
1

TeamSpeak 3 Client
SDK Developer Manual

Revision 14954

Copyright © 2007-2011 TeamSpeak Systems GmbH

Table of Contents
Copyright .. 2

License agreement .. 2
Introduction ... 5
System requirements ... 5
Overview of header files .. 5
Calling Client Lib functions ... 6

Return code ... 7
Initializing ... 7

The callback mechanism .. 8
Querying the library version ... 9
Shutting down .. 10
Managing server connection handlers ... 10
Connecting to a server ... 11
Disconnecting from a server ... 16
Error handling .. 17
Logging ... 19

User-defined logging ... 20
Using playback and capture modes and devices .. 21

Initializing modes and devices ... 22
Querying available modes and devices .. 23
Checking current modes and devices .. 27
Closing devices .. 28
Using custom devices .. 30
Activating the capture device .. 33

Sound codecs ... 34
Encoder options .. 35
Preprocessor options .. 36
Playback options ... 39
Accessing the voice buffer ... 42

Voice recording .. 46
Playing wave files ... 46
3D Sound .. 48
Query available servers, channels and clients ... 52
Retrieve and store information .. 56

Client information ... 56
Information related to own client ... 56
Information related to other clients ... 61
Whisper lists .. 64

Channel information .. 66
Channel voice data encryption ... 72

TeamSpeak 3 Client
SDK Developer Manual

2

Channel sorting .. 72
Server information .. 73

Interacting with the server .. 77
Joining a channel .. 77
Creating a new channel .. 80
Deleting a channel .. 81
Moving a channel ... 83
Text chat ... 84

Sending ... 84
Receiving .. 86

Kicking clients ... 87
Channel subscriptions .. 90

Muting clients locally .. 93
Custom encryption .. 94
Other events ... 95
Miscellaneous functions ... 98
FAQ ... 99
Revision history .. 101
Index ... 102

Copyright
Copyright © 2007-2011 TeamSpeak Systems GmbH. All rights reserved.

TeamSpeak Systems GmbH
 Soiernstrasse 1
 82494 Krün
 Germany

Visit TeamSpeak-Systems on the web at www.teamspeak.com [http://www.teamspeak.com]

License agreement
TeamSpeak 3

LICENSE AGREEMENT

October 25th, 2007

THIS IS A LEGAL AGREEMENT between "you," the company or end user of TeamSpeak 3 brand software, and TeamSpeak
Systems GmbH, a Krün, Germany company hereafter referred to as "TeamSpeak Systems".

Use of the software you are about to install indicates your acceptance of these terms. You also agree to accept these terms by
so indicating at the appropriate screen, prior to the download or installation process. As used in this Agreement, the capitalized
term "Software" means the TeamSpeak 3 voice over IP (VoIP) communication software together with any and all enhance-
ments, upgrades, and updates that may be provided to you in the future by TeamSpeak Systems. IF YOU DO NOT AGREE
TO THESE TERMS AND CONDITIONS, YOU SHOULD SO INDICATE BY CONTACTING TEAMSPEAK SYSTEMS
AND PROMPTLY DISCONTINUE THE INSTALLATION PROCESS AND USE OF THIS SOFTWARE.

Ownership

The Software and any accompanying documentation are owned by TeamSpeak Systems and ownership of the Software shall
at all times remain with TeamSpeak Systems. Copies are provided to you only to allow you to exercise your rights under this

http://www.teamspeak.com
http://www.teamspeak.com

TeamSpeak 3 Client
SDK Developer Manual

3

Agreement. This Agreement does not constitute a sale of the Software or any accompanying documentation, or any portion
thereof. Without limiting the generality of the foregoing, you do not receive any rights to any patents, copyrights, trade secrets,
trademarks or other intellectual property rights relating to or in the Software or any accompanying documentation. All rights
not expressly granted to you under this Agreement are reserved by TeamSpeak Systems.

Grant of License Applicable To TeamSpeak 3

Subject to the terms and conditions set out in this Agreement, TeamSpeak Systems grants you a limited, nonexclusive, non-
transferable and nonsublicensable right to use the Software called "TeamSpeak 3" solely in accordance with the following
terms and conditions:

1. Use of TeamSpeak 3. You may use TeamSpeak 3 on multiple computers owned, leased or rented by you, your company, or
business entity; however, you are the only individual, company, or business entity with the right to use your licensed copy(ies)
of TeamSpeak 3. All copies of TeamSpeak 3 must include TeamSpeak Systems' copyright notice.

2. Distribution Prohibited. You may not distribute copies of TeamSpeak 3 for use by anyone other than you, your company,
or business entity. Distribution of TeamSpeak 3 by you to third parties is hereby expressly prohibited.

3. Fees. As of the date listed above for this License Agreement, TeamSpeak 3 is in a "pre-release" stage. Fees and licensing costs
will be determined when the final version of the product is released or an agreed upon commencement date for commercial
use of the Software is initiated.

4. Termination. TeamSpeak Systems may terminate your TeamSpeak 3 license at any time, for any reason or no reason.
TeamSpeak Systems may also terminate your TeamSpeak 3 license if you breach any of the terms and conditions set forth
in this Agreement. Upon termination, you shall immediately destroy all copies of TeamSpeak 3 and any accompanying files
or documentation in your possession, custody or control.

5. Support. TeamSpeak Systems will provide you with support services related to TeamSpeak 3 for a period that begins on
the date TeamSpeak 3 is delivered to you, and ends upon the termination of this Agreement.

6. Upgrades. TeamSpeak Systems will provide you with upgrades to TeamSpeak 3 for a period that begins on the date Team-
Speak 3 is delivered to you. Such upgrades will be released only by TeamSpeak Systems for the purpose of improving Team-
Speak 3 software. TeamSpeak Systems has no obligation to provide you with any upgrades that are not released for general
distribution to TeamSpeak Systems' other licensees. Nothing in this Agreement shall be construed to obligate TeamSpeak
Systems to provide upgrades to you under any circumstances.

Prohibited Conduct

You represent and warrant that you will not violate any of the terms and conditions set forth in this Agreement and that:

You will not, and will not permit others to: (i) reverse engineer, decompile, disassemble, derive the source code of, modify, or
create derivative works from the Software; or (ii) use, copy, modify, alter, or transfer, electronically or otherwise, the Software
or any of the accompanying documentation except as expressly permitted in this Agreement; or (iii) redistribute, sell, rent,
lease, sublicense, or otherwise transfer rights to the Software whether in a stand-alone configuration or as incorporated with
other software code written by any party except as expressly permitted in this Agreement.

You will not use the Software to engage in or allow others to engage in any illegal activity.

You will not engage in use of the Software that will interfere with or damage the operation of the services of third parties by
overburdening/disabling network resources through automated queries, excessive usage or similar conduct.

You will not use the Software to engage in any activity that will violate the rights of third parties, including, without limitation,
through the use, public display, public performance, reproduction, distribution, or modification of communications or materials

TeamSpeak 3 Client
SDK Developer Manual

4

that infringe copyrights, trademarks, publicity rights, privacy rights, other proprietary rights, or rights against defamation of
third parties.

You will not transfer the Software or utilize the Software in combination with third party software authored by you or others
to create an integrated software program which you transfer to unrelated third parties.

Upgrades, Updates And Enhancements

All upgrades, updates or enhancements of the Software shall be deemed to be part of the Software and will be subject to
this Agreement.

Disclaimer of Warranty

THE SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES THAT IT IS FREE OF DEFECTS, VIRUS FREE,
ABLE TO OPERATE ON AN UNINTERRUPTED BASIS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LI-
CENSE AND AGREEMENT. NO USE OF THE SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS
DISCLAIMER.

Limitation of Liability

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL TEAMSPEAK SYSTEMS
BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF OR INABILITY TO USE THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOST PROFITS, LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY
AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF ADVISED OF THE POSSIBILITY THERE-
OF, AND REGARDLESS OF THE LEGAL OR EQUITABLE THEORY (CONTRACT, TORT OR OTHERWISE) UPON
WHICH THE CLAIM IS BASED. IN ANY CASE, TEAMSPEAK SYSTEMS' COLLECTIVE LIABILITY UNDER ANY
PROVISION OF THIS LICENSE SHALL NOT EXCEED IN THE AGGREGATE THE SUM OF THE FEES (IF ANY)
YOU PAID FOR THIS LICENSE.

Legends and Notices

You agree that you will not remove or alter any trademark, logo, copyright or other proprietary notices, legends, symbols or
labels in the Software or any accompanying files or documentation.

Term and Termination

This Agreement is effective upon your acceptance as provided herein and payment of the applicable license fees (if any), and
will remain in force until terminated. You may terminate the licenses granted in this Agreement at any time by contacting
TeamSpeak Systems in writing, and destroying the Software and any accompanying files or documentation, together with any
and all copies thereof. The licenses granted in this Agreement will terminate automatically if you breach any of its terms or
conditions or any of the terms or conditions of any other agreement between you and TeamSpeak Systems. Upon termination,
you shall immediately destroy the original and all copies of the Software and any accompanying documentation, or return
them to TeamSpeak Systems.

Software Suggestions

TeamSpeak Systems welcomes suggestions for enhancing the Software and any accompanying documentation that may re-
sult in computer programs, reports, presentations, documents, ideas or inventions relating or useful to TeamSpeak Systems'
business. You acknowledge that all title, ownership rights, and intellectual property rights concerning such suggestions shall
become the exclusive property of TeamSpeak Systems and may be used for its business purposes in its sole discretion without
any payment or accounting to you.

TeamSpeak 3 Client
SDK Developer Manual

5

Miscellaneous

This Agreement constitutes the entire agreement between the parties concerning the Software, and may be amended only by a
writing signed by both parties. This Agreement shall be governed by the laws of Krün, Germany, excluding its conflict of law
provisions. All disputes relating to this Agreement are subject to the exclusive jurisdiction of the courts within Germany and
you expressly consent to the exercise of personal jurisdiction in the courts of Germany in connection with any such dispute.
This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods. If
any provision in this Agreement should be held illegal or unenforceable by a court of competent jurisdiction, such provision
shall be modified to the extent necessary to render it enforceable without losing its intent, or severed from this Agreement if
no such modification is possible, and other provisions of this Agreement shall remain in full force and effect. A waiver by
either party of any term or condition of this Agreement or any breach thereof, in any one instance, shall not waive such term
or condition or any subsequent breach thereof.

Introduction
TeamSpeak 3 is a scalable Voice-Over-IP application consisting of client and server software. TeamSpeak is generally re-
garded as the leading VoIP system offering a superior voice quality, scalability and usability.

The cross-platform Software Development Kit allows the easy integration of the TeamSpeak client and server technology
into own applications.

Tis document provides an introduction to client-side programming with the TeamSpeak 3 SDK, the so-called Client Lib. This
library encapsulates client-side functionality while keeping the user interface separated and modular.

System requirements
For developing third-party clients with the TeamSpeak 3 Client Lib the following system requirements apply:

• Windows

Windows 2000, XP, Vista (32- and 64-bit)

• Mac OS X

Mac OS X 10.4, 10.5 on Intel and PowerPC

• Linux

Any recent Linux distribution with libstdc++ 6. Both 32- and 64-bit are supported.

Important

The calling convention used in the functions exported by the shared TeamSpeak 3 SDK libaries is cdecl. You
must not use another calling convention, like stdcall on Windows, when declaring function pointers to the Team-
Speak 3 SDK libraries. Otherwise stack corruption at runtime may occur.

Overview of header files
The following header files are deployed to SDK developers:

• clientlib.h

TeamSpeak 3 Client
SDK Developer Manual

6

Declares the function prototypes and callbacks for the communication between Client Lib and Client UI. While the Client
UI makes function calls into the Client Lib using the declared prototypes, the Client Lib calls the Client UI via callbacks.

• clientlib_publicdefinitions.h

Defines various enums and structs used by the Client UI and Client Lib. These definitions are used by the functions and
callbacks declared in clientlib.h

• public_definitions.h

Defines various enums and structs used by both client- and server-side.

• public_errors.h

Defines the error codes returned by every Client Lib function and onServerErrorEvent. Error codes are organized in
several groups. The first byte of the error code defines the error group, the second the count within the group.

Calling Client Lib functions
Client Lib functions follow a common pattern. They always return an error code or ERROR_ok on success. If there is a result
variable, it is always the last variable in the functions parameters list.

ERROR ts3client_FUNCNAME(arg1, arg2, ..., &result);

Result variables should only be accessed if the function returned ERROR_ok. Otherwise the state of the result variable is
undefined.

In those cases where the result variable is a basic type (int, float etc.), the memory for the result variable has to be declared
by the caller. Simply pass the address of the variable to the Client Lib function.

int result;

if(ts3client_XXX(arg1, arg2, ..., &result) == ERROR_ok) {
 /* Use result variable */
} else {
 /* Handle error, result variable is undefined */
}

If the result variable is a pointer type (C strings, arrays etc.), the memory is allocated by the Client Lib function. In that case,
the caller has to release the allocated memory later by using ts3client_freeMemory. It is important to only access and
release the memory if the function returned ERROR_ok. Should the function return an error, the result variable is uninitialized,
so freeing or accessing it could crash the application.

char* result;

if(ts3client_XXX(arg1, arg2, ..., &result) == ERROR_ok) {
 /* Use result variable */
 ts3client_freeMemory(result); /* Release result variable */
} else {
 /* Handle error, result variable is undefined. Do not access or release it. */
}

Note

Client Lib functions are thread-safe. It is possible to access the Client Lib from several threads at the same time.

TeamSpeak 3 Client
SDK Developer Manual

7

Return code
Client Lib functions that interact with the server take an additional parameter returnCode, which can be used to find
out which action results in a later server error. If you pass a custom string as return code, the onServerErrorEvent
callback will receive the same custom string in its returnCode parameter. If no error occured, onServerErrorEvent
will indicate success py passing the error code ERROR_ok.

Pass NULL as returnCode if you do not need the feature. In this case, if no error occurs onServerErrorEvent will
not be called.

An example, request moving a client:

ts3client_requestClientMove(scHandlerID, clientID, newChannelID, password, "MyClientMoveReturnCode");

If an error occurs, the onServerErrorEvent callback is called:

void my_onServerErrorEvent(uint64 serverConnectionHandlerID, const char* errorMessage,
 unsigned int error, const char* returnCode, const char* extraMessage) {
 if(strcmp(returnCode, "MyClientMoveReturnCode")) == 0) {
 /* We know this error is the reaction to above called function as we got the same returnCode */
 if(error == ERROR_ok) {
 /* Success */
 }
}

Initializing
When starting the client, initialize the Client Lib with a call to

unsigned int ts3client_initClientLib(functionPointers, functionRarePointers, used-
LogTypes, logFileFolder, resourcesFolder);

const struct ClientUIFunctions* functionPointers;
const struct ClientUIFunctionsRare* functionRarePointers;
int usedLogTypes;
const char* logFileFolder;
const char* resourcesFolder;

Parameters

• functionPointers

Callback function pointers. See below.

• functionRarePointers

Unused by SDK, pass NULL.

• usedLogTypes

Defines the log output types. The Client Lib can output log messages (called by ts3client_logMessage) to a file
(located in the logs directory relative to the client executable), to stdout or to user defined callbacks. If user callbacks are
activated, the onUserLoggingMessageEvent event needs to be implemented.

TeamSpeak 3 Client
SDK Developer Manual

8

Available values are defined by the enum LogTypes (see public_definitions.h):

enum LogTypes {
 LogType_NONE = 0x0000,
 LogType_FILE = 0x0001,
 LogType_CONSOLE = 0x0002,
 LogType_USERLOGGING = 0x0004,
 LogType_NO_NETLOGGING = 0x0008,
 LogType_DATABASE = 0x0010,
};

Multiple log types can be combined with a binary OR. If only LogType_NONE is used, local logging is disabled.

Note

Logging to console can slow down the application on Windows. Hence we do not recommend to log to the
console on Windows other than in debug builds.

Note

LogType_NO_NETLOGGING is no longer used. Previously this controlled if the Client Lib would send
warning, error and critical log entries to a webserver for analysis. As netlogging does not occur anymore, this
flag has no effect anymore.

LogType_DATABASE has no effect in the Client Lib, this is only used by the server.

• logFileFolder

Location where the logfiles produced if file logging is enabled will be saved to. Pass NULL for the default behaviour, which
is to use a folder called logs in the current working directory.

resourcesFolder

Resource path pointing to the directory where the soundbackends folder is located. Required so your application finds the
sound backend shared libraries. This should usually point to the root or bin directory of your application, depending where
the soundbackends directory is located.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Note

This function must not be called more than once.

The callback mechanism
The communication from Client Lib to Client UI takes place using callbacks. The Client UI has to define a series of function
pointers using the struct ClientUIFunctions (see clientlib.h). These callbacks are used to forward any incoming server
actions to the Client UI for further processing.

A callback example in C:

static void my_onConnectStatusChangeEvent_Callback(uint64 serverConnectionHandlerID,
 int newStatus,
 int errorNumber) {
 /* Implementation */

TeamSpeak 3 Client
SDK Developer Manual

9

}

C++ developers can also use static member functions for the callbacks.

Before calling ts3client_initClientLib, create an instance of struct ClientUIFunctions, initialize all function point-
ers with NULL and assign the structs function pointers to your callback functions:

unsigned int error;

/* Create struct */
ClientUIFunctions clUIFuncs;

/* Initialize all function pointers with NULL */
memset(&clUIFuncs, 0, sizeof(struct ClientUIFunctions));

/* Assign those function pointers you implemented */
clUIFuncs.onConnectStatusChangeEvent = my_onConnectStatusChangeEvent_Callback;
clUIFuncs.onNewChannelEvent = my_onNewChannelEvent_Callback;
(...)

/* Initialize client lib with callback function pointers */
error = ts3client_initClientLib(&clUIFuncs, NULL, LogType_FILE | LogType_CONSOLE);
if(error != ERROR_ok) {
 printf("Error initializing clientlib: %d\n", error);
 (...)
}

Important

As long as you initialize unimplemented callbacks with NULL, the Client Lib won't attempt to call those function
pointers. However, if you leave unimplemented callbacks undefined, the Client Lib will crash when trying to
calling them.

Note

All callbacks used in the SDK are found in the struct ClientUIFunctions (see public_definitions.h).
Callbacks bundled in the struct ClientUIFunctionsRare are not used by the SDK. These callbacks were split in
a separate structs to avoid polluting the SDK headers with code used only internally.

Querying the library version
The Client Lib version can be queried with

unsigned int ts3client_getClientLibVersion(result);

char** result;

Parameters

• result

Address of a variable that receives the clientlib version string, encoded in UTF-8.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error occured, the result
string is uninitialized and must not be accessed.

TeamSpeak 3 Client
SDK Developer Manual

10

Caution

The result string must be released using ts3client_freeMemory. If an error has occured, the result string
is uninitialized and must not be released.

An example using ts3client_getClientLibVersion:

unsigned int error;
char* version;
error = ts3client_getClientLibVersion(&version);
if(error != ERROR_ok) {
 printf("Error querying clientlib version: %d\n", error);
 return;
}
printf("Client library version: %s\n", version); /* Print version */
ts3client_freeMemory(version); /* Release string */

Shutting down
Before exiting the client application, the Client Lib should be shut down with

unsigned int ts3client_destroyClientLib();

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Make sure to call this function after disconnecting from any TeamSpeak 3 servers. Any call to Client Lib functions after
shutting down has undefined results.

Managing server connection handlers
Before connecting to a TeamSpeak 3 server, a new server connection handler needs to be spawned. Each handler is identified
by a unique ID (usually called serverConnectionHandlerID). With one server connection handler a connection can
be established and dropped multiple times, so for simply reconnecting to the same or another server no new handler needs
to be spawned but existing ones can be reused. However, for using multiple connections simultaneously a new handler has
to be spawned for each connection.

To create a new server connection handler and receive its ID, call

unsigned int ts3client_spawnNewServerConnectionHandler(port, result);

int port;
uint64* result;

Parameters

• port

TeamSpeak 3 Client
SDK Developer Manual

11

Port the client should bind on. Specify zero to let the operating system chose any free port. In most cases passing zero is
the best choice.

If port is specified, the function return value should be checked for ERROR_unable_to_bind_network_port.
Handle this error by switching to an alternative port until a "free" port is hit and the function returns ERROR_ok.

Caution

Do not specify a non-zero value for port unless you absolutely need a specific port. Passing zero is the better
way in most use cases.

• result

Address of a variable that receives the server connection handler ID.

To destroy a server connection handler, call

unsigned int ts3client_destroyServerConnectionHandler(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler to destroy.

Both functions return ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Important

Destroying invalidates the handler ID, so it must not be used anymore afterwards. Also do not destroy a server
connection handler ID from within a callback.

Connecting to a server
To connect to a server, a client application is required to request an identity from the Client Lib. This string should be requested
only once and then locally stored in the applications configuration. The next time the application connects to a server, the
identity should be read from the configuration and reused again.

unsigned int ts3client_createIdentity(result);

char** result;

Parameters

• result

TeamSpeak 3 Client
SDK Developer Manual

12

Address of a variable that receives the identity string, encoded in UTF-8.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error occured, the result
string is uninitialized and must not be accessed.

Caution

The result string must be released using ts3client_freeMemory. If an error has occured, the result string
is uninitialized and must not be released.

Once a server connection handler has been spawned and an identity is available, connect to a TeamSpeak 3 server with

unsigned int ts3client_startConnection(serverConnectionHandlerID, identity, ip,
port, nickname, defaultChannelArray, defaultChannelPassword, serverPassword);

uint64 serverConnectionHandlerID;
const char* identity;
const char* ip;
unsigned int port;
const char* nickname;
const char** defaultChannelArray;
const char* defaultChannelPassword;
const char* serverPassword;

Parameters

• serverConnectionHandlerID

Unique identifier for this server connection. Created with ts3client_spawnNewServerConnectionHandler

• identity

The clients identity. This string has to be created by calling ts3client_createIdentity. Please note an application
should create the identity only once, store the string locally and reuse it for future connections.

• ip

Hostname or IP of the TeamSpeak 3 server.

If you pass a hostname instead of an IP, the Client Lib will try to resolve it to an IP, but the function may block for an
unusually long period of time while resolving is taking place. If you are relying on the function to return quickly, we
recommend to resolve the hostname yourself (e.g. asynchronously) and then call ts3client_startConnection with
the IP instead of the hostname.

• port

UDP port of the TeamSpeak 3 server, by default 9987. TeamSpeak 3 uses UDP. Support for TCP might be added in the
future.

TeamSpeak 3 Client
SDK Developer Manual

13

• nickname

On login, the client attempts to take this nickname on the connected server. Note this is not necessarily the actually assigned
nickname, as the server can modifiy the nickname ("gandalf_1" instead the requested "gandalf") or refuse blocked names.

• defaultChannelArray

String array defining the path to a channel on the TeamSpeak 3 server. If the channel exists and the user has sufficient rights
and supplies the correct password if required, the channel will be joined on login.

To define the path to a subchannel of arbitrary level, create an array of channel names detailing the position of the default
channel (e.g. "grandparent", "parent", "mydefault", ""). The array is terminated with a empty string.

Pass NULL to join the servers default channel.

• defaultChannelPassword

Password for the default channel. Pass an empty string if no password is required or no default channel is specified.

• serverPassword

Password for the server. Pass an empty string if the server does not require a password.

All strings need to be encoded in UTF-8 format.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. When trying to connect with an
invalid identity, the Client Lib will set the error ERROR_client_could_not_validate_identity.

Example code to request a connection to a TeamSpeak 3 server:

unsigned int error;
uint64 scHandlerID;
char* identity;

error = ts3client_spawnNewServerConnectionHandler(&scHandlerID);
if(error != ERROR_ok) {
 printf("Error spawning server conection handler: %d\n", error);
 return;
}

error = ts3client_createIdentity(&identity); /* Application should store and reuse the identity */
if(error != ERROR_ok) {
 printf("Error creating identity: %d\n", error);
 return;
}

error = ts3client_startConnection(scHandlerID,
 identity
 "my-teamspeak-server.com",
 9987,
 "Gandalf",
 NULL, // Join servers default channel
 "", // Empty default channel password
 "secret"); // Server password
if(error != ERROR_ok) {
 (...)
}
ts3client_freeMemory(identity); /* Don't need this anymore */

TeamSpeak 3 Client
SDK Developer Manual

14

After calling ts3client_startConnection, the client will be informed of the connection status changes by the callback

void onConnectStatusChangeEvent(serverConnectionHandlerID, newStatus, errorNumber);

uint64 serverConnectionHandlerID;
int newStatus;
int errorNumber;

Parameters

• newStatus

The new connect state as defined by the enum ConnectStatus:

enum ConnectStatus {
 STATUS_DISCONNECTED = 0, //There is no activity to the server, this is the default value
 STATUS_CONNECTING, //We are trying to connect, we haven't got a clientID yet, we
 //haven't been accepted by the server
 STATUS_CONNECTED, //The server has accepted us, we can talk and hear and we got a
 //clientID, but we don't have the channels and clients yet, we
 //can get server infos (welcome msg etc.)
 STATUS_CONNECTION_ESTABLISHING,//we are CONNECTED and we are visible
 STATUS_CONNECTION_ESTABLISHED, //we are CONNECTED and we have the client and channels available
};

• errorNumber

Should be ERROR_ok (zero) when connecting

While connecting, the states will switch through the values STATUS_CONNECTING, STATUS_CONNECTED and
STATUS_CONNECTION_ESTABLISHED. Once the state STATUS_CONNECTED has been reached, there the server wel-
come message is available, which can be queried by the client:

• Welcome message

Query the server variable VIRTUALSERVER_WELCOMEMESSAGE for the message text using the function
ts3client_getServerVariableAsString:

char* welcomeMsg;
if(ts3client_getServerVariableAsString(serverConnectionHandlerID, VIRTUALSERVER_WELCOMEMESSAGE, &welcomeMsg)
 != ERROR_ok) {
 printf("Error getting server welcome message: %d\n", error);
 return;
}
print("Welcome message: %s\n", welcomeMsg); /* Display message */
ts3client_freeMemory(welcomeMsg); /* Release memory */

To check if a connection to a given server connection handler is established, call:

unsigned int ts3client_getConnectionStatus(serverConnectionHandlerID, result);

uint64 serverConnectionHandlerID;
int* result;

TeamSpeak 3 Client
SDK Developer Manual

15

Parameters

• serverConnectionHandlerID

ID of the server connection handler of which the connection state is checked.

• result

Address of a variable that receives the result: 1 - Connected, 0 - Not connected.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

After the state STATUS_CONNECTED has been reached, the client is assigned an ID which identifies the client on this server.
This ID can be queried with

unsigned int ts3client_getClientID(serverConnectionHandlerID, result);

uint64 serverConnectionHandlerID;
anyID* result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which we are querying the own client ID.

• result

Address of a variable that receives the client ID. Client IDs start with the value 1.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

After connection has been established, all current channels on the server are announced to the client. This happens with delays
to avoid a flood of information after connecting. The client is informed about the existance of each channel with the following
event:

void onNewChannelEvent(serverConnectionHandlerID, channelID, channelParentID);

uint64 serverConnectionHandlerID;
uint64 channelID;
uint64 channelParentID;

Parameters

• serverConnectionHandlerID

TeamSpeak 3 Client
SDK Developer Manual

16

The server connection handler ID.

• channelID

The ID of the announced channel.

• channelParentID

ID of the parent channel.

Channel IDs start with the value 1.

The order in which channels are announced by onNewChannelEvent is defined by the channel order as explained in the
chapter Channel sorting.

All clients currently logged to the server are announced after connecting with the callback onClientMoveEvent.

Disconnecting from a server
To disconnect from a TeamSpeak 3 server call

unsigned int ts3client_stopConnection(serverConnectionHandlerID, quitMessage);

uint64 serverConnectionHandlerID;
const char* quitMessage;

Parameters

• serverConnectionHandlerID

The unique ID for this server connection handler.

• quitMessage

A message like for example "leaving". The string needs to be encoded in UTF-8 format.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Like with connecting, on successful disconnecting the client will receive an event:

void onConnectStatusChangeEvent(serverConnectionHandlerID, newStatus, errorNumber);

uint64 serverConnectionHandlerID;
int newStatus;
int errorNumber;

TeamSpeak 3 Client
SDK Developer Manual

17

Parameters

• newStatus

Set to STATUS_DISCONNECTED as defined by the enum ConnectStatus.

• errorNumber

errorNumber is expected to be ERROR_ok as response to calling ts3client_stopConnection.

Values other than ERROR_ok occur when the connection has been lost for reasons not initiated by the user, e.g. network
error, forcefully disconnected etc.

Should the server be shutdown, the follow event will be called:

void onServerStopEvent(serverConnectionHandlerID, shutdownMessage);

uint64 serverConnectionHandlerID;
const char* shutdownMessage;

Parameters

• serverConnectionHandlerID

Server connection handler ID of the stopped server.

• shutdownMessage

Message announcing the reason for the shutdown sent by the server. Has to be encoded in UTF-8 format.

Error handling
Each Client Lib function returns either ERROR_ok on success or an error value as defined in public_errors.h if the
function fails.

The returned error codes are organized in groups, where the first byte defines the error group and the second the count within
the group: The naming convention is ERROR_<group>_<error>, for example ERROR_client_invalid_id.

Example:

unsigned int error;
char* welcomeMsg;

error = ts3client_getServerVariableAsString(serverConnectionHandlerID,
 VIRTUALSERVER_WELCOMEMESSAGE,
 &welcomeMsg);
if(error == ERROR_ok) {
 /* Use welcomeMsg... */
 ts3client_freeMemory(welcomeMsg); /* Release memory *only* if function did not return an error */
} else {
 /* Handle error */
 /* Do not access or release welcomeMessage, the variable is undefined */

TeamSpeak 3 Client
SDK Developer Manual

18

}

Important

Client Lib functions returning C-strings or arrays dynamically allocate memory which has to be freed by the caller
using ts3client_freeMemory. It is important to only access and release the memory if the function returned
ERROR_ok. Should the function return an error, the result variable is uninitialized, so freeing or accessing it
could crash the application.

See the section Calling Client Lib functions for additional notes and examples.

A printable error string for a specific error code can be queried with

unsigned int ts3client_getErrorMessage(errorCode, error);

unsigned int errorCode;
char** error;

Parameters

• errorCode

The error code returned from all Client Lib functions.

• error

Address of a variable that receives the error message string, encoded in UTF-8 format. Unless the return value of the function
is not ERROR_ok, the string should be released with ts3client_freeMemory.

Example:

unsigned int error;
anyID myID;

error = ts3client_getClientID(scHandlerID, &myID); /* Calling some Client Lib function */
if(error != ERROR_ok) {
 char* errorMsg;
 if(ts3client_getErrorMessage(error, &errorMsg) == ERROR_ok) { /* Query printable error */
 printf("Error querying client ID: %s\n", errorMsg);
 ts3client_freeMemory(errorMsg); /* Release memory */
 }
}

In addition to actively querying errors like above, error codes can be sent by the server to the client. In that case the following
event is called:

void onServerErrorEvent(serverConnectionHandlerID, errorMessage, error, returnCode,
extraMessage);

uint64 serverConnectionHandlerID;

TeamSpeak 3 Client
SDK Developer Manual

19

const char* errorMessage;
unsigned int error;
const char* returnCode;
const char* extraMessage;

Parameters

• serverConnectionHandlerID

The connection handler ID of the server who sent the error event.

• errorMessage

String containing a verbose error message, encoded in UTF-8 format.

• error

Error code as defined in public_errors.h.

• returnCode

String containing the return code if it has been set by the Client Lib function call which caused this error event.

See return code documentation.

• extraMessage

Can contain additional information about the occured error. If no additional information is available, this parameter is an
empty string.

Logging
The TeamSpeak 3 Client Lib offers basic logging functions:

unsigned int ts3client_logMessage(logMessage, severity, channel, logID);

const char* logMessage;
LogLevel severity;
const char* channel;
uint64 logID;

Parameters

• logMessage

Text written to log.

• severity

TeamSpeak 3 Client
SDK Developer Manual

20

The level of the message, warning or error. Defined by the enum LogLevel in clientlib_publicdefinitions.h:

enum LogLevel {
 LogLevel_CRITICAL = 0, //these messages stop the program
 LogLevel_ERROR, //everything that is really bad, but not so bad we need to shut down
 LogLevel_WARNING, //everything that *might* be bad
 LogLevel_DEBUG, //output that might help find a problem
 LogLevel_INFO, //informational output, like "starting database version x.y.z"
 LogLevel_DEVEL //developer only output (will not be displayed in release mode)
};

• channel

Custom text to categorize the message channel (i.e. "Client", "Sound").

Pass an empty string if unused.

• logID

Server connection handler ID to identify the current server connection when using multiple connections.

Pass 0 if unused.

All strings need to be encoded in UTF-8 format.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Log messages can be printed to stdout, logged to a file logs/ts3client_[date]__[time].log and sent to user-de-
fined callbacks. The log output behaviour is defined when initialzing the client library with ts3client_initClientLib.

Unless user-defined logging is used, program execution will halt on a log message with severity LogLevel_CRITICAL.

User-defined logging
If user-defined logging was enabled when initialzing the Client Lib by passing LogType_USERLOGGING to the usedLog-
Types parameter of ts3client_initClientLib, log messages will be sent to the following callback, which allows
user customizable logging and handling or critical errors:

void onUserLoggingMessageEvent(logMessage, logLevel, logChannel, logID, logTime, com-
pleteLogString);

const char* logMessage;
int logLevel;
const char* logChannel;
uint64 logID;
const char* logTime;
const char* completeLogString;

Most callback parameters reflect the arguments passed to the logMessage function.

Parameters

• logMessage

TeamSpeak 3 Client
SDK Developer Manual

21

Actual log message text.

• logLevel

Severity of log message, defined by the enum LogLevel. Note that only log messages of a level higher than the one config-
ured with ts3client_setLogVerbosity will appear.

• logChannel

Optional custom text to categorize the message channel.

• logID

Server connection handler ID identifying the current server connection when using multiple connections.

• logTime

String with date and time when the log message occured.

• completeLogString

Provides a verbose log message including all previous parameters for convinience.

The severity of log messages that are passed to above callback can be configured with:

unsigned int ts3client_setLogVerbosity(logVerbosity);

enum LogLevel logVerbosity;

Parameters

• logVerbosity

Only messages with a log level equal or higher than logVerbosity will be sent to the callback. The default value is
LogLevel_DEVEL.

For example, after calling

ts3client_setLogVerbosity(LogLevel_ERROR);

only log messages of level LogLevel_ERROR and LogLevel_CRITICAL will be passed to onUserLoggingMes-
sageEvent.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Using playback and capture modes and devices
The Client Lib takes care of initializing, using and releasing sound playback and capture devices. Accessing devices is handled
by the sound backend shared libraries, found in the soundbackends directory in the SDK. There are different backends available

TeamSpeak 3 Client
SDK Developer Manual

22

on the supported operating systems: DirectSound and Windows Audio Session API on Windows, Alsa and PulseAudio on
Linux, CoreAudio on Mac OS X.

All strings passed to and from the Client Lib have to be encoded in UTF-8 format.

Initializing modes and devices
To initialize a playback and capture device for a TeamSpeak 3 server connection handler, call

unsigned int ts3client_openPlaybackDevice(serverConnectionHandlerID, modeID, play-
backDevice);

uint64 serverConnectionHandlerID;
const char* modeID;
const char* playbackDevice;

Parameters

• serverConnectionHandlerID

Connection handler of the server on which you want to initialize the playback device.

• modeID

The playback mode to use. Valid modes are returned by ts3client_getDefaultPlayBackMode and
ts3client_getPlaybackModeList.

Passing an empty string will use the default playback mode.

• playbackDevice

Valid parameters are:

• The device parameter returned by ts3client_getDefaultPlaybackDevice

• One of the device parameters returned by ts3client_getPlaybackDeviceList

• Empty string to initialize the default playback device.

• Linux with Alsa only: Custom device name in the form of e.g. “hw:1,0”.
The string needs to be encoded in UTF-8 format.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. A likely error is
ERROR_sound_could_not_open_playback_device if the sound backend fails to find a usable playback device.

unsigned int ts3client_openCaptureDevice(serverConnectionHandlerID, modeID, capture-
Device);

uint64 serverConnectionHandlerID;

TeamSpeak 3 Client
SDK Developer Manual

23

const char* modeID;
const char* captureDevice;

Parameters

• serverConnectionHandlerID

Connection handler of the server on which you want to initialize the capture device.

• modeID

The capture mode to use. Valid modes are returned by ts3client_getDefaultCaptureMode and
ts3client_getCaptureModeList.

Passing an empty string will use the default capture mode.

• captureDevice

Valid parameters are:

• The device parameter returned by ts3client_getDefaultCaptureDevice

• One of the device parameters returned by ts3client_getCaptureDeviceList

• Empty string to initialize the default capture device. Encoded in UTF-8 format.

• Linux with Alsa only: Custom device name in the form of e.g. “hw:1,0”.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. Like-
ly errors are ERROR_sound_could_not_open_capture_device if the device fails to open or
ERROR_sound_handler_has_device if the device is already opened. To avoid this problem, it is recommended to
close the capture device before opening it again.

Querying available modes and devices

Various playback and capture modes are available: DirectSound on all Windows platforms, Windows Audio Session API for
Windows Vista and Windows 7; Alsa and PulseAudio on Linux; CoreAudio on Mac OS X.

Available device names may differ depending on the current mode.

The default playback and capture modes can be queried with:

unsigned int ts3client_getDefaultPlayBackMode(result);

char** result;

unsigned int ts3client_getDefaultCaptureMode(result);

char** result;

TeamSpeak 3 Client
SDK Developer Manual

24

Parameters

• result

Address of a variable that receives the default playback or capture mode. The value can be used as parameter for
the functions querying and opening devices. Unless the function returns an error, the string must be released using
ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

All available playback and capture modes can be queried with:

unsigned int ts3client_getPlaybackModeList(result);

char*** result;

unsigned int ts3client_getCaptureModeList(result);

char*** result;

Parameters

• result

Address of a variable that receives a NULL-terminated array of C-strings listing available playback or capture modes.

Unless the function returns an error, the caller must release each element of the array (the C-string) and finally the complete
array with ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. In case of an error, the result
array is uninitialized and must not be accessed or released.

Example to query all available playback modes:

char** array;

if(ts3client_getPlaybackModeList(&array) == ERROR_ok) {
 for(int i=0; array[i] != NULL; ++i) {
 printf("Mode: %s\n", array[i]);
 ts3client_freeMemory(array[i]); // Free C-string
 }
 ts3client_freeMemory(array); // Free the array
}

TeamSpeak 3 Client
SDK Developer Manual

25

Playback and capture devices available for the given mode can be listed, as well as the current operating systems default. The
returned device values can be used to initialize the devices.

To query the default playback and capture device, call

unsigned int ts3client_getDefaultPlaybackDevice(modeID, result);

const char* modeID;
char*** result;

unsigned int ts3client_getDefaultCaptureDevice(modeID, result);

const char* modeID;
char*** result;

Parameters

• mode

Defines the playback/capture mode to use. For different modes there might be different default devices. Valid
modes are returned by ts3client_getDefaultPlayBackMode / ts3client_getDefaultCaptureMode and
ts3client_getPlaybackModeList / ts3client_getCaptureModeList.

• result

Address of a variable that receives an array of two C-strings. The first element contains the device name, the second the
device ID.

Unless the function returns an error, the caller must free the two array elements and the complete array with
ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. In case of an error, the result
array is uninitialized and must not be released.

Example to query the default playback device:

char* defaultMode;

/* Get default playback mode */
if(ts3client_getDefaultPlayBackMode(&defaultMode) == ERROR_ok) {
 char** defaultPlaybackDevice;

 /* Get default playback device */
 if(ts3client_getDefaultPlaybackDevice(defaultMode, &defaultPlaybackDevice) == ERROR_ok) {
 printf("Default playback device name: %s\n", defaultPlaybackDevice[0]); /* First element: Device name */
 printf("Default playback device ID: %s\n", defaultPlaybackDevice[1]); /* Second element: Device ID */

 /* Release the two array elements and the array */
 ts3client_freeMemory(defaultPlaybackDevice[0]);
 ts3client_freeMemory(defaultPlaybackDevice[1]);
 ts3client_freeMemory(defaultPlaybackDevice);

TeamSpeak 3 Client
SDK Developer Manual

26

 } else {
 printf("Failed to get default playback device\n");
 }
} else {
 printf("Failed to get default playback mode\n");
}

To get a list of all available playback and capture devices for the specified mode, call

unsigned int ts3client_getPlaybackDeviceList(modeID, result);

const char* modeID;
char**** result;

unsigned int ts3client_getCaptureDeviceList(modeID, result);

const char* modeID;
char**** result;

Parameters

• modeID

Defines the playback/capture mode to use. For different modes there might be different device lists. Valid modes
are returned by ts3client_getDefaultPlayBackMode / ts3client_getDefaultCaptureMode and
ts3client_getPlaybackModeList / ts3client_getCaptureModeList.

• result

Address of a variable that receives a NULL-terminated array { { char* deviceName, char* deviceID }, { char* deviceName,
char* deviceID }, ... , NULL }.

Unless the function returns an error, the elements of the array and the array itself need to be freed using
ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. In case of an error, the result
array is uninitialized and must not be released.

Example to query all available playback devices:

char* defaultMode;

if(ts3client_getDefaultPlayBackMode(&defaultMode) == ERROR_ok) {
 char*** array;

 if(ts3client_getPlaybackDeviceList(defaultMode, &array) == ERROR_ok) {
 for(int i=0; array[i] != NULL; ++i) {
 printf("Playback device name: %s\n", array[i][0]); /* First element: Device name */
 printf("Playback device ID: %s\n", array[i][1]); /* Second element: Device ID */

TeamSpeak 3 Client
SDK Developer Manual

27

 /* Free element */
 ts3client_freeMemory(array[i][0]);
 ts3client_freeMemory(array[i][1]);
 ts3client_freeMemory(array[i]);
 }
 ts3client_freeMemory(array); /* Free complete array */
 } else {
 printf("Error getting playback device list\n");
 }
} else {
 printf("Error getting default playback mode\n");
}

Checking current modes and devices
The currently used playback and capture modes for a given server connection handler can be checked with:

unsigned int ts3client_getCurrentPlayBackMode(serverConnectionHandlerID, result);

uint64 serverConnectionHandlerID;
char** result;

unsigned int ts3client_getCurrentCaptureMode(serverConnectionHandlerID, result);

uint64 serverConnectionHandlerID;
char** result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the current playback or capture modes are queried.

• result

Address of a variable that receives the current playback or capture mode. Unless the function returns an error, the string
must be released using ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Check the currently used playback and capture devices for a given server connection handler with:

unsigned int ts3client_getCurrentPlaybackDeviceName(serverConnectionHandlerID, re-
sult, isDefault);

uint64 serverConnectionHandlerID;
char** result;

TeamSpeak 3 Client
SDK Developer Manual

28

int* isDefault;

unsigned int ts3client_getCurrentCaptureDeviceName(serverConnectionHandlerID, re-
sult, isDefault);

uint64 serverConnectionHandlerID;
char** result;
int* isDefault;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the current playback or capture devices are queried.

• result

Address of a variable that receives the current playback or capture device. Unless the function returns an error, the string
must be released using ts3client_freeMemory.

• result

Address of a variable that receives a flag if this device is the default playback/capture device. If this is not needed, pass
NULL instead.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result string is uninitialized and must not be released.

Closing devices
To close the capture and playback devices for a given server connection handler:

unsigned int ts3client_closeCaptureDevice(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

unsigned int ts3client_closePlaybackDevice(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

Parameters

• serverConnectionHandlerID

TeamSpeak 3 Client
SDK Developer Manual

29

ID of the server connection handler for which the playback or capture device should be closed.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

ts3client_closePlaybackDevice will not block until all current sounds have finished playing but will shutdown
the device immediately, possibly interrupting the still playing sounds. To shutdown the playback device more gracefully, use
the following function:

unsigned int ts3client_initiateGracefulPlaybackShutdown(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the playback or capture device should be shut down.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

While ts3client_initiateGracefulPlaybackShutdown will not block until all sounds have finished playing,
too, it will notify the client when the playback device can be safely closed by sending the callback:

void onPlaybackShutdownCompleteEvent(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the playback device has been shut down.

Example code to gracefully shutdown the playback devicef:

/* Instead of calling ts3client_closePlaybackDevice() directly */
if(ts3client_initiateGracefulPlaybackShutdown(currentScHandlerID) != ERROR_ok) {
 printf("Failed to initiate graceful playback shutdown\n");
 return;
}

/* Event notifying the playback device has been shutdown */
void my_onPlaybackShutdownCompleteEvent(uint64 scHandlerID) {
 /* Now we can safely close the device */
 if(ts3client_closePlaybackDevice(scHandlerID) != ERROR_ok) {
 printf("Error closing playback device\n");

TeamSpeak 3 Client
SDK Developer Manual

30

 }
}

Note

Devices are closed automatically when calling ts3client_destroyServerConnectionHandler.

Note

To change a device, close it first and then reopen it.

Using custom devices
Instead of opening existing sound devices that TeamSpeak has detected, you can also use our custom capture and
playback mechanism to allow you to override the way in which TeamSpeak does capture and playback. When
you have opened a custom capture and playback device you must regularly supply new "captured" sound data
via the ts3client_processCustomCaptureData function and retrieve data that should be "played back" via
ts3client_acquireCustomPlaybackData. Where exactly this captured sound data comes from and where the play-
back data goes to is up to you, which allows a lot of cool things to be done with this mechanism.

Implementing own custom devices is for special use cases and entirely optional.

Registering a custom device announces the device ID and name to the Client Lib. Once a custom device has been regis-
tered under a device ID, the device can be opened like any standard device with ts3client_openCaptureDevice and
ts3client_openPlaybackDevice.

void ts3client_registerCustomDevice(deviceID, deviceDisplayName, capFrequency,
capChannels, playFrequency, playChannels);

const char* deviceID;
const char* deviceDisplayName;
int capFrequency;
int capChannels;
int playFrequency;
int playChannels;

Parameters

• deviceID

ID string of the custom device, under which the device can be later accessed.

• deviceDisplayName

Displayed name of the custom device. Freely choose a name which identifies your device.

• capFrequency

Frequency of the capture device.

• capChannels

TeamSpeak 3 Client
SDK Developer Manual

31

Number of channels of the capture device.

• playFrequency

Frequency of the playback device.

• playChannels

Number of channels of the playback device.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Unregistering a custom device will automatically close the device:

void ts3client_unregisterCustomDevice(deviceID);

const char* deviceID;

Parameters

• deviceID

ID string of the custom device to unregister. This is the ID under which the device was registered with
ts3client_registerCustomDevice.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

To send the captured data from your device to the Client Lib:

void ts3client_processCustomCaptureData(deviceID, buffer, samples);

const char* deviceID;
const short* buffer;
int samples;

Parameters

• deviceID

ID string of the custom device. This is the ID under which the device was registered with
ts3client_registerCustomDevice.

• buffer

Capture data buffer containing the data captured by the custom device.

• samples

TeamSpeak 3 Client
SDK Developer Manual

32

Size of the capture data buffer.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Retrieve playback data from the Client Lib:

void ts3client_acquireCustomPlaybackData(deviceID, buffer, samples);

const char* deviceID;
const short* buffer;
int samples;

Parameters

• deviceID

ID string of the custom device. This is the ID under which the device was registered with
ts3client_registerCustomDevice.

• buffer

Buffer containing the playback data retrieved from the Client Lib.

• samples

Size of the playback data buffer.

Returns ERROR_ok if playback data is available or ERROR_sound_no_data if the Client Lib currently has no playback
data.

The return value ERROR_sound_no_data can be used for performance optimisation, it means there is currently only silence
(nobody is talking, no wave files being played etc.) and instead of returning a buffer full of zeroes it just notifies the user there
is currently no data, which allows you to not playback any sound data for that moment, if your API supports that (potentially
saving some CPU), or to just fill the sound buffer with zeroes and playback this if your sound API demands you to fill it with
something for every given time.

Overview on registering and opening a custom device:

/* Register a new custom sound device with specified frequency and number of channels */
if(ts3client_registerCustomDevice("customWaveDeviceId", "Nice displayable wave device name", captureFrequency, captureChannels, playbackFrequncy, playbackChannels) != ERROR_ok) {
 printf("Failed to register custom device\n");
}

/* Open capture device we created earlier */
if(ts3client_openCaptureDevice(scHandlerID, "custom", "customWaveDeviceId") != ERROR_ok) {
 printf("Error opening capture device\n");
}

/* Open playback device we created earlier */

TeamSpeak 3 Client
SDK Developer Manual

33

if(ts3client_openPlaybackDevice(scHandlerID, "custom", "customWaveDeviceId") != ERROR_ok) {
 printf("Error opening playback device\n");
}

/* Main loop */
while(!abort) {
 /* Fill captureBuffer from your custom device */

 /* Stream your capture data to the client lib */
 if(ts3client_processCustomCaptureData("customWaveDeviceId", captureBuffer, captureBufferSize) != ERROR_ok) {
 printf("Failed to process capture data\n");
 }

 /* Get playback data from the client lib */
 error = ts3client_acquireCustomPlaybackData("customWaveDeviceId", playbackBuffer, playbackBufferSize);
 if(error == ERROR_ok) {
 /* Playback data available, send playbackBuffer to your custom device */
 } else if(error == ERROR_sound_no_data) {
 /* Not an error. The client lib has no playback data available. Depending on your custom sound API, either
 pause playback for performance optimisation or send a buffer of zeros. */
 } else {
 printf("Failed to get playback data\n"); /* Error occured */
 }
}

/* Unregister the custom device. This automatically close the device. */
if(ts3client_unregisterCustomDevice("customaveDeviceId") != ERROR_ok) {
 printf("Failed to unregister custom device\n");
}

Note

Further sample code on how to use a custom device can be found in the “client_customdevice” example included
in the SDK.

Activating the capture device

Note

Using this function is only required when connecting to multiple servers.

When connecting to multiple servers with the same client, the capture device can only be active for one server at the same
time. As soon as the client connects to a new server, the Client Lib will deactivate the capture device of the previously active
server. When a user wants to talk to that previous server again, the client needs to reactivate the capture device.

unsigned int ts3client_activateCaptureDevice(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the capture device should be activated.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

TeamSpeak 3 Client
SDK Developer Manual

34

If the capture device is already active, this function has no effect.

Opening a new capture device will automatically activate it, so calling this function is only necessary with multiple server
connections and when reactivating a previously deactivated device.

If the capture device for a given server connection handler has been deactivated by the Client
Lib, the flag CLIENT_INPUT_HARDWARE will be set. This can be queried with the function
ts3client_getClientSelfVariableAsInt.

Sound codecs
TeamSpeak 3 supports three different sound sampling rates:

• Speex Narrowband (8 kHz)

• Speex Wideband (16 kHz)

• Speex Ultra-Wideband (32 kHz)

Bandwidth usage generally depends on the encoders quality setting.

Quality Narrowband bitrate (bps) Wideband bitrate (bps) Ultra-Wideband
bitrate (bps)

0 2,150 3,950 5,750

1 3,950 5,750 7,550

2 5,950 7,750 9,550

3 8,000 9,800 11,600

4 8,000 12,800 14,600

5 11,000 16,800 18,600

6 11,000 20,600 22,400

7 15,000 23,800 25,600

8 15,000 27,800 29,600

9 18,200 34,400 36,200

10 24,600 42,400 44,200

The availability of the 8 kHz narrowband codec should cater for the needs of low-bandwidth users at the cost of overall sound
quality.

Users need to use the same codec when talking to each others. The smallest unit of participants using the same codec is a chan-
nel. Different channels on the same TeamSpeak 3 server can use different codecs. The channel codec should be customizable
by the users to allow for flexibility concerning bandwidth vs. quality concerns.

The codec can be set or changed for a given channel using the function ts3client_setChannelVariableAsInt by
passing CHANNEL_CODEC for the properties flag:

ts3client_setChannelVariableAsInt(scHandlerID, channelID, CHANNEL_CODEC, codec);

TeamSpeak 3 Client
SDK Developer Manual

35

For the argument codec pass a value of 0 for Narrowband (8 kHz), 1 for Wideband (16 kHz) and 2 for Ultra-Wideband
(32 kHz).

For details on using the function ts3client_setChannelVariableAsInt see the appropriate section on changing
channel data.

Encoder options
Speech quality and bandwidth usage depend on the used Speex encoder. As Speex is a lossy code, the quality value
controls the balance between voice quality and network traffic. Valid quality values range from 0 to 10, default is 7.
The encoding quality can be configured for each channel using the CHANNEL_CODEC_QUALITY property. The cur-
rently used channel codec, codec quality and estimated average used bitrate (without overhead) can be queried with
ts3client_getEncodeConfigValue.

Note

Encoder options are tied to a capture device, so querying the values only makes sense after a device has been
opened.

All strings passed from the Client Lib are encoded in UTF-8 format.

unsigned int ts3client_getEncodeConfigValue(serverConnectionHandlerID, ident, re-
sult);

uint64 serverConnectionHandlerID;
const char* ident;
char** result;

• serverConnectionHandlerID

Server connection handler ID

• ident

String containing the queried encoder option. Available values are “name”, “quality” and “bitrate”.

• result

Address of a variable that receives the result string. Unless an error occured, the result string must be released using
ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result string is uninitialized and must not be released.

To adjust the channel codec quality to a value of 5, you would call:

ts3client_setChannelVariableAsInt(scHandlerID, channelID, CHANNEL_CODEC_QUALITY, 5);

See the chapter about channel information for details about how to set channel variables.

To query information about the current channel quality, do:

char *name, *quality, *bitrate;

TeamSpeak 3 Client
SDK Developer Manual

36

ts3client_getEncodeConfigValue(scHandlerID, "name", &name);
ts3client_getEncodeConfigValue(scHandlerID, "quality", &quality);
ts3client_getEncodeConfigValue(scHandlerID, "bitrate", &bitrate);

printf("Name = %s, quality = %s, bitrate = %s\n", name, quality, bitrate);

ts3client_freeMemory(name);
ts3client_freeMemory(quality);
ts3client_freeMemory(bitrate);

Preprocessor options
Sound input is preprocessed by the Client Lib before the data is encoded and sent to the TeamSpeak 3 server. The preprocessor
is responsible for noise suppression, automatic gain control (AGC) and voice activity detection (VAD).

The preprocessor can be controlled by setting various preprocessor flags. These flags are unique to each server connection.

Note

Preprocessor flags are tied to a capture device, so changing the values only makes sense after a device has been
opened.

Preprocessor flags can be queried using

unsigned int ts3client_getPreProcessorConfigValue(serverConnectionHandlerID, ident,
result);

uint64 serverConnectionHandlerID;
const char* ident;
char** result;

Parameters

• serverConnectionHandlerID

The server connection handler ID.

• ident

The proprocessor flag to be queried. The following keys are available:

• “name”

Type of the used preprocessor. Currently this returns a constant string “Speex preprocessor”.

• “denoise”

Check if noise suppression is enabled. Returns “true” or “false”.

• “vad”

Check if Voice Activity Detection is enabled. Returns “true” or “false”.

TeamSpeak 3 Client
SDK Developer Manual

37

• “voiceactivation_level”

Checks the Voice Activity Detection level in decibel. Returns a string with a numeric value, convert this to an integer.

• “vad_extrabuffersize”

Checks Voice Activity Detection extrabuffer size. Returns a string with a numeric value.

• “agc”

Check if Automatic Gain Control is enabled. Returns “true” or “false”.

• “agc_level”

Checks AGC level. Returns a string with a numeric value.

• “agc_max_gain”

Checks AGC max gain. Returns a string with a numeric value.

• result

Address of a variable that receives the result as a string encoded in UTF-8 format. If no error occured the returned string
must be released using ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result string is uninitialized and must not be released.

To configure the proprocessor use

unsigned int ts3client_setPreProcessorConfigValue(serverConnectionHandlerID, ident,
value);

uint64 serverConnectionHandlerID;
const char* ident;
const char* value;

Parameters

• serverConnectionHandlerID

The server connection handler ID.

• ident

The preprocessor flag to be configure. The following keys can be changed:

• “denoise”

Enable or disable noise suppression. Value can be “true” or “false”. Enabled by default.

TeamSpeak 3 Client
SDK Developer Manual

38

• “vad”

Enable or disable Voice Activity Detection. Value can be “true” or “false”. Enabled by default.

• “voiceactivation_level”

Voice Activity Detection level in decibel. Numeric value converted to string. A high voice activation level means you
have to speak louder into the microphone in order to start transmitting.

Reasonable values range from -50 to 50. Default is 0.

To adjust the VAD level in your client, you can call ts3client_getPreProcessorInfoValueFloat with the
identifier “decibel_last_period” over a period of time to query the current voice input level.

• “vad_extrabuffersize”

Voice Activity Detection extrabuffer size. Numeric value converted to string. Should be “0” to “8”, defaults to “2”. Lower
value means faster transmission, higher value means better VAD quality but higher latency.

• “agc”

Enable or disable Automatic Gain Control. Value can be “true” or “false”. Enabled by default.

• “agc_level”

AGC level. Numeric value converted to string. Default is “16000”.

• “agc_max_gain”

AGC max gain. Numeric value converted to string. Default is “30”.

• value

String value to be set for the given preprocessor identifier. In case of on/off switches, use “true” or “false”.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Note

It is not necessary to change all those values. The default values are reasonable. “voiceactivation_level” is often
the only value that needs to be adjusted.

The following function retrieves preprocessor information as a floating-point variable instead of a string:

unsigned int ts3client_getPreProcessorInfoValueFloat(serverConnectionHandlerID,
ident, result);

uint64 serverConnectionHandlerID;
const char* ident;
float* result;

TeamSpeak 3 Client
SDK Developer Manual

39

Parameters

• serverConnectionHandlerID

The server connection handler ID.

• ident

The proprocessor flag to be queried. Currently the only valid identifier for this function is “decibel_last_period”, which can
be used to adjust the VAD level as described above.

• result

Address of a variable that receives the result value as a float.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Playback options
Sound output can be configured using playback options. Currently the output value can be adjusted.

Playback options can be queried:

unsigned int ts3client_getPlaybackConfigValueAsFloat(serverConnectionHandlerID,
ident, result);

uint64 serverConnectionHandlerID;
const char* ident;
float* result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the playback option is queried.

• ident

Identifier of the parameter to be configured. Possible values are:

• “volume_modifier”

Modify the voice volume of other speakers. Value is in decibel, so 0 is no modification, negative values make the signal
quieter and values greater than zero boost the signal louder than it is. Be careful with high positive values, as you can
really cause bad audio quality due to clipping. The maximum possible Value is 30.

Zero and all negative values cannot cause clipping and distortion, and are preferred for optimal audio quality. Values
greater than zero and less than +6 dB might cause moderate clipping and distortion, but should still be within acceptable
bounds. Values greater than +6 dB will cause clipping and distortion that will negatively affect your audio quality. It is
advised to choose lower values. Generally we recommend to not allow values higher than 15 db.

TeamSpeak 3 Client
SDK Developer Manual

40

• “volume_factor_wave”

Adjust the volume of wave files played by ts3client_playWaveFile and
ts3client_playWaveFileHandle. The value is a float defining the volume reduction in decibel. Reasonable val-
ues range from “-40.0” (very silent) to “0.0” (loudest).

• result

Address of a variable that receives the playback configuration value as floating-point number.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

To change playback options, call:

unsigned int ts3client_setPlaybackConfigValue(serverConnectionHandlerID, ident, val-
ue);

uint64 serverConnectionHandlerID;
const char* ident;
const char* value;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the playback option is queried.

• ident

Identifier of the parameter to be configured. The values are the same as in
ts3client_getPlaybackConfigValueAsFloat above.

• value

String with the value to set the option to, encoded in UTF-8 format.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Note

Playback options are tied to a playback device, so changing the values only makes sense after a device has been
opened.

Example code:

unsigned int error;
float value;

if((error = ts3client_setPlaybackConfigValue(scHandlerID, "volume_modifier", "5.5")) != ERROR_ok) {

TeamSpeak 3 Client
SDK Developer Manual

41

 printf("Error setting playback config value: %d\n", error);
 return;
}

if((error = ts3client_getPlaybackConfigValueAsFloat(scHandlerID, "volume_modifier", &value)) != ERROR_ok) {
 printf("Error getting playback config value: %d\n", error);
 return;
}

printf("Volume modifier playback option: %f\n", value);

In addition to changing the global voice volume modifier of all speakers by changing the “volume_modifier” parameter, voice
volume of individual clients can be adjusted with:

unsigned int ts3client_setClientVolumeModifier(serverConnectionHandlerID, clientID,
value);

uint64 serverConnectionHandlerID;
anyID clientID;
float value;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the client volume modifier should be adjusted.

• clientID

ID of the client whose volume modifier should be adjusted.

• value

The new client volume modifier value as float.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

When calculating the volume for individual clients, both the global and client volume modifiers will be taken into account.

Client volume modifiers are valid as long as the specified client is visible. Once the client leaves visibility by joining an
unsubscribed channel or disconnecting from the server, the client volume modifier will be lost. When the client enters visibility
again, the modifier has to be set again by calling this function.

Example:

unsigned int error;
anyID clientID = 123;
float value = 10.0f;

if((error = ts3client_setClientVolumeModifier(scHandlerID, clientID, value)) != ERROR_ok) {
 printf("Error setting client volume modifier: %d\n", error);
 return;

TeamSpeak 3 Client
SDK Developer Manual

42

}

Accessing the voice buffer
The TeamSpeak Client Lib allows users to acces the raw playback and capture voice data and even modify it, for example to
add effects to the voice. These callbacks are also used by the TeamSpeak client for the voice recording feature.

Using these low-level callbacks is not required and should be reserved for specific needs. Most SDK applications won't need
to implement these callbacks.

This event is called when a voice packet from a client (not own client) is decoded and about to be played over your sound
device, but before it is 3D positioned and mixed with other sounds.

You can use this function to alter the voice data (for example when you want to do effects on it) or to simply get voice data.
The TeamSpeak client uses this function to record sessions.

void onEditPlaybackVoiceDataEvent(serverConnectionHandlerID, clientID, samples, sam-
pleCount, channels);

uint64 serverConnectionHandlerID;
anyID clientID;
short* samples;
int sampleCount;
int channels;

Parameters

• serverConnectionHandlerID

ID of the server connection handler from which the voice data was sent.

• clientID

ID of the client whose voice data is received.

• samples

Pointer to the voice data (signed 16 bit @ 48KHz).

• sampleCount

Number of samples the "samples" variable points to.

• channels

Number of channels in the sound data. Currently always 1.

This event is called when a voice packet from a client (not own client) is decoded and 3D positioned and about to be played
over your sound device, but before it is mixed with other sounds.

TeamSpeak 3 Client
SDK Developer Manual

43

You can use this function to alter/get the voice data after 3D positioning.

void onEditPostProcessVoiceDataEvent(serverConnectionHandlerID, clientID, samples,
sampleCount, channels, channelSpeakers, channelFillMask);

uint64 serverConnectionHandlerID;
anyID clientID;
short* samples;
int sampleCount;
int channels;
const unsigned int* channelSpeakers;
unsigned int* channelFillMask;

Parameters

• serverConnectionHandlerID

ID of the server connection handler from which the voice data was sent.

• clientID

ID of the client whose voice data is received.

• samples

Pointer to the voice data (signed 16 bit @ 48KHz).

• sampleCount

Number of samples the "samples" variable points to.

• channels

Number of channels in the sound data.

• channelSpeakers

A pointer to a bit-mask of which speakers the channels represent. The values can be found in the SPEAKER_* defines
within public_definitions.h. Channels are always in order of this bit-mask, so if the sound data has 2 chan-
nels, and channelSpeakers is SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT, the first channel (0) is always
SPEAKER_FRONT_LEFT and the second channel (1) is always SPEAKER_FRONT_RIGHT.

• channelFillMask

A pointer to a bit-mask of which channels are filled. For efficiency reasons, not all channels need to have actual sound data
in it. So before this data is used, use this bit-mask to check if the channel is actually filled. If you decide to add data to a
channel that is empty, set the bit for this channel in this mask.

For example, this callback reports:

channels = 6
*channelSpeakers =

TeamSpeak 3 Client
SDK Developer Manual

44

 SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY |
 SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT |
 SPEAKER_SIDE_LEFT | SPEAKER_SIDE_RIGHT // Quote unusual setup
*channelFillMask = 1

This means "samples" points to 6 channel data, but only the SPEAKER_FRONT_CENTER channel has data, the other chan-
nels are undefined (not necessarily 0, but undefined).

So for the first sample, samples[0] has data and samples[1], samples[2], samples[3], samples[4] and samples[5] are undefined.

If you want to add SPEAKER_BACK_RIGHT channel data you would do something like:

*channelFillMask |= 1<<3; // SPEAKER_BACK_RIGHT is the 4th channel (is index 3) according to *channelSpeakers.
for(int i=0; i<sampleCount; ++i){
 samples[3 + (i*channels)] = getChannelSoundData(SPEAKER_BACK_RIGHT, i);
}

This event is called when all sounds that are about to be played back for this server connection are mixed. This is the last
chance to alter/get sound.

You can use this function to alter/get the sound data before playback.

void onEditMixedPlaybackVoiceDataEvent(serverConnectionHandlerID, samples, sample-
Count, channels, channelSpeakers, channelFillMask);

uint64 serverConnectionHandlerID;
short* samples;
int sampleCount;
int channels;
const unsigned int* channelSpeakers;
unsigned int* channelFillMask;

Parameters

• serverConnectionHandlerID

ID of the server connection handler from which the voice data was sent.

• samples

Pointer to the voice data (signed 16 bit @ 48KHz).

• sampleCount

Number of samples the "samples" variable points to.

• channels

Number of channels in the sound data.

• channelSpeakers

TeamSpeak 3 Client
SDK Developer Manual

45

A pointer to a bit-mask of which speakers the channels represent. The values can be found in the SPEAKER_* defines
within public_definitions.h. Channels are always in order of this bit-mask, so if the sound data has 2 chan-
nels, and channelSpeakers is SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT, the first channel (0) is always
SPEAKER_FRONT_LEFT and the second channel (1) is always SPEAKER_FRONT_RIGHT.

• channelFillMask

A pointer to a bit-mask of which channels are filled. For efficiency reasons, not all channels need to have actual sound data
in it. So before this data is used, use this bit-mask to check if the channel is actually filled. If you decide to add data to a
channel that is empty, set the bit for this channel in this mask.

This event is called after sound is recorded from the sound device and is preprocessed. This event can be used to get/alter
recorded sound. Also it can be determined if this sound will be send, or muted. This is used by the TeamSpeak client to record
sessions.

If the sound data will be send, (*edited | 2) is true. If the sound data is changed, set bit 1 (*edited |=1). If the sound should
not be send, clear bit 2. (*edited &= ~2)

void onEditCapturedVoiceDataEvent(serverConnectionHandlerID, samples, sampleCount,
channels, edited);

uint64 serverConnectionHandlerID;
short* samples;
int sampleCount;
int channels;
int* edited;

Parameters

• serverConnectionHandlerID

ID of the server connection handler from which the voice data was sent.

• samples

Pointer to the voice data (signed 16 bit @ 48KHz).

• sampleCount

Number of samples the "samples" variable points to.

• channels

Number of channels in the sound data.

• edited

When called, bit 2 indicates if the sound is about to be sent to the server.

On return, set bit 1 if the sound data was changed.

TeamSpeak 3 Client
SDK Developer Manual

46

Voice recording

When using the above callbacks to record voice, you should notify the server when recording starts or stops with the following
functions:

unsigned int ts3client_startVoiceRecording(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

unsigned int ts3client_stopVoiceRecording(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which voice recording should be started or stopped.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Playing wave files
The TeamSpeak Client Lib offers support to play wave files from the local harddisk.

To play a local wave file, call

unsigned int ts3client_playWaveFile(serverConnectionHandlerID, path);

anyID serverConnectionHandlerID;
const char* path;

Parameters

• serverConnectionHandlerID

ID of the server connection handler defining which playback device is to be used to play the sound file.

• path

Local filepath of the sound file in WAV format to be played, encoded in UTF-8.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

This is the simple version of playing a sound file. It's a fire-and-forget mechanism, this function will not block.

TeamSpeak 3 Client
SDK Developer Manual

47

The more complex version is to play an optionally looping sound and obtain a handle, which can be used to pause, unpause
and stop the loop.

unsigned int ts3client_playWaveFileHandle(serverConnectionHandlerID, path, loop,
waveHandle);

anyID serverConnectionHandlerID;
const char* path;
int loop;
uint64* waveHandle;

Parameters

• serverConnectionHandlerID

ID of the server connection handler defining which playback device is to be used to play the sound file.

• path

Local filepath of the sound file in WAV format to be played, encoded in UTF-8.

• loop

If set to 1, the sound will be looping until the handle is paused or closed.

• waveHandle

Memory address of a variable in which the handle is written. Use this handle to call
ts3client_pauseWaveFileHandle and ts3client_closeWaveFileHandle.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error occured, waveHan-
dle is uninitialized and must not be used.

Using the handle obtained by ts3client_playWaveFileHandle, sounds can be paused and unpaused with

unsigned int ts3client_pauseWaveFileHandle(serverConnectionHandlerID, waveHandle,
pause);

anyID serverConnectionHandlerID;
uint64 waveHandle;
int pause;

Parameters

• serverConnectionHandlerID

TeamSpeak 3 Client
SDK Developer Manual

48

ID of the server connection handler defining which playback device is to be used to play the sound file.

• waveHandle

Wave handle obtained by ts3client_playWaveFileHandle.

• pause

If set to 1, the sound will be paused. Set to 0 to unpause.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Using the handle obtained by ts3client_playWaveFileHandle, sounds can be closed with

unsigned int ts3client_closeWaveFileHandle(serverConnectionHandlerID, waveHandle);

anyID serverConnectionHandlerID;
uint64 waveHandle;

Parameters

• serverConnectionHandlerID

ID of the server connection handler defining which playback device is to be used to play the sound file.

• waveHandle

Wave handle obtained by ts3client_playWaveFileHandle.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

3D Sound
TeamSpeak 3 supports 3D sound to assign each speaker a unique position in 3D space. Provided are functions to modify the
3D position, velocity and orientation of own and foreign clients.

Generally the struct TS3_VECTOR describes a vector in 3D space:

typedef struct {
 float x; /* X coordinate in 3D space. */
 float y; /* Y coordinate in 3D space. */
 float z; /* Z coordinate in 3D space. */
} TS3_VECTOR;

To set the position, velocity and orientation of the own client in 3D space, call:

unsigned int ts3client_systemset3DListenerAttributes(serverConnectionHandlerID, po-
sition, forward, up);

TeamSpeak 3 Client
SDK Developer Manual

49

uint64 serverConnectionHandlerID;
const TS3_VECTOR* position;
const TS3_VECTOR* forward;
const TS3_VECTOR* up;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the 3D sound listener attributes are to be set.

• position

3D position of the own client.

If passing NULL, the parameter is ignored and the value not updated.

• forward

Forward orientation of the listener. The vector must be of unit length and perpendicular to the up vector.

If passing NULL, the parameter is ignored and the value not updated.

• up

Upward orientation of the listener. The vector must be of unit length and perpendicular to the forward vector.

If passing NULL, the parameter is ignored and the value not updated.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

To adjust 3D sound system settings use:

unsigned int ts3client_systemset3DSettings(serverConnectionHandlerID, distanceFac-
tor, rolloffScale);

uint64 serverConnectionHandlerID;
float distanceFactor;
float rolloffScale;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the 3D sound system settings are to be adjusted.

• distanceFactor

TeamSpeak 3 Client
SDK Developer Manual

50

Relative distance factor. Default is 1.0 = 1 meter

• rolloffScale

Scaling factor for 3D sound rolloff.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

To adjust a clients position and velocity in 3D space, call:

unsigned int ts3client_channelset3DAttributes(serverConnectionHandlerID, clientID,
position);

uint64 serverConnectionHandlerID;
anyID clientID;
const TS3_VECTOR* position;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the 3D sound channel attributes are to be adjusted.

• clientID

ID of the client to adjust.

• position

Vector specifying the position of the given client in 3D space.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

This event is called to calculate volume attenuation for distance in 3D positioning of clients.

void onCustom3dRolloffCalculationClientEvent(serverConnectionHandlerID, clientID,
distance, volume);

uint64 serverConnectionHandlerID;
anyID clientID;
float distance;
float* volume;

Parameters

• serverConnectionHandlerID

TeamSpeak 3 Client
SDK Developer Manual

51

ID of the server connection handler on which the volume attenuation calculation occured.

• clientID

ID of the client which is being 3D positioned.

• distance

The distance between the listener and the client.

• volume

The volume which the Client Lib calculated. This can be changed in this callback.

This event is called to calculate volume attenuation for distance in 3D positioning of a wave file that was opened previously
with ts3client_playWaveFileHandle.

void onCustom3dRolloffCalculationWaveEvent(serverConnectionHandlerID, waveHandle,
distance, volume);

uint64 serverConnectionHandlerID;
uint64 waveHandle;
float distance;
float* volume;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the volume attenuation calculation occured.

• waveHandle

Handle for the playing wave file, returned by ts3client_playWaveFileHandle.

• distance

The distance between the listener and the client.

• volume

The volume which the Client Lib calculated. This can be changed in this callback.

This method is used to 3D position a wave file that was opened previously with ts3client_playWaveFileHandle.

unsigned int ts3client_set3DWaveAttributes(serverConnectionHandlerID, waveHandle,
position);

uint64 serverConnectionHandlerID;

TeamSpeak 3 Client
SDK Developer Manual

52

uint64 waveHandle;
const TS3_VECTOR* position;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the volume attenuation calculation occured.

• waveHandle

Handle for the playing wave file, returned by ts3client_playWaveFileHandle.

• position

The 3D position of the sound.

• volume

The volume which the Client Lib calculated. This can be changed in this callback.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Query available servers, channels and clients
A client can connect to multiple servers. To list all currently existing server connection handlers, call:

unsigned int ts3client_getServerConnectionHandlerList(result);

uint64** result;

Parameters

• result

Address of a variable that receives a NULL-termianted array of all currently existing server connection handler IDs. Unless
an error occurs, the array must be released using ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result array is uninitialized and must not be released.

A list of all channels on the specified virtual server can be queried with:

unsigned int ts3client_getChannelList(serverConnectionHandlerID, result);

uint64 serverConnectionHandlerID;

TeamSpeak 3 Client
SDK Developer Manual

53

uint64** result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the list of channels is requested.

• result

Address of a variable that receives a NULL-termianted array of channel IDs. Unless an error occurs, the array must be
released using ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result array is uninitialized and must not be released.

To get a list of all currently visible clients on the specified virtual server:

unsigned intts3client_getClientList(serverConnectionHandlerID, result);

uint64 serverConnectionHandlerID;
anyID** result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the list of clients is requested.

• result

Address of a variable that receives a NULL-termianted array of client IDs. Unless an error occurs, the array must be released
using ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result array is uninitialized and must not be released.

To get a list of all clients in the specified channel if the channel is currently subscribed:

unsigned int ts3client_getChannelClientList(serverConnectionHandlerID, channelID,
result);

uint64 serverConnectionHandlerID;
uint64 channelID;

TeamSpeak 3 Client
SDK Developer Manual

54

anyID** result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the list of clients within the given channel is requested.

• channelID

ID of the channel whose client list is requested.

• result

Address of a variable that receives a NULL-termianted array of client IDs. Unless an error occurs, the array must be released
using ts3client_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result array is uninitialized and must not be released.

To query the channel ID the specified client has currently joined:

unsigned int ts3client_getChannelOfClient(serverConnectionHandlerID, clientID, re-
sult);

uint64 serverConnectionHandlerID;
anyID clientID;
uint64* result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the channel ID is requested.

• clientID

ID of the client whose channel ID is requested.

• result

Address of a variable that receives the ID of the channel the specified client has currently joined.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

TeamSpeak 3 Client
SDK Developer Manual

55

To get the parent channel of a given channel:

unsigned int ts3client_getParentChannelOfChannel(serverConnectionHandlerID, chan-
nelID, result);

uint64 serverConnectionHandlerID;
uint64 channelID;
uint64* result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the parent channel of the specified channel is requested.

• channelID

ID of the channel whose parent channel ID is requested.

• result

Address of a variable that receives the ID of the parent channel of the specified channel.

If the specified channel has no parent channel, result will be set to the reserved channel ID 0.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Example code to print a list of all channels on a virtual server:

uint64* channels;

if(ts3client_getChannelList(serverID, &channels) == ERROR_ok) {
 for(int i=0; channels[i] != NULL; i++) {
 printf("Channel ID: %u\n", channels[i]);
 }
 ts3client_freeMemory(channels);
}

To print all visible clients:

anyID* clients;

if(ts3client_getClientList(scHandlerID, &clients) == ERROR_ok) {
 for(int i=0; clients[i] != NULL; i++) {
 printf("Client ID: %u\n", clients[i]);
 }
 ts3client_freeMemory(clients);
}

Example to print all clients who are member of channel with ID 123:

uint64 channelID = 123; /* Channel ID in this example */
anyID *clients;

TeamSpeak 3 Client
SDK Developer Manual

56

if(ts3client_getChannelClientList(scHandlerID, channelID) == ERROR_ok) {
 for(int i=0; clients[i] != NULL; i++) {
 printf("Client ID: %u\n", clients[i]);
 }
 ts3client_freeMemory(clients);
}

Retrieve and store information
The Client Lib remembers a lot of information which have been passed through previously. The data is available to be queried
by a client for convinience, so the interface code doesn't need to store the same information as well. The client can in many
cases also modify the stored information for further processing by the server.

All strings passed to and from the Client Lib need to be encoded in UTF-8 format.

Client information

Information related to own client

Once connection to a TeamSpeak 3 server has been established, a unique client ID is assigned by the server. This ID can
be queried with

unsigned int ts3client_getClientID(serverConnectionHandlerID, result);

uint64 serverConnectionHandlerID;
anyID* result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which we are querying the own client ID.

• result

Address of a variable that receives the client ID. Client IDs start with the value 1.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Various information related about the own client can be checked with:

unsigned int ts3client_getClientSelfVariableAsInt(serverConnectionHandlerID, flag,
result);

uint64 serverConnectionHandlerID;
ClientProperties flag;
int* result;

TeamSpeak 3 Client
SDK Developer Manual

57

unsigned int ts3client_getClientSelfVariableAsString(serverConnectionHandlerID,
flag, result);

uint64 serverConnectionHandlerID;
ClientProperties flag;
char** result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the information for the own client is requested.

• flag

Client propery to query, see below.

• result

Address of a variable which receives the result value as int or string, depending on which function is used. In case of a
string, memory must be released using ts3client_freeMemory, unless an error occured.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter flag specifies the type of queried information. It is defined by the enum ClientProperties:

enum ClientProperties {
 CLIENT_UNIQUE_IDENTIFIER = 0, //automatically up-to-date for any client "in view", can be used
 //to identify this particular client installation
 CLIENT_NICKNAME, //automatically up-to-date for any client "in view"
 CLIENT_VERSION, //for other clients than ourself, this needs to be requested
 //(=> requestClientVariables)
 CLIENT_PLATFORM, //for other clients than ourself, this needs to be requested
 //(=> requestClientVariables)
 CLIENT_FLAG_TALKING, //automatically up-to-date for any client that can be heard
 //(in room / whisper)
 CLIENT_INPUT_MUTED, //automatically up-to-date for any client "in view", this clients
 //microphone mute status
 CLIENT_OUTPUT_MUTED, //automatically up-to-date for any client "in view", this clients
 //headphones/speakers mute status
 CLIENT_OUTPUTONLY_MUTED //automatically up-to-date for any client "in view", this clients
 //headphones/speakers only mute status
 CLIENT_INPUT_HARDWARE, //automatically up-to-date for any client "in view", this clients
 //microphone hardware status (is the capture device opened?)
 CLIENT_OUTPUT_HARDWARE, //automatically up-to-date for any client "in view", this clients
 //headphone/speakers hardware status (is the playback device opened?)
 CLIENT_INPUT_DEACTIVATED, //only usable for ourself, not propagated to the network
 CLIENT_IDLE_TIME, //internal use
 CLIENT_DEFAULT_CHANNEL, //only usable for ourself, the default channel we used to connect
 //on our last connection attempt
 CLIENT_DEFAULT_CHANNEL_PASSWORD,//internal use
 CLIENT_SERVER_PASSWORD, //internal use
 CLIENT_META_DATA, //automatically up-to-date for any client "in view", not used by
 //TeamSpeak, free storage for sdk users

TeamSpeak 3 Client
SDK Developer Manual

58

 CLIENT_IS_MUTED, //only make sense on the client side locally, "1" if this client is
 //currently muted by us, "0" if he is not
 CLIENT_IS_RECORDING, //automatically up-to-date for any client "in view"
 CLIENT_VOLUME_MODIFICATOR, //internal use
 CLIENT_ENDMARKER,
};

• CLIENT_UNIQUE_IDENTIFIER

String: Unique ID for this client. Stays the same after restarting the application, so you can use this to identify individual user.

• CLIENT_NICKNAME

Nickname used by the client. This value is always automatically updated for visible clients.

• CLIENT_VERSION

Application version used by this client. Needs to be requested with ts3client_requestClientVariables unless
called on own client.

• CLIENT_PLATFORM

Operating system used by this client. Needs to be requested with ts3client_requestClientVariables unless
called on own client.

• CLIENT_FLAG_TALKING

Set when the client is currently sending voice data to the server. Always available for visible clients.

Note: You should query this flag for the own client using ts3client_getClientSelfVariableAsInt.

• CLIENT_INPUT_MUTED

Indicates the mute status of the clients capture device. Possible values are defined by the enum MuteInputStatus. Always
available for visible clients.

• CLIENT_OUTPUT_MUTED

Indicates the combined mute status of the clients playback and capture devices. Possible values are defined by the enum
MuteOutputStatus. Always available for visible clients.

• CLIENT_OUTPUTONLY_MUTED

Indicates the mute status of the clients playback device. Possible values are defined by the enum MuteOutputStatus. Always
available for visible clients.

• CLIENT_INPUT_HARDWARE

Set if the clients capture device is not available. Possible values are defined by the enum HardwareInputStatus. Always
available for visible clients.

• CLIENT_OUTPUT_HARDWARE

Set if the clients playback device is not available. Possible values are defined by the enum HardwareOutputStatus. Always
available for visible clients.

• CLIENT_INPUT_DEACTIVATED

TeamSpeak 3 Client
SDK Developer Manual

59

Set when the capture device has been deactivated as used in Push-To-Talk. Possible values are defined by the enum Input-
DeactivationStatus. Only used for the own clients and not available for other clients as it doesn't get propagated to the server.

• CLIENT_IDLE_TIME

Time the client has been idle. Needs to be requested with ts3client_requestClientVariables.

• CLIENT_DEFAULT_CHANNEL

CLIENT_DEFAULT_CHANNEL_PASSWORD

Default channel name and password used in the last ts3client_startConnection call. Only available for own
client.

• CLIENT_META_DATA

Not used by TeamSpeak 3, offers free storage for SDK users. Always available for visible clients.

• CLIENT_IS_MUTED

Indicates a client has been locally muted with ts3client_requestMuteClients. Client-side only.

• CLIENT_IS_RECORDING

Indicates a client is currently recording all voice data in his channel.

• CLIENT_VOLUME_MODIFICATOR

The client volume modifier set by ts3client_setClientVolumeModifier.

Generally all types of information can be retrieved as both string or integer. However, in most cases the expected data type is
obvious, like querying CLIENT_NICKNAME will clearly require to store the result as string.

Example 1: Query client nickname

char* nickname;

if(ts3client_getClientSelfVariableAsString(scHandlerID, CLIENT_NICKNAME, &nickname) == ERROR_ok) {
 printf("My nickname is: %s\n", s);
 ts3client_freeMemory(s);
}

Example 2: Check if own client is currently talking (to be exact: sending voice data)

int talking;

if(ts3client_getClientSelfVariableAsInt(scHandlerID, CLIENT_FLAG_TALKING, &talking) == ERROR_ok) {
 switch(talking) {
 case STATUS_TALKING:
 // I am currently talking
 break;
 case STATUS_NOT_TALKING:
 // I am currently not talking
 break;
 case STATUS_TALKING_WHILE_DISABLED:
 // I am talking while microphone is disabled
 break;
 default:
 printf("Invalid value for CLIENT_FLAG_TALKING\n");

TeamSpeak 3 Client
SDK Developer Manual

60

 }
}

Information related to the own client can be modified with

unsigned int ts3client_setClientSelfVariableAsInt(serverConnectionHandlerID, flag,
value);

uint64 serverConnectionHandlerID;
ClientProperties flag;
int value;

unsigned int ts3client_setClientSelfVariableAsString(serverConnectionHandlerID,
flag, value);

uint64 serverConnectionHandlerID;
ClientProperties flag;
const char* value;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the information for the own client is changed.

• flag

Client propery to query, see above.

• value

Value the client property should be changed to.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Important

After modifying one or more client variables, you must flush the changes. Flushing ensures the changes are sent
to the TeamSpeak 3 server.

unsigned int ts3client_flushClientSelfUpdates(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

For example, to change the own nickname:

/* Modify data */
if(ts3client_setClientSelfVariableAsString(scHandlerID, CLIENT_NICKNAME, "Joe") != ERROR_ok) {

TeamSpeak 3 Client
SDK Developer Manual

61

 printf("Error setting client variable\n");
 return;
}

/* Flush changes */
if(ts3client_flushClientSelfUpdates(scHandlerID) != ERROR_ok) {
 printf("Error flushing client updates");
}

Example for doing two changes:

/* Modify data 1 */
if(ts3client_setClientSelfVariableAsInt(scHandlerID, CLIENT_AWAY, AWAY_ZZZ) != ERROR_ok) {
 printf("Error setting away mode\n");
 return;
}

/* Modify data 2 */
if(ts3client_setClientSelfVariableAsString(scHandlerID, CLIENT_AWAY_MESSAGE, "Lunch") != ERROR_ok) {
 printf("Error setting away message\n");
 return;
}

/* Flush changes */
if(ts3client_flushClientSelfUpdates(scHandlerID) != ERROR_ok) {
 printf("Error flushing client updates");
}

Example to mute and unmute the microphone:

unsigned int error;
bool shouldTalk;

shouldTalk = isPushToTalkButtonPressed(); // Your key detection implementation
if((error = ts3client_setClientSelfVariableAsInt(scHandlerID, CLIENT_INPUT_DEACTIVATED,
 shouldTalk ? INPUT_ACTIVE : INPUT_DEACTIVATED)) != ERROR_ok) {
 char* errorMsg;
 if(ts3client_getErrorMessage(error, &errorMsg) != ERROR_ok) {
 printf("Error toggling push-to-talk: %s\n", errorMsg);
 ts3client_freeMemory(errorMsg);
 }
 return;
}

if(ts3client_flushClientSelfUpdates(scHandlerID) != ERROR_ok) {
 char* errorMsg;
 if(ts3client_getErrorMessage(error, &errorMsg) != ERROR_ok) {
 printf("Error flushing after toggling push-to-talk: %s\n", errorMsg);
 ts3client_freeMemory(errorMsg);
 }
}

See the FAQ section for further details on implementing Push-To-Talk with
ts3client_setClientSelfVariableAsInt.

Information related to other clients

Information related to other clients can be retrieved in a similar way. Unlike own clients however, information cannot be
modified.

To query client related information, use one of the following functions. The parameter flag is defined by the enum Client-
Properties as shown above.

TeamSpeak 3 Client
SDK Developer Manual

62

unsigned int ts3client_getClientVariableAsInt(serverConnectionHandlerID, clientID,
flag, result);

uint64 serverConnectionHandlerID;
anyID clientID;
ClientProperties flag;
int* result;

unsigned int ts3client_getClientVariableAsUInt64(serverConnectionHandlerID, clien-
tID, flag, result);

uint64 serverConnectionHandlerID;
anyID clientID;
ClientProperties flag;
uint64* result;

unsigned int ts3client_getClientVariableAsString(serverConnectionHandlerID, clien-
tID, flag, result);

uint64 serverConnectionHandlerID;
anyID clientID;
ClientProperties flag;
char** result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the information for the specified client is requested.

• clientID

ID of the client whose property is queried.

• flag

Client propery to query, see above.

• result

Address of a variable which receives the result value as int, uint64 or string, depending on which function is used. In case
of a string, memory must be released using ts3client_freeMemory, unless an error occured.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

TeamSpeak 3 Client
SDK Developer Manual

63

As the Client Lib cannot have all information for all users available all the time, the latest data for a given client can be
requested from the server with:

unsigned int ts3client_requestClientVariables(serverConnectionHandlerID, clientID,
returnCode);

uint64 serverConnectionHandlerID;
anyID clientID;
const char* returnCode;

The function requires one second delay before calling it again on the same client ID to avoid flooding the server.

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the client variables are requested.

• clientID

ID of the client whose variables are requested.

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

After requesting the information, the following event is called:

void onUpdateClientEvent(serverConnectionHandlerID, clientID);

uint64 serverConnectionHandlerID;
anyID clientID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the client variables are now available.

• clientID

ID of the client whose variables are now available.

The event does not carry the information per se, but now the Client Lib guarantees to have the clients in-
formation available, which can be subsequently queried with ts3client_getClientVariableAsInt and
ts3client_getClientVariableAsString.

TeamSpeak 3 Client
SDK Developer Manual

64

Whisper lists

A client with a whisper list set can talk to the specified clients and channels bypassing the normal rule that voice is only
transmitted to the current channel. Whisper lists can be defined for individual clients. A whisper list consists of an array of
client IDs and/or an array of channel IDs.

unsigned int ts3client_requestClientSetWhisperList(serverConnectionHandlerID, cli-
entID, targetChannelIDArray, targetClientIDArray, returnCode);

uint64 serverConnectionHandlerID;
anyID clientID;
const uint64* targetChannelIDArray;
const anyID* targetClientIDArray;
const char* returnCode;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the clients whisper list is modified.

• clientID

ID of the client whose whisper list is modified. If set to 0, the own client is modified (same as setting to own client ID).

• targetChannelIDArray

Array of channel IDs, terminated with 0. These channels will be added to the whisper list.

To clear the list, pass NULL or an empty array.

• targetClientIDArray

Array of client IDs, terminated with 0. These clients will be added to the whisper list.

To clear the list, pass NULL or an empty array.

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

To disable the whisperlist for the given client, pass NULL to both targetChannelIDArray and targetClientI-
DArray. Careful: If you pass two empty arrays, whispering is not disabled but instead one would still be whispering to no-
body (empty lists).

To control which client is allowed to whisper to own client, the Client Lib implements an internal whisper whitelist mechanism.
When a client recieves a whisper while the whispering client has not yet been added to the whisper allow list, the receiving
client gets the following event. Note that whisper voice data is not received until the sending client is added to the receivers
whisper allow list.

void onIgnoredWhisperEvent(serverConnectionHandlerID, clientID);

TeamSpeak 3 Client
SDK Developer Manual

65

uint64 serverConnectionHandlerID;
anyID clientID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the event occured.

• clientID

ID of the whispering client.

The receiving client can decide to allow whispering from the sender and add the sending client to the whisper allow list by
calling ts3client_allowWhispersFrom. If the sender is not added by the receiving client, this event persists being
called but no voice data is transmitted to the receiving client.

To add a client to the whisper allow list:

unsigned int ts3client_allowWhispersFrom(serverConnectionHandlerID, clID);

uint64 serverConnectionHandlerID;
anyID clID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the client should be added to the whisper allow list.

• clID

ID of the client to be added to the whisper allow list.

To remove a client from the whisper allow list:

unsigned int ts3client_removeFromAllowedWhispersFrom(serverConnectionHandlerID,
clID);

uint64 serverConnectionHandlerID;
anyID clID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the client should be removed from the whisper allow list.

• clID

TeamSpeak 3 Client
SDK Developer Manual

66

ID of the client to be removed from the whisper allow list.

It won't have bad sideeffects if the same client ID is added to the whisper allow list multiple times.

Channel information
Querying and modifying information related to channels is similar to dealing with clients. The functions to query channel
information are:

unsigned int ts3client_getChannelVariableAsInt(serverConnectionHandlerID, channelID,
flag, result);

uint64 serverConnectionHandlerID;
uint64 channelID;
ChannelProperties flag;
int* result;

unsigned int ts3client_getChannelVariableAsUInt64(serverConnectionHandlerID, chan-
nelID, flag, result);

uint64 serverConnectionHandlerID;
uint64 channelID;
ChannelProperties flag;
uint64* result;

unsigned int ts3client_getChannelVariableAsString(serverConnectionHandlerID, chan-
nelID, flag, result);

uint64 serverConnectionHandlerID;
uint64 channelID;
ChannelProperties flag;
char* result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the information for the specified channel is requested.

• channelID

ID of the channel whose property is queried.

• flag

Channel propery to query, see below.

TeamSpeak 3 Client
SDK Developer Manual

67

• result

Address of a variable which receives the result value of type int, uint64 or string, depending on which function is used. In
case of a string, memory must be released using ts3client_freeMemory, unless an error occured.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter flag specifies the type of queried information. It is defined by the enum ChannelProperties:

enum ChannelProperties {
 CHANNEL_NAME = 0, //Available for all channels that are "in view", always up-to-date
 CHANNEL_TOPIC, //Available for all channels that are "in view", always up-to-date
 CHANNEL_DESCRIPTION, //Must be requested (=> requestChannelDescription)
 CHANNEL_PASSWORD, //not available client side
 CHANNEL_CODEC, //Available for all channels that are "in view", always up-to-date
 CHANNEL_CODEC_QUALITY, //Available for all channels that are "in view", always up-to-date
 CHANNEL_MAXCLIENTS, //Available for all channels that are "in view", always up-to-date
 CHANNEL_MAXFAMILYCLIENTS, //Available for all channels that are "in view", always up-to-date
 CHANNEL_ORDER, //Available for all channels that are "in view", always up-to-date
 CHANNEL_FLAG_PERMANENT, //Available for all channels that are "in view", always up-to-date
 CHANNEL_FLAG_SEMI_PERMANENT, //Available for all channels that are "in view", always up-to-date
 CHANNEL_FLAG_DEFAULT, //Available for all channels that are "in view", always up-to-date
 CHANNEL_FLAG_PASSWORD, //Available for all channels that are "in view", always up-to-date
 CHANNEL_CODEC_LATENCY_FACTOR, //Available for all channels that are "in view", always up-to-date
 CHANNEL_CODEC_IS_UNENCRYPTED, //Available for all channels that are "in view", always up-to-date
 CHANNEL_ENDMARKER,
};

• CHANNEL_NAME

String: Name of the channel.

• CHANNEL_TOPIC

String: Single-line channel topic.

• CHANNEL_DESCRIPTION

String: Optional channel description. Can have multiple lines. Clients need to request updating this variable for a specified
channel using:

unsigned int ts3client_requestChannelDescription(serverConnectionHandlerID, chan-
nelID, returnCode);

uint64 serverConnectionHandlerID;
uint64 channelID;
const char* returnCode;

• CHANNEL_PASSWORD

String: Optional password for password-protected channels.

Note

Clients can only set this value, but not query it.

TeamSpeak 3 Client
SDK Developer Manual

68

If a password is set or removed by modifying this field, CHANNEL_FLAG_PASSWORD will be automatically adjusted.

• CHANNEL_CODEC

Int (0-3): Codec used for this channel:

• 0 - Speex Narrowband (8 kHz)

• 1 - Speex Wideband (16 kHz)

• 2 - Speex Ultra-Wideband (32 kHz)

See Sound codecs.

• CHANNEL_CODEC_QUALITY

Int (0-10): Quality of channel codec of this channel. Valid values range from 0 to 10, default is 7. Higher values result in
better speech quality but more bandwidth usage.

See Encoder options.

• CHANNEL_MAXCLIENTS

Int: Number of maximum clients who can join this channel.

• CHANNEL_MAXFAMILYCLIENTS

Int: Number of maximum clients who can join this channel and all subchannels.

• CHANNEL_ORDER

Int: Defines how channels are sorted in the GUI. Channel order is the ID of the predecessor channel after which this channel
is to be sorted. If 0, the channel is sorted at the top of its hirarchy.

For more information please see the chapter Channel sorting.

• CHANNEL_FLAG_PERMANENT / CHANNEL_FLAG_SEMI_PERMANENT

Concerning channel durability, there are three types of channels:

• Temporary

Temporary channels have neither the CHANNEL_FLAG_PERMANENT nor CHANNEL_FLAG_SEMI_PERMANENT flag
set. Temporary channels are automatically deleted by the server after the last user has left and the channel is empty. They
will not be restored when the server restarts.

• Semi-permanent

Semi-permanent channels are not automatically deleted when the last user left but will not be restored when the server
restarts.

• Permanent

Permanent channels will be restored when the server restarts.

• CHANNEL_FLAG_DEFAULT

TeamSpeak 3 Client
SDK Developer Manual

69

Int (0/1): Channel is the default channel. There can only be one default channel per server. New users who did not configure
a channel to join on login in ts3client_startConnection will automatically join the default channel.

• CHANNEL_FLAG_PASSWORD

Int (0/1): If set, channel is password protected. The password itself is stored in CHANNEL_PASSWORD.

• CHANNEL_CODEC_LATENCY_FACTOR

(Int: 1-10): Latency of this channel. This allows to increase the packet size resulting in less bandwidth usage at the cost of
higher latency. A value of 1 (default) is the best setting for lowest latency and best quality. If bandwidth or network quality
are restricted, increasing the latency factor can help stabilize the connection. Higher latency values are only possible for
low-quality codec and codec quality settings.

For best voice quality a low latency factor is recommended.

• CHANNEL_CODEC_IS_UNENCRYPTED

Int (0/1): If 1, this channel is not using encrypted voice data. If 0, voice data is encrypted for this channel. Note that channel
voice data encryption can be globally disabled or enabled for the virtual server. Changing this flag makes only sense if
global voice data encryption is set to be configured per channel as CODEC_ENCRYPTION_PER_CHANNEL (the default
behaviour).

To modify channel data use

unsigned int ts3client_setChannelVariableAsInt(serverConnectionHandlerID, channelID,
flag, value);

uint64 serverConnectionHandlerID;
uint64 channelID;
ChannelProperties flag;
int value;

unsigned int ts3client_setChannelVariableAsUInt64(serverConnectionHandlerID, chan-
nelID, flag, value);

uint64 serverConnectionHandlerID;
uint64 channelID;
ChannelProperties flag;
uint64 value;

unsigned int ts3client_setChannelVariableAsString(serverConnectionHandlerID, chan-
nelID, flag, value);

uint64 serverConnectionHandlerID;
uint64 channelID;

TeamSpeak 3 Client
SDK Developer Manual

70

ChannelProperties flag;
const char* value;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the information for the specified channel should be changed.

• channelID

ID of the channel whoses property should be changed.

• flag

Channel propery to change, see above.

• value

Value the channel property should be changed to. Depending on which function is used, the value can be of type int, uint64
or string.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Important

After modifying one or more channel variables, you have to flush the changes to the server.

unsigned int ts3client_flushChannelUpdates(serverConnectionHandlerID, chan-
nelID);

uint64 serverConnectionHandlerID;
uint64 channelID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler to which the channel changes should be flushed.

• channelParentID

ID of the channel of which the changed properties should be flushed.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

As example, to change the channel name and topic:

/* Modify data 1 */
if(ts3client_setChannelVariableAsString(scHandlerID, channelID, CHANNEL_NAME,
 "Other channel name") != ERROR_ok) {
 printf("Error setting channel name\n");

TeamSpeak 3 Client
SDK Developer Manual

71

 return;
}

/* Modify data 2 */
if(ts3client_setChannelVariableAsString(scHandlerID, channelID, CHANNEL_TOPIC,
 "Other channel topic") != ERROR_ok) {
 printf("Error setting channel topic\n");
 return;
}

/* Flush changes */
if(ts3client_flushChannelUpdates(scHandlerID, channelID) != ERROR_ok) {
 printf("Error flushing channel updates\n");
 return;
}

After a channel was edited using ts3client_setChannelVariableAsInt or
ts3client_setChannelVariableAsString and the changes were flushed to the server, the edit is announced with
the event:

void onUpdateChannelEditedEvent(serverConnectionHandlerID, channelID, invokerID, in-
vokerName, invokerUniqueIdentifier);

uint64 serverConnectionHandlerID;
uint64 channelID;
anyID invokerID;
const char* invokerName;
const char* invokerUniqueIdentifier;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the channel has been edited.

• channelID

ID of edited channel.

• invokerID

ID of the client who edited the channel.

• invokerName

String with the name of the client who edited the channel.

• invokerUniqueIdentifier

String with the unique ID of the client who edited the channel.

To find the channel ID from a channels path:

TeamSpeak 3 Client
SDK Developer Manual

72

unsigned int ts3client_getChannelIDFromChannelNames(serverConnectionHandlerID, chan-
nelNameArray, result);

uint64 serverConnectionHandlerID;
char** channelNameArray;
uint64* result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the channel ID is queried.

• channelNameArray

Array defining the position of the channel: "grandparent", "parent", "channel", "". The array is terminated by an empty string.

• result

Address of a variable which receives the queried channel ID.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Channel voice data encryption

Voice data can be encrypted or unencrypted. Encryption will increase CPU load, so should be used only when required.
Encryption can be configured per channel (the default) or globally enabled or disabled for the whole virtual server. By default
channels are sending voice data unencrypted, newly created channels would need to be set to encrypted if required.

To configure the global virtual server encryption settings, modify the virtual server property
VIRTUALSERVER_CODEC_ENCRYPTION_MODE to one of the following values:

enum CodecEncryptionMode {
 CODEC_ENCRYPTION_PER_CHANNEL = 0, // Default
 CODEC_ENCRYPTION_FORCED_OFF,
 CODEC_ENCRYPTION_FORCED_ON,
};

Voice data encryption per channel can be configured by setting the channel property CHANNEL_CODEC_IS_UNENCRYPTED
to 0 (encrypted) or 1 (unencrypted) if global encryption mode is CODEC_ENCRYPTION_PER_CHANNEL. If encryption is
forced on or off globally, the channel property will be automatically set by the server.

Channel sorting

The order how channels should be display in the GUI is defined by the channel variable
CHANNEL_ORDER, which can be queried with ts3client_getChannelVariableAsUInt64 or changed with
ts3client_setChannelVariableAsUInt64.

The channel order is the ID of the predecessor channel after which the given channel should be sorted. An order of 0 means
the channel is sorted on the top of its hirarchy.

Channel_1 (ID = 1, order = 0)

TeamSpeak 3 Client
SDK Developer Manual

73

Channel_2 (ID = 2, order = 1)
 Subchannel_1 (ID = 4, order = 0)
 Subsubchannel_1 (ID = 6, order = 0)
 Subsubchannel_2 (ID = 7, order = 6)
 Subchannel_2 (ID = 5, order = 4)
Channel_3 (ID = 3, order = 2)

When a new channel is created, the client is responsible to set a proper channel order. With the default value of 0 the channel
will be sorted on the top of its hirarchy right after its parent channel.

When moving a channel to a new parent, the desired channel order can be passed to ts3client_requestChannelMove.

To move the channel to another position within the current hirarchy - the parent channel stays the same -, adjust the
CHANNEL_ORDER variable with ts3client_setChannelVariableAsUInt64.

After connecting to a TeamSpeak 3 server, the client will be informed of all channels by the onNewChannelEvent callback.
The order how channels are propagated to the client by this event is:

• First the complete channel path to the default channel, which is either the servers default channel with the flag
CHANNEL_FLAG_DEFAULT or the users default channel passed to ts3client_startConnection. This ensures the
channel joined on login is visible as soon as possible.

In above example, assuming the default channel is “Subsubchannel_2”, the channels would be announced in the following
order: Channel_2, Subchannel_1, Subsubchannel_2.

After the default channel path has completely arrived, the connection status (see enum ConnectStatus, annouced to the client
by the callback onConnectStatusChangeEvent) changes to STATUS_CONNECTION_ESTABLISHING.

• Next all other channels in the given order, where subchannels are announced right after the parent channel.

To continue the example, the remaining channels would be announced in the order of: Channel_1, Subsubchannel_1, Sub-
channel_2, Channel_3 (Channel_2, Subchannel_1, Subsubchannel_2 already were announced in the previous step).

When all channels have arrived, the connection status switches to STATUS_CONNECTION_ESTABLISHED.

Server information
Similar to querying client and channel data, server information can be checked with

unsigned int ts3client_getServerVariableAsInt(serverConnectionHandlerID, flag, re-
sult);

uint64 serverConnectionHandlerID;
VirtualServerProperties flag;
int* result;

unsigned int ts3client_getServerVariableAsUInt64(serverConnectionHandlerID, flag,
result);

uint64 serverConnectionHandlerID;

TeamSpeak 3 Client
SDK Developer Manual

74

VirtualServerProperties flag;
uint64* result;

unsigned int ts3client_getServerVariableAsString(serverConnectionHandlerID, flag,
result);

uint64 serverConnectionHandlerID;
VirtualServerProperties flag;
char** result;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the virtual server property is queried.

• clientID

ID of the client whose property is queried.

• flag

Virtual server propery to query, see below.

• result

Address of a variable which receives the result value as int, uint64 or string, depending on which function is used. In case
of a string, memory must be released using ts3client_freeMemory, unless an error occured.

The returned type uint64 is defined as __int64 on Windows and uint64_t on Linux and Mac OS X. See the header
public_definitions.h. This function is currently only used for the flag VIRTUALSERVER_UPTIME.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter flag specifies the type of queried information. It is defined by the enum VirtualServerProperties:

enum VirtualServerProperties {
 VIRTUALSERVER_UNIQUE_IDENTIFIER = 0, //available when connected, can be used to identify this particular
 //server installation
 VIRTUALSERVER_NAME, //available and always up-to-date when connected
 VIRTUALSERVER_WELCOMEMESSAGE, //available when connected, not updated while connected
 VIRTUALSERVER_PLATFORM, //available when connected
 VIRTUALSERVER_VERSION, //available when connected
 VIRTUALSERVER_MAXCLIENTS, //only available on request (=> requestServerVariables), stores the
 //maximum number of clients that may currently join the server
 VIRTUALSERVER_PASSWORD, //not available to clients, the server password
 VIRTUALSERVER_CLIENTS_ONLINE, //only available on request (=> requestServerVariables),
 VIRTUALSERVER_CHANNELS_ONLINE, //only available on request (=> requestServerVariables),
 VIRTUALSERVER_CREATED, //available when connected, stores the time when the server was created
 VIRTUALSERVER_UPTIME, //only available on request (=> requestServerVariables), the time
 //since the server was started

TeamSpeak 3 Client
SDK Developer Manual

75

 VIRTUALSERVER_CODEC_ENCRYPTION_MODE, //available and always up-to-date when connected
 VIRTUALSERVER_ENDMARKER,
};

• VIRTUALSERVER_UNIQUE_IDENTIFIER

Unique ID for this virtual server. Stays the same after restarting the server application. Always available when connected.

• VIRTUALSERVER_NAME

Name of this virtual server. Always available when connected.

• VIRTUALSERVER_WELCOMEMESSAGE

Optional welcome message sent to the client on login. This value should be queried by the client after connection has been
established, it is not updated afterwards.

• VIRTUALSERVER_PLATFORM

Operating system used by this server. Always available when connected.

• VIRTUALSERVER_VERSION

Application version of this server. Always available when connected.

• VIRTUALSERVER_MAXCLIENTS

Defines maximum number of clients which may connect to this server. Needs to be requested using
ts3client_requestServerVariables.

• VIRTUALSERVER_PASSWORD

Optional password of this server. Not available to clients.

• VIRTUALSERVER_CLIENTS_ONLINE

VIRTUALSERVER_CHANNELS_ONLINE

Number of clients and channels currently on this virtual server. Needs to be requested using
ts3client_requestServerVariables.

• VIRTUALSERVER_CREATED

Time when this virtual server was created. Always available when connected.

• VIRTUALSERVER_UPTIME

Uptime of this virtual server. Needs to be requested using ts3client_requestServerVariables.

• VIRTUALSERVER_CODEC_ENCRYPTION_MODE

Defines if voice data encryption is configured per channel, globally forced on or globally forced off for this
virtual server. The default behaviour is configure per channel, in this case modifying the channel property
CHANNEL_CODEC_IS_UNENCRYPTED defines voice data encryption of individual channels.

Virtual server encryption mode can be set to the following parameters:

TeamSpeak 3 Client
SDK Developer Manual

76

enum CodecEncryptionMode {
 CODEC_ENCRYPTION_PER_CHANNEL = 0,
 CODEC_ENCRYPTION_FORCED_OFF,
 CODEC_ENCRYPTION_FORCED_ON,
};

This property is always available when connected.

Example code checking the number of clients online, obviously an integer value:

int clientsOnline;

if(ts3client_getServerVariableAsInt(scHandlerID, VIRTUALSERVER_CLIENTS_ONLINE, &clientsOnline) == ERROR_ok)
 printf("There are %d clients online\n", clientsOnline);

A client can request refreshing the server information with:

unsigned int ts3client_requestServerVariables(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

The following event informs the client when the requested information is available:

unsigned int onServerUpdatedEvent(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

The following event notifies the client when virtual server information has been edited:

void onServerEditedEvent(serverConnectionHandlerID, editerID, editerName,
editerUniqueIdentifier);

uint64 serverConnectionHandlerID;
anyID editerID;
const char* editerName;
const char* editerUniqueIdentifier;

Parameters

• serverConnectionHandlerID

TeamSpeak 3 Client
SDK Developer Manual

77

ID of the server connection handler which virtual server information has been changed.

• editerID

ID of the client who edited the information. If zero, the server is the editor.

• editerName

Name of the client who edited the information.

• editerUniqueIdentifier

Unique ID of the client who edited the information.

Interacting with the server
Interacting with the server means various actions, related to both channels and clients. Channels can be joined, created, edited,
deleted and subscribed. Clients can use text chat with other clients, be kicked or poked and move between channels.

All strings passed to and from the Client Lib need to be encoded in UTF-8 format.

Joining a channel
When a client logs on to a TeamSpeak 3 server, he will automatically join the channel with the “Default” flag, unless he
specified another channel in ts3client_startConnection. To have your own or another client switch to a certain
channel, call

unsigned int ts3client_requestClientMove(serverConnectionHandlerID, clientID,
newChannelID, password, returnCode);

uint64 serverConnectionHandlerID;
anyID clientID;
uint64 newChannelID;
const char* password;
const char* returnCode;

Parameters

• serverConnectionHandlerID

ID of the server connection handler ID on which this action is requested.

• clientID

ID of the client to move.

• newChannelID

ID of the channel the client wants to join.

TeamSpeak 3 Client
SDK Developer Manual

78

• password

An optional password, required for password-protected channels.

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

If the move was successful, one the following events will be called:

void onClientMoveEvent(serverConnectionHandlerID, clientID, oldChannelID, newChan-
nelID, visibility, moveMessage);

uint64 serverConnectionHandlerID;
anyID clientID;
uint64 oldChannelID;
uint64 newChannelID;
int visibility;
const char* moveMessage;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the action occured.

• clientID

ID of the moved client.

• oldChannelID

ID of the old channel left by the client.

• newChannelID

ID of the new channel joined by the client.

• visibility

Defined in the enum Visibility

enum Visibility {
 ENTER_VISIBILITY = 0,
 RETAIN_VISIBILITY,
 LEAVE_VISIBILITY
};

• ENTER_VISIBILITY

TeamSpeak 3 Client
SDK Developer Manual

79

Client moved and entered visibility. Cannot happen on own client.

• RETAIN_VISIBILITY

Client moved between two known places. Can happen on own or other client.

• LEAVE_VISIBILITY

Client moved out of our sight. Cannot happen on own client.

• moveMessage

Displaying the optional message given in ts3client_stopConnection.

Example: Requesting to move the own client into channel ID 12 (not password-protected):

ts3client_requestClientMove(scHandlerID, ts3client_getClientID(scHandlerID), 12, "");

Now wait for the callback:

void yourImplementationOf_onClientMoveEvent(uint64 scHandlerID, anyID clientID,
 uint64 oldChannelID, uint64 newChannelID,
 int visibility) {
 // scHandlerID -> Server connection handler ID, same as above when requesting
 // clientID -> Own client ID, same as above when requesting
 // oldChannelID -> ID of the channel the client has left
 // newChannelID -> 12, as requested above
 // visibility -> One of ENTER_VISIBILITY, RETAIN_VISIBILITY, LEAVE_VISIBILITY
}

If the move was initiated by another client, instead of onClientMove the following event is called:

void onClientMoveMovedEvent(serverConnectionHandlerID, clientID, oldChannelID,
newChannelID, visibility, moverID, moverName, moverUniqueIdentifier, moveMessage);

uint64 serverConnectionHandlerID;
anyID clientID;
uint64 oldChannelID;
uint64 newChannelID;
int visibility;
anyID moverID;
const char* moverName;
moveMessage moverUniqueIdentifier;
moveMessage moveMessage;

Like onClientMoveEvent but with additional information about the client, which has initiated the move: moverID de-
fines the ID, moverName the nickname and moverUniqueIdentifier the unique ID of the mover client. moveMes-
sage contains a string giving the reason for the move.

If oldChannelID is 0, the client has just connected to the server. If newChannelID is 0, the client disconnected. Both
values cannot be 0 at the same time.

TeamSpeak 3 Client
SDK Developer Manual

80

Creating a new channel
To create a channel, set the various channel variables using ts3client_setChannelVariableAsInt and
ts3client_setChannelVariableAsString. Pass zero as the channel ID parameter.

Then flush the changes to the server by calling:

unsigned int ts3client_flushChannelCreation(serverConnectionHandlerID, channelPar-
entID);

uint64 serverConnectionHandlerID;
uint64 channelParentID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler to which the channel changes should be flushed.

• channelParentID

ID of the parent channel, if the new channel is to be created as subchannel. Pass zero if the channel should be created as
top-level channel.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

After flushing the changes to the server, the following event will be called on successful channel creation:

void onNewChannelCreatedEvent(serverConnectionHandlerID, channelID, channelParentID,
invokerID, invokerName, invokerUniqueIdentifier);

uint64 serverConnectionHandlerID;
uint64 channelID;
uint64 channelParentID;
anyID invokerID;
const char* invokerName;
const char* invokerUniqueIdentifier;

Parameters

• serverConnectionHandlerID

ID of the server connection handler where the channel was created.

• channelID

ID of the created channel. Channel IDs start with the value 1.

TeamSpeak 3 Client
SDK Developer Manual

81

• channelParentID

ID of the parent channel.

• invokerID

ID of the client who requested the creation. If zero, the request was initiated by the server.

• invokerName

Name of the client who requested the creation. If requested by the server, the name is empty.

• invokerUniqueIdentifier

Unique ID of the client who requested the creation.

Example code to create a channel:

#define CHECK_ERROR(x) if((error = x) != ERROR_ok) { goto on_error; }

int createChannel(uint64 scHandlerID, uint64 parentChannelID, const char* name, const char* topic,
 const char* description, const char* password, int codec, int codecQuality,
 int maxClients, int familyMaxClients, int order, int perm,
 int semiperm, int default) {
 unsigned int error;

 /* Set channel data, pass 0 as channel ID */
 CHECK_ERROR(ts3client_setChannelVariableAsString(scHandlerID, 0, CHANNEL_NAME, name));
 CHECK_ERROR(ts3client_setChannelVariableAsString(scHandlerID, 0, CHANNEL_TOPIC, topic));
 CHECK_ERROR(ts3client_setChannelVariableAsString(scHandlerID, 0, CHANNEL_DESCRIPTION, desc));
 CHECK_ERROR(ts3client_setChannelVariableAsString(scHandlerID, 0, CHANNEL_PASSWORD, password));
 CHECK_ERROR(ts3client_setChannelVariableAsInt (scHandlerID, 0, CHANNEL_CODEC, codec));
 CHECK_ERROR(ts3client_setChannelVariableAsInt (scHandlerID, 0, CHANNEL_CODEC_QUALITY, codecQuality));
 CHECK_ERROR(ts3client_setChannelVariableAsInt (scHandlerID, 0, CHANNEL_MAXCLIENTS, maxClients));
 CHECK_ERROR(ts3client_setChannelVariableAsInt (scHandlerID, 0, CHANNEL_MAXFAMILYCLIENTS, familyMaxClients));
 CHECK_ERROR(ts3client_setChannelVariableAsInt (scHandlerID, 0, CHANNEL_ORDER, order));
 CHECK_ERROR(ts3client_setChannelVariableAsInt (scHandlerID, 0, CHANNEL_FLAG_PERMANENT, perm));
 CHECK_ERROR(ts3client_setChannelVariableAsInt (scHandlerID, 0, CHANNEL_FLAG_SEMI_PERMANENT, semiperm));
 CHECK_ERROR(ts3client_setChannelVariableAsInt (scHandlerID, 0, CHANNEL_FLAG_DEFAULT, default));

 /* Flush changes to server */
 CHECK_ERROR(ts3client_flushChannelCreation(scHandlerID, parentChannelID));
 return 0; /* Success */

on_error:
 printf("Error creating channel: %d\n", error);
 return 1; /* Failure */
}

Deleting a channel
A channel can be removed with

unsigned int ts3client_requestChannelDelete(serverConnectionHandlerID, channelID,
force, returnCode);

uint64 serverConnectionHandlerID;
uint64 channelID;

TeamSpeak 3 Client
SDK Developer Manual

82

int force;
const char* returnCode;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the channel should be deleted.

• channelID

The ID of the channel to be deleted.

• force

If 1, the channel will be deleted even when it is not empty. Clients within the deleted channel are transfered to the default
channel. Any contained subchannels are removed as well.

If 0, the server will refuse to a channel that is not empty.

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

After the request has been sent to the server, the following event will be called:

void onDelChannelEvent(serverConnectionHandlerID, channelID, invokerID, invokerName,
invokerUniqueIdentifier);

uint64 serverConnectionHandlerID;
uint64 channelID;
anyID invokerID;
const char* invokerName;
const char* invokerUniqueIdentifier;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the channel was deleted.

• channelID

The ID of the deleted channel.

• invokerID

TeamSpeak 3 Client
SDK Developer Manual

83

The ID of the client who requested the deletion. If zero, the deletion was initiated by the server (for example automatic
deletion of empty non-permanent channels).

• invokerName

The name of the client who requested the deletion. Empty if requested by the server.

• invokerUniqueIdentifier

The unique ID of the client who requested the deletion.

Moving a channel
To move a channel to a new parent channel, call

unsigned int ts3client_requestChannelMove(serverConnectionHandlerID, channelID,
newChannelParentID, newChannelOrder, returnCode);

uint64 serverConnectionHandlerID;
uint64 channelID;
uint64 newChannelParentID;
uint64 newChannelOrder;
const char* returnCode;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the channel should be moved.

• channelID

ID of the channel to be moved.

• newChannelParentID

ID of the parent channel where the moved channel is to be inserted as child. Use 0 to insert as top-level channel.

• newChannelOrder

Channel order defining where the channel should be sorted under the new parent. Pass 0 to sort the channel right after the
parent. See the chapter Channel sorting for details.

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

TeamSpeak 3 Client
SDK Developer Manual

84

After sending the request, the following event will be called if the move was successful:

void onChannelMoveEvent(serverConnectionHandlerID, channelID, newChannelParentID,
invokerID, invokerName, invokerUniqueIdentifier);

uint64 serverConnectionHandlerID;
uint64 channelID;
uint64 newChannelParentID;
anyID invokerID;
const char* invokerName;
const char* invokerUniqueIdentifier;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the channel was moved.

• channelID

The ID of the moved channel.

• newChannelParentID

ID of the parent channel where the moved channel is inserted as child. 0 if inserted as top-level channel.

• invokerID

The ID of the client who requested the move. If zero, the move was initiated by the server.

• invokerName

The name of the client who requested the move. Empty if requested by the server.

• invokerUniqueIdentifier

The unique ID of the client who requested the move.

Text chat
In addition to voice chat, TeamSpeak 3 allows clients to communicate with text-chat. Valid targets can be a client, channel or
virtual server. Depending on the target, there are three functions to send text messages and one callback to receive them.

Sending

To send a private text message to a client:

unsigned int ts3client_requestSendPrivateTextMsg(serverConnectionHandlerID, message,
targetClientID, returnCode);

uint64 serverConnectionHandlerID;

TeamSpeak 3 Client
SDK Developer Manual

85

const char* message;
anyID targetClientID;
const char* returnCode;

Parameters

• serverConnectionHandlerID

Id of the target server connection handler.

• message

String containing the text message

• targetClientID

Id of the target client.

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

To send a text message to a channel:

unsigned int ts3client_requestSendChannelTextMsg(serverConnectionHandlerID, message,
targetChannelID, returnCode);

uint64 serverConnectionHandlerID;
const char* message;
anyID targetChannelID;
const char* returnCode;

Parameters

• serverConnectionHandlerID

Id of the target server connection handler.

• message

String containing the text message

• targetChannelID

Id of the target channel.

TeamSpeak 3 Client
SDK Developer Manual

86

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

To send a text message to the virtual server:

unsigned int ts3client_requestSendServerTextMsg(serverConnectionHandlerID, message,
returnCode);

uint64 serverConnectionHandlerID;
const char* message;
const char* returnCode;

Parameters

• serverConnectionHandlerID

Id of the target server connection handler.

• message

String containing the text message

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Example to send a text chat to a client with ID 123:

const char *msg = "Hello TeamSpeak!";
anyID targetClientID = 123;

if(ts3client_requestSendPrivateTextMsg(scHandlerID, msg, targetClient, NULL) != ERROR_ok) {
 /* Handle error */
}

Receiving

The following event will be called when a text message is received:

void onTextMessageEvent(serverConnectionHandlerID, targetMode, toID, fromID, from-
Name, fromUniqueIdentifier, message);

uint64 serverConnectionHandlerID;

TeamSpeak 3 Client
SDK Developer Manual

87

anyID targetMode;
anyID toID;
anyID fromID;
const char* fromName;
const char* fromUniqueIdentifier;
const char* message;

Parameters

• serverConnectionHandlerID

ID of the server connection handler from which the text message was sent.

• targetMode

Target mode of this text message. The value is defined by the enum TextMessageTargetMode:

enum TextMessageTargetMode {
 TextMessageTarget_CLIENT=1,
 TextMessageTarget_CHANNEL,
 TextMessageTarget_SERVER,
 TextMessageTarget_MAX
};

• toID

Id of the target of the text message.

• fromID

Id of the client who sent the text message.

• fromName

Name of the client who sent the text message.

• fromUniqueIdentifier

Unique ID of the client who sent the text message.

• message

String containing the text message.

Kicking clients

Clients can be forcefully removed from a channel or the whole server. To kick a client from a channel or server call:

unsigned int ts3client_requestClientKickFromChannel(serverConnectionHandlerID, cli-
entID, kickReason, returnCode);

uint64 serverConnectionHandlerID;

TeamSpeak 3 Client
SDK Developer Manual

88

anyID clientID;
const char* kickReason;
const char* returnCode;

unsigned int ts3client_requestClientKickFromServer(serverConnectionHandlerID, cli-
entID, kickReason, returnCode);

uint64 serverConnectionHandlerID;
anyID clientID;
const char* kickReason;
const char* returnCode;

Parameters

• serverConnectionHandlerID

Id of the target server connection.

• clientID

The ID of the client to be kicked.

• kickReason

A short message explaining why the client is kicked from the channel or server.

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

After successfully requesting a kick, one of the following events will be called:

void onClientKickFromChannelEvent(serverConnectionHandlerID, clientID, oldChannelID,
newChannelID, visibility, kickerID, kickerName, kickerUniqueIdentifier, kickMes-
sage);

uint64 serverConnectionHandlerID;
anyID clientID;
uint64 oldChannelID;
uint64 newChannelID;
int visibility;
anyID kickerID;
const char* kickerName;
const char* kickerUniqueIdentifier;

TeamSpeak 3 Client
SDK Developer Manual

89

const char* kickMessage;

void onClientKickFromServerEvent(serverConnectionHandlerID, clientID, oldChannelID,
newChannelID, visibility, kickerID, kickerName, kickerUniqueIdentifier, kickMes-
sage);

uint64 serverConnectionHandlerID;
anyID clientID;
uint64 oldChannelID;
uint64 newChannelID;
int visibility;
anyID kickerID;
const char* kickerName;
const char* kickerUniqueIdentifier;
const char* kickMessage;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the client was kicked

• clientID

ID of the kicked client.

• oldChannelID

ID of the channel from which the client has been kicked.

• newChannelID

ID of the channel where the kicked client was moved to.

• visibility

Describes if the moved client enters, retains or leaves visibility. See explanation of the enum Visibility for the function
onClientMoveEvent.

When kicked from a server, visibility can be only LEAVE_VISIBILITY.

• kickerID

ID of the client who requested the kick.

• kickerName

Name of the client who requested the kick.

• kickerUniqueIdentifier

TeamSpeak 3 Client
SDK Developer Manual

90

Unique ID of the client who requested the kick.

• kickerMessage

Message giving the reason why the client has been kicked.

Channel subscriptions
Normally a user only sees other clients who are in the same channel. Clients joining or leaving other channels or changing
status are not displayed. To offer a way to get notifications about clients in other channels, a user can subscribe to other
channels. It would also be possible to always subscribe to all channels to get notifications about all clients on the server.

Subscriptions are meant to have a flexible way to balance bandwidth usage. On a crowded server limiting the number of
subscribed channels is a way reduce network traffic. Also subscriptions allow to usage “private” channels, whose members
cannot be seen by other users.

Note

A client is automatically subscribed to the current channel.

To subscribe to a list of channels (zero-terminated array of channel IDs) call:

unsigned int ts3client_requestChannelSubscribe(serverConnectionHandlerID, channelI-
DArray, returnCode);

uint64 serverConnectionHandlerID;
const uint64* channelIDArray;
const char* returnCode;

To unsubscribe from a list of channels (zero-terminated array of channel IDs) call:

unsigned int ts3client_requestChannelUnsubscribe(serverConnectionHandlerID, channel-
IDArray, returnCode);

uint64 serverConnectionHandlerID;
const uint64* channelIDArray;
const char* returnCode;

To subscribe to all channels on the server call:

unsigned int ts3client_requestChannelSubscribeAll(serverConnectionHandlerID, return-
Code);

uint64 serverConnectionHandlerID;
const char* returnCode;

TeamSpeak 3 Client
SDK Developer Manual

91

To unsubscribe from all channels on the server call:

unsigned int ts3client_requestChannelUnsubscribeAll(serverConnectionHandlerID, re-
turnCode);

uint64 serverConnectionHandlerID;
const char* returnCode;

To check if a channel is currently subscribed, check the channel property CHANNEL_FLAG_ARE_SUBSCRIBED with
ts3client_getChannelVariableAsInt:

int isSubscribed;

if(ts3client_getChannelVariableAsInt(scHandlerID, channelID, CHANNEL_FLAG_ARE_SUBSCRIBED, &isSubscribed)
 != ERROR_ok) {
 /* Handle error */
}

The following event will be sent for each successfully subscribed channel:

void onChannelSubscribeEvent(serverConnectionHandlerID, channelID);

uint64 serverConnectionHandlerID;
uint64 channelID;

Provided for convinience, to mark the end of mulitple calls to onChannelSubscribeEvent when subscribing to several
channels, this event is called:

void onChannelSubscribeFinishedEvent(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

The following event will be sent for each successfully unsubscribed channel:

void onChannelUnsubscribeEvent(serverConnectionHandlerID, channelID);

uint64 serverConnectionHandlerID;
uint64 channelID;

Similar like subscribing, this event is a convinience callback to mark the end of multiple calls to onChannelUnsub-
scribeEvent:

void onChannelUnsubscribeFinishedEvent(serverConnectionHandlerID);

uint64 serverConnectionHandlerID;

TeamSpeak 3 Client
SDK Developer Manual

92

Once a channel has been subscribed or unsubscribed, the event onClientMoveSubscriptionEvent is sent for each
client in the subscribed channel. The event is not to be confused with onClientMoveEvent, which is called for clients
actively switching channels.

void onClientMoveSubscriptionEvent(serverConnectionHandlerID, clientID, oldChan-
nelID, newChannelID, visibility);

uint64 serverConnectionHandlerID;
anyID clientID;
uint64 oldChannelID;
uint64 newChannelID;
int visibility;

Parameters

• serverConnectionHandlerID

The server connection handler ID for the server where the action occured.

• clientID

The client ID.

• oldChannelID

ID of the subscribed channel where the client left visibility.

• newChannelID

ID of the subscribed channel where the client entered visibility.

• visibility

Defined in the enum Visibility

enum Visibility {
 ENTER_VISIBILITY = 0,
 RETAIN_VISIBILITY,
 LEAVE_VISIBILITY
};

• ENTER_VISIBILITY

Client entered visibility.

• LEAVE_VISIBILITY

Client left visibility.

• RETAIN_VISIBILITY

Does not occur with onClientMoveSubscriptionEvent.

TeamSpeak 3 Client
SDK Developer Manual

93

Muting clients locally
Individual clients can be locally muted. This information is handled client-side only and not visibile to other clients. It mainly
serves as a sort of individual "ban" or "ignore" feature, where users can decide not to listen to certain clients anymore.

When a client becomes muted, he will no longer be heard by the muter. Also the TeamSpeak 3 server will stop sending voice
packets.

The mute state is not visible to the muted client nor to other clients. It is only available to the muting client by checking the
CLIENT_IS_MUTED client property.

To mute one or more clients:

unsigned int ts3client_requestMuteClients(serverConnectionHandlerID, clientIDArray,
returnCode);

uint64 serverConnectionHandlerID;
const anyID* clientIDArray;
const char* returnCode;

To unmute one or more clients:

unsigned int ts3client_requestUnmuteClients(serverConnectionHandlerID, clientIDAr-
ray, returnCode);

uint64 serverConnectionHandlerID;
const anyID* clientIDArray;
const char* returnCode;

Parameters

• serverConnectionHandlerID

ID of the server connection handle on which the client should be locally (un)muted

• clientIDArray

NULL-terminated array of client IDs.

• returnCode

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Example to mute two clients:

anyID clientIDArray[3]; // List of two clients plus terminating zero
clientIDArray[0] = 123; // First client ID to mute
clientIDArray[1] = 456; // Second client ID to mute

TeamSpeak 3 Client
SDK Developer Manual

94

clientIDArray[2] = 0; // Terminating zero

if(ts3client_requestMuteClients(scHandlerID, clientIDArray) != ERROR_ok) /* Mute clients */
 printf("Error muting clients: %d\n", error);

To check if a client is currently muted, query the CLIENT_IS_MUTED client property:

int clientIsMuted;
if(ts3client_getClientVariableAsInt(scHandlerID, clientID, CLIENT_IS_MUTED, &clientIsMuted) != ERROR_ok)
 printf("Error querying client muted state\n);

Custom encryption
As an optional feature, the TeamSpeak 3 SDK allows users to implement custom encryption and decryption for all network
traffic. Custom encryption replaces the default AES encryption implemented by the TeamSpeak 3 SDK. A possible reason to
apply own encryption might be to make ones TeamSpeak 3 client/server incompatible to other SDK implementations.

Custom encryption must be implemented the same way in both the client and server.

Note

If you do not want to use this feature, just don't implement the two encryption callbacks.

To encrypt outgoing data, implement the callback:

void onCustomPacketEncryptEvent(dataToSend, sizeOfData);

char** dataToSend;
unsigned int* sizeOfData;

Parameters

• dataToSend

Pointer to an array with the outgoing data to be encrypted.

Apply your custom encryption to the data array. If the encrypted data is smaller than sizeOfData, write your encrypted data
into the existing memory of dataToSend. If your encrypted data is larger, you need to allocate memory and redirect the
pointer dataToSend. You need to take care of freeing your own allocated memory yourself. The memory allocated by the
SDK, to which dataToSend is originally pointing to, must not be freed.

• sizeOfData

Pointer to an integer value containing the size of the data array.

To decrypt incoming data, implement the callback:

void onCustomPacketDecryptEvent(dataReceived, dataReceivedSize);

char** dataReceived;

TeamSpeak 3 Client
SDK Developer Manual

95

unsigned int* dataReceivedSize;

Parameters

• dataReceived

Pointer to an array with the received data to be decrypted.

Apply your custom decryption to the data array. If the decrypted data is smaller than dataReceivedSize, write your decrypted
data into the existing memory of dataReceived. If your decrypted data is larger, you need to allocate memory and redirect
the pointer dataReceived. You need to take care of freeing your own allocated memory yourself. The memory allocated by
the SDK, to which dataReceived is originally pointing to, must not be freed.

• dataReceivedSize

Pointer to an integer value containing the size of the data array.

Example code implementing a very simple XOR custom encryption and decryption (also see the SDK examples):

void onCustomPacketEncryptEvent(char** dataToSend, unsigned int* sizeOfData) {
 unsigned int i;
 for(i = 0; i < *sizeOfData; i++) {
 (*dataToSend)[i] ^= CUSTOM_CRYPT_KEY;
 }
}

void onCustomPacketDecryptEvent(char** dataReceived, unsigned int* dataReceivedSize) {
 unsigned int i;
 for(i = 0; i < *dataReceivedSize; i++) {
 (*dataReceived)[i] ^= CUSTOM_CRYPT_KEY;
 }
}

Other events
When a client starts or stops talking, a talk status change event is sent by the server:

void onTalkStatusChangeEvent(serverConnectionHandlerID, status, isReceivedWhisper,
clientID);

uint64 serverConnectionHandlerID;
int status;
int isReceivedWhisper;
anyID clientID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the event occured.

• status

TeamSpeak 3 Client
SDK Developer Manual

96

Possible return values are defined by the enum TalkStatus:

enum TalkStatus {
 STATUS_NOT_TALKING = 0,
 STATUS_TALKING = 1,
 STATUS_TALKING_WHILE_DISABLED = 2,
};

STATUS_TALKING and STATUS_TALKING are triggered everytime a client starts or stops talking.
STATUS_TALKING_WHILE_DISABLED is triggered only if the microphone is muted. A client application might use this
to implement a mechanism warning the user he is talking while not sending to the server or just ignore this value.

• isReceivedWhisper

1 if the talk event was caused by whispering, 0 if caused by normal talking.

• clientID

ID of the client who started or stopped talking.

If a client drops his connection, a timeout event is announced by the server:

void onClientMoveTimeoutEvent(serverConnectionHandlerID, clientID, oldChannelID,
newChannelID, visibility, timeoutMessage);

uint64 serverConnectionHandlerID;
anyID clientID;
uint64 oldChannelID;
uint64 newChannelID;
int visibility;
const char* timeoutMessage;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the event occured.

• clientID

ID of the moved client.

• oldChannelID

ID of the channel the leaving client was previously member of.

• newChannelID

0, as client is leaving.

• visibility

TeamSpeak 3 Client
SDK Developer Manual

97

Always LEAVE_VISIBILITY.

• timeoutMessage

Optional message giving the reason for the timeout. UTF-8 encoded.

When the description of a channel was edited, the following event is called:

void onChannelDescriptionUpdateEvent(serverConnectionHandlerID, channelID);

uint64 serverConnectionHandlerID;
uint64 channelID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the event occured.

• shutdownMessage

ID of the channel with the edited description.

The new description can be queried with ts3client_getChannelVariableAsString(channelID,
CHANNEL_DESCRIPTION).

This event tells the client that the specified channel has been modified. The GUI should fetch the channel data with
ts3client_getChannelVariableAsInt and ts3client_getChannelVariableAsString and update the
channel display.

void onUpdateChannelEvent(serverConnectionHandlerID, channelID);

uint64 serverConnectionHandlerID;
uint64 channelID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the event occured.

• channelID

ID of the updated channel.

TeamSpeak 3 Client
SDK Developer Manual

98

The following event is called when a channel password was modified. The GUI might remember previously entered channel
passwords, so this callback announces the stored password might be invalid.

void onChannelPasswordChangedEvent(serverConnectionHandlerID, channelID);

uint64 serverConnectionHandlerID;
uint64 channelID;

Parameters

• serverConnectionHandlerID

ID of the server connection handler on which the event occured.

• channelID

ID of the channel with the changed password.

Miscellaneous functions
Memory dynamically allocated in the Client Lib needs to be released with:

unsigned int ts3client_freeMemory(pointer);

void* pointer;

Parameters

• pointer

Address of the variable to be released.

Example:

char* version;

if(ts3client_getClientLibVersion(&version) == ERROR_ok) {
 printf("Version: %s\n", version);
 ts3client_freeMemory(version);
}

Important

Memory must not be released if the function, which dynamically allocated the memory, returned an error. In that
case, the result is undefined and not initialized, so freeing the memory might crash the application.

TeamSpeak 3 Client
SDK Developer Manual

99

Instead of sending the sound through the network, it can be routed directly through the playback device, so the user will get
immediate audible feedback when for example configuring some sound settings.

unsigned int ts3client_setLocalTestMode(serverConnectionHandlerID, status);

uint64 serverConnectionHandlerID;
intstatus;

Parameters

• serverConnectionHandlerID

ID of the server connection handler for which the local test mode should be enabled or disabled.

• status

Pass 1 to enable local test mode, 0 to disable.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

FAQ
1. How to implement Push-To-Talk?

Push-To-Talk should be implemented by toggling the client variable CLIENT_INPUT_DEACTIVATED using the func-
tion ts3client_setClientSelfVariableAsInt. The variable can be set to the following values (see the enum
InputDeactivationStatus in public_definitions.h):

• INPUT_ACTIVE

• INPUT_DEACTIVATED

For Push-To-Talk toggle between INPUT_ACTIVE (talking) and INPUT_DEACTIVATED (not talking).

Example code:

unsigned int error;
bool shouldTalk;

shouldTalk = isPushToTalkButtonPressed(); // Your key detection implementation
if((error = ts3client_setClientSelfVariableAsInt(scHandlerID, CLIENT_INPUT_DEACTIVATED,
 shouldTalk ? INPUT_ACTIVE : INPUT_DEACTIVATED))
 != ERROR_ok) {
 char* errorMsg;
 if(ts3client_getErrorMessage(error, &errorMsg) != ERROR_ok) {
 printf("Error toggling push-to-talk: %s\n", errorMsg);
 ts3client_freeMemory(errorMsg);
 }
 return;
}

if(ts3client_flushClientSelfUpdates(scHandlerID) != ERROR_ok) {
 char* errorMsg;
 if(ts3client_getErrorMessage(error, &errorMsg) != ERROR_ok) {
 printf("Error flushing after toggling push-to-talk: %s\n", errorMsg);
 ts3client_freeMemory(errorMsg);
 }

TeamSpeak 3 Client
SDK Developer Manual

100

}

It is not necessary to close and reopen the capture device to implement Push-To-Talk.

Basically it would be possible to toggle CLIENT_INPUT_MUTED as well, but the advantage of
CLIENT_INPUT_DEACTIVATED is that the change is not propagated to the server and other connected clients, thus
saving network traffic. CLIENT_INPUT_MUTED should instead be used for manually muting the microphone when
using Voice Activity Detection instead of Push-To-Talk.

If you need to query the current muted state, use ts3client_getClientSelfVariableAsInt:

int hardwareStatus, deactivated, muted;

if(ts3client_getClientSelfVariableAsInt(scHandlerID, CLIENT_INPUT_HARDWARE,
 &hardwareStatus) != ERROR_ok) {
 /* Handle error */
}
if(ts3client_getClientSelfVariableAsInt(scHandlerID, CLIENT_INPUT_DEACTIVATED,
 &deactivated) != ERROR_ok) {
 /* Handle error */
}
if(ts3client_getClientSelfVariableAsInt(scHandlerID, CLIENT_INPUT_MUTED,
 &muted) != ERROR_ok) {
 /* Handle error */
}

if(hardwareStatus == HARDWAREINPUT_DISABLED) {
 /* No capture device available */
}
if(deactivated == INPUT_DEACTIVATED) {
 /* Input was deactivated for Push-To-Talk (not propagated to server) */
}
if(muted == MUTEINPUT_MUTED) {
 /* Input was muted (propagated to server) */
}

When using Push-To-Talk, you should deactivate Voice Activity Detection in the preprocessor or keep the VAD level
very low. To deactivate VAD, use:

ts3client_setPreProcessorConfigValue(serverConnectionHandlerID, "vad", "false");

2. How to adjust the volume?

Output volume

Voice output volume can be adjusted by changing the “volume_modifier” playback option using the function
ts3client_setPlaybackConfigValue. The value is in decibel, so 0 is no modification, negative values make
the signal quieter and positive values louder.

Example to increate the output volume by 10 decibel:

ts3client_setPlaybackConfigValue(scHandlerID, "volume_modifier", 10);

Input volume

Automatic Gain Control (AGC) takes care of the input volume during preprocessing automatically. Instead of modifying
the input volume directory, you modify the AGC preprocessor settings with setProProcessorConfigValue.

TeamSpeak 3 Client
SDK Developer Manual

101

Revision history
Revision History

Revision 1.33 04 Aug 2011
Overhauled documentation, removed FMOD functions which got replaced by own sound backends.
Revision 1.32 17 Sep 2010
Added documentation for new voice data encryption settings.
Revision 1.31 10 Jun 2010
Added new whisper callbacks and functions, added channel latency factor property, changed Mac OS X system requirements.
Revision 1.30 22 Feb 2010
Updated channel sorting chapter for recent anyID to uint64 changed. Added set/getChannelVariableAsUInt64 functions.
Revision 1.29 28 Jan 2010
Changed server and channel IDs from type anyID to uint64. Adjusted onTextMessageEvent callback and send message functions.
Revision 1.28 29 Oct 2009
Added ts3client_setClientVolumeModifier function to Playback chapter. Client whisper list setting is always enabled.
Revision 1.27 05 Oct 2009
Added port parameter to ts3client_spawnNewServerConnectionHandler and extraMessage to onServerErrorEvent
Revision 1.26 14 Sep 2009
Added custom encryption callbacks
Revision 1.25 05 May 2009
Updated documentation on getParentChannelOfChannel.
Revision 1.24 29 Apr 2009
Updated documentation on requestClientSetWhisperList.
Revision 1.23 27 Mar 2009
Renamed getCurrentPlaybackDevice/getCurrentCaptureDevice to getCurrentPlaybackDeviceName/getCurrentCaptureDeviceName. Use
vacant functions to return the currently open FMOD System object.
Revision 1.22 9 Feb 2009
Custom FMOD objects API changes. Changed playback value voice_factor to voice_modifier, removed playWaveFile function and
voice_factor_wave.
Revision 1.21 23 Jan 2009
Added chapter about custom FMOD objects.
Revision 1.20 19 Dec 2008
Added voice recording chapter.
Revision 1.19 9 Dec 2008
Added returnCode to functions interacting with server. Updated some functions with added uniqueIdentifier parameters.
Revision 1.18 7 Nov 2008
Error handling API change.
Revision 1.17 13 Oct 2008
Added ts3client_getServerConnectionHandlerList function.
Revision 1.16 06 Oct 2008
Changed function prefix from ts3_ to ts3client_ so both client and server shared libraries can be loaded in the same application.
Revision 1.15 22 Sep 2008
Added echo canceling to preprocessor section.
Revision 1.14 9 Sep 2008
Removed unused functions and enums, which were removed from the SDK headers.
Revision 1.13 3 Sep 2008
Removed "enabled" preprocessor flag. Changed default server port from 3000 to 9987. Adjusted ts3client_initClientLib parameters.
Revision 1.12 8 Jul 2008
New query clients/channel functions. New individual channel codec quality settings. Updated encoding chapter and
ts3client_initClientLib() function. Removed agc_increment and agc_decrement preprocessor options.
Revision 1.11 30 May 2008
New server properties added. force parameter in ts3client_requestChannelDelete added. Added note about cdecl calling convention.
Revision 1.10 22 May 2008
Added new ts3client_createIdentity function and updated docs for onTalkStatusChangeEvent.
Revision 1.9 16 May 2008
Added new ts3client_getPlaybackConfigValueAsFloat() function.
Revision 1.8 14 May 2008
Added new mute functions and new ClientProperties fields.
Revision 1.7 28 Apr 2008
Added new mechanism to shutdown playback devices. Added remark about opening capture devices without closing. Added ts3client_
prefix to all clientlib function calls. Added 3D sound chapter.
Revision 1.6 5 Mar 2008
Added remark for new database logging.
Revision 1.5 26 Feb 2008
Added more documentation to Client/Channel/Virtualserver properties. Documented changed interfaces for user logging,
ts3client_requestServerVariables and ts3client_startConnection.
Revision 1.4 31 Jan 2008
Added new chapter Channel sorting, adjusted documentation according to recent changes to channel order
Revision 1.3 24 Jan 2008
Added notes about new logging features and wave file volume, adjusted some modified enums. Updated FAQ section with new Push-To-
Talk mechanism. Documented new ts3client_activateCaptureDevice function and modified VAD preprocessor settings.
Revision 1.2 21 Dec 2007
Added FAQ and documentation for new logging callbacks
Revision 1.1 04 Dec 2007
Added documentation for new client lib functions
Revision 1.0 30 Oct 2007
First release

TeamSpeak 3 Client
SDK Developer Manual

102

Index
Symbols
3D sound, 48

A
AGC, 36
Automatic Gain Control, 36

B
bandwidth, 34

C
callback, 8
calling convention, 5
capture device, 22
Channel order, 72
Channel voice data encryption, 72
client ID, 15
codec, 34
contact, 2
copyright, 2

E
encoder, 35
enums

ChannelProperties, 67
ClientProperties, 57, 61
CodecEncryptionMode, 76
ConnectStatus, 14, 17, 73
InputDeactivationStatus, 99
LogLevel, 20, 20
LogType, 8, 20
TextMessageTargetMode, 87
VirtualServerProperties, 74
Visibility, 78, 89, 92

error codes, 6
events

onChannelDescriptionUpdateEvent, 97
onChannelMoveEvent, 84
onChannelPasswordChangedEvent, 98
onChannelSubscribeEvent, 91
onChannelSubscribeFinishedEvent, 91
onChannelUnsubscribeEvent, 91
onChannelUnsubscribeFinishedEvent, 92
onClientKickFromChannelEvent, 89
onClientKickFromServerEvent, 89
onClientMoveEvent, 78
onClientMoveMovedEvent, 79

TeamSpeak 3 Client
SDK Developer Manual

103

onClientMoveSubscriptionEvent, 92
onClientMoveTimeoutEvent, 96
onConnectStatusChangeEvent, 14, 16
onCustom3dRolloffCalculationClientEvent, 50
onCustom3dRolloffCalculationWaveEvent, 51
onCustomPacketDecryptEvent, 95
onCustomPacketEncryptEvent, 94
onDelChannelEvent, 82
onEditCapturedVoiceDataEvent, 45
onEditMixedPlaybackVoiceDataEvent, 44
onEditPlaybackVoiceDataEvent, 42
onEditPostProcessVoiceDataEvent, 43
onIgnoredWhisperEvent, 65
onNewChannelCreatedEvent, 80
onNewChannelEvent, 15
onPlaybackShutdownCompleteEvent, 29
onServerEditedEvent, 76
onServerErrorEvent, 7, 19
onServerStopEvent, 17
onServerUpdatedEvent, 76
onTalkStatusChangeEvent, 95
onTextMessageEvent, 87
onUpdateChannelEditedEvent, 71
onUpdateChannelEvent, 97
onUpdateClientEvent, 63
onUserLoggingMessageEvent, 20

F
FAQ, 99
functions

ts3client_acquireCustomPlaybackData, 32
ts3client_activateCaptureDevice, 33
ts3client_allowWhispersFrom, 65
ts3client_channelset3DAttributes, 50
ts3client_closeCaptureDevice, 28
ts3client_closePlaybackDevice, 28
ts3client_closeWaveFileHandle, 48
ts3client_createIdentity, 11
ts3client_destroyClientLib, 10
ts3client_destroyServerConnectionHandler, 11
ts3client_flushChannelCreation, 80
ts3client_flushChannelUpdates, 70
ts3client_flushClientSelfUpdates, 60
ts3client_freeMemory, 98
ts3client_getCaptureDeviceList, 26
ts3client_getCaptureModeList, 24
ts3client_getChannelClientList, 54
ts3client_getChannelIDFromChannelNames, 72
ts3client_getChannelList, 53
ts3client_getChannelOfClient, 54
ts3client_getChannelVariableAsInt, 66
ts3client_getChannelVariableAsString, 66

TeamSpeak 3 Client
SDK Developer Manual

104

ts3client_getChannelVariableAsUInt64, 66
ts3client_getClientID, 15, 56
ts3client_getClientLibVersion, 9
ts3client_getClientList, 53
ts3client_getClientSelfVariableAsInt, 57
ts3client_getClientSelfVariableAsString, 57
ts3client_getClientVariableAsInt, 62
ts3client_getClientVariableAsString, 62
ts3client_getClientVariableAsUInt64, 62
ts3client_getConnectionStatus, 14
ts3client_getCurrentCaptureDeviceName, 28
ts3client_getCurrentCaptureMode, 27
ts3client_getCurrentPlaybackDeviceName, 28
ts3client_getCurrentPlayBackMode, 27
ts3client_getDefaultCaptureDevice, 25
ts3client_getDefaultCaptureMode, 24
ts3client_getDefaultPlaybackDevice, 25
ts3client_getDefaultPlayBackMode, 23
ts3client_getEncodeConfigValue, 35
ts3client_getErrorMessage, 18
ts3client_getParentChannelOfChannel, 55
ts3client_getPlaybackConfigValueAsFloat, 39
ts3client_getPlaybackDeviceList, 26
ts3client_getPlaybackModeList, 24
ts3client_getPreProcessorConfigValue, 36
ts3client_getPreProcessorInfoValueFloat, 38
ts3client_getServerConnectionHandlerList, 52
ts3client_getServerVariableAsInt, 73
ts3client_getServerVariableAsString, 74
ts3client_getServerVariableAsUInt64, 74
ts3client_initClientLib, 7
ts3client_initiateGracefulPlaybackShutdown, 29
ts3client_logMessage, 19
ts3client_openCaptureDevice, 23
ts3client_openPlaybackDevice, 22
ts3client_pauseWaveFileHandle, 47
ts3client_playWaveFile, 46
ts3client_playWaveFileHandle, 47
ts3client_processCustomCaptureData, 31
ts3client_registerCustomDevice, 30
ts3client_removeFromAllowedWhispersFrom, 65
ts3client_requestChannelDelete, 82
ts3client_requestChannelDescription, 67
ts3client_requestChannelMove, 83
ts3client_requestChannelSubscribe, 90
ts3client_requestChannelSubscribeAll, 90
ts3client_requestChannelUnsubscribe, 90
ts3client_requestChannelUnsubscribeAll, 91
ts3client_requestClientKickFromChannel, 88
ts3client_requestClientKickFromServer, 88
ts3client_requestClientMove, 77
ts3client_requestClientSetWhisperList, 64

TeamSpeak 3 Client
SDK Developer Manual

105

ts3client_requestClientVariables, 63
ts3client_requestMuteClients, 93
ts3client_requestSendChannelTextMsg, 85
ts3client_requestSendPrivateTextMsg, 85
ts3client_requestSendServerTextMsg, 86
ts3client_requestServerVariables, 76
ts3client_requestUnmuteClients, 93
ts3client_set3DWaveAttributes, 52
ts3client_setChannelVariableAsInt, 69
ts3client_setChannelVariableAsString, 70
ts3client_setChannelVariableAsUInt64, 69
ts3client_setClientSelfVariableAsInt, 60
ts3client_setClientSelfVariableAsString, 60
ts3client_setClientVolumeModifier, 41
ts3client_setLocalTestMode, 99
ts3client_setLogVerbosity, 21
ts3client_setPlaybackConfigValue, 40, 100
ts3client_setPreProcessorConfigValue, 37
ts3client_spawnNewServerConnectionHandler, 10
ts3client_startConnection, 12
ts3client_startVoiceRecording, 46
ts3client_stopConnection, 16
ts3client_stopVoiceRecording, 46
ts3client_systemset3DListenerAttributes, 49
ts3client_systemset3DSettings, 49
ts3client_unregisterCustomDevice, 31

H
headers, 5

L
Linux, 5
Logging, 19

M
Macintosh, 5

N
narrowband, 34

P
Permanent channel, 69
playback device, 22
preprocessor, 36
PushToTalk, 99

R
return code, 7

S
sampling rates, 34

TeamSpeak 3 Client
SDK Developer Manual

106

Semi-permanent channel, 69
server connection handler, 10
structs

TS3_VECTOR, 48
system requirements, 5

T
TeamSpeak Systems, 2

U
ultra-wideband, 34

V
VAD, 36
Voice Activity Detection, 36
volume_factor_wave, 40
volume_modifier, 39, 100

W
welcome message, 14
wideband, 34
Windows, 5

	TeamSpeak 3 Client SDK Developer Manual
	Table of Contents
	Copyright
	License agreement

	Introduction
	System requirements
	Overview of header files
	Calling Client Lib functions
	Return code

	Initializing
	The callback mechanism

	Querying the library version
	Shutting down
	Managing server connection handlers
	Connecting to a server
	Disconnecting from a server
	Error handling
	Logging
	User-defined logging

	Using playback and capture modes and devices
	Initializing modes and devices
	Querying available modes and devices
	Checking current modes and devices
	Closing devices
	Using custom devices
	Activating the capture device

	Sound codecs
	Encoder options
	Preprocessor options
	Playback options
	Accessing the voice buffer
	Voice recording

	Playing wave files
	3D Sound
	Query available servers, channels and clients
	Retrieve and store information
	Client information
	Information related to own client
	Information related to other clients
	Whisper lists

	Channel information
	Channel voice data encryption
	Channel sorting

	Server information

	Interacting with the server
	Joining a channel
	Creating a new channel
	Deleting a channel
	Moving a channel
	Text chat
	Sending
	Receiving

	Kicking clients
	Channel subscriptions

	Muting clients locally
	Custom encryption
	Other events
	Miscellaneous functions
	FAQ
	Revision history
	Index

