the width of a column or columns (it is equivalent to the cell
property Column Width). The columns to change are specified by Block. FirstPane? is used when the active
window is split into panes. To resize the columns in the left or top pane, set FirstPane? to 1; to resize the columns
in the right or bottom pane, set FirstPane? to 0.
The argument Set/Resize/Auto specifies how to change the width. To set a column width, use this syntax:
{COLUMNWIDTH Block, FirstPane?, 0, NewSize}.
NewSize is the new column width, in twips (a twip is 1/1440th of an inch). The maximum width is 20 inches
(28,800 twips).
To reset a column to the default width (set by Default Width in the sheet Object Inspector) use this syntax:
{COLUMNWIDTH Block, FirstPane?, 1}.
To automatically size a column based on what is entered in it, use this syntax: {COLUMNWIDTH Block, FirstPane?,
2, ExtraCharacters}
ExtraCharacters is the number of characters to add on to the calculated width. If this argument is omitted, the
default is used (1 character).
Example
{COLUMNWIDTH A:A..B,1,0,1440} sets the width of columns A and B (on sheet A) to one inch (1,440 twips).
{COLUMNWIDTH A:A..B,0,0,2160} sets the width of columns A and B (on sheet A) to one and a half inches

(2,160 twips). If the window is split, the columns are resized in the left or top pane.
{COLUMNWIDTH A:C,1,1} resets the width of column C (on sheet A) to the default width.

{COLUMNWIDTH A:C,1,2,3} automatically sizes column C (on sheet A) and adds three characters to the
calculated width.
Parameters

Block Cells containing columns to resize
FirstPane? 1 to resize columns in left or top window pane; 0 to resize

columns in right or bottom window pane
Set/Reset/
Auto

0 to set the column width; 1 to reset the column width; 2 to
automatically size the column(s)

Size New width (in twips) if Set/... = 0; not needed if Set/... = 1;
resetting size; extra characters (optional) if Set/... = 2

 Related topics

Comment_Edit
Syntax
Comment_Edit(Value_ As String)
PerfectScript Syntax
Comment_Edit (Value?:String)
Description
Creates/updates a comment in the active cell, and leaves comment "bubble" in edit mode for you to insert the
comment text. If a comment already exists, it brings up the comment "bubble" in edit mode for you to edit the
existing comment.

Comment_EditURL
Syntax
Comment_EditURL(Link_ As String, [Text_ As String], [Loc_ As String], [Relative_ As
_Comment_EditURL_Relative__enum])
PerfectScript Syntax
Comment_EditURL (Value?:String)
Description
Brings up the Insert Hyperlink dialog, allowing you to insert, modify, or delete a hyperlink.

ComposeFormula
Syntax
ComposeFormula()
Description
{Compose Formula} is the command equivalent of clicking the Formula Composer button on the Notebook
toolbar. The macro has no arguments. {ComposeFormula} displays the Formula Composer dialog box.

Consolidate
Syntax
{Consolidate.Option}
PerfectScript Syntax
Consolidate_Add_Source_Block ([Block:String])
Consolidate_Destination ([Block:String])
Consolidate_Function (Function:Enumeration {SUM!; AVG!; COUNT!; MIN!; MAX!; STD!; STDS!; VAR!; VARS!})
Consolidate_Go ()
Consolidate_Options (OutputWithFormulas?:Enumeration {Yes!; No!}; LabelsInTopRow?:Enumeration {Yes!; No!};
LabelsInLeftCol?:Enumeration {Yes!; No!})
Consolidate_Remove (Name:String)
Consolidate_Remove_Source_Block ([Block:String])
Consolidate_Reset ()
Consolidate_Save (Name:String)
Consolidate_Use (Name:String)
Description
{Consolidate} combines data from multiple selections into one using your choice of operators. Block defaults to
the current selection if the argument is not supplied.
You can use {Consolidate?} or {Consolidate!} to display the Consolidation dialog box. {Consolidate?} lets you
manipulate the dialog box, whereas {Consolidate!} relies on the macro to manipulate it.
Example
The following macro adds the values in the source cellss B2..B4, C2..C3, and D2..D4, and returns values in the
destination cells F2..F4.
{Consolidate.Add_Source_Block A:B2..B4}
{Consolidate.Add_Source_Block A:C2..C3}
{Consolidate.Add_Source_Block A:D2..D4}
{Consolidate.Function SUM}
{Consolidate.Destination A:F2..F4}
{Consolidate.Options 1,0,0}
{Consolidate.Go}
{Consolidate.Save CONSOL1}
Options

{Consolidate.Add_Source_Block
<Block>}

Adds an entry to the Source Cells list.

{Consolidate.Destination <Block>} Sets the cells to contain the consolidation
results.

{Consolidate.Function
SummaryFunction}

Specifies the operations to perform on the
source cells.

{Consolidate.Go} Performs the consolidation of the source
cells.

{Consolidate.Options
OutputWithFormulas?(0|1),
LabelsInTopRow?(0|1), LabelsInLeftCol?
(0|1)}

Selects options for consolidation.

{Consolidate.Remove Name} Deletes the selected setup in the
Consolidations list.

{Consolidate.Remove_Source_Block
<Block>}

Removes an entry from the Source Cells list.

{Consolidate.Reset} Clears Source Cells and Destination Cells,
and resets Options to default values in the
Consolidation dialog box..

{Consolidate.Save Name} Saves the current consolidation setup.
{Consolidate.Use Name} Lists saved consolidation setups.

ConsolidateExpert
Syntax
ConsolidateExpert()
Description
{ConsolidateExpert} displays the first Consolidate Expert dialog box. The macro has no arguments.

CONTENTS
Syntax
 Contents(DestCell As String, SourceCell As String, [Width As Integer], [Format As Integer])
PerfectScript Syntax
Contents (DestCell:String; SourceCell:String; [Width:Numeric]; [Format:Numeric])
Description
{CONTENTS} copies the contents of Source into Dest, but unlike {LET} or other copy commands, if Source
contains a value entry, it translates the copied value into a label and stores it in Dest. It also lets you specify a
different numeric format and column width using the Width# and Format# arguments.
Width# can be any number from 1 to 1023. Quattro Pro will not alter the width of the destination column but will
treat the resulting string as if it came from a column with the specified width. For example, if a value is displayed
as ***** in the source column because the column is not wide enough, specifying a wider Width# will let the
value be copied as it would be displayed within that width, not as *****. Width# is optional, but must be provided
if Format# is used. If you do not specify Width#, the width of the source column is assumed. Use the maximum
width if you want all values to come across properly. You can use @TRIM with a {LET} command to remove any
leading spaces from the label.
Format# can be any number from 0 to 127. Each number in this range corresponds to a specific numeric format
and decimal precision. Format# affects the Dest entry only, not the Source value. See Numeric Format Codes for
a list of special codes used to indicate numeric formats with Format#.
Example
The following examples assume cell C18 contains the value 48,988 in comma format with a column width of 12.
{CONTENTS A18,C18}

Places the 12-character label ' 48,988 in cell A18 (six spaces are inserted at the beginning).
{CONTENTS E10,C18,3}

Places the 3-character label '*** in cell E10. (Only asterisks are copied because the value does not fit within
three spaces.)

{CONTENTS A5,C18,15,34}
Places the 15-character label ' $48,988.00 in cell A5 (five spaces are inserted at the beginning).

Parameters
Dest Cell you want data written to
Source Cell you want data copied from
Width# Optional column width (1 to 1023)
Format
#

Optional format code

Controls
Syntax
{Controls.Option}
PerfectScript Syntax
Controls_Order ()
Controls_OrderFrom ()
Controls_OrderTab ()
Controls_OrderTabFrom ()
Description
{Controls} affects selected objects in the dialog window.
Options

{Controls.Order} Changes the setting order of controls
{Controls.OrderFrom} Places related controls together in the setting order
{Controls.OrderTab} Sets the tab order for controls

{Controls.OrderTabFro
m}

Pulls specific controls out of the tab order and groups
them together

 Related topics

CR
Syntax
CR()
Description
{CR} or ~ (tilde) are equivalent to the Enter key.
 Related topics

CreateChart
Syntax
CreateChart(Name As String)
PerfectScript Syntax
CreateChart (Name: String)
Description
Lets you create a chart.
Parameter

Name The name of the chart
 Related topics

CREATEOBJECT
Syntax
{CREATEOBJECT ObjectType, x1, y1, x2, y2<, x3, y3, ...>}
PerfectScript Syntax
CreateObject (ObjectName:String; x1:Numeric; y1:Numeric; x2:Numeric; y2:Numeric; {[x:Numeric];
[y:Numeric]})
Description
With {CREATEOBJECT} you can add objects to the active window normally added using the Toolbar.
{CREATEOBJECT} is context-sensitive, letting you create lines in a chart window or check boxes in a dialog
window. Quattro Pro interprets the coordinates specified after ObjectType differently based on the object type.
The following table lists the possible chart object settings for ObjectType, and how each chart object uses the
(x,y) coordinates.
Chart Objects {CREATEOBJECT} Can Generate

Object # of
(x,y)'s

Coordinates

Line 2 1st: Start point, 2nd: End point
Arrow (same as for Line)
Block 2 1st: Upper left corner, 2nd: Width and height of the objects (in

relative coordinates)
Rect (Rectangle) 2 (same as for Block)
Ellipse 2 1st: Upper left corner of a rectangle bounding the ellipse; 2nd:

Width and height of the bounding rectangle
Rounded_Rect (same as for Block)
Text (same as for Block)
Polyline Varies 1st: Start point, 2nd: End point of first segment and start of

second segment; 3rd: End point of second segment and start
of third segment, ... nth: End point

Polygon (same as for Polyline)
Freehand_Polylin
e

(same as for Polyline)

Freehand_Polygo
n

(same as for Polyline)

Block Objects
The Block object has additional arguments for {CREATEOBJECT}:
{CREATEOBJECT ObjectType, x1, y1, x2, y2, "Block", "RowBorders?(Yes|No), ColBorders?(Yes|No), HorzGridLines?

(Yes|No), VertGridLines?(Yes|No), AspectRatio?(Yes|No)"}
Block sets the notebook cells to use. The remaining arguments specify whether to show borders and grid lines
and whether to maintain the cells' aspect ratio.
Dialog Controls {CREATEOBJECT} Can Generate
You can create these dialog controls listed in the order they appear on the Dialog Toolbar: Button, CheckBox,
RadioButton, BitmapButton, Label, EditField, SpinCtrl, Rectangle, GroupBox, RangeBox, ComboBox, PickList,
FileCtrl, ColCtrl, ScrollBar, HScrollBar, TimeCtrl. When creating a control, x1 and y1 specify the upper-left corner
of the control; x2 and y2 specify the width and height of the control, in pixels.
ObjectType is enclosed in quotes. The x and y coordinates for each point follow, separated by commas.
Example
{CREATEOBJECT "Rect",86,11,94,74} creates a rectangle with upper-left corner = (86,11), width = 94, and

height =74 (pixels).
{CREATEOBJECT "Block", 363, 260, 1278, 1139, "A:B2..D9", "No,No,Yes,Yes,Yes"} creates notebook cells in a

chart window with upper-left corner = (363, 260), width = 1278, and height = 1139; the other arguments
specify the notebook cells, turn off row and column borders, show grid lines, and maintain the cells' aspect
ratio.

{CREATEOBJECT "Line",260,238,356,228} creates a line that starts at (260,238) and ends at (356,228).
{CREATEOBJECT "Polyline",2,2,23,59,11,26} creates a polyline that starts at (2,2), draws a line to (23,59), and
then draws a line from that point to (11,26).

Parameters
ObjectNam Type of object to create

x1, y1 XY coordinates for the starting point of the object; the upper left
corner for rectangles and objects bounded by rectangles

x2, y2 XY coordinates for the end point or next point of the object; the
width and height for rectangles and objects bounded by
rectangles

x3, y3 XY coordinates for the next or last point of a polyline or polygon
object

 Related topics

CrossTab
Syntax
{CrossTab "Input Cells";"Output cells";"<3D Page Name>";"Row 1;<Row 2>;<Row 3>";"Column 1;<Column
2>;<Column 3>";"Data 1: Data Option,<Data 2: Data Option>";"<Row 1: Option>,<Row 2: Option>,<Row 3:
Option>,<Column 1: Option>,<Column 2: Option>,<Column 3: Option>"}
PerfectScript Syntax
CrossTab (SrcBlock:String; DstBlock:String; PageName:String; RowData:String; ColData:String;
{[DataTotal:String]})
Description
{CrossTab} creates a summary of your data in a format that is simple and easy to read. This is especially useful
when you are working with large pieces of data, such as imported databases.
All items surrounded by <> are optional. All quotes in this macro command must be included in order for the
macro to function.
All Column, Row and Data items are to be replaced with the field number containing the data to be used. Fields
go from 0 to however many columns are passed into Cross Tabs. Columns are numbered from left to right in the
source range, 0 being the first column of the selection.
Example
{CrossTab "A:A1..H145";"B:A1";"";"0,1";"2,3,4";"6: SUM";"4: AVERAGE"}
Notice that if the 3D Sheet Name is not included, the macro must have the empty quotes or it will not function
properly.
Parameters

Data Option SUM, AVERAGE, COUNT, % of COLUMN, % of ROW, % of
GRAND, or STRING

Row and
Column Options

SUM, AVERAGE, COUNT, % of COLUMN, % of ROW, % of
GRAND, INCREASE, % INCREASE, or STRING

CrossTabReport.AddField
Syntax
CrossTabReport_AddField(Index_ As Integer, Type_ As Integer)
PerfectScript Syntax
CrossTabReport_AddField (Index?: Numeric; Type?: Numeric)
Description
Lets you add a field to the active report.
Parameters

Index The index of the field
        
Type

1 Row
2 Column
3 Page
4 Data

Example
A sample Cross Tab Report has the following macro commands run against it.
{CrossTabReport.AddField 3;3}
{CrossTabReport.Edit}
The result is that the Winery field (index position 3 in the underlying data source) has been added to the page
area of the Report.

CrossTabReport.CenterLabels
Syntax
 CrossTabReport_CenterLabels(Enable_ As _CrossTabReport_CenterLabels_Enable__enum)
PerfectScript Syntax
CrossTabReport_CenterLabels (Enable?: Boolean)
Description
Lets you specify whether or not to center the labels on a report.
Parameter

Enable 0 Do not center the labels
1 Center the labels.

Example
A sample Cross Tab Report has the following macro commands run against it.
{CrossTabReport.CenterLabels 1}
{CrossTabReport.Options}
The result is that the Year labels (1991 and 1992) have been centered against the rows of data.

CrossTabReport_ColumnSummary
Syntax
CrossTabReport_ColumnSummary(Enable_ As _CrossTabReport_ColumnSummary_Enable__enum)
PerfectScript Syntax
CrossTabReport_ColumnSummary (Enable?: Boolean)
Description
Lets you specify whether or not to display a column summary.
Parameter

Enable 0 Do not display a column summary.
1 Display a column summary.

Example
A sample Cross Tab Report has the following macro commands run against it.
{CrossTabReport.ColumnSummary 1}
{CrossTabReport.Options}
The result is that each of the columns of sales data (Q1-Q4) have been added together and a grand total
displayed at the bottom of each.

CrossTabReport_CopyStatic
Syntax
 CrossTabReport_CopyStatic()
PerfectScript Syntax
CrossTabReport_CopyStatic ()
Description
A command macro which creates a static copy of the current Cross Tab Report. The copy does not hold any
properties of the report and is not affected by changes in the underlying source data.

CrossTabReport_Create
Syntax
 CrossTabReport_Create()
PerfectScript Syntax
CrossTabReport_Create ()
Description
A command macro which is used to generate a new Cross Tab Report. As shown below, this macro is typically
used in conjunction with the {CrossTabReport_Source}, {CrossTabReport_Destination}, {CrossTabReport_Name},
and {CrossTabReport_AddField} macros.
Example
A sample spreadsheet is used as the data source for a Cross Tab Report. To create the report, the following
sequence of macro commands is run.
{CrossTabReport.Source A:A1..H145}
{CrossTabReport.Destination B:A1}
{CrossTabReport.Name CrossTabs Table 1}
{CrossTabReport.AddField 1;1}
{CrossTabReport.AddField 2;2}
{CrossTabReport.AddField 8;4}
{CrossTabReport.Create}
The result is that a new Cross Tab Report is created. It uses columns A through H in Sheet A as its data source,
and cell A1 in Sheet B is used as the destination for the report. The Year, Quarter, and Sales fields are then
added to the Cross Tab Report's row, column, and data areas respectively.

CrossTabReport_DataAlignment
Syntax
CrossTabReport_DataAlignment(RowOrCol_ As Integer)
PerfectScript Syntax
CrossTabReport_DataAlignment (RowOrCol?: Numeric)
Description
Lets you specify whether the data fields in a report are aligned by row or column. By default, data fields are
aligned in a row.
Parameter

RowOrCol 0 Row
1 Column

Example
A sample Cross Tab Report has its data fields (Sales and Cost Per Case) aligned by row. To change this, the
following macro commands are run.
{CrossTabReport.DataAlignment 1}
{CrossTabReport.Edit}
The result is a Cross Tab Report which now has its data fields aligned by column.

CrossTabReport_DefineFieldProps
Syntax
CrossTabReport_DefineFieldProps(Props_ As String)
Description
Lets you specify the fields on which specified options will operate. Typically, this macro will be followed by other
macros which perform the desired operation on the specified field. For example, the
{CrossTabReport.FieldSummary} and {CrossTabReport.FieldOptions} macros might be used, as shown below, to
specify which operations to perform on the specified field.
Parameter

Area

Field Index

1 Row area
2 Column area
3 Page area
4 Data area

The index of the given field based on its position in
that area

Example
A sample Cross Tab Report contains two data fields, Sales and Cases Sold, both of which already have the
summary option Sum. To add the summary option Max to only the Sales field, and not the Cases Sold field, the
following macro commands are run
{CrossTabReport.DefineFieldProps "4;1"}
{CrossTabReport.FieldSummary "1;4"}
{CrossTabReport.FieldOptions}
The result is that the first field in the data area (Sales) is defined as the field on which to apply the summary
option Max. For more information on the options applied to the defined field, refer to the help for the macros
{CrossTabReport_FieldSummary} and {CrossTabReport_FieldOptions}.

CrossTabReport_Destination
Syntax
 CrossTabReport_Destination(Block_ As String)
Description
Lets you specify where the report is located.
Parameter

Block The destination cell
Example
When creating a Cross Tab Report, the following macro command is used to specify a destination cell for the
report.
{CrossTabReport.Destination B:A1}
The result is a Cross Tab Report residing on sheet B, cell A1. For a more detailed example, refer to the help for
the {CrossTabReport_Create} macro.

CrossTabReport.DisplayInEmptyCell
Syntax
CrossTabReport_DisplayInEmptyCell(Enable_ As _CrossTabReport_DisplayInEmptyCell_Enable__enum)
PerfectScript Syntax
CrossTabReport_DisplayInEmptyCell (Enable?: Boolean)
Description
Lets you specify whether or not to display a specifc value in the empty cells of a report.
Parameter

Enable 0 Do not display a value in empty cells.
1 Display a value in empty cells.

Example
A sample report contains one or more cells which are empty or awaiting future data. To fill these cells with some
value, say "TBA", the following macro commands are used.
{CrossTabReport.DisplayInEmptyCell 1}
{CrossTabReport.EmptyCellString TBA}
{CrossTabReoirt.Options}
The result is a Cross Tab Report with the value TBA displayed in any previously empty cells. Note that the
{CrossTabReport_EmptyCellString}.can be used to specify the text which will appear in place of the empty cell.

CrossTabReport_Edit
Syntax
CrossTabReport_Edit()
PerfectScript Syntax
CrossTabReport_Edit ()
Description
A command macro which is used to modify the report settings or configuration. Typically, this macro is used after
a sequence of operations such as adding a field or changing the destination of a report.
Example
For an example detailing the usage of the {CrossTabReport_Edit} macro, see the help for either the
{CrossTabReport_AddField} macro or the {CrossTabReport_DataAlignment} macro.

CrossTabReport_EmptyCellString
Syntax
CrossTabReport_EmptyCellString(Name_ As String)
PerfectScript Syntax
CrossTabReport_EmptyCellString (Name?: String)
Description
Lets you specify the string to be displayed in the empty cells of a Cross Tab Report.
Parameter

Name The string to be displayed in empty cells
Example
A sample report contains one or more cells which are empty or awaiting future data. To fill these cells with some
value, say "TBA" the following macro commands are used.
{CrossTabReport.DisplayInEmptyCell 1}
{CrossTabReport.EmptyCellString TBA}
The result is a Cross Tab Report with the value TBA displayed in any previously empty cells. Note that the
{CrossTabReport_DisplayInEmptyCell}.is used to specify whether or not a value is displayed in empty cells.

{CrossTabReport.Expand}
Syntax
{CrossTabReport.Expand <Index> <;Index2>}
PerfectScript Syntax
CrossTabReport ([Index?: Numeric] [;Index2?: Numeric])
Description
Lets you expand the current report onto several different sheets by specifying the appropriate field indices. By
default, this macro command will expand to the maximum number of levels. Note that in order to use this macro,
you must have a least one field in the Pages position of the report.
Parameters

Index1 The field on which you want to base the report
expansion.

Index2
[optiona
l]

The number of levels to which you want to expand the
report.

Example
A sample report, located on sheet A of a notebook, contains two fields in the Pages area of the report. The field
"Winery", located in index position 1, contains two field items, Beaulieu and Duckhorn. To expand the report
based on the items in this field, the following macro commands are used
{CrossTabReport.Expand 1}
The result is that the Cross Tab Report is expanded onto the next two unprotected pages in the notebook; in this
case sheet B and sheet C. Sheet B contains the field item Beaulieu and all the data associated with it, and sheet
C contains the field item Duckhorn and all the data associated with it.

CrossTabReport_FieldCmp
Syntax
CrossTabReport_FieldCmp(Value_ As Integer)
PerfectScript Syntax
CrossTabReport_FieldCmp (Value?: Numeric)
Description
Lets you specify a comparision option on any given field within a report. Typically, this macro will be used along
with the {CrossTabReport_FieldCmpBase}, {CrossTabReport_FieldCmpItem},and
{CrossTabReport_FieldCmpItemPreset} macros.
Parameter

Value 0 None
1 DiffFrom
2 PercentOf
3 PercentDiffFrom
4 RunningTotal
5 PercentRow
6 PercentColumn
7 PercentTotal
8 Index

Example
A sample Cross Tab Report has the following macro commands run against it.
{CrossTabReport.DefineFieldProps "4,1"}
{CrossTabReport.FieldCmp 1}
{CrossTabReport.FieldCmpBase 1}
{CrossTabReport.FieldCmpItemPreset -1}
{CrossTabReport.FieldOptions}
The {CrossTabReport_DefineFieldProps} macro is used to indicate that the specified comparision options are to
be applied to the Sales field in the Data area of the page. The result is a report which takes the sales data in
each row of the Year field (index position 1) and calculates the difference between it and the data from the
previous year.

CrossTabReport_FieldCmpBase
Syntax
 CrossTabReport_FieldCmpBase(Value_ As Integer)
PerfectScript Syntax
CrossTabReport_FieldCmpBase (Value?: Numeric)
Description
Lets you specify the index of the base field.
Parameter

Value The index of the base field
Example
{CrossTabReport.Field CmpBase 1}
The field with index value 1 is taken to be the base field for comparision. For a more detailed example involving
this macro, please see the help for the {CrossTabReport_FieldCmp} macro.

CrossTabReport_FieldCmpItem
Syntax
CrossTabReport_FieldCmpItem(Value_ As String)
PerfectScript Syntax
CrossTabReport_FieldCmpItemPreset (Value?: String)
Description
Lets you specify the field item to be compared.
Parameter

Value The index of the field
Example

{CrossTabReport.FieldCmpItem 2}
The field with index value 2 is defined as the item to be compared.

CrossTabReport_FieldCmpItemPreset
Syntax
CrossTabReport_FieldCmpItemPreset(Value_ As Integer)
PerfectScript Syntax
CrossTabReport_FieldCmpItemPreset (Value?: Numeric)
Description
Lets you specify the type of preset to be used during comparision.
Parameter

Value 0 None
-1 Previous
1 Next

Example
{CrossTabReport.FieldCmpItemPreset -1}
Previous is selected as the type of preset to be used during the comparision. For a more detailed example
involving this macro, see the help for the {CrossTabReport_FieldCmp} macro.

CrossTabReport_FieldHide
Syntax
CrossTabReport_FieldHide(Value_ As String)
PerfectScript Syntax
CrossTabReport_FieldHide (Value?: String)
Description
Lets you hide one or more data items associated with the report. You can specify the field by using the
{CrossTabReport_DefineFieldProps} command.
Parameter

Value
[semicolo
n
delimited]

Semicolon delimited items

Example
A sample Cross Tab Report has the following macro commands run against it.
{CrossTabReport.DefineFieldProps "1;1"}
{CrossTabReport.FieldHide "1991"}
{CrossTabReport.FieldOptions}
The result is a report which hides the field item 1991 and its data.

 Note
You can leave the Value value empty to clear the existing values.

CrossTabReport_FieldLabel
Syntax
 CrossTabReport_FieldLabel(Value_ As String)
PerfectScript Syntax
CrossTabReport_FieldLabel (Value?: String)
Description
Lets you specify or change the label on a given field. You can specify the field by using the
{CrossTabReport_DefineFieldProps} command.
Parameter

Value Text for the field label
Example
A sample Cross Tab Report has the following macro commands run against it.
{CrossTabReport.DefineFieldProps "1,1"}
{CrossTabReport.FieldLabel Years}
{CrossReport.FieldOptions}
The result is that the label which previously displayed as "Year", has been modified to display as "Years".

CrossTabReport_FieldOptions
Syntax
CrossTabReport_FieldOptions()
PerfectScript Syntax
CrossTabReport_FieldOptions ()
Description
This is a command macro used to modify field options. Typically, macro operations which modify a field will be
followed by this command macro.
Example
For examples detailing the usage of this macro, refer to the help for either the {CrossTabReport_FieldCmp}
{CrossTabReport.FieldHide} macros.

CrossTabReport_FieldSummary
Syntax
 CrossTabReport_FieldSummary(Value_ As String)
PerfectScript Syntax
CrossTabReport_FieldSummary (Value?: String)
Description
Lets you specify one or more summary option flags. Value consists of variables delimited by semicolons. You can
specify the field by using the {CrossTabReport_DefineFieldProps} command.
Parameter

Value
[semicol
on
delimite
d]

1 Sum
2 Count
3 Average
4 Max
5 Min
6 StdDevp
7 StdDevs
8 Varp
9 Var
10 CountNonBlank
11 SumNone (clears existing flags)

Example
A sample Cross Tab Report has the following macro commands run against it.
{CrossTabReport.DefineFieldProps "4;1"}
{CrossTabReport.FieldSummary "1; 3; 4; 5"}
{CrossTabReport.FieldOptions}
The result is a report which now calculates and displays Sum, Average, Max, and Min values for the Sales field.

CrossTabReport_FormatReport
Syntax
CrossTabReport_FormatReport(Enable_ As _CrossTabReport_FormatReport_Enable__enum)
PerfectScript Syntax
CrossTabReport_FormatReport (Enable?: Boolean)
Description
Lets you specify whether or not to apply a predefined format to the report.
Parameter

Enable 0 Do not apply a predefined format to the report.
1 Apply a predefined format to the report.

Example
A sample Cross Tab Report, with a predefined format applied, has the following macro commands run against it.
{CrossTabReport.FormatReport 0}
{CrossTabReport.Options}
The result is a report which no longer has a predefined format applied. Note that in this example the dark cell
borders have been lost as a result of the predefined format no longer being applied.

CrossTabReport_Hide
Syntax
{CrossTabReport_Hide
PerfectScript Syntax
CrossTabReport_Hide ()
Description
A command macro used to hide the details of the active or selected field in a report.
Example
Within a sample Cross Tab Report, the active cursor selection is positioned within the Q1 field item and the
following macro command is executed.
{CrossTabReport.Hide}
The result is a report which displays without any details for Q1. All other field items continue to display as they
were originally.
Note
The {CrossTabReport_Show} macro can be used to return the report to its original state.

CrossTabReport_LabelEdit
Syntax
CrossTabReport_LabelEdit(LabelEdit_ As String)
PerfectScript Syntax
CrossTabReport_LabelEdit (LabelEdit?: String)
Description
Lets you change the label of the selected field cell in the sheet. This macro allows you to edit a field label from
the active report without going through the field options.
Parameter

LabelEdit The changed label of the selected field cell
Example
Within a sample Cross Tab Report, the active cursor selection is positioned at the label to be changed and the
following macro command is executed.
{CrossTabReport.LabelEdit Years}
 The result is that the label which previously displayed as "Year", has been modified to display as "Years".

CrossTabReport_MoveCell
Syntax
CrossTabReport_MoveCell(Row_ As Integer, Column_ As Integer)
PerfectScript Syntax
CrossTabReport_MoveCell (Row?: Numeric; Column?: Numeric)
Description
Lets you move a selected cell within the active report to a specfied destination cell.
Parameters

Row The row you to which you want to move the selected
cell.

Column The column to which you want to move the selected cell.
Example
Within a sample Cross Tab Report, the active cursor selection is positioned at the Year label cell, and the
following macro command is executed.
{CrossTabReport.MoveCell 1;3}
The result is a report in which the Year field is now displayed in the column area instead of the row area as it had
been previously.

CrossTabReport_MoveField
Syntax
CrossTabReport_MoveField(Source_Index_ As Integer, Source_Type_ As Integer, Destination_Index_ As Integer,
Destination_Type_ As Integer)
PerfectScript Syntax
CrossTabReport_MoveField (Source_Index?: Numeric; Source_Type?: Numeric; Destination_Index?: Numeric;
Destination_Type?: Numeric)
Description
Lets you move the selected field to a new position within an active report.
Parameters

Source_Ar
ea

1 Row area
2 Column area
3 Page area
4 Data area

Source_In
dex

The numeric index of the source field

Destinatio
n_Area

1 Row area
2 Column area
3 Page area
4 Data area

Destinatio
n_Index

The numeric index of the destination field

Example
Within a sample Cross Tab Report, the active cursor selection is positioned in the Year field, and the following
macro command is executed.
{CrossTabReport.MoveField 1;1;2;2}
{CrossTabReport.FieldOptions}
The result is a report in which the Year field is now displayed in the column area instead of the row area as it had
been previously. The field has been moved from index position 1 of the Row area to index position 2 of the
Column area.

CrossTabReport_Name
Syntax
CrossTabReport_Name(Name_ As String)
PerfectScript Syntax
CrossTabReport_Name (Name?: String)
Description
Lets you specify or change the name of an active report.
Parameter

Name The name of the report
Example
A report is named CrossTabs Table 1. To change this, the following macro command is executed.
{CrossTabReport.Name "CrossTabs Table 2"}
The report is now named CrossTabs Table 2. The new report name can be viewed or verified using the Cross Tabs
Options dialog box.

CrossTabReport_Options
Syntax
CrossTabReport_Options()
PerfectScript Syntax
CrossTabReport_Options ()
Description
A command macro used to modify the report options. Typically, this macro is used after a sequence of
commands such as showing a column summary or displaying a value in empty cells.
Example
For an example detailing the usage of the {CrossTabReport.Options} macro, see the help for either the
{CrossTabReport_ColumnSummary} macro or the {CrossTabReport_DisplayInEmptyCell} macro

CrossTabReport_PageFilter
Syntax
CrossTabReport_PageFilter(Index_ As Integer, Value_ As String)
PerfectScript Syntax
CrossTabReport_PageFilter (Index?: Numeric; Value?: String)
Description
Lets you apply a page filter to the specified field and value in the page area.
Parameters

Index The numeric index of the field to be filtered.
Value The field value on which you filter the report.

Example
A sample Cross Tab Report has a Winery field located in the Pages area. This field contains the items Beaulieu,
Duckhorn, and [All]. To filter this report, the active cursor selection is positioned within the report, and the
following macro command is executed.
{CrossTabReport.PageFilter 1; Duckhorn}
The result is a report which has been filtered on index position 1 of the Pages area. In this example, the report
now shows only data relating to the Duckhorn winery.

CrossTabReport_PreserveDataFormat
Syntax
CrossTabReport_PreserveDataFormat(Enable_ As _CrossTabReport_PreserveDataFormat_Enable__enum)
PerfectScript Syntax
CrossTabReport_PreserveDataFormat (Enable?: Boolean)
Description
Lets you specify whether or not the report should preserve the formatting options found in the data source.
Parameter

Enable 0 Do not preserve the data format from source
1 Preserve the data format from source.

Example
A sample report has been generated without retaining the source data formatting. In the source, all data had
appeared in bold. To apply the source data formatting to the report, the following macro command is executed.
{CrossTabReport.PreserveDataFormat 1}
{CrossTabReport.Edit}
The result is a report which now applies the formatting options found in the source. All data now appears in bold.

CrossTabReport_Refresh
Syntax
CrossTabReport_Refresh()
PerfectScript Syntax
CrossTabReport_Refresh ()
Description
A command macro that lets you refresh the active report to reflect changes in the source data.
Example
A sample report is generated from a data source. Now suppose the underlying data source is changed, for
example, to reflect an increase in sales of $20,000 for Q4 of 1992. In order to have this change reflected in the
report, the following macro command is executed while the active cursor selection is within the report.
{CrossTabReport.Refresh}
The result is a report updated to reflect changes in the source data. Note that the figure in Q4 of 1992 has
changed.

CrossTabReport_Remove
Syntax
CrossTabReport_Remove()
PerfectScript Syntax
CrossTabReport_Remove ()
Description
A command macro which removes the active report.

CrossTabReport_RowSummary
Syntax
CrossTabReport_RowSummary(Enable_ As _CrossTabReport_ColumnSummary_Enable__enum)
PerfectScript Syntax
CrossTabReport_RowSummary (Enable?: Boolean)
Description
Lets you specify whether or not to display row summaries in a report.
Parameter

Enable 0 Do not display row summaries for the report.
1 Display row summaries for the report

Example
A sample report summarizes sales data. To add a row summary which calculates the total sales for each year,
the following macro commands are executed.
{CrossTabReport.RowSummary 1}
{CrossTabReport.Options}
The result is that each of the rows of sales data (1991-1992) have been added together and a grand total
displayed at the end of each.

CrossTabReport_Show
Syntax
 CrossTabReport_RowSummary(Enable_ As _CrossTabReport_RowSummary_Enable__enum)
PerfectScript Syntax
CrossTabReport_Show ()
Description
A command macro used to show the details of the active or selected field in a report.
Example
Within a sample Cross Tab Report, the active cursor selection is positioned within the Q1 field item, which has its
details hidden, and the following macro command is executed.
{CrossTabReport.Hide}
The result is a report which displays the details for Q1. All other field items continue to display as they were
originally.
Note
The {CrossTabReport_Hide} macro can be used to return the report to its original state.

CrossTabReport_Source
Syntax
 CrossTabReport_Show()
PerfectScript Syntax
CrossTabReport_Source (Block?: String)
Description
Lets you specify the sheet and range of cells from which you want to generate the report.
Parameter

Block The range of cells.
Example
When creating a Cross Tab Report, the following macro command is used to specify the source for the report.
{CrossTabReport.Source A:A1..H145}
The report is generated from cells A1 to H145 on sheet A. For a more detailed example involving this macro,
refer to the help for the {CrossTabReport_Create} macro.

CrossTabReport_UpdateDataOnOpen
Syntax
CrossTabReport_Source(Block_ As String)
PerfectScript Syntax
CrossTabReport_UpdateDataOnOpen (Enable?: Boolean)
Description
Lets you specify whether or not to update data when you open the report.
Parameter

Enable 0 Do not update the data.
1 Update the data.

Example
To update a report upon opening it, the following macro command is executed.
{CrossTabReport.UpdateDataOnOpen 1}
The report is updated to reflect any changes made to the source data.

DatabaseQuery
Syntax
DatabaseQuery(Type_ As String, Name_ As String, QueryString_ As String, Destination_ As String)
PerfectScript Syntax
DatabaseQuery (Type?:String; Name?:String; QueryString?:String; Destination?:String)
Description
The {DatabaseQuery} macro sends the specified SQL statement to either ODBC or BDE and places the returned
data in the specified block of cells.
Parameters

Type Type of database to query: "Paradox", "ODBC", or "BDE (Borland
Database Engine)".

Name Name of the database. If the type is Paradox, the name must be
a path. If the type is ODBC, the name is a Data Source Name
(DSN) from the user's ODBC configuration. If the name is BDE,
the name is an alias name from the user's IDAPI/BDE
configuration.

QueryString An SQL Statement.
 Destination The destination block of cells where to send the result.

DATE
Syntax
Date()
Description
{DATE} is equivalent to pressing Ctrl+D, which lets users enter a date or time into the active cell.
You can enter a date in a cell without using Ctrl+D. Just type a date in one of Quattro Pro's date formats--for
example, 6/1/95.
Example
{DATE}8/6/90~ enters 8/6/90 in the active cell as a date.
{DATE}{?}~ pauses to let the user enter a date, then enters that date into the active cell.
 Related topics

DbAlias
Syntax
DbAlias(type As _DbAlias_type_enum, Path As String)
PerfectScript Syntax
DbAlias (type:Enumeration {PRIV!; WORK!}; Path:String)
Description
{DbAlias} lets you specify a private directory to hold temporary files, or a working directory where external data
tables are most likely to be found.
Parameters

WORK |
PRIV

WORK to specify a Working directory; PRIV to specify a Private
directory

Path path for the Working directory or the Private directory

{DELETEMENU}
Syntax
DeleteMenu(MenuPath As String)
PerfectScript Syntax
DeleteMenu (MenuPath:String)
Description
{DELETEMENU} removes the menu specified by MenuPath from the menu system. See the description of
{ADDMENU} for the syntax of MenuPath. Use {DELETEMENUITEM} to remove an individual menu item.
Example
{DELETEMENU "/File"} removes the File menu from the active menu system.
Parameters

MenuPath Menu in the tree to delete; type a forward slash
(/) followed by the menu name; for example, to
delete the Edit menu, type /Edit.

Notes
¨ You cannot delete menus between Edit and Tools on the menu bar. The area between these menu positions is

reserved for context-sensitive menus that change depending on the active window. You can add menu items to
menus between the Edit and Tools menus, but the new menu items will be swapped out of the menu when the
context changes.

¨ Changes made to the menu system using this command are not saved; they are lost when you exit Quattro
Pro. Each time you run a macro containing {DELETEMENU}, the menu changes appear again.

¨ To restore the original menu bar, use the macro command {SETMENUBAR} without an argument
 Related topics

{DELETEMENUITEM}
Syntax
DeleteMenuItem(MenuPath As String)
PerfectScript Syntax
DeleteMenuItem (MenuPath:String)
Description
{DELETEMENUITEM} removes the menu item specified by MenuPath from the menu system. Use
{DELETEMENU} to remove entire menus from the active menu system.
Example
{DELETEMENUITEM "/Edit/Clear"} removes the Clear command from the Edit menu.
{DELETEMENUITEM "/Edit/<-"} removes the first item on the Edit menu.
Parameters

MenuPat
h

Menu item in the tree to delete; enter the sequence of menu items
separated by forward slashes (/); you can use <- and -> to specify
an item menu at the top or bottom of a menu, respectively. For
example, /File/<- specifies the first item on the File menu. You can
also use numbers to identify menu items. For example, /File/0
specifies the first item on the File menu (the ID numbers start at
zero).

Notes
¨ You can delete menu items from any menu, but if you change a context-sensitive menu (all menus between

Edit and Tools on the menu bar), the change applies only to the menu in the active window. For example,
suppose you use a macro to change the View menu when the notebook window is active. If you then open a
chart window, the chart View menu appears--without the change. If you want the change to apply to that View
menu as well, you must run the macro again.

¨ Changes made to the menu system using this command are not saved; they are lost when you exit Quattro
Pro. Each time you run a macro containing {DELETEMENUITEM}, the menu changes appear again.

¨ To restore the original menu bar, use the macro command {SETMENUBAR} without an argument.
 Related topics

{DELVAR}
Syntax
 DelVar([VarName1 As String], [VarName])
PerfectScript Syntax
DelVar ([VarName1:String]; {[VarName:String]})
Description
{DELVAR} deletes unused named variables. Named variables are used to control OLE objects. OLE objects are
released from control at the end of macro execution, but named variables remain until you exit Quattro Pro. You
can delete the unused named variables to free an object assigned to that name, and then control the object
using another macro.
Example
{DELVAR} deletes all named variables
{DELVAR calc} deletes a named variable calc
{DELVAR calc 0, calc 1, calc 3} deletes the named variables calc 0, calc 1, and calc 3.
For more details on using {DELVAR} and other OLE automation macro commands, Using OLE Automation
Features.
Parameters

VarName A named variable

{DESCR}
Syntax
DESCR(InBlock As String, OutBlock As String, [Grouped As String], [Labels_ As _DESCR_Labels__enum],
[Summary_ As _DESCR_Summary__enum], [Largest As Integer], [Smallest As Integer], [Confidence As Double])
PerfectScript Syntax
DESCR (InBlock:String; OutBlock:String; [Grouped:String]; [Labels?:Enumeration {Yes!; No!}];
[Summary?:Enumeration {Yes!; No!}]; [Largest:Numeric]; [Smallest:Numeric]; [Confidence:Numeric])
Description
{DESCR} returns a table of descriptive statistics that characterize a sample. {DESCR} is equivalent to the
Descriptive Statistics analysis tool.
Parameters

InBlock One or more numeric cell values representing the input
cells

OutBlock Upper-left cell of the output cells
Grouped "C" to group results by column or "R" to group results by

row; "C" is the default
Labels 1 if labels are located in the first column or row of the input

cells; 0 if the input cells do not contain labels; the default is
0

Summary 1 to display summary statistics; 0 to omit summary
statistics; the default is 0

Largest A value n which, if present, makes {DESCR} report the nth
largest data point; if omitted, the largest data point is not
reported

Smallest A value n which, if present, makes {DESCR} report the nth
smallest data point; if omitted, the smallest data point is
not reported

Confidence Confidence level of the mean; the default is 0.95
 Related topics

{DialogView}
Syntax
DialogView(Window As String)
PerfectScript Syntax
DialogView (Window:String)
Description
{DialogView} lets you edit an existing dialog box.
Parameters

Window Dialog window to make active
 Related topics

{DialogWindow}
Syntax
{DialogWindow.Property}
Description
{DialogWindow} is equivalent to right-clicking the title bar of a dialog window to set its properties.
{DialogWindow} commands affect the active dialog window. The next table lists the possible settings for
Property. To display a property description with syntax, choose that property in the following list:
Dimension
Disabled
Grid_Options
Name
Position_Adjust
Title
Value

{DialogWindow.Dimension}
Syntax
{DialogWindow.Dimension<Option>}
PerfectScript Syntax
DialogWindow_Dimension_Height (Height:Numeric)
DialogWindow_Dimension_Width (Width:Numeric)
DialogWindow_Dimension_X (XPos:Numeric)
DialogWindow_Dimension_Y (YPos:Numeric)
Description
{DialogWindow.Dimension} is equivalent to the dialog window property Dimension, which lets you move and
resize the active dialog window. Each argument is specified in pixels. XPos and YPos specify the distance in pixels
from the left side of the Quattro Pro window and bottom of the input line, respectively.
Example
The following macro command positions the active dialog window two pixels from the left edge of the Quattro
Pro window and five pixels below the input line, and sets the width to 150 pixels and the height to 250 pixels.
{DialogWindow.Dimension "2,5,150,250"}
Options

{DialogWindow.Dimension "XPos, Ypos, Width, Height"}
{DialogWindow.Dimension.Height Height}
{DialogWindow.Dimension.Width Width}
{DialogWindow.Dimension.X XPos}
{DialogWindow.Dimension.Y YPos}

 Related topics

{DialogWindow.Disabled}
Syntax
DialogWindow_Disabled(Disable_ As _DialogWindow_Disabled_Disable__enum)
PerfectScript Syntax
DialogWindow_Disabled (Disable?:Enumeration {Yes!; No!})
Description
{DialogWindow.Disabled} disables (Yes) or enables (No) the active dialog box or Toolbar. This command works
only when you view a dialog box or toolbar; it does not work when you edit one.
 Related topics

{DialogWindow.Grid_Options}
Syntax
 DialogWindow_Grid_Options(Settings As String)
PerfectScript Syntax
DialogWindow_Grid_Options (Settings:String)
Description
{DialogWindow.Grid_Options} sets the grid size of the active dialog window. Use GridSize to specify the distance
between grid points in pixels; ShowGrid specifies whether the grid is visible; SnapToGrid specifies whether
objects snap to the grid.
Example
The following macro sets the distance between grid points to 10, shows the grid, and enables it.
{DialogWindow.Grid_Options "10,Yes,Yes"}
 Related topics

{DialogWindow.Name}
Syntax
 DialogWindow_Name(Name As String)
PerfectScript Syntax
DialogWindow_Name (Name:String)
Description
{DialogWindow.Name} sets the name of the active dialog window. This name is used by macro commands,
@functions, and link commands to identify the dialog box (or Toolbar).
 Related topics

{DialogWindow.Position_Adjust}
Syntax
DialogWindow_Position_Adjust(Settings As String)
PerfectScript Syntax
DialogWindow_Position_Adjust (Settings:String)
Description
{DialogWindow.Position_Adjust} specifies how the active dialog box resizes when the Quattro Pro window is
resized. The arguments are equal to options in the Position Adjust dialog box; click here for directions on
using the Position Adjust property.
 Related topics

{DialogWindow.Title}
Syntax
DialogWindow_Title(Title As String)
PerfectScript Syntax
DialogWindow_Title (Title:String)
Description
{DialogWindow.Title} specifies the title that appears on the dialog box when the user is viewing it (the title does
not appear when editing the dialog box).
 Related topics

{DialogWindow.Value}
Syntax
 DialogWindow_Value(String As String)
PerfectScript Syntax
DialogWindow_Value (String:String)
Description
{DialogWindow.Value} sets the initial settings of the dialog box (or Toolbar). You can use it with @COMMAND to
find the current settings of the dialog box. String is a comma-separated list of settings. Each setting sets the
initial value of one control. Control values appear in this list if their Process Value property is set to Yes. You can
set the order of the settings while editing the dialog box.
Example
The following macro command sets the initial values of a dialog box with three controls. Each setting maps to
one control.
{DialogWindow.Value "25000,5,1st of month"}

 Related topics

{DLL}
Syntax
DLL(DLLName_FunctionName As String, [Argument])
PerfectScript Syntax
DLL (DLLName_FunctionName:String; {[Argument:String]})
Description
{DLL} runs a macro or returns a value from an add-in @function contained in a dynamic-link library file. The
@function can have up to 16 arguments.
Example
This statement calls the @function AMPLITUDE, included in the DLL Math, with two selections as arguments:
{DLL Math.AMPLITUDE,A1..A10,B1..B10}
Parameters

DLLName The name of a DLL file (if not already loaded)
FunctionName The name of an @function contained in the DLL
Argument1,Argument
2...

Arguments to the @function

 Related topics

{DLL.Load}
Syntax
DLL_Load(DLLName As String)
PerfectScript Syntax
DLL_Load (DLLName:String)
Description
{DLL.Load} loads a dynamic-link library (DLL) program. You can use {DLL.Load} to load a DLL containing add-in
@functions or macros. When the DLL is loaded, you can reference add-in @functions contained in the DLL
without typing the DLL name. Similarly, macros contained in the DLL become resident in memory.
You can use {DLL.Load} to define a startup macro in QPW.INI.
Example
{DLL.Load MYDLL} loads a DLL program named MYDLL
Parameters

DLLName The name of a DLL file to load
 Related topics

{DraftViewGoto}
Syntax
DraftViewGoto()
Description
Switches from either the Objects Sheet or the sheet in Page View mode to Draft View.
 Related topics

{EDIT}
Syntax
EDIT()
Description
{EDIT} is equivalent to the Edit key, F2. Its main use is in Edit mode, where it lets you edit the contents of the
active cell. You can also use it to search for items in a long list.
 Related topics

{EditClear}
Syntax
EditClear
Description
{EditClear} erases the contents and properties of the current cells, deletes selected objects from dialog and
chart windows, and deletes selected floating objects. To erase cells while leaving their properties intact, use
{ClearContents}.
 Related topics

{EditCopy}
Syntax
EditCopy()
Description
{EditCopy} copies the selected object to the Clipboard.
 Related topics

{EditCut}
Syntax
EditCut}
Description
{EditCut} removes the selected object from the spreadsheet and moves it to the Clipboard.
 Related topics

{EditGoto}
Syntax
EditGoto(Block As String, [Extend_ As _EditGoto_Extend__enum])
PerfectScript Syntax
EditGoto (Block:String; [Extend?:Enumeration {Yes!; No!}])
Description
{EditGoto} selects and displays Block within spreadsheet sheets, but not the Objects sheet.
You can use {EditGoto?} or {EditGoto!} to display the Go To dialog box. {EditGoto?} lets the user manipulate
the dialog box, whereas {EditGoto!} relies on the macro to manipulate it.
Parameters

Block Cells to display and select
Extend
?

Whether to extend the selection from the current selection to the
specified cells; 0 = no, 1 = yes; the default is 0

 Related topics

{EditPaste}
Syntax
EditPaste()
Description
{EditPaste} copies data and its properties from the Clipboard into the notebook.
To paste only values or properties, use {PasteSpecial}. {PasteLink} creates a live DDE link, and {PasteFormat}
adds many types of data from other applications (including embedded OLE objects).
 Related topics

{Eval}
Syntax
 Eval(Formula As String)
PerfectScript Syntax
Eval (Formula: String)
Description
Evaluates a string as an expression, and returns the result as a string value.
Example
"5 + 5"
Result: "10"
Parameter

Formul
a

The string to evaluate

{EXECAUTO}
Syntax
ExecAuto(AutoExpr1 As String, [AutoExpr])
PerfectScript Syntax
ExecAuto (AutoExpr1:String; {[AutoExpr:String]})
Description
{EXECAUTO} executes one or more methods in another application, but drops any return values.
Example
{EXECAUTO calc.Display()} asks DispCalc to display its current input value.
{EXECAUTO calc.Button(A1), calc.Display()} passes the value in A1 as an input to DispCalc and asks DispCalc to

display it.
For more details on using {EXECAUTO} and other OLE automation macro commands, see Using OLE Automation
Features.
Parameters

AutoExpr1,2.
..

One or more automation expressions

{ExecMacro}
Syntax
 ExecMacro(FileName As String, Macro As String)
PerfectScript Syntax
ExecMacro ([Filename: String;] Macro: String)
Description
Starts Quattro Pro, opens the file, runs the macro, and exits Quattro Pro.
Parameters

Filename
[optional]

The name of the file that contains the macro you want to
run.

Macro The name of the macro you want to run.

{EXPON}
Syntax
EXPON(InBlock As String, OutBlock As String, [Damping As Double], [StdErrs_ As _EXPON_StdErrs__enum])
PerfectScript Syntax
EXPON (InBlock:String; OutBlock:String; [Damping:Numeric]; [StdErrs?:Enumeration {Yes!; No!}])
Description
{EXPON} performs exponential smoothing on a series of values. {EXPON} is equivalent to the Exponential
Smoothing analysis tool.
Parameters

InBlock Input cells containing a single column or row with at least four
numeric values; the cells must not contain labels

OutBlock Upper-left cell of the output cells
Damping Damping factor used as the exponential smoothing constant;

indicates the percentage for error to adjust each prior forecast
value; must be ³ 0; the default is 0.3

StdErrs Flag indicating whether standard errors are included in the output
table: yes (1) or no (0); the default is 0

 Related topics

{ExportGraphic}
Syntax
ExportGraphic(FileName As String, [GrayScale_ As _ExportGraphic_GrayScale__enum], [Compression_ As
_ExportGraphic_Compression__enum])
PerfectScript Syntax
ExportGraphic (Filename:String; [GrayScale?:Enumeration {Yes!; No!}]; [Compression?:Enumeration {Yes!;
No!}])
Description
{ExportGraphic} saves selected graphic objects to one of several file types with optional gray-scaling and
compression.
You can use {ExportGraphic?} or {ExportGraphic!} to display the Export Graphics File dialog box.
{ExportGraphic?} lets the user manipulate the dialog box, whereas {ExportGraphic!} relies on the macro to
manipulate it.
Parameters

Filename Name of the graphic file to export
GrayScale? Whether to gray-scale: no (0), yes (1); the default is 0
Compression
?

Type of .TIF file compression to use: none (0) or PackBits (1);
the default is 0

{FileClose} and {FileCloseAll}
Syntax
FileClose([DoSave_ As _FileClose_DoSave__enum])
FileCloseAll([DoSave_ As _FileCloseAll_DoSave__enum])
PerfectScript Syntax
FileClose ([DoSave?:Enumeration {Yes!; No!}])
FileCloseAll ([DoSave?:Enumeration {Yes!; No!}])
Description
{FileClose} closes all views of the active notebook; {FileCloseAll} closes all open notebooks. The optional
argument DoSave? indicates whether to display a save prompt before closing files with changes. Use 1, the
default, to prompt for changes; 0 suppresses save prompts.
Options

{FileClose <DoSave? (0|
1)>}

Closes all views of the active notebook

{FileCloseAll <DoSave? (0|
1)>}

Closes all open notebooks

 Related topics

{FileCombine}
Syntax
 FileCombine(FileName As String, Blocks As String, Operation As _FileCombine_Operation_enum)
PerfectScript Syntax
FileCombine (FileName:String; [Blocks:String]; Operation:Enumeration {Copy!; Add!; Subtract!; Multiply!;
Divide!})
Description
{FileCombine} lets you copy all or part of a notebook into any area of the active notebook. If you use the "Copy"
option, it copies all or part of a notebook into the active notebook (starting at the selected cell). Omit Blocks to
combine an entire file. Use "Add," "Subtract," "Multiply," or "Divide" to perform mathematical operations; the
incoming data operates on existing data.
You can use {FileCombine?} or {FileCombine!} to display the Combine Files dialog box. {FileCombine?} lets you
manipulate the dialog box, whereas {FileCombine!} relies on the macro to manipulate it.
Parameters

Filenam
e

Name of the file to combine

Blocks Selection or selections within Filename to combine (optional)

{FileExit}
Syntax
FileExit([DoSave_ As _FileExit_DoSave__enum])
PerfectScript Syntax
FileExit ([DoSave?:Enumeration {Yes!; No!}])
Description
{FileExit} closes Quattro Pro. The optional argument DoSave? indicates whether to display a save prompt before
closing files with changes. Use 1, the default, to prompt for changes; 0 suppresses save prompts.
Parameters

DoSave? Whether to display a save prompt for modified files: no (0), yes (1);
1 is the default

 Related topics

FileExtract
Syntax
FileExtract(What As _FileExtract_What_enum, Blocks As String, FileName As String, [Option As
_FileExtract_Option_enum])
PerfectScript Syntax
FileExtract (What:Enumeration {Formulas!; Values!}; Blocks:String; Filename:String; [Option:Enumeration
{Confirm!; Replace!; Backup!}])
Description
{FileExtract} saves part of a notebook to a separate file, leaving the original file intact. Use "Formulas" to retain
formulas; use "Values" to convert formulas to values. The optional argument--"Replace," "Backup," or "Confirm"--
indicates how to treat an existing file with the same name (without displaying a prompt).
You can use {FileExtract?} or {FileExtract!} to display the Extract To File dialog box. {FileExtract?} lets you
manipulate the dialog box, whereas {FileExtract!} relies on the macro to manipulate it.
Parameters

Blocks Selection or selections to extract
Filenam
e

Name of the new file containing Blocks

FileImport
Syntax
 FileImport(FileName As String, Method As String)
PerfectScript Syntax
FileImport (Filename:String; Method:String)
Description
{FileImport} copies a text file into the active sheet of a notebook. Enter the option string that describes the type
of file to import.
You can use {FileImport?} or {FileImport!} to display the Text Import dialog box. {FileImport?} lets you
manipulate the dialog box, whereas {FileImport!} relies on the macro to manipulate it.
 Related topics

FileNew
Syntax
FileNew([TemplateName As String])
PerfectScript Syntax
FileNew ([TemplateName:String])
Description
{FileNew} opens a blank notebook or a notebook based on a QuickTemplate.
You can use {FileNew?} or {FileNew!} to display the New File dialog box. {FileNew?} lets you manipulate the
dialog box, whereas {FileNew!} relies on the macro to manipulate it.
FileNew opens only templates in the default QuickTemplates folder.
Example
The following macro opens a blank notebook:
{FileNew}
The following macro opens a new notebook based on the 7-Year Balloon Loan QuickTemplate:
{FileNew "7 Year Balloon Loan"}
Parameters

TemplateNa
me

The name of a QuickTemplate

{FileOpen}
Syntax
FileOpen(FileName As String, [Option As _FileOpen_Option_enum])
PerfectScript Syntax
FileOpen (Filename:String; [Option:Enumeration {Open!; Update!; None!}])
Description
{FileOpen} opens the specified file.
You can use {FileOpen?} or {FileOpen!} to display the Open File dialog box. {FileOpen?} lets you manipulate the
dialog box, whereas {FileOpen!} relies on the macro to manipulate it.
Parameters

Filename Name of the file to open.
Open as
Copy

Yes or No, (1 or 0), 0 is the default.

{FileRetrieve}
Syntax
 FileRetrieve(FileName As String, [Option As _FileRetrieve_Option_enum])
PerfectScript Syntax
FileRetrieve (Filename:String; [Option:Enumeration {Open!; Update!; None!}])
Description
{FileRetrieve} loads a notebook into the active notebook, replacing any existing data there.
You can use {FileRetrieve?} or {FileRetrieve!} to display the Retrieve File dialog box. {FileRetrieve?} lets you
manipulate the dialog box, whereas {FileRetrieve!} relies on the macro to manipulate it.
Parameters

Filenam Name of the file to retrieve

e

{FileSave}, {FileSaveAll}, and {FileSaveAs}
Syntax
FileSave([Option As _FileSave_Option_enum])
FileSaveAll([Mode As _FileSaveAll_Mode_enum])
FileSaveAs(FileName As String, [Option As _FileSaveAs_Option_enum], [reserved As Integer], [FileType As String])
PerfectScript Syntax
FileSave ([Option:Enumeration {Confirm!; Replace!; Backup!}])
FileSaveAll ([Mode:Enumeration {Confirm!; Replace!; Backup!}])
FileSaveAs (Filename:String; [Option:Enumeration {Confirm!; Replace!; Backup!}]; [reserved:Numeric];
[FileType:String])
Description
{FileSave} saves the active notebook, {FileSaveAll} saves all open notebooks, and {FileSaveAs} lets you save
the active notebook under another name (Filename). The optional argument--"Replace," "Backup," or "Confirm"--
indicates how to treat a previous version of the file (without displaying a prompt).
The optional <FileType> argument for {FileSaveAs} specifies the type of file to save and is equivalent to the
Save File As Type option in the Save File dialog box. If you do not specify a file type, the default is "QPW v6."
You can use {FileSaveAs?} or {FileSaveAs!} to display the Save File dialog box. {FileSaveAs?} lets you
manipulate the dialog box, whereas {FileSaveAs!} relies on the macro to manipulate it.
The following table shows the available file types. For file types with abbreviated names, a short description is
provided.

File
Types

Description

QPW v7/v8 Quattro Pro for Windows, version 7.0 and 8.0
QPW v6 Quattro Pro for Windows, version 6.0
QPW Quattro Pro for Windows, version 1.0 and 5.0
QP/DOS Quattro Pro for DOS
Excel
v5/v7

Excel, Version 5.0 and Version 7.0

Excel Excel, Version 4.0
1-2-3
v4/v5

1-2-3, Version 4 and Version 5

1-2-3 v3.x 1-2-3, Version 3x
1-2-3 v2.x 1-2-3, Version 2x
1-2-3 v1.0 1-2-3, Version 1.0
1-2-3 Ed. 1-2-3, Educational Version
Paradox
dBASE IV
dBASE III
dBASE II
Text tab-delimited text
DIF VisiCalc
SYLK Multiplan
HTML Hypertext Markup Language files, Version 3 (for distribution on

the Internet's World Wide Web)
Example
To close all files and save without confirmation, use this macro:
{FileSaveAll Replace}
{FileCloseAll 0}
Options

{FileSave <Replace|
Backup|Confirm>}

Saves the notebook to the name under which you last
saved it

{FileSaveAll <Replace| Saves the file over a previous version with the same name

Backup|Confirm>}
{FileSaveAs Filename,
<Replace | Backup |
Confirm>,, <FileType>}

Saves the notebook under a new name you specify

 Related topics

{FileSend}
Syntax
FileSend([FileName As String])
PerfectScript Syntax
FileSend ([Filename:String])
Description
{FileSend} lets you send notebook sheets via one of your mail systems.
Example
{FileSend MYSTATUS.WB3} sends the notebook MYSTATUS.WB3 to another user.
Options

{FileSend
<Filename>
}

Sends selected text or an entire notebook by e-mail

{ FileVersion_Retrieve }
Syntax
 FileVersion_Retrieve(Filename_ As String)
PerfectScript Syntax
FileVersion_Retrieve (Filename?:String)
Description
{FileVersion.Retrieve } retrieves any archived version of a file

{ FileVersion_Retrieve_Current }
Syntax
FileVersion_Retrieve_Current()
PerfectScript Syntax
FileVersion_Retrieve_Current ()
Description
{FileVersion.Retrieve_Current} retrieves the most current version of the file.

{ FileVersionSave }
Syntax
FileVersionSave()
PerfectScript Syntax
FileVersionSave ()
Description
{FileVersionSave} saves the current file as a different version.

{FLOATCOPY}
Syntax
 FloatCopy(UpperCell As String, xoffset As Double, yoffset As Double)
PerfectScript Syntax
FloatCopy (UpperCell:String; xoffset:Numeric; yoffset:Numeric)
Description
{FLOATCOPY} lets you copy a floating object in the active notebook window. The item to copy is selected using
{SELECTFLOAT}. The new position in {FLOATCOPY} is specified as a positive offset from a cell in the notebook.
To copy a floating chart to another notebook, specify a notebook as well as a cell for UpperCell.
Example
The following macro selects the floating chart Inserted1 and copies it to [SALES]A:C10.
{SELECTFLOAT Inserted1}
{FLOATCOPY [SALES]A:C10,0,0}
Parameters

UpperCell Cell containing the new upper-left corner of the floating object
xoffset Offset in twips from the left edge of UpperCell to the left edge of

the floating object
yoffset Offset in twips from the top edge of UpperCell to the top edge of

the floating object
 Related topics

{FLOATCREATE}
Syntax
 FloatCreate(type As String, UpperCell As String, xoffset As Double, yoffset As Double, LowerCell As String,
xoffset2 As Double, yoffset2 As Double, [TextOrStartCorner])
PerfectScript Syntax
FloatCreate (Type:String; UpperCell:String; xoffset:Numeric; yoffset:Numeric; LowerCell:String; xoffset2:Numeric;
yoffset2:Numeric; [TextOrStartCorner:Any])
Description
{FLOATCREATE} lets you create macro buttons, floating charts, or a draw layer objects (lines, arrows, rectangles,
rounded rectangles, ellipses, or text boxes) in the active notebook window. Use {CREATEOBJECT} to create
objects in dialog windows or chart windows.
All positions in {FLOATCREATE} are positive offsets from cells in the notebook containing the upper-left and
lower-right corners of the object.

 Notes

· If you need to modify the floating object after creating it, change the property settings immediately after
creation. It is selected then, so you will not need to click it or use {SELECTFLOAT}.

· You should also change the name at this time and document it for later use with {SELECTFLOAT}.

Example
The following macro creates a macro button that covers the cells A1..B2, then stores the name of the button in
A26. The button reads Save File:
{FLOATCREATE Button,A1,0,0,C3,0,0, "Save File"}
{GETPROPERTY A26, "Object_Name"}

The following macro creates a button 50 twips to the right and 50 twips below the upper-left corner of the button
in the previous example. It reads Open File:
{FLOATCREATE Button,A1,50,50,C3,50,50, "Open File"}

The following macro creates a floating chart that is offset 35 twips from the cells C2..E10, but the same size:
{GraphNew Chart3}
{FLOATCREATE Chart,C2,35,35,E10,35,35,"Chart3"}

The following macro creates a floating arrow over the cells B8..Dll . The arrow starts at the southwest corner of
the cells, and ends with an arrowhead at the northwest corner.
{FloatCreate Arrow,A:B8,0,0,A:D11,945,45,4}

The following macro creates a floating ellipse over the cells E10..E13, then fills the ellipse with a red color.
{FloatCreate Ellipse,A:E10,0,120,A:E13,945,240}
{Setproperty Fill_Color, "255,0,0"}

Parameters
Type Floating object to create: Chart, Button, Line, Arrow, Rect,

Rounded_Rect, Ellipse, or Text
UpperCell Cell containing the upper-left corner of the chart or macro button
xoffset Offset in twips from the left edge of UpperCell to the left edge of

the floating object
yoffset Offset in twips from the top edge of UpperCell to the top edge of

the floating object
LowerCell Cell containing the lower-right corner of the chart or macro

button
xoffset2 Offset in twips from the left edge of LowerCell to the right Edge of

the floating object
yoffset2 Offset in twips from the top edge of LowerCell to the bottom edge

of the floating object
Text For Chart, the named chart to display; for Button, the button text
StartCorne For Line or Arrow, a number representing the starting corner; 1 =

r northwest, 2 = northeast, 3 = southeast, 4 = southwest (for
example, an arrow pointing up and to the right would have a
StartCorner of 4)

 Related topics

{FLOATMOVE}
Syntax
 FloatMove(UpperCell As String, xoffset As Double, yoffset As Double)
PerfectScript Syntax
FloatMove (UpperCell:String; xoffset:Numeric; yoffset:Numeric)
Description
{FLOATMOVE} lets you move a floating object in the active notebook window. The item to move is selected using
{SELECTFLOAT}. The new position in {FLOATMOVE} is specified as a positive offset from a cell in the notebook.
To move a floating chart to another notebook, specify a notebook as well as a cell for UpperCell.
Example
The following macro selects the floating chart Inserted1 and moves it to [SALES]A:C10.
{SELECTFLOAT Inserted1}
{FLOATMOVE [SALES]A:C10,0,0}
Parameters

UpperCell Cell containing the new upper-left corner of the floating
object

xoffset Offset in twips from the left edge of UpperCell to the left
edge of the floating object

yoffset Offset in twips from the top edge of UpperCell to the top
edge of the floating object

 Related topics

{FloatOrder}
Syntax
{FloatOrder.Option}
PerfectScript Syntax
FloatOrder_Backward ()
FloatOrder_Forward ()
FloatOrder_ToBack ()
FloatOrder_ToFront ()
Description
{FloatOrder} works on selected objects to arrange layers of floating charts and other floating objects in the
notebook window.
Options

{FloatOrder.ToBack} Send the selected object to the back layer
{FloatOrder.Backwar
d}

Send the selected object back one layer

{FloatOrder.ToFront} Send the selected object to the front layer
{FloatOrder.Forward
}

Send the selected object forward one layer

{FLOATSIZE}
Syntax
FloatSize(UpperCell As String, xoffset As Double, yoffset As Double, LowerCell As String, xoffset2 As Double,
yoffset2 As Double)
PerfectScript Syntax
FloatSize (UpperCell:String; xoffset:Numeric; yoffset:Numeric; LowerCell:String; xoffset2:Numeric;
yoffset2:Numeric)
Description
{FLOATSIZE} lets you resize a floating object in the active notebook window. The item to resize is selected using
{SELECTFLOAT}.
All positions in {FLOATSIZE} are positive offsets from a cell in the notebook.
Parameters

UpperCell Cell containing the new upper-left corner of the chart or macro
button

xoffset Offset in twips from the left edge of UpperCell to the left edge of
the floating object

yoffset Offset in twips from the top edge of UpperCell to the top edge of
the floating object

LowerCell Cell containing the new lower-right corner of the chart or macro
button

xoffset2 Offset in twips from the left edge of LowerCell to the right edge of
the floating object

yoffset2 Offset in twips from the top edge of LowerCell to the bottom edge
of the floating object

 Related topics

{FLOATTEXT}
Syntax
 FloatText(String As String)
PerfectScript Syntax
FloatText (String:String)
Description
{FLOATTEXT} replaces the text in the selected text box with the specified string. The text box can be on a
notebook sheet or in a chart window.
Example
The following macro selects a floating text box named Text1 and replaces the text in it with "Quarterly Sales
Report."
{SELECTFLOAT Text1}
{FLOATTEXT "Quarterly Sales Report"}
Parameters

String String of characters used to replace text in the text box
 Related topics

{Form}
Syntax
 Form([Block_ As String])
PerfectScript Syntax
Form(Block?:<Block>)
Description
Equivalent to Tools Database Tools
 Form. Lets you create forms for entering and finding data records without programming.

Parameter
Block A database block including field labels and records

 Related topics

{FOURIER}
Syntax
 FOURIER(InBlock As String, OutBlock As String, [Inverse_ As _FOURIER_Inverse__enum])
PerfectScript Syntax
FOURIER (InBlock:String; OutBlock:String; [Inverse?:Enumeration {Yes!; No!}])
Description
{FOURIER} performs a fast Fourier transformation on cells of data. {FOURIER} is equivalent to the Fourier
analysis tool.
Parameters

InBlock One or more numeric cell values representing the input cells; can
be real or complex numbers; the number of values in InBlock must
be a power of 2 between 2 and 1024 inclusive (for example, 2, 4,
8, 16,...); if the number of values in InBlock does not equal a
power of 2, pad the cells with additional zeros

OutBlock Upper-left cell of the output cells
Inverse 0 to perform a Fourier transformation; 1 to perform the inverse

Fourier transformation; the default is 0
 Related topics

{Frequency}
Syntax
{Frequency.Option}
PerfectScript Syntax
Frequency_Bin_Block (Block:String)
Frequency_Go ()
Frequency_Reset ()
Frequency_Value_Block (Block:String)
Description
{Frequency} counts the number of cases in the value Block that fall within each interval specified in the bin
Block. Use {Frequency.Bin_Block} and {Frequency.Value_Block}, then {Frequency.Go}. You can use
{Frequency.Reset} before or after the other commands to clear current settings.
You can use {Frequency?} or {Frequency!} to display the Frequency Tables dialog box. {Frequency?} lets you
manipulate the dialog box, whereas {Frequency!} relies on the macro to manipulate it.
Example
The following macro counts the data in cells C1..E13 of sheet A and groups it according to the intervals given in
G1..G7; frequencies display in column H.
{Frequency.Value_Block A:C1..E13}
{Frequency.Bin_Block A:G1..G7}
{Frequency.Go}
Options

{Frequency.Bin_Block
Block}

Specifies cells that define value intervals or "bins" of
values to be counted

{Frequency.Go} Accepts the frequency settings
{Frequency.Reset} Clears all settings
{Frequency.Value_Bloc
k Block}

Specifies the cells or list of cells containing values to be
counted

{FTESTV}
Syntax
FTESTV(InBlock1 As String, InBlock2 As String, OutBlock As String, [Labels_ As _FTESTV_Labels__enum])
PerfectScript Syntax
FTESTV (InBlock1:String; InBlock2:String; OutBlock:String; [Labels?:Enumeration {Yes!; No!}])
Description
{FTESTV} performs a two-sample F-test to compare population variances. {FTESTV} is equivalent to the F-Test
analysis tool.
Parameters

InBlock1 The first input cells containing a column or row of numeric values
InBlock2 The second input cells containing a column or row of numeric

values
OutBlock Upper-left cell of the output cells
Labels 1 if labels are located in the first column or row of the input cells; 0

if the input cells do not contain labels; the default is 0
 Related topics

{FUNCTIONS}
Syntax
Functions()
Description
{FUNCTIONS} is equivalent to the Functions key Alt+F3, which displays a list of @functions to enter in the input
line.
 Related topics

{GetCellFormula}
Syntax
GetCellFormula(Cell As String) As String
PerfectScript Syntax
GetCellFormula (Cell: String)
Description
Returns the unparsed form of a referenced formula. If the cell is a number, it will return the numeric text. If the
cell is a label, it will be prefixed by the prefix char (', ", or ^). If the cell is a formula, it will return the formula
itself.
Parameter

Cell The cell
 Related topics

{GetCellValue}
Syntax
GetCellValue(Cell As String) As String
PerfectScript Syntax
GetCellValue (Cell: String)
Description
Retrieves the cell contents as it is displayed, not as its value. If the cell contains a formula, it returns the result of
the formula, including its numeric format.
Parameter

Cell The cell
 Related topics

{GETDIRECTORYCONTENTS}
Syntax
GetDirectoryContents(Block As String, [Path As String])
PerfectScript Syntax
GetDirectoryContents (Block:String; [Path:String])
Description
{GETDIRECTORYCONTENTS} enters an alphabetized list of file names (determined by the path and DOS wildcard
specified by Path) into Block; if Path is not included, {GETDIRECTORYCONTENTS} lists all the files in the current
directory. Path must contain a DOS wildcard like *.BAT or *.*.
Example
{GETDIRECTORYCONTENTS A2,"C:*.*"} fills column A (starting at row 2) with a list of the files in the root

directory of drive C.
{GETDIRECTORYCONTENTS A2..C7,"C:\COREL\SUITE8*.*"} fills the cells A2..C7 with a list of the files in the

Quattro Pro directory on drive C. The first filename is stored in A2, the second in B2, and so on. If more than
18 files are found, the cells are only filled with the first 18.

{GETDIRECTORYCONTENTS C7,"C:\COREL\SUITE8\SAMPLES*.W??"} fills column C (starting at row 7) with a list of
the files in the COREL\SUITE8\SAMPLES directory on drive C that have file extensions beginning with W.
Parameters

Block Cells to enter list of files into
Path Path and wildcard specifying the list (optional)

Note
¨ If Block is one cell, {GETDIRECTORYCONTENTS} overwrites any information beneath the cell (if it finds more

than one file). To restrict the file names to specific cells, set Block to more than one cell.
 Related topics

{GetObjectPageContents}
Syntax
GetObjectPageContents(Block_ As String, [Object_ As String])
PerfectScript Syntax
GetObjectPageContents(Block?: Range, Objects?: ObjectType)
Description
{GetObjectPageContents} stores a list of the objects contained on the Object Page on the Quattro Pro desktop in
Block. Objects are charts, dialogs, maps, and slideshows.
Parameters

Block Cells in which to store object names
ObjectTyp
e

All (default), Dialog, Chart, Map, and SlideShow.

Tip
¨ If Block is one cell, {GetObjectPageContents} overwrites any information beneath the cell if it finds more than

one open window. To restrict the window names to specific cells, set Block to more than one cell.

{GETOBJECTPROPERTY}
Syntax
GetObjectProperty(Cell As String, ObjectProperty As String)
PerfectScript Syntax
GetObjectProperty (Cell:String; ObjectProperty:String)
Description
{GETOBJECTPROPERTY} lets you view objects in Quattro Pro without using the mouse, including objects normally
not selectable (like the application title bar). You can also study selectable objects, such as blocks and
annotations, with {GETPROPERTY}. See {SETOBJECTPROPERTY} for the syntax of Object.Property.
Example
{GETOBJECTPROPERTY A23,"Active_Notebook.Zoom_Factor"} stores the Zoom Factor
property's current setting in cell A23.
{GETOBJECTPROPERTY B42,"/File/Exit.Enabled"} stores whether Exit is
operational or not in the cell B42.
Parameters

Cell Cell in which to store the property setting
Object Name of the object to study
Property Property of the object to study

 Related topics

{GETPROPERTY}
Syntax
GetProperty(Cell As String, PropertyName As String)
PerfectScript Syntax
GetProperty (Cell:String; PropertyName:String)
Description
{GETPROPERTY} lets you study the property settings of whatever object is selected. Property is the property to
view (see Property Reference for a list of properties); its setting is stored in Cell.
Example
{GETPROPERTY A23,"Text_Color"} stores the Text Color setting of the selected object in the cell A23.
{GETPROPERTY B42,"Box_Type"} stores the border style of the selected object in cell B42.
Parameters

Cell Cell in which to store the property setting
Property Property of the selected object to study

 Related topics

{GETWINDOWLIST}
Syntax
 GetWindowList(Block As String)
PerfectScript Syntax
GetWindowList (Block:String)
Description
{GETWINDOWLIST} stores a list of the windows open on the Quattro Pro desktop in Block, including dialog
windows and chart windows. Windows currently hidden are not included.
If Block is one cell, {GETWINDOWLIST} overwrites any information beneath the cell (if it finds more than one
window open). To restrict the window names to specific cells, set Block to more than one cell.
Example
{GETWINDOWLIST A2..C5} stores a list of open windows in the cells A2..C5. The first window name is stored in
A2, the second in B2, and so on. If more than twelve windows are open, only the first twelve are stored in the
cells.
Parameters

Block Cells to store window names in
 Related topics

{GraphCopy}
Syntax
 GraphCopy(FromGraph As String, DestGraph As String, [Style_ As _GraphCopy_Style__enum], [Data_ As
_GraphCopy_Data__enum], [Annotations_ As _GraphCopy_Annotations__enum])
PerfectScript Syntax
GraphCopy (FromGraph:String; DestGraph:String; [Style?:Enumeration {Yes!; No!}]; [Data?:Enumeration {Yes!;
No!}]; [Annotations?:Enumeration {Yes!; No!}])
Description
{GraphCopy} copies the style, data, and/or annotation objects from one chart to another (within a notebook or
between notebooks).
You can use {GraphCopy?} or {GraphCopy!} to display the Paste Special Chart dialog box. {GraphCopy?} lets
you manipulate the dialog box, whereas {GraphCopy!} relies on the macro to manipulate it.
Parameters

FromChart Chart containing the style, data, or annotation objects to copy
DestChart New chart (the copy)
Style? Whether to copy properties that affect the appearance of the

chart: yes (1), no (0)
Data? Whether to copy chart data: yes (1), no (0)
Annotations? Whether to copy annotation objects: yes (1), no (0)

{GraphDeactivate}
Syntax
GraphDeactivate()
Description
{GraphDeactivate} deactivates a floating chart that has been activated for editing.
Example
The following macro activates a floating chart for editing, creates a rectangle in the chart, makes a copy of the
rectangle, then deactivates editing.
{GraphEdit Chart1, 1}
{CreateObject Rect,147,176,416,427}
{Duplicate 269,338}
{GraphDeactivate}
 Related topics

{GraphDelete}
Syntax
GraphDelete(Name As String)
PerfectScript Syntax
GraphDelete (Name:String)
Description
{GraphDelete} deletes the specified chart from the active notebook.
You can use {GraphDelete?} or {GraphDelete!} to display the Delete Chart dialog box. {GraphDelete?} lets you
manipulate the dialog box, whereas {GraphDelete!} relies on the macro to manipulate it.
Parameters

Name Name of the chart to delete

{GraphEdit}
Syntax
GraphEdit(Name As String, [InPlace_ As _GraphEdit_InPlace__enum])
PerfectScript Syntax
GraphEdit (Name:String; [InPlace?:Enumeration {Yes!; No!}])
Description
{GraphEdit} displays the specified chart in a chart window for editing. Use the InPlace? argument to edit a
floating chart on the notebook sheet.
You can use {GraphEdit?} or {GraphEdit!} to display the Edit Chart dialog box. {GraphEdit?} lets you
manipulate the dialog box, whereas {GraphEdit!} relies on the macro to manipulate it.
Example
The following macro selects the floating chart named Inserted1 and then activates its source chart (Chart1) for
editing on the notebook sheet.
{SelectFloat Inserted1}
{GraphEdit Chart1,1}
Parameters

Name Name of the chart to edit
InPlace? Whether to edit the chart in place on a

notebook sheet; 0 = no, 1 = yes; the default is
0

{GraphGallery}
Syntax
GraphGallery(GraphStyle As String, ColorScheme As String)
PerfectScript Syntax
GraphGallery (GraphStyle:String; ColorScheme:String)
Description
{GraphGallery} applies a chart style and color scheme to selected charts.
Available choices for ColorScheme are:
¨ No change Pastels
¨ Default Fire and Ice
¨ Grayscale Bright and Bold

¨ Icy Blues Color Washes
¨ Deep Reds Black and White Patterns
¨ Autumn Leaves Color Patterns
¨ Tangerine Tiled Men
You can use {GraphGallery?} or {GraphGallery!} to display the Chart Gallery dialog box. {GraphGallery?} lets
you manipulate the dialog box, whereas {GraphGallery!} relies on the macro to manipulate it.
Example
The following macro selects a 3-D Bar chart style and a "Tangerine" color scheme:
{GraphGallery "3dbar","Tangerine"}
Parameters

ChartStyle The style of chart; see {GraphSettings.Type} for a list of chart
types

ColorSchem
e

The color scheme used for the chart

{GraphNew}
Syntax
GraphNew(Name As String, [UseCurrentBlock_ As _GraphNew_UseCurrentBlock__enum])
PerfectScript Syntax
GraphNew (Name:String; [UseCurrentBlock?:Enumeration {Yes!; No!}])
Description
{GraphNew} creates a new chart and displays it in a chart window. If UseCurrentBlock? is 1, any selected data is
shown in the chart; if it is 0, {GraphNew} creates a new chart without data.
You can use {GraphNew?} or {GraphNew!} to display the New Chart dialog box. {GraphNew?} lets you
manipulate the dialog box, whereas {GraphNew!} relies on the macro to manipulate it.
Parameters

Name Name of the new chart
UseCurrentBloc
k?

Whether to chart the current selected cells; 0 = no, 1 = yes;
the default is 0name of the new chart

{GraphSettings_Check}
Syntax
 GraphSettings_Check()
PerfectScript Syntax
GraphSettings_Check ()
Description
Example

{GraphSettings_Reset}
Syntax
 GraphSettings_Reset()
PerfectScript Syntax
GraphSettings_Reset ()
Description
Example

{GraphSettings.Titles}
Syntax
GraphSettings_Titles(Main As String, Sub As String, XAxis As String, YAxis As String, Y2Axis As String)
PerfectScript Syntax
GraphSettings_Titles (Main:String; Sub:String; XAxis:String; YAxis:String; Y2Axis:String)
Description
{GraphSettings.Titles} sets the titles of the active chart (or selected floating chart or chart icon). Each argument
is a string; to reset a title, use an empty string ("").
Example
The following macro command displays the chart Profit99 in a chart window and sets its main title and subtitles.
The empty strings ("") indicate that there are no axis titles.
{GraphEdit Profit99}
{GraphSettings.Titles "Projected Profits","1999","","",""}
Parameters

Main Main title of the chart
Sub Title appearing below the main title of the chart
X-Axis Title of the chart's x axis
Y-Axis Title of the chart's y axis
Y2-Axis Title of the chart's secondary y axis

 Related topics

{GraphSettings_Type}
Syntax
GraphSettings_Type(type As String)
PerfectScript Syntax
GraphSettings_Type (Type:String)
Description
{GraphSettings.Type} lets you specify how the data in a chart is displayed. It affects the active chart (or chart
icon or floating chart). Class specifies the class of chart type being used. Class can be one of six settings:
Area/Line, Bar, Stacked Bar, Pie, Specialty, and Text.
These are the chart types you can choose:

{GraphSettings.Type "3D Area,Area/Line"}
{GraphSettings.Type "3D Marker,Area/Line"}
{GraphSettings.Type "3D Ribbon,Area/Line"}
{GraphSettings.Type "3D Unstacked area,Area/Line"}
{GraphSettings.Type "Area,Area/Line"}
{GraphSettings.Type "Line,Area/Line"}
{GraphSettings.Type "Rotated area,Area/Line"}
{GraphSettings.Type "Rotated line,Area/Line"}
{GraphSettings.Type "2DHalf bar,Bar"}
{GraphSettings.Type "3D Bar,Bar"}
{GraphSettings.Type "3D Step,Bar"}
{GraphSettings.Type "Area_bar,Bar"}
{GraphSettings.Type "Bar,Bar"}
{GraphSettings.Type "Hilo_bar,Bar"}
{GraphSettings.Type "Line_bar,Bar"}
{GraphSettings.Type "Multiple bar,Bar"}
{GraphSettings.Type "R2D bar,Bar"}
{GraphSettings.Type "R2DHalf bar,Bar"}
{GraphSettings.Type "R3D bar,Bar"}
{GraphSettings.Type "Variance,Bar"}
{GraphSettings.Type "3D Column,Pie"}
{GraphSettings.Type "3D Doughnut,Pie"}
{GraphSettings.Type "3D Pie,Pie"}
{GraphSettings.Type "Column,Pie"}
{GraphSettings.Type "Doughnut,Pie"}
{GraphSettings.Type "Multiple 3D columns,Pie"}
{GraphSettings.Type "Multiple 3D pies,Pie"}
{GraphSettings.Type "Multiple columns,Pie"}
{GraphSettings.Type "Multiple pies,Pie"}
{GraphSettings.Type "Pie,Pie"}
{GraphSettings.Type "3D Contour,Specialty"}
{GraphSettings.Type "3D ShadedSurface,Specialty"}
{GraphSettings.Type "3D Surface,Specialty"}
{GraphSettings.Type "HiLo,Specialty"}
{GraphSettings.Type "Polar radar,Specialty"}
{GraphSettings.Type "XY,Specialty"}
{GraphSettings.Type "100 stacked bar,Stacked Bar"}
{GraphSettings.Type "100 stacked line,Stacked Bar"}
{GraphSettings.Type "3D100 stacked bar,Stacked Bar"}
{GraphSettings.Type "3D Stacked bar,Stacked Bar"}
{GraphSettings.Type "R2D100 stacked bar,Stacked Bar"}
{GraphSettings.Type "R2D100 stacked line,Stacked Bar"}
{GraphSettings.Type "R2D stacked bar,Stacked Bar"}
{GraphSettings.Type "R2D stacked line,Stacked Bar"}
{GraphSettings.Type "R3D100 stacked bar,Stacked Bar"}
{GraphSettings.Type "R3D stacked bar,Stacked Bar"}
{GraphSettings.Type "Stacked bar,Stacked Bar"}
{GraphSettings.Type "Stacked line,Stacked Bar"}
{GraphSettings.Type "Blank,Text"}

{GraphSettings.Type "Bullet,Text"}
Example
{GraphSettings.Type "3-D Pie,Pie"} make the active chart a 3-D pie chart.
 Related topics

{GraphView}
Syntax
GraphView(GraphName As String, [MoreGraphName])
PerfectScript Syntax
GraphView (GraphName:String; {[MoreGraphName:String]})
Description
{GraphView} displays a full-screen chart (or series of charts). {GraphView} without an argument displays the
active chart (or chart icon or floating chart).
You can use {GraphView?} or {GraphView!} to display the View Chart dialog box. {GraphView?} lets you
manipulate the dialog box, whereas {GraphView!} relies on the macro to manipulate it.
Example
The following macro displays the named charts Profit90 through Profit94.
{GraphView Profit90,Profit91,Profit92,Profit93,Profit94}

Parameters
ChartName
1

Name of the first chart to display
(optional)

ChartName
2

Name of the second chart to display
(optional)

{GraphWindow}
Syntax
{GraphWindow.Property}
PerfectScript Syntax
GraphWindow_Aspect_Ratio (Mode:String)
GraphWindow_Grid (Settings:String)
Description
{GraphWindow} is equivalent to right-clicking the title bar of a chart window to set its Aspect Ratio or Grid
properties.
{GraphWindow.Aspect_Ratio Option} sets the aspect ratio of the active chart. Option can be one of the following
settings: "35mm Slide," "Floating Chart," "Full Extent," "Printer Preview," or "Screen Slide."
{GraphWindow.Grid GridSize,DisplayGrid,SnapToGrid} sets the grid size of the active chart window. Use GridSize
to specify the percent of chart window between grid points; DisplayGrid specifies whether the grid is visible;
SnapToGrid specifies whether the grid is active.
Example
This macro sets up a 10 by 10 grid, displays the grid, and enables it.
{GraphWindow.Grid "10,Yes,Yes"}

{Group}
Syntax
{Group.Option}
PerfectScript Syntax
Group_Define (GroupName:String; StartPage:String; EndPage:String)
Group_Delete (GroupName:String)
Group_ResetNames ()
Description
{Group} creates and deletes sheet groups.
Once you have defined a sheet group, you can use {Notebook.Group_Mode "On"} to activate Group mode. Use
"Off" to cancel Group mode.
You can use {Group?} or {Group!} to display the Define/Modify Group dialog box. {Group?} lets you manipulate
the dialog box, whereas {Group!} relies on the macro to manipulate it.
Options

{Group.Define
GroupName, StartPage,
EndPage}

Creates sheet groups

{Group.Delete
GroupName}

Deletes the currently
selected sheet group

{Group.ResetNames} Clears all group names
in the notebook

{GroupObjects}
Syntax
GroupObjects()
Description
{GroupObjects} groups selected objects in a chart window so they can be treated as one object in subsequent
operations. Use {UngroupObjects} to treat them independently again.
 Related topics

{HELP}
Syntax
Help()
Description
{HELP} is equivalent to the Help key, F1. It displays a help topic.
 Related topics

{HideErrorMessage}
Syntax
HideErrorMessage()
PerfectScript Syntax
HideErrorMessage ()
Description
Suppresses the ability for Quattro Pro to show an error message, if one is warranted.
 Note

¨ This command is obsolete.
 Related topics

{HISTOGRAM}
Syntax
 HISTOGRAM(InBlock As String, OutBlock As String, [BinBlock As String], [Pareto_ As
_HISTOGRAM_Pareto__enum], [Cum_ As _HISTOGRAM_Cum__enum])
PerfectScript Syntax
HISTOGRAM (InBlock:String; OutBlock:String; [BinBlock:String]; [Pareto?:Enumeration {Yes!; No!}];
[Cum?:Enumeration {Yes!; No!}])
Description
{HISTOGRAM} calculates the probability and cumulative distributions for a sample population, based on a series
of bins. {HISTOGRAM} is equivalent to the Histogram analysis tool.
Parameters

InBlock Input cells containing one or more columns or rows of numeric
values; the cells must not contain labels

OutBlock Upper-left cell of the output cells
BinBlock Set of numbers defining the bin ranges; BinBlock numbers must be

in ascending order; if BinBlock is omitted, bins are distributed
evenly from the minimum to the maximum values in InBlock, with
the number of bins equal to the square root of the number of
values in InBlock

Pareto 1 to arrange the output table in both descending frequency order
and ascending BinBlock order; 0 to arrange the output table in
ascending BinBlock order; the default is 0

Cum Flag indicating whether to generate a column in OutBlock showing
cumulative percentages: yes (1) or no (0); the default is 0

 Related topics

{HLINE}
Syntax
HLine(Distance As Integer)
PerfectScript Syntax
HLine (Distance:Numeric)
Description
{HLINE} scrolls the active notebook horizontally by Distance columns. If the number is positive, it scrolls right; if
negative, it scrolls left. {HLINE} does not move the selector; only the view of the notebook is altered, just as if
the scroll bars were used.
Example
{HLINE 10} scrolls the display 10 columns to the right.
{HLINE -5} scrolls the display 5 columns to the left.
Parameters

Distance Distance in columns to scroll the active notebook horizontally
 Related topics

{HPAGE}
Syntax
 HPage(Distance As Integer)
PerfectScript Syntax
HPage (Distance:Numeric)
Description
{HPAGE} scrolls the active notebook horizontally by Distance screens. If the number is positive, it scrolls right; if
negative, it scrolls left. {HPAGE} does not move the selector; only the view of the notebook is altered.
Parameters

Distance Distance in screens to scroll the active notebook
horizontally

 Related topics

{IMFORMAT}
Syntax
IMFORMAT(Format As Integer)
PerfectScript Syntax
IMFORMAT (Format:Numeric)
Description
{IMFORMAT} specifies how complex numbers display in the active notebook, and returns a label showing the
selected format.
Example
{IMFORMAT 1} returns "x+iy"
{IMFORMAT 2} returns "x+jy"

Parameters
Forma
t

Flag indicating what suffix and format to use for imaginary coefficient
of complex number; the default is 1; 1 = x + yi, 2 = x + yj, 3 = x + iy,
4 = x + jy

{ImportGraphic}
Syntax
ImportGraphic(FileName As String)
PerfectScript Syntax
ImportGraphic (Filename:String)
Description
{ImportGraphic} imports graphics files into a chart window.
You can use {ImportGraphic?} or {ImportGraphic!} to display the Insert Image dialog box. {ImportGraphic?} lets
you manipulate the dialog box, whereas {ImportImage!} relies on the macro to manipulate it.
Parameters

Filenam
e

Name of the bitmap or other graphics file to import

{ImportGraphic_Clipart}
Syntax
ImportGraphic_ClipArt()
PerfectScript Syntax
ImportGraphic Clipart()
Description
Equivalent to Insert Graphics
 Clipart

{INS}, {INSERT}, {INSOFF}, and {INSON}
Description
{INS} and {INSERT} toggle the Ins key on or off. {INSOFF} is equivalent to Ins off, and {INSON} to Ins on.

{INDICATE}
Syntax
Indicate([String As String])
PerfectScript Syntax
Indicate ([String:String])
Description
{INDICATE} sets the mode indicator in the lower-right corner of the screen to read whatever is given as String. If
String is longer than seven characters, only the first seven are used. To restore the mode indicator to its normal
setting, use {INDICATE} with no arguments. To hide the mode indicator, use {INDICATE ""}.
Example
{INDICATE "Save!"} changes the indicator to read Save!.
{INDICATE " Go! "} changes the indicator to read Go! with a space preceding and following it.
{INDICATE E14} changes the indicator to E14 because cell references are ignored.
{INDICATE} restores the normal mode indicator.

Parameters
String Any seven-character string

 Related topics

{InsertBreak}
Syntax
InsertBreak()
PerfectScript Syntax
InsertBreak ()
Description
Inserts a new line and a hard page break into notebook print blocks at the current selector location.

{InsertObject}
Syntax 1: Embedding/Linking from a File
InsertObject(ObjectTypeOrFilename As String, [DisplayAsIcon_ As _InsertObject_DisplayAsIcon__enum], [Linked_

As _InsertObject_Linked__enum])
Syntax 2: Embedding a New Object
{InsertObject ObjectType, <DisplayAsIcon?(0|1)>}
PerfectScript Syntax
InsertObject (ObjectTypeOrFilename:String; [DisplayAsIcon?:Enumeration {Yes!; No!}]; [Linked?:Enumeration
{Yes!; No!}])
Description
{InsertObject} inserts an OLE object into the active notebook without using the Clipboard.
You can use {InsertObject?} or {InsertObject!} to display the Insert Object dialog box. {InsertObject?} lets you
manipulate the dialog box, whereas {InsertObject!} relies on the macro to manipulate it.
Example
This macro inserts a picture created in Paintbrush into the active notebook.

{InsertObject "Paintbrush Picture"}

Parameters 1
Filename File that you want to link/embed as an object
DisplayAsIco
n

Whether to display the object as an icon; 0 to show the object
as it looks in the server application; 1 to display the object as
an icon

Linked? Whether to link to the file; 0 to not link; 1 to link; the default is
0

Parameters 2
ObjectType Type of object to insert (the name of an OLE server)
DisplayAsIco
n

Whether to display the object as an icon; 0 to show the object
as it looks in the server application; 1 to display the object as
an icon

{InsertObject_DrawPicture}
Syntax
InsertObject_DrawPicture()
PerfectScript Syntax
InsertObject_DrawPicture ()
Description
Example

{InsertObject_TextArt}
Syntax
 InsertObject_TextArt()
PerfectScript Syntax
InsertObject_TextArt ()
Description
Example

{InsertPageBreak}
Syntax
{InsertPageBreak.Option}
PerfectScript Syntax
InsertPageBreak_Create(Row As Integer, Column As Integer)
 InsertPageBreak_Delete(Row As Integer, Column As Integer)
Description
{InsertPageBreak.Create} inserts a page break above Row# and to left of Column#.
{InsertPageBreak.Delete} deletes the current PageBreak above Row# and to left of Column#.
Options

{InsertPageBreak.Create
Row#, Column#}

Creates a hard page break to start a
new page

{InsertPageBreak.Delete
Row#, Column#}

Deletes a hard page break

{INSPECT}
Syntax
Inspect()
Description
{INSPECT} is equivalent to the Inspect key, F12. It displays an Object Inspector for the current object.
 Related topics

{Invert}
Syntax
{Invert.Option}
PerfectScript Syntax
Invert_Destination(Block As String)
Invert_Go()
Invert_Source(Block As String)
Description
{Invert} inverts a square matrix (indicated by {Invert.Source Block}) and stores the invert matrix in other cells
(indicated by {Invert.Destination Block}). Use {Invert.Go} after the other two matrix-inversion command
equivalents to complete the operation.
You can use this command equivalent with {Multiply.Option} to solve sets of linear equations.
You can use {Invert?} or {Invert!} to display the Matrix Invert dialog box. {Invert?} lets you manipulate the
dialog box, whereas {Invert!} relies on the macro to manipulate it.
Options

{Invert.Destinat
ion Block}

Specifies the upper-left cell of the area where you want to
write the inverted matrix

{Invert.Go} Inverts the selected matrix
{Invert.Source
Block}

Specifies the matrix you want to invert

 Related topics

{IsAutoObj}
Syntax
IsAutoObj(Object As String)
PerfectScript Syntax
IsAutoObj (Object: String)
Description
Parameter

Object

{LET}
Syntax
Let(Cell As String, Value)
PerfectScript Syntax
Let (Cell:String; Value:Any)
Description
With {LET}, you can enter a value into Location without moving to it. {LET} enters the value or string you
specify with Value in Location.
You can use the optional Type argument to specify whether to store Value as an actual number or as a string. If
you specify a formula as a string, the formula is written into Location as a string, not the resulting value. For
example, {LET A1,B3*23:string} stores the formula B3*23 as a label in cell A1. If you omit Type, Quattro Pro tries
to store the value as a numeric value; if unsuccessful, it stores the value as a string.
Location must be a cell address or cell name; you can use functions such as @CELLPOINTER as a Location in
{LET} commands only if they return a cell address or cell name.
Value cannot be an @ARRAY formula. {LET} does not not enter array values. Use {PUTCELL} or {PUTCELL2} to
enter array values.
You can use {LET} to invoke add-in @functions or macros contained in DLLs. Specify the add-in as Value, using
this syntax for functions:
@dllname.functionname(functionargument1, functionargument2, ...)

For example, this statement calls the @function MEDIAN, included in DLL Stats, with a five-item list as an
argument and stores the result in Location G6:
{LET G6,@Stats.MEDIAN(2,4,6,8,10)}

The macro syntax is identical:
@dllname.macroname(macroargument1, macroargument2, ...)

Example
{LET(@CELLPOINTER("address")),99} makes the value of the active cell 99.
The examples below assume A1 contains the label 'Dear, A2 contains the label 'Sir, and A3 contains the value
25. The result is shown to the right of each {LET}.
\M {LET F1,25} 25

{LET F2,A3} 25
{LET F3,+A1&""&A2} Dear Sir
{LET F4,+A1&""&A2:value} Dear Sir
{LET F5,+A1&""&A2:string} +A1&""&A2
{LET F6,+A1&A3} ERR (because A3 is a value)

Parameters
Location Cell in which to store the specified value
Value Numeric or string value to be stored in Location
Type String or value; string (or s) stores the value or formula as a label,

and value (or v) stores the actual value or value resulting from a
formula (optional)

 Related topics

{Links}
Syntax
{Links.Option}
PerfectScript Syntax
Links_Change(OldName As String, NewName As String)
Links_Delete(LinkName As String)
Links_Open(LinkName As String)
 Links_Refresh(LinkName As String)
Description
{Links.Option} refreshes, changes, or deletes links in the active notebook.
LinkName is the name of the file being linked to. You can set LinkName to * to affect all links in the active
notebook. If LinkName is omitted, the dialog box that normally performs the operation appears (and is under
macro control; use {PAUSEMACRO} to pass control to the user).
Example
{Links.Refresh *} refreshes all links in the active notebook.
The following macro displays the Open Links dialog box and lets you select the name of a linked notebook to
open.
{Links.Open}
{PAUSEMACRO}
Options

{Links.Change OldName,
NewName}

Switches links from one file to another

{Links.Delete LinkName|
} (= all links)

Deletes notebook links

{Links.Open LinkName|
} (= all links)

Opens files linked to the active notebook

{Links.Refresh
LinkName|*}
(* = all links)

Refreshes links to unopened files

{MACROS}
Syntax
Macros()
Description
{MACROS} is equivalent to the Macros key, Shift+F3, which displays a menu of macro commands to type into
the input line.
 Related topics

{MapExpert}
Syntax
MapExpert()
Description
{MapExpert} displays the first Map Expert dialog box. The macro has no arguments.

{MCORREL}
Syntax
MCORREL(InBlock As String, OutBlock As String, [Grouped As String], [Labels_ As _MCORREL_Labels__enum])
PerfectScript Syntax
MCORREL (InBlock:String; OutBlock:String; [Grouped:String]; [Labels?:Enumeration {Yes!; No!}])
Description
{MCORREL} computes the correlation matrix between two or more data sets. {MCORREL} is equivalent to the
Correlation analysis tool.
Parameters

InBlock Input cells containing two or more sets of numeric data arranged
in columns or rows

OutBlock Upper-left cell of the output cells
Grouped "C" to group results by column or "R" to group results by row; the

default is "C"
Labels 1 if labels are located in the first column or row of the input cells; 0

if the input cells do not contain labels; the default is 0
 Related topics

{MCOVAR}
Syntax
MCOVAR(InBlock As String, OutBlock As String, [Grouped As String], [Labels_ As _MCOVAR_Labels__enum])
PerfectScript Syntax
MCOVAR (InBlock:String; OutBlock:String; [Grouped:String]; [Labels?:Enumeration {Yes!; No!}])
Description
{MCOVAR} returns the covariance matrix between two or more data sets. {MCOVAR} is equivalent to the
Covariance analysis tool.
Parameters

InBlock Input cells containing two or more sets of numeric data arranged in
columns or rows

OutBloc
k

upper-left cell of the output cells

Grouped "C" to group results by column or "R" to group results by row; the
default is "C"

Labels 1 if labels are located in the first column or row of the input cells; 0
if the input cells do not contain labels; the default is 0

 Related topics

{MOVEAVG}
Syntax
MOVEAVG(InBlock As String, OutBlock As String, Interval As Integer, [StdErrs_ As _MOVEAVG_StdErrs__enum])
PerfectScript Syntax
MOVEAVG (InBlock:String; OutBlock:String; Interval:Numeric; [StdErrs?:Enumeration {Yes!; No!}])
Description
{MOVEAVG} returns a moving average for a specified Interval based on the values for the preceding periods in
InBlock. {MOVEAVG} is equivalent to the Moving Average analysis tool.
Parameters

InBlock Input cells containing a single column or row with at least four
numeric values; the cells must not contain labels

OutBlock Upper-left cell of the output cells
Interval Number of values to include in the moving average; the default is

3
StdErrs Flag indicating whether to include standard error values in the

OutBlock: yes (1) or no (0); the default is 0
 Related topics

{MOVETO}
Syntax
MoveTo(x As Double, y As Double)
PerfectScript Syntax
MoveTo (x:Numeric; y:Numeric)
Description
{MOVETO} moves all selected objects in the active window (dialog, chart, or Objects sheetg window) to the
position specified by x,y. Since {MOVETO} is context sensitive, you can use it to move controls in a dialog
window or drawings in a chart window. It also moves chart icons on the Objects sheet. (Use {FLOATMOVE} to
move floating objects in a notebook window.)
The coordinates x and y represent where to move the upper-left corner of the object(s). Object size does not
change.
Parameters

x,y Position to move the currently selected object(s) to in pixels
 Related topics

{MTGAMT}
Syntax
MTGAMT([OutBlock As String], [Rate As Double], [Term As Double], [OrigBal As Double], [EndBal As Double],
[LastYear As Double])
PerfectScript Syntax
MTGAMT ([OutBlock:String]; [Rate:Numeric]; [Term:Numeric]; [OrigBal:Numeric]; [EndBal:Numeric];
[LastYear:Numeric])
Description
{MTGAMT} generates an amortization schedule for a mortgage. {MTGAMT} is equivalent to the Amortization
Schedule analysis tool.
Parameters

OutBloc
k

Upper-left cell of the output cells

Rate Yearly interest rate; the default is 0.12
Term Number of years in the loan; the default is 30 years; can be a

fractional value to designate months (for example, 3+5/12)
OrigBal Original loan balance; the default is $100,000
EndBal Balance at loan completion; the default is $0
LastYear Last year through which the amortization period is generated; the

default is equal to Term (the end of the loan); can be a fractional
value to designate months (for example, 3+5/12)

 Related topics

{MTGREFI}
Syntax
MTGREFI(OutBlock As String, [CurrBal As Double], [CurrRate As Double], [RemTerm As Double], [CandPctFees As
Double], [CandRate As Double])
PerfectScript Syntax
MTGREFI (OutBlock:String; [CurrBal:Numeric]; [CurrRate:Numeric]; [RemTerm:Numeric]; [CandPctFees:Numeric];
[CandRate:Numeric])
Description
{MTGREFI} generates a table of information relating to refinancing a mortgage. {MTGREFI} is equivalent to the
Mortgage Refinancing analysis tool.
Parameters

OutBlock Upper-left cell of the output cells
CurrBal Remaining principal on the current loan
CurrRate Annual interest rate on the current loan
RemTerm Remaining term on the current loan
CandPctFee
s

Percentage fees ("points") for the candidate loan

CandRate Annual interest rate for the candidate loan
 Related topics

{Multiply}
Syntax
{Multiply.Option}
PerfectScript Syntax
Multiply_Destination(Block As String)
Multiply_Go()
Multiply_Matrix_1(Block As String)
Multiply_Matrix_2(Block As String)
Description
{Multiply} multiplies one matrix ({Multiply.Matrix_1 Block}) by another ({Multiply.Matrix_2 Block}) and stores
the product in other cells ({Multiply.Destination Block}). Use {Multiply.Go} after the other matrix-multiplication
command equivalents to complete the operation.
You can use this command equivalent with {Invert.Option} to solve sets of linear equations.
You can use {Multiply?} or {Multiply!} to display the Matrix Multiply dialog box. {Multiply?} lets you manipulate
the dialog box, whereas {Multiply!} relies on the macro to manipulate it.
Example
This macro multiplies cells C2..D6 by cells C18..G19 and stores the results in the cells with upper-left cell F1.
{Multiply.Matrix_1 A:C2..D6}
{Multiply.Matrix_2 A:C18..G19}
{Multiply.Destination A:F1}
{Multiply.Go}
Options

{Multiply.Destinati
on Block}

Specifies the top-left cell of the area where you want to
write the resulting matrix

{Multiply.Go} Executes the multiplication
{Multiply.Matrix_1
Block}

Specifies the first matrix to multiply

{Multiply.Matrix_2
Block}

Specifies the second matrix to multiply

 Related topics

{NAME}
Syntax
NAME()
Description
{NAME} is equivalent to the Choices key, F3, which displays a list of cell names in the current notebook, if cell
names exist in the notebook. (If there are no named cells, the list of cell names won't appear.)
Use {NAME} with {GOTO}.
Example
{GOTO}{NAME}
 Related topics

{NamedStyle}
Syntax
{NamedStyle.Option}
PerfectScript Syntax
NamedStyle_Alignment(Settings As String)
NamedStyle_Define(StyleName As String, Align_ As _NamedStyle_Define_Align__enum, NumericFormat_ As
_NamedStyle_Define_NumericFormat__enum, Protection_ As _NamedStyle_Define_Protection__enum, Lines_ As
_NamedStyle_Define_Lines__enum, Shading_ As _NamedStyle_Define_Shading__enum, Font_ As
_NamedStyle_Define_Font__enum, TextColor_ As _NamedStyle_Define_TextColor__enum)
NamedStyle_Delete(StyleName As String)
NamedStyle_Font(Settings As String)
NamedStyle_Line_Drawing(Settings As String)
NamedStyle_Numeric_Format(Settings As String)
NamedStyle_Protection(Settings As String)
NamedStyle_Shading(Settings As String)
 NamedStyle_Text_Color(ColorID As Integer)
Description
{NamedStyle} lets you create styles in the active notebook.
These command equivalents do not take effect until the command {NamedStyle.Define} is used to create (or
modify) a style. The arguments Align? through TextColor? each specify one property to include in the style; use 1
to include the property, 0 to exclude the property.
{NamedStyle.Font} sets the new typeface and size of text in the cell. Bold, Italic, Underline and Strikeout can be
"Yes" to include that type feature or "No" to omit it.
{NamedStyle.Shading} sets the shading of the cell; ForegroundColor and BackgroundColor are numbers from 0
to 15; each specifies a color on the notebook palette to use; Pattern is a string ("Blend1" through "Blend7").
You can use {NamedStyle?} or {NamedStyle!} to display the Styles dialog box. {NamedStyle?} lets you
manipulate the dialog box, whereas {NamedStyle!} relies on the macro to manipulate it.
Example
This macro creates a new style named RedNote, which makes the active cells red, and sets a new font.
{NamedStyle.Font "Courier,10,Yes,No,No,No"}
{NamedStyle.Text_Color "4"}
{NamedStyle.Define RedNote,0,0,0,0,0,1,1}
 Related topics

{Navigate}
Syntax
{Navigate.Option}
PerfectScript Syntax
Navigate_GoTo (Where:Enumeration {Up!; Left!; Right!; Down!; TopLeft!; BottomLeft!; TopRight!; BottomRight!};
[Extend?:Enumeration {Yes!; No!}])
Navigate_Jump (Where:Enumeration {Up!; Left!; Right!; Down!})
Navigate_SelectTable ()
Navigate_Zoom2Fit ()
Description
{Navigate} is equivalent to the navigation tools available on the Data Manipulation Toolbar.

{Navigate.SelectTable} is equivalent to the SpeedSelect button on the Data Manipulation Toolbar, which
expands selection from a cell or cells within a table to the entire table. {Navigate.Zoom2Fit} is equivalent to the
Zoom To Fit button

. {Navigate.GoTo} performs the same actions as the Top Left Of Table

, Top Right Of Table

, Bottom Left Of Table

, and Bottom Right Of Table

 buttons. {Navigate.Jump} jumps to the next table or to the selected boundary of the current table.
Example
The following macro selects cell C6 in the table below, then selects the entire table that C6 belongs to, and
zooms to fit the table on the page.
{SelectBlock A:C6}
{Navigate.SelectTable}
{Navigate.Zoom2Fit}

A B C D
1 Sales Expenses Profits
2 Jan 1580 700 880
3 Feb 2474 545 1929
4 Mar 2570 656 1914
5 Apr 2876 454 2422
6 May 3223 489 2734
7 Jun 2987 470 2517
8 Jul 3178 500 2678

Options
{Navigate.SelectTable} Expands selection to the table boundaries
{Navigate.Zoom2Fit} Zooms so that a table fits into the visible part of the

screen
{Navigate.GoTo Up | Left |
Right | Down | TopLeft |
TopRight | BottomLeft |
BottomRight , <Extend?(0|
1)>}

Go to the sides or corners of a table. When the
optional Extend? argument is 1, cell selection is
extended.

{Navigate.Jump Up | Left |
Right | Down}

Jump to the next table in a given direction, or jump
to the current table boundary if in the middle of a
table.

{NEXTPANE}

Syntax
NextPane()
PerfectScript Syntax
NextPane ()
Description
{NEXTPANE} switches between the panes of a notebook window previously split. The optional argument
CellAtPointer? specifies whether the active cell in the pane will be at the location of the selector (1) or its
previous position (0). This command is equivalent to the Pane key, F6.
Parameters

CellAtPointer
?

Specifies which cell should be active when the pane switches
(0 or 1, optional)

 Related topics

{NEXTTOPWIN}
Syntax
NextTopWin()
PerfectScript Syntax
NextTopWin ()
Description
{NEXTTOPWIN} is equivalent to the Next Window key, Ctrl+F6. It makes the next window active and moves the
selector to it.
Parameters

Number Number of times to repeat the operation (optional)
 Related topics

{NEXTWIN}
Syntax
NextWin()
PerfectScript Syntax
NextWin ()
Description
{NEXTWIN} is equivalent to Shift+F6. It makes the bottom window active and moves the selector to it. This
macro is included for compatibility with Corel Quattro Pro for DOS.
Parameters

Number Number of times to repeat the operation (optional)
 Related topics

{Notebook_Display}
Syntax
 Notebook_Display(Settings As String)
PerfectScript Syntax
Notebook_Display_Objects(Mode As String)
Notebook_Display_Show_HorizontalScroller(Show_ As _Notebook_Display_Show_HorizontalScroller_Show__enum)
 Notebook_Display_Show_HorizontalScroller(Show_ As _Notebook_Display_Show_HorizontalScroller_Show__enum)
Notebook_Display_Show_Tabs(Show_ As
_Notebook_Display_Show_Tabs_Show__enum)Notebook_Display_Show_Tabs(Show_ As
_Notebook_Display_Show_Tabs_Show__enum)
Notebook_Display_Show_VerticalScroller(Show_ As _Notebook_Display_Show_VerticalScroller_Show__enum)
Description
{Notebook.Display} is equivalent to options of the notebook property Display.
Example
This macro command hides the vertical and horizontal scroll bars of the active notebook, reveals the sheet tabs,
and shows all objects.
{Notebook.Display "No,No,Yes,Show All"}

Options
{Notebook.Display "VertScroll,
HorizScroll, Tabs, Objects"}

Sets display characteristics for the active
notebook

{Notebook.Display.Objects Show
All|Show Outline|Hide}

Specifies which parts of the notebook to display

{Notebook.Display.Show_Horizon
talScroller Yes|No}

Displays or hides the horizontal scroll bar

{Notebook.Display.Show_Tabs
Yes|No}

Displays or hides the sheet tabs

{Notebook.Display.Show_Vertical
Scroller Yes|No}

Displays or hides the vertical scroll bar

 Related topics

{Notebook_Group_Mode}
Syntax
 Notebook_Group_Mode(Mode As String)
PerfectScript Syntax
Notebook_Group_Mode (Mode:String)
Description
{Notebook.Group_Mode} activates or deactivates group mode.
 Related topics

{Notebook.Macro_Library}
Syntax
Notebook_Macro_Library(Enable_ As _Notebook_Macro_Library_Enable__enum)
PerfectScript Syntax
Notebook_Macro_Library (Enable?:Enumeration {Yes!; No!})
Description
{Notebook.Macro_Library } is equivalent to options of the notebook property Macro Library. To make the active
notebook a macro library, use Yes.
 Related topics

{Notebook_Password}
Syntax
Notebook_Password(Password As String)
PerfectScript Syntax
Notebook_Password (Password:String)
Notebook_Password_Level (Level:String)
Description
{Notebook.Password} sets the password of the active notebook. The next save operation encrypts the file on
disk.
Tips
¨ Before specifying a password, set the password level using {Notebook.Password_Level}.
 Related topics

{Notebook_Password_Level}
Syntax
Notebook_Password_Level(Settings_ As String)
PerfectScript Syntax
Notebook_Password_Level (Level:String)
Description
{Notebook.Password_Level} sets the password level of the active notebook. If you specify a password level of
Low, Medium, or High, you must also specify a password using {Notebook.Password}.
 Related topics

{Notebook_Recalc_Settings}
Syntax
Notebook_Recalc_Settings(Settings As String)

PerfectScript Syntax
Notebook_Recalc_Settings (Settings:String)
Description
{Notebook.Recalc_Settings} is equivalent to options of the notebook property Recalc Settings. This command
equivalent sets the recalculation options of the active notebook. Mode options are "Automatic," "Background,"
and "Manual." Order can be "Column-wise," "Row-wise," or "Natural." Iterations specifies the number of times
formulas are recalculated before calculation is considered complete (relevant only if Order is changed, or if you
use circular references).
To highlight the source of error for each cell containing NA or ERR in the active notebook, set the optional
argument AuditErrors? to 1.
 Related topics

{Notebook_Summary}
Syntax
{Notebook.Summary.Option}
PerfectScript Syntax
Notebook_Summary (Settings:String)
Notebook_Summary_Author (Author:String)
Notebook_Summary_Comments (Comments:String)
Notebook_Summary_Keywords (Keywords:String)
Notebook_Summary_Subject (Subject:String)
Notebook_Summary_Title (Title:String)
Description
{Notebook.Summary} displays summary information about the current notebook.
You can use the following options with @COMMAND to get information about the notebook.
Notebook.Statistics.Created
Notebook.Statistics.Directory
Notebook.Statistics.FileName
Notebook.Statistics.Last_Saved
Notebook.Statistics.Last_Saved_By
Notebook.Statistics.Revision_Number
Example
@COMMAND("Notebook.Statistics.Created")
Options

{Notebook.Summary.Title
Title }

Specifies a title for the notebook

{Notebook.Summary.Subject
Subject}

Specifies a subject for the notebook

{Notebook.Summary.Author
Author}

Specifies an author for the notebook

{Notebook.Summary.Keyword
s Keywords}

Specifies keywords for the notebook

{Notebook.Summary.Comme
nts Comments}

Specifies comments for the notebook

{Notebook_System}
Syntax
 Notebook_System(Enable_ As _Notebook_System_Enable__enum)
PerfectScript Syntax
Notebook_System (Enable?:Enumeration {Yes!; No!})
Description
{Notebook.System Yes|No} makes the active notebook a system notebook.
 Related topics

{Notebook_Zoom_Factor}
Syntax
 Notebook_Zoom_Factor(Factor As Integer)
PerfectScript Syntax
Notebook_Zoom_Factor (Factor:Numeric)
Description
{Notebook.Zoom_Factor} is equivalent to options of the notebook property Zoom Factor, which sets the zoom
factor of the active notebook (from 10% to 400%). This setting is for display only and does not affect printed
output.
 Related topics

{NUMOFF} and {NUMON}
Syntax
NumOff()
Description
{NUMOFF} and {NUMON} are equivalent to Num Lock off and Num Lock on, respectively.
 Related topics

ObjectsPageGoto()
Syntax
ObjectsPageGoto()
Description
{OBJECTSPAGEGOTO} displays the Objects sheet of the active notebook. When the Objects sheet is active, you
can use {SELECTOBJECT} to select icons, and other object commands to manipulate them.
You can use {SELECTBLOCK} to move from the Objects sheet to a spreadsheet sheet.
 Related topics

{OLE}
Syntax
{OLE.Option}
PerfectScript Syntax
OLE_ActivateAs (ObjectType:String)
OLE_AutomaticResize (Auto?:Enumeration {Yes!; No!})
OLE_AutomaticUpdate (Auto?:Enumeration {Yes!; No!})
OLE_Change_Link (Filename:String)
OLE_Change_To_Picture ()
OLE_Convert (ObjectType:String)
OLE_Display_As_Icon (Icon?:Enumeration {Yes!; No!})
OLE_DoVerb (Action:String)
OLE_OpenEdit ()
OLE_Update ()
Description
{OLE} affects the selected OLE object. The type of OLE object determines what command equivalents affect it:

OLE type Commands
Embedded {OLE.DoVerb}, {OLE.Convert}, {OLE.Change_To_Picture},

{OLE.DisplayAsIcon}, {OLE.ActivateAs}
Linked {OLE.DoVerb}, {OLE.Change_Link}, {OLE.Update},

{OLE.Convert}, {OLE.Change_To_Picture}, {OLE.DisplayAsIcon},
and {OLE.ActivateAs}

Example
This macro selects an OLE object named Embedded1, lets you edit the data (in the OLE server), then converts
the object into a picture (disabling the OLE link).
{SELECTFLOAT Embedded1}
{OLE.DoVerb Edit}
{OLE.Change_To_Picture}
Options

{OLE.ActivateAs
ObjectType}

Opens the object using a different but compatible application

{OLE.AutomaticResize
0|1}

Automatically resizes the object after you edit it

{OLE.AutomaticUpdate
0|1}

Turns automatic updating on or off

{OLE.Change_Link
FileName}

Switches links from one file to another

{OLE.Change_To_Pictur
e}

Clicks to convert the embedded picture to a differenty type

{OLE.Convert
ObjectType}

Converts the embedded information to a different type

{OLE.DisplayAsIcon 0|
1}

Displays the embedded object as an icon

{OLE.DoVerb Action} Plays, edits, or opens the object
{OLE.OpenEdit} Opens the original application to edit the object
{OLE.Update} Refreshes links to unopened files

{OnlineService}
Syntax
OnlineService(ServiceName As String, [Arguments As String])

PerfectScript Syntax
OnlineService (ServiceName:String; [Arguments:String])
Description
{OnlineService} launches internet URL address from a QuickButton.
Example
{OnlineService
Internet,"http://www.corel.com/products/wordperfect/cqp8/index.htm"}
Parameters

ServiceName A string indicating the type of online service to use.
Arguments A string indicating the command line to pass to the service.

{Optimizer}
Syntax
{Optimizer.Option}
PerfectScript Syntax
Optimizer_Add (Constraint:Numeric; Cell:String; Operator:String; [Constant:Any])
Optimizer_Answer_Reporting (Cell:String)
Optimizer_Auto_Scale (Auto?:Enumeration {Yes!; No!})
Optimizer_Change (Constraint:Numeric; Cell:String; Operator:String; [Constant:Any])
Optimizer_Delete (Constraint:Numeric)
Optimizer_Derivatives (Derivatives:String)
Optimizer_Detail_Reporting (Cell:String)
Optimizer_Estimates (Estimates:String)
Optimizer_Linear (Linear?:Enumeration {Yes!; No!})
Optimizer_Load_Model ()
Optimizer_Max_Iters (Iters:Numeric)
Optimizer_Max_Time (Time:Numeric)
Optimizer_Model_Cell (Cell:String)
Optimizer_Precision (Precision:Numeric)
Optimizer_Reset ()
Optimizer_Save_Model ()
Optimizer_Search (Search:String)
Optimizer_Show_Iters (Show?:Enumeration {Yes!; No!})
Optimizer_Solution_Cell (Cell:String)
Optimizer_Solution_Goal (Goal:String)
Optimizer_Solve ()
Optimizer_Target_Value (Target:Numeric)
Optimizer_Tolerance (Tolerance:Numeric)
Optimizer_Variable_Cells (Cell:String)
Description
{Optimizer} performs goal-seeking calculations and solves sets of linear and nonlinear equations and
inequalities.
Constraint# refers to a constraint's order in the constraint list. Constant may be a value or a cell containing a
value. The Value for Target_Value may also be a value or a cell. Use {Optimizer.Solve} after the other commands
to calculate the solution.
To save an Optimizer model, use {Optimizer.Model_Cell Cell} {Optimizer.Save_Model}. To load a model, use
{Optimizer.Model_Cell Cell}{Optimizer.Load_Model}

You can use {Optimizer?} or {Optimizer!} to display the Optimizer dialog box. {Optimizer?} lets the user
manipulate the dialog box, whereas {Optimizer!} relies on the macro to manipulate it.
Example
The following macro sets up an Optimizer problem designed to maximize the formula in D6 by varying cells
B8..B10. Seven constraints limit the solution. All options have been changed from their default settings. T2 and
G13 are the upper-left cells of the report selections.
{Optimizer.Solution_cell A:D6}
{Optimizer.Solution_goal Max}
{Optimizer.Variable_cells A:B8..A:B10}
{Optimizer.Add 1,"A:D8..A:D8",<=,"1000"}
{Optimizer.Add 2,"A:B8..A:B8",>=,"100"}
{Optimizer.Add 3,"A:B9..A:B9",>=,"100"}
{Optimizer.Add 4,"A:B10..A:B10",>=,"100"}
{Optimizer.Add 5,"A:D8..A:D8",>=,"500"}
{Optimizer.Add 6,"A:D9..A:D9",<=,"900"}
{Optimizer.Add 7,"A:D10..A:D10",<=,"110000"}
{Optimizer.Max_Time 50}
{Optimizer.Max_Iters 300}
{Optimizer.Precision 5E-05}
{Optimizer.Linear 1}
{Optimizer.Show_Iters 1}
{Optimizer.Estimates Quadratic}
{Optimizer.Derivatives Central}
{Optimizer.Search Conjugate}
{Optimizer.Detail_Reporting A:T2..A:T2}
{Optimizer.Answer_Reporting A:G13..A:G13}
{Optimizer.Solve}
Options

{Optimizer.Add Constraint#,
Cell, <=|>=|=|Integer,
Constant}

Adds a new constraint

{Optimizer.Answer_Reporting
Cell}

Specifies the cells for the Answer Report

{Optimizer.Auto-scale 0|1} Automatically scales variables to achieve a
target value

{Optimizer.Change
Constraint#, Cell, <=|>=|=|
Integer, Constant}

Edits the selected constraint

{Optimizer.Delete
Constraint#}

Removes the selected constraint

{Optimizer.Derivatives
Central|Forward}

Selects differencing for estimates of partial
derivatives

{Optimizer.Detail_Reporting
Cell}

Specifies the cells for the Detail Report

{Optimizer.Estimates
Quadratic|Tangent}

Specifies the approach used to obtain initial
estimates of the basic variables in each
iteration

{Optimizer.Linear 0|1} Uses a linear method to solve the problem
{Optimizer.Load_Model} Loads cells of Optimizer settings
{Optimizer.Max_Iters Value} Sets the maximum number of iterations or trails
{Optimizer.Max_Time Value} Indicates how long Optimizer can spend looking

for the best solution
{Optimizer.Model_Cell Cell} Saves cells of Optimizer settings for later use

{Optimizer.Precision Value} Controls the accuracy of the solution
{Optimizer.Reset} Clears Optimizer settings
{Optimizer.Save_Model} Saves cells of Optimizer settings for future use
{Optimizer.Search Conjugate|
Newton}

Selects a method for computing the search
direction

{Optimizer.Show_Iters 0|1} Pauses between iterations so you can check the
progress of the search

{Optimizer.Solution_Cell
SolutionCell}

Specifies the cell whose value you want
Optimizer to measure

{Optimizer.Solution_Goal
Max|Min|None|Target Value}

Specifies maximum, minimum, and target
values

{Optimizer.Solve} Finds a solution to the defined problem
{Optimizer.Target_Value
Value}

Specifies the value to be reached by the
formula in the Solution Cell

{Optimizer.Tolerance Value} Indicates the maximum percentage a solution
can differ from a theoretical optimum integer
solution

{Optimizer.Variable_Cells
Cell(s)}

Specifies the cells the Optimizer can adjust to
reach an optimal solution

{Order}
Syntax
{Order.Option}
PerfectScript Syntax
Order_Backward ()
Order_Forward ()
Order_ToBack ()
Order_ToFront ()
Description
{Order} reorders overlapping objects in a chart or dialog window. Each command affects selected objects in the
active window.
Options

{Order.Backwar
d}

Sends the selected object back one layer

{Order.Forward
}

Sends the selected object forward one layer

{Order.ToBack} Sends the selected object to the back layer
{Order.ToFront} Sends the selected object to the front layer

 Related topics

{Outline}
Syntax
{Outline.Option}
PerfectScript Syntax
Outline_AutoOutline ()
Outline_Collapse ()
Outline_Expand ()
Outline_Group ()
Outline_Hide (Hide?:Numeric)
Outline_Summary (Row?:Enumeration {Above!; Below!}; Col?:Enumeration {Left!; Right!})
Outline_ToLevel (RowCol?:String; [Level?:Numeric])
Outline_Ungroup ()
Outline_UnGroupAll ()
Description
{Outline} defines, creates, manipulates, and groups outlines.
Options

{Outline.AutoOutline} Creates an outline automatically on the current
pane/page

{Outline.Group} Groups rows or columns. If the cells are not an
entire row or column, whichever one contains
the most elements (rows or columns) will be
grouped

{Outline.Ungroup} Ungroups rows or columns. If the cells are not
an entire row or column, whichever one
contains the most elements (rows or columns)
will be ungrouped. If the cells do not span the
ENTIRE group, only those rows/columns that are
inside the cells will be ungrouped

{Outline.UngroupAll} Destroys all groups on the current pane/page
{Outline.Expand} Expands a collapsed group of rows or columns.

If the cells are not an entire row or column and
are inside a group, whichever one contains the
most elements (rows or columns) and is inside a
current group, will be expanded

{Outline.Collapse} Collapses an expanded group of rows or
columns. If the cells are not an entire row or
column and are inside a group, whichever one
contains the most elements (rows or columns)
and is inside a current group will be collapsed

{Outline.Hide 0|1} Either hides or shows the outline in the current
pane/page

{Outline.Summary
Above|Below, Left|
Right}

Sets whether the summary will be above or
below for row-based groups, and left or right for
column-based groups

{Outline.ToLevel Rows|
Columns, Level}

Collapses or expands a group or rows or
columns at a specific level

{Page}
Syntax
{Page.Property}
Description
{Page} affects the active sheet(s). The next table lists the possible settings for Property. To display a property
description with syntax, choose the property in the following list:

Property Description
Conditional_Color Changes the color of specific types of

data in the active sheet: values above or
below a specified range, and ERR values

Default_Width Sets the default width of all columns in
the active sheet

Display Sets display characteristics for the active
sheet

Name Controls the name of the active sheet
Protection Turns on protection in the active sheet
Tab_Color Changes the tab color of the active sheet
Zoom_Factor Lets you pull back to see a whole printed

page, or focus in on the detail of a few
cells

You can use {Page?} or {Page!} to display the Active Sheet dialog box. {Page?} lets you manipulate the dialog
box, whereas {Page!} relies on the macro to manipulate it.
 Related topics

{Page.Conditional_Color}
Syntax
{Page.Conditional_Color<Option>}
PerfectScript Syntax
Page_Conditional_Color (Settings:String)
Page_Conditional_Color_Above_Normal_Color (ColorID:Numeric)
Page_Conditional_Color_Below_Normal_Color (ColorID:Numeric)
Page_Conditional_Color_Enable (Enable?:Enumeration {Yes!; No!})
Page_Conditional_Color_ERR_Color (ColorID:Numeric)
Page_Conditional_Color_Greatest_Normal_Value (Value:Numeric)
Page_Conditional_Color_Normal_Color (ColorID:Numeric)
Page_Conditional_Color_Smallest_Normal_Value (Value:Numeric)
Description
{Page.Conditional_Color} is equivalent to thesheet property Conditional Color, which makes cells change text
color (based on the value in the cell). Each color specified in these commands is a number from 0 to 15,
corresponding to which color of the notebook palette to use (1 through 16).
Example
The following macro makes negative values red, values greater than 10,000 green, ERR cells cyan, and positive
values less than 10,000 black (assuming the default notebook palette is used).

{Page.Conditional_Color "Yes,0,10000,4,3,5,7"}

Options
{Page.Conditional_Color "Enable, SmallVal,
GreatVal, BelowColor, NormalColor,
AboveColor, ERRColor"}

Changes the color of specific types of
data in the active sheet: values above
or below a specified range, and ERR
values

{Page.Conditional_Color.Above_Normal_Col
or 0-15}

Sets the color of cells whose values are
above the Greatest Normal Value

{Page.Conditional_Color.Below_Normal_Col
or 0-15}

Sets the color of cells whose values are
below the Smallest Normal Value

{Page.Conditional_Color.Enable Yes|No} Indicates whether to use the conditional
colors set with this property

{Page.Conditional_Color.ERR_Color 0-15} Specifies the color to use for ERR and
NA values generated by formula errors

{Page.Conditional_Color.Greatest_Normal_
Value Value}

Specifies the largest value of the range
of values you consider normal

{Page.Conditional_Color.Normal_Color 0-
15}

Sets the color of cells whose value falls
within the range set by the Smallest
Normal Value and the Greatest Normal
Value

{Page.Conditional_Color.Smallest_Normal_
Value Value}

Specifies the smallest value of the
range of values you consider normal

 Related topics

{Page.Default_Width}
Syntax
Page_Default_Width(Width As Integer)
PerfectScript Syntax
Page_Default_Width (Width:Numeric)
Description
{Page.Default_Width} is equivalent to the sheet property Default Width. It sets the default column width of the
active sheet. Width is the new column width in twips (a twip is 1/1440th of an inch).
Example
{Page.Default_Width "720"} makes the default column width a half inch (720 twips).
 Related topics

{Page.Display
Syntax
{Page.Display<Option>}
PerfectScript Syntax
Page_Display (Settings:String)
Page_Display_Borders (Settings:String)
Page_Display_Borders_Column_Borders (Show?:Enumeration {Yes!; No!})
Page_Display_Borders_Row_Borders (Show?:Enumeration {Yes!; No!})
Page_Display_Display_Zeros (Show?:Enumeration {Yes!; No!})
Page_Display_Grid_Lines (Settings:String)
Page_Display_Grid_Lines_Horizontal (Show?:Enumeration {Yes!; No!})
Page_Display_Grid_Lines_Vertical (Show?:Enumeration {Yes!; No!})
Description
{Page.Display} is equivalent to the sheet property Display, which sets the display of zeros, borders, and grid
lines. The arguments of {Page.Display} (which sets all options of the Display property in one command) use the
same syntax as those in the {Page.Display.Option} commands. All {Page.Display} arguments take Yes|No string
values.
Example
The following macro displays zero values on the sheet, but hides borders and grid lines.
{Page.Display "Yes,No,No,No,No"}

Options
{Page.Display
DisplayZeros?(Yes|No),
RowBorders?(Yes|No),
ColumnBorders?(Yes|
No), HorzGridLines?(Yes|
No), VertGridLines?(Yes|
No)}

Sets display characteristics for the active sheet

{Page.Display.Borders
"RowBorders?(Yes|No),
ColumnBorders?(Yes|
No)}

Turns border options off and on in the active sheet

{Page.Display.Borders.C
olumn_Borders Yes|No}

Turns column borders off and on in the active sheet

{Page.Display.Borders.R
ow_Borders Yes|No}

Turns row borders off and on in the active sheet

{Page.Display.Display_Z
eros Yes|No}

Suppresses display of any value in the active sheet
that exactly equals zero

{Page.Display.Grid_Line
s "HorizGridLines?(Yes|
No), VertGridLines?(Yes|
No)"}

Turns spreadsheet grid off and on in the active sheet

{Page.Display.Grid_Line
s.Horizontal Yes|No}

Turns horizontal spreadsheet grid off and on in the
active sheet

{Page.Display.Grid_Line
s.Vertical Yes|No}

Turns vertical spreadsheet grid off and on in the active
sheet

 Related topics

{Page.Name}
Syntax
{Page.Name NewName}
PerfectScript Syntax
Page_Name (NewName:String)
Description
{Page.Name NewName} is equivalent to the sheet property Name. It sets the name of the active sheet to
NewName.
 Related topics

{Page.Protection}
Syntax
{Page.Protection<Option>}
Syntax
Page_Protection (Settings:String)
Page_Protection_Cells (Protect?:Enumeration {Yes!; No!})
Page_Protection_Objects (Protect?:Enumeration {Yes!; No!})
Description
{Page.Protection} is equivalent to the sheet property Protection. It enables or disables cell and object protection
on the active sheet.
Options

{Page.Protection
"CellLocking?(Yes|No),
ObjectLocking?(Yes|
No)"}

Turns on protection in the active sheet

{Page.Protection.Cells
Yes|No}

Protects all cell entries in the active sheet

{Page.Protection.Objec
ts Yes|No}

Protects all objects in the active sheet

 Related topics

{Page.Tab_Color}
Syntax
{Page.Tab_Color "Red, Green, Blue, UseRGB?"}
PerfectScript Syntax
Page_Tab_Color (Settings:String)
Description
{Page.Tab_Color} changes the tab color of the active sheet; Red, Green, and Blue are integers from 0 to 255.
 Related topics

{Page.Zoom_Factor}
Syntax
{Page.Zoom_Factor 10-400}
PerfectScript Syntax
Page_Zoom_Factor (Factor:Numeric)
Description
{Page.Zoom_Factor} sets the zoom factor of the active sheet (from 10% to 400%). This setting is for display only
and does not affect printed output.
 Related topics

{PageViewGoto}
Description
Switches from either the Objects Sheet or the sheet in Draft mode to Page View.
 Related topics

{PANELOFF}
Description
{PANELOFF} disables normal display of menus and prompts during macro execution when Quattro Pro's Macro
Suppress-Redraw property is set to None. It can significantly speed up execution for macros that use keystrokes
to walk through menus, since it saves Quattro Pro the time normally needed to draw its menus on the screen. Its
effect is canceled by Quattro Pro once the macro stops executing, so you need not worry about locking macro
users out of the menus. To cancel its effect during macro execution, use {PANELON}.
 Related topics

{PANELON}
Description
{PANELON} enables display of menus and prompts that have been disabled with {PANELOFF}. {PANELON} has
no effect if used without an accompanying {PANELOFF}. Therefore, it can be used repeatedly with no ill effects.
Use this command with {WINDOWSON} to completely restore normal screen updating.
 Related topics

{ParseExpert.ApplyFormatting}
Syntax
{ParseExpert.ApplyFormatting Apply}
PerfectScript Syntax
ParseExpert_ApplyFormatting (Apply?:Enumeration {Yes!; No!})
Description
Lets you specify whether the column alignment and format specified in the Preview pane should be applied to
the destination cells.
Parameter

Apply 0 Do not apply to the destination cells.
1 Apply to the destination cells.

{ParseExpert.CellDelimiterString}
Syntax
{ParseExpert.CellDelimiterString Value}
PerfectScript Syntax
ParseExpert_CellDelimiterString (Value?: String)
Description
Lets you specify the string to use as the cell delimiter.
Parameter

Value The string

{ParseExpert.CellDelimiterTypeComma}
Syntax
{ParseExpert.CellDelimiterTypeComma Enable}
PerfectScript Syntax
ParseExpert_CellDelimiterTypeComma {Yes!; No!}
Description
Lets you specify whether or not to make the cell delimiter a comma.
Parameter

Enable 0 Do not make the cell delimiter a
comma.
1 Make the cell delimiter a comma

{ParseExpert.CellDelimiterTypeMultiSpace}
Syntax
{ParseExpert.CellDelimiterTypeMultiSpace Enable}
PerfectScript Syntax
ParseExpert_CellDelimiterTypeMultiSpace {Yes!; No!}
Description
Lets you specify whether or not to make the cell delimiter a multi-space.

Parameter
Enable 0 Do not make the cell delimiter a multi-

space.
1 Make the cell delimiter a multi-space.

{ParseExpert.CellDelimiterTypeOther}
Syntax
{ParseExpert.CellDelimiterTypeOther Enable}
PerfectScript Syntax
ParseExpert_CellDelimiterTypeOther {Yes!; No!}
Description
Lets you specify whether or not to make the cell delimiter a character other than a comma, a multi-space, a
semicolon, a space,.or a tab.
Parameter

Enable 0 Do not make the cell delimiter a
character other than a comma, a multi-
space, a semicolon, a space, or a tab.

1 Make the cell delimiter a character
other than a comma, a multi-space, a
semicolon, a space, or a tab.

{ParseExpert.CellDelimiterTypeReturn}
Syntax
{ParseExpert.Return Enable}
PerfectScript Syntax
ParseExpert_CellDelimiterTypeReturn {Yes!; No!}
Description
Lets you specify whether or not to make the cell delimiter a carriage return.
Parameter

Enable 0 Do not make the cell delimiter a
carriage return.

1 Make the cell delimiter a carriage
return.

{ParseExpert.CellDelimiterTypeSemiColon}
Syntax
{ParseExpert.CellDelimiterTypeSemiColon Enable}
PerfectScript Syntax
ParseExpert_CellDelimiterTypeSemiColon {Yes!; No!}
Description
Lets you specify whether or not to make the cell delimiter a semicolon.
Parameter

Enable 0 Do not make the cell delimiter a
semicolon.

1 Make the cell delimiter a semicolon.

{ParseExpert.CellDelimiterTypeSpace}
Syntax
{ParseExpert.CellDelimiterTypeSpace Enable

PerfectScript Syntax
ParseExpert_CellDelimiterTypeSpace {Yes!; No!}
Description
Lets you specify whether or not to make the cell delimiter a space.
Parameter

Enable 0 Do not make the cell delimiter a space.
1 Make the cell delimiter a space.

{ParseExpert.CellDelimiterTypeTab}
Syntax
{ParseExpert.CellDelimeterTypeTab Enable}
PerfectScript Syntax
ParseExpert_CellDelimiterTypeTab {Yes!; No!}
Description
Lets you specify whether or not to make the cell delimiter a tab.
Parameter

Enable 0 Do not make the cell delimiter a tab.
1 Make the cell delimiter a tab.

{ParseExpert_ColumnWidths}
Syntax
ParseExpert_ColumnWidths(Apply_ As _ParseExpert_ColumnWidths_Apply__enum)
PerfectScript Syntax
ParseExpert_ColumnWidths (Apply?:Enumeration {Yes!; No!})
Description
Lets you specify whether or not the columns widths specified in the preview pane should be applied to the
destination cells.
Parameter

Apply 0 Do not apply to the destination cells.
1 Apply to the destination cells.

{ParseExpert_ConsecutiveAsOne}
Syntax
ParseExpert_ConsecutiveAsOne(Apply_ As _ParseExpert_ConsecutiveAsOne_Apply__enum)
PerfectScript Syntax
ParseExpert_ConsecutiveAsOne (Apply?:Enumeration {Yes!; No!})
Description
Lets you specify whether or not to skip the delimiters that do not enclose data.

Parameter
Apply 0 Do not skip the delimiters

1 Skip the delimiters

{ParseExpert_DataType}
Syntax
ParseExpert_DataType(Type_ As String)
PerfectScript Syntax
ParseExpert_DataType (Type?:String)
Description
Lets you specify which additional parse options are displayed.
Parameter

Type "Fixed" Display the fixed parse options.
"Delmited" Display the delimited parse
options.

{ParseExpert.DelimiterType}
Syntax
ParseExpert_DelimiterType(Type_ As String)
PerfectScript Syntax
ParseExpert_DelimiterType (Type?:String)
Description
Lets you specify which delimiter separates text.
Parameter

Type "Space" Separates text with a space.
"Tab" Separates text with a tab.
"Comma" Separates text with a comma.
"CommaQuote" Separates text with a comma quote.
"Other" Separates text with a delimiter other than a space, a

tab, a comma, or a comma quote.

ParseExpert_Go
Syntax
ParseExpert_Go()
PerfectScript Syntax
ParseExpert_Go ()
Description
Parses the text and copies it as data to the destination cells.

ParseExpert_IgnoreNonConformingRows
Syntax
 ParseExpert_IgnoreNonConformingRows(Apply_ As _ParseExpert_IgnoreNonConformingRows_Apply__enum)
PerfectScript Syntax
ParseExpert_IgnoreNonConformingRows (Apply?:Enumeration {Yes!; No!})
Description
Lets you specify whether or not to skip the lines in the text that the QuickColumns Expert cannot parse.
Parameter

Apply 0 Do not skip the lines.
1 Skip the lines.

{ParseExpert_InputBlock}
Syntax
 ParseExpert_InputBlock(Block_ As String)
PerfectScript Syntax
ParseExpert_InputBlock (Block?:String)
Description
Lets you specify the range of cells to parse.
Parameter

Block The range of cells

ParseExpert_InputFile
Syntax
ParseExpert_InputFile(Filename_ As String)
PerfectScript Syntax
ParseExpert_InputFile (Filename?:String)
Description
Lets you specify the name of the file.
Parameter

Filename The name of the file

{ParseExpert.InputType}
Syntax
 ParseExpert_InputType(Type_ As String)
PerfectScript Syntax
ParseExpert_InputType (Type?:String)
Description
Lets you specify whether you want to parse data from a file or from the spreadsheet.
Example
{ParseExpert.InputType "Block"}

Result: Parse data from the spreadsheet.
Parameter

Type File
Parse data from a file.
Block
Parse data from the spreadsheet.

ParseExpert_JoinBrokenLines
Syntax
 ParseExpert_JoinBrokenLines(Apply_ As _ParseExpert_JoinBrokenLines_Apply__enum)
PerfectScript Syntax
ParseExpert_JoinBrokenLines (Apply?:Enumeration {Yes!; No!})
Description
Lets you specify whether or not to restore the wrapped lines in the text file to single lines.
Parameter

Apply 0 Do not restore the wrapped lines.
1 Restore the wrapped lines.

{ParseExpert_LineLength}
Syntax
ParseExpert_LineLength(Length_ As Integer)
PerfectScript Syntax
ParseExpert_LineLength (Length?:Numeric)
Description
Lets you specify the number of characters to count before restoring wrapped lines to single files.
Parameter

Length The number of characters to count

{ParseExpert_LoadSettings}
Syntax
ParseExpert_LoadSettings()
PerfectScript Syntax
ParseExpert_LoadSettings ()
Description
Loads the saved parse settings.

{ParseExpert_OtherDelimiter}
Syntax
ParseExpert_OtherDelimiter(Delimiter_ As String)
PerfectScript Syntax
ParseExpert_OtherDelimiter (Delimiter?:String)
Description
Lets you specify the character to separate the text other than a tab, a comma, a quote, or a space.
Parameter

Delimiter The character to separate the text

{ParseExpert_OutputBlock}
Syntax
ParseExpert_OutputBlock(Block_ As String)
PerfectScript Syntax
ParseExpert_OutputBlock (Block?:String)
Description
Lets you specify the cells where you want to enter the parsed text.
Parameter

Block The cells where you want to enter the
parsed text

ParseExpert_PageLength
Syntax
ParseExpert_PageLength(Length_ As Integer)
PerfectScript Syntax
ParseExpert_PageLength (Length?:Numeric)
Description
Lets you specify the number of unparsed text lines on each page.
Parameter

Length The number of unparsed text lines

{ParseExpert_PageLengthEnabled}
Syntax
ParseExpert_PageLengthEnabled(Apply_ As _ParseExpert_PageLengthEnabled_Apply__enum)
PerfectScript Syntax
ParseExpert_PageLengthEnabled (Apply?:Enumeration {Yes!; No!})
Description
Lets you specify whether to skip text rows or to copy text rows into the destination cells as unparsed text.
Parameter

Apply 0 Skips text rows

1 Copies text rows

{ParseExpert_Restore}
Syntax
ParseExpert_Restore()
PerfectScript Syntax
ParseExpert_Restore ()
Description
Restores the current page settings to the default page settings.
 Note

· You do not need to use this command in versions of Quattro Pro later than Corel Quattro Pro 8.

{ParseExpert_RowDelimiterString}
Syntax
ParseExpert_RowDelimiterString(Value_ As String)
PerfectScript Syntax
ParseExpert_RowDelimiterString (Value?:String)
Description
Lets you specify the row delimiter
Parameter

Value The row delimiter

{ParseExpert_RowDelimiterTypeComma}
Syntax
ParseExpert_RowDelimiterTypeComma(Enable_ As _ParseExpert_RowDelimiterTypeComma_Enable__enum)
PerfectScript Syntax
ParseExpert_RowDelimiterTypeComma {Yes!; No!}
Description
Lets you specify whether or not to make the row delimiter a comma.
Parameter

Enable 0 Do not make the row delimiter a
comma.
1 Make the row delimiter a comma.

{ParseExpert.RowDelimiterTypeMultiSpace}
Syntax
ParseExpert_RowDelimiterTypeMultiSpace(Enable_ As _ParseExpert_RowDelimiterTypeMultiSpace_Enable__enum)
PerfectScript Syntax
ParseExpert_RowDelimiterTypeMultiSpace {Yes!; No!}
Description
Lets you specify whether or not to make the row delimiter a multi-space.
Parameter

Enable 0 Do not make the row delimiter a multi-
space
1 Make the row delimiter a multi-space.

{ParseExpert_RowDelimiterTypeOther}
Syntax
 ParseExpert_RowDelimiterTypeOther(Enable_ As _ParseExpert_RowDelimiterTypeOther_Enable__enum)
PerfectScript Syntax
ParseExpert_RowDelimiterTypeOther {Yes!; No!}
Description
Lets you specify whether or not to make the row delimiter a character other than a comma, a multi-space, a

semicolon, a space,.or a tab.
Parameter

Enable 0 Do not make the row delimiter a
character other than a comma, a multi-
space, a semicolon, a space, or a tab.

1 Make the row delimiter a character
other than a comma, a multi-space, a
semicolon, a space, or a tab.

{ParseExpert_RowDelimiterTypeReturn}
Syntax
 ParseExpert_RowDelimiterTypeReturn(Enable_ As _ParseExpert_RowDelimiterTypeReturn_Enable__enum)
PerfectScript Syntax
ParseExpert_RowDelimiterTypeReturn {Yes!; No!}
Description
Lets you specify whether or not to make the row delimiter a carriage return.
Parameter

Enable 0 Do not make the row delimiter a
carriage return.

1 Make the row delimiter a carriage
return.

{ParseExpert.RowDelimiterTypeSemiColon}
Syntax
ParseExpert_RowDelimiterTypeSemiColon(Enable_ As _ParseExpert_RowDelimiterTypeSemiColon_Enable__enum)
PerfectScript Syntax
ParseExpert_RowDelimiterTypeSemiColon {Yes!; No!}
Description
Lets you specify whether or not to make the row delimiter a semicolon.
Parameter

Enable 0 Do not make the row delimiter a
semicolon.

1 Make the row delimiter a semicolon.

{ParseExpert_RowDelimiterTypeSpace}
Syntax
ParseExpert_RowDelimiterTypeSpace(Enable_ As _ParseExpert_RowDelimiterTypeSpace_Enable__enum)
PerfectScript Syntax
ParseExpert_RowDelimiterTypeSpace {Yes!; No!}
Description
Lets you specify whether or not to make the row delimiter a space.
Parameter

Enable 0 Do not make the row delimiter a space.
1 Make the row delimiter a space.

{ParseExpert.RowDelimiterTypeTab}
Syntax
ParseExpert_RowDelimiterTypeTab(Enable_ As _ParseExpert_RowDelimiterTypeTab_Enable__enum)
PerfectScript Syntax
ParseExpert_RowDelimiterTypeTab {Yes!; No!}
Description
Lets you specify whether or not to make the row delimiter a tab.
Parameter

Enable 0 Do not make the row delimiter a tab.
1 Make the row delimiter a tab.

{ParseExpert_SaveSettings}
Syntax
 ParseExpert_SaveSettings()
PerfectScript Syntax
ParseExpert_SaveSettings ()
Description
Saves the current parse settings.

{ParseExpert_SettingsFile}
Syntax
 ParseExpert_SettingsFile(Filename_ As String)
PerfectScript Syntax
ParseExpert_SettingsFile (Filename?:String)
Description
Save the current parse settings as a file.
Parameter

Filename The name of the file

{ParseExpert_SheetDelimiterString}
Syntax
ParseExpert_SheetDelimiterString(Value_ As String)
PerfectScript Syntax
ParseExpert_SheetDelimiterString (Value?: String)
Description
Lets you specify the sheet delimiter.
Parameter

Value The sheet delimiter

{ParseExpert_SheetDelimiterTypeComma}
Syntax
 ParseExpert_SheetDelimiterTypeComma(Enable_ As _ParseExpert_SheetDelimiterTypeComma_Enable__enum)
PerfectScript Syntax
ParseExpert_SheetDelimiterTypeComma (Yes!; No!)
Description
Lets you specify whether or not to make the sheet delimiter a comma.
Parameter

Enable 0 Do not make the sheet delimiter a
comma.

1 Make the sheet delimiter a comma.

{ParseExpert_SheetDelimiterTypeMultiSpace}
Syntax
ParseExpert_SheetDelimiterTypeMultiSpace(Enable_ As
_ParseExpert_SheetDelimiterTypeMultiSpace_Enable__enum)
PerfectScript Syntax
ParseExpert_SheetDelimiterTypeMultiSpace (Yes!; No!)
Description
Lets you specify whether or not to make the sheet delimiter a multi-space.

Parameter
Enable 0 Do not make the sheet delimiter a

multi-space.
1 Make the sheet delimiter a multi-space.

{ParseExpert_SheetDelimiterTypeOther}
Syntax
ParseExpert_SheetDelimiterTypeOther(Enable_ As _ParseExpert_SheetDelimiterTypeOther_Enable__enum)
PerfectScript Syntax
ParseExpert_SheetDelimiterTypeOther (Yes!; No!)
Description
Lets you specify whether or not to make the sheet delimiter a character other than a comma, a multi-space, a
semicolon, a space, or a tab.
Parameter

Enable 0 Do not make the sheetdelimiter a
character other than a comma, a multi-
space, a semicolon, a space, or a tab.

1 Make the sheet delimiter a character
other than a comma, a multi-space, a
semicolon, a space, or a tab.

{ParseExpert.SheetDelimiterTypeReturn}
Syntax
ParseExpert_SheetDelimiterTypeReturn(Enable_ As _ParseExpert_SheetDelimiterTypeReturn_Enable__enum)
PerfectScript Syntax
ParseExpert_SheetDelimiterTypeReturn (Yes!; No!)
Description
Lets you specify whether or not to make the sheet delimiter a carriage return.
Parameter

Enable 0 Do not make the sheet delimiter a
carriage return.

1 Make the sheet delimiter a carriage
return.

{ParseExpert.SheetDelimiterTypeSemiColon}
Syntax
ParseExpert_SheetDelimiterTypeSemiColon(Enable_ As
_ParseExpert_SheetDelimiterTypeSemiColon_Enable__enum)
PerfectScript Syntax
ParseExpert_SheetDelimiterTypeSemiColon (Yes!; No!)
Description
Lets you specify whether or not to make the sheet delimiter a semicolon.
Parameter

Enable 0 Do not make the sheet delimiter a
semicolon.

1 Make the sheet delimiter a semicolon.

{ParseExpert.SheetDelimiterTypeSpace}
Syntax
ParseExpert_SheetDelimiterTypeSpace(Enable_ As _ParseExpert_SheetDelimiterTypeSpace_Enable__enum)
PerfectScript Syntax
ParseExpert_SheetDelimiterTypeSpace (Yes!; No!)
Description
Lets you specify whether or not to make the sheet delimiter a space.
Parameter

Enable 0 Do not make the sheet delimiter a
space.

1 Make the sheet delimiter a space.

{ParseExpert_SheetDelimiterTypeTab}
Syntax
 ParseExpert_SheetDelimiterTypeTab(Enable_ As _ParseExpert_SheetDelimiterTypeTab_Enable__enum)
PerfectScript Syntax
ParseExpert_SheetDelimiterTypeTab (Yes!; No!)
Description
Lets you specify whether or not to make the sheet delimiter a tab.
Parameter

Enable 0 Do not make the sheet delimiter a tab.
1 Make the sheet delimiter a tab.

{ParseExpert.Skip1stChar}
Syntax
ParseExpert_Skip1stChar(Apply_ As _ParseExpert_Skip1stChar_Apply__enum)
PerfectScript Syntax
ParseExpert_Skip1stChar (Apply?: Enumeration {Yes!; No!})
Description
Lets you specify whether or not to skip the first character in a line of text.
Parameter

Apply 0 Do not skip the first character.
1 Skip the first character.

{ParseExpert.TextQualifier}
Syntax
ParseExpert_TextQualifier(Type_ As String)
PerfectScript Syntax
ParseExpert_TextQualifier (Type: String)
Description

Lets you specify the character that appears before and after any instance of data that contains the character
specified by Other.
Parameter

Type "SingleQuote"
"DoubleQuote"
"None"

{ParseExpert.ValueQualifier}
Syntax
ParseExpert_ValueQualifier(Type_ As String)
PerfectScript Syntax
ParseExpert_ValueQualifier (Type?: String)
Description
Lets you specify the character that appears before and after any instance of data that should be parsed as a
value.
Parameter

Type "SingleQuote"
"DoubleQuote"
"None"

{PasteFormat}
Syntax
 PasteFormat(LinkType As String)
PerfectScript Syntax
PasteFormat (LinkType:String)
Description
{PasteFormat} lets you paste data in a specific format (for example, an OLE object) into a notebook. Use
LinkType to specify the paste format.
Example
{PasteFormat Bitmap} pastes the data in the Clipboard as a bitmap into the active notebook.
You can use {PasteFormat?} or {PasteFormat!} to display the Paste Special dialog box. {PasteSpecial?} lets you
manipulate the dialog box, whereas {PasteSpecial!} relies on the macro to manipulate it.
Parameters

LinkType Format to paste object as
 Related topics

{PasteLink}
Syntax
PasteLink()
Description
{PasteLink} sets up a DDE link to another application.
 Related topics

PasteSpecial
Syntax
 PasteSpecial([Properties As String], [FormulaCells As String], [LabelCells As String], [NumberCells As String],
[FormulaValues As String], [Transpose As String], [NoBlanks As String])
PerfectScript Syntax
PasteSpecial ([Properties:String]; [FormulaCells:String]; [LabelCells:String]; [NumberCells:String];
[FormulaValues:String]; [Transpose:String]; [NoBlanks:String])
Description
{PasteSpecial} pastes certain aspects of Quattro Pro data from the Clipboard.
You can use {PasteSpecial?} or {PasteSpecial!} to display the Paste Special dialog box. {PasteSpecial?} lets you
manipulate the dialog box, whereas {PasteSpecial!} relies on the macro to manipulate it.
Example
The following macro pastes properties, formula cells, and numbers from the Clipboard, and skips any blank cells.
{PasteSpecial Properties, Formula Cells,"",Number cells,"","",NoBlanks,""}

Parameters
Properties Properties to paste from Clipboard; "" otherwise
Formula Cells Formula cells to paste from Clipboard, "" otherwise
Number Cells Number cells to paste from Clipboard, "" otherwise
Formula
Values

Pastes formula cells as values, "" otherwise

Transpose Switches the position of entries (data listed in columns is
placed in rows and vice versa), "" otherwise

NoBlanks Avoids pasting blank cells from Clipboard; "" otherwise
Cell_Commen
ts

Pastes cell comments; "" otherwise

 Related topics

{POKE}
Syntax
Poke(DDEChannel As Integer, Destination As String, DataToSend As String)
PerfectScript Syntax
Poke (DDEChannel:Numeric; Destination:String; DataToSend:String)
Description
{POKE} sends information to an application that supports Dynamic Data Exchange (DDE). This application is
identified by DDEChannel. The type of application determines what Destination is; the destination could be cells
in Excel or a bookmark in Word for Windows. DataToSend refers to cells containing the information to send.
Example
This example starts a conversation with TASKLIST.OVD, which is a file open in ObjectVision. It sets the
ObjectVision field Task to the label stored in new_task, and unchecks the Completed check box. Then the new
task is inserted into the task list. The command block contains an ObjectVision command not available in Quattro
Pro:
dde_channel 10
command [@INSERT("tasks")]
exec_result 0
new_task Call Jim re: task priorities
task_status No

Parameters
DDEChanne
l

Channel ID number of the application to send information to

Destination Location in the application that receives the information being
sent

DataToSend Cells containing the information to send to the application
 Related topics

{Preview}
Syntax
Preview()
Description
{Preview} lets you preview a printout on screen.
 Related topics

{Print}
Syntax
{Print.Option}
Description
{Print} is equivalent to the menu items in the following list. To display specific command equivalents, choose
one of the following:
Command options for...
Page Setup
Named Settings
Print
Page Setup Options
The command equivalent {Print.PrintReset} resets print settings in all the dialog boxes displayed by these
commands.
You can use {Print?} or {Print!} to display the Spreadsheet Print dialog box. {Print?} lets you manipulate the
dialog box, whereas {Print!} relies on the macro to manipulate it.

Named Settings Command Options
PerfectScript Syntax
Print_Create (NamedSetting:String)
Print_Delete (NamedSetting:String)
Print_Use (NamedSetting:String)
Description
These command options affect named settings for printing. To update an existing named setting, use
{Print.Create}. {Print.Delete} removes a named setting from the active notebook. {Print.Use} sets the current
print settings to those stored under the name.

{Print.Create
NamedSetting}

Creates a named print setting using the name
in the New Set text box
Replaces the settings stored under the selected
name with the current print settings

{Print.Delete
NamedSetting}

Deletes the selected named setting

{Print.Use
NamedSetting}

Uses the selected named print setting

 Related topics

Page Setup Command Options
PerfectScript Syntax
Print_Options ()
Print_Bottom_Margin (Margin:String)
Print_Create_Footer (CreateFooter:Enumeration {Yes!; No!})
Print_Create_Header (CreateHeader:Enumeration {Yes!; No!})
Print_Footer (String:String)
Print_Footer_Margin (Margin:String)
Print_Footers_Font (Settings:String)
Print_Header (String:String)
Print_Header_Margin (Margin:String)
Print_Headers_Font (Settings:String)
Print_Left_Margin (Margin:String)
Print_Pages_Down (PagesDown:Numeric)
Print_Pages_Across (PagesAcross:Numeric)
Print_Orientation (Setting:String)
Print_Page_Breaks (Yes?:Enumeration {Yes!; No!})
Print_PageSetupReset ()
Print_Paper_Type (PaperSize:String)
Print_Print_To_Fit (Yes?:Enumeration {Yes!; No!})
Print_Right_Margin (Margin:String)
Print_Scaling (PercentageValue:Numeric)
Print_Top_Margin (Margin:String)
Description
These command options affect the page setup. When specifying a margin, the default measurement system is
used (set in the Windows Control Panel). To use a specific measurement system, place in (for inches) or cm (for
centimeters) after the new margin setting (see the example). The new setting is converted into the default
measurement system.

{Print.Options_Dialog} Displays the Page Setup dialog.
{Print.Bottom_Margin
Value}

Sets the amount of space between the edge of
the page and the bottom of the document

{Print.CreateFooter Yes|
No}

Determines whether your print selection contains
a footer.

{Print.CreateHeader Yes|
No}

Determines whether your print block contains a
header.

{Print.Footer FooterString} Creates and specifies text for a footer
{Print.Footer_Margin
Value}

Sets the amount of space between the last row of
data and the footer

{Print.Footers_Font
"Typeface, PointSize,
Bold(Yes|No), Italic(Yes|No),
Underline(Yes|No),
Strikeout(Yes|No)"}

Specifies the typeface, point size, and type style
for footer text

{Print.Header
HeaderString}

Creates and specifies text for a header

{Print.Header_Margin
Value}

Sets the amount of space between the header
and the first row of data

{Print.Headers_Font
"Typeface, PointSize, Bold
(Yes|No), Italic (Yes|No),
Underline (Yes|No),
Strikeout (Yes|No)"}

Specifies the typeface, point size, and type style
for header text

{Print.Left_Margin Value} Specifies the amount of space between the edge
of the page and the left of the document

{Print.PagesDown N} Determines how many pages long a print
selection will occupy.

{Print.PagesAcross N} Determines how many pages wide a print
selection will occupy.

{Print.Orientation
Landscape|Portrait}

Specifies portrait or landscape printing orientation

{Print.Page_Breaks Yes|No} Starts a new printed page at each soft page break
{Print.PageSetupReset} Resets the dialog box to its default settings,

replacing all selections in the dialog box
{Print.Paper_Type
PaperSize}

Controls the paper type and printing orientation

{Print.Print_To_Fit Yes|No} Specifies the maximum width and height in pages
to use when printing the print selection

{Print.Right_Margin Value} Specifies the amount of space between the edge
of the page and the right of the document

{Print.Scaling 1-1000} Specifies the percentage to increase or decrease
the size of notebook data on the printed page

{Print.Top_Margin Value} Specifies the amount of space between the edge
of the page and the top of the document

Example
This macro sets the top and bottom margins to three centimeters, specifies landscape orientation, and sets the
paper size to Legal.
{Print.Top_Margin "3 cm"}
{Print.Bottom_Margin "3 cm"}
{Print.Orientation Landscape}
{Print.Paper_Type "Legal 8 1/2 x 14 inch"}
 Related topics

Print Command Options
PerfectScript Syntax
Print_All_Pages (Yes?:Enumeration {Yes!; No!})
Print_Area (Area:String)
Print_Block (Block:String)
Print_Copies (Number:Numeric)
Print_DoPrint ()
Print_DoPrintGraph ()
Print_End_Page_Number (PageNumber:Numeric)
Print_Group_Copies (Group:String)
Print_Start_Page_Number (PageNumber:Numeric)
PrinterSetup (Printer:String; Port:String; PrintToFile?:Enumeration {Yes!; No!}; Filename:String;
ReplaceOption:Enumeration {Cancel!; Overwrite!; Backup!; Append!})
Description
These command options affect printing. {Print.DoPrint} prints the active notebook (or active chart) using current
print settings. {Print.DoPrintGraph} provides a quick way to print a chart. If a floating chart is selected,
{Print.DoPrintGraph} prints the chart being shown; if a chart icon is selected, {Print.DoPrintGraph} prints the
chart represented by that icon; if a chart window is active, {Print.DoPrintGraph} prints the chart shown.

{Print.All_Pages Yes|No} Prints all notebook pages
{Print.Area Notebook |
Selection | Current
Sheet}

Specifies how much of a notebook to print

{Print.Block Block} Prints the cells you specify
{Print.Copies Value} Specifies the number of copies to print
{Print.DoPrint} Sends the document to the printer
{Print.DoPrintGraph} Prints the selected chart
{Print.GroupCopies 0|1} Prints multiple copies sorted by sets of copies. Will

"collate" copies when set to zero, and "group"
copies when set to 1.

{Print.Start_Page_Numb
er Value}

Specifies the beginning and ending pages in the
document to print

{Print.PrinterSetup
Printer; Port; PrintToFile
(0|1); Filename;
CancelOverwrite (0) |
Replace (1) | Backup (2)
| Append (3)}

Lets you specify details of the printing process

Example
This macro selects an icon on the Objects sheet named Report3 and prints the chart it represents.
{OBJECTSPAGEGOTO}
{SELECTOBJECT Report3}
{Print.DoPrintGraph}

This macro prints pages 7 through 12 of a document. The print selection is A3..C234.
{Print.Block A3..C234}
{Print.All_Pages No}
{Print.Start_Page_Number 7}
{Print.End_Page_Number 12}
{Print.DoPrint}

Page Formatting Command Options
PerfectScript Syntax
Print_Between_Block_Formatting (Space:String)
Print_Between_Page_Formatting (Space:String)
Print_Cell_Formulas (Yes?:Enumeration {Yes!; No!})
Print_Center_Block (Yes?:Enumeration {Yes!; No!})
Print_Left_Heading (Block:String)
Print_Lines_Between_Blocks (Lines:Numeric)
Print_Lines_Between_Pages (Lines:Numeric)
Print_Print_Borders (Yes?:Enumeration {Yes!; No!})
Print_Print_Gridlines (Yes?:Enumeration {Yes!; No!})
Print_PrinterSetup (Printer:String; Port:String; PrintToFile?:String; Filename:String; OverWrite?:String)
Print_PrintOptionsReset ()
Print_PrintReset ()
Print_Top_Heading (Block:String)
Description
These command options affect spreadsheet printing. {Print.Between_Page_Formatting} and
{Print.Lines_Between_Pages} control the amount of space left between notebook sheets (if the print selection
spans multiple sheets).
{Print.Between_Block_Formatting} and {Print.Lines_Between_Blocks} control space between the selections that
make up a noncontiguous print selection.

{Print.Between_Block_Forma
tting "Lines"|"Page
Advance"}

Separates groups of cells with blank lines or
page breaks

{Print.Between_Page_Forma
tting "Lines"|"Page
Advance"}

Separates sheets of 3-D cells with blank lines or
page breaks

{Print.Cell_Formulas Yes|No} Prints each cell's address and contents instead
of its calculated results

{Print.Center_Block Yes|No} Centers the cells of the print selection between
the left and right margins of the printed page

{Print.Left_Heading Block} Adds the cell entries you specify as headings to
print at the left of each printed page

{Print.Lines_Between_Blocks
Value}

Specifies how many blank lines to print
between each group of cells

{Print.Lines_Between_Pages
Value}

Specifies how many blank lines to print
between each sheet of 3-D pages

{Print.Print_Borders Yes|No} Includes row and column borders in the printed
document

{Print.Print_Gridlines Yes|
No}

Includes the spreadsheet grid in the printed
document

{Print.PrintOptionsReset} Resets the dialog box to its default settings,
replacing all selections in the dialog box

{Print.Top_Heading Block} Adds the cell entries you specify as headings to
print at the top of each printed page

{Print.PrintReset} Resets all print settings
Example
This macro specifies that three lines should be printed between each notebook sheet (if the print selection spans
multiple sheets), and that row and column borders should print.
{Print.Between_Page_Formatting "Lines"}
{Print.Lines_Between_Pages 3}
{Print.Print_Borders Yes}
 Related topics

{PTTESTM}
Syntax
 PTTESTM(InBlock1 As String, InBlock2 As String, OutBlock As String, [Labels_ As _PTTESTM_Labels__enum],
[Alpha As Double], [Difference As Double])
PerfectScript Syntax
PTTESTM (InBlock1:String; InBlock2:String; OutBlock:String; [Labels?:Enumeration {Yes!; No!}]; [Alpha:Numeric];
[Difference:Numeric])
Description
{PTTESTM} performs a paired two-sample Student's t-Test for means. Each value from InBlock1 is paired with a
value from InBlock2. InBlock1 and InBlock2 must have the same number of values.
{PTTESTM} is equivalent to the t-Test analysis tool.
Parameters

InBlock1 The first input cells containing a column or row of numeric values
InBlock2 The second input cells containing a column or row of numeric

values
OutBlock Upper-left cell of the output cells
Labels 1 if labels are located in the first column or row of the input cells;

0 if the input cells do not contain labels; the default is 0
Alpha Significance level of the test; the default is 0.05
Difference Hypothetical mean difference; the default is 0

 Related topics

{PTTESTV}
Syntax
PTTESTV(InBlock1 As String, InBlock2 As String, OutBlock As String, [Labels_ As _PTTESTV_Labels__enum], [Alpha
As Double])
PerfectScript Syntax
PTTESTV (InBlock1:String; InBlock2:String; OutBlock:String; [Labels?:Enumeration {Yes!; No!}]; [Alpha:Numeric])
Description
{PTTESTV} performs a Student's t-Test using two indepependent (rather than paired) samples with unequal
variances. {PTTESTV} is equivalent to the t-Test analysis tool.
Parameters

InBlock1 The first input cells containing a column or row of numeric values
InBlock2 The second input cells containing a column or row of numeric

values
OutBlock Upper-left cell of the output cells
Labels 1 if labels are located in the first column or row of the input cells;

0 if the input cells do not contain labels; the default is 0
Alpha Significance level of the test; the default is 0.05

 Related topics

{PUT}
Syntax
Put(Block As String, Column As Integer, Row As Integer, Value)
PerfectScript Syntax
Put (Block:String; Column:Numeric; Row:Numeric; Value:Any)
Description
{PUT}, like {LET}, copies a value to a particular cell. However, instead of placing the value directly in the
specified cell, {PUT} copies Value into the cell that is offset Column# columns and Row# rows into Location.
{PUT} processes Value the same way {LET} does, including the use of :string (or :s) and :value (or :v). If neither
of these two optional arguments is supplied, {PUT} tries to store the value as a numeric value; if unsuccessful, it
stores the value as a label.
The values for Column# and Row# can be any number between 0 and one less than the number of columns or
rows within Location, respectively. A value of 0 implies the first column or row, 1 implies the second, and so on. If
Column# or Row# exceeds the number of columns or rows in the cells, the macro stops.
Example
Each of the following examples assumes cell A41 contains the value 25, the selection named numbers has been
defined as A44..B50, and data is a cell containing the value 295.
{PUT numbers,1,4,A41:value} copies the value 25 into the cell at the intersection of the second column and the

fifth row of the cell numbers (cell B48).
{PUT numbers,1,5,A41:s} copies the string "A41" into the cell at the 2nd column and the 6th row of the cell

numbers (cell B49).
{PUT numbers,1,6,data} copies the contents of the cell data to the 2nd column and 7th row of numbers (cell
B50). If there is no selection named data, this example instead places a label ("data") into cell B50.
Parameters

Location Cells within which Value will be stored, either as a value or label,
as specified by Type

Column# Number of columns into the specified cells to store Value
Row# Number of rows into the specified cells to store Value
Value String or numeric value
Type String or value; string (or s) stores the value or formula as a label,

and value (or v) stores the actual value or value resulting from a
formula (optional)

 Related topics

{PUTBLOCK}
Syntax
 PutBlock(Data, [Block As String], [Date_ As _PutBlock_Date__enum])
PerfectScript Syntax
PutBlock (Data:Any; [Block:String]; [Date?:Enumeration {Yes!; No!}])
Description
{PUTBLOCK} lets you quickly enter the same value, label, or formula in multiple cells. Data is a string or value to
place in Block. If Block is not specified, the currently selected cells are used. Block can be noncontiguous; if so,
be sure to enclose it in parentheses. If Data is a formula containing relative addresses, those addresses are
adjusted automatically.
Example
{PUTBLOCK "Quarter 1",A..D:A1} enters the label Quarter 1 in cells A:A1 through D:A1.

{PUTBLOCK 1990,A..D:B1} enters the value 1990 in cells A:B1 through D:B1.

{PUTBLOCK "+A1",C3..C12) enters the formula +A1 in C3, +A2 in C4, and so on.

{PUTBLOCK "11/01/94", (A:D3,B:D3,C:D3,D:D3),1} enters the date 11/01/94 in cell D3 of sheets A through D.
Parameters

Data Entry to type
Block Cells to type Data in (optional)
Date? Whether to enter Data as a date (1) or a label (0)

 Related topics

{PUTBLOCK2}
Syntax
 PutBlock2(Data, [Block As String])
PerfectScript Syntax
PutBlock2 (Data:Any; [Block:String])
Description
{PUTBLOCK2} enters the same value, label, or formula in multiple cells like {PUTBLOCK} but parses date
formats automatically and requires a formula prefix before numeric values. Data is a string or value to place in
Block. If Block is not specified, the currently selected cells are used. Block can be noncontiguous; if so, be sure to
enclose it in parentheses. If Data is a formula containing relative addresses, those addresses are adjusted
automatically.
Example
{PUTBLOCK2 "Quarter 1",A..D:A1} enters the label Quarter 1 in cells A:A1 through D:A1.
{PUTBLOCK2 +1990,A..D:B1} enters the value 1990 in cells A:B1 through D:B1.
{PUTBLOCK2 "+A1",C3..C12) enters the formula +A1 in C3, +A2 in C4, and so on.
{PUTBLOCK2 "11/01/94", (A:D3,B:D3,C:D3,D:D3)} enters the date 11/01/94 in cell D3 of sheets A through D.
Parameters

Data Entry to type
Block Cells to type Data in (optional)

 Related topics

{PUTCELL}
Syntax
PutCell(Data, [Date_ As _PutCell_Date__enum])
PerfectScript Syntax
PutCell (Data:Any; [Date?:Enumeration {Yes!; No!}])
Description
{PUTCELL} is an easy way to store information in the active cell.
Example
{PUTCELL "Peggy Danderhoff"} stores Peggy Danderhoff as a label in the active cell.

{PUTCELL 45067} stores the number 45067 as a value in the active cell.

{PUTCELL "@SUM(A1..A27)"} stores the formula @SUM(A1..A27) in the active cell.

{PUTCELL "11/01/94",1} stores the date 11/01/94 in the active cell

Parameters
Data String to type into the active cell
 Date? Whether to enter Data as a date (1) or a label (0)

 Related topics

{PUTCELL2}
Syntax
 PutCell2(Data)
PerfectScript Syntax
PutCell2 (Data:Any)
Description
{PUTCELL2} stores information in the active cell like {PUTCELL} but parses date formats automatically and
requires a formula prefix before numeric values.
Example
{PUTCELL2 "Peggy Danderhoff"} stores Peggy Danderhoff as a label in the active cell.
{PUTCELL2 +45067} stores the number 45067 as a value in the active cell.
{PUTCELL2 "@SUM(A1..A27)"} stores the formula @SUM(A1..A27) in the active cell.
{PUTCELL2 "11/01/94"} stores the date 11/01/94 in the active cell
Parameters

Data String to type into the active cell
 Related topics

{QUERY}
Syntax
Query()
Description
{QUERY} repeats the last Notebook Query operation performed.
 Related topics

{Query}
Syntax
{Query.Option}
PerfectScript Syntax
Query_Assign_Names ()
Query_Criteria_Table (Block:String)
Query_Database_Block (Block:String)
Query_Delete ()
Query_EndLocate ()
Query_Extract ()
Query_Locate ()
Query_Output_Block (Block:String)
Query_Reset ()
Query_Unique ()
Description
{Query} lets you set up a Quattro Pro database and search for records in that database. {Query.Locate} enters
FIND mode and stays under macro control until {PAUSEMACRO} is used or {Query.EndLocate}, which exits FIND
mode.
You can use {Query?} or {Query!} to display the Notebook Data Query dialog box. {Query?} lets you
manipulate the dialog box, whereas {Query!} relies on the macro to manipulate it.
Example
The following macro sets up database cells and criteria table (A2..G37 and H1..H2), searches for records using
the criteria table, sets up output cells at J2..P2, and copies any records found there.
{Query.Database_Block A2..G37}
{Query.Criteria_Table H1..H2}
{Query.Locate}
{Query.EndLocate}
{Query.Output_Block J2..P2}
{Query.Extract}

Options
{Query.Assign_Names} Assigns cell names to fields so you can use them

in search queries
{Query.Criteria_Table Block} Specifies cells containing search conditions,

including field names
{Query.Database_Block
Block}

Specifies the data, including field names, to
search

{Query.Delete} Deletes all records that meet the search criteria
{Query.Extract} Copies all records that meet the search criteria to

the output cells
{Query.Locate} Highlights all records that meet the search

criteria
{Query.Output_Block Block} Specifies the cells where you want to copy

records and field names that meet the search
criteria

{Query.Reset} Removes all selection settings
{Query.Unique} Copies records like Extract, but skips duplicate

records

{QuickCorrect}
Syntax
QuickCorrect(Enable_ As _QuickCorrect_Enable__enum)

PerfectScript Syntax
QuickCorrect (Enable?:Enumeration {1!; 0!})
Description
{QuickCorrect} replaces common spelling errors and mistyped words; it can also be used to automatically
expand abbreviations. {QuickCorrect 1} activates the QuickCorrect feature; {QuickCorrect 0} turns it off.

{QuickFilter.Go}
Syntax
QuickFilter_Go([Block_ As String], [OpCode1_ As String], [Value1_ As String], [Conditional1_ As String],
[OpCode2_ As String], [Value2_ As String], [Conditional2_ As String], [OpCode3_ As String], [Value3_ As String])
PerfectScript Syntax
QuickFilter_Go ([Block?:String]; [OpCode1?:String]; [Value1?:String]; [Conditional1?:String]; [OpCode2?:String];
[Value2?:String]; [Conditional2?:String]; [OpCode3?:String]; [Value3?:String])
Description
Performs QuickFilter operations on cells. You can have 2, 5, or 7 optional args.
Example:
{QuickFilter.Go A:A1}

Equivalent to "Show All." Flushes ALL filters associated with Column A
{QuickFilter.Go A:B5;equal to""}

Equivalent to "Blanks." Filters all rows out except for those with blanks in Column B.
{QuickFilter.Go A:F24;not equal to""}

Equivalent to "Non Blanks." Filters out all rows except for those without blanks in Column F.
Parameters

OpCode# "Equal to," or "not equal to," "greater than," "less than," "greater
than or equal to," "less than or equal to," "begins with," "does not
begin with," "ends with," "does not end with," "contains," "does
not contain."

Arg# Can be numeric, or a string. Wildcards are not valid.
Conditional# AND or OR

 Related topics

{QuickFilter.Toggle}
Syntax
QuickFilter_Toggle([Block_ As String])
PerfectScript Syntax
QuickFilter_Toggle ([Block?:String])
Description
Turns on/off QuickFilters for the current cells.
 Related topics

{QuickFilter.TopGo}
Syntax
 QuickFilter_TopGo([Block_ As String], [OpCode1_ As String], [Value1_ As Integer])
PerfectScript Syntax
QuickFilter_TopGo ([Block?:String]; [OpCode1?:String]; [Value1?:Numeric])
Description
Performs QuickFilter operations on cells.
Example:
{QuickFilter.TopGo A:C51;top value;10}

Equivalent to Top Ten Values. Filters out all rows except for those that contain the top 10 values in column C.
{QuickFilter.TopGo A:E17;bottom percent;23}

Equivalent to Bottom 23 Percent. Filters out all rows except for those that contain the bottom 23% in column
E.

Parameters
OpCode "Top value," "top percent," "bottom value," "bottom

percent"
Arg Must be numeric. Wildcards are not valid.

 Related topics

{QuickFunction}
Syntax
QuickFunction(Name_ As String, [Block_ As String])
PerfectScript Syntax
QuickFucntion(Name?: String!, Block?: <Block>)
Description
{QuickFunction} is equivalent to selecting cells and clicking the QuickFunction button on the toolbar. Block
includes rows and/or columns to sum plus adjacent empty cells to hold the results. The default Block is the
current selection.
Parameters

Name SUM, MIN, MAX, AVG, PUREAVG, MULT, PMT, RATE, IRATE,
TERM, PV, FV

Block A database block including field labels and records

 Related topics

{QUIT}
Syntax
Quit()
Description
{QUIT} ends all macro execution, and returns control of Quattro Pro to you.
Example
The following macro displays a menu that has a "Quit" option, which returns you to Ready mode.
quit_menu Continue Quit

Keep going Quit to Ready mode
{BRANCH \G} {QUIT}

\G {MENUBRANCH quit_menu}

 Related topics

{RANDOM}
Syntax
RANDOM(OutBlock As String, Columns As Integer, Rows As Integer, type As _RANDOM_Type_enum, Seed As
Double, Parameter1, [Parameter2 As Double], [Parameter3 As Double], [Parameter4 As Double], [Parameter5 As
Double]
Parameters

OutBlock Upper-left cell of the output cells
Columns A value indicating the number of random-number sets to

generate; default is the number of columns in OutBlock
Rows A value indicating the number of rows of random numbers to

generate for each column
6 Indicates patterned distribution
Seed Starting number for the random-number-generation

algorithm
LowerBound A value indicating the lower bound on the set of numbers to

generate
UpperBound A value indicating the upper bound on the set of numbers to

generate
Step Increment value between LowerBound and UpperBound
RepeatNumber A value indicating the number of times to repeat each value
RepeatSequen
ce

A value indicating the number of times to repeat each
sequence of values

Description
{RANDOM} generates cells of random values drawn from a selected distribution. It is equivalent to the Random
Number analysis tool. {RANDOM} has a different format for the following distribution types:

Uniform Every value has an equal probability of being selected.
Normal Has the qualities of a symmetrical, bell-shaped curve.
Bernoulli Has two possible outcomes, failure or success, represented

by 0 and 1.
Binomial Represents the distribution of successful outcomes in a

given number of independent Bernoulli trials.
Poisson The distribution of values in any interval depends on the

length of the interval and the constant Lambda, the
expected number of occurrences in an interval

Patterned A pattern of repeated values and sequences.
Discrete Every value in designated cells has a specified probability

of being selected (the cumulative probabilities equal 1).
 Related topics

{RANDOM} - Uniform Distribution
Syntax
{RANDOM OutBlock, Columns, Rows, 1, Seed, LowerBound, UpperBound}
PerfectScript Syntax
RANDOM (OutBlock:String; Columns:Numeric; Rows:Numeric; Type:Enumeration {Uniform!; Normal!; Bernoulli!;
Binomial!; Poisson!; Patterned!; Discrete!}; Seed:Numeric; Parameter1:Any; [Parameter2:Numeric];
[Parameter3:Numeric]; [Parameter4:Numeric]; [Parameter5:Numeric])
Description
When the Distribution argument equals 1, {RANDOM} generates random values drawn from a uniform
distribution.
Parameters

OutBlock Upper-left cell of the output cells
Columns A value indicating the number of random-number sets to

generate; default is the number of columns in OutBlock
Rows A value indicating the number of rows of random numbers to

generate for each column
1 Indicates uniform distribution
Seed Starting number for the random-number-generation algorithm
LowerBoun
d

A value indicating the lower bound on the set of numbers to
generate

UpperBoun
d

A value indicating the upper bound on the set of numbers to
generate

 Related topics

{RANDOM} - Normal Distribution
Syntax
{RANDOM OutBlock, Columns, Rows, 2, Seed, Mean, SDev}
PerfectScript Syntax
RANDOM (OutBlock:String; Columns:Numeric; Rows:Numeric; Type:Enumeration {Uniform!; Normal!; Bernoulli!;
Binomial!; Poisson!; Patterned!; Discrete!}; Seed:Numeric; Parameter1:Any; [Parameter2:Numeric];
[Parameter3:Numeric]; [Parameter4:Numeric]; [Parameter5:Numeric])
Description
When the Distribution argument equals 2, {RANDOM} generates random values drawn from a normal
distribution.
Parameters

OutBlock Upper-left cell of the output cells
Columns A value indicating the number of random-number sets to

generate; default is the number of columns in OutBlock
Rows A value indicating the number of rows of random numbers to

generate for each column
2 Indicates normal distribution
Seed Starting number for the random-number-generation algorithm
Mean A value indicating the mean of the set of numbers to generate
SDev A value indicating the standard deviation of the set of numbers to

generate
 Related topics

{RANDOM} - Bernoulli Distribution
Syntax
{RANDOM OutBlock, Columns, Rows, 3, Seed, Prob}
PerfectScript Syntax
RANDOM (OutBlock:String; Columns:Numeric; Rows:Numeric; Type:Enumeration {Uniform!; Normal!; Bernoulli!;
Binomial!; Poisson!; Patterned!; Discrete!}; Seed:Numeric; Parameter1:Any; [Parameter2:Numeric];
[Parameter3:Numeric]; [Parameter4:Numeric]; [Parameter5:Numeric])
Description
When the Distribution argument equals 3, {RANDOM} generates random values drawn from a Bernoulli
distribution.
Parameters

OutBlock Upper-left cell of the output cells
Columns A value indicating the number of random-number sets to

generate; default is the number of columns in OutBlock
Rows A value indicating the number of rows of random numbers to

generate for each column
3 Indicates Bernoulli distribution
Prob Starting number for the random-number-generation algorithm
Seed A value indicating the probability of success on each trial run;

must be greater than or equal to 0 and less than or equal to 1
 Related topics

{RANDOM} - Binomial Distribution
Syntax
{RANDOM OutBlock, Columns, Rows, 4, Seed, Prob, Trials}
PerfectScript Syntax
RANDOM (OutBlock:String; Columns:Numeric; Rows:Numeric; Type:Enumeration {Uniform!; Normal!; Bernoulli!;
Binomial!; Poisson!; Patterned!; Discrete!}; Seed:Numeric; Parameter1:Any; [Parameter2:Numeric];
[Parameter3:Numeric]; [Parameter4:Numeric]; [Parameter5:Numeric])
Description
When the Distribution argument equals 4, {RANDOM} generates random values drawn from a binomial
distribution.
Parameters

OutBlock Upper-left cell of the output cells
Columns A value indicating the number of random-number sets to

generate; default is the number of columns in OutBlock
Rows A value indicating the number of rows of random numbers to

generate for each column
4 Indicates binomial distribution
Seed Starting number for the random-number-generation algorithm
Prob A value indicating the probability of success on each trial run;

must be greater than or equal to 0 and less than or equal to 1
Trials A value indicating the number of trials

 Related topics

{RANDOM} - Poisson Distribution
Syntax
{RANDOM OutBlock, Columns, Rows, 5, Seed, Lambda}
PerfectScript Syntax
RANDOM (OutBlock:String; Columns:Numeric; Rows:Numeric; Type:Enumeration {Uniform!; Normal!; Bernoulli!;
Binomial!; Poisson!; Patterned!; Discrete!}; Seed:Numeric; Parameter1:Any; [Parameter2:Numeric];
[Parameter3:Numeric]; [Parameter4:Numeric]; [Parameter5:Numeric])
Description
When the Distribution argument equals 5, {RANDOM} generates random values drawn from a Poisson
distribution.
Parameters

OutBlock Upper-left cell of the output cells
Columns A value indicating the number of random-number sets to

generate; default is the number of columns in OutBlock
Rows A value indicating the number of rows of random numbers to

generate for each column
5 Indicates Poisson distribution
Seed Starting number for the random-number-generation algorithm
Lambda A parameter to the Poisson distribution representing the expected

number of events in each unit
 Related topics

{RANDOM} - Patterned Distribution
Syntax
{RANDOM OutBlock, Columns, Rows, 6, Seed, LowerBound, UpperBound, Step, RepeatNumber,
RepeatSequence}
PerfectScript Syntax
RANDOM (OutBlock:String; Columns:Numeric; Rows:Numeric; Type:Enumeration {Uniform!; Normal!; Bernoulli!;
Binomial!; Poisson!; Patterned!; Discrete!}; Seed:Numeric; Parameter1:Any; [Parameter2:Numeric];
[Parameter3:Numeric]; [Parameter4:Numeric]; [Parameter5:Numeric])
Description
When the Distribution argument equals 6, {RANDOM} generates random values drawn from a patterned
distribution.
Parameters

OutBlock Upper-left cell of the output cells
Columns A value indicating the number of random-number sets to

generate; default is the number of columns in OutBlock
Rows A value indicating the number of rows of random numbers to

generate for each column
6 Indicates patterned distribution
Seed Starting number for the random-number-generation

algorithm
LowerBound A value indicating the lower bound on the set of numbers to

generate
UpperBound A value indicating the upper bound on the set of numbers to

generate
Step Increment value between LowerBound and UpperBound
RepeatNumber A value indicating the number of times to repeat each value
RepeatSequen
ce

A value indicating the number of times to repeat each
sequence of values

 Related topics

{RANDOM} - Discrete Distribution
Syntax
{RANDOM OutBlock, Columns, Rows, 7, Seed, InBlock}
PerfectScript Syntax
RANDOM (OutBlock:String; Columns:Numeric; Rows:Numeric; Type:Enumeration {Uniform!; Normal!; Bernoulli!;
Binomial!; Poisson!; Patterned!; Discrete!}; Seed:Numeric; Parameter1:Any; [Parameter2:Numeric];
[Parameter3:Numeric]; [Parameter4:Numeric]; [Parameter5:Numeric])
Description
When the Distribution argument equals 7, {RANDOM} generates random values drawn from a discrete
distribution.
Parameters

OutBlock Upper-left cell of the output cells
Columns A value indicating the number of random-number sets to

generate; default is the number of columns in OutBlock
Rows A value indicating the number of rows of random numbers to

generate for each column
7 Indicates discrete distribution
Seed Starting number for the random-number-generation algorithm
InBlock One or more numeric cell values representing the input cells,

which contain a range of values and their probabilities, each in a
separate column

 Related topics

{RANKPERC}
Syntax
RANKPERC(InBlock As String, OutBlock As String, [Grouped As String], [Labels_ As _RANKPERC_Labels__enum])
PerfectScript Syntax
RANKPERC (InBlock:String; OutBlock:String; [Grouped:String]; [Labels?:Enumeration {Yes!; No!}])
Description
{RANKPERC} returns the ordinal and percent rank of each value in InBlock. {RANKPERC} is equivalent to the
Rank and Percentile analysis tool.
Parameters

InBlock Input cells containing one or more columns or rows of numeric
values

OutBlock Upper-left cell of the output cells
Grouped "C" to group results by column or "R" to group results by row; the

default is "C"
Labels 1 if labels are located in the first column or row of the input cells; 0

if the input cells do not contain labels; the default is 0
 Related topics

{RECALC}
Syntax
Recalc(Block As String, [Condition], [Iteration As Integer])
PerfectScript Syntax
Recalc (Block:String; [Condition:Any]; [Iteration:Numeric])
Description
{RECALC} causes Quattro Pro to recalculate a specified portion of the notebook in a row-by-row order. This is
different from normal recalculation, where Quattro Pro recalculates the entire notebook in natural order; that is,
before a formula calculates, each cell it references is recalculated first.
With the optional Condition argument, you can tell Quattro Pro to recalculate formulas in cells repeatedly until
the specified condition is met. You can also supply Iteration# to specify the maximum number of times to
recalculate formulas trying to satisfy Condition. To use Iteration#, Condition must also be supplied.
{RECALC} is useful for rapid recalculation of specified parts of a notebook, particularly when the notebook is so
large that global recalculations would significantly slow your work.
{RECALC} overrides the recalculation method specified for the notebook, enforcing row-by-row recalculation. If
all the formulas reference only cells above, or to the left in the same row, the notebook will be correctly
calculated. If there are references to cells to the left and below, you must use {RECALCCOL}. If there are
references to cells below or to the right in the same row as your formula, you must use {CALC} to recalculate
the entire notebook.
{RECALC} displays the results of recalculation.
If there are formulas within the cells being recalculated that depend on formulas outside of the cells, they might
not evaluate correctly. Make sure Location encompasses all the cells referenced by formulas within the cells.
Parameters

Location Cells to recalculate
Condition Condition to be met before recalculation is halted (optional)
Iteration
#

Maximum number of times to recalculate Location trying to meet
Condition (optional)

 Related topics

{RECALCCOL}
Syntax
RecalcCol(Block As String, [Condition], [Iteration As Integer])
PerfectScript Syntax
RecalcCol (Block:String; [Condition:Any]; [Iteration:Numeric])
Description
{RECALCCOL} recalculates the specified portion of a notebook in column-by-column order. It is similar to
{RECALC}, which recalculates row by row. See {RECALC} for information on when {RECALCCOL} is appropriate
and when you need to use {CALC} instead.
Parameters

Location Cells to recalculate
Condition Condition to be met before recalculation is halted (optional)
Iteration
#

Maximum number of times to recalculate Location trying to meet
Condition (optional)

 Related topics

{RefreshMenuBar}
Syntax
RefreshMenuBar()
PerfectScript Syntax
RefreshMenuBar ()
Description
Refreshes the menu bar.

{REGRESS}
Syntax
REGRESS(InBlockY As String, InBlockX As String, YIntZero_ As _REGRESS_YIntZero__enum, Labels_ As
_REGRESS_Labels__enum, Confidence As Double, SumOutBlock As String, Residuals_ As
_REGRESS_Residuals__enum, StdResiduals_ As _REGRESS_StdResiduals__enum, [ResidualOutBlock As String],
[ProbOutBlock As String])
PerfectScript Syntax
REGRESS (InBlockY:String; InBlockX:String; YIntZero?:Enumeration {Yes!; No!}; Labels?:Enumeration {Yes!; No!};
Confidence:Numeric; SumOutBlock:String; Residuals?:Enumeration {Yes!; No!}; StdResiduals?:Enumeration
{Yes!; No!}; [ResidualOutBlock:String]; [ProbOutBlock:String])
Description
{REGRESS} performs multiple linear regression analysis. {REGRESS} is equivalent to the Advanced Regression
analysis tool.
Parameters

InBlockY Input cells containing a single column of y values (the
dependent variables)

InBlockX Input cells containing one or more columns of x values (the
independent variables)

YIntZero 1 if the y-intercept is 0 (the line of regression passes
through the origin); 0 if the y-intercept is not 0

Labels 1 if labels are located in the first column or row of the
InBlockY and InBlockX; 0 if the input selections do not
contain labels

Confidence A value indicating the confidence level to apply to the
regression

SumOutBlock Upper-left cell of the output cells for the summary table
(allow at least seven columns)

Residuals 1 or 0; if 1, includes residuals in the output table
StdResiduals 1 or 0; if 1, includes standardized residuals in the output

table
ResidualOutBloc
k

Upper-left cell of the output cells for the residuals table
(allow at least four columns)

ProbOutBlock Upper-left cell of the output cells for the probabilities table
(allow at least two columns)

 Related topics

{Regression}
Syntax
{Regression.Option}
PerfectScript Syntax
Regression_Dependent (Block:String)
Regression_Go ()
Regression_Independent (Block:String)
Regression_Output (Block:String)
Regression_Reset ()
Regression_Y_Intercept (Mode:String)
Description
{Regression} performs a regression analysis to show the relationship between a set of independent variables
and a dependent variable.
{Regression.Dependent} indicates the dependent-variable cells. {Regression.Independent} defines the
independent variables. In {Regression.Independent}, Block can be noncontiguous with one variable to a column.
The dependent and independent selections must all have the same number of rows.
{Regression.Output} indicates where to store the table of regression results. {Regression.Y_Intercept} specifies
whether to compute the Y-intercept, or set it to zero. You can use {Regression.Reset} to clear all settings. Use
{Regression.Go} after the other command equivalents to perform the regression analysis. If data changes within
the independent or dependent data selections, use {Regression.Go} again to calculate a new regression table.
You can use {Regression?} or {Regression!} to display the Linear Regression dialog box. {Regression?} lets you
manipulate the dialog box, whereas {Regression!} relies on the macro to manipulate it.
Example
The following macro sets these data selections: Independent, B2..D16; Dependent, F2..F16. The last statement
performs the regression analysis and stores the results in the cells with upper-left cell H2.
{Regression.Independent A:B2..A:D16}
{Regression.Dependent A:F2..A:F16}
{Regression.Output A:H2}
{Regression.Go}
Options

{Regression.Dependent
Block}

Specifies the cells (partial column) containing
independent variable (y-axis) data

{Regression.Go} Performs the regression analysis
{Regression.Independe
nt Block}

Specifies cells containing up to 150 columns of
independent variable (x-axis) data

{Regression.Output
Block}

Specifies the cells where results will be written

{Regression.Reset} Clears all regression settings
{Regression.Y_Intercept
Compute|Zero}

Specifies whether to force the y-intercept value to zero
or whether to compute it

{REQUEST}
Syntax
{REQUEST DDEChannel,DataToReceive,DestBlock}
PerfectScript Syntax
Request (DDEChannel:Numeric; DataToReceive:String; DestBlock:String)
Description
{REQUEST} gets information specified by DataToReceive from applications that support Dynamic Data Exchange
(DDE). This information is stored in DestBlock. DataToReceive is a string representing the location of the data to

receive in the other application. In Quattro Pro, this could be cells such as A2..A7 or a property such as
"(Application.Display)". If requesting a property, the property must be enclosed in parentheses.
If your conversation is not within a specific topic (in other words, you opened the channel using the command
{INITIATE AppName,"System",DDEChannel}), you can use the following strings in DataToReceive, depending on
the application:

Arguments for DataToReceive
String Purpose
"SysItems" A listing of all strings you can use with DataToReceive. You

can use this command first to view other choices offered by
AppName.

"Topics" A listing of all topics open. For example, a list of open
documents under Word for Windows.

"Status" The current status of the application. For example, READY in
Excel or EDIT in Quattro Pro when a cell is being edited.

"Formats" A list of all Clipboard formats supported by the application or
DDE link.

"Selection" A list of all items currently selected in the application. For
example, in Excel cells A3..A47 could be selected.

Example
This macro gets the major and minor version numbers of GroupWise, which is already running.
dde_channel 0
get_vernumber {INITIATE "GroupWise","Command",dde_channel}

{REQUEST
dde_channel,"GetOfficeData(ID;MajorVersion!)",G1}
{REQUEST
dde_channel,"GetOfficeData(ID;MinorVersion!)",G2}
{TERMINATE dde_channel}

This macro gets information from the fields Task and Completed in ObjectVision file TASKLIST.OVD and stores the
data in the active notebook.
dde_channel 10
command [@NEXT("TASKS")]
exec_result 0
vision_task Print out third quarter report
task_complete Yes
_get_vision_task {INITIATE "VISION","TASKLIST.OVD",dde_channel}

{REQUEST dde_channel,"Task",vision_task}
{REQUEST dde_channel "Completed",task_complete}
{EXECUTE dde_channel,+command,exec_result}

Parameters
DDEChannel DDE channel number of the application to receive data from
DataToReceiv
e

Information to receive from the application

DestBlock Cells to store the data received into
 Related topics

{RESIZE}
Syntax
Resize(x As Double, y As Double, NewWidth As Double, NewHeight As Double, [VertFlip_ As
_Resize_VertFlip__enum], [HorizFlip_ As _Resize_HorizFlip__enum])
PerfectScript Syntax
Resize (x:Numeric; y:Numeric; NewWidth:Numeric; NewHeight:Numeric; [VertFlip?:Enumeration {Yes!; No!}];
[HorizFlip?:Enumeration {Yes!; No!}])
Description
{RESIZE} resizes all selected objects in the active window (dialog or chart window).
Parameters

x and y XY coordinates of the new upper-left corner, in pixels
NewWidt
h

The new width, in pixels, of the object or group

NewHeig
ht

The new height, in pixels, of the object or group

VertFlip? 1 if the object or group is flipped vertically from its previous
position

HorizFlip? 1 if the object or group is flipped horizontally from its previous
position

 Related topics

{ResizeToSame}
Syntax
ResizeToSame()
Description
{ResizeToSame} lets you resize selected objects in the dialog window to the same size as the first object
selected.

{RestrictInput}
Syntax
{RestrictInput.Option}
PerfectScript Syntax
RestrictInput_Enter (Block:String)
RestrictInput_Exit ()
Description
{RestrictInput.Enter} enters INPUT mode and stays under macro control until {PAUSEMACRO} is used or
{RestrictInput.Exit}, which exits INPUT mode.
{RestrictInput.Option} confines selector movement to specific cells of unprotected cells.
You can use {RestrictInput?} or {RestrictInput!} to display the Restrict Input dialog box. {RestrictInput?} lets you
manipulate the dialog box, whereas {RestrictInput!} relies on the macro to manipulate it.
Options

{RestrictInput.Enter
Block}

Enters INPUT mode and stays under
macro control

{RestrictInput.Exit} Any operation that ends INPUT mode

{ReturnErrorValue}
Syntax
 ReturnErrorValue()}
PerfectScript Syntax
ReturnErrorValue ()
Description
Reinstates the ability for Quattro Pro to return a specific error value, if one is warranted.

{ROWCOLSHOW}
Syntax
RowColShow(Block As String, Show_ As _RowColShow_Show__enum, Row_ As _RowColShow_Row__enum,
FirstPane_ As _RowColShow_FirstPane__enum)
PerfectScript Syntax
RowColShow (Block:String; Show?:Enumeration {Yes!; No!}; Row?:Enumeration {Yes!; No!};
FirstPane?:Enumeration {Yes!; No!})
Description
{ROWCOLSHOW} lets you hide or reveal rows and columns (it is equivalent to the cell property Reveal/Hide).
Show? specifies whether to reveal (1) or hide (0). Row or Col specifies whether to affect rows (1) or columns (0).
Block contains the rows or columns to affect. FirstPane? is used when the active window is split into panes. To
affect the columns or rows in the left or top pane, set FirstPane? to 1; to affect rows or columns in the right or
bottom pane, set FirstPane? to 0.
Example
{ROWCOLSHOW A:A..B,1,0,1} reveals columns A and B on sheet A.
{ROWCOLSHOW A:1..7,0,1,1} hides rows 1 through 7 on sheet A.
{ROWCOLSHOW A:1..7,1,1,0} reveals rows 1 through 7 on sheet A. If the window is split, the rows are revealed

in the right or bottom pane.

Parameters
Block Cells containing rows or columns to hide or show
Show? 1 to reveal rows or columns; 0 to hide rows or columns
Row or Col 1 to reveal or hide a row; 0 to reveal or hide a column
FirstPane? 1 to affect rows or columns in left or top window pane; 0 to affect

them in the right or bottom window pane
 Related topics

{ROWHEIGHT}
Syntax
RowHeight(Block As String, FirstPane_ As _RowHeight_FirstPane__enum, Reset_ As _RowHeight_Reset__enum,
Size As Double)
PerfectScript Syntax
RowHeight (Block:String; FirstPane?:Enumeration {Yes!; No!}; Reset?:Enumeration {Yes!; No!}; Size:Numeric)
Description
{ROWHEIGHT} provides two ways to change the height of a row or rows (it is equivalent to the cell property Row
Height). The rows to change are specified by Block. FirstPane? is used when the active window is split into panes.
To resize the rows in the left or top pane, set FirstPane? to 1; to resize the rows in the right or bottom pane, set
FirstPane? to 0.
Set/Reset specifies how to change the height. To set a row height, use this syntax: {ROWHEIGHT Block,
FirstPane?, 0, Size}
Size is the new row height, in twips. The maximum height is ten inches (14,400 twips).
To reset a row to the default height (determined by font sizes in the row), use this syntax: {ROWHEIGHT Block,
FirstPane?, 1}
Example
{ROWHEIGHT A:1..A:2,1,0,1440} sets the height of rows 1 and 2 (on sheet A) to one inch (1,440 twips).
{ROWHEIGHT A:1..A:2,0,0,2160} sets the height of rows 1 and 2 (on sheet A) to one and a half inches (2,160

twips). If the window is split, the top or left pane is affected.
{ROWHEIGHT A:5,1,1} resets the height of row 5 (on sheet A) to the default height.
Parameters

Block Cells containing rows to resize
FirstPane? 1 to resize rows in left or top window pane; 0 to resize rows in

right or bottom window pane
Set/Reset 0 to set the row height; 1 to reset the row height
Size New height (in twips) if setting size; not needed if resetting size

 Related topics

{SAMPLE}
Syntax
SAMPLE(InBlock As String, OutBlock As String, type As String, Rate As Double)
PerfectScript Syntax
SAMPLE (InBlock:String; OutBlock:String; Type:String; Rate:Numeric)
Description
{SAMPLE} returns a periodic or random sample from values in InBlock. {SAMPLE} is equivalent to the Sampling
analysis tool.
Parameters

InBlock One or more numeric or cell values representing the input cells
OutBlock Upper-left cell of the output cells
Type "P" to specify periodic sample; "R" to specify random sampling
Rate A value indicating a sampling rate; if Type = "P", Rate indicates

the periodic interval used for sampling; if Type = "R", Rate
indicates the number of samples

 Related topics

{SaveHtml_BackgroundColor}
Syntax
SaveHtml_BackgroundColor(BkColor_ As String)
PerfectScript Syntax
SaveHtml_BackgroundColor (BkColor?: String)
Description
Lets you specify the default color of the background.
Example
SaveHtml.BackgroundColor Black
SaveHtml.BackgroundColor "#ff00ff"
Parameter

BkColor The name of the default background color
 Note

· SaveHtml.BackgroundColor will be effective only when the SaveHtml.UseBrowserColor command is called with
0

{SaveHtml_FileOptions}
Syntax
SaveHtml_FileOptions(FileData_ As String)
PerfectScript Syntax
SaveHtml_FileOptions (FileData?: String)
Description
Lets you specify the initial .HTML file name and the default extension to be used. FileData consists of two
variables delimited by a semicolon.
Example
SaveHtml.FileOptions "Index.HTM; HTM"
Parameters

FileData
[semicolo
n
delimited
]

Initial name
0 The initial .HTML file name

1 Extension
2 The default extension of .HTML files

{SaveHtml.GraphicType}
Syntax
SaveHtml_GraphicType(Value_ As Integer)
PerfectScript Syntax
SaveHtml_GraphicType (Value?: Numeric)
Description
Lets you specify the file format to use for graphic images.
Example
SaveHtml.GraphicType 1
Result: Use the .JPG file format.
Parameter

Value 0 The .GIF file format
0 1 The .JPG file format
1 2 The .PNG file format

{SaveHtml_Header}
Syntax
SaveHtml_Header(Header_ As String)
PerfectScript Syntax
SaveHtml_Header (Header?: String)
Description
Lets you specify the text for the header section of the .HTML document.
Example
SaveHtml.Header "Header text of this file"
Parameter

Header The text

{SaveHtml_HeaderDescription}
Syntax
SaveHtml_HeaderDescription(HdrDesc_ As String)
PerfectScript Syntax
SaveHtml_HeaderDescription (HdrDesc?: String)
Description
Lets you specify the header description.
Example
SaveHtml.HeaderDescription "Header description for this file"
Parameter

HdrDesc The header description

{SaveHtml_Layout}
Syntax
SaveHtml_Layout(Value_ As Integer)
PerfectScript Syntax
SaveHtml_Layout (Value?: Numeric)
Description
Lets you specify the layout to be used.
Example
SaveHtml.Layout 2
Parameter

Value 0 Single page
0 1 Frame enhanced pages
1 2 Multiple pages

{SaveHtml_LineBeforeFooter}
Syntax
SaveHtml_LineBeforeFooter(Enable_ As _SaveHtml_LineBeforeFooter_Enable__enum)
PerfectScript Syntax
SaveHtml_LineBeforeFooter (Enable?: Boolean)
Description
Lets you specify whether or not to insert a line before the footer.
Example
SaveHtml.LineBeforeFooter 1
Parameter

Enable 0 No footer line
0 1 Footer line

 Related topics

{SaveHtml.LineBeforeHeader}
Syntax
SaveHtml_LineBeforeHeader(Enable_ As _SaveHtml_LineBeforeHeader_Enable__enum)
PerfectScript Syntax
SaveHtml_LineBeforeHeader (Enable?: Boolean)
Description
Lets you specify whether or not to insert a line before the header.
Example
SaveHtml.LineBeforeHeader 0
Parameter

Enable 0 No header line
0 1 Header line

 Related topics

{SaveHtml.LinkColor}
Syntax
SaveHtml_LinkColor(LinkColor_ As String)
PerfectScript Syntax
SaveHtml_LinkColor (LinkColor?: String)
Description
Lets you specify the default color of the links
Example
SaveHtml.LinkColor Black
0 SaveHtml.LinkColor "#ff00ff"
Parameter

LinkColor The name of the default link color
 Note

· SaveHtml.LinkColor will be effective only when the SaveHtml.UseBrowserColor command is called with 0

{SaveHtml.OutputFile}
Syntax
 SaveHtml_OutputFile(Filename_ As String)
PerfectScript Syntax
SaveHtml_OutputFile (Filename?: String)
Description
The name of the .HTML file into which the data is to be published.
Example
SaveHtml.OutputFile "C:\Shared\New.HTM"
Parameter

Filename The name of the .HTML file
 Related topics

{SaveHtml.OutputType}
Syntax
SaveHtml_OutputType(Value_ As Integer)
PerfectScript Syntax
SaveHtml_OutputType (Value?: Numeric)
Description
Lets you specify the type of the output file.
Example
SaveHtml.OutputType 1
Parameter

Value 0 Output as .HTML
0 1 Output as .XML
1 2 Insert into an existing .HTML file

 Related topics

{SaveHtml.SaveHtml}
Syntax
SaveHtml_SaveHtml()
PerfectScript Syntax
SaveHtml_SaveHtml
Description
Saves the data from the specified range into a .HTML file. Takes default values if no values have been specified.

{SaveHtml.Source}
Syntax
SaveHtml_Source(SourceData_ As String)
PerfectScript Syntax
SaveHtml_OutputFile (SourceData?: String)
Description
Lets you specify the name of the .HTML file into which the data is to be published. SourceData consists of two
variables delimited by a semicolon.
Example
SaveHtml.Source "Range:A:A11..D11; 0"
Parameters

SourceData
[semicolon
delimited]

Range
0 The range specified as "Range:" followed by page
name, followed by actual range.

1 Boolean
2 0 Output as table
3 1 Output as text

{SaveHtml.TextColor}
Syntax
SaveHtml_TextColor(TextColor_ As String)
PerfectScript Syntax
SaveHtml_TextColor (TextColor?: String)
Description
Lets you specify the default color of the text.
Example
SaveHtml.TextColor Black
0 SaveHtml.TextColor "#ff00ff"
Parameter

TextColor The name of the default text color
 Note

· SaveHtml.TextColor will be effective only when the SaveHtml.UseBrowserColor command is called with 0

{SaveHtml.Title}
Syntax
SaveHtml_Title(Title_ As String)
PerfectScript Syntax
SaveHtml_Title (Title?: String)
Description
Lets you specify the title for the file.
Example
SaveHtml.Title "Title info of this file"
Parameter

Title The title for the file

{SaveHtml.UseBrowserColor}
Syntax
 SaveHtml_UseBrowserColor(Enable_ As _SaveHtml_UseBrowserColor_Enable__enum)
PerfectScript Syntax
SaveHtml_UseBrowserColor (Enable?: Boolean)
Description
Lets you specify whether browser colors or the colors you specify are to be used.
Example
SaveHtml.UseBrowserColor 0
Parameter

Enable 0 Lets you specify the colors.
0 1 Use the browser's colors.

 Related topics

{SaveHtml.UserDetails}
Syntax
SaveHtml_UserDetails(UserData_ As String)
PerfectScript Syntax
SaveHtml_UserDetails (UserData?: String)
Description
Lets you specify the user details for the .HTML file. UserData consists of three variables delimited by semicolons.
Example
SaveHtml.UserDetails "Sep 23, 1998; Alpha; Alpha@Gamma.com"
Parameters

UserData
[semicolon
delimited]

Last updated
0 Lets you specify the date of the last update.

1 Updated by
2 Lets you specify who last updated the .HTML file.

3 Email
4 Lets you specify an email address.

{SaveHtml.UseRGBValues}
Syntax
SaveHtml_UseRGBValues(Enable_ As _SaveHtml_UseRGBValues_Enable__enum)
PerfectScript Syntax
SaveHtml_UseRGBValues (Enable?: Boolean)
Description
Lets you specify whether RGB values are to be used instead of the color name strings.
Example
SaveHtml.UseRGBValues 0
Parameter

Enable 0 Use the color name strings.
0 1 Use RGB values.

{SaveHtml.Wallpaper}
Syntax
SaveHtml_WallPaper(Filename_ As String)
PerfectScript Syntax
SaveHtml_Wallpaper (Filename?: String)
Description
Lets you specify which wallpaper is to be used as the background of the .HTML file.
Example
SaveHtml.WallPaper "Stars.JPG"
Parameter

Filename The name of the wallpaper file

{Scenario}
Syntax
{Scenario.Option}
PerfectScript Syntax
Scenario_AddCells ([Block:String])
0 Scenario_Capture (ScenarioName:String)
1 Scenario_CaptureArea (Area:Enumeration {Notebook!; Page!; Block!; UserDefined!}; [Block:String])
2 Scenario_Close ()
3 Scenario_DeleteGroup (GroupName:String)
4 Scenario_Find ()
5 Scenario_Highlight (Highlight?:Enumeration {Yes!; No!}; ChangeCellColor:Numeric; ResultCellColor:Numeric)
6 Scenario_NewGroup (GroupName:String)
7 Scenario_Open ()
8 Scenario_Remove (ScenarioName:String)
9 Scenario_RemoveCells ([Block:String])
10 Scenario_RenameGroup (OldGroupName:String; NewGroupName:String)
11 Scenario_Report (AllGroups?:Enumeration {Yes!; No!}; LeftLabels?:Enumeration {Yes!; No!};
TopLabels?:Enumeration {Yes!; No!}; [Block:String])
12 Scenario_Show (ScenarioName:String)
13 Scenario_Update_On_Block (Update?:Enumeration {Yes!; No!})
14 Scenario_UseGroup (GroupName:String)
Description
{Scenario} lets you change values in a model, saving the conditions and results for different scenarios.
{Scenario.Open} must be used prior to using other {Scenario.Option} commands; use {Scenario.Close} when
you are finished using the Scenario Manager. For {Scenario.AddCells} and {Scenario.RemoveCells}, Block
defaults to the currently selected cells. For {Scenario.Report}, Block defaults to the first empty sheet in the
notebook.
0 You can use {Scenario?} or {Scenario!} to display the Scenario Manager dialog box. {Scenario?} lets you
manipulate the dialog box, whereas {Scenario!} relies on the macro to manipulate it.
Example
The following macro captures the base scenario and two additional scenarios for a car loan.
{Scenario.Open}
0 {Scenario.Capture Base Scenario}
1 {Scenario.Update}
2 {SelectBlock A:F4}
3 {PutCell ".096"}
4 {SelectBlock A:C5}
5 {PutCell "60"}
6 {Scenario.Find}
7 {Scenario.Highlight 1,7,9}
8 {Scenario.Capture APR96-60}
9 {Scenario.Update}
10 {SelectBlock A:F4}
11 {PutCell ".085"}

12 {SelectBlock A:C5}
13 {PutCell "48"}
14 {Scenario.Find}
15 {Scenario.Highlight 1,7,9}
16 {Scenario.Capture APR85-48}
17 {Scenario.Update}
18 {Scenario.Report 0,1,0}
19 {FileSaveAs "C:\COREL\SUITE8\DATA\CARS.WB3"}
20 {Scenario.Close}
Options

{Scenario.AddCells <Block>} Defines the selected cells as
change-and-result cells.

{Scenario.Capture
ScenarioName}

Takes a baseline snapshot of
data

{Scenario.CaptureArea
Area,Block}

Specifies the area where the
Scenario Manager tracks data
and format changes.

{Scenario.Close} Closes a Scenario Manager
session.

{Scenario.DeleteGroup
GroupName}

Deletes the active group and
all scenarios in it.

{Scenario.Find} Automatically locates
changed cells after you
capture the baseline scenario
and make changes.

{Scenario.Highlight Highlight?(0|
1), ChangeCellColor(0-15),
ResultCellColor(0-15)}

Turns on and off coloring of
change-and-result cells.

{Scenario.NewGroup
GroupName}

Creates and names a new
Scenario Manager group.

{Scenario.Open} Initializes a Scenario Manager
session.

{Scenario.Remove
ScenarioName}

Deletes the selected
scenario.

{Scenario.RemoveCells
<Block>}

Excludes the selected
change-and-result cells from
the scenario.

{Scenario.RenameGroup
OldGroupName,NewGroupName}

Applies another name to the
active group.

{Scenario.Report AllGroups(0|1),
LeftLabels(0|1), TopLabels(0|1),
<Block>}

Creates a summary report of
the change-and-result cells in
each scenario.

{Scenario.Show ScenarioName} Lists scenarios you have
captured in the active group
of scenarios

{Scenario.Update_On_Block
Update?(0|1)}

Offers options for using the
Scenario Manager to track
versions.

{Scenario.UseGroup
GroupName}

Lists the scenario groups
included in the active
notebook.

{ScenarioExpert}
Syntax
ScenarioExpert()
Description
{ScenarioExpert} displays the first Scenario Expert dialog box. The macro has no arguments.

 Related topics

{SCROLLOFF} and {SCROLLON}
Description
{SCROLLOFF} and {SCROLLON} are equivalent to Scroll Lock off and Scroll Lock on, respectively.
 Related topics

{Search}
Syntax
{Search.Option}
PerfectScript Syntax
Search_Block (Block:String)
0 Search_Case (Case:Enumeration {Any!; Exact!})
1 Search_Direction (Direction:Enumeration {Row!; Column!})
2 Search_Find (String:String)
3 Search_Look_In (LookIn:Enumeration {Formula!; Value!; Condition!})
4 Search_Match (Match:Enumeration {Part!; Whole!})
5 Search_Next ()
6 Search_Previous ()
7 Search_Replace ()
8 Search_ReplaceAll ()
9 Search_ReplaceBy (String:String)
10 Search_Reset ()
Description
{Search} searches for strings in the active sheet. Use {Search.ReplaceBy} to specify the replacement string;
{Search.Replace} replaces the string.
0 You can use {Search?} or {Search!} to display the Find And Replace dialog box. {Search?} lets you
manipulate the dialog box, whereas {Search!} relies on the macro to manipulate it.
Example
The following macro searches the active sheet for 1993 in formulas and replaces it with 1994.
{Search.Reset}
0 {Search.Block ""}
1 {Search.Look_In Formula}
2 {Search.Match Part}
3 {Search.Find "1993"}
4 {Search.ReplaceBy "1994"}
5 {Search.ReplaceAll}
Options

{Search.Block Block} Specifies the cell or multiple cells to search.
{Search.Case Any|Exact} Considers capitalization during the search.
{Search.Direction Column|
Row}

Searches down columns first, starting with
column 1.

{Search.Find String} Specifies the group of characters to be found in
labels, values, and formulas.

{Search.Look_In Condition |
Formula | Value}

Specifies what is included in the search.

{Search.Match Part|Whole} Forces the search string to match all of a cell
entry.

{Search.Next} Begins or resumes a forward search without
replacing found entries.

{Search.Previous} Begins or resumes a backward search without
replacing found entries.

{Search.Replace} Lets you decide on an individual basis whether
to replace each string found.

{Search.ReplaceAll} Replaces all found strings without stopping.
{Search.ReplaceBy String} Specifies the group of characters to substitute

for characters found.
{Search.Reset} Clears any entries in the dialog box and

reinstates the defaults.

{SelectAll}
Syntax
 SelectAll()
Description
{SelectAll} selects every cell in the active sheet.

{SELECTBLOCK}
Syntax
 SelectBlock(Block As String, [ActiveCell As String])
PerfectScript Syntax
SelectBlock (Block:String; [ActiveCell:String])
Description
{SELECTBLOCK} lets you select a contiguous or noncontiguous selection within the active notebook. The
noncontiguous selections must be enclosed in parentheses.
Example
{SELECTBLOCK A4..B23} selects the cells A4..B23 in the active notebook window.
{SELECTBLOCK (A:A1..A:B12,B:B13..B:C34)} selects the noncontiguous selections A:A1..A:B12, B:B13..B:C34.
Parameters

Block Coordinates of the cell(s) to select
ActiveCel
l

Address of the cell within the cells to make active

 Related topics

{SELECTFLOAT}
Syntax
SelectFloat(ObjectID As String, [MoreObjectID])
PerfectScript Syntax
SelectFloat (ObjectID:String; {[MoreObjectID:String]})
Description
With {SELECTFLOAT} you can select floating objects in the active notebook window using their names. (To find
the name of an object, view it and study its Object Name property.) Use {SELECTOBJECT} to select objects in a
chart or dialog window.
Example
{SELECTFLOAT "Button1"} selects the macro button in the active notebook window with the object name

Button1.
Parameters

ObjectIDx Name of the notebook object(s) to select
 Related topics

{SELECTOBJECT}
Syntax
 SelectObject([ObjectID As String], [MoreObjectID])
PerfectScript Syntax
SelectObject ([ObjectID:String]; {[MoreObjectID:String]})
Description
With {SELECTOBJECT} you can select objects in the active window using their ID numbers or names. (To find the
ID number of an object, view it and study its Object ID property. Its name is stored in its Name property.) Since
{SELECTOBJECT} is context sensitive, you can select controls in a dialog window, drawings in a chart window, or
icons in the Objects sheet.
Example
{SELECTOBJECT 2,5,7} selects the objects in the active window with the IDs 2, 5, and 7.
Parameters

ObjectIDx Identification number or name of the object(s) to select
 Related topics

{Series}
Syntax
{Series.Option}
PerfectScript Syntax
Series_Data_Range (SeriesID:Any; Block:String; [CreateIfNotExist?:Enumeration {Yes!; No!}])
0 Series_Delete (SeriesNumber:Numeric; [AndAllSeriesFollowing?:Enumeration {Yes!; No!}])
1 Series_Go ()
2 Series_Insert (SeriesNumber:Numeric; Block:String)
3 Series_Label_Range (SeriesNumber:Numeric; Block:String; [CreateIfNotExist?:Enumeration {Yes!; No!}])
4 Series_Legend (SeriesNumber:Numeric; LegendText:String)
5 Series_Reverse_Series (Yes?:Enumeration {Yes!; No!})
6 Series_Swap_Row_Col (Yes?:Enumeration {Yes!; No!})
Description
{Series} creates or deletes chart series.
0 When you manipulate a series using command equivalents, the changes are not made until the command
{Series.Go} is used. In all the commands, SeriesNumber is the number of the series to affect (1 for the first
series, 2 for the second, and so on).
1 {Series.Data_Range}changes the values of an existing series. Block is the new cells that the series should
take values from. If you are not sure whether the series exists, set CreateIfNotExist? to 1. Then the series will be
created if it does not already exist. You can also use {Series.Data_Range} to set the x-axis series (use
"XAxisLabelSeries") or set the legend series (use "LegendSeries").
2 {Series.Delete}removes an existing series. Set AndAllSeriesFollowing? to 1 if you also want to remove all
series following SeriesNumber.
3 {Series.Insert}creates a new series. The series is inserted at the position specified by SeriesNumber. Block
refers to the cells containing the new series' data.
4 {Series.Label_Range}sets up the labels for each value in a series. Block refers to the cells containing the
labels. If you are not sure whether the series exists, set CreateIfNotExist? to 1. Then the series will be created if
it does not already exist.
5 {Series.Legend}sets the legend text for a series (LegendText is the new text).
6 You can use {Series?} or {Series!} to display the Chart Series dialog box. {Series?} lets you manipulate the
dialog box, whereas {Series!} relies on the macro to manipulate it.
7 You can add series to a floating chart using {ADDSERIES}.
Example
The following macro creates a chart named Profit99 with two series. The series values are in A:A1..A27 and
A:C1..C27. The series labels are in A:B1..B27 and A:D1..D27. The x axis is stored in A:E1..E27.
{GraphNew Profit99}
0 {GraphEdit Profit99}
1 {Series.Data_Range "1",A:A1..A27,1}
2 {Series.Data_Range "2",A:C1..C27,1}
3 {Series.Label_Range "1",A:B1..B27}
4 {Series.Label_Range "2",A:D1..D27}
5 {Series.Data_Range "XAxisLabelSeries",A:E1..E27}
6 {Series.Go}
The following macro inserts a new series between the two series in the last example.
{GraphEdit Profit99}
0 {Series.Insert 2,A:G1..G27}
1 {Series.Go}
Options

{Series.Data_Range
SeriesNumber |
"XaxisLabelSeries" |
"LegendSeries", Block
<,CreateIfNotExist? (0|
1)>}

Specifies the cell coordinates of the chart data,
legend, or label. You must place this value
within quotations.

         {Series.Delete
SeriesNumber
<,AndAllSeriesFollowing?
>}

Deletes the selected series.

{Series.Go} Changes the series according to your
selections.

{Series.Insert
SeriesNumber, Block}

Adds a new series after the selected series.

{Series.Label_Range
SeriesNumber, Block
<,CreateIfNotExist? (0|
1)>}

Specifies the series used for labels.

{Series.Legend
SeriesNumber,
LegendText}

Specifies the series used for the legend. You
must place this value within quotations.

{Series.Reverse_Series 1|
0}

Plots the last series first, then moves
backwards through the series order.

 {Series.Swap_Row_Col 1|
0}

Plots columns as series when Quattro Pro plots
series by rows, and plots rows as series when
Quattro Pro would plot columns.

{SeriesManager}
Syntax
{SeriesManager.Option}
PerfectScript Syntax
SeriesManager_Define (Name:String; FormulaOrList:String; FormulaTextOrRepeat:Any; SeedTextOrValue:String;
{[Value:String]})
0 SeriesManager_Go (Name:String; Orientation:Enumeration {Rows!; Columns!; Tabs!}; [Block:String])
1 SeriesManager_Remove (Name:String)
2 SeriesManager_Rename (OldName:String; NewName:String)
Description
{SeriesManager} create a new QuickFill list series. Use {SeriesManager} to create a formula series and a list
series.
0 You can use {SeriesManager?} or {SeriesManager!} to display the Define Fill Series dialog box.
{SeriesManager?} lets you manipulate the dialog box, whereas {SeriesManager!} relies on the macro to
manipulate it.
Example
The following macro creates a SpeedFill series named "First of Month" that consists of the first day of each month
in 1995, then fills a column starting at A:A2 with the dates.
{SeriesManager.Define "First of Month", List, No, "01/01/95", "02/01/95",
"03/01/95", "04/01/95", "05/01/85", "06/01/95", "07/01/95", "08/01/95",
"09/01/95", "10/01/05", "11/01/95", "12/01/95"}
0 {SpeedFill}
1 {SeriesManager.Go "First of Month",Columns, A:A2}
Options

{SeriesManager.Define
Name, Formula,
FormulaText, SeedText}

Lets you define a new series.

{SeriesManager.Define
Name, List, Repeating?(0|1),
Value1 <,Value2,
Value3,...>}

Lets you define and name a new series.

{SeriesManager.Go Name,
Rows | Columns | Tabs,
Block}

Quickly fill cells with a sequence of entries.

{SeriesManager.Remove
Name}

Deletes the selected series.

{SeriesManager.Rename
OldName, NewName}

Changes the name for the selected series.

 Related topics

{SetCellString}
Syntax
 SetCellString(Cell As String, String As String)
PerfectScript Syntax
SetCellString (Cell: String; String: String)
Description
Lets you specify the string insert into the cell.
Example
{SetCellString A1; "The string"}
Parameters

Cell The cell into which you want to insert the string
String The string you want to insert into the cell

{SETGRAPHATTR}
Syntax
SetGraphAttr(FillColor As String, BkgColor As String, FillStyle As String, BorderColor As String, BoxType As String)
PerfectScript Syntax
SetGraphAttr (FillColor:String; BkgColor:String; FillStyle:String; BorderColor:String; BoxType:String)
Description
{SETGRAPHATTR} lets you quickly set the properties of all selected objects in the active chart window. If one of
the arguments specified in the {SETGRAPHATTR} command is not appropriate for an object, that argument is
ignored.
0 Each color (FillColor, BkgColor, and BorderColor) is in quotes, and specified in RGB format. For FillStyle, use
any of the strings for that option in the appropriate Object Inspector.
1 BoxType specifies the new border style for the object; use any Border Style property string included in a chart
Object Inspector.
Parameters

FillColor New fill color of the selected object(s)
BkgColor New background color of the selected object(s)
FillStyle New fill style of the selected object(s)
BorderCol
or

New border color of the selected object(s)

BoxType New border style of the selected object(s)
 Related topics

{SETLCID}
Syntax
SetLCID([LocalID As Integer])
PerfectScript Syntax
SetLCID ([LocalID:Numeric])
Description
{SETLCID} sets the locale ID to the default locale ID or to one specified by LocalID. The local ID is a fixed number
which specifies language, separator character, and a variety of other international settings; use {SETLCID} to
ensure that the automation controller is using the default ID or the ID of a specific target object.
Parameters

LocalID The value of the local ID

{SETMENUBAR}
Syntax
SetMenuBar([SystemDefinition As String])
PerfectScript Syntax
SetMenuBar ([SystemDefinition:String])
Description
{SETMENUBAR} lets you specify which menu system displays on the menu bar. SystemDefinition refers to cells
containing the new menu system definition.
0 You can use {SETMENUBAR} without an argument to restore the default Quattro Pro menu system.
Example
{SETMENUBAR "A3..C324"} makes the system defined in A3..C324 the active menu system.
Parameters

SystemDefiniti
on

Cells containing a menu system definition

 Note
· This command is obsolete.
 Related topics

{SETOBJECTPROPERTY}
Syntax
SetObjectProperty(ObjectProperty As String, Value As String)
PerfectScript Syntax
SetObjectProperty (ObjectProperty:String; Value:String)
Description
{SETOBJECTPROPERTY} can change the property settings of many Quattro Pro objects. Selectable objects such
as blocks and annotations can also be changed using {SETPROPERTY}. {SETOBJECTPROPERTY} can affect:
¨ Dialog controls. Use this syntax to specify a control to manipulate in a dialog window:

[Notebook]DialogName:ObjectID.Property. [Notebook] is optional. For example, the following macro sets the
Fill Color property of the control Rectangle1 in the dialog ColorPick to red:

{SETOBJECTPROPERTY "ColorPick:Rectangle1.Fill_Color", "255,0,0"}

¨ Chart objects. Use the same syntax as for dialog controls, but substitute the name of the chart in place of
DialogName. For example, the following macro changes the size of a rectangle named ColorPick in the chart
1QTR92:

{SETOBJECTPROPERTY "1QTR92:ColorPick.Dimension", "0,0,25,25"}

¨ Menu items. Use the syntax MenuPath.Property. See the description of {ADDMENU} for the syntax of
MenuPath.. For example, the following macro disables Save in the active menu system:

{SETOBJECTPROPERTY "/File/Save.Disabled", "Yes"}

Parameters
Value is the new setting for the property. You can also substitute another instance of Object.Property for this
argument to copy property settings between objects. For example, this macro copies the text color of the active
cells to the text color of A23:

{SETOBJECTPROPERTY "A23.Text_Color","Active_Block.Text_Color"}
See Property Reference for a list of properties you can use.
Parameters

Object Object to alter property of
Property Property to alter
Value New property setting (or another instance of

Object.Property to copy the new setting from)
 Related topics

{SETPOS}
Syntax
{SETPOS FilePosition}
Description
{SETPOS} moves the file pointer of a file previously opened using OPEN to the value FilePosition. FilePosition
refers to the offset, in number of bytes, where you want to position the file pointer. Therefore, the first position in
the file is numbered 0, not 1.
0 If no file is open when {SETPOS} is encountered (or some other problem occurs), macro execution begins with
the next command in the same cell as {SETPOS}. If {SETPOS} succeeds, the rest of that cell's commands are
ignored, and execution continues in the next row of the macro.
1 For an example using {SETPOS}.
Parameters

FilePosition the number of bytes into a file to set the file pointer to
 Related topics

{SETPROPERTY}
Syntax
 SetProperty(Property As String, Value As String)
PerfectScript Syntax
SetProperty (Property:String; Value:String)
Description
{SETPROPERTY} alters the properties of the active object (use {SELECTBLOCK}, {SELECTFLOAT}, or
{SELECTOBJECT} to select objects).
0 To find Property, view the object and use the name of the control that sets the property. If the control name is
more than one word, connect the words with underscores (_). See Property Reference for a list of properties you
can use.
Example
{SETPROPERTY "Text_Color", "3"}
Result: Sets the selected cells' Text Color property to the fourth color on the notebook palette (the first color is

0).
Parameters

Property String representing the property to change
Value String representing the setting to apply to the property

 Related topics

{ShowErrorMessage}
Syntax
ShowErrorMessage()
PerfectScript Syntax
ShowErrorMessage ()
Description
Reinstates the ability for Quattro Pro to show an error message, if one is warranted.
 Note

¨ This command is obsolete.
 Related topics

{Slide}
Syntax
{Slide.Option}
PerfectScript Syntax
Slide_Effect (Effect:String)
0 Slide_Goto (SlideName:String)
1 Slide_Next ()
2 Slide_Previous ()
3 Slide_Run (SlideShowName:String)
4 Slide_Speed (Speed:Numeric)
5 Slide_Time (Time:Numeric)
Description
{Slide} lets you build, edit, and present graphics slide show sequences. Effect, Speed, and Time are the same
options offered in the Slide Effect property in the Light Table window. {Slide.Effect}, {Slide.Speed}, {Slide.Time},
{Slide.Goto}, {Slide.Next}, and {Slide.Previous} can be in the spreadsheet macro which started the slide show,
in a spreadsheet macro run from a chart button, or attached directly to a QuickButton or custom dialog box
button.
Options

{Slide.Eff ect Effect} Specifies the transition effect to use when
displaying the next slide in a slide show.

{Slide.Goto SlideName} Takes the active slide show directly to the slide
SlideName.

{Slide.Next} Advances the active slide show to the next slide.
{Slide.Previous} Returns the active slide show to the previous slide.
{Slide.Run
SlideShowName}

Plays the slide show.

{Slide.Speed 0-15} Specifies the transition speed to use when
displaying the next slide in a slide show.

{Slide.Time Time} Specifies the time in seconds to display the next
slide in a slide show.

{SlideShowExpert}
Syntax
SlideShowExpert()
Description
{SlideShowExpert} displays the first Slide Show Expert dialog box. The macro has no arguments.
 Related topics

{SolveFor}
Syntax
{SolveFor.Option}
PerfectScript Syntax
SolveFor_Accuracy (Value:Numeric)
0 SolveFor_Formula_Cell (Cell:String)
1 SolveFor_Go ()
2 SolveFor_Max_Iters (Iters:Numeric)
3 SolveFor_Reset ()
4 SolveFor_Target_Value (Value:Numeric)
5 SolveFor_Variable_Cell (Cell:String)
Description
{SolveFor} solves goal-seeking problems with one variable.
0 {SolveFor.Formula_Cell}indicates the location of the formula to evaluate. {SolveFor.Target_Value} is the goal
to reach, either a number or a cell containing a number. {SolveFor.Variable_Cell} indicates the formula variable
(a referenced cell) that can change to reach the target value.
1 {SolveFor.Max_Iters}and {SolveFor.Accuracy} control how many calculation passes to make and how closely
the solution must match the target value. Use {SolveFor.Go} after the other commands. {SolveFor.Reset} clears
previous settings.
2 You can use {SolveFor?} or {SolveFor!} to display the Solve For dialog box. {SolveFor?} lets you manipulate
the dialog box, whereas {SolveFor!} relies on the macro to manipulate it.
Options

{SolveFor.Accuracy
Value}

Specifies how close Solve For must get to the Target
Value.

{SolveFor.Variable_Cell
Cell}

Indicates which cell Quattro Pro can change to solve for a
desired value.

{SolveFor.Formula_Cell
Cell}

Specifies the cell containing the formula you want to
solve.

{SolveFor.Go} Solves for the Target Value.
{SolveFor.Max_Iters
Value}

Determines how many passes Solve For makes to solve
the formula.

{SolveFor.Reset} Clears all Solve For settings.
{SolveFor.Target_Value
Value}

Specifies the result you want from the Formula Cell.

{Sort}
Syntax
{Sort.Option}
PerfectScript Syntax
Sort_BlankCellsFirst (BlankFirst?:Enumeration {Yes!; No!})
0 Sort_Block (Block:String)
1 Sort_Data (Order:String)
2 Sort_Go ()
3 Sort_Heading (Heading?:Enumeration {Yes!; No!})
4 Sort_Key_1 (Cell:String)
5 Sort_Key_2 (Cell:String)
6 Sort_Key_3 (Cell:String)
7 Sort_Key_4 (Cell:String)
8 Sort_Key_5 (Cell:String)

9 Sort_Labels (Use:String)
10 Sort_Order_1 (Order:String)
11 Sort_Order_2 (Order:String)
12 Sort_Order_3 (Order:String)
13 Sort_Order_4 (Order:String)
14 Sort_Order_5 (Order:String)
15 Sort_PreviousSorts (PreviousSorts?:Numeric)
16 Sort_Reset ()
17 Sort_Type (Type?:String)
Description
{Sort} sorts the entries in cells. To perform the sort, use {Sort.Go} after the other sort command equivalents.
0 You can use {Sort?} or {Sort!} to display the Data Sort dialog box. {Sort?} lets you manipulate the dialog
box, whereas {Sort!} relies on the macro to manipulate it.
{Sort.Reset} allows Quattro Pro to automatically determine the sort block, the first sort key, and whether there is
a heading row, based on the block surrounding the selected cell, or the selected range.
Example
The following macro sorts the cells A3..C40 using two sort keys (columns A and C). The sort is in ascending
order, and values in a column are placed in a group before labels in the column. The labels are sorted in
dictionary order.
{Sort.Reset}
0 {Sort.Block "A:A3..C40"}
1 {Sort.Type Top to bottom}
2 {Sort.Heading 0}
3 {Sort.Key_1 a25}
4 {Sort.Key_2 c23}
5 {Sort.Order_1 Ascending}
6 {Sort.Order_2 Ascending}
7 {Sort.BlankCellsFirst No}
8 {Sort.Data Numbers First}
9 {Sort.PreviousSorts -1}
10 {Sort.Labels Dictionary}
11 {Sort.Go}
Options

{Sort.BlankCellsFirst
0|1}

Determines whether to filter blank cells to the top during a sort.

{Sort.Block Block} Specifies cells to be sorted, including row labels but excluding
column headings.

{Sort.Data "Labels
First"|"Numbers
First"}

Determines whether to sort Labels or Numbers first.

{Sort.Go} Performs the sort you specified.
{Sort.Heading 0|1} Determines whether the first row (or column, depending on sorting

based on rows or columns) is used as column headings, or is part of
the sort block.

{Sort.Key_1-5 Block} Specifies up to 5 sort keys, in the order they are to be sorted.
{Sort.Labels
"Character
Code"|"Dictionary"}

Specifies whether text sorts in Dictionary order (ordinary
alphabetizing rules) or Character Code order (according to character
number for example, uppercase letters before lowercase).
Retained for use with previous Quattro Pro version macros.

{Sort.Order_1-5
Ascending|
Descending}

Specifies ascending or descending sort order

{Sort.PreviousSorts
N}

Stores up to the last five sorts performed in current file.

{Sort.Reset} Clears all entries and restores defaults.
{Sort.Type "Left to
Right" | "Top to
Bottom"

Determines to sort by rows or columns.

{SPEEDFILL}
Syntax
SpeedFill()
Description

{SPEEDFILL} is equivalent to the QuickFill button on the Toolbar. It fills the selected cells with sequential
data, based on entries in the upper-left portion of the cells.

0 To create or modify a series used with QuickFill, use {SeriesManager. Option }.
 Related topics

{SpeedFormat}
Syntax
SpeedFormat(FmtName As String, NumFmt_ As _SpeedFormat_NumFmt__enum, Font_ As
_SpeedFormat_Font__enum, Shading_ As _SpeedFormat_Shading__enum, TextColor_ As
_SpeedFormat_TextColor__enum, Align_ As _SpeedFormat_Align__enum, LineDraw_ As
_SpeedFormat_LineDraw__enum, AutoWidth_ As _SpeedFormat_AutoWidth__enum, ColHead_ As
_SpeedFormat_ColHead__enum, ColTotal_ As _SpeedFormat_ColTotal__enum, RowHead_ As
_SpeedFormat_RowHead__enum, RowTotal_ As _SpeedFormat_RowTotal__enum, [SubTotals_ As
_SpeedFormat_SubTotals__enum])
PerfectScript Syntax
SpeedFormat (FmtName:String; NumFmt?:Enumeration {Yes!; No!}; Font?:Enumeration {Yes!; No!};
Shading?:Enumeration {Yes!; No!}; TextColor?:Enumeration {Yes!; No!}; Align?:Enumeration {Yes!; No!};
LineDraw?:Enumeration {Yes!; No!}; AutoWidth?:Enumeration {Yes!; No!}; ColHead?:Enumeration {Yes!; No!};
ColTotal?:Enumeration {Yes!; No!}; RowHead?:Enumeration {Yes!; No!}; RowTotal?:Enumeration {Yes!; No!};
[SubTotals?:Enumeration {Yes!; No!}])
Description
{SpeedFormat} applies the format FmtName to the selected cells. The arguments NumFmt? through SubTotals?
each specify a part of the format to apply; use 1 to apply the part or 0 to omit the part.
0 You can use {SpeedFormat?} or {SpeedFormat!} to display the SpeedFormat dialog box. {SpeedFormat?}
lets you manipulate the dialog box, whereas {SpeedFormat!} relies on the macro to manipulate it.
1 To add or remove formats, use {SpeedFormat. Option }.
Parameters

FmtName Name of the format to apply
NumFmt? 1 to apply the numeric format; 0 otherwise
Font? 1 to apply the font; 0 otherwise
Shading? 1 to apply the shading; 0 otherwise
TextColor? 1 to apply the text color; 0 otherwise
Align? 1 to apply the alignment; 0 otherwise
LineDraw? 1 to apply the line drawing; 0 otherwise
AutoWidth? 1 to automatically size the columns; 0 otherwise
ColHead 1 to apply the column heading format; 0 otherwise
ColTotal? 1 to apply the column total format; 0 otherwise
RowHead? 1 to apply the row heading format; 0 otherwise
RowTotal? 1 to apply the row total format; 0 otherwise
SubTotals? 1 to apply the subtotal format; 0 otherwise

 Related topics

{SpeedFormat}
Syntax
{SpeedFormat.Option}
PerfectScript Syntax
SpeedFormat_Add (Name:String; ExampleBlock:String)
0 SpeedFormat_Remove (Name:String)
Description
{SpeedFormat} adds formats to the SpeedFormat dialog box, or removes them. {SPEEDFORMAT.Add} lets you
specify a name for the new format and the example cells that define the format. {SpeedFormat.Remove} deletes
a specified format.
Example
The following macro adds a format named "Strauss" to the SpeedFormat dialog box. The format is based on the
example cells A:C10..H25.
{SpeedFormat.Add "Strauss",A:C10..H25}
Options

{SpeedFormat.Add
Name, ExampleBlock}

Creates a new custom format.

{SpeedFormat.Remove
Name}

Deletes the active SpeedFormat.

 Related topics

{SPEEDSUM}
Syntax
SpeedSum([Block As String]
PerfectScript Syntax
SpeedSum ([Block:String])
Description

{SPEEDSUM} is equivalent to selecting cells and choosing the QuickSum button from the Toolbar. Block
includes rows and/or columns to sum, plus adjacent empty cells to hold the results; the default Block is the
current selection.
Parameters

Block Coordinates of the cells to sum, including blank cells for results
 Related topics

{STEP}
Syntax
STEP()
Description
{STEP} is equivalent to the Debug key, Shift+F2.
 Note

· This command is obsolete
 Related topics

{SuppressErrorValue}
Syntax
SuppressErrorValue()
PerfectScript Syntax
SuppressErrorValue ()
Description
Suppresses the ability for Quattro Pro to return a specific error value, if one is warranted.

{TABLE}
Syntax
TABLE()
Description
{TABLE} repeats the last What-If operation.
 Related topics

{TableLink}
Syntax
{TableLink.Option}
PerfectScript Syntax
TableLink_Block (Block:String)
TableLink_Go ()
TableLink_Name (TableName:String)
Description
{TableLink} establishes a link to an external database table and displays the table in a Quattro Pro notebook.
You can use {TableLink?} or {TableLink!} to display the Table Link dialog box. {TableLink?} lets you manipulate
the dialog box, whereas {TableLink!} relies on the macro to manipulate it.
Options

{TableLink.Block
Block}

Specifies the cells where you want the linked table to appear.

{TableLink.Nam
e TableName}

Sets the filename of the database table to which you want to
establish a link.

 {TableLink.Go} Links the table.

{TableQuery}
Syntax
{TableQuery.Option}
PerfectScript Syntax
TableQuery_Destination (Block:String)
TableQuery_FileQuery (Yes?:Enumeration {Yes!; No!})
TableQuery_Go ()
TableQuery_QueryBlock (Block:String)
TableQuery_QueryFile (Filename:String)
Description
{TableQuery} lets you search external databases for records. The query is not performed until {TableQuery.Go}
is used.
You can use {TableQuery?} or {TableQuery!} to display the Table Query dialog box. {TableQuery?} lets you
manipulate the dialog box, whereas {TableQuery!} relies on the macro to manipulate it.
Examples
The following macro searches the external table TASKLIST.DB using the query file TASKLIST.QBE. The results of
the search are stored in A:A2.
{TableQuery.FileQuery Yes}
{TableQuery.QueryFile TASKLIST.QBE}
{TableQuery.Destination A:A2}
{TableQuery.Go}

The next macro searches the same database, but uses the query defined in the named cell task_query.
{TableQuery.FileQuery No}
{TableQuery.QueryBlock task_query}
{TableQuery.Destination A:A2}
{TableQuery.Go}

Options

{TableQuery.Destina
tion Block}

Specifies the cells for the query's Answer Table (its
results).

{TableQuery.FileQuer
y Yes|No}

Specifies an external query file as the source of the
query text.

{TableQuery.Go} Performs the table query.
{TableQuery.QueryBl
ock Block}

Specifies cells in the active notebook as the source of
the query text.

{TableQuery.QueryFil
e Filename}

Specifies the filename or cell coordinates of the query
text.

 Related topics

{TableView}
Syntax
TableView()
Description
{TableView} launches the Database Desktop.

{TemplateTB}
Syntax
{TemplateTB.Option}
PerfectScript Syntax
TemplateTB_Add (Name:String; Path:String)
TemplateTB_Context (Name:String; Settings:String)
TemplateTB_Docking_Position (Name:String; Position:Enumeration {Top!; Bottom!; Left!; Right!; Floating!};
[Context:Numeric])
TemplateTB_Hide (Name:String)
TemplateTB_Remove (Name:String)
TemplateTB_Rename (Name:String; NewName:String)
TemplateTB_Reset (Name:String)
TemplateTB_Show (Name:String)
Description
{TemplateTB} is similar to {Toolbar.Option} except that it controls the Template toolbar.
Options

{TemplateTB.Add Name,
Path}

Adds a new Template toolbar.

{TemplateTB.Show Name} Shows a Template toolbar.
{TemplateTB.Hide Name} Hides a Template toolbar.
{TemplateTB.Remove
Name}

Removes a Template toolbar.

{TemplateTB.Reset Name} Resets a Template toolbar to its default setup.
{TemplateTB.Docking_Posit
ion Name, Top | Left | Right
| Bottom | Floating}

Sets the docking position of a Template toolbar.

{TemplateTB.Rename
Name, NewName}

Renames a Template toolbar.

{TemplateTB.Context
Name, Desktop (Yes | No),
Notebook (Yes | No), Chart
(Yes | No), Dialog (Yes | No),
Objects Page (Yes | No),
Slide Show (Yes | No)}

Sets the contexts in Quattro Pro in which a
Template toolbar appears.

{Toolbar}
Syntax
{Toolbar.Option}
PerfectScript Syntax
Toolbar_Add (Name:String; Path:String)
Toolbar_Context (Name:String; Settings:String)
Toolbar_Docking_Position (Name:String; Position:Enumeration {Top!; Bottom!; Left!; Right!; Floating!};
[Context:Numeric])
Toolbar_Hide (Name:String)
Toolbar_Remove (Name:String)
Toolbar_Rename (Name:String; NewName:String)
Toolbar_Reset (Name:String)
Toolbar_Show (Name:String)
Description
{Toolbar} displays and hides toolbars.

{Toolbar.Docking_Position Order} is a numeric number used to position the selected toolbar in relation to other
visible toolbars at the specified docking position:

-1 Displays the specified toolbar at the end of toolbars at the specified
docking position

0 Displays the specified toolbar at the beginning of toolbars at the
specified docking position

1 Displays the specified toolbar 1 position in from the beginning of
toolbars at the specified docking position

n Displays the specified toolbar n positions in from the beginning of
toolbars at the specified docking position.

To record such macros as adding, positioning, and removing toolbars, right-click anywhere on a visible toolbar
while recording a macro.
Options

{Toolbar.Add Name,
Path}

Lets you create a toolbar and add it to the toolbar list.

{Toolbar.Context Name,
Desktop(1|0),
Notebook(1|0), Chart(1|
0), Dialog(1|0), Objects
Page(1|0), Slide Show(1|
0)}

Lists all toolbars.

{Toolbar.Docking_Positio
n Name, Top | Left |
Right | Bottom |
Floating, Order}

Specifies where the toolbar will appear when on
screen.

{Toolbar.Hide Name} Hides the selected toolbar.
{Toolbar.Remove
Name}

Removes a toolbar you created from the list.

{Toolbar.Rename Name,
NewName}

Specifies the name of the toolbar.

{Toolbar.Reset Name} Changes the selected standard Quattro Pro toolbar
back to its default settings.

{Toolbar.Show Name} Displays the selected toolbar.

{UNDO}
Syntax
UNDO
Description
{UNDO} "takes back" the last command given and restores the previous state for most commands.
 Related topics

{UngroupObjects}
Syntax
UngroupObjects()
Description
{UngroupObjects} separates the selected group of chart annotation objects so each can be moved or modified
without affecting the others.

{VLINE}
Syntax
VLine(Distance As Integer)
PerfectScript Syntax
VLine (Distance:Numeric)
Description
{VLINE} scrolls the active notebook vertically by Distance rows. If the number is positive, it scrolls down; if
negative, it scrolls up. {VLINE} does not move the selector; only the view of the notebook is altered.
Example
{VLINE 11} scrolls the display 11 rows down.
{VLINE -4} scrolls the display 4 columns up.
Parameters

Distance Number of rows to scroll the active notebook vertically
 Related topics

{VPAGE}
Syntax
 VPage(Distance As Integer)
PerfectScript Syntax
VPage (Distance:Numeric)
Description
{VPAGE} scrolls the active notebook vertically by Distance screens. If the number is positive, it scrolls down; if
negative, it scrolls up. {VPAGE} does not move the selector; only the view of the notebook is altered. Use the
method PGUP to move the selector vertically.
Parameters

Distance Number of screens to scroll the active notebook vertically
 Related topics

{WebQuery_Create}
Syntax
 WebQuery_Create(FileData_ As String)
PerfectScript Syntax
WebQuery_Create (Filedata?: String)
Description
Lets you create a new Web query file.
Parameter

Filedata The name of the new query file

{WebQuery.Destination}
Syntax
WebQuery_Destination(DestRange_ As String)
PerfectScript Syntax
WebQuery_Destination (DestRange?: String)
Description
Lets you specify the output location. If empty, a new sheet will be used.
Parameter

DestRange The range of cells

{WebQuery_LinkRange}
Syntax
WebQuery_LinkRange(LinkRange_ As String)
PerfectScript Syntax
WebQuery_LinkRange (LinkRange?: String)
Description
Lets you specify the range of cells to be associated with Web link.
Parameter

LinkRange The range of cells

{WebQuery_LinkRefreshDuration}
Syntax
WebQuery_LinkRefreshDuration(Value_ As String)
PerfectScript Syntax
WebQuery_LinkRefreshDuration (Value?: String)
Description
Lets you specify the refresh duration in seconds
Parameter

Value Must be in the format "hh:mm:ss"

{WebQuery.LinkRefreshTime}
Syntax
 WebQuery_LinkRefreshTime(Time_ As String)
PerfectScript Syntax
WebQuery_LinkRefreshTime (Time?: String)
Description
Lets you specify the value of start time, end time, start day, and end day.
Parameter

Time Must be in the format "hh:mm:ss"

{WebQuery.LinkRefreshType}
Syntax
WebQuery_LinkRefreshType(LinkRefreshOptions_ As String)
PerfectScript Syntax
WebQuery_LinkRefreshType (LinkRefreshOptions?: String)
Description
Lets you specify the refresh options. LinkRefreshOptions consists of two variables delimited by a semicolon.
Example
{WebQuery.LinkRefreshType 2; 0}

Parameters
LinkRefreshOpti
ons [semicolon
delimited]

Refresh Type
0 Duration
1 Start time
2 End time
3 Start day
4 End day

Boolean
0 False
1 True

{WebQuery_LinkWrapOption}
Syntax
WebQuery_LinkWrapOption(LinkWrapOptions_ As String)
PerfectScript Syntax
WebQuery_LinkWrapOption (LinkWrapOptions?: String)
Description
Lets you specify the wrap options. LinkWrapOptions consists of two variables delimited by a semicolon.
Example
{WebQuery.LinkWrapOption 0; 1}

Parameters
LinkWrapOption
s [semicolon
delimited]

Wrap Type
0 Wrap at the beginning of range
1 Insert data at the end of range

2 Insert data at the beginning of range

Boolean (Can be TRUE/FALSE only when WrapType is 0).
0 False
1 True

{WebQuery.QueryFileName}
Syntax
{WebQuery.QueryFileName FileName}
PerfectScript Syntax
WebQuery_QueryFileName (FileName?: String)
Description
Lets you specify the query file to be used.
Parameter

FileName The name of the query file.

{WebQuery.Run}
Syntax
WebQuery_Run()
PerfectScript Syntax
WebQuery_Run ()
Description
Lets you run the current query.

{WebQuery.SetQueryOptions}
Syntax
 WebQuery_SetQueryOptions(QueryOpts_ As String)
PerfectScript Syntax
WebQuery_SetQueryOptions (QueryOpts?: String)
Description
Lets you specify the values of the query options. QueryOpts consists of two variables delimited by a semicolon.
Example
{WebQuery.SetQueryOptions 1; 1}

Parameters
QueryOpts
[semicolon
delimited]

Type
0 Save as Web Link
1 Import only tables
2 Auto-size
3 Retain HTML format
4 Refresh on open

Boolean
0 False
1 True

{WebQuery.SetQueryParameters}
Syntax
WebQuery_SetQueryParameters(QueryParams_ As String)
PerfectScript Syntax
WebQuery_SetQueryParameters (QueryParams?: String)
Description
Lets you specify the parameter value options.
Parameters

QueryParams
[semicolon
delimited]

Parameter

Parameter type

Parameter value

{WebQuery.Source}
Syntax
 WebQuery_Source(SourceRange_ As String)
PerfectScript Syntax
WebQuery_Source (SourceRange?: String)
Description
Lets you specify the range of cells to be updated from the query output.
Parameter

Range The range of cells

{WhatIf}
Syntax
{WhatIf.Option}
PerfectScript Syntax
WhatIf_Block (Block:String)
WhatIf_Input_Cell_1 (Cell:String)
WhatIf_Input_Cell_2 (Cell:String)
WhatIf_One_Way ()
WhatIf_Reset ()
WhatIf_Two_Way ()
Description
{WhatIf} builds one- or two-variable "what-if" tables that display a range of results for different conditions.
If you are creating a one-variable table, use these command equivalents: {WhatIf.Input_Cell_1}, {WhatIf.Block},
{WhatIf.One_Way}. For two-variable tables, use {WhatIf.Input_Cell_2} after indicating the first input cell; use
{WhatIf.Two_Way} instead of {WhatIf.One_Way}.
You can use {WhatIf?} or {WhatIf!} to display the What-If dialog box. {WhatIf?} lets you manipulate the dialog
box, whereas {WhatIf!} relies on the macro to manipulate it.
Example
The following macro defines A4..H18 as the "what-if" cells, B1 as Input Cell 1, B2 as Input Cell 2, and builds a
two-variable table.
{Whatif.Block A:A4..A:H18}
{Whatif.Input_cell_1 A:B1}
{Whatif.Input_cell_2 A:B2}
{Whatif.Two_Way}

Options
{WhatIf.Block Block} Specifies the cells where you want to write the

data table.
{WhatIf.Input_Cell_1
Cell}

Specifies the first (or only) cell referenced by the
what-if formula.

{WhatIf.Input_Cell_2
Cell}

Specifies the second cell referenced by a two-
variable what-if formula.

{WhatIf.One_Way} Builds the table.
{WhatIf.Reset} Clears all settings.
{WhatIf.Two_Way} Builds the table.

{WhatIfExpert}
Description
{WhatIfExpert} displays the first What-If Expert dialog box. The macro has no arguments
 Related topics

{WindowArrIcon}
Syntax
WindowArrIcon()
Description
{WindowArrIcon} lines up minimized windows on the Quattro Pro desktop or icons on the Objects sheet.

{WindowCascade}
Syntax
WindowCascade()
Description
{WindowCascade} rearranges all open windows on the Quattro Pro desktop.

{WindowClose}
Syntax
WindowClose()
Description
{WindowClose} is equivalent to Close in a Control menu, which closes the active window (if the active window is
not saved, a prompt appears to confirm the operation).
 Related topics

{WindowHide}
Syntax
WindowHide()
Description
{WindowHide} conceals the active notebook window.

{WindowMaximize}
Syntax
WindowMaximize
Description
{WindowMaximize} is equivalent to Maximize in a Control menu, which enlarges the active window so it fills the
screen.

{WindowMinimize}
Syntax
WindowMinimize()
Description
{WindowMinimize} is equivalent to Minimize in a Control menu, which shrinks the active window to an icon on
the Quattro Pro desktop.

{WindowMove}
Syntax
WindowMove()
Syntax
{WindowMove UpperLeftX, UpperLeftY}
PerfectScript Syntax
WindowMove (UpperLeftX:Numeric; UpperLeftY:Numeric)
Description
{WindowMove} is equivalent to Move in a Control menu, which lets you move the active window. UpperLeftX and
UpperLeftY are the new coordinates of the upper-left corner of the window.
Parameters

UpperLeft
X

Distance between the left side of the Quattro Pro window and the
left side of the active window, in pixels

UpperLeft
Y

Distance between the bottom of the input line and the top of the
active window, in pixels

{WindowNewView}
Syntax
WindowNewView()
Description
{WindowNewView} displays a duplicate copy of the active notebook in a new window.

{WindowNext}
Syntax
WindowNext()
Description
{WindowNext} is equivalent to choosing Next in a Control menu. It makes the next window active.

{WindowPanes}
Syntax
WindowPanes(Mode As _WindowPanes_Mode_enum, Synch_ As _WindowPanes_Synch__enum, [Width As Double],
[Height As Double])
PerfectScript Syntax
WindowPanes (Mode:Enumeration {Clear!; Horizontal!; Vertical!}; Synch?:Enumeration {Yes!; No!};
[Width:Numeric]; [Height:Numeric])
Description
{WindowPanes} splits a notebook window into two horizontal or vertical panes; use Clear to restore a single
pane.
Width and Height indicate the ratio relationship between the panes.
You can use {WindowPanes?} or {WindowPanes!} to display the Split Window dialog box. {WindowPanes?} lets
you manipulate the dialog box, whereas {WindowPanes!} relies on the macro to manipulate it.
Example
{WindowPanes Vertical,0,2,1} splits the notebook window into two vertical panes, not synchronized. The first
pane is twice as wide as the second.
Parameters

Synch? Whether the panes are synchronized: yes (1) or no (0)
Width Width of the left pane or height of the upper pane (optional)
Height Width of the right pane or height of the lower pane (optional)

{WindowQPW}
Syntax
{WindowQPW.Option}
PerfectScript Syntax
WindowQPW_Maximize ()
WindowQPW_Minimize ()
WindowQPW_Restore ()
Description
{WindowQPW} is the command equivalent for the Maximize, Minimize, and Restore commands on the Quattro
Pro Control menu.
¨ {WindowQPW.Maximize} enlarges the Quattro Pro window so it fills the screen.
¨ {WindowQPW.Minimize} shrinks the Quattro Pro window to an icon.
¨ {WindowQPW.Restore} restores the Quattro Pro window to its original size.

Options
{WindowQPW.Maximi
ze}

Maximizes the Quattro Pro application window.

{WindowQPW.Minimiz
e}

Minimizes the Quattro Pro application window.

{WindowQPW.Restore
}

Restores the Quattro Pro application window to its
previous size.

 Related topics

{WindowRestore}
Syntax
WIndowRestore()
Description
{WindowRestore} is equivalent to Restore on the Control menu. It restores minimized windows to their original
size.

{WindowShow}
Syntax
WindowShow(Name As String)
PerfectScript Syntax
WindowShow (Name:String)
Description
{WindowShow} shows hidden window Name and makes it active.
You can use {WindowShow?} or {WindowShow!} to display the Show Window dialog box. {WindowShow?} lets
you manipulate the dialog box, whereas {WindowShow!} relies on the macro to manipulate it.
Parameters

Name Name of the hidden window to show

{WindowSize}
Syntax
WindowSize(x As Double, y As Double)
PerfectScript Syntax
WindowSize (X:Numeric; Y:Numeric)
Description
{WindowSize} is equivalent to Size in the Control menu. It sizes the active window to the specified width and
height.
Parameters

X New window width, in pixels
Y New window height, in pixels

{WINDOWSOFF}
Syntax
WindowsOff()
Description
{WINDOWSOFF} disables normal screen updating during macro execution when Quattro Pro's Macro Suppress-
Redraw property is set to None. It can significantly speed up execution for most macros because it saves Quattro
Pro the time normally needed to redraw the screen each time a cell changes. Quattro Pro cancels it once the
macro stops executing, so you are not "locked out" of the screen. To cancel its effect within the same macro, use
{WINDOWSON}.
Use {WINDOWSOFF} with {PANELOFF} to completely disable normal screen updating.
After a {WINDOWSOFF} command, avoid pointing to cells in response to an Edit command. The selector may be
in a different cell than the "frozen" display indicates. If you must point to cells, precede it with a {WINDOWSON}
command.
Example
The following macro uses {WINDOWSOFF} and {WINDOWSON} to turn off screen updating while Quattro Pro
sorts a list of vendors with the cell name vendor_name, thereby speeding up the sort operation.
sort_blk vendor_name
key_nm vendor_name

\W {QGOTO}sort_message~
{WINDOWSOFF}

{_sort vendor_name}
{WINDOWSON}

_sort {DEFINE sort_blk}
{Sort.Block @@(sort_blk)}
{BlockCopy sort_blk,key_nm}
{Sort.Key_1 @@(key_nm)}
{Sort.Order_1 "Ascending"}
{Sort.Go}

sort_message SORT IS IN PROGRESS

vendor_name General Cement Co.
Alveoli Mfg., Inc.
Sandab Development
Consolidated Dust

 Related topics

{WINDOWSON}
Syntax
WindowsOn()
Description
{WINDOWSON} reenables normal screen updating during macro execution, canceling the effects of a previous
{WINDOWSOFF}. However, the screen will not be updated until {CALC} is encountered or the macro ends. If
{WINDOWSON} is called when screen updating is already in effect, the command is ignored.
See {WINDOWSOFF}for an example using {WINDOWSON}.
 Related topics

{WindowTile}
Syntax
WindowsTile()
Description
{WindowTile} displays all open windows without overlapping them.

{WindowTile.TileTopToBottom}
Syntax
WindowTile_TopToBottom()
Description
{WindowTile.TileTopToBottom} tiles multiple files horizontally.

{WindowTitles}
Syntax
{WindowTitles Horizontal | Vertical | Both | Clear}
PerfectScript Syntax
WindowTitles (Mode:Enumeration {Clear!; Horizontal!; Vertical!; Both!})
Description
{WindowTitles} locks specific rows and/or columns of a spreadsheet sheet as titles on screen. When you scroll,
the titles remain fixed on screen while the rows below (or columns to the right) scroll as usual. "Horizontal" locks
rows above the active cell, "Vertical" locks columns to the left of the active cell, and "Both" locks both rows and
columns. Use "Clear" to unlock the titles.
You can use {WindowTitles?} or {WindowTitles!} to display the Locked Titles dialog box. {WindowTitles?} lets
you manipulate the dialog box, whereas {WindowTitles!} relies on the macro to manipulate it.
You can use {WindowTitles.Title} with @COMMAND, @PROPERTY, and @CURVALUE.
Example
Use @COMMAND{"WindowTitles.Title"} to determine whether locked titles are in use and to display their type
(Horizontal, Vertical, Both, or Clear). You can also use this command in macros to check for locked titles.
\A {Calc} {If TitlesOn} {WindowTitles Clear} {Quit}

{WindowTitles Both}

TitlesOn @COMMAND("WindowTitles.Title") = "Both"
 Related topics

{Workflow.RouteDocument}
Syntax
Workflow_RouteDocument([FileName As String])
PerfectScript Syntax
Workflow_RouteDocument (Filename: String)
Description
Parameter

Filena
me

The name of the document you want to route

{Workflow.WorkflowManager}
Syntax
Workflow_WorkflowManager()
PerfectScript Syntax
Workflow_WorkflowManager ()
Description

{WorkSpace}
Syntax
{WorkSpace.Option}
PerfectScript Syntax
Workspace_Restore (Filename:String)
Workspace_Save (Filename:String)
Description
{Workspace.Save} saves all open notebooks as a group with the specified Filename (Quattro Pro's default file
extension for workspaces is .WBS). {Workspace.Restore} opens the specified file.
Options

{Workspace.Resto
re Filename}

Overlays any existing windows with the windows stored in
the workspace file, then retrieves the appropriate file for
each.

{Workspace.Save
Filename}

Saves the position and size of all notebook windows and
the names of the files contained in each window.

{XMLTag.AutoGenerate}
Syntax
{XMLTag.AutoGenerate Block; LabelsTop; LabelsLeft; LabelsBottom; LabelsRight; Intersection}
PerfectScript Syntax
XMLTag_AutoGenerate (Block: String; LabelsTop: Boolean; LabelsLeft: Boolean; LabelsBottom: Boolean;
LabelsRight: Boolean)
Description
Equivalent to Insert XML Tag...
 Generate...

Parameters
Block The Block
LabelsTop 0

1
LabelsLeft 0

1
LabelsBottom 0

1
LabelsRight 0

1
Intersection 0

1

{XMLTag.Create}
Syntax
{XMLTag.Create TagName; Block}
PerfectScript Syntax
XMLTag_Create (TagName: String; Block: String)
Description
Equivalent to Insert XML Tag...
 Generate...

Parameters
TagName
Block

{XMLTag.Delete}
Syntax
{XMLTag.Delete TagName}
PerfectScript Syntax
XMLTag_Delete (TagName: String)
Description
Equivalent to Insert XML Tag...
 Delete...

Parameter
TagName

{XMLTag.Labels}
Syntax
{XMLTag.Labels Block; Where}
PerfectScript Syntax
XMLTag_Labels (Block: String; Where: Left|Right|Up|Down)
Description
Equivalent to Insert XML Tag...
 Labels...

Parameters
Block
Where Left

Right
Up
Down

{XMLTag.MakeTable}
Syntax
{XMLTag.MakeTable Block}
PerfectScript Syntax
XMLTag_MakeTable (Block: String)
Description
Equivalent to Insert XML Tag...
 Output...

Parameter
Block

{XMLTag.Reset}
Syntax
{XMLTagReset}
PerfectScript Syntax
XMLTag_Reset ()
Description
Equivalent to Insert XML Tag...
 Delete All...

{ZOOM}
Description
{ZOOM} maximizes and restores the active window.
This command is for compatibility with Quattro Pro for DOS; use {WindowMaximize} and {WindowRestore} when
developing macros for Quattro Pro for Windows.
To change the zoom factor for a notebook or sheet, use {Notebook.Zoom_Factor} or {Page.Zoom_Factor},
respectively.
 Note

· This command is obsolete
 Related topics

{ZTESTM}
Syntax
{ZTESTM InBlock1, InBlock2, OutBlock, <Labels(0|1)>, <Alpha>, <Difference>, <Variance1>, <Variance2>}
Description
{ZTESTM} performs a two-sample z-Test for means, assuming known variances for each sample. {ZTESTM} is
equivalent to the z-Test analysis tool.
Parameters

InBlock1 One or more numeric cell values representing the first input cells
InBlock2 One or more numeric cell values representing the second input

cells
OutBlock Upper-left cell of the output cells
Labels 1 if labels are located in the first column or row of the input cells; 0

if the input cells do not contain labels; the default is 0
Alpha Significance level of the test; the default is 0.05
Differenc
e

A value indicating the hypothetical difference in the means
between InBlock1 and InBlock2; the default is 0

Variance1 A value indicating the variance of data set one; the default is 0
Variance2 A value indicating the variance of data set two; the default is 0

 Note
· This command is obsolete
 Related topics

Numeric Format Codes
Code Description
0-15 Fixed (0-15 decimals)
16-31 Scientific (0-15 decimals)
32-47 Currency (0-15 decimals)
48-63 % (percent; 0-15

decimals)
64-79 , (comma; 0-15 decimals)
112 +/- (bar chart)
113 General
114 Date [1] (DD-MMM-YYYY)
115 Date [2] (DD-MMM)
116 Date [3] (MMM-YYYY)
117 Text
118 Hidden
119 Time [1] (HH:MM:SS

AM/PM)
120 Time [2] (HH:MM AM/PM)
121 Date [4] (Long

International)
122 Date [5] (Short

International)
123 Time [3] (Long

International)
124 Time [4] (Short

International)
127 Default (set with Normal

style)

Quattro Pro VBA Events
Visual Basic for Applications (VBA) is an event-driven programming language. Most of the code you create is
written to respond to an event. An event is an action that is recognized by VBA; for example, clicking a button or
choosing an option from a list box. Unlike traditional procedural programming, in which the program starts at line
1 and executes line by line, event-driven programming executes code in response to events.
All events in Quattro Pro 10 are code placeholders. It is up to you to code the response. All events are called in
response to a specific action. When an action occurs, the appropriate event will be called and the code located
within the event is executed. You can create simple or complex events. You can code a single line that displays a
Message Box or write an entire procedure that interacts with a database.
All events are members of the Document class. The name of the object is the same as the class. There are four
events in Quattro Pro.

Quattro Pro Events
 AfterOpen()
 BeforeSave()
 AfterSave()
 BeforeClose()

Document.BeforeSave()

Syntax
Private Sub Document_BeforeSave()
Description
This event is called just before the Quattro Pro notebook is saved. This gives you a chance to customize your
Quattro Pro notebook before you save it.

Example
In the following example, the numeric values are added and the result is written to the appropriate cell.
Private Sub Document_BeforeSave()

'*** Calculate the January totals
PerfectScript.SelectBlock "B2 B4"
PerfectScript.QuickFunction "SUM", "B5"

'*** Calculate the February totals
PerfectScript.SelectBlock "C2 C4"
PerfectScript.QuickFunction "SUM", "C5"

'*** Calculate the March totals
PerfectScript.SelectBlock "D2 D4"
PerfectScript.QuickFunction "SUM", "D5"
PerfectScript.SetCellString "A5", "Tot

End Sub
 Note

· The code which created the inventory table is entered in the Document.AfterOpen().

Document.AfterSave()

Syntax
Private Sub Document_AfterSave()
Description
This event is called after you have saved your Quattro Pro notebook.

Example
In the following code fragment, a Message Box appears with the time and date. This data can be stored to a
database which keeps track of file activities.
Private Sub Document_AfterSave()
'*** Declare all variables
Dim myTime
Dim myDate As Date
Dim myStrTime, myStrDate, Msg As String

'**** Populate the variables
myTime = Time
myDate = Date

myStrDate = Str(myDate)
myStrTime = Str(myTime)

'*** Display the Message Box
Msg = "The date is " & myStrDate & " and the time is " & myStrTime
MsgBox Msg
End Sub

Document. BeforeClose()

Syntax
Private Sub Document_BeforeClose()
Description
This event is called when the Quattro Pro notebook is closed; however, this code is executed before the notebook
is actually closed.

Example
In the following code example, a Message Box will inform the user that the Quattro Pro notebook will close. This
Message Box will appear before the notebook is closed.
Private Sub Document_BeforeClose()
MsgBox "You are about to close this document"
End Sub

Document.AfterOpen()

Syntax
Private Sub Document_AfterOpen()
Description
This event is called when the Quattro Pro document opens.

Example
You can customize your Quattro Pro notebook by adding a table. When the notebook opens, the following code
will produce an inventory table:
Private Sub Document_AfterOpen()
'******* Create a Table
PerfectScript.SetCellString "B1", "Jan"
PerfectScript.SetCellString "C1", "Feb"
PerfectScript.SetCellString "D1", "Mar"
PerfectScript.SetCellString "A2", "TVs"
PerfectScript.SetCellString "A3", "VCRs"
PerfectScript.SetCellString "A4", "Radios"

'****** Populate the January Column
PerfectScript.SelectBlock "B2"
PerfectScript.PutCell2 "200"
PerfectScript.SelectBlock "B3"
PerfectScript.PutCell2 "250"
PerfectScript.SelectBlock "B4"
PerfectScript.PutCell2 "350"

'****** Populate the February Column
PerfectScript.SelectBlock "C2"
PerfectScript.PutCell2 "100"
PerfectScript.SelectBlock "C3"
PerfectScript.PutCell2 "280"
PerfectScript.SelectBlock "C4"
PerfectScript.PutCell2 "340"

'*** Populate the March Column
PerfectScript.SelectBlock "D2"
PerfectScript.PutCell2 "150"
PerfectScript.SelectBlock "D3"
PerfectScript.PutCell2 "230"
PerfectScript.SelectBlock "D4"
PerfectScript.PutCell2 "490"
End Sub

VBA Programming Issues Relating to Macro Commands
There are several issues that must be discussed with respect to programming with product commands in the
VBA environment. You can click on any of the following gray boxes for a detailed explanation:

 Product commands with Repeating Parameters
 Product commands that require a VARIABLE

Product commands with repeating parameters
To use product commands in VBA with repeating parameters, you must declare an array. Values for each
repetitive parameter must be loaded into the array. After the array is populated, you have to pass the array The
following list is all the macro commands in Quattro Pro with repeating parameters:

Product commands with repeating parameters:
 ExecAuto
 DLL
 Delvar
 SelectFloat
 SelectObject
 CrossTab
 GraphView
 CreateObject
 Code Example

Working with repeating parameters
You must create and pass an array to each product command that has repeating parameters. Refer to the
following code example, which illustrates how to use PreTaskBar:

Example 1
'***** Create the variables
Dim boxes As Variant
Dim widths As Variant
Dim textIcon As Variant

'****** Populate each array
boxes = Array(7, 9, 2, 4, 10, 5)
textIcon = Array(0, 0, 0, 0, 0, 0)
widths = Array(50, 75, 50, 20, 100, 50)

'****** Pass each array
PerfectScript.PrefTaskBar boxes, textIcon, widths
Example 2
****** Populate each array
PerfectScript.PrefTaskBar Array(7, 9, 2, 4, 10, 5),Array(0, 0, 0, 0, 0,
0),Array(50, 75, 50, 20, 100, 50)
Code Explanation
You must define the box style, the icon style, and the width for every item that you want to appear on the
application bar. In the example above, there are six elements in each array, meaning that six items will appear
on the application bar. Each element corresponds to the item. The boxes array defines the box style for each
item. All values in the textIcon array are 0, meaning there will be no icons in any of the items. The values in the
widths array specifies the width for each item Notice that PreTaskBar has boxes, textIcon, and widths as
arguments.
In the second example, all the Arrays were populated during the product command call. The benefit of this
method is it decreases the lines of code in your macro.
 Note

· You must use the integer values when populating an array used for repeating parameters.

Presentations product commands that use a VARIABLE as a parameter
You must use a Variant for any product command that requires a variable as a parameter. The Variant data type
is the data type for all variables that are not    declared as another specific type. If you do not declare the
variable as a Variant, then your VBA macro will not function properly . The following list is all the product
commands which use a Variable as a parameter:

Product commands that use a VARIABLE as a parameter:
 PutCell2
 Let
 Put
 FloatCreate
 PutCell
 RecalcCol
 Random
 PutBlock2
 ReCalc
 PutBlock
 Code Example

Working with product commands that use a Variable
You must declare a variable that you pass to a product command as a Variant.
Refer to the following code fragment:

'**** Declare the variable
Dim myAnswer As Variant

'*** Pass the variable to DirectoryExists()
PerfectScript.DirectoryExists myAnswer, "D:\Client"
MsgBox myAnswer
Code Explanation
A Boolean value is returned to myAnswer. If the directory exists, then myAnswer will be assigned the value
True. If the directory does not exist, then myAnswer will be assigned False.

Event
Each object within an object model is defined by a property, method, event, or a combination of each. An event
is a noun, and acts as something that takes place in an object. You write code for an object to respond to the act.
Events are triggered by an action, such as a click, key press, or system timer.

Event-driven programming
Visual Basic for Applications is an event-driven programming language. Most of the code you create is written to
respond to an event. Each object within an object model is defined by a property, method, event, or a
combination of each. An event is a noun, and acts as something that takes place in an object. You write code for
an object to respond to the act. Events are triggered by an action, such as a click, key press, or system timer.
Unlike traditional procedural programming, in which the program starts at line 1 and executes line by line, event-
driven programming executes code in response to events.

Variant
The Variant data type is the data type for all variables that are not declared as another type such as Dim,
Private, Public, or Static. The Variant data type has no type-declaration character.

Object-oriented programming
A style of programming that places emphasis on creating and using objects.

Object model
An object model represents the hierarchy of objects within an application and their relationship to each other
within the paradigm.
For example, the Document object represents the beginning of the object hierarchy in WordPerfect. Starting
with the Document object, you drill down and navigate through the object model until you find the desired
object. To reference an object with Visual Basic code, you separate each level of the object hierarchy with the dot
operator (.).

A Cross Tab Report before running the AddField macro against it.

A Cross Tab Report after the AddField macro has been run.

A Cross Tab Report before running the CenterLabels macro against it.

A Cross Tab Report after the CenterLabels macro has been run.

A Cross Tab Report before running the ColumnSummary macro against it.

A Cross Tab Report after the ColumnSummary macro has been run.

A partial view of a spreadsheet to be used as the data source for a Cross Tab Report.

A new Cross Tab Report is created.

A Cross Tab Report before runing the DataAlignment macro against it.

A Cross Tab Report after the DataAlignment macro has been run.

A Cross Tab Report before running the DefineFieldProps macro against it.

A Cross Tab Report after the DefineFieldProps macro has specified Sales as the field on which to apply the
summary option Max.

A Cross Tab Report before running the DisplayInEmptyCell macro against it.

A Cross Tab Report after the DisplayInEmptyCell macro has been run.

A Cross Tab Report before running the Expand macro against it.

A Cross Tab Report with two new sheets added after the Expand macro has been run

A Cross Tab Report before running the FieldCmp, FieldCmpBase, and FieldCmpItemPreset macros against it.

A Cross Tab Report after the FieldCmp, FieldCmpBase, and FieldCmpItemPreset macros have been run

A Cross Tab Report before running the HideField macro against it.

A Cross Tab Report after the HideField macro has been run.

A Cross Tab Report before running the FieldLabel macro against it.

A Cross Tab Report after the FieldLabel macro has been run.

A Cross Tab Report before running the FieldSummary macro against it.

A Cross Tab Report after the FieldSumary macro has been run.

A Cross Tab Report before running the FormatReport macro against it.

A Cross Tab Report after the FormatReport macro has been run.

A Cross Tab Report before running the Hide macro agaist it.

A Cross Tab Report after the Hide macro has been run.

A Cross Tab Report before running the LabelEdit macro against it.

A Cross Tab Report after the LabelEdit macro has been run.

A Cross Tab Report before running the MoveCell macro against it.

A Cross Tab Report after the MoveCell macro has been run.

A Cross Tab Report before running the MoveField macro against it.

A Cross Tab Report after the MoveField macro has been run.

A Cross Tab Report before running the PageFilter macro against it.

A Cross Tab Report after the PageFilter macro has been run.

A Cross Tab Report before running the PreserveDataFormat macro against it.

A Cross Tab Report after the PreserveDataFormat macro has been run.

A Cross Tab Report before running the Refresh macro against it.

A Cross Tab Report after the Refresh macro has been run.

A Cross Tab Report before running the RowSummary macro against it

A Cross Tab Report after the RowSummary macro has been run.

A Cross Tab Report before running the Show macro against it.

A Cross Tab Report after the Show macro has been run.

Visual Basic for Applications and WordPerfect Office
Visual Basic for Applications (VBA) is an object-oriented programming language that lets you create VBA macros
to automate tasks. You can, for example, create a macro in WordPerfect that changes the color of the headings.
WordPerfect Office includes version six of the Microsoft Visual Basic for Applications (VBA) programming
language.
VBA is an event-driven programming language. Most of the code you create is written to respond to an event. An
event is an action that is recognized by VBA; for example, clicking a button or choosing an option from a list box.
Unlike traditional procedural programming, in which the program starts at line 1 and executes line by line, event-
driven programming executes code in response to events.
All events in the application are code placeholders. It is up to you to code the response. All events are called in
response to a specific action. When an action occurs, the appropriate event will be called and the code located
within the event is executed. You can create simple or complex events. You can code a single line that displays a
message box or write an entire procedure that interacts with a database.

Getting Started with VBA
 What is Visual Basic for Applications?
 What is Event driven programming?
 Visual Basic, Visual Basic for Applications and VBScript
 VBA and PerfectScript
 Working in the VBA Editor
 Using VBA Macros
 Accessing an Application from another Application's macro

What is Visual Basic for Applications?
Visual Basic for Applications (VBA) is a subset of the Microsoft Visual Basic (VB) object-oriented programming
environment. VBA uses the Visual Basic Editor interactive development environment and the VB programming
language to enhance applications by manipulating the application's objects, exposed by its object model. VBA
can access other applications by referencing that application's object model components.
WordPerfect Office includes version six of the Microsoft Visual Basic for Applications (VBA) programming
language. VBA is a subset of the Microsoft Visual Basic (VB) object-oriented programming environment. VBA uses
the Visual Basic Editor interactive development environment and the VB programming language to enhance
applications by manipulating the application's objects, exposed by its object model. VBA is a standard
programming language that allows you to customize the application for your needs and integrate Corel products
with other VBA-enabled applications by referencing that application's object model components.
VBA provides you with a set of tools that you can use to customize the graphical user interface of Corel
applications. These tools allow you to process information and present data in an efficient and effective forum.
Developers using VBA to extend Corel applications will benefit from the familiar Visual Basic language, Rapid
Application Development (RAD) integrated development environment, and fast runtime performance in the
resulting integrated solutions. Developers will also benefit from an extensible forms package that supports
ActiveX controls for creating user interfaces, access to the full Windows API and the underlying file system,
connectivity to corporate data, and integration with other COM-based software.
Even though VBA uses the Visual Basic programming language, it is considered "for applications" because it is
most often integrated into another application in order to customize the functionality of that application.

 Related topics

What is Event driven programming?
Visual Basic for Applications is an event-driven programming language. Most of the code you create is written to
respond to an event. Each object within an object model is defined by a property, method, event, or a
combination of each. An event is a noun, and acts as something that takes place in an object. You write code for
an object to respond to the act. Events are triggered by an action, such as a click, key press, or system timer.
Unlike traditional procedural programming, in which the program starts at line 1 and executes line by line, event-
driven programming executes code in response to events.

 Related topics

What is the difference between Visual Basic, Visual Basic for Applications and
VBScript?
The Microsoft Visual Basic programming system is an advanced set of programming tools that provides
advanced functionality and components for the Microsoft Windows operating system and other windows-based
programs. For example, with Visual Basic you can create application extensions (dll's) and stand-alone
executable programs (exe's). You cannot create either of these components with VBA or VBScript.
VBA is also referred to as Visual Basic, Applications Edition. VBA is a subset of the Visual Basic programming
language. It uses the programming structure of Visual Basic to manipulate objects of an object model, left
exposed by an application. The manipulation of these objects results in small packets of code procedures within
the application. These code procedures and resulting projects are called add ins.
VBScript is also referred to as Microsoft Visual Basic, Scripting Edition. VBScript is also a subset of the Visual
Basic programming language. It is a web-based HTML document scripting language.

 Related topics

What is the difference between VBA and PerfectScript?
Previously, you could only use the PerfectScript language to automate specific tasks. Both product commands
and programming commands are used in conjunction with the PerfectScript language. The PerfectScript
language is useful for developing simple macros. VBA offers more flexibility and power. When you use VBA to
create macros, you are assisted by the Visual Basic compiler. The compiler helps you by providing context-
sensitive help when you are coding a VBA macro. You can combine the power of VBA with the PerfectScript
product commands to create powerful macros. You have to use the Visual Basic Editor to create VBA macros;
however, PerfectScript macros are developed from the WordPerfect Editor. You can access the Visual Basic Editor
only when you are working in an active document.

 Related topics

Working in the VBA Editor
When you work in the VBA Editor, you can create a new object, such as a dialog box, which is known as a form.
You can add controls, such as a check box or a text box. You can set the object's properties in the Property dialog
box. You can also set the object's properties at run time by programming a method.
Each document that you create with VBA has a corresponding Visual Basic for Applications project. In order to
customize your document with VBA coding procedures, you must open the project file in the Visual Basic Editor.
To display the Editor, go to Tools|Visual Basic|Visual Basic Editor on the main menu in the application.
For more detailed information on constructing code procedures and setting properties, see the Microsoft Visual
Basic Help in the Visual Basic Editor.

 Related topics

Using VBA macros
VBA allows you to edit and play macros that automate a series of tasks within an application.
You can store a VBA macro in the document by saving the document. Once you have saved the document, you
can close and reopen the document and access the macro. After you have developed the macro, you should
debug it. You can step through each macro line by line. This is a useful exercise to ensure that the macro will
have the desired outcome. A project macro is not available if the document is closed. After you have debugged
the macro, you can play the macro.
For more detailed instruction relating to VBA and its programming environment, please consult the "Microsoft
Visual Basic for Applications Help" from the Help menu in the Visual Basic Editor.

 Related topics

Accessing an Application from another Application's macro
You can access and change an application from another application's macro. VBA uses the Visual Basic Editor
interactive development environment and the VB programming language to enhance applications by
manipulating the application's objects, exposed by its object model. VBA allows you to customize your needs and
integrate Corel products with other VBA-enabled applications by referencing that application's object model
components.
For example, you could create and use a Quattro Pro object from a WordPerfect VBA macro. This allows you to
change and save a Quattro Pro document from a WordPerfect VBA macro.

 Related topics

Quattro Pro VBA Macros Help
Click the Help Topics button to return to the list of topics.

Using ActiveX Components
An ActiveX component (*.OCX) enables you to add a great amount of power and flexibility to your VBA macro. An
ActiveX component is basically a special type of DLL (dynamic link library). Originally, ActiveX components were
created to replace Visual Basic controls, however they have exceeded this purpose. Visual Basic for Applications
(VBA) is an ActiveX container, meaning that you can include ActiveX components in your VBA macro.
The components which are located on the toolbar are part of the Microsoft 2.0 Object library. These components
are meant for VBA programming. You can add additional components to your VBA project. However, some
components may work and others may not. Not all ActiveX components are meant for the VBA environment. It is
recommended that you became familiar with a individual component before you add it to your VBA macro.
If you are trying to add a new Active X control to your VBA Toolbox and are receiving errors stating that the
control is not licensed or that the control just does not work properly, this is not a bug - here may be many
reasons for these error messages:
· Many Windows applications write Active X controls for their own use and therefore are not supported or even

expected to be used by other applications. Many of the controls that are included with Corel WordPerfect
Office are of this nature and cannot be used with VBA.

· Some Active X controls installed to your system may have been included with other development applications
such as Visual C++, Visual Basic, Delphi etc, and they may have license requirements that only allow them
to run in their own development environment. Therefore, they will not work with VBA.

As a result, only those Active X controls available with Microsoft Forms 2.0 that are shipped as part of Microsoft
Visual Basic for Applications 6.0 are supported in WordPerfect Office. Any others you have on your system may
be used with VBA, but may not be actually intended for use in this manner, and therefore will not work. Even if
they do work, you may not have rights to distribute them to your VBA Macro users.
if you are using custom controls, be very careful that the control you are using is meant to be used in VBA and
that you have the proper licensing rights required for its use in your application.

To add an ActiveX component to your VBA Form
1. From the VBA Editor, select Insert, User Form.
2. Select Tools, Additional Controls
3. Select the desired component.

Quattro Pro PerfectScript Class Members

PerfectScript Macro Commands List

A
 AbsoluteReference
 ACTIVATE
 ADDMENU
 ADDMENUITEM
 ADDSERIES
 AddSubMenuItem
 Alert
 AnalysisExpert
 ANOVA1
 ANOVA2
 ANOVA3
 Application.Property
 Audit.Remove_All_Arrows
 Audit.Trace_Dependents
 Audit.Trace_Precedents

B
 BEEP
 BLANK

 BlockCopy
 BlockDelete.Option
 BlockFill.Option
 BlockInsert.Option
 BlockMove
 BlockMovePages
 BlockName.Option
 BlockReformat
 BlockTranspose
 BlockValues
 BudgetExpert

C
 CALC
 CAPOFF
 CAPON
 ChartExpert
 CLEAR
 ClearComments
 ClearContents
 ClearFormats
 COLUMNWIDTH
 Comment.Edit
 Comment.EditURL
 ComposeFormula
 Consolidate.Option
 ConsolidateExpert
 CONTENTS
 Controls.Option
 CR
 CreateChart
 CREATEOBJECT
 CrossTab
 CrossTabReport.AddField
 CrossTabReport.CenterLabels
 CrossTabReport.ColumnSummary
 CrossTabReport.CopyStatic
 CrossTabReport.Create
 CrossTabReport.DataAlignment
 CrossTabReport.DefineFieldProps
 CrossTabReport.Destination
 CrossTabReport.DisplayInEmptyCell
 CrossTabReport.Edit
 CrossTabReport.EmptyCellString
 CrossTabReport.Expand
 CrossTabReport.FieldCmp
 CrossTabReport.FieldCmpBase
 CrossTabReport.FieldCmpItem
 CrossTabReport.FieldCmpItemPreset
 CrossTabReport.FieldHide
 CrossTabReport.FieldLabel
 CrossTabReport.FieldOptions
 CrossTabReport.FieldSummary
 CrossTabReport.FormatReport

 CrossTabReport.Hide
 CrossTabReport.LabelEdit
 CrossTabReport.MoveCell
 CrossTabReport.MoveField
 CrossTabReport.Name
 CrossTabReport.Options
 CrossTabReport.PageFilter
 CrossTabReport.PreserveDataFormat
 CrossTabReport.Refresh
 CrossTabReport.Remove
 CrossTabReport.RowSummary
 CrossTabReport.Show
 CrossTabReport.Source
 CrossTabReport.UpdateDataOnOpen

D
 DatabaseQuery
 DATE
 DbAlias
 DELETEMENU
 DELETEMENUITEM
 DELVAR
 DESCR
 DialogView
 DialogWindow.Property
 DLL
 DLL.Load
 DraftViewGoto

E
 EDIT
 EditClear
 EditCopy
 EditCut
 EditGoto
 EditPaste
 EXECAUTO
 EXPON
 ExportGraphic

F
 FileClose
 FileCloseAll
 FileCombine
 FileExit
 FileExtract
 FileImport
 FileNew
 FileOpen
 FileRetrieve
 FileSave
 FileSaveAll

 FileSaveAs
 FileSend
 FileVersion.Retrieve
FileVersion.Retrieve_Current
 FileVersionSave
 FLOATCOPY
 FLOATCREATE
 FLOATMOVE
 FloatOrder.Option
 FLOATSIZE
 FLOATTEXT
 Form
 FOURIER
 Frequency.Option
 FTESTV
 FUNCTIONS

G
 GetCellFormula
 GetCellValue
 GETDIRECTORYCONTENTS
 GetObjectPageContents
 GETOBJECTPROPERTY
 GETPROPERTY
 GETWINDOWLIST
 GraphCopy
 GraphDeactivate
 GraphDelete
 GraphEdit
 GraphGallery
 GraphNew
 GraphSettings.Titles
 GraphSettings.Type
 GraphView
 GraphWindow.Property
 Group.Option
 GroupObjects

H
 HELP
 HISTOGRAM
 HLINE
 HPAGE

I
 IMFORMAT
 ImportGraphic
 INDICATE
 InsertBreak
 InsertObject
 InsertPageBreak.Option

 INSOFF
 INSON
 INSPECT
 Invert.Option
 IsAutoObj

J
No macros.

K
No macros.

L
 LET
 Links.Option

M
 MACROS
 MapExpert
 MCORREL
 MCOVAR
 MOVEAVG
 MOVETO
 MTGAMT
 MTGREFI
 Multiply.Option

N
 NAME
 NamedStyle.Option
 NAVIGATE.Option
 NEXTPANE
 NEXTTOPWIN
 NEXTWIN
 Notebook.Summary.Option
 Notebook.System
 Notebook.Zoom_Factor
 NUMOFF
 NUMON

O
 OBJECTSPAGEGOTO
 OLE.Option
 OnlineService
 Optimizer.Option
 Order.Option
 Outline.Option

P
 Page.Property
 PageViewGoto
 PANELOFF
 PANELON
 ParseExpert_ApplyFormatting
 ParseExpert_CellDelimiterString
 ParseExpert_CellDelimiterTypeComma
 ParseExpert_CellDelimiterTypeMultiSpace
 ParseExpert_CellDelimiterTypeOther
 ParseExpert_CellDelimiterTypeReturn
 ParseExpert_CellDelimiterTypeSemiColon
 ParseExpert_CellDelimiterTypeSpace
 ParseExpert_CellDelimiterTypeTab
 ParseExpert_ColumnWidths
 ParseExpert_ConsecutiveAsOne
 ParseExpert_DataType
 ParseExpert_DelimiterType
 ParseExpert_Go
 ParseExpert_IgnoreNonConformingRows
 ParseExpert_InputBlock
 ParseExpert_InputFile
 ParseExpert_InputType
 ParseExpert_JoinBrokenLines
 ParseExpert_LineLength
 ParseExpert_LoadSettings
 ParseExpert_OtherDelimiter
 ParseExpert_OutputBlock
 ParseExpert_PageLength
 ParseExpert_PageLengthEnabled
 ParseExpert_Restore
 ParseExpert_RowDelimiterString
 ParseExpert_RowDelimiterTypeComma
 ParseExpert_RowDelimiterTypeMultiSpace
 ParseExpert_RowDelimiterTypeOther
 ParseExpert_RowDelimiterTypeReturn
 ParseExpert_RowDelimiterTypeSemiColon
 ParseExpert_RowDelimiterTypeSpace
 ParseExpert_RowDelimiterTypeTab
 ParseExpert_SaveSettings
 ParseExpert_SettingsFile
 ParseExpert_SheetDelimiterString
 ParseExpert_SheetDelimiterTypeComma
 ParseExpert_SheetDelimiterTypeMultiSpace
 ParseExpert_SheetDelimiterTypeOther
 ParseExpert_SheetDelimiterTypeReturn
 ParseExpert_SheetDelimiterTypeSemiColon
 ParseExpert_SheetDelimiterTypeSpace
 ParseExpert_SheetDelimiterTypeTab
 ParseExpert_Skip1stChar
 ParseExpert_TextQualifier
 ParseExpert_ValueQualifier
 PasteSpecial
 POKE

 Preview
 Print.Option
 PTTESTM
 PTTESTV
 PUT
 PUTBLOCK
 PUTBLOCK2
 PUTCELL
 PUTCELL2

Q
 QUERY
 Query.Option
 QuickCorrect
 QuickFilter.Go
 QuickFilter.Toggle
 QuickFilter.TopGo
 QuickFunction
 QUIT

R
 RANDOM
 RANKPERC
 RECALC
 RECALCCOL
 REGRESS
 Regression.Option
 REQUEST
 RESIZE
 ResizeToSame
 RestrictInput.Option
 ROWCOLSHOW
 ROWHEIGHT

S
 SAMPLE
 SaveHtml.Option
 Scenario.Option
 ScenarioExpert
 SCROLLOFF
 SCROLLON
 Search.Option
 SelectAll
 SELECTBLOCK
 SELECTFLOAT
 SELECTOBJECT
 Series.Option
 SeriesManager.Option
 SetCellString
 SETGRAPHATTR
 SETLCID

 SETMENUBAR
 SETOBJECTPROPERTY
 SETPROPERTY
 Slide.Option
 SlideShowExpert
 SolveFor.Option
 Sort.Option
 SPEEDFILL
 SPEEDFORMAT
 SPEEDFORMAT.Option
 SPEEDSUM

T
 TABLE
 TableLink.Option
 TableQuery.Option
 TableView
 TemplateTB.Option
 Toolbar.Option

U
 UNDO
 UngroupObjects

V
 VLINE
 VPAGE

W
 WhatIf.Option
 WhatIfExpert
 WindowArrIcon
 WindowCascade
 WindowClose
 WindowHide
 WindowMaximize
 WindowMinimize
 WindowMove
 WindowNewView
 WindowNext
 WindowPanes
 WindowQPW.Option
 WindowRestore
 WindowShow
 WindowSize
 WINDOWSOFF
 WINDOWSON
 WindowTile
 WindowTile.TileTopToBottom
 WindowTitles

 Workflow.Option
 WorkSpace.Option

X
 XMLTag.Option

Y
No macros.

Z
No macros.

