
Quattro Pro Functions Help
Click Help Topics to return to the list of Functions Help topics.

@@ - Contents of Cell
Syntax
@@(Cell)

Cell A single cell address that contains another cell
address or cell name that is written as a label.

@@ is used to reference a cell that contains another cell address or cell name that is written as a label. @@
translates the label into a cell or single-cell reference and returns the contents of that cell. @@ does not accept a
cell name for a selection that is not a single-cell.
Examples
@@("A15") = the contents of A15
@@("BLOCK_NAME") = the contents of the single-cell named BLOCK_NAME
@@(A3) = 50 if A3 contains the label 'A1 and cell A1 contains the value 50
@@(A3) = the label 'Total if A3 contains the label 'Block, which is the name of cell C9, which contains the label
'Total
@@(A1) = ERR, where A1 contains the label 'B1..B5
@@(A1) = B1, where A1 contains the label 'B1
@@("A1") = B1..B5, where A1 contains the label 'B1..B5
@@("[NOTEBK1]A1") = B1..B5, where A1 in the current sheet of NOTEBK1 contains the label 'B1..B5 and
NOTEBK1 is open
@SUM(@@(A1)) = the sum of the values in B1..B5, where A1 contains the label 'B1..B5, because Quattro Pro
translates the label into cell coordinates for a non-single cell selection
@@("B1..B5") = ERR (not a single-cell selection)
@SUM(@@("B1..B5")) = 5 if cells B1 through B5 each contain 1
 Related topics

@ABDAYS--Add/Subtract Business Days
Syntax
@ABDAYS(Date, Days, <Holidays>, <Saturday>, <Sunday>)

Date Number representing the date to which a number
of business days should be added. See "Using
dates and times in Quattro Pro."

Days Integer representing number of business days to
add; can be negative.

Holidays Cells containing dates that are holidays or the
date of a single holiday or 0 to indicate no
holidays (the default is 0).

Saturday 0 to specify that Saturday is not a business day; 1
to specify that Saturday is a business day (the
default is 0).

Sunday 0 to specify that Sunday is not a business day; 1
to specify that Sunday is a business day (the
default is 0).

@ABDAYS adds or subtracts Days business days from Date and returns a serial date number.
If Date falls on a weekend or a holiday, one business day out of Days is used to bring Date forward to the next
business day; if Days is negative, Date is taken backward to the previous business day. For example, if 20
business days are added to June 5, 1993, the result is the same as adding 19 business days to June 7, 1993 since
June 5 falls on a Saturday.
Example
This formula calculates the date that precedes January 12, 1994 by 90 business days, assuming that Saturday,
Sunday, and the dates in the cells A7..C9 are holidays:
@ABDAYS(@DATE(94,1,12),-90,A7..C9) = 34213 (September 1, 1993)
 Related topics

@ABS - Absolute Value
Syntax
@ABS(X)

X A numeric value.

@ABS returns the absolute (positive) value of X.
Examples
@ABS(-100) = 100
@ABS(100) = 100
@ABS(0) = 0
 Related topics

@ACCRINT - Accrued Interest (Bond)
Syntax
@ACCRINT(Settle, Maturity, Coupon, <Issue>, <FirstCpn>, <Par>, <Freq>, <Calendar>)

Settle Number representing the settlement date.
Maturity Number representing the maturity date.
Coupon Coupon rate; 0 £ Coupon £ 1.
Issue Number representing the issue date.
FirstCpn Number representing the first coupon date.
Par Par value (the default is 1000).
Freq Frequency of coupon payments in the number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe:
0 = US (NASD) 30/360; default
1 = Actual/actual
2 = Actual/360
3 = Actual/365
4 = European 30/360

@ACCRINT returns the accrued interest for a bond. Accrued interest represents an amount paid to the bond
seller as compensation for owning the bond for a fraction of a coupon period. Interest accrues from the last
coupon date to the settlement date. @ACCRINT returns the accrued interest per 1000 face value.
Dates for @ACCRINT must follow this pattern:
Issue < Settle < FirstCpn < Maturity
Example
This formula returns the accrued interest, as of May 15, 1993, on an 8.875% bond with a $100,000 face value,
maturing February 15, 1998, dated November 22, 1992, and paying its first coupon on August 15, 1993:
@ACCRINT(@DATE(93,5,15),@DATE(98,2,15),0.08875,@DATE(92,11,22),@DATE(93,8,15), 100000) = $4,264.93
 Related topics

@ACCRINTXL - Accrued Interest (Security)
Syntax
@ACCRINTXL(Issue, FirstCpn, Settle, Coupon, <Par>, <Freq>, <Calendar>)

Issue Number representing the issue date. (Issue,
FirstInt, Settle, Freq, and Basis are truncated to
integers.) The Issue value must be < FirstCpn and
<Settle.

FirstCpn Number representing the first interest date
Settle Number representing the settlement date.
Coupon Interest rate; 0 £ Coupon.
Par Par value (the default is 1000).
Freq Number of coupon payments per year. For annual

payments, frequency = 1; for semiannual,
frequency = 2; for quarterly, frequency = 4.

Calendar Flag specifying which calendar to observe:
0 = US (NASD) 30/360; default
1 = Actual/actual
2 = Actual/360
3 = Actual/365
4 = European 30/360

@ACCRINTXL returns the accrued interest for a security that pays periodic interest.
@ACCRINTXL uses the formula

where

Ia accrued interest
par par value
r coupon rate
f frequency of coupon payments
NC number of quasi-coupon periods that fit in odd

period, rounded to next integer
Nli normal in days of the ith quasi-coupon period

within the odd period
Ai number of accrued days for ith quasi-coupon

period within the odd period

When you use any optional argument, you must also use the ones before it.
Example
This formula returns the accrued interest, as of May 15, 1996, on an 8.875% bond with a $10,000 par value,
issued November 22, 1995 and paying its first interest on August 15, 1996. The US 30/360-day year is used and
coupon payments are twice a year.
@ACCRINTXL(@DATE(92,11,22),@DATE(93,8,15),@DATE(93,5,15), 0.08875, 100000, 2, 0) = $4264.93
 Related topics

@ACCRINTM - Accrued Interest (CD)
Syntax
@ACCRINTM(Issue, Settle, Coupon, <Par>, <Calendar>)

Issue Number representing the issue date; must be <
Settle.

Settle Number representing the settlement date.
Coupon Coupon rate; 0 £ Coupon £ 1.
Par Par value (the default is 1000).
Calendar Flag specifying which calendar to observe:

0 = US (NASD) 30/360; default
1 = Actual/actual
2 = Actual/360
3 = Actual/365
4 = European 30/360

@ACCRINTM calculates the amount of interest accrued per par value between the issue date of the coupon and
the settle date.
Example
This formula returns the accrued interest on a certificate of deposit (CD) with $1,000,000 face value settling
March 11, 1990, dated December 15, 1989, and paying a coupon of 10% on an actual/360 basis:
@ACCRINTM(@DATE(89,12,15),@DATE(90,3,11),0.10,1000000,2) = $23,888.89
 Related topics

@ACCRUED - Accrued Interest (Security)
Syntax
@ACCRUED(Settle, Issue, FirstInt, Coupon, <Par>, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be greater than Issue.

Issue Number representing the issue date.
FirstInt Number representing the first interest date; must

be greater than Issue.
Coupon Coupon rate; can be any positive value,

including 0.
Par Par value, or the principal to be paid at maturity

(optional); the default is 100.
Freq Frequency of coupon payments (optional) in

number of payments per year; can be 1, 2, 4, or
12; the default is 2.

Calendar Flag specifying which calendar to observe:
0 = US (NASD) 30/360; default
1 = Actual/actual
2 = Actual/360
3 = Actual/365
4 = European 30/360

@ACCRUED calculates the accrued interest for a security with periodic interest payments. Short, standard, and
long coupon periods can also be used.
@ACCRUED uses the formula

where

Ia accrued interest
par par value
r coupon rate
f frequency of coupon payments
NC number of quasi-coupon periods that fit in odd

period, rounded to next integer
Nli normal in days of the ith quasi-coupon period

within the odd period
Ai number of accrued days for ith quasi-coupon

period within the odd period

When you use any optional argument, you must also use the ones before it.
Example
This formula returns the accrued interest, as of May 15, 1996, on an 8.875% bond with a $10,000 par value,
issued November 22, 1995 and paying its first interest on August 15, 1996. The US 30/360-day year is used and
coupon payments are twice a year.
@ACCRUED(@DATE(93,5,15), @DATE(92,11,22), @DATE(93,8,15), 0.08875, 10000, 2, 0) = 426.4931
 Related topics

@ACDAYS - Add Calendar Days
Syntax
@ACDAYS(Date, Days, <Calendar>, <EndMnth>)

Date Number representing the date to add days to.
See "Using dates and times in Quattro Pro."

Days Integer representing number of days to add; can
be negative.

Calendar Flag specifying which calendar to observe:
0 = US (NASD) 30/360; default
1 = Actual/actual
2 = Actual/360
3 = Actual/365
4 = European 30/360

EndMnth 1 to indicate adherence to ends of months; 0 to
indicate that ends of months are ignored (the
default is 1).

@ACDAYS adds Days days to Date using an actual or 30/360 calendar and returns a serial date number. If Days is
negative, @ACDAYS subtracts the absolute value of Days from Date.
With the 30/360 calendar, if the ending month is February and the remaining days push the result to the 29th or
30th, the result is forced to the true end of the month (28th or 29th, depending on whether Date is in a leap
year).
More than one result is possible when using the 30/360 calendar. For example, adding 90 days to April 30 can
yield either July 30 or July 31.
Examples
@ACDAYS(@DATE(93,1,1),120) = 34090 (May 1, 1993)
@ACDAYS(@DATE(93,11,15),-270) = 34015 (February 15, 1993)
 Related topics

@ACOS - Arc Cosine
Syntax
@ACOS(X)

X A numeric value between -1 and 1.

@ACOS returns the arc cosine of X. The result is the angle (in radians) whose cosine is X. To convert radians to
degrees, use @DEGREES.
Examples
@ACOS(1) = 0
@ACOS(0.5) = 1.047198
@DEGREES(@ACOS(0.5)) = 60
@ACOS(@ABS(B10)) = the arc cosine of the absolute value of B10
@ACOS(2) = ERR (means that X is greater than 1)
 Related topics

@ACOSH - Arc Hyperbolic Cosine
Syntax
@ACOSH(X)

X The hyperbolic cosine of an angle. X must be
greater than or equal to 1 but less than
approximately 1.34078E+154.

@ACOSH returns the arc, or inverse, hyperbolic cosine of a number. The arc hyperbolic cosine is the value whose
hyperbolic cosine is X, so @ACOSH(@COSH(X)) = X.
@ACOSH returns the result in radians; to convert to degrees, use @DEGREES.
Examples
@ACOSH(1) = 0
@ACOSH(2) = 1.316958
@ROUND(@DEGREES(@ACOSH(1.600287)), 2) = 60 degrees. Or: "The angle whose hyperbolic cosine is
1.600287, rounded to 2 decimal places."
@ACOSH(@ABS(D33)) = the arc hyperbolic cosine of the absolute value of D33
@ACOSH(0.5) = ERR (means that X is less than 1)
 Related topics

@ACOT - Arc Cotangent
Syntax
@ACOT(X)

X The cotangent of an angle. X can be any value
from approximately -1.789E+308 through
1.789E+308.

@ACOT calculates the arc, or inverse, cotangent using the cotangent X of an angle. The result of @ACOT is an
angle, in radians, from 0 through p. This represents an angle between 0 and 180 degrees. To convert radians to
degrees, use @DEGREES.
Examples
@ACOT(0.5) = 1.107149
@ACOT(1) = 0.785398
@ROUND(@DEGREES(@ACOT(1)),2) = 45
 Related topics

@ACOTH - Arc Hyperbolic Cotangent
Syntax
@ACOTH(X)

X The hyperbolic cotangent of an angle. X can be
any value between approximately -1.79E+308
and less than -1 and between greater than 1 and
approximately 1.79E+308.

@ACOTH calculates the arc, or inverse, hyperbolic cotangent using the hyperbolic cotangent X of an angle. The
result is in radians; to convert to degrees, use @DEGREES.
Examples
@ACOTH(4) = 0.255413
@ACOTH(@PI/4) = ERR, because p /4 is between -1 and 1
@ACOTH(@PI/3) = 1.884943
@ROUND(@DEGREES(@ACOTH(1.524869)), 2) = 45 degrees. Or: "The angle whose hyperbolic cotangent is
1.524869, rounded to 2 decimal places."
 Related topics

@ACSC - Arc Cosecant
Syntax
@ACSC(X)

X The cosecant of an angle. X can be any value
between approximately -1.79E+308 and -1 and
between 1 and approximately 1.79E+308.

@ACSC calculates the arc, or inverse, cosecant using the cosecant X of an angle. The result of @ACSC is an
angle, in radians, from - p/2 through p/2 (from -90 through 90 degrees). To convert radians to degrees, use
@DEGREES.
Examples
@ACSC(1) = 1.570796
@ACSC(-2) = - 0.5236
@ROUND(@DEGREES(@ACSC(-2)),2) = - 30 degrees
@ACSC(0.25) = ERR, because X is between -1 and 1
 Related topics

@ACSCH - Arc Hyperbolic Cosecant
Syntax
@ACSCH(X)

X The hyperbolic cosecant of an angle. X can be
any value between approximately -
1.34078E+154 and 1.34078E+154, but not 0.

@ACSCH calculates the arc, or inverse, hyperbolic cosecant using the hyperbolic cosecant X of an angle. The
result is in radians; to convert to degrees, use @DEGREES.
Examples
@ACSCH(@RADIANS(30)) = 1.402581
@ACSCH(@RADIANS(75)) = 0.704265
@ROUND(@DEGREES(@ACSCH(1.825306)), 2) = 30 degrees. Or: "The angle whose hyperbolic cosecant is
1.825306, rounded to 2 decimal places."
 Related topics

@ADDB - Add Binary Numbers
Syntax
@ADDB(Binary1, <Binary2>, <BitIn>, <Bits>)

Binary1 First binary number.
Binary2 Second binary number.
BitIn Input carry bit; can be either 0 (the default) or 1.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in
Binary1 or Binary2, whichever is greater; must
be in the range 0 <n £ 64.

@ADDB returns the sum of two binary numbers. If Binary2 is omitted, @ADDB counts the bits in Binary1 that are
set to 1; this bit counting operation is called addition reduction.
Use two's complement notation (see Quattro Pro glossary) to represent negative numbers. If BitIn is 1, @ADDB
adds one extra bit to the result.
Example
@ADDB(100,100) = 1000
@ADDB(100,100,1,4) = 1001
@ADDB(101) = 2
@ADDB(1100,1,1,5) = 01110
 Related topics

@ADDBO - Overflow of Binary Addition
Syntax
@ADDBO(Binary1, Binary2, <BitIn>, <Bits>)

Binary1 First binary number.
Binary2 Second binary number.
BitIn Input carry bit; can be either 0 (the default) or 1.
Bits Number of binary bits used for input; if omitted,

Bits = number of bits in Binary1 or Binary2,
whichever is greater; must be in the range 0 <n
£ 64.

@ADDBO returns the overflow bit (either 0 or 1) of the sum of two binary numbers. An overflow occurs when a
bit is carried out of the word size specified by Bits. For example, if Binary1 = 10 and Binary2 = 10, the sum of
the two numbers is 00, with 1 carry bit in the third place not shown.
Use two's complement notation (see Quattro Pro glossary) to represent negative numbers. If BitIn is 1, @ADDBO
adds one extra bit to the sum of the two numbers before returning the overflow.
Example
@ADDBO(1000,111) = 0
@ADDBO(1000,111,1) = 1
@ADDBO(1100,100,1,4) = 1
 Related topics

@ADDH - Add Hexadecimal Numbers
Syntax
@ADDH(Hex1, <Hex2>, <BitIn>, <Bits>)

Hex1 First hexadecimal number.
Hex2 Second hexadecimal number.
BitIn Input carry bit; can be either 0 (the default) or 1.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in Hex1
or Hex2, whichever is greater; must be in the
range 0 <n £ 64.

@ADDH returns the sum of two hexadecimal numbers. If Hex2 is omitted, @ADDH counts the bits in Hex1 that
are set to 1; this bit counting operation is called addition reduction.
Use two's complement notation (see Quattro Pro glossary) to represent negative numbers. If BitIn is 1, @ADDH
adds one extra bit to the result.
Example
@ADDH("E00","100") = F00
@ADDH("100","100",1,16) = 0201
@ADDH("9") = 2
@ADDH("C","1",1,8) = 0E
 Related topics

@ADDHO - Overflow of Hexadecimal Addition
Syntax
@ADDHO(Hex1, Hex2, <BitIn>, <Bits>)

Hex1 First hexadecimal number.
Hex2 Second hexadecimal number.
BitIn Input carry bit; can be either 0 (the default) or 1.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in Hex1
or Hex2, whichever is greater; must be in the
range 0 <n £ 64.

@ADDHO returns the overflow bit (either 0 or 1) of the sum of two hexadecimal numbers. An overflow occurs
when a bit is carried out of the word size specified by Bits. For example, if the binary equivalents for Hex1 and
Hex2 are 10 and 10, the sum of the two numbers is 00 with 1 carry bit in the third place not shown.
Use two's complement notation (see Quattro Pro glossary) to represent negative numbers. If BitIn is 1, @ADDHO
adds one extra bit to the sum of the two numbers before returning the overflow.
Examples
@ADDHO("8","F") = 1
@ADDHO("8","F",1,5) = 0
@ADDHO("C","4",1,4) = 1
 Related topics

@ADDRESS - Cell Reference
Syntax
@ADDRESS(RowNum, ColNum, <RefType>, <Format>, <Page>)

RowNum Row number of the cell for which you want the
reference.

ColNum Column number.
RefType Type of cell reference to return (optional).
Format Logical value indicating A1 or R1C1 reference

style (optional):
TRUE = A1 (default, if omitted)
FALSE = R1C1

Page Name of notebook sheet (optional).

@ADDRESS returns, as text, a cell reference for which you specify row and column numbers. Optionally, you can
specify another sheet and choose reference type and style.

RefType Format Meaning
1 $A:$A$1 All absolute
2 $A:A$1 Absolute sheet and row, relative column
3 $A:$A1 Absolute sheet and column, relative row
4 $A:A1 Absolute sheet, relative column and row
5 A:A1 Relative sheet, absolute column and row
6 A:A$1 Relative sheet and column, absolute row
7 A:$A1 Relative sheet and row, absolute column
8 A:A1 All relative

You can use @ADDRESS with @INDEX, @VLOOKUP, or @HLOOKUP to create cell references from tables of values
in the current file. Use @ADDRESS with @@ to return values in cell references.
Examples
@ADDRESS(5,4) = "D5" - absolute reference to Cell D5
@ADDRESS(5,4,3) = "$D5" - absolute reference to column D, relative reference to row 5
@ADDRESS(5,4,3,FALSE) = "R5C[4]" - relative row 5, absolute column 4, in R1C1 style
@ADDRESS(5,4,3,TRUE,"AREAS") = "$AREAS : $D5" - absolute sheet name, absolute column D, and relative row
5
If B7 contains 7, and C7 contains 6, @@(@ADDRESS(B7,C7)) returns the value in cell F7.
 Related topics

@AMAINT - Amortized Accumulated Interest
Syntax
@AMAINT(Principal, Int, Term, n, <Part>, <Residual>, <ResOff>, <Adv>, <Odd>, <Simp>)

Principal Initial loan principal.
Int Periodic interest rate.
Term Term of the loan, expressed in number of total

payments.
n Number of payments made; must be an integer

from 0 to Term.
Part Part of (n+1)th period passed (must be from 0 to

1; the default is 0).
Residual Remaining balance on loan at end of loan term

(the default is 0).
ResOff Number of periods after last periodic payment

that residual is to be paid; can have fractional
component (the default is 0).

Adv Number of advance payments made at loan
inception (the default is 0); n - Adv must be an
integer.

Odd Number of periods between loan inception and
date of first payment (not including advance
payments); can have fractional component (the
default is 1).

Simp 0 to specify compounded interest or 1 to specify
simple interest (the default is 0).

@AMAINT calculates the accumulated interest paid on a loan after n payments. The accumulated interest is the
sum of the interest portions of the first n payments plus the interest of an optional partial payment (specified by
Part).
Term and n should include advance payments made at the beginning of the loan. Part handles payoff situations
where the payoff date does not coincide with a periodic payment date. For example, if 20 out of 60 monthly
payments of a loan have been made and 10 days have passed since the 20th payment date, Part = 10/31,
assuming there are 31 days between the 20th and 21st monthly payments.
If Simp = 0, @AMAINT uses this formula:

If Simp = 1, @AMAINT uses this formula:

where

I interest
Pa payment
Pr principal
B balance
P part

where Payment is the periodic payment and Balance is the remaining balance on the loan after n payments.
Balance, like Principal, is the present value of an annuity paying Payment.
Examples
A loan of $10,000 was made on September 11, 1992 to be repaid in 48 monthly installments. The annual interest
rate is 8.4% (8.4%/12 = 0.7% monthly rate). The first payment was paid in advance. This formula calculates the
amount of paid interest after 15 regular payments:
@AMAINT(10000,0.007,48,15,0,0,0,1) = $840.74
For the same loan, this formula calculates how much interest accumulated on the loan as of March 3, 1993,

assuming the borrower made regular payments. The previous payment (the 18th) fell on February 11, 1993;
there are 21 days between the previous payment and March 3. Interest accrues as simple interest over fractional
periods.
@AMAINT(10000,0.007,48,18,21/29,0,0,1,1,1) = $1,020.76
 Related topics

@AMINT - Amortized Interest Rate
Syntax
@AMINT(Principal, Term, Payment, <Residual>, <ResOff>, <Adv>, <Odd>, <Simp>, <Prec>)

Principal Initial loan principal.
Term Term of loan, expressed in number of total

payments.
Payment Periodic payment (for example, if Term is

expressed in months, Payment must be a
monthly payment).

Residual Remaining balance on loan at end of loan term
(the default is 0).

ResOff Number of periods after last periodic payment
that Residual is to be paid; can have fractional
component (the default is 0).

Adv Number of advance payments made at loan
inception (the default is 0).

Odd Number of periods between loan inception and
date of first payment (not including advance
payments); can have fractional component (the
default is 1).

Simp 0 to specify compounded interest or 1 to specify
simple interest (the default is 0).

Prec Required precision of result (the default is
0.000001); must be ³ 0.

@AMINT calculates the interest rate for one payment of an amortized loan. For example, if the arguments passed
correspond to a monthly loan, the interest rate returned represents a monthly rate. Use Prec to specify how close
@AMINT must be to the actual interest rate.
Example
A loan for $50,000 was made on March 15, 1993. Repayment terms stipulate ten annual payments of $7,500,
each to be made on July 31, beginning 1993 and ending 2002, along with a final payment of $2,500 on
December 31, 2003. Assuming interest is compounded during fractional periods, this formula calculates the
interest rate at which the financing is performed:
@AMINT(50000,10,7500,2500,1.4180,0,0.3781) = 0.098913
A normal period is one year long, but the first period is 138 days long. Since there are 365 days between March
15, 1993 and March 15, 1994, the first period is 138/365 the length of a normal period (Odd = 0.3781). There is
also a delay between the last periodic payment and the residual payment of $2,500. The length of the delay is
one period (July 31, 2002 to July 31, 2003) plus 153 days (July 31, 2003 to December 31, 2003), so ResOff =
1.4180 (which equals 1+(153/366)).
 Related topics

@AMNTHS - Add Months
Syntax
@AMNTHS(Date, Months, <EndMnth>)

Date Number representing the date to add number of
months to. See "Using dates and times in
Quattro Pro."

Months Integer representing number of months to add;
can be negative.

EndMnth 1 to indicate adherence to ends of months; 0 to
indicate that ends of months are ignored (the
default is 1).

@AMNTHS adds the number of months specified by Months to Date and returns a serial date number. If Months
is negative, @AMNTHS subtracts the absolute value of Months from Date.
Adding one month usually means going from a day in one month to the same day in the next month. However,
adding one month to March 31 cannot result in April 31, since April 31 does not exist. In this case, the last day of
the month, April 30, is returned. If Date falls on the 31st of a month, the result also falls on the last day of a
month.
If Date falls on the last day of a month with less than 31 days, you can use EndMnth to specify one of two
different results. To move ahead to the same day of the specified month, specify EndMnth as 0. To move ahead
to the last day of the specified month, omit EndMnth or specify it as 1.
Examples
@AMNTHS(@DATE(93,4,30),3) = 34181 (July 31, 1993), which is the last day of the month three months from
April 30, 1993.
Consider a loan with 120 payments that pays on the 30th of each month starting on June 30, 1993. In February,
it pays on the last day of the month. This formula calculates the date of the 43rd payment:
@AMNTHS(@DATE(93,6,30),42,0) = 35429 (December 30, 1996)
 Related topics

@AMPMT - Amortized Payment
Syntax
@AMPMT(Principal, Int, Term, <Residual>, <ResOff>, <Adv>, <Odd>, <Simp>)

Principal Initial loan principal.
Int Periodic interest rate (for example, if Term is

expressed in months, Int must be a monthly
rate).

Term Term of loan, expressed in number of total
payments.

Residual Remaining balance on loan at end of loan term
(the default is 0).

ResOff Number of periods after last periodic payment
that residual is to be paid; can have fractional
component (the default is 0).

Adv Number of advance payments made at loan
inception (the default is 0).

Odd Number of periods between loan inception and
date of first payment (not including advance
payments); can have fractional component (the
default is 1).

Simp 0 to specify compounded interest or 1 to specify
simple interest (the default is 0).

@AMPMT calculates the payment (monthly, annual, and so on) for an amortized loan.
Examples
A loan for $35,000 has 48 monthly payments and a residual payment of $7,500 that is due three months after
the last monthly payment. This formula calculates the monthly payment if the annual interest rate is 9% (9%/12
= 0.75% monthly rate):
@AMPMT(35000,0.0075,48,7500,3) = $743.48
An annuity with an investment of $250,000 makes quarterly payments starting five years from the date of
investment for a period of 20 years. It also pays a lump sum of $50,000 three and a half years after the last
quarterly payment. If the annualized yield from the investment is 8.4% (8.4%/4 = 2.1% quarterly rate), this
formula calculates the quarterly payment:
@AMPMT(250000,0.021,80,50000,14,0,20) = $9,431.83
The term of the annuity is 80 quarters. A value of 14 for ResOff specifies, in quarters, the three-and-a-half year
delay between the last quarterly payment and the residual payment. A value of 20 for Odd specifies the five year
delay between investment and first payment, in quarters.
 Related topics

@AMPMTI - Amortized Interest Portion of Payment
Syntax
@AMPMTI(Principal, Int, Term, n, <Residual>, <ResOff>, <Adv>, <Odd>, <Simp>)

Principal Initial loan principal.
Int Periodic interest rate (for example, if Term is

expressed in months, then Int must be a monthly
rate).

Term Term of loan, expressed in number of total
payments.

n Number of payments made; must be an integer
from 0 to Term.

Residual Remaining balance on loan at end of loan term
(the default is 0).

ResOff Number of periods after last periodic payment
that residual is to be paid; can have fractional
component (the default is 0).

Adv Number of advance payments made at loan
inception (the default is 0).

Odd Number of periods between loan inception and
date of first payment (not including advance
payments); can have fractional component (the
default is 1).

Simp 0 to specify compounded interest or 1 to specify
simple interest (the default is 0).

@AMPMTI calculates the interest portion of the nth payment of an amortized loan. Term and n should include any
advance payments made at the beginning of the loan.
If Simp = 0, @AMPMTI uses this formula:

If Simp = 1, @AMPMTI uses this formula:

I interest
B balance

Balance n-1, like Principal, is the present value of an annuity. Both correspond to annuities with the same
payment size but differing in number of payments. If Principal corresponds to an annuity with Term payments,
Balance n-1 corresponds to annuity with Term n + 1 payments. tn equals 1 except when n equals Adv + 1, in
which case tn equals Odd.
Example
This formula calculates the portion of the 15th payment (the 15th after any advanced payments) of a 120
payment loan that constitutes interest, if the original principal of $100,000 is financed at a periodic rate of 4.5%
and the first two payments are made in advance:
@AMPMTI(100000,0.045,120,17,0,0,2) = $4,106.92.
The value of 17 passed for n specifies the 15th payment after the two advance payments.
 Related topics

@AMPRN - Amortized Initial Principal
Syntax
@AMPRN(Int, Term, Payment, <Residual>, <ResOff>, <Adv>, <Odd>, <Simp>)

Int Periodic interest rate (for example, if Term is
expressed in half-years, Int must be a
semiannual rate).

Term Term of loan, expressed in number of total
payments.

Payment Periodic payment.
Residual Remaining balance on loan at end of loan term

(the default is 0).
ResOff Number of periods after last periodic payment

that residual is to be paid; can have fractional
component (the default is 0).

Adv Number of advance payments made at loan
inception (the default is 0).

Odd Number of periods between loan inception and
date of first payment (not including advance
payments); can have fractional component (the
default is 1).

Simp 0 to specify compounded interest or 1 to specify
simple interest (the default is 0).

@AMPRN calculates the initial principal of an amortized loan.
Examples
A loan has an annualized monthly compounded interest rate of 10.8% (10.8%/12 = 0.9% monthly rate) over a
period of 48 months, and the monthly payment is $525. Each payment is due at the beginning of the month,
including the first payment which coincides with the loan's start date. This formula calculates the amount
financed:
@AMPRN(0.009,48,525,0,0,1) = $20,573.04
A savings plan requires a monthly contribution of $1,000 for a period of 25 years. If the plan pays an annual
interest rate of 6.6% (6.6%/12 = 0.55% monthly rate), this formula calculates what initial deposit (not payment),
if any, is needed in order to accumulate $1,000,000 two and a half years after the last monthly payment:
@AMPRN(0.0055,300,-1000,1000000,30) = $16,907.93.
If the annuity is viewed as a loan and the investor as the lender, the original investment can be treated as the
loan principal, the monthly payments as payments from lender to borrower, and the $1,000,000 future value as
a residual payment from the borrower to the lender. The interest rate is 0.55%. The negative payment means
payment from lender to borrower. A value of 30 for ResOff specifies the thirty month delay between the last
monthly contribution and the date on which to measure the end balance.
 Related topics

@AMRES - Amortized Residual Payment
Syntax
@AMRES(Principal, Int, Term, Payment, <ResOff>, <Adv>, <Odd>, <Simp>)

Principal Initial loan principal.
Int Periodic interest rate (for example, if Term is

expressed in months, then Int must be a monthly
rate).

Term Term of loan, expressed in number of total
payments.

Payment Periodic payment.
ResOff Number of periods after last periodic payment

that Residual is to be paid; can have fractional
component (the default is 0).

Adv Number of advance payments made at loan
inception (the default is 0).

Odd Number of periods between loan inception and
date of first payment (not including advance
payments); can have fractional component (the
default is 1).

Simp 0 to specify compounded interest or 1 to specify
simple interest (the default is 0).

@AMRES calculates the residual (or balloon) payment of an amortized loan or the future value of an annuity.
Example
A $10,000,000 loan is paid back in 20 payments of $1,000,000 and a final payment. The first payment is made
at the start of the loan. The remaining 19 payments are made annually, starting 9 months after the first
payment. The final payment is made 20 months after the last annual payment. If the loan has an annual interest
rate of 9.68%, this formula calculates the final payment (assume compounding of interest over fractional
periods):
@AMRES(10000000,0.0968,20,1000000,20/12,1,0.75) = $1,681,942.54.
ResOff is set to 20/12 to specify the 20 month delay between the last annual payment and the residual payment.
Adv is set to 1 to specify the advance payment. Odd is set to 9/12 (0.75) to specify the nine month period
between the start of the loan and the second payment.
 Related topics

@AMRPRN - Amortized Remaining Principal
Syntax
@AMRPRN(Principal, Int, Term, n, <Part>, <Residual>, <ResOff>, <Adv>, <Odd>, <Simp>)

Principal Initial loan principal.
Int Periodic interest rate (for example, if Term is

expressed in years, then Int must be a yearly
rate).

Term Term of loan, expressed in number of total
payments.

n Number of payments made; must be an integer
from 0 to Term.

Part Part of (n+1)th period passed; 0 £ Part £ 1 (the
default is 0).

Residual Remaining balance on loan at end of loan term
(the default is 0).

ResOff Number of periods after last periodic payment
that residual is to be paid; can have fractional
component (the default is 0).

Adv Number of advance payments made at loan
inception (the default is 0).

Odd Number of periods between loan inception and
date of first payment (not including advance
payments); can have fractional component (the
default is 1).

Simp 0 to specify compounded interest or 1 to specify
simple interest (the default is 0).

@AMRPRN computes the balance remaining after n payments, accounting for possible interest accrual over part
of the following payment period.
Term and n should include advance payments made at the beginning of the loan. Part handles payoff situations
where the payoff date (date on which the remaining balance on a loan is fully paid) does not coincide with a
periodic payment date. For example, if 15 out of 36 monthly payments of a loan have been made and 17 days
have passed since the 15th payment date, Part = 17/30, assuming there are 30 days between the 15th and 16th
monthly payments.
If Simp = 0, @AMRPRN uses this formula:

If Simp = 1, @AMRPRN uses this formula:

B Balance
P Part

Examples
A loan of $100,000 has an annual interest rate of 9.6% (9.6%/12 = 0.8% monthly rate). Repayment consists of
monthly payments over ten years. This formula calculates the balance remaining after the 57th monthly
payment:
@AMRPRN(100000,0.008,120,57) = $64,108.38
A loan of $2,000,000 was made on March 16, 1993, to be paid back in 40 quarterly payments and a final
payment of $100,000. The annual interest rate is 9.96% (9.96%/4 = 2.49% quarterly rate). The first four
payments are due at the start of the loan. The fifth payment is due July 1, 1993. Thereafter, a payment is due
every three months. The final residual payment of $100,000 is due June 15, 2002. This formula calculates the
remaining balance due on the loan as of September 23, 1996, assuming timely payments and simple interest
accrual over fractional periods:

@AMRPRN(2000000,0.0249,40,17,84/92,100000,75/91,4,1+16/90,1) = $1,322,015.26.
September 23, 1994 falls in the middle of the payment period following the 17th quarterly payment. It falls 84
days into the quarter, which is 92 days long, so Part = 84/92. The residual is paid 75 days after the 40th
quarterly payment. The corresponding quarter (April 1, 2002 to July 1, 2002) contains 91 days, so ResOff =
75/91. The first quarterly payment after the advance payments is paid one period and 16 days after loan
inception. The 16 days correspond to the quarter containing the loan inception date, March 16, 1993. That
quarter contains 90 days, so Odd = 1+(16/90).
 Related topics

@AMTERM - Amortized Term
Syntax
@AMTERM(Principal, Int, Payment, <Residual>, <ResOff>, <Adv> <Odd>, <Simp>)

Principal Initial loan principal.
Int Periodic interest rate (for example, if term is

expressed in quarters, Int must be a quarterly
rate).

Payment Periodic payment.
Residual Remaining balance on loan at end of loan term

(the default is 0).
ResOff Number of periods after last periodic payment

that residual is to be paid; can have fractional
component (the default is 0).

Adv Number of advance payments made at loan
inception (the default is 0).

Odd Number of periods between loan inception and
date of first payment (not including advance
payments); can have fractional component (the
default is 1).

Simp 0 to specify compounded interest or 1 to specify
simple interest (the default is 0).

@AMTERM calculates the duration of an amortized loan, expressed in number of payments.
Example
A loan for $50,000 was made on April 1, 1993. The loan is repaid monthly, starting on May 1, 1993, except for
the first three payments, which are due at the start of the loan (April 1, 1993). If the monthly interest rate is
1.15%, this formula calculates the smallest number of payments that would allow repayment with a maximum
allowable monthly payment of $600:
@AMTERM(50000,0.0115,600,0,0,3) = 228.18
The smallest number of payments to support such a loan is 229, which results in a monthly payment of $599.56.
Using 228 payments results in a monthly payment of $600.10.
 Related topics

@AND - Logical And
Syntax
@AND(List)

List True-or-false conditions to test.

@AND returns 1 (true) if all arguments are true, 0 (false) if even one argument is false.
Arguments in List must be logical values or references.
@AND ignores text, numbers, or empty cells.
Examples
Given the following data:

A B C
1 $2 $101 $12
2 $50 $115 $22
3 $127 $130 $45

@AND(A1>10,A2>10,A3>10) = 0 (false)
@AND(B1>10,B2>10,B3>10) = 1 (true)
To find which values in column A are less than 100, enter in cell A4 the formula +A1..A3<100. Quattro Pro enters
the formula as an array and returns the array {1|1|0} in cells A4..A6, showing the first two values in column A
are less than 100. You can do the same in cell B4 for the amounts in column B, and C4 for the amounts in column
C.
Suppose a $5 service charge is deducted if the daily account balance falls below the $100 minimum for three
consecutive days. Use @AND to test the true-or-false conditions in A4..A6, B4..B6, and C4..C6, and @IF to
subtract $5 or not, depending on the results.
For account A, @IF(@AND(A4..A6), "$5", "$0") = $0, no service charge
For account B, @IF(@AND(B4..B6), "$5", "$0") = $0, no service charge
For account C, @IF(@AND(C4..C6), "$5", "$0") = $5
 Related topics

@ANDB - Binary AND
Syntax
@ANDB(Binary1, <Binary2>, <Bits>)

Binary1 First binary number.
Binary2 Second binary number.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in
Binary1 or Binary2, whichever is greater; must
be in the range 0 <n £ 64.

@ANDB performs a bit-by-bit logical AND of each bit in Binary1 and Binary2. Use @ANDB to set bits to 0; any bit
that is 0 in either Binary1 or Binary2 causes the resulting output bit to be 0.
If only one number is specified, then @ANDB performs an all-ones test, or AND reduction, on Binary1; @ANDB
returns 1 if all bits in Binary1 are set to 1; otherwise, it returns 0.
Examples
@ANDB(10,1) = 00
@ANDB(11,10) = 10
@ANDB(11) = 1
@ANDB(1100,111,5) = 00100
 Related topics

@ANDH - Hexadecimal AND
Syntax
@ANDH(Hex1, <Hex2>, <Bits>)

Hex1 First hexadecimal number.
Hex2 Second hexadecimal number.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in Hex1
or Hex2, whichever is greater; 4 binary digits = 1
hexadecimal digit; must be in the range 0 <n £
64.

@ANDH performs a bit-by-bit logical AND of each bit in Hex1 and Hex2. Use @ANDH to set bits to 0; any binary
bit that is 0 in either Hex1 or Hex2 causes the resulting output bit to be 0.
If only one number is specified, then @ANDH performs an all-ones test, or AND reduction, on Hex1; @ANDH
returns 1 if all bits in Hex1 are set to 1; otherwise, it returns 0.
Examples
@ANDH("A","F") = A
@ANDH("A") = 0
@ANDH("C","4",8) = 04
 Related topics

@ARRAY - Array Formula
Syntax
@ARRAY(Expression, <Columns>, <Rows>)

Expression Formula or @function using array syntax;
@functions can be nested, that is, you can have
more than one @function in a single statement.

Columns Number of columns in the output range,
including the column of the current cell (the
default Columns depends on dimensions of input
array(s) in Expression).

Rows Number of rows in the output range, including
the row of the current cell (the default Rows
depends on dimensions of input array(s) in
Expression).

@ARRAY returns the result of Expression, which can be either a formula with array operands or an @function with
array arguments. An array is a selection of values treated as a single group. You do not need to type @ARRAY to
create an array formula or @function; if an Expression requires array output, Quattro Pro converts it by
surrounding it with the @ARRAY @function.
Columns and Rows are optional arguments; the size of an output array is dependent on the size of the input
array(s) in Expression. Specify values for Columns and Rows only if you want to truncate or replicate portions of
the output array.
By using arrays in formulas and @functions, you can perform an operation on multiple values or cells. You also
save time by not having to repeat the same formula or @function in multiple cells. Arrays also save memory by
reducing the number of formulas in a notebook.
If an array expression returns an array, the @ARRAY @function appears only in the current cell, which is also the
upper left cell of the output array; the other cells in the array contain calculated values. Also, array formulas do
not recognize 3-D syntax; if you specify a 3-D selection in Expression, @ARRAY recognizes only the cells on the
first sheet of the series of consecutive sheets.
If you use many array formulas in a notebook, recalculation may become noticeably slower. Also, if you plan to
share a notebook with other people, keep in mind that array formulas can make notebooks difficult to
understand.
Examples
The next figure shows several examples using @ARRAY.

A B C D
1 B1=@ARRAY({1;2;3}*12) 12 24 36
2
3 B3=@ARRAY({1|2|3}*12) 12
4 24
5 36
6
7 B7=@ARRAY(D7..D9*2) 16 8
8 20 10
9 24 12
10
11 B11=@ARRAY(D7..D9/{4;5;6}) 2 1.6 1.333333
12 2.5 2 1.666667
13 3 2.4 2
14
15 1.23 -6.43 9
16 B16=@ARRAY(@ABS(B15..D15)) 1.23 6.43 9

17
18 B18=@ARRAY(@SQRT(C18..C20)) 6.78233 46
19 7.34846

9
54

20 6 36
21
22 B22=@ARRAY(@UPPER(C22..C25)) THIS This
23 IS is
24 A a
25 TEST Test

 Related topics

@ASCTOHEX - Convert ASCII to Hexadecimal
Syntax
@ASCTOHEX(ASCII, <Places>)

ASCII ASCII character string to convert; can be up to
20 ASCII characters.

Places Number of characters to return; can be from 1 to
40 characters.

@ASCTOHEX returns the hexadecimal string equivalent of an ASCII number.
If the ASCII value includes nonnumeric characters, enclose it in quotation marks.
Examples
@ASCTOHEX("A") = 41
@ASCTOHEX("A",4) = 0041
@ASCTOHEX("01ABCDEF") = 3031414243444546
@ASCTOHEX("QUATTRO",5) = 4524F
 Related topics

@ASEC - Arc Secant
Syntax
@ASEC(X)

X The secant of an angle. X can be any value from
approximately -1.789E+308 through -1 and from
1 through approximately 1.789E+308.

@ASEC calculates the arc, or inverse, secant using the secant X of an angle. The result of @ASEC is an angle, in
radians, from 0 through p (from 0 through 180 degrees). To convert radians to degrees, use @DEGREES.
Examples
@ASEC(1) = 0
@ASEC(-2) = 2.094395
@DEGREES(@ASEC(-2)) = 120 degrees
@ASEC(0.25) = ERR, because X is between -1 and 1
 Related topics

@ASECH - Arc Hyperbolic Secant
Syntax
@ASECH(X)

X The hyperbolic secant of an angle. X must be
greater than 0 and less than or equal to 1.

@ASECH calculates the arc, or inverse, hyperbolic secant using the hyperbolic secant X of an angle. The result is
in radians; to convert to degrees, use @DEGREES.
Examples
@ASECH(@RADIANS(30)) = 1.263277
@ASECH(@RADIANS(75)) = ERR, because the hyperbolic secant of a 75-degree angle is between 0 and 1
@ASECH(@RADIANS(45)) = 0.723368
@ROUND(@DEGREES(@ASECH(0.624888)), 2) = 60 degrees. Or: "The angle whose hyperbolic secant is
0.624888, rounded to 2 decimal places."
 Related topics

@ASIN - Arc Sine
Syntax
@ASIN(X)

X A numeric value between -1 and 1.

@ASIN calculates the arc sine of X. The result is the angle (in radians) whose sine is X. To convert radians to
degrees, use @DEGREES.
Examples
@ASIN(1) = 1.570796
@ASIN(0.25) = 0.25268
@DEGREES(@ASIN(0.5)) = 30
@ASIN(-2) = ERR (X is less than -1)
 Related topics

@ASINH - Arc Hyperbolic Sine
Syntax
@ASINH(X)

X The hyperbolic sine of an angle. X can be any
value from approximately -1.34078E+154 to
1.34078E+154.

@ASINH calculates the arc, or inverse, hyperbolic sine using the hyperbolic sine X of an angle. The result is in
radians; to convert to degrees, use @DEGREES.
Examples
@ASINH(1) = 0.881374
@ASINH(0.25) = 0.247466
@ROUND(@DEGREES(@ASINH(0.547853)), 2) = 30 degrees. Or: "The angle whose hyperbolic sine is 1.600287,
rounded to 2 decimal places."
 Related topics

@ATAN - Arc Tangent
Syntax
@ATAN(X)

X A numeric value.

@ATAN calculates the arc tangent of X. The result is the angle (in radians) whose tangent is X. To convert radians
to degrees, use @DEGREES.
Examples
@ATAN(0.5) = 0.463648
@ATAN(1) = 0.785398
@DEGREES(@ATAN(1)) = 45
 Related topics

@ATAN2 - Arc Tangent of Two Points
Syntax
@ATAN2(X, Y)

X A numeric value.
Y A numeric value.

@ATAN2 calculates the arc tangent of the angle represented by the point with (x,y) coordinates X and Y. The
result is the angle (in radians) whose tangent is Y/X. The result is between -pi and pi, with the quadrant chosen
appropriately according to the sign of the result. If both X and Y are 0, the result is ERR.
The order of arguments is the same as for 1-2-3, but opposite that of the ATAN2 function in FORTRAN and other
programming languages.
To convert radians to degrees, use @DEGREES.
Examples
@ATAN2(1,2) = 1.107149
@DEGREES(@ATAN2(1,1)) = 45
 Related topics

@ATANH - Arc Hyperbolic Tangent
Syntax
@ATANH(X)

X The hyperbolic tangent of an angle. X must be
greater than -1 and less than 1.

@ATANH calculates the arc, or inverse, hyperbolic tangent using the hyperbolic tangent X. The result is in
radians; to convert to degrees, use @DEGREES.
Examples
@ATANH(0.5) = 0.549306
@ATANH(1) = ERR, because X is not between -1 and 1
@ATANH(0.999999) = 7.254329
@ROUND(@DEGREES(@ATANH(0.655794)), 2) = 45 degrees. Or: "The angle whose hyperbolic tangent is
0.655794, rounded to 2 decimal places."
 Related topics

@AVEDEV - Mean Absolute Deviation
Syntax
@AVEDEV(List)

List One or more numeric or cell values.

@AVEDEV returns the mean absolute deviation, that is, the average of the absolute deviation of the data points
in List from their mean. Use @AVEDEV to measure the variability of a data set around the mean. @AVEDEV uses
this formula:

Example
@AVEDEV(10,11,12,13,12,11,10) = 0.897959
 Related topics

@AVG - Average
Syntax
@AVG(List)

List One or more numeric or cell values.

@AVG calculates the arithmetic mean of all values in List. It uses the formula: Sum of List divided by N
If List contains more than one item, they must be separated by commas. If any of the cells referenced contains
ERR, the resulting value is ERR.
@AVG ignores blank cells when it makes its calculations. Cells containing labels, however, are treated as
containing 0; thus assure that all blank cells are truly blank, and do not contain string operators such as
apostrophes.
Examples

B C D
1
2 January February March
3 $652 $833 $599
4 $456 $305 $522
5 $68 $59 $73

@AVG(5,20,10,5) = 10
@AVG(B3..D3) = $694.67
@AVG(225,B3..D5) = $379.20
@AVG(B3..B5,PART) = $395.50 when C3..C5 is named PART
 Related topics

@BASE - Convert Number to Another Base
Syntax
@BASE(Decimal, <Base>, <Precision>)

Decimal Any decimal value to convert.
Base Indicates the target base in which to express

Decimal; can be any integer from 2 to 36,
inclusive (the default is 16).

Precision Indicates the number of desired digits after the
decimal point; can be any integer from 0 to 15,
inclusive (the default is 0).

@BASE converts a number from base-10 to a string value in a target base from 2 to 36.
Examples
@BASE(128,8) = 200
@BASE(123.47,16,6) = 7B.7851EB
 Related topics

@BDAYS - Business Days
Syntax
@BDAYS(StartDate, EndDate, <Holidays>, <Saturday>, <Sunday>)

StartDate Number representing the start date. See "Using
dates and times in Quattro Pro."

EndDate Number representing the end date.
Holidays Cells containing dates that are holidays or the

date of a single holiday or 0 to indicate no
holidays (the default is 0).

Saturday 0 to specify that Saturday is not a business day;
1 to specify that Saturday is a business day (the
default is 0).

Sunday 0 to specify that Sunday is not a business day; 1
to specify that Sunday is a business day (the
default is 0).

@BDAYS returns the number of business days between StartDate and EndDate, including EndDate in the total. If
EndDate is less than StartDate, the result is negative.
If neither StartDate nor EndDate falls on a weekend or holiday, @BDAYS returns the number of business days
from StartDate to EndDate, including EndDate.
If StartDate and EndDate are two consecutive business days, the result is 1. If StartDate and EndDate both fall
on weekends or holidays, @BDAYS returns the number of business days between the two dates, excluding
EndDate.
If StartDate or EndDate (but not both) falls on a weekend or holiday, the result depends on which date falls on a
business day. If StartDate falls on the weekend, the result includes EndDate. For example, if StartDate is a
Saturday and EndDate is the following Thursday, the result includes the Thursday and is 4. If EndDate falls on
the weekend, the result does not include EndDate. For example, if StartDate is a Thursday and EndDate is the
following Saturday, the result is 1.
Examples
This formula calculates how many business days pass from November 30, 1993 to November 14, 1993,
assuming that the dates in the cells A7..C9 are holidays:
@BDAYS(@DATE(93,11,30),@DATE(93,11,14),A7..C9) = -9
This formula calculates how many business days pass from June 2, 1993 to June 10, 1993, assuming no holidays
other than weekends:
@BDAYS(@DATE(93,6,2),@DATE(93,6,10)) = 6
 Related topics

@BESSELI - Modified Bessel In(x)
Syntax
@BESSELI(x, n)

x Numeric value at which to evaluate the function.
n Number ³ 0 representing the order of the Bessel

function; if n is not an integer, it is truncated to
an integer.

@BESSELI calculates the nth order modified Bessel function of the variable x. It uses this formula:

@BESSELI is equivalent to the Bessel function , but is evaluated for purely imaginary arguments.
Example
@BESSELI(1.5,0) = 1.646723
 Related topics

@BESSELJ - Bessel Jn(x)
Syntax
@BESSELJ(x, n)

x Numeric value at which to evaluate the function.
n Number ³ 0 representing the order of the Bessel

function; if n is not an integer, it is truncated to
an integer.

@BESSELJ calculates the Bessel function Jn(x). It uses this formula:

, where

 is the gamma function.
Example
@BESSELJ(1.5,0) = 0.511828
 Related topics

@BESSELK - Modified Bessel Kn(x)
Syntax
@BESSELK(x, n)

x Numeric value at which to evaluate the function;
must be > 0.

n Integer ³ 0 representing the order of the Bessel
function; if n is not an integer, it is truncated to
an integer.

@BESSELK calculates the nth order modified Bessel function of the variable x. It uses this formula:

where Jn and Yn are @BESSELJ and @BESSELY, respectively.
Example
@BESSELK(1.5,0) = 0.213806
 Related topics

@BESSELY - Bessel Yn(x)
Syntax
@BESSELY(x, n)

x Non-negative numeric value at which to evaluate
the function.

n Integer ³ 0 representing the order of the Bessel
function; if n is not an integer, it is truncated to
an integer.

@BESSELY calculates the Bessel function Yn(x) (also called the Neumann or Weber function). It uses this formula:

where:

Example
@BESSELY(1.5,0) = 0.382449
 Related topics

@BETA - Beta Function
Syntax
@BETA(Z, W)

Z a parameter to the function; must be > 0.
W b parameter to the function; must be > 0.

@BETA returns the value of the beta function, which is widely used in mathematics and statistics. @BETA uses
this formula:

Examples
@BETA(4,3) = 0.016667
@BETA(2,3) = 0.083333
@BETA(9,0.4) = 0.93348
@BETA(12,0.3) = 1.432072
 Related topics

@BETADIST - Beta Distribution
Syntax
@BETADIST(X, Z, W, <A>,)

X Value at which to evaluate the function over the
interval A £ X £ B.

Z a distribution parameter; Z > 0.
W b distribution parameter; W > 0.
A Optional lower bound to the interval of X (the

default is 0); A cannot equal B and must be £ X.
B Optional upper bound to the interval of X (the

default is 1); B cannot equal A and must be ³ X.

@BETADIST returns the cumulative beta probability density function. The cumulative beta probability density
function is a bounded distribution that is useful for studying variables such as percentages that may only take on
values within a restricted range. The optional arguments A and B set those bounds.
Examples
@BETADIST(0.5,3,4,0,1) = 0.65625
@BETADIST(0.4,3,4,0,1) = 0.45568
 Related topics

@BETAI - Incomplete Beta Function
Syntax
@BETAI(Z, W, X)

Z a parameter to the function; if W = 0, Z > 0.
W b parameter to the function; if Z = 0, W > 0.
X Value at which to evaluate the function; cannot

exceed 1.

@BETAI computes the incomplete beta function, that is, the probability that a standard beta-distributed variable
will be less than X. @BETAI uses this formula:

Examples
@BETAI(3,4,0.5) = 0.65625
@BETAI(3,4,0.1) = 0.01585
@BETAI(3,4,0.98) = 0.999998
@BETAI(7,8,0.7) = 0.968531
 Related topics

@BETAINV - Inverse of Beta Distribution
Syntax
@BETAINV(Prob, Z, W, <A>,)

Prob Cumulative probability value; 0 £ Prob £ 1.
Z a parameter to the Beta distribution; must be >

0.
W b parameter to the Beta distribution; must be >

0.
A Optional lower bound to the interval of X (the

default is 0); A cannot equal B and must be £ X.
B Optional upper bound to the interval of X (the

default is 1); B cannot equal A and must be ³ X.

@BETAINV computes the inverse of the cumulative beta distribution function. If Prob = @BETADIST(X...), then
@BETAINV(Prob...) = X.
Examples
@BETAINV(0.65625,3,4,0,1) = 0.5
@BETAINV(0.45568,3,4,0,1) = 0.4
 Related topics

@BINOMDIST - Binomial Distribution
Syntax
@BINOMDIST(Successes, Trials, Prob, Cumulative)

Successes Number of successes in number of trial runs;
must be ³ 0.

Trials Number of independent trial runs in sample;
must be > Successes.

Prob Probability of a success on each trial run; must
be ³ 0 and £ 1.

Cumulative 1 to return the cumulative distribution function;
0 to return the probability that there are exactly
Successes successes.

@BINOMDIST returns the binomial probability mass function, which is the probability that the number of
successes in the independent trials equals Successes. Use @BINOMDIST when the outcome of experiments is
success or failure, when the experiments are independent of one another, and when the probability of success
does not change in successive trials. For example, a coin toss experiment is a binomial experiment.
Example
Using a random sample, a polling organization asks 50 voters if they favor Candidate A for reelection. Given that
55% of the city's voters favor Candidate A, this formula returns the probability that 40 people from the sample
will favor her:
@BINOMDIST(40,50,.55,0) = 0.000144
 Related topics

@BINTOHEX - Binary to Hexadecimal
Syntax
@BINTOHEX(Binary)
@BINTOHEX("1010") = A

Binary Binary number to convert; denote negative
numbers using a minus sign.

@BINTOHEX returns the hexadecimal string equivalent of a binary number.
Examples
@BINTOHEX("10000") = 10
@BINTOHEX("11110") = 1E
 Related topics

@BINTOHEX64 -Binary to Hexadecimal
Syntax
@BINTOHEX64(Binary, <Places>)

Binary Binary number to convert; must be positive.
Places Number of characters to return; must be £ 16.

@BINTOHEX64 returns the hexadecimal string equivalent of a binary number (up to 64 bits).
Examples
@BINTOHEX64(1001) = 9
@BINTOHEX64(1010,2) = 0A
@BINTOHEX64("11110000001111000") = 1E078
@BINTOHEX64("11110000001111000",2) = 78
 Related topics

@BINTONUM - Binary to Decimal
Syntax
@BINTONUM(Binary)

Binary Binary number to convert; denote negative
numbers using a minus sign.

@BINTONUM returns the decimal equivalent of a binary number.
Examples
@BINTONUM("1010") = 10
@BINTONUM("10000") = 16
@BINTONUM("11110") = 30
 Related topics

@BINTONUM64 - Binary to Decimal
Syntax
@BINTONUM64(Binary, <Signed>)

Binary Binary number to convert.
Signed 1 if the most significant bit of Binary is a sign bit;

0 (the default) if Binary is positive.

@BINTONUM64 returns the decimal equivalent of a binary number (up to 64 bits).
If Signed is 1, the most significant bit of Binary is the sign bit. If the sign bit is 0, the number is positive; if it is 1,
the number is negative.
Examples
@BINTONUM64(100) = 4
@BINTONUM64(1010) = 10
@BINTONUM64("11110000001111000") = 123000
@BINTONUM64("11110000001111000",1) = -8072
 Related topics

@BINTOOCT - Binary to Octal
Syntax
@BINTOOCT(Binary)

Binary Binary number to convert; denote negative
numbers using a minus sign.

@BINTOOCT returns the octal string equivalent of a binary number.
Examples
@BINTOOCT("1010") = 12
@BINTOOCT("10000") = 20
@BINTOOCT("11110") = 36
 Related topics

@BINTOOCT64 - Binary to Octal
Syntax
@BINTOOCT64(Binary, <Places>)

Binary Binary number to convert; must be positive.
Places Number of characters to return; must be £ 22.

@BINTOOCT returns the octal string equivalent of a binary number (up to 64 bits).
Examples
@BINTOOCT64("0111") = 07
@BINTOOCT64("1000",3) = 010
@BINTOOCT64("11110000001111000") = 360170
@BINTOOCT64("11110000001111000",3) = 170
@BINTOOCT64("000001010011100101110111") = 01234567
 Related topics

@BITRB - Binary Bit Reset
Syntax
@BITRB(Binary, Position)

Binary Binary number.
Position Bit position; must be ³ 0 and £ number of bits in

Binary - 1.

@BITRB resets to 0 the specified Position bit of a binary value.
Examples
@BITRB(1010,1) = 1000
@BITRB(1010,3) = 0010
@BITRB(1100,2) = 1000
 Related topics

@BITRH - Hexadecimal Bit Reset
Syntax
@BITRH(Hex, Position)

Hex Hexadecimal number.
Position Bit position; must be ³ 0 and £ number of bits in

Hex - 1.

@BITRH resets to 0 the specified Position bit of a hexadecimal value.
Examples
@BITRH("A",1) = 8
@BITRH("A",3) = 2
@BITRH("C",2) = 8
 Related topics

@BITSB - Binary Bit Set
Syntax
@BITSB(Binary, Position)

Binary Binary number.
Position Bit position; must be ³ 0 and £ number of bits in

Binary - 1.

@BITSB sets to 1 the specified Position bit of a binary number.
Examples
@BITSB(1010,2) = 1110
@BITSB(1010,0) = 1011
@BITSB(1100,0) = 1101
 Related topics

@BITSH - Hexadecimal Bit Set
Syntax
@BITSH(Hex, Position)

Hex Hexadecimal number.
Position Bit position; must be ³ 0 and £ number of bits in

Hex - 1.

@BITSH sets to 1 the specified Position bit of a hexadecimal number.
Examples
@BITSH("A",2) = E
@BITSH("C",0) = D
 Related topics

@BITTB - Binary Bit Test
Syntax
@BITTB(Binary, Position)

Binary Binary number.
Position Bit position; must be ³ 0 and £ number of bits in

Binary - 1.

@BITTB returns the value of the bit of a binary number in the specified Position.
Examples
@BITTB(1010,2) = 0
@BITTB(1001,0) = 1
@BITTB(1100,1) = 0
 Related topics

@BITTH - Hexadecimal Bit Test
Syntax
@BITTH(Hex, Position)

Hex Hexadecimal number.
Position Bit position; must be ³ 0 and £ number of bits in

Hex - 1.

@BITTH returns the value of the bit of a hexadecimal number in the specified Position.
Examples
@BITTH("A",2) = 0
@BITTH("9",0) = 1
@BITTH("C",0) = 0
 Related topics

@BLOCKNAME - Block Name
Syntax
@BLOCKNAME(Block)

Block Cell or reference (for example, A1 or B1..B5).

@BLOCKNAME returns the name of a cell or selection specified by Block. If Block does not contain a name,
@BLOCKNAME returns ERR; if Block contains more than one name, @BLOCKNAME arbitrarily returns one of the
names.
If the name for a selection was created in another notebook, use @BLOCKNAME2.
Example
@BLOCKNAME(D2..D15) = SALES (selection D2..D15 is named SALES)
 Related topics

@BLOCKNAME2 - Block Name in Specified Notebook
Syntax
@BLOCKNAME2(NotebookLink, Block)

NotebookLink A reference to a sheet, cell, or cells in another
notebook (for example, [BUDGET]A:A1).

Block Cell or reference (for example, A1 or B1..B5).

@BLOCKNAME2 returns the cell name created in the notebook specified by NotebookLink that refers to Block,
which can be in another notebook. If Block does not contain a name, @BLOCKNAME2 returns ERR; if Block
contains more than one name, @BLOCKNAME2 arbitrarily returns one of the names.
Example
@BLOCKNAME2([BUDGET]A:A1,A:D2..D15) = SALES (selection A:D2..D15 of the active notebook is named SALES
in the name table of notebook BUDGET)
 Related topics

@BLOCKNAMES - Block Names
Syntax
@BLOCKNAMES(Block)

Block Cell or reference (for example, A1 or B1..B5).

@BLOCKNAMES returns a two-column table showing the cell names that intersect with Block. The left column of
the table contains cell names, and the right column contains corresponding coordinates.
If Block does not contain a name, @BLOCKNAMES returns ERR.
Because @BLOCKNAMES returns an array, it is automatically enclosed within an @ARRAY @function.
Make sure there is enough room for a two-column table, with one row for each cell name. Quattro Pro overwrites
existing data in cells it uses for the table.
If cell names for a notebook were created in another notebook, use @BLOCKNAMES2.
Example
This example refers to cells in the next figure. Selections B3..B7, C3..C7, D3..D7, and B3..D7 are named HOTEL,
TRANS, MEALS, and TOTAL, respectively. The example is entered in cell A12.
@ARRAY(@BLOCKNAMES(B3..D7)) = table in A12..B15 shown in the next figure.

A B C D
1 WEEKLY EXPENSE

REPORT
2 DATE HOTEL TRANS MEALS
3 05/11 $99.70 $774.23 $67.34
4 05/12 $99.70 $15.00 $89.50
5 05/13 $99.70 $23.00 $97.78
6 05/14 $99.70 $13.00 $75.41
7 05/15 $99.70 $32.00 $63.20
8 $498.50 $857.23 $393.23
9
10 TOTAL $1,748.96
11
12 HOTEL [C:\COREL\QUATTRO\

EXPENSES.QPW]A:B3..B
7

13 TRANS [C:\COREL\QUATTRO\
EXPENSES.QPW]A:C3..
C7

14 MEALS [C:\COREL\QUATTRO\
EXPENSES.QPW]A:D3..
D7

15 TOTAL [C:\COREL\QUATTRO\
EXPENSES.QPW]A:B3..
D7

 Related topics

@BLOCKNAMES2 - Block Names in Specified Notebook
Syntax
@BLOCKNAMES2(NotebookLink, Block)

NotebookLink A reference to a sheet, cell, or cells in another
notebook (for example, [BUDGET]A:A1).

Block Cell or reference (for example, A1 or B1..B5).

@BLOCKNAMES2 returns a two-column table showing the cell names created in the notebook specified by
NotebookLink that refer to selections that intersect with Block. Use @BLOCKNAMES2 instead of @BLOCKNAMES if
the cell names for a notebook were created in another notebook. The left column of the output table contains
cell names, and the right column contains corresponding cell coordinates.
If Block does not contain a name, @BLOCKNAMES2 returns ERR.
Because @BLOCKNAMES2 returns an array, it is automatically enclosed within an @ARRAY @function.
Make sure there is enough room for a two-column table, with one row for each cell name. Quattro Pro overwrites
existing data in cells it uses for the table.
Example
This example refers to cells in the next figure. Selections B3..B7, C3..C7, D3..D7, and B3..D7 in the active
notebook EXPENSES are named HOTEL, TRANS, MEALS, and TOTAL, respectively, in the notebook TRAVEL. The
example is entered in cell A12.
@ARRAY(@BLOCKNAMES2([TRAVEL]A:A1,B3..D7)) = table in A12..B15 shown in the next figure

A B C D
1 WEEKLY EXPENSE

REPORT
2 DATE HOTEL TRANS MEALS
3 05/11 $99.70 $774.23 $67.34
4 05/12 $99.70 $15.00 $89.50
5 05/13 $99.70 $23.00 $97.78
6 05/14 $99.70 $13.00 $75.41
7 05/15 $99.70 $32.00 $63.20
8 $498.50 $857.23 $393.23
9
10 TOTAL $1,748.96
11
12 HOTEL [C:\COREL\QUATTRO\

EXPENSES.QPW]A:B3..
B7

13 TRANS [C:\COREL\QUATTRO\
EXPENSES.QPW]A:C3..
C7

14 MEALS [C:\COREL\QUATTRO\
EXPENSES.QPW]A:D3..
D7

15 TOTAL [C:\COREL\QUATTRO\
EXPENSES.QPW]A:B3..
D7

 Related topics

@BUSDAY - Closest Business Day
Syntax
@BUSDAY(Date, <Direction>, <Holidays>, <Saturday>, <Sunday>)

Date Number representing a date. See "Using dates
and times in Quattro Pro."

Direction Flag specifying direction of adjustment; 0 =
forward; 1 = backward; 2 = forward if in same
month as Date, otherwise backward (the default
is 0).

Holidays Cells containing dates that are holidays or the
date of a single holiday or 0 to indicate no
holidays (the default is 0).

Saturday 0 to specify that Saturday is not a business day;
1 to specify that Saturday is a business day (the
default is 0).

Sunday 0 to specify that Sunday is not a business day; 1
to specify that Sunday is a business day (the
default is 0).

@BUSDAY returns Date if it is a valid business day. If Date falls on a Saturday (and Saturday is set to 0 or
omitted), Sunday (and Sunday is set to 0 or omitted), or holiday, @BUSDAY returns the date of the closest valid
business day in the direction specified by Direction.
Example
This formula calculates the closest business day after December 25, 1993, assuming that the 25th is a holiday:
@BUSDAY(@DATE(93,12,25),0,@DATE(93,12,25)) = 34330 (December 27, 1993)
 Related topics

@CATB - Concatenate Binary
Syntax
@CATB(Binary1, <HiBit1>, <LoBit1>, <Binary2>, <HiBit2>, <LoBit2>, <Bits>)

Binary1 First binary number.
HiBit1 Highest bit of the first number to use for

concatenation; the default is the most significant
bit.

LoBit1 Lowest bit of the first number to use for
concatenation; the default is 0.

Binary2 Second binary number.
HiBit2 Highest bit of the second number to use for

concatenation; the default is the most significant
bit.

LoBit2 Lowest bit of the second number to use for
concatenation; the default is 0.

Bits Number of binary digits to return; must be in the
range 0 <n £ 64.

@CATB joins together two specified binary numbers or extracts selected bits from one binary number. Specify
high bit and low bit values if you want to use only a portion of a number for concatenation. For example, if HiBit1
= 2 and LoBit1 = 0, only the first three bits of Binary1 are joined with Binary2.
Examples
@CATB("1100",2,0,"0011",1,0) = 10011
@CATB("1100",2,0,"0011",1,0,3) = 011
@CATB("1100",3,0,"11",1,0,8) = 00110011
@CATB("101101",4,1) = 0110
 Related topics

@CATH - Concatenate Hexadecimal
Syntax
@CATH(Hex1, <HiBit1>, <LoBit1>, <Hex2>, <HiBit2>, <LoBit2>, <Bits>)

Hex1 First hexadecimal number.
HiBit1 Highest bit of the first number to use for

concatenation; the default is the most significant
bit.

LoBit1 Lowest bit of the first number to use for
concatenation; the default is 0.

Hex2 Second hexadecimal number.
HiBit2 Highest bit of the second number to use for

concatenation; the default is the most significant
bit.

LoBit2 Lowest bit of the second number to use for
concatenation; the default is 0.

Bits Number of equivalent binary digits to return; 4
binary digits = 1 hexadecimal digit; must be in
the range 0 <n £ 64.

@CATH joins together two specified hexadecimal numbers or extracts selected bits from one hexadecimal
number. Specify high bit and low bit values if you want to use only a portion of a number for concatenation. For
example, if HiBit1 = 2 and LoBit1 = 0, only the first three bits of Hex1 are joined with Hex2.
Examples
@CATH("C",2,0,"3",1,0) = 13
@CATH("C",2,0,"3",1,0,3) = 3
@CATH("C",3,0,"3",1,0,8) = 33
@CATH("CA",6,2) = 12
 Related topics

@CATNB - Concatenate n Binary
Syntax
@CATNB(n, Binary1, <Binary2>, <Binary3>, ..., <BinaryN>, <Bits>)

n Number of binary numbers being concatenated;
n £ 64.

Binary1 First binary number.
Binary2,Binary3
, . . . , BinaryN

Second through the nth binary numbers.

Bits Number of binary digits to return; must be in the
range 0 <n £ 64.

@CATNB joins together n binary numbers.
Examples
@CATNB(3,1,0,1010) = 101010
@CATNB(3,1,0,1010,4) = 1010
@CATNB(3,11,"00",11,8) = 00110011
 Related topics

@CATNH - Concatenate n Hexadecimal
Syntax
@CATNH(n, Hex1, <Hex2>, <Hex3>, ..., <HexN>, <Bits>)

n Number of hexadecimal numbers being
concatenated; n £ 16.

Hex1 First hexadecimal number.
Hex2,Hex3, . . . ,
HexN

Second through the nth hexadecimal numbers.

Bits Number of equivalent binary digits to return; 4
binary digits = 1 hexadecimal digit; must be in
the range 0 <n £ 64.

@CATNH joins together n hexadecimal numbers.
Examples
@CATNH(3,"1","0","A") = 10A
@CATNH(3,"1","0","A",4) = A
@CATNH(3,"A","B","C",16) = 0ABC
 Related topics

@CDAYS - Calendar Days
Syntax
@CDAYS(StartDate, EndDate, <Calendar>, <February>)

StartDate Number representing the start date. See "Using
dates and times in Quattro Pro."

EndDate Number representing the end date.
Calendar Flag specifying which calendar to observe (0 =

30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

February 0 to use 30-day treatment of February for 30/360
calendar; 1 to use the actual-day treatment (the
default is 0).

@CDAYS returns the number of calendar days between StartDate and EndDate, including EndDate in the total. If
EndDate precedes StartDate, the result is negative.
You can use Calendar to specify whether the actual or 30/360 day calendar is used. Under the actual calendar,
Quattro Pro calculates the number of days by subtracting one date from the other.
To handle months with more than 30 days (and February), @CDAYS sometimes adjusts StartDate or EndDate
before the sum is calculated. @CDAYS adjusts StartDate to fall on the 30th if either of the following two
conditions are true: the day of the month on which StartDate falls is greater than 30, or StartDate falls on the
last day of February (28th or 29th, depending on year) and February is 0.
If StartDate falls on the 30th (either because @CDAYS adjusted it or it falls on the 30th) and the day of the
month on which EndDate falls is greater than 30, then EndDate also adjusts to fall on the 30th. By default,
@CDAYS treats the last day of February as the 30th. To prevent this, set February to 1.
Example
@CDAYS(@DATE(93,1,23),@DATE(95,6,28)) = 875
 Related topics

@CELL - Cell Attribute
Syntax
@CELL(Attribute, Block)

Attribute Any one of the attributes listed for @CELL.
Block A cell reference or name.

@CELL returns the requested attribute of the upper left cell in Block. For details on types of attributes, see
Attribute Arguments.
If you type in or point to a single-cell address when entering Block, Quattro Pro converts it to a cell reference.
You can enter attributes in either upper- or lowercase, but you must surround them with double quotes. You can
also reference a cell containing an attribute.
@CELL does not recalculate automatically; press F9 to obtain the current value.
Examples

A B C D
1
2 January Februar

y
March

3 Advertising $652 $833 $599
4 Car expenses $456 $305 $522
5 Cleaning $80 $80 $80

@CELL("prefix",A3) = '
@CELL("format",B5) = C0
@CELL("type",D4) = v
@CELL("address",A3) = A3
@CELL("row",B4) = 4
 Related topics

Attribute Arguments
You may enter any of these as Attribute arguments for @CELL, @CELLINDEX, and @CELLPOINTER:
"address"
The address of the upper left cell in Block.
"row"
The row number of the upper left cell in Block (1 to 8192).
"col"
The column number of the upper left cell in Block (1 to 256, corresponding to notebook sheets A through IV).
"sheet"
Sheet number of the upper left cell in Block (1 to 256, corresponding to notebook sheets A through IV).
"NotebookName"
Referenced notebook name, 8 characters or fewer.
"NotebookPath"
Full path name of the referenced notebook.
"TwoDAddress"
2-D address of the referenced cell--G23, for example. The sheet name is never returned, even if the
referenced cell is on another sheet or in another notebook.
"ThreeDAddress"
3-D address of the referenced cell--$A:$G23, for example. The sheet name is always returned.
"FullAddress"
Full address of the referenced cell--[NOTEBK1]$A:$G$23, for example. The notebook and sheet names are always
returned.
"contents"
The contents of the upper left cell in Block.
"type"
The type of data in the upper left cell in Block: b if the cell is blank, v if the cell contains a number or any
formula, l if the cell contains a label.
"prefix"
The label-prefix character of the upper left cell in Block: ' if label is left-aligned, ^ if label is centered, " if label is
right-aligned, \ if label is repeating.
"protect"
The protected status of the upper left cell in Block: 0 if cell is not protected, 1 if cell is protected.
"width"
The width of the column containing the upper left cell in Block (between 1 and 1024).
"rwidth"
The width of the cells.
"format"
The numeric format code of the upper left cell in Block:

Fn Fixed (n = 0-15)
Sn Scientific (n = 0-15)
Cn Currency (n = 0-15)

,n Commas used to separate thousands (n = 0-15)
G General
+ +/- (bar chart format)
Pn Percent (n = 0-15)
D1-D5 Date

D1 = DD-MMM-YY
 D2 = DD-MMM
D3 = MMM-YY
D4 = MM/DD/YY, DD/MM/YY, DD.MM.YY, YY-MM-DD
D5 = MM/DD, DD/MM, DD.MM, MM-DD

D6-D9 Time
D6 = HH:MM:SS AM/PM
D7 = HH:MM AM/PM
D8 = HH:MM:SS-24hr, HH.MM.SS-24hr, HH,MM,SS-24hr,
HHhMMmSSs
D9 = HH:MM-24hr, HH.MM-24hr, HH,MM, HHhMMm.

T Show Formulas (Text)
H Hidden
U User-defined

 Related topics

@CELLINDEX - Cell Attribute of Table Index
Syntax
@CELLINDEX(Attribute, Block, Col, Row, <Page>)

Attribute Any one of the attributes listed for @CELL.
Block A cell reference or name.
Col The number of the referenced column, from 0 to

255 (the first column in Block = 0, the second =
1, and so on).

Row The number of the referenced row; if an offset,
the first row in Block = 0, the second = 1, and so
on.

Page The number of the referenced sheet, from 0 to
255 (the first sheet in Block = 0, the second = 1,
and so on).

@CELLINDEX is the same as @CELL, but returns the requested attribute of the cell in the specified column and
row of Block on optional sheet. (For details on types of attributes, see Attribute Arguments.) The upper left
corner of Block is column 0, row 0.
@CELLINDEX does not recalculate automatically. Press F9 to obtain the current value.
Examples

A B C D
1
2 January February March
3 Advertising $652 $833 $599
4 Car

expenses
$456 $305 $522

5 Cleaning $80 $80 $80

@CELLINDEX("prefix",A1..D5,0,2) = '
@CELLINDEX("format",B3..D5,0,2) = C0
@CELLINDEX("type",B3..D5,2,1) = v
@CELLINDEX("address",A1..D5,0,2) = A3
@CELLINDEX("row",A1..D5,1,3) = 4
 Related topics

@CELLPOINTER - Selected Cell Attribute
Syntax
@CELLPOINTER(Attribute)

Attribute Any one of the attributes listed for @CELL.

@CELLPOINTER is similar to @CELL in that it returns the requested attribute of a cell. The only difference is that
it reads the cell containing the selector. You cannot specify another cell. However, if you move the selector to a
different cell and then press F9, the results of the @CELLPOINTER formula are updated.
You can enter attribute names in either upper- or lowercase, but each must be enclosed by double quotes. For
details on types of attributes, see Attribute Arguments.
This @function is useful in macros and @IF statements for quickly determining certain characteristics about the
current cell, such as whether there is a label or a value currently in it. For example, this function statement tells
Quattro Pro to write "value" in the cell if the current cell is a value; otherwise, it writes "label":
@IF(@CELLPOINTER("type")="v","value","label")
Examples
These examples refer to cell A1, which contains the date value 11/19/91.
@CELLPOINTER("address") = A1
@CELLPOINTER("col") = 1
@CELLPOINTER("contents") = 33561
@CELLPOINTER("format") = D4
@CELLPOINTER("type") = v
 Related topics

@CEILING - Round Up to Nearest Multiple
Syntax
@CEILING(X, Y)

X Value to round.
Y Value to make rounded x evenly divisible by.

@CEILING rounds X up (away from zero) to the nearest value that is evenly divisible by Y. If X and Y have
different signs, the result of @CEILING is ERR.
Examples
@CEILING(22,5) = 25
@CEILING(5.7,0.2) = 5.8
@CEILING(-3.2,-2) = -4
@CEILING(-3.2,2) = ERR
 Related topics

@CHAR - ANSI or ASCII Character
Syntax
@CHAR(Code)

Code A numeric value between 1 and 255.

@CHAR returns the onscreen character corresponding to the given code. This is useful in generating symbols not
found on the keyboard.
Refer to any standard ANSI table for the codes corresponding to each character.
@CHAR can be used to set up an ANSI table in your notebook. Fill a column of cells with values from 1 to 255,
using Block|Fill. In the cell to the right of the first number, use @CHAR to show the screen character for 1, for
example, @CHAR(A1). Then copy the formula down the column for the next 255 cells. The copied formulas will
display the screen character for each number. (The first 128 will be the same characters as in the ASCII
character set.)
Examples
@CHAR(33) = !
@CHAR(34) = "
@CHAR(35) = #
@CHAR(36) = $
 Related topics

@CHIDIST - Chi-squared Distribution
Syntax
@CHIDIST(X, DegFreedom)

X Value at which to evaluate the function; must be
³ 0.

DegFreedom Integer number of degrees of freedom in the
distribution; must be ³ 1.

@CHIDIST returns the cumulative chi-square distribution, which is associated with a chi-square test. Chi-square
tests allow you to compare the differences between observed and expected frequencies.
If DegFreedom is not an integer, @CHIDIST rounds it to the nearest integer.
Examples
@CHIDIST(36.41503,24) = 0.05
@CHIDIST(17.53455,8) = 0.025
 Related topics

@CHIINV - Inverse of Chi-squared Distribution
Syntax
@CHIINV(Prob, DegFreedom)

Prob Cumulative probability value; must be ³ 0 and £
1.

DegFreedom Integer number of degrees of freedom; must be
³ 1.

@CHIINV computes the inverse of the cumulative one-tailed chi-square distribution. Use @CHIINV to compute the
critical value for a test involving a chi-square variable.
If DegFreedom is not an integer, @CHIINV rounds it to the nearest integer.
Examples
@CHIINV(0.05,24) = 36.41503
@CHIINV(0.025,8) = 17.53455
 Related topics

@CHITEST - Test for Independence
Syntax
@CHITEST(Actual, Expected)

Actual Cells containing actual values.
Expected Cells containing expected values.

@CHITEST computes the probability that the actual and expected frequencies are similar by chance. @CHITEST
returns the probability for a chi-square test distribution with (r - 1)(c - 1) degrees of freedom, where r = number
of rows, and c = number of columns.
Actual and Expected must have the same number of values and must contain multiple rows or columns of data.
Example
This example refers to cells in the next figure. The chi-square statistic for the data in the next figure is 16.25813
and the degrees of freedom is 4.
@CHITEST(C3..E5,C7..E9) = 0.002692

A B C D E
1 Soft Drink

Flavors
2 Age Ranges Cola Orange Lemon-

lime
3 Actual Under 25 120 65 55
4 26-50 100 45 85
5 Over 50 75 35 70
6
7 Expected Under 25 108.93 53.53 77.54
8 26-50 104.38 51.31 74.31
9 Over 50 81.69 40.16 58.15

 Related topics

@CHOOSE - Choose Value from List
Syntax
@CHOOSE(Number, List)

Number A positive integer equal to or less than the
number of items in List - 1.

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@CHOOSE selects and enters a value from the supplied list. The value it chooses depends on the value of
Number: 0 chooses the first value in the list; 1 chooses the second; 2 chooses the third, and so on. If you specify
a cell address for Number, Quattro Pro uses the number contained in the cell. If the cell is blank, the first value is
chosen.
The List values can be cell addresses, strings, numbers, or a mixture of the three. The total characters entered
cannot exceed 1024.
@CHOOSE operates on integers only. If you supply a non-integer (such as 1.6433), the decimal values are
disregarded. @VLOOKUP and @HLOOKUP perform similar tasks in tables.
Examples
@CHOOSE(0,"Howie","Sarah","Chris") = Howie
@CHOOSE(1,"Howie","Sarah","Chris") = Sarah
@CHOOSE(2,"Howie","Sarah","Chris") = Chris
@CHOOSE(A15,"Howie","Sarah","Chris") = Howie, if A15 is 0; Sarah if A15 is 1; Chris if A15 is 2.
@CHOOSE(3,"Howie","Sarah","Chris") = ERR (Number is too large).
@CHOOSE(@MOD(@NOW,7),"Saturday","Sunday","Monday","Tuesday","Wednesday","Thursday","Friday") =
Wednesday when @NOW has DateTimeNumber = 33625
 Related topics

@CLEAN - Remove Nonprintable Characters
Syntax
@CLEAN(String)

String A string value.

@CLEAN removes all nonprintable characters (0-31) from a string.
 Related topics

@CODE - ANSI Code
Syntax
@CODE(String)

String A string value.

@CODE returns the ANSI code of the first character in a string. This is the opposite of @CHAR, which returns the
character corresponding to the given code.
Examples
@CODE("!") = 33
@CODE("Sam") = 83 (code for S)
@CODE("#") = 35
@CODE("$") = 36
@CODE("?") = 63
@CODE(hello) = syntax error (missing quotes)
 Related topics

@COLS - Columns
Syntax
@COLS(Block)

Block A cell reference or name.

@COLS returns the number of columns within the specified cells.
Examples
@COLS(A1..IV1) = 256
@COLS(A1..A1) = 1
@COLS(NAME) = 30 (if the NAME selection contains 30 columns)
 Related topics

@COLUMN - Column Number
Syntax
@COLUMN(<Block>)

Block The cell or cells for which you want the column
number(s).

@COLUMN returns the column number(s) for a cell or cells.
Block can be a cell name.
If you omit Block, Quattro Pro assumes you want the column number of the cell where you entered @COLUMN.
Block cannot refer to non-contiguous areas.
Examples
@COLUMN(C1..C7) = 3
@COLUMN(K1..M20) = {11| 12| 13}
If F2..F7 is a cell named APRIL, @COLUMN(APRIL) = 6
Entered in D3 without an argument, @COLUMN = 4
 Related topics

@COMB - Combinations
Syntax
@COMB(N, R)

N Number of elements in the group; must be ³ 0.
R Number of elements in each subgroup selected

from group N; must be ³ 0.

@COMB calculates the number of combinations (unordered subgroups of size R) that you can form out of a group
of size N. If N < R @COMB returns ERR.
The formula for calculating the number of combinations, if R £ N, is

N!
@COMB(N,R) = ---------------

R!(N-R)!
Example
Given eleven marbles, this formula calculates how many ways a subset of 5 marbles can be constructed such
that no two constructions contain the same 5 marbles:
@COMB(11,5)= 462
 Related topics

@COMMAND - Value of Command Equivalent
Syntax
@COMMAND(CommandEquivalent)

CommandEquivale
nt

A Quattro Pro command equivalent; to display
a list, press Shift+F3 and choose Command
Equivalents.

@COMMAND returns the current value of a Quattro Pro command equivalent. It is most often used in macros to
base the next action on a particular menu setting or to save current settings so they can be restored later.
CommandEquivalent must be enclosed in double quotes. To view a list of acceptable arguments, press Shift+F3
and choose Command Equivalents.
@COMMAND returns strings; even if the setting is a number, it is returned as a string. Not all
CommandEquivalent entries return a useful value. In general, @COMMAND only returns values for command
equivalents that take arguments, usually menu commands that display a current setting or status.
Like @CELL, @COMMAND statements do not recalculate automatically as many other @functions do. Press F9 to
obtain the current value.
A related @function that uses Quattro Pro for DOS menu equivalents is @CURVALUE. Another related @function,
@PROPERTY, returns settings for requested object properties.
Examples
@COMMAND("Print.Block") = the currently specified print selection
@COMMAND("Print.Copies") = the number entered after Copies in the Spreadsheet Print dialog box
 Related topics

@COMPLEX - Complex Number
Syntax
@COMPLEX(X, Y)

X Numeric value representing real coefficient of
complex number.

Y Numeric value representing imaginary coefficient
of complex number.

@COMPLEX converts X and Y into a complex number.
Example
@COMPLEX(5,7) = "5+7i"
 Related topics

@CONCATENATE - Link Text Items
Syntax
@CONCATENATE(List)

List One or more values to link together; can be
labels, numbers, or cell references.

@CONCATENATE links several items together.
You can also use the "&" operator instead of @CONCATENATE to join text items.
Examples
Suppose you have a database where dates are stored in three fields:

F G H
1 Day Month Year
2 31 October 1995

@CONCATENATE(G2," ",F2,", ",H2) = October 31, 1995

A B C
1 First Init. Last
2 John K. Doe

If parts of names are always entered into cells with a space following, you can concatenate first name, initial,
and last name by simply referring to the cells: @CONCATENATE(A2..C2) = John K. Doe
@CONCATENATE("Lucky ","Day") = Lucky Day
(+"Lucky"&" "&"Day") = Lucky Day
 Related topics

@CONFIDENCE - Confidence Interval for Population Mean
Syntax
@CONFIDENCE(Alpha, SDev, Size)

Alpha Significance level; the percentage of the normal
curve that is outside the confidence interval (1 -
Alpha); for example, if the confidence interval is
95%, Alpha = 5%; must be > 0 and < 1.

SDev Population standard deviation; must be > 0.
Size Sample size; must be ³ 1.

@CONFIDENCE computes the confidence interval around the mean for a specified sample size, using the normal
distribution function. Given a specified degree of confidence, the confidence interval indicates that    the
population mean will be within that interval. Use @CONFIDENCE to apply levels of confidence to sample data and
to determine margins of error.
Example
Out of 1000 people sampled, 490 said they would vote for Candidate A. If the population standard deviation is
0.5, this formula returns the 95% confidence interval for the population mean:
@CONFIDENCE(0.05,0.5,1000) = 0.03099
Pollsters can report that Candidate A will receive 49% of the vote with a margin of error of 3.1%.
 Related topics

@CONVERT - Convert Number
Syntax
@CONVERT(X, FromUnit, ToUnit)

X Numeric value in FromUnit to convert, in the units
specified by FromUnit.

FromUnit Unit type of the value X (must be on the list of
supported unit names).

ToUnit Units to convert the value X into; must be on the
list of supported unit names.

@CONVERT changes X, which is expressed in FromUnit units, to the equivalent value in ToUnit units. Column Unit
of the following tables lists the measurement units that you can specify in FromUnit and ToUnit. Each argument is
case sensitive.
Mass measurement units

Mass Unit
Gram "g"
Slug "sg"
Pound mass (avoirdupois) "lbm"
U (atomic mass unit) "u"
Ounce mass (avoirdupois) "ozm"

Pressure measurement units
Pressure Unit
Pascal "p"
Atmosphere "at"

Distance measurement units
Distance Unit
Meter "m"
Statute mile "mi"
Nautical mile "Nmi"
Inch "in"
Foot "ft"
Yard "yd"
Angstrom "ang"

Time measurement units
Time Unit
Year "yr"
Day "day"
Hour "hr"
Minute "mn"
Second "sec"

Force measurement units

Force Unit
Newton "N"
Dyne "dy"
Pound force "lbf"

Energy measurement units
Energy Unit
Joule "J"
Erg "e"
Thermodynamic calorie "c"
IT calorie "cal"
Electron volt "ev"
Horsepower-hour "hh"
Watt-hour "wh"
Foot-pound "flb"
BTU "btu"

Power measurement units
Power Unit
Horsepower "h"
Watt "w"

Magnetic measurement units
Magnetism Unit
Tesla "T"
Gauss "ga"

Temperature measurement units
Temperature Unit
Celsius "cel"
Fahrenheit "fah"
Kelvin "kel"
Rankine "ran"

Liquid measurement units
Liquid Unit
Teaspoon "tsp"
Tablespoon "tbs"
Fluid ounce "oz"
Cup "cup"
Pint "pt"
Quart "qt"
Gallon "gal"
Liter "lt"

If a metric unit is used (for example, Gram, Meter, or Liter), you can preface it with one of the prefixes listed in
the next table. Use the metric prefixes to multiply a metric unit by a power of 10.

Metric Prefixes
Metric Prefix Multiplier Unit Prefix
exa 1E+18 "E"
peta 1E+15 "P"
tera 1E+12 "T"
giga 1E+09 "G"
mega 1E+06 "M"
kilo 1E+03 "k"
deka 1E+01 "e"
deci 1E-01 "d"
centi 1E-02 "c"
milli 1E-03 "m"
micro 1E-06 "u"
nano 1E-09 "n"
pico 1E-12 "p"
femto 1E-15 "f"
atto 1E-18 "a"

Whenever @CONVERT is used, both FromUnit and ToUnit must come from the same table.
To determine a specific conversion factor, use 1 for X.
Examples
@CONVERT(2,"day","hr") = 48
@CONVERT(3.5,"kg","lbm") = 7.71618
@CONVERT(2.5,"oz","mlt") = 73.94991
 Related topics

@CORREL - Correlation
Syntax
@CORREL(Array1, Array2)

Array1 First array of numeric values.
Array2 Second array of numeric values.

@CORREL computes the correlation coefficient of the numeric values in Array1 and Array2. Use @CORREL to
ascertain the relationship between two sets of data. If two data sets change in a related matter based on the
input that generates them, they are said to be correlated.
Array1 and Array2 must have the same number of values. Also, the values in Array1 and Array2 must show some
variance.
@CORREL uses this formula:

Examples
These examples refer to cells in the next figure.
@CORREL(A2..A9,B2..B9) = 0.994135
@CORREL(A2..A9,C2..C9) = 0.460718
@CORREL(A2..A9,D2..D9) = -0.52494
@CORREL(B2..B9,C2..C9) = 0.547422

A B C D
1 X1 X2 X3 X4
2 1 2 -1 -9
3 2 3 -7 -3
4 3 4 2 6
5 4 5 8 3
6 5 6 -4 -2
7 6 7 0 -21
8 7 8 -12 0
9 8 10 45 -33

 Related topics

@COS - Cosine
Syntax
@COS(X)

X A numeric value.

@COS returns the cosine of the angle X. X must be given in radians, not degrees. To convert degrees to radians,
use @RADIANS.
Examples
@COS(@RADIANS(60)) = 0.5
@COS(@RADIANS(75)) = 0.258819
@COS(@RADIANS(45)) = 0.707107
@COS(@PI/3) = 0.5
 Related topics

@COSH - Hyperbolic Cosine
Syntax
@COSH(X)

X Any value from approximately -710.47558 to
approximately 710.47558.

@COSH calculates the hyperbolic cosine of the angle X. X must be specified in radians, not degrees. To convert
degrees to radians, use @RADIANS.
@COSH returns a value greater than or equal to 1.
Examples
@COSH(@RADIANS(60)) = 1.600287
@COSH(@RADIANS(75)) = 1.986274
@COSH(@RADIANS(45)) = 1.324609
@COSH(@PI/3) = 1.600287
 Related topics

@COT - Cotangent
Syntax
@COT(X)

X An angle measured in radians. X can be any
value from approximately -9.00719E+15 through
9.00719E+15.

@COT calculates the cotangent of angle X. X must be specified in radians, not degrees. To convert degrees to
radians, use @RADIANS.
In a right triangle, the cotangent of an acute angle is the ratio side adjacent : side opposite.
Examples
@COT(4) = 0.863691
@COT(@PI/4) = 1
@COT(@RADIANS(45)) = 1
 Related topics

@COTH - Hyperbolic Cotangent
Syntax
@COTH(X)

X Any value from approximately -708.39599
through 708.39599, but not 0.

@COTH calculates the hyperbolic cotangent of X. X must be specified in radians, not degrees. To convert degrees
to radians, use @RADIANS.
Examples
@COTH(4) = 1.000671
@COTH(@PI/4) = 1.524869
@COTH(@RADIANS(45)) = 1.524869
 Related topics

@COUPDAYBS - Coupon Days from Beginning to Settlement
Syntax
@COUPDAYBS(Settle, Maturity, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12; the
default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@COUPDAYBS returns the number of days from the beginning of the coupon period of a bond to the settlement
date.
Example
A bond's settlement date is May 15, 1992 and its maturity date is February 15, 1996. This formula calculates the
number of days from the beginning of the coupon period to the settlement date:
@COUPDAYBS(@DATE(92,5,15),@DATE(96,2,15)) = 90
 Related topics

@COUPDAYS - Coupon Days
Syntax
@COUPDAYS(Settle, Maturity, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@COUPDAYS returns the number of days in the coupon period of a bond that contains the settlement date.
Example
A bond's settlement date is May 15, 1992 and its maturity date is February 15, 1996. This formula calculates the
number of days in the coupon period that contains the settlement date.
@COUPDAYS(@DATE(92,5,15),@DATE(96,2,15)) = 180
 Related topics

@COUPDAYSNC - Coupon Days from Settlement to Next Coupon
Syntax
@COUPDAYSNC(Settle, Maturity, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@COUPDAYSNC returns the number of days from the settlement date of a bond to the next coupon date.
Example
A bond's settlement date is May 15, 1992 and its maturity date is February 15, 1996. This formula calculates the
number of days between the settlement date and the next coupon date:
@COUPDAYSNC(@DATE(92,5,15),@DATE(96,2,15)) = 90
 Related topics

@COUPNCD - Next Coupon Date after Settlement
Syntax
@COUPNCD(Settle, Maturity, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@COUPNCD returns the serial date number for the next coupon date after the settlement date of a bond.
Example
A bond pays a coupon semiannually and matures on August 31, 2003. This formula calculates the date of the
next coupon payment after December 17, 1992:
@COUPNCD(@DATE(92,12,17),@DATE(103,8,31)) = 34028 (February 28, 1993)
 Related topics

@COUPNUM - Number of Coupons
Syntax
@COUPNUM(Settle, Maturity, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@COUPNUM returns the number of coupons payable between the settlement date and maturity date of a bond.
Example
A bond's settlement date is March 15, 1994 and its maturity date is April 15, 2004. This formula calculates the
number of annual coupon payments there are until the maturity date:
@COUPNUM(@DATE(94,3,15),@DATE(104,4,15),1) = 11
 Related topics

@COUPPCD - Previous Coupon Date
Syntax
@COUPPCD(Settle, Maturity, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@COUPPCD returns the serial date number for the coupon date just before the settlement date of a bond.
Example
A bond's settlement date is December 17, 1992 and its maturity date is August 31, 1999. This formula calculates
the date of the previous semiannual coupon payment before the settlement date:
@COUPPCD(@DATE(92,12,17),@DATE(99,8,31)) = 33847 (August 31, 1992)
 Related topics

@COVAR - Covariance (Population Covariance)
Syntax
@COVAR(Array1, Array2)

Array1 First array of numeric values.
Array2 Second array of numeric values.

@COVAR returns the covariance, which is the joint variability/degree of association of two random variables, by
taking the deviations for each corresponding element in Array1 and Array2, computing their products, and taking
the average of their average. Array1 and Array2 must have the same number of values. Use @COVAR to analyze
the relationship between two data sets. The covariance is calculated using this formula:

Example
A high school professor recorded test scores for a class of nine students, along with their number of study hours,
their estimated ‘stress level’ on a scale of 1 to 10, and their amount of sleep the night before the test.    To
examine the relationship between the attained test score and any of these three factors, the following formulae
would be used:
@COVAR(A2..A9,B2..B9) = 22.265625
@COVAR(A2..A9,C2..C9) = 3.84375
@COVAR(A2..A9,D2..D9) = 17.796875

A B C D
1 SCORE STUDY HRS. STRESS HRS. SLEEP
2 84 7 5 8
3 77 6 5 7
4 88 7.5 7 7
5 65 5.5 4 5
6 92 9 6 8.5
7 57 3 8 5
8 61 4 3 4
9 66 4.5 5 5

 Related topics

@COUNT - Count Non-Blank Cells
Syntax
@COUNT(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@COUNT returns the number of non-blank cells in List. If more than one selection is listed, they must be
separated by commas.
Examples

A B C D
1 January February March
2 John $652 $833 $599
3 Mary $456 $305 $522
4 Ralph $68 $59 $73
5 Anna $80 $80 $80

@COUNT(B2..B5) = 4
@COUNT(B1..B6) = 5
@COUNT(A6) = 0
@COUNT(A6..B6) = 0
@COUNT(C1..C5, D3..D6) = 8
 Related topics

@COUNTBLANK - Count Blank Cells
Syntax
@COUNTBLANK(Block)

Block The cells where you want to count blank cells.

@COUNTBLANK counts blank cells in specified cells.
@COUNTBLANK includes cells with formulas that return "" (or empty text), but it does not count cells with zero
values.
Example

A B
1 One
2 2
3
4
5 410

Cell A3 contains the formula
@IF(A2<5,"",A2), which returns "".
Cell A4 is empty.
@COUNTBLANK(A1..A5) = 2
 Related topics

@COUNTIF - Count Matching Cells
Syntax
@COUNTIF(Block, <Criteria>)

Block Range of one or more cell addresses, a cell
reference, or a name to include in the count.

Criteria Numeric or string values that determine whether
a cell is counted. If Criteria is omitted, @COUNTIF
counts all cells containing logical values greater
than 0 (text equals 0).

@COUNTIF returns the number of cells in Block that meet a specified set of criteria.
Example

A B C D
1 January February March
2 John Transport Entertainmen

t
Finance

3 Mary Food Transport Entertainmen
t

4 Ralph Finance Food Transport
5 Anna Entertainmen

t
Finance Food

@COUNTIF(B2..D5,"Transport") = 3
@COUNTIF(B2..D5,"Food") = 3
@COUNTIF(B2..D5,"Finance") = 3
 Related topics

@CRITBINOM - Critical Probability of Binomial Distribution
Syntax
@CRITBINOM(Trials, Prob, Alpha)

Trials Integer number of Bernoulli trials; must be ³ 0.
Prob Probability of success per trial; must be ³ 0 and £

1.
Alpha Critical probability to test; must be ³ 0 and £ 1.

@CRITBINOM calculates the maximum number of successes that can occur before the cumulative probability
expressed by Alpha is exceeded for the number of Trials. @CRITBINOM has applications in quality assurance. For
example, you could use @CRITBINOM to calculate the maximum number of defects allowed in a shipment.
Example
Company A tests a sample of 100 electrical circuits received from Company B. The probability that a circuit is
defective is 7%. Using an Alpha value of 7.4%, this formula calculates the maximum number of defective circuits
that can be expected.
@CRITBINOM(100,0.07,0.074) = 3
 Related topics

@CSC - Cosecant
Syntax
@CSC(X)

X An angle measured in radians. X can be any
value from approximately -9.00719E+15 through
9.00719E+15, excluding 0.

@CSC returns the cosecant of angle X, in radians. X must be specified in radians, not degrees. To convert
degrees to radians, use @RADIANS.
The cosecant is the reciprocal of the sine. The result of @CSC is a value greater than or equal to 1, or less than
or equal to -1.
Examples
@CSC(@RADIANS(30)) = 2
@CSC(@RADIANS(75)) = 1.035276
@CSC(@RADIANS(45)) = 1.414214
@CSC(@PI/6) = 2
 Related topics

@CSCH - Hyperbolic Cosecant
Syntax
@CSCH(X)

X Any value from approximately -708.39599
through 708.39599, but not 0.

@CSCH(X) calculates the hyperbolic cosecant of X. X must be specified in radians, not degrees. To convert
degrees to radians, use @RADIANS.
The hyperbolic cosecant is the reciprocal of the hyperbolic sine.
Examples
@CSCH(@RADIANS(30)) = 1.825306
@CSCH(@RADIANS(75)) = 0.582688
@CSCH(@RADIANS(45)) = 1.151184
@CSCH(@PI/6) = 1.825306
 Related topics

@CTERM - Compounding Periods
Syntax
@CTERM(Rate, Fv, Pv)

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Fv A numeric value representing the future value of
an investment (the value the investment will reach
at some point).

Pv A numeric value representing the current value of
an investment (the present value).

@CTERM calculates the number of time periods required for an investment, while earning interest per
compounding period, assuming that the investment is an ordinary annuity. It uses the formula

where

Fv future value
Pv present value
R periodic interest rate

An equivalent for this formula using @NPER is
@NPER(Rate, 0, - Pv, Fv)
@CTERM assumes that the investment is an ordinary annuity. @NPER, which is calculated differently than but is
related to @CTERM, uses an optional argument, Type, to indicate whether the investment is an ordinary annuity
or an annuity due.
Examples
Assuming that your savings account has an annual interest rate of 7%, how long would it take a $3000 deposit to
reach $5000? The answer is
@CTERM(7%,5000,3000) = 7.55 years
If the Rate figure is given for years, the result is in years as well. If you are working with monthly interest,
multiply the answer by 12 to get a result in months.
You can also use @NPER to solve this problem:
@NPER(7%,0,-3000,5000,0) = 7.55
Other examples:
@CTERM(0.07,5000,3000) = 7.550042
@CTERM(0.10,5000,3000) = 5.359612
@CTERM(0.12,5000,3000) = 4.50747
@CTERM(0.12,10000,7000) = 3.147261
 Related topics

@CUMIPMT - Cumulative Interest Paid
Syntax
@CUMIPMT(Rate, Nper, Pv, StartPeriod, EndPeriod, Type)

Rate Interest rate.
Nper Total number of payment periods.
Pv Present value.
StartPeriod First period in the calculation.
EndPeriod Last period in the calculation.
Type Timing of payment:

0 = payment at the end of the period
1 = payment at the beginning of the period

@CUMIPMT returns the cumulative interest paid on a loan between specified periods or in a single period.
Nper, StartPeriod, EndPeriod, and Type are truncated to integers.
Make sure you are consistent about the units you use for specifying Rate and Nper. For example:
· For annual payments on a four-year loan at 12% annual interest, use 12% for Rate and 4 for Nper.
· For monthly payments on the same loan, use 12%/12 for Rate and 4*12 for Nper.
· @CUMIPMT returns ERR if:
· Rate <= 0, Nper <= 0, or Pv <= 0.
· StartPeriod < 1, EndPeriod < 1, or StartPeriod > EndPeriod.
· Type is any number other than 0 or 1.
· Any argument is non-numeric.

Examples
Your $250,000 home has a 30-year mortgage at an interest rate of 8.25%. To find out how much interest you will
pay this year, the fourth year of the loan:
@CUMIPMT(0.0825/12,30*12, 250000,37,48,0) = -19995.14
The interest you will pay the first month of this year is:
@CUMIPMT(0.0825/12,30*12, 250000,37,37,0) = -1674.16
 Related topics

@CUMPRINC - Cumulative Principal Paid
Syntax
@CUMPRINC(Rate, Nper, Pv, StartPeriod, EndPeriod, Type)

Rate Interest rate.
Nper Total number of payment periods.
Pv Present value.
StartPeriod First period in the calculation.
EndPeriod Last period in the calculation.
Type Timing of the payment:

0 = payment at the end of the period
1 = payment at the beginning of the period

@CUMPRINC returns the cumulative principal paid on a loan between specified periods or in a single period.
Nper, StartPeriod, EndPeriod, and Type are truncated to integers.
Make sure you are consistent about the units you use for specifying Rate and Nper. For example:
· For annual payments on a four-year loan at 12% annual interest, use 12% for Rate and 4 for Nper.
· For monthly payments on the same loan, use 12%/12 for Rate and 4*12 for Nper.
@CUMIPMT returns ERR if:
· Rate <= 0, Nper <= 0, or Pv <= 0.
· StartPeriod < 1, EndPeriod < 1, or StartPeriod > EndPeriod.
· Type is any number other than 0 or 1.
· Any argument is non-numeric.

Examples
Your $250,000 home has a 30-year mortgage at an interest rate of 8.25%. To find out how much principal you
will pay this year, the fourth year of the loan:
@CUMPRINC(0.0825/12,30*12, 250000,37,48,0) = -2542.86
The principal you will pay the first month of this year is:
@CUMPRINC(0.0825/12,30*12, 250000,37,37,0) = -204.01
 Related topics

@CURVALUE - Current Value of Quattro Pro/DOS Command
Syntax
@CURVALUE(GeneralAction, SpecificAction)

GeneralAction A general menu category.
SpecificAction A menu item that requires setting.

@CURVALUE returns the current value of a Corel Quattro Pro for DOS menu command setting. It is used in
macros, usually to base the next action on a particular menu setting, and is included for compatibility with Corel
Quattro Pro for DOS. To view a list of acceptable arguments, press Shift+F3 and choose / Commands.
A related @function that uses Corel Quattro Pro for Windows command equivalents is @COMMAND. Another
related @function, @PROPERTY, returns settings for requested properties.
Both GeneralAction and SpecificAction must be enclosed in double quotes. They must together create one of the
Corel Quattro Pro for DOS menu-equivalent commands.
Not all GeneralAction/SpecificAction combinations return a useful value. In general, only menu commands that
display a current setting or status have menu equivalents that are useful for @CURVALUE. Some settings
previously controlled with Corel Quattro Pro for DOS commands are now set through Windows, particularly
hardware options and printer settings. These don't return a setting in Corel Quattro Pro for Windows.
Like @CELL, @CURVALUE statements do not recalculate automatically as many other @functions do. Press F9 to
obtain the current value.
Examples
@CURVALUE("print","block") = the currently specified print selection
@CURVALUE("file","save") = the name of the last file saved
 Related topics

@D360 - Difference Between Dates
Syntax
@D360(StartDate, EndDate)

StartDate Date number. See "Using dates and times in
Quattro Pro."

EndDate Date number.

@D360 returns the number of days between two dates, based on a 360-day year (twelve 30-day months). Use
this function to help compute payments if your accounting system is based on this calendar. The formula
conforms to the 1990 modifications to the Securities Industry Association's 1986 edition of Standard Security
Calculation Methods.
A similar function, @DAYS360, differs from @D360 by adding a third argument, Method. When you specify
Method as FALSE (the default), you can in some cases get a different result using @DAYS360 from the one
returned by @D360. See @DAYS360 for details.
For a conventional year of 365 days (366 in leap years), use @DATEDIF or subtraction.
Examples
To calculate the number of days between March 3 and May 31 of 1996:
@D360(@DATE(96,3,3), @DATE(96,5,31)) = 87
The same calculation using date values: @D360(35127, 35216) = 87
However, @DAYS360 gives a different result when no Method is specified:
@DAYS360(@DATE(96,3,3), @DATE(96,5,31)) = 88
 Related topics

@DATE - Date
Syntax
@DATE(Yr, Mo, Day)

Yr For years 1900 through 3199, the four-digit year
is valid. Or, use a numeric value between -300
and 1299 (-300 = 1600, 0 = 1900, 1299 = 3199)

Mo A numeric value between 1 and 12.
Day A numeric value between 1 and 31.

@DATE(40,12,31) and @DATE(1940,12,31) both return 14976 (31-Dec-1940).
@DATE(140,12,31) and @DATE(2040,12,31) both return 51501 (31-Dec-2040)
@DATE returns the date/time "serial number" of the date specified with year, month, and day arguments. This
serial number can range from -109,571 (January 1,1600) to 474,816 (December 31, 3199). December 30, 1899 is
0, so a positive number represents the number of days from December 30, 1899 up to the date referenced in the
formula.
Date/time serial numbers are used in notebook calculations. (The fractional portion of a serial number is used for
the time @functions.)
To display a date/time serial number in a date format, right-click cells, click Cell Properties, then click Numeric
Format. This shows the date in its more common form (for example, Jan-1-94 instead of 34335).
Any illegal dates return ERR as their value, for example, @DATE(87,2,29). (This date corresponds to February 29,
1987, which is impossible; 1987 was not a leap year.) See "Using dates and times in Quattro Pro."
Examples
@DATE(1940,12,31)= 14976 (December 31, 1940)
@DATE(2040,12,31)= 51501 (December 31, 2040)
@DATE(93,1,1) = 33970 (January 1, 1993)
@DATE(91,9,13) = 33494 (September 13, 1991)
@DATE(0,1,1) = 2 (January 1, 1900)
@DATE(-300,1,1) = -109571 (January 1, 1600)
@DATE(1299,12,31) = 474816 (December 31, 3199)
 Related topics

@DATEDIF - Days, Months, or Years Between Dates
Syntax
@DATEDIF(StartDate, EndDate, Format)

StartDate Date number. See "Using dates and times in
Quattro Pro."

EndDate Date number.
Format Code, entered as text, specifying format of the

result:
y = Years
m = Months
d = Days
md = Days, disregarding months and years
ym = Months, disregarding years
yd = Days, disregarding years

@DATEDIF calculates the number of years, months, or days between two dates. @DATEDIF uses a 365-day year
and a 366-day leap year.
To find the number of days between two dates using a 360-day financial year, use @D360 or @DAYS360.
Examples
@DATEDIF(@DATE(96,3,3), @DATE(96,5,31),"d") = 89
Similarly, @DATE(96,5,31)- @DATE(96,3,3) = 89
@DATEDIF(@DATE(94,3,3), @DATE(96,5,31),"md") = 28, the number of days from the 3rd to and the 31st of any
month, disregarding the difference in years
@DATEDIF(@DATE(94,3,3), @DATE(96,5,31),"ym") = 2, the number of months from March to May, disregarding
the difference in years
 Related topics

@DATEINFO - Information About a Date
Syntax
@DATEINFO(Date, Attribute)

Date Date number. See "Using dates and times in Quattro Pro."
Attribute Code for the type of information you want:

1 = Day of the week as a label, in short format (Mon)
2 = Day of the week as a label, long format (Monday)
3 = Day of the week as an integer from 0 (Monday) through 6
(Sunday)
4 = Week of the year as an integer from 1 to 53
5 = Month of the year as a label, in short format (Jan)
6 = Month of the year as a label, in long format (January)
7 = Number of days in the month specified by date
8 = Number of days left in the month specified by date
9 = Last day of the month specified by date
10 = The Quarter date is in, as an integer from 1 (Q1)
through 4 (Q4)
11 = 1 if the year specified by date is a leap year; 0 if the
year is not a leap year
12 = Day of the year specified by date, as a number from 1
to 366
13 = Days left in the year specified by date, as a number

@DATEINFO returns information about a date number. @DATEINFO uses a 365-day year and a 366-day leap year.
@DATEINFO supports dates ranging from 1900-2099.
The valid date calculation range for this function is 01/01/1900 through 12/31/2099.
Examples
@DATEINFO(@DATE(96,3,3),2) = Sunday
@DATEINFO(@DATE(96,3,3),4) = 9, because March 3, 1996 is in the 9th week of the year; weeks start on
Monday and end on Sunday.
@DATEINFO(@DATE(96,3,3),13) = 303, the number of days left in the year 1996
 Related topics

@DATEVALUE - Value Corresponding to Date
Syntax
@DATEVALUE(DateString)

DateString A numeric or string value in any valid date
format, enclosed by quotation marks (or
coordinates or a cell name for a selection that
contains a date string).

@DATEVALUE returns a serial date value that corresponds to the value in DateString. If the value in DateString is
not in the correct format or is not enclosed in quotes, ERR or a syntax error message is returned. If DateString is
entered using the international format, the year, month, and day must be in the same order as the current
international date format (set in Tools Settings

 International) and the separator character must also agree.
You can display resulting date string values in standard date formats by right-clicking cells, clicking Cell Properties,
then clicking Numeric Format.

There are five valid formats for DateString:
· DD-MMM-YY ("04-Jul-92").
· DD-MMM ("04-Jul") (assumes the current year).
· MMM-YY ("Jul-92") (assumes the first of the month).
· DD-MMM-YYYY ("04-Jul-1992").
· MM-YYYY ("Jul-1992") (assumes the first of the month).
· The Long International date format specified as the system default, two of which are MM/DD/YY ("07/04/92")

and MM/DD/YYYY ("07/04/1992").
· The Short International date format specified as the system default, one of which are MM/DD ("07/18"). This

assumes the current year. See "Using dates and times in Quattro Pro."
@DATEVALUE is included for compatibility with other products.
Examples
@DATEVALUE("12-Mar-2010") = 40249
@DATEVALUE("07/04/92") = 33789
@DATEVALUE("JUL-92") = 33786 (July 1, 1992)
@DATEVALUE("04-may-93") = 34093
@DATEVALUE(07/04/94) = 0.018617 (no quotes makes Quattro Pro divide the numbers)
@DATEVALUE("May-04-1992") = ERR
 Related topics

@DAVG - Database Average
Syntax
@DAVG(Block, Column, Criteria)

Block The 2-D cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
you want to average (the first column in Block is
0, the second is 1, and so on).

Criteria 2-D cells containing search criteria; the first row
must be field names.

@DAVG averages selected field entries in a database. It includes only those entries in Column whose records
meet the criteria specified in Criteria.
The field specified in your criteria and the field being averaged need not be the same. The field averaged is that
contained within the column you specify as Column.
You can specify all or part of your database as Block, but field names must be included for each field you include
in the cells.
Examples
These examples refer to the database and criteria tables.

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 Criteria

Table
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DAVG(A2..D8,3,A11..A12) = $19,481 (average of July sales)
@DAVG(A2..D8,3,B11..B13) = $26,023 (average of California sales)
@DAVG(A2..D8,3, C11..C12) = $18,123 (average of CJ's sales)
@DAVG(A2..D8,4,A11..C13) = ERR (Column figure too high)
@DAVG(A2..D8,2,A11..A12) = 0 (labels are treated as 0)
 Related topics

@DAY - Day Portion of Date Serial Number
Syntax
@DAY(DateTimeNumber)

DateTimeNumbe
r

A numeric value between -109571 and
474816.9999999, representing a date/time serial
number: -109571 = January 1, 1600; 0 =
December 31, 1899; 474816 = December 31,
3199; the decimal = time (24 hr).

@DAY converts the date/time serial number you supply as DateTimeNumber into the number associated with
that day (1-31). Decimal (time) portions of the number are ignored. See "Using dates and times in Quattro Pro."
Examples
@DAY(33508) = 27 (9/27/91)
@DAY(32134) = 23 (12/23/87)
@DAY(@DATE(93,9,10)) = 10
@DAY(474817) = ERR because the number you entered was larger than 474816.9999999
 Related topics

@DAYS360 - Difference Between Dates
Syntax
@DAYS360(StartDate, EndDate, <Method>)

StartDate Date number. See "Using dates and times in
Quattro Pro."

EndDate Date number.
Method Optional logical value that specifies US or

European method:
FALSE or 0 = US (NASD); the default if you do not
specify a method
TRUE or 1 = European method

@DAYS360 returns the number of days between two dates based on a 360-day year (twelve 30-day months).
Use this function to help compute payments if your accounting system is based on this calendar. The formula
conforms to the 1990 modifications to the Securities Industry Association's 1986 edition of Standard Security
Calculation Methods.
You can express dates either as text strings or date values.
· Method affects the result only in some cases when StartDate or EndDate is the 31st of the month:
· Using the US method, if StartDate is the 31st, @DAYS360 makes it the 30th of the same month. If the EndDate

is the 31st and the StartDate is less than the 30th of a month, @DAYS360 makes EndDate the 1st of the next
month; otherwise it makes EndDate the 30th of the same month.

· Using the European method, if StartDate or EndDate is the 31st, @DAYS360 makes it the 30th of the same
month.

If StartDate occurs after EndDate, DAYS360 returns a negative number.
A similar function, @D360, is available. It omits the optional Method argument and will in some cases give a
different result from the one returned by @DAYS360.
For a conventional year of 365 days (366 in leap years), use @DATEDIF or subtraction.
Examples
@DAYS360(@DATE(96,3,3), @DATE(96,5,31),FALSE) = 88
@DAYS360(@DATE(96,3,3), @DATE(96,5,31)) = 88
@DAYS360(@DATE(96,3,3), @DATE(96,5,31),1) = 87
The same calculation using date values:
DAYS360(35127, 35216,TRUE) = 87
Using subtraction,
@DATE(96,5,31) - @DATE(96,3,3) = 89, using a 364-day year
 Related topics

@DB - Declining Balance Depreciation
Syntax
@DB(Cost, Salvage, Life, Period,<Month>)

Cost Amount originally paid for an asset.
Salvage Estimated value at end of asset life.
Life Number of periods the asset takes to depreciate

to its salvage value.
Period Length of time for which you want to know the

depreciation allowance.
Month Number of months in the first year (optional); If

Month is omitted, @DB uses 12.

@DB calculates the depreciation of an asset over a specified period using the fixed-declining balance method.
@DB uses the following formulas to calculate depreciation for a period:
(cost - total depreciation from prior periods) * rate
rate = , rounded to three decimal places

where

S salvage
C cost
L life

Depreciation for the first and last periods are special cases:
For the first period, DB uses the formula cost * rate * month / 12
For the last period, DB uses this formula:
((cost - total depreciation from prior periods) * rate * (12 - month)) / 12
· Cost can be any positive value, including 0. If Cost is 0, the result of @DB is 0.
· Salvage can be any positive value, but must be greater than 0, since assets should have a salvage value. If

Salvage is greater than Cost, the result of @DB is negative.
· Life and Period can be any positive value, but not 0. They must be in the same units, usually years. Life cannot

be greater than Period.
The fixed-declining balance method slows the rate of depreciation in comparison to the double-declining balance
method, so more depreciation expense can be written off in later periods. Depreciation ends when the asset's
book value (asset cost minus accumulated depreciation) reaches its salvage value.
Example
Your office uses a machine purchased on July 29, 1993, for $13,250. It has an expected life of 10 years and
expected salvage value of $100. Your fiscal years ends December 31, so the first period has 5 months. To
calculate fourth-period depreciation for 1996:
@DB(13250,100,10,4,5) = 1616.145
 Related topics

@DCOUNT - Database Count
Syntax
@DCOUNT(Block, Column, Criteria)

Block The 2-D cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
you want to count (the first column in Block is 0,
the second is 1, and so on).

Criteria 2-D cells containing search criteria; the first row
must be field names.

@DCOUNT counts selected field entries in a database. It includes only those non-blank entries in Column whose
records meet the criteria specified in Criteria. (If you specifically want to count blank cells, use @COUNTBLANK
instead of @DCOUNT.)
The field specified in your criteria and the field being counted need not be the same. The field counted is that
contained within the column you specify as Column.
You can specify all or part of your database as Block, but field names must be included for each field you include
in the cells.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 San Jose RX $25,000
5 Jul-91 Chicago RX $18,998
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

These examples refer to the database and criteria tables.
@DCOUNT(A2..D8,3,A11..A12) = 4 (number of July sales)
@DCOUNT(A2..D8,3,B11..B13) = 2 (number of San Fran and LA sales)
@DCOUNT(A2..D8,3,C11..C12) = 3 (number of CJ's sales)
@DCOUNT(A2..D8,4,A11..C13) = ERR (Column figure too high)
@DCOUNT(A3..D8,3,A11..A12) = 6 (incorrect--field names not included)
 Related topics

@DDB - Double-Declining Balance Depreciation
Syntax
@DDB(Cost, Salvage, Life, Period)

Cost A numeric value representing the amount paid
for an asset.

Salvage A numeric value representing the value of an
asset at the end of its useful life.

Life A numeric value representing the expected
useful life of an asset (in years).

Period A numeric value representing the time period for
which you want to calculate depreciation.

@DDB determines accelerated depreciation values for an asset, given the initial cost, life expectancy, end value,
and depreciation period. It calculates depreciation using the double-declining balance method.
Depreciation value (DDB) and book value (BV) are calculated by:

BV Cost
DDB 2BV/Life
BV BV - DDB

These statements must be true:
Life ³ Period ³ 1
Life and Period must be integers
Cost ³ Salvage ³ 0
@SLN and @SYD offer other depreciation methods. @VDB uses the variable-rate declining balance method.
Examples
Suppose you just bought a new $4000 computer. The dealer says you can sell it back to the store for $350 after
eight years, but no one would want to buy it after that. In other words, Salvage is $350 and Life is 8. To calculate
the double-declining depreciation allowance of this computer by the second year, enter this formula:
@DDB(4000,350,8,2) = $750
These examples show depreciation values for the first five years of a $15,000 investment with a salvage value of
$3000 and a life of 10 years:
@DDB(15000,3000,10,1) = $3,000
@DDB(15000,3000,10,2) = $2,400
@DDB(15000,3000,10,3) = $1,920
@DDB(15000,3000,10,4) = $1,536
@DDB(15000,3000,10,5) = $1,229
 Related topics

@DDELINK - DDE Link
Syntax
@DDELINK([AppName|Topic]"DataToReceive", <nCols>, <nRows>, <nSheets>)

AppName The DDE-server application to contact. The
entire path to each file must be included.

Topic The table, spreadsheet, document, or other file
in the DDE-server application from which to
retrieve data. The entire path to each file must
be included.

DataToReceive The field, cells, or other information to receive
from the application (DDE Item string).

nCols The number of columns in the data cells
(optional).

nRows The number of rows in the data cells (optional).
nSheets The number of sheets in the data cells (optional).

@DDELINK creates a "live" data link from another Windows application that supports DDE (Dynamic Data
Exchange). Using @DDELINK is equivalent to choosing Edit|Paste special with data from another application
copied to the Clipboard, and then choosing Paste Link from the Paste special dialog box.
AppName and Topic are the same arguments used in the macro {INITIATE} except that "System" is not accepted
as a substitute for Topic. DataToReceive is a string indicating the location of the target data in the server
application.
When you enter @DDELINK into a cell, the linked data appears there. Unless you indicate otherwise, the data
takes up as much space as it did in the original application. You can use nCols, nRows, and nSheets to specify
smaller dimensions. If any of the arguments is 0 or omitted, the original dimension applies.
@DDELINK sets up a zone of cells that can be overwritten whenever data changes in the DDE-server application.
Avoid storing other data near @DDELINK, and consider using the limit arguments.
Examples
The maximum size of the data cells for the following formula is 5 cells by 5 cells:
@DDELINK([EXCEL|FILE1]"R1C1:R5C5")
With nRows = 3, the maximum size of the data cells drops to 5 cells by 3 cells:
@DDELINK([EXCEL|FILE1]"R1C1:R5C5",0,3)
 Related topics

@DEGREES - Convert Radians to Degrees
Syntax
@DEGREES(X)

X A numeric value representing radians.

@DEGREES converts the given number of radians to degrees. It uses this formula:
180 times X divided by pi
Examples
@DEGREES(0.5) = 28.64789
@DEGREES(0.017) = 0.974028
@DEGREES(@PI/2) = 90
 Related topics

@DELTA - Test If Two Numbers are Equal
Syntax
@DELTA(X, <Y>)

X Numeric value to check.
Y Numeric value that X must equal for the function

to return 1 (if omitted, assumed to be zero).

@DELTA tests whether X and Y are equal. If they are, @DELTA returns 1 (True); if not, @DELTA returns 0 (False).
Examples
@DELTA(1,2) = 0
@DELTA(2,2) = 1
@IF(@DELTA(2,2),"Equal","Not Equal") = Equal
 Related topics

@DEVSQ - Sum of the Squares of the Deviations
Syntax
@DEVSQ(List)

List One or more numeric or cell values.

@DEVSQ returns the sum of the squares of the deviations of the numbers in List from their mean value.
@DEVSQ uses this formula:

Example
@DEVSQ(9,10,12,14,15) = 26
 Related topics

@DFRAC - Decimal to Fraction
Syntax
@DFRAC(Dec, Denom)

Dec Number to be converted, expressed as a
decimal.

Denom Denominator; must be an integer > 0.

@DFRAC converts a number expressed as a decimal to a fraction using the specified denominator. @DFRAC
reverses the effect of @FRACD.
The result looks like a decimal, but the portion to the right of the decimal point is actually the numerator of the
fraction using the specified denominator. For example, you can use @DFRAC to convert a decimal to 32nds.
Converting 99.375 to 32nds results in 99.12, representing 99 .

Format the cell that contains the @function to show the same number of decimal places as the number of digits in
the desired Denom. For example, if Denom is 32, set the cell format to display two decimal places.
Example

@DFRAC(106.4375,32) = 106.14; the 14 to the right of the decimal place signifies .
 Related topics

@DGET - Database Value
Syntax
@DGET(database-block,column,criteria-block)

Block The 2-D cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
for which you want to return a value or label (the
first column in Block is 0, the second is 1, and so
on).

Criteria 2-D cells containing search criteria; the first row
must be field names.

@DGET returns a value or label from a field of a database table that meets specified criteria.
If no record matches the criteria, @DGET returns ERR.
If more than one record matches the criteria, @DGET returns ERR.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DGET(A2..D8,3,B11..B12) = $14,999 (Amount for San Fran)
@DGET(A2..D8,3,C11..C12) = ERR (Returns ERR because CJ has more than one Amount entry)
@DGET(A2..D8,3,B11..C12) = $14,999 (Amount in July for San Fran)
 Related topics

@DISC - Discount Rate
Syntax
@DISC(Settle, Maturity, Price, <Redemption>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date; must be
> Settle.

Price Settlement price per 100 face value; must be ³
0 and £ 100.

Redemption Redemption value per 100 face value (must be >
0; the default is 100).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@DISC computes the discount rate for a security, which is the percentage discount offered on a security for a
360-day or 365-day term.
@DISC computes the discount rate using this formula:

D discount rate
P price
R redemption
b basis
M maturity
S settle

tb is the number of days over which the discount rate applies (360 or 365).
Example
This formula calculates the discount rate for a bond with the following terms: Settle is May 27, 1995, Maturity is
November 24, 1995, Price is 96.2492, Redemption is 100, and Calendar is 2 (actual/360).
@DISC(@DATE(95,5,27),@DATE(95,11,24),96.2492,100,2) = 0.074602
 Related topics

@DMAX - Database Maximum Value
Syntax
@DMAX(Block, Column, Criteria)

Block The 2-D cell cells (reference or name) containing
the database, including field names.

Column The number of the column containing the field
for which you want to find the maximum value
(the first column in Block is 0, the second is 1,
and so on).

Criteria 2-D cells containing search criteria; the first row
must be field names.

@DMAX finds the maximum value of selected field entries in a database. It includes only those entries in Column
whose records meet the criteria specified in Criteria.
The field specified in your criteria and the field you are finding the maximum value for need not be the same.
The field you are finding the maximum value for is that contained within the column you specify as Column.
You can specify all or part of your database as Block, but field names must be included for each field you include
in the cells.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DMAX(A2..D8,3,A11..A12) = $28,725 (highest July sale)
@DMAX(A2..D8,3,B11..B13) = $34,345 (highest California sale)
@DMAX(A2..D8,3,C11..C12) = $23,769 (highest of CJ's sales)
@DMAX(A2..D8,4,A11..C13) = ERR (Column figure too high)
@DMAX(A3..D8,3,A11..A12) = $34,345 (incorrect--field names not included)
 Related topics

@DMIN - Database Minimum Value
Syntax
@DMIN(Block, Column, Criteria)

Block Cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
for which you want to find the minimum value
(the first column in Block is 0, the second is 1,
and so on).

Criteria Cells containing search criteria; the first row
must be field names.

@DMIN finds the minimum value of selected field entries in a database. It includes only those entries in Column
whose records meet the criteria specified in Criteria.
The field specified in your criteria and the field for which you are finding the minimum value need not be the
same. The field for which you are finding the minimum value is that contained within the column you specify as
Column.
You can specify all or part of your database as Block, but field names must be included for each field you include
in the cells.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DMIN(A2..D8,3,A11..A12) = $14,999 (smallest July sale)
@DMIN(A2..D8,3,B11..B13) = $14,999 (smallest California sale)
@DMIN(A2..D8,3,C11..C12) = $14,999 (smallest of CJ's sales)
@DMIN(A3..D8,3,A11..A12) = $15,600 (incorrect--field names not included)
@DMIN(A2..D8,4,A11..C13) = ERR (Column figure too high)
 Related topics

@DOLLAR - Dollars as Text
Syntax
@DOLLAR(Num, <Dec>)

Num Numeric value, reference to a cell that contains a
numeric value, or formula that returns a numeric
value.

Dec How many digits you want to display to the right
of the decimal point. If Dec is negative,
@DOLLAR rounds off Num to the left of the
decimal point. If you omit Dec, @DOLLAR rounds
off to 2 decimal places.

@DOLLAR converts a numeric value to text, using currency format. Decimals are rounded to the specified place:

0 $##,###
2 $##,###.##
-3 $##,000

You can also format numeric values by right-clicking the cell and choosing Cell Properties, then Currency. The
result looks the same, but the value remains a numeric value when you use Cell Properties, while @DOLLAR
converts it to text.
Examples
@DOLLAR(9449.985, 2) = "$9449.99"
@DOLLAR(9449.985, 0) = "$9450"
@DOLLAR(9449.985, -3) = "$9000"
@DOLLAR(9449.985) = "$9449.99"
 Related topics

@DOLLARDE - Fractional Price Into Dollars
Syntax
@DOLLARDE(FracDollar, Denom)

FracDollar Number and numerator of the fraction,
expressed as number.numerator.

Denom Denominator of the fraction:
 Denom must be a numeric value >0
 If Denom is not an integer, @DOLLARDE truncates
it

@DOLLARDE converts a fractional price into dollars. Use @DOLLARDE to convert fractional values like stock
prices into dollars.
Examples
@DOLLARDE(12.3,4) = 12.75
@DOLLARDE(12.5,8) = 12.625
 Related topics

@DOLLARFR - Dollar Price Into Fraction
Syntax
@DOLLARFR(DecDollar, Denom)

DecDollar Dollar price.
Denom Denominator of the fraction:

 Denom must be a numeric value >0
 If Denom is not an integer, @DOLLARFR truncates it

@DOLLARFR converts a dollar price into a fractional price. Use @DOLLARFR to convert dollars into fractional
values like stock prices. The result is expressed in the format dollar.numerator; the denominator is the number
you specified for Denom.
Examples
@DOLLARFR(12.75,4) = 12.3, meaning "12 and 3/4"
@DOLLARFR(12.625,8) = 12.5, meaning "12 and 5/8"
 Related topics

@DOLLARTEXT - Dollar Numeric Value Into Dollar Text
Syntax
@DOLLARTEXT(Number, <Format>)

Number Numeric value, reference to a cell that contains a
numeric value, or formula that returns a numeric
value.

Format 1 = Displays dollar value in text; ignores decimal
values.
2 = Displays dollar value in text, followed by
"Dollars".
3 = Displays dollar value in text, followed by
cent value in numbers. The decimal is rounded
to two decimal places.
4 = Displays dollar value in text, followed by
cent value in numbers, followed by "Dollars".
This is the default if no Format is specified.
5 = Displays dollar value in text, followed by
"Dollars", followed by cent value in text,
followed by "Cents".

@DOLLARTEXT converts the numeric value to a cardinal number in text, similar to how numbers are written out
on checks or official documents.
Examples
@DOLLARTEXT(100.25,1) = One Hundred
@DOLLARTEXT(100.25,2) = One Hundred Dollars
@DOLLARTEXT(956600.55,3) =    Nine Hundred Fifty-Six Thousand Six Hundred and 55/100
@DOLLARTEXT(66500.70,4) =    Sixty-Six Thousand Five Hundred and 70/100 Dollars
@DOLLARTEXT(66500.70,5) =    Sixty-Six Thousand Five Hundred Dollars and Seventy Cents
 Related topics

@DPURECOUNT - Database count numbers
Syntax
@DPURECOUNT (database-block,column,criteria-block)

Block The 2-D cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
for which you want to count all number field
entries (the first column in Block is 0, the second
is 1, and so on).

Criteria 2-D cells containing search criteria; the first row
must be field names.

@DPURECOUNT counts all number field entries in a database that match the criteria.
You can specify all or part of your database as Block, but field names must be included for each field you include
in the cells.
The field specified in your criteria and the field to be counted do not need to be the same. The field that is
counted is the column you specify for Column.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DPURECOUNT(A2..D8,3,B11..B12) = 1 (number of San Fran sales)
@DPURECOUNT(A2..D8,3,B11..B13) = 3 (number of San Fran and LA sales)
@DPURECOUNT(A2..D8,3,A11..A12) = 4 (number of July sales)
@DPURECOUNT(A2..D8,3,C11..C12) = 3 (number of CJ's sales)
@DPURECOUNT(A2..D8,3,A11..C13)= 2 (number of CJ's sales in San Fran in July and LA sales)
@DPURECOUNT(A2..D9,3,A11..B13)= 2 (same as above example because it ignores blank cells)
@DPURECOUNT(A2..D8,1,A11..B13)= 0 (no numbers in the column to count)
@DPURECOUNT(A3..D8,3,A11..A12)= 5 (incorrect, no field names were included)
 Related topics

@DPRODUCT - Database product value
Syntax
@DPRODUCT(database-block,column,criteria-block)

Block The 2-D cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
for which you want to multiply all matching
values (the first column in Block is 0, the second
is 1, and so on).

Criteria 2-D cells containing search criteria; the first row
must be field names.

@DPRODUCT multiplies the values in a specified field from all records in a database that match the specified
criteria.
@DPRODUCT returns 1 if no cells in Block match the values in Criteria.
 Related topics

@DSTD - Database Standard Deviation
Syntax
@DSTD(Block, Column, Criteria)

Block Cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
for which you want to find the standard deviation
(the first column in Block is 0, the second is 1,
and so on).

Criteria Cells containing search criteria; the first row
must be field names.

@DSTD finds the population standard deviation for selected field entries in a database. @DSTDS computes the
standard deviation of sample data.
@DSTD includes only those entries in Column whose records meet the criteria specified in Criteria.
The field specified in Criteria and the field for which you are finding the standard deviation need not be the
same. The field for which you are finding the standard deviation is the field contained within Column.
You can specify all or part of your database as Block, but field names must be included for each field in the cells.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DSTD(A2..D8,3,B11..B13) = $8,126 (population SD of California sales)
@DSTD(A2..D8,3,C11..C12) = $4,000 (population SD of CJ's sales)
@DSTD(A2..D8,4,A11..C13) = ERR (Column figure too high)
 Related topics

@DSTDS - Database Sample Standard Deviation
Syntax
@DSTDS(Block, Column, Criteria)

Block Cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
for which you want to find the standard deviation
(the first column in Block is 0, the second is 1,
and so on).

Criteria Cells containing search criteria; the first row
must be field names.

@DSTDS finds the sample standard deviation for selected field entries in a database. @DSTD computes the
standard deviation of population data.
This @function is not compatible with 1-2-3. If your file must be compatible with 1-2-3, use @DSTD instead.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DSTDS(A2..D8,3,B11..B13) = $9,952 (sample SD of California sales)
@DSTDS(A2..D8,3,C11..C12) = $4,899 (sample SD of CJ's sales)
 Related topics

@DSUM - Database Sum
Syntax
@DSUM(Block, Column, Criteria)

Block Cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
you want to total (the first column in Block is 0,
the second is 1, and so on).

Criteria Cells containing search criteria; the first row
must be field names.

@DSUM totals selected field entries in a database. It includes only those entries in Column whose records meet
the criteria specified in Criteria.
The field specified in Criteria and the field you are finding the sum of need not be the same. The field you are
finding the sum of is that contained within Column.
You can specify all or part of your database as Block, but field names must be included for each field you include
in the cells.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DSUM(A2..D8,3,A11..A12) = $77,924 (total of July sales)
@DSUM(A2..D8,3,B11..B13) = $78,069 (total of California sales)
@DSUM(A2..D8,3,C11..C12) = $54,368 (total of CJ's sales)
@DSUM(A2..D8,1,A11..A12) = 0
@DSUM(A2..D8,4,A11..C13) = ERR (Column figure too high)
 Related topics

@DURAT - Duration
Syntax
@DURAT(Discrate, Flows, <Initial>, <[Odd|Periods]>, <Simp>, <Pathdep>, <Filter>, <Start>, <End>)

Discrate Discount rate or cells containing discount rates
that correspond to cash flows stored in Flows.

Flows Cells containing cash flows associated with the
discount rates in Discrate.

Initial Initial cash flow (the default is 0).
Odd|Periods Delay between initial and first cash flow, in

number of periods (the default is 1) or cells
containing lengths of periods between cash flows
(the default is 1).

Simp Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Pathdep Flag specifying whether to apply path-dependent
compounding to each flow; 0 = no path (default);
1 = path.

Filter Flag specifying filter type: 0 = no filter (default);
1 = cashflow < Start; 2 = cashflow £ Start; 3 =
cashflow > Start; 4 = cashflow ³ Start; 5 = Start
< cashflow < End; 6 = Start £ cashflow £ End

Start A starting cash flow amount to compare against
individual flows.

End An ending cash flow amount to compare against
individual flows.

@DURAT calculates the duration of a specified cash flow structure. Duration (also called Macaulay duration) is
defined as the weighted average time to receipt of a cash flow where the present values of the cash flows are
the weights. Each weight in the sum is the present value of a cash flow divided by the net present value of all
the cash flows.
@DURAT computes Macaulay duration using this formula:

where

Di Distance
Du Duration
Fl Flows
I Initial

n is the number of cash flows. DFi is the discount factor corresponding to the ith flow.
Modified (or Hicks) duration is defined as a sensitivity of present value to change in the internal rate of return.
Modified duration is not defined for multiple discount rates (when Discrate is a selection of discount rates).

To convert Macaulay duration to Modified (or Hicks) duration, use this formula:
modified duration = Macaulay duration / (1 + Discrate)
Example
Consider a cash flow stream comprising four flows of $5, followed by four flows of $10, followed by seven flows
of $11, followed by a final flow of $110. The first flow is 0.56745 periods away. The next 11 flows occur one
period apart. The last four flows are 1.5 periods apart. This formula calculates the duration, assuming compound
discounting, no initial cash flow, and the data shown in the next figure:
@DURAT(D8,A2..B5,B8,C2..D4) = 10.28273

A B C D
1 Cash

Flows
Periods

2 4 $5 1 0.56745
3 4 $10 11 1
4 7 $11 4 1.5
5 1 $110
6
7 Initial Discount

Rate
8 0 7.85%

 Related topics

@DURATION - Macaulay Duration
Syntax
@DURATION(Settle, Maturity, Coupon, Yield, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date; must be
> Settle.

Coupon Coupon rate; must be ³ 0.
Yield Annual yield; must be > 0 and £ 1.
Freq Frequency of coupon payments in the number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@DURATION returns the Macaulay duration for a bond with an assumed par value of 100. Macaulay duration is
the weighted average maturity of a bond's cash flow stream where the present values of all future cash receipts
are used as weights.
Example
The following formula calculates the Macaulay duration of a bond with these terms: Settle is August 8, 1992,
Maturity is November 15, 1998, Coupon is 9%, and Yield is 8.816%.
@DURATION(@DATE(92,8,8),@DATE(98,11,15),0.09,0.08816) = 4.836099
 Related topics

@DVAR - Database Variance
Syntax
@DVAR(Block, Column, Criteria)

Block Cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
for which you want to compute variance (the
first column in Block is 0, the second is 1, and so
on).

Criteria Cells containing search criteria; the first row
must be field names.

@DVAR calculates the population variance for selected field entries in a database. @DVARS computes the
variance of sample data.
@DVAR includes only those entries in Column whose records meet the criteria specified in Criteria.
The field specified in Criteria and the field for which you are calculating the variance need not be the same. The
field analyzed is the field contained within Column.
You can specify all or part of your database as Block, but field names must be included for each field you include
in the cells.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DVAR(A2..D8,3,B11..B13) = $66,028,355 (pop. variance of Calif. sales)
@DVAR(A2..D8,3,C11..C12) = $16,000,740 (pop. variance of CJ's sales)
@DVAR(A2..D8,4,A11..C12) = ERR (Column figure too high)
 Related topics

@DVARS - Database Sample Variance
Syntax
@DVARS(Block, Column, Criteria)

Block Cells (reference or name) containing the
database, including field names.

Column The number of the column containing the field
for which you want to compute variance (the
first column in Block is 0, the second is 1, and so
on).

Criteria Cells containing search criteria; the first row
must be field names.

@DVARS calculates the sample variance for selected field entries in a database. @DVAR computes variance with
population data.
This @function is not compatible with 1-2-3. To use the file in 1-2-3, use @DVAR instead.
Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18,600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DVARS(A2..D8,3,B11..B13) = $99,042,532 (sample variance of Calif. sales)
@DVARS(A2..D8,3,C11..C12) = $24,001,110 (sample variance of CJ's sales)
 Related topics

@EFFECT - Effective Interest Rate
Syntax
@EFFECT(NomRate, Nper)

NomRate Nominal interest rate.
Nper Number of compounding periods per year,

truncated to an integer.

@EFFECT calculates the effective annual interest rate for a specified nominal rate and number of compounding
periods a year.
@EFFECT is related to @NOMINAL in the following way:

where

Re effective rate
Rn nominal rate
Nper number of compounding periods per year

@EFFECT returns ERR if either argument is non-numeric, if NomRate <= 0, or if Nper < 1.
Example
@EFFECT(7.18%,4) = 0.073756 or 7.3756%
 Related topics

@EMNTH - Ending Day in Month
Syntax
@EMNTH(Date)

Date Number representing a date. See "Using dates
and times in Quattro Pro."

@EMNTH returns the serial date number for the date of the last day of the month in which Date falls.
Example
@EMNTH(@DATE(96,2,14)) = 35124 (February 29, 1996), the last day of the month in which February 14, 1996
falls.
 Related topics

@EOMONTH - Last Day of Month
Syntax
@EOMONTH(StartDate, Months)

StartDate Serial number of start date. See "Using dates and
times in Quattro Pro."

Months Number of months before or after StartDate:
If Months is positive, @EOMONTHS returns a date
after StartDate.
If Months is negative, @EOMONTHS returns a date
before StartDate.
If Months is not an integer, @EOMONTHS
truncates it.

@EOMONTH returns the serial date number for the last day of the month a specified number of months before or
after StartDate. @EOMONTH lets you calculate maturity dates falling on the last day of the month.
@EOMONTH returns ERR if:
· StartDate is not a valid serial date number.
· StartDate plus Months yields an invalid serial date number.
· Either argument is non-numeric.

Examples
@EOMONTH(@DATE(96,2,14),4) = 35246 or 6/30/96
@EOMONTH(@DATE(96,2,14),-2) = 35064 or 12/31/95
 Related topics

@ERFD - Error Function Derivative
Syntax
@ERFD(X)

X A value from -26.6417 to 26.6417.

@ERFD(X) returns the derivative of the error function. It uses the following formula:
(2/@SQRT(@PI)) * @EXP(-X^2)
If X is less than -26.6417 or greater than 26.6417, @ERFD returns ERR because the calculation is too large to
store.
Example
@ERFD(1) = 0.415107
 Related topics

@ERF - Error Function
Syntax
@ERF(Lower, <Upper>)

Lower Lower bound for integrating @ERF; must be ³ 0.
Upper Upper bound for integrating @ERF; if omitted,

@ERF integrates the error function between 0
and Lower; must be ³ 0.

@ERF returns the error function integrated between Lower and Upper. The error function helps solve partial
differential equations that involve convection or diffusion.
The equation for @ERF(z) is

The equation for @ERF(a,b) is

This is the same as @ERF(b) minus @ERF(a).
Example
@ERF(0,1) = 0.842701
 Related topics

@ERFC - Complementary Error Function
Syntax
@ERFC(Lower)

Lower Lower bound for integrating @ERF; must be ³ 0.

@ERFC returns the complementary error function, which derives from the error function @ERF. The formula for
@ERFC(x) is

This is the same as 1 - @ERF(x).
Therefore, @ERFC(Lower) = 1 - @ERF(Lower,Upper).
Example
@ERFC(1) = 0.157299
 Related topics

@ERR - Error Value
Syntax
@ERR
@ERR returns the value ERR in the current cell and in any other cells that reference the current cell, either
directly or indirectly. (Exceptions to this are @COUNT, @DCOUNT, @ISERR, @ISNA, @ISNUMBER, @ISSTRING, and
@CELL formulas; these will not result in ERR if they reference an ERR cell.)
The ERR value resulting from this @function is the same as the ERR value produced by Quattro Pro when it
encounters an error. It is often used with @IF to bring attention to error conditions.
ERR is a unique number, not to be confused with the label ERR.
Examples
@ERR = ERR
@IF(B6>B7,0,@ERR) = 0 (if B6>B7) or ERR (if B6<B7)
 Related topics

@EVEN - Round Up to Even Number
Syntax
@EVEN(X)

X Value to round.

@EVEN rounds X up (away from zero) to the nearest even integer, ignoring the sign of X. If X is already an even
integer, @Even returns x unchanged.
Examples
@EVEN(3.2) = 4
@EVEN(-3.2) = -4
@EVEN(8) = 8
 Related topics

@EXACT - Test If Values Are Exactly Alike
Syntax
@EXACT(String1, String2)

String1 A valid string value.
String2 A valid string value.

@EXACT compares the values of String1 and String2. If the values are exactly identical, including capitalization
and diacritical marks (such as ~), it returns 1. If there are any differences, it returns 0.
If you are comparing literal strings, surround them with double quotes. If you use a cell name or cell address, no
quotes are necessary. You can compare the contents of label cells only. If you try to compare one or more
numbers or empty cells, the result is ERR. When you compare labels, label prefixes are ignored.
To compare strings or cell contents without regard to capitalization or diacritical marks, use @IF. For example,
@IF(C3=B3,1,0) returns 1 if the contents of the cells are the same but are capitalized differently.
Examples
@EXACT("client","Client") = 0
@EXACT("client","client") = 1
@EXACT(29,"29") = ERR (the first string is a value)
@EXACT(A1,"yes") = 1 (if A1 contains the label yes)
@EXACT(client,client) = syntax error (no quotation marks)
@EXACT("client","client","client ") = syntax error (more than two strings)
 Related topics

@EXP - e Raised to X Power
Syntax
@EXP(X)

X A numerical value equal to or less than 709.

@EXP returns the mathematical constant e, raised to the Xth power. This @function is the inverse of a natural
logarithm, @LN.
Examples
@EXP(3.4) = 29.9641000474
@EXP(1) = 2.718281828459 (the actual value of e)
@SQRT(@EXP(2)) = 2.71828183
@LN(@EXP(2.5)) = 2.5
 Related topics

@EXP2 - e Raised to -X^2    Power
Syntax
@EXP2(X)

X A value from -26.6417 to 26.6417.

@EXP2 calculates the value of the constant e raised to the power (-X^2). The constant e equals
2.718281828459.
If X is less than -26.6417 or greater than 26.6417, @EXP2 returns ERR.
Example
@EXP2(1) = 0.367879
 Related topics

@EXPONDIST - Exponential Distribution
Syntax
@EXPONDIST(X, Lambda, Cum)

X Value at which to evaluate the function; must be
³ 0.

Lambda Value to indicate; Lambda = 1/Mean; must be >
0.

Cum 1 to perform cumulative distribution function; 0
to perform the probability density function.

The exponential distribution, sometimes called the waiting-time distribution, describes the amount of time or
distance between the occurrence of random events. For example, it can be used to find the time between major
earthquakes or the time between no hitters pitched in major league baseball. The exponential distribution
calculated by @EXPONDIST is a continuous distribution with a probability density function whose formula is:

For the cumulative distribution function, the formula is:

Use this distribution in connection with estimating the length of material life, or the length of time a process might
take.
Examples
On average, customers at a certain bank must wait 2 minutes before being served by a teller. This formula
calculates the probability that someone would have to wait 3 minutes:
@EXPONDIST(3,1/2,0) = 0.111565
This formula calculates the probability that someone would wait only 1 minute for a teller:
@EXPONDIST(1,1/2,1) = 0.393469
 Related topics

@FACT - Factorial
Syntax
@FACT(N)

N Integer ³ 0 specifying the factorial to calculate.

@FACT calculates the factorial of a number. N! is defined as follows: if N ³ 0,
N! = N ´ (N-1) ´ (N-2) ´ (N-3) ´...´ (2) ´ (1)
@FACT(0) returns 1. If N is a non-integer or negative number, @FACT returns ERR.
Examples
@FACT(10) = 3628800
@FACT(128) = 3.9E+215
 Related topics

@FACTDOUBLE - Double Factorial
Syntax
@FACTDOUBLE(N)

N Value ³ 0 to calculate factorial of.

@FACTDOUBLE returns the double factorial of N. N!! is defined as follows:
If N is even, N!! = N(N-2)(N-4)...(4)(2)
If N is odd, N!! = N(N-2)(N-4)...(3)(1)
If N is negative, @FACTDOUBLE returns ERR.
Examples
@FACTDOUBLE(12) = 46080
@FACTDOUBLE(13) = 135135
 Related topics

@FACTLN - Natural Logarithm of Factorial
Syntax
@FACTLN(n)

n Integer from 0 through 170.

@FACTLN returns the natural logarithm of the factorial of n. The factorial of n is the product of all positive
integers from 1 to n. The factorial of 0 is 1 by definition.
Example
@FACTLN(4) = 3.178054
 Related topics

@FALSE - Logical Value 0
Syntax
@FALSE
@FALSE returns the logical value 0 and is usually used in @IF formulas. The zero that it returns is the same as
any other zero, but @FALSE makes the formula easier to read.
@TRUE is a related @function.
Examples
@FALSE = 0
@IF(C3=100,10,@FALSE) = 10 (if C3 = 100) or 0 (if C3 is not equal to 100)
@IF(C3=100,@TRUE,@FALSE) = 1 (if C3 = 100) or 0 (if C3 is not equal to 100)
 Related topics

@FBDAY - First Business Day
Syntax
@FBDAY(Date, <Holidays>, <Saturday>, <Sunday>)

Date Number representing a date. See "Using dates
and times in Quattro Pro."

Holidays Cells containing dates that are holidays or the
date of a single holiday or 0 to indicate no
holidays (the default is 0).

Saturday 0 to specify that Saturday is not a business day;
1 to specify that Saturday is a business day (the
default is 0).

Sunday 0 to specify that Sunday is not a business day; 1
to specify that Sunday is a business day (the
default is 0).

@FBDAY returns the serial date number of the first business day of the month in which Date falls. If the first of
the month is not a business day, @FBDAY returns the business day closest to it within the same month.
Example
This formula calculates the first business day in January 1997, assuming that Saturdays, Sundays, and some
dates are holidays:

A
1 01/01/97
2 01/02/97
3 01/03/97
@FBDAY(@DATE(97,1,1),A1..A3,0,0) = 35436 (which is Monday, January 6, 1997)
 Related topics

@FDIST - F-Distribution
Syntax
@FDIST(X, DegFreedom1, DegFreedom2)

X Positive value at which to evaluate the function.
DegFreedom1 Numerator degrees of freedom; must be ³ 1.
DegFreedom2 Denominator degrees of freedom; must be ³ 1.

@FDIST returns the cumulative F-distribution function, which is the probability that a random variable will be less
than X. Use @FDIST to compare two population variances.
Example
@FDIST(6.256057,5,4) = 0.05
 Related topics

@FEETBL - Fee Table
Syntax
@FEETBL(Tu, Ppu, [StdTbl|Val], <[MinTbl|Val]>, <[MaxTbl|Val]>, <RndPlcs>)

Tu Total units; if Tu is negative, @FEETBL uses its
absolute value.

Ppu Price per unit.
StdTbl|Val Fee table or a single value that defines the

standard fee calculation.
MinTbl|Val Fee table or a single value that defines the

minimum fee calculation (if omitted, MinTbl
equals StdTbl).

MaxTbl|Val Fee table or a single value that defines the
maximum fee calculation (if omitted, MaxTbl
equals StdTbl).

RndPlcs Number of places to which the final result is
rounded; can be from 0 to 10 places (the default
is no rounding).

@FEETBL returns fee calculations from tables. You can use @FEETBL to calculate fees or commissions for many
types of stock transactions, taxes, sales commissions, and other types of fees and charges. To use @FEETBL, you
need to create a table (or tables) that describes the fees.
@FEETBL is more powerful than other table lookup @functions such as @HLOOKUP and @VLOOKUP because it
allows you to
· Compare the standard fee with minimum and maximum values
· Multiply the lookup value by the number of units or total price
· Add a fixed value to the fee
· Round the result to a specified number of decimal places
If the fee table is indexed by values of total units or price per unit, Tu or Ppu must be greater than the smallest
value in the index; otherwise, @FEETBL cannot find a lookup value. If either Tu or Ppu is zero, @FEETBL returns
zero.
If you specify an optional argument, such as RndPlcs, you must also specify all preceding optional arguments. If
MinTbl and MaxTbl are not pertinent to the fee calculation, use StdTbl again for MinTbl and MaxTbl, or enter
values that have no effect on the final result. For example, enter 0 for MinTbl and 1E+99 for MaxTbl.
The upper left cell of a fee table must contain a table header string that identifies the row index, column index,
and cell contents of the table, and also specifies if the table contains an additive factor for the fee calculation.
The table header string consists of three or four parameters separated by a space; each parameter has several
possible values.
For valid comparison, values for StdTbl, MinTbl, and MaxTbl arguments must have the same units.

Table header parameters
Parameter Description Values
1 Row index tu, ppu, tp, na
2 Column index tu, ppu, tp, na
3 Cell contents fpu, fpct, luo
4 Additive factor fa

Description Values
tu total units
fpu fee per unit
ppu price per unit
fpct fee percentage

tp total price
luo lookup only
na not applicable
fa fixed adder

The first parameter of the table header identifies the contents of the row index, which appears in the first column
of the table below the table header. The second parameter identifies the contents of the column index, which
appears in the first row of the table to the right of the table header.
The third parameter of the table header determines if @FEETBL multiplies the lookup value from the table by
another value. For example, "fpu" (fee per unit) indicates that @FEETBL multiplies the lookup value by the
number of units; "fpct" (fee percentage) indicates that the lookup value is a percentage that @FEETBL multiplies
by the total price; "luo" (lookup only) indicates that @FEETBL uses the lookup value without modification.
The fourth parameter of the table header is an optional additive factor; specify "fa" (fixed adder) to add a value
to the result of the operation specified by the third parameter. If the fee table has no additive factor, omit the
fourth parameter.
In the next figure, the table header in cell A3 is "tp na fpct fa"; "tp" indicates that A4..A9 represents the row
index values for total price; "na" indicates that B3..C3 has no column index values; "fpct" indicates that the
lookup values in B4..B9 are percentages that must be multiplied by the total price; "fa" indicates that the values
in C4..C9 are "fixed adders", that is, one of these values must be added to the product of the fee percentage and
the total price.

A B C
1 Standard Commission Rate

Table
2 Principal %Fee + Fixed Adder
3 tp na fpct fa
4 $0 1.60% $26.00
5 $2,500 0.60% $51.00
6 $6,000 0.30% $69.00
7 $22,000 0.20% $91.00
8 $50,000 0.10% $141.00
9 $500,000 0.08% $241.00

In the next figure, the table header in cell A2 is "tu tp luo"; "tu" indicates that A3..A7 represents the row index
values for total units; "tp" indicates that B2..E2 represents the column index values for total price; "luo" indicates
that @FEETBL uses the lookup values in B3..E7.

A B C D E
1 Total Units Total Price
2 tu tp luo $0 $10,000 $15,000 $20,000
3 0 $250 $500 $750 $1,000
4 2 $200 $400 $600 $800
5 5 $175 $350 $525 $700
6 10 $150 $300 $450 $600
7 20 $125 $250 $375 $500

@FEETBL treats all string values (other than the table header) or empty cells in fee tables as zero.
Examples
A furniture manufacturer sells 100 bookcases at a price of $150 each to a retailer. This formula calculates the
handling fee for the order based on the fee table in the next figure.
@FEETBL(100,150,A1..D5) = $300
Cell A4 is the row index value for 100 total units. Cell C1 is the column index value for $150 price per unit. Cell
C4 is the lookup value, which is multiplied by the total units: $3 * 100 = $300.

This formula calculates the handling fee based on the fee table in the next figure for a sale of 5 end tables at a
price of $75 each:
@FEETBL(5,75,A1..D5) = $25
Cell A2 is the row index value for 5 units (between 0 and 9). Cell B1 is the column index value for $75 price per
unit. Cell B2 is the lookup value, which is multiplied by the total units: $5 * 5 = $25.

A B C D
1 tu ppu fpu $0 $100 $500
2 0 $5 $7 $8
3 10 $4 $5 $6
4 100 $2 $3 $4
5 1000 $2 $1 $2

 Related topics

@FIB - Fibonacci Sequence
Syntax
@FIB(N)

N Integer ³ 0 specifying the desired term of a
Fibonacci sequence.

@FIB calculates the Nth term of a Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21...), in which each number, after the
first two, is the sum of the two numbers immediately preceding it. @FIB(0) is defined to be 0.
Examples
@FIB(4) = 3
@FIB(9) = 34
@FIB(15) = 610
 Related topics

@FIELD - Nth Substring in a String
Syntax
@FIELD(String,N,<Delimiter>)

String A string value containing two or more delimited
substrings, or a cell reference to a delimited
string value.

N Number of the substring you want to find (the
first substring is numbered 1, the second 2, and
so on).

Delimiter Optional delimiter character; if you do not
specify a delimiter, Quattro Pro uses the
delimiter character specified in the Application
International property.

@FIELD finds the nth substring in String, a delimited list of strings. You can use @FIELD to find a single property
value from a delimited list of properties returned by the @PROPERTY function. You can also use it to return a
specific field from an imported text file.
Example
The cell in A1 contains the following formula:
@PROPERTY("Active_Block.Shading")
The shading property has not been changed from the default setting, so the formula returns
3,0,Blend7
You can use @FIELD with @PROPERTY to return the third substring in the comma-delimited string:
@FIELD(@PROPERTY("Active_Block.Shading"),3) = Blend7
@FIELD(@PROPERTY("Active_Block.Shading"),3,",") = Blend7
 Related topics

@FILEEXISTS - Test If File Exists
Syntax
@FILEEXISTS(FileName)

FileName Any file name.

@FILEEXISTS returns a 1 if a file named FileName exists in the current file directory, and returns a 0 if it does not.
FileName can be a cell name containing a path or file name string. If entered as a literal string, FileName must be
enclosed by quotes and must include any extension attached to the file name. To search for a file in a directory
other than the default directory, include the directory path in FileName.
Examples
@FILEEXISTS("EXAMPLE.QPW") = 1 (if EXAMPLE.QPW is in the working directory)
@FILEEXISTS("C:\DATA\EXAMPLE.QPW") = 1 (if EXAMPLE.QPW is in the specified directory)
@FILEEXISTS(FILE_NAME) = 1 (if the selection FILE_NAME contains a path and file-name label and if the file
exists in that directory)
 Related topics

@FIND - Search for String
Syntax
@FIND(Substring, String, StartNumber)

Substring A valid string value, representing the value to
search for.

String A valid string value, representing the value to
search through.

StartNumber A numeric value ³ 0, representing the character
position to begin searching with; 0 = the first
character.

@FIND searches through String from left to right for Substring. If it finds Substring, it returns the character
position of the first occurrence. StartNumber indicates where to begin the search: 0 = the first character in the
string, 1 = the second, and so on. The value of StartNumber must not be more than the number of characters in
String minus 1.
@FIND is case-sensitive and is also sensitive to diacritical marks used in non-English languages. You can
overcome the case sensitivity of this @function by using @UPPER to force one or more of the strings into all
uppercase letters. For example, the following formula forces both the substring in cell C3 and the string in cell C4
to uppercase, then searches for the substring:
@FIND(@UPPER(C3),@UPPER(C4),0)
@FIND is most often used in conjunction with two other string functions: @REPLACE (to perform "search and
replace" operations on strings) and @MID (to access substrings).
If @FIND fails to find any occurrences of Substring, or if the StartNumber given is invalid, the result is ERR.
Examples
@FIND("i","find",0) = 1
@FIND("nd","find",2) = 2
@FIND("F","find",0) = ERR
@FIND("f","find",3) = ERR
@FIND("d","find",4) = ERR
@FIND(n,find,0) = syntax error (quote marks omitted from strings)
@FIND("hi",C4,0) = 1 (if C4 contains ship)
 Related topics

@FINV - Inverse of F-Distribution
Syntax
@FINV(Prob, DegFreedom1, DegFreedom2)

Prob Cumulative probability value; must be ³ 0 and £
1.

DegFreedom1 Numerator degrees of freedom; must be ³ 1.
DegFreedom2 Denominator degrees of freedom; must be ³ 1.

@FINV returns the inverse of the cumulative F-distribution function. Use this function to measure the degree of
variability in two data sets.
Example
@FINV(0.05,5,4) = 6.256057
 Related topics

@FIRSTBLANKPAGE - Name of First Blank Page
Syntax
@FIRSTBLANKPAGE(Block)

Block A cell or reference; can be a link to another
opened notebook (for example, [BUDGET]A:A1).

@FIRSTBLANKPAGE returns a string that contains the letters for the first unnamed blank sheet in a notebook that
is not part of a group.
Quattro Pro searches for the first unnamed blank sheet (that is not in a group) starting at sheet A and continuing
toward sheet IV. If there are no unnamed blank sheets (or they are all in groups), @FIRSTBLANKPAGE returns
ERR.
Example
@FIRSTBLANKPAGE(B17) = "AA" (if it is the first sheet that is blank and unnamed)
 Related topics

@FIRSTINGROUP - First Sheet in Group
Syntax
@FIRSTINGROUP(Block, GroupName)

Block A block of cells to check in the notebook.
GroupName A string value representing a group name.

@FIRSTINGROUP returns a string that contains the letters for the first sheet in the group named GroupName.
@FIRSTINGROUP searches the notebook referenced by Cell for the group. If the group does not exist,
@FIRSTINGROUP returns ERR.
Example
@FIRSTINGROUP([REPORTQ4]A:C12,"Totals") = "A" (if the notebook REPORTQ4 contains a group named Totals
that starts with sheet A)
 Related topics

@FISHER - Fisher Transformation
Syntax
@FISHER(X)

X Numeric value; -1 < X < 1.

@FISHER returns the Fisher transformation at the value X. Fisher's z-transformation is used to produce an
approximately normally distributed variable (rather than skewed) from the correlation coefficient. The formula
@FISHER uses is

Example
@FISHER(0.25) = 0.255413
 Related topics

@FISHERINV - Inverse of Fisher Transformation
Syntax
@FISHERINV(Y)

Y Numeric value £ 354 for which you want the
inverse of the Fisher transformation.

@FISHERINV returns the inverse of the Fisher transformation. Use @FISHERINV to determine the confidence
limits for a correlation coefficient.
Example
@FISHERINV(0.255413) = 0.25
 Related topics

@FIXED - Decimal Number as Text
Syntax
@FIXED(Num, <Dec>, <NoCommas>)

Num Number to be rounded and converted to text.
                   Dec Number of decimal places to be displayed. If Dec

is negative, @FIXED rounds off Num to the left of
the decimal point. If you omit Dec, @FIXED
rounds off to 2 decimal places.

NoCommas A logical value:
1 = do not display thousands separators
0 = display thousands separators (the default, if
omitted, or if NoCommas ¹ 1)

@FIXED rounds a number to a specified number of decimals, formats it, and displays the result as text. Your
display will depend on your Application International Property settings.
Num cannot have more than 15 significant digits.
You can also format numeric values by right-clicking the cell and choosing Cell Properties, then Fixed, then
entering the number of decimal places to display. The result looks the same, but the value remains a numeric
value when you use Cell Properties, while @FIXED converts it to text.
When you use any optional argument, you must also use the ones before it.
Examples
@FIXED(9449.985, 2) = "9,449.99"
@FIXED(9449.985, 2, 1) = "9449.99"
@FIXED(9449.985, 0) = "9,450"
@FIXED(9449.985, -3) = "9,000"
 Related topics

@FLOOR - Round Down to Nearest Multiple
Syntax
@FLOOR(X, Y)

X Value to round.
Y Value to make rounded X evenly divisible by.

@FLOOR rounds X down (toward zero) to the nearest value that is evenly divisible by Y. If X and Y have different
signs, the result of @FLOOR is ERR.
Examples
@FLOOR(3.2,3) = 3
@FLOOR(-3.2,-3) = -3
 Related topics

@FORECAST - Linear Regression Forecast
Syntax
@FORECAST(X, KnownY, KnownX)

X Numeric value at which to evaluate the function.
KnownY Dependent range of values.
KnownX Independent range of values.

@FORECAST returns a predicted Y value corresponding to X based upon a linear regression of KnownY and
KnownX.
KnownY and KnownX must contain the same number of values. The variance of KnownX must not be 0.
Example
This example refers to cells in the figure below.
@FORECAST(1000,C2..C16,B2..B16) = $15,868.50

A B C
1 Date Advertising Sales
2 04/30/93 $435 $7,000
3 05/07/93 $400 $6,000
4 05/14/93 $505 $7,767
5 05/21/93 $470 $7,800
6 05/28/93 $610 $9,534
7 06/04/93 $540 $7,750
8 06/11/93 $575 $8,945
9 06/18/93 $715 $11,301
10 06/25/93 $645 $9,465
11 07/02/93 $680 $10,760
12 07/09/93 $785 $13,000
13 07/16/93 $750 $11,890
14 07/23/93 $855 $12,980
15 07/30/93 $820 $13,068
16 08/06/93 $890 $14,246

 Related topics

@FRACD - Fraction to Decimal
Syntax
@FRACD(Frac, Denom)

Frac Number to be converted.
Denom Denominator; must be an integer > 0.

@FRACD converts the fraction Frac to a decimal number. For example, you can use this @function to convert a
number with a fractional portion in 32nds to a decimal number. @FRACD reverses the effect of @DFRAC.
Frac looks like a decimal, but @FRACD does not use it that way. The portion to the right of the decimal point is
the numerator of the fraction using the denominator specified by Denom. For example, if Denom is 32 and you
want to find the decimal equivalent of 99 , set Frac to 99.12. If Denom were 100, setting Frac to 99.12
represents 99

.
Using a value of @FRACD(1.1,32) computes as 1 10/32. If you want 1 1/32 you must use @FRACD(1.01,32).
Example
This formula finds the decimal equivalent of 106

.
@FRACD(106.14,32) = 106.4375
This formula finds the decimal equivalent of 1 1/32.
@FRACD(1.01,32)= 1.03125

 Related topics

@FRACTION - Decimal to Fraction
Syntax
@FRACTION(Value, <Denom>, <ForceDenom>)

Value Decimal value to be converted.
Denom Denominator; must be an integer > 0. If you

specify a denominator that doesn't allow an
exact fraction, the numerator is rounded to the
nearest whole number.    For example,
@FRACTION(100.25, 5) would display 100 1/5.

ForceDenom When ForceDenom is not specified, the fraction
is displayed in its lowest common denominator
form; use 1 to display the denominator value
specified in <Denom>.

@FRACTION converts a decimal value to a fraction using the specified denominator.
If you specify @FRACTION(Value, <Denom>), the fraction is created based on the denominator value, then
displayed in the lowest common denominator form.    If you want the denominator value displayed, even if it's
not the lowest common denominator, specify 1 for ForceDenom.
If no <Denom> is specified, @fraction will round to the nearest 64th.
The fraction created from @FRACTION is a string value.    You can reference the fraction in a formula by using it
with the @VALUE function.    For example, if the fraction is computed in B4, you can use it in a formula as
@VALUE(B4).
Example
@FRACTION(100.5,4) = 100 1/2
@FRACTION(100.63,8) = 100 5/8
@FRACTION(100.5,8,1) = 100 4/8
@FRACTION(100.75,16,1) = 100 12/16
 Related topics

@FREQDIST - Frequency Distribution
Syntax
@FREQDIST(Data, Intervals)

Data Cells of values for which you want to count
frequencies.

Intervals Array of or reference to intervals into which you
want to group the values.

@FREQDIST calculates a frequency distribution, displaying it as a vertical array. A frequency distribution reports
how many of the specified values occur in each of the specified intervals.
The Intervals argument tells @FREQDIST the upper boundary of each interval, so the result will be an array one
greater than the number of cells in Intervals.
· Intervals must be in ascending order.
· If Data contains no values, @FREQDIST returns an array of zeros.
· If Intervals contains no values, @FREQDIST returns the number of elements in Data.
· @FREQDIST ignores blank cells and text.

Examples
Your consulting income is recorded in a cell area named INCOME. You want to know how many months your
income is $100 or below, from $100 to $500, from $500 to $800, and over $800.

INCOME A B C D
1
2 January February March Intervals
3 $652 $833 $599 100
4 $456 $305 $522 500
5 $68 $59 $73 800

@FREQDIST(A3..C5,D3..D5) returns

7 3
8 2
9 3
10 1

If you named the cells A3..C5 INCOME and cells D3..D5 INTERVALS, you could also enter the formula as:
@FREQDIST(INCOME,INTERVALS) = {3| 2| 3| 1}
If the intervals are not in cells, you can establish them in the formula:
@FREQDIST(INCOME,{100,500,800}) = {3| 2| 3| 1}
 Related topics

@FTEST - F-test
Syntax
@FTEST(Array1, Array2)

Array1 First array of numeric values.
Array2 Second array of numeric values.

@FTEST returns the results of an F-test run against the samples in Array1 and Array2. An F-test is a one-tailed
probability that the differences in the sample variances in Array1 and Array2 are different. Use @FTEST to
determine if two samples have significantly different variances (that is, if data sets were drawn from different
parent populations).
Array1 and Array2 must have more than two values. The variance of Array1 or Array2 must not be zero.
Example
@FTEST({75,82,83,85,85,90},{80,86,92,93,95,96}) = 0.637248
 Related topics

@FULLP - Convert Half-Width String
Syntax
@FULLP(String)

String The single-byte (half-width) character string

@FULLP converts a single-byte character string to a full-width, double-byte character string in a label. Double-
byte characters are used in software localized to most Far Eastern languages (for example, Japanese, Chinese,
and Korean). The localized machine will display a toolbar that lets you select various single and double-byte
character sets from within Quattro Pro.
Using @FULLP in a cell label allows you to convert ASCII text characters to double-byte characters. @FULLP does
not convert double-byte character set (DBCS) characters.
You cannot use @FULLP to convert single-byte Katakana characters to double-byte Katakana.
 Related topics

@FUTV - Future Value of Cash Flow
Syntax
@FUTV(Intrate, Flows, <[Odd|Periods]>, <Simp>, <Pathdep>, <Filter>, <Start>, <End>)

Intrate Interest rate or cells containing interest (discount)
rates.

Flows Cells containing cash flows.
Odd|Periods Delay after last cash flow in number of periods

(the default is 0) or cells containing lengths of
periods between cash flows (the default is 1).

Simp Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Pathdep Flag specifying whether to apply path-dependent
compounding to each flow; 0 = no path (default);
1 = path.

Filter Flag specifying filter type: 0 = no filter (default); 1
= cashflow < Start; 2 = cashflow £ Start; 3 =
cashflow > Start; 4 = cashflow ³ Start; 5 = Start
< cashflow < End; 6 = Start £ cashflow £ End.

Start A starting cash flow amount to compare against
individual flows.

End An ending cash flow amount to compare against
individual flows.

@FUTV calculates the future value of a specified cash flow structure. The future value of a stream of cash flows
is the sum of the future values of each cash flow.
By default, @FUTV computes the future value at the time of the last cash flow. If you specify Periods, @FUTV
calculates the future value at a time one period after the last cash flow. If you specify Odd, @FUTV calculates the
future value at a time Odd periods after the last cash flow.
@FUTV computes future value using this formula:

where n is the number of cash flows, and IFi is the interest factor associated with the ith cash flow, Fli. IFi is the
@FUTV counterpart of the discount factor, DFi used in @NETPV. Unlike DFi, which reduces the value of a flow, IFi
increases the value.

FV Future Value
Fl Flows

Example
Suppose a portfolio has a bond that will make 15 annual interest payments of $1,500, and pay $20,000 in
principal along with the last interest payment. If the interest earned on investing the annual interest payments
(the reinvestment rate) is 8.5%, this formula calculates the amount in the portfolio at the end of 15 years, using
the data shown in the next figure:
@FUTV(D2,A2..B3) = $62,348.40

A B C D
1 Cash Flows Interest Rate
2 14 $1,500 8.5%
3 1 $21,500

 Related topics

@FV - Future Value of Investment
Syntax
@FV(Pmt, Rate, Nper)

Pmt A numeric value representing the amount of the
periodic payment.

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Nper Number of periods, which should be an integer ³
2.

@FV returns the future value of an investment where Pmt is invested for Nper periods at the rate of Rate per
period. @FV calculates the future value with this formula:

where

P amount of periodic payment
R periodic interest rate
N number of periods

An equivalent for this formula using @FVAL is
@FVAL(Rate, Nper, - Pmt, 0)
@FV assumes that the investment is an ordinary annuity. @FVAL, a related @function, uses an optional
argument, Type, to indicate whether the investment is an ordinary annuity or an annuity due.
Examples
Assume you want to set aside $500 at the end of each year in a savings account that earns 15% annually. To
determine what the account will be worth at the end of six years, enter this formula:
@FV(500,15%,6)
Your yearly payment of $500 will be worth $4,376.87 in six years. You could also use @FVAL:
@FVAL(15%,6,-500,0,0)
Note that in @FVAL, you have to be precise about whether a payment is out of your pocket (a negative number)
or paid to you (a positive number).
Other examples:
@FV(200,0.12,5) = $1,270.57
@FV(500,0.9,4) = $6,684.50
@FV(800,0.9,3) = $5,208.00

@FV(800,0.9,A3) = $40,929.67 (if A3 = 6)
 Related topics

@FVAL - Future Value of Investment
Syntax
@FVAL(Rate, Nper, Pmt, <Pv>, <Type>)

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Nper Number of periods, which should be an integer >
0.

Pmt A numeric value representing the amount of the
periodic payment.

Pv A numeric value representing the current value
of an investment (the present value).

Type An optional numeric value that indicates whether
payments or cash flows occur at the beginning
(1) or the end (0) of the period; default = 0.

Like the related @function @FV, @FVAL returns the future value of an investment. The last two arguments, Pv
and Type, are optional. If you omit the last one or both of them, Quattro Pro assumes their values are zero. These
arguments let you define the problem as an annuity due (putting money into an account before it earns its
interest for that year means you have an annuity due to you, which increases the future value). Be sure to enter
negative numbers for money going out and positive numbers for money coming in to you.
This @function is not compatible with 1-2-3. If your file must be compatible with 1-2-3, use @FV instead.
Examples
Assume you want to set aside $500 at the start of each year in a savings account that earns 15% annually. To
determine what the account will be worth at the end of six years, starting at a present value of zero, enter this
formula:
@FVAL(15%,6,-500,0,1)
Note that the payment is out of your pocket, so you enter a negative number. Your yearly payment of $500 will
be worth $5,033.40 in six years, or $656.53 more than if you deposited the money at the last day of the year as
in the example for @FV.
If the account already had $340 in it before your yearly deposits of $500, you could calculate the future value
after six years with this formula:
@FVAL(15%,6,-500,-340,1) = $5,819.84
 Related topics

@GAMMA - Gamma Function
Syntax
@GAMMA(X)

X Any positive number, not 0.

@GAMMA calculates the gamma function. It approximates the gamma function accurately to within six
significant figures.
The gamma function has the property that @GAMMA(X+1) = X * @GAMMA(X). Or, @GAMMA(n+1) = n!
@GAMMA returns ERR if X is greater than approximately 171.6242.
Examples
@GAMMA(3) = 2
@GAMMA(4) = 6
@GAMMA(5) = 24
 Related topics

@GAMMADIST - Gamma Distribution
Syntax
@GAMMDIST(X, Alpha, Beta, Cum)

X Value at which to evaluate the function; must be
³ 0.

Alpha Parameter to the gamma distribution; must be >
0.

Beta Parameter to the gamma distribution; must be >
0.

Cum 1 to return the cumulative gamma distribution
function; 0 to return the probability density
function.

@GAMMDIST returns the gamma distribution function, which is the probability that a random variable will be less
than X. Use @GAMMADIST to study random variables characterized by skewed and asymmetric distributions.
When Alpha = 1, @GAMMADIST returns the exponential distribution; see @EXPONDIST.
Examples
@GAMMADIST(18,8,2,1) = 0.676103
@GAMMADIST(18,8,2,0) = 0.058558
 Related topics

@GAMMAINV - Inverse of Gamma Distribution
Syntax
@GAMMAINV(Prob, Alpha, Beta)

Prob Probability associated with the gamma
cumulative function; must be ³ 0 and £ 1.

Alpha A parameter to the gamma distribution; must be
> 0.

Beta A parameter to the gamma distribution; must be
> 0.

@GAMMAINV returns the inverse of the cumulative gamma distribution function.
Example
@GAMMAINV(0.676103,8,2) = 18
 Related topics

@GAMMALN - Natural Logarithm of Gamma Function
Syntax
@GAMMALN(X)

X Value for which you want to calculate
@GAMMALN; must be > 0.

@GAMMALN returns the natural logarithm of the gamma function. Use @GAMMALN to build other common
statistical functions such as the beta function (see @BETA) and the factorial function (see @FACT).
Example
@GAMMALN(6) = 4.787492
 Related topics

@GAMMAP - Incomplete Gamma Function
Syntax
@GAMMAP(A, X)

A Parameter to the function; must be > 0.
X Value at which to evaluate the function; must be

³ 0.

@GAMMAP returns the incomplete gamma function, also known as the standard cumulative gamma distribution.
@GAMMAP is equal to the cumulative gamma distribution when b = 1.
Example
@GAMMAP(3,4) = 0.761897
 Related topics

@GAMMAQ - Complement to Incomplete Gamma Function
Syntax
@GAMMAQ(A, X)

A Parameter to the function; must be > 0.
X Value at which to evaluate the function; must be

³ 0.

@GAMMAQ is a complement to the incomplete gamma function and equals (1 - @GAMMAP).
Example
@GAMMAQ(3,4) = 0.238103
 Related topics

@GCD - Greatest Common Divisor
Syntax
@GCD(X, Y)

X Integer to find greatest common divisor of.
Y Integer to find greatest common divisor of.

@GCD returns the greatest common divisor of X and Y (the largest integer that both numbers can be divided by
without a remainder.
@GCD should not be confused with the greatest common denominator which is @LCM.
Examples
@GCD(96,78) = 6
@GCD(112,42) = 14
@GCD(-9,-3) = 3
 Related topics

@GEOMEAN - Geometric Mean
Syntax
@GEOMEAN(List)

List One or more numeric or values; values in List
must be positive.

@GEOMEAN returns the geometric mean of a positive range of values. The geometric mean is the nth root of the
product of a series of numbers. Use @GEOMEAN when you are interested in an average rate of change of values
in a data set given a varying rate of change.
@GEOMEAN uses this formula:

Example
@GEOMEAN(3,4,5,6,7) = 4.789389
@GEOMEAN(C10..C14) = 1.129486, where C10=1.15, C11=1.08, C12=1.13, C13=1.18, and C14=1.11
 Related topics

@GEOSUM - Geometric Series
Syntax
@GEOSUM(FirstTerm, Terms, Ratio)

FirstTerm First term of the series.
Terms Number of terms in the series.
Ratio Common ratio of the series.

@GEOSUM calculates the geometric series that is sum of the terms of a geometric sequence of a number of
terms (n) based on the first term and common ratio. The notion of a geometric series is the basis of the
mathematical model of an annuity. @GEOSUM uses the formula:

where

s geometric series
a first term
r common ratio
n number of terms

The formula assumes: r ¹ 1; if r = 1, @GEOSUM returns NA.
Examples
If you invest $2,000 at 3.5% interest compounded annually, the list of compound amounts at the end of each
year for 5 years is
2000*1.035, 2000*1.035^2, 2000*1.035^3, 2000*1.035^4, 2000*1.035^5
This is a geometric series with the common ration 1.035.
@GEOSUM(2000*1.035,5,1.035) = $11,100.30
 Related topics

@GESTEP - Test if X >= Y
Syntax
@GESTEP(X, <Y>)

X Numeric value to check.
Y Numeric value that X must exceed for function to

return 1 (if omitted, assumed to be 0).

@GESTEP tests whether X is greater than or equal to Y. If it is, @GESTEP returns 1 (true); if not, @GESTEP returns
0 (false).
Examples
@GESTEP(1,2) = 0
@GESTEP(2,1) = 1
@GESTEP(1) = 1
@GESTEP(-2) = 0
You can sum several @GESTEP functions to count the number of values that exceed a certain threshold (Y).
 Related topics

@GETGROUP - Name of Group Containing Sheet
Syntax
@GETGROUP(Block, <PageName>)

Block A cell or cells of the notebook to check.
                                  
PageName

A string value representing a sheet name or an
address specifying the sheet name to check
(optional).

@GETGROUP returns a string that is the name of the group that includes the sheet containing specified cells.
If Block is used in conjunction with the optional argument PageName, @GETGROUP searches the notebook
referenced by Block for the group that contains the sheet specified by PageName. PageName is a string or cell
address.
If the sheet is not part of a group, @GETGROUP returns ERR.
Example
@GETGROUP([REPORTQ4]A:C12,"April") searches the notebook REPORTQ4 for the name of the group that
contains the sheet named April
@GETGROUP([REPORTQ4]A:C12) searches the notebook REPORTQ4 for the name of the group that contains the
sheet named A
 Related topics

@GETREGISTRYKEY - Return Value of Windows Registry Key
Syntax
@GETREGISTRYKEY(Registry Key, Registry Value)

Registry Key A string value representing the path in the
registry.

Registry Value A string value representing the stored value in
the registry, at the specified path.

@GETREGISTRYKEY returns the value of the specified key in the registry.
You can use @GETREGISTRYKEY to open a file specified in the registry.
Example
{FileOpen +@GETREGISTRYKEY("HKEY_LOCAL_MACHINE\SOFTWARE\Corel\QuattroPro\9\Location of Files\
EN","Template Folder")&"\amortize.qpw"}
 Related topics

@GRANDTOTAL123 - Sum of Subtotals
Syntax
@GRANDTOTAL123 (List)

List Any combination of cells; separated by valid
argument separators.

@GRANDTOTAL123 sums all cells in a designated area that contain @SUBTOTAL123 in their formulas.
Example
In the following, Cells A3 and C3 contain @SUBTOTAL123(A1..A2) and @SUBTOTAL123(C1..C2), respectively. Cell
A4 contains the formula @GRANDTOTAL123(A1..C3) and sums only the subtotals in the cells. To omit possible
subtotals in Column B, you could also write @SUM(A1..A2,B1..B2).

A B C D
1 $30 $18
2 $65 $22
3 $95 $40 @SUBTOTAL123 in A3 and C3
4 $135 @GRANDTOTAL123 in A4

 Related topics

@GROWTH - Fits Exponential Curve to Data
Syntax
@GROWTH(KnownYs, <KnownXs>, <NewXs>, <Const>)

KnownYs Array of known y-values for the curve y =
b*m^x.

KnownXs Array of known x-values (optional).
NewXs Array of new x-values for which you want the

corresponding y-values (optional).
Const Logical value (optional) that tells @GROWTH

whether to force the constant b = 1:
 If Const is TRUE or omitted, @GROWTH uses the
actual value of b.
 If Const is FALSE, @GROWTH sets b = 1, then
adjusts the m-values so that y = m^x.

@GROWTH fits an exponential curve to the data KnownYx and KnownXs, and returns the y-values along that
curve for the array of NewXs that you specify.
· If known y-values are in one column, @GROWTH takes each column of known x-values to be a separate

variable. If known y-values are in one row, @GROWTH takes each row of known x-values to be a separate
variable.

· If any of the known y-values are 0 or negative, @GROWTH returns ERR.
· The argument KnownXs can include more than one set of variables. If you use only one variable, KnownYs and

KnownXs can be cell areas of any shape, but must have the same dimensions. If you use more than one
variable, KnownYs must be a single-column or single-row. Use commas to separate x-values in the same row
and pipes (|) to separate rows.

· The argument NewXs must follow the pattern of KnownXs: It must include a row or column for each
independent variable. If you omit the argument NewXs, @GROWTH assumes it is the same as KnownXs. If you
omit both KnownXs and NewXs, @GROWTH assumes they are the array {1, 2, 3,...} of a size equal to
KnownYs.

Example
Sales for your company in its first four quarters are entered in a selection named Sales:

A B
1 Quarter Sales
2 1 $75,000
3 2 $90,000
4 3 $115,000
5 4 $140,000

To predict second-year sales, @GROWTH(Sales,A2..A5,A6..A9) = {$173,359, $214,246, $264,775, $327,222}
 Related topics

@HALFP - Convert Full-Width String
Syntax
@HALFP(String)

String The double-byte (full-width) character string

@HALFP converts a double-byte character string to a half-width (single-byte) character string in a label. Double-
byte characters are used in software localized to most Far Eastern languages (for example, Japanese, Chinese,
and Korean). The localized machine will display a toolbar that lets you select various single and double-byte
character sets from within Quattro Pro.
@HALFP allows for converting double-byte character set (DBCS) alphanumeric characters to ASCII characters. In
cases where there is no matching ASCII character, these characters are not converted and the results displays
the same format as the original.
You cannot convert use @HALFP to convert double-byte Katakana characters to single-byte Katakana.
 Related topics

@HARMEAN - Harmonic Mean
Syntax
@HARMEAN(List)

List One or more numeric or cell values; none of the
values in List can equal 0.

@HARMEAN returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the arithmetic
mean of the reciprocals of a set of numbers.
@HARMEAN uses this formula:

Example
@HARMEAN(3,4,5,6,7) = 4.575163
 Related topics

@HEXTOASC - Hexadecimal to ASCII
Syntax
@HEXTOASC(Hex)

Hex Hexadecimal number to convert; can be up to 40
hexadecimal digits.

@HEXTOASC returns the ASCII equivalent of a hexadecimal number.
If the hexadecimal number includes nonnumeric characters, enclose it in quotation marks.
Examples
@HEXTOASC("2B") = +
@HEXTOASC("3031414243444546") = 01ABCDEF
@HEXTOASC("5155415454524F") = QUATTRO
 Related topics

@HEXTOBIN - Hexadecimal to Binary
Syntax
@HEXTOBIN(Hex)

Hex Hexadecimal number to convert.

@HEXTOBIN returns the binary string equivalent of a hexadecimal number. To convert a negative number,
precede Hex with a minus sign.
Examples
@HEXTOBIN("A") = 1010
@HEXTOBIN("10") = 10000
@HEXTOBIN("1E") = 11110
 Related topics

@HEXTOBIN64 - Hexadecimal to Binary
Syntax
@HEXTOBIN64(Hex, <Places>)

Hex Hexadecimal number to convert, must be >0.
Places Number of characters to return; must be £ 64.

@HEXTOBIN64 returns the binary string equivalent of a hexadecimal number (up to 64 bits).
If the hexadecimal number includes nonnumeric characters, enclose it in quotation marks.
Examples
@HEXTOBIN64("A",2) = 10
@HEXTOBIN64("A",6) = 001010
@HEXTOBIN64("1E078") = 00011110000001111000
@HEXTOBIN64("1E078",7) = 1111000
 Related topics

@HEXTONUM - Hexadecimal to Decimal
Syntax
@HEXTONUM(Hex)

Hex A hexadecimal number enclosed by double
quotes, either positive or negative.

@HEXTONUM converts the hexadecimal number in the string to the corresponding decimal value. @NUMTOHEX
performs the opposite conversion, from decimal to hexadecimal.
Examples
@HEXTONUM("a") = 10
@HEXTONUM("10") = 16
@HEXTONUM("00FF") = 255
@HEXTONUM(A1) = 10 (if cell A1 contains the label 'a)
 Related topics

@HEXTONUM64 - Hexadecimal to Decimal
Syntax
@HEXTONUM64(Hex, <Signed>)

Hex Hexadecimal number to convert.
Signed 1 if the most significant bit of Hex is a sign bit; 0

if Hex is positive (the default is 0).

@HEXTONUM64 returns the decimal equivalent of a hexadecimal number (up to 64 bits).
If Signed is 1, the most significant bit of Hex is the sign bit. If the sign bit is 0, the number is positive; if it is 1,
the number is negative.
If the hexadecimal number includes nonnumeric characters, enclose it in quotation marks.
Examples
@HEXTONUM64("A") = 10
@HEXTONUM64("123456789ABCDEF0") = 1311768467463790320
@HEXTONUM64("FE4FA1",1) = -110687
 Related topics

@HEXTOOCT - Hexadecimal to Octal
Syntax
@HEXTOOCT(Hex)

Hex Hexadecimal number to convert.

@HEXTOOCT returns the octal string equivalent of a hexadecimal number. To convert a negative number,
precede Hex with a minus sign.
Hexadecimal strings must be <14 characters.
Examples
@HEXTOOCT("A") = 12
@HEXTOOCT("10") = 20
@HEXTOOCT("1E") = 36
 Related topics

@HEXTOOCT64 - Hexadecimal to Octal
Syntax
@HEXTOOCT64(Hex, <Places>)

Hex Hexadecimal number to convert, must be > 0.
                                  
Places

Number of characters to return; must be £ 22.

@HEXTOOCT64 returns the octal string equivalent of a hexadecimal number (up to 64 bits).
If the hexadecimal number includes nonnumeric characters, enclose it in quotation marks.
Examples
@HEXTOOCT64("A") = 12
@HEXTOOCT64("7",2) = 07
@HEXTOOCT64("1E078",6) = 360170
@HEXTOOCT64("0123456789ABCDEF") = 0004432126361152746757
 Related topics

@HLOOKUP - Horizontal Lookup
Syntax
@HLOOKUP (X, Block, Row, <Type>)

X The numeric or string value you want to search for.
Block The range of cells.
Row The number of the referenced row. The rows are

referenced from 0 to the number of rows in Block minus
1.
The first row (index row) in Block = 0
The second row in Block = 1, ...

Type <optional> Lets you specify whether or not the match must be
exact.
0 Does not need to be an exact match
1 Must be an exact match

@HLOOKUP searches horizontally through the index row of Block for the value X. When @HLOOKUP finds the
value X, it returns the value displayed Row rows beneath it.
All values in the index column must be sorted in ascending order for the function to work correctly. Otherwise,
ERR or an incorrect answer may be returned.
@HLOOKUP returns 0 if the referenced cell is blank. ERR is returned if:
· Row is less than 0 or greater than the number of rows minus 1 in Block.
· X is less than the smallest value in the topmost row of Block.
· X and the first row entries are string values and @HLOOKUP fails to find a match in the top row of Block.
· X is a string or label and the index row entries are numeric values.
If X is a string, @HLOOKUP looks for an exact case-sensitive match. If X is a number and @HLOOKUP cannot find
an equal number, it locates the highest number, not more than X, in the row.
If X is a number and the index row contains only labels, @HLOOKUP stops at the rightmost column.
Each cell of the index row must contain a value.
Examples
In the following example, @HLOOKUP searches across the index row (1) of the Block (A1..D4), looking for the
largest number equal to or less than X (17). It stops at cell D1, then moves down Row rows (3). It stops at cell D4
and returns the value 47.

A B C D
1 1 5 10 15
2 43 3 32 67
3 92 42 18 22
4 45 83 76 47

@HLOOKUP(17, A1..D4, 3)
Returns: 47
 Related topics

@HOLS - Holidays
Syntax
@HOLS(StartDate, EndDate, Holidays, <Saturday>, <Sunday>)

StartDate Number representing the start date. See "Using
dates and times in Quattro Pro."

EndDate Number representing the end date.
Holidays Cells containing dates that are holidays; to

indicate no holidays, enter an empty cell or cells.
Saturday 0 to specify that Saturday is not a business day;

1 to specify that Saturday is a business day (the
default is 0).

Sunday 0 to specify that Sunday is not a business day; 1
to specify that Sunday is a business day (the
default is 0).

@HOLS returns the number of holidays between StartDate and EndDate, including the specified dates (if they
appear in Holidays).
By default, @HOLS does not include holidays that fall on a Saturday or Sunday; if either Saturday or Sunday is
passed as 1, the count also includes holidays falling on that day.
Example
This formula calculates the number of holidays between April 1, 1993 and December 14, 1993, assuming that
the dates contained in selection A7..C9 are holidays.
@HOLS(@DATE(93,4,1),@DATE(93,12,14),A7..C9) = 5
 Related topics

@HOUR - Hour Portion of Date Serial Number
Syntax
@HOUR(DateTimeNumber)

DateTimeNumb
er

A numeric value between -109571 and
474816.9999999, representing a date/time serial
number: -109571 = January 1, 1600; 0 =
December 31, 1899; 474816 = December 31,
3199; the decimal = time (24 hr).

See "Using dates and times in Quattro Pro."
@HOUR returns the hour portion of DateTimeNumber. DateTimeNumber must be a valid date/time serial number.
Because only the decimal portion of a serial number pertains to time, the integer portion of the number is
disregarded. The result is between 0 (12:00AM) and 23 (11:00PM).
To extract the hour portion of a string that is in time format (instead of serial format), use @TIMEVALUE with
@HOUR to translate the time into a serial number. To return standard hours (1-12) instead of military hours (1-
24), use @MOD with a parameter of 12.
Examples
@HOUR(.25) = 6
@HOUR(.5) = 12
@HOUR(.75) = 18
@HOUR(@TIMEVALUE("10:08am")) = 10
@MOD(@HOUR(@TIMEVALUE("9:31:52 PM")),12) = 9
 Related topics

@HYPGEOMDIST - Hypergeometric Distribution
Syntax
@HYPGEOMDIST(SampleSuccess, SampleSize, PopSuccess, PopSize)

SampleSuccess Successes in the sample; must be ³ 0.
SampleSize Sample size; must be ³ 0 and £ PopSize.
PopSuccess Successes in the population; must be ³ 0 and £

PopSize.
PopSize Population size; must be ³ 0.

@HYPGEOMDIST returns the hypergeometric distribution of a sample. It gives the probability of successes in a
sample given the sample's size, the total population, and the number of successful trials in that population. Use
@HYPGEOMDIST to determine the probability that a distribution contains exactly SampleSuccess items of a
particular type.
SampleSuccess must be greater than or equal to 0, greater than the lesser of SampleSize or PopSuccess, and
greater than the larger of 0 or (SampleSize-PopSize+PopSuccess)
@HYPGEOMDIST uses this formula:

where

d SampleSuccess
n SampleSize
D PopSuccess
N PopSize

Examples
Five cards are drawn from a deck of 52 playing cards. This formula calculates the probability that one of the five
cards drawn is an ace (assuming there are only four aces in the deck):
@HYPGEOMDIST(1,5,4,52) = 0.299474
 Related topics

@IF - Perform Logical Test
Syntax
@IF(Cond, TrueExpr, FalseExpr)

Cond A logical expression representing the condition
to be tested.

TrueExpr A numeric or string value representing the value
to use if Cond is true.

FalseExpr A numeric or string value representing the value
to use if Cond is false.

@IF evaluates the logical condition specified as Cond. If the condition is found to be true, it returns the value
specified as TrueExpr. If the condition is false, it returns the value specified as FalseExpr. Cond is true if it
evaluates to any nonzero numeric value.
The formula entered as Cond can be any logical expression that can be evaluated as true or false; for example,
B6<0 or C3*D2=53.
You can use compound conditions by connecting expressions with #AND# or #OR#. If you use #AND#, both
conditions specified must be met to evaluate true. If you use #OR#, the expression is true if either of the
conditions is met. For example, A3<10#OR#A3>5 means that the value in A3 must be either less than 10 or
greater than 5 to evaluate true--6,9,1, and 15 are all true; A3<10#AND#A3>5 means that the value in A3 must
be between 5 and 10 to evaluate true. If A3 contains a label, the expression evaluates true because labels have
a value of 0 (zero).
You can also use the #NOT# operator to negate a condition. For example, #NOT#(B3>10) evaluates true if B3 is
not greater than 10.
TrueExpr and FalseExpr can be numbers, formulas resulting in numbers, or text. If text, the string must be
enclosed by double quotes; for example, @IF(D6=5,"John","Harry "). You can also use cell references to use the
contents of other cells in the notebook. For example, @IF(B10<18,D5,C4) enters the contents of D5 if the
condition is true, and enters the contents of C4 if the condition is false.
If the condition you specify with Cond searches a cell for a number and the cell contains a label, the label is
evaluated as having a value of 0 and FalseExpr is returned. Likewise, if you search for a label and find a numeric
value, TrueExpr results if the value of the referenced cell is 0; FalseExpr results if it is nonzero.
Although logical expressions typically reference other cells, this is not required. Any expression resulting in a
numeric value is accepted; for example, A1=1 or A1="Fred". If the result of Cond is nonzero, TrueExpr is the
result; otherwise, FalseExpr is the result.
@IF statements can be nested, or used within one another. In other words, TrueExpr can contain yet another test
to further validate Cond.
For example, @IF(B5>C6,@IF(B5>C7,1,2),3) tells Quattro Pro to see if the contents of B5 are greater than C6. If
they are, it then checks to see if B5 is greater than C7; if so, it enters a 1 in the cell. If not, it enters a 2. If B5 is
not greater than C6, it enters a 3. There is no limit on the number of levels @IF expressions that you can nest, as
long as the entire expression does not exceed 1024 characters.
Examples
@IF(8=7,4,5) = 5
@IF(B4<100,"Yes","No") = Yes if B4 < 100; otherwise, No
@IF(C10=BLOCK,45,50) = 45 if C10 = the cell named BLOCK; otherwise, 50
@IF(C10,1,0) = 0 if C10 = 0; otherwise, 1
 Related topics

@IMABS - Absolute Value of Complex Number
Syntax
@IMABS(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy for which you want the absolute
(modulus) value.

@IMABS returns the absolute value (modulus) of a complex number. It uses this formula:
Given Complex = x + yi

C = Complex
Example
@IMABS("-10+25.6i") = 27.48381
 Related topics

@IMAGINARY - Imaginary Coefficient of Complex Number
Syntax
@IMAGINARY(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy from which you want to extract the
imaginary coefficient.

@IMAGINARY returns the imaginary coefficient of a complex number.
Examples
@IMAGINARY("2+8i") = 8
@IMAGINARY("-i") = -1
 Related topics

@IMARGUMENT - Angle of Complex Number
Syntax
@IMARGUMENT(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy for which you want to calculate the
angle in the complex plane.

@IMARGUMENT returns the angle Q, in radians, of a number in the complex plane. It uses this formula:

Example
@IMARGUMENT("5+12i") = 1.176005
 Related topics

@IMCONJUGATE - Complex Conjugate of Complex Number
Syntax
@IMCONJUGATE(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy for which you want to calculate the
complex conjugate.

@IMCONJUGATE returns the complex conjugate of a complex number.
Example
@IMCONJUGATE("5+12i") = "5-12i"
 Related topics

@IMCOS - Cosine of Complex Number
Syntax
@IMCOS(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy for which you want to calculate the
cosine.

@IMCOS returns the cosine of the complex number Complex. @IMCOS uses this formula:
Given Complex = x + yi

C = Complex
Example
@IMCOS("5+12i") = "23083.7+78034.8i"
 Related topics

@IMDIV - Quotient of Complex Numbers
Syntax
@IMDIV(Complex1, Complex2)

Complex1 Complex numerator or dividend in the format x
+ yi, x + iy, x + yj, or x + jy.

Complex2 Complex denominator or divisor in the format x
+ yi, x + iy, x + yj, or x + jy.

@IMDIV returns the quotient of two complex numbers (Complex1 and Complex2). It uses this formula:
Given: Complex1 = a + bi and Complex2 = c + di

C = Complex
Example
@IMDIV("5+6i","3+4i") = "1.56-0.08i"
 Related topics

@IMEXP - Exponential of Complex Number
Syntax
@IMEXP(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy for which you want to calculate the
exponential.

@IMEXP returns the exponential of a complex number. It uses this formula:
Given Complex = x + yi,

C = Complex
Example
@IMEXP("5+12i") = "125.239-79.6345i"
 Related topics

@IMLN - Natural Logarithm of Complex Number
Syntax
@IMLN(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy for which you want to calculate the
natural logarithm.

@IMLN returns the natural logarithm of the complex number Complex. It uses this formula:

Example
@IMLN("5+12i") = "2.56495+1.17601i"
 Related topics

@IMLOG10 - Base 10 Logarithm of Complex Number
Syntax
@IMLOG10(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy for which you want to calculate the
base 10 log.

@IMLOG10 returns the base 10 (common) logarithm of the complex number Complex. It uses this formula:
Given Complex = x + yi

C = Complex
Example
@IMLOG10("5+12i") = "1.11394+0.510733i"
 Related topics

@IMLOG2 - Base 2 Logarithm of Complex Number
Syntax
@IMLOG2(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy for which you want to calculate the
base 2 log.

@IMLOG2 returns the base 2 logarithm of the complex number Complex. It uses this formula:
Given Complex = x + yi

C = Complex
Example
@IMLOG2("5+12i") = "3.70044+1.69662i"
 Related topics

@IMPOWER - Complex Number Raised to a Power
Syntax
@IMPOWER(Complex, Power)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy.

Power The power to which you want to raise Complex;
can be a complex number in the format x + yi, x
+ iy, x + yj, or x + jy.

@IMPOWER returns the complex number Complex raised to the power Power. Power can be a value or a complex
number.
Examples
@IMPOWER("5+12i",3) = "-2035-828i"
@IMPOWER("5+12i","3+2i") = "-150.575+145.094i"
 Related topics

@IMPRODUCT - Product of Complex Numbers
Syntax
@IMPRODUCT(Complex1, Complex2)

Complex1 Complex number in the format x + yi, x + iy, x +
yj, or x + jy.

Complex2 Complex number in the format x + yi, x + iy, x +
yj, or x + jy.

@IMPRODUCT returns the product of two complex numbers (Complex1 and Complex2). It uses this formula:
Given Complex1 = a + bi and Complex2 = c + di
(Complex1)(Complex2) = (ac - bd) + (ad + bc)i
Example
@IMPRODUCT("5+12i","2-i") = "22+19i"
@IMPRODUCT("10+2i",5) = "50+10i"
 Related topics

@IMREAL - Real Coefficient of a Complex Number
Syntax
@IMREAL(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy from which you want to extract the
real coefficients.

@IMREAL returns the real coefficient of a complex number.
Examples
@IMREAL("2+8i") = 2
@IMREAL("-i") = 0
 Related topics

@IMSIN - Sine of a Complex Number
Syntax
@IMSIN(Complex)

Complex Complex number in the format x + yi, x + iy, x
+ yj, or x + jy for which you want to calculate
the sine.

@IMSIN returns the sine of the complex number Complex. It uses this formula:
Given Complex = x + yi

C = Complex
Examples
@IMSIN("5+12i") = "-78034.8+23083.7i"
@IMSIN("1+i") = "1.29846+0.634964i"
 Related topics

@IMSQRT - Square Root of a Complex Number
Syntax
@IMSQRT(Complex)

Complex Complex number in the format x + yi, x + iy, x +
yj, or x + jy to calculate square root of.

@IMSQRT returns the square root of a complex number. It uses this formula:
Given Complex = x + yi

C = Complex
Example
@IMSQRT("5+12i") = "3+2i"
 Related topics

@IMSUB - Difference of Complex Numbers
Syntax
@IMSUB(Complex1, Complex2)

Complex1 Complex number in the format x + yi, x + iy, x +
yj, or x + jy from which to subtract Complex2.

Complex2 Complex number in the format x + yi, x + iy, x +
yj, or x + jy to subtract from Complex1.

@IMSUB returns the difference of two complex numbers (Complex1 and Complex2). It uses this formula:
Given Complex1 = (a + bi) and Complex2 = (c + di)
(a + bi) - (c + di) = (a - c) + (b - d)i
Example
@IMSUB("5+12i","2-i") = "3+13i"
 Related topics

@IMSUM - Sum of Complex Numbers
Syntax
@IMSUM(List)

List One or more complex numbers in the format x +
yi, x + iy, x + yj, or x + jy, separated by
commas.

@IMSUM returns the sum of a list of complex numbers. It uses this formula:
Given Complex1 = (a + bi) and Complex2 = (c + di)
Complex1 + Complex2 = (a + c) + (b + d)i
Example
@IMSUM("5+12i","7+14i") = "12+26i"
 Related topics

@INDEX - Return Value from Table Index
Syntax
@INDEX(Block, Column, Row, <Page>)

Block A cell reference or name.
Column The number of the referenced column, from 0 to

255 (the first column in Block = 0, the second =
1, and so on).

Row The number of the referenced row; if an offset,
the first row in Block = 0, the second = 1, and so
on.

Page The number of the referenced sheet, from 0 to
255 (the first sheet in Block = 0, the second = 1,
and so on).

@INDEX searches through the table specified as Block and returns the value specified with the Column, Row, and
optional Page values. The upper left cell in Block is column 0, row 0. Likewise, the first sheet is 0. The Column
and Row values are not the actual coordinates of the resulting cell, but instead are offset values. In other words,
@INDEX begins in the top left cell of the specified cells, moves right the number of columns specified by Column,
moves down the number of rows specified by Row, and through the number of sheets specified by Page (if you
have specified a Page). It then returns the value in the current cell.
The Column, Row, and Page values must be numbers equal to or greater than zero and less than the number of
rows, columns, or sheets in the cells. If a fractional number is used (for example, 2.35), the fractional part is
dropped (not rounded).
@HLOOKUP and @VLOOKUP are related functions.
Examples

A B C D
1 1 5 10 15
2 43 53 32 67
3 92 42 18 22
4 45 83 76 47

These examples reference cells in the data table:
@INDEX(A1..D4,3,2) = 22
@INDEX(A1..D4,1,2) = 42
@INDEX(C2..D3,0,1) = 18
@INDEX(C2..D3,1,3) = ERR (too many rows)
@INDEX(A1..D4,-2,3) = ERR (negative column number)
 Related topics

@INDEXTOLETTER - Letter(s) Corresponding to Sheet/Column Index
Syntax
@INDEXTOLETTER(Index)

Index An integer number from 0 to 18277 inclusive.

@INDEXTOLETTER returns a one-, two-, or three-character string equivalent (for example, A, B, AA, AB, and ZZZ)
for the index number of a sheet or column.
If Index is < 0 or > 18277, @INDEXTOLETTER returns ERR. If Index is not an integer, it is rounded to the nearest
integer.
Examples
@INDEXTOLETTER(0) = A
@INDEXTOLETTER(1) = B
@INDEXTOLETTER(18277) = ZZZ
 Related topics

@INT - Integer
Syntax
@INT(X)

X A numeric value.

@INT drops the fractional portion of X, returning its integer value. @ROUND rounds X to the nearest integer.
Examples
@INT(499.99) = 499
@INT(0.1245) = 0
@INT(-2.3) = -2
@INT(C4) = 5 if C4 contains a value between 5 and 6
 Related topics

@INTERCEPT - Y-Intercept
Syntax
@INTERCEPT(KnownY, KnownX)

KnownY Dependent range of values.
KnownX Independent range of values.

@INTERCEPT returns the y-intercept of the linear regression line through two data sets. KnownY and KnownX
must contain the same number of values. The formula @INTERCEPT uses is

, the slope, is calculated using this formula:

Example
@INTERCEPT({16,28,30,35,52,65},{11,15,18,22,35,43}) = 3.56304
 Related topics

@INTRATE - Annualized Interest Rate
Syntax
@INTRATE(Settle, Maturity, Investment, Redemption, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date; must be
> Settle.

Investment Amount invested; must be > 0.
Redemption Redemption value; must be > 0.
Calendar Flag specifying which calendar to observe (0 =

30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@INTRATE returns the simple annualized yield for a fully invested security. @INTRATE computes yield using this
formula:

Y yield
R redemption
I investment
b basis
M maturity
S settle

tb is the number of days over which the discount rate applies (360 or 365).

Example
This formula calculates the interest rate for a bond with the following terms: Settle is November 11, 1995,
Maturity is May 27, 1996, Investment is $10,000, Redemption is $10,397.50, and Calendar is 1 (actual/actual).
@INTRATE(@DATE(95,11,11),@DATE(96,5,27),10000,10397.50,1) = 0.073277
 Related topics

@INVB - Binary Bit Inversion
Syntax
@INVB(Binary, <Bits>)

Binary Binary number.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in
Binary; must be in the range 0 <n £ 64.

@INVB inverts the bits of a binary number. All bits that are 1 change to 0, and all bits that are 0 change to 1.
Examples
@INVB(0) = 1
@INVB(1010,5) = 10101
@INVB(1100,5) = 10011
 Related topics

@INVH - Hexadecimal Bit Inversion
Syntax
@INVH(Hex, <Bits>)

Hex Hexadecimal number.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in Hex;
4 binary digits = 1 hexadecimal digit; must be in
the range 0 <n £ 64.

@INVH inverts the binary bits of a hexadecimal number. All bits that are 1 change to 0, and all bits that are 0
change to 1.
Example
@INVH("A") = 5
@INVH("C",8) = F3
 Related topics

@INTXL - Integer
Syntax
@INTXL(X)

X A numeric value.

@INTXL rounds X down to an integer value. @ROUND rounds X to the nearest integer. @INT drops the fractional
portion of X, returning its integer value.
Examples
@INTXL(499.99) = 499
@INTXL(0.1245) = 0
@INTXL(-2.3) = -3
@INTXL(D4) = -6 if D4 contains a value between -5 and -6
@INTXL(C4) = 5 if C4 contains a value between 5 and 6
 Related topics

@IPAYMT - Interest Portion of Payment
Syntax
@IPAYMT(Rate, Per, Nper, Pv, <Fv>, <Type>)

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Per The number of the loan period for which the
interest is desired (where Nper is the total
number of periods).

Nper A numeric value > 0, representing the number of
periods of the loan (the number of payments to
be made) or investment (the number of
compounding periods).

Pv A numeric value representing the amount
borrowed (the principal).

Fv A numeric value representing the future value of
an investment (the value the investment will
reach at some point).

Type An optional numeric value that indicates whether
payments or cash flows occur at the beginning
(1) or the end (0) of the period; default = 0.

@IPAYMT and @PPAYMT tell what portion of a particular loan payment is interest and what portion is principal,
respectively. For each month in the transaction period,
@PAYMT(Rate, Nper, Pv, Fv, Type) = @IPAYMT(Rate, Per, Nper, Pv, Fv, Type) + @PPAYMT(Rate, Per, Nper, Pv, Fv,
Type).
@IPAYMT is calculated by computing the simple interest on the outstanding principal from the previous month.
@PPAYMT then gives the principal portion of the payment for the current month, and is computed by subtracting
@IPAYMT from @PAYMT. The calculation starts by using Pv as the outstanding principal at the beginning of the
first month:
@IPAYMT(Rate, Per, Nper, Pv, Fv, Type) = Rate * @FVAL(Rate, Per + (Type - 1), @PAYMT(Rate, Nper, PV, Fv, Type),
Pv, Type)
The last two arguments, Fv and Type, are optional. If you omit one or both of them, their values are assumed to
be zero.
Examples
If you are two years into a 30-year, 10% mortgage on a $100,000 loan and your interest payment is tax-
deductible, then @IPAYMT(.1/12,2*12,30*12,100000) returns your current month's deduction: -824.03.
 Related topics

@IRATE - Interest Rate
Syntax
@IRATE(Nper, Pmt, Pv, <Fv>, <Type>)

Nper A numeric value > 0, representing the number of
periods of the loan (the number of payments to
be made) or investment (the number of
compounding periods).

Pmt A numeric value representing the amount of the
periodic payment.

Pv A numeric value representing the current value
of an investment (the present value).

Fv A numeric value representing the future value of
an investment (the value the investment will
reach at some point).

Type An optional numeric value that indicates whether
payments or cash flows occur at the beginning
(1) or the end (0) of the period; default = 0.

@IRATE calculates the interest rate required to pay off a principal (Pv) or reach an investment goal (Fv) in Nper
payments of Pmt amount.
The last two arguments, Fv and Type, are optional. If you omit one or both of them, their values are assumed to
be zero.
@IRATE requires that the initial cash flow (Pv + Type * Pmt) and the last cash flow (Fv + (1-Type) * Pmt) have
opposite signs. Otherwise, @IRATE returns ERR because the transaction is not simple and there may not be a
meaningful rate.
@IRATE is not compatible with 1-2-3. If your file must be compatible with 1-2-3, use @RATE instead.
Be sure to enter a negative number for money that is out of your pocket and a positive number for money that's
coming in to you.
Examples
Assume you are negotiating to buy a $15,000 new car. The salesperson says you can have the car for $500 a
month for the next five years. To calculate the monthly percentage rate:
@IRATE(5*12,-500,15000,0,0) = 0.02632
Another example: Assume that you plan to deposit $2000 a year into a savings account that currently contains
only $2.38. What interest rate must the account earn to generate $15,000 at the end of 5 years? Use this
formula:
@IRATE(5,-2000,-2.38,15000,0) = 0.203773
 Related topics

@IRR - Internal Rate of Return
Syntax
@IRR(Guess, Block)

Guess A numeric value that estimates the internal rate
of return on an investment.

Block Cells (reference or name) containing cash flow
information for the investment.

@IRR determines the internal rate of return on an investment. It references cells in your notebook that contains
cash flow information and uses the supplied internal rate of return estimate to calculate the results.
Before using @IRR, you must set up a cash flow table, showing expected cash flow amounts over a period of
time. Quattro Pro assumes that the amounts are received at regular intervals. Negative amounts are interpreted
as cash outflows, and positive amounts as inflows. The first amount must be a negative number, to reflect the
initial investment. These amounts can all be the same for each time period, or they can be different (including a
mixture of negatives, positives, or zeros).
@IRR always returns ERR or a rate of return greater than or equal to -1. Some cash flows have no rate of return,
and some have several. If it can be determined that the cash flow has a unique rate of return, then the Guess is
ignored and @IRR gives that unique value.
Quattro Pro can determine unique rates of return for simple transactions or cash flow. A simple cash flow has two
sets of values: a series of nonpositive values (negative values and zero) that is your cash outflow, and a series of
nonnegative values (positive values and zero) that is your cash inflow. A simple cash flow must contain both a
negative value (cash outflow) and a positive value (cash inflow).
Simple values have a unique rate of return, so you can safely use @NA as the Guess argument in most cases.
Quattro Pro then tries to determine whether the root is unique and returns that rate without using a Guess
argument. If Quattro Pro cannot find a unique root value, @IRR returns ERR.
Typically, you make an investment (a negative cash flow) and then receive several dividends (positive cash
flows). This is an example of a simple transaction, and @IRR gives the unique rate of return for this without
requiring a Guess. More complex transactions, in which the direction of money changes several times, often do
not have a meaningful value for @IRR. For more information, see @IRR with Multiple Rates of Return.
@IRR(Guess,Block) gives the number Rate which satisfies @NPV(Rate,Block,0) = 0. For a simple transaction,
@NPV(@IRR(Block),Block,0) will give a number close to 0 (it may not be exactly 0 due to how numbers are
rounded off).
Guess can be any value greater than -1. Values that are NA or less than or equal to -1 are ignored. Use @NA for
Guess unless your cash flow has multiple rates of return. If you use @NA, you will get ERR if your cash flow has
more than one rate of return, rather than the rate of return that happens to be near your Guess.
There is no Type parameter to @IRR because the rate of return is the same regardless of whether the payments
are at the end or the beginning of each period.
Examples

A B C
1 3000 -50000 -10000
2 700 -8000 1000
3 600 2000 1000
4 750 4000 1200
5 900 6000 2000

@IRR(0,A1..A5) = -1
@IRR(0,B1..B5) = -38.09%
@IRR(0,C1..C5) = -19.90%
 Related topics

@IRR with Multiple Rates of Return
In unusual cases, @IRR may have as many as N-1 roots, where N is the number of terms in the cells. Consider
the selection that has the values (-10, +150, -145). @IRR(@NA,Block) returns ERR because it is not simple. The
two roots are 3.86% and 1296%, obtainable from guesses of 0 and 10, respectively. Both of these values are
meaningful, if interpreted properly.
Maybe you invested $10 in an oil well. It struck oil, paying you $150, but then it ran into legal difficulties and
required you to pay back $145. You had a net loss of $5, but your rate of return is quite large, as you had the use
of a relatively large amount of money for a small investment. Or, maybe the real purpose of the transaction was
to get a $150 loan from the bank. The bank required you to pay a $10 application fee ahead of time. After you
got the loan, you paid back $145. Because you only paid back $155 on a $150 loan, the interest rate is fairly low.
The difference in these two interpretations is that in one you're the lender, and in the other you're the borrower.
If you find a transaction with two roots, there is a mechanical way to determine which is the lender rate and
which is the borrower rate. Pick a positive term in the Block, and increase it by a small amount. If the rate
increases, it is a lender rate, and if the rate decreases, it is a borrower rate.
If Block has the values (-10,+150,-145), @IRR(0,Block) = 3.86%
If Block has the values (-10,+150,-145), @IRR(10,Block) = 1296%
If Block has the values (-10,+150.1,-145), @IRR(0,Block) = 3.78%
If Block has the values (-10,+150.1,-145), @IRR(10,Block) = 1297%
Because 3.78% < 3.86% and 1297 > 1296%, it follows from this rule that 3.86% is a borrower rate and 1296% is
a lender rate.
Most uses of @IRR are for analyzing an investment in which the first cash flow is negative, and the rate is a
lender rate.
Some transactions have no rate of return at all. @IRR(Guess,Block), with Block having the values (-1,+1,-1),
returns ERR regardless of the Guess. There is no rate of return that is meaningful for this cash flow.
If there are more than two roots, the above analysis can still be used to determine if a particular root is a lender
rate or a borrower rate. In some cases, it might still be possible to assign meaning to a root, but it is much more
likely that the transaction should be interpreted as several transactions, with a rate of return for each. For
example, the cash flow (-1,+6,-11,+6) has three roots, 0%, 100%, 200%. It is difficult to interpret such a
transaction in terms of interest rates, and the roots are sensitive to small fluctuations.
 Related topics

@ISBDAY - Business Day Test
Syntax
@ISBDAY(Date, <Holidays>, <Saturday>, <Sunday>)

Date Number representing a date. See "Using dates
and times in Quattro Pro."

Holidays Cells containing dates that are holidays or the
date of a single holiday or 0 to indicate no
holidays (the default is 0).

Saturday 0 to specify that Saturday is not a business day;
1 to specify that Saturday is a business day (the
default is 0).

Sunday 0 to specify that Sunday is not a business day; 1
to specify that Sunday is a business day (the
default is 0).

@ISBDAY tests whether Date is a business day. To qualify as a business day, Date cannot fall on a Saturday or
Sunday (unless Saturday and Sunday are designated as business days by Saturday and Sunday), and cannot
appear in the cells specified by Holidays. If Date is a business day, @ISBDAY returns 1; otherwise, @ISBDAY
returns 0.
Example
Given the cells of holidays, A7..C9, and treating Saturday as a business day (except when it is a date included in
A7..C9), this formula tests whether May 31, 1993 is a business day:
@ISBDAY(@DATE(93,5,31),A7..C9,1) = 0, since May 31, 1993 is Memorial Day.
 Related topics

@ISBLANK - Blank Test
Syntax
@ISBLANK(Location)

Location Name or address of a cell.

@ISBLANK tests a specified cell to see if it is empty.
If the cell is empty, @ISBLANK returns 1 (true).
If the cell is not empty, @ISBLANK returns 0 (false).
Examples

A B
1 Profits
2 $90

@ISBLANK(A1) = 1
@ISBLANK(B1) = 0
@ISBLANK(A2) = 0
@ISBLANK(B2) = 1
@ISBLANK(A1..B2) = returns the array {1|0|0|1}
 Related topics

@ISBLOCK - Block Test
Syntax
@ISBLOCK(Block)

Block Cell address or presumed cell name.

@ISBLOCK tests input to see if it is a defined cell name or valid address. Valid addresses have sheet name A to
IV, column letters A to IV, and row numbers 1 to 8192. @ISBLOCK searches only files in memory.
· If Block is a defined cell name or valid address, @ISBLOCK returns 1 (true).
· If Block is not a defined cell name or valid address, @ISBLOCK returns 0 (false).
You can use @ISBLOCK with @IF to find out if an entry is a valid cell name for subroutine calls and branching with
{DISPATCH}.
Examples
@ISBLOCK(C3) = 1
@ISBLOCK(3) = 0
@ISBLOCK(C3..C5) = 1
@ISBLOCK(PROFITS) = 1, if PROFITS is the name of a selection
@ISBLOCK("PROFITS") = 0, because the cell name is enclosed in quotation marks; arguments to @IS functions
are not converted from text
 Related topics

@ISERR - Error Test
Syntax
@ISERR(X)

X A cell address or expression.

@ISERR is normally used to check the contents of a cell for errors. If the cell contains ERR, 1 is returned;
otherwise, 0 is returned. You can also use formulas or numeric values with @ISERR.
Examples
@ISERR(C2)=1 if C2 contains ERR; otherwise, 0
@ISERR(10/0)=1
@ISERR(45+C3)=1 if C3 is ERR; otherwise, 0
@ISERR(C2/B3)=1 if B3 is 0 or ERR, or if C2 is ERR; otherwise, 0
@IF(@ISERR(A2),0,A5)=0 if A2 is ERR; otherwise, it returns the value in A5
 Related topics

@ISEVEN - Even Number Test
Syntax
@ISEVEN(Number)

Number Value to test.

@ISEVEN returns 1 (true) if a specified number is even, 0 (false) if it is odd.
· If Number is not an integer, it is truncated.
· If Number is non-numeric, @ISEVEN returns ERR.

Examples
@ISEVEN(4) = 1
@ISEVEN(4.9) = 1
@ISEVEN(5) = 0
@ISEVEN(-5) = 0
 Related topics

@ISLEGALPAGENAME - Legal Sheet Name Test
Syntax
@ISLEGALPAGENAME(PageName)

PageName A string value.

@ISLEGALPAGENAME returns 1 if PageName is a valid sheet name (even if the sheet name does not currently
exist). Otherwise, it returns 0.
Examples
@ISLEGALPAGENAME("A") = 1
@ISLEGALPAGENAME("1st Qtr") = 1
@ISLEGALPAGENAME("1st Qtr: Net Profit") = 0 (name contains a colon, an invalid character)
Files that contain custom spreadsheet names may not open in Quattro Pro if characters used in the names are
not recognized by Quattro Pro. In this event, Quattro Pro displays a message warning you about the invalid
spreadsheet name. You can change the spreadsheet name to make it compatible with Quattro Pro. Valid Quattro
Pro characters include the following: ~ ` ! % _ | \ ' ?.
Spreadsheet names must not exceed 63 characters.
 Related topics

@ISLOGICAL - Logical Value Test
Syntax
@ISLOGICAL(Value)

Value Empty cell, logical value, text, number, ERR, cell
reference, or cell name to test.

@ISLOGICAL tests if the value is a logical value (0,1, TRUE, FALSE).; it returns 0 (false) if its argument refers to
any other number.
Examples
@ISLOGICAL(A1) = 1 if Cell A1 evaluates to either 0 or 1
@ISLOGICAL(5) = 0
 Related topics

@ISNA - NA Test
Syntax
@ISNA(X)

X A cell address or expression.

@ISNA tests for the special value NA in a cell. If the cell contains an NA value, it returns 1; otherwise, it returns 0.
NA is considered a special value; it appears in the notebook only through the use of @NA. Cells containing the
label "NA" typed directly (not produced by @NA) are not recognized by @ISNA.
Examples
@ISNA("NA") = 0
@ISNA(@NA) = 1
@ISNA(A18) = 1 if A18 contains NA produced by @NA
 Related topics

@ISNONTEXT - Nontext Test
Syntax
@ISNONTEXT(Value)

Value Empty cell, logical value, text, number, ERR, cell
reference, or cell name to test.

@ISNONTEXT tests if the argument is not text. @ISNONTEXT also returns 1 if Value refers to an empty cell.
Examples

A B
1 Profits
2 8/31/95 "8/31/95"

Cell A1 above is empty; Cell A2 contains the formula @TODAY().
@ISNONTEXT(A1) = 1
@ISNONTEXT(B1) = 0
@ISNONTEXT(A2) = 1
@ISNONTEXT(B2) = 0
@ISNONTEXT(A1..B2) = returns the array {1|0|1|0}
 Related topics

@ISNUMBER - Number Test
Syntax
@ISNUMBER(X)

X A cell address or expression.

@ISNUMBER examines X and determines if it contains a numeric value. If X is blank or contains a numeric value,
ERR, or NA, @ISNUMBER returns a 1. If X is a label or text, @ISNUMBER returns a 0. @ISNUMBER is usually used
with @IF to determine whether an entry is a value.
Examples
@ISNUMBER(88) = 1
@ISNUMBER("88") = 0 (quotes signify a text string)
@ISNUMBER(9/15/87) = 1
@ISNUMBER(@ERR) = 1 (ERR and NA are numeric values)
 Related topics

@ISODD - Odd Number Test
Syntax
@ISODD(Number)

Number Value to test.

@ISODD returns 1 (true) if a specified number is odd, 0 (false) if it is even.
If Number is not an integer, it is truncated.
If Number is non-numeric, @ISODD returns ERR.
Examples
@ISODD(4) = 0
@ISODD(4.9) = 0
@ISODD(5) = 1
@ISODD(-5) = 1
 Related topics

@ISSTRING - String Test
Syntax
@ISSTRING(X)

X A cell address or expression.

@ISSTRING examines X and determines if it contains a label or text string. If X does (even if the string is empty),
@ISSTRING returns 1. If X is blank or contains a numeric or date value, @ISSTRING returns 0.
Usually, @ISSTRING is used to test the contents of a cell. You can test any expression, however. Literal string
arguments must be enclosed by double quotes.
Examples
@ISSTRING(55) = 0
@ISSTRING(2/5/88) = 0
@ISSTRING("Hello, world.") = 1
@ISSTRING("Hello, "&"world.") = 1
@ISSTRING("55") = 1
@ISSTRING(A15) = 1 if A15 contains a label or formula that results in a string, otherwise 0
@ISSTRING(A15&A16&"!!!") = 1 if A15 and A16 contain labels or formulas that result in strings
@ISSTRING("") = 1 ("" is an empty string)
@ISSTRING(@NA) = 0 (NA and ERR are considered numeric values)
 Related topics

@KANSUUJI - Convert Kanji Number to Arabic Number
Syntax
@KANSUUJI(Kanji Number)

Kanji Number The kanji number

@KANSUUJI converts a kanji number to its Arabic representation.
 Related topics

@KURT - Kurtosis
Syntax
@KURT(List)

List One or more numeric or cell values.

@KURT returns the kurtosis of List. The kurtosis of a data set measures a distribution's closeness to normality,
indicating relative peakedness or flatness. A kurtosis greater than zero is referred to as leptokurtic. A kurtosis
less than zero is referred to as platykurtic.
List must have four or more values. The standard deviation of List must not be 0.
@KURT uses this formula:

where s is the sample standard deviation.
Examples
@KURT(5,7,9,12,14,15,4,9,5,6) = -1.11117
@KURT(9.7,10,9.5,9.3,10.2,10,9.5,11) = 1.780277
@KURT(20,25,27,22,35,28) = 0.876754
 Related topics

@LARGEST - Nth Largest Number
Syntax
@LARGEST(Array, N)

Array A numeric array or cells of values.
N Number that indicates the rank in size from the

data set Array; must be greater than 0 and less
than or equal to the number of values in Array.

@LARGEST returns the Nth largest number in Array. Use @LARGEST to determine a value's rank in a data set
from the top of that set.
If there are duplicates in Array, @LARGEST treats them as separate numbers.
Examples
@LARGEST({1,2,3,4,5,6,7,8,9,10},2) = 9
@LARGEST({1,2,3,4,5,6,7,8,9,10},4) = 7
@LARGEST({1,2,3,4,5,6,7,8,9,10},6) = 5
 Related topics

@LASTBLANKPAGE - Last Blank Page
Syntax
@LASTBLANKPAGE(Block)

Block A cell or reference; can be a link to another
opened notebook (for example, [BUDGET]A:A1).

@LASTBLANKPAGE returns a string that contains the letters for the last unnamed blank sheet in a notebook that
is not part of a group.
Quattro Pro searches for the last unnamed blank sheet (that is not in a group) starting at sheet IV and continuing
toward sheet A. If there are no unnamed blank sheets (or if they are all in groups), @LASTBLANKPAGE returns
ERR.
Example
@LASTBLANKPAGE(B17) = IG (if it is the last sheet that is blank and unnamed)
 Related topics

@LASTCELLVALUE - Return Contents of Last Cell in Block
Syntax
@LASTCELLVALUE(block, <type>)

Block A cell or reference.
Type Number 1 (column) or 2 (row); the default type is

1.

@LASTCELLVALUE returns the contents of the last non-blank cell in the cells.
Quattro Pro searches for the last non-blank cell in the row or column. If there is no content to return,
@LASTCELLVALUE returns 0.
Example
@LASTCELLVALUE(A1..I34,2) (the last cell in the row that is not blank)
 Related topics

@LASTINGROUP - Last Sheet in Group
Syntax
@LASTINGROUP(Block, GroupName)

Block A cell or cells of the notebook to check.
                                  
GroupName

A string value representing a group name.

@LASTINGROUP returns a string that contains the letters for the last sheet in the group named GroupName.
@LASTINGROUP searches the notebook referenced by Block for the group. If the group does not exist,
@LASTINGROUP returns ERR.
Example
@LASTINGROUP([REPORTQ4]A:C12,"Totals") = "C" (if the notebook named REPORTQ4 contains a group named
Totals that ends with sheet C)
 Related topics

@LBDAY - Last Business Day in Month
Syntax
@LBDAY(Date, <Holidays>, <Saturday>, <Sunday>)

Date Number representing a date. See "Using dates
and times in Quattro Pro."

Holidays Cells containing dates that are holidays or the
date of a single holiday or 0 to indicate no
holidays (the default is 0).

Saturday 0 to specify that Saturday is not a business day; 1
to specify that Saturday is a business day (the
default is 0).

Sunday 0 to specify that Sunday is not a business day; 1
to specify that Sunday is a business day (the
default is 0).

@LBDAY returns the serial date number for the date of the last business day of the month in which Date falls.
Example
This formula calculates the last business day in November 1993, assuming that Sundays and the dates contained
in cells A7..C9 are holidays.
@LBDAY(@DATE(93,11,1),A7..C9,1) = 34303 (November 30, 1993)
 Related topics

@LCM - Least Common Multiple
Syntax
@LCM(X, Y)

X Integer to find least common multiple of.
Y Integer to find least common multiple of.

@LCM returns the least common multiple of X and Y (the smallest integer into which both X and Y can divide
without leaving a remainder).
@LCM is otherwise known as the greatest common denominator, which is not to be confused with @GCD (the
greatest common divisor).
Examples
@LCM(9,6) = 18
@LCM(24,12) = 24
 Related topics

@LEFT - Leftmost Characters
Syntax
@LEFT(String, Num)

String A string value.
Num A numeric value equal to or greater than 0.

@LEFT returns the leftmost Num characters of String. It lets you extract a specified number of characters
starting from the left end of a string or label.
If String is a numeric or date value or a blank cell, @LEFT returns ERR. If Num is longer than the length of String,
all of String is returned. The number of characters returned is never greater than the length of the string.
Examples
@LEFT("Jennifer",5) = Jenni
@LEFT("Jennifer",15) = Jennifer
@LEFT("155",1) = 1
@LEFT(" Jennifer",6) = J (including five leading spaces)
@LEFT(123,1) = ERR (123 is a value)
@LENGTH(@LEFT("Jennifer",255)) = 8
 Related topics

@LENGTH - Number of Characters
Syntax
@LENGTH(String)

String A string value.

@LENGTH returns the number of characters in String, including spaces. You can combine strings or cell
addresses with an ampersand (&). When String is a text string, it must be enclosed by double quotes.
If you try to reference a blank cell with this @function, Quattro Pro returns ERR.
Examples
@LENGTH("Hello, world.") = 13
@LENGTH(" Jennifer") = 9 (including preceding space)
@LENGTH("Greetings "&"earthling") = 19 (including space after Greetings)
@LENGTH(29584949) = ERR (29584949 is a value, not a string)
@LENGTH(A6&B10) = total number of characters in A6 and B10
@LENGTH(B10) = ERR (if B10 is blank or a value)
 Related topics

@LETTERTOINDEX - Sheet/Column Index Corresponding to Letter(s)
Syntax
@LETTERTOINDEX(Letters)

Letters A one- or two-character string enclosed in
quotation marks; column and sheet letters run in
sequence from A to Z, and continue from AA to
AZ, up to IV.

@LETTERTOINDEX returns the index number (from 0 to 255) for column letters or sheet letters.
If Letters is a character string outside the range of sheet and column letters (for example, "IW"), @LETTERINDEX
returns ERR.
Examples
@LETTERTOINDEX("A") = 0
@LETTERTOINDEX("B") = 1
@LETTERTOINDEX("IV") = 255
 Related topics

@LINEST - Fits Line to Data
Syntax
@LINEST(KnownYs, <KnownXs>, <Const>, <Stats>)

KnownYs Array of known y-values for the line y = mx + b.
KnownXs Array of known x-values (optional).
Const Logical value (optional) that tells @LINEST

whether to force the constant b = 0:
 If Const is TRUE or omitted, @LINEST uses the

actual value of b.
 If Const is FALSE, @LINEST sets b = 0, then

adjusts the m-values so that y = mx.
Stats Logical value (optional) that tells @LINEST

whether to return more regression statistics.
If Stats is TRUE, @LINEST returns the array

If Stats is FALSE or omitted, @LINEST returns only
the m-coefficients and b.

@LINEST uses the "least squares" method to calculate a straight line that best fits your data and returns an array
to describe the line. @LINEST returns additional regression statistics when the argument Stats = TRUE.
· If known y-values are in one column, @LINEST takes each column of known x-values to be a separate variable.

If known y-values are in one row, @LINEST takes each row of known x-values to be a separate variable.
· The argument KnownXs can include more than one set of variables. If you use more than one variable,

KnownYs must be a single-column or single-row selection. Use commas to separate x-values in the same row
and semicolons to separate rows.

· If you omit the argument KnownXs, @LINEST assumes it is the array {1, 2, 3,...} of a size equal to KnownYs.
The equation for the line is:

or
y = mx + b
where y is a function of x, the independent variable. The m-values are coefficients that correspond to the x-
values. The value b is a constant. Values y, x, and m can be vectors. @LINEST returns the array

· For @LINEST to work, the x variables need to be in one contiguous block of data.
· Slope and y-intercept define a straight line.

Slope (m): Given any two points on a line and

slope m =
.

Y-intercept (b): The y-intercept of a line = the value of y where the line crosses the y-axis.
The equation of a straight line is y = mx + b. Knowing the values of m and b, you can find any point on the line if
you know either y or x. You can also use @TREND.
· If there is only one independent x-variable, use the following formulas to find the slope and y-intercept values

directly:
Slope: @INDEX(@LINEST(KnownYs, KnownXs),1)
Y-intercept: @INDEX(@LINEST(KnownYs, KnownXs),2)

· The accuracy of @LINEST's calculation depends on the scatter of your data. The more linear your data, the
more accurate the @LINEST calculation. @LINEST determines the best fit for the data by the least squares
method. Given only one independent x-variable, @LINEST uses the following formulas to calculate m and b:

· @LINEST fits the best straight line to your data; @LOGEST fits the best exponential curve. To decide which best
fits your data, use @TREND for a straight line, or @GROWTH for an exponential curve, without the NewXs
argument, to see an array of y-values predicted along that line or curve at your actual data points. Then
compare predicted values with actual values. You can chart them for a visual comparison.

· Note that y-values predicted by the regression equation might not be valid if they are outside the cells of y-
values you used to determine the equation.

Example 1 - Slope and Y-intercept
@LINEST({4,3,2,1},{0,1,2,3}) = {-1, 4}, meaning the slope = -1 and y-intercept = 4
Example 2 - Simple Linear Regression
Sales for your company in its first four quarters are entered in a selection named Sales:

A B
1 Quarter Sales
2 1 $80,000
3 2 $90,000
4 3 $95,000
5 4 $105,000

To predict third-quarter sales for the following year, enter the formula
@SUM(@LINEST(B2..B5)*{7,1})
The projected sales are displayed in the selected cells:

6 5
7 6
8 7 $128,500
9 8

In general, @SUM({m,b}*{x,1}) = mx + b, the estimated y-value for a specified x-value. You can also use
@TREND.
 Related topics

Regression Statistics
@LINEST and @LOGEST return additional regression statistics when the argument Stats = TRUE:

Statistic Description
se1, se2,..., sen Standard error values for coefficients m1, m2,..., mn.
seb Standard error value for constant b (NA when Const is

FALSE).
r2 Coefficient of determination, ranging from 0 to 1.

Compares the estimated and actual y-values. When r2 =
1, there is a perfect correlation in the sample (no
difference between the estimated and actual y-values). As
r2 approaches 0, y-values become unpredictable. See
note below for information about how r2 is calculated.

sey Standard error for the y estimate.
F F-observed value (F statistic). The F statistic measures

whether the relationship observed between the y and x
could occur by chance alone.

df Degrees of freedom, used to find F-critical values in a
statistical table. Compare these F-critical values to the F
statistic to determine a confidence level for the model.

ssreg Regression sum of squares.
ssresid Residual sum of squares.

The additional regression statistics are displayed as follows:

In regression analysis, Quattro Pro calculates for each point the squared difference between the y-value estimated
for that point and its actual y-value. The sum of these squared differences is called the residual sum of squares.
Quattro Pro then calculates the sum of the squared differences between the actual y-values and the average of the
y-values, which is called the total sum of squares (regression sum of squares + residual sum of squares). The
smaller the residual sum of squares is, as compared with the total sum of squares, the larger the value of the
coefficient of determination, r2, a measure of how well the equation resulting from the regression analysis explains
the relationship among the variables.

 Related topics

Multiple Linear Regression
Example 1
High school grade point averages (GPA) are thought to depend on factors like the number of credit hours taken
in the semester, the student's year in school, and hours worked at an outside job. Data for a small sample of
students is in the following table:

A B C D
1 GPA Credit hrs Yrs Hrs on job
2 3 15 4 2
3 2 16 3 10
4 4 12 4 0
5 3.5 15 2 0

For the full regression display, enter the formula
@LINEST(A2..A5,B2..D5,TRUE,TRUE)
The result is the following array:

A B C D
6 -0.11 -0.14 -0.26 7.68
7 0.00 0.00 0.00 0.00
8 1.00 0.00 NA NA
9 0.00 0.00 NA NA
10 2.19 0.00 NA NA

Numbers in a full regression array are:

The multiple regression equation, y = m1*x1 + m2*x2 + m3*x3 + b, can now be obtained using the values from
row 6:
y = - 0.26*x1 + (- 0.14)*x2 + (- 0.11)*x3 + 7.68
where

x1 credit hours
x2 year in school
x3 hours on job

To estimate the expected GPA of a third-year student who takes 14 credit hours and works 5 hours a week at an
outside job, substitute:
y = - 0.26*14 - 0.14*3 - 0.11*5 + 7.68 = 3.1
Example 2
You have gathered data on 10 homes recently sold in your neighborhood. The table lists the amount each home
sold for, the number of bedrooms and baths, total floor space in square feet, and lot size:

A B C D E
1 Sold for Bedrms Baths Sq. ft. Acres
2 $255,000 2 2 1500 1
3 $435,500 3 2.5 1900 5

4 $395,500 2 2 1200 10
5 $495,000 4 3 2400 1
6 $125,000 1 1 950 0.25
7 $270,000 2 2 1280 2
8 $595,000 4 1.5 2100 4
9 $249,500 2 2 1350 0.5
10 $255,000 2 1 1100 1
11 $244,500 2 1 1080 0.25

@LINEST(A2..A11,B2..E11,TRUE,TRUE) returns the following table of the full regression statistics:

A B C D E
12 x4=acres x3=sq ft x2=baths x1=bedrooms constant b
13 17373.966 46.18235 -29475.5 118123.37 -10502.1
14 1411.8687 39.42453 11029.34 16402.137 13092.08
15 0.9967254 10962.52 NA NA NA
16 380.471 5 NA NA NA
17 1.829E+11 6.01E+08 NA NA NA

Note that these values are rounded off, because the default column width does not allow display of all digits,
though full precision is stored in the cell. In further calculations, reference the cell for the value.
The multiple regression equation

can now be obtained using the values from row 13:
y = 118123.37*x1 - 29475.5*x2 + 46.18235*x3 + 17373.966*x4 - 10502.1
where

x1 number of bedrooms
x2 number of baths
x3 square feet of floor space
x4 lot size in acres

To find the expected selling price of a 3-bedroom, 2-bathroom house of 2250 square feet on 3.5 acres, enter
+D13*3 + C13*2 + B13*2250 + A13*3.5 + E13 = $449,636
You can also calculate this value using @TREND.
Using F and R2 Statistics
The coefficient of determination R-squared, in A15, is 0.9967254, showing a strong relationship between the
independent variables and sales price.
To determine if such a strong correlation could occur by chance alone, compare the F statistic in A16 with the F-
critical value. Tables of F-critical values can be found in many statistics textbooks. To read the table, assume a
single-tailed test and use an alpha value of 0.05, meaning there is less than a 5% chance the correlation is
accidental. For the degrees of freedom (abbreviated in most tables as v1 and v2), use
v1 = 4, the number of variables, and
v2 = s - (v1 + 1) = 10 - (4 + 1) = 5
where s = the number of houses in the sample.
The F-critical value in the table, for alpha = 0.05, v1 = 4, and v2 = 5, is 5.19. The F-observed value in Cell A16 is
380.471, which is much larger than 5.19. This means the regression equation can be used with assurance to
predict expected sales prices for other homes in the area.
Calculating T-Statistics
You can also test each independent variable to see how well it predicts the expected selling price of a home. You
do this by comparing the t-observed value for each variable with t-critical from a statistics table.

First divide slope m for each variable by its estimated standard error, se. For lot size, m appears in A13 and se is
in A14, so
+A13/A14 (or 17373.966 / 1411.8687) = 12.30565
From a table of critical values of t, single tail, for alpha = 0.05 and 5 degrees of freedom (Cell B16 in the
regression array above), t-critical = 2.015
The absolute value of t-observed for lot size, 12.30565, is above t-critical, showing lot size to be an important
variable in predicting sales price for homes in the area. The other variables can be tested in the same way.

Variable t-observed value
Number of
bedrooms

7.201712

Number of baths -2.67246
Floor space 1.171412
Lot size 12.30565

Number of bedrooms, number of baths, and lot size all have absolute values of t-observed > t-critical, so these
variables are useful in predicting the sales price of a home in the area.
 Related topics

@LINTERP - Linear Interpolation
Syntax
@LINTERP(KnownX, KnownY, X)

KnownX One-dimensional selection containing X values.
KnownY One-dimensional selection containing Y values

corresponding to the X values in KnownX.
X Number for which the corresponding Y value is

desired.

@LINTERP interpolates a Y value corresponding to X using the XY pairs specified by KnownX (which contains the
X coordinates) and KnownY (which contains the Y coordinates). If X lies between two values in KnownX,
@LINTERP interpolates using those two values and their respective KnownY counterparts. If X is outside the
range of KnownX, the Y value is extrapolated based on the slope of the line between the two closest points.
KnownX and KnownY do not have to be the same size. If KnownY is smaller than KnownX, the last value in
KnownY is used as the corresponding Y value for extra KnownX values. If KnownY is larger than KnownX, its extra
values are ignored.
Example
This formula calculates the Y value for the X value 6.7 if the data in the next figure is used.
@LINTERP(A3..A9,B3..B9,6.7) = 17.5976

A B
1 x values y values
2
3 -28.345 -9.7821
4 -17.89 -5.6667
5 0.9232 2.891
6 1.212 2.9978
7 4.552 13.67
8 10.75 25.003
9 30.8 33.33

 Related topics

@LLDEC - Latitude and Longitude to Decimal
Syntax
@LLDEC(Degrees, Minutes, Seconds, Direction)

Degrees Degrees of Latitude or Longitude.
Minutes Minutes of Latitude or Longitude.
Seconds Seconds of Latitude or Longitude.
Direction For Latitude, North (1) or South (2) of the equator;

for Longitude, East (3) or West (4) of the prime
meridian at Greenwich, England.

@LLDEC converts a latitude or longitude coordinate to decimal. Latitude south of the equator is represented as a
negative number; longitude west of the prime meridian is represented as a negative number.
Examples
@LLDEC(38, 45, 15, 1) = 38.75417
@LLDEC(38, 45, 15, 2) = -38.75417
@LLDEC(143, 15, 25, 4) = -143.257
 Related topics

@LN - Natural Logarithm
Syntax
@LN(X)

X A numeric value > 0.

@LN returns the natural logarithm of X. A natural logarithm uses the mathematical constant e as a base. @LN
produces the inverse of @EXP.
Examples
@LN(3) = 1.098612289
@LN(@EXP(10)) = 10
@LN(16)/@LN(2) = 4
@LN(-4) = ERR (-4 is less than 0)
 Related topics

@LOG - Base 10 Logarithm
Syntax
@LOG(X)

X A numeric value > 0.

@LOG returns the logarithm of a number in base 10.
Examples
@LOG(1000) = 3
@LOG(10^23.8) = 23.8
@LOG(16)/@LOG(2) = 4 (log to base 2 of 16)
 Related topics

@LOGBASE - Logarithm to Base X
Syntax
@LOGBASE(Number, <Base>)

Number Positive real number.
Base Base of the logarithm (optional); the default is

10.

@LOGBASE calculates the logarithm of a specified number to the specified base.
<Base> must be a value greater than 1; otherwise ERR is returned.
Examples
@LOGBASE(100) = 2
@LOGBASE(27,3) = 3
@LOGBASE(18,2) = 4.169925
 Related topics

@LOGCONV - Converts Logarithm to Another Base
Syntax
@LOGCONV(Number, FromBase, ToBase)

Number Value to be converted = the log of a number m
to the base b.

FromBase Positive integer greater than 1.
ToBase Positive integer greater than 1.

@LOGCONV converts a specified logarithm from one specified base to another. For Number = @LOGCONV
uses the formula:

where

m a number
b original base
a new base

If FromBase = 1, @LOGCONV returns ERR because the log of b to the base a is zero.
If FromBase or ToBase are negative or non-integer, @LOGCONV returns ERR.
Examples
@LOGCONV(2,4,2) = 4
@LOGCONV(3,4,2) = 6
 Related topics

@LOGEST - Fits Curve to Data
Syntax
@LOGEST(KnownYs, <KnownXs>, <Const>, <Stats>)

KnownYs Array of known y-values for the curve y =
b*m^x.

KnownXs Array of known x-values.
Const Logical value (optional) that tells @LOGEST

whether to force the constant b = 1:
 If Const is TRUE or omitted, @LOGEST uses the

actual value of b.
 If Const is FALSE, @LOGEST sets b = 1, then

adjusts the m-values so that y = m^x.
Stats Logical value (optional) that tells @LOGEST

whether to return more regression statistics.
 If Stats is TRUE, @LOGEST returns the array

 If Stats is FALSE or omitted, @LOGEST returns
only the m-coefficients and b.

@LOGEST calculates an exponential curve that fits your data and returns an array to describe the curve.
@LOGEST returns additional regression statistics when the argument Stats = TRUE.
· If known y-values are in one column, @LOGEST takes each column of known x-values to be a separate

variable. If known y-values are in one row, @LOGEST takes each row of known x-values to be a separate
variable.

· If any of the known y-values are 0 or negative, @LOGEST returns ERR.
· The argument KnownXs can include more than one set of variables. If you use only one variable, KnownYs and

KnownXs can be selections of any shape, but must have the same dimensions. If you use more than one
variable, KnownYs must be a single-column or single-row selection. Use commas to separate x-values in the
same row and semicolons to separate rows.

· If you omit the argument KnownXs, @LOGEST assumes it is the array {1, 2, 3,...} of a size equal to KnownYs.
The equation for the curve is or

where y is a function of x, the independent variable. The m-values are bases that correspond to the exponent x-
values. The value b is a constant. Values y, x, and m can be vectors. @LOGEST returns the array

.
If there is only one independent x-variable, use the following formulas to find the slope and y-intercept values
directly:

Slope m: @INDEX(@LOGEST(KnownYs, KnownXs),1)
Y-intercept b: @INDEX(@LOGEST(KnownYs, KnownXs),2)

The accuracy of @LOGEST's calculation depends on how close the plot of your data comes to an exponential
curve. @LINEST fits the best straight line to your data; @LOGEST fits the best exponential curve. To decide which
best fits your data, use @TREND for a straight line, or @GROWTH for an exponential curve, without the NewXs
argument, to see an array of y-values predicted along that line or curve at your actual data points. Then
compare predicted values with actual values. You can chart them for a visual comparison.
The y-values predicted by the regression equation might not be valid if they are outside the cells of the y-values
you used to determine the equation.
Using @LOGEST to test an equation is similar to using @LINEST. However, the additional statistics @LOGEST
returns are based on the following linear model:

Remember this when evaluating the additional statistics, especially the sei and seb values, which should be
compared to ln mi and ln b, not to mi and b.
Example
Sales for your company in its first four quarters are entered in a selection named Sales:

A B
1 Quarter Sales
2 1 $75,000
3 2 $90,000
4 3 $115,000
5 4 $140,000

For the full regression display, enter the formula
@LOGEST(Sales,A2..A5,TRUE,TRUE)
The regression statistics are returned as follows:

6 1.235849 60133.78
7 0.008186 0.022419
8 0.99702 0.018305
9 669.1028 2
10 0.224208 0.00067

The equation for the curve is y = b * m1^x1.
So, using the values from the array:
y = 60133.78 * 1.23585^x
To estimate sales for future months, substitute the month number for x in this equation, or use @GROWTH. For
example, for the fifth month:
y = 60133.78 * 1.23585^5 = $173,359
You can use the additional regression statistics (cells A6..B10 in this example) to determine how useful the
equation is for predicting future values. For instance, the value in cell A8 in this example is the r-squared (r2)
value. When r-squared = 1, there is a perfect correlation in the sample (no difference between the estimated and
actual y-values). As    r-squared approaches 0, y-values become unpredictable.
 Related topics

@LOGINV - Inverse of Cumulative Lognormal Distribution
Syntax
@LOGINV(Prob, Mean, SDev)

Prob Probability associated with the cumulative
lognormal distribution function; 0 £ Prob < 1.

Mean Mean of ln(x).
SDev Standard deviation of ln(x); must be > 0.

@LOGINV returns the inverse of the cumulative lognormal distribution.
Example
@LOGINV(0.027985,2.5,0.8) = 2.640543
 Related topics

@LOGNORMDIST - Cumulative Lognormal Distribution
Syntax
@LOGNORMDIST(X, Mean, SDev)

X Value to evaluate the function; must be > 0.
Mean Mean of ln(x).
SDev Standard deviation of ln(x); must be > 0.

@LOGNORMDIST returns the cumulative lognormal distribution.
Example
@LOGNORMDIST(3,2.5,0.8) = 0.03991
 Related topics

@LOOKUP - Looks Up Values
Syntax
@LOOKUP(Value, LookupVector, ResultVector)

Value Value to look for in LookupVector; can be a
number, text, logical value, or reference to a
value.

LookupVector Cells containing only one row or column.
ResultVector Selection of the same dimensions as

LookupVector and containing corresponding
values.

@LOOKUP looks up values in a specified row or column. It looks in a designated row or column for a specified
value, moves to the corresponding cell in another specified row or column, and returns the value it finds there.
Values in LookupVector and ResultVector must be in ascending order for @LOOKUP to return the correct value
(upper- and lowercase text have the same values).
@LOOKUP lets you specify row or column to look in, as well as the one containing the value to return.
Examples
From the wind chill table below, you want to find the apparent temperature at a certain wind speed.

A B C D E F G
1 Wind

Speed
2 Deg.

F
5 10 15 20 25 30

3 10 6 -9 -18 -25 -29 -33
4 20 16 4 -5 -10 -15 -18
5 30 27 16 9 4 0 -2
6 40 37 28 22 18 16 13
7 50 48 40 36 32 30 28

To find the apparent temperature when the thermometer reads 25 degrees Fahrenheit and the wind is blowing at
10 miles an hour, enter
@LOOKUP(25,A2..A7,C2..C7)
The result is 4 degrees F, which is the apparent temperature corresponding to a thermometer reading of 20
degrees, the next lower value.
At 20 degrees, when the wind is twice as strong (20 mph), the apparent temperature is
@LOOKUP(20,A2..A7,E2..E7) = -10
 Related topics

@LOWER - String in Lowercase
Syntax
@LOWER(String)

String A string value.

@LOWER returns String in lowercase characters. Numbers and symbols within a string are unaffected. Numeric
and date values return ERR.
Examples
@LOWER("UPPER") = upper
@LOWER("Hello, world.") = hello, world.
@LOWER("145 Bancroft Lane") = 145 bancroft lane
@LOWER(4839) = ERR
@LOWER(@LEFT("Johnson",1)) = j
 Related topics

@LWKDAY - Last Weekday
Syntax
@LWKDAY(Wkday, Month, Year, <AuxWkday>)

Wkday Number from 1 (Saturday) to 7 (Friday).
Month Number from 1 (January) to 12 (December).
Year Number from 0 (1900) to 199 (2099) or a

standard year like 1993.
AuxWkday Auxiliary day of the week that must fall in the

same week as Wkday; 0 for no auxiliary day or a
number from 1 (Saturday) to 7 (Friday) indicating
the auxiliary day (the default is 0).

@LWKDAY returns the serial date number for the date of the last occurrence of Wkday in Month of Year (for
example, the last Tuesday in November 1994).
See "Using dates and times in Quattro Pro."
You can use AuxWkday to specify that both Wkday and AuxWkday must fall in the same week of the same
month. (See the second example.)
The valid date calculation range for this function is 01/01/1900 through 12/31/2099.
Examples
/@LWKDAY(3,6,115)= 42184 (June 29, 2015), the date of the last Monday in June 2015.
@LWKDAY(4,11,94,7)= 34660 (November 22, 1994), the last Tuesday on which both the last Tuesday and a
Friday fall on the same week of November 1994.
 Related topics

@MATCH - Position of Matching Cell
Syntax
@MATCH(Cell Contents, Block, <Match Type>)

Cell Contents Numeric or string value to be matched.
Block Cells, contiguous selections, an array, or array

reference.
<Match Type> -1, 0, or 1. Match Type specifies which cell

positions are returned:
-1 = smallest, 1 = largest, 0 = first found.

@MATCH returns the relative position of the cell in Block whose contents match the Cell Contents argument.
@MATCH returns the position of the item rather than the item itself.
@MATCH returns ERR or 0 if no matches are found.
Match Type = -1, returns the position of the smallest value that is greater than or equal to Cell Contents.
Selections must be arranged in descending order.
Match Type = 0,    returns the position of the first value that is exactly equal to Cell Contents. Blocks may be
arranged in any order.
Match Type = 1, returns the position of the largest value that is less than or equal to Cell Contents. Selections
must be arranged in ascending order.
Match Type =1 is the Default Value.
Examples

A B
1 Name Grade
2 Fred 92
3 Mary 84
4 Reno 75
5 Anne 67
6 John 54

In cell selections, or arrays of cells, @MATCH uses zero-based numbering (the first cell in the selection equals 0).
@MATCH(75,B1..B4,-1) = 3
@MATCH(75,B1..B4,0) = 3
@MATCH(75,B1..B4,1) = 0 (the selection is ordered incorrectly)
@MATCH("RENO",A1..A4,0) = 3 (Reno is third in his class)
Also, @MATCH("b",{"a","b","c"},0) = 1 (the first item in the array equals 0).
 Related topics

@MAX - Maximum Value
Syntax
@MAX(List)

List One or more numeric values, cell addresses, and
references or names, separated by commas.

@MAX returns the largest numeric or data value in List. If more than one selection is listed, commas must
separate the selections. If any of the cells referenced contain ERR, the resulting value is ERR.
Examples

A B C D
1 Jan. Feb. Mar.
2 JA $652 $833 $599
3 MH $456 $305 $522
4 RB $68 $59 $73
5 PD $379 $379 $379

------ ------ ------
6 $1,555 $1,576 $1,573

@MAX(B3..B5) = $456
@MAX(C3..C5,D3..D5) = $522
@MAX(A1..D6) = $1,576
@MAX(B2..C5,D3) = $833
 Related topics

@MAXLOOKUP - Cell Containing Largest Value
Syntax
@MAXLOOKUP(BlockList)

BlockList Cells or list of selections containing numeric
values.

@MAXLOOKUP returns the address of the cell containing the largest value in specified cells or list of selections.
@MAXLOOKUP return ERR if no cells in BlockList contain values.
Separate the entries in BlockList with argument separators.
Labels and blank cells in BlockList are ignored.
Example
Suppose you keep lists of contributors and the amounts they gave in separate notebooks for each year. The
notebooks have the same layout, because you built them from the same template. To find the cell location of the
maximum amount anyone gave over all the years for which you have files, enter
@MAXLOOKUP([YR1992]AMOUNT, [YR1993]AMOUNT, [YR1994]AMOUNT, [YR1995]AMOUNT)
 Related topics

@MDAYS - Calendar Days in Month
Syntax
@MDAYS(Month, Year)

Month Number from 1 (January) to 12 (December).
                                  
Year

Number from 0 (1900) to 199 (2099) or a
standard year like 1993.

@MDAYS returns the number of calendar days in Month of Year.
The valid date calculation range for this function is 01/01/1900 through 12/31/2099.
See "Using dates and times in Quattro Pro."
Example
@MDAYS(2,1996)= 29, the number of days in February 1996.
 Related topics

@MDET - Determinant of a Matrix
Syntax
@MDET(Array)

Array A numeric array or a selection of values
specifying a square matrix; must have an equal
number of rows and columns, and cannot
contain blank cells.

@MDET calculates the determinant of a matrix (Array). The determinant is obtained by taking any row or column
of the matrix, forming the products of each element and its cofactor, and taking the sum of the products;
@MDET uses this formula:

where aij is the element in the ith row and jth column of A and the cofactor aij is the product of the determinant of
the minor matrix Mij, formed by deleting row i and column j of A, and a power of -1:

If Array does not contain the same number of rows and columns, or if Array contains any blank cells, @MDET
returns ERR. If any two rows or columns in Array are equal or have proportional elements, @MDET returns 0.

The result of @MDET is accurate to approximately 16 digits, which can lead to a small numeric error when the
cancellation is not complete.
Examples
@MDET({12,15,21|8,13,17|16,32,44}) = 144
This formula calculates the determinant of the data shown in the next figure:
@MDET(C3..F6) = -2869.95

C D E F
3 2.908 -2.253 6.775 3.97
4 1.212 1.995 2.266 8.008
5 4.552 5.681 8.85 1.302
6 5.809 -5.03 0.099 7.832

 Related topics

@MDURATION - Modified Duration
Syntax
@MDURATION(Settle, Maturity, Coupon, Yield, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date; must be
> Settle.

Coupon Coupon rate; 0 £ Coupon £ 1.
Yield Annual yield; 0 < Yield £ 1.
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@MDURATION returns the modified Macaulay duration for a bond with assumed par value of 100. Modified
duration is calculated using this formula:

D Duration
Y Yield
F Frequency

Example
This formula calculates the modified duration of a bond with these terms: Settle is August 8, 1992, Maturity is
November 15, 1998, Coupon is 9%, and Yield is 8.816%.
@MDURATION(@DATE(92,8,8),@DATE(98,11,15),0.09,0.08816) = 4.631923
 Related topics

@MEDIAN -Middle Value
Syntax
@MEDIAN(List)

List One or more numeric or cell values.

@MEDIAN returns the middle value in a range of values in a data set arranged in ascending or descending order.
If the number of values in the data set is even, the median is the mean of the two middle values. Use @MEDIAN
when you want a more robust estimation of the central value in a distribution than you obtain with @AVG.
Examples
@MEDIAN(10,12,15,25,30) = 15
@MEDIAN(2,4,5,5,6,8,9,9) = 5.5
 Related topics

@MEMAVAIL - Memory Available
Syntax
@MEMAVAIL
@MEMAVAIL returns the number of bytes of memory currently available.
Example
@MEMAVAIL = 47819 (if 47,819 bytes of memory are available)
 Related topics

@MEMEMSAVAIL - Expanded Memory Available
Syntax
@MEMEMSAVAIL
@MEMEMSAVAIL is included for compatibility with Quattro Pro for DOS; it always returns NA under Windows.
 Related topics

@MID - Extract Characters from String
Syntax
@MID(String, StartNumber, Num)

String A string value.
StartNumber A numeric value equal to or greater than 0.
Num A numeric value equal to or greater than 0.

@MID extracts the first Num characters of String starting at StartNumber, which is the number of characters to
the right of the first character (character 0). It is similar to @LEFT, which extracts Num characters of String
beginning with the first character. The difference is that you can specify a character other than the first
character in the string.
String can be any text string (enclosed by quotes) or reference to a cell containing a label. If StartNumber is
greater than or equal to the length of String or if Num is 0, the result is "", or an empty string.
Examples
@MID("Abraham Lincoln",8,7) = Lincoln
@MID("George Washington",7,4) = Wash
@MID("Theodore Roosevelt",19,5) = ""
@MID(A23,@FIND("Roosevelt",A23,0),@LENGTH("Roosevelt")) = Roosevelt (if A23 = Franklin Roosevelt)
 Related topics

@MIN - Minimum Value
Syntax
@MIN(List)

List One or more numeric values, cell addresses, and
references or names, separated by commas.

@MIN returns the smallest numeric or data value in List. If List contains more than one value, commas must
separate the values. Labels are treated in all statistical functions as 0 and should therefore be excluded from
List.
If List is entered as cells and one or more cells in the cells are blank, the blanks are excluded from the
calculation; otherwise, blanks are treated as 0.
Examples

A B C D
1 Jan. Feb. Mar.
2 JA $652 $833 $599
3 MH $456 $305 $522
4 RB $68 $59 $73
5 PD $379 $379 $379

------ ------ ------
6 $1,555 $1,576 $1,573

@MIN(B3..B6) = $68
@MIN(B2..D2,B4..D4) = $59
@MIN(B3..D3) = $305
 Related topics

@MINLOOKUP - Cell Containing the Smallest Value
Syntax
@MINLOOKUP(BlockList)

BlockList Cells or list of selections containing numeric
values.

@MINLOOKUP returns the address of the cell containing the smallest value in specified cells or list of selections.
@MINLOOKUP return ERR if no cells in BlockList contain values.
Separate the entries in BlockList with argument separators.
Labels and blank cells in BlockList are ignored.
Example
Suppose you keep lists of contributors and the amounts they gave in separate notebooks for each year. The
notebooks have the same layout, because you built them from the same template. To find the cell location of the
minimum amount anyone gave over all the years for which you have files, enter
@MINLOOKUP([YR1992]AMOUNT, [YR1993]AMOUNT, [YR1994]AMOUNT, [YR1995]AMOUNT)
 Related topics

@MINUTE - Minute Portion of Date Serial Number
Syntax
@MINUTE(DateTimeNumber)

DateTimeNumbe
r

A numeric value between -109571 and
474816.9999999, representing a date/time serial
number: -109571 = January 1, 1600; 0 =
December 31, 1899; 474816 = December 31,
3199; the decimal = time (24 hr).

See "Using dates and times in Quattro Pro."
@MINUTE returns the minute portion of DateTimeNumber. DateTimeNumber must be a valid date/time serial
number. Because only the decimal portion of a serial number pertains to time, the integer portion of the number
is disregarded. The result is between 0 and 59.
To extract the minute portion of a string that is in time format (instead of serial format), use @TIMEVALUE with
@MINUTE to translate the time into a serial number. You can also use @TIME to enter a time value instead of a
serial number.
Examples
@MINUTE(.36554) = 46
@MINUTE(.2525) = 3
@MINUTE(35) = 0
@MINUTE(@TIME(3,15,22)) = 15
@MINUTE(@TIMEVALUE("10:08 am")) = 8
 Related topics

@MINVERSE - Inverse Matrix
Syntax
@MINVERSE(Array)

Array Square numeric array (same number of rows as
columns); you can use a cell reference or cell
name or an array constant like {1,2|3,4}.

@MINVERSE returns the inverse matrix for a matrix stored in a square array. Matrices are helpful in solving
problems with many variables in mathematics and economics.
@MINVERSE returns ERR if:
· Any cells in Array are empty or contain text.
· Array does not have an equal number of rows and columns.
To show how the inverse of a 2 x 2 matrix is calculated, suppose cells A1..B2 contains the letters a, b, c, and d,
representing any four numbers:

A B
1 a c
2 b d

The inverse of the matrix in A1..B2 is:

A B
1 d/(a*d - b*c) b/(b*c - a*d)
2 c/(b*c - a*d) a/(a*d - b*c)

The product of a matrix and its inverse is the identity matrix, in which all diagonal values = 1 and all other
values = 0.
The result of @MINVERSE is accurate to approximately 16 digits; this can lead to a small numeric error when the
cancellation is not complete.
Some square matrices cannot be inverted, and @MINVERSE returns ERR. The determinant is 0 for a matrix that
cannot be inverted.
Use @INDEX to get individual elements from an inverse matrix.
Examples
@MINVERSE({1,2|3,4}) = {-2,1|1.5,-0.5}
@MINVERSE({2,1,0|0.5,1,-0.5|3,2,1}) = {1,-0.5,-0.25|-1,1,0.5|-1,-0.5,0.75}
 Related topics

@MIRR - Modified Internal Rate of Return
Syntax
@MIRR(Block, FinRate, ReinvRate, <Type>)

Block Cells containing cash flows; negative = outflow,
positive = inflow.

FinRate Interest rate paid for funds used in cash flows.
ReinvRate Interest rate received on reinvested funds used

in cash flows.
Type Timing of the cash flows (optional):

0 = end of each period (default)
1 = beginning of each period

@MIRR calculates the modified internal rate of return on an investment consisting of payments made at regular
intervals.
The cells must contain at least one positive value and one negative value. Normally, the first cash-flow amount
in the cells is a negative number (a cash outflow) that represents the investment. Quattro Pro assigns the value
0 to all blank cells and labels in Block and includes them in the calculation.
@MIRR helps you determine the profitability of an investment. To assess an investment, combine @MIRR with
other financial functions, like @NPV.
MIRR relates to NPV by the following formula:

where

ci cash received in (positive)
co cash paid out (negative)
n number of cash flows
f finance rate
r reinvestment rate
Examples
You bought a small cafe at the end of 1990 for $250,000. The first year of operation (1992) you spent a lot on
restoration and advertising, but since then profits have grown. You want to know when the business started to
pay for itself and what the return is now. Your finance rate is 9.5%, your reinvestment rate is 11.5%, and you
reinvest your profits at the end of the period.

A B C D
1 Year Profit/Loss end/per beg/per
2 1990 ($250,000)
3 1991 ($50,000)
4 1992 $112,500 -25.31% -38.32%
5 1993 $120,500 -2.31% -5.95%
6 1994 $128,500 8.32% 8.03%
7 1995 $136,500 13.77% 14.64%

For each year of profit, enter @MIRR in Column C for the cash flow up through that year. For example, in Cell C4,
@MIRR(B2..B4,0.095,0.115) = -25.31% and in Cell C7,
@MIRR(B2..B7,0.095,0.115) = 13.77%. Your investment began to pay off in 1994.
If you could reinvest your profits at the beginning of the period instead of the end, your return would be higher.
You found this out by entering the same formulas in Column D but with Type = 1. For example, in Cell D7,

@MIRR(B2..B7,0.095,0.115,1) = 14.64%
 Related topics

@MMULT - Matrix Product of Two Arrays
Syntax
@MMULT(Array1, Array2)

Array1, Array2 Arrays to be multiplied.

@MMULT calculates the matrix product of two arrays. The resulting array has the same number of rows as Array1
and the same number of columns as Array2.
· The number of columns in Array1 must equal the number of rows in Array2.
· Array1 and Array2 must contain only numbers.
· Array1 and Array2 can be specified as cell names or references, or array constants.
The matrix product array a of two arrays b and c is:

Examples
@MMULT({2,3|1,0},{1,0|0,1}) = {2,3|1,0}
Given the following arrays,

A B C
1 1 2 0
2 3 2 1
3 1 0 3
4
5 2 1
6 0 2
7 1 0

Enter @MMULT({A1..C3},{A5..B7})
The result is displayed as follows:

A B C
8 2 5
9 7 7
10 5 1

 Related topics

@MNTHS - Months
Syntax
@MNTHS(StartDate, EndDate, <EndMnth>)

StartDate Number representing the start date. See "Using
dates and times in Quattro Pro."

EndDate Number representing the end date.
EndMnth 1 to indicate adherence to ends of months; 0 to

indicate that ends of months are ignored; the
default is 1.

@MNTHS calculates the number of whole months between StartDate and EndDate. A whole month is the day of
the month on which a specified date falls to that same day in the next month, such as March 11 to April 11.
If the day of the month on which StartDate falls does not exist in the month in which EndDate falls, and EndDate
falls on the last day of that month, the number of months returned includes that month. For example, the
number of months returned for March 31, 1993 to June 30, 1993 is 3 and not 2.
If StartDate falls on the last day of a month with less than 31 days, and EndDate precedes StartDate, the result
depends on the value of EndMnth; for example, when evaluating the period from February 29, 1992, to January
31, 1992, if EndMnth is 1, -1 is returned; if EndMnth is 0, 0 is returned.
Examples
@MNTHS(@DATE(93,4,9),@DATE(94,9,15)) = 17, the number of whole months between April 9, 1993 and
September 15, 1994.
@MNTHS(@DATE(93,4,30),@DATE(93,1,31)) = -3
 Related topics

@MOD - Modulus (Remainder)
Syntax
@MOD(X, Y)

X A numeric value.
Y A numeric value not equal to 0.

@MOD divides the X value by Y and returns the remainder, or modulus, value. Because you cannot divide a
number by zero, ERR results if the value of Y is zero.
Examples
@MOD(3,1) = 0 (3 divided by 1 leaves no remainder)
@MOD(5,2) = 1 (5 divided by 2 leaves a remainder of 1)
@MOD(3,1.1) = 0.8
@MOD(4,0) = ERR
 Related topics

@MODE - Most Frequent Value
Syntax
@MODE(List)

List One or more numeric or cell values.

@MODE returns the value in a sample or population that appears more frequently than any other value. The
mode emphasizes data concentration and is best used to describe large data sets. It is commonly used to decide
which resulting value is correct when the same measuring or computing process is repeated several times.
If the data set contains no duplicate data points, @MODE returns NA.
Examples
@MODE(2,2,5,7,9,9,9,10,10,11,12,18) = 9
@MODE(91,87,83,80,86,55,83,68,79,83) = 83
@MODE(1,2,3,4,5) = NA
 Related topics

@MODULO - Remainder (Modulus)
Syntax
@MODULO(x, y)

x Numeric value.
y Numeric value, but not 0.

@MODULO returns the remainder, or modulus, of x/y. @MODULO works like @MOD, with this difference:
@MODULO uses the formula
x - y * @ROUNDDOWN(x/y)
and the sign of the result (+ or -) is always the same as the sign of y.
@MOD uses the formula
x - y * @INT(x/y)
and the sign of the result (+ or -) is always the same as the sign of x.
If x is 0, @MODULO returns 0.
Examples
@MODULO(15,6) = 3
@MOD(15,6) = 3
@MODULO(-7,3) = 2
@MOD(-7,3) = -1
 Related topics

@MONTH - Month Portion of Date Serial Number
Syntax
@MONTH(DateTimeNumber)

DateTimeNumb
er

A numeric value between -109571 and
474816.9999999, representing a date/time serial
number: -109571 = January 1, 1600; 0 =
December 31, 1899; 474816 = December 31,
3199; the decimal = time (24 hr).

See "Using dates and times in Quattro Pro."
@MONTH returns the month portion of DateTimeNumber. DateTimeNumber must be a valid date/time serial
number. Only the integer portion is used. The result is between 1 (January) and 12 (December).
To extract the month portion of a string that is in date format (instead of serial format), use @DATEVALUE with
@MONTH to translate the date into a serial number. You can also use @DATE to enter a date value instead of a
serial number.
Examples
@MONTH(69858) = 4
@MONTH(58494) = 2
@MONTH(.3773) = 12
@MONTH(@DATEVALUE("3/5/88")) = 3
@MONTH(@DATE(88,3,5)) = 3
@MOD(@MONTH(@DATEVALUE("3/5/88")),12) = 3
 Related topics

@MROUND - Round to Nearest Multiple
Syntax
@MROUND(X, Y)

X Value to round.
Y Value to make rounded X divisible by.

@MROUND rounds X to the nearest value that is evenly divisible by Y. If Y is zero, @MROUND returns zero. If X
and Y do not have the same sign, @MROUND returns ERR.
Examples
@MROUND(2.36,0.25) = 2.25
@MROUND(2.47,0.25) = 2.5
 Related topics

@MTGACC - Mortgage Acceleration
Syntax
@MTGACC(Int, TtlPer, Principal, Residual, ExtraPrin, <Fper>, <Lper>, <Rper>, <Option>)

Int Number ³ 0 representing the periodic interest
rate.

TtlPer Total periods in the loan from start to finish, or the
total periods remaining from the chosen starting
period forward.

Principal Original loan balance; also can be any starting
point in the loan.

Residual Remaining balance on loan at end of loan term;
enter 0 if the loan will be paid in full.

ExtraPrin Extra principal amount to be paid each period
(must be positive).

Fper Number of the first period, relative to the starting
point, in which extra principal is paid; the default
is 1 (the first period).

Lper Number of the last period, relative to the starting
point, in which extra principal is paid; the default
is until the end of the loan; you can set Lper to
any number greater than or equal to the last
period number when extra principal payments
last the life of the loan (for example, Lper can be
400 for a loan which lasts 360 periods).

Rper Period for which the loan status is reported; the
default is at loan end (any number greater than
the end of the loan defaults to loan end); Rper
does not affect the value @MTGACC returns if
Option is 0 or 10.

Option Specifies the output value type (the default is 0):
0 = number of periods to loan end, when balance
equals Residual
1 = balance of loan at the Rper
2 = cumulative interest paid at Rper
3 = cumulative principal paid at Rper
10 = number of fewer periods in loan life, due to
payment of extra principal
11 = balance reduction at Rper due to payment of
extra principal
12 = reduction in cumulative interest paid at Rper
due to payment of extra principal
13 = increase in cumulative principal paid at Rper
due to payment of extra principal

@MTGACC calculates the effects of paying extra monthly principal for amortized loans. The value that @MTGACC
returns depends on the Option you specify. For the specified Rper, you can find the loan balance, cumulative
interest, or cumulative principal. You can also find how the number of periods, loan balance, and cumulative
interest have been reduced, and how cumulative principal has increased, as a result of paying extra principal.
@MTGACC returns values for the end of the loan or for the end of any payment period. During calculation,
@MTGACC rounds currency values to 2 decimal places, giving currency answers in whole cents, as is common
with mortgage institutions.
You can use @MTGACC to return information about a loan on which you make no extra principal payments
(ExtraPrin = 0); for example, @MTGACC returns exact values of the loan balance, cumulative interest paid, and
cumulative principal paid.
Examples

For a mortgage with a yearly interest rate of 9%, monthly payments for 30 years, an original balance of
$150,000, and a future value of $80,000, the following formulas calculate the effects of paying $300 extra
principal per month starting at the beginning of the second year and continuing through the fourth year. The
reporting period is the tenth year (when the home will be sold and the mortgage paid-off).
Number of periods to loan end:
@MTGACC(.09/12,30*12,150000,80000,300,2*12,4*12,10*12,0) = 357
Balance at Rper:
@MTGACC(.09/12,30*12,150000,80000,300,2*12,4*12,10*12,1) = $128,635.26
Cumulative interest paid at Rper:
@MTGACC(.09/12,30*12,150000,80000,300,2*12,4*12,10*12,2) = $125,724.06
Cumulative principal paid at Rper:
@MTGACC(.09/12,30*12,150000,80000,300,2*12,4*12,10*12,3) = $21,364.74
Number of fewer periods in loan life:
@MTGACC(.09/12,30*12,150000,80000,300,2*12,4*12,10*12,10) = 3
Reduction in balance at Rper due to ExtraPrin:
@MTGACC(.09/12,30*12,150000,80000,300,2*12,4*12,10*12,11) = $13,964.70
Reduction in cumulative interest paid at Rper due to ExtraPrin:
@MTGACC(.09/12,30*12,150000,80000,300,2*12,4*12,10*12,12) = $6,464.70
 Related topics

@MULT - Cumulative Product
Syntax
@MULT(List)

List One or more numbers or selections of numbers,
separated by commas.

@MULT calculates the cumulative product of a set of numbers (List). List is a comma separated list of numbers,
selections containing numbers, or both. The numbers in this list are multiplied by each other. Blank cells and
cells containing strings in any of the selections passed as arguments are given a value of 1.
Example
This formula calculates the cumulative product 3.4, 5.7, -1.2, and the numbers shown in the next figure.
@MULT(A6..C10,3.4,5.7,-1.2) = 30037.32

A B C
6 3.467 0.123
7 134.23 0.034 1.238
8 87.65 6.54% 0.987
9 -2.35 79.11
10 101.93 0.005

 Related topics

@MULTINOMIAL - Sum of Terms
Syntax
@MULTINOMIAL(List)

List One or more numbers to calculate multinomial
of; each number in List must be ³ 0.

@MULTINOMIAL returns the multinomial of a list of values. It uses this formula for @MULTINOMIAL(a,b,c):

If any value in List is negative, @MULTINOMIAL returns ERR.
If any value in List is non-integer, it will be truncated to an integer.
Example
@MULTINOMIAL(3,4,5) = 27720
 Related topics

@N - Numeric Value of Upper Left Cell
Syntax
@N(Block)

Block A cell reference or name.

@N inspects Block and returns the numeric value of the upper left cell. If that cell contains a label or is blank, it
returns a 0.
This @function is used by other spreadsheet programs to avoid unnecessary ERR values resulting from labels
included in calculations. This is unnecessary with Quattro Pro, however, because labels are already considered
zero values in calculations. @N is included in Quattro Pro only for compatibility with other products.
 Related topics

@NA - NA Value (Not Available)
Syntax
@NA
@NA returns the special value NA (not available). Formulas that depend on a value entered as @NA return the
value NA, unless there is an error, in which case they return ERR. NA is a unique number, not to be confused with
the label NA.
@NA is used to indicate values not yet available (it will not work with labels). It ensures that formulas relying on
information that is not provided do not display inaccurate data.
Examples

A B C D
1 QTR North South West
2 1 $187,68

1
$151,136 $131,123

3 2 $170,07
2

NA $149,181

4
5 YTD $357,75

3
NA $280,304

6 AVG $178,87
7

NA $140,152

@NA has been entered for the South's Qtr 2 results. As you can see, the NA cascades through to the totals.
When the @NA is replaced with a valid value, the totals will immediately reflect the correct figures.
@NA = NA
@IF(B3=0,@NA,B3) = NA if B3 = 0; otherwise, the value of B3
 Related topics

@NBDAY - Next Business Day
Syntax
@NBDAY(Date, <Holidays>, <Saturday>, <Sunday>)

Date Number representing a date. See "Using dates
and times in Quattro Pro."

Holidays Cells containing dates that are holidays or the
date of a single holiday or 0 to indicate no
holidays (the default is 0).

Saturday 0 to specify that Saturday is not a business day; 1
to specify that Saturday is a business day (the
default is 0).

Sunday 0 to specify that Sunday is not a business day; 1
to specify that Sunday is a business day (the
default is 0).

@NBDAY returns the serial date number of the next business day after Date.
Examples
@NBDAY(@DATE(93,2,26)) = 34029 (March 1, 1993)
@NBDAY(@DATE(93,12,24),A7..C9,0,1) = 34329 (December 26, 1993), assuming that Saturdays and the dates in
cells A7..C9 are holidays.
 Related topics

@NEGBINOMDIST - Negative Binomial Distribution
Syntax
@NEGBINOMDIST(Failures, Successes, Prob)

Failures Number of failures.
Successes Threshold of successes.
Prob Probability of a success; 0 £ Prob £ 1.

@NEGBINOMDIST returns the negative binomial distribution. Use @NEGBINOMDIST to determine the distribution
of the number of failures you experience before achieving a specified number of successes.
Example
A polling organization asks a sampling of voters if they favor Candidate A for reelection. Given that 55% of the
city's voters favor Candidate A, this formula calculates the probability that the polling organization will contact
10 voters who do not favor her for reelection before contacting 1 voter who does favor her:
@NEGBINOMDIST(10,1,0.55) = 0.000187
 Related topics

@NENGO - Convert Date to Kanji
Syntax
@NENGO(Date)

Date The date, comprised of the elements Imperial
Year, Month, and Day.

@NENGO converts a date to its kanji representation.
 Related topics

@NETPV - Net Present Value
Syntax
@NETPV(Discrate, Flows, <Initial>, <[Odd|Periods]>, <Simp>, <Pathdep>, <Filter>, <Start>, <End>)

Discrate Discount rate or cells containing discount rates
corresponding to cells of cash flows.

Flows Cells containing cash flows.
Initial Initial cash flow (the default is 0).
Odd|Periods Delay between initial and first cash flow in

number of periods (the default is 1) or cells
containing lengths of periods between cash flows
(the default is 1).

Simp Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Pathdep Flag specifying whether to apply path-dependent
compounding to each flow; 0 = no path (default);
1 = path.

Filter Flag specifying filter type: 0 = no filter (default); 1
= cashflow < Start; 2 = cashflow £ Start; 3 =
cashflow > Start; 4 = cashflow ³ Start; 5 = Start
< cashflow < End; 6 = Start £ cashflow £ End.

Start A starting cash flow amount to compare against
individual flows.

End An ending cash flow amount to compare against
individual flows.

@NETPV computes the net present value of a stream of cash flows.
Example
A firm is considering the purchase of two machines. Machine A requires an initial outlay of $40,000 and produces
a cash flow of $23,000 for three years. Machine B requires an outlay of $50,000 and produces a cash flow of
$22,000 for four years. The following formulas calculate the net present values of both machines, using the data
shown in the next figure and a discount rate of 12%. The results are useful for determining which machine is a
better purchase:
Machine A: @NETPV(0.12,A13..B14,B12) = $15,242.12
Machine B: @NETPV(0.12,C13..D14,D12) = $16,821.69

A B C D
11 Machine A

Income
Machine B
Income

12 Initial ($40,000) Initial ($50,000)
13 3 $23,000 4 $22,000

The net present value of the flows associated with Machine B is greater, so it should be purchased.
 Related topics

@NETWORKDAYS - Number of Working Days
Syntax
@NETWORKDAYS(StartDate, EndDate, <Holidays>, <Weekends>)

StartDate Date number representing start date. See "Using
dates and times in Quattro Pro."

EndDate Date number representing end date.
Holidays Optional cell name or reference containing serial

date numbers of holidays to exclude from the
calculation.

Weekends Optional argument, in quotation marks, to tell
@NETWORKDAYS which days are weekend days.
Use 0 through 6 (Monday through Sunday); for
example, "45" means Friday and Saturday. The
default, if you omit Weekends, is Saturday and
Sunday. To specify no weekends, use "7".

@NETWORKDAYS returns the number of days between two dates, excluding weekends and holidays. StartDate is
excluded from the result; EndDate is included in the result. For example, to find the number of days, excluding
weekends and holidays, between April 10, 2001 and May 10, 2001, use April 9, 2001 as the StartDate and May
10, 2001 as the EndDate (the answer is 23).
You cannot use any optional argument without using all the ones preceding it. To specify weekends but not
holidays, refer to a blank cell for holidays.
Example
You want to know how many working days there will be between mid-November, 1996, and the project due date
early the next January. Your company holidays are stored in a cell named Holidays, and your weekend days are
Saturday and Sunday.

A
1 35397
2 35398
3 35424
4 35425
5 35426
6 35431
7 35432
8 35433

@NETWORKDAYS(@DATE(96,11,16), @DATE(97,1,5),Holidays) = 27
 Related topics

@NOMINAL - Nominal Interest Rate
Syntax
@NOMINAL(EffectRate, Nper)

EffectRate Effective interest rate.
NperY Number of compounding periods per year,

truncated to an integer.

@NOMINAL calculates the nominal annual interest rate for a specified effective rate and number of compounding
periods a year.
@NOMINAL is related to @EFFECT in the following way:

where

Rn nominal rate
Re effective rate
Nper number of compounding periods per year

@NOMINAL returns ERR if either argument is non-numeric, if EffectRate <= 0, or if NperY < 1.
Example
@NOMINAL(7.3756%,4) = 0.0718 or 7.18%
 Related topics

@NORMDIST - Normal Distribution
Syntax
@NORMDIST(X, Mean, SDev, Cum)

X Value at which to evaluate function.
Mean Mean of the normal distribution.
SDev Standard deviation of the normal distribution;

must be > 0.
Cum 1 to return the cumulative normal distribution

function; 0 (the default) to return the probability
density function.

@NORMDIST computes the normal distribution function. A normal distribution is one that is perfectly
symmetrical about its mean, and its spread is determined by the value of the standard deviation. The normal
distribution describes many statistical phenomena, including the distribution of population means.
@NORMDIST uses this formula to calculate the cumulative normal distribution function:

To calculate the probability mass function for a normal distribution, @NORMDIST uses this formula:

Examples
@NORMDIST(50,48,1.2,1) = 0.95221
@NORMDIST(50,48,1.2,0) = 0.082898
 Related topics

@NORMINV - Inverse of Normal Distribution
Syntax
@NORMINV(Prob, Mean, SDev)

Prob Probability corresponding to the normal
distribution; 0 < Prob < 1.

Mean Mean of the normal distribution.
SDev Standard deviation of the normal distribution;

must be > 0.

@NORMINV returns the inverse of the cumulative normal distribution function.
Example
@NORMINV(0.95221,48,1.2) = 50
 Related topics

@NORMSDIST - Standard Normal Distribution
Syntax
@NORMSDIST(X)

X Value at which to evaluate the function.

@NORMSDIST returns the standard normal cumulative distribution function. The standard normal cumulative
distribution function has a mean of 0 and a standard deviation of 1.
@NORMSDIST uses this formula:

Example
@NORMSDIST(1.66667) = 0.95221
 Related topics

@NORMSINV - Inverse of Standard Normal Distribution
Syntax
@NORMSINV(Prob)

Prob Probability corresponding to the normal
distribution; must be > 0 and < 1.

@NORMSINV returns the inverse of the standard normal cumulative distribution function. The standard normal
cumulative distribution function has a mean of 0 and a standard deviation of 1.
Example
@NORMSINV(0.95221) = 1.66667
 Related topics

@NOT - Logical Not
Syntax
@NOT(List)

List Logical value or expression that can be
evaluated to TRUE or FALSE.

@NOT reverses the value of its argument. If Logical is FALSE, @NOT returns TRUE; if Logical is TRUE, @NOT
returns FALSE.
Use @NOT when you need to make sure a value is not equal to a certain value.
Example
Enter the following formula in Cell B2 and copy it into Cells B3 through B6. The relative cell address will change
as you copy the function, to refer to the cell next to it.
@IF(@NOT(A2=100%),"Keep trying","HOORAY!!")

A B
1 Grades
2 87% Keep trying
3 92% Keep trying
4 75% Keep trying
5 98% Keep trying
6 100% HOORAY!!

 Related topics

@NOW - Current Date and Time
Syntax
@NOW
@NOW returns the serial number corresponding to the current date and time. To display the number as a date or
time, right-click the cell, choose Cell Properties, then click Numeric Format.
The value generated by @NOW is updated to the current date and time each time you press the Calc key (F9), or
perform any operation that recalculates the notebook.
The integer part of a date/time serial number pertains to the date; the decimal portion pertains to time. To
extract just the date portion, use @INT(@NOW) or @TODAY. To extract just the time portion, use
@MOD(@NOW,1).
Examples
@NOW = 31905.572338 (5/8/87, 1:45 PM)
@INT(@NOW) = 31905 (5/8/87)
@MOD(@NOW,1) = 0.572338 (1:45 PM)
@INT(@MOD(@NOW,7)) = 6 (the number of the day of the week)
 Related topics

@NPER - Number of Periods
Syntax
@NPER(Rate, Pmt, Pv, <Fv>, <Type>)

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Pmt A numeric value representing the amount of the
periodic payment.

Pv A numeric value representing the current value
of an investment (the present value).

Fv A numeric value representing the future value of
an investment (the value the investment will
reach at some point).

Type An optional numeric value that indicates whether
payments or cash flows occur at the beginning
(1) or the end (0) of the period; default = 0.

@NPER calculates the number of time periods required for an investment, using an optional argument, Type, to
indicate whether the investment is an ordinary annuity or an annuity due. Like @CTERM and @TERM, @NPER
computes the number of payments needed to reach Fv, given Pv, Pmt, and Rate. The last two arguments of
@NPER, Fv and Type, are optional. If you omit one or both of them, Quattro Pro assumes their values are zero.
Be sure to enter a negative number for money that is out of your pocket and a positive number for money that is
coming in to you.
This @function is not compatible with 1-2-3. If your file must be compatible, use @CTERM or @TERM instead.
Examples
Assume you have an IRA account that earns 11.5% interest paid annually at the start of the year, and you
deposit $2000 into the account at the end of each year. The present account balance is $633. To determine how
many payment periods it will take to reach a nest egg of $50,000, use @NPER:
@NPER(11.5%,-2000,-633,50000,0) = 12.12
The fractional part of the answer is not very meaningful; you cannot be sure of having your nest egg until the
end of the 13th year.
 Related topics

@NPV - Present Value of Future Cash Flow
Syntax
@NPV(Rate, Block, <Type>)

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Block Cells (reference or name) containing cash flow
information for the investment.

Type An optional numeric value that indicates whether
payments or cash flows occur at the beginning
(1) or the end (0) of the period; default = 0.

@NPV calculates the current value of estimated cash flow values (Block), discounted at the given interest rate
(Rate). It is helpful in determining how much an investment is currently worth, based on expected earnings,
although its accuracy is entirely dependent on the accuracy of the cash flow table.
The optional third argument, Type, can be 0 or 1, depending on whether the cash flows are at the beginning or
the end of the period. The default value is 0, end of the period.
The formula for @NPV(Rate,Block,Type)--if Block consists of --is given by

If Type = 0

If Type = 1

The cash flow table in Block should show expected income and debits over a period of time. If Type is 0, Quattro Pro
assumes that the amounts are received at the end of regular intervals. If Type is 1, it assumes the amounts are
received at the beginning of regular intervals. Quattro Pro also assumes that the length of this interval is the same
as the period on which interest is compounded. In other words, if monthly cash flow is estimated, Rate needs to
show monthly interest. To convert annual interest to monthly interest, simply divide by 12.
Examples

A B C D E
1 1992 1993 1994 1995 1996
2 -5000 +2000 +2000 +2000 +2000

Suppose you are considering investing $5000 this year, and you expect a return of $2000 in each of the next
four years. Put the values -5000,+2000,+2000,+2000,+2000 in the cells A2..E2. The net present value, using a
discount rate of 10%, is @NPV(.1,A2..E2,1) which equals $1,340. Or, combine the initial investment with the
present value of the four returns with +A2+@NPV(.1,B2..E2,0). The result is the same.

A B C D
1 Jan 8000 200 3500
2 Feb 9000 350 4000
3 Mar 8500 -300 3000
4 Apr 9500 600 5000

@NPV(1.25%,B1..B4) = $33,908.92
@NPV(15%/12,C1..C4) = $820.83
@NPV(15%/12,D1..D4) = $15,006.51
-2000+@NPV(15%/12,D1..D4) = $13,006.51 (assumes an initial cash outflow of $2,000)
 Related topics

@NUMTOBIN - Decimal to Binary
Syntax
@NUMTOBIN(Decimal)

Decimal Decimal number to convert.

@NUMTOBIN returns the binary string equivalent of a decimal number. To convert a negative number, precede
Decimal with a minus sign.
Examples
@NUMTOBIN(10) = 1010
@NUMTOBIN(16) = 10000
@NUMTOBIN(30) = 11110
 Related topics

@NUMTOBIN64 - Decimal to Binary
Syntax
@NUMTOBIN64(Decimal, <Places>)

Decimal Decimal number to convert.
Places Number of characters to return; must be £ 64.

@NUMTOBIN64 returns the binary string equivalent of a decimal number (up to 64 bits).
Examples
@NUMTOBIN64(10) = 1010
@NUMTOBIN64(10,5) = 01010
@NUMTOBIN64(123000) = 11110000001111000
@NUMTOBIN64(123000,7) = 1111000
 Related topics

@NUMTOHEX - Decimal to Hexadecimal
Syntax
@NUMTOHEX(Decimal)

Decimal Decimal number to convert.

@NUMTOHEX converts the decimal number Decimal to its corresponding hexadecimal string value. @HEXTONUM
performs the opposite conversion, from hexadecimal to decimal.
Examples
@NUMTOHEX(10) = 'A
@NUMTOHEX(16) = '10
@NUMTOHEX(65535) = 'FFFF
 Related topics

@NUMTOHEX64 - Decimal to Hexadecimal
Syntax
@NUMTOHEX64(Decimal, <Places>)

Decimal Decimal number to convert.
Places Number of characters to return; must be £ 16.

@NUMTOHEX64 returns the hexadecimal string equivalent of a decimal number (up to 64 bits).
Examples
@NUMTOHEX64(10) = A
@NUMTOHEX64(10,2) = 0A
@NUMTOHEX64(123000) = 1E078
@NUMTOHEX64(1000000000) = 3B9ACA00
 Related topics

@NUMTOOCT - Decimal to Octal
Syntax
@NUMTOOCT(Decimal)

Decimal Decimal number to convert.

@NUMTOOCT returns the octal string equivalent of a decimal number. To convert a negative number, precede
Decimal with a minus sign.
Examples
@NUMTOOCT(10) = 12
@NUMTOOCT(16) = 20
@NUMTOOCT(30) = 36
 Related topics

@NUMTOOCT64 - Decimal to Octal
Syntax
@NUMTOOCT64(Decimal, <Places>)

Decimal Decimal number to convert.
Places Number of characters to return; must be £ 22.

@NUMTOOCT64 returns the octal string equivalent of a decimal number (up to 64 bits).
Examples
@NUMTOOCT64(8) = 10
@NUMTOOCT64(10,3) = 012
@NUMTOOCT64(123000) = 360170
@NUMTOOCT64(123000,3) = 170
@NUMTOOCT64(2^63) = 1000000000000000000000
 Related topics

@NWKDAY - Nth Weekday in Month
Syntax
@NWKDAY(N, Wkday, Month, Year, <AuxWkday>)

N Number from 1 to 5.
Wkday Number from 1 (Saturday) to 7 (Friday).
Month Number from 1 (January) to 12 (December).
Year Number from 0 (1900) to 199 (2099) or a

standard year like 1993.
AuxWkday Auxiliary day of the week that must fall in the

same week as Wkday; 0 for no auxiliary day or a
number from 1 (Saturday) to 7 (Friday) indicating
the auxiliary day (the default is 0).

@NWKDAY returns the serial date number for the date of the Nth occurrence of Wkday in Month. If there is not
an Nth occurrence, @NWKDAY returns ERR.
See "Using dates and times in Quattro Pro."
You can use AuxWkday to specify another day that must fall in the same week and month as Wkdday; see the
second example.
The valid date calculation range for this function is 01/01/1900 through 12/31/2099.
Examples
@NWKDAY(2,3,4,99) = 36262 (April 12, 1999), the date of the second Monday in April 1999.
@NWKDAY(1,7,12,93,3) = 34313 (December 10, 1993), the first Friday on which both the first Friday and a
Monday fall in the same week of December 1993.
 Related topics

@OCTTOBIN - Octal to Binary
Syntax
@OCTTOBIN(Oct)

Oct Octal number to convert; denote negative
numbers using a minus sign.

@OCTTOBIN returns the binary string equivalent of an octal number.
Examples
@OCTTOBIN("12") = 1010
@OCTTOBIN("20") = 10000
@OCTTOBIN("36") = 11110
 Related topics

@OCTTOHEX - Octal to Hexadecimal
Syntax
@OCTTOHEX(Oct)

Oct Octal number to convert; denote negative
numbers using a minus sign.

@OCTTOHEX returns the hexadecimal string equivalent of an octal number.
Examples
@OCTTOHEX("12") = A
@OCTTOHEX("20") = 10
@OCTTOHEX("36") = 1E
 Related topics

@OCTTONUM - Octal to Decimal
Syntax
@OCTTONUM(Oct)

Oct Octal number to convert; denote negative
numbers using a minus sign.

@OCTTONUM returns the decimal equivalent of an octal number.
Examples
@OCTTONUM("12") = 10
@OCTTONUM("20") = 16
@OCTTONUM("36") = 30
 Related topics

@ODD - Round Up to Nearest Odd Integer
Syntax
@ODD(X)

X Value to round.

@ODD rounds X up (away from zero) to the nearest odd integer. If X is already an odd integer, @ODD returns X.
Examples
@ODD(3.2) = 5
@ODD(3) = 3
@ODD(-3.2) = -5
 Related topics

@ODDFPRICE - Price of Bond with Odd First Period
Syntax
@ODDFPRICE(Settle, Maturity, Issue, FirstCpn, Coupon, Yield, <Redemption>, <Freq>, <Calendar>)

Settle Number representing the settlement date.
                                  
Maturity

Number representing the maturity date.

Issue Number representing the issue date.
FirstCpn Number representing the first coupon date.
Coupon Coupon rate; must be ³ 0.
Yield Annual yield; 0 < Yield £ 1.
Redemption Redemption value per 100 face value (must be >

0; the default is 100).
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@ODDFPRICE returns the price per 100 face value of a bond having an odd (short or long) first period. In an odd
first coupon period, the first coupon payment is a prorated multiple of a normal coupon payment.
Dates for @ODDFPRICE must follow this pattern:
Issue < Settle < Maturity
Issue < FirstCpn < Maturity
Example
This formula returns the price per 100 face value of a bond with the following terms: Settle is March 15, 1993,
Maturity is November 15, 1995, Issue is January 4, 1992, FirstCpn is May 15, 1993, Coupon is 8.5%, Yield is 8.7%,
Redemption is 100, Freq 2, and Calendar is 0 (30/360).
@ODDFPRICE(@DATE(93,3,15),@DATE(95,11,15),@DATE(92,1,4),@DATE(93,5,15),0.085, 0.087,100,2,0) =
99.40933
 Related topics

@ODDFYIELD - Yield of Bond with Odd First Period
Syntax
@ODDFYIELD(Settle, Maturity, Issue, FirstCpn, Coupon, Price, <Redemption>, <Freq>, <Calendar>)

Settle Number representing the settlement date.
                                  
Maturity

Number representing the maturity date.

Issue Number representing the issue date.
FirstCpn Number representing the first coupon date.
Coupon Coupon rate; must be ³ 0.
Price Price of the security; must be > 0.
Redemption Redemption value per 100 face value (must be >

0; the default is 100).
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@ODDFYIELD returns the yield of a security having an odd (short or long) first period. In an odd first coupon
period, the first coupon payment is a prorated multiple of a normal coupon payment.
Dates for @ODDFYIELD must follow this pattern:
Issue < Settle < Maturity
Issue < FirstCpn < Maturity
Example
This formula calculates the yield for a security with the following terms: Settle is March 15, 1993, Maturity is
November 15, 1995, Issue is January 4, 1992, FirstCpn is May 15, 1993, Coupon is 8.5%, Price is 100,
Redemption is 100, Freq is 2, and Calendar is 0 (30/360).
@ODDFYIELD(@DATE(93,3,15),@DATE(95,11,15),@DATE(92,1,4),@DATE(93,5,15),0.085, 100,100,2,0) =
0.084487
 Related topics

@ODDLPRICE - Price of Bond with Odd Last Period
Syntax
@ODDLPRICE(Settle, Maturity, LastCpn, Coupon, Yield, <Redemption>, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
LastCpn Number representing the last coupon date; must

be < Maturity.
Coupon Coupon rate; must be ³ 0.
Yield Annual yield; 0 < Yield £ 1.
Redemption Redemption value per 100 face value (must be >

0; the default is 100).
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@ODDLPRICE returns the price per 100 face value of a bond having an odd (short or long) last period. In an odd
last coupon period, the last coupon payment is a prorated multiple of a normal coupon payment.
Example
This formula calculates the price per 100 face value of a bond with the following terms: Settle is June 1, 1992,
Maturity is December 15, 2012, LastCpn is September 15, 2012, Coupon is 7.5%, and Yield is 5.25%.
@ODDLPRICE(@DATE(92,6,1),@DATE(112,12,15),@DATE(112,9,15), 0.075,0.0525) = 128.0663
 Related topics

@ODDLYIELD - Yield of Bond with Odd Last Period
Syntax
@ODDLYIELD(Settle, Maturity, LastCpn, Coupon, Price, <Redemption>, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
LastCpn Number representing the last coupon date; must

be < Maturity.
Coupon Coupon rate; must be ³ 0.
Price Price; must be > 0.
Redemption Redemption value per 100 face value (must be >

0; the default is 10 0).
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12; the
default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@ODDLYIELD returns the yield of a bond having an odd (short or long) last period. In an odd last coupon period,
the last coupon payment is a prorated multiple of a normal coupon payment.
Example
This formula calculates the yield of a bond with the following terms: Settle is June 1, 1992, Maturity is December
15, 2012, LastCpn is September 15, 2012, Coupon is 7.5%, and Price is 128.0663.
@ODDLYIELD(@DATE(92,6,1),@DATE(112,12,15),@DATE(112,9,15),0.075, 128.0663) = 0.0525
 Related topics

@OFFSET - Offset Reference
Syntax
@OFFSET(Reference, Rows, Cols, <Height>, <Width>)

Reference Reference on which you want to base the offset;
cannot refer to non-contiguous areas.

Rows Number of rows from Reference you want the
offset to refer to. If Rows = 5, the upper left cell
in the offset is five rows below the upper left cell
in Reference. Negative Rows are above, positive
are below.

Cols Number of columns from Reference you want the
offset to refer to. If Cols =    5, the upper left cell
in the offset is five columns to the right of the
upper left cell in Reference. Negative Cols    are
to the left, positive are to the right.

Height Height (optional) of the returned offset, in rows.
Height must be a positive number. If omitted,
Height is the same height as Reference.

Width Width (optional) of the returned offset, in
columns. Width must be a positive number. If
omitted, Width is the same width as Reference.

@OFFSET returns a reference that is offset from another reference by a specified number of rows and columns;
dimensions of the offset can also be specified. The upper left cell of the returned reference is offset from the
upper left cell of Reference by the number of Cols and Rows you specify.
@OFFSET does not actually move cells or change the selection; it just returns a reference. Use @OFFSET with
any function that expects a reference argument.
If Reference is a selection and you do not specify Height = 1 and Width = 1, you must select a selection of the
appropriate size to display the result before entering @OFFSET as an array.
@OFFSET returns ERR if Rows and Cols offset Reference over the edge of the notebook sheet.
Examples
The notebook EXPENSES.QPW contains the following cells:

A B C
1 January February March
2 $652 $833 $599
3 $456 $305 $522
4 $68 $59 $73

@OFFSET(A1,2,1,1,1) = [EXPENSES.qpw]A:B3..B3
@OFFSET(A1..C1,3,0,1,3) = [EXPENSES.qpw]A:A4..C4
 Related topics

@OR - Logical Or
Syntax
@OR(List)

List True-or-false conditions to test.

@OR returns 1 (true) if any argument is true, 0 (false) only if all arguments are false.
Arguments must be logical values, or references or arrays that contain logical values.
@OR ignores text or empty cells.
You can use an @OR array formula to see if a certain value occurs in a list of cells.
Examples
Given the following data:

A B
1 $2 $101
2 $50 $115
3 $127 $130

@OR(A1>10,A2>10,A3>10) = 1 (true)
@OR(A1>200,A2>200,A3>200) = 0 (false)
To find which values in column A are less than 100, enter in cell A4 the formula +A1..A3<100. Quattro Pro enters
the formula as an array and returns the array {1|1|0} in cells A4..A6, showing the first two values in column A
are less than 100. You can do the same in cell B4 for the amounts in column B.
Suppose a $5 service charge is deducted if the daily account balance falls below the $100 minimum. Use @OR to
test the true-or-false conditions in A4..A6 and B4..B6, and @IF to subtract $5 or not, depending on the results:
For account A, @IF(@OR(A4..A6), "$5","$0") = $5
For account B, @IF(@OR(B4..B6), "$5","$0") = $0 (no service charge)
 Related topics

@ORB - Binary OR
Syntax
@ORB(Binary1, <Binary2>, <Bits>)

Binary1 First binary number.
Binary2 Second binary number.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in
Binary1 or Binary2, whichever is greater; must
be in the range 0 <n £ 64.

@ORB performs a bit-by-bit logical OR of each bit in Binary1 and Binary2. Any bit that is set to 1 in either Binary1
or Binary2 causes the resulting output bit to be set to 1.
If only one number is specified, then @ORB performs an any-ones test, or OR reduction, on Binary1; @ORB
returns 1 if any bits in Binary1 are set to 1; otherwise, it returns 0.
Examples
@ORB(10,1) = 11
@ORB(10,10) = 10
@ORB(10) = 1
@ORB(1100,1,5) = 01101
 Related topics

@ORH - Hexadecimal OR
Syntax
@ORH(Hex1, <Hex2>, <Bits>)

Hex1 First hexadecimal number.
Hex2 Second hexadecimal number.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in Hex1
or Hex2, whichever is greater; 4 binary digits = 1
hexadecimal digit; must be in the range 0 <n £
64.

@ORH performs a bit-by-bit logical OR of each bit in Hex1 and Hex2. Any binary bit that is set to 1 in either Hex1
or Hex2 causes the resulting output bit to be set to 1.
If only one number is specified, then @ORH performs an any-ones test, or OR reduction, on Hex1; @ORH returns
1 if any bits in Hex1 are set to 1; otherwise, it returns 0.
Examples
@ORH("A","F") = F
@ORH("A") = 1
@ORH("C","1",8) = 0D
 Related topics

@PAGEINDEX - Index Number for Notebook Sheet
Syntax
@PAGEINDEX(Name)

Name A string corresponding to the name of a sheet;
must be enclosed in quotation marks.

@PAGEINDEX returns the index number (from 0 to 255) for a specified sheet name. If no sheet names match the
string Name, @PAGEINDEX returns ERR.
To return the index number for a sheet in another notebook, use @PAGEINDEX2.
Example
@PAGEINDEX("EXPENSES") = 0 (the index number for the sheet named EXPENSES is 0)
 Related topics

@PAGEINDEX2 - Index Number for Sheet in Another Notebook
Syntax
@PAGEINDEX2(NotebookLink, Name)

NotebookLink A reference to a sheet, cell, or cells in another
notebook (for example, [BUDGET]A:A1).

Name A string corresponding to the name of a sheet;
must be enclosed in quotation marks.

@PAGEINDEX2 returns the index number (from 0 to 255) for a specified sheet name in a notebook specified by
NotebookLink. If no sheet names match the string Name, @PAGEINDEX2 returns ERR.
Example
@PAGEINDEX2([BUDGET]A:A1,"EXPENSES") = 0 (the index number for the sheet named EXPENSES in notebook
BUDGET is 0)
 Related topics

@PAGENAME - Name of a Notebook Sheet
Syntax
@PAGENAME(Index)

Index A number from 0 to 255 inclusive.

@PAGENAME returns the name of a sheet specified by Index. If there is not a name for the specified sheet,
@PAGENAME returns ERR.
To return a sheet name from another notebook, use @PAGENAME2.
Example
@PAGENAME(3) = EXPENSES (the sheet with index number 3 is named EXPENSES)
 Related topics

@PAGENAME2 - Name of Sheet in Another Notebook
Syntax
@PAGENAME2(NotebookLink, Index)

NotebookLink A reference to a sheet, cell, or cells in another
notebook (for example, [BUDGET]A:A1).

Index A number from 0 to 255 inclusive.

@PAGENAME2 returns the name of a sheet specified by Index in a notebook specified by NotebookLink. If there is
not a name for the specified sheet, @PAGENAME2 returns ERR.
Example
@PAGENAME2([BUDGET]A:A1,3) = EXPENSES (the sheet with index number 3 in notebook BUDGET is named
EXPENSES)
 Related topics

@PAGENAMES - Table of Sheet Names
Syntax
@PAGENAMES(<ExcludedNames>)

ExcludedNames A optional argument specifying sheet names to
exclude from the table; enclose each sheet name
in quotation marks, and separate sheet names
with a comma.

@PAGENAMES returns a two-column table showing the sheet letters and corresponding sheet names for the
active notebook. The left column of the table contains sheet letters (from A to IV), and the right column contains
corresponding sheet names.
Because @PAGENAMES returns an array, it is automatically enclosed within an @ARRAY @function.
If the active notebook does not have any named sheets, @PAGENAMES returns ERR.
Make sure there is enough room for a two-column table, with one row for each sheet name. Quattro Pro
overwrites existing data in cells it uses for the table.
To return sheet names for another notebook, use @PAGENAMES2.
Example
The active notebook consists of five named sheets, Qtr1, Qtr2, Qtr3, Qtr4, and Totals, whose sheet letters are A,
B, C, D, and E, respectively.
@ARRAY(@PAGENAMES) = table in A1..B5 shown in the next figure

A B
1 A Qtr1
2 B Qtr2
3 C Qtr3
4 D Qtr4
5 E Totals

 Related topics

@PAGENAMES2 - Table of Sheet Names in Another Notebook
Syntax
@PAGENAMES2(NotebookLink, <ExcludedNames>)

NotebookLink A reference to a sheet, cell, or cells in another
notebook (for example, [BUDGET]A:A1).

ExcludedNames A optional argument specifying sheet names to
exclude from the table; enclose each sheet
name in quotation marks, and separate sheet
names with a comma.

@PAGENAMES2 returns a two-column table showing the sheet letters and corresponding sheet names for the
notebook specified by NotebookLink. The left column of the table contains sheet letters (from A to IV), and the
right column contains corresponding sheet names.
Because @PAGENAMES2 returns an array, it is automatically enclosed within an @ARRAY @function.
If the active notebook does not have any named sheets, @PAGENAMES2 returns ERR.
Make sure there is enough room for a two-column table, with one row for each sheet name. Quattro Pro
overwrites existing data in cells it uses for the table.
Example
A notebook named BUDGET consists of five named sheets, Qtr1, Qtr2, Qtr3, Qtr4, and Totals, whose sheet letters
are A, B, C, D, and E, respectively.
@ARRAY(@PAGENAMES2([BUDGET]F:A1)) = table in A1..B5 shown in the next figure

A B
1 A Qtr1
2 B Qtr2
3 C Qtr3
4 D Qtr4
 5 E Totals

 Related topics

@PBDAY - Prior Business Day
Syntax
@PBDAY(Date, <Holidays>, <Saturday>, <Sunday>)

Date Number representing a date. See "Using dates
and times in Quattro Pro."

Holidays Cells containing dates that are holidays or the
date of a single holiday or 0 to indicate no
holidays (the default is 0).

Saturday 0 to specify that Saturday is not a business day; 1
to specify that Saturday is a business day (the
default is 0).

Sunday 0 to specify that Sunday is not a business day; 1
to specify that Sunday is a business day (the
default is 0).

@PBDAY returns the serial date number of the first business day before Date.
Examples
@PBDAY(@DATE(93,3,1)) = 34026 (February 26, 1993)
@PBDAY(@DATE(93,12,26),A7..C9,0,1) = 34325 (December 22, 1993), assuming that Saturdays and the dates in
the cells A7..C9 are holidays.
 Related topics

@PAYMT - Amortized Payment
Syntax
@PAYMT(Rate, Nper, Pv, <Fv>, <Type>)

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Nper A numeric value > 0, representing the number of
periods of the loan (the number of payments to
be made) or investment (the number of
compounding periods).

Pv A numeric value representing the amount
borrowed (the principal).

Fv A numeric value representing the future value of
an investment (the value the investment will
reach at some point).

Type An optional numeric value that indicates whether
payments or cash flows occur at the beginning
(1) or the end (0) of the period; default = 0.

@PAYMT calculates the periodic payment needed to reach Fv, given Rate, Nper, and Pv. The last two arguments
of @PAYMT, Fv and Type, are optional. If you omit the last one or both of them, Quattro Pro assumes that their
values are zero. Enter negative numbers for out-of-pocket money and positive numbers for money coming in.
Related @function @PMT is not as flexible, but can be used if your file must be compatible with 1-2-3.
Examples
Assume you want to take out a 30-year $175,000 mortgage with a 17.5% annual interest rate with 12 payments
a year, and you would like to see the difference in your monthly payments if you paid at the start or at the end of
the month. All you have to do is enter these two @functions:
@PAYMT(17.5%/12,12*30,175000,0,0) = -2566.07
@PAYMT(17.5%/12,12*30,175000,0,1) = -2529.19
If, on the other hand, your mortgage has a "balloon payment" that leaves you with unpaid principal at the end of
the mortgage, you can still calculate the payment. Just insert the balloon payment amount (say, $80,000) as the
future value component:
@PAYMT(17.5%/12,12*30,175000,-80000,0) = -2559.68
 Related topics

@PEARSON - Correlation
Syntax
@PEARSON(Array1, Array2)

Array1 Array of independent values.
Array2 Array of dependent values.

@PEARSON returns the Pearson product moment correlation coefficient, which measures the linear association of
two data sets. Array1 and Array2 must have the same number of values. @PEARSON uses this formula:

A value of r near or equal to 0 implies little or no linear relationship exists between the two lists of numbers. A value
of r near or equal to 1 or -1 indicates a very strong linear relationship.
Example
This example refers to cells in the next figure.
@PEARSON(B2..B16,C2..C16) = 0.989324

A B C
1 Date Advertising Sales
2 04/30/93 $435 $7,000
3 05/07/93 $400 $6,000
4 05/14/93 $505 $7,767
5 05/21/93 $470 $7,800
6 05/28/93 $610 $9,534
7 06/04/93 $540 $7,750
8 06/11/93 $575 $8,945
9 06/18/93 $715 $11,301
10 06/25/93 $645 $9,465
11 07/02/93 $680 $10,760
12 07/09/93 $785 $13,000
13 07/16/93 $750 $11,890
14 07/23/93 $855 $12,980
15 07/30/93 $820 $13,068
16 08/06/93 $890 $14,246

 Related topics

@PERCENTILE - Percentile
Syntax
@PERCENTILE(Array, X)

Array A numeric array or cells of values.
X A percentile value between 0 and 1, inclusive.

@PERCENTILE returns a number from Array at the percentile indicated by X.
Examples
@PERCENTILE({4,5,7,9,10,12,13,16},0) = 4
@PERCENTILE({4,5,7,9,10,12,13,16},0.25) = 6.5
@PERCENTILE({4,5,7,9,10,12,13,16},0.50) = 9.5
@PERCENTILE({4,5,7,9,10,12,13,16},0.75) = 12.25
@PERCENTILE({4,5,7,9,10,12,13,16},1) = 16
The examples above return values from percentile increments of 0.25, which are equal to quartiles. See
@QUARTILE.
 Related topics

@PERCENTRANK - Percentage Rank
Syntax
@PERCENTRANK(Array, X, <Digits>)

Array A numeric array or cells of values.
X Number to rank in Array; if X does not match a

value in Array, @PERCENTRANK interpolates to
return a percentage rank.

Digits Number of significant digits for returned
percentage value; must be ³ 1 (the default is 3).

@PERCENTRANK returns the percentage rank of X in Array. Use @PERCENTRANK to see where a value stands
within a list of values based on a percentage.
Example
This example refers to cells in the next figure. This formula returns the rank of a student's score among the
scores of all test takers in the cells A2..A11, where the student's score is in A4:
@PERCENTRANK(A2..A11,A4,3) = 0.222
@PERCENTRANK sample data

A
1 Test Scores
2 78
3 80
4 85
5 85
6 86
7 87
8 91
9 92
10 95
11 98

 Related topics

@PERMUT - Permutations
Syntax
@PERMUT(N, R)

N Number of different objects; n ³ 0.
R Number of objects taken at a time; R £ N.

@PERMUT returns the total number of arrangements of objects taken R at a time from a set of N objects. The
formula @PERMUT uses is:

@PERMUT is similar to @COMB except that it takes into account the order that objects are selected.
Example
Given 11 different colored marbles, this formula calculates how many different ways an ordered subset of five
marbles can be constructed such that no two constructions contain the same five marbles in the same order.
(Different constructions can contain the same five marbles, but they cannot share the same ordering.)
@PERMUT(11,5) = 55,440
 Related topics

@PI
Syntax
@PI
@PI returns the value of pi (3.141592653589794...), the classic ratio of a circle's circumference to its diameter.
To figure the area of a circle, given the radius in cell A1, enter this formula:
@PI*A1^2
Examples
@PI*13 = 40.84 (circumference of circle with a diameter of 13)
@PI*(7.5)^2 = 176.7146 (area of circle with a radius of 7.5)
@PI*B3 = the circumference of a circle whose diameter is in B3
 Related topics

@PIRATE - Internal Rate of Return
Syntax
@PIRATE(Npv, Flows, <Initial>, <[Odd|Periods]>, <Simp>, <Pathdep>, <Guess>, <Precision>, <Maxiter>,
<Filter>, <Start>, <End>)

Npv Net present value.
Flows Cells containing cash flows.
Initial Initial cash flow (the default is 0).
Odd|Periods Delay between initial and first cash flow, in

number of periods (the default is 1) or cells
containing lengths of periods between cash flows
(the default is 1).

Simp Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Pathdep Flag specifying whether to apply path-dependent
compounding to each flow; 0 = no path (default);
1 = path.

Guess IRR guess for numerical search (useful for
locating multiple roots); must be > -100%; the
default is 0.10.

Precision Minimum required precision; Precision > 0; the
default is 0.000001.

Maxiter Maximum number of iterations for search;
Maxiter > 0; the default is 50.

Filter Flag specifying filter type: 0 = no filter (default);
1 = cashflow < Start; 2 = cashflow £ Start; 3 =
cashflow > Start; 4 = cashflow ³ Start; 5 = Start
< cashflow < End; 6 = Start £ cashflow £ End.

Start A starting cash flow amount to compare against
individual flows.

End An ending cash flow amount to compare against
individual flows.

@PIRATE computes the internal rate of return for a stream of cash flows. It is similar to @IRR, but @PIRATE
accommodates more complex cash flow structures.
The initial Guess for the discount rate is 10%. For some cash flow streams, particularly those with both positive
and negative flows, multiple solutions are possible. By specifying a different Guess, it is possible to locate other
solutions. If no solution exists, @PIRATE returns ERR.
The default value of Precision is 0.000001; smaller values need more search iterations and may require a larger
value for Maxiter, which specifies the maximum number of iterations to use when attempting to find a solution. If
the net present value of the cash flows does not converge within Precision to the target value specified by Npv
(within Maxiter iterations), @PIRATE returns ERR.
Example
In the next figure, the stream consists of four flows, specified in cells A12..A15. The time lengths of the periods
preceding each flow are specified in cells C12..C15. The Npv is $98.34. This formula calculates the internal rate
of return, assuming compounded interest:
@PIRATE(B17,A12..A15,0,C12..C15) = 0.050041

A B C
11 Cash Flows Periods
12 $4.50 0.3455
13 $4.50 1.2

14 $4.50 1
15 $104.50 1.5
16
17 npv $98.34

 Related topics

@PMT - Amortized Payment
Syntax
@PMT(Pv, Rate, Nper)

Pv A numeric value representing the amount
borrowed (the principal).

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Nper A numeric value > 0, representing the number of
periods of the loan (the number of payments to
be made) or investment (the number of
compounding periods).

@PMT calculates the fully amortized periodic payment needed to repay a loan with a principal of Pv dollars at
Rate percent per period over Nper periods. It assumes that interest is paid at the end of each period and the
investment is an ordinary annuity (not an annuity due).
@PMT uses this formula:

where

P principal
R periodic interest rate
N number of periods

An equivalent for this formula using @PAYMT is
@PAYMT(Rate, Nper, - Pv, 0)
You can enter the value for Rate as a percent or a decimal; for example, 9.5% or .095. The amount you specify
for Rate must correlate with the unit used for Nper. In other words, if payments are made and interest calculated
annually, the amount entered for Nper must represent years. If monthly, Nper must represent the number of
months the loan covers. To calculate monthly payments using an annual interest rate, divide the interest rate by
12.
@PMT assumes that the investment is an ordinary annuity. Related @functions @PAYMT, @IPAYMT, and @PPAYMT
let you use an optional argument, Type, to indicate whether the investment is an ordinary annuity or an annuity
due. @PMTC calculates payments based on semi-annual compounding.
Examples
To calculate a monthly payment (paid on the last day of the month) for a three-year loan of $10,000 at an annual
15% interest rate, enter
@PMT(10000,15%/12,3*12) = $346.65
You can also use @PAYMT to figure this payment (the negative result means the money is out of your pocket):
PAYMT(15%/12,3*12,10000,0,0) = $-346.65
Other examples:
@PMT(1000,0.12,5) = $277.41
@PMT(500,0.16,12) = $96.21
@PMT(5000,16%/12,12) = $453.65
@PMT(12000,0.11,15) = $1,668.78
@PMT(10000,15%/12,36) calculates a monthly payment for a three-year loan of $10,000 at an annual 15%
interest rate
 Related topics

@PMTC - Monthly Loan Payment
Syntax
@PMTC(Pv,Rate,Nper)

Pv A numeric value representing the amount
borrowed (the principal).

Rate A numeric value > -1, representing the yearly
interest rate (the fixed interest rate per
compounding period).

Nper A numeric value > 0, representing the number of
months of the loan (the number of payments to
be made).

@PMTC calculates the monthly loan payments according to Canadian mortgage conventions.
@PMTC uses this formula:
P*((R/12) / (1-(1+(R/12))^-(N*12)))
where

P principal
R yearly interest rate
N number of months

Example
@PMTC(10000,15%,36) = 344.46
 Related topics

@POISSON - Poisson Probability Distribution
Syntax
@POISSON(N, Mean, Cum)

N Number of events; must be ³ 0.
Mean Expected numeric value for the mean over the

distribution; must be > 0.
Cum 1 to return the cumulative Poisson probability

distribution that the number of random events
will be in the range from zero to N; 0 to return
the Poisson probability mass function that the
number of events will be N.

@POISSON returns the Poisson probability distribution, that is, the probability that N number of events will occur
over a specified time period. The Poisson distribution function uses this formula:

with
r ³ 0

Example
On average, Company Z receives 30 customer service phone calls per hour. What is the probability that
Company Z will receive 35 calls in one hour?
@POISSON(35,30,0) = 0.045308
 Related topics

@POWER - Number Raised to a Power
Syntax
@POWER(Num, Power)

Num Number (base) to be raised to a power; can be
any real number.

Power Power (exponent), to which Num is to be raised.

@POWER calculates the result of a specified number raised to a power.
Examples
@POWER(4,3) = 64
@POWER(3.14159,2) = 9.8695877
@POWER(2,1/2) = 1.4142136
 Related topics

@PPAYMT - Principal Portion of Payment
Syntax
@PPAYMT(Rate, Per, Nper, Pv, <Fv>, <Type>)

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Per The number of the loan period for which the
principal is desired (where Nper is the total
number of periods).

Nper A numeric value > 0, representing the number of
periods of the loan (the number of payments to
be made) or investment (the number of
compounding periods).

Pv A numeric value representing the amount
borrowed (the principal).

Fv A numeric value representing the future value of
an investment (the value the investment will
reach at some point).

Type An optional numeric value that indicates whether
payments or cash flows occur at the beginning
(1) or the end (0) of the period; default = 0.

@PPAYMT calculates the amount of a particular payment that is going toward the loan principal or investment Pv
and is not interest.
@IPAYMT gives the part of the payment which is interest; @PAYMT calculates the total payment for each period.
Examples
Assume you are two years into a 30-year, 10% mortgage on a $100,000 loan. To determine what portion of this
month's payment is principal, enter
@PPAYMT(.1/12,2*12,30*12,100000) = $-53.54
The negative result indicates the money is out of your pocket.
Another example:
@PPAYMT (.15/4,24,40,10000,0,1) = $-250.83 quarterly payments for a $10,000 loan at 15% annual percentage
rate adjusted to a quarterly basis over a 10-year term
 Related topics

@PRICE - Price of a Bond
Syntax
@PRICE(Settle, Maturity, Coupon, Yield, <Redemption>, <Freq>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date; must be
> Settle.

Coupon Coupon rate; must be ³ 0.
Yield Annual yield; must be > 0 and £ 1.
Redemption Redemption value per 100 face value; must be >

0; the default is 100.
Freq Frequency of coupon payments in number of

payments per year (can be 1, 2, 3, 4, 6, or 12;
the default is 2).

Calendar Flag specifying which calendar to observe (0 =
30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@PRICE returns the price per 100 face value of a security that pays periodic interest.
Example
An 8.85% bond that matures August 17, 2017 has a yield-to-maturity of 7.5% for September 22, 1993
settlement. This formula calculates the price of the bond:
@PRICE(@DATE(93,9,22),@DATE(117,8,17),0.0885,0.075) = 114.8902
 Related topics

@PRICEDISC - Price of a Bill
Syntax
@PRICEDISC(Settle, Maturity, Discount, <Redemption>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date; must be
> Settle.

Discount Rate of discount; 0 £ Discount £ 1.
Redemption Redemption value per 100 face value (must be >

0; the default is 100).
Calendar Flag specifying which calendar to observe (0 =

30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@PRICEDISC returns the dollar price per 100 face value of a discounted security. The dollar price of a bill is its
value less the applicable dollar discount. The discount is the product of the redemption value and the quoted
discount rate, prorated for the number of days between settlement and maturity. @PRICEDISC uses this formula:

P price
R redemption
D discount
M maturity
S settle
b basis

tb is the number of days over which the discount rate applies (360 or 365).

Example
This formula calculates the dollar price of a bill with the following terms: Settle is January 17, 1993, Maturity is
August 15, 1993, Discount is 8.897%, Redemption is 100, and Calendar is 2 (actual/360).
@PRICEDISC(@DATE(93,1,17),@DATE(93,8,15),0.08897,100,2) = 94.81008
 Related topics

@PRICEMAT - Price of a CD
Syntax
@PRICEMAT(Settle, Maturity, Issue, Coupon, Yield, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date; must be
> Settle.

Issue Number representing the issue date; must be <
Settle.

Coupon Coupon rate; 0 £ Coupon £ 1.
Yield Annual yield; 0 £ Yield £ 1.
Calendar Flag specifying which calendar to observe (0 =

30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@PRICEMAT returns the price per 100 face value (not including accrued interest) of a security that pays interest
at maturity. The invoice price of a security that pays interest at maturity is the sum of the quoted price and
accrued interest between issue and settlement dates.
Example
This formula calculates the price per 100 face value of a security with the following terms: Settle is February 1,
1993, Maturity is April 1, 1993, Issue is January 2, 1993, Coupon is 10%, Yield is 10%, and Calendar is 2
(actual/360).
@PRICEMAT(@DATE(93,2,1),@DATE(93,4,1),@DATE(93,1,2),0.10,0.10,2) = 99.986
 Related topics

@PROB - Probability
Syntax
@PROB(XData, ProbRange, LowerLimit, <UpperLimit>)

Xdata Values of X associated with the probabilities.
ProbRange Cells or an array of probability values associated

with XData; each value in ProbRange must be ³
0 and £ 1; the sum of ProbRange values must
equal 1.

LowerLimit Lower limit on the value for the desired
probability.

UpperLimit Upper limit on the value for the desired
probability. (optional) (default = lower limit)

@PROB determines the probability that XData values are between two limits. If XData and ProbRange do not
have the same number of values, @PROB returns ERR.
Example
@PROB({10,13,15,18,25},{0.1,0.2,0.4,0.2,0.1},10,13) = 0.3
 Related topics

@PROPER - Initial Capital Letters
Syntax
@PROPER(String)

String A string value.

@PROPER converts the first letter of every word in String to uppercase, and the rest of the characters to
lowercase. A word is defined as an unbroken string of alphabetic characters. Any blank spaces, punctuation
symbols, or numbers mark the end of a word.
Examples
@PROPER("GEORGE washINGTON") = George Washington
@PROPER("FIRST QUARTER") = First Quarter
@PROPER("JOHN J.    SMITH") = John J. Smith
@PROPER("1979's results") = 1979'S Results
@PROPER(A1) = John J. Smith (where cell A1 contains JOHN J. SMITH)
 Related topics

@PROPERTY - Current Property Setting
Syntax
@PROPERTY(Object.Property)

Object The name of the object whose property settings
you are requesting.

Property The property whose settings you are requesting.

Returns the current setting of Property for an Object. See Property Reference for lists of objects and properties
you can enter as arguments.
@PROPERTY returns a string, even if the setting is a number. Object.Property must be enclosed in double quotes.
Examples
@PROPERTY("Active_Block.Selection")
Returns: the coordinates of the currently selected cells.
@PROPERTY("Sales:A1..D12.Protection")
Returns: Protect if cells A1..D12 on sheet Sales is protected; otherwise, it returns Unprotect.
 Related topics

@PUREAVG - Average, Ignoring Labels and Blanks
Syntax
@PUREAVG(List)

List One or more numeric or cell values.

@PUREAVG calculates the average of values in a list, ignoring blank cells and labels. Compare this to @AVG,
which calculates the average of all values in a list.
@Functions that ignore blank cells and labels are extremely important when using a spreadsheet for statistical
analysis.
Examples

A
1 Sales
2 $80,000
3 $90,000
4 $95,000
5 $105,000

@PUREAVG(A1..A5) = $92,500
@AVG(A1..A5) = $74,000, because @AVG includes the column heading and divides the total by 5
@AVG(A2..A5) = $92,500, when only the 4 cells containing numbers are in the list
 Related topics

@PURECOUNT - Counts Non-Blank Cells, Ignoring Labels
Syntax
@PURECOUNT(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@PURECOUNT returns the number of entries and cells in a list, excluding blank cells and labels. Compare this to
@COUNT, which returns the number of nonblank cells in a list. @COUNT includes cells with entries of any kind,
including labels, a label-prefix character, or the values ERR and NA.
You can use both @PURECOUNT and @COUNT to divert or stop a macro that performs a task on a series of
selections when the cell pointer reaches an empty cell.
@Functions that ignore blank cells and labels are extremely important when using a spreadsheet for statistical
analysis.
Examples

A
1 Sales
2 $80,000
3 $90,000
4 $95,000
5 $105,00

0

@PURECOUNT(A1..A6) = 4
@COUNT(A1..A6) = 5 (includes the label)
@PURECOUNT(1,"hello",A1..A3) = 3
@COUNT(1,"hello",A1..A3) = 5
 Related topics

@PUREMAX - Maximum Value, Ignoring Labels and Blanks
Syntax
@PUREMAX(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@PUREMAX returns the largest numeric value in a list, ignoring blank cells and labels. Compare this to @MAX,
which returns the largest numeric or data value in a list.
@Functions that ignore blank cells and labels are extremely important when using a spreadsheet for statistical
analysis.
Examples

A
1 Expenses
2 ($80)
3 ($90)
4 ($95)
5 ($105)

@PUREMAX(A1..A6) = ($80)
@MAX(A1..A6) = 0, the value of the label, Expenses
 Related topics

@PUREMIN - Minimum Value, Ignoring Labels and Blanks
Syntax
@PUREMIN(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@PUREMIN returns the smallest numeric value in a list, ignoring blank cells and labels. Compare this to @MIN,
which returns the smallest numeric or data value in a list.
@Functions that ignore blank cells and labels are extremely important when using a spreadsheet for statistical
analysis.
Examples

A
1 Sales
2 $80,000
3 $90,000
4 $95,000
5 $105,000

@PUREMIN(A1..A6) = $80,000
@MIN(A1..A6) = 0, the value of the label, Expenses
 Related topics

@PURESTD - Population Standard Deviation, Ignoring Labels and Blanks
Syntax
@PURESTD(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@PURESTD returns the population standard deviation (square root of the population variance) of numeric values
in a list, ignoring blank cells and labels. Compare this to @STD, which returns the population standard deviation
of all values in a list. @PURESTDS and @STDS return sample standard deviation.
@STD and @PURESTD use the n method to calculate standard deviation of population data. This method
assumes that the sample reflects the entire population. If the sample is small, the standard deviation is biased
because of sampling errors, so @STDS or @PURESTDS should be used instead.
@Functions that ignore blank cells and labels are extremely important when using a spreadsheet for statistical
analysis.
Examples

A
1 Grades
2 4.0
3 3.4
4 3.7
5 3.6

@PURESTD(A1..A6) = 0.216506, ignoring the label and the blank
@STD(A1..A6) = 1.4827, because the argument includes the label, which to @STD = 0
@STD(A2..A6) = 0.216506, excluding the label from the argument
@PURESTDS(A1..A6) = 0.25, the sample standard deviation
 Related topics

@PURESTDS - Sample Standard Deviation, Ignoring Labels and Blanks
Syntax
@PURESTDS(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@PURESTDS returns the sample standard deviation (square root of the sample variance) of numeric values in a
list, ignoring blank cells and labels. Compare this to @STDS, which returns the sample standard deviation of all
values in a list. @PURESTD and @STD return population standard deviation.
@STDS and @PURESTDS use the n-1 method to calculate standard deviation of sample population data. This
method compensates for sampling errors, returning a slightly larger standard deviation. If the sample is large
enough, @STD or @PURESTD can be used.
Examples

A
1 Grades
2 4.0
3 3.4
4 3.7
5 3.6

@PURESTDS(A1..A6) = 0.25, ignoring the label and the blank
@STDS(A1..A6) = 1.657709, because the argument includes the label, which to @STDS = 0
@STDS(A2..A6) = 0.25, excluding the label from the argument
@PURESTD(A1..A6) = 0.216506, the population standard deviation
 Related topics

@PUREVAR - Population Variance, Ignoring Labels and Blanks
Syntax
@PUREVAR(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@PUREVAR calculates the population variance of numeric values in a list, ignoring blank cells and labels.
Compare this to @VAR, which calculates the population variance of all values in a list. @PUREVARS and @VARS
calculate sample population variance.
Variance @functions perform a statistical test called analysis of variance (anova). @VAR and @PUREVAR use the
n method to calculate variance. This method assumes that the sample reflects the entire population. If the
sample is small, the variance is biased because of sampling errors, so @VARS and @PUREVARS should be used
instead.
@Functions that ignore blank cells and labels are extremely important when using a spreadsheet for statistical
analysis.
Examples

A
1 Grades
2 4.0
3 3.4
4 3.7
5 3.6

@PUREVAR(A1..A6) = 0.046875, ignoring the label and the blank
@VAR(A1..A6) = 2.1984, because the argument includes the label, which to @VAR = 0
@VAR(A2..A6) = 0.046875, excluding the label from the argument
@PUREVARS(A1..A6) = 0.0625, the sample population variance
 Related topics

@PUREVARS - Sample Population Variance, Ignoring Labels and Blanks
Syntax
@PUREVARS(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@PUREVARS calculates the sample population variance of numeric values in a list, ignoring blank cells and
labels. Compare this to @VARS, which calculates the sample population variance of all values in a list.
@PUREVAR and @VAR calculate population variance.
Variance @functions perform a statistical test called analysis of variance (anova). @VARS and @PUREVARS use
the n-1 method to calculate variance. This method compensates for sampling errors, returning a slightly larger
variance. If the sample is large enough, @VAR or @PUREVAR can be used.
@Functions that ignore blank cells and labels are extremely important when using a spreadsheet for statistical
analysis.
Examples

A
1 Grades
2 4.0
3 3.4
4 3.7
5 3.6

@PUREVARS(A1..A6) = 0.0625, ignoring the label and the blank
@VARS(A1..A6) = 2.748, because the argument includes the label, which to @VARS = 0
@VARS(A2..A6) = 0.0625, excluding the label from the argument
@PUREVAR(A1..A6) = 0.046875, the population variance
 Related topics

@PV - Present Value
Syntax
@PV(Pmt, Rate, Nper)

Pmt A numeric value representing the amount of the
periodic payment.

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Nper A numeric value > 0, representing the number of
periods of the loan (the number of payments to
be made) or investment (the number of
compounding periods).

@PV calculates the present value of an investment where Pmt is received for Nper periods and is discounted at
the rate of Rate per period. Present value is calculated using this formula:

where

P amount of periodic payment
R periodic interest rate
N number of periods

An equivalent for this formula using @PVAL is
@PVAL(Rate, Nper, - Pmt, 0)
@PV assumes that the investment is an ordinary annuity. Related @function @PVAL lets you use an optional
argument, Type, to indicate whether the investment is an ordinary annuity or an annuity due.
Examples
Assume you want to buy a new van that costs $12,000. The dealer presents two offers: Pay $12,000 cash up
front, or pay $350 per month for the next five years with 7% interest. The present value of the loan is
@PV(350,7%/12,5*12) = $17,675.70
The loan is worth over $5000 more than paying the cost all at once.
You can also use @PVAL. The car loan example becomes
@PVAL(7%/12,5*12,-350,0,0) = $17,675.70
Other examples:
@PV(277,0.12,5) = $998.52
@PV(600,0.17,10) = $2,795.16
@PV(100,0.11,12) = $649.24
 Related topics

@PVAL - Present Value
Syntax
@PVAL(Rate, Nper, Pmt, <Fv>, <Type>)

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Nper A numeric value > 0, representing the number
of periods of the loan (the number of payments
to be made) or investment (the number of
compounding periods).

Pmt A numeric value representing the amount of the
periodic payment.

Fv A numeric value representing the future value
of an investment (the value the investment will
reach at some point).

Type An optional numeric value that indicates
whether payments or cash flows occur at the
beginning (1) or the end (0) of the period;
default = 0.

@PVAL calculates the present value of an investment where Pmt is received for Nper periods and is discounted
at the rate of Rate per period.
Enter negative numbers for money that is out of your pocket and positive numbers for money coming in to you.
The last two arguments, Fv and Type, are optional. If you omit the last one or both of them, Quattro Pro assumes
their values are zero.
This @function is not compatible with 1-2-3. If your file must be compatible, use the related @function @PV
instead.
Examples
Your grandfather leaves you $24,000 in cash over the next 12 years ($2000 a year) or you can have all his
government bonds, which mature in 15 years to a worth of $30,000. To determine which is worth more, compute
the present value of the $24,000. Assume you can invest the money as you accumulate it in a 10% money
market account.
@PVAL(10%,12,2000,0,0) = -13,627.38
The result is negative because the money you invest is considered an outgoing cash flow. Now compare this
figure with the present value of the $30,000, which you will not receive for 15 years:
@PVAL(10%,15,0,30000,0) = -7,181.76
These results tell you that the $24,000 spread over 12 years is the more valuable choice.
 Related topics

@S - String Value of Upper Left Cell
Syntax
@S(Block)

Block A cell reference or name.

@S returns the string value of the upper left cell of Block. If that cell contains a numeric or date value or is blank,
it returns "" (an empty string).
Quattro Pro transforms cells prefixed with an exclamation point (as used in 1-2-3) to a one-cell range (!C3
changes to C3).
Examples

A B C D
1 COMPANY REP SALES COMMISSION
2 ABC Inc. Jones $123,630 $3,115
3 Rogers Co. Marcus $160,330 $4,040
4 Klein Sales Wong $145,330 $3,662

@S(A1..A6) = COMPANY
@S(A2..A2) = ABC Inc.
@S(C2..C4) = (blank)
@S(B1..B1)&" = "&@S(B2..B2) = REP = Jones
@S(B3)&@S(C3) = Marcus
 Related topics

@SCMARG - Discount Scenario Margin
Syntax
@SCMARG(Npv, Discrate, Flows, <Initial>, <[Odd|Periods]>, <Simp>, <Pathdep>, <Guess>, <Precision>,
<Maxiter>, <Filter>, <Start>, <End>)

Npv Net present value.
Discrate Discount rate or cells containing discount rates

corresponding to cells of cash flows.
Flows Cells containing cash flows.
Initial Initial cash flow (the default is 0).
Odd|Periods Delay between initial and first cash flow, in

number of periods (the default is 1) or cells
containing lengths of periods between cash flows
(the default is 1).

Simp Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Pathdep Flag specifying whether to apply path-dependent
compounding to each flow; 0 = no path (default);
1 = path.

Guess Initial margin for numerical search (useful for
locating multiple roots) (must be > -100%; the
default is 0).

Precision Minimum required precision (must be > 0; the
default is 0.000001).

Maxiter Maximum number of iterations for search (must
be > 0; the default is 50).

Filter Flag specifying filter type: 0 = no filter (default);
1 = cashflow < Start; 2 = cashflow £ Start; 3 =
cashflow > Start; 4 = cashflow ³ Start; 5 = Start
< cashflow < End; 6 = Start £ cashflow £ End.

Start A starting cash flow amount to compare against
individual flows.

End An ending cash flow amount to compare against
individual flows.

@SCMARG computes the discount scenario margin, a value that must be added to the Discrate series so that the
net present value of the cash flow series equals Npv. An initial guess is made for the margin and is refined until
the difference between the computed net present value and Npv is less than Precision. If @SCMARG does not
find a solution within Maxiter search iterations, it returns ERR.
If Discrate is a number, @SCMARG returns the difference between the internal rate of return and Discrate. If
Discrate is a selection of discount rates, the margin is the amount to add to each discount rate to make the net
present value equal Npv.
Example
A stream of cash flows is indexed off the current London InterBank Offer Rate (LIBOR). The time distances
between flows is specified in cells C11..C15. The first flow is 1 period away, the second is 1.5 periods after that,
and so on. If the current LIBOR is 8.5%, this formula calculates the margin to LIBOR if the net present value is
$167,000 and compounded discounting is used:
@SCMARG(167000,0.085,A11..A15,0,C11..C15) = 0.02599

A B C
10 Cash Flows Time Periods
11 25000 1

12 35000 1.5
13 23000 1.2
14 50000 1
15 134500 1.3

 Related topics

@SEC - Secant
Syntax
@SEC(X)

X An angle measured in radians. X can be any value
from approximately -9.00719E+15 through
9.00719E+15.

@SEC returns the secant of angle X, in radians. X must be specified in radians, not degrees. To convert degrees
to radians, use @RADIANS.
In a right triangle, the secant of an acute angle is the ratio hypotenuse : side adjacent. Secant is the reciprocal of
cosine.
Examples
@SEC(@RADIANS(60)) = 2
@SEC(@RADIANS(75)) = 3.863703
@SEC(@RADIANS(45)) = 1.414214
@SEC(@PI/3) = 2
 Related topics

@SECOND - Second Portion of Date Serial Number
Syntax
@SECOND(DateTimeNumber)

DateTimeNumb
er

A numeric value between -109571 and
474816.9999999, representing a date/time serial
number: -109571 = January 1, 1600; 0 =
December 31, 1899; 474816 = December 31,
3199; the decimal = time (24 hr).

See "Using dates and times in Quattro Pro."
@SECOND returns the second portion of DateTimeNumber. DateTimeNumber must be a valid date/serial number.
Because only the decimal portion of a serial number pertains to time, the integer portion of the number is
disregarded. The result is between 0 and 59.
To extract the second portion of a string that is in time format (instead of serial format), use @TIMEVALUE with
@SECOND to translate the time into a serial number. You can also use @TIME to enter a time value instead of a
serial number.
Examples
@SECOND(.3655445) = 23
@SECOND(.2543222) = 13
@SECOND(35) = 0
@SECOND(@TIME(3,15,22)) = 22
@SECOND(@TIMEVALUE("10:08:45 am")) = 45
@SECOND(@TIMEVALUE("10:08 am")) = 0
 Related topics

@SECH - Hyperbolic Secant
Syntax
@SECH(X)

X A value from approximately -708.39599 to
approximately 708.39599.

@SECH calculates the hyperbolic secant of X.
The hyperbolic secant is the reciprocal of the hyperbolic cosine. X must be specified in radians, not degrees. To
convert degrees to radians, use @RADIANS.
@SECH returns a value greater than 0 or less than or equal to 1.
Examples
@SECH(@RADIANS(60)) = 0.624888
@SECH(@RADIANS(75)) = 0.503455
@SECH(@RADIANS(45)) = 0.75494
@SECH(@PI/3) = 0.624888
 Related topics

@SEMEAN - Standard Error of Sample Mean
Syntax
@SEMEAN(Block)

Block Cell reference or name.

@SEMEAN returns the standard error of the sample mean for values in specified cells.
Examples
@SEMEAN({5,3,7,8}) = 1.108678
Given cells H1.. H4 containing the values 4.0, 3.4, 3.7, and 3.6,
@SEMEAN(H1..H4) = 0.125
 Related topics

@SERIESSUM - Sum of a Power Series
Syntax
@SERIESSUM(X, N, M, Coefficients)

X Value in the power series.
N Initial power to raise X to.
M Increment of the power N for each successive

term in the power series.
Coefficients Cells or array of one or more numeric values by

which each power of X is multiplied; the number
of values in Coefficients sets the number of
terms in the power series.

@SERIESSUM returns the sum of a power series. It uses this formula for @SERIESSUM(X,N,M,A):

Example
If the cells A1..A3 contain the values 1, 2, and 3, then @SERIESSUM(0.5,1,2,A1..A3) = 0.84375
 Related topics

@SETSTRING - Label of Given Length
Syntax
@SETSTRING(Text, Length, <Alignment>)

Text Label text, in quotation marks.
Length Integer from 1 through 1022 specifying label

length.
Alignment Optional argument specifying text alignment:

0 = align text left; default if you omit the
argument
1 = center text
2 = align text right

@SETSTRING returns a label as long as the number of characters you specify. The label consists of the specified
text plus enough blank spaces to total Length, aligning the text as you specify in Alignment.
· If Length is smaller than the number of characters in Text, @SETSTRING still returns the entire text.
· With proportionally spaced fonts, blank spaces are narrower than most letters.

Examples
Each dot represents a blank space in these examples; the dots are not displayed by Quattro Pro.
@SETSTRING("Cost Estimate",18) = Cost Estimate·····
@SETSTRING("Cost Estimate",18,1) = ···Cost Estimate··
@SETSTRING("Cost Estimate",18,2) = ·····Cost Estimate
 Related topics

@SHEETS - Number of Notebook Sheets
Syntax
@SHEETS(Block)

Block A cell reference or name.

@SHEETS returns the number of sheets within the given cells. This is most often used with 3-D selections.
@SHEETS always returns 1 for 2-D selections. This @function is similar to @COLS and @ROWS.
Examples
@SHEETS(B:A1..D:IV1) = 3
@SHEETS(A1..C7) = 1
@SHEETS(A..E:NAME) = 5
 Related topics

@SHLB - Binary Shift Left
Syntax
@SHLB(Binary, <ShiftBits>, <BitIn>, <Bits>)

Binary Binary number.
ShiftBits Number of bits to shift; 0 £ ShiftBits £ 64; the

default is 1.
BitIn Binary bit inserted during the shift (can be 0, 1,

"S" or "I"; "S" = same as the least significant bit
before shifting; "I" = inverse of the least
significant bit before shifting; the default is 0).

Bits Number of binary bits used for both input and
output; if omitted, Bits = number of bits in
Binary; must be in the range 0 <n £ 64.

@SHLB shifts the specified binary number left by ShiftBits bits. @SHLB inserts the BitIn bit at the least significant
bit (LSB).
Examples
@SHLB(1000,1,0,5) = 10000
@SHLB(1000,1,1,6) = 010001
@SHLB(1000,2,1,6) = 100011
 Related topics

@SHLBO - Overflow of Binary Shift Left
Syntax
@SHLBO(Binary, <Bits>)

Binary Binary number.
Bits Number of input binary digits used during the

shift operation; if omitted, Bits = the number of
bits in Binary; must be in the range 0 <n £ 64.

@SHLBO returns the overflow bit (either 0 or 1) of the specified binary number after it has been shifted left by
one bit.
An overflow occurs when a bit is shifted out of the word size specified by Bits. For example, if Binary = 1000 and
Bits = 4, shifting the number left one bit results in 0000 with an overflow of 1 bit shifted to the fifth place not
shown.
Examples
@SHLBO(1000) = 1
@SHLBO(100,4) = 0
@SHLBO(1100,4) = 1
 Related topics

@SHLH - Hexadecimal Shift Left
Syntax
@SHLH(Hex, <ShiftBits>, <BitIn>, <Bits>)

Hex Hexadecimal number.
ShiftBits Number of bits to shift; 0 £ ShiftBits £ 64; the

default is 1.
BitIn Binary bit inserted during the shift (can be 0, 1,

"S" or "I"; "S" = same as the least significant bit
before shifting; "I" = inverse of the least
significant bit before shifting; the default is 0).

Bits Number of binary bits used for both input and
output; if omitted, Bits = number of bits in Hex;
4 binary digits = 1 hexadecimal digit; must be in
the range 0 <n £ 64.

@SHLH shifts the specified hexadecimal number left by ShiftBits bits. @SHLH inserts the BitIn bit at the least
significant bit (LSB).
Examples
@SHLH("41",1) = 82
@SHLH("41",1,0,12) = 082
@SHLH("C",1,1,12) = 019
 Related topics

@SHLHO - Overflow of Hexadecimal Shift Left
Syntax
@SHLHO(Hex, <Bits>)

Hex Hexadecimal number.
Bits Number of equivalent input binary digits used

during the shift operation; if omitted, Bits = the
number of bits in Hex; 4 binary digits = 1
hexadecimal digit; must be in the range 0 <n £
64.

@SHLHO returns the overflow bit (either 0 or 1) of the specified hexadecimal number after it has been shifted
left by one bit.
An overflow occurs when a bit is shifted out of the word size specified by Bits. For example, if the binary
equivalent of Hex = 1000 and Bits = 4, shifting the number left one bit results in 0000 with an overflow of 1 bit
shifted to the fifth place not shown.
Examples
@SHLHO("A") = 1
@SHLHO("A",5) = 0
@SHLHO("C",4) = 1
 Related topics

@SHRB - Binary Shift Right
Syntax
@SHRB(Binary, <ShiftBits>, <BitIn>, <Bits>)

Binary Binary number.
ShiftBits Number of bits to shift; 0 £ ShiftBits £ 64; the

default is 1.
BitIn Binary bit inserted during the shift (can be 0, 1,

"S" or "I"; "S" = same as the most significant bit
before shifting; "I" = inverse of the most
significant bit before shifting; the default is "S").

Bits Number of binary bits used for both input and
output; if omitted, Bits = number of bits in
Binary; must be in the range 0 <n £ 64.

@SHRB returns the result of shifting the specified binary number right by ShiftBits bits. @SHRB inserts the BitIn
bit at the most significant bit (MSB).
Examples
@SHRB(1000,1) = 1100
@SHRB(1000,1,1,5) = 10100
@SHRB(1100,1,0,6) = 000110
 Related topics

@SHRBO - Overflow of Binary Shift Right
Syntax
@SHRBO(Binary, <Bits>)

Binary Binary number.
Bits Number of input binary digits used during the

shift operation; if omitted, Bits = the number of
bits in Binary; must be in the range 0 <n £ 64.

@SHRBO returns the overflow bit (either 0 or 1) of the specified binary number after it has been shifted right by
one bit.
An overflow occurs when a bit is shifted out of the word size specified by Bits. For example, if Binary = 1001 and
Bits = 4, shifting the number right one bit results in 0100 with an overflow of 1 bit shifted off the right side.
Examples
@SHRBO(1001) = 1
@SHRBO(10010,4) = 0
@SHRBO(1100,4) = 0
 Related topics

@SHRH - Hexadecimal Shift Right
Syntax
@SHRH(Hex, <ShiftBits>, <BitIn>, <Bits>)

Hex Hexadecimal number.
ShiftBits Number of bits to shift; 0 £ ShiftBits £ 64; the

default is 1.
BitIn Binary bit inserted during the shift (can be 0, 1,

"S" or "I"; "S" = same as the most significant bit
before shifting; "I" = inverse of the most
significant bit before shifting; the default is "S").

Bits Number of binary bits used for both input and
output; if omitted, Bits = number of bits in Hex;
4 binary digits = 1 hexadecimal digit; must be in
the range 0 <n £ 64.

@SHRH returns the result of shifting the specified hexadecimal number right by ShiftBits bits. @SHRH inserts the
BitIn bit at the most significant bit (MSB).
Examples
@SHRH("41",1,1) = A0
@SHRH("41",1,1,4) = 8
@SHRH("C",1,0,12) = 006
 Related topics

@SHRHO - Overflow of Hexadecimal Shift Right
Syntax
@SHRHO(Hex, <Bits>)

Hex Hexadecimal number.
Bits Number of equivalent input binary digits used

during the shift operation; if omitted, Bits = the
number of bits in Hex; 4 binary digits = 1
hexadecimal digit; must be in the range 0 <n £
64.

@SHRHO returns the overflow bit (either 0 or 1) of the specified hexadecimal number after it has been shifted
right by one bit.
An overflow occurs when a bit is shifted out of the word size specified by Bits. For example, if the binary
equivalent of Hex = 1001 and Bits = 4, shifting the number right one bit results in 0100 with an overflow of 1 bit
shifted off the right side.
Examples
@SHRHO("A") = 0
@SHRHO("B",5) = 1
@SHRHO("C",4) = 0
 Related topics

@SIGN - Tests for Sign
Syntax
@SIGN(X)

X A numeric value.

@SIGN returns 1 if X is positive, 0 if X is zero, and -1 if X is negative.
Examples
@SIGN(2*4) = 1
@SIGN(0*4) = 0
@SIGN(-2*4) = -1
 Related topics

@SIN - Sine
Syntax
@SIN(X)

X A numeric value.

@SIN returns the sine of the angle X. X must be given in radians, not degrees. To convert degrees to radians, use
@RADIANS.
Examples
@SIN(@RADIANS(30)) = 0.5
@SIN(@RADIANS(75)) = 0.965926
@SIN(@RADIANS(45)) = 0.707107
@SIN(@PI/6) = 0.5
 Related topics

@SINH - Hyperbolic Sine
Syntax
@SINH(X)

X A value from approximately -710.47558 to
approximately 710.47558.

@SINH returns the hyperbolic sine of X, in radians. X must be specified in radians, not degrees. To convert
degrees to radians, use @RADIANS.
Examples
@SINH(@RADIANS(30)) = 0.547853
@SINH(@RADIANS(75)) = 1.716184
@SINH(@RADIANS(45)) = 0.868671
@SINH(@PI/6) = 0.547853
 Related topics

@SKEW - Skewness of a Distribution
Syntax
@SKEW(List)

List One or more numeric or cell values.

@SKEW returns the skewness of a distribution. Skewness characterizes the degree of asymmetry of a distribution
around its mean value. Use @SKEW when you want a non-dimensional quantity to measure the "shape" of a
distribution rather than its moment, which is a measure in the same units as the elements of the distribution.
@SKEW finds the skewness coefficient using this formula:

A positive result means that the distribution is skewed to the right (the median is less than the mean). A negative
result means that the distribution is skewed to the left (the median is greater than the mean). @SKEW returns 0
when the distribution is symmetrical around its mean.

If there are less than three data points in List, or if the standard deviation is zero, @SKEW returns ERR.
Example
@SKEW(4,5,8,5,7,12,6,9,2,5) = 0.685055
 Related topics

@SLOPE - Slope of the Linear Regression
Syntax
@SLOPE(KnownY, KnownX)

KnownY Dependent range of values.
KnownX Independent range of values.

@SLOPE returns the slope of the linear regression line through data points in x and y. The slope (the rate of
change along the regression line) is the distance between the y values of two points, divided by the distance
between their respective x values.
@SLOPE uses this formula:

Example
@SLOPE({1,2,3,4,5,6},{4,8,12,16,20,24}) = 0.25
 Related topics

@SLN - Straight-Line Depreciation
Syntax
@SLN(Cost, Salvage, Life)

Cost A numeric value representing the amount paid
for an asset.

Salvage A numeric value representing the value of an
asset at the end of its useful life.

Life A numeric value representing the expected
useful life of an asset (in years).

@SLN calculates the straight-line depreciation allowance for an asset over one period of its life. It uses this
formula:
(Cost - Salvage) divided by Life
To compute accelerated depreciation with the sum-of-the-years'-digits method (allowing higher depreciation
values in the first years of the asset's life), use @SYD. To calculate depreciation using the double-declining
balance method, use @DDB.
Examples
Assume you just bought a new $4000 computer. The dealer says you can sell it back to the store for $350 after
eight years, but that no one would want to buy it after that. In other words, the Salvage value of that computer is
$350 and its Life is 8. To determine the depreciation allowance of the computer for each year of its life, enter this
formula:
@SLN(4000,350,8) = 456.25
Other examples:
@SLN(15000,3000,10) = $1,200
@SLN(5000,500,5) = $900
@SLN(1800,0,3) = $600
 Related topics

@SMALLEST - Nth Smallest number
Syntax
@SMALLEST(Array, N)

Array A numeric array or cells of values.
N Number that indicates the rank in size from the

data set Array; must be greater than 0 and less
than or equal to the number of values in Array.

@SMALLEST finds the Nth smallest number in Array. Use @SMALLEST to determine a value's rank in a data set
from the bottom of that set.
If there are duplicates in Array, @SMALLEST treats them as separate numbers.
Example
@SMALLEST({3,45,8,4,7,6,13,2,87,23,58,14,17,21},5) = 7
 Related topics

@SPLINE - Piecewise Polynomial Fit
Syntax
@SPLINE(KnownX's, KnownY's, OutputBlock)

KnownX's Independent selection or array of values.
KnownY's Dependent selection or array of values.
OutputBlock The cell address where the result of the

@function is to be displayed..

@SPLINE returns a polynomial fitted piecewise to pass through a specified set of points.
· KnownX's and KnownY's must contain the same number of values.
· Values in KnownX's must be unique: The same x-value cannot have more than one y-value. If an x-value has

more than one y-value, @SPLINE returns NA.
@SPLINE takes the 1-dimenisional arrays of KnownX's and KnownY's and produces a set of coefficients in the
OutputBlock. The coefficients produced are those for a linear spline.
Note that OutputBlock must be large enough to accomodate the number of interpolation coefficients to be
returned, otherwise a value of ERR will be returned. There will be (k-1) coefficients where k is the number of data
points in the series.
A spline is an elastic ruler used by engineers and shipbuilders that bends to pass through a specified set of
points.
Example
Given the following data,

A B C D E
1
2 1 2 3
3 4 2 5
4

@SPLINE(C2..E2,C3..E3,C4..D4) = 1
As well, cells C4 and D4 will be populated with the values -2 and 3 respectively.
 Related topics

@SQRT - Square Root
Syntax
@SQRT(X)

X A numeric value equal to or greater than 0.

@SQRT returns the square root of X. If X is a negative value, the result of @SQRT is ERR. If X is a string or
reference to a cell containing a label, the @function returns 0.
Examples
@SQRT(9) = 3
@SQRT(2) = 1.414213562
@SQRT(144) = 12
@SQRT(@SQRT(16)) = 2
@SQRT(-4) = ERR
 Related topics

@SQRTPI - Square Root of pi*X
Syntax
@SQRTPI(X)

X Value ³ 0 to multiply by pi.

@SQRTPI returns the square root of (@PI * X). If X is negative, @SQRTPI returns ERR.
Example
@SQRTPI(2) = 2.506628
 Related topics

@STANDARDIZE - Normalize Values from a Distribution
Syntax
@STANDARDIZE(X, Mean, SDev)

X Number to normalize.
Mean Arithmetic mean of a distribution.
SDev Standard deviation of a distribution.

@STANDARDIZE normalizes the values from a distribution. A standard normal cumulative distribution assumes a
mean of 0 and a standard deviation of 1. Use @STANDARDIZE to normalize values for use with other statistical
@functions that require normally distributed variables (such as @ZTEST).
@STANDARDIZE uses this formula:

Example
@STANDARDIZE(2.6,1.6,0.5) = 2
 Related topics

@STD - Population Standard Deviation
Syntax
@STD(List)

List One or more numeric values, cell addresses, and
cell references or names, separated by commas.

@STD returns the population standard deviation (the square root of the population variance) of all values in List.
@STDS computes the standard deviation of sample data.
List can be any combination of single cell references, cell selections, and numeric values. When more than one
component is used, all components must be separated by commas. @STD treats any labels within a cell
selection as zero and ignores any blank cells. If the List contains only blank cells, however, @STD returns ERR.
@STD determines how much individual values in List differ from the average (mean) of all values in List. It can
be used to verify the reliability of the average; the lower the value returned by @STD, the less individual values
vary from the average.
Examples

A B C D
1 January February March
2 John $652 $833 $599
3 Mary $456 $305 $522
4 Ralph $68 $59 $73
 5 Anna $80 $80 $80

@STD(B4..D4) = $5.79
@STD(C2..C5,260) = $279.97
@STD(B2..D5) = $270.20
@STD(A15..D20) = ERR (because the entire selection is blank)
@STDS(B4..D4) = $7.09
@STDS(B2..D5) = $282.22
 Related topics

@STDS - Sample Standard Deviation
Syntax
@STDS(List)

List One or more numeric values, cell addresses, and
cell references or names, separated by commas.

@STDS returns the sample standard deviation (the square root of the sample variance) of all values in List.
@STD computes population standard deviation.
Examples

A B C D
1 January February March
2 John $652 $833 $599
3 Mary $456 $305 $522
4 Ralph $68 $59 $73
5 Anna $80 $80 $80

@STD(B4..D4) = $5.79
@STD(C2..C5,260) = $279.97
@STD(B2..D5) = $270.20
@STD(A15..D20) = ERR (because the entire selection is blank)
@STDS(B4..D4) = $7.09
@STDS(B2..D5) = $282.22
 Related topics

@STEC - Standard Error of Regression Coefficients
Syntax
@STEC(KnownY, KnownX)

KnownY Dependent range of 3 or more values.
KnownX Independent range of 3 or more values.

@STEC computes the standard error of the regression coefficient.
@STEC is equal to StdError divided by (Std(x) times square root of n)

@STEYX(KnownY, KnownX)
@STEC(KnownY, KnownX)
=

@STD(KnownX) * @SQRT(n)

@STEC returns ERR if KnownY and KnownX do not have the same number of values, or if KnownY and KnownX
have less than 3 values each.
Example
This formula calculates the standard error of the regression coefficient for range y (3,7,4,5) in cells A1..A4 and
range x (3.4,5.3,6,8) in cells B1..B4:
@STEC(A1..A4,B1..B4) = 0.593769
 Related topics

@STEYX - Standard Error of Linear Regression
Syntax
@STEYX(KnownY, KnownX)

KnownY Dependent range of 3 or more values.
KnownX Independent range of 3 or more values.

@STEYX returns the standard error of a linear regression. The standard error is the deviation of the observed y
values from the linear combinations. @STEYX uses this formula:

If KnownY or KnownX have a different number of data points, or if the variance of KnownX = 0, @STEYX returns
ERR.
Example
@STEYX({4,6,7,9,8},{7,9,12,9,5}) = 2.215697
 Related topics

@STKOPT - Stock Options
Syntax
@STKOPT(OptCode, OptPrem, UndStkValue, Date, Load, CmdString)

OptCode Option code string with expiration month, strike-
price, and put or call symbol enclosed in
quotation marks (for example, "MAY 22.5 C"); the
strike price can be a decimal or fractional number,
but not both (for example, it can be 11/32 or
1.625, but not 2 3/8); valid month codes are JAN,
FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT,
NOV, and DEC; you can add spaces between
month, strike-price, and Put or Call symbol; the
total string (not including quotation marks) must
be 20 characters or less.

OptPrem Option premium or price
UndStkValue Value or price of the underlying stock.
Date Serial date number between 2 (January 1, 1900)

and 73050 (December 31, 2099) representing the
date on which to evaluate the stock option.

Load Load or commission involved in sale or purchase.
CmdString Command string enclosed in quotation marks

specifying the operations to perform; cannot
exceed 20 characters (not including quotes); see
the table below for a list of valid CmdString
characters.

@STKOPT calculates values useful in evaluating stock options. It takes as input the basic information for the
option, such as the option code (expiration month, strike price, and call or put indicator), the premium, the
underlying value, the date at which the option is evaluated, and the associated "load" or fee. It then calculates a
value such as the expiration date of the option, the number of calendar days remaining until the option expires,
or the intrinsic value of the option.
If the expiration month specified in OptCode is earlier in the year than the month specified by Date, the
expiration date of the option occurs in the following year.
Load should be in the same units as OptPrem. You can use the Load argument as a general purpose value to
incorporate any factor in the calculated result. For example, if you prefer a different annualization, such as
360/D, set Load to 360 and replace "A" in the CmdString formula with "L/D".
@STKOPT calculates output values according to a formula that you specify in the CmdString argument. The
formula may include the following characters.
@STKOPT is valid only for options whose duration is 1 year or less

Character Description
A Annualization ratio (365.25/D); can be used to

adjust percentages to equivalent yearly
percentages

D Days from DateTimeNum until expiration of option
specified

E Expiration date code of option specified
I Intrinsic value of option
L Load or fee to purchase or sell the option; can

also be a general-purpose numeric constant
P Premium or market value of the option
S Strike or exercise price of the option
T Time value of the option
U Underlying value or price of the stock
+ Addition operator

- Subtraction operator
* Multiplication operator
/ Division operator

@STKOPT evaluates the command string formula from left to right with no operator precedence or associativity.
The command string can be upper- or lowercase. The next table shows some examples of command strings.

String Result
"D" Outputs the number of days until option

expiration
"I" Outputs the intrinsic value
"L/P" Outputs the ratio of the Load divided by the

Premium
"T/U*A" Time Value / Underlying value * Annualization

ratio
"P-L/U*A" ((Premium - Load) / Underlying value) *

Annualization ratio

For a call, the intrinsic value is the underlying value minus the strike price or zero, whichever is greater. For a
put, the intrinsic value is the strike price minus the underlying value or zero, whichever is greater. The time value
is equal to the premium minus the intrinsic value. The load is an expense for either the buyer or the seller. A
positive time value is considered to be an expense for the buyer and income for the seller of the option.
Examples
A November put-option on stock of company XYZ has a strike price of $65 and a premium of $2.625, with an
average load of $.12 per share. XYZ's stock is currently trading at $67 per share, and the date of evaluation is
June 8, 1993.
Expiration date:
@STKOPT("NOV65P",2.625,67,@DATE(93,6,8),.12,"E") = 34293 (November 20, 1993)
Number of days to expiration:
@STKOPT("NOV65P",2.625,67,@DATE(93,6,8),.12,"D") = 165
Time value/stock price:
@STKOPT("NOV65P",2.625,67,@DATE(93,6,8),.12,"T/U") = 0.039179
Percentage load:
@STKOPT("NOV65P",2.625,67,@DATE(93,6,8),.12,"L/P") = 0.045714
 Related topics

@STRCMPNORM - Compare Half/Full-Width Normalized Strings
Syntax
@STRCMPNORM(String1, String2)

String1 The first string to be compared
String2 The second string to be compared

@STRCMPNORM compares two strings. @STRCMPNORM also lets you compare single-byte and double-byte
character strings used in software localized to most Far Eastern languages (for example, Japanese, Chinese, and
Korean). The localized machine will display a toolbar that lets you select various single and double-byte
character sets from within Quattro Pro.
The result returned by @STRCMPNORM is:
· 1 for equal (indicates both the strings are the same)
· 0 for not equal (indicates that the strings are different)
· -1 for an error (indicates a problem with the function or with the string or cells selected)

Example
If you have strings in cells A1 and B1, type @STRCMPNORM(A1, B1) in cell C1.
 Related topics

@STRING - Convert Number to String
Syntax
@STRING(X, DecPlaces)

X A numeric value, a formula that evaluates to a
numeric value, or a reference to a cell containing
a numeric value.

DecPlaces A numeric value from 0 through 15.

@STRING converts X to a string, rounding X to the decimal precision indicated by DecPlaces.
Once a number or date has been converted to a label using @STRING, no display formatting can be done with it.
To format strings derived from numbers as anything other than General format, you must build a macro that uses
the {CONTENTS} keyword.
Examples
@STRING(3.59,0) = 4
@STRING(98.6,2) = 98.60
@STRING(0.3902,0) = 0
@STRING("Harry",0) = 0
@STRING(A1,2) = 10.00, if A1 contains the value 10
 Related topics

@SUBB - Subtract Binary Numbers
Syntax
@SUBB(Binary1, Binary2, <BitIn>, <Bits>)

Binary1 First binary number.
Binary2 Second binary number.
BitIn Input borrow bit (either 0 or 1); the default is 0.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in
Binary1 or Binary2, whichever is greater; must
be in the range 0 <n £ 64.

@SUBB returns the difference of two binary numbers.
Use two's complement notation (see Quattro Pro glossary) to represent negative numbers. If BitIn is 1, @SUBB
subtracts one extra bit from the result.
Examples
@SUBB(100,100,0,1) = 0
@SUBB(1000,100,1,3) = 011
@SUBB(1100,1,1,5) = 01010
 Related topics

@SUBBO - Overflow of Binary Subtraction
Syntax
@SUBBO(Binary1, Binary2, <BitIn>, <Bits>)

Binary1 First binary number.
Binary2 Second binary number.
BitIn Input borrow bit (either 0 or 1); the default is 0.
Bits Number of input binary digits used for

subtraction; if omitted, Bits = the number of bits
in Binary1 or Binary2, whichever is greater; must
be in the range 0 <n £ 64.

@SUBBO returns the overflow bit (either 0 or 1) of the difference of two binary numbers. An overflow occurs
when a bit is borrowed from outside the word size specified by Bits. For example, if Binary1 = 10 and Binary2 =
110, the difference of the two numbers is 100 with 1 borrow bit in the fourth place not shown.
Use two's complement notation (see Quattro Pro glossary) to represent negative numbers. If BitIn is 1, @SUBBO
subtracts one extra bit from the difference of the two numbers before returning the overflow.
Examples
@SUBBO(1000,1111) = 1
@SUBBO(1000,111,1,5) = 0
@SUBBO(1100,1101,1,4) = 1
 Related topics

@SUBH - Subtract Hexadecimal Numbers
Syntax
@SUBH(Hex1, Hex2, <BitIn>, <Bits>)

Hex1 First hexadecimal number.
Hex2 Second hexadecimal number.
BitIn Input borrow bit (either 0 or 1); the default is 0.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in Hex1
or Hex2, whichever is greater; 4 binary digits = 1
hexadecimal digit; must be in the range 0 <n £
64.

@SUBH returns the difference of two hexadecimal numbers.
Use two's complement notation (see Quattro Pro glossary) to represent negative numbers. If BitIn is 1, @SUBH
subtracts one extra bit from the result.
Examples
@SUBH("1000","100",1) = 0EFF
@SUBH("1000","100",0) = 0F00
@SUBH("C","1",1,8) = 0A
 Related topics

@SUBHO - Overflow of Hexadecimal Subtraction
Syntax
@SUBHO(Hex1, Hex2, <BitIn>, <Bits>)

Hex1 First hexadecimal number.
Hex2 Second hexadecimal number.
BitIn Input borrow bit (either 0 or 1); the default is 0.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in Hex1
or Hex2, whichever is greater; 4 binary digits = 1
hexadecimal digit; must be in the range 0 <n £
64.

@SUBHO returns the overflow bit (either 0 or 1) of the difference of two hexadecimal numbers. An overflow
occurs when a bit is borrowed from outside the word size specified by Bits. For example, if the binary equivalent
for Hex1 and Hex2 are 10 and 110, respectively, the difference of the two numbers is 100 with 1 borrow bit in
the fourth place not shown.
Use two's complement notation (see Quattro Pro glossary) to represent negative numbers. If BitIn is 1, @SUBHO
subtracts one extra bit from the difference of the two numbers before returning the overflow.
Examples
@SUBHO(8,"F") = 1
@SUBHO(8,7,1,5) = 0
@SUBHO("C","D",1,4) = 1
 Related topics

@SUBSTITUTE - Substitutes Text
Syntax
@SUBSTITUTE(Text, OldText, NewText, <InstanceNum>)

Text Text or reference to single cell containing
OldText.

OldText Text to be changed.
NewText Text to substitute for OldText.
InstanceNum Which occurrence of OldText to change. If you

specify InstanceNum, @SUBSTITUTE changes
only that instance. Otherwise, @SUBSTITUTE
changes all occurrences.

@SUBSTITUTE returns a copy of a specified text string, substituting new text for old text. Use @SUBSTITUTE to
replace specific text in a text string; to replace any text in a specific location in a text string, use @REPLACE.
Example
To copy "11/1/96" but change it to "11/8/96", enter @SUBSTITUTE("11/1/96","1","8",3)
 Related topics

@SUBTOTAL - Subtotal
Syntax
@SUBTOTAL(FunctionNum, Ref)

FunctionNum Number from 1 to 11, specifying which function
to use in calculating subtotals.

Ref List of selections or cell names to subtotal.

@SUBTOTAL returns a subtotal in a list or database. You can create a list using @SUBTOTAL, then modify it by
editing the @SUBTOTAL formula.
· @SUBTOTAL ignores any nested subtotals within Ref.
· @SUBTOTAL ignores any hidden rows in filtered lists, so you can subtotal only visible data.

FunctionNum Quattro Pro Function
1 PUREAVG
2 PURECOUNT
3 COUNT
4 PUREMAX
5 PUREMIN
6 MULT
7 PURESTDS
8 PURESTD
9 SUM
10 PUREVARS
11 PUREVAR

Examples
In the following, Cells A3 and C3 contain @SUBTOTAL(9,A1..A2) and @SUBTOTAL(9,C1..C2), respectively. Cell A4
contains the formula @TOTAL(A1..C3) and sums all the values in the cells except those generated by
@SUBTOTAL or @SUBTOTAL123. To omit possible subtotals in Column B, you could also write
@SUM(A1..A2,B1..B2)

A B C D
1 $30 $18
2 $65 $22
3 $95 $40 @SUBTOTAL in A3 and C3,

FunctionNum=9
4 $135 @TOTAL in A4

In the next selection, rows 9 through 12 contain @SUBTOTAL functions, illustrating the way they are ignored in
subsequent @SUBTOTAL calculations.

A B
5 28 37
6 31 35
7 29 36
8 32 40
9 120 148
10 268

11 33.5
 12 4.174754

A9 and B9 contain @SUBTOTAL functions summing rows 5 through 8 of their respective columns.
A10 contains @SUBTOTAL(9,A5..B9) = 268, the sum of the 8 values in A5.. B8, ignoring the @SUBTOTAL
functions in row 9.
A11 contains @SUBTOTAL(1, A5..B10) = 33.5, the average of the 8 values in A5.. B8, ignoring all other
@SUBTOTAL functions in the referenced cells.
A12 contains @SUBTOTAL(7, A5..B11) = 4.174754, the sample standard deviation of the 8 values in A5.. B8,
ignoring all other @SUBTOTAL functions in the cells.
 Related topics

@SUBTOTAL123 - Subtotal
Syntax
@SUBTOTAL123(List)

List One or more numeric values, cell addresses, and
cell references or names, separated by commas.

@SUBTOTAL123 adds the values in a list or cell reference. Use @SUBTOTAL123 to indicate which cells
@GRANDTOTAL123 should sum.
Example
In the following, Cells A3 and C3 contain @SUBTOTAL123(A1..A2) and @SUBTOTAL123(C1..C2), respectively. Cell
A4 contains the formula @GRANDTOTAL123(A1..C3) and sums only the subtotals in the cells. To omit possible
subtotals in Column B, you could also write: @SUM(A1..A2,B1..B2).

A B C D
1 $30 $18
2 $65 $22
3 $95 $40 @SUBTOTAL123 in A3 and C3
4 $135 @GRANDTOTAL123 in A4

 Related topics

@SUM - Sum
Syntax
@SUM(List)

List One or more numeric values, cell addresses, and
cell references or names, separated by commas.

@SUM returns the total of all numeric values in List. List can be any combination of single cell references, cell
selections, and numeric values. When more than one component is used, they must be separated by commas.
Any labels or blank cells within a cell selection are ignored by @SUM.
Any dates in the cells will be converted to serial numbers and included in the calculation. Since this will throw off
your sum, avoid including dates in the @SUM argument cells.

If you use a mouse, the QuickSum button on the Main Toolbar offers a convenient way to total columns,
rows, or both. It can total rows and columns in the selected cells, but you do not need to enter a formula.
Examples

A B C D
1 January February March
2 John $652 $833 $599
3 Mary $456 $305 $522
4 Ralph $68 $59 $73
 5 Anna $80 $80 $80

@SUM(B4..D4) = $200
@SUM(C2..C5,260) = $1,537
@SUM(A5,534) = $534
@SUM(B2..B5,D2..D5) = $2,530
@SUM(B2..D5) = $3,807
 Related topics

@SUMIF - Sum Matching Cells
Syntax
@SUMIF(Block, Criteria, <Sum Range>)

Block Overall range of one or more cell addresses, a
cell reference, or name.

Criteria Numeric or string values that determine whether
a cell within the Block is added.

<Sum Range> Cell addresses within the Block to be included in
the sum. Cell values must meet Criteria in order
to be included in the sum. (optional)

@SUMIF adds those cells in Block that meet Criteria. An optional Sum Range may be specified to limit Criteria
consideration and sum inclusion to particular cells within the Block.
Examples

A B C D
1 Customer QTY Price Total
2 Adams Electric 5 $1 $5
3 Frys Service 2 $1 $2
4 Major Hardware 4 $1 $4
5 Adams Electric 5 $1 $5
6 Adams Electric 5 $1 $5

@SUMIF(A2..D6,"Adams Electric",D2..D6) = $15
The second argument (criteria) must be on the left-hand side of the third argument (sum range). As well, the
columns containing these arguments must be directly beside each other. If these conditions are not met the
function will return ERR.
 Related topics

@SUMNEGATIVE - Adds Negative Values Only
Syntax
@SUMNEGATIVE(List)

List One or more numeric values or formulas, cell
addresses, and cell references or names,
separated by commas.

@SUMNEGATIVE sums only negative values in cells or list. It ignores blank cells and labels.
Examples

A
1 Profit/

Loss
2 ($300)
3 $2,500
4 ($70)
5 $500

@SUMNEGATIVE(A1..A6) = ($370), ignoring the label and the empty cell
@SUMNEGATIVE(-300,2500,-70,500) = ($370)
 Related topics

@SUMPOSITIVE - Adds Positive Values Only
Syntax
@SUMPOSITIVE(List)

List One or more numeric values or formulas, cell
addresses, and cell references or names,
separated by commas.

@SUMPOSITIVE sums only positive values in cells or a list. It ignores blank cells and labels.
Examples

A
1 Profit/

Loss
2 ($300)
3 $2,500
4 ($70)
5 $500

@SUMPOSITIVE(A1..A6) = $3,000, ignoring the label and the empty cell
@SUMPOSITIVE(-300,2500,-70,500) = $3,000
 Related topics

@SUMPRODUCT - Sum of Products of Corresponding Coordinates
Syntax
@SUMPRODUCT(Block1, Block2)

Block1 A cell reference or name.
Block2 A cell reference or name.

@SUMPRODUCT(Block1, Block2) returns the dot product of the vectors corresponding to the selections. Quattro
Pro multiplies each corresponding cell from Block1 and Block2 and then totals those results. The selections must
be the same size (same number of rows and same number of columns), or else the selections must both be one-
dimensional (either a row or a column) and they must have the same length. If the selections do not match,
@SUMPRODUCT returns ERR.
This @function is not compatible with 1-2-3. If your notebook must be compatible with 1-2-3, do not use
@SUMPRODUCT.
Examples
Assume the following values for these cells:
A1 = 1, B1 = 5, A2 = 2, B2 = 6, A3 = 3, B3 = 7, A4 = 4, B4 = 8
@SUMPRODUCT(A1..A2,B1..B2) = 17 (because 1*5 + 2*6 = 5+12 = 17)
@SUMPRODUCT(A1..A4,B1..B4) = 70
@SUMPRODUCT(A1..A4,B1..B5) = ERR (selections are not the same size)
 Related topics

@SUMSQ - Sum of the Squares
Syntax
@SUMSQ(List)

List One or more numeric or cell values.

@SUMSQ returns the sum of the squares of the values in List.
Example
@SUMSQ(2,3) = 2 + 3
 = 13
 Related topics

@SUMX2MY2 - Sum of the Difference of the Squares
Syntax
@SUMX2MY2(Array1, Array2)

Array1 First array of numeric values.
Array2 Second array of numeric values.

@SUMX2MY2 returns the sum of the difference of the squares of the corresponding values in Array1 and Array2.
@SUMX2MY2 uses this formula:

If Array1 and Array2 have a different number of values, @SUMX2MY2 ignores extra values in the larger array.
Example
@SUMX2MY2({3,4,5},{2,3,4}) = (9 - 4) + (16 - 9) + (25 - 16) = 21
 Related topics

@SUMX2PY2 - Sum of the Sum of Squares
Syntax
@SUMX2PY2(Array1, Array2)

Array1 First array of numeric values.
Array2 Second array of numeric values.

@SUMX2PY2 returns the sum of the sum of squares of the corresponding values in Array1 and Array2.
@SUMX2PY2 uses this formula:

If Array1 and Array2 have a different number of values, @SUMX2PY2 ignores extra values in the larger array.
Example
@SUMX2PY2({3,4,5},{2,3,4}) = (9 + 4) + (16 + 9) + (25 + 16) = 79
 Related topics

@SUMXMY2 - Sum of the Squares of the Differences
Syntax
@SUMXMY2(Array1, Array2)

Array1 First array of numeric values.
Array2 Second array of numeric values.

@SUMXMY2 returns the sum of the squares of the differences of corresponding values in Array1 and Array2.
@SUMXMY2 uses this formula:

If Array1 and Array2 have a different number of values, @SUMXMY2 ignores extra values in the larger array.
Example
@SUMXMY2({3,4,5},{2,3,4}) = (3 -2) + (4 - 3)
 + (5 - 4)
 = 3
 Related topics

@SUMXPY2 - Sum of the Squares of the Sums
Syntax
@SUMXPY2(Array1, Array2)

Array1 First array of numeric values.
Array2 Second array of numeric values.

@SUMXPY2 returns the sum of the squares of the sums of the corresponding values in Array1 and Array2.
@SUMXPY2 uses this formula:

If Array1 and Array2 have a different number of values, @SUMXPY2 ignores extra values in the larger array.
Example
@SUMXPY2({3,4,5},{2,3,4}) = (3 + 2) + (4 + 3)
 + (5 + 4)
 = 155
 Related topics

@SUMXY - Sum of the Products
Syntax
@SUMXY(Array1, Array2)

Array1 First array of numeric values.
Array2 Second array of numeric values.

@SUMXY returns the sum of the products of the corresponding numbers in Array1 and Array2.
@SUMXY uses this formula:

If Array1 and Array2 have a different number of values, @SUMXY ignores extra values in the larger array.
Example
@SUMXY({3,4,5},{2,3,4}) = (3 * 2) + (4 * 3) + (5 * 4) = 38
 Related topics

@SUMXY2 - Sum of the Squares of the Products
Syntax
@SUMXY2(Array1, Array2)

Array1 First array of numeric values.
Array2 Second array of numeric values.

@SUMXY2 returns the sum of the squares of the products of the corresponding values in Array1 and Array2.
@SUMXY2 uses this formula:

If Array1 and Array2 have a different number of values, @SUMXY2 ignores extra values in the larger array.
Example
@SUMXY2({3,4,5},{2,3,4}) = (3 * 2) + (4 * 3)
 + (5 * 4)
 = 580
 Related topics

@SUUJI - Convert Number to Kanji
Syntax
@SUUJI(Number, Style)

Number The number
Style 1 Long form

2 Long form: accounting
3 Short form

@SUUJI converts an arabic number into its kanji representation. The Style parameter lets you specify how you
want the representation to be displayed.
 Related topics

@SYD - Sum-of-the-years'-digits Depreciation
Syntax
@SYD(Cost, Salvage, Life, Period)

Cost A numeric value representing the amount paid
for an asset.

Salvage A numeric value representing the value of an
asset at the end of its useful life.

Life A numeric value representing the expected
useful life of an asset (in years).

Period A numeric value representing the time period for
which you want to calculate depreciation.

@SYD calculates depreciation amounts for an asset using an accelerated depreciation method. This allows
higher depreciation in the earlier years of the asset's life. @SYD uses this formula to compute depreciation:
((Cost - Salvage)(Life - Period + 1)) divided by (Life(Life + 1)/2)
Cost must be equal to or greater than Salvage; both must be equal to or greater than 0. Life must be equal to or
greater than Period; both must be equal to or greater than 1.
@DDB and @SLN offer other methods of calculating depreciation.
Examples
Assume you just bought a new $4000 computer. The dealer says you can sell it back to the store for $350 after
eight years, but that no one would want to buy it after that. The Salvage value of that computer is $350 and its
Life is 8. To see what the depreciation allowance of this computer will be by the second year (using this method
of depreciation), enter this formula:
@SYD(4000,350,8,2) = 709.72
These examples show depreciation values for the first five years of an asset's life. These can be compared to
those calculated with @DDB,FUNCTION_DDB which distributes more of the depreciation in the first year of life.
@SYD(12000,1000,5,1) = $3,667
@SYD(12000,1000,5,2) = $2,933
@SYD(12000,1000,5,3) = $2,200
@SYD(12000,1000,5,4) = $1,467
@SYD(12000,1000,5,5) = $733
@DDB(12000,1000,5,1) = $4,800
@DDB(12000,1000,5,2) = $2,880
@DDB(12000,1000,5,3) = $1,728
@DDB(12000,1000,5,4) = $1,037
@DDB(12000,1000,5,5) = $555
 Related topics

@QUARTILE - Quartile
Syntax
@QUARTILE(Array, X)

Array A numeric array or cells of values.
X Number signifying what quartile value to return:

0 = minimum value in Array
1 = 25th percentile
2 = 50th percentile (median)
3 = 75th percentile
4 = maximum value in Array

@QUARTILE returns a number from Array at the quartile indicated by X. You create quartiles of a data set by
partitioning the values into four groups containing an equal number of values.
If the quartile falls between two discrete values in the list, a fractional value is determined using linear
interpolation.
Examples
@QUARTILE({4,5,7,9,10,12,13,16},0) = 4
@QUARTILE({4,5,7,9,10,12,13,16},1) = 6.5
@QUARTILE({4,5,7,9,10,12,13,16},2) = 9.5
@QUARTILE({4,5,7,9,10,12,13,16},3) = 12.25
@QUARTILE({4,5,7,9,10,12,13,16},4) = 16
 Related topics

@QUOTIENT - Integer Portion of Quotient
Syntax
@QUOTIENT(X, Y)

X Value to divide.
Y Nonzero value to divide x by.

@QUOTIENT is similar to @INT; it returns the integer portion of X/Y. If Y is zero, @QUOTIENT returns ERR.
Example
@QUOTIENT(7,2) = 3
 Related topics

@RADIANS - Convert Degrees to Radians
Syntax
@RADIANS(X)

X A numeric value representing degrees. Choose a
numeric value in the range between -
1.698E+308 to 1.085E+308 (approximately).

@RADIANS converts the given number of degrees to radians. It uses this formula:
pi times X divided by 180
One degree is equal to approximately 0.017 radians.
Examples
@RADIANS(1) = 0.017453
@RADIANS(57) = 0.994838
@RADIANS(@DEGREES(3.5)) = 3.5
@RADIANS(A4) = 0.994838 (where cell A4 contains the value 57)
 Related topics

@RAND - Fractional Random Number
Syntax
@RAND
@RAND returns a fractional random number between 0 and 1. This offers a sampling of figures, useful for
generating sample data for simulated situations.
To generate random numbers in another range, multiply @RAND by the difference between the new high and low
ends, then add the new low end number. The formula is @RAND * (high number - low number) + low number.
For example, to indicate a range of 10 to 100, enter @RAND*90+10. This extends the upper limit to 100 and the
lower limit to 10.
@RAND generates a new random number with each recalculation.
Examples
@RAND = a random number between 0 and 1
@RAND*9+1 = a random number between 1 and 10
@RAND*1000 = a random number between 0 and 1000
@RAND+5 = a random number between 5 and 6
-@INT(@RAND*90+10) = a random integer between -10 and -100
 Related topics

@RANDBETWEEN - Random Number Between N and M
Syntax
@RANDBETWEEN(N, M)

N Integer value that random number must be
greater than or equal to.

M Integer value that random number must be less
than or equal to.

@RANDBETWEEN returns a random number between N and M using a uniform distribution. @RANDBETWEEN
returns a new random number each time you recalculate a notebook.
 Related topics

@RANK - Rank of Number in List
Syntax
@RANK(Number, Array, Order)

Number A number from Array.
Array One or more numeric or cell values.
Order Flag indicating how to sort the list of numbers:

any nonzero value = ascending order; 0 =
descending order.

@RANK returns the rank of Number in Array in either ascending or descending order.
Examples
Theses examples refer to the next figure.
@RANK(B6,B2..B10,0) = 1
@RANK(B2,B2..B10,1) = 3
@RANK(B9,B2..B10,1) = 1

A B
1
2 HJ 117
3 MW 122
4 KM 125
5 WC 109
6 AD 137
7 MS 119
8 DP 125
9 MS 106
10 DM 121

 Related topics

@RATE - Interest Rate per Period
Syntax
@RATE(Fv, Pv, Nper)

Fv A numeric value representing the future value of
an investment (the value the investment will
reach at some point).

Pv A numeric value representing the current value
of an investment (the present value).

Nper A numeric value > 0, representing the number of
periods of the loan (the number of payments to
be made) or investment (the number of
compounding periods).

@RATE calculates the interest rate required for an investment of Pv to be worth Fv within Nper compounding
periods. If Nper represents years, an annual interest rate results; if Nper represents months, a monthly interest
rate results, and so on.
@RATE uses this formula to calculate interest rate:

where

Fv future value
Pv present value
N number of periods

An equivalent for this formula using @IRATE is
@IRATE(Nper, 0, - Pv, Fv)
@RATE assumes the investment is an ordinary annuity. The related @function @IRATE lets you use an optional
argument, Type, to indicate whether the investment is an ordinary annuity or an annuity due.
Examples
This formula determines what yearly interest rate will double an initial investment of $2000 at the end of 10
years:
@RATE(4000,2000,10) = 7.18%
Other examples:
@RATE(10000,7000,6*12) = 0.50% (monthly)
@RATE(1200,1000,3) = 6.27% (yearly)
@RATE(500,100,25) = 6.65% (yearly)
 Related topics

@RECEIVED - Redemption Value of a Bill
Syntax
@RECEIVED(Settle, Maturity, Investment, Discount, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date; must be
> Settle.

Investment Amount invested; must be m 0.
Discount Rate of discount; 0 £ Discount £ 1.
Calendar Flag specifying which calendar to observe (0 =

30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@RECEIVED returns the redemption value (the amount received after maturity) of a discount security.
@RECEIVED uses this formula:

R redemption
I investment
D discount
M maturity
S settle
b basis

tb is the number of days over which the discount rate quote applies (360 or 365).
Example
This formula calculates the redemption value of a bill with the following terms: Settle is January 17, 1995,
Maturity is June 15, 1995, Investment is $1,000,000, Discount is 7.922%, and Calendar is 2 (actual/360).
@RECEIVED(@DATE(95,1,17),@DATE(95,6,15),1000000,0.07922,2) = $1,033,899.79
 Related topics

@REGRESSION - Multiple Linear Regression
Syntax
@REGRESSION(XBlock, YBlock, Attribute, <Compute>)

XBlock Name or address of cell containing independent
variables; can be up to 75 columns and 8,192
rows.

YBlock Name or address of cells containing dependent
variable; must be a single-column selection
with the same number of rows as XBlock.

Attribute Specifies the type of regression value returned.
Valid attributes are 1, 2, 3, 4, 5, 101 to 175, or
201 to 275; see the table for the type of
regression value returned for each attribute
value.

Compute Logical value (optional) that tells
@REGRESSION whether to force the Y intercept
to equal 0:
0 = make the Y intercept 0
1 = calculate the Y intercept (default if you omit
the argument)

@REGRESSION performs a multiple linear regression, returning the specified statistic. Choose Attribute
arguments from this table:

Attribute Regression Value Returned
1 Constant
2 Standard error of Y estimate
3 R squared
4 Number of observations
5 Degrees of freedom
101 to 175 Slope, or X coefficient for the independent

variable specified by Attribute
201 to 275 Standard error of the coefficient for the

independent variable specified by Attribute

For the last two attributes, Quattro Pro numbers the independent variables in XBlock, starting with 1, from top to
bottom in a column and from left to right. For example, if XBlock is B2..D7, use Attribute = 102 to find the X-
coefficient for the independent variable in column C. Use Attribute = 201 to find the standard error of coefficient
for the independent variable in column B.
Example
In trying to lower employee absenteeism, you suspect sick days correlate directly with outdoor temperatures and
deadline pressure. You assemble data for the first Monday of the month over a six-month period:

A B C D E
1 % absent Date Due date Days left 9 a.m. temp.
2 14% 12/04/95 04/01/96 119 17
3 22% 01/02/96 04/01/96 90 10
4 32% 02/05/96 04/01/96 56 20
5 48% 03/04/96 04/01/96 28 35
6 2% 04/01/96 11/03/96 216 52
7 18% 05/06/96 11/03/96 181 55

*This January, "Monday" comes on Tuesday, the day after New Year's Day.
To find values for R squared:
@REGRESSION(D2..D7, A2..A7, 3) = 0.811862, fairly close to 1, indicating a fair correlation between
absenteeism and deadlines.
@REGRESSION(E2..E7, A2..A7, 3) = 0.075683, much closer to 0, indicating little relation between absenteeism
and weather.
 Related topics

@REPEAT - Repeat Copies of a String
Syntax
@REPEAT(String, Num)

String A string value.
Num A numeric value equal to or greater than 0.

@REPEAT returns Num copies of String as one continuous label. This @function is similar to the repeating label
prefix (\) in that it repeats one or more characters. The difference is that you can specify exactly how many times
you want the string to be repeated. The \ label prefix adjusts the display to fill the column, even when the width
is changed. @REPEAT displays a fixed number of copies of String and does not change.
When you specify a text string with @REPEAT, it must be enclosed by double quotes.
Examples
@REPEAT("-",20) =    --------------------
@REPEAT("good day!",3) = good day!good day!good day!
@REPEAT(A5,5) = the contents of A5 repeated 5 times
@REPEAT("-",@CELL("width",A1..A1)) = ------------    if column A is 12 characters wide. If you change the column
width, you can press F9 to adjust the repeat string to fill the cell.
 Related topics

@REPLACE - Replace Characters in a String
Syntax
@REPLACE(Original String, Starting Position, Chars to Replace, New String)

Original String A valid string value, representing the text to
operate on.

Starting Position A numeric value equal to or greater than 0,
representing the character position to begin
with.

Chars to
Replace

A numeric value equal to or greater than 0,
representing the number of characters to delete.

New String A string value, representing the characters to
insert at position Num.

@REPLACE lets you replace characters in text with a new text string. It searches through the Original String from
left to right beginning with the first character (character 0) until it reaches character position specified by
Starting Position. Then it removes the number of characters from the string specified by Chars to Replace,
replacing them with the New String.
Both the Original String and the New String can be either cell references or text strings. If text strings, they must
be enclosed by double quotes.
To replace one string with another, specify 0 as the Starting Position. For Chars to Replace, enter a number equal
to or greater than the number of characters in the Original String.
To insert one string into another string, specify 0 as the Chars to Replace.
To add one string to the end of another, specify as Starting Position a number one greater than the number of
characters in the Original String.
To delete part or all of a string, specify "" as the New String.
Examples
@REPLACE("McDougal Corp.",2,6,"Douglas") = McDouglas Corp.
@REPLACE("Leslie J. Cooper",7,3,"") = Leslie Cooper
@REPLACE("Sales Salaries",6,0, "Reps' ") = Sales Reps' Salaries (There must be a space between Reps and the
final quotation mark.)
@REPLACE("355 Howard",11,0," St.") = 355 Howard St. (There must be a space between " and St.)
You can use @REPLACE with other string functions. For instance, to replace one word with another within a
sentence, you can use @FIND and @LENGTH to simplify the search-and-replace operation. For example,
@REPLACE(A7,@FIND("man",A7,0),@LENGTH(      "man"),"person")
searches through A7 for man, then replaces man with person.
 Related topics

@RIGHT - Rightmost Characters
Syntax
@RIGHT(String, Num)

String A string value.
Num A numeric value ³ 0.

@RIGHT returns Num characters of String counting from right to left. It extracts a specified number of characters
from the right side of a string or label.
If String is a not a valid string, @RIGHT returns ERR. If Num is 0, the result is "", or an empty string. If Num is
greater than or equal to the number of characters in String, the entire string is returned.
Examples
@RIGHT("Jennifer Meyer",5) = Meyer
@RIGHT("Jennifer Meyer",25) = Jennifer Meyer
@RIGHT("Jennifer      ",6) = fer        (including 3 subsequent spaces)
@RIGHT("155",1) = 5
@RIGHT(123,1) = ERR (123 is a value)
@RIGHT(A10,5) = the last five characters of A10
@RIGHT(A16,@LENGTH(A16) - @FIND("Roosevelt",A16,0)) = Roosevelt (if A16 = Theodore Roosevelt)
 Related topics

@ROMAN - Arabic Numeral to Roman Numeral
Syntax
@ROMAN(Number, <Form>)

Number Arabic numeral.
Form Style of Roman numeral, ranging from full classic

to brief, becoming more concise as the value of
Form increases:
FALSE (0) = Classic; default, if omitted
TRUE (1) = More concise
2 = More concise
3 = More concise
4 = Most concise

@ROMAN returns the Roman numeral corresponding to a specified Arabic numeral, displaying it as text.
@ROMAN returns ERR if Number is negative or greater than 3999.
Examples
@ROMAN(1999) = MCMXCIX (classic)
@ROMAN(1999,FALSE) = MCMXCIX
@ROMAN(1999,0) = MCMXCIX
@ROMAN(1999,TRUE) = MLMVLIV
@ROMAN(1999,1) = MLMVLIV
@ROMAN(1999,2) = MXMIX
@ROMAN(1999,3) = MVMIV
@ROMAN(1999,4) = MIM
 Related topics

@ROOTN - Nth Root of a Number
Syntax
@ROOTN(Number, Root)

Number Number; can be positive or negative.
Root Number, not zero.

@ROOTN calculates the nth root of a specified number. @ROOTN returns ERR if N=0.
Examples
@ROOTN(27,3) = 3
@ROOTN(64,2) = 8
 Related topics

@ROUND - Round Number
Syntax
@ROUND(X, Num)

X A numeric value.
Num A numeric value between -15 and 15.

@ROUND adjusts the precision of X to Num decimal places. Num specifies the power of 10 to which X is rounded.
If Num is positive, X is rounded Num digits to the right of the decimal point. If Num is negative, X is rounded Num
digits to the left of the decimal point. For example, if Num is -3, X is rounded to the nearest thousand.
If Num is 0, X is rounded to an integer. If Num is not an integer, it is truncated to an integer.
Examples
@ROUND(12345.54321,0) = 12346
@ROUND(12345.54321,2) = 12345.54
@ROUND(12345.54321,-2) = 12300
 Related topics

@ROUNDDOWN - Round Number Down
Syntax
@ROUNDDOWN(X, <Digits>, <Direction>)

X Number to round down.
Digits Number of digits (optional) to which you want to

round X.
Direction Argument (optional) specifying how to round

negative values:
0 = round negative values down; default if
omitted
1 = round negative values up

@ROUNDDOWN rounds a positive number down with a specified precision and rounds a negative number the
direction you specify. @ROUNDDOWN behaves like @ROUND, except that it always rounds a number down.
· If Digits is positive, X is rounded down to Digits decimal places.
· If Digits is negative, X is rounded down to the nearest multiple of the power of 10 specified by Digits.
· If Digits is 0 or omitted, X is rounded down to the nearest integer.
· If X is positive, Direction has no effect.
Use the Fixed numeric format to display values with a specified number of decimal places if you want to
calculate the values to their full precision; do not use @ROUNDDOWN. Quattro Pro stores a maximum of 15
digits.
Examples
@ROUNDDOWN(1234.5678) = 1234
@ROUNDDOWN(1234.5678,2) = 1234.56
@ROUNDDOWN(1234.5678,-2) = 1200
@ROUNDDOWN(-1234.5678) = -1235
@ROUNDDOWN(-1234.5678,0,1) = -1234
 Related topics

@ROUNDDOWNXL - Round Number Down
Syntax
@ROUNDDOWNXL(X, <Digits>)

X Number to round down.
Digits Number of digits to which you want to round X.

@ROUNDDOWNXL rounds positive and negative numbers toward zero.
· If Digits is positive, X is rounded down to Digits decimal places.
· If Digits is negative, X is rounded down to the nearest multiple of the power of 10 specified by Digits.
· If Digits is 0 or omitted, then X is rounded down to the nearest integer.
· Rounding is always to a lower absolute value, regardless of sign.

Examples
@ROUNDDOWNXL(1234.5678,0) = 1234
@ROUNDDOWNXL(1234.5678,2) = 1234.56
@ROUNDDOWNXL(1234.5678,-2) = 1200
@ROUNDDOWNXL(-1234.5678,0) = -1234
By contrast, @ROUNDDOWN rounds negative numbers down, if you omit its Direction argument:
@ROUNDDOWN(-1234.5678,0) = -1235
 Related topics

@ROUNDUP - Round Number Up
Syntax
@ROUNDUP(X, <Digits>, <Direction>)

X Number to round up.
Digits Number of digits (optional) to which you want to

round X.
Direction Argument (optional) specifying how to round

negative values:
0 = round negative values up; default if omitted
1 = round negative values down

@ROUNDUP rounds a positive number up with a specified precision and rounds a negative number the direction
you specify. @ROUNDUP behaves like @ROUND, except that it always rounds a number up.
· If Digits is positive, X is rounded up to Digits decimal places.
· If Digits is negative, X is rounded up to the nearest multiple of the power of 10 specified by Digits.
· If Digits is 0 or omitted, X is rounded up to the nearest integer.
· If X is positive, Direction has no effect.
Use the Fixed numeric format to display values with a specified number of decimal places if you want to
calculate the values to their full precision; do not use @ROUNDUP. Quattro Pro stores a maximum of 15 digits.
Examples
@ROUNDUP(1234.5678) = 1235
@ROUNDUP(1234.5678,2) = 1234.57
@ROUNDUP(1234.5678,-2) = 1300
@ROUNDUP(-1234.5678) = -1234
@ROUNDUP(-1234.5678,0,1) = -1235
 Related topics

@ROUNDUPXL - Round Number Up
Syntax
@ROUNDUPXL(X, <Digits>)

X Number to round up.
Digits Number of digits to which you want to round X.

@ROUNDUPXL rounds a positive number upward and rounds a negative number toward zero.
· If Digits is positive, X is rounded up to Digits decimal places.
· If Digits is negative, X is rounded up to the nearest multiple of the power of 10 specified by Digits.
· If Digits is 0 or omitted, then X is rounded up to the nearest integer.
· Rounding is always to a higher absolute value, regardless of sign.

Examples
@ROUNDUPXL(1234.5678,0) = 1235
@ROUNDUPXL(1234.5678,2) = 1234.57
@ROUNDUPXL(1234.5678,-2) = 1300
@ROUNDUPXL(-1234.5678,0) = -1235
By contrast, @ROUNDUP rounds negative numbers up, if you omit its Direction argument:
@ROUNDUP(-1234.5678,0) = -1234
 Related topics

@ROW - Row Number
Syntax
@ROW(<Block>)

Block The cell or cells for which you want the row
number(s).

@ROW returns the row number(s) for a cell or cells.
· Block can be a cell name.
· If you omit Block, Quattro Pro assumes you want the row number of the cell where you entered @ROW.
· Block cannot refer to non-contiguous areas.

Examples
@ROW(A5..F5) = 5
@ROW(K1..M5) = {1| 2| 3| 4| 5}
If A12.. F12 is a selection named GIFTS, @ROW(GIFTS) = 12
Entered in C4 without an argument, @ROW = 4
 Related topics

@ROWS - Number of Rows
Syntax
@ROWS(Block)

Block Cell reference or name.

@ROWS returns the number of rows within the specified cells.
Examples
@ROWS(A1..A1) = 1
@ROWS(A1..C15) = 15
@ROWS(B100..B8192) = 8093
@ROWS(NAME) = 30 (if the cell NAME contains 30 rows)
 Related topics

@RSQ - r-Squared Value of Linear Regression
Syntax
@RSQ(KnownX, KnownY)

KnownX Independent range of values.
KnownY Dependent range of values.

@RSQ returns r squared, the square of the Pearson product moment correlation coefficient. KnownX and KnownY
must have the same number of values. Use @RSQ to test the linear relationship of KnownX and KnownY and to
show the proportion of the variance of KnownY that can be attributed to a variance in KnownX. The statistic
measures the fraction of the variance explained by the regression equation.
Example
@RSQ({7,8,5,9,7,2},{10,5,4,9,6,7}) = 0.063962
 Related topics

@TABLELINK - Link to Database Table
Syntax
@TABLELINK(TableName,<Columns>,<Rows>)

TableName Path and filename of the database table.
Columns Number of columns (fields) to show from the

linked table.
Rows Number of rows (records) to show from the linked

table.

@TABLELINK establishes a link to an external database table and displays the table in a Quattro Pro notebook.
TableName is the filename of the database table to link to the notebook. By default, @TABLELINK links the entire
table; to link selected columns and rows, enter values for the optional Columns and Rows arguments.
You can use Insert External Data
 Table Link to create a formula using @TABLELINK.

Examples
The following formula creates a link to a database table file named CUSTOMER.DB and displays seven columns
and five rows of the table:
@TABLELINK("C:\COREL\SUITE8\SAMPLES\CUSTOMER.DB",7,5)
The next figure shows the resulting table. Cell A1 contains the @TABLELINK formula.

A B C D E F G
1 1386 Aberdeen F 45 Utah Street Washington DC 20032
2 1388 Svenvald I Government House Reykjavik
3 1784 McDougal L 4950 Pullman Ave

NE
Seattle WA 98105

4 2177 Bonnefemme S 128 University Drive Stanford CA 94323
5 2579 Chavez L Cypress Drive Palm Springs FL 32938

 Related topics

@TAN - Tangent
Syntax
@TAN(X)

X A numeric value.

@TAN returns the tangent of the angle X. X must be specified in radians, not degrees. To convert degrees to
radians, use @RADIANS.
Examples
@TAN(4) = 1.157821
@TAN(@PI/4) = 1
@TAN(@RADIANS(45)) = 1
 Related topics

@TANH - Hyperbolic Tangent
Syntax
@TANH(X)

X A value from approximately -1.789E+308 to
approximately 1.789E+308.

@TANH calculates the hyperbolic tangent of X. X must be specified in radians, not degrees. To convert degrees to
radians, use @RADIANS.
The hyperbolic tangent is the ratio of hyperbolic sine to the hyperbolic cosine. @TANH returns a value from -1
through 1.
Examples
@TANH(4) = 0.999329
@TANH(@PI/4) = 0.655794
@TANH(RADIANS(45)) = 0.655794
 Related topics

@TBILLEQ - Bond Equivalent Yield of a Treasury Bill
Syntax
@TBILLEQ(Settle, Maturity, Discount)

Settle Number representing the settlement date; must
be < Maturity. Also, Maturity cannot be more
than one year after the settlement date.

Maturity Number representing the maturity date.
Discount Rate of discount expressed as a decimal fraction;

must be > 0 and £ 1.

@TBILLEQ returns the bond equivalent yield (also called coupon equivalent yield) of a Treasury bill. Use
@TBILLEQ to compare the yields of Treasury bills and bonds.
Example
This formula calculates the bond equivalent yield of a bill quoted at 9.35% with a maturity date of October 16,
1996 for settlement on April 9, 1996:
@TBILLEQ(@DATE(96,4,9),@DATE(96,10,16),0.0935) = 0.099524
 Related topics

@TBILLPRICE - Price of a Treasury Bill
Syntax
@TBILLPRICE(Settle, Maturity, Discount)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Discount Rate of discount expressed as a decimal fraction;

must be ³ 0 and £ 1.

@TBILLPRICE calculates the price per 100 face value of a Treasury bill. The dollar price of a Treasury bill is its
face value less the applicable dollar discount. @TBILLPRICE uses this formula:

P price
D discount
M Maturity
S Settle

Example
This formula calculates the price per 100 face value for a bill maturing August 1, 1996 and trading at 9.14% for
January 3, 1996 settlement:
@TBILLPRICE(@DATE(96,1,3),@DATE(96,8,1),0.0914) = 94.64294
 Related topics

@TBILLYIELD - Yield of a Treasury Bill
Syntax
@TBILLYIELD(Settle, Maturity, Price)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Price The Treasury bill's price per 100 face value.

@TBILLYIELD returns the yield of a Treasury bill.
Example
This formula calculates the yield of a bill maturing August 1, 1996 and trading at a price of 94.64294 for January
3, 1996 settlement:
@TBILLYIELD(@DATE(96,1,3),@DATE(96,8,1),94.64294) = 0.096574
 Related topics

@TDIST - Student's t-Distribution
Syntax
@TDIST(X, DegFreedom, Tails)

X Value at which to evaluate the distribution.
DegFreedom Integer number of degrees of freedom; must be

³ 1.
Tails 1 to return a one-tailed distribution; 2 to return a

two-tailed distribution.

@TDIST returns the one-tailed or two-tailed Student's t-distribution, which is the probability that a specified
realization will be greater than X. Use the t-distribution when comparing the means of small samples. The single-
tailed t-distribution yields a probability of deviation in a single direction from the mean; a two-tailed t-distribution
yields a probability of deviation in two directions.
If DegFreedom is not an integer, @TDIST rounds it to the nearest integer.
Example
@TDIST(2.228139,10,2) = 0.05
 Related topics

@TERM - Number of Payment Periods for an Annuity
Syntax
@TERM(Pmt, Rate, Fv)

Pmt A numeric value representing the amount of the
periodic payment.

Rate A numeric value > -1, representing the periodic
interest rate (the fixed interest rate per
compounding period).

Fv A numeric value representing the future value of
an investment (the value the investment will
reach at some point).

@TERM computes the number of payment periods required to accumulate an investment of Fv, making regular
payments of Pmt and accruing interest at the rate of Rate.
@TERM uses this formula:

An equivalent for this formula using @NPER is
@NPER(Rate,-Pmt,0,Fv)
@TERM assumes the investment is an ordinary annuity. The related @function @NPER uses an optional argument,
Type, to indicate whether the investment is an ordinary annuity or an annuity due.
Examples
To determine how long it will take to accrue $50,000 by depositing $2000 at the end of each year into a savings
account that earns 11% annually, enter this formula:
@TERM(2000,11%,50000) = 12.67
Quattro Pro determines that it will take 12.67 years to accumulate $50,000 in your account. (Depending upon
how your bank pays interest, your balance might not exceed $50,000 until the end of the 13th year.)
If, on the other hand, the money is not coming in to you but is being paid out by you, you can enter the future
value as a negative number.
You can also use @NPER to calculate this example:
@NPER(11%,-2000,0,50000,0) = 12.67
Other examples:
@TERM(300,6%,5000) = 11.9 years

@TERM(500,7%,1000) = 1.94 years

@TERM(500,.07,1000) = 1.94 years

@TERM(1000,10%,50000) = 18.8 years

@TERM(100,5%,1000) = 8.3 years
 Related topics

@TIME - Date serial number for Hr:Min:Sec
Syntax
@TIME(Hr, Min, Sec)

Hr A number between 0 and 23, representing Hour.
Min A number between 0 and 59, representing

Minute.
Sec A number between 0 and 59, representing

Second.

@TIME returns the date/time serial number represented by Hr:Min:Sec. Any fractional portions of Hr, Min, and
Sec are rounded. You can display the resulting time string values in standard time formats by right-clicking the
cell, clicking Cell Properties, then clicking Numeric Format.
See "Using dates and times in Quattro Pro."
Examples
@TIME(3,0,0) = 0.125 (3:00 am)
@TIME(3,30,15) = 0.14600694444 (3:30:15 am)
@TIME(18,15,59) = 0.76109953704 (6:15:59 pm)
@TIME(B15,23,45) = 0.099826388889 (when the value in B15 is 2)
@TIME(@HOUR(C3),A4,B10) = 0.5751388889 (1:48:12 pm) (when C3 = 01:23:13 pm (formatted date/time serial
number), A4 = 48, and B10 =12)
 Related topics

@TIMEVALUE - Value Corresponding to TimeString
Syntax
@TIMEVALUE(TimeString)

TimeString A numeric value or a string value in any valid
time format, enclosed by quotation marks.

@TIMEVALUE returns a serial time value that corresponds to the value in TimeString. If the value in TimeString is
not in the correct format, or is not enclosed in quotes (if entered as a literal string), an ERR value is returned.
You can display resulting time string values in standard time formats by right-clicking the cell, clicking Cell
Properties, then clicking Numeric Format.
There are four valid formats for TimeString:
· HH:MM:SS AM/PM (03:45:30 PM)
· HH:MM AM/PM (03:45 PM)
· The Long International time format chosen as a system default, one of which is HH:MM:SS (15:45:30)
· The Short International time format chosen as a system default, one of which is HH:MM (15:45)
See "Using dates and times in Quattro Pro."
Examples
@TIMEVALUE("03:30:15 AM") = 0.1460069444
@TIMEVALUE("03:00") = 0.125
@TIMEVALUE("18:15:59") = 0.76109953704
@TIMEVALUE("3.45") = ERR
@TIMEVALUE(@TIME(12,30,45)) = 0.521354
@TIMEVALUE(A1) = 0.125 if A1 contains the label '03:00
 Related topics

@TINV - Inverse of Student's t-Distribution
Syntax
@TINV(Prob, DegFreedom)

Prob Cumulative probability value; 0 £ Prob £ 1.
DegFreedom Number of degrees of freedom.

@TINV returns the inverse of the t-distribution. Use the t-distribution when comparing the means of small
samples.
Example
@TINV(0.05,10) = 2.228139
 Related topics

@TODAY - Today's Date
Syntax
@TODAY
@TODAY enters the numeric value of the system's date. It is equal to the expression @INT(@NOW).
See "Using dates and times in Quattro Pro."
 Related topics

@TOTAL - Sum, Excluding Subtotals
Syntax
@TOTAL(List)

List One or more numeric values, cell addresses, and
cell references or names, separated by commas.

@TOTAL returns the total of all numeric values in a list or reference, excluding any subtotals. List can be any
combination of single cell references, cells, and numeric values. When more than one component is used, they
must be separated by commas. Any labels, blank cells, or cells containing @SUBTOTAL or @SUBTOTAL123 are
ignored by @TOTAL.
Any dates in the cells will be converted to serial numbers and included in the calculation. Since this will throw off
your sum, avoid including dates in the @TOTAL argument cells.
Example
In the following, Cells A3 and C3 contain @SUBTOTAL(A1..A2) and @SUBTOTAL(C1..C2), respectively. Cell A4
contains the formula @TOTAL(A1..C3) and sums all the values in the cells except those generated by
@SUBTOTAL or @SUBTOTAL123. To omit possible subtotals in Column B, you could also write:
@SUM(A1..A2,B1..B2).

A B C D
1 $30 $18
2 $65 $22
3 $95 $40 @SUBTOTAL in A3 and C3
4 $135 @TOTAL in A4

 Related topics

@TRANSPOSE - Transpose of Cells
Syntax
@TRANSPOSE(Block)

Block Cells or array to transpose; you can use a 2-D cell
reference or cell name or an array constant like
{1,2|3,4}.

@TRANSPOSE returns the transpose of cells or an array. In the transpose of cells, each row of the cells becomes
the corresponding column of the output array.
Use @TRANSPOSE to shift the vertical and horizontal orientation of cells or an array.
Formatting is not transposed with the values. Cells in the output cells retain the formatting they had before you
entered the transposed cell values.
You can also copy an array to the Clipboard and then use Edit|PasteSpecial or the {PasteSpecial} macro to
transpose the array and paste only the values it contains.
Examples
@TRANSPOSE({1,2|3,4}) = {1,3|2,4}
Suppose you want to display the following columns as rows:

A B
1 Quarter Sales
2 1 $80,000
3 2 $90,000
4 3 $95,000
5 4 $105,000

Enter the formula
@TRANSPOSE(A1..B5)
The result is displayed as follows:

A B C D E
6 Quarter 1 2 3 4
7 Sales 80000 90000 95000 105000

 Related topics

@TREND - Fits Straight Line to Data
Syntax
@TREND(KnownYs, <KnownXs>, <NewXs>, <Const>)

KnownYs Array of known y-values for the line y = mx + b.
KnownXs Array of known x-values (optional).
NewXs Array of new x-values for which you want the

corresponding y-values (optional).
Const Logical value (optional) that tells @TREND

whether to force the constant b = 0:
 If Const is TRUE or omitted, @TREND uses the

actual value of b.
 If Const is FALSE, @TREND sets b = 0, then

adjusts the m-values so that y = mx.

@TREND fits a straight line to data, using the "least squares" method, then predicts further y-values on that line
for a specified array of x-values.
· If known y-values are in one column, @TREND takes each column of known x-values to be a separate variable.

If known y-values are in one row, @TREND takes each row of known x-values to be a separate variable.
· The argument KnownXs can include more than one set of variables. If you use only one variable, KnownYs and

KnownXs can be selections of any shape, but must have the same dimensions. If you use more than one
variable, KnownYs must be a single-column or single-row selection. Use commas to separate x-values in the
same row and pipes (|) to separate rows.

· The argument NewXs must follow the pattern of KnownXs: It must include a row or column for each
independent variable. If you omit the argument NewXs, @TREND assumes it is the same as KnownXs. If you
omit both KnownXs and NewXs, @TREND assumes they are the array {1,2,3,...} of a size equal to KnownYs.

You can use @TREND for polynomial curve fitting by regressing against the same variable raised to different
powers. For example, suppose column A contained y-values and column B contained x-values. You could enter
x^2 in column C, x^3 in column D, and so on, and then regress columns B through D one at a time against
column A.
Example
Sales for your company in its first four quarters are entered in a selection named Sales:

A B
1 Quarter Sales
2 1 $80,000
3 2 $90,000
4 3 $95,000
5 4 $105,000

To predict sales for the following year, @TREND(Sales,A2..A5,A6..A9) = {$112,500, $120,500, $128,500,
$136,500}
 Related topics

@TRIM - Remove Extra Spaces
Syntax
@TRIM(String)

String A string value.

@TRIM removes any extra spaces from String; that is, spaces following the last nonspace character or preceding
the first nonspace character, and duplicate spaces between words. Strings with no extra spaces are not affected.
If String is empty or contains a numeric value, it returns ERR.
Examples
@TRIM(" too many spaces ") = too many spaces
@TRIM("no extra spaces") = no extra spaces
@TRIM(125) = ERR
 Related topics

@TRIMMEAN - Mean, with Fraction Excluded
Syntax
@TRIMMEAN(Array, Fraction)

Array Numeric array or cells of values.
Fraction Decimal fraction of data points to exclude; 0 £

Fraction < 1.

@TRIMMEAN computes the mean of a data set, with a fraction of the points excluded. @TRIMMEAN is helpful
when you want to exclude outlying values from your analysis. Because the function excludes an equal number of
data points from the top and bottom of the data set, it rounds the number of excluded data points down to the
nearest multiple of 2.
Example
@TRIMMEAN({3,6,7,8,10,11,11,14,15,20},0.2) = 10.25
 Related topics

@TRUE - Logical Value 1
Syntax
@TRUE
@TRUE returns the logical value 1 and is usually used in @IF formulas. The 1 it returns is the same as the regular
numeral 1, but @TRUE makes the formula easier to read.
Examples
@TRUE = 1
@IF(C3=100,@TRUE,10) = 1 (if C3 = 100) or 10 (if C3 is not equal to100)
@IF(C3=100,@TRUE,@FALSE) = 1 (if C3 = 100) or 0 (if C3 is not equal to 100)
 Related topics

@TRUNC - Truncate Number
Syntax
@TRUNC(X, <Digits>)

X Number to truncate.
Digits Numeric value specifying precision (optional);

can be from -100 through 100.

@TRUNC truncates a number to the precision you specify. The default precision is without decimal places, if you
omit the Digits argument.
· If Digits is positive, X is truncated to Digits decimal places.
· If Digits is negative, X is truncated to the nearest multiple of the power of 10 specified by Digits.
· If Digits is 0, X is truncated to the nearest integer.
· Though precision can be from -100 through 100, only 15 digits can be displayed.
Use the Fixed numeric format to display values with a specified number of decimal places if you want to
calculate the values to their full precision; do not use @TRUNC.
Examples
@TRUNC(1234.5678) = 1234
@TRUNC(1234.5678,3) = 1234.567
@TRUNC(1234.5678,-2) = 1200
@TRUNC(-1234.5678,-2) = -1200
 Related topics

@TTEST - Probability of Student's t-Test
Syntax
@TTEST(Array1, Array2, Tails, Type)

Array1 First array of numeric values.
Array2 Second array of numeric values.
Tails 1 to return a one-tailed test; 2 to return a two-

tailed test.
Type A discrete variable specifying the type of test to

conduct; 1 = a paired test; 2 = a two-sample
equal variance test; 3 = a two-sample unequal
variance test.

@TTEST returns the probability associated with the Student's t-Test. Use @TTEST to test the means of two small
samples.
If Array1 and Array2 have a different number of data points, @TTEST returns ERR.
Example
@TTEST({62,77,73,69,54,67,59,76},{64,80,72,53,69,63,76,74},2,2) = 0.68502
 Related topics

@TYPE - Value Type
Syntax
@TYPE(Value)

Value Numeric, text, logical, formula, or error value, or
reference to a cell containing such a value.

@TYPE returns a code indicating the type of a specified value. Value types and their codes are:

Type @TYPE returns
Numeric or logical value, or empty
cell

1

Text 2
Error 16
Array 64

Some functions accept and return several types of data, some accept only one type. Use @TYPE when you need
to find out what type of data was returned by a function.
Examples
@TYPE(457) = 1
@TYPE("number") = 2
@TYPE(TRUE) = 1
If D3 contains @ROMAN(-5), @TYPE(D3) = 16, because @ROMAN of a negative number returns ERR
If D3 is a blank cell, @TYPE(D3) = 1
If D3 contains @ARRAY(A1..A5), @TYPE(D3) = 64
 Related topics

@UPPER - String in Uppercase
Syntax
@UPPER(String)

String A string value.

@UPPER returns String in uppercase characters. Numbers and symbols within a string are unaffected. If String is
blank, or contains a numeric or date value, the result is ERR.
Examples
@UPPER(4839) = ERR
@UPPER(@LEFT("johnson",1)) = J
@UPPER("upper") = UPPER
@UPPER("Hello, world.") = HELLO, WORLD.
@UPPER("145 Bancroft Lane") = 145 BANCROFT LANE
 Related topics

@USESPLINE - Use Piecewise Polynomial Fit
Syntax
@USESPLINE(KnownX's, KnownY's, Coefficients, x)

KnownX's Independent cells or array of values.
KnownY's Dependent cells or array of values.
Coefficients Coefficient array produced by @SPLINE.
x Value for which you want the corresponding y-

value.

@USESPLINE returns, for any specified x value, the corresponding y value, given the original x and y arrays and
the coefficient array produced by @SPLINE.
If x is larger than the largest value contained in the interval over which the spline is performed, then UseSpline
will return the y co-ordinate associated with that largest value as the interpolated value.    Similarly, if x is
smaller than the smallest value contained in the interval over which the spline is performed, then UseSpline will
return the y co-ordinate associated with that smallest value as the interpolated value.
Example
Given the following data:

A B C D E
1
2 1 2 3
3 4 2 5
4 -2 3
5 0
6 0.2
7 0.3
8 1
9 1.25
10 1.333
11 1.5
12 1.9
13 2
14 2.5
15 2.6
16 2.96
17 3
18 3.1
19 3.3
20 3.6
21 3.777
22 4

@USESPLINE(C$2..E$2,C$3..E$3,C$4..D$4,A5) = 4
Copying this function into successive rows in Column B gives the corresponding y-values for x-value in column A:

5 0 4
6 0.2 4

7 0.3 4
8 1 4
9 1.25 3.5
10 1.333 3.334
11 1.5 3
12 1.9 2.2
13 2 2
14 2.5 3.5
15 2.6 3.8
16 2.96 4.88
17 3 5
18 3.1 5
19 3.3 5
20 3.6 5
21 3.777 5
22 4 5

This is the graph using the x-values in Column A and the corresponding y-values generated in Column B by
@USESPLINE:

 Related topics

@VALUE - Value of a String
Syntax
@VALUE(String)

String A string value.

@VALUE converts String into a numeric value. String can contain arithmetic operators (but do not place
arithmetic operators within quotes). String must not contain embedded spaces. Dollar signs, commas, and
leading and trailing spaces are ignored.
This @function is useful for converting imported data that has not already been converted into values.
Examples
@VALUE(" 3.59") = 3.59 (leading spaces are stripped)
@VALUE(" 98.6 ") = 98.6 (leading and trailing spaces are stripped)
@VALUE("98.6 4") = ERR (an embedded space is not allowed)
@VALUE(3+4) = 7
@VALUE("3+4") = ERR (arithmetic operators within quotes are not allowed)
@VALUE(" 88.039") = 88.039
@VALUE(A10) = 56.34 (where cell A10 = '$56.34)
@VALUE("34,200") = 34200
@VALUE(A1) = ERR (where cell A1 = '1800 Green Hills Road)
 Related topics

@VAR - Population Variance
Syntax
@VAR(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@VAR calculates the population variance of all nonblank, numeric cells in List, using the n method (biased). Use
@VARS to compute the variance of a data sample.
If List contains text, a reference to a single cell containing a label (for example, @VAR(B1) where B1 = Adam), or
label cells within references to multiple cell selections (such as @VAR(B1..B5)), @VAR treats the string as having
a value of 0. @VAR ignores blank cells within a referenced selection of cells, but returns ERR if every cell in the
selection is blank.
Examples
@VAR(23,24,25) = 0.666666667
@VAR("Adam",53) = 702.25 (same as for @VAR(0,53)
@VAR(B1..B4) = 54.6875 (if B1=10, B2=15, B3="Susan", B4=20; the string in B3 is treated as if it were 0)
@VARS(23,24,25) = 1
@VARS("Adam",53) = 1404.5 (same as for @VARS(0,53)
@VARS(B1..B4) = 72.9167 (if B1=10, B2=15, B3="Susan", B4=20; the string in B3 is treated as if it were 0)
 Related topics

@VARS - Sample Population Variance
Syntax
@VARS(List)

List One or more numeric or string values, cell
addresses, and cell references or names,
separated by commas.

@VARS calculates the sample variance of all nonblank, numeric cells in List, using the n-1 method (unbiased).
@VAR computes population variance.
Examples
@VARS(23,24,25) = 1
@VARS("Adam",53) = 1404.5 (same as for @VARS(0,53)
@VARS(B1..B4) = 72.9167 (if B1=10, B2=15, B3="Susan", B4=20; the string in B3 is treated as if it were 0)
@VAR(23,24,25) = 0.666666667
@VAR("Adam",53) = 702.25 (same as for @VAR(0,53)
@VAR(B1..B4) = 54.6875 (if B1=10, B2=15, B3="Susan", B4=20; the string in B3 is treated as if it were 0)
 Related topics

@VDB - Variable-rate Declining Balance Depreciation
Syntax
@VDB(Cost, Salvage, Life, StartPeriod, EndPeriod, <Factor>, <Switch>)

Cost Cost of asset; must be greater than Salvage.
Salvage Salvage value at end of asset life; can be any

value.
Life Number of periods for asset to depreciate to

salvage value; must greater than 0.
StartPeriod Starting period to begin depreciation, in same

units as Life; can be any positive value or 0, but
not greater than Life.

EndPeriod Ending period for depreciation, in same units as
Life; can be any value greater than StartPeriod,
but not greater than Life.

Factor Percentage of straight-line depreciation to use as
the depreciation rate (optional); 200% (double-
declining balance rate) if omitted. Factor can be
any value greater than or equal to 0; commonly
used rates are 1.25, 1.50, 1.75, and 2.

Switch Tells @VDB whether to switch to straight-line
depreciation for the remaining useful life
(optional):
0 = automatically switch to straight-line
depreciation when that is greater than declining-
balance depreciation (default if you omit the
argument)
1 = never switch to straight-line depreciation

@VDB calculates depreciation allowance using the variable-rate declining balance method. The calculation is
based on initial cost, expected useful life, and final salvage value for a specified period.
The variable-rate declining balance method uses a fixed depreciation rate until the asset's salvage value is less
than the value of the following expression:
BV * ((1- (R / L)) L)
where

BV book value = cost - salvage - prior depreciation
R rate
L life

At this point, Quattro Pro switches to straight-line depreciation for the balance of the life of the asset so that
there is no excess salvage value. By switching to straight-line depreciation, Quattro Pro adjusts the result of
@VDB when necessary to ensure that total depreciation taken over the life of the asset equals the asset's cost
minus its salvage value.
When you use any optional argument, you must also use the ones before it.
Examples
You purchased a delivery truck for your business for $45,000 at the end of    the first quarter of your fiscal year.
Its useful life is projected to be 5 years, with a salvage value of $1100. Using the variable-rate declining balance
method, with a depreciation rate of 150%, your depreciation expense for each year will be:
@VDB(45000,1100,5,0,0.75,1.5) = $10,125.00
@VDB(45000,1100,5,0.75,1.75,1.5) = $10,462.50
@VDB(45000,1100,5,1.75,2.75,1.5) = $7,323.75
@VDB(45000,1100,5,2.75,3.75,1.5) = $7,106.11

@VDB(45000,1100,5,3.75,4.75,1.5) = $7,106.11
@VDB(45000,1100,5,4.75,5,1.5) = $1,776.53
Total depreciation (cost minus salvage) = $43,900.00
The switch to straight-line depreciation begins automatically in the third year: If Switch = 1, the calculation for
that year would be:
@VDB(45000,1100,5,2.75,3.75, 1.5,1) = $5,126.63
 Related topics

@VERSION -Quattro Pro Version Number
Syntax
@VERSION
@VERSION returns the version number of Quattro Pro.
 Related topics

@VLOOKUP - Vertical Lookup
Syntax
@VLOOKUP (X, Block, Column, <Type>)

X The numeric or string value you want to search
for.

Block The range of cells.
Column The number of the referenced column. The

columns are referenced from 0 to the number of
columns in Block minus 1.
The first column (index column) in Block = 0
The second column in Block = 1, ...

Type <optional> Lets you specify whether or not the match must
be exact.
0 Must be an exact match
1 Does not need to be an exact match (default)

@VLOOKUP searches vertically through the index column of Block for the value X. When @VLOOKUP finds the
value X, it returns the value displayed Column columns beneath it.
All values in the index column must be sorted in ascending order for the function to work correctly. Otherwise,
ERR or an incorrect answer may be returned.
@VLOOKUP returns 0 if the referenced cell is blank. ERR is returned if:
· Column is less than 0 or greater than the number of columns minus 1 in Block.
· X is less than the smallest value in the first column of Block.
· X is a string and the index column is not found.
If X is a string, @VLOOKUP looks for an exact case-sensitive match. If X is a number and @VLOOKUP cannot find
an equal number, it locates the highest number, not more than X, in the column.
The Block must have its index values in the leftmost column.
There must be no blank cells in the index column. Blanks in the table to the right of the index column are treated
as a 0.
Example
In the following example, @VLOOKUP searches down the index column (A) of the Block (A1..D4) looking for the
largest number equal to or less than X (17). It stops at cell A3, then moves across Column columns (3). It stops
at cell D3 and returns the value 22.

A B C D
1 5 52 84 43
2 10 32 67 45
3 15 42 18 22
4 20 83 76 47

@VLOOKUP(17, A1..D4, 3)
Returns: 22
 Related topics

@VHLOOKUP - Vertical and Horizontal Lookup
Syntax
@VHLOOKUP (V_Val, H_Val, Block, <Type>)

V_Val The value of the index row.
H_Val The value of the index column.
Block The range of cells.
Type
<optional>

Lets you specify whether or not the match must
be exact.
0 Does not need to be an exact match
1 Must be an exact match

@VHLOOKUP returns the value at the intersection of the row and column specified by V_Val and H_Val.
Example
In the following example, @VHLOOKUP searches across the index row ("FEBRUARY") and down the index column
("TWO") of the Block (A1..D4). @VHLOOKUP returns the value at the intersection of the index row and the index
column.

A B C D
1 ONE TWO THREE
2 JANUARY 5 52 84
3 FEBRUARY 10 32 67
4 MARCH 15 42 18

@VHLOOKUP("FEBRUARY", "TWO", A1..D4)
Returns: 32
 Related topics

@WEEKDAY - Number of the Weekday
Syntax
@WEEKDAY(Date, Date Type)

Date Number representing a date to check. See
"Using dates and times in Quattro Pro."

Date Type One of three numbering systems representing
days of the week.

Date Type What It Means
                                  
1 or blank

1=Sun, 2=Mon, 3=Tues, 4=Wed, 5=Thur, 6=Fri,
7=Sat

2 1=Mon, 2=Tues, 3=Wed, 4=Thur, 5=Fri, 6=Sat,
7=Sun

3 0=Mon, 1=Tues, 2=Wed, 3=Thur, 4=Fri, 5=Sat,
6=Sun

@WEEKDAY returns a number representing the day Date falls on.
Example
@WEEKDAY("1/22/97",1) = 4 (January 22, 1997 falls on Wednesday)
@WEEKDAY(35452,1) = 4 (Wednesday)
@WEEKDAY(35452,3) = 2 (Wednesday, using Date Type 3)
@WEEKDAY(@DATE(96,1,22)) = 2 (Monday)
 Related topics

@WEEKNUM - Week of the Year
Syntax
@WEEKNUM(DateNum, WeekBeg)

DateNum The date expressed as a serial date number. See
"Using dates and times in Quattro Pro."

WeekBeg A number that determines on what day the week
begins.
1 = week begins on Sunday; default if omitted
2 = week begins on Monday
3 = week begins on Saturday

@WEEKNUM calculates in which week of the year a specified date falls. Make sure to set Cell Properties to
General, not Date, to display to display the result of @WEEKNUM.
Examples
February 4, 1996, is a Sunday.
@WEEKNUM(@DATE(96,2,4),1) = 6
@WEEKNUM(@DATE(96,2,4),2) = 5
 Related topics

@WEIBULL - Weibull Distribution (Mean Time to Failure)
Syntax
@WEIBULL(X, Alpha, Beta, Cum)

X Function parameter to evaluate.
Alpha Parameter to the distribution; must be > 0.
Beta Parameter to the distribution; must be > 0.
Cum A numeric value (0 or 1) indicating whether to

use the cumulative distribution function (1) or
the probability density function (0).

@WEIBULL returns the Weibull distribution, which is used to calculate the mean time to failure of a device. If
Alpha = 1, @WEIBULL returns the same value as @EXPONDIST with Lambda = 1/Beta.
Examples
@WEIBULL(20,2,15,1) = 0.830987
@WEIBULL(20,2,15,0) = 0.030047
 Related topics

@WEIGHTAVG - Weighted Average
Syntax
@WEIGHTAVG(DataBlock, WeightsBlock, <Type>)

DataBlock Cell reference or name where values to be
averaged are stored.

WeightsBlock Cell reference or name where data affecting the
weighting are stored; WeightsBlock must have
the same dimensions as DataBlock.

Type Optional value that tells Quattro Pro how to
calculate the weighted average:
0 = divide by sum of values in WeightsBlock;
default if you omit the argument
1 = divide by number of values in DataBlock

@WEIGHTAVG returns a weighted average of the values in the cells.
@WEIGHTAVG returns ERR if DataBlock and WeightsBlock are not the same dimensions.
Examples
Your son's school places heavy emphasis on math and science courses, and weights them accordingly in
comparison with humanities courses. His fall semester grades are in the following table, along with the school's
weighting of the courses:

A B C
1 Course Weight Grade
2 English 2 70.0%
3 Geography 2 65.0%
4 Math 3 95.0%
5 Chemistry 3 91.0%

@WEIGHTAVG(C2..C5,B2..B5) = 82.8%
@AVG(C2..C5) = 80.3%
 Related topics

@WKDAY - Number of the Weekday
Syntax
@WKDAY(Date)

Date Number representing a date to check. See
"Using dates and times in Quattro Pro."

@WKDAY returns a number (from 1 for Saturday to 7 for Friday) representing the day Date falls on.
Example
@WKDAY(@DATE(95,6,22)) = 6 (Thursday), since June 22, 1995 falls on a Thursday.
 Related topics

@WORKDAY - Date a Specified Number of Days Away
Syntax
@WORKDAY(StartDate,Days,<Holidays>,<Weekends>)

StartDate Serial number for the date you're starting from.
See "Using dates and times in Quattro Pro."

Days Number of days after StartDate (if Days is
positive) or before (if Days is negative).

Holidays Optional cell name or reference containing serial
date numbers of holidays to exclude from the
calculation.

Weekends Optional argument, in quotation marks, to tell
@WORKDAY which days are weekend days. Use
0 through 6 (Monday through Sunday); for
example, "45" means Friday and Saturday. The
default, if you omit Weekends, is Saturday and
Sunday. To specify no weekends, use "7".

@WORKDAY returns the serial number for a date that is a specified number of days before or after a specified
date, optionally excluding weekends and/or holidays. To see the date as text, format the cell by choosing Cell
Properties and Date.
You cannot use any optional argument without using all the ones preceding it. To specify weekends but not
holidays, refer to a blank cell for holidays.
Examples
You want the date 10 working days after Monday, December 23, 1996. Holidays are stored in a selection named
Holidays, and your weekend days are Saturday and Sunday.

HOLIDAYS A
1 35397
2 35398
3 35424
4 35425
5 35426
6 35431
7 35432
8 35433

@WORKDAY(@DATE(96,12,23),10,Holidays) = 35444, or 14-Jan-97
If your weekend days are Friday and Saturday,
@WORKDAY(@DATE(96,12,23),10,Holidays,"45") = 35442, or 12-Jan-97
Say you're planning ton work on Saturdays and Sundays, but take the holidays:
@WORKDAY(@DATE(96,12,23),10,Holidays,"7") = 35438, or 08-Jan-97
If you decide to work holidays but not Snaturdays or Sundays during that period, you would not specify holidays,
and Saturdays and Sundays would be assumed:
@WORKDAY(@DATE(96,12,23),10) = 35436, or 06-Jan-97
By working straight through, taking neither holidays nor weekends off, you could finish four days earlier:
@WORKDAY(@DATE(96,12,23),10, B3,"7") = 35432, or 02-Jan-97. Cell B3 is empty, to specify no holidays.
The date 10 working days before Monday, December 23, 1996, is
@WORKDAY(@DATE(96,12,23),-10, Holidays) = 35408, or 9-Dec-96
 Related topics

@XCOUNT - Counts Numeric Cells
Syntax
@XCOUNT(LIST)

List One or more numeric, cell addresses, and
references or names, separated by commas.

@XCOUNT returns the number of cells in List containing a numeric value. If there is no content in the list to
return, @XCOUNT returns 0.
Example
@XCOUNT(I1..I34) = 13 (if there are 13 cells containing numeric values)
 Related topics

@XINDEX - Return Value at Column and Row
Syntax
@XINDEX(Block,ColHead,RowHead,<PageName>)

Block Cell name or reference.
ColHead Column to look in; must be the contents of a cell

in the first row of the cells.
RowHead Row to look in; must be the contents of a cell in

the first column of the cells.
PageName Name of notebook sheet (optional).

@XINDEX returns the contents of a cell located at the intersection of a specified column, row, and (optionally)
notebook sheet.
ColHead, RowHead, and PageName can be numeric values or text.
@XINDEX looks first for the sheet name, if specified. Then it scans the leftmost column for the value RowHead
and the top row for the value ColHead, returning the value in the cell at the intersection.
Examples
You record home sales prices and dates in a table called HOUSES, with a notebook sheet for each area. The
sheet for Long Island looks like this:

A B C D E F
1 Cust# Offered Date sold Asked Sold for Months on mkt
2 286 05-May-95 27-Jul-95 $325,000 $315,000 2
3 183 02-Feb-93 7-Aug-95 $295,000 $250,000 30
4 173 04-Apr-95 11-Sep-95 $150,000 $135,000 5
5 218 25-May-94 12-Oct-95 $495,000 $425,000 16
6 104 15-Mar-94 17-Oct-95 $195,000 $150,000 19

The amount Long Island customer 183 paid is
@XINDEX(HOUSES,"Sold for", 183, "Long Island") = $250,000
The date Customer 218 closed is
@XINDEX(HOUSES,"Date sold", 218, "Long Island") = 12-Oct-95
At 5% commission, the agent who sold Customer 104 a house received
+0.05*@XINDEX(HOUSES, "Sold for", 104, "Long Island") = $7,500
 Related topics

@XIRR - Internal Rate of Return
Syntax
@XIRR(Values, Dates, <Guess>)

Values Series of cash flows; first payment is the one
occurring at the beginning of the investment;
succeeding payments are discounted based on a
365-day year.

Dates Payment corresponding to cash flow payments;
first date must be the earliest date, but all other
dates can be in any order.

Guess Numeric value (optional) that estimates the
internal rate of return on an investment;
assumed to be 10% if omitted.

@XIRR returns the internal rate of return on an investment when cash flow is not necessarily periodic.
· Numbers in Dates are truncated to integers.
· In most cases you do not need to provide Guess for the @XIRR calculation. Use the Guess argument to speed

up calculation and ensure a correct solution.
@XIRR returns ERR if:
· An argument is non-numeric.
· It does not find at least one positive cash flow and one negative cash flow.
· A number in Dates is not a valid date number.
· A number in Dates precedes the starting date.
· Values and Dates contain a different number of values.
@XIRR is closely related to XNPV, the net present value function. The rate of return calculated by @XIRR is the
interest rate corresponding to XNPV = 0.
Quattro Pro uses calculating @XIRR by iteration. Starting with Guess, it uses a changing rate and repeats the
calculation until the result is accurate to 0.000001%. If no result is found after 100 cycles, @XIRR returns ERR.
The criterion for solution is:

where

di the ith payment date
d1 the 0th payment date
Pi the ith payment

Examples
Suppose an investment of $20,000 made on February 1, 1995, has paid off as follows:

A B
1 Cash Flow Dates
2 ($20,000) 1-Feb-95
3 $5,000 1-Aug-95
4 $8,300 15-Nov-95
5 $6,100 15-Feb-96
6 $5,100 1-May-96

The internal rate of return is
@XIRR(A2..A6,B2..B6) = 0.260097 or 26.0097%
You can also enter the function as
@XIRR({-20000,5000,8300,6100, 5100},{34731,34912,35018, 35110,35186})
 Related topics

@XNPV - Net Present Value
Syntax
@XNPV(Rate, Values, Dates)

Rate Discount rate to apply to cash flows.
Values Series of cash flows; first payment is the one

occurring at the beginning of the investment;
succeeding payments are discounted based on a
365-day year.

Dates Payment corresponding to cash flow payments;
first date must be the earliest date, but all other
dates can be in any order.

@XNPV calculates the net present value of an investment when cash flow is not necessarily periodic. Numbers in
Dates are truncated to integers.
@XNPV returns ERR if:
· An argument is non-numeric.
· A number in Dates is not a valid date number.
· A number in Dates precedes the starting date.
· Values and Dates contain a different number of values.
@XNPV is calculated as follows:

where

di the ith payment date
d1 the 0th payment date
Pi the ith payment

Examples
Suppose an investment of $20,000 made on February 1, 1995, has paid off as follows, with cash flows discounted
at 9.5%:

A B
1 Cash Flow Dates
2 ($20,000) 1-Feb-95
3 $5,000 1-Aug-95
4 $8,300 15-Nov-95
5 $6,100 15-Feb-96
6 $5,100 1-May-96

The net present value is
@XNPV(0.095,A2..A6,B2..B6) = $2,614.20
You can also enter the function as
@XNPV(0.095,{-20000,5000,8300, 6100,5100},{34731,34912,35018, 35110,35186})
 Related topics

@XORB - Binary Exclusive OR
Syntax
@XORB(Binary1, <Binary2>, <Bits>)

Binary1 First binary number.
Binary2 Second binary number.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in
Binary1 or Binary2, whichever is greater; must
be in the range 0 <n £ 64.

@XORB performs a bit-by-bit logical exclusive OR of each bit in Binary1 and Binary2. Use @XORB to set bits to 1
if the bits being compared in Binary1 and Binary2 are different.
If only one number is specified, then @XORB performs an exclusive OR operation on the bits in Binary1; this
parity test, or XOR reduction, returns 1 or 0 based on successive bit comparisons.
Examples
@XORB(10,1) = 11
@XORB(11,10) = 01
@XORB(11) = 0
@XORB(1100,110,5) = 01010
 Related topics

@XORH - Hexadecimal Exclusive OR
Syntax
@XORH(Hex1, <Hex2>, <Bits>)

Hex1 First hexadecimal number.
Hex2 Second hexadecimal number.
Bits Number of binary bits used for both input and

output; if omitted, Bits = number of bits in Hex1
or Hex2, whichever is greater; 4 binary digits = 1
hexadecimal digit; must be in the range 0 <n £
64.

@XORH performs a bit-by-bit logical exclusive OR of each bit in Hex1 and Hex2. Use @XORH to set bits to 1 if the
bits being compared in Hex1 and Hex2 are different.
If only one number is specified, then @XORH performs the exclusive OR operation on the bits in Hex1; this parity
test, or XOR reduction, returns 1 or 0 based on successive bit comparisons.
Examples
@XORH("A","A") = 0
@XORH("E") = 1
@XORH("C","6",8) = 0A
 Related topics

@YDAYS - Calendar Days in Year
Syntax
@YDAYS(Year)

Year Number from 0 (1900) to 199 (2099) or a
standard year like 1993.

@YDAYS returns the number of calendar days in a specified year.
The valid date calculation range for this function is 01/01/1900 through 12/31/2099.
Example
@YDAYS(1996) = 366, the number of days in 1996, since it is a leap year.
 Related topics

@YDIV - Beginning of Year Division
Syntax
@YDIV(Date, <Numdiv>, <Months>, <Anchor>, <Endmnth>)

Date Number representing the date about which to
calculate year division. See "Using dates and
times in Quattro Pro."

NumDiv Integer representing number of divisions away
from beginning of division in which date falls;
can be negative.

Months Number of months per division; does not have to
be a divisor of 12; can be longer than 1 year;
must be an integer >0 (the default is 3).

Anchor Date to anchor division boundaries on (the
default is January 1, 1900).

EndMnth 1 to indicate adherence to ends of months; 0 to
indicate that ends of months are ignored (the
default is 1).

@YDIV returns the date of the beginning of the year division (quarter, half-year, or some other fixed period of
months, specified by Months) in which Date falls.
If NumDiv is used, @YDIV returns the date that is NumDiv divisions away from the beginning of the division in
which Date falls. For example, @YDIV can calculate the beginning of the second quarter after the quarter
containing March 21, 1993.
By default, divisions start at January 1, 1900; all other boundaries are some number of divisions away from
January 1, 1900. For example, the default quarter boundaries are January 1, April 1, July 1, and October 1 of each
year. Use Anchor to specify an alternate start date.
Division cycles can be changed to coincide with any date specified by Anchor. For example, you can change the
quarter boundaries to February 23, May 23, August 23, and November 23 by setting Anchor to one of these
dates in any year. When the division length is an integral divisor of 12, the year component of Anchor is ignored
since the boundary dates repeat each year.
Examples
@YDIV(@DATE(94,8,19)) = 34516 (July 1, 1994), the date of the beginning of the quarter in which August 19,
1994, falls (assuming that quarters begin January 1, April 1, July 1 and October 1).
A bond pays interest every six months until the bond's maturity, at which time it pays the final interest. The next
formula calculates the date of the next coupon payment after September 12, 1994 if the bond matures July 15,
1999:
@YDIV(@DATE(94,9,12),1,6,@DATE(99,7,15)) = 34714 (January 15, 1995)
The value 1 (NumDiv), passed as the second argument, designates the beginning of the next division (next
coupon payment date). The value 6 (Months), passed as the third argument, designates that divisions are six
months long. The fourth argument (Anchor) designates that year divisions must coincide with that date; in this
case, that coupon dates coincide with the maturity date.
 Related topics

@YEAR - Year Portion of Date Serial Number
Syntax
@YEAR(DateTimeNumber

DateTimeNumb
er

A numeric value between -109571 (January 1,
1600) and 474816.9999999 (December 31,
3199).

@YEAR returns the year portion of DateTimeNumber. To display the actual year, just add 1900 to the result of
@YEAR. If you want to extract the year portion of a string that is in date format, use @DATEVALUE with @YEAR to
convert the string into a serial number.
See "Using dates and times in Quattro Pro."
Examples
@YEAR(22222) = 60 (1960)
@YEAR(A6)+1900 = 19nn, where nn is the year value in A6
@YEAR(@DATEVALUE("12-Oct-54")) = 54
@YEAR(-75000) = -206 (1694)
 Related topics

@YEARFRAC - Fraction of Year
Syntax
@YEARFRAC(StartDate, EndDate, <Calendar>)

StartDate Number representing the start date. See "Using
dates and times in Quattro Pro."

EndDate Number representing the end date.
Calendar Flag specifying which calendar to observe (0 =

30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@YEARFRAC returns the fraction of the year from a specified starting and ending date covered between
StartDate and EndDate. The value returned includes both the starting and ending dates.
Example
This formula calculates the fraction of a year between August 15, 1993 and November 4, 1993:
@YEARFRAC(@DATE(93,8,15),@DATE(93,11,4)) = 0.222222
 Related topics

@YIELD - Yield of a Bond
Syntax
@YIELD(Settle, Maturity, Issue, Coupon, Price, <Calendar>)

Settle Number representing the settlement date.
                                  
Maturity

Number representing the maturity date.

Issue Number representing the issue date.
Coupon Coupon rate; must be ³ 0.
Price Price; must be > 0.
Calendar Flag specifying which calendar to observe (0 =

30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@YIELD returns the annual yield of a security that pays periodic interest.
Dates for @YIELD must follow this pattern:
Issue < Settle < Maturity
Example
This formula calculates the annual yield of an 11.75% bond that was issued January 15, 1993 and matures
November 15, 2014. The bond was priced at 126.1875 for settlement on January 23, 1993.
@YIELD(@DATE(93,1,23),@DATE(114,11,15),@DATE(93,1,15),0.1175,126.1875) = 0.089877
 Related topics

@YIELDDISC - Yield of a Bill
Syntax
@YIELDDISC(Settle, Maturity, Price, <Redemption>, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Price Settlement price; must be > 0.
Redemption Redemption value per 100 face value (must be >

0; the default is 100).
Calendar Flag specifying which calendar to observe (0 =

30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@YIELDDISC returns the annualized yield for a discount security. @YIELDDISC uses this formula:

Y yield
R redemption
P price
b basis
M maturity
S settle

tb is the number of days over which the discount rate applies (360 or 365).
Example
This formula calculates the yield on a bill maturing October 15, 1993 and trading at a price of 97.8 for July 15,
1993 settlement, using an actual/360 calendar:
@YIELDDISC(@DATE(93,7,15),@DATE(93,10,15),97.8,100,2) = 0.088023
 Related topics

@YIELDMAT - Yield of a CD
Syntax
@YIELDMAT(Settle, Maturity, Issue, Coupon, Price, <Calendar>)

Settle Number representing the settlement date; must
be < Maturity.

Maturity Number representing the maturity date.
Issue Number representing the issue date; must be <

Settle.
Coupon Coupon rate; 0 £ Coupon £ 1.
Price Price per 100 face value.
Calendar Flag specifying which calendar to observe (0 =

30/360, 1 = actual/actual, 2 = actual/360, 3 =
actual/365; the default is 0).

@YIELDMAT returns the annual yield of a security that pays interest at maturity.
Example
This formula calculates the annual yield of a security with the following terms: Settle is March 7, 1993, Maturity
is November 3, 1993, Issue is November 8, 1992, Coupon is 6.247%, Price is 100, and Calendar is 3 (actual/365).
@YIELDMAT(@DATE(93,3,7),@DATE(93,11,3),@DATE(92,11,8),0.06247,100,3) = 0.06122
 Related topics

@YIELDPER - Yield for Securities Paying Periodic Interest
Syntax
@YIELDPER(Settle, Maturity, Coupon, Price, <Redemption>, <Freq>, <Basis>)

Settle Date number representing the settlement date.
Maturity Date number representing the maturity date;

must be greater than Settle.
Coupon Coupon rate; must be ³ 0.
Price Price per $100 face value; must be > 0.
Redemption Redemption value per $100 face value

(optional); must be ³ 0; the default is 100.
Freq Frequency of coupon payments (optional) in

number of payments per year; can be 1, 2, 3, 4,
or 12; the default is 2.

Basis Flag specifying which calendar to observe:
0 = US (NASD) 30/360; default if you omit the
argument
1 = Actual/actual
2 = Actual/360
3 = Actual/365
4 = European 30/360

@YIELDPER returns the yield for securities paying periodic interest. @YIELDPER uses the following formula:

where

Y yield
R redemption value
r coupon rate
f number of coupon payments per year
par price per $100 face value
A accrued days from beginning of coupon period to

settlement date
E number of days in coupon period
D number of days from settlement date to

redemption date

You cannot use any optional argument without using all the ones preceding it.
Example
A security with a settlement date of September 1, 1995, and maturity date of March 1, 2001, pays quarterly at a
4.75% coupon rate. The price is $95.00 and the redemption value is $100. Basis is a 30/360 calendar.
@YIELDPER(@DATE(95,9,1), @DATE(101,3,1), 0.0475,95,100,4) = 5.81885 %
 Related topics

@YLD2YLD - Convert Yield
Syntax
@YLD2YLD(Y1, F1, F2, <Q1>, <Q2>)

Y1 Specified yield to be converted to another
compounding frequency.

F1 Number of times specified yield is compounded
per year.

F2 Number of times target yield is compounded per
year.

Q1 Number of periods for quoted yields (F1 is the
default).

Q2 Number of periods for quoted yields (F2 is the
default).

@YLD2YLD converts a yield expressed in one compounding frequency to another. For example, since bond yields
are compounded twice per year while mortgage yields are compounded 12 times per year, some conversion is
necessary to compare the two different yield figures.
To use @YLD2YLD, you supply Y1, F1, F2 and the optional arguments Q1 and Q2. The result is Y2. @YLD2YLD
solves this equation for Y2:

Examples
This formula converts an annual yield of 6.5% into a semiannual yield:
@YLD2YLD(0.065,1,2) = 0.063977
 Related topics

@ZTEST - Two-tailed Probability of a z-Test
Syntax
@ZTEST(Array, X, <S>)

Array A numeric array or cells of values.
X A value to test against the mean of the values in

Array.
S Population standard deviation; if omitted,

@ZTEST uses the sample standard deviation.

@ZTEST returns the two-tailed probability of a z-test. @ZTEST calculates a z-score, which is the distance
between X and the mean for Array, and then returns the two-tailed probability of the z-score for a normal
distribution. Use @ZTEST to test whether a value is drawn from a large sample population.
@ZTEST(Array,x) is equal to 1 minus @NORMDIST times

Example
@ZTEST({10,12,14,17,19,21,22,25},15) = 0.087352
 Related topics

Calculating Dates and Times
For calculation purposes, Quattro Pro stores all dates as serial integers beginning with 0 for December 30, 1899.
The minimum, -109,571, equals January 1, 1600; the maximum, 474,816, equals December 31, 3199.
Quattro Pro stores times as decimal fractions; 0.000 represents 00:000:00, and 0.99999 represents 23:59:59. To
format time expressions in your notebook, right-click the cell you want to format, click Selection properties,
then click Numeric format.
 Related topics

Setting Holidays for Date & Time @Functions
Business date functions have three arguments to specify which dates are holidays: Saturday, Sunday, and
Holidays. By default, Saturday and Sunday are holidays. Setting the argument Saturday to 1 specifies that
Saturday is a business day; setting Sunday to 1 specifies that Sunday is a business day. Use the argument
Holidays to specify holidays that do not fall on weekends (unless weekends are used as business days). You can
set Holidays to cells containing holiday dates, the date of a single holiday, or 0 to specify no special holidays.
 Related topics

Entering Number Conversion @Functions
Input numbers that include non-numeric characters (such as hexadecimal or ASCII values) must be enclosed in
quotation marks (for example, "1AF3C"). Numbers that exceed 14 digits, except decimal numbers, must also be
enclosed in quotation marks.
For the 64-bit number conversion @functions, numbers must be in the following ranges for each base:

Base Range
Signed decimal -9223372036854775808 to +9223372036854775807
Unsigned decimal 0 to 18446744073709551615
Hexadecimal 0000000000000000 to FFFFFFFFFFFFFFFF
Octal 0000000000000000000000 to

1777777777777777777777

If a 64-bit number conversion @function results in a string value greater than 2 - 1, the @function returns ERR.
 Related topics

Entering Boolean @Functions
The shift @functions, @SHLB, @SHRB, @SHLH, and @SHRH, shift the bits in a number to the left or right. You can
use the shift @functions to perform quick multiplication of integers. Each binary shift to the left is equivalent to
multiplying the number by 2. Each binary shift to the right is equivalent to dividing the number by 2.

Binary Decimal
00011 3
00110 6
01100 12
11000 24

As you shift bits off one end of a number, bits are added to the other end. Shift, however, is not equal to rotate.
For example, the binary number 1001 shifted left is 0010. The same number rotated left is 0011. To perform this
rotation, you can use a nested bit test @function to set the BitIn argument.
The addition @functions, @ADDB and @ADDH, return the sum of two numbers. The subtraction @functions,
@SUBB and @SUBH, return the difference of two numbers.
The overflow @functions, @SHLBO, @SHRBO, @SHLHO, @SHRHO, @ADDBO, @ADDHO, @SUBBO, @SUBHO,
return the overflow bit (either 0 or 1) of a shift, addition, or subtraction operation. For example, if you shift the
binary number 1001 to the left and maintain four places, the result is 0010. The overflow bit, that is, the bit that
has shifted into the fifth place not shown, is 1.
The AND @functions, @ANDB and @ANDH, combine the zeros of the input words. Any bit that is 0 in either
number sets the corresponding output bit to 0.
The OR @functions, @ORB and @ORH, combine the ones of the input words. Any bit that is 1 in either number
sets the corresponding output bit to 1.
The exclusive OR @functions, @XORB and @XORH, set an output bit to 1 when two corresponding input bits are
not equal.
The following table shows the results of AND, OR, and exclusive OR operations of Bit A and Bit B.

Bit A Bit B A AND B A OR B A XOR B
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The invert @functions, @INVB and @INVH, invert individual bits of a number; that is, all bits with a value of 1
change to 0, and all bits with a value of 0 change to 1.
The bit manipulation @functions, @BITSB, @BITRB, @BITTB, @BITSH, @BITRH, and @BITTH, let you set or reset
bits, or test the value of a bit in a number.
The concatenation @functions, @CATB, @CATH, @CATNB, and @CATNH, link numbers together in a chain. For
example, the concatenation of the two binary numbers 11111 and 10101 is 1111110101.
The argument Bits defines the word size (in number of binary bits) for both input and output. The default for Bits
is the number of bits in the largest input number. If you perform an operation with two numbers of different word
size, the smaller number is left-padded with zeros. If Bits is less than the length of an input value, then the
excess most significant digits are truncated. For Boolean @functions using hexadecimal numbers, note that each
hexadecimal digit equals 4 bits.
The argument BitIn represents either the binary bit inserted during a shift, the carry bit for addition, or the
borrow bit for subtraction; it can be either 0 (the default) or 1.

 Tip
To add or subtract negative numbers with the Boolean @functions, use two's complement notation. Two's
complement notation is a code used to give meaning to a binary string. The sign bit of two's complement
notation is the leftmost bit of the word. A number is positive if the sign bit is 0 and negative if it is 1. Negative
integers are converted to two's complement by inverting each bit (that is, changing each 1 to a 0 and each 0 to
a 1), and then adding 1.
 Related topics

Calendar Conventions
Financial @functions support four different calendar conventions to count the difference in days between two
dates. The optional Calendar argument lets you specify which calendar convention to use.

Calendar Description
30/360 The 30/360 calendar convention assumes all months have 30

days and every year has 360 days. Using the 30/360 calendar,
the number of years, months and days between two dates are
counted separately. Then, the number of days between two
dates is the sum of three quantities: the number of years times
360, the number of months time 30, and the number of days.

Actual/Actual The Actual/Actual calendar convention considers the actual
number of days between two dates and the actual number of
days in the year. For example, February 28, 1994 and August
31, 1994 are 184 days apart. February 28, 1994 and March 1,
1994 are 1 day apart.

Actual/360 The Actual/360 calendar convention considers the actual
number of days in each month, but assumes 360 days in the
year.

Actual/365 The Actual/365 calendar convention considers the actual
number of days in each month, but assumes 365 days in the
year, thus making no provision for leap year.

 Related topics

Annuity @Function Arguments

Argument Description
Adv Number of cash flows (payments, deposits) made before the

annuity begins.
Fv Future value.
Int Interest charged on the loan per period (not per year; many

loans quote annual interest rates that must be divided by the
number of payments per year).

Nper Number of periods of the loan or investment (should be an
integer greater than 0).

Odd Number ³ 0 that specifies the number of periods between
the start of a loan and the first payment (for example, if the
loan is made two and a half months before the first monthly
payment is due, use 2.5)

Payment Cash flow made each period.
Per A specified loan or investment period, 1 through Nper.
Pmt Payment.
Principal Amount of money loaned or the initial deposit on an annuity

that increases principal (like depositing $2,500 to open a
savings account)

Pv Present value.
Rate Interest rate (should be greater than -1).
Residual Remaining principal and interest at the end of a loan that the

annuity did not take care of
ResOff Number of periods after the annuity ends before the residual

must be paid; express it as a fraction of a period (for
example, in a monthly loan, 1.5 means 1.5 months before
the residual is due)

Simp Specifies how the interest is calculated: 0 for compounded
interest, 1 for simple interest

Term The total number of cash flows (payments or deposits) to
make

Type 0 if payments are at the end of each period, 1 if at the
beginning. This optional argument lets you use financial
@functions to compute either an ordinary annuity, where
periodic payments are made at the end of each period, or an
annuity due, where payments are made at the beginning of
each period. Quattro Pro assumes that Type = 0 unless you
indicate otherwise.

Non-integer values are allowed for Nper, and the @functions give results that are consistent with other
spreadsheet programs, but which are actually not very meaningful. If you borrow money from a bank for, say,
15.2 months with interest paid monthly, giving Nper a value of 15.2 in the financial @functions will only be a
rough indicator of what the bank will tell you to pay. In order to compute the figures the way the bank would, you
have to consider two transactions, one for 15 months and one for 0.2 months.
The functions assume that there is no residual unless a nonzero value is specified for the optional argument
Residual. When a residual is specified, the functions assume that it is paid along with the last payment. When it
is not, a positive value should be specified for the optional argument ResOff. For example, if the residual is paid
three months after the last monthly payment, ResOff = 3. Compound interest is used during any fractional
component of ResOff unless Simp = 1.
Advance payments, specified by Adv, are made on or before the first day of the loan period. They are included in
the total payment count. The functions assume zero advance payments unless a nonzero value is specified for
the optional argument Odd.
Odd specifies the time period between the beginning of a loan (or issue of an annuity) and the date of the first
periodic payment, and does not necessarily constitute exactly one normal payment period. For example, if a loan
begins on March 19, 1993 and monthly payments are due the first of every month beginning April 5, 1993, the
first payment period is 17 days long. Since the implied normal first payment period, March 5 to April 5, is 31 days

long, Odd = 17/31.
 Tip

· In the following @functions, as well as @NPV and @IRR, amounts with positive signs represent money
received, and amounts with negative signs represent money paid: @FVAL, @IRATE, @IPAYMT, @NPER,
@PAYMT, @PPAYMT, and @PVAL. This convention applies to arguments and to the results of the @functions. In
1-2-3-compatible @functions (such as @PV, @PMT, @FV, @RATE, @TERM, and @CTERM) the amounts are
usually all positive regardless of which way the money changes hands.

 Related topics

Entering Cash Flow @Functions
Cash flow analysis is a process of listing a stream of cash gains and losses (positive and negative cash flows),
modifying them using a percentage or percentages (discount rate(s)), and determining their future value,
present value, or rate of growth (or decline; both are called the internal rate of return).
Unlike an annuity, this stream of cash flows does not always occur periodically, and does not have a fixed
interest rate for each cash flow.
You can use cash flow functions to estimate the net present value of a cash flow stream, project the future value
of the stream, compute the gains the stream is making as a percentage, or compute how the discount rates
must change to achieve a specific future value.
For details on using cash flow @function arguments, choose one of the following topics:
Using the Discrate Argument
Using the Filter, Start, and End Arguments
Using the Flows Argument
Using the Odd and Periods Arguments
Using the Simp and PathDep Arguments
 Related topics

Using the Flows Argument
In Quattro Pro, a stream of cash flows is specified by a column (or row) of values. The Flows argument of a cash
flow function is set to this selection. Positive values add cash to the stream; negative values subtract from it. For
example, if your savings account had two deposits of $50, one withdrawal of $25, and one deposit of $75 (in that
order), you could use A2..A5 or B2..E2 of the next figure to represent it in a cash flow function:
If the stream contains a series of equal cash flows, you can add an additional column (or row) to specify how
many times a specified cash flow repeats. For example, you can replace A2..A5 of the previous figure with A2..B4
of the next figure:
The first column (or row) of the selection specifies how many times each cash flow occurs. For example, in the
previous figure the value 2 (in A2) specifies that two cash flows of $50 occur in the stream, not one.

 Tip
· Quattro Pro uses the size of the cash flow cells to determine whether you are specifying a column of cash flows

or a row of cash flows. It assumes that selections with more than two rows contain cash flows in the second
column; selections with more than two columns contain cash flows in the second row. In the case of a two-
column, two-row selection, Quattro Pro assumes that the cash flows are in the second row.

 Related topics

Using the Filter, Start, and End Arguments
You can use the argument, Filter, Start, and End to make Quattro Pro automatically exclude cash flows that do
not fall in a certain range, such as all deposits, or any withdrawals less than $20. Excluded cash flows are not
included in the function calculations. Use Filter to specify the rules for exclusion, as shown in the next table.

Filter Cash flows are excluded when
0 No filtering (the default)
1 Cash flow < Start
2 Cash flow £ Start
3 Cash flow > Start
4 Cash flow ³ Start
5 Start < Cash flow < End
6 Start £ Cash flow £ End

As shown, Start and End are used differently, depending on the setting of Filter. They always bind the cash flows
in some way; Start and End could be a range of cash flows values to use (Filter set to 5) or an upper limit for
values (Filter set to 1, Start set to the upper limit).
 Related topics

Using the Discrate Argument
The Discrate argument of a cash flow function specifies how the cash flows are discounted to achieve their future
or net present value. It can be a single percentage (like 0.05 for 5%) that applies to all the cash flows, or a
column (or row) of discount rates, one for each cash flow in the Flows cells (see the previous section). Positive
discount rates decrease the cash flow; negative ones increase it. The next figure shows a stream of cash flows
(in A2..B4) and their corresponding discount rates (in C2..C4).
The first two cash flows (specified by A2..B2) are discounted by 5% (as specified by C2). The third is discounted
by -2.5% (an increase, as specified by the negative percentage in C3), and the final cash flow is discounted by
7.5% (as specified by C4).
 Related topics

Using the Simp and PathDep Arguments
You can use the Simp argument to specify how Quattro Pro applies discount rates to cash flows. The next table
shows the discounting methods available.

Simp Discounting
0 Compounded
1 Mixture of compounded and

simple
2 Simple

In addition to Simp, PathDep, which is used only when Discrate is a selection, specifies whether path-dependent
discounting is used. When path-dependent discounting is used (PathDep is set to 1), the set of discount rates are
chained together to determine future or net present value. If the order of discount rates changes, the future or
net present value can be affected.
When path-dependent discounting is not used (PathDep is set to 0, the default), each cash flow is affected by its
associated discount rate; other discount rates in Discrate do not affect it.
 Related topics

Using the Odd and Periods Arguments
By default, cash flow functions assume that each cash flow occurs periodically (every month, every year, and so
on). The arguments Odd and Periods let you specify irregular periods. You normally use one or the other, so
these arguments appear in the function descriptions as Odd|Periods.
If the length of time of the first period is odd, specify a number for Odd. For example, if a series of cash flows are
monthly, and the first period is half a month long, set Odd to 0.5; if the first period is one and a half months, set
Odd to 1.5.
If several cash flows are unevenly spaced, specify cells for Periods. Periods is a column (or row) of numbers that
specify the duration of each cash flow in the Flows cells. Like Odd, each value in the cells is expressed as a
fraction of the regular period. For example, the next figure shows a cash flow cells in B2..B4, and a Period
selection in A2..A4.
The value 1 in A2 specifies that the first cash flow ($50) occurs at a regular period. You decide what this period
is; it could be a week, a month, or a year. Assuming the regular period is a month, the value 3.5 (in A3) specifies
that the second cash flow ($75) occurs three and a half months after the first. The final value, 2, specifies that
two months elapse between the second cash flow and the third.
Like Flows, the Periods selection can have an additional column (or row) added to specify how many times a
specified period length repeats. Periods does not have to be the same size as Flows. For example, in the next
figure, the cash flow stream is A2..B5.
Periods is C2..C4, and specifies that the first cash flow is 0.56745 periods away, the next 11 cash flows occur one
period apart, and the last four cash flows are 1.5 periods apart.

 Tip
· In @FUTV, Odd specifies the length of the last period.
 Related topics

Bond @Function Arguments

Argument Description
Settle Settlement date for the trade
Maturity Redemption date for the bond
Coupon Annual coupon rate expressed as a decimal
Issue Issue date, that is, the date at which the bond is first offered

for sale and begins accruing interest
FirstCpn Date on which the first coupon period ends; if the first coupon

period is longer or shorter than the other periods, the first
coupon payment date is explicitly specified at issue; the size of
the first coupon payment is linearly prorated in accordance
with the length of the first coupon period

Redemption Redemption value per par of 100
Freq Frequency of coupon payments in the number of payments per

year; the default is 2 (semiannual)
Calendar Calendar to observe; the default is 0 (30/360)
Yield Internal rate of return expressed as a decimal
Price Quoted price of the bond assuming a par value of 100 and not

including accrued interest
LastCpn Date on which the last coupon period ends

 Related topics

Quattro Pro Functions List

@

A
ABDAYS
ABS
ACCRINT
ACCRINTM
ACCRINTXL
ACCRUED
ACDAYS
ACOS
ACOSH
ACOT
ACOTH
ACSC
ACSCH
ADDB
ADDBO
ADDH
ADDHO
ADDRESS
AMAINT
AMINT
AMNTHS
AMPMT
AMPMTI
AMPRN
AMRES
AMRPRN
AMTERM
AND
ANDB
ANDH
ARRAY
ASCTOHEX
ASEC
ASECH
ASIN
ASINH
ATAN
ATAN2
ATANH
AVEDEV
AVG

B
BASE
BDAYS
BESSELI
BESSELJ
BESSELK
BESSELY
BETA
BETADIST
BETAI
BETAINV
BINOMDIST
BINTOHEX
BINTOHEX64
BINTONUM
BINTONUM64
BINTOOCT
BINTOOCT64
BITRB
BITRH
BITSB
BITSH
BITTB
BITTH
BLOCKNAME
BLOCKNAME2
BLOCKNAMES
BLOCKNAMES2
BUSDAY

C
CATB
CATH
CATNB
CATNH
CDAYS
CEILING
CELL
CELLINDEX
CELLPOINTER
CHAR
CHIDIST
CHIINV
CHITEST
CHOOSE
CLEAN
CODE
COLS

COLUMN
COMB
COMMAND
COMPLEX
CONCATENATE
CONFIDENCE
CONVERT
CORREL
COS
COSH
COT
COTH
COUNT
COUNTBLANK
COUNTIF
COUPDAYBS
COUPDAYS
COUPDAYSNC
COUPNCD
COUPNUM
COUPPCD
COVAR
CRITBINOM
CSC
CSCH
CTERM
CUMIPMT
CUMPRINC
CURVALUE

D
D360
DATE
DATEDIF
DATEINFO
DATEVALUE
DAVG
DAY
DAYS360
DB
DCOUNT
DDB
DDELINK
DEGREES
DELTA
DEVSQ
DFRAC
DGET
DISC

DMAX
DMIN
DOLLAR
DOLLARDE
DOLLARFR
DOLLARTEXT
DPRODUCT
DPURECOUNT
DSTD
DSTDS
DSUM
DURAT
DURATION
DVAR
DVARS

E
EFFECT
EMNTH
EOMONTH
ERF
ERFC
ERFD
ERR
EVEN
EXACT
EXP
EXP2
EXPONDIST

F
FACT
FACTDOUBLE
FACTLN
FALSE
FBDAY
FDIST
FEETBL
FIB
FIELD
FILEEXISTS
FIND
FINV
FIRSTBLANKPAGE
FIRSTINGROUP
FISHER
FISHERINV
FIXED
FLOOR

FORECAST
FRACD
FRACTION
FREQDIST
FTEST
FULLP
FUTV
FV
FVAL

G
GAMMA
GAMMADIST
GAMMAINV
GAMMALN
GAMMAP
GAMMAQ
GCD
GEOMEAN
GEOSUM
GESTEP
GETGROUP
GETREGISTRYKEY
GRANDTOTAL123
GROWTH

H
HALFP
HARMEAN
HEXTOASC
HEXTOBIN
HEXTOBIN64
HEXTONUM
HEXTONUM64
HEXTOOCT
HEXTOOCT64
HLOOKUP
HOLS
HOUR
HYPGEOMDIST

I
IF
IMABS
IMAGINARY
IMARGUMENT
IMCONJUGATE
IMCOS

IMDIV
IMEXP
IMLN
IMLOG2
IMLOG10
IMPOWER
IMPRODUCT
IMREAL
IMSIN
IMSQRT
IMSUB
IMSUM
INDEX
INDEXTOLETTER
INT
INTERCEPT
INTRATE
INTXL
INVB
INVH
IPAYMT
IRATE
IRR
ISBDAY
ISBLANK
ISBLOCK
ISERR
ISEVEN
ISLEGALPAGENAME
ISLOGICAL
ISNA
ISNONTEXT
ISNUMBER
ISODD
ISSTRING

J
No Functions

K
KANSUUJI
KURT

L
LARGEST
LASTBLANKPAGE
LASTCELLVALUE
LASTINGROUP

LBDAY
LCM
LEFT
LENGTH
LETTERTOINDEX
LINEST
LINTERP
LLDEC
LN
LOG
LOGBASE
LOGCONV
LOGEST
LOGINV
LOGNORMDIST
LOOKUP
LOWER
LWKDAY

M
MATCH
MAX
MAXLOOKUP
MDAYS
MDET
MDURATION
MEDIAN
MEMAVAIL
MEMEMSAVAIL
MID
MIN
MINLOOKUP
MINUTE
MINVERSE
MIRR
MMULT
MNTHS
MOD
MODE
MODULO
MONTH
MROUND
MTGACC
MULT
MULTINOMIAL

N
N
NA

NBDAY
NEGBINOMDIST
NENGO
NETPV
NETWORKDAYS
NOMINAL
NORMDIST
NORMINV
NORMSDIST
NORMSINV
NOT
NOW
NPER
NPV
NUMTOBIN
NUMTOBIN64
NUMTOHEX
NUMTOHEX64
NUMTOOCT
NUMTOOCT64
NWKDAY

O
OCTTOBIN
OCTTOHEX
OCTTONUM
ODD
ODDFPRICE
ODDFYIELD
ODDLPRICE
ODDLYIELD
OFFSET
OR
ORB
ORH

P
PAGEINDEX
PAGEINDEX2
PAGENAME
PAGENAME2
PAGENAMES
PAGENAMES2
PAYMT
PBDAY
PEARSON
PERCENTILE
PERCENTRANK
PERMUT

PI
PIRATE
PMT
PMTC
POISSON
POWER
PPAYMT
PRICE
PRICEDISC
PRICEMAT
PROB
PROPER
PROPERTY
PUREAVG
PURECOUNT
PUREMAX
PUREMIN
PURESTD
PURESTDS
PUREVAR
PUREVARS
PV
PVAL

Q
QUARTILE
QUOTIENT

R
RADIANS
RAND
RANDBETWEEN
RANK
RATE
RECEIVED
REGRESSION
REPEAT
REPLACE
RIGHT
ROMAN
ROOTN
ROUND
ROUNDDOWN
ROUNDDOWNXL
ROUNDUP
ROUNDUPXL
ROW
ROWS
RSQ

S
S
SCMARG
SEC
SECH
SECOND
SEMEAN
SERIESSUM
SETSTRING
SHEETS
SHLB
SHLBO
SHLH
SHLHO
SHRB
SHRBO
SHRH
SHRHO
SIGN
SIN
SINH
SKEW
SLN
SLOPE
SMALLEST
SPLINE
SQRT
SQRTPI
STANDARDIZE
STD
STDS
STEC
STEYX
STKOPT
STRCMPNORM
STRING
SUBB
SUBBO
SUBH
SUBHO
SUBSTITUTE
SUBTOTAL
SUBTOTAL123
SUM
SUMIF
SUMNEGATIVE
SUMPOSITIVE
SUMPRODUCT

SUMSQ
SUMX2MY2
SUMX2PY2
SUMXMY2
SUMXPY2
SUMXY
SUMXY2
SUUJI
SYD

T
TABLELINK
TAN
TANH
TBILLEQ
TBILLPRICE
TBILLYIELD
TDIST
TERM
TIME
TIMEVALUE
TINV
TODAY
TOTAL
TRANSPOSE
TREND
TRIM
TRIMMEAN
TRUE
TRUNC
TTEST
TYPE

U
UPPER
USESPLINE

V
VALUE
VAR
VARS
VDB
VERSION
VHLOOKUP
VLOOKUP

W
WEEKDAY

WEEKNUM
WEIBULL
WEIGHTAVG
WKDAY
WORKDAY

X
XCOUNT
XINDEX
XIRR
XNPV
XORB
XORH

Y
YDAYS
YDIV
YEAR
YEARFRAC
YIELD
YIELDDISC
YIELDMAT
YIELDPER
YLD2YLD

Z
ZTEST

Quattro Pro Functions Categories

Database functions

Date and Time functions

Engineering functions

Financial functions

Logical functions

Mathematical functions

Miscellaneous functions

Statistical functions

String functions

Database spreadsheet functions
The database spreadsheet functions are similar to the statistical spreadsheet functions. Instead of taking a
simple list of values, these spreadsheet functions all take three arguments, as in @DMAX(Block,Column,Criteria).
@DAVG The average (mean) of all numeric values in specified cells.
@DCOUNT The number of nonblank cells in specified cells.
@DGET A value or label from cells.
@DMAX The largest numeric or latest date value in specified cells.
@DMIN The smallest numeric or earliest date value in specified cells.
@DPRODUCT The product of values in specified cells.
@DPURECOUNT A count of all numeric entries in specified cells.
@DSTD The population standard deviation of all values in specified cells.
@DSTDS The sample standard deviation of all values in specified cells.
@DSUM The total of all numeric values in specified cells.
@DVAR The population variance of all values in specified cells.
@DVARS The sample variance of all values in specified cells.
 Related topics

Date and Time spreadsheet functions
The date and time spreadsheet functions calculate dates and times, perform calculations involving business
days, or convert location coordinates.
@ABDAYS Adds (or subtracts) a specified number of business days to a specified date.
@ACDAYS Adds a specified number of calendar days to a specified date.
@AMNTHS Adds a specified number of months to a specified date.
@BDAYS Returns the number of business days between two dates, inclusive of the second date.
@BUSDAY Returns a specified date if it is a business day, or the closest business day before (or after)

the date.
@CDAYS Returns the number of calendar days between two dates, inclusive of the second date.
@D360 Returns the number of days between two dates, based on a 360-day year (twelve 30-day

months).
@DATE Returns the date number for a specified year, month, and day; 0 = December 30, 1899.
@DATEDIF Calculates the number of years, months, or days between two dates.
@DATEINFO Returns information (for example, day of week or month of year) about a date number.
@DATEVALUE Returns the date number for a specified formatted date string.
@DAY Returns the day of the month (1-31) represented by a specified date/time serial number.
@DAYS360 Returns the number of days between two dates based on a 360-day year (twelve 30-day

months).
@EMNTH Returns the date of the last day of the month in which a specified date falls.
@EOMONTH Returns the serial date number for the last day of the month a specified number of months

before or after a start date.
@FBDAY Returns the date of the first business day of a month in which a specified date falls.
@HOLS Returns the number of holidays between two dates, excluding holidays that fall on

weekends.
@HOUR Returns the number of hours past midnight (0-23) represented by a specified date/time

serial number.
@ISBDAY Returns 1 if the specified date is a business day, or 0 if it is not.
@LBDAY Returns the date of the last business day of a month in which a specified date falls.
@LWKDAY Returns the date of the last specified weekday in a specified month.
@MDAYS Returns the number of calendar days in a specified month of a specified year.
@MINUTE Returns the number of minutes past the hour (0-59) represented by a specified date/time

serial number.
@MNTHS Returns the number of whole months between two dates.
@MONTH Returns the month in number form (1-12) represented by a specified date/time serial

number.
@NBDAY Returns the date of the first valid business day after a specified date.
@NENGO Converts a date to its kanji representation
@NETWORKDAYS Returns the number of days from a start date through an end date, excluding weekends and

holidays.
@NOW Returns the date and time serial number for the current system date and time.
@NWKDAY Returns the date of the nth occurence of a specified weekday in a specified month.
@PBDAY Returns the date of the first valid business day before a specified date.
@SECOND Returns the number of seconds past the minute (0-59) represented by a specified date/time

serial number.
@TIME Returns the time number for a specified hour, minute, and second. The hour is a numeric

value between 0 and 23.
@TIMEVALUE Returns the time number for a specified formatted time string.
@TODAY Returns the date number for the current system date.
@WEEKDAY Returns a number (from 1 for Saturday to 7 for Friday) representing the day Date falls on
@WEEKNUM Calculates in which week of the year a specified date falls.
@WKDAY Returns a number (from 1 for Sunday to 7 for Saturday) representing the day Date falls on.

@WORKDAY Returns the serial number for a date that is a specified number of days before or after a
specified date, optionally excluding weekends and/or holidays.

@YDAYS Returns the number of calendar days in a specified year.
@YDIV Returns the date of the beginning of the year division in which a specified date or specified

number of divisions always falls.
@YEAR Returns the year number (-300 to 1299; 0 = 1900) represented by a specified date/time

serial number.
@YEARFRAC Returns the year fraction representing the number of whole days between a specified

starting and ending date.
 Related topics

Engineering spreadsheet functions
Bessel
These spreadsheet functions return values that satisfy the Bessel equation or the modified Bessel equation.
Bessel functions have various applications in physics and engineering.
Boolean
These spreadsheet functions handle applications of digital logic and bitwise operations, which involve the
testing, setting, or shifting of actual bits in a number.
Complex number
These spreadsheet functions convert or modify a complex number (a number whose square is a negative real
number).
Miscellaneous
These spreadsheet functions have various applications in engineering, including converting values to different
measures, testing the relationship of two numeric values, and returning error functions.
Number conversion
These spreadsheet functions convert a value from one number system to another.
 Related topics

Bessel Engineering spreadsheet functions
@BESSELI Returns the modified Bessel function In(x).
@BESSELJ Returns the Bessel function Jn(x).
@BESSELK Returns the modified Bessel function Kn(x).
@BESSELY Returns the Bessel function Yn(x).
 Related topics

Boolean Engineering spreadsheet functions
@ADDB Returns the sum of two binary numbers.
@ADDBO Returns the overflow bit of the sum of two binary numbers.
@ADDH Returns the sum of two hexadecimal numbers.
@ADDHO Returns the overflow bit of the sum of two hexadecimal numbers.
@ANDB Returns the AND operation of two binary numbers.
@ANDH Returns the AND operation of two hexadecimal numbers.
@BITRB Returns a binary number with a specified bit reset to 0.
@BITRH Returns a hexadecimal number with a specified bit reset to 0.
@BITSB Returns a binary number with a specified bit set to 1.
@BITSH Returns a hexadecimal number with a specified bit set to 1.
@BITTB Returns the value of a specified bit in a binary number.
@BITTH Returns the value of a specified bit in a hexadecimal number.
@CATB Returns the concatenation of two binary numbers.
@CATH Returns the concatenation of two hexadecimal numbers.
@CATNB Returns the concatenation of n binary numbers.
@CATNH Returns the concatenation of n hexadecimal numbers.
@INVB Returns the inverse of a binary number.
@INVH Returns the inverse of a hexadecimal number.
@ORB Returns the OR operation of binary numbers.
@ORH Returns the OR operation of hexadecimal numbers.
@SHLB Returns a binary number shifted left by a specified number of bits.
@SHLBO Returns the overflow bit of a binary number after it has been shifted left one bit.
@SHLH Returns a hexadecimal number shifted left by a specified number of bits.
@SHLHO Returns the overflow bit of a hexadecimal number after it has been shifted left one bit.
@SHRB Returns a binary number shifted right by a specified number of bits.
@SHRBO Returns the overflow bit of a binary number after it has been shifted right one bit.
@SHRH Returns a hexadecimal number shifted right by a specified number of bits.
@SHRHO Returns the overflow bit of a hexadecimal number after it has been shifted right one bit.
@SUBB Returns the difference of two binary numbers.
@SUBBO Returns the overflow bit of the subtraction of one binary number from another.
@SUBH Returns the difference of two binary numbers.
@SUBHO Returns the overflow bit of the subtraction of one hexadecimal number from another.
@XORB Returns the exclusive OR operation of binary numbers.
@XORH Returns the exclusive OR operation of hexadecimal numbers.
 Related topics

Complex Number Engineering spreadsheet functions
@COMPLEX Converts real & imaginary coefficients into a complex number.
@IMABS Returns the distance from the origin on a complex plane for a complex number.
@IMAGINARY Returns the imaginary coefficient of a complex number.
@IMARGUMENT Returns the argument theta, an angle expressed in radians.
@IMCONJUGATE Returns the complex conjugate of a complex number.
@IMCOS Returns the cosine of a complex number.
@IMDIV Returns the quotient of two complex numbers.
@IMEXP Returns the exponential of a complex number.
@IMLN Returns the natural logarithm of a complex number.
@IMLOG10 Returns the base-10 logarithm of a complex number.
@IMLOG2 Returns the base-2 logarithm of a complex number.
@IMPOWER Returns a complex number raised to a complex power.
@IMPRODUCT Returns the product of two complex numbers.
@IMREAL Returns the real coefficient of a complex number.
@IMSIN Returns the sine of a complex number.
@IMSQRT Returns the square root of a complex number.
@IMSUB Returns the difference of two complex numbers.
@IMSUM Returns the sum of complex numbers.
 Related topics

Miscellaneous Engineering spreadsheet functions
@DELTA Tests whether two numbers are equal.
@ERF Returns the error function.
@ERFC Returns the complementary function.
@ERFD Returns the derivative of the error function.
@GAMMA Calculates the gamma distribution function.
@GESTEP Tests whether a number is greater than a threshold value.
@SPLINE Returns a polynomial fitted piecewise to pass through a specified set of points.
@USESPLINE Returns, for any specified x value, the corresponding y value, specified the original t and y

arrays and the coefficient array produced by @SPLINE.
 Related topics

Number Conversion Engineering spreadsheet functions
@ASCTOHEX Returns the hexadecimal string equivalent of an ASCII value
@BASE Converts a base-10 number into another base.
@BINTOHEX Converts a binary number to hexadecimal.
@BINTOHEX64 Converts a binary number (up to 64 bits) to hexadecimal.
@BINTONUM Converts a binary number to decimal.
@BINTONUM64 Converts a binary number (up to 64 bits) to decimal.
@BINTOOCT Converts a binary number to octal.
@BINTOOCT64 Converts a binary number (up to 64 bits) to octal.
@CONVERT Converts a number from one measurement system to another.
@HEXTOASC Converts a hexadecimal number to ASCII.
@HEXTOBIN Converts a hexadecimal number to binary.
@HEXTOBIN64 Converts a hexadecimal number (up to 64 bits) to binary.
@HEXTONUM Converts a hexadecimal number to decimal.
@HEXTONUM64 Converts a hexadecimal number (up to 64 bits) to decimal.
@HEXTOOCT Converts a hexadecimal number to octal.
@HEXTOOCT64 Converts a hexadecimal number (up to 64 bits) to octal.
@NUMTOBIN Converts a decimal number to binary.
@NUMTOBIN64 Converts a decimal number (up to 64 bits) to binary.
@NUMTOHEX Converts a decimal number to hexadecimal.
@NUMTOHEX64 Converts a decimal number (up to 64 bits) to hexadecimal.
@NUMTOOCT Converts a decimal number to octal.
@NUMTOOCT64 Converts a decimal number (up to 64 bits) to octal.
@OCTTOBIN Coverts an octal number to binary.
@OCTTOHEX Converts an octal number to hexadecimal.
@OCTTONUM Converts an octal number to decimal.
 Related topics

Financial spreadsheet functions
Annuity
The investment spreadsheet functions involve a series of periodic payments over a term measured in the
number of payment periods. This set of spreadsheet functions allows you to compute one value, knowing three
of the other values.
Bill
These spreadsheet functions compute values for Treasury billls.
Bond
These spreadsheet functions compute values for bonds.
Cash Flow
These spreadsheet functions operate on tables of data that record income and expenditures.
CD
These spreadsheet functions compute values for certificates of deposit.
Depreciation
These spreadsheet functions compute depreciation over time.
Stock
These spreadsheet functions compute values for common stock.
 Related topics

Annuity Financial spreadsheet functions
@AMAINT Calculates the accumulated interest paid on an amortized loan after n payments.
@AMINT Calculates the periodic interest rate for an amortized loan.
@AMPMT Calculates the periodic payment for an amortized loan.
@AMPMTI Calculates the interest portion of the nth periodic payment of an amortized loan.
@AMPRN Calculates the initial principal of an amortized loan.
@AMRES Calculates the end value of an amortized loan or the future value of an annuity.
@AMRPRN Calculates the remaining balance of an amortized loan after n payments.
@AMTERM Calculates the length of an amortized loan, expressed as number of payments.
@CTERM Returns the number of compounding time periods required to achieve a specified future

value, specified the present value and interest rate.
@CUMIPMT Returns the cumulative interest paid on a loan between specified periods or in a single

period.
@CUMPRINC Returns the cumulative principal paid on a loan between specified periods or in a single

period.
@EFFECT Calculates the effective annual interest rate for a specified nominal rate and number of

compounding periods a year.
@FV Returns the future value of an investment at the end of the term, specified the payment,

interest rate, and number of payments.
@FVAL Returns the future value of an investment, specified the interest rate, number of payments,

periodic payment rate, and optional present value and type.
@IPAYMT Returns the interest portion of a single payment specified the interest rate, period, number

of periods, present value, and optional future value and type.
@IRATE Returns the interest rate specified the number of payments, payment amount, present

value, and optional future value and type.
@MTGACC Returns the new loan term, the payoff-date, or interest saved by paying extra monthly

principal for a home loan.
@NOMINAL Calculates the nominal annual interest rate for a specified effective rate and number of

compounding periods a year.
@NPER Returns the number of periods specified the interest rate, payment amount, present value,

and optional future value and type.
@PAYMT Returns periodic payments specified the rate, number of payments, present value, and

optional future value and type.
@PMT Returns the periodic payment required to fully amortize the principal during the term,

specified present value, interest rate, and number of payments.
@PMTC Calculates monthly payments based on semi-annual interest compounding commonly used

in Canada.
@PPAYMT Returns the principal portion of a single payment.
@PV Returns the present value of an investment, specified periodic payment, interest rate, and

number of periods.
@PVAL Returns the present value of an investment, specified the interest rate, number of

payments, periodic payment rate, and optional future value and type.
@RATE Returns the interest rate required to achieve a specified future value, specified the future

value, present value, and number of payments.
@TERM Returns the number of periodic payments required to achieve a specified future value,

specified the periodic payment amount and interest rate.
@YLD2YLD Converts a yield expressed in one compounding frequency and time length to that in

another frequency and/or time length.
 Related topics

Bill Financial spreadsheet functions
@DISC Returns the discount rate for a security.
@INTRATE Returns the simple annualized yield for a fully invested security.
@PRICEDISC Returns the price per 100 face value of a security that pays periodic interest.
@RECEIVED Returns the amount received at maturity for a fully invested security.
@TBILLEQ Returns the bond equivalent yield for a Treasury bill.
@TBILLPRICE Returns the price per 100 face value for a Treasury bill.
@TBILLYIELD Returns the yield for a Treasury bill.
@YIELDDISC Returns the annual yield for a discounted security.
 Related topics

Bond Financial spreadsheet functions
@ACCRINT Returns the accrued interest for a bond.
@ACCRINTXL Returns the accrued interest for a bond. (Excel version)
@ACCRUED Returns the accrued interest for a bond. (Lotus-123 version)
@COUPDAYBS Returns the number of days from the beginning of the coupon period to the settlement

date.
@COUPDAYS Returns the number of days in the coupon period that contains the settlement date.
@COUPDAYSNC Returns the number of days from the settlement date to the next coupon date.
@COUPNCD Returns the next coupon date after the settlement date.
@COUPNUM Returns the number of coupons payable between the settlement date and maturity date.
@COUPPCD Returns the previous coupon date before the settlement date.
@DURATION Returns the Macaulay duration of a security with par value of 100.
@MDURATION Returns the modified Macauley duration for a security with an assumed par value of 100.
@ODDFPRICE Returns the price per 100 face value of a security with an odd first period.
@ODDFYIELD Returns the yield of a security with an odd first period.
@ODDLPRICE Returns the price per 100 face value of a security with an odd last period.
@ODDLYIELD Returns the yield of a security with an odd last period.
@PRICE Returns the price per 100 face value of a security that pays periodic interest.
@YIELD Returns the yield on a security that pays periodic interest.
@YIELDPER Returns the yield for securities paying periodic interest.
 Related topics

Cash Flow Financial spreadsheet functions
@DURAT Calculates the Macaulay duration of a cash flow stream.
@FUTV Calculates the future value of a cash flow stream.
@IRR Returns the internal rate of return of an investment.
@MIRR Calculates the modified internal rate of return on an investment consisting of payments

made at regular intervals.
@NETPV Calculates net present value of a stream of cash flows.
@NPV Returns the net present value of a future cash flow.
@PIRATE Calculates the internal rate of return for a stream of cash flows.
@SCMARG Calculates the discount scenario margin, the margin to add to each discount rate in order to

arrive at a specified net present value.
@XIRR Returns the internal rate of return on an investment when cash flow is not necessarily

periodic.
@XNPV Calculates the net present value of an investment when cash flow is not necessarily

periodic.
 Related topics

CD Financial spreadsheet functions
@ACCRINTM Returns the accrued interest for a security that pays interest at maturity.
@PRICEMAT Returns the price per 100 face value of a security that pays interest at maturity.
@YIELDMAT Returns the annual yield of a security that pays interest at maturity.
 Related topics

Depreciation Financial spreadsheet functions
@DB Calculates the depreciation of an asset over a specified period using the fixed-declining

balance method.
@DDB Returns the double-declining balance depreciation of an asset during the specified period.
@SLN Returns the straight-line depreciation of an asset over each period in its specified useful life.
@SYD Returns the sum-of-the-years'-digits depreciation of an asset during the specified period.
@VDB Calculates depreciation allowance using the variable-rate declining balance method.
 Related topics

Stock Financial spreadsheet functions
@DOLLARDE Converts a fractional price into dollars.
@DOLLARFR Converts a dollar price into a fractional price.
@FEETBL Returns fee calculations for stock transactions.
@STKOPT Returns the time value and earnings value of a stock option.
 Related topics

Logical spreadsheet functions
@AND Returns 1 (true) if all arguments are true, 0 (false) if even one argument is false.
@FALSE Always returns the logical value 0.
@FILEEXISTS Checks to see whether the named file exists. Returns a logical true (1) or false (0) value.
@IF Evaluates a specified condition, and returns the specified expression if it is true, or another

specified expression if it is false.
@ISBLANK Tests a specified cell to see if it is empty.
@ISBLOCK Tests input to see if it is a defined cell name or valid cell coordinates.
@ISERR Returns 1 if a specified cell contains ERR (error indicator), otherwise 0.
@ISEVEN Returns 1 (true) if a specified number is even, 0 (false) if it is odd.
@ISLOGICAL Returns 1 (true) if its argument refers to a 1 or 0; it returns 0 (false) if its argument refers to

any other number.
@ISNA Returns 1 if a specified cell is NA (not available), otherwise 0.
@ISNONTEXT Returns 1 (true) if its argument refers to any item that is not text. @ISNONTEXT also returns

1 if Value refers to an empty cell.
@ISNUMBER Returns 1 if a specified cell contains a number, otherwise 0.
@ISODD Returns 1 (true) if a specified number is odd, 0 (false) if it is even.
@ISSTRING Returns 1 if a specified cell contains a label or text string, otherwise 0.
@NOT Reverses the value of its argument; for example if the expression is FALSE, @NOT returns

TRUE; if the expression is TRUE, @NOT returns FALSE.
@OR Returns 1 (true) if any argument is true, 0 (false) only if all arguments are false.
@TRUE Always returns the logical value 1.
 Related topics

Mathematical spreadsheet functions
Mathematical spreadsheet functions take one or more numeric values as arguments, and return a numeric value.
You must enter all angles in radians for @COS, @SIN, and @TAN. Accordingly, @ASIN, @ATAN, and @ATAN2
return all angles in radians. To convert radians to degrees, use @DEGREES; to convert degrees to radians, use
@RADIANS.
@ABS Returns the absolute value of a specified number.
@ACOS Returns the angle whose cosine is a specified value.
@ACOSH Returns the arc, or inverse, hyperbolic cosine of a number.
@ACOT Calculates the arc, or inverse, cotangent using the cotangent X of an angle.
@ACOTH Calculates the arc, or inverse, hyperbolic cotangent using the hyperbolic cotangent X of an

angle.
@ACSC Calculates the arc, or inverse, cosecant using the cosecant X of an angle.
@ACSCH Calculates the arc, or inverse, hyperbolic cosecant using the hyperbolic cosecant X of an

angle.
@ASEC Calculates the arc, or inverse, secant using the secant X of an angle.
@ASECH Calculates the arc, or inverse, hyperbolic secant using the hyperbolic secant X of an angle.
@ASIN Returns the angle whose sine is a specified value.
@ASINH Calculates the arc, or inverse, hyperbolic sine using the hyperbolic sine X of an angle.
@ATAN Returns the angle whose tangent is a specified value.
@ATAN2 Returns the angle represented by a specified pair of coordinates.
@ATANH Calculates the arc, or inverse, hyperbolic tangent using the hyperbolic tangent X.
@CEILING Rounds a number up to the nearest integer.
@COS Returns the cosine of    a specified angle.
@COSH Calculates the hyperbolic cosine of the angle X.
@COT Calculates the cotangent of angle X.
@COTH Calculates the hyperbolic cotangent of X.
@CSC Returns the cosecant of angle X, in radians.
@CSCH Calculates the hyperbolic cosecant of X.
@DEGREES Converts a specified value from radians to degrees.
@DFRAC Converts a decimal number to a whole number and fractional component.
@EVEN Rounds a number up to the nearest even integer.
@EXP Returns the exponential of a specified value, which is the value of e (the mathematical

constant) raised to the power of the specified value. The value must be less than or equal to
709.

@EXP2 Calculates the value of the constant e raised to the power (-X^2).
@FACT Calculates the factorial of a number.
@FACTDOUBLE Returns the double factorial of a number.
@FACTLN Returns the natural logarithm of the factorial of n.
@FIB Calculates the nth term of a Fibonacci sequence.
@FLOOR Rounds a number down, toward zero.
@FRACD Converts a number with a fractional component to a decimal.
@GCD Calculates the greatest comman divisor of x and y.
@GEOSUM Calculates the geometric series that is sum of the terms of a geometric sequence of a

number of terms (n) based on the first term and common ratio.
@INT Returns the integer portion of of a specified value. In this @function, the number is simply

truncated, not rounded off.
@INTXL Rounds the number x down to an integer value.
@LCM Calculates the least common multiple of x and y.
@LINTERP Performs linear interpolation between sets of xy pairs.
@LN Returns the natural logarithm of a specified value. This is the logarithm of the number to

the base e; @LN is the inverse of @EXP (the value must be greater than 0).
@LOG Returns the logarithm of a specified value to base 10 (the value must be greater than 0).

@LOGBASE Calculates the logarithm of a specified number to the specified base.
@LOGCONV Converts a specified logarithm from one specified base to another.
@MDET Calculates the determinant of a matrix.
@MINVERSE Returns the inverse matrix for a matrix stored in a square array.
@MMULT Calculates the matrix product of two arrays.
@MOD Returns the modulus of a specified value with respect to another. (Modulus is the remainder

when the first is divided by the second.)
@MODULO Returns the remainder, or modulus, of x/y.
@MROUND Returns a number rounded to the desired multiple.
@MULT Calculates cumulative product of a set of numbers.
@MULTINOMIAL Returns the multinomial of a set of numbers.
@ODD Rounds a number up to the nearest odd integer.
@PI Returns the value of pi.
@POWER Calculates the result of a specified number raised to a power.
@QUOTIENT Returns the integer portion of a division.
@RADIANS Converts a specified value from degrees to radians.
@RAND Returns a fractional random number between 0 and 1.
@RANDBETWEEN Returns a random number between the numbers you specify.
@ROMAN Returns the Roman numeral corresponding to a specified Arabic numeral, displaying it as

text.
@ROOTN Calculates the nth root of a specified number.
@ROUND Rounds off a specified value (with up to 15 digits) to a specified number of decimal places.
@ROUNDDOWN Rounds a positive number down with a specified precision and rounds a negative number

the direction you specify.
@ROUNDDOWNXL Rounds positive and negative numbers toward zero.
@ROUNDUP Rounds a positive number up with a specified precision and rounds a negative number the

direction you specify.
@ROUNDUPXL Rounds positive and negative numbers toward zero.
@SEC Returns the secant of angle X, in radians.
@SECH Calculates the hyperbolic secant of X.
@SERIESSUM Returns the sum of a power series based on a formula.
@SIGN Returns 1 if X is positive, 0 if X is zero, and -1 if X is negative.
@SIN Returns the sine of a specified angle.
@SINH Returns the hyperbolic sine of X, in radians.
@SQRT Returns the square root of a specified value (the value must be greater than or equal to 0).
@SQRTPI Returns the square root of a number multiplied by pi.
@TAN Returns the tangent of a specified angle.
@TANH Calculates the hyperbolic tangent of X.
@TRANSPOSE Returns the transpose of cells.
@TRUNC Truncates a number to the precision you specify.
 Related topics

Miscellaneous spreadsheet functions
Attribute
Each cell has a number of attributes, including its address, contents, type, protection status, format, etc. These
spreadsheet functions return the attributes of a specified cell. If cells are specified, they use the top left cell in
the cells.
Cell and Table
These spreadsheet functions generally return simple information from a cell or cells.
Status
Return the current setting for commands, properties, and other elements.
Table Lookup
These spreadsheet functions are used to search for a value in cells that has been specified as a data table.
 Related topics

Cell Attribute spreadsheet functions
The attribute spreadsheet functions return the requested attribute of a cell (or of the upper left cell in specified
cells).
@CELL Returns the requested attribute of the upper left cell in specified cells.
@CELLINDEX Returns the requested attribute of the cell at the intersection of a specified column and row

in cells.
@CELLPOINTER Returns the requested attribute of the active (currently selected) cell.
 Related topics

Miscellaneous Cell and Table spreadsheet functions
@@ Returns the contents of a specified cell.
@ADDRESS Returns, as text, a cell reference for which you specify row and column numbers.
@ARRAY Returns the result of an expression (a formula or @function) using array syntax.
@BLOCKNAME Returns the name of specified cells.
@BLOCKNAME2 Returns the cell name created in a specified notebook for specified cells.
@BLOCKNAMES Returns a two-column table showing the cell names that intersect with specified cells.
@BLOCKNAMES2 Returns a two-column table showing the cell names created in a specified notebook

that intersect with specified cells.
@CHOOSE Returns the element from a specified list in the specified position.
@COLS Returns the number of columns in specified cells.
@COLUMN Returns the column number(s) for a cell or cells.
@COUNTBLANK Counts blank cells in specified cells.
@DDELINK Creates a "live" data link from another Windows application that supports DDE

(Dynamic Data Exchange).
@ERR Always returns ERR (the error indicator).
@FIRSTBLANKPAGE Returns the sheet letters for the first unnamed blank sheet in a notebook that is not

part of a group.
@FIRSTINGROUP Returns the sheet letters for the first sheet in the specified group.
@GETGROUP Returns the name of the group that contains the sheet for specified cells, or the name

of the group in the specified cells that contains a specified sheet name.
@GETREGISTRYKEY Returns the contents of the specified key in the Windows Registry.
@INDEXTOLETTER Returns a one- or two-character string for the index number of a sheet or column.
@ISLEGALPAGENAME Returns 1 if the specified sheet name is valid (whether it exists or not); otherwise,

returns 0.
@LASTBLANKPAGE Returns the sheet letters for the last unnamed blank sheet in a notebook that is not

part of a group.
@LASTCELLVALUE Returns the contents of the last cell that is not blank in the specified cells.
@LASTINGROUP Returns the sheet letters for the last sheet in the specified group.
@LETTERTOINDEX Returns the index number for column letters or sheet letters.
@LLDEC Converts latitude and longitude coordinates to decimals.
@NA Always returns NA (not available).
@PAGEINDEX Returns the index number for a notebook sheet with a specified name.
@PAGEINDEX2 Returns the index number for a notebook sheet with a specified name in a specified

notebook.
@PAGENAME Returns the name of a notebook sheet with a specified index number.
@PAGENAME2 Returns the name of a notebook sheet with a specified index number in a specified

notebook.
@PAGENAMES Returns a two-column table showing the sheet letters and corresponding sheet names

for the active notebook.
@PAGENAMES2 Returns a two-column table showing the sheet letters and corresponding sheet names

for a specified notebook.
@ROW Returns the row number(s) for a cell or cells.
@ROWS Returns the number of rows in specified cells.
@SHEETS Returns the number of sheets in specified cells.
@TYPE Returns a code indicating the type (for example, number or formula) of a specified

value.
 Related topics

Status spreadsheet functions
@COMMAND Returns current settings for the specified command equivalent.
@CURVALUE Returns the current value of a specified menu command setting.
@MEMAVAIL Returns the number of bytes of available memory.
@MEMEMSAVAIL Under DOS, returns the number of bytes of available expanded memory; under Windows,

returns NA (included for compatibility with Quattro Pro for DOS).
@PROPERTY Returns current property settings for the specified object and property.
@VERSION Returns the version number of Quattro Pro.
 Related topics

Table Lookup spreadsheet functions
@FIELD Returns the nth substring in a delimited list of strings.
@HLOOKUP Searches for a specified value in the first row of specified cells. Returns the value a specified

number of rows from the first.
@INDEX Returns the value at the intersection of a specified column and row in specified cells.
@LOOKUP Looks up values in a specified row or column.
@MATCH Returns the position of the cell whose contents match specified cell contents within cells.
@MAXLOOKUP Returns the address of the cell containing the largest value in specified cells or list of cells.
@MINLOOKUP Returns the address of the cell containing the smallest value in specified cells or list of cells.
@OFFSET returns a reference that is offset from another reference by a specified number of rows and

columns; dimensions of the offset can also be specified.
@TABLELINK Establishes a link to an external database table and displays the table in a Quattro Pro

notebook.
@VHLOOKUP Searches for a specified value in the first row of specified cells. Returns the value from a

specified number of rows from the first
@VLOOKUP Searches for a specified value in the first column of specified cells. Returns the value from a

specified number of columns from the first.
@XINDEX Returns the contents of a cell located at the intersection of a specified column, row, and

(optionally) notebook sheet.
 Related topics

Statistical spreadsheet functions
The statistical spreadsheet functions perform aggregation, counting, and analysis operations on a group of
values expressed as a list (or lists) of one or more arguments.    These arguments can be numeric values or cell
values.
Descriptive
These spreadsheet functions return a value that helps you summarize and describe a group of values.
Inferential
These spreadsheet functions return a value (or values) that helps you draw conclusions about a group (or
groups) of values.
 Related topics

Descriptive Statistical spreadsheet functions
@AVG Returns the average (mean) of all numeric values in a list.
@COUNT Returns the number of nonblank cells in a list.
@COUNTIF Count Matching Cells
@FREQDIST Calculates a frequency distribution, displaying it as a vertical array.
@GEOMEAN Returns the geometric mean of all numeric values in a list.
@GRANDTOTAL123 Sums all cells in a designated area that contain @SUBTOTAL123 in their formulas.
@GROWTH Fits an exponential curve to data, then predicts further y-values on that curve for a

specified array of x-values.
@HARMEAN Returns the harmonic mean of all numeric values in a list.
@KURT Returns the kurtosis (peakedness or flatness) of a data set.
@LARGEST Returns the k-th largest value in a data set.
@LINEST Uses the "least squares" method to calculate a straight line that best fits your data and

returns an array to describe the line.
@LOGEST Calculates an exponential curve that fits your data and returns an array to describe the

curve.
@MAX Returns the largest numeric or last date value in a list.
@MEDIAN Returns the median of a data set.
@MIN Returns the smallest numeric or earliest date value in a list.
@MODE Returns the most common value in a data set.
@PERCENTILE Returns the value from a group of values at a specified percentile.
@PERCENTRANK Returns the percentage rank of a value in a data set.
@PUREAVG Calculates the average of values in a list, ignoring blank cells and labels.
@PURECOUNT Returns the number of entries and cells in a list, excluding blank cells and labels.
@PUREMAX Returns the largest numeric value in a list, ignoring blank cells and labels.
@PUREMIN Returns the smallest numeric value in a list, ignoring blank cells and labels.
@PURESTD Returns the population standard deviation (square root of the population variance) of

numeric values in a list, ignoring blank cells and labels.
@PURESTDS Returns the sample standard deviation (square root of the sample variance) of numeric

values in a list, ignoring blank cells and labels.
@PUREVAR Calculates the population variance of numeric values in a list, ignoring blank cells and

labels.
@PUREVARS Calculates the sample population variance of numeric values in a list, ignoring blank

cells and labels.
@QUARTILE Returns the quartile of a data set.
@RANK Returns the rank of a number in a list of numbers.
@REGRESSION Rerforms a multiple linear regression, returning the specified statistic.
@SEMEAN Returns the standard error of the sample mean for values in specified cells.
@SKEW Returns the skewness of a distribution.
@SMALLEST Returns the k-th smallest value in a data set.
@STANDARDIZE Returns a normalized value.
@STD Returns the population standard deviation of all values in a list.
@STDS Returns the sample standard deviation of all values in a list.
@SUBTOTAL Returns a subtotal in a list or database.
@SUBTOTAL123 Adds the values in a list or cell reference.
@SUM Returns the total of all numeric values in a list.
@SUMIF Adds those cells that meet specified criteria.    An optional Sum Range may be specified

to limit criteria consideration and sum inclusion to particular cells within the cells.
@SUMNEGATIVE Sums only negative values in a block or list. It ignores blank cells and labels.
@SUMPOSITIVE Sums only positive values in cells or list. It ignores blank cells and labels.
@TOTAL Returns the total of all numeric values in a list or reference, excluding any subtotals.

@TREND Fits a straight line to data, using the "least squares" method, then predicts further y-
values on that line for a specified array of x-values.

@TRIMMEAN Returns the mean of all numeric values in a list with a fraction of values excluded.
@VAR Returns the population variance of all values in a list.
@VARS Returns the sample variance of all values in a list.
@WEIGHTAVG Returns a weighted average of the values in specified cells.
@XCOUNT Returns the number of non-blank cells in a list.
 Related topics

Inferential Statistical spreadsheet functions
@AVEDEV Performs the average of the absolute deviations of data points from their means.
@BETA Returns the beta function.
@BETADIST Returns the cumulative beta probability density function.
@BETAI Returns the incomplete beta function.
@BETAINV Returns the inverse of the cumulative beta probability density function.
@BINOMDIST Returns the binomial probability mass function.
@CHIDIST Returns the cumulative chi-square distribution.
@CHIINV Returns the inverse of the cumulative chi-square distribution.
@CHITEST Computes the probability that the actual and expected frequencies are similar by

chance (chi-square test).
@COMB Calculates the number of unordered subgroups of specified size in a group.
@CONFIDENCE Returns the confidence interval for a population mean.
@CORREL Returns the correlation coefficient of two data sets.
@COVAR Returns the covariance of two data sets.
@CRITBINOM Returns the smallest value for which the cumulative binomial distribution is less than or

equal to a criterion value.
@DEVSQ Returns the sum of the squares of the deviations.
@EXPONDIST Returns the exponential distribution.
@FDIST Returns the F distribution function.
@FINV Returns the inverse of the cumulative F distribution function.
@FISHER Returns the Fisher transformation.
@FISHERINV Returns the inverse of the Fisher transformation.
@FORECAST Returns a value along a linear trend.
@FTEST Returns the result of the F-test.
@GAMMADIST Returns the gamma distribution function.
@GAMMAINV Computes the inverse of the cumulative Gamma distribution function.
@GAMMALN Returns the natural logarithm of the gamma function.
@GAMMAP Returns the incomplete gamma function.
@GAMMAQ Returns the complement of the incomplete gamma function.
@HYPGEOMDIST Returns the hypergeometric distribution.
@INTERCEPT Returns the intercept of the linear regression line.
@LOGINV Returns the inverse of the lognormal distribution.
@LOGNORMDIST Returns the lognormal distribution.
@NEGBINOMDIST Returns the negative binomial distribution.
@NORMDIST Returns the normal cumulative distribution.
@NORMINV Computes the inverse of the cumulative normal distribution function.
@NORMSDIST Computes the standard normal cumulative distribution.
@NORMSINV Returns the inverse of the standard normal cumulative distribution.
@PEARSON Returns the Pearson product moment correlation coefficient.
@PERMUT Calculates the number of ordered subgroups of specified size in a group (permutations).
@POISSON Returns the Poisson probability distribution.
@PROB Returns the probability that values in a range are between two limits.
@RSQ Returns the square of the coefficient of correlation of the linear regression line through

data points in known xs and known ys.
@SLOPE Returns the slope of the linear regression line.
@STEC Returns the standard error of the regression coefficient.
@STEYX Standard error of the predicted y-value for each x.
@SUMPRODUCT The dot (scalar) product of the vectors corresponding to cells.
@SUMSQ Returns the sum of the squares of the arguments.

@SUMX2MY2 Returns the sum of the differences of the squares of the corresponding values in two
arrays.

@SUMX2PY2 Returns the sum of the sum of the squares of corresponding values in two arrays.
@SUMXMY2 Returns the sum of squares of differences of corresponding values in two arrays.
@SUMXPY2 Returns the sum of the squares of corresponding values in two arrays.
@SUMXY Sum of the products of the corresponding numbers in two arrays.
@SUMXY2 Sum of the product of values and the squares of the corresponding numbers in two

arrays.
@TDIST Returns the Student's t-distribution.
@TINV Returns the inverse of the Student's t-distribution.
@TTEST Returns the probability associated with the Student's t-test.
@WEIBULL Returns the Weibull distribution.
@ZTEST Returns the two-tailed probability value of a z-test.
 Related topics

String spreadsheet functions
String spreadsheet functions work on strings of characters, or text. They include one or more strings as
arguments, and return either a string or a numerical value.
@CHAR Returns the ANSI character that corresponds to the decimal code specified as the argument.
@CLEAN Returns a specified string with any non-printable ASCII codes removed.
@CODE Returns the ANSI code of the first character in a specified string.
@CONCATENATE Links several items together.
@DOLLAR Converts a numeric value to text, using currency format.
@DOLLARTEXT Converts a numeric value to text, using cardinal number format.
@EXACT Returns 1 if two specified strings are identical (including capitalization), otherwise returns 0.
@FIND Looks for a specified substring in a specified string, beginning with the character in the

specified position. Returns the position of the first matched character in the string.
@FIXED Rounds a number to a specified number of decimals, formats it, and displays the result as

text.
@FRACTION Converts a number with a decimal component to a fraction.
@FULLP Converts a half-width character string to a full-width character string.
@HALFP Converts a full-width character string to a half-width character string.
@KANSUUJI Converts a kanji number to its arabic representation.
@LEFT Returns a specified number of characters from the beginning of a specified string.
@LENGTH Returns the length of a specified string, including spaces.
@LOWER Returns a specified string with all the alphabetic characters converted to lowercase (small

letters).
@MID Returns a specified number of characters from a specified string, starting with the character

in the specified position.
@N Returns the numeric value of the top left cell of cells.
@PROPER Returns a specified string with the first letter of each word capitalized, and with all other

letters lowercase.
@REPEAT Returns a string made up of a specified number of repetitions of a specified string.
@REPLACE Deletes a specified number of characters in a specified string, beginning with a specified

position, and replaces them with a specified string. Returns the modified string.
@RIGHT Returns a specified number of characters from the end of a specified string.
@S Returns the string value of the top left cell of cells.
@SETSTRING Returns a label as long as the number of characters you specify.
@STRCOMPNORM Compares two strings using half-width/full-width normalization.
@STRING Converts a specified numeric value into a string, rounding to a specified number of decimal

places.
@SUBSTITUTE Returns a copy of a specified text string, substituting new text for old text.
@SUUJI Converts an arabic number to its kanji representation based on given style.
@TRIM Returns a specified string without leading or trailing spaces, and without multiple spaces.
@UPPER Returns a specified string with all of the alphabetic characters converted to uppercase

(capital letters).
@VALUE Returns the numeric value of a specified string. (Returns ERR if the argument is not a simple

number string.)
 Related topics

Number representing the date to which a number of business days should be added.

Integer representing number of business days to add; can be negative.

Cells containing dates that are holidays or the date of a single holiday or 0 to indicate no holidays (the default is
0).

0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business day (the default is 0).

0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business day (the default is 0).

A numeric value.

Number representing the settlement date.

Number representing the maturity date.

Coupon rate; 0 £ Coupon £ 1.

Number representing the issue date.

Number representing the first coupon date.

Par value (the default is 1000).

Frequency of coupon payments in the number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the issue date; must be < Settle.

Number representing the settlement date.

Coupon rate; 0 £ Coupon £ 1.

Par value (the default is 1000).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the issue date. (Issue, FirstInt, Settle, Freq, and Basis are truncated to integers.)

Number representing the first interest date

Number representing the settlement date.

Interest rate; 0 £ Coupon.

Par value (the default is 1000).

Number of coupon payments per year. For annual paymnets, frequency = 1; for semiannual, frequency = 2; for
quarterly, freguency = 4.

Specifies which calendar to use as a basis (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365, 4 =
European 30/360; the default is 0).

Number representing the settlement date; must be greater than Issue.

Number representing the issue date.

Number representing the first interest date; must be greater than Issue.

Coupon rate; can be any positive value, including 0.

Par value, or the principal to be paid at maturity (optional); the default is 100.

Frequency of coupon payments (optional) in number of payments per year; can be 1, 2, 4, or 12; the default is 2.

Flag specifying which calendar to observe:
0 = US (NASD) 30/360; default if you omit the argument
1 = Actual/actual
2 = Actual/360
3 = Actual/365
4 = European 30/360

Number representing the date to add days to.

Integer representing number of days to add; can be negative.

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

1 to indicate adherence to ends of months; 0 to indicate that ends of months are ignored (the default is 1).

A numeric value between -1 and 1.

The hyperbolic cosine of an angle. X must be greater than or equal to 1 but less than approximately
1.34078E+154.

The cotangent of an angle. X can be any value from approximately -1.789E+308 through 1.789E+308.

The hyperbolic cotangent of an angle. X can be any value between approximately -1.79E+308 and less than -1
and between greater than 1 and approximately 1.79E+308.

The cosecant of an angle. X can be any value between approximately -1.79E+308 and -1 and between 1 and
approximately 1.79E+308.

 The hyperbolic cosecant of an angle. X can be any value between approximately -1.34078E+154 and
1.34078E+154, but not 0.

First binary number.

Second binary number.

Input carry bit; can be either 0 (the default) or 1.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Binary1 or Binary2,
whichever is greater; must be £ 64.

First binary number.

Second binary number.

Input carry bit; can be either 0 (the default) or 1.

Number of binary bits used for input; if omitted, Bits = number of bits in Binary1 or Binary2, whichever is
greater; must be £ 64.

First hexadecimal number.

Second hexadecimal number.

Input carry bit; can be either 0 (the default) or 1.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Hex1 or Hex2,
whichever is greater; must be £ 64.

First hexadecimal number.

Second hexadecimal number.

Input carry bit; can be either 0 (the default) or 1.

Number of binary bits used for input; if omitted, Bits = number of bits in Hex1 or Hex2, whichever is greater; 4
binary digits = 1 hexadecimal digit; must be £ 64.

Row number of the cell for which you want the reference.

Column number.

Type of cell reference to return (optional).

Logical value indicating A1 or R1C1 reference style (optional):
TRUE= A1 (default, if omitted)
FALSE= R1C1

Name of notebook sheet (optional).

Initial loan principal.

0 to specify compounded interest or 1 to specify simple interest (the default is 0).

Periodic interest rate.

Term of the loan, expressed in number of total payments.

Number of payments made; must be an integer from 0 to Term.

Part of (n+1)th period passed (must be from 0 to 1; the default is 0).

Remaining balance on loan at end of loan term (the default is 0).

Number of periods after last periodic payment that residual is to be paid; can have fractional component (the
default is 0).

Number of advance payments made at loan inception (the default is 0); n - Adv must be an integer.

Number of periods between loan inception and date of first payment (not including advance payments); can
have fractional component (the default is 1).

Initial loan principal.

Term of loan, expressed in number of total payments.

Periodic payment (for example, if Term is expressed in months, Payment must be a monthly payment).

Remaining balance on loan at end of loan term (the default is 0).

Number of periods after last periodic payment that Residual is to be paid; can have fractional component (the
default is 0).

Number of advance payments made at loan inception (the default is 0).

Number of periods between loan inception and date of first payment (not including advance payments); can
have fractional component (the default is 1).

0 to specify compounded interest or 1 to specify simple interest (the default is 0).

Required precision of result (the default is 0.000001); must be ³ 0.

Number representing the date to add number of months to.

Integer representing number of months to add; can be negative.

1 to indicate adherence to ends of months; 0 to indicate that ends of months are ignored (the default is 1).

Initial loan principal.

Periodic interest rate (for example, if Term is expressed in months, Int must be a monthly rate).

Term of loan, expressed in number of total payments.

Remaining balance on loan at end of loan term (the default is 0).

Number of periods after last periodic payment that residual is to be paid; can have fractional component (the
default is 0).

Number of advance payments made at loan inception (the default is 0).

Number of periods between loan inception and date of first payment (not including advance payments); can
have fractional component (the default is 1).

0 to specify compounded interest or 1 to specify simple interest (the default is 0).

Initial loan principal.

Periodic interest rate (for example, if Term is expressed in months, then Int must be a monthly rate).

Term of loan, expressed in number of total payments.

Number of payments made; must be an integer from 0 to Term.

Remaining balance on loan at end of loan term (the default is 0).

Number of periods after last periodic payment that residual is to be paid; can have fractional component (the
default is 0).

Number of advance payments made at loan inception (the default is 0).

Number of periods between loan inception and date of first payment (not including advance payments); can
have fractional component (the default is 1).

0 to specify compounded interest or 1 to specify simple interest (the default is 0).

Periodic interest rate (for example, if Term is expressed in half-years, Int must be a semiannual rate).

Term of loan, expressed in number of total payments.

Periodic payment.

Remaining balance on loan at end of loan term (the default is 0).

Number of periods after last periodic payment that residual is to be paid; can have fractional component (the
default is 0).

Number of advance payments made at loan inception (the default is 0).

Number of periods between loan inception and date of first payment (not including advance payments); can
have fractional component (the default is 1).

0 to specify compounded interest or 1 to specify simple interest (the default is 0).

Initial loan principal.

Periodic interest rate (for example, if Term is expressed in months, then Int must be a monthly rate).

Term of loan, expressed in number of total payments.

Periodic payment.

Number of periods after last periodic payment that Residual is to be paid; can have fractional component (the
default is 0).

Number of advance payments made at loan inception (the default is 0).

Number of periods between loan inception and date of first payment (not including advance payments); can
have fractional component (the default is 1).

0 to specify compounded interest or 1 to specify simple interest (the default is 0).

Initial loan principal.

0 to specify compounded interest or 1 to specify simple interest (the default is 0).

Periodic interest rate (for example, if Term is expressed in years, then Int must be a yearly rate).

Term of loan, expressed in number of total payments.

Number of payments made; must be an integer from 0 to Term.

Part of (n+1)th period passed; 0 £ Part £ 1 (the default is 0).

Remaining balance on loan at end of loan term (the default is 0).

Number of periods after last periodic payment that residual is to be paid; can have fractional component (the
default is 0).

Number of advance payments made at loan inception (the default is 0).

Number of periods between loan inception and date of first payment (not including advance payments); can
have fractional component (the default is 1).

Initial loan principal.

Periodic interest rate (for example, if term is expressed in quarters, Int must be a quarterly rate).

Periodic payment.

Remaining balance on loan at end of loan term (the default is 0).

Number of periods after last periodic payment that residual is to be paid; can have fractional component (the
default is 0).

Number of advance payments made at loan inception (the default is 0).

Number of periods between loan inception and date of first payment (not including advance payments); can
have fractional component (the default is 1).

0 to specify compounded interest or 1 to specify simple interest (the default is 0).

True-or-false conditions to test.

First binary number.

Second binary number.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Binary1 or Binary2,
whichever is greater; must be £ 64.

First hexadecimal number.

Second hexadecimal number.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Hex1 or Hex2,
whichever is greater; 4 binary digits = 1 hexadecimal digit; must be £ 64.

Formula or @function using array syntax; @functions can be nested, that is, you can have more than one
@function in a single statement.

Number of columns in the output range, including the column of the current cell (the default Columns depends
on dimensions of input array(s) in Expression).

Number of rows in the output range, including the row of the current cell (the default Rows depends on
dimensions of input array(s) in Expression).

ASCII character string to convert; can be up to 20 ASCII characters.

Number of characters to return; can be from 1 to 40 characters.

The secant of an angle. X can be any value from approximately -1.789E+308 through -1 and from 1 through
approximately 1.789E+308.

The hyperbolic secant of an angle. X must be greater than 0 and less than or equal to 1.

A numeric value between -1 and 1.

The hyperbolic sine of an angle. X can be any value from approximately -1.34078E+154 to 1.34078E+154.

A numeric value.

A numeric value.

A numeric value.

The hyperbolic tangent of an angle. X must be greater than -1 and less than 1.

A single cell address that contains another cell address or cell name that is written as a label.

One or more numeric or cell values.

One or more numeric or cell values.

Any decimal value to convert.

Indicates the target base in which to express Decimal; can be any integer from 2 to 36, inclusive (the default is
16).

Indicates the number of desired digits after the decimal point; can be any integer from 0 to 15, inclusive (the
default is 0).

Number representing the start date.

Number representing the end date.

Cells containing dates that are holidays or the date of a single holiday or 0 to indicate no holidays (the default is
0).

0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business day (the default is 0).

0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business day (the default is 0).

Numeric value at which to evaluate the function.

Number ³ 0 representing the order of the Bessel function; if n is not an integer, it is truncated to an integer.

Numeric value at which to evaluate the function.

Number ³ 0 representing the order of the Bessel function; if n is not an integer, it is truncated to an integer.

Numeric value at which to evaluate the function; must be > 0.

Integer ³ 0 representing the order of the Bessel function; if n is not an integer, it is truncated to an integer.

Nonnegative numeric value at which to evaluate the function.

Integer ³ 0 representing the order of the Bessel function; if n is not an integer, it is truncated to an integer.

a parameter to the function; must be > 0.

b parameter to the function; must be > 0.

Value at which to evaluate the function over the interval A £ X £ B.

a distribution parameter; if W = 0, Z > 0.

b distribution parameter; if Z = 0, W > 0.

Optional lower bound to the interval of X (the default is 0); A cannot equal B and must be £ X.

Optional upper bound to the interval of X (the default is 1); B cannot equal A and must be ³ X.

a parameter to the function; if W = 0, Z > 0.

b parameter to the function; if Z = 0, W > 0.

Value at which to evaluate the function; cannot exceed 1.

Cumulative probability value; 0 £ Prob £ 1.

a parameter to the Beta distribution; must be > 0.

b parameter to the Beta distribution; must be > 0.

Optional lower bound to the interval of X (the default is 0); A cannot equal B and must be £ X.

Optional upper bound to the interval of X (the default is 1); B cannot equal A and must be ³ X.

Number of successes in number of trial runs; must be ³ 0.

Number of independent trial runs in sample; must be > Successes.

Probability of a success on each trial run; must be ³ 0 and £ 1.

1 to return the cumulative distribution function; 0 to return the probability that there are exactly Successes
successes.

Binary number to convert; denote negative numbers using a minus sign.

Binary number to convert; must be positive.

Number of characters to return; must be £ 16.

Binary number to convert; denote negative numbers using a minus sign.

Binary number to convert.

1 if the most significant bit of Binary is a sign bit; 0 (the default) if Binary is positive.

Binary number to convert; denote negative numbers using a minus sign.

Binary number to convert; must be positive.

Number of characters to return; must be £ 22.

Binary number.

Bit position; must be ³ 0 and £ number of bits in Binary - 1.

Hexadecimal number.

Bit position; must be ³ 0 and £ number of bits in Hex - 1.

Binary number.

Bit position; must be ³ 0 and £ number of bits in Binary - 1.

Hexadecimal number.

Bit position; must be ³ 0 and £ number of bits in Hex - 1.

Binary number.

Bit position; must be ³ 0 and £ number of bits in Binary - 1.

Hexadecimal number.

Bit position; must be ³ 0 and £ number of bits in Hex - 1.

Cell or cell reference (for example, A1 or B1..B5).

A reference to a sheet, cell, or cells in another notebook (for example, [BUDGET]A:A1).

Cell or cell reference (for example, A1 or B1..B5).

Cell or cell reference (for example, A1 or B1..B5).

A reference to a sheet, cell, or cells in another notebook (for example, [BUDGET]A:A1).

Cell or cell reference (for example, A1 or B1..B5).

Number representing a date.

Flag specifying direction of adjustment; 0 = forward; 1 = backward; 2 = forward if in same month as Date,
otherwise backward (the default is 0).

Cells containing dates that are holidays or the date of a single holiday or 0 to indicate no holidays (the default is
0).

0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business day (the default is 0).

0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business day (the default is 0).

First binary number.

Highest bit of the first number to use for concatenation; the default is the most significant bit.

Lowest bit of the first number to use for concatenation; the default is 0.

Second binary number.

Highest bit of the second number to use for concatenation; the default is the most significant bit.

Lowest bit of the second number to use for concatenation; the default is 0.

Number of binary digits to return; must be £ 64.

First hexadecimal number.

Highest bit of the first number to use for concatenation; the default is the most significant bit.

Lowest bit of the first number to use for concatenation; the default is 0.

Second hexadecimal number.

Highest bit of the second number to use for concatenation; the default is the most significant bit.

Lowest bit of the second number to use for concatenation; the default is 0.

Number of equivalent binary digits to return; 4 binary digits = 1 hexadecimal digit; must be £ 64.

Number of binary numbers being concatenated; n £ 64.

First binary number.

Second through the nth binary numbers.

Number of binary digits to return; must be £ 64.

Number of hexadecimal numbers being concatenated; n £ 16.

First hexadecimal number.

Second through the nth hexadecimal numbers.

Number of equivalent binary digits to return; 4 binary digits = 1 hexadecimal digit; must be £ 64.

Number representing the start date.

Number representing the end date.

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

0 to use 30-day treatment of February for 30/360 calendar; 1 to use the actual-day treatment (the default is 0).

Value to round.

Value to make rounded x evenly divisible by.

Any one of the attributes listed for @CELL.

A cell reference or name.

Any one of the attributes listed for @CELL.

A cell reference or name.

The number of the referenced column, from 0 to 255 (the first column in Block = 0, the second = 1, and so on).

The number of the referenced row; if an offset, the first row in Block = 0, the second = 1, and so on.

The number of the referenced sheet, from 0 to 255 (the first sheet in Block = 0, the second = 1, and so on).

Any one of the attributes listed for @CELL.

A numeric value between 1 and 255.

Value at which to evaluate the function; must be ³ 0.

Integer number of degrees of freedom in the distribution; must be ³ 1.

Cumulative probability value; must be ³ 0 and £ 1.

Integer number of degrees of freedom; must be ³ 1.

Cells containing actual values.

Cells containing expected values.

A positive integer equal to or less than the number of items in List - 1.

One or more numeric or string values, cell addresses, and cell references or names, separated by commas.

A string value.

A string value.

A cell reference or name.

The cell or cells for which you want the column number(s).

Number of elements in each subgroup selected from group N; must be ³ 0.

Number of elements in the group; must be ³ 0.

A Quattro Pro command equivalent; to display a list, press Shift+F3 and choose Command Equivalents.

Numeric value representing real coefficient of complex number.

Numeric value representing imaginary coefficient of complex number.

One or more values to link together; can be labels, numbers, or cell references.

Significance level; the percentage of the normal curve that is outside the confidence interval (1 - Alpha); for
example, if the confidence interval is 95%, Alpha = 5%; must be > 0 and < 1.

Population standard deviation; must be > 0.

Sample size; must be ³ 1.

Numeric value in FromUnit to convert, in the units specified by FromUnit.

Unit type of the value X (must be on the list of supported unit names).

Units to convert the value X into; must be on the list of supported unit names.

First array of numeric values.

Second array of numeric values.

A numeric value.

Any value from approximately -710.47558 to approximately 710.47558.

An angle measured in radians. X can be any value from approximately -9.00719E+15 through 9.00719E+15.

Any value from approximately -708.39599 through 708.39599, but not 0.

One or more numeric or string values, cell addresses, and cell references or names, separated by commas.

The cells where you want to count blank cells.

Range of one or more cell addresses, a cell reference, or name to include in the count .

Numeric or string values that determine whether a cell is counted.

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

First array of numeric values.

Second array of numeric values.

Integer number of Bernoulli trials; must be ³ 0.

Probability of success per trial; must be ³ 0 and £ 1.

Critical probability to test; must be ³ 0 and £ 1.

An angle measured in radians. X can be any value from approximately -9.00719E+15 through 9.00719E+15,
excluding 0.

Any value from approximately -708.39599 through 708.39599, but not 0.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

A numeric value representing the future value of an investment (the value the investment will reach at some
point).

A numeric value representing the current value of an investment (the present value).

Interest rate.

Total number of payment periods.

Present value.

First period in the calculation.

Last period in the calculation.

Timing of payment:
0 = payment at the end of the period
1 = payment at the beginning of the period

Interest rate.

Total number of payment periods.

Present value.

First period in the calculation.

Last period in the calculation.

Timing of the payment:
0 = payment at the end of the period
1 = payment at the beginning of the period

A general menu category.

A menu item that requires setting.

Date number.

Date number.

A numeric value between -300 and 1299; -300 = 1600, 0 = 1900, 1299 = 3199.

A numeric value between 1 and 12.

A numeric value between 1 and 31.

Date number representing start date.

Date number representing end date.

Code, entered as text, specifying format of the result:
y= Years
m= Months
d= Days
md= Days, disregarding months and years
ym= Months, disregarding years
yd= Days, disregarding years

Date number.

Code for the type of information you want:
1= Day of the week as a label, in short format (Mon)
2= Day of the week as a label, long format (Monday)
3= Day of the week as an integer from 0 (Monday) through 6 (Sunday)
4= Week of the year as an integer from 1 to 53
5= Month of the year as a label, in short format (Jan)
6= Month of the year as a label, in long format (January)
7= Number of days in the month specified by date
8= Number of days left in the month specified by date
9= Last day of the month specified by date
10= The Quarter date is in, as an integer from 1 (Q1) through 4 (Q4)
11= 1 if the year specified by date is a leap year; 0 if the year is not a leap year
12= Day of the year specified by date, as a number from 1 to 366
13= Days left in the year specified by date, as a number

A numeric or string value in any valid date format, enclosed by quotation marks (or cell coordinates or a cell
name for a cells that contain a date string).

Cells (reference or name) containing the database, including field names.

The number of the column containing the field you want to average (the first column in Block is 0, the second is
1, and so on).

Cells containing search criteria; the first row must be field names.

Cells (reference or name) containing the database, including field names.

The number of the column containing the field you want to average (the first column in Block is 0, the second is
1, and so on).

Cells containing search criteria; the first row must be field names.

Cells (reference or name) containing the database, including field names.

The number of the column containing the field you want to average (the first column in Block is 0, the second is
1, and so on).

Cells containing search criteria; the first row must be field names.

Cells (reference or name) containing the database, including field names.

The number of the column containing the field you want to average (the first column in Block is 0, the second is
1, and so on).

Cells containing search criteria; the first row must be field names.

A numeric value between -109571 and 474816.9999999, representing a date/time serial number: -109571 =
January 1, 1600; 0 = December 31, 1899; 474816 = December 31, 3199; the decimal = time (24 hr).

Date number.

Date number.

Optional logical value that specifies US or European method:
FALSE or 0= US (NASD); the default if you do not specify a method
TRUE or 1= European method

Amount originally paid for an asset.

Estimated value at end of asset life.

Number of periods the asset takes to depreciate to its salvage value.

Length of time for which you want to know the depreciation allowance.

Number of months in the first year (optional); If Month is omitted, @DB uses 12.

Cell (reference or name) containing the database, including field names.

The number of the column containing the field you want to count (the first column in Block is 0, the second is 1,
and so on).

Cells containing search criteria; the first row must be field names.

A numeric value representing the amount paid for an asset.

A numeric value representing the value of an asset at the end of its useful life.

A numeric value representing the expected useful life of an asset (in years).

A numeric value representing the time period for which you want to calculate depreciation.

The DDE-server application to contact.
The table, spreadsheet, document, or other file in the DDE-server application from which to retrieve data.
The field, cells, bookmark, or other information to receive from the application (DDE Item string).

The number of columns in the data cells (optional).

The number of rows in the data cells (optional).

The number of sheets in the data cells (optional).

A numeric value representing radians.

Numeric value to check.

Numeric value that X must equal for the function to return 1 (if omitted, assumed to be zero).

One or more numeric or cell values.

Number to be converted, expressed as a decimal.

Denominator; must be an integer.

Number representing the settlement date; must be < Maturity.

Number representing the maturity date; must be > Settle.

Settlement price per 100 face value; must be ³ 0 and £ 100.

Redemption value per 100 face value (must be > 0; the default is 100).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Cells (reference or name) containing the database, including field names.

The number of the column containing the field for which you want to find the maximum value (the first column in
Block is 0, the second is 1, and so on).

Cells containing search criteria; the first row must be field names.

Cells (reference or name) containing the database, including field names.

The number of the column containing the field for which you want to find the minimum value (the first column in
Block is 0, the second is 1, and so on).

Cells containing search criteria; the first row must be field names.

Numeric value, reference to a cell that contains a numeric value, or formula that returns a numeric value.

Numeric value, reference to a cell that contains a numeric value, or formula that returns a numeric value.

1= Displays dollar value in text; ignores decimal values.
2= Displays dollar value in text, followed by "Dollars".
3= Displays dollar value in text, followed by cent value in numbers.   
 The decimal is rounded to two decimal places.
4= Displays dollar value in text, followed by cent value in numbers,
 followed by "Dollars". This is the default if no Format is specified.
5= Displays dollar value in text, followed by "Dollars",
 followed by cent value in text, followed by "Cents".

How many digits you want to display to the right of the decimal point. If Dec is negative, @DOLLAR rounds off
Num to the left of the decimal point. If you omit Dec, @DOLLAR rounds off to 2 decimal places.

Number and numerator of the fraction, expressed as number.numerator.

Denominator of the fraction:
Denom must be a numeric value >0

If Denom is not an integer, @DOLLARDE truncates it

Dollar price.

Denominator of the fraction:
Denom must be a numeric value >0

If Denom is not an integer, @DOLLARDE truncates it

Cells (reference or name) containing the database, including field names.

The number of the column containing the field for which you want to find the standard deviation (the first
column in Block is 0, the second is 1, and so on).

Cells containing search criteria; the first row must be field names.

Cells (reference or name) containing the database, including field names.

The number of the column containing the field for which you want to find the standard deviation (the first
column in Block is 0, the second is 1, and so on).

Cells containing search criteria; the first row must be field names.

Cells (reference or name) containing the database, including field names.

The number of the column containing the field you want to total (the first column in Block is 0, the second is 1,
and so on).

Cells containing search criteria; the first row must be field names.

Discount rate or cells containing discount rates that correspond to cash flows stored in Flows.

Cells containing cash flows associated with the discount rates in Discrate.

Initial cash flow (the default is 0).

Delay between initial and first cash flow, in number of periods (the default is 1) or cells containing lengths of
periods between cash flows (the default is 1).

Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Flag specifying whether to apply path-dependent compounding to each flow; 0 = no path (default); 1 = path.

Flag specifying filter type: 0 = no filter (default); 1 = cashflow < Start; 2 = cashflow £ Start; 3 = cashflow >
Start; 4 = cashflow ³ Start; 5 = Start < cashflow < End; 6 = Start £ cashflow £ End.

A starting cash flow amount to compare against individual flows.

An ending cash flow amount to compare against individual flows.

Number representing the settlement date; must be < Maturity.

Number representing the maturity date; must be > Settle.

Coupon rate; must be ³ 0.

Annual yield; must be > 0 and £ 1.

Frequency of coupon payments in the number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Cells (reference or name) containing the database, including field names.

The number of the column containing the field for which you want to compute variance (the first column in Block
is 0, the second is 1, and so on).

Cells containing search criteria; the first row must be field names.

Cells (reference or name) containing the database, including field names.

The number of the column containing the field for which you want to compute variance (the first column in Block
is 0, the second is 1, and so on).

Cells containing search criteria; the first row must be field names.

Nominal interest rate.

Number of compounding periods per year, truncated to an integer.

Number representing a date.

Serial number of start date.

Number of months before or after StartDate:
If Months is positive, @EOMONTHS returns a date after StartDate.
If Months is negative, @EOMONTHS returns a date before StartDate.
If Months is not an integer, @EOMONTHS truncates it.

Lower bound for integrating @ERF; must be ³ 0.

Upper bound for integrating @ERF; if omitted, @ERF integrates the error function between 0 and Lower.

Lower bound for integrating @ERF; must be ³ 0.

A value from -26.6417 to 26.6417.

Value to round.

A valid string value.

A valid string value.

A numerical value equal to or less than 709.

A value from -26.6417 to 26.6417.

Value at which to evaluate the function; must be ³ 0.

Value to indicate; Lambda = 1/Mean; must be > 0.

1 to perform cumulative distribution function; 0 to perform the probability density function.

Integer ³ 0 specifying the factorial to calculate.

Value ³ 0 to calculate factorial of.

Integer from 0 through 170.

Number representing a date.

Cells containing dates that are holidays or the date of a single holiday or 0 to indicate no holidays (the default is
0).

0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business day (the default is 0).

0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business day (the default is 0).

Positive value at which to evaluate the function.

Numerator degrees of freedom; must be ³ 1.

Denominator degrees of freedom; must be ³ 1.

Total units; if Tu is negative, @FEETBL uses its absolute value.

Price per unit.

Fee table or a single value that defines the standard fee calculation.

Fee table or a single value that defines the minimum fee calculation (if omitted, MinTbl equals StdTbl).

Fee table or a single value that defines the maximum fee calculation (if omitted, MaxTbl equals StdTbl).

Number of places to which the final result is rounded; can be from 0 to 10 places (the default is no rounding).

Integer ³ 0 specifying the desired term of a Fibonacci sequence.

A string value containing two or more delimited substrings, or a cell reference to a delimited string value.

Number of the substring you want to find (the first substring is numbered 1, the second 2, and so on).

Optional delimiter character; if you do not specify a delimiter, Quattro* Pro uses the delimiter character specified
in the Application International property.

Any file name.

A valid string value, representing the value to search for.

A valid string value, representing the value to search through.

A numeric value ³ 0, representing the character position to begin searching with; 0 = the first character.

Cumulative probability value; must be ³ 0 and £ 1.

Numerator degrees of freedom; must be ³ 1.

Denominator degrees of freedom; must be ³ 1.

A cell or cell reference; can be a link to another opened notebook (for example, [BUDGET]A:A1).

A cell or cells of the notebook to check.

A string value representing a group name.

Numeric value; -1 < X < 1.

Numeric value £ 354 for which you want the inverse of the Fisher transformation.

Number to be rounded and converted to text.

Number of decimal places to be displayed. If Dec is negative, @FIXED rounds off Num to the left of the decimal
point. If you omit Dec, @FIXED rounds off to 2 decimal places.

A logical value:
1 = do not display thousands separators
0 = display thousands separators (the default, if omitted, or if NoCommas ¹ 1)

Value to round.

Value to make rounded X evenly divisible by.

Numeric value at which to evaluate the function.

Dependent range of values.

Independent range of values.

Number to be converted.

Denominator; must be an integer.

Decimal value to be converted.

Denominator; must be an integer. If you specify a denominator that doesn't allow an exact fraction, the
numerator is rounded to the nearest whole number.

When ForceDenom is not specified, the fraction is displayed in its lowest common denominator form; use 1 to
display the denominator value specified in <Denom>.

Cells of values for which you want to count frequencies.

Array of or reference to intervals into which you want to group the values.

First array of numeric values.

Second array of numeric values.

Interest rate or cells containing interest (discount) rates.

Cells containing cash flows.

Delay after last cash flow in number of periods (the default is 0) or cells containing lengths of periods between
cash flows (the default is 1).

Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Flag specifying whether to apply path-dependent compounding to each flow; 0 = no path (default); 1 = path.

Flag specifying filter type: 0 = no filter (default); 1 = cashflow < Start; 2 = cashflow £ Start; 3 = cashflow >
Start; 4 = cashflow ³ Start; 5 = Start < cashflow < End; 6 = Start £ cashflow £ End.

A starting cash flow amount to compare against individual flows.

An ending cash flow amount to compare against individual flows.

A numeric value representing the amount of the periodic payment.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

Number of periods, which should be an integer ³ 2.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

Number of periods, which should be an integer > 0.

A numeric value representing the amount of the periodic payment.

A numeric value representing the current value of an investment (the present value).

An optional numeric value that indicates whether payments or cash flows occur at the beginning (1) or the end
(0) of the period; default = 0.

Any positive number, not 0.

Value at which to evaluate the function; must be ³ 0.

Parameter to the gamma distribution; must be > 0.

Parameter to the gamma distribution; must be > 0.

1 to return the cumulative gamma distribution function; 0 to return the probability density function.

Probability associated with the gamma cumulative function; must be ³ 0 and £ 1.

A parameter to the gamma distribution; must be > 0.

A parameter to the gamma distribution; must be > 0.

Value for which you want to calculate @GAMMALN; must be > 0.

Parameter to the function; must be > 0.

Value at which to evaluate the function; must be ³ 0.

Parameter to the function; must be > 0.

Value at which to evaluate the function; must be ³ 0.

Positive integer to find greatest common divisor of.

Positive integer to find greatest common divisor of.

One or more numeric or cell values; values in List must be positive.

First term of the series.

Number of terms in the series.

Common ratio of the series.

Numeric value to check.

Numeric value that X must exceed for function to return 1 (if omitted, assumed to be 0).

A cell or cells of the notebook to check.

A string value representing a sheet name or an address specifying the sheet name to check (optional).

A string value representing the path in the registry.

A string value representing the stored value in the registry, at the specified path.

Any combination of cellss; separated by valid argument separators.

Array of known y-values for the curve y = b*m^x.

Array of known x-values (optional).

Array of new x-values for which you want the corresponding y-values (optional).

Logical value (optional) that tells @GROWTH whether to force the constant b = 1:
If Const is TRUE or omitted, @GROWTH uses the actual value of b.

If Const is FALSE, @GROWTH sets b = 1, then adjusts the m-values so that y = m^x.

One or more numeric or cell values; none of the values in List can equal 0.

Hexadecimal number to convert; can be up to 40 hexadecimal digits.

Hexadecimal number to convert.

Hexadecimal number to convert.

Number of characters to return; must be £ 64.

A hexadecimal number enclosed by double quotes.

Hexadecimal number to convert.

1 if the most significant bit of Hex is a sign bit; 0 if Hex is positive (the default is 0).

Hexadecimal number to convert.

Hexadecimal number to convert.

Number of characters to return; must be £ 22.

A numeric or string value.

Cell value.

The number of the referenced row, from 0 to the number of rows in Block - 1 (the first row in Block = 0, the
second = 1, and so on).

Number representing the start date.

Number representing the end date.

Cells containing dates that are holidays; to indicate no holidays, enter an empty cell or cells.

0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business day (the default is 0).

0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business day (the default is 0).

A numeric value between -109571 and 474816.9999999, representing a date/time serial number: -109571 =
January 1, 1600; 0 = December 31, 1899; 474816 = December 31, 3199; the decimal = time (24 hr).

Successes in the sample; must be ³ 0.

Sample size; must be ³ 0 and £ PopSize.

Successes in the population; must be ³ 0 and £ PopSize.

Population size; must be ³ 0.

A logical expression representing the condition to be tested.

A numeric or string value representing the value to use if Cond is true.

A numeric or string value representing the value to use if Cond is false.

Complex number in the format x + yi, x + iy, x + yj, or x + jy for which you want the absolute (modulus) value.

Complex number in the format x + yi, x + iy, x + yj, or x + jy from which you want to extract the imaginary
coefficient.

Complex number in the format x + yi, x + iy, x + yj, or x + jy for which you want to calculate the angle in the
complex plane.

Complex number in the format x + yi, x + iy, x + yj, or x + jy for which you want to calculate the complex
conjugate.

Complex number in the format x + yi, x + iy, x + yj, or x + jy for which you want to calculate the cosine.

Complex numerator or dividend in the format x + yi, x + iy, x + yj, or x + jy.

Complex denominator or divisor in the format x + yi, x + iy, x + yj, or x + jy.

Complex number in the format x + yi, x + iy, x + yj, or x + jy for which you want to calculate the exponential.

Complex number in the format x + yi, x + iy, x + yj, or x + jy for which you want to calculate the natural
logarithm.

Complex number in the format x + yi, x + iy, x + yj, or x + jy for which you want to calculate the base 10 log.

Complex number in the format x + yi, x + iy, x + yj, or x + jy for which you want to calculate the base 2 log.

Complex number in the format x + yi, x + iy, x + yj, or x + jy.

The power to which you want to raise Complex; can be a complex number in the format x + yi, x + iy, x + yj, or
x + jy.

Complex number in the format x + yi, x + iy, x + yj, or x + jy.

Complex number in the format x + yi, x + iy, x + yj, or x + jy.

Complex number in the format x + yi, x + iy, x + yj, or x + jy from which you want to extract the real
coefficients.

Complex number in the format x + yi, x + iy, x + yj, or x + jy for which you want to calculate the sine.

Complex number in the format x + yi, x + iy, x + yj, or x + jy to calculate square root of.

Complex number in the format x + yi, x + iy, x + yj, or x + jy from which to subtract Complex2.

Complex number in the format x + yi, x + iy, x + yj, or x + jy to subtract from Complex1.

One or more complex numbers in the format x + yi, x + iy, x + yj, or x + jy, separated by commas.

A cell reference or name.

The number of the referenced column, from 0 to 255 (the first column in Block = 0, the second = 1, and so on).

The number of the referenced row; if an offset, the first row in Block = 0, the second = 1, and so on.

The number of the referenced sheet, from 0 to 255 (the first sheet in Block = 0, the second = 1, and so on).

An integer number from 0 to 255 inclusive.

A numeric value.

A numeric value.

Dependent range of values.

Independent range of values.

Number representing the settlement date; must be < Maturity.

Number representing the maturity date; must be > Settle.

Amount invested; must be > 0.

Redemption value; must be > 0.

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Binary number.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Binary; must be £ 64.

Hexadecimal number.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Hex; 4 binary digits = 1
hexadecimal digit; must be £ 64.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

The number of the loan period for which the interest is desired (where Nper is the total number of periods).

A numeric value > 0, representing the number of periods of the loan (the number of payments to be made) or
investment (the number of compounding periods).

A numeric value representing the amount borrowed (the principal).

A numeric value representing the future value of an investment (the value the investment will reach at some
point).

An optional numeric value that indicates whether payments or cash flows occur at the beginning (1) or the end
(0) of the period; default = 0.

A numeric value > 0, representing the number of periods of the loan (the number of payments to be made) or
investment (the number of compounding periods).

A numeric value representing the amount of the periodic payment.

A numeric value representing the current value of an investment (the present value).

A numeric value representing the future value of an investment (the value the investment will reach at some
point).

An optional numeric value that indicates whether payments or cash flows occur at the beginning (1) or the end
(0) of the period; default = 0.

A numeric value that estimates the internal rate of return on an investment.

Cell (reference or name) containing cash flow information for the investment.

Number representing a date.

Cells containing dates that are holidays or the date of a single holiday or 0 to indicate no holidays (the default is
0).

0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business day (the default is 0).

0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business day (the default is 0).

Name or address of a cell.

Cell address or presumed cell name.

A cell address or expression.

Value to test.

A string value.

Empty cell, logical value, text, number, ERR, cell reference, or cell name to test.

A cell address or expression.

Empty cell, logical value, text, number, ERR, cell reference, or cell name to test.

A cell address or expression.

Value to test.

A cell address or expression.

One or more numeric or cell values.

A numeric array or cells of values.

Number that indicates the rank in size from the data set Array; must be greater than 0 and less than or equal to
the number of values in Array.

A cell or reference; can be a link to another opened notebook (for example, [BUDGET]A:A1).

A cell or reference.

Number 1 (column) or 2 (row) ; the default type is 1.

A cell or cells of the notebook to check.

A string value representing a group name.

Number representing a date.

Cells containing dates that are holidays or the date of a single holiday or 0 to indicate no holidays (the default is
0).

0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business day (the default is 0).

0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business day (the default is 0).

Positive integer to find least common multiple of.

Positive integer to find least common multiple of.

A string value.

A numeric value equal to or greater than 0.

A string value.

A one- or two-character string enclosed in quotation marks; column and sheet letters run in sequence from A to
Z, and continue from AA to AZ, up to IV.

Array of known y-values for the line y = mx + b.

Array of known x-values (optional).

Logical value (optional) that tells @LINEST whether to force the constant b = 0:
If Const is TRUE or omitted, @LINEST uses the actual value of b.
If Const is FALSE, @LINEST sets b = 0, then adjusts the m-values so that y = mx.

Logical value (optional) that tells @LINEST whether to return more regression statistics.
If Stats is TRUE, @LINEST returns the array

If Stats is FALSE or omitted, @LINEST returns only the m-coefficients and b.

One-dimensional cells containing X values in increasing order.

One-dimensional cells containing Y values corresponding to the X values in KnownX.

Number for which the corresponding Y value is desired.

Degrees of Latitude or Longitude.

Minutes of Latitude or Longitude.

Seconds of Latitude or Longitude.

For Latitude, North (1) or South (2) of the equator; for Longitude, East (3) or West (4) of the prime meridian at
Greenwich, England.

A numeric value > 0.

A numeric value > 0.

Positive real number.

A numeric value greater than 0

Value to be converted = the log of a number m to the base b.

Positive integer greater than 1.

Positive integer greater than 1.

Array of known y-values for the curve y = b*m^x.

Array of known x-values.

Logical value (optional) that tells @LOGEST whether to force the constant b = 1:
If Const is TRUE or omitted, @LOGEST uses the actual value of b.
If Const is FALSE, @LOGEST sets b = 1, then adjusts the m-values so that y = m^x.

Logical value (optional) that tells @LOGEST whether to return more regression statistics.
If Stats is TRUE, @LOGEST returns the array

If Stats is FALSE or omitted, @LOGEST returns only the m-coefficients and b.

Probability associated with the cumulative lognormal distribution function; 0 £ Prob < 1.

Mean of ln(x).

Standard deviation of ln(x); must be > 0.

Value to evaluate the function; must be > 0.

Mean of ln(x).

Standard deviation of ln(x); must be > 0.

Value to look for in LookupVector; can be a number, text, logical value, or reference to a value.

Cells containing only one row or column.

Cells of the same dimensions as LookupVector and containing corresponding values.

A string value.

Number from 1 (Saturday) to 7 (Friday).

Number from 1 (January) to 12 (December).

Number from 0 (1900) to 199 (2099) or a standard year like 1993.

Auxiliary day of the week that must fall in the same week as Wkday; 0 for no auxiliary day or a number from 1
(Saturday) to 7 (Friday) indicating the auxiliary day (the default is 0).

Numeric or string value to be matched.

Cells, contiguous selections, an array, or array reference.

-1, 0, or 1. Match Type specifies which cell positions are returned:
-1 = smallest, 1 = largest, 0 = first found.

One or more numeric values, cell addresses, and cell references or names, separated by commas.

cells or list of selections containing numeric values.

Number from 1 (January) to 12 (December).

Number from 0 (1900) to 199 (2099) or a standard year like 1993.

A numeric array or cells of values specifying a square matrix; must have an equal number of rows and columns,
and cannot contain blank cells.

Number representing the settlement date; must be < Maturity.

Number representing the maturity date; must be > Settle.

Coupon rate; 0 £ Coupon £ 1.

Annual yield; 0 < Yield £ 1.

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

One or more numeric or cell values.

A string value.

A numeric value equal to or greater than 0.

A numeric value equal to or greater than 0.

One or more numeric values, cell addresses, and cell references or names, separated by commas.

Cells or list of selections containing numeric values.

A numeric value between -109571 and 474816.9999999, representing a date/time serial number: -109571 =
January 1, 1600; 0 = December 31, 1899; 474816 = December 31, 3199; the decimal = time (24 hr).

Square numeric array (same number of rows as columns); you can use a cell reference or cell name or an array
constant like {1,2|3,4}.

Cells containing cash flows; negative = outflow, positive = inflow.

Interest rate paid for funds used in cash flows.

Interest rate received on reinvested funds used in cash flows.

Timing of the cash flows (optional):
0 = end of each period (default)
1 = beginning of each period

Array to be multiplied.

Array to be multiplied.

Number representing the start date.

Number representing the end date.

1 to indicate adherence to ends of months; 0 to indicate that ends of months are ignored; the default is 1.

A numeric value.

A numeric value not equal to 0.

One or more numeric or cell values.

Numeric value.

Numeric value, but not 0.

A numeric value between -109571 and 474816.9999999, representing a date/time serial number: -109571 =
January 1, 1600; 0 = December 31, 1899; 474816 = December 31, 3199; the decimal = time (24 hr).

Value to round.

Value to make rounded X divisible by.

Number ³ 0 representing the periodic interest rate.

Total periods in the loan from start to finish, or the total periods remaining from the chosen starting period
forward.

Original loan balance; also can be any starting point in the loan.

Remaining balance on loan at end of loan term; enter 0 if the loan will be paid in full.

Extra principal amount to be paid each period (must be positive).

Number of the first period, relative to the starting point, in which extra principal is paid; the default is 1 (the first
period).

Number of the last period, relative to the starting point, in which extra principal is paid; the default is until the
end of the loan; you can set Lper to any number greater than or equal to the last period number when extra
principal payments last the life of the loan (for example, Lper can be 400 for a loan which lasts 360 periods).

Period for which the loan status is reported; the default is at loan end (any number greater than the end of the
loan defaults to loan end); Rper does not affect the value @MTGACC returns if Option is 0 or 10.

Specifies the output value type (the default is 0):
0 = number of periods to loan end, when balance equals Residual
1 = balance of loan at the Rper
2 = cumulative interest paid at Rper
3 = cumulative principal paid at Rper
10 = number of fewer periods in loan life, due to payment of extra principal
11 = balance reduction at Rper due to payment of extra principal
12 = reduction in cumulative interest paid at Rper due to payment of extra principal
13 = increase in cumulative principal paid at Rper due to payment of extra principal

One or more numbers or selections of numbers, separated by commas.

One or more numbers to calculate multinomial of; each number in List must be ³ 0.

A cell reference or name.

Number representing a date.

Cells containing dates that are holidays or the date of a single holiday or 0 to indicate no holidays (the default is
0).

0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business day (the default is 0).

0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business day (the default is 0).

Number of failures.

Threshold of successes.

Probability of a success; 0 £ Prob £ 1.

Discount rate or cells containing discount rates corresponding to cells of cash flows.

Cells containing cash flows.

Initial cash flow (the default is 0).

Delay between initial and first cash flow in number of periods (the default is 1) or cells containing lengths of
periods between cash flows (the default is 1).

Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Flag specifying whether to apply path-dependent compounding to each flow; 0 = no path (default); 1 = path.

Flag specifying filter type: 0 = no filter (default); 1 = cashflow < Start; 2 = cashflow £ Start; 3 = cashflow >
Start; 4 = cashflow ³ Start; 5 = Start < cashflow < End; 6 = Start £ cashflow £ End.

A starting cash flow amount to compare against individual flows.

An ending cash flow amount to compare against individual flows.

Date number representing start date.

Date number representing end date.

Optional cell name or reference containing serial date numbers of holidays to exclude from the calculation.

Optional argument, in quotation marks, to tell @NETWORKDAYS which days are weekend days. Use 0 through 6
(Monday through Sunday); for example, "45" means Friday and Saturday. The default, if you omit Weekends, is
Saturday and Sunday. To specify no weekends, use "7".

Effective interest rate.

Number of compounding periods per year, truncated to an integer.

Value at which to evaluate function.

Mean of the normal distribution.

Standard deviation of the normal distribution; must be > 0.

1 to return the cumulative normal distribution function; 0 (the default) to return the probability density function.

Probability corresponding to the normal distribution; 0 < Prob < 1.

Mean of the normal distribution.

Standard deviation of the normal distribution; must be > 0.

Value at which to evaluate the function.

Probability corresponding to the normal distribution; must be > 0 and < 1.

Logical value or expression that can be evaluated to TRUE or FALSE.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

A numeric value representing the amount of the periodic payment.

A numeric value representing the current value of an investment (the present value).

A numeric value representing the future value of an investment (the value the investment will reach at some
point).

An optional numeric value that indicates whether payments or cash flows occur at the beginning (1) or the end
(0) of the period; default = 0.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

Cells (reference or name) containing cash flow information for the investment.

An optional numeric value that indicates whether payments or cash flows occur at the beginning (1) or the end
(0) of the period; default = 0.

Decimal number to convert.

Decimal number to convert.

Number of characters to return; must be £ 64.

Decimal number to convert.

Decimal number to convert.

Number of characters to return; must be £ 16.

Decimal number to convert.

Decimal number to convert.

Number of characters to return; must be £ 22.

Number from 1 to 5.

Number from 1 (Saturday) to 7 (Friday).

Number from 1 (January) to 12 (December).

Number from 0 (1900) to 199 (2099) or a standard year like 1993.

Auxiliary day of the week that must fall in the same week as Wkday; 0 for no auxiliary day or a number from 1
(Saturday) to 7 (Friday) indicating the auxiliary day (the default is 0).

Octal number to convert; denote negative numbers using a minus sign.

Octal number to convert; denote negative numbers using a minus sign.

Octal number to convert; denote negative numbers using a minus sign.

Value to round.

Number representing the settlement date.

Number representing the maturity date.

Number representing the issue date.

Number representing the first coupon date.

Coupon rate; must be ³ 0.

Annual yield; 0 < Yield £ 1.

Redemption value per 100 face value (must be > 0; the default is 100).

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date.

Number representing the maturity date.

Number representing the issue date.

Number representing the first coupon date.

Coupon rate; must be ³ 0.

Price of the security; must be > 0.

Redemption value per 100 face value (must be > 0; the default is 100).

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Number representing the last coupon date; must be < Maturity.

Coupon rate; must be ³ 0.

Annual yield; 0 < Yield £ 1.

Redemption value per 100 face value (must be > 0; the default is 100).

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Number representing the last coupon date; must be < Maturity.

Coupon rate; must be ³ 0.

Price; must be > 0.

Redemption value per 100 face value (must be > 0; the default is 100).

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Reference on which you want to base the offset; cannot refer to non-contiguous areas.

Number of rows from Reference you want the offset to refer to. If Rows = 5, the upper left cell in the offset is five
rows below the upper left cell in Reference. Negative Rows are above, positive are below.

Number of columns from Reference you want the offset to refer to. If Cols =    5, the upper left cell in the offset is
five columns to the right of the upper left cell in Reference. Negative Cols    are to the left, positive are to the
right.

Height (optional) of the returned offset, in rows. Height must be a positive number. If omitted, Height is the same
height as Reference.

Width (optional) of the returned offset, in columns. Width must be a positive number. If omitted, Width is the
same width as Reference.

True-or-false conditions to test.

First binary number.

Second binary number.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Binary1 or Binary2,
whichever is greater; must be £ 64.

First hexadecimal number.

Second hexadecimal number.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Hex1 or Hex2,
whichever is greater; 4 binary digits = 1 hexadecimal digit; must be £ 64.

A string corresponding to the name of a sheet; must be enclosed in quotation marks.

A reference to a sheet, cell, or cells in another notebook (for example, [BUDGET]A:A1).

A string corresponding to the name of a sheet; must be enclosed in quotation marks.

A number from 0 to 255 inclusive.

A reference to a sheet, cell, or cells in another notebook (for example, [BUDGET]A:A1).

A number from 0 to 255 inclusive.

A optional argument specifying sheet names to exclude from the table; enclose each sheet name in quotation
marks, and separate sheet names with a comma.

A reference to a sheet, cell, or cells in another notebook (for example, [BUDGET]A:A1).

A optional argument specifying sheet names to exclude from the table; enclose each sheet name in quotation
marks, and separate sheet names with a comma.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

A numeric value > 0, representing the number of periods of the loan (the number of payments to be made) or
investment (the number of compounding periods).

A numeric value representing the amount borrowed (the principal).

A numeric value representing the future value of an investment (the value the investment will reach at some
point).

An optional numeric value that indicates whether payments or cash flows occur at the beginning (1) or the end
(0) of the period; default = 0.

Number representing a date.

Cells containing dates that are holidays or the date of a single holiday or 0 to indicate no holidays (the default is
0).

0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business day (the default is 0).

0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business day (the default is 0).

Array of independent values.

Array of dependent values.

A numeric array or cells of values.

A percentile value between 0 and 1, inclusive.

A numeric array or cells of values.

Number to rank in Array; if X does not match a value in Array, @PERCENTRANK interpolates to return a
percentage rank.

Number of significant digits for returned percentage value; must be ³ 1 (the default is 3).

Number of different objects; n ³ 0.

Number of objects taken at a time; R £ N.

Net present value.

Flag specifying filter type: 0 = no filter (default); 1 = cashflow < Start; 2 = cashflow £ Start; 3 = cashflow >
Start; 4 = cashflow ³ Start; 5 = Start < cashflow < End; 6 = Start £ cashflow £ End.

A starting cash flow amount to compare against individual flows.

An ending cash flow amount to compare against individual flows.

Cells containing cash flows.

Initial cash flow (the default is 0).

Delay between initial and first cash flow, in number of periods (the default is 1) or cells containing lengths of
periods between cash flows (the default is 1).

Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Flag specifying whether to apply path-dependent compounding to each flow; 0 = no path (default); 1 = path.

IRR guess for numerical search (useful for locating multiple roots); must be > -100%; the default is 0.10.

Minimum required precision; Precision > 0; the default is 0.000001.

Maximum number of iterations for search; Maxiter > 0; the default is 50.

A numeric value representing the amount borrowed (the principal).

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

A numeric value > 0, representing the number of periods of the loan (the number of payments to be made) or
investment (the number of compounding periods).

A numeric value representing the amount borrowed (the principal).

A numeric value > -1, representing the yearly interest rate (the fixed interest rate per compounding period).

A numeric value > 0, representing the number of months of the loan (the number of payments to be made).

Number of events; must be ³ 0.

Expected numeric value for the mean over the distribution; must be > 0.

1 to return the cumulative Poisson probability distribution that the number of random events will be in the range
from zero to N; 0 to return the Poisson probability mass function that the number of events will be N.

Number (base) to be raised to a power; can be any real number.

Power (exponent), to which Num is to be raised.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

The number of the loan period for which the principal is desired (where Nper is the total number of periods).

A numeric value > 0, representing the number of periods of the loan (the number of payments to be made) or
investment (the number of compounding periods).

A numeric value representing the amount borrowed (the principal).

A numeric value representing the future value of an investment (the value the investment will reach at some
point).

An optional numeric value that indicates whether payments or cash flows occur at the beginning (1) or the end
(0) of the period; default = 0.

Number representing the settlement date; must be < Maturity.

Number representing the maturity date; must be > Settle.

Coupon rate; must be ³ 0.

Annual yield; must be > 0 and £ 1.

Redemption value per 100 face value; must be > 0; the default is 100.

Frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or 12; the default is 2).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date; must be > Settle.

Rate of discount; 0 £ Discount £ 1.

Redemption value per 100 face value (must be > 0; the default is 100).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date; must be > Settle.

Number representing the issue date; must be < Settle.

Coupon rate; 0 £ Coupon £ 1.

Annual yield; 0 £ Yield £ 1.

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Values of X associated with the probabilities.

cells or array of probability values associated with XData; each value in ProbRange must be ³ 0 and £ 1; the
sum of ProbRange values must equal 1.

Lower limit on the value for the desired probability.

Upper limit on the value for the desired probability.

A string value.

The name of the object whose property settings you are requesting.

The property whose settings you are requesting.

One or more numeric or cell values.

One or more numeric or string values, cell addresses, and cell references or names, separated by commas.

One or more numeric, cell addresses, and cell references or names, separated by commas.

One or more numeric, cell addresses, and cell references or names, separated by commas.

One or more numeric, cell addresses, and cell references or names, separated by commas.

One or more numeric, cell addresses, and cell references or names, separated by commas.

One or more numeric, cell addresses, and cell references or names, separated by commas.

One or more numeric, cell addresses, and cell references or names, separated by commas.

A numeric value representing the amount of the periodic payment.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

A numeric value > 0, representing the number of periods of the loan (the number of payments to be made) or
investment (the number of compounding periods).

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

A numeric value > 0, representing the number of periods of the loan (the number of payments to be made) or
investment (the number of compounding periods).

A numeric value representing the amount of the periodic payment.

A numeric value representing the future value of an investment (the value the investment will reach at some
point).

An optional numeric value that indicates whether payments or cash flows occur at the beginning (1) or the end
(0) of the period; default = 0.

A numeric array or cells of values.

Number signifying what quartile value to return:
0 = minimum value in Array
1 = 25th percentile
2 = 50th percentile (median)
3 = 75th percentile
4 = maximum value in Array

Value to divide.

Nonzero value to divide x by.

A numeric value representing degrees (0 to 360).

Integer value that random number must be greater than or equal to.

Integer value that random number must be less than or equal to.

A number from Array.

One or more numeric or cell values.

Flag indicating how to sort the list of numbers: any nonzero value = ascending order; 0 = descending order.

A numeric value representing the future value of an investment (the value the investment will reach at some
point).

A numeric value representing the current value of an investment (the present value).

A numeric value > 0, representing the number of periods of the loan (the number of payments to be made) or
investment (the number of compounding periods).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date; must be > Settle.

Amount invested; must be > 0.

Rate of discount; 0 £ Discount £ 1.

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Name or address of cells containing independent variables; can be up to 75 columns and 8,192 rows.

Name or address of cells containing dependent variable; must be a single-column selection with the same
number of rows as XBlock.

Specifies the type of regression value returned. Valid attributes are 1, 2, 3, 4, 5, 101 to 175, or 201 to 275; see
the table for the type of regression value returned for each attribute value.

Logical value (optional) that tells @REGRESSION whether to force the Y intercept to equal 0:
0 = make the Y intercept 0
1 = calculate the Y intercept (default if you omit the argument)

A string value.

A numeric value equal to or greater than 0.

A valid string value, representing the text to operate on.

A numeric value equal to or greater than 0, representing the character position to begin with.

A numeric value equal to or greater than 0, representing the number of characters to delete.

A string value, representing the characters to insert at position Num.

A string value.

A numeric value ³ 0.

Arabic numeral.

Style of Roman numeral, ranging from full classic to brief, becoming more concise as the value of Form
increases:
FALSE (0) = Classic; default, if omitted
TRUE (1) = More concise
2 = More concise
3 = More concise
4 = Most concise

Number; can be positive or negative.

Number, not zero.

A numeric value.

A numeric value between -15 and 15.

Number to round down.

Number of digits (optional) to which you want to round X.

Argument (optional) specifying how to round negative values:
0 = round negative values down; default if omitted
1 = round negative values up

Number to round up.

Number of digits (optional) to which you want to round X.

The cell or cells for which you want the row number(s).

A cell reference or name.

Independent range of values.

Dependent range of values.

A cell reference or name.

Net present value.

Maximum number of iterations for search (must be > 0; the default is 50).

Flag specifying filter type: 0 = no filter (default); 1 = cashflow < Start; 2 = cashflow £ Start; 3 = cashflow >
Start; 4 = cashflow ³ Start; 5 = Start < cashflow < End; 6 = Start £ cashflow £ End.

A starting cash flow amount to compare against individual flows.

An ending cash flow amount to compare against individual flows.

Discount rate or cells containing discount rates corresponding to cells of cash flows.

Cells containing cash flows.

Initial cash flow (the default is 0).

Delay between initial and first cash flow, in number of periods (the default is 1) or cells containing lengths of
periods between cash flows (the default is 1).

Flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Flag specifying whether to apply path-dependent compounding to each flow; 0 = no path (default); 1 = path.

Initial margin for numerical search (useful for locating multiple roots) (must be > -100%; the default is 0).

Minimum required precision (must be > 0; the default is 0.000001).

An angle measured in radians. X can be any value from approximately -9.00719E+15 through 9.00719E+15.

A value from approximately -708.39599 to approximately 708.39599.

A numeric value between -109571 and 474816.9999999, representing a date/time serial number: -109571 =
January 1, 1600; 0 = December 31, 1899; 474816 = December 31, 3199; the decimal = time (24 hr).

Cell reference or name.

Value in the power series.

Initial power to raise X to.

Increment of the power N for each successive term in the power series.

Cells or array of one or more numeric values by which each power of X is multiplied; the number of values in
Coefficients sets the number of terms in the power series.

Label text, in quotation marks.

Integer from 1 through 1022 specifying label length.

Optional argument specifying text alignment:
0 = align text left; default if you omit the argument
1 = center text
2 = align text right

A cell reference or name.

Binary number.

Number of bits to shift; 0 £ ShiftBits £ 64; the default is 1.

Binary bit inserted during the shift (can be 0, 1, "S" or "I"; "S" = same as the least significant bit before shifting;
"I" = inverse of the least significant bit before shifting; the default is 0).

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Binary; must be £ 64.

Binary number.

Number of input binary digits used during the shift operation; if omitted, Bits = the number of bits in Binary;
must be £ 64.

Hexadecimal number.

Number of bits to shift; 0 £ ShiftBits £ 64; the default is 1.

Binary bit inserted during the shift (can be 0, 1, "S" or "I"; "S" = same as the least significant bit before shifting;
"I" = inverse of the least significant bit before shifting; the default is 0).

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Hex; 4 binary digits = 1
hexadecimal digit; must be £ 64.

Hexadecimal number.

Number of equivalent input binary digits used during the shift operation; if omitted, Bits = the number of bits in
Hex; 4 binary digits = 1 hexadecimal digit; must be £ 64.

Binary number.

Number of bits to shift; 0 £ ShiftBits £ 64; the default is 1.

Binary bit inserted during the shift (can be 0, 1, "S" or "I"; "S" = same as the most significant bit before shifting;
"I" = inverse of the most significant bit before shifting; the default is "S").

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Binary; must be £ 64.

Binary number.

Number of input binary digits used during the shift operation; if omitted, Bits = the number of bits in Binary;
must be £ 64.

Hexadecimal number.

Number of bits to shift; 0 £ ShiftBits £ 64; the default is 1.

Binary bit inserted during the shift (can be 0, 1, "S" or "I"; "S" = same as the most significant bit before shifting;
"I" = inverse of the most significant bit before shifting; the default is "S").

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Hex; 4 binary digits = 1
hexadecimal digit; must be £ 64.

Hexadecimal number.

Number of equivalent input binary digits used during the shift operation; if omitted, Bits = the number of bits in
Hex; 4 binary digits = 1 hexadecimal digit; must be £ 64.

Value.

A numeric value.

A value from approximately -710.47558 to approximately 710.47558.

One or more numeric or cell values.

A numeric value representing the amount paid for an asset.

A numeric value representing the value of an asset at the end of its useful life.

A numeric value representing the expected useful life of an asset (in years).

Dependent range of values.

Independent range of values.

A numeric array or cells of values.

Number that indicates the rank in size from the data set Array; must be greater than 0 and less than or equal to
the number of values in Array.

Independent cells or array of values.

Dependent cells or array of values.

The cell address where the result of the @function is to be displayed.

A numeric value equal to or greater than 0.

Value ³ 0 to multiply by pi.

Number to normalize.

Arithmetic mean of a distribution.

Standard deviation of a distribution.

One or more numeric values, cell addresses, and cell references or names, separated by commas.

One or more numeric values, cell addresses, and cell references or names, separated by commas.

Dependent range of 3 or more values.

Independent range of 3 or more values.

Dependent range of 3 or more values.

Independent range of 3 or more values.

Option code string with expiration month, strike-price, and put or call symbol enclosed in quotation marks (for
example, "MAY 22.5 C"); the strike price can be a decimal or fractional number, but not both (for example, it can
be 11/32 or 1.625, but not 2 3/8); valid month codes are JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,
and DEC; you can add spaces between month, strike-price, and Put or Call symbol; the total string (not including
quotation marks) must be 20 characters or less.

Option premium or price.

Value or price of the underlying stock.

Serial date number between 2 (January 1, 1900) and 73050 (December 31, 2099) representing the date on which
to evaluate the stock option.

Load or commission involved in sale or purchase.

Command string enclosed in quotation marks specifying the operations to perform; cannot exceed 20 characters
(not including quotes).

A numeric value, a formula that evaluates to a numeric value, or a reference to a cell containing a numeric
value.

A numeric value from 0 through 15.

First binary number.

Second binary number.

Input borrow bit (either 0 or 1); the default is 0.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Binary1 or Binary2,
whichever is greater; must be £ 64.

First binary number.

Second binary number.

Input borrow bit (either 0 or 1); the default is 0.

Number of input binary digits used for subtraction; if omitted, Bits = the number of bits in Binary1 or Binary2,
whichever is greater; must be £ 64.

First hexadecimal number.

Second hexadecimal number.

Input borrow bit (either 0 or 1); the default is 0.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Hex1 or Hex2,
whichever is greater; 4 binary digits = 1 hexadecimal digit; must be £ 64.

First hexadecimal number.

Second hexadecimal number.

Input borrow bit (either 0 or 1); the default is 0.

Number of input binary digits used for subtraction; if omitted, Bits = the number of bits in Hex1 or Hex2,
whichever is greater; 4 binary digits = 1 hexadecimal digit; must be £ 64.

Text or reference to single cell containing OldText.

Text to be changed.

Text to substitute for OldText.

Which occurrence of OldText to change. If you specify InstanceNum, @SUBSTITUTE changes only that instance.
Otherwise, @SUBSTITUTE changes all occurrences.

Number from 1 to 11, specifying which function to use in calculating subtotals.

List of selections or cell names to subtotal.

One or more numeric values, cell addresses, and cell references or names, separated by commas.

One or more numeric values, cell addresses, and cell references or names, separated by commas.

Overall range of one or more cell addresses, a cell reference. or name.

Numeric or string values that determine whether a cell within the Cells is added.

Cell addresses within the cells to be included in the sum. Cell values must meet Criteria in order to be included in
the sum.

One or more numeric values or formulas, cell addresses, and cell references or names, separated by commas.

One or more numeric values or formulas, cell addresses, and cell references or names, separated by commas.

A cell reference or name.

A cell reference or name.

One or more numeric or cell values.

First array of numeric values.

Second array of numeric values.

First array of numeric values.

Second array of numeric values.

First array of numeric values.

Second array of numeric values.

First array of numeric values.

Second array of numeric values.

First array of numeric values.

Second array of numeric values.

First array of numeric values.

Second array of numeric values.

A numeric value representing the amount paid for an asset.

A numeric value representing the value of an asset at the end of its useful life.

A numeric value representing the expected useful life of an asset (in years).

A numeric value representing the time period for which you want to calculate depreciation.

Path and filename of the database table.

Number of columns (fields) to show from the linked table.

Number of rows (records) to show from the linked table.

A numeric value.

A value from approximately -1.789E+308 to approximately 1.789E+308.

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Rate of discount expressed as a decimal fraction; must be ³ 0 and £ 1.

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Rate of discount expressed as a decimal fraction; must be ³ 0 and £ 1.

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

The Treasury bill's price per 100 face value.

Value at which to evaluate the distribution.

Integer number of degrees of freedom; must be ³ 1.

1 to return a one-tailed distribution; 2 to return a two-tailed distribution.

A numeric value representing the amount of the periodic payment.

A numeric value > -1, representing the periodic interest rate (the fixed interest rate per compounding period).

A numeric value representing the future value of an investment (the value the investment will reach at some
point).

A number between 0 and 23, representing Hour.

A number between 0 and 59, representing Minute.

A number between 0 and 59, representing Second.

A numeric value or a string value in any valid time format, enclosed by quotation marks.

Cumulative probability value; 0 £ Prob £ 1.

Number of degrees of freedom.

One or more numeric values, cell addresses, and cell references or names, separated by commas.

Cells or array to transpose; you can use a 2-D cell reference or cell name or an array constant like {1,2|3,4}.

Array of known y-values for the line y = mx + b.

Array of known x-values (optional).

Array of new x-values for which you want the corresponding y-values (optional).

Logical value (optional) that tells @TREND whether to force the constant b = 0:
If Const is TRUE or omitted, @TREND uses the actual value of b.
If Const is FALSE, @TREND sets b = 0, then adjusts the m-values so that y = mx.

A string value.

Numeric array or cells of values.

Decimal fraction of data points to exclude; 0 £ Fraction < 1.

Number to truncate.

Numeric value specifying precision (optional); can be from -100 through 100.

First array of numeric values.

Second array of numeric values.

1 to return a one-tailed test; 2 to return a two-tailed test.

A discrete variable specifying the type of test to conduct; 1 = a paired test; 2 = a two-sample equal variance
test; 3 = a two-sample unequal variance test.

Numeric, text, logical, formula, or error value, or reference to a cell containing such a value.

A string value.

Independent cells or array of values.

Dependent cells or array of values.

Coefficient array produced by @SPLINE.

Value for which you want the corresponding y-value.

A string value.

One or more numeric or string values, cell addresses, and cell references or names, separated by commas.

One or more numeric or string values, cell addresses, and cell references or names, separated by commas.

Cost of asset; must be greater than Salvage.

Salvage value at end of asset life; can be any value.

Number of periods for asset to depreciate to salvage value; must be greater than 0.

Starting period to begin depreciation, in same units as Life; can be any positive value or 0, but not greater than
Life.

Ending period for depreciation, in same units as Life; can be any value greater than StartPeriod, but not greater
than Life.

Percentage of straight-line depreciation to use as the depreciation rate (optional); 200% (double-declining
balance rate) if omitted. Factor can be any value greater than or equal to 0; commonly used rates are 1.25,
1.50, 1.75, and 2.

Tells @VDB whether to switch to straight-line depreciation for the remaining useful life (optional):
0 = automatically switch to straight-line depreciation when that is greater than declining-balance depreciation
(default if you omit the argument)
1 = never switch to straight-line depreciation

A numeric or string value.

A 2-D cell value.

The number of the referenced column, from 0 to the number of columns in Block - 1 (the first column in Block =
0, the second = 1, and so on).

The date expressed as a serial date number.

A number that determines on what day the week begins.
1 = week begins on Sunday; default if omitted
2 = week begins on Monday
3 = week begins on Saturday

Function parameter to evaluate.

Parameter to the distribution; must be > 0.

Parameter to the distribution; must be > 0.

A numeric value (0 or 1) indicating whether to use the cumulative distribution function (1) or the probability
density function (0).

Cell reference or name where values to be averaged are stored.

Cell reference or name where data affecting the weighting are stored; WeightsBlock must have the same
dimensions as DataBlock.

Optional value that tells Quattro Pro how to calculate the weighted average:
0 = divide by sum of values in WeightsBlock; default if you omit the argument
1 = divide by number of values in DataBlock

Number representing a date to check.

Number representing a date to check.

Serial number for the date you're starting from.

Number of days after StartDate (if Days is positive) or before (if Days is negative).

Optional cell name or reference containing serial date numbers of holidays to exclude from the calculation.

Optional argument, in quotation marks, to tell @WORKDAY which days are weekend days. Use 0 through 6
(Monday through Sunday); for example, "45" means Friday and Saturday. The default, if you omit Weekends, is
Saturday and Sunday. To specify no weekends, use "7".

One or more numeric, cell addresses, and cell references or names, separated by commas.

Cell name or reference.

Column to look in; must be the contents of a cell in the first row of Block.

Row to look in; must be the contents of a cell in the first column of Block.

Name of notebook sheet (optional).

Series of cash flows; first payment is the one occurring at the beginning of the investment; succeeding payments
are discounted based on a 365-day year.

Payment corresponding to cash flow payments; first date must be the earliest date, but all other dates can be in
any order.

Numeric value (optional) that estimates the internal rate of return on an investment; assumed to be 10% if
omitted.

Discount rate to apply to cash flows.

Series of cash flows; first payment is the one occurring at the beginning of the investment; succeeding payments
are discounted based on a 365-day year.

Payment corresponding to cash flow payments; first date must be the earliest date, but all other dates can be in
any order.

First binary number.

Second binary number.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Binary1 or Binary2,
whichever is greater; must be £ 64.

First hexadecimal number.

Second hexadecimal number.

Number of binary bits used for both input and output; if omitted, Bits = number of bits in Hex1 or Hex2,
whichever is greater; 4 binary digits = 1 hexadecimal digit; must be £ 64.

Number to round down.

Number of digits to which you want to round X.

Number to round up.

Number of digits to which you want to round X.

Number from 0 (1900) to 199 (2099) or a standard year like 1993.

Number representing the date about which to calculate year division.

Integer representing number of divisions away from beginning of division in which date falls; can be negative.

Number of months per division; does not have to be a divisor of 12; can be longer than 1 year; must be an
integer ³ 0 (the default is 3).

Date to anchor division boundaries on (the default is January 1, 1900).

1 to indicate adherence to ends of months; 0 to indicate that ends of months are ignored (the default is 1).

A numeric value between -109571 (January 1, 1600) and 474816.9999999 (December 31, 3199).

Number representing the start date.

Number representing the end date.

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date.

Number representing the maturity date.

Number representing the issue date.

Coupon rate; must be ³ 0.

Price; must be > 0.

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Settlement price; must be > 0.

Redemption value per 100 face value (must be > 0; the default is 100).

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Number representing the settlement date; must be < Maturity.

Number representing the maturity date.

Number representing the issue date; must be < Settle.

Coupon rate; 0 £ Coupon £ 1.

Price per 100 face value.

Flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360, 3 = actual/365; the
default is 0).

Date number representing the settlement date.

Date number representing the maturity date; must be greater than Settle.

Coupon rate; must be ³ 0.

Price per $100 face value; must be > 0.

Redemption value per $100 face value (optional); must be ³ 0; the default is 100.

Frequency of coupon payments (optional) in number of payments per year; can be 1, 2, 4, or 12; the default is 2.

Flag specifying which calendar to observe:
0 = US (NASD) 30/360; default if you omit the argument
1 = Actual/actual
2 = Actual/360
3 = Actual/365
4 = European 30/360

Given yield to be converted to another compounding frequency.

Number of times given yield is compounded per year.

Number of times target yield is compounded per year.

Number of periods for quoted yields (F1 is the default).

Number of periods for quoted yields (F2 is the default).

The date (Imperial Year, Month, Day).

The double-byte (full-width) character string.

The single-byte (half-width) character string.

The first string to be compared.

The second string to be compared.

The kanji number.

The arabic number.

1 - Long form, 2 - Long form (accounting), 3 - Short form.

A numeric array or cells of values.

A value to test against the mean of the values in Array.

Population standard deviation; if omitted, @ZTEST uses the sample standard deviation.

Using properties
Most objects in Quattro Pro have properties. For example, you can apply the Bold property to a cell, or the Name
property to a sheet. You can use the @PROPERTY function or a Property macro command to automate the setting
or viewing of properties. When you use the @PROPERTY function or a Property macro command, you need to use
the correct syntax to view or change the values of the properties of an object. For further information, see
Understanding syntax, Object precedence, and Identifying objects.

To display or change the property settings of an object:
· @PROPERTY(Object.Property)
· {GETOBJECTPROPERTY Cell, Object.Property} see Quattro Pro Macros Help

· {SETOBJECTPROPERTY Object.Property, Value} see Quattro Pro Macros Help
· {GETPROPERTY Cell, Property} see Quattro Pro Macros Help
· {SETPROPERTY Property, Value} see Quattro Pro Macros Help

To display the syntax for specific objects:
· Active Object properties
· Common Chart Object properties
· Drawn Chart Object properties
· Fixed Chart Object properties
· Common properties
· Dialog Control properties
· Menu Item properties
· Notebook Object properties
· Objects Sheet Icon properties
 Related topics

Understanding syntax
The tables in this section can consist of the following columns:
Property column lists the objects and their properties.

Argument column shows the correct name of the property to use in the @PROPERTY function or a Property
macro command.
Syntax column shows the syntax of the property settings. Italicized items in the Syntax column describe the
type of data returned; items in normal type are entered (when setting a property). If vertical bars (|) separate items,
then only those items are returned or allowed in the property. For example, "Both | Window | Panel | None" means
that the property setting is either Both, Window, Panel, or None; you can enter only one of these items to set the
property. Another example is Precision | Type, which indicates that either the type or precision setting is listed in
that position. Items in angle brackets (<>) are optional.

 Related topics

Object precedence
If a situation arises where a property command could affect multiple objects, the object highest on the following
list is identified:
1 Dialog box
2 Chart
3 Floating object
4 Named cell

 Notes
· A property command could affect multiple objects if the objects have the same name.
· When the Objects sheet is active, you cannot identify a dialog box or chart. The icon representing the dialog

box or chart is identified instead.
 Related topics

Identifying objects
To identify an object, use the following Syntax:

Object Syntax Example Note
Cell or Cells [NBName]BlockAddress A:A23 [NBName] is optional
Chart [NBName]ChartName Chart1 [NBName] is optional.
Chart object [NBName]ChartName:ObjName [NBName] is optional.

ChartName: is not needed
if the chart window
containing the object is
active.

Chart icon ChartName Chart icons can only be
identified when the
Objects sheet is selected.

Dialog box [NBName]DialogName Dialog1 [NBName] is optional.
Dialog control [NBName]DialogName:ObjName Dialog1:Bitma

p1
[NBName] is optional.
DialogName: is not
needed if the dialog box
containing the control is
active.

Dialog icon DialogName Dialog icons can only be
identified when the
Objects sheet is selected.

Floating object [NBName]Sheet:ObjName [NBName] and Page: are
optional.

Menu item Menupath /Edit/Paste
special

To identify a menu item,
enter its path separated
by forward slashes (/)

Notebook [NBName] You can change
properties of the active
notebook using
Active_Notebook.Property.

Sheet Active_Page You can only read or set
properties of the active
sheet using this syntax.

Toolbar [ToolbarName] Chart and
Drawing Tools

Toolbar control [ToolbarName]ObjName [ToolbarName] is not
needed if the Toolbar
containing the control is
active.

 Related topics

Cell Property
The following examples show how you can manipulate the property of a cell: the Numeric Format property of the
cells A:A23.
Example 1 (the setting is stored in B:C32)
{GETOBJECTPROPERTY B:C32,"A:A23.Numeric_Format"}
Example 2 (the link command formats A:A23 as General)
ON Init SET General TO A:A23.Numeric_Format
@PROPERTY("A:A23.Numeric_Format")
Example 3 (formats A:A23 as Currency with 2 decimal places)
SETOBJECTPROPERTY "A:A23.Numeric_Format","Currency,2"}
 Related topics

Control Property
The following examples show how you can manipulate the property of an object: the Disabled property of a
bitmap button named Bitmap1 in a dialog box named Dialog1.
Example 1 (the setting is stored in B:C32)
{GETOBJECTPROPERTY B:C32,"Dialog1:Bitmap1.Disabled"}
Example 2 (the link command disables the button)
ON Init SET Yes TO Dialog1:Bitmap1.Disabled
Example 3 (enables the button.)
@PROPERTY("Dialog1:Bitmap1.Disabled")
{SETOBJECTPROPERTY "Dialog1:Bitmap1.Disabled","No"}

 Note
· {SETPROPERTY}and {GETPROPERTY} work on the selected object, and just take the name of the property to

manipulate.
 Related topics

Common properties
Many objects contain the same property. The following are some of the more common properties:
Color
Dimension
Font
 Related topics

Color property
Syntax
Red, Green, Blue

Description
Each component is an integer from 0 to 255; 0 indicates that none of the hue is present; 255 indicates maximum
saturation for the hue. Black is 0,0,0 and white is 255,255,255.
You can also retrieve each of these color components individually. The following table lists the argument required
to read or set an individual component of a Color property. Item is the word appearing in property dialogs and
property tables that describes what color is being manipulated.
The following table lists properties and syntax for Color:

Property Syntax Description
Item_Color Item_Color;Red, Green, Blue The amount of red, green, and

blue in the color
Red Item_Color.Red The amount of red in the color
Green Item_Color.Green The amount of green in the

color
Blue Item_Color.Blue The amount of blue in the

color
 Related topics

Dimension property
Syntax
X, Y, Width, Height

Description
Lets you specify the precise size and position of an object relative to the window containing it.
You can read or set an individual option of the Dimension property by using the following arguments:
The following table lists properties and syntax for the Dimension:

Property Syntax Description
Dimension Dimension X, Y, Width, Height
X Pos Dimension.X The distance in pixels between

the left edge of the object and
the left side of the window

Y Pos Dimension.Y The distance in pixels between
the top edge of the object and
the bottom edge of the
window's title bar

Width Dimension.Width The width of the object in
pixels

Height Dimension.Height The height of the object in
pixels

 Note
· For drawn objects, measure Y Pos from the top of the chart background.
 Related topics

Font property
Syntax
Typeface, PointSize, Bold, Italic, Underline, Strikeout

Description
Lets you specify the font attributes of the object. You can read or set an individual option of a Font property by
using the following arguments.
The following table lists properties, arguments, and syntax for the Font:

Property Argument Syntax
Item Font Item_Font Typeface, PointSize, Bold, Italic,

Underline, Strikeout
Typeface Item_Font.Typeface Typeface
Point Size Item_Font.Point_Size PointSize
Bold Item_Font.Bold Yes | No
Italic Item_Font.Italic Yes | No
Underline Item_Font.Underline Yes | No
Strikeout Item_Font.Strikeout Yes | No

Example
{Setproperty Cell_Font;"Arial;10;No;No;No;Yes"}
 Related topics

Common Chart Object properties
Two properties are found in many chart objects:
Fill Settings
Text Settings
 Related topics

Fill Settings property
Syntax
Fill_Settings;None | Solid | Pattern | Wash | Bitmap, Type, Color1, Color2

Description
Lets you specify the color and pattern of objects. If Fill Style is None, leave the Type field empty
The following table lists properties and syntax for the Fill Settings:

Property Syntax
Fill Settings Fill_Settings;None | Solid | Pattern | Wash | Bitmap, Type, Color1,

Color2
None Fill_Settings;None
Solid Fill_Settings;Solid,Solid
Pattern Fill_Settings;Pattern,Solid

Fill_Settings;Pattern,"Tight Dots"
Fill_Settings;Pattern,"Thick Stripes Down"
Fill_Settings;Pattern,"Thick Stripes Up"
Fill_Settings;Pattern,"Vertical Lines"
Fill_Settings;Pattern,"Horizontal Lines"
Fill_Settings;Pattern,"Horizontal Grid"
Fill_Settings;Pattern,"Hatch 1"
Fill_Settings;Pattern,"Diagonal 1"
Fill_Settings;;Pattern,"Diagonal 2"
Fill_Settings;Pattern,Vertical
Fill_Settings;Pattern,Horizontal
Fill_Settings;Pattern,"Loose Dots"
Fill_Settings;Pattern,"Medium Dots"
Fill_Settings;Pattern,Pepita
Fill_Settings;Pattern,Scales
Fill_Settings;Pattern,"Diagonal Grid"
Fill_Settings;Pattern,"Hatch 2"
Fill_Settings;Pattern,"Fuzzy Stripes Down"
Fill_Settings;Pattern,Weave
Fill_Settings;Pattern,"Zig Zag"
Fill_Settings;Pattern,"Staggered Dashes"
Fill_Settings;Pattern,Lattice
Fill_Settings;Pattern,Bricks

Wash Fill_Settings;Wash,"Left to right"
Fill_Settings Wash,"Right to left"
Fill_Settings;Wash,"Center to left and right"
Fill_Settings;Wash,"Top to bottom"
Fill_Settings;wash,"Bottom to top"
Fill_Settings;Wash,"Center to top and bottom"

Bitmap Fill_Settings;Bitmap,"Crop to fit" | "Shrink to fit" | "Tile to fit" | "3-D
perspective",BitmapName

Color1 Red, Blue, Green
Color2 Red, Blue, Green

Example

{SETPROPERTY Fill_Settings;"Pattern;Solid;;0;0;128;255;255;255"}
 Related topics

Text Settings property
Syntax
Text_Settings;Solid|Wash|Bitmap|3-D, WashType, BitmapName,Shadow, Color1, Color2

Description
Lets you specify whether chart text is solid, a washed tone, or a bitmap. If the style is Solid or Wash, leave the
BitmapName field empty. Shadow indicates whether text should have a drop shadow (Yes) or no shadow (No).
The following table lists properties and syntax for the Text Settings:

Property Syntax
Text
Settings

Text_Settings;Solid|Wash|Bitmap|3-D, WashType,
BitmapName,Shadow, Color1, Color2

Solid Text_Settings;Solid,None,,Shadow
Wash Text_Settings;Wash,"Left to right",,Shadow

Text_Settings;Wash,"Right to left",,Shadow
Text_Settings;Wash,"Center to left and right",,Shadow
Text_Settings;Wash,"Top to bottom",, Shadow
Text_Settings;Wash,"Bottom to top",,Shadow
Text_Settings;Wash,"Center to top and bottom",,Shadow

Bitmap Text_Settings;Bitmap,"Crop to fit"|"Shrink to
fit",BitmapName,Shadow

3-D Text_Settings;3-D, Above Left | Above Center | Above Right | Level
Left | Level Center | Level Right | Bottom Left | Bottom Center |
Bottom Right,,,PerspectiveAmount(0-100), Shaded?(Yes | No)

Color 1 Red, Blue, Green
Color 2 Red, Blue, Green

 Related topics

Active Object properties
Syntax
If you do not know the exact name of the active object you can still view the property settings:

Active object
The selected cells. Active_Block
The active notebook window Active_Notebook
The active notebook sheet Active_Page

Description
The active object is the object that you are currently using.
The following table lists properties, arguments, and syntax for the Active Object object:

Property Syntax
Active Selection See Cell in topic Notebook Object Properties for a list of

cell properties
Active Notebook See Notebook in topic Notebook Object Properties for a

list of notebook properties
Active Sheet
Conditional Color Conditional_Color;Enable, SmallVal, GreatVal, BelColor,

Normal, AboveCol, ERRCol
Above Normal Color Conditional_Color.Above_Normal_Color;0-15
Below Normal Color Conditional_Color.Below_Normal_Color;0-15
Enable Conditional_Color.Enable;Yes | No
ERR Color Conditional_Color.ERR_Color;0-15
Greatest Normal
Value

Conditional_Color.Greatest_Normal_Value;GreatVa

Normal Color Conditional_Color.Normal_Color;0-15
Smallest Normal
Value

Conditional_Color.Smallest_Normal_Value;SmallVal

Default Width Default_Width;WidthInTwips
Display Display;DisplayZeros?(Yes | No), RowBorders?(Yes | No),

ColBorders?(Yes | No), HorzGridLines?(Yes | No),
VertGridLines?(Yes | No)

Border Options Display.Borders;RowBorders?(Yes | No), ColBorders?(Yes
| No)

Column Borders Display.Borders.Column_Borde rs;Yes | No
Display Zeros Display.Display_Zeros;Yes | No
Grid Lines Display.Grid_Lines;HorzGridLines?(Yes | No),

VertGridLines?(Yes | No)
Horizontal Grid Lines Display.Grid_Lines.Horizontal;Yes | No
Row Borders Display.Borders.Row_Borders;Yes | No
Vertical Grid Lines Display.Grid_Lines.Vertical;Yes | No
Name Name;Name
Protection Protection;CellLocking?(Yes | No), ObjectLocking?(Yes |

No)
Enable Cell Locking Protection.Cells;Yes | No
Enable Object
Locking

Protection.Objects;Yes | No

Tab Color Tab_Color

Zoom Factor Zoom_Factor;10-400
 Related topics

Menu Item properties
Syntax

ID Syntax Description
/<- The first item on the menu bar. You can include this name at the

end of a menu path (for example, /File/<- identifies the first item
on the File menu).

/-> The last item on the menu bar. You can include this name at the
end of a menu path (for example, /Tools/Macro/-> identifies the
last item on the Tools Macro menu).

/n The nth item on the menu bar. You can include this name at the
end of a menu path (for example, /Help/2 identifies the second
item on the Help menu).

Description
You can manipulate the properties for each item on the menu bar. To identify an item on the menu bar, enter its
path separated by forward slashes (/). Do not include ellipses (...).The following table lists some special ways to
identify menu items.
The following table lists properties and syntax for the Menu Item object:

Property Syntax
Menu Item Menupath.Property
 Checked (H) Checked;Yes | No
Depend On (H) Depend_On;Desktop, NoteWin, ChartWin, DiaWin, EditWin,

ObjectsPage
Disabled (H) Disabled;Yes | No
Enabled (H) Enabled;Yes | No
Grayed (H) Grayed;Yes | No
Help Line (H) Help_Line;HelpLine
Hidden (H) Hidden;Yes | No
HotKey (H) HotKey;HotKey
 Show (H) Show;Yes | No
Title (H) Title;Title

 Note
· If a property name is followed by (H), it is a hidden property and does not appear in the object's property

dialog.
 Related topics

Dialog Control properties
You can view or set properties for dialog controls. For a table of arguments and syntax for the entire dialog box
as an object, see Dialog Box Properties.
To view properties, arguments, and syntax for the following dialogs, choose from the following list:
Bitmap Button
Button
Check Box
Color Control
Combo Box
Edit Field
Edit Integer
File Control
Group Box
Horizontal Scroller (HScrollBar)
Label
List Box
Radio Button
Rectangle
Spin Control
Tab Control
Tab Button Control
Time Control (TimeCtrl)
Vertical Scroller (ScrollBar)
 Related topics

Dialog Box properties
Syntax
[NBName]DialogName:ObjName.Property

Description
To identify a dialog box, use its name followed by a colon. To specify the property settings of a dialog box outside
of the active notebook, enter the notebook name in brackets before the dialog box name:
NBName is the name of the notebook containing the dialog box;it is optional.
The following table shows properties and syntax for the entire dialog box as an object:

Property Syntax Description
Dialog Box (Dialog) [NBName]DialogName:ObjName.Proper

ty
NBName    is the name of the
active notebook
DialogName is the name of the
dialog box containing the object
ObjName is either the object ID
number or the name of the
object
Property is one of the strings
listed in the Argument column of
the dialog control property
tables

Dimension Dimension see Dimension
Disabled Disabled;Yes | No
Grid Options Grid_Options;Gridsize, GridShown,

GridEnabled
Name Name;Name
Position Adjust Position_Adjust;Depend, LeftRel, TopRel,

RightRel, BottomRel, CenterHor,
CenterVer

Title Title;Title
Value (H) Value;the current settings of all

dialog/Toolbar controls that have
Process Value set to Yes

Example
@PROPERTY("Dialog1:.Title")

 Note
· If a property name is followed by (H), it is a hidden property and does not appear in the object's property

dialog.
 Related topics

Bitmap Button properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the properties of the bitmap button.
The following table lists properties and syntax for the Bitmap Button object:

Property Syntax Description
Bitmap Button [NBName]DialogName:ObjName.Property NBName    is the name of the active

notebook
DialogName is the name of the
dialog box containing the object
ObjName is either the object ID
number or the name of the object
Property is one of the strings listed
in the Argument column of the
dialog control property tables

Bitmap Bitmap;BitmapName
Button Type Button_Type;Push Button | Radio Button |

Check Box | OK Exit Button | Cancel Exit
Button

Default Button (D) Default_Button;Yes | No
Depend On Depend_On;Desktop, NoteWin, ChartWin,

DiaWin, EditWin, ObjectsPage
Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Draw Beveling Draw_Beveling;Yes | No
Enabled (H, D) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
Label Text Label_Text;LabelText
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust (D) Position_Adjust;Depend, LeftRel, TopRel,

RightRel, BottomRel, CenterHor,
CenterVer

Show (H, D) Show;Yes | No
Tab Stop (D) Tab_Stop;Yes | No
Text Draw Flags Text_Draw_Flags;Apply, HorCenter,

AlignRight(Yes)orLeft(No), VertCenter,
AlignBottom(Yes)orTop(No), WordBreak,
SingleLine

Value (H, D) Value;Yes | No

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Button properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the button properties.
The following table lists properties and syntax for the Button object:

Property Syntax Description
Button [NBName]DialogName:ObjName.Proper

ty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID
number or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Button Type Button_Type;Push Button | Radio Button
| Check Box | OK Exit Button | Cancel
Exit Button

Default Button (D) Default_Button;Yes | No
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Enabled (H, D) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
Label Text Label_Text;LabelText
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Show (H, D) Show;Yes | No
Tab Stop (D) Tap_Stop;Yes | No
Text Draw Flags Text_Draw_Flags;Apply, HorCenter,

AlignRight(Yes)orLeft(No), VertCenter,
AlignBottom(Yes)orTop(No), WordBreak,
SingleLine

Value (H, D) Value;{Page.Display
"No;Yes;Yes;Yes;Yes"}Yes | No

Example
@PROPERTY("Dialog1:Button1.Dimension")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Check Box properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the check box properties.
The following table lists properties and syntax for the Check Box object:

Property Syntax Description
Check Box [NBName]DialogName:ObjName.Prop

erty
NBName    is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Button Type Button_Type;Push Button | Radio
Button | Check Box | OK Exit Button |
Cancel Exit Button

Depend On Depend_On;Desktop, NoteWin,
ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension Dimension see Dimension
Disabled Disabled;Yes | No
Draw to Right Draw_to_right;Yes | No
Enabled (H) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden Hidden;Yes | No
Label Text Label_Text;LabelText
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value Process_Value;Yes | No
Show (H) Show;Yes | No
Tab Stop Tab_Stop;Yes | No
Text Draw Flags Text_Draw_Flags;Apply, HorCenter,

AlignRight(Yes)orLeft(No), VertCenter,
AlignBottom(Yes)orTop(No),
WordBreak, SingleLine

Value (H) Value;Yes | No

Example
@PROPERTY("Dialog1:Checkbox1.Name")

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's property

dialog.

· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read
only property.

 Related topics

Color Control properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the color control properties.
The following table lists properties and syntax for the Color Control object:

Property Syntax Description
Color Control [NBName]DialogName:ObjName.Proper

ty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

56 Colors 56_Color;Yes | No
Custom Colors Custom_Colors;Yes | No
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension (D) Dimension; see Dimension
Disabled Disabled;Yes | No
Enabled (H, D) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust (D) Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value (D) Process_Value;Yes | No
Show (H, D) Show;Yes | No
Tab Stop (D) Tab_Stop;Yes | No
Value (H, D) Value;Red,Green,Blue

Example
@PROPERTY("Dialog1:ColorCtl2.56_Colors")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Combo Box properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the combo box properties.
The following table lists properties and syntax for the Combo Box object:

Property Syntax Description
Combo Box [NBName]DialogName:ObjName.Prop

erty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Add Down Button Add_Down_Button;Yes | No
Allow Point Mode Allow_Point_Mode;Yes | No
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Edit Disabled Edit_Disabled;Yes | No
Edit Length Edit_Length;Length
Enabled (H, D) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
History List History_List;Yes | No
List List;List
List Length List_Length;Length
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Ordered Ordered;Yes | No
Position Adjust (D) Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value (D) Process_Value;Yes | No
Selected Selected;Selected
Show (H, D) Show;Yes | No
Tab Stop (D) Tab_Stop;Yes | No
Terminate Dialog
(D)

Terminate_Dialog;Yes | No

Value (H, D) Value;the text of the selected item in
the combo box

Example

@PROPERTY("Dialog1:Combobox3.Allow_Point_Mode")
 Notes

· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for
Toolbars and Dialogs.

· If a property name is followed by (H), it is a hidden property and does not appear in the object's property
dialog.

· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read
only property.

 Related topics

Edit Field properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the edit field properties.
The following table lists properties and syntax for the Edit Field object:

Property Syntax Description
Edit Field [NBName]DialogName:ObjName.Prop

erty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Allow Point Mode Allow_Point_Mode;Yes | No
Convert Text Convert_Text;Yes | No
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Edit Length Edit_Length;Length
Enabled (H, D) Enabled;Yes | No
Field Type Field_Type;Integer | String | Real |

Range | Hidden
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust (D) Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value (D) Process_Value;Yes | No
Show (H, D) Show;Yes | No
Show Frame Show_Frame;Yes | No
Tab Stop (D) Tab_Stop;Yes | No
Terminate Dialog
(D)

Terminate_Dialog;Yes | No

Value (H, D) Value;the text of the edit field

Example
@PROPERTY("Dialog1:EditField4.Edit_Length")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.

· If a property name is followed by (H), it is a hidden property and does not appear in the object's property
dialog.

· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read
only property.

 Related topics

Edit Integer properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the edit integer properties.
The following table lists properties and syntax for the Edit Integer object:

Property Syntax Description
Edit Integer [NBName]DialogName:ObjName.Proper

ty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID
number or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Default Default;DefaultValue
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Edit Length Edit_Length;Length
Enabled (H, D) Enabled;Yes | No
Field Type Field_Type;Integer | String | Real |

Range | Hidden
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
Maximum Maximum;MaxValue
Minimum Minimum;MinValue
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust (D) Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value (D) Process_Value;Yes | No
Show (H, D) Show;Yes | No
Show Frame Show_Frame;Yes | No
Tab Stop (D) Tab_Stop;Yes | No
Terminate Dialog
(D)

Terminate_Dialog;Yes | No

Value (H, D) Value;the value of the edit field

Example
@PROPERTY("Dialog1:EditInteger2.Field_Type")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

File Select Control properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the file select control properties.
The following table lists properties and syntax for the File Select Control object:

Property Syntax Description
File Select Control [NBName]DialogName:ObjName.Proper

ty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID
number or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Depend On Depend_On;Desktop, NoteWin,
ChartWin, DiaWin, EditWin,
ObjectsPage

Dialog Type Dialog_Type;Open | Save
Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Edit Disabled Edit_Disabled;Yes | No
Enabled (H, D) Enabled;Yes | No
File TypeList FileTypeList;FileTypeList
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID ObjectID;ObjectID
Position Adjust (D) Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value (D) Process_Value;Yes | No
Show (H, D) Show;Yes | No
Tab Stop (D) Tab_Stop;Yes | No
Terminate Dialog (D) Terminate_Dialog;Yes | No
Title Title;Title
Value (H, D) Value;The full path and filename

Example
@PROPERTY("Dialog1:FileSelCtrl6.Dialog_Type")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Group Box properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the group box properties.
The following table lists properties and syntax for the Group Box object:

Property Syntax Description
Group Box [NBName]DialogName:ObjName.Propert

y
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Attach Child Attach_Child;Yes | No
Dimension Dimension see Dimension
Disabled Disabled;Yes | No
Enabled (H) Enabled;Yes | No
Group Text Group_Text;Text
Hidden Hidden;Yes | No
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust Position_Adjust;Depend, LeftRel, TopRel,

RightRel, BottomRel, CenterHor,
CenterVer

Process Value Process_Value;Yes | No
Selected Selected;Number
Show (H) Show;Yes | No
Value (H) Value;The type of control selecte

Example
@PROPERTY("Dialog1:GroupBox10.Group_Text")

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Horizontal Scroller properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the horizontal scroller properties.
The following table lists properties and syntax for the Horizontal Scroller object:

Property Syntax Description
Horizontal Scroller
(HScrollBar)

[NBName]DialogName:ObjName.Prop
erty

NBName is the name of the active
notebook
DialogName is the name of the dialog box
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Depend On Depend_On;Desktop, NoteWin,
ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Enabled (H, D) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Parameters Parameters;Min, Max, Line, Page,

Time
Position Adjust (D) Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value (D) Process_Value;Yes | No
Show (H, D) Show;Yes | No
Tab Stop (D) Tab_Stop;Yes | No
Value (H, D) Value;the numeric value for the

position of the scroll thumb

Example
@PROPERTY("Dialog1:Hscrollbar1.Show")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Label properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the label properties.
The following table lists properties and syntax for the Label object:

Property Syntax Description
Label [NBName]DialogName:ObjName.Prop

erty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Depend On Depend_On;Desktop, NoteWin,
ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Enabled (H, D) Enabled;Yes | No
Grayed Grayed;Yes | No
Hidden (D) Hidden;Yes | No
Label Font Label_Font;
Label Text Label_Text;LabelText
Name Name;Name
Object ID (R) Object_ID;ObjectID
Position Adjust (D) Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value (D) Process_Value;Yes | No
Show (H, D) Show;Yes | No
Text Draw Flags Text_Draw_Flags;Apply, HorCenter,

AlignRight(Yes) or Left(No),
VertCenter, AlignBottom(Yes)or
Top(No), WordBreak, SingleLine

Value (H, D) Value;LabelText

Example
@PROPERTY("Dialog1:label3.label_font")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

List Box properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the list box properties.
The following table lists properties and syntax for the List Box object:

Property Syntax Description
List Box [NBName]DialogName:ObjName.Prop

erty
NBName is the name of the active
notebook
DialogName is the name of the dialog box
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Attach Child Attach_Child;Yes | No
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension Dimension see Dimension
Disabled Disabled;Yes | No
Enabled (H) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden Hidden;Yes | No
List List;List
Name Name;Name
Number of
Columns

Number_of_Columns;Number

Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Ordered Ordered;Yes | No
Position Adjust Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value Process_Value;Yes | No
Selected Selected;NumberSelected
Selection Text Selection_Text;SelectionText
Show (H) Show;Yes | No
Tab Stop Tab_Stop;Yes | No
Value (H) Value;the selected item in the list

box

Example
@PROPERTY("Dialog1:listbox2.number_of_columns")

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Radio Button properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the radio button properties.
The following table lists properties and syntax for the Radio Button object:

Property Syntax Description
Radio Button [NBName]DialogName:ObjName.Proper

ty
NBName is the name of the active
notebook
DialogName is the name of the dialog box
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Button Type Button_Type;Push Button | Radio Button
| Check Box | OK Exit Button | Cancel
Exit Button

Depend On Depend_On;Desktop, NoteWin,
ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension Dimension see Dimension
Disabled Disabled;Yes | No
Draw to Right Draw_to_right;Yes | No
Enabled (H) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden Hidden;Yes | No
Label Text Label_Text;LabelText
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value Process_Value;Yes | No
Show (H) Show;Yes | No
Tab Stop Tab_Stop;Yes | No
Text Draw Flags Text_Draw_Flags;Apply, HorCenter,

AlignRight(Yes)orLeft(No), VertCenter,
AlignBottom(Yes)orTop(No), WordBreak,
SingleLine

Value (H) Value;Yes | No

Example
@PROPERTY("Dialog1:radiobutton3.button_type")

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.

· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read
only property.

 Related topics

Rectangle properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the rectangle properties.
The following table lists properties and syntax for the Rectangle object:

Property Syntax Description
Rectangle [NBName]DialogName:ObjName.Prop

erty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Attach Child (D) Attach_Child;Yes | No
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Enabled (H) Enabled;Yes | No
Fill Color Fill_Color
Frame Color Frame_Color
Grayed Grayed;Yes | No
Hidden (D) Hidden;Yes | No
Name Name;Name
Object ID (R) Object_ID;ObjectID
Position Adjust (D) Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Rectangle Style Rectangle_Style;Plain | Framed |
Beveled Out | Beveled In | Transparent
| Engraved

Show (H, D) Show;Yes | No

Example
@PROPERTY("Dialog1:rectangle3.fill_color")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Spin Control properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the spin control properties.
The following table lists properties and syntax for the Spin Control object:

Property Syntax Description
Spin Control [NBName]DialogName:ObjName.Prop

erty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Attach Child (D) Attach_Child;Yes | No
Default Default;DefaultValue
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension (D) Dimension see Dimension
Disabled Disabled;Yes | No
Edit Length Edit_Length;Length
Enabled (H, D) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
Maximum Maximum;MaxValue
Minimum Minimum;MinValue
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust (D) Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value (D) Process_Value;Yes | No
Show (H, D) Show;Yes | No
Tab Stop (D) Tab_Stop;Yes | No
Terminate Dialog
(D)

Terminate_Dialog;Yes | No

Value (H, D) Value;the current value of the spin
control

Example
@PROPERTY("Dialog1:spinctrl3.maximum")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Tab Control properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the tab control properties.
The following table lists properties and syntax for the Tab Control object:

Property Syntax Description
Tab Control [NBName]DialogName:ObjName.Proper

ty
NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Active Sheet Active_Page;ActivePage
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin,
ObjectsPage

Dimension Dimension see Dimension
Disabled Disabled;Yes | No
Enabled (H) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden Hidden;Yes | No
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID Object_ID;ObjectID
Position Adjust Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Process Value Process_Value;Yes | No
Sheet List Page_List;
Show (H) Show;Yes | No
Tab Stop Tab_Stop;Yes | No
Value (H) Value;the current value of the spin

control

Example
@PROPERTY("Dialog1:TabCtrl3.Active_Page")

 Note
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
 Related topics

Tab Button Control properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the tab button control properties.
The following table lists properties and syntax for the Tab Button Control object:

Property Syntax Description
Tab Button Control [NBName]DialogName:ObjName.Prop

erty
NBName is the name of the active
notebook
DialogName is the name of the dialog box
containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID Object_ID;ObjectID
Sheet Name Text PageName_Text;PageNameText

Example
@PROPERTY("Dialog1:TabButton2.Object_ID")
 Related topics

Time Control properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the time control properties.
The following table lists properties and syntax for the Time Control object:

Property Syntax Description
Time Control
(TimeCtrl)

[NBName]DialogName:ObjName.Propert
y

NBName is the name of the active
notebook
DialogName is the name of the
dialog box containing the object
ObjName is either the object ID
number or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Alarm On Alarm_On;Yes | No
Alarm Time Alarm_Time;Hour, Minute, Second
Hour Alarm_Time.Hour;Hour
Minute Alarm_Time.Minute;Minute
Second Alarm_Time.Second;Second
Attach Child (D) Attach_Child;Yes | No
Current Time (R) Current_Time;Hour, Minute, Second
Hour Current_Time.Hour;Hour
Minute Current_Time.Minute;Minute
Second Current_Time.Second;Second
Depend On Depend_On;Desktop, NoteWin,

ChartWin, DiaWin, EditWin, ObjectsPage
Dimension (D) Dimension see Dimension
Help Line Help_Line;HelpLine
Hidden (D) Hidden;Yes | No
Interval in Units Interval_In_Units;Number
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Position Adjust (D) Position_Adjust;Depend, LeftRel, TopRel,

RightRel, BottomRel, CenterHor,
CenterVer

Process Value (D) Process_Value;Yes | No
Show (H, D) Show;Yes | No
Show Time Show_Time;Yes | No
Timer On Timer_On;Yes | No
Units in
Milliseconds

Units_in_Milliseconds;Number

Example
@PROPERTY("Dialog1:TimeCtrl4.alarm_on")

 Notes
· If a property name is followed by (D), it is available for Dialogs only. All other properties are available for

Toolbars and Dialogs.
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Vertical Scroller properties
Syntax
[NBName]DialogName:ObjName.Property

Description
Lets you specify the vertical scroller properties.
The following table lists properties and syntax for the Vertical Scroller object:

Property Syntax Description
Vertical Scroller
(ScrollBar)

[NBName]DialogName:ObjName.Property NBName is the name of the active
notebook
DialogName is the name of the dialog
box containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Depend On Depend_On;Desktop, NoteWin, ChartWin,
DiaWin, EditWin, ObjectsPage

Dimension Dimension see Dimension
Disabled Disabled;Yes | No
Enabled (H) Enabled;Yes | No
Grayed Grayed;Yes | No
Help Line Help_Line;HelpLine
Hidden Hidden;Yes | No
Name Name;Name
Object Help Object_Help;Title, Text, Context
Object ID (R) Object_ID;ObjectID
Parameters Parameters;Min, Max, Line, Page, Time
Position Adjust Position_Adjust;Depend, LeftRel, TopRel,

RightRel, BottomRel, CenterHor,
CenterVer

Process Value Process_Value;Yes | No
Show (H) Show;Yes | No
Tab Stop Tab_Stop;Yes | No
Value (H) Value;the numeric value for the position

of the scroll thumb

Example
@PROPERTY("Dialog1:scrollbar2.parameters")

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Drawn Chart Object properties
Drawn objects in a chart are created by the Chart tools; see Fixed Chart Object Properties for a list of fixed chart
objects. Note that some properties of a drawn object only appear in a property dialog when Quattro Pro is loaded
with the /D command line switch.
To view properties, arguments, and syntax for the following chart annotation objects, choose from the following
list:
Arrow
Ellipse
Freehand Polygon
Freehand Polyline
Line
Polygon
Polyline
Rectangle
Rounded Rectangle
Selection
Text Box
 Related topics

Arrow properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the arrow properties.
The following table lists properties and syntax for the Arrow object:

Property Syntax Description
Arrow [NBName]ChartName:ObjName.Propert

y
NBName is the name of the active
notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 | S0W3 |
S0W4 | S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Blue, Green

Dimension (H) Dimension see Dimension
Fill Settings Fill_Settings see Common Chart Object properties
Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID

Example
{SetProperty "Object_Name";"Arrow2"}

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Cell properties
Description
Lets you specify the cell properties.
The following table lists properties and syntax for the Cell object:

Property Syntax Description
Cell [NBName]ChartName:ObjName.Property NBName is the name of the active

notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in
the Argument column of the dialog
control property tables

Dimension (H) Dimension see Dimension
Display Display;RowBorders?(Yes | No),

ColBorders?(Yes | No), HorzGridLines?
(Yes | No), VertGridLines?(Yes | No),
AspectRatio?(Yes | No)

Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID
Selection Selection;Block

Example
{GETOBJECTPROPERTY B:C32,"A:A23.Numeric_Format"}

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read-

only property.
 Related topics

Ellipse properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the ellipse properties.
The following table lists properties and syntax for the Ellipse object:

Property Syntax Description
Ellipse [NBName]ChartName:ObjName.Prope

rty
NBName is the name of the active notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 | S0W3
| S0W4 | S1W1 | S2W1 | S3W1 | S4W1
| S5W1, Red, Blue, Green

Dimension (H) Dimension see Dimension
Fill Settings Fill_Settings see Common Chart Object properties
Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID
Object Name Object_Name;ObjName
Protection Protection;Yes | No

Example
{SETOBJECTPROPERTY "A:Ellipse1.Fill_Settings";"Bitmap,Shrink to fit, C:\Corel\Suite9\Graphics\Pictures\Business\
World.bmp"}

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command;it is a read

only property.
 Related topics

Freehand Polygon properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the freehand polygon properties.
The following table lists properties and syntax for the Freehand Polygon object:

Property Syntax Description
Freehand Polygon [NBName]ChartName:ObjName.Prope

rty
NBName is the name of the active
notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 | S0W3
| S0W4 | S1W1 | S2W1 | S3W1 | S4W1
| S5W1, Red, Blue, Green

Dimension (H) Dimension see Dimension
Fill Settings Fill_Settings see Common Chart Object properties
Name (H) Name;
Object ID (H, R) Object_ID;ObjectID

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Freehand Polyline properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the freehand polyline properties.
The following table lists properties and syntax for the Freehand Polyline object:

Property Syntax Description
Freehand Polyline [NBName]ChartName:ObjName.Prope

rty
NBName is the name of the active
notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Dimension (H) Dimension see Dimension
Line Setting Line_Setting;S0W1 | S0W2 | S0W3 |

S0W4 | S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Blue, Green

Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Line properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the line properties.
The following table lists properties and syntax for the Line object:

Property Syntax Description
Line [NBName]ChartName:ObjName.Prop

erty
NBName is the name of the active notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Dimension (H) Dimension see Dimension
Line Setting Line_Setting;S0W1 | S0W2 | S0W3 |

S0W4 | S1W1 | S2W1 | S3W1 | S4W1
| S5W1, Red, Blue, Green

Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID

Example
{SetProperty "Object_Name";"Test"}

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by ®, you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Polygon Properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the polygon properties.
The following table lists properties and syntax for the Polygon object:

Property Syntax Description
Polygon [NBName]ChartName:ObjName.Prope

rty
NBName is the name of the active
notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 | S0W3
| S0W4 | S1W1 | S2W1 | S3W1 | S4W1
| S5W1, Red, Blue, Green

Dimension (H) Dimension see Dimension
Fill Settings Fill_Settings see Common Chart Object properties
Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Polyline properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the polyline properties.
The following table lists properties and syntax for the Polyline object:

Property Syntax Description
Polyline [NBName]ChartName:ObjName.Propert

y
NBName is the name of the active
notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Dimension (H) Dimension see Dimension
Line Setting Line_Setting;S0W1 | S0W2 | S0W3 |

S0W4 | S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Blue, Green

Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Rectangle properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the rectangle properties.
The following table lists properties and syntax for the Rectangle object:

Property Syntax Description
Rectangle [NBName]ChartName:ObjName.Prope

rty
NBName is the name of the active
notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 | S0W3
| S0W4 | S1W1 | S2W1 | S3W1 | S4W1
| S5W1, Red, Blue, Green

Dimension (H) Dimension see Dimension
Fill Settings Fill_Settings see Common Chart Object properties
Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID

 Note
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
 Related topics

Rounded Rectangle properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the rounded rectangle properties.
The following table lists properties and syntax for the Rounded Rectangle object:

Property Syntax Description
Rounded
Rectangle

[NBName]ChartName:ObjName.Prope
rty

NBName is the name of the active
notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number
or the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 | S0W3
| S0W4 | S1W1 | S2W1 | S3W1 | S4W1
| S5W1, Red, Blue, Green

Dimension (H) Dimension see Dimension
Fill Settings Fill_Settings see Common Chart Object properties
Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Text Box properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the text box properties.
The following table lists properties and syntax for the Text Box object:

Property Syntax Description
Text Box [NBName]ChartName:ObjName.Propert

y
NBName is the name of the active
notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Alignment Alignment;Left | Right | Center,
WordWrap, TabStops

Box Settings Box_Settings;No box | Single outline |
Rounded corners | Double outline |
Thick outline 1 | Thick rounded corners
| Three dimensional | Thick outline 2 |
Bevel out | Shadowed | Thick outline 3 |
Bevel in, Red, Blue, Green

Chart Button Chart_Button;GotoSlide?, SlideName,
Effect, Duration, Slow | Med | Fast,
Overlay?, RunMacro?, MacroText

Dimension (H) Dimension
Fill Settings Fill_Settings
Name (H) Name;Name
Object ID (H, R) Object_ID;ObjectID
Text Font Text_Font see Font
Text Settings Text_Settings see Common Chart Object properties
Value (H) Value;Contents of the textbox

Example
{SetProperty Box_Settings;"Thick outline 1;0;0;0"}

 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Fixed Chart Object properties
A fixed object in a chart is an object not created with the Chart toolbar. See Chart Window Properties and Chart
Background Properties for chart properties. For a list of drawn chart objects (such as arrows), see Chart
Annotation Object Properties.
To view properties, arguments, and syntax for the following fixed chart objects, choose from the following list:
Area Fill
Area Series
Axis Title
Bar Series
Bullet Series
Chart Background
Chart Legend
Chart Pane
Chart Subtitle
Chart Title Box
Chart Window
Column Chart
Float Series
Line Series
Map Legend
Map Properties
Pie Chart
Series Label
X-Axis
Y-Axis
 Related topics

Fixed Chart Object Names
The following table lists the names for the objects in a fixed chart:

Property Description
G$Base Base of a 3-D chart
G$BulletSeries[n] nth level of bulleted text in a bullet chart;the first level is

1, the second is 2
G$Graph Background of the chart window
G$LeftWall Left wall of a 3-D chart grid
G$Legend Chart legend
G$Series[x,y] yth data point of the xth series in the chart
G$SeriesLabel Series labels
G$Title Title, subtitle, and title box of the chart
G$X1Axis x-axis
G$X1Title x-axis title
G$Y1Axis Primary y-axis
G$Y1Title Primary y-axis title
G$Y2Axis Secondary y-axis
G$Y2Title Secondary y-axis title

 Related topics

Area Fill properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the area fill properties.
The following table lists properties and syntax for the Area Fill object:

Property Syntax Description
Area Fill [NBName]ChartName:ObjName.Prope

rty
NBName is the name of the active notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Setting s;S0W1 | S0W2 | S0W3
| S0W4 | S1W1 | S2W1 | S3W1 | S4W1
| S5W1, Red, Blue, Green

Fill Settings Fill_Settings see Common Chart Object properties

Example
{SelectObject "G$RightWall"}
{SetProperty Fill_Settings;"Pattern;Horizontal Grid;;172;87;86;255;255;255"}
 Related topics

Area Series properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the area series properties.
The following table lists properties and syntax for the Area Series object:

Property Syntax Description
Area Series [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Analyze Analyze;None | Aggregration |
Moving Average | Linear Fit |
Exponential Fit,...

Note: If Aggregration, other arguments
are:...<Table>, Show in Legend?(0 | 1), Days |
Weeks | Months | Quarters | Years, Weeks |
Months | Quarters | Years, SUM | AVG | STD |
STDS | MIN | MAX | VAR | VARS
Note: If Moving Average, other arguments
are:...<Table>, Show in Legend?(0 | 1), Period,
None | Standard
Note: If Linear Fit or Exponential Fit, other
arguments are:...<Table>, Show in Legend?(0 |
1)

Border Settings Border_Settings;S0W1 | S0W2 |
S0W3 | S0W4 | S1W1 | S2W1 |
S3W1 | S4W1 | S5W1, Red, Blue,
Green

Fill Settings Fill_Settings see Common Chart Object properties
Series Options Series_Options;DataSeries,

LabelSeries, Legend
 Related topics

Axis Title properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the axis title properties.
The following table lists properties and syntax for the Axis Title object:

Property Syntax Description
Axis Title [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Text Font Text_Font see Font
Text Settings Text_Settings see Common Chart Object properties
Title Title;Title

Example
{SelectObject G$Y1Axis}
{SetProperty Text_Font;"Arial;18;Yes;No;No;No"}
 Related topics

Bar Series properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the bar series properties.
The following table lists properties and syntax for the Bar Series object:

Property Syntax Description
Bar Series [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Analyze None | Aggregration | Moving
Average | Linear Fit | Exponential Fit,
…

Note: If Aggregration, other arguments are:
…<Table>, Show in Legend?(0 | 1), Days |
Weeks | Months | Quarters | Years, Weeks |
Months | Quarters | Years, SUM | AVG | STD |
STDS | MIN | MAX | VAR | VARS
Note: If Moving Average, other arguments
are:…<Table>, Show in Legend?(0 | 1),
Period, None|Standard
Note: If Linear Fit or Exponential Fit, other
arguments are:…<Table>, Show in Legend?
(0 | 1)

Bar Options Width%, Margin%, No | Partial | Full
Border Settings S0W1 | S0W2 | S0W3 | S0W4 | S1W1

| S2W1 | S3W1 | S4W1 | S5W1, Red,
Blue, Green

Fill Settings see Common Chart Object properties
Riser Style Style(1 | 2 | 3 | 4), NumberOfFaces(0

| 4 | 6 | 8)
Note: Riser Style is available only for
3-D bar charts

Series Options DataSeries, LabelSeries, Legend, Bar
| Line | Area | Default, Primary |
Secondary

Example
{SelectObject "G$Series[3,6]"}
{SetProperty Riser_Style;"3;4"}
 Related topics

Bullet Series properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the bullet series properties.
The following table lists properties and syntax for the Bullet Series object:

Property Syntax Description
Bullet Series [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart
containing the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Bullet Color see Color
Bullet
Indentation

BeforeBullet (0-500), AfterBullet (0-
500), HangingIndent?(0|1)

Bullet Style BulletStyle, BulletSize(0-32)
Line Spacing SpaceBefore(0-500), SpaceAfter(0-

500)
Text Font see Font
Text Settings see Common Chart Object

properties

Example
{SelectObject G$BulletSeries[1]}
{SetProperty Bullet_Style;"8;22"}
 Related topics

Column Chart properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the column chart properties.
The following table lists properties and syntax for the Column Chart object:

Property Syntax Description
Column Chart [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Border Settings S0W1 | S0W2 | S0W3 | S0W4 |
S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Blue, Green

Fill Settings see Common Chart Object
properties

Label Options LabelSeries, Currency | Value |
Percent | None, ShowTick

Text Font see Font
Text Settings see Common Chart Object

properties

Example
{SelectObject "G$Series[1,4]"}
{SetProperty Border_Settings;"S0W2;0;128;255"}
 Related topics

Float Series properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the float series properties.
The following table lists properties and syntax for the Float Series object:

Property Syntax Description
Float Series [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Analyze None | Aggregration | Moving
Average | Linear Fit | Exponential
Fit,...

Note: If Aggregration, other arguments
are:...<Table>, Show in Legend?(0 | 1), Days |
Weeks | Months | Quarters | Years, Weeks |
Months | Quarters | Years, SUM | AVG | STD |
STDS | MIN | MAX | VAR | VARS
Note: If Moving Average, other arguments
are:...<Table>, Show in Legend?(0 | 1), Period,
None|Standard
Note: If Linear Fit or Exponential Fit, other
arguments are:...<Table>, Show in Legend?(0 |
1)

Border
Settings

S0W1 | S0W2 | S0W3 | S0W4 |
S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Blue, Green

Fill Settings see Common Chart Object
properties

Float Style Style(0 | 1 | 2 | 3 | 4),
NumberOfFaces(0 | 4 | 6 | 8),
Size(8-32)

Series Options DataBlock, LabelBlock, Legend, Bar
| Line | Area | Default, Primary |
Secondary

Example
{SelectObject "G$[1,3]"}
{SetProperty Analyze;"Aggregation;;No;Days;Weeks;Sum"}
 Related topics

Chart Pane properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the chart pane properties.
The following table lists properties and syntax for the Chart Pane object:

Property Syntax Description
Chart Pane [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border
Options

Left, Top, Right, Bottom, Grids on Top

Border Style S0W1 | S0W2 | S0W3 | S0W4 | S1W1
| S2W1 | S3W1 | S4W1 | S5W1, Red,
Blue, Green

Dimension see Dimension
Fill Settings see Common Chart Object properties

Example
{SelectObject G$Pane}
{SetProperty Border_Position;"Yes;Yes;Yes;Yes;Yes"}
 Related topics

Chart Background properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the chart background properties.
The following table lists properties and syntax for the Chart Background object:

Property Syntax Description
Chart
Background

[NBName]Sheet:ObjName.Propert
y

NBName is the name of the active notebook
ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Box Settings No box | Single outline | Rounded
corners | Double outline | Thick
outline 1 | Thick rounded corners
| Three dimensional | Thick
outline 2 | Bevel out | Shadowed |
Thick outline 3 | Bevel in, Red,
Blue, Green

Chart Button GotoSlide?, SlideName, Effect,
Duration, Slow | Med | Fast,
Overlay?, RunMacro?, MacroText

Fill Settings see Common Chart Object
properties

Name (H) Name

Example
{SelectObject}
{SetProperty Chart_Button;"No;;Cut;0;Fast;No;Yes;No;Yes;{A:E1}"}

 Note
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
 Related topics

Chart Subtitle properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the chart subtitle properties.
The following table lists properties and syntax for the Chart Subtitle object:

Property Syntax Description
Chart Subtitle [NBName]Sheet:ObjName.Propert

y
NBName is the name of the active notebook
ChartName is the name of the chart
containing the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Subtitle Font see Font
Subtitle Text
Settings

see Common Chart Object
properties

Example
{SelectObject G$Title}
{SetProperty Subtitle_Font;"Arial;24;Yes;No;No;No"}
 Related topics

Chart Title Box properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the chart title box properties.
The following table lists properties and syntax for the Chart Title Box object:

Property Syntax Description
Chart Title
Box

[NBName]Sheet:ObjName.Property NBName is the name of the active notebook
ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Alignment Left | Center | Right
Border Color see Color
Box Settings No box | Single outline | Rounded

corners | Double outline | Thick
outline 1 | Thick rounded corners |
Three dimensional | Thick outline 2 |
Bevel out | Shadowed | Thick outline
3 | Bevel in, Red, Blue, Green

Dimension see Dimension
Fill Settings see Common Chart Object properties
Name (H) Name
Text Font see Font
Text Settings see Common Chart Object properties

Example
{SelectObject G$Title}
{SetProperty Alignment;Left"}

 Note
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
 Related topics

Chart Window properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the chart window properties.
The following table lists properties and syntax for the Chart Window object:

Property Syntax Description
Chart Window [NBName]Sheet:ObjName.Propert

y
NBName is the name of the active notebook
ChartName is the name of the chart containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Aspect Ratio Floating Chart | Screen Slide |
35mm Slide | Printer Preview | Full
Extent

Grid GridSize, DisplayGrid, SnapToGrid

Example
{SetProperty Aspect_Ratio;"35mm Slide"}
 Related topics

Chart Legend properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the chart legend properties.
The following table lists properties and syntax for the Chart Legend object:

Property Syntax Description
Legend [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Box Settings No box | Single outline | Rounded
corners | Double outline | Thick
outline 1 | Thick rounded corners |
Three dimensional | Thick outline 2
| Bevel out | Shadowed | Thick
outline 3 | Bevel in, Red, Blue,
Green

Dimension (H) see Dimension
Fill Settings see Common Chart Object

properties
Legend Position None | Bottom | Right
Text Font see Font
Text Settings see Common Chart Object

properties

Example
{SelectObject G$Legend}
{SetProperty Legend_Position;Bottom"}
 Note
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
 Related topics

Map Legend properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the map legend properties.
The following table lists properties and syntax for the Map Legend object:

Property Syntax Description
Map Legend [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Border Settings Border_Settings;S0W1 | S0W2 |
S0W3 | S0W4 | S1W1 | S2W1 |
S3W1 | S4W1 | S5W1, Red, Blue,
Green

Colors Colors;Ranges (0-6), ShowLegend?
(Yes | No), ExactMatch? (Yes | No),
SetValuesManually? (Yes | No),
MaxValue1, Red, Blue, Green,
MaxValue2, Red, Blue, Green,
MaxValue3, Red, Blue, Green,
MaxValue4, Red, Blue, Green,
MaxValue5, Red, Blue, Green,
MaxValue6, Red, Blue, Green

Dimension (H) Dimension see Dimension
Fill Settings Fill_Settings see Common Chart Object properties
Font Font;Font (see Font), Red, Blue,

Green
Legend
Position

Legend_Position;None | Bottom |
Right

Patterns Patterns;Ranges (0-6),
ShowLegend? (Yes | No),
ExactMatch? (Yes | No),
SetValuesManually? (Yes | No),
Value1, Pattern (0-6), Value2,
Pattern (0-6), Value3, Pattern (0-
6), Value4, Pattern (0-6), Value5,
Pattern (0-6), Value6, Pattern (0-6)

Title Title;Title, DisplayTitle (Yes | No),
Font (see Font), Red, Blue, Green

Example
{SetProperty Title;"No;Arial;18;No;No;No;No;0;0;0"}
 Note
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
 Related topics

Line Series properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the line series properties.
The following table lists properties and syntax for the Line Series object:

Property Syntax Description
Line Series [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Analyze Analyze;None | Aggregration |
Moving Average | Linear Fit |
Exponential Fit,...

Note: If Aggregration, other arguments
are:...<Table>, Show in Legend?(0 | 1), Days |
Weeks | Months | Quarters | Years, Weeks |
Months | Quarters | Years, SUM | AVG | STD |
STDS | MIN | MAX | VAR | VARS
Note: If Moving Average, other arguments
are:...<Table>, Show in Legend?(0 | 1), Period,
None|Standard
Note: If Linear Fit or Exponential Fit, other
arguments are:...<Table>, Show in Legend?(0 |
1)

Fill Settings Fill_Settings;
Line Settings Line_Settings;S0W1 | S0W2 | S0W3

| S0W4 | S1W1 | S2W1 | S3W1 |
S4W1 | S5W1, Red, Blue, Green

Marker Style Marker_Style;M00 | M01 | M02 |
M03 | M04 | M05 | M06 | M07 | M08
| M09 | M10 | M11 | M12 | M13 |
M14 | M15, MarkerWeight,
AutoSize?(0 | 1)

Series Options Series_Options;DataBlock,
LabelBlock, Legend, Bar | Line |
Area | Default, Primary | Secondary

Example
{SelectObject "G$Series[1,1]"}
{SetProperty Marker_Style;M02;5;1"}
 Related topics

Map properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the map properties.
The following table lists properties and syntax for the Map object:

Property Syntax Description
Map [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Font Font;Font (see Font), Red, Blue,
Green

Pin Symbol Pin_Symbol;DisplayPinLabels? (Yes
| No), DisplayPinSymbol? (Yes |
No), Font (see Font), Red, Blue,
Green, Symbol (0-239)

Redraw
Options

Redraw_Options;Automatic |
Manual

Example
{SetProperty Redraw_Options;Manual}
 Related topics

Pie Chart properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the pie chart properties.
The following table lists properties and syntax for the Pie Chart object:

Property Syntax Description
Pie Chart [NBName]Sheet:ObjName.Propert

y
NBName is the name of the active notebook
ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Border Settings S0W1 | S0W2 | S0W3 | S0W4 |
S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Blue, Green

Explode Slice Distance, Explode
Fill Settings see Common Chart Object

properties
Label Options Series, Currency | Value | Percent

| None, ShowTick
Text Font see Font
Text Settings see Common Chart Object

properties

Example
{SelectObject "G$Series[1,1]"}
{SetProperty Explode_Slice;"25"}
 Related topics

Series Label properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the series label properties.
The following table lists properties and syntax for the Series Label object.

Property Syntax Description
Series Label [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Format Format, Precision | Type
Label
Alignment

Above | Top | Middle | Below (for
bar charts);Above | Center | Below
| Left | Right (for area and line
charts)

Text Font see Font
Text Style see Common Chart Object

properties

Example
{SelectObject G$SeriesLabel[2]}
{SetProperty Label_Alignment;Middle}
 Related topics

X-Axis properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the X-Axis properties.
The following table lists properties and syntax for the X-Axis object:

Property Syntax Description
X-Axis [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart
containing the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Major Grid Style S0W1 | S0W2 | S0W3 | S0W4 |
S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Green, Blue

Minor Grid Style S0W1 | S0W2 | S0W3 | S0W4 |
S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Green, Blue

Note: This property only appears when
inspecting an XY chart

Numeric Format Format, Precision | Type Note: This property only appears when
inspecting an XY chart

Scale Normal | Log, Automatic, High,
Low, Increment, #Minors,
ShowUnits

Note: This property only appears when
inspecting an XY chart

Text Font see Font
Text Settings see Common Chart Object

properties
Tick Options None | Below | Above | Across,

DisplayLabels, NumRows,
NoOverlap, #OfLabelsToSkip, Limit

X-Axis Series SeriesBlock

Example
{SelectObject G$X1Axis
{SetProperty X-Axis Series;"A:A8..A11"}
 Related topics

Y-Axis properties
Syntax
[NBName]ChartName:ObjName.Property

Description
Lets you specify the Y-Axis properties.
The following table lists properties and syntax for the Y-Axis object:

Property Syntax Description
Y-Axis [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

ChartName is the name of the chart containing
the object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Major Grid Style S0W1 | S0W2 | S0W3 | S0W4 |
S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Green, Blue

Minor Grid Style S0W1 | S0W2 | S0W3 | S0W4 |
S1W1 | S2W1 | S3W1 | S4W1 |
S5W1, Red, Green, Blue

Numeric Format Format, Precision | Type
Scale Normal | Log, Automatic, High,

Low, Increment, #Minors,
ShowUnits

Note: An additional setting, ZeroLine, appears
if the chart type is Variance.

Text Font see Font
Text Settings see Common Chart Object

properties
Tick Options None | Left | Right | Across,

DisplayLabels, LengthLimit, Limit

Example
{SelectObject G$Y1Axis}
{SetProperty Tick_Options;"Right;Yes;No;3"}
 Related topics

Notebook Object properties
To view properties, arguments, and syntax for the following notebook objects, choose from the following list:
Arrow
Bitmap
Button
Chart
Ellipse
Line
Notebook
OLE
Picture
Rectangle
Rounded Rectangle
Selection
Text Box
 Related topics

Arrow Properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the arrow properties.
The following table lists properties and syntax for the Arrow object:

Property Syntax Description
Arrow [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 |
S0W3 | S0W4 | S1W1 | S2W1 |
S3W1 | S4W1 | S5W1, Red, Blue,
Green

Fill Settings Fill_Settings see Common Chart Object properties
Object Name Object_Name;ObjName
Protection Protection;Yes | No

 Related topics

Bitmap properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the bitmap properties.
The following table lists properties and syntax for the Bitmap object:

Property Syntax Description
Bitmap [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Color Border_Color see Color
Box Type Box_Type;None | Thin | Medium |

Thick, DropShadow?(Yes | No),
Transparent?(Yes | No)

Box Type Box_Type.Frame_Line_Style;None |
Thin | Medium | Thick

Drop Shadow Box_Type.Drop_Shadow;Yes | No
Transparent Box_Type.Transparent;Yes | No
Object Name Object_Name;ObjName

 Related topics

Cell properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the cell properties.
The following table lists properties and syntax for the Cell object:

Property Syntax Description
Cell [NBName]BlockAddress.Property NBName is the name of the active notebook

Sheet is the name of the sheet containing
the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Alignment Alignment;General | Left | Right |
Center | Center Across Block, Top |
Center | Bottom, WrapText?(Yes |
No), Horizontal | Vertical

Horizontal Alignment.Horizontal;General | Left
| Right | Center | Center Across
Block

Orientation Alignment.Orientation;Horizontal |
Vertical

Vertical Alignment.Vertical;Top | Center |
Bottom

Wrap Text Alignment.WrapText;Yes | No
Column Width Column_Width;Operation,

WidthInTwips, ColSpacing
Auto Width Column_Width;Auto Width,,

ExtraSpace
Reset Width Column_Width;Reset Width
Set Width Column_Width;Set Width,

NewWidthInTwips
Constraints Constraints;Protect | Unprotect,

General | Labels Only | Dates Only
Data Entry Input Constraints.Data_Entry_Input;Gene

ral | Labels Only | Dates Only
Protection Constraints.Protection Protect|

Unprotect
Font Font see Font
Line Drawing Line_Drawing;Left, Top, Right,

Bottom, Vert, Horiz, LeftColor,
TopColor, RightColor, BottomColor,
VertColor, HorizColor

Note: The first six settings can take
NoChange | Clear | Thin | Thick | Double;the
last six settings can take 0-15;@PROPERTY
and {GETPROPERTY} always return default
Line Drawing property settings.

Number Value (H) Number_Value;the value in the cell
Numeric Format Numeric_Format;Format, Precision

| Type
Reveal/Hide Reveal/Hide;Row | Column, Reveal

| Hide
Row Height Row_Height;Operation, Size
Reset Height Row_Height;Reset Height

Set Height Row_Height;Set Height, NewSize
Selection (H, R) Selection;the coordinates of the

selected cells
Shading Shading;Color1, Color2, Blend
Color Blend 1 Shading.Color_1;0-15
Color Blend 2 Shading.Color_2;0-15
Select Color Blend Shading.Blend;Blend1 | Blend2 |

Blend3 | Blend4 | Blend5 | Blend6 |
Blend7

String Value (H) String_Value;the label in the cell
Style (H) Style;the named style of the active

cells
Text Color Text_Color;0-15
Value (H) Value;the contents of the cell (as

they appear on the input line)

Example
{SETOBJECTPROPERTY "A:A23.Numeric_Format","Currency,2"}
 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

Button properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the button properties.
The following table lists properties and syntax for the Button object:

Property Syntax Description
Button [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Border Color Border_Color see Color
Box Type Box_Type;None | Thin | Medium |

Thick, DropShadow?(Yes | No)
Box Type Box_Type.Frame_Line_

Style;None | Thin | Medium | Thick
Drop Shadow Box_Type.Drop_Shadow;Yes | No
Label Text Label_Text;LabelText
Macro Macro;Macro
Object Name Object_Name;ObjName

Example
{SetObjectProperty "A:Button1.border_color","0;128;255"}
 Related topics

Ellipse properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the ellipse properties.
The following table lists properties and syntax for the Ellipse object:

Property Syntax Description
Ellipse [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 |
S0W3 | S0W4 | S1W1 | S2W1 |
S3W1 | S4W1 | S5W1, Red, Blue,
Green

Fill Settings Fill_Settings see Common Chart Object properties
Object Name Object_Name;ObjName
Protection Protection;Yes | No

 Related topics

Chart/Map properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the chart and map properties.
The following table lists properties and syntax for the Chart object and the Map object:

Property Syntax Description
Chart [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

Sheet is the name of the sheet containing
the object
ObjName is either the object ID number or
the name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Color Border_Color see Color
Box Type Box_Type;None | Thin | Medium |

Thick, DropShadow?(Yes | No),
Transparent?(Yes | No)

Box Type Box_Type.Frame_Line_
Style;None | Thin | Medium | Thick

Drop Shadow Box_Type.Drop_Shadow;Yes | No
Transparent Box_Type.Transparent;Yes | No
Object Name Object_Name;ObjName
Protection Protection;Yes | No
Source Chart/Map Source_Chart/ Source_Map;Name

 Related topics

Line properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the line properties.
The following table lists properties and syntax for the Line object:

Property Syntax Description
Line [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Line Settings Line_Settings;S0W1 | S0W2 | S0W3
| S0W4 | S1W1 | S2W1 | S3W1 |
S4W1 | S5W1, Red, Blue, Green

Object Name Object_Name;ObjName
Protection Protection;Yes | No

 Related topics

Notebook properties
Syntax
[NBName].Property

Description
Lets you specify the notebook properties.
The following table lists properties and syntax for the Notebook object:

Property Syntax Description
Notebook [NBName].Property NBName is the name of the active

notebook
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Display Display;VertScroll?(Yes | No),
HorzScroll?(Yes | No), Tabs?(Yes |
No), Objects (Show All | Show
Outline | Hide)

Horizontal Scroll
Bar

Display.Show_HorizontalScroller;Yes
| No

Objects Display.Objects;Show All | Show
Outline | Hide

Sheet Tabs Display.Show_Tabs;Yes | No
Vertical Scroll Bar Display.Show_VerticalScroller;Yes |

No
Group Mode (H) Group_Mode;On enables Group

Mode;Off disables group mode
Macro Library Macro_Library;Yes | No
Palette Palette;Color1, Color2, ..., Color16
Color 1 Palette.Color_1 see Color
Color 2 Palette.Color_2
Color 3 Palette.Color_3
Color 4 Palette.Color_4
Color 5 Palette.Color_5
Color 6 Palette.Color_6
Color 7 Palette.Color_7
Color 8 Palette.Color_8
Color 9 Palette.Color_9
Color 10 Palette.Color_10
Color 11 Palette.Color_11
Color 12 Palette.Color_12
Color 13 Palette.Color_13
Color 14 Palette.Color_14
Color 15 Palette.Color_15
Color 16 Palette.Color_16
Password Level Password_Level;None | Low |

Medium | High
Recalc Settings Recalc_Settings;Automatic | Manual

| Background, Natural | Column-
wise | Row-wise, Iterations,
<CompileFormulas?(0 | 1)>,
<AuditErrors?(0 | 1)>

Statistics (R) Statistics;Filename, Directory,

Created(Date      Time),
Last_Saved(Date      Time),
Last_Saved_By, Revision_Number

Summary Summary;Title, Subject, Author,
Keywords, Comments

System System;Yes | No
Zoom Factor Zoom_Factor;10-400

Example
{Notebook.Zoom_Factor"200"}
 Notes
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
· If a property name is followed by (R), you cannot set it with a macro command or link command; it is a read

only property.
 Related topics

OLE properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the OLE properties.
The following table lists properties and syntax for the OLE object:

Property Syntax Description
OLE NBName is the name of the active notebook

Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Border Color Border_Color see Color
Box Type Box_Type;None | Thin | Medium |

Thick, DropShadow?(Yes | No),
Transparent?(Yes | No)

Box Type Box_Type.Frame_Line_Style;Non
e | Thin | Medium | Thick

Drop Shadow Box_Type.Drop_Shadow;Yes | No
Transparent Box_Type.Transparent;Yes | No
Object Name Object_Name;ObjName
OLE OLE;AutoResize?(Yes | No),

AutoLinkUpdate?(Yes | No)
Protection Protection;Yes | No

Example
{Setobjectproperty "A:Embedded1.Box_Type";"Thick;Yes;Yes"}
 Related topics

Picture properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the picture properties.
The following table lists properties and syntax for the Picture object:

Property Syntax Description
Picture NBName is the name of the active notebook

Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control property
tables

Border Color Border_Color see Color
Box Type Box_Type;None | Thin | Medium |

Thick, DropShadow?(Yes | No),
Transparent?(Yes | No)

Box Type Box_Type.Frame_Line_Style;None
| Thin | Medium | Thick

Drop Shadow Box_Type.Drop_Shadow;Yes | No
Transparent Box_Type.Transparent;Yes | No
Object Name Object_Name;ObjName
Protection Protection;Yes | No

 Related topics

Rectangle properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the rectangle properties.
The following table lists properties and syntax for the Rectangle object:

Property Syntax Description
Rectangle [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 |
S0W3 | S0W4 | S1W1 | S2W1 |
S3W1 | S4W1 | S5W1, Red, Blue,
Green

Fill Settings Fill_Settings see Common Chart Object properties
Object Name Object_Name;ObjName
Protection Protection;Yes | No

 Related topics

Rounded Rectangle properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the rounded rectangle properties.
The following table lists properties and syntax for the Rounded Rectangle object:

Property Syntax Description
Rounded
Rectangle

[NBName]Sheet:ObjName.Propert
y

NBName is the name of the active notebook
Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Border Settings Border_Settings;S0W1 | S0W2 |
S0W3 | S0W4 | S1W1 | S2W1 |
S3W1 | S4W1 | S5W1, Red, Blue,
Green

Fill Settings Fill_Settings see Common Chart Object properties
Object Name Object_Name;ObjName
Protection Protection;Yes | No

 Related topics

Text Box properties
Syntax
[NBName]Sheet:ObjName.Property

Description
Lets you specify the text box properties.
The following table lists properties and syntax for the Text Box object:

Property Syntax Description
Text Box [NBName]Sheet:ObjName.Property NBName is the name of the active notebook

Sheet is the name of the sheet containing the
object
ObjName is either the object ID number or the
name of the object
Property is one of the strings listed in the
Argument column of the dialog control
property tables

Alignment Alignment;Left | Right | Center,
WordWrap, TabStops

Box Settings Box_Settings;No box | Single outline
| Rounded corners | Double outline |
Thick outline 1 | Thick rounded
corners | Three dimensional | Thick
outline 2 | Bevel out | Shadowed |
Thick outline 3 | Bevel in, Red, Blue,
Green

Fill Settings Fill_Settings see Common Chart Object properties
Object Name Object_Name;ObjName
Protection Protection;Yes | No
Text Font Text_Font see Font
Text Settings Text_Settings see Common Chart Object properties

 Related topics

Objects Sheet Icon Properties
Lets you specify the objects sheet icon properties. When the Objects sheet is active you can change the
properties of icons on the Objects sheet instead of the objects they represent.
The following table lists properties and syntax for the Objects Sheet Icon object:

Property Syntax Description
Chart Icon
Name Name;Name
Dialog Icon
Dimension Dimension see Dimension
Disabled Disabled;Yes | No
Grid Options Grid_Options;Gridsize,

GridShown, GridEnabled
Name Name;Name
Position Adjust Position_Adjust;Depend, LeftRel,

TopRel, RightRel, BottomRel,
CenterHor, CenterVer

Title Title;Title
Value (H) Value;the current settings of all

dialog controls that have Process
Value set to Yes

Slide Show Icon
Default Effect Default_Effect;Effect,

DisplayTime, Slow | Med | Fast,
Overlay?(Yes | No),
UseMasterSlide?(Yes | No),
SkipSlide?(Yes | No)

Master Slide Master_Slide;SlideName
Name Name;Name
Show Pointer Show_Pointer;Yes | No

 Note
· If a property name is followed by (H), it is a hidden property and does not appear in the object's Property

dialog.
 Related topics

Using dates and times in Quattro Pro

Entering dates

To enter a date or time

To enter the current date

To enter a date using the spreadsheet Date function

Default date and time formats

To format dates and times

To change the default date format

 Related topics

Quattro Pro/Excel Equivalent Functions
Most spreadsheet functions exist in both Microsoft Excel and Quattro Pro using the same name. However, some
Excel functions have a corresponding Quattro Pro function with a different name. The following table outlines
these equivalent functions.

Excel function QP Equivalent
ACCRINT ACCRINTXL
AVERAGE AVG
COLUMNS COLS
COMBIN COMB
COUNTA XCOUNT
FREQUENCY FREQDIST
INT INTXL
ISTEXT ISSTRING
LEN LENGTH
LOG LOGBASE
LOG10 LOG
MDETERM MDET
REPT REPEAT
ROUNDDOWN ROUNDDOWNXL
ROUNDUP ROUNDUPXL
SMALL SMALLEST
STDEV STDS
STDEVP STD
VAR VARS
VARP VAR

