[Top] [Contents] [Index] [ ? ]

Enigma

ⁿ╘╧ ╥╒╦╧╫╧─╙╘╫╧ ╧╨╔╙┘╫┴┼╘ ╦┴╦ ╒╙╘┴╬╧╫╔╘╪ ╔ ╔╟╥┴╘╪ ╫ Enigma. ∩╬╧ ╙╧╧╘╫┼╘╙╘╫╒┼╘ ╫┼╥╙╔╔ Enigma ╨╧─ ╬╧═┼╥╧═ 1.00.

Copyright © 2003, 2004, 2005, 2006 Daniel Heck ╔ ─╥╒╟╔┼ ╒▐┴╙╘╬╔╦╔

δ╧╨╔╥╧╫┴╬╔┼ ╔ ╥┴╙╨╥╧╙╘╥┴╬┼╬╔┼ ▄╘╧╟╧ ╞┴╩╠┴ ╙ ╔┌═┼╬┼╬╔╤═╔ ╔╠╔ ┬┼┌ ╥┴┌╥┼█┼╬╧ ╠└┬┘═ ╙╨╧╙╧┬╧═ ┬┼┌ ╧╘▐╔╙╠┼╬╔╩, ┼╙╠╔ ╙╧╚╥┴╬┼╬┘ ╒╫┼─╧═╠┼╬╔┼ ╧┬ ┴╫╘╧╥╙╦╔╚ ╨╥┴╫┴╚ ╔ ▄╘╧ ╒╫┼─╧═╠┼╬╔┼.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1. ≈╫┼─┼╬╔┼


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.1 ∩┬ Enigma

≤╦┴┌┴╘╪, ▐╘╧ Enigma ? ╔╟╥┴-╟╧╠╧╫╧╠╧═╦┴ ▄╘╧ ╨╥┼╒═┼╬╪█┼╬╔┼. ε┴ ╙┴═╧═ ─┼╠┼ Enigma ▄╘╧ ╧╟╥╧═╬┴╤ ╦╧╠╠┼╦├╔╤ ╟╧╠╧╫╧╠╧═╧╦, ╔ ╦┴╓─┘╩ ╔┌ ┼┼ 550 ╒╬╔╦┴╠╪╬┘╚ ╒╥╧╫╬┼╩ ╙╬╧╫┴ ╔ ╙╬╧╫┴ ╨╧╘╥┼┬╒┼╘ ╙╧╧┬╥┴┌╔╘┼╠╪╬╧╙╘╔, ╠╧╫╦╧╙╘╔ ╔ ╨╧─╠╔╬╬╧╩ ╙╔╠┘ ╫╧╠╔ ╧╘ ╙╫╧╔╚ ╔╟╥╧╦╧╫. Enigma ╨╥╧╙╘┴ ╫ ╔┌╒▐┼╬╔╔, ╔╬╘┼╥┼╙╬┴ ╫ ╔╟╥┼ ╔ ╙╠╧╓╬┴ ╫ ╧╫╠┴─┼╬╔╔. ∩╬┴ ═╧╓┼╘ ╥┴┌╫╠┼▐╪ ╨╧╠╪┌╧╫┴╘┼╠┼╩ ╨╧▐╘╔ ╠└┬╧╟╧ ╫╧┌╥┴╙╘┴. ∩╬┴ ╙╧─┼╥╓╔╘ ╙╧╘╬╔ ╒╥╧╫╬┼╩. Θ, ┼╙╠╔ ▄╘╧╟╧ ╬┼ ─╧╙╘┴╘╧▐╬╧, ╧╬┴ ╘┴╦╓┼ ╨╧╠╬╧╙╘╪└ ┬┼╙╨╠┴╘╬┴. σ╙╠╔ ≈┴═ ╬╥┴╫╤╘╙╤ ╔╟╥┘-╟╧╠╧╫╧╠╧═╦╔ ╔ ╒ ≈┴╙ ╘╫┼╥─┴╤ ╥╒╦┴, Enigma ╫╧┌═╧╓╬╧ ┌┴╩═┼╘ ≈┴╙ ╬┴ ╨╥╧╘╤╓┼╬╔╔ ├┼╠┘╚ ▐┴╙╧╫.

π┼╠╪ ╔╟╥┘ ? ╬┴╩╘╔ ╔ ╧╘╦╥┘╘╪ ╨┴╥┘ `Oxyd'-╦┴═╬┼╩ ╧─╔╬┴╦╧╫╧╟╧ ├╫┼╘┴. ≡╥╧╙╘╧? Σ┴. ∞┼╟╦╧? δ╧╬┼▐╬╧, ╬┼╘! ≤╦╥┘╘┘┼ ╠╧╫╒█╦╔, ╧╟╥╧═╬┘┼ ╠┴┬╔╥╔╬╘┘, ╠┴┌┼╥╬┘┼ ╠╒▐╔ ╔, ╙┴═╧┼ ╟╠┴╫╬╧┼, ┬┼╙▐╔╙╠┼╬╬┘┼ ╨╥╔▐╒─╠╔╫┘┼ ╟╧╠╧╫╧╠╧═╦╔ ╧┬┘▐╬╧ ╨┼╥┼╦╥┘╫┴└▌╔┼ ≈┴═ ╨╥╤═╧╩ ╨╒╘╪ ╦ Oxyd-╦┴═╬╤═. Θ╟╥╧╫┘┼ ╧┬▀┼╦╘┘ Enigma (╔╚ ┌─┼╙╪ ╙╧╘╬╔, ▐╘╧┬┘ ≈┘ ╬┼ ╙╦╒▐┴╠╔) ╫┌┴╔═╧─┼╩╙╘╫╒└╘ ═╬╧╟╧▐╔╙╠┼╬╬┘═╔ ╬┼╨╥┼─╙╦┴┌╒┼═┘═╔ ╙╨╧╙╧┬┴═╔, ╔ ╨╧╙╦╧╠╪╦╒ ═╬╧╟╔┼ ╔┌ ╬╔╚ ╨╧─▐╔╬╤└╘╙╤ ┌┴╦╧╬┴═ ╞╔┌╔╦╔ (┴ ╘╧▐╬┼┼, ╧╙╧┬┘═ ┌┴╦╧╬┴═ ╞╔┌╔╦╔ Enigma), ╒╨╥┴╫╠┼╬╔┼ ╔═╔ ╙ ╨╧═╧▌╪└ ═┘█╔ ╬┼ ╫╙┼╟─┴ ╘╥╔╫╔┴╠╪╬╧ ....

≡┼╥╫╧╬┴▐┴╠╪╬┴╤ ├┼╠╪ ╨╥╧┼╦╘┴ Enigma ┬┘╠┴ ╙╧╚╥┴╬╔╘╪ ─╒╚ ╙┼╥╔╔ ╔╟╥ Oxyd, ╨╧╙╠┼ ╘╧╟╧ ╦┴╦ ╔╚ ╔┌─┴╘┼╠╪ ╥┼█╔╠ ╨╧╦╔╬╒╘╪ ╔╟╥╧╫╧╩ ┬╔┌╬┼╙ ╫ 2002 ╟╧─╒. ⌡ ╨╧╦╠╧╬╬╔╦╧╫ ▄╘╧╩ ┌╬┴═┼╬╔╘╧╩ ╔╟╥┘ ┬╒─┼╘ ▐╒╫╙╘╫╧ ─┼╓┴ ╫└. ε╧ ╙╨╒╙╘╤ ╟╧─┘, Enigma ╫╨╔╘┴╠┴ ╔─┼╔ ╔┌ ═╬╧╓┼╙╘╫┴ ─╥╒╟╔╚ ╨╧╨╒╠╤╥╬┘╚ ╔╟╥ ╔ ─╧┬┴╫╔╠┴ ╙╫╧╔ ╒╬╔╦┴╠╪╬┘┼ ╧╙╧┬┼╬╬╧╙╘╔ ╦ ╦┴╓─╧╩ ╔┌ ╬╔╚.

Enigma ─╧╙╘╒╨╬┴ ─╠╤ Windows, Mac OS X, ╔ ┬╧╠╪█╔╬╙╘╫┴ ╥┴┌╬╧╫╔─╬╧╙╘┼╩ Linux ╔ ─╥╒╟╔╚ ╙╧╫╥┼═┼╬╬┘╚ Unix'╧╫. ∩╬┴ ╨┼╥┼╫┼─┼╬┴ ╬┴ ═╬╧╟╔┼ ╤┌┘╦╔. Σ┴╓┼ ▄╘╧ ╥╒╦╧╫╧─╙╘╫╧ ─╧╙╘╒╨╬╧ ╬┴ ╬┼╙╦╧╠╪╦╔╚ ╤┌┘╦┴╚.

≤╒▌┼╙╘╫╒┼╘ ╧╞╔├╔┴╠╪╬┴╤ ─╧═┴█╬╤╤ ╙╘╥┴╬╔├┴ Enigma, ╦╧╘╧╥┴╤ ╙╧─┼╥╓╔╘ ╙╘╥┴╬╔├┘ ╙╦╥╔╬█╧╘╧╫, ┌┴╟╥╒┌╧╦, ╨╧╙╠┼─╬╔╚ ╬╧╫╧╙╘┼╩ ╔ ╙┴═╒└ ╨╧╙╠┼─╬└└ ╫┼╥╙╔└ ▄╘╧╟╧ ╥╒╦╧╫╧─╙╘╫┴. ≤ ╥┴┌╥┴┬╧╘▐╔╦┴═╔ Enigma ╫╙┼╟─┴ ═╧╓╬╧ ╙╫╤┌┴╘╪╙╤ ╙ ╨╧═╧▌╪└ ▄╠┼╦╘╥╧╬╬╧╩ ╨╧▐╘┘ ╨╧ ┴─╥┼╙╒ enigma-devel@nongnu.org.

Enigma ▄╘╧ ╙╫╧┬╧─╬╧┼ ╨╥╧╟╥┴══╬╧┼ ╧┬┼╙╨┼▐┼╬╔┼, ─╥╒╟╔═╔ ╙╠╧╫┴═╔, ╨╥╔╫┼╘╙╘╫╒┼╘╙╤ ╦╧╨╔╥╧╫┴╘╪ ┼┼ ╔ ─┴╫┴╘╪ ┼┼ ≈┴█╔═ ─╥╒┌╪╤═ (╙═╧╘╥╔╘┼ (see section ≥┴╙╨╥╧╙╘╥┴╬┼╬╔┼ Enigma). Enigma ╥┴┌╥┴┬┴╘┘╫┴┼╘╙╤ ═┴╠┼╬╪╦╧╩ ╟╥╒╨╨╧╩ ─╧┬╥╧╫╧╠╪├┼╫, ╫╙┼ ╔┌ ╬┴╙ ╥┴┬╧╘┴└╘ ╫ ╬┴█┼ ╙╫╧┬╧─╬╧┼ ╫╥┼═╤. σ╙╠╔ ≈┴═ ╨╧╬╥┴╫╔╠┴╙╪ ╔╟╥┴, ╨╧╓┴╠╒╩╙╘┴ ╨╥╔█╠╔╘┼ ╬┴═ ▄╠┼╦╘╥╧╬╬╧┼ ╨╔╙╪═╧. ⁿ╘╧ ╨╧╓┴╠╒╩ ┼─╔╬╙╘╫┼╬╬┴╤ ╫┼▌╪, ╦╧╘╧╥┴╤ ╫╙┼╟─┴ ╨╥╔╫╧─╔╘ ╦ ╘╧═╒, ▐╘╧ ═┘ ╨╧╙╫╤▌┴┼═ ▄╘╧╩ ╔╟╥┼ ┬┼╙▐╔╙╠┼╬╬╧┼ ═╬╧╓┼╙╘╫╧ ▐┴╙╧╫.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.2 ⌡╙╘┴╬╧╫╦┴

≡╧╙╠┼─╬╤╤ ╫┼╥╙╔╤ Enigma ═╧╓┼╘ ┬┘╘╪ ┌┴╟╥╒╓┼╬┴ ╙╧ ╙╘╥┴╬╔├┘ ┌┴╟╥╒┌╧╦ Enigma. ⁿ╘┴ ╙╘╥┴╬╔├┴ ╙╧─┼╥╓╔╘ ╨┴╦┼╘┘ ─╠╤ ╙╠┼─╒└▌╔╚ ╧╨┼╥┴├╔╧╬╬┘╚ ╙╔╙╘┼═:

Windows

≈┼╥╙╔╤ Enigma ─╠╤ Windows ╥┴╙╨╥╧╙╘╥┴╬╤┼╘╙╤, ╦┴╦ ╙┴═╧╥┴╙╨┴╦╧╫┘╫┴└▌┴╤╙╤ ╨╥╧╟╥┴══┴. ≡╥╧╙╘╧ ╙╦┴▐┴╩╘┼ ╔ ┌┴╨╒╙╘╔╘┼ ╨╥┼─╠╧╓┼╬╬┘╩ ╞┴╩╠ `.exe'.

Unix

≤╒▌┼╙╘╫╒└╘ ┬╔╬┴╥╬┘┼ ╨┴╦┼╘┘ ─╠╤ ╬┼╦╧╘╧╥┘╚ ╨╧╨╒╠╤╥╬┘╚ ─╔╙╘╥╔┬╒╘╔╫╧╫ Linux, ╘┴╦╔╚ ╦┴╦ SUSE, Redhat ╔╠╔ Debian. Σ╠╤ ─╥╒╟╔╚ Unix-╨╧─╧┬╬┘╚ ╧╨┼╥┴├╔╧╬╬┘╚ ╙╔╙╘┼═ ╧┬┘▐╬╧ ╙┴═╧┼ ╨╥╧╙╘╧┼ ╥┼█┼╬╔┼ ▄╘╧ ╙┬╧╥╦┴ Enigma ╔┌ ╔╙╚╧─╬┘╚ ╦╧─╧╫.

Mac OS X

Σ╠╤ ╧╨┼╥┴├╔╧╬╬╧╩ ╙╔╙╘┼═┘ ╫┼╥╙╔╔ X ╒╙╘┴╬╧╫╦┴ ╬┼ ╘╥┼┬╒┼╘╙╤, ╨╥╧╙╘╧ ┌┴╨╒╙╘╔╘┼ ╞┴╩╠ `.dmg' ╔╠╔ `.tar.gz'.

≤╘╥┴╬╔├┴ ┌┴╟╥╒┌╧╦, ╦┴╦ ╨╥┴╫╔╠╧, ╙╧─┼╥╓╔╘ ┬╧╠┼┼ ╨╧─╥╧┬╬╒└ ╔ ╙╧╫╥┼═┼╬╬╒└ ╔╬╞╧╥═┴├╔└. σ╙╠╔ ≈┘ ╬┼ ═╧╓┼╘┼ ┌┴╙╘┴╫╔╘╪ Enigma ╥┴┬╧╘┴╘╪ ╬┴ ≈┴█┼═ ╦╧═╨╪└╘┼╥┼, ╬┼ ┬╧╩╘┼╙╪ ╨╧╨╥╧╙╔╘╪ ╨╧═╧▌╔ ╫ ╥┴╙╙┘╠╦┼ Enigma (enigma-devel@nongnu.org).


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.3 ≥┴╙╨╥╧╙╘╥┴╬┼╬╔┼ Enigma

Enigma ▄╘╧ ╙╫╧┬╧─╬╧┼ ╨╥╧╟╥┴══╬╧┼ ╧┬┼╙╨┼▐┼╬╔┼ ╔ ╧╬┴ ═╧╓┼╘ ╥┴╙╨╥╧╙╘╥┴╬╤╘╪╙╤ ╬┴ ╒╙╠╧╫╔╤╚ GNU General Public License (GPL). ⁿ╘┴ ╠╔├┼╬┌╔╤ ╨╧╙╘┴╫╠╤┼╘╙╤ ╙ ╦┴╓─┘═ ╔┌─┴╬╔┼═ Enigma (╔╠╔ ╫ ╞┴╩╠┼ `COPYING' ╔╠╔ ╫ ╞┴╩╠┼ `COPYING.txt'). σ╙╠╔ ≈┘ ╚╧╘╔╘┼ ╘╧╠╪╦╧ ╔╟╥┴╘╪ ╫ Enigma, ≈┴═ ╬┼ ╧┬╤┌┴╘┼╠╪╬╧ ▐╔╘┴╘╪ ╫╙┼ ╘┼ ╘┼╥═╔╬┘ (╙╦╧╥┼┼ ╫╙┼╟╧ ≈┘ ╔ ╬┼ ┌┴╚╧╘╔╘┼). Σ╠╤ ≈┴╙, ╠╔├┼╬┌╔╤ ╫ ╧╙╬╧╫╬╧═ ╟╠┴╙╔╘: Θ╟╥┴╩╘┼ ╫ Enigma ╙╦╧╠╪╦╧ ╚╧╘╔╘┼, ╨╧╦┴ ╚╧╘╔╘┼ ╔ ═╧╓┼╘┼ ─┴╫┴╘╪ ┼┼ ╙╫╧╔═ ─╥╒┌╪╤═!

σ╙╠╔ ≈┘ ╚╧╘╔╘┼ ╔┌═┼╬╔╘╪ Enigma ╔╠╔ ╙╨╧╙╧┬╙╘╫╧╫┴╘╪ ┼┼ ─┴╠╪╬┼╩█┼╩ ╥┴┌╥┴┬╧╘╦┼, ╨╧╓┴╠╒╩╙╘┴ ╨╥╧▐╘╔╘┼ ╔├┼╬┌╔└, ╫╙┼╟╧ ╧─╔╬ ╥┴┌ ╫ ╓╔┌╬╔. ∞╔├┼╬┌╔╤ GPL ╟┴╥┴╬╘╔╥╒┼╘, ▐╘╧ Enigma ┬╒─┼╘ ╧╙╘┴╫┴╘╪╙╤ ╙╫╧┬╧─╬┘═ ╨╥╧╟╥┴══╬┘═ ╧┬┼╙╨┼▐┼╬╔┼═ ╫ ┬╒─╒▌┼═. ≈ ▐┴╙╘╬╧╙╘╔, ┼╙╠╔ ≈┘ ╔┌═┼╬╤┼╘┼ Enigma ╔╠╔ ╥┴╙╨╥╧╙╘╥┴╬╤┼╘┼ ╔┌═┼╬┼╬╬╒└ ╫┼╥╙╔└, ≈┘ ╬┼ ═╧╓┼╘┼ ╧╘╬╤╘╪ ╬╔ ╒ ╦╧╟╧ ─╥╒╟╧╟╧ ╨╥┴╫╧ ╔╙╨╧╠╪┌╧╫┴╘╪, ╔┌═┼╬╤╘╪ ╔ ╥┴╙╨╥╧╙╘╥┴╬╤╘╪ Enigma ╔╠╔ ╨╥╧╔┌╫╧─╬┘┼ ╧╘ ╬┼┼.

≡╥┼─┘─╒▌╔┼ ─╫┴ ┴┬┌┴├┴ ╬┼ ┌┴═┼╬╤└╘ ╬┴╙╘╧╤▌╒└ ╠╔├┼╬┌╔└, ╬╧ ─┴└╘ ╨╥┼─╙╘┴╫╠┼╬╔┼ ╧ ╬┼╩ ╫ ╧┬▌╔╚ ▐┼╥╘┴╚ ╬┴ ╨╥╧╙╘╧═ ╥╒╙╙╦╧═. ≡╧╓┴╠╒╩╙╘┴ ╧┬╥┴╘╔╘┼╙╪ ╦ GPL, ┼╙╠╔ ≈┘ ╬┼ ╧╨╥┼─┼╠╔╠╔╙╪ ╔╠╔ ┼╙╠╔ ≈┴═ ╬╒╓╬╧ ┌╬┴╘╪ ┬╧╠╪█┼ ╨╧─╥╧┬╬╧╙╘┼╩.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2. Θ╟╥┴


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.1 ·╬┴╦╧═╙╘╫╧

≡╧╙╠┼ ┌┴╨╒╙╦┴ Enigma, ≈┘ ╧╦┴╓┼╘┼╙╪ ╫ ╟╠┴╫╬╧═ ═┼╬└, ╧╘╦╒─┴ ≈┘ ═╧╓┼╘┼ ╬┴▐┴╘╪ ╬╧╫╒└ ╔╟╥╒, ╒╙╘┴╬╧╫╔╘╪ ╬┼╦╧╘╧╥┘┼ ╨┴╥┴═┼╘╥┘ ╔╠╔ ╫┘╩╘╔ ╔┌ ╔╟╥┘, ┼╙╠╔ ≈┴═ ╬┴─╧┼╠╧. ≤╠┼─╒└▌╔┼ ╥┴┌─┼╠┘ ╨╧┌╬┴╦╧═╤╘ ≈┴╙ ╙ ═┼╬└ ╒╥╧╫╬┼╩ ╔ ═┼╬└ ╬┴╙╘╥╧┼╦; ╫╙┼ ╧╙╘┴╠╪╬╧┼ ═╧╓╬╧ ╬┴─┼╤╘╙╤ ╟╧╫╧╥╔╘ ╙┴═╧ ┌┴ ╙┼┬╤. φ╬╧╟╔┼ ═┼╬└ ╨╥┼─╧╙╘┴╫╠╤└╘ ╔╬╘┼╥┴╦╘╔╫╬╒└ ╨╧═╧▌╪; ╨╥╧╙╘╧ ╬┴╓═╔╘┼ ╦╠┴╫╔█╒ F1.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.1.1 φ┼╬└ ╒╥╧╫╬┼╩

ε┴╓┴╘╔┼ ╬┴ "ε┴▐┴╘╪ ╔╟╥╒" ╫ ╟╠┴╫╬╧═ ═┼╬└ ╨╥╔╫┼─┼╘ ≈┴╙ ╦ ═┼╬└ ╒╥╧╫╬┼╩, ╦╧╘╧╥╧┼ ╫┘╟╠╤─╔╘ ╨╥╔┬╠╔┌╔╘┼╠╪╬╧ ╦┴╦ ▄╘╧:

images/levelmenu

ⁿ╦╥┴╬ ╙╧╙╘╧╔╘ ╔┌ ╘╥┼╚ ╧┬╠┴╙╘┼╩: ╫┼╥╚╬╤╤ ╧┬╠┴╙╘╪ ╙╧─┼╥╓╔╘ ╔╬╞╧╥═┴├╔└ ╧ ╫┘┬╥┴╬╬╧═ ╫ ─┴╬╬┘╩ ═╧═┼╬╘ ╒╥╧╫╬┼ ╔ ╘┼╦╒▌┼═ ╨┴╦┼╘┼ ╒╥╧╫╬┼╩, ╙╥┼─╬╤╤ ╧┬╠┴╙╘╪ ╨╧╦┴┌┘╫┴┼╘ ╫╔─ ─╧╙╘╒╨╬┘╚ ╒╥╧╫╬┼╩, ┴ ╫╬╔┌╒ ╬┴╚╧─╔╘╙╤ ╥╤─ ╦╬╧╨╧╦.

≈┘ ═╧╓┼╘┼ ╨┼╥┼─╫╔╟┴╘╪╙╤ ╨╧ ╙╨╔╙╦╒ ╒╥╧╫╬┼╩ ╔╠╔ ╔╙╨╧╠╪┌╒╤ ═┴╠┼╬╪╦╔┼ ╦╬╧╨╦╔ ╙╧ ╙╘╥┼╠╦┴═╔ ╙╨╥┴╫┴, ╔╠╔ ╨╧╠╪┌╒╤╙╪ ╦╠┴╫╔█┴═╔ ╙╧ ╙╘╥┼╠╦┴═╔. Σ╠╤ ╬┴▐┴╠┴ ╬╧╫╧╩ ╔╟╥┘ ╨╥╧╙╘╧ ╦╠╔╦╬╔╘┼ ╬┴ ╔┌╧┬╥┴╓┼╬╔╔ ═┼╙╘╬╧╙╘╔ ╬┴ ╦╧╘╧╥╧╩ ≈┘ ╚╧╘╔╘┼ ╔╟╥┴╘╪ ╔╠╔ ╬┴╓═╔╘┼ Enter.

≈ Enigma ┼╙╘╪ ─╫┴ ╒╥╧╫╬╤ ╙╠╧╓╬╧╙╘╔: "╨╥╧╙╘╧╩" ╔ "╬╧╥═┴╠╪╬┘╩". ■╘╧┬┘ ╨┼╥┼╦╠└▐╔╘╪╙╤ ═┼╓─╒ ╨╥╧╙╘╧╩ ╔ ╬╧╥═┴╠╪╬╧╩ ╙╠╧╓╬╧╙╘╪└, ╬┴╓═╔╘┼ ╦╬╧╨╦╒ ╫ ├┼╬╘╥┼ ╥╤─┴ ╦╬╧╨╧╦: ╨┼╥┼╦╠└▐╔╘┼╙╪ ╬┴ ┌╬┴▐╧╦ ╙ ╔┌╧┬╥┴╓┼╬╔┼═ ╙┼╥┼┬╥╤╬╬╧╩ ═┼─┴╠╔ ╔ ╨┼╥┴, ┼╙╠╔ ≈┘ ╨╥┼─╨╧▐╔╘┴┼╘┼ ╒╥╧╫╬╔ ╨╧╠┼╟▐┼ ╔╠╔ ╙ ╔┌╧┬╥┴╓┼╬╔┼═ ┌╧╠╧╘╧╩ ═┼─┴╠╔ ─╠╤ ╬╧╥═┴╠╪╬╧╟╧, ┬╧╠┼┼ ╙╠╧╓╬╧╟╧, ╥┼╓╔═┴ ╔╟╥┘.

≈ ╒╨╥╧▌┼╬╬╧╩ ╫┼╥╙╔╔ ─╧╙╘╒╨╬┘ ╬┼ ╫╙┼ ╒╥╧╫╬╔; ╨╧▄╘╧═╒ ╧╬╔ ╧┬╧┌╬┴▐┼╬┘ ╨┼╥╧═ (┼╙╠╔ ≈┘ ┼▌┼ ╔╚ ╬┼ ╥┼█╔╠╔) ╔╠╔ ╙┼╥┼┬╥╤╬╬╧╩ ═┼─┴╠╪└ ╫ ╫┼╥╚╬┼═ ╠┼╫╧═ ╒╟╠╒ ╔╚ ╔┌╧┬╥┴╓┼╬╔╤.

≈┘ ═╧╓┼╘┼ ╨┼╥┼╩╘╔ ╬┴ ╙╠┼─╒└▌╔╩ ╒╥╧╫┼╬╪ ╬┴╓┴╫ ╔╠╔ F5, ╔╠╔ ╦╬╧╨╦╒ >>| ╫ ╬╔╓╬┼═ ╥╤─╒. ·╬┴▐┼╬╔┼ ╙╠╧╫┴ "╙╠┼─╒└▌╔╩" ╫ ╨╥┼─┘─╒▌┼═ ╨╥┼─╠╧╓┼╬╔╔ ┌┴╫╔╙╔╘ ╧╘ ╥┼╓╔═┴, ╦╧╘╧╥┘╩ ≈┘ ╫┘┬╥┴╠╔ ╙┴═╧╩ ╠┼╫╧╩ ╦╬╧╨╦╧╩ ╫ ╬╔╓╬┼═ ╥╤─╒.

⌡╥╧╫┼╬╪ ═╧╓┼╘ ─╧╨╧╠╬╔╘┼╠╪╬╧ ╧┬╧┌╬┴▐┴╘╪╙╤ ═┴╠┼╬╪╦╔═ ╦╥┴╙╬┘═ ╘╥┼╒╟╧╠╪╬╔╦╧═ ╙ ╫╧╙╦╠╔├┴╘┼╠╪╬┘═ ┌╬┴╦╧═ ╫ ╫┼╥╚╬┼═ ╠┼╫╧═ ╒╟╠╒. ⁿ╘╧╘ ┌╬┴╦ ╒╫┼─╧═╔╘ ≈┴╙, ┼╙╠╔ ╒╥╧╫┼╬╪ ┬┘╠ ╧┬╬╧╫╠┼╬ ╨╧╙╠┼ ╘╧╟╧ ╦┴╦ ≈┘ ┼╟╧ ╥┼█╔╠╔. ≈┘ ╙═╧╓┼╘┼ ╒╫╔─┼╘╪ ┼╟╧ ╘╧╠╪╦╧, ┼╙╠╔ ≈┘ ╧┬╬╧╫╔╘┼ Enigma ─╧ ┬╧╠┼┼ ╬╧╫╧╩ ╫┼╥╙╔╔.

≈┘ ═╧╓┼╘┼ ╨┼╥┼═┼▌┴╘╪╙╤ ╨╧ ═┼╬└ ╒╥╧╫╬┼╩ ╙ ╨╧═╧▌╪└ ╙╠┼─╒└▌╔╚ ╦╠┴╫╔█:

ESC

≈┼╥╬╒╘╪╙╤ ╦ ╨╥┼─┘─╒▌┼═╒ ═┼╬└

F1

≡╧╦┴┌┴╘╪ ╨╧═╧▌╪

F5

≡┼╥┼╩╘╔ ╦ ╙╠┼─╒└▌┼═╒ ╒╥╧╫╬└, ┴╬┴╠╧╟╔▐╬╧ ╦╬╧╨╦┼ >>|

≤╘╥┼╠╦╔

≤═┼╬╔╘╪ ╒╥╧╫┼╬╪

Enter

Θ╟╥┴╘╪ ╬┴ ╫┘┬╥┴╬╬╧═ ╒╥╧╫╬┼

≡╥╧┬┼╠

≡┼╥┼╩╘╔ ╦ ╙╠┼─╒└▌┼═╒ ╨┴╦┼╘╒ ╒╥╧╫╬┼╩

Backspace

≡┼╥┼╩╘╔ ╦ ╨╥┼─┘─╒▌┼═╒ ╨┴╦┼╘╒ ╒╥╧╫╬┼╩


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.1.2 φ┼╬└ ≡┴╦┼╘ ╒╥╧╫╬┼╩

≤ Enigma ╨╧╙╘┴╫╠╤┼╘╙╤ ═╬╧╟╧ ╒╥╧╫╬┼╩. ε┴ ╙┴═╧═ ─┼╠┼, ═╬╧╟╧-═╬╧╟╧ ╒╥╧╫╬┼╩. ■╘╧┬┘ ╙╧╚╥┴╬╔╘╪ ╨╧╥╤─╧╦, ╧╬╔ ╫╚╧─╤╘ ╫ "╨┴╦┼╘┘ ╒╥╧╫╬┼╩". ß ╔┌-┌┴ ╘╧╟╧, ▐╘╧ ╦┴╓─┘╩ ╥┼╠╔┌ Enigma ─╧┬┴╫╠╤┼╘ ┬╧╠╪█┼ ╒╥╧╫╬┼╩, ═┘ ─┴╓┼ ╙╧┬╥┴╠╔ ╨┴╦┼╘┘ ╒╥╧╫╬┼╩ ╫ "╟╥╒╨╨┘". δ ╙▐┴╙╘╪└, ╫╙┼ ▄╘╧ ┌╬┴▐╔╘┼╠╪╬╧ ╨╥╧▌┼ ▐┼═ ┌╫╒▐╔╘.

■╘╧┬┘ ╫┘┬╥┴╘╪ ╨┴╦┼╘ ╒╥╧╫╬┼╩, ╫╧╩─╔╘┼ ╫ ═┼╬└ "≡┴╦┼╘ ╒╥╧╫╬┼╩", ╦╧╘╧╥╧┼ ─╧╙╘╒╨╬╧ ╔┌ ╟╠┴╫╬╧╟╧ ═┼╬└ ╔╠╔ ╔┌ ═┼╬└ ╒╥╧╫╬┼╩.

ⁿ╘╧ ═┼╬└ ╨╧╦┴┌┘╫┴┼╘ ╟╥╒╨╨┘ ╫ ╠┼╫╧╩ ╦╧╠╧╬╦┼, ┴ ╨┴╦┼╘┘ ╒╥╧╫╬┼╩ ╫┘┬╥┴╬╬╧╩ ╟╥╒╨╨┘ ╫ ─╥╒╟╧╩ ╦╧╠╧╬╦┼ ╙╨╥┴╫┴. ∩╞╔├╔┴╠╪╬┘═╔ ╟╥╒╨╨┴═╔, ╦╧╘╧╥┘┼ ╨╧╙╘┴╫╠╤└╘╙╤ ╫═┼╙╘┼ ╙ Enigma ╤╫╠╤└╘╙╤ ╙╠┼─╒└▌╔┼:

²┼╠▐╧╦ ╠┼╫╧╩ ╦╬╧╨╦╔ ═┘█╔ ╫┘┬╔╥┴┼╘ ╟╥╒╨╨╒ ╔╠╔ ╨┴╦┼╘ ╒╥╧╫╬┼╩.

∩╨╔╙┴╬╔┼ ─╧╨╧╠╬╔╘┼╠╪╬┘╚ ╫╧┌═╧╓╬╧╙╘┼╩ ╨┴╦┼╘╧╫ ╒╥╧╫╬┼╩ ╙═╧╘╥╔╘┼ ╫ ≡╧╠╪┌╧╫┴╘┼╠╪╙╦╔┼ ╨┴╦┼╘┘ ╒╥╧╫╬┼╩.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.1.3 ε┴╙╘╥╧╩╦╔

φ┼╬└ ╬┴╙╘╥╧┼╦ ╨╧┌╫╧╠╤┼╘ ≈┴═ ╨╥╔╙╨╧╙╧┬╔╘╪ Enigma ╨╧─ ≈┴█╔ ╨╥┼─╨╧▐╘┼╬╔╤.

±┌┘╦

≈┘┬┼╥╔╘┼ ╤┌┘╦ ─╠╤ ═┼╬└ ╔ (┼╙╠╔ ─╧╙╘╒╨╬╧) ╫╬╒╘╥╔╔╟╥╧╫┘╚ ─╧╦╒═┼╬╘╧╫.

≡╧╠╬┘╩ ▄╦╥┴╬

≡┼╥┼╦╠└▐┴┼╘ ═┼╓─╒ ╨╧╠╬╧▄╦╥┴╬╬┘═ ╔ ╧╦╧╬╬┘═ ╥┼╓╔═┴═╔ ▄╦╥┴╬┴. ≈┘ ╘┴╦╓┼ ═╧╓┼╘┼ ╔╙╨╧╠╪┌╧╫┴╘╪ Alt-Enter, ▐╘╧┬┘ ╙─┼╠┴╘╪ ▄╘╧, ─┴╓┼ ╦╧╟─┴ ≈┘ ╬┼ ╫ ═┼╬└ ╬┴╙╘╥╧┼╦. ≡╥╔═┼▐┴╬╔┼: ε┴ ╬┼╦╧╘╧╥┘╚ ╙╔╙╘┼═┴╚ ≈┘ ─╧╠╓╬┘ ╫┼╥╬╒╘╪╙╤ ╫ ╟╠┴╫╬╧┼ ═┼╬└, ▐╘╧┬┘ ╨┼╥┼╦╠└▐╔╘╪╙╤ ╔┌ ╧╦╧╬╬╧╟╧ ╫ ╨╧╠╬╧▄╦╥┴╬╬┘╩ ╥┼╓╔═ ╔╠╔ ╬┴╧┬╧╥╧╘.

≈╔─┼╧╥┼╓╔═

ⁿ╘┴ ╦╬╧╨╦┴ ╨╧┌╫╧╠╤┼╘ ≈┴═ ╔┌═┼╬╔╘╪ ╫╔─┼╧╥┼╓╔═, ╔╙╨╧╠╪┌╒┼═┘╩ Enigma. Enigma ╬┼ ╨┼╥┼╦╠└▐┴┼╘ ╫╔─┼╧╥┼╓╔═ ╬┼═┼─╠┼╬╬╧, ┴ ╓─┼╘ ╨╧╦┴ ≈┘ ╫┼╥╬┼╘┼╙╪ ╫ ╟╠┴╫╬╧┼ ═┼╬└.

τ┴══┴

σ╙╠╔ ╬┼╧┬╚╧─╔═╧, ╬┴╙╘╥╧╩╘┼ ┌─┼╙╪ ╤╥╦╧╙╘╪ ▄╦╥┴╬┴.

≤╦╧╥╧╙╘╪ ═┘█╔

∩╨╥┼─┼╠╤┼╘ ╬┴╙╦╧╠╪╦╧ ┬┘╙╘╥╧ ≈┴█ █┴╥╔╦ ╒╙╦╧╥╤┼╘╙╤, ╦╧╟─┴ ≈┘ ─╫╔╟┴┼╘┼ ═┘█╪└. ≈┘ ═╧╓┼╘┼ ╔╙╨╧╠╪┌╧╫┴╘╪ ╦╠┴╫╔█╔-╦╒╥╙╧╥┘ ╫╠┼╫╧ ╔ ╫╨╥┴╫╧, ▐╘╧┬┘ ╔┌═┼╬╔╘╪ ╙╦╧╥╧╙╘╪ ═┘█╔ ╫╧ ╫╥┼═╤ ╔╟╥┘.

τ╥╧═╦╧╙╘╪ ┌╫╒╦╧╫

τ╥╧═╦╧╙╘╪ ┌╫╒╦╧╫┘╚ ▄╞╞┼╦╘╧╫ ╫ ╔╟╥┼.

ε┴┬╧╥ ┌╫╒╦╧╫

ⁿ╘┴ ╦╬╧╨╦┴ ╨╥┼─╧╙╘┴╫╠╤┼╘ ≈┴═ ╫┘┬╧╥ ╬┴┬╧╥┴ ┌╫╒╦╧╫┘╚ ▄╞╞┼╦╘╧╫ Enigma, ╔╙╨╧╠╪┌╒┼═┘╚ ╫╧ ╫╥┼═╤ ╔╟╥┘. σ╙╠╔ ≈┘ ╔╙╨╧╠╪┌╒┼╘┼ Enigma ╙ ╧╥╔╟╔╬┴╠╪╬┘═╔ ╞┴╩╠┴═╔ ─┴╬╬┘╚ Oxyd, ▄╘┴ ╧╨├╔╤ ╨╧┌╫╧╠╔╘ ≈┴═ ╔╙╨╧╠╪┌╧╫┴╘╪ ╧╥╔╟╔╬┴╠╪╬┘┼ ┌╫╒╦╔ ╬┴ ╫╙┼╚ ╒╥╧╫╬╤╚.

τ╥╧═╦╧╙╘╪ ═╒┌┘╦╔

τ╥╧═╦╧╙╘╪ ╞╧╬╧╫╧╩ ═╒┌┘╦╔ ╫ ═┼╬└.

≤╘┼╥┼╧

≡┼╥┼╦╠└▐┴┼╘ ═┼╓─╒ "╧┬┘▐╬┘═" ╙╘┼╥┼╧, "╧┬╥┴╘╬┘═" ╙╘┼╥┼╧ ╔ ═╧╬╧ ┌╫╒╦┴═╔.

∩┬╬╧╫╠╤╘╪ ╥┼╩╘╔╬╟

σ╙╠╔ ╒╙╘┴╬╧╫╠┼╬╧ ╫ `ß╫╘╧', Enigma ╫╥┼═╤ ╧╘ ╫╥┼═┼╬╔ ┬╒─┼╘ ╨┘╘┴╘╪╙╤ ╙╦┴▐┴╘╪ ╬╧╫┘┼ ─┴╬╬┘┼ ╧ ╥┼╩╘╔╬╟┼. ⁿ╘╧ ╧┬╬╧╫╔╘ ╧┬▌┼─╧╙╘╒╨╬┘┼ ╥┼╩╘╔╬╟╔, ═╔╥╧╫┘┼ ╥┼╦╧╥─┘, ╧▐╦╔ ╙╧╧╘╫┼╘╙╘╫╔╤ ╔ ╘.╨. ≤═╧╘╥╔╘┼ See section ≥┼╟╔╙╘╥┴├╔╤ ╧▐╦╧╫.

Θ═╤ ╔╟╥╧╦┴

≈╫┼─╔╘┼ ≈┴█┼ ╔═╤ ╔╠╔ ╬╔╦, ╦╧╘╧╥┘┼ ≈┘ ╚╧╘╔╘┼ ╨╥╔╙╧┼─╔╬╔╘╪ ╦ ╫┴█╔═ ╥┼╦╧╥─┴═, ╨╥╔ ╧╘╙┘╠╦┼ ╞┴╩╠┴ enigma.scores. ≤═╧╘╥╔╘┼ See section ≥┼╟╔╙╘╥┴├╔╤ ╧▐╦╧╫.

≡┴╨╦┴ ╨╧╠╪┌╧╫┴╘┼╠╤

≡╒╘╪ ╦ ═┼╙╘╒, ╫ ╦╧╘╧╥╧═ Enigma ╚╥┴╬╔╘ ╫╙┼ ≈┴█╔ ╨╧╠╪┌╧╫┴╘┼╠╪╙╦╔┼ ─┴╬╬┘┼. ∩┬╥┴╘╔╘┼╙╪ ╦ ╙╨╥┴╫╧▐╬╧═╒ ╥╒╦╧╫╧─╙╘╫╒ ┌┴ ╨╧─╥╧┬╬╧╩ ╔╬╞╧╥═┴├╔╔.

≡┴╨╦┴ ▄╙╦╔┌╧╫

≡╒╘╪ ╦ ═┼╙╘╒, ╫ ╦╧╘╧╥╧═ Enigma ╚╥┴╬╔╘ ╫╙┼ ≈┴█╔ ╨╧╠╪┌╧╫┴╘┼╠╪╙╦╔┼ ▄╙╦╔┌┘. ∩┬╥┴╘╔╘┼╙╪ ╦ ╙╨╥┴╫╧▐╬╧═╒ ╥╒╦╧╫╧─╙╘╫╒ ┌┴ ╨╧─╥╧┬╬╧╩ ╔╬╞╧╥═┴├╔┼╩.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.1.4 Θ╬╙╨┼╦╘╧╥ ╒╥╧╫╬╤

■╘╧┬┘ ╒╫╔─┼╘╪ ┬╧╠┼┼ ╨╧─╥╧┬╬╒└ ╔╬╞╧╥═┴├╔└ ╧┬ ╒╥╧╫╬┼, ≈┘ ═╧╓┼╘┼ ╫┘┌╫┴╘╪ ╔╬╙╨┼╦╘╧╥┴ ╒╥╧╫╬╤. ε┴╓═╔╘┼ ╔╠╔ ╨╥╧╙╘╧ ╨╥┴╫╒└ ╦╬╧╨╦╒ ═┘█╔, ╔╠╔ ╬┴╓═╔╘┼ ╠┼╫╒└ ╦╬╧╨╦╒ ╫═┼╙╘┼ ╙ ╦╠┴╫╔█┼╩ Ctrl ╬┴ ╔┌╧┬╥┴╓┼╬╔╔ ╒╥╧╫╬╤ ╫ ═┼╬└ ╒╥╧╫╬┼╩.

≈┘ ═╧╓┼╘┼ ╙╥┴╫╬╔╘╪ ≈┴█╔ ╧▐╦╔ ╙ ═╔╥╧╫┘═╔ ╥┼╦╧╥─┴═╔, ╧▐╦┴═╔ ╙╧╧╘╫┼╘╙╘╫╔╤, ╧▐╦┴═╔ ┴╫╘╧╥┴ ╒╥╧╫╬╤. ≡╥┼─╒╙═╧╘╥┼╬┘ ─┴╓┼ ╬┼╦╧╘╧╥┘┼ ─┴╬╬┘┼, ╧ ╘╧═ ╙╦╧╠╪╦╧ ╔╟╥╧╦╧╫ ╥┼█╔╠╔ ╒╥╧╫┼╬╪.

δ╥╧═┼ ╨╥╧▐┼╩ ╔╬╞╧╥═┴├╔╔, ─┼╘┴╠╪╬╧┼ ╧╨╔╙┴╬╔┼ ╦╧╘╧╥╧╩ ┼╙╘╪ ╫ ╙╨╥┴╫╧▐╬╧═ ╥╒╦╧╫╧─╙╘╫┼, ≈┘ ═╧╓┼╘┼ ╫╫┼╙╘╔ ╬┼┬╧╠╪█╧┼ ╨╥╔═┼▐┴╬╔┼ ╦ ╒╥╧╫╬└ ╔ ╧├┼╬╔╘╪ ╒╥╧╫┼╬╪.

≡╧╓┴╠╒╩╙╘┴ ╔═┼╩╘┼ ╫╫╔─╒, ▐╘╧ ╨╧╠┼ ─╠╤ ╫╫╧─┴ ╨╥╔═┼▐┴╬╔╤ ═╧╓┼╘ ╨╧┌╫╧╠╔╘╪ ≈┴═ ╫╫┼╙╘╔ ╘╧╠╪╦╧ ╙╔═╫╧╠┘ ASCII ╫ ┌┴╫╔╙╔═╧╙╘╔ ╧╘ ╙╔╙╘┼═┘ ╙ ╦╧╘╧╥╧╩ ╥┴┬╧╘┴┼╘ Enigma.

≥┼╩╘╔╬╟ ▄╘╧ ╫┴█┼ ╠╔▐╬╧┼ ╫╨┼▐┴╘╠┼╬╔┼ ╧╘ ╒╥╧╫╬╤. `-' ╧┌╬┴▐┴┼╘ ╧╘╙╒╘╙╘╫╔┼ ═╬┼╬╔╤. 0 - ╧▐┼╬╪ ╨╠╧╚╧╩, 5 - ╨╧╙╥┼─╙╘╫┼╬╬┘╩, 10 - ╙┴═┘╩ ╠╒▐█╔╩. ≥┼╩╘╔╬╟ ┬╒─┼╘ ╧╘╧╙╠┴╬ ╫═┼╙╘┼ ╙ ≈┴█╔═╔ ╧▐╦┴═╔ (╙═╧╘╥╔╘┼ (see section ≥┼╟╔╙╘╥┴├╔╤ ╧▐╦╧╫).

≡╧╙╠┼─╬┼┼, ╬╧ ╬┼ ═┼╬┼┼ ┌╬┴▐╔═╧┼ - ≈┘ ═╧╓┼╘┼ ╔╙╨╧╠╪┌╧╫┴╘╪ ╔╬╙╨┼╦╘╧╥ ╒╥╧╫╬╤, ▐╘╧┬┘ ╨╧╙═╧╘╥┼╘╪ ╙╬╔═╦╔ ▄╦╥┴╬┴, ╦╧╘╧╥┘┼ ≈┘ ╙─┼╠┴╠╔ ╫╧ ╫╥┼═╤ ╔╟╥┘ (╙═╧╘╥╔╘┼ (see section ⌡╨╥┴╫╠┼╬╔┼).


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2 ≡╥┴╫╔╠┴ Θ╟╥┘


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.1 ∩┬┘▐╬┘┼ ═┼╙╘╬╧╙╘╔

∩╙╬╧╫╬┴╤ ╔─┼╤ Enigma ╨╥╧╙╘┴: ≈ ┬╧╠╪█╔╬╙╘╫┼ ╒╥╧╫╬┼╩ ≈┘ ╒╨╥┴╫╠╤┼╘┼ ═┴╠┼╬╪╦╔═ ▐┼╥╬┘═ █┴╥╔╦╧═, ╔▌┼╘┼ ╔ "╧╘╦╥┘╫┴┼╘┼" ╙╧╫╨┴─┴└▌╔┼ ╨┴╥┘ ╘┴╦ ╬┴┌┘╫┴┼═┘╚ Oxyd-╦┴═╬┼╩. ·┴╦╥┘╘┘┼ Oxyd-╦┴═╬╔ ╫┘╟╠╤─╤╘ ╦┴╦ ▄╘╔ (╙╒▌┼╙╘╫╒┼╘ ▐┼╘┘╥┼ ╥┴┌╠╔▐╬┘╚ ╫┴╥╔┴╬╘┴, ╬╧ ╫╙┼ ╧╬╔ ─┼╩╙╘╫╒└╘ ╧─╔╬┴╦╧╫╧):

images/st-oxyds

δ╧╟─┴ ≈┘ ╦┴╙┴┼╘┼╙╪ ≈┴█╔═ █┴╥╔╦╧═ Oxyd-╦┴═╬╤, ╧╬ ╧╘╦╥┘╫┴┼╘╙╤ ╔ ╨╧╦┴┌┘╫┴┼╘ ╧┬╧┌╬┴▐┼╬╔┼ ├╫┼╘┴. ε┴ ╠└┬╧╩ ═┼╙╘╬╧╙╘╔ ┼╙╘╪ ─╫┴ Oxyd-╦┴═╬╤ ╙ ╧─╔╬┴╦╧╫┘═ ╧┬╧┌╬┴▐┼╬╔┼═. ≈┘ ─╧╠╓╬┘ ─╧╘╥╧╬╒╘╪╙╤ ─╧ ─╫╒╚ ╙╧╧╘╫┼╘╙╘╫╒└▌╔╚ ╦┴═╬┼╩ ╨╧─╥╤─, ▐╘╧┬┘ ╧╘╦╥┘╘╪ ╔╚ ╬┴╫╙┼╟─┴--┼╙╠╔ ╙╔═╫╧╠┘ ╬┼ ╧─╔╬┴╦╧╫┘, ╨┼╥╫┘╩ Oxyd-╦┴═┼╬╪ ╙╬╧╫┴ ┌┴╦╥╧┼╘╙╤. ■╘╧┬┘ ┌┴╫┼╥█╔╘╪ ═┼╙╘╬╧╙╘╪ ≈┴═ ╬╒╓╬╧ ╬┴╩╘╔ ╔ ╧╘╦╥┘╘╪ ╫╙┼ ╨┴╥┘ Oxyd-╦┴═╬┼╩. ε┴ ╙╠┼─╒└▌┼═ ╔┌╧┬╥┴╓┼╬╔╔ ≈┘ ╫╔─╔╘┼ ╨┴╥╒ ┌┼╠┼╬┘╚ Oxyd-╦┴═╬┼╩, ╦╧╘╧╥┘┼ ╒╓┼ ╧╘╦╥┘╘┘. ·╬┴╦ ╫╧╨╥╧╙┴ ╫╬╒╘╥╔ ╙╔╬┼╟╧ Oxyd-╦┴═╬╤ ╧┌╬┴▐┴┼╘, ▐╘╧ ╫╘╧╥╧╩ ╙╔╬╔╩ ╙╔═╫╧╠ ╧╙╘┴┼╘╙╤ ╙╨╥╤╘┴╬╬┘═.

images/intro-oxyd

φ┼╓─╒ ╨╥╧▐╔═: ┼╙╠╔ ≈┘ ┼▌┼ ╬┼ ╙─┼╠┴╠╔ ▄╘╧╟╧, ╙┼╩▐┴╙ ╙┴═╧┼ ╫╥┼═╤ ┌┴╨╒╙╘╔╘╪ Enigma ╔ ╨╧╔╟╥┴╘╪ ╬┴ ╨┼╥╫┘╚ ╒╥╧╫╬╤╚!

≈┘ ═╧╓┼╘┼ ╨╧─╬╔═┴╘╪ ╙ ╨╧╠┴ ╧┬▀┼╦╘┘ ╨┼╥┼─╫╔╟┴╤╙╪ ╨╧ ╬╔═. Θ╬╫┼╬╘┴╥╪ ╫╬╔┌╒ ▄╦╥┴╬┴ ╨╧╦┴┌┘╫┴┼╘ ╙╨╔╙╧╦ ╨╥┼─═┼╘╧╫ ╫ ╫┴█┼═ ╥┴╙╨╧╥╤╓┼╬╔╔. ≈ ╬┴▐┴╠┼ ╬╧╫╧╩ ╔╟╥┘ ╒ ≈┴╙ ╬┼ ┬╒─┼╘ ╬╔▐┼╟╧, ╦╥╧═┼ ─╫╒╚ ┌┴╨┴╙╬┘╚ █┴╥╔╦╧╫. ≤╠┼─╒└▌┼┼ ╔┌╧┬╥┴╓┼╬╔┼ ╨╧╦┴┌┘╫┴┼╘ ╔╬╫┼╬╘┴╥╪, ╙╧─┼╥╓┴▌╔╩ ╠╧╨┴╘╒, ╦╠╧▐╧╦ ┬╒═┴╟╔, ─╫┴ ┬╥╒╙╦┴ ─╔╬┴═╔╘┴, ≈┴█╔ ─╧╨╧╠╬╔╘┼╠╪╬┘┼ ╓╔┌╬╔ ╔ ┌╧╬╘:

images/intro-inventory

≤┴═┘╩ ╠┼╫┘╩ ╧┬▀┼╦╘ ═╧╓┼╘ ┬┘╘╪ ┴╦╘╔╫╔╥╧╫┴╬ ╬┴╓┴╘╔┼═ ╠┼╫╧╩ ╦╬╧╨╦╔ ═┘█╔: ╧╬ ┬╒─┼╘ ╔╠╔ ┬╥╧█┼╬ ╬┴ ╨╧╠, ╔╠╔ ╫┘╨╧╠╬╔╘ ╦┴╦╧┼-╘╧ ─┼╩╙╘╫╔┼. Σ╔╬┴═╔╘, ╬┴╨╥╔═┼╥, ┌┴╟╧╥╔╘╙╤, ╦╧╟─┴ ≈┘ ┬╥╧╙╔╘┼ ┼╟╧, ┴ ╨╥╒╓╔╬┴ ╨╧─┬╥╧╙╔╘ ≈┴█ █┴╥. ε┴╓═╔╘┼ ╨╥┴╫╒└ ╦╬╧╨╦╒ ═┘█╔ ╔╠╔ ╔╙╨╧╠╪┌╒╩╘┼ ╦╧╠┼╙╧ ═┘█╔, ▐╘╧┬┘ ▐┼╥┼─╧╫┴╘╪ ╨╥┼─═┼╘┘ ╫ ╔╬╫┼╬╘┴╥┼.

σ╙╠╔, ╨╧ ╦┴╦╧╩-╘╧ ╨╥╔▐╔╬┼, ≈┘ ╬┼ ╚╧╘╔╘┼ ╨╧─╬╔═┴╘╪ ╨╥┼─═┼╘┘, ┌┴╓═╔╘┼ ╠└┬╒└ ╦╬╧╨╦╒ ═┘█╔, ╦╧╟─┴ ╨┼╥┼─╫╔╟┴┼╘┼╙╪. ≈ ╬┼╦╧╘╧╥┘╚ ╙╔╘╒┴├╔╤╚ ▄╘╧ ═╧╓┼╘ ≈┴═ ╨╥╔╟╧─╔╘╙╤.

φ╬╧╟╔┼ ╦┴═╬╔ ═╧╟╒╘ ╨┼╥┼═┼▌┴╘╪╙╤, ┼╙╠╔ ─╧╙╘┴╘╧▐╬╧ ╙╔╠╪╬╧ ╔╚ ╘╧╠╦╬╒╘╪. ∩─╔╬ ╔┌ ╙┴═┘╚ ╨╧╠┼┌╬┘╚ ╦┴═╬┼╩ ? ─┼╥┼╫╤╬╬┘╩ ╤▌╔╦, ╦╧╘╧╥┘╩ ╔╙╨╧╠╪┌╒┼╘╙╤ ─╠╤ ╙╘╥╧╔╘┼╠╪╙╘╫┴ ═╧╙╘╧╫ ▐┼╥┼┌ ╫╧─╒ ╔ ┬┼┌─╬╒. ⁿ╘╧ ╔┌╧┬╥┴╓┼╬╔┼ ╨╧╦┴┌┘╫┴┼╘ ╦┴╦ ╙╘╥╧╔╘╪ ═╧╙╘, ╙┬╥┴╙┘╫┴╤ ─┼╥┼╫╤╬╬┘┼ ╤▌╔╦╔ ╫ ╫╧─╒:

images/intro-plank

Θ╟╥╧╫┘┼ ╧┬▀┼╦╘┘ ╫┌┴╔═╧─┼╩╙╘╫╒└╘ ─╥╒╟ ╙ ─╥╒╟╧═ ╒─╔╫╔╘┼╠╪╬┘═╔ ╙╨╧╙╧┬┴═╔: ╧┬▀┼╦╘┘ ╠┼╓┴▌╔┼ ╬┴ ╨╧╠╒, ╬┴╨╥╔═┼╥, ═╧╟╒╘ ┬┘╘╪ ╨╥┼╧┬╥┴┌╧╫┴╬┘, ╙ ╔╙╨╧╠╪┌╧╫┴╬╔┼═ ╠┴┌┼╥╬┘╚ ╠╒▐┼╩ ╔ ╨╧─╫╔╓╬┘╚ ╦┴═╬┼╩. ß ═╬╧╟╔┼ ╦┴═╬╔ ╔┌═┼╬╤└╘╙╤, ┼╙╠╔ ≈┘ ╦╧╙╬┼╘┼╙╪ ╔╚ ╥┴┌╠╔▐╬┘═╔ ╧┬▀┼╦╘┴═╔ ╔┌ ╨┼╥╫╧╟╧ ╙╠╧╘┴ ≈┴█┼╟╧ ╔╬╫┼╬╘┴╥╤ (╫╧╠█┼┬╬┴╤ ╨┴╠╧▐╦┴-?-╙┴═┘╩ ╔┌╫┼╙╘╬┘╩ ╧┬▀┼╦╘ ╫ ▄╘╧╩ ╦┴╘┼╟╧╥╔╔).

≡╧╙╠┼─╬┼┼, ╬╧ ╬┼ ═┼╬┼┼ ┌╬┴▐╔═╧┼: ε┼ ╫╨┴─┴╩╘┼ ╫ ╒╬┘╬╔┼ ╧╘ ╫╔─╔═╧╩ ┌┴╨╒╘┴╬╬╧╙╘╔ ╔╟╥┘--╨╧╫┼─┼╬╔┼ ┬╧╠╪█╔╬╙╘╫┴ ╧┬▀┼╦╘╧╫ ╫ ╙╫╧┼ ╫╥┼═╤ ╙╘┴╬┼╘ ╤╙╬┘═. ε┼╦╧╘╧╥┘┼ ╬┼╤╙╬┘┼ ╧┬▀┼╦╘┘ ╧╨╔╙┴╬┘ ╫ ε┼╦╧╘╧╥┘┼ ╔╟╥╧╫┘┼ ╧┬▀┼╦╘┘.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.2 φ┼╙╘╬╧╙╘╔ ─╠╤ ─╫╒╚ ╔╟╥╧╦╧╫

≤╬┴▐┴╠┴ ╬┼═╬╧╟╧ ╧ ╨╠╧╚╧═: Enigma ┼▌┼ ╬┼ ╨╧──┼╥╓╔╫┴┼╘ Θ╬╘┼╥╬┼╘ ╔╠╔ ╙┼╘┼╫╒└ ╔╟╥╒. ≡╧▄╘╧═╒, ═┼╙╘╬╧╙╘╔ ─╠╤ ─╫╒╚ ╔╟╥╧╦╧╫ ╫ ─┼╩╙╘╫╔╘┼╠╪╬╧╙╘╔ ╧─╬╧╨╧╠╪┌╧╫┴╘┼╠╪╙╦╔┼, ╟─┼ ≈┘ ═╧╓┼╘┼ ╨┼╥┼╦╠└▐┴╘╪╙╤ ═┼╓─╒ ─╫╒═╤ █┴╥┴═╔: ▐┼╥╬┘═, ╦╧╘╧╥┘═ ≈┘ ╒╓┼ ╨╧╠╪┌╧╫┴╠╔╙╪ ╔ ─╧╨╧╠╬╔╘┼╠╪╬┘═ ┬┼╠┘═ █┴╥╧═:

images/intro-twoplayer

ε┴ ╘╧, ▐╘╧ ≈┘ ╬┴ ╒╥╧╫╬┼ ─╠╤ ─╫╒╚ ╔╟╥╧╦╧╫ ╒╦┴┌┘╫┴┼╘ ═┴╠┼╬╪╦╔╩ ╙╔═╫╧╠ Θ╬╪-±╬╪ ╫ ≈┴█┼═ ╔╬╫┼╬╘┴╥┼. ß╦╘╔╫┴├╔╤ ▄╘╧╟╧ ╧┬▀┼╦╘┴ ╨┼╥┼╦╠└▐┴┼╘ ╒╨╥┴╫╠┼╬╔┼ ╙ ▐┼╥╬╧╟╧ ╬┴ ┬┼╠┘╩ █┴╥ ╔ ╬┴╧┬╧╥╧╘.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.3 φ┼╙╘╬╧╙╘╔ ─╠╤ ═┼─╔╘┴├╔╔

≈ ╘┴╦ ╬┴┌┘╫┴┼═┘╚ ═┼╙╘╬╧╙╘╤╚ ─╠╤ ═┼─╔╘┴├╔╔ ≈┴█┴ ┌┴─┴▐┴ ╙╧╫┼╥█┼╬╬╧ ─╥╒╟┴╤: ╫ ╧╘╠╔▐╔┼ ╧╘ ╬┴╚╧╓─┼╬╔╤ ╙╧╫╨┴─┴└▌╔╚ Oxyd-╦┴═╬┼╩, ≈┴═ ╬╒╓╬╧ ╨╧╠╧╓╔╘╪ ╫╙┼ ═┴╠┼╬╪╦╔┼ ┬┼╠┘┼ █┴╥╔╦╔ ╫ ╠╒╬╦╔ ╫ ╨╧╠╒. ⌡╥╧╫┼╬╪ ┌┴╫┼╥█╔╘╙╤, ╦┴╦ ╘╧╠╪╦╧ ╦┴╓─┘╩ █┴╥╔╦ ╧╙╘┴╬╧╫╔╘╙╤ ╫ ╙╫╧┼╩ ╙╧┬╙╘╫┼╬╬╧╩ ╠╒╬╦┼.

images/intro-meditation

∩─╬┴╦╧ ┬╒─╪╘┼ ╧╙╘╧╥╧╓╬┘: ≈╙┼ █┴╥╔╦╔ ╨┼╥┼─╫╔╟┴└╘╙╤ ╫═┼╙╘┼ ╔ ╨╧╙╨┼█╬╧┼ ─╫╔╓┼╬╔┼ ═┘█╪└ ═╧╓┼╘ ╠┼╟╦╧ ╫┘╘╧╠╦╬╒╘╪ ╬┼╦╧╘╧╥┘┼ ╔┌ ╬╔╚ ╔┌ ╙╫╧╔╚ ╠╒╬╧╦. φ┼╙╘╬╧╙╘╔ ─╠╤ ═┼─╔╘┴├╔╔, ╦┴╦ ╨╥┴╫╔╠╧, ╘╥┼┬╒└╘ ╧▐┼╬╪ ╘╫┼╥─╧╩ ╥╒╦╔ ╔ ╒╩═╒ ╘┼╥╨┼╬╔╤ (═┼╓─╒ ╨╥╧▐╔═, ╔═┼╬╬╧ ╨╧▄╘╧═╒ ╧╬╔ ╬┴┌┘╫┴└╘╙╤ ═┼╙╘╬╧╙╘╤═╔ ─╠╤ ═┼─╔╘┴├╔╔!).


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3 ⌡╨╥┴╫╠┼╬╔┼

·─┼╙╪ ╨┼╥┼▐╔╙╠┼╬╧ ╒╨╥┴╫╠┼╬╔┼ ╫╧ ╫╥┼═╤ ╔╟╥┘. (≈┘ ╬┼ ╧┬╤┌┴╬┘ ┌┴╨╧═╔╬┴╘╪ ┼╟╧ ╨╥╤═╧ ╙┼╩▐┴╙?-≈┘ ╫╙┼╟─┴ ═╧╓┼╘┼ ╧╘╧┬╥┴┌╔╘╪ ▄╘╧╘ ╙╨╔╙╧╦ ╫╧ ╫╥┼═╤ ╔╟╥┘, ╬┴╓┴╫ ╦╠┴╫╔█╒ F1.)

∞┼╫┴╤ ╦╬╧╨╦┴ ═┘█╔

Θ╙╨╧╠╪┌╧╫┴╘╪ ╨┼╥╫┘╩ ╨╥┼─═┼╘ ╫ ╔╬╫┼╬╘┴╥┼

≡╥┴╫┴╤ ╦╬╧╨╦┴ ═┘█╔/╦╧╠┼╙╧ ═┘█╔

■┼╥┼─╧╫┴╘╪ ╨╥┼─═┼╘┘ ╔╬╫┼╬╘┴╥╤

ESC

≡╧╦┴┌┴╘╪ ╔╟╥╧╫╧┼ ═┼╬└

F1

≡╧╦┴┌┴╘╪ ▄╦╥┴╬ ╨╧═╧▌╔

F3

⌡╬╔▐╘╧╓╔╘╪ ╘┼╦╒▌╔╩ █┴╥

Shift-F3

≡┼╥┼┌┴╨╒╙╘╔╘╪ ╘┼╦╒▌╔╩ ╒╥╧╫┼╬╪

F4

≡┼╥┼╩╘╔ ╦ ╙╠┼─╒└▌┼═╒ ╒╥╧╫╬└

F5

≡┼╥┼╩╘╔ ╦ ╙╠┼─╒└▌┼═╒ ╬┼╥┼█┼╬╬╧═╒ ╒╥╧╫╬└

F10

≤─┼╠┴╘╪ ╙╬╔═╧╦ ▄╦╥┴╬┴

≤╘╥┼╠╦┴ ╫╠┼╫╧

⌡═┼╬╪█╔╘╪ ╙╦╧╥╧╙╘╪ ═┘█╔

≤╘╥┼╠╦┴ ╫╨╥┴╫╧

⌡╫┼╠╔▐╔╘╪ ╙╦╧╥╧╙╘╪ ═┘█╔

Alt-Enter

≡┼╥┼╦╠└▐╔╘╪╙╤ ═┼╓─╒ ╨╧╠╬╧▄╦╥┴╬╬┘═ ╔ ╧╦╧╬╬┘═ ╥┼╓╔═╧═ (╬┼ ╬┴ ╫╙┼╚ ╙╔╙╘┼═┴╚ ╥┴┬╧╘┴┼╘ ╬┼┌┴═┼─╠╔╘┼╠╪╬╧)

Alt-X

ε┼═┼─╠┼╬╬╧ ╫┼╥╬╒╘╪╙╤ ╦ ═┼╬└ ╒╥╧╫╬┼╩


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3. ε┼╦╧╘╧╥┘┼ ╔╟╥╧╫┘┼ ╧┬▀┼╦╘┘

≤╒▌┼╙╘╫╒└╘ ─└╓╔╬┘ ╥┴┌╠╔▐╬┘╚ ╔╟╥╧╫┘╚ ╧┬▀┼╦╘╧╫, ╦╧╘╧╥┘┼ ≈┘ ╒╫╔─╔╘┼ ╬┴ ╒╥╧╫╬╤╚ Enigma. φ┘ ╚╧╘╔═ ╧╨╔╙┴╘╪ ┌─┼╙╪ ╘╧╠╪╦╧ ╬┼┬╧╠╪█╧╩ ╦╠┴╙╙╔╞╔├╔╥╧╫┴╬╬┘╩ ╬┴┬╧╥ ▄╘╔╚ ╧┬▀┼╦╘╧╫. σ╙╠╔ ≈┘ ╬╧╫┼╬╪╦╔╩ ╫ Enigma, ╫╧┌═╧╓╬╧ ≈┘ ┌┴╚╧╘╔╘┼ ╬┴▐┴╘╪ ╙ ╒╥╧╫╬┼╩ ╔┌ ╨┴╦┼╘┴ ╒▐┼┬╬╔╦┴? ≡╥╧╙╘╧ ┌┴╨╒╙╘╔╘┼ Enigma, ╫┘┬┼╥╔╘┼ "≡┴╦┼╘ ╒╥╧╫╬┼╩", ╨╧╘╧═ ╦╬╧╨╦╒ "Enigma" ╫ ╫┼╥╚╬┼═ ╠┼╫╧═ ╒╟╠╒, ╨╧╘╧═ "Tutorial" ╙╨╥┴╫┴. ε┴▐╬╔╘┼ ╙ ╨┼╥╫╧╟╧ ╒╥╧╫╬╤ "Oxyd Stones 1". ⌡▐┼┬╬╔╦ ╨╧╦┴╓┼╘ ≈┴═ ╙┴═┘┼ ╫┴╓╬┘┼ ╧┬▀┼╦╘┘ ╔ ╔─┼╔, ╔ ╬┼╦╧╘╧╥┘┼ ╔┌ ╨╥╧╙╘┼╩█╔╚ ╒╥╧╫╬┼╩ Enigma.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.1 ≡╥┼─═┼╘┘


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.1.1 ≈┌╥┘╫▐┴╘╦┴

images/it-explosives

≤╒▌┼╙╘╫╒┼╘ ╘╥╔ ╘╔╨┴ ╫┌╥┘╫▐┴╘╦╔, ╦╧╘╧╥┘┼ ≈┘ ═╧╓┼╘┼ ╬┴╩╘╔ ╨╧╫╙└─╒ ╫ Enigma. ≤┴═┘╩ ┬┼┌╧┬╔─╬┘╩ ▄╘╧ ╨┴╠╧▐╦┴ ─╔╬┴═╔╘┴. ∩╬┴ ╬┴╬╧╙╔╘ ╬┼ ╘┴╦╧╩ ┬╧╠╪█╧╩ ╒╥╧╬ ╨╧╫┼╥╚╬╧╙╘╔ ╔╠╔ ╙╧╙┼─╬╔═ ╦┴═╬╤═, ╦╧╟─┴ ╫┌╥┘╫┴┼╘╙╤, ╬╧ ╧╬┴ ╨╧╠┼┌╬┴ ─╠╤ ╥┴┌╥╒█┼╬╔╤ ╧╨╥┼─┼╠┼╬╬┘╚ ╦┴═╬┼╩ ╔ ─╠╤ ╨╧─╓╔╟┴╬╔╤ ╙╧╙┼─╬╔╚ ┬╧═┬.

■┼╥╬┘┼ ┬╧═┬┘ ─╧╙╘┴╘╧▐╬╧ ═╧▌╬┘┼, ▐╘╧┬┘ ╥┴┌╥╒█╔╘╪ ┬╧╠╪█╔╬╙╘╫╧ ╨╧╫┼╥╚╬╧╙╘┼╩ ╔ ═╬╧╟╔┼ ─╥╒╟╔┼ ╧┬▀┼╦╘┘. Σ╠╤ ┬╧╠╪█╔╬╙╘╫┴ ├┼╠┼╩ ╧╬╔-╫┘┬╧╥ ─╠╤ ╥┴┌╥╒█┼╬╔╤. ⌡ ┬┼╠┘╚ ┬╧═┬ ╙╔╠┴ ╥┴┌╥╒█┼╬╔╤ ╨╤╘╔ ▐┼╥╬┘╚ ┬╧═┬, ╒┬┼╟┴╩╘┼ ╙╦╧╥┼┼, ╦╧╟─┴ ╒╫╔─╔╘┼ ╔╚ ╟╧╥╤▌╔═╔!


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.1.2 ·╧╬╘┘

images/it-umbrella

Θ╙╨╧╠╪┌╒╩╘┼ ┌╧╬╘┘, ▐╘╧┬┘ ╙─┼╠┴╘╪ ≈┴█ █┴╥ ╬┼╒╤┌╫╔═┘═ ╬┴ ╬┼┬╧╠╪█╧╩ ═╧═┼╬╘ ╫╥┼═┼╬╔ (─┼╙╤╘╪ ╙┼╦╒╬─, ┼╙╠╔ ┬┘╘╪ ╘╧▐╬┘═). δ╧╟─┴ ≈┘ ┴╦╘╔╫╔╥╒┼╘┼ ┌╧╬╘, ╫╧╦╥╒╟ ╫┴█┼╟╧ █┴╥┴ ╨╧╤╫╔╘╙╤ ┬┼╠┘╩ ╧╥┼╧╠ ╬┴ ╫╥┼═╤ ─┼╩╙╘╫╔╤ ┌┴▌╔╘┘. σ╙╠╔ ╧╥┼╧╠ ╬┴▐┴╠ ═╔╟┴╘╪, ╒ ≈┴╙ ┼╙╘╪ ╘╥╔ ╙┼╦╒╬─┘, ▐╘╧┬┘ ╨┼╥┼═┼╙╘╔╘╪ ≈┴█ █┴╥ ╫ ┬┼┌╧╨┴╙╬╧┼ ═┼╙╘╧.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.1.3 µ╠┴╟╔

images/it-flags

µ╠┴╟╔ ╫ ╧╙╬╧╫╬╧═ ╔╙╨╧╠╪┌╒└╘╙╤ ╫ ─╠╔╘┼╠╪╬┘╚ ╔ ╧╨┴╙╬┘╚ ╨╒╘┼█┼╙╘╫╔╤╚. σ╙╠╔ ≈┴█ █┴╥ ╥┴┌╥╒█╔╠╙╤, ╬╧╫┘╩ █┴╥ ╨╧╤╫╔╘╙╤ ╬┴ ╘╧═ ═┼╙╘┼, ╟─┼ ≈┘ ╫ ╨╧╙╠┼─╬╔╩ ╥┴┌ ╒╙╘┴╬╧╫╔╠╔ ╞╠┴╟, ╫═┼╙╘╧ ╘╧╟╧ ▐╘╧┬┘ ╨╧╤╫╔╘╪╙╤ ╫ ╬┴▐┴╠┼ ╒╥╧╫╬╤. σ╙╘╪ ─╫┴ ╘╔╨┴ ╞╠┴╟╧╫: ▐┼╥╬┘╩ ╔ ┬┼╠┘╩, ╦╧╘╧╥┘┼ ╒╙╘┴╬┴╫╠╔╫┴└╘ ╬┴▐┴╠╪╬┘┼ ╘╧▐╦╔ ╙╧╧╘╫┼╘╙╘╫┼╬╬╧ ▐┼╥╬╧╟╧ ╔ ┬┼╠╧╟╧ █┴╥╧╫.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.2 δ┴═╬╔


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.2.1 ≤═┼╥╘╧╬╧╙╬┘┼ ╦┴═╬╔

images/st-lethal

≤╒▌┼╙╘╫╒┼╘ ─╫┴ ╫╔─┴ ╦┴═╬┼╩, ╦╧╘╧╥┘╚ ≈┘ ─╧╠╓╬┘ ╔┌┬┼╟┴╘╪ ╫╧ ▐╘╧ ┬┘ ╘╧ ╬╔ ╙╘┴╠╧, ╘╧╠╪╦╧ ┼╙╠╔ ╒ ≈┴╙ ╬┼╘ ┌╧╬╘┴, ▐╘╧┬┘ ┌┴▌╔╘╔╘╪ ≈┴█ ─╥┴╟╧├┼╬╬┘╩ █┴╥╔╦.

δ┴═┼╬╪ ╙ ╔┌╧┬╥┴╓┼╬╔┼═ ▐┼╥┼╨┴ ╘┴╦ ╓┼ ╧╨┴╙┼╬, ╦┴╦ ╔ ╫┘╟╠╤─╔╘; ─╧╘╥╧╬╪╘┼╙╪ ─╧ ╬┼╟╧ ╔ ╨╧╟╔┬╬┼╘┼. ε┴ ╙┴═╧═ ─┼╠┼ ≈┘ ╨╥┼─╒╨╥┼╓─┼╬┘. ≤╒▌┼╙╘╫╒└╘ ─┴╓┼ ┬╧╠┼┼ ╚╔╘╥┘┼ ╫┴╥╔┴╬╘┘, ╦╧╘╧╥┘┼ ╬┼╫╔─╔═┘; ╬┼ ┌┴┬╒─╪╘┼ ≈┴█╔ ═┴╟╔▐┼╙╦╔┼ ╧▐╦╔.

■┼╥╬┘╩ ╥┘├┴╥╪ ▐┴╙╘╧ ╧╚╥┴╬╤┼╘ ╫┴╓╬┘┼ ╨╥╧╚╧─┘, ╔ ╫ ╧╙╬╧╫╬╧═ ╧╬ ╬┼ ╫ ╬┴╙╘╥╧┼╬╔╔ ╨╥╧╨╒╙╦┴╘╪ ≈┴╙. ≡╥┼─▀╤╫╔╘┼ ╚╧╥╧█╔╩ ┴╥╟╒═┼╬╘, ▐╘╧┬┘ "╒┬┼─╔╘╪" ┼╟╧.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.2.2 ∩┬═┼╬╬┘┼ ╦┴═╬╔

images/st-swap

∩┬═┼╬╬┘┼ ╦┴═╬╔, ┬╒─╒▐╔ ╒─┴╥┼╬╬┘═╔, ╬┼ ╨╥╧╙╘╧ ╨┼╥┼═┼▌┴└╘╙╤ ╬┴ ╙═┼╓╬┘╩ (╨╒╙╘╧╩) ╒▐┴╙╘╧╦; ╫═┼╙╘╧ ▄╘╧╟╧, ╧╬╔ ═┼╬╤└╘╙╤ ═┼╙╘┴═╔ ╙ ╦┴═╬┼═ ╦╧╘╧╥┘╩ ╧╬╔ ╒─┴╥╔╠╔. ≤╠┼─╧╫┴╘┼╠╪╬╧, ┼─╔╬╙╘╫┼╬╬┘╩ ╙╨╧╙╧┬ ╨┼╥┼═┼╙╘╔╘╪ ╧┬═┼╬╬┘╩ ╦┴═┼╬╪ ╔┌ ╧─╬╧╟╧ ═┼╙╘┴ ╫ ─╥╒╟╧┼--╬┼╧─╬╧╦╥┴╘╬╧ ═┼╬╤╘╪ ┼╟╧ ╙ ─╥╒╟╔═╔ "╧┬┘▐╬┘═╔" ╦┴═╬╤═╔.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.2.3 ·┼╥╦┴╠┴

images/st-mirrors

∞┴┌┼╥╬┘┼ ╠╒▐╔ ═╧╟╒╘ ╨╥┼╠╧═╠╤╘╪╙╤ ╙ ╨╧═╧▌╪└ ┌┼╥╦┴╠╪╬┘╚ ╦┴═╬┼╩. ≈ Enigma ╙╒▌┼╙╘╫╒┼╘ ─╫┴ ╘╔╨┴ ┌┼╥╦┴╠╪╬┘╚ ╦┴═╬┼╩: ╨╠╧╙╦╔┼ ┌┼╥╦┴╠┴ ╔ ╘╥┼╒╟╧╠╪╬┘┼ ┌┼╥╦┴╠┴. ≡╠╧╙╦╧┼ ┌┼╥╦┴╠╧ ╫┼─┼╘ ╙┼┬╤ ╦┴╦ ╧┬┘▐╬╧┼ ┌┼╥╦┴╠╧: ╫╚╧─╤▌╔╩ ╠┴┌┼╥╬┘╩ ╠╒▐ ╧╘╥┴╓┴┼╘╙╤, ┼╙╠╔ ╧╬ ╨┼╥╨┼╬─╔╦╒╠╤╥┼╬ ┌┼╥╦┴╠╒ ╔ ╧╘╦╠╧╬╤┼╘╙╤ ╫╠┼╫╧ ╔╠╔ ╫╨╥┴╫╧, ┼╙╠╔ ╧╬ ╨┴─┴┼╘ ╬┴ ┌┼╥╦┴╠╧ ╨╧─ ╒╟╠╧═ ╫ 45 ╟╥┴─╒╙╧╫.

⌠╥┼╒╟╧╠╪╬┘┼ ┌┼╥╦┴╠┴ ╬┼═╬╧╟╧ ╙╠╧╓╬┼┼: ╘╥╔ ╙╘╧╥╧╬┘ ╫┼─╒╘ ╙┼┬╤ ╦┴╦ ╧┬┘▐╬┘┼ ┌┼╥╦┴╠┴, ╧╘╥┴╓┴╤ ╔ ╧╘╦╠╧╬╤╤ ╫╚╧─╤▌╔╩ ╠╒▐. ε╧ ╠╒▐, ╦╧╘╧╥┘╩ ╨┴─┴┼╘ ╬┴ ╫┼╥█╔╬╒ ╘╥┼╒╟╧╠╪╬╔╦┴ ╥┴┌─┼╠╤┼╘╙╤ ╬┴ ─╫┴ ╔╙╚╧─╤▌╔╚ ╠╒▐┴, ╦╧╘╧╥┘┼ ─╫╔╓╒╘╙╤ ╫ ╨╥╧╘╔╫╧╨╧╠╧╓╬┘╚ ╬┴╨╥┴╫╠┼╬╔╤╚.

∩┬┴ ╘╔╨┴ ┌┼╥╦┴╠ ─╧╨╧╠╬╔╘┼╠╪╬╧ ═╧╟╒╘ ┬┘╘╪ ╨╧╠╒╨╥╧┌╥┴▐╬┘═╔ ╔╠╔ ╨┼╥┼═┼▌┴┼═┘═╔. ≡╧╠╒╨╥╧┌╥┴▐╬┘┼ ┌┼╥╦┴╠┴ ╨╥┼╠╧═╠╤└╘ ▐┴╙╘╪ ╫╚╧─╤▌┼╟╧ ╠╒▐┴, ╦┴╦ ╔╚ ╬┼╨╥╧┌╥┴▐╬┘┼ ┬╥┴╘╪╤, ╬╧ ▐┴╙╘╪ ╠╒▐┴ ╨╥╧╚╧─╔╘ ╬┼╔┌═┼╬╬╧╩. ≡┼╥┼═┼▌┴┼═┘┼ ┌┼╥╦┴╠┴ ╙═╧╬╘╔╥╧╫┴╬┘ ╬┴ ╙╫┼╘╠╧-╙┼╥┘┼ ╦┴═╬╔, ╬┼╨╧─╫╔╓╬┘┼ ╬┴ ╘┼═╬╧-╙┼╥┘┼ ╦┴═╬╔.

≈┘ ═╧╓┼╘┼ ╨╧╫╧╥┴▐╔╫┴╘╪ ┌┼╥╦┴╠┴, ╙╠┼╟╦┴ ─╧╘╥┴╟╔╫┴╤╙╪ ─╧ ╬╔╚ ╙╫╧╔═ █┴╥╧═. ε╧ ┬╒─╪╘┼ ╧╙╘╧╥╧╓╬┘ ╙ ┌┼╥╦┴╠┴═╔, ╬┴ ╦╧╘╧╥┘┼ ╒╓┼ ╨┴─┴┼╘ ╠┴┌┼╥╬┘╩ ╠╒▐, ─╧╫╧╠╪╬╧ ╨╥╧╙╘╧ ╬┼╒═┘█╠┼╬╬╧ ╒╬╔▐╘╧╓╔╘╪ ≈┴█ █┴╥!


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.2.4 ∩─╬╧╙╘╧╥╧╬╬╔┼ ╦┴═╬╔

images/st-oneway

■┼╥┼┌ ▄╘╔ ╦┴═╬╔ ═╧╓╬╧ ╨╥╧╩╘╔ ╘╧╠╪╦╧ ╫ ╧─╬╧═ ╬┴╨╥┴╫╠┼╬╔╔. Θ┌ ╬╔╚ ═╧╟╒╘ ┬┘╘╪ ╨╧╙╘╥╧┼╬┘ ├┼╠┘┼ ╠┴┬╔╥╔╬╘┘, ╬╧ ╫ ╧╙╬╧╫╬╧═ ╧╬╔ ╫┘╬╒╓─┴└╘ ≈┴╙ ┌┴╦╧╬▐╔╘╪ ╧─╬╒ ▐┴╙╘╪ ╒╥╧╫╬╤, ╨┼╥┼─ ╨╥╧╚╧╓─┼╬╔┼═ ╙╠┼─╒└▌┼╩.

⌡ ≈┴╙ ╨╥╧┬╠┼═┘ ╙ ╧─╬╧╙╘╧╥╧╬╬╔═ ╦┴═╬┼═, ╦╧╘╧╥┘╩ ╨╥┼╟╥┴╓─┴┼╘ ≈┴═ ╨╒╘╪? φ╧╓┼╘ ┬┘╘╪ ╫╧╠█┼┬╬┘╩ ╨╥┼─═┼╘ ╙═╧╓┼╘ ≈┴═ ╨╧═╧▐╪ ....


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.2.5 ≤┼╟╒╬-╦┴═╬╔

images/st-shogun

≈ ╬┼╦╧╘╧╥┘╚ ╒╥╧╫╬╤╚ ≈┘ ═╧╓┼╘┼ ╫╙╘╥┼╘╔╘╪ ═╔╟┴└▌╔┼ ╙╔╬╔┼ ╘╧▐╦╔ ╬┴ ╨╧╫┼╥╚╬╧╙╘╔. ∩╬╔ ═╧╟╒╘ ┬┘╘╪ ┴╦╘╔╫╔╥╧╫┴╬┘ ╨╥┴╫╔╠╪╬╧╩ ╦╧═┬╔╬┴├╔┼╩ ╙┼╟╒╬-╦┴═╬┼╩, ╘╧╟─┴ ╧╬╔ ╧┬┘▐╬╧ ╙─┼╠┴└╘ ▐╘╧-╘╧ ╨╧╠┼┌╬╧┼, ╬┴╨╧─╧┬╔┼ ╧╘╦╥┘╘╔╤ ─╫┼╥┼╩ ╔╠╔ ╙╧┌─┴╬╔╤ ═╧╙╘╧╫.

φ┴╠┼╬╪╦┴╤ ═╔╟┴└▌┴╤ ╘╧▐╦┴ ┴╦╘╔╫╔╥╒┼╘╙╤ ╨┼╥┼═┼▌┼╬╔┼═ ╬┴ ╬┼┼ ╙┼╟╒╬-╦┴═╬╤ ╙ ═┴╠┼╬╪╦╔═ ╧╘╫┼╥╙╘╔┼═. ■╘╧┬┘ ┴╦╘╔╫╔╥╧╫┴╘╪ ┬╧╠╪█╔┼ ╘╧▐╦╔, ╧─╬╧╟╧ ╙┼╟╒╬-╦┴═╬╤ ╬┼─╧╙╘┴╘╧▐╬╧. ≈═┼╙╘╧ ▄╘╧╟╧ ≈┴═ ╬╒╓╬╧ ╨╥┴╫╔╠╪╬╧ ╙╠╧╓╔╘╪ ─╫┴ ╔╠╔ ╘╥╔ ╙┼╟╒╬-╦┴═╬╤, ╫╘┴╠╦╔╫┴╤ ╦┴═╬╔ ╙ ═┴╠┼╬╪╦╔═╔ ╧╘╫┼╥╙╘╔┼═ ╫ ╦┴═╬╔ ╙ ┬╧╠╪█╔═╔ ╧╘╫┼╥╙╘╔╤═╔. ε┴╨╥╔═┼╥, ┼╙╠╔ ≈┘ ╚╧╘╔╘┼ ┴╦╘╔╫╔╥╧╫┴╘╪ ╘╧▐╦╒ ╙╥┼─╬┼╟╧ ╥┴┌═┼╥┴, ≈┴═ ╬╒╓╬╧ ╙╬┴▐┴╠┴ ╥┴┌═┼╙╘╔╘╪ ╬┴ ╬┼╩ ╙┼╟╒╬-╦┴═┼╬╪ ╙ ╧╘╫┼╥╙╘╔┼═ ╙╥┼─╬╔╚ ╥┴┌═┼╥╧╫, ┴ ╨╧╘╧═ ╫╘╧╠╦╬╒╘╪ ╦┴═┼╬╪ ╙ ═┴╠┘═ ╧╘╫┼╥╙╘╔┼═ ╫ ╘╧╘, ▐╘╧ ┬╧╠╪█┼.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.2.6 Γ╧╠─┼╥┘

images/st-bolder

Γ╧╠─┼╥┘ ─╫╔╓╒╘╙╤ ╫ ╬┴╨╥┴╫╠┼╬╔╔, ╨╧╦┴┌┴╬╬╧═ ╬┴ ╬╔╚ ╙╘╥┼╠╦╧╩, ╨╧╦┴ ╬┼ ╙╘╧╠╦╬╒╘╙╤ ╙ ─╥╒╟╔═ ╦┴═╬┼═. ≈╧┌═╧╓╬╧ ╧╬╔ ┬╠╧╦╔╥╒└╘ ≈┴═ ╨╒╘╪ ╔ ≈┴═ ╬┴─╧ ╧╙╫╧┬╧─╔╘╪ ╔╚ ╘┼═ ╔╠╔ ╔╬┘═ ╙╨╧╙╧┬╧═. ε╧ ╬╔╦╧╟─┴, ╬╔╦╧╟─┴ ╬┼ ╙╘┴╬╧╫╔╘┼╙╪ ╨┼╥┼─ ╬╔═╔, ╘┴╦ ╦┴╦ ≈┴█ █┴╥ ═╟╬╧╫┼╬╬╧ ╥┴┌╧┬╪┼╘╙╤, ╦╧╟─┴ ┬╧╠─┼╥ ╨╥╧╩─┼╘ ╨╧ ╬┼═╒!

∩─╬┴╦╧, ≈┘ ╘┴╦╓┼ ═╧╓┼╘┼ ╔╙╨╧╠╪┌╧╫┴╘╪ ╔╚, ╘┴╦ ╦┴╦ ╧╬╔ ╙╨╧╙╧┬╬┘ ╧╘╦╥┘╫┴╘╪ Oxyd-╦┴═╬╔, ╦╧╟─┴ ╙╘╧╠╦╬╒╘╙╤ ╙ ╬╔═╔. ≈┘ ═╧╓┼╘┼ ╨┼╥┼╬┴╨╥┴╫╔╘╪ ├┼╠┼╬┴╨╥┴╫╠┼╬╬┘┼ ╦┴═╬╔ ╬┼╙╦╧╠╪╦╔═╔ ╙╨╧╙╧┬┴═╔ ....


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.2.7 δ┴═╬╔-═╧┌┴╔╦╔

δ┴═╬╔-═╧┌┴╔╦╔ ╨╧╠╒▐╔╠╔ ╙╫╧┼ ╔═╤ ╔┌-┌┴ ╘╧╟╧, ▐╘╧ ╧╘─┼╠╪╬┘┼ ╦┴═╬╔ ═╧╟╒╘ ┬┘╘╪ ╙╧┼─╔╬┼╬┘ ╫═┼╙╘┼, ╦┴╦ ╦╒╙╧▐╦╔ ═╧┌┴╔╦╔. ⌡ ╦┴═╬┼╩-═╧┌┴╔╦ ┼╙╘╪ ╥┴┌▀┼═┘ ╬┴ ╬┼╦╧╘╧╥┘╚ ╔╠╔ ╬┴ ╫╙┼╚ ╙╘╧╥╧╬┴╚, ╦╧╘╧╥┘┼ ═╧╟╒╘ ╨╥╔╦╥┼╨╠╤╘╪╙╤ ╦ ╥┴┌▀┼═┴═ ╙═┼╓╬┘╚ ╦┴═╬┼╩. δ┴╦ ╘╧╠╪╦╧ ╧╬╔ ┬╒─╒╘ ╙╧┼─╔╬┼╬┘, ╟╥╒╨╨┘ ╦┴═╬┼╩-═╧┌┴╔╦ ╨┼╥┼═┼▌┴└╘╙╤ ╦┴╦ ┼─╔╬╧┼ ├┼╠╧┼. ≈┘ ═╧╓┼╘┼ ╔╙╨╧╠╪┌╧╫┴╘╪ ▄╘╔ ┬╠╧╦╔, ╬┴╨╥╔═┼╥, ▐╘╧┬┘ ╙╘╥╧╔╘╪ ═╧╙╘┘ ▐┼╥┼┌ ╫╧─╒ ╔╠╔ ┬┼┌─╬╒.

δ╧╟─┴ ╔╚ ╦╧╙╬┼╘╙╤ ╫╧╠█┼┬╬┴╤ ╨┴╠╧▐╦┴, ╦┴═╬╔-═╧┌┴╔╦╔ ╧╘╥┼┴╟╔╥╒└╘ ╨╧ ╥┴┌╬╧═╒. σ╙╠╔ ┬╠╧╦ ╦┴═╬┼╩-═╧┌┴╔╦ ╙╧┼─╔╬┼╬ ╧╦╧╬▐┴╘┼╠╪╬╧ (─╥╒╟╔═╔ ╙╠╧╫┴═╔ ╒ ╬┼╟╧ ╬┼╘ ╙╫╧┬╧─╬┘╚ ╥┴┌▀┼═╧╫), ┬╠╧╦ ╬┼═┼─╠┼╬╬╧ ╬┴▐╬┼╘ ╫┌╥┘╫┴╘╪╙╤, ╦┴═┼╬╪ ┌┴ ╦┴═╬┼═. σ╙╠╔ ┬╠╧╦ ╙╧┼─╔╬┼╬ ╬┼ ─╧ ╦╧╬├┴, ╦┴═╬╔ ╫ ╥╤─╒ ╔╠╔ ╦╧╠╧╬╦┼, ─╧ ╦╧╘╧╥╧╩ ─╧╘╥╧╬╒╠╔╙╪ ╙═┼╙╘╤╘╙╤ ╬┴ ╧─╬╧ ═┼╙╘╧ ╨╧ ╟╧╥╔┌╧╬╘┴╠╔ ╔╠╔ ╨╧ ╫┼╥╘╔╦┴╠╔.

≤╒▌┼╙╘╫╒┼╘ ╥┼─╦╔╩ ╫┴╥╔┴╬╘ ╧┬┘▐╬┘╚ ╦┴═╬┼╩-═╧┌┴╔╦, ╦╧╘╧╥┘╩ ╫┼─┼╘ ╙┼┬╤ ╬┼═╬╧╟╧ ╨╧ ─╥╒╟╧═╒. ∩╙╬╧╫╬┴╤ ┼╟╧ ╙╥┼─┴ ╧┬╔╘┴╬╔╤ ▄╘╧ ╒╥╧╫╬╔ Oxyd 1, ┴ ╒┌╬┴╘╪ ┼╟╧ ═╧╓╬╧ ╨╧ ├╫┼╘╒ ╘╥╒┬, ╧╥┴╬╓┼╫╧═╒ ╫═┼╙╘╧ ╙╔╬┼╟╧. ⁿ╘╔ ╦┴═╬╔-═╧┌┴╔╦╔ ╬┼ ═╧╟╒╘ ╨┼╥┼═┼▌┴╘╪╙╤ ╦┴╦ ┼─╔╬╧┼ ├┼╠╧┼. ∩╬╔ ╫┼─╒╘ ╙┼┬╤ ╦┴╦ ╙╔╬╔┼ ╦┴═╬╔-═╧┌┴╔╦╔, ╦╧╟─┴ ≈┘ ─╧╘╥┴╟╔╫┴┼╘┼╙╪ ─╧ ╬╔╚ ╫╧╠█┼┬╬╧╩ ╨┴╠╧▐╦╧╩: ┬╠╧╦ ╫┌╥┘╫┴┼╘╙╤, ┼╙╠╔ ╧╬ ╨╧╠╬╧╙╘╪└ ╙╧┼─╔╬┼╬ ╔╠╔ ╥╤─ ╔╠╔ ╦╧╠╧╬╦┴ ┬╠╧╦┴, ─╧ ╦╧╘╧╥╧╩ ─╧╘╥╧╬╒╠╔╙╪ ╙═┼▌┴┼╘╙╤.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.2.8 ≡╧▐╘╧╫┘┼ ╦┴═╬╔

images/st-mail

≡╧▐╘╧╫┘┼ ╦┴═╬╔ ═╧╟╒╘ ╔╙╨╧╠╪┌╧╫┴╘╪╙╤ ─╠╤ ╨┼╥┼╙┘╠╦╔ ╨╥┼─═┼╘╧╫ ╔┌ ≈┴█┼╟╧ ╔╬╫┼╬╘┴╥╤ ╫ ╬┼╦╧┼ ╬┼─╧╙╘╒╨╬╧┼ ═┼╙╘╧ ╬┴ ╨╧╫┼╥╚╬╧╙╘╔. δ╧╟─┴ ≈┘ ─╧╘╥┴╟╔╫┴╤╙╪ ╔╙╨╧╠╪┌╒┼╘┼ ╨╧▐╘╧╫┘╩ ╦┴═┼╬╪, ╨┼╥╫┘╩ ╧┬▀┼╦╘ ╫ ≈┴█┼═ ╔╬╫┼╬╘┴╥┼ ╔┌┘═┴┼╘╙╤ ╔ ╠╧╓╔╘╙╤ ╫ ╦╧╬├┼ ╦┴╬┴╠┴ ╙╫╤┌╔, ╨╥╔╙╧┼─╔╬┼╬╬╧╟╧ ╦ ╨╧▐╘╧╫╧═╒ ╦┴═╬└. ≈ ┬╧╠╪█╔╬╙╘╫┼ ╙╠╒▐┴┼╫, ≈┘ ─╧╠╓╬┘ ╙┴═╔ ╨╧╙╘╥╧╔╘╪ ▄╘╧╘ ╦┴╬┴╠, ╬┴╨╥╔═┼╥, "╨┼╥┼╙┘╠┴╤" ╧╘─┼╠╪╬┘┼ ▐┴╙╘╔ ╦┴╬┴╠┴.

Γ╒─╪╘┼ ╧╙╘╧╥╧╓╬┘: ╨╧▐╘╧╫┘╩ ╦┴═┼╬╪ ╬┼ ╥┴┬╧╘┴┼╘, ┼╙╠╔ ╬┴ ╦╧╬├┼ ╦┴╬┴╠┴ ╙╫╤┌╔ ╒╓┼ ┼╙╘╪ ╧┬▀┼╦╘. ∩▐┼╬╪ ╠┼╟╦╧ ╬┼╒═┘█╠┼╬╬╧ ╨┼╥┼╙╠┴╘╪ ╧┬▀┼╦╘, ╦╧╘╧╥┘╩ ╫╨╧╙╠┼─╙╘╫╔╔ ┌┴┬╠╧╦╔╥╒┼╘ ╦┴╬┴╠, ╨╧▄╘╧═╒ ┬╒─╪╘┼ ╧╙╘╧╥╧╓╬┘!


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

4. Σ╧╨╧╠╬╔╘┼╠╪╬┘┼ ╘┼═┘


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

4.1 ≡╧╠╪┌╧╫┴╘┼╠╪╙╦╔┼ ╨┴╦┼╘┘ ╒╥╧╫╬┼╩

φ┼╬└ ≡┴╦┼╘ ╒╥╧╫╬┼╩ ╨╥┼─╠┴╟┴┼╘ ╬┼╦╧╘╧╥┘┼ ─╧╨╧╠╬╔╘┼╠╪╬┘┼ ╫╧┌═╧╓╬╧╙╘╔. ≈ ╟╥╒╨╨┼ `User' ┼╙╘╪ ╘╥╔ ╨┴╦┼╘┴ ╒╥╧╫╬┼╩, ╦╧╘╧╥┘┼ ╔┌╬┴▐┴╠╪╬╧ ╨╒╙╘┘: `Auto Folder', `History'`Search Result'.

δ╠╔╦┴╤ ╬┴ ╦╬╧╨╦┼ `≡╧╔╙╦' ╫ ═┼╬└ ╨┴╦┼╘╧╫ ╒╥╧╫╬┼╩ ≈┘ ═╧╓┼╘┼ ╔╙╦┴╘╪ ╙╥┼─╔ ╙╧╫╧╦╒╨╬╧╙╘╔ ╒╥╧╫╬┼╩. ≡╥╧╙╘╧ ╨┼╥┼═┼╙╘╔╘┼ ═┘█╪ ╦ ╘┼╦╙╘╧╫╧═╒ ╨╧╠└ ╔ ╫╫┼─╔╘┼ ╙╘╥╧╦╒ ─╠╤ ╨╧╔╙╦┴. ≈┘ ═╧╓┼╘┼ ╔╙╦┴╘╪ ╨╧ ┴╫╘╧╥╒, ╬┴┌╫┴╬╔└ ╔ ╔═┼╬╔ ╞┴╩╠┴. ≡╧╔╙╦ ╬┼ ╫╧╙╨╥╔╔═▐╔╫ ╦ ╥┼╟╔╙╘╥╒. ε┴╨╥╔═┼╥, ≈┘ ═╧╓┼╘┼ ╔╙╦┴╘╪ ╙╘╥╧╦╒ "jump". ≡╧╠╒▐┼╬╬┘┼ ╒╥╧╫╬╔ ┬╒─╒╘ ╨╥┼─╙╘┴╫╠┼╬┘ ╫ ╨┴╦┼╘┼ ╒╥╧╫╬┼╩ ╨╧─ ╬┴┌╫┴╬╔┼═ "Search Results".

≡┴╦┼╘ ╒╥╧╫╬┼╩ `History' ╧┬╬╧╫╠╤┼╘╙╤ ┴╫╘╧═┴╘╔▐┼╙╦╔ ╙ ╦┴╓─┘═ ╒╥╧╫╬┼═ ╬┴ ╦╧╘╧╥╧═ ≈┘ ╔╟╥┴╠╔. ⁿ╘╧ ═╧╓┼╘ ╨╥╔╟╧─╔╘╪╙╤, ┼╙╠╔ ≈┘ ╔▌┼╘┼ ╒╥╧╫┼╬╪, ╬┴ ╦╧╘╧╥╧═ ╔╟╥┴╠╔ ╬┴ ╨╧╙╠┼─╬┼╩ ╬┼─┼╠┼, ╬╧ ╬┼ ┌╬┴┼╘┼ ╦╠└▐┼╫┘╚ ╙╠╧╫ ─╠╤ ╨╧╔╙╦┴.

`Auto Folder' ▄╘╧ ╨┴╦┼╘ ╒╥╧╫╬┼╩, ╦╧╘╧╥┘╩ ≈┘ ═╧╓┼╘┼ ╔╙╨╧╠╪┌╧╫┴╘╪, ▐╘╧┬┘ ─╧┬┴╫╔╘╪ ╬╧╫┘┼ ╒╥╧╫╬╔, ╬┴╨╥╔═┼╥ ╒╥╧╫╬╔, ╦╧╘╧╥┘┼ ≈┘ ╙╦┴▐┴╠╔ ╔┌ Θ╬╘┼╥╬┼╘┴ ╔╠╔ ╬┴╨╔╙┴╠╔ ╙┴═╔. ≡┴╨╦┴, ╫ ╦╧╘╧╥╧╩ ≈┘ ─╧╠╓╬┘ ╚╥┴╬╔╘╪ ╒╥╧╫╬╔--`levels/auto' ╫ ─╔╥┼╦╘╧╥╔╔, ╦╧╘╧╥┴╤ ╒╦┴┌┴╬┴ ╫ ╙╘╥╧╦┼ `≡┴╨╦┴ ╨╧╠╪┌╧╫┴╘┼╠╤'ε┴╙╘╥╧╩╦╔. δ╧╟─┴ Enigma ┌┴╨╒╙╦┴┼╘╙╤, ╒╥╧╫╬╔ ╫ ▄╘╧╩ ╨┴╨╦┼ ╬┴╚╧─╤╘╙╤ ╔ ┌┴╟╥╒╓┴└╘╙╤ ┴╫╘╧═┴╘╔▐┼╙╦╔.

Enigma ╨╥┼─╠┴╟┴┼╘ ╬┴═╬╧╟╧ ┬╧╠╪█┼ ╫╧┌═╧╓╬╧╙╘┼╩, ╫┘╚╧─╤▌╔╚ ┌┴ ╨╥┼─┼╠┘ ▄╘╧╟╧ ╥╒╦╧╫╧─╙╘╫┴. ■╘╧┬┘ ╒┌╬┴╘╪ ╨╧─╥╧┬╬╧╙╘╔, ╨╧╓┴╠╒╩╙╘┴ ╨╥╧▐╘╔╘┼ ╙╨╥┴╫╧▐╬╧┼ ╥╒╦╧╫╧─╙╘╫╧.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

4.2 ≥┼┌┼╥╫╬╧┼ ╦╧╨╔╥╧╫┴╬╔┼

σ╙╠╔ ≈┘ ┬╧╔╘┼╙╪ ╨╧╘┼╥╤╘╪ ╫╙┼ ≈┴█╔ ╧▐╦╔, ╫ ╥┼┌╒╠╪╘┴╘┼ ╧╘╦┴┌┴ ╓┼╙╘╦╧╟╧ ─╔╙╦┴, ╔╠╔ ┼╙╠╔ ≈┘ ╚╧╘╔╘┼ ╨┼╥┼═┼╙╘╔╘╪ ≈┴█╔ ╧▐╦╔ ╙ ╧─╬╧╟╧ ╦╧═╨╪└╘┼╥┴ ╬┴ ─╥╒╟╧╩, ╨╧╠┼┌╬╧ ┌╬┴╘╪, ╦┴╦ ┌┴╥┼┌┼╥╫╔╥╧╫┴╘╪ ╔╬╞╧╥═┴├╔└ ╧ ╙╧╙╘╧╤╬╔╔ Enigma. ■╘╧┬┘ ╙─┼╠┴╘╪ ▄╘╧, ╙╬┴▐┴╠┴ ╬┴╩─╔╘┼ ╫ ε┴╙╘╥╧╩╦╔ Enigma `≡┴╨╦╒ ╨╧╠╪┌╧╫┴╘┼╠╤'. ≈┘ ═╧╓┼╘┼ ╨╥╧╙╘╧ ╙─┼╠┴╘╪ ╥┼┌┼╥╫╬╒└ ╦╧╨╔└ ╘╧╩ ╨┴╨╦╔ --╫┴╓╬┘═╔ ╤╫╠╤└╘╙╤ ╞┴╩╠┘ `enigma.score'`state.xml'.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

4.3 ≥┼╟╔╙╘╥┴├╔╤ ╧▐╦╧╫

Σ╠╤ ╥┼╟╔╙╘╥┴├╔╔ ≈┴█╔╚ ╧▐╦╧╫, ≈┴═ ╬╒╓╬╧ ╧╘╨╥┴╫╔╘╪ ╬┴═ ╞┴╩╠ `enigma.score', ╥┴╙╨╧╠╧╓┼╬╬┘╩ ╫ ─╔╥┼╦╘╧╥╔╔ `≡┴╨╦┴ ╨╧╠╪┌╧╫┴╘┼╠╤'. ≡╧╓┴╠╒╩╙╘┴ ╔▌╔╘┼ ┬╧╠┼┼ ╨╧─╥╧┬╬┘┼ ╒╦┴┌┴╬╔╤ ╬┴ ─╧═┴█╬┼╩ ╙╘╥┴╬╔├┼ ╨╥╧┼╦╘┴.

■╘╧┬┘ ┴╫╘╧═┴╘╔▐┼╙╦╔ ╙╦┴▐╔╫┴╘╪ ╙╨╔╙╦╔ ╧┬╬╧╫╠┼╬╬┘╚ ═╔╥╧╫┘╚ ╥┼╦╧╥─╧╫, ≈┴═ ╨╥╧╙╘╧ ╬╒╓╬╧ ╫╦╠└▐╔╘╪ ╧╨├╔└ `∩┬╬╧╫╠╤╘╪ ╥┼╩╘╔╬╟'.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

4.4 ∩┬╬╧╫╠┼╬╔┼ Enigma

σ╙╠╔ ≈┘ ╬┼ ╬┴╙╘╥┴╔╫┴╠╔ ≈┴█╒ ╙╘┴╥╒└ ╫┼╥╙╔└, ╨╥╧╙╘╧ ╒─┴╠╔╘┼ ╙╘┴╥╒└ ╫┼╥╙╔└ ╔ ╒╙╘┴╬╧╫╔╘┼ ╬╧╫╒└. ⁿ╘╧ ╫╙┼, ▐╘╧ ≈┘ ─╧╠╓╬┘ ╙─┼╠┴╘╪, ╘┴╦ ╦┴╦ ≈┴█╔ ╧▐╦╔ ┴╫╘╧═┴╘╔▐┼╙╦╔ ╧┬╬╧╫╤╘╙╤.

σ╙╠╔ ≈┴═ ╨╧╬┴─╧┬╔╘╙╤ ─╧┬┴╫╔╘╪ ╒╥╧╫╬╔ ╫ ─╔╥┼╦╘╧╥╔╔ ╒╙╘┴╬╧╫╦╔ Enigma, ≈┴═ ╬╒╓╬╧ ╙─┼╠┴╘╪ ╔╚ ╥┼┌┼╥╫╬╒└ ╦╧╨╔└ ╨┼╥┼─ ╒─┴╠┼╬╔┼═. ≡╧╙╠┼ ▄╘╧╟╧ ≈┘ ═╧╓┼╘┼ ┬┼┌ ╧╨┴╙┼╬╔╩ ╒─┴╠╔╘╪ ╙╘┴╥╒└ ╫┼╥╙╔└ ╔ ╒╙╘┴╬╧╫╔╘╪ ╬╧╫╒└.

≤╘┴╥┘╩ ╞┴╩╠ ╧▐╦╧╫ `~/.enigmarc2' ─╠╤ ╙╔╙╘┼═ ╙ ╨┼╥┼═┼╬╬╧╩ ╧╦╥╒╓┼╬╔╤ `HOME' ╔╠╔ `.../Application Data/enigmarc.lua2' ─╠╤ ╠╔█┼╬╬┘╚ "HOME" ╙╔╙╘┼═ Windows ┴╫╘╧═┴╘╔▐┼╙╦╔ ╨╥┼╧┬╥┴┌╒┼╘╙╤ ╫ ╬╧╫┘╩ ╞╧╥═┴╘. ≈┘ ═╧╓┼╘┼ ╒─┴╠╔╘╪ ╙╘┴╥┘┼ ╧▐╦╔ ╨╧╙╠┼ ╨┼╥╫╧╟╧ ╒╙╨┼█╬╧╟╧ ┌┴╨╒╙╦┴ Enigma 1.00.

σ╙╠╔ ≈┘ ╚╧╘╔╘┼ ╔╟╥┴╘╪ ╬┴ ╒╥╧╫╬╤╚, ╦╧╘╧╥┘┼ ≈┘ ╙╧╚╥┴╬╔╠╔ ╙╧ ╙╘┴╥╧╩ ╒╙╘┴╬╧╫╦╔, ╨╧╓┴╠╒╩╙╘┴ ╨╥╧▐╘╔╘┼ ╙╨╥┴╫╧▐╬╧┼ ╥╒╦╧╫╧─╙╘╫╧.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5. ≤╨╧╩╠┼╥┘

ⁿ╘╧╘ ╥┴┌─┼╠ ╙╧─┼╥╓╔╘ ╨╧─╙╦┴┌╦╔ ─╠╤ ╬┼╦╧╘╧╥┘╚ ╙╠╧╓╬┘╚ ╒╥╧╫╬┼╩. ε┴╙╘╧╤╘┼╠╪╬╧ ╬┼ ╥┼╦╧═┼╬─╒┼╘╙╤ ▐╔╘┴╘╪ ╙╨╧╩╠┼╥┘, ┼╙╠╔ ≈┘ ╬┼ ┌┴╙╘╥╤╠╔ ╧╦╧╬▐┴╘┼╠╪╬╧. ε┼╦╧╘╧╥┘┼ ╒╥╧╫╬╔ ╬┴═┼╥┼╬╬╧ ╒╙╠╧╓╬┼╬┘ ╔ ─┴╓┼ ╔╟╥╧╦┴═-╫┼╘┼╥┴╬┴═ Enigma ╬╒╓╬┘ ▐┴╙┘, ▐╘╧┬┘ ╥┼█╔╘╪ ╔╚. ε┼╦╧╘╧╥┘┼ ╒╥╧╫╬╔ ╠┼╟▐┼ ╥┼█╔╘╪ ╫ ╒╨╥╧▌┼╬╬╧═ ╥┼╓╔═┼ ╔╟╥┘ (╙═╧╘╥╔╘┼ (see section φ┼╬└ ╒╥╧╫╬┼╩).


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5.1 ≡╥╧╚╧╓─┼╬╔┼ Advanced Tutorial

≤▐╔╘┴┼╘╙╤, ▐╘╧ ═┼╙╘╬╧╙╘╔ ╫ ╨┴╦┼╘┼ ╒╥╧╫╬┼╩ "Tutorial" ╨╥╧╙╘┘. δ╥╧═┼ ╨╧╙╠┼─╬┼╩, ╦╧╘╧╥┴╤ ╬┼ ╘┴╦ ╨╥╧╙╘┴ .... ⁿ╘╧╘ ╥┴┌─┼╠ ╥╒╦╧╫╧─╙╘╫┴ ╨╥┼─╧╙╘┴╫╠┼╬ Jacob Scott.

ⁿ╘╧ ╨╥╧╚╧╓─┼╬╔┼ ═╧┼╟╧ ╒╥╧╫╬╤ "Advanced Tutorial" ╫ ╨┴╦┼╘┼ ╒╥╧╫╬┼╩ "Tutorial" (▐╘╧┬┘ ═┼╬╤╘╪ ╨┴╦┼╘┘ ╒╥╧╫╬┼╩, ╦╠╔╦╬╔╘┼ ╬┴ "≡┴╦┼╘ ╒╥╧╫╬┼╩" ╫╬╔┌╒-╙╠┼╫┴ ▄╦╥┴╬┴ ╔ ╫┘┬┼╥╔╘┼ ╨┴╦┼╘ ╒╥╧╫╬┼╩). ≈╧ ╫╥┼═╤ ╔╟╥┘ ╫ ╨┼╥╫╒└ ╧▐┼╥┼─╪, ≈┴═ ╬╒╓╬╧ ▐╔╘┴╘╪ ╫╙┼ ─╧╦╒═┼╬╘┘ ╫ ╦╧═╬┴╘┼.

δ╧╬┼▐╬┴╤ ├┼╠╪ ▄╘╧╟╧ ╒╥╧╫╬╤, ╦┴╦ ╔ ┬╧╠╪█╔╬╙╘╫┴ ╒╥╧╫╬┼╩ Enigma, ╬┴╩╘╔ ╔ ─╧╘╥╧╬╒╘╪╙╤ ─╧ ╫╙┼╚ "Oxyd-╦┴═╬┼╩" ╙╫╧╔═ ▐┼╥╬┘═ █┴╥╔╦╧═. δ╧╟─┴ ≈┘ ╦┴╙┴┼╘┼╙╪ Oxyd-╦┴═╬╤, ╧╬ ╧╘╦╥┘╫┴┼╘╙╤ ╔ ╨╧╦┴┌┘╫┴┼╘ ├╫┼╘. σ╙╠╔ ≈┘ ─╧╘╥╧╬┼╘┼╙╪ ╨╧ ╧▐┼╥┼─╔ ─╧ ─╫╒╚ Oxyd-╦┴═╬┼╩ ╧─╔╬┴╦╧╫╧╟╧ ├╫┼╘┴, ╧╬╔ ╧┬┴ ╧╙╘┴╬╒╘╙╤ ╧╘╦╥┘╘┘═╔. ≈┘ ┌┴╫┼╥█╔╘┼ ╒╥╧╫┼╬╪, ╦┴╦ ╘╧╠╪╦╧ ╨╧─┬┼╥┼╘┼ ╫╙┼ ╨┴╥┘ Oxyd-╦┴═╬┼╩ ╬┴ ╒╥╧╫╬┼.

≈ ╒╥╧╫╬┼ ╧╦╧╠╧ ─╫┴─├┴╘╔ ╦╧═╬┴╘, ╙╧┬╥┴╬╬┘╚ ╫ ╘╥╔ ╧╘─┼╠╪╬┘╚ ╧┬╠┴╙╘╔. ≈ ╨┼╥╫╧╩ ╧┬╠┴╙╘╔ ≈┘ ╫╙╘╥┼╘╔╘┼ ╬┼╦╧╘╧╥┘┼ ╧╙╬╧╫╬┘┼ ╘╔╨┘ ┬╠╧╦╧╫ ╔ ╨╧╫┼╥╚╬╧╙╘┼╩, ╦╧╘╧╥┘┼ ╫╙╘╥┼▐┴└╘╙╤ ╫ Enigma ╔ ╥┼█╔╘┼ ╨┴╥╒ ╨╥╧╙╘┘╚ ╟╧╠╧╫╧╠╧═╧╦. ≈╘╧╥┴╤ ╧┬╠┴╙╘╪ ╙╠╧╓╬┼┼ ╔ ╨╧┌╬┴╦╧═╔╘ ≈┴╙ ╙ ╨╧╠┼┌╬┘═╔ ╨╥╔┼═┴═╔ ╧┬═┴╬┴ ┴╦╘╔╫╬╧╟╧ ╫╥┴╟┴. ⌠╥┼╘╪╤ ╔ ╨╧╙╠┼─╬╤╤ ╧┬╠┴╙╘╪ ─┴╙╘ ≈┴═ ╨╧▄╦╙╨┼╥╔═┼╬╘╔╥╧╫┴╘╪ ╙ ╨╥╧─╫╔╬╒╘┘═ ╫┌┴╔═╧─┼╩╙╘╫╔┼═ ═┼╓─╒ ╧┬▀┼╦╘┴═╔ Enigma. ≈ ▄╘╧═ ╧╘─┼╠╪╬╧═ ╒╥╧╫╬┼, ╫╙┼╫╧┌═╧╓╬┘┼ ╦┴═╬╔ ═╧╟╒╘ ┬┘╘╪ ╬┴╩─┼╬┘ ╫ ╧─╬╧╩ ╦╧═╬┴╘┼ ╫ ╦╧╬├┼ ╘╥┼╘╪┼╩ ╧┬╠┴╙╘╔.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5.1.1 ∩┬╠┴╙╘╪ 1

≈┘ ╬┴▐╔╬┴┼╘┼ ╫ ╦╧═╬┴╘┼ ╧╦╥╒╓┼╬╬╧╩ ╬┼╨╧─╫╔╓╬┘═╔ ╙╘┼╬┴═╔, ╦╥╧═┼ ╨╥╧╚╧─┴ ╙╨╥┴╫┴, ╫╧─┘ ╫╬╔┌╒-╙╠┼╫┴ ╔ ┌┴╦╥┘╘╧╟╧ ╨╥╧╚╧─┴ ╫╫┼╥╚╒-╙╨╥┴╫┴.

δ╧═╬┴╘┴ 1: Θ─╔╘┼ ▐┼╥┼┌ ╨╥╧╚╧─ ╫ ╙╘┼╬┼ ╙╨╥┴╫┴.

δ╧═╬┴╘┴ 2: ≡╥╧╙╘╧ ╔┌┬┼╟┴╩╘┼ ┬╠╧╦╧╫ ╙ ╔┌╧┬╥┴╓┼╬╬┘═ ╬┴ ╬╔╚ ▐┼╥┼╨╧═.

δ╧═╬┴╘┴ 3: ≤╘╧╠╦╬╔╘┼ ▐┼╘┘╥┼ ─┼╥┼╫╤╬╬┘╚ ╤▌╔╦┴ ╫ ╫╧─╒ ╫ ╥╤─, ▐╘╧┬┘ ╙╧┌─┴╘╪ ═╧╙╘ ╬┴ ╨╥╧╘╔╫╧╨╧╠╧╓╬┘╩ ┬┼╥┼╟. ⌠┼╨┼╥╪ ╘╧╠╦╬╔╘┼ ▐┼╥╬╧╫┴╘┘┼ ┬╠╧╦╔ ╙╨╥┴╫┴. ≡┼╥┼─╫╔╬╪╘┼ ┬╠╧╦╔ ╔┌ ╦╧╥┘ ╙ ╨╒╘╔ (╫╧┌═╧╓╬╧ ╫╠┼╫╧) ╔ ╨╧╙╘╥╧╩╘┼ ═╧╙╘ ╙╨╥┴╫┴ ╔┌ ─┼╥┼╫╤╬╬┘╚ ╤▌╔╦╧╫.

δ╧═╬┴╘┴ 4: ≡╧─╧╩─╔╘┼ ╨╧┬╠╔╓┼ ╦ ╫╧╠▐╦╒. δ╧╟─┴ ╧╬ ╨╧╟╧╬╔╘╙╤ ┌┴ ≈┴═╔, ╫┼─╔╘┼ ┼╟╧ ╫╠┼╫╧ ╔ ╫╧╦╥╒╟ ┬╠╧╦╧╫ ╫ ├┼╬╘╥┼ ╦╧═╬┴╘┘. δ┴╦ ╘╧╠╪╦╧ ╫╧╠▐╧╦ ┬╒─┼╘ ─┴╠┼╦╧ ╧╘ ╨┼╥┼╚╧─┴ ╬┴ ╙╠┼─╒└▌╔╩ ╒╥╧╫┼╬╪, ╨╥╧╙╦╧▐╔╘┼ ╘╒─┴.

δ╧═╬┴╘┴ 5: σ─╔╬╙╘╫┼╬╬┴╤ ╧╨┴╙╬╧╙╘╪ ┌─┼╙╪--▐┼╥┼╨┴ ╫╬╔┌╒ ╦╧═╬┴╘┘. ≡┼╥╫┘╩ ╘╔╨ ╨╧╫┼╥╚╬╧╙╘╔ ▄╘╧ ═┼╘┴╠╠--▄╘┴ ╨╧╫┼╥╚╬╧╙╘╪ ╨╧╚╧╓┴ ╬┴ "╠╔╙╘╫┼╬╬╒└", ╨╧ ╦╧╘╧╥╧╩ ≈┘ ╨┼╥┼─╫╔╟┴╠╔╙╪ ╥┴╬┼┼. ≤╠┼─╒└▌┴╤ ╨╧╫┼╥╚╬╧╙╘╪ "╦╥┴╙╬┴╤"--╬┴ ▄╘╧╩ ╨╧╫┼╥╚╬╧╙╘╔ ╙╠╧╓╬╧ ┌┴═┼─╠╔╘╪╙╤ ╔╠╔ ╒╙╦╧╥╔╘╪╙╤. ⌠╥┼╘╔╩ ╘╔╨ ▄╘╧ ╠┼─--╬┴ ▄╘╧╩ ╨╧╫┼╥╚╬╧╙╘╔ ╙╠┴┬╧┼ ╘╥┼╬╔┼. ≡╧╙╠┼─╬╔╩ ╘╔╨ ╨╧╫┼╥╚╬╧╙╘╔ ▄╘╧ ╦╧╙═╧╙--┌─┼╙╪ ╫╧╧┬▌┼ ╬┼╘ ╘╥┼╬╔╤; ╫┘ ╬┼ ═╧╓┼╘┼ ╔┌═┼╬╔╘╪ ╫┼╦╘╧╥ ╙╦╧╥╧╙╘╔ (╙╦╧╥╧╙╘╪ ╔ ╬┴╨╥┴╫╠┼╬╔┼), ╦╧╟─┴ ≈┘ ╬┴╚╧─╔╘┼╙╪ ╬┴ ▄╘╧╩ ╨╧╫┼╥╚╬╧╙╘╔.

δ╧═╬┴╘┴ 6: ≡╥╧╙╘╧ ╔─╔╘┼ ╨╧ ╙╦╠╧╬┴═. ≡╧╘╧═ ╫┘╩─╔╘┼ ╫╠┼╫╧, ╨╥╧╩─╤ ╨╧ "╧┬╥┴╘╬╧╩" ╨╧╫┼╥╚╬╧╙╘╔--╦╧╟─┴ ╬┴ ▄╘╧╩ ╨╧╫┼╥╚╬╧╙╘╔ ≈┘ ╬┴╨╥┴╫╠╤┼╘┼ ═┘█╪ (╔╠╔ ╨╧╚╧╓╔╩ ╦╧╬╘╥╧╠╠┼╥) ╫ ╧─╬╧═ ╬┴╨╥┴╫╠┼╬╔╔, █┴╥ ╒╙╦╧╥╤┼╘╙╤ ╫ ╧┬╥┴╘╬╧═ (┼╙╠╔ ╒ ≈┴╙ ╙ ▄╘╔═ ╨╥╧┬╠┼═┘, ╨╧╨╥╧┬╒╩╘┼ ╨╧╫┼╥╬╒╘╪ ≈┴█╒ ═┘█╪ ╬┴ 180 ╟╥┴─╒╙╧╫).

δ╧═╬┴╘┴ 7: ≡╧╨┘╘┴╩╘┼╙╪ ╨╧╠╒▐╔╘╪ ─╧╨╧╠╬╔╘┼╠╪╬┘╩ █┴╥, ╨╧╙╘┴╫╔╫ ╨╧─╫╔╓╬┘╩ ┬╠╧╦ ╬┴ ╬╔╓╬╔╩ ╨┼╥┼╦╠└▐┴╘┼╠╪. ≤╬┴▐┴╠┴ ╘╧╠╦╬╔╘┼ ┼╟╧ ╬┴ ╧─╔╬ ╦╫┴─╥┴╘ ╫╫┼╥╚, ╨╧╘╧═ ╫╠┼╫╧ ╬┴ █┼╙╘╪ ╦╫┴─╥┴╘╧╫. ≡╧╘╧═ ╘╧╠╦╬╔╘┼ ┼╟╧ ╬┴ ╨╤╘╪ ╦╫┴─╥┴╘╧╫ ╫╬╔┌ ╔ ─╫┴ ╫╨╥┴╫╧. ≈ ╦╧╬├┼ ╦╧╬├╧╫ ╘╧╠╦╬╔╘┼ ┼╟╧ ╬┴ ╧─╔╬ ╦╫┴─╥┴╘ ╫╫┼╥╚ ╔ ╧─╔╬ ╫╠┼╫╧. ≈╧┌╪═╔╘┼ ─╧╨╧╠╬╔╘┼╠╪╬┘╩ █┴╥ ╔ ┌┴╘┼═ ╨╧╙╘┴╫╪╘┼ ┬╠╧╦ ╬┴ ─╥╒╟╧╩ ╨┼╥┼╦╠└▐┴╘┼╠╪, ▐╘╧┬┘ ╧╘╦╥┘╘╪ ╨╥╧╚╧─ ╙╠┼╫┴ ╧╘ ╦╧═╬┴╘┘.

δ╧═╬┴╘┴ 8: ≈╧┌╪═╔╘┼ ─╔╬┴═╔╘ (≈┴═ ╬╒╓╬╧ ┬╒─┼╘ ┌┴╩╘╔ ╬┴ ╠┼─) ╔ ┬╥╧╙╪╘┼ ┼╟╧ ╬┴╨╥╧╘╔╫ ╓┼╠╘┘╚ ┬╠╧╦╧╫, ▐╘╧┬┘ ╫┌╧╥╫┴╘╪ ╔╚ ╔ ╨╥╧╩╘╔. ∞╧╨┴╘┴ ╬┼ ╧┬╤┌┴╘┼╠╪╬┴, ╬╧ ╧╙╘┴╬╪╘┼╙╪ ╨╧▄╦╙╨┼╥╔═┼╬╘╔╥╧╫┴╘╪ ╙ ╬┼╩.

δ╧═╬┴╘┴ 9: ⌠╧╠╦╬╔╘┼ ╙┴═┘╩ ╬╔╓╬╔╩ ╨╧─╫╔╓╬┘╩ ┬╠╧╦ ╫╠┼╫╧. ≤┼╩▐┴╙ ┬╧╠─┼╥┘, ╨┘╘┴└▌╔┼╙╤ ╨╥╧╩╘╔ ╫╨╥┴╫╧, ╨╥┼╟╥┴╓─┴└╘ ≈┴═ ╨╒╘╪. ⌠╧╠╦╬╔╘┼ ╙┴═┘╩ ╨╥┴╫┘╩ ╨╧─╫╔╓╬┘╩ ┬╠╧╦ (╫╠┼╫╧ ╔╠╔ ╫╨╥┴╫╧), ▐╘╧┬┘ ─┴╘╪ ╙╨╧╠┌╘╔ ┬╧╠─┼╥┴═. ≈╧┌╪═╔╘┼ ╫╧╠█┼┬╬╒└ ╨┴╠╧▐╦╒ (╬┼ ─╧╘╥┴╟╔╫┴╩╘┼╙╪ ╙╠╒▐┴╩╬╧ ╬╔ ─╧ ╦┴╦╔╚ ╨╧─╫╔╓╬┘╚ ┬╠╧╦╧╫, ╦╧╟─┴ ╫╧╠█┼┬╬┴╤ ╨┴╠╧▐╦┴ ╬┴╚╧─╔╘╙╤ ╫ ╬┴▐┴╠┼ ≈┴█┼╟╧ ╔╬╫┼╬╘┴╥╤) ╔ ╘╧╠╦╬╔╘┼ ╨╧─╫╔╓╬┘╩ ┬╠╧╦ ╬┴─ ╫╧─╧╩ ╫╬╔┌. ⌠┼╨┼╥╪ ╫┼╥╬╔╘┼╙╪ ╫ ╨╥┴╫╒└ ▐┴╙╘╪ ╦╧═╬┴╘┘, ╫┘╙╘┴╫╪╘┼ ╫╧╠█┼┬╬╒└ ╨┴╠╧▐╦╒ ╫ ╬┴▐┴╠╧ ≈┴█┼╟╧ ╔╬╫┼╬╘┴╥╤ ╔ ╦╧╙╬╔╘┼╙╪ ╘╥┼╚ ╫┼╥╚╬╔╚ ┬╧╠─┼╥╧╫ ╔┌ ─╠╔╬╬╧╟╧ ╙╘╧╠┬├┴ (╨╧╙╘┴╥┴╩╘┼╙╪ ╬┼ ╨╧╨┴─┴╘╪╙╤ ╬┴ ╨╒╘╔ ╠└┬┘╚ ┬╧╠─┼╥╧╫). ⌠╧╠╦╬╔╘┼ ╙┴═┘╩ ╠┼╫┘╩ ╨╧─╫╔╓╬┘╩ ┬╠╧╦ ╫╠┼╫╧ ╔ ╔─╔╘┼ ╫ ╙╠┼─╒└▌╒└ ╦╧═╬┴╘╒.

δ╧═╬┴╘┴ 10: δ╧╙╬╔╘┼╙╪ ╨┼╥┼╦╠└▐┴╘┼╠╤. ⌠┼╨┼╥╪ ╘╧╠╦╬╔╘┼ ─╫┴ ┬╠╧╦┴ ╔┌ ╦╧╥┘ ╫╫┼╥╚ (╬┴ ╧─╔╬ ╦╫┴─╥┴╘ ╦┴╓─┘╩). ⌠╧╠╦╬╔╘┼ ╙╥┼─╬╔╩ (╙╫┼╥╚╒ ╫╬╔┌) ─┼╥┼╫╤╬╬┘╩ ╤▌╔╦ ╫╠┼╫╧, ┴ ─┼╥┼╫╤╬╬┘╩ ╤▌╔╦, ╙╨╥┴╫┴-╙╫┼╥╚╒ ╧╘ ╬┼╟╧ ╫ ╫╧─╒. ≤╘╧╠╦╬╔╘┼ ╧╙╘┴╫█╔┼╙╤ ╤▌╔╦╔ ╫ ╫╧─╒, ▐╘╧┬┘ ╧┬╥┴┌╧╫┴╘╪ ╙╘╧╠┬┼├ (╨╧╙╘┴╥┴╩╘┼╙╪ ╬┼ ╒╘╧╬╒╘╪). ⌠┼╨┼╥╪ ╒─┴╥╪╘┼ ╧╦╬╧ (╟╧╠╒┬╒└ ╨╧╠╧╙╒) ╬┴ ┬╧╠╪█╧╩ ╙╦╧╥╧╙╘╔. ≈╧┌╪═╔╘┼ █┴╥ ╔ ╨┼╥┼╩─╔╘┼ ▐┼╥┼┌ ═╧╙╘ ╫ ╨┼╥╫╒└ ╦╧═╬┴╘╒. ∩╘╙└─┴ ╔─╔╘┼ ╫ ╧╘╦╥┘╫█╔╩╙╤ ╨╥╧╚╧─.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5.1.2 ∩┬╠┴╙╘╪ 2

≈╧ ╫╘╧╥╧╩ ╧┬╠┴╙╘╔ ≈┘ ╫╙╘╥┼╘╔╘┼ ╥╧╘╧╥, ╤╫╠╤└▌╔╩╙╤ ┴╦╘╔╫╬┘═ ╨╥╧╘╔╫╬╔╦╧═ ≈┴█┼╟╧ ▐┼╥╬╧╟╧ █┴╥┴. ≥┴┌╠╔▐╬┘┼ ╥╧╘╧╥┘ ═╧╟╒╘ ─┼╩╙╘╫╧╫┴╘╪ ╬┼╙╦╧╠╪╦╧ ╥┴┌╠╔▐╬╧, ╬╧ ╧╬╔ ╫╙┼╟─┴ ╬┼╨╧╬╤╘╠╔╫┘. ≡╥┼─╬┴┌╬┴▐┼╬╔┼ ╨╧╙╠┼─╬┼╟╧--┌┴╙╘┴╫╔╘╪ ┼╟╧ ╙─┼╠┴╘╪, ╘╧ ▐╘╧ ≈┴═ ╬╒╓╬╧, ─┼╥╓┴╙╪ ╬┴ ┬┼┌╧╨┴╙╬╧═ ╥┴╙╙╘╧╤╬╔╔.

∩╙═╧╘╥╔╘┼╙╪ ╫ ▄╘╧╩ ╧┬╠┴╙╘╔ (╬╧ ╨╧╦┴ ╬┼ ╘╥╧╟┴╩╘┼ ╨╧─╫╔╓╬┘╩ ┬╠╧╦). ≈┴═ ╬╒╓╬╧ ╨╥╧╩╘╔ ▐┼╥┼┌ ╘╥╧┼ ┌┴╦╥┘╘┘╚ ╫╧╥╧╘ ╫ ╫┼╥╚╒ ▄╘╧╩ ╧┬╠┴╙╘╔.

≡┼╥╫┘┼ ╫╧╥╧╘┴: ⌠╧╠╦╬╔╘┼ ┬┼╠┘╩ █┴╥ ╫╠┼╫╧ (╬┼ ╨╥╧╩─╔╘┼ ╙╠╒▐┴╩╬╧ ▐┼╥┼┌ ▐┼╥╬┘╩ ╧─╬╧╙╘╧╥╧╬╬╔╩ ┬╠╧╦) ▐╘╧┬┘ ╧╙╫╧┬╧─╔╘╪ ┼╟╧ (▄╘╧ ═╧╓┼╘ ╨╧╘╥┼┬╧╫┴╘╪ ╬┼╙╦╧╠╪╦╔╚ ╨╧╨┘╘╧╦). ≈╧┌╪═╔╘┼ ╠╧╓╦╒ ╔ ─╧╫╧╠╪╬╧ ╙╔╠╪╬╧ ╘╧╠╦╬╔╘┼ ┬┼╠┘╩ █┴╥ ▐┼╥┼┌ ┬┼╠┘╩ ╧─╬╧╙╘╧╥╧╬╬╔╩ ┬╠╧╦, ▐╘╧┬┘ ╧╬ ╬┼ ╧╙╘┴╬╧╫╔╠╙╤. ⌠┼╨┼╥╪ ╔─╔╘┼ ▐┼╥┼┌ ▐┼╥╬┘╩ ╧─╬╧╙╘╧╥╧╬╬╔╩ ┬╠╧╦ ╔ ╨╥╧╫┼─╔╘┼ ┬┼╠┘╩ █┴╥ ▐┼╥┼┌ ╨╥╧╚╧─. Σ╧╫╧╠╪╬╧ ╙╔╠╪╬╧ ╘╧╠╦╬╔╘┼ ┬┼╠┘╩ █┴╥ ▐┼╥┼┌ ╙╠┼─╒└▌╔╩ ┬┼╠┘╩ ╧─╬╧╙╘╧╥╧╬╬╔╩ ┬╠╧╦, ▐╘╧┬┘ ╧╬ ╬┼ ╧╙╘┴╬╧╫╔╠╙╤ ╬╔╓┼. δ┴╦ ╘╧╠╪╦╧ ┬┼╠┘╩ █┴╥ ╨╥╧╩─┼╘, ╔╙╨╧╠╪┌╒╩╘┼ ╠╧╓╦╒; ≈┘ ╫╬╧╫╪ ╬┴▐╬┼╘┼ ╒╥╧╫┼╬╪ ╫ ╬┴▐┴╠┼ ╔ ┬╧╠╪█┼ ╬╔▐┼╟╧ ╬┼ ╙╠╒▐╔╘╙╤. ≤╬╧╫┴ ╨╥╧╩─╔╘┼ ▐┼╥┼┌ ╫╧╥╧╘┴--╨┼╥╫┘┼ ╫╧╥╧╘┴ ╫╫┼╥╚╒ ╦╧═╬┴╘┘ ╧╘╦╥┘╘┘.

≈╘╧╥┘┼ ╫╧╥╧╘┴: ⌠╧╠╦╬╔╘┼ ╨╧─╫╔╓╬┘╩ ┬╠╧╦ ╫ ╙┴═╧╩ ╨╥┴╫╧╩ ╦╧═╬┴╘┼ ▄╘╧╩ ╧┬╠┴╙╘╔ ╫╨╥┴╫╧ ╔ ┬┼╟╔╘┼. ≈ ╫╧╥╧╘┴╚, ╙╧┼─╔╬╤└▌╔╚ ╫╘╧╥╒└ ╔ ╘╥┼╘╪└ ╧┬╠┴╙╘╪, ╨╧╤╫╔╘╙╤ ─╧╦╒═┼╬╘ ╙ ╨╧╠┼┌╬╧╩ ╔╬╞╧╥═┴├╔┼╩. ≡╧─╫┼─╔╘┼ ╥╧╘╧╥ (┌┴╙╘┴╫╠╤╤ ┼╟╧ ╟╬┴╘╪╙╤ ┌┴ ≈┴═╔, ╦┴╦ ≈┘ ─┼╠┴╠╔ ▄╘╧ ╙ ╫╧╠▐╦╧═) ╦ ╬╔┌╒ ╙╘┼╬┘ ╙╨╥┴╫┴ ╧╘ ╫╧╥╧╘ ═┼╓─╒ ╨┼╥╫╧╩ ╔ ╫╘╧╥╧╩ ╧┬╠┴╙╘╤═╔. ≡╥╧╩─╔╘┼ ▐┼╥┼┌ ╫╧╥╧╘┴ ╔ ▐┼╥┼┌ ═╧╙╘ ╫ ╦╧═╬┴╘╒ ╨╧─ ≈┴═╔. δ╧╙╬╔╘┼╙╪ ╨┼╥┼╦╠└▐┴╘┼╠╤, ▐╘╧┬┘ ┌┴╦╥┘╘╪ ╫╧╥╧╘┴ ╔ ╫┼╥╬╔╘┼╙╪ ╫ ╦╧═╬┴╘╒ ╧╘╦╒─┴ ≈┘ ╬┴▐┴╠╔. ≈┘ ┬╧╠╪█┼ ╬┼ ╫╔─╔╘┼ ╥╧╘╧╥--┼╟╧ ╬┼ ┬╒─┼╘ ╫ ╘╧╩ ╦╧═╬┴╘┼, ╟─┼ ╔ ≈┘--╬╧ ┼╙╠╔ ╨╥╔╙═╧╘╥┼╘╪╙╤, ≈┘ ╙═╧╓┼╘┼ ╒╫╔─┼╘╪ ╟─┼ ╧╬. π┼╠╪ ┌─┼╙╪ ╙╧╙╘╧╔╘ ╫ ╘╧═, ▐╘╧┬┘ ╬┼ ╨╧─╫┼╥╟┴╤ ╙┼┬╤ ╧╨┴╙╬╧╙╘╔, ┌┴╙╘┴╫╔╘╪ ╥╧╘╧╥ ╨╧╩╘╔ ╦ ╨┼╥┼╦╠└▐┴╘┼╠└ ╔ ╧╘╦╥┘╘╪ ─╠╤ ≈┴╙ ─╫┼╥╪. ≡╒╙╘╪ ╥╧╘╧╥ ╨╧╩─┼╘ ┌┴ ≈┴═╔ ╔┌ ╫┼╥╚╬┼╟╧-╨╥┴╫╧╟╧ ╒╟╠┴ ▄╘╧╩ ╦╧═╬┴╘┘ ╫ ╫┼╥╚╬╔╩-╠┼╫┘╩. ∩╬ ─╧╠╓┼╬ ┬┘╘╪ ╫┘╘╧╠╦╬╒╘ ╫╠┼╫╧ ╬┼╙╦╧╠╪╦╔═╔ ╬┴╦╠╧╬┴═╔. Σ╧╫┼─╔╘┼ ╥╧╘╧╥ ╫╬╔┌ ╙╠┼╫┴, ╨╧╦┴ ╧╬ ╬┼ ╨╥╧─╧╠╓╔╘ ╙╫╧╩ ╨╒╘╪ ╔ ≈┘ ╬┼ ╒╙╠┘█╔╘┼ ┌╫╒╦ ╬┴╓┴╘╧╟╧ ╨┼╥┼╦╠└▐┴╘┼╠╤. δ╧╙╬╔╘┼╙╪ ╨┼╥┼╦╠└▐┴╘┼╠╤, ▐╘╧┬┘ ╧╘╦╥┘╘╪ ╫╧╥╧╘┴ ╔ ╫┼╥╬╒╘╪╙╤ ╫╧ ╫╘╧╥╒└ ╧┬╠┴╙╘╪ ? ╫╘╧╥┘┼ ╫╧╥╧╘┴, ─╧╠╓╬┘ ┬┘╘╪ ╧╘╦╥┘╘┘.

⌠╥┼╘╪╔ ╫╧╥╧╘┴: ≡╥╧╙╘╧ ╘╧╠╦╬╔╘┼ ╨╧─╫╔╓╬┘╩ ┬╠╧╦, ╔┌ ╦╧╘╧╥╧╟╧ ╫┘╙╦╧▐╔╠ ╥╧╘╧╥, ╬┴ ╨┼╥┼╦╠└▐┴╘┼╠╪ ╫ ╦╧═╬┴╘┼, ╟─┼ ╧╬ ╨╧╤╫╔╠╙╤. ≈┼╥╬╔╘┼╙╪ ╫ ╦╧═╬┴╘╒ ╙╠┼╫┴ ╧╘ ≈┴╙--╘╥┼╘╪╔ ╫╧╥╧╘┴ ─╧╠╓╬┘ ┬┘╘╪ ╧╘╦╥┘╘┘. Θ─╔╘┼ ▐┼╥┼┌ ╘╥╧┼ ╧╘╥┘╘┘╚ ╫╧╥╧╘.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5.1.3 ∩┬╠┴╙╘╪ 3

≈ ╘╥┼╘╪┼╩ ╧┬╠┴╙╘╔ ≈┴═ ╬╒╓╬╧ ╔╙╙╠┼─╧╫┴╘╪ ╫┌┴╔═╧─┼╩╙╘╫╔╤ ═┼╓─╒ ╥┴┌╠╔▐╬┘═╔ ╧┬▀┼╦╘┴═╔ Enigma. ·─┼╙╪ ≈┘ ╬┴╩─┼╘┼ ╠┴┌┼╥┘, ┌┼╥╦┴╠┴ ╔ ═╧╬┼╘┘. ≈┴═ ╨╥╔╩─┼╘╙╤ ╥┼█╔╘╪ ╨╥╧╙╘╒└ ╟╧╠╧╫╧╠╧═╦╒ ╠┴┌┼╥-╔-┌┼╥╦┴╠╧, ▐╘╧┬┘ ─┴╘╪ ╠┴┌┼╥╒ ╨╧╨┴╙╘╪ ╫ ╧╘─┼╠╪╬┘╩ ╦┴═┼╬╪, ╦╧╘╧╥┘╩ ╧╘╦╥╧┼╘ ═╧╙╘ ╫ ╙╠┼─╒└▌╒└ ╦╧═╬┴╘╒. ■╘╧┬┘ ╨╥┼╧─╧╠┼╘╪ ╙╠┼─╒└▌╔┼ ╬┼╙╦╧╠╪╦╧ ╦╧═╬┴╘, ≈┘ ─╧╠╓╬┘ ╙╧┌─┴╘╪ ╬┼╙╦╧╠╪╦╧ ╬╧╫┘╚ ╧┬▀┼╦╘╧╫, ╨╥╧╓╔╟┴╤ ╠┴┌┼╥╬┘═ ╠╒▐╧═ ╙╒▌┼╙╘╫╒└▌╔┼ ╧┬▀┼╦╘┘.

≈ ╨┼╥╫╧╩ ▐┴╙╘╔ ▄╘╧╩ ╧┬╠┴╙╘╔ ┼╙╘╪ ╘╥╔ ┌┼╥╦┴╠┴ ╔ ╠┴┌┼╥ ╙ ╨┼╥┼╦╠└▐┴╘┼╠┼═.

δ╧═╬┴╘┴ 1: ≈┴═ ╬╒╓╬╧ ─┴╘╪ ╠┴┌┼╥╒ ╨╧╨┴╙╘╪ ╫ ▐┼╥╬┘╩ ╦┴═┼╬╪. ⌠╧╠╦╬╔╘┼ ╬╔╓╬┼┼-╠┼╫╧┼ ┌┼╥╦┴╠╧ ╬┴ ╧─╔╬ ╦╫┴─╥┴╘ ╫╬╔┌ ╔ ╨╧╫┼╥╬╔╘┼ ┼╟╧ ╘┴╦, ▐╘╧┬┘ ╧╬╧ ╫┘╟╠╤─┼╠╧ ╬┴╨╧─╧┬╔┼ "\" ╠┼╟╦╧ ─╧╘╥┴╟╔╫┴╤╙╪ ─╧ ╬┼╟╧ (╫╠┼╫╧ ╫╨╠╧╘╪ ─╧ ╠┴┌┼╥┴ ─╧╠╓╬╧ ┬┘╘╪ ╘╥╔─├┴╘╪ ╦╫┴─╥┴╘╧╫). ⌠╧╠╦╬╔╘┼ ╫┼╥╚╬┼┼-╠┼╫╧┼ ┌┼╥╦┴╠╧ ╬┴ ╫╧╙┼═╪ ╦╫┴─╥┴╘╧╫ ╫╠┼╫╧, ╬┴ ╧─╔╬ ╦╫┴─╥┴╘ ╫╬╔┌ ╔ ╨╧╫┼╥╬╔╘┼ ┼╟╧, ▐╘╧┬┘ ╧╬╧ ┬┘╠╧ ╨╧╚╧╓┼ ╬┴ "/" (╧╬╧ ─╧╠╓╬╧ ┬┘╘╪ ╫ ▐┼╘┘╥┼╚ ╦╫┴─╥┴╘┴╚ ╧╘ ╨╥┼─┘─╒▌┼╟╧ ┌┼╥╦┴╠┴ ╔ ╨╥╤═╧ ╬┴─ ╬╔═). ⌠╧╠╦╬╔╘┼ ╫┼╥╚╬┼┼-╨╥┴╫╧┼ ┌┼╥╦┴╠╧ ╬┴ ─╫┴ ╦╫┴─╥┴╘┴ ╫╫┼╥╚, ┴ ┌┴╘┼═ ╬┴ ╘╥╔ ╦╫┴─╥┴╘┴ ╫╨╥┴╫╧ (╧╬╧ ─╧╠╓╬╧ ┬┘╘╪ ╨╥┴╫┼┼ ╬┴ ─╫┴─├┴╘╪ ─╫┴ ╦╫┴─╥┴╘┴ ╧╘ ╨╥┼─┘─╒▌┼╟╧ ┌┼╥╦┴╠┴ ╔ ╬┴ ╧─╔╬ ╦╫┴─╥┴╘ ╬╔╓┼ ▐┼╥╬╧╟╧ ╦┴═╬╤). ≥┴╙╨╧╠╧╓╔╘┼ ▄╘╧ ┌┼╥╦┴╠╧ ╫ ╫╔─┼ "/". ⌠┼╨┼╥╪ ─╧╘╥╧╬╪╘┼╙╪ ─╧ ╨┼╥┼╦╠└▐┴╘┼╠╤, ▐╘╧┬┘ ╫╦╠└▐╔╘╪ ╠┴┌┼╥ (╬┼ ╨╧╨┴─╔╘┼ ╨╧─ ╬┼╟╧ ╔╠╔ ╬┼ ╨╥╧╚╧─╔╘┼ ▐┼╥┼┌ ╠┴┌┼╥╬┘╩ ╠╒▐). δ┴╦ ╘╧╠╪╦╧ ▄╘╧ ┬╒─┼╘ ╙─┼╠┴╬╧, ╔─╔╘┼ ▐┼╥┼┌ ═╧╙╘ ╙╨╥┴╫┴ ╧╘ ≈┴╙.

δ╧═╬┴╘┴ 2: ≈╧┌╪═╔╘┼ ╬┼╙╦╧╠╪╦╧ ═╧╬┼╘ ╔ ╫╧┌╫╥┴▌┴╩╘┼╙╪ ╫ ╨╥┼─┘─╒▌╒└ ╦╧═╬┴╘╒. ≈┘╦╠└▐╔╫ ╔ ╫╦╠└▐╔╫ ╠┴┌┼╥, ╨╧╥┴┌╔╘┼ ╠┴┌┼╥╬┘═ ╠╒▐╧═ ╧─╬╒ ╔┌ ═╧╬┼╘. ≈╧┌╪═╔╘┼ ╨╧╠╒▐┼╬╬┘╩ ╧┬▀┼╦╘ (┌╧╬╘), ╨╧╫╘╧╥╔╘┼ ╨╥╧├┼╙╙ ╔ ╫╧┌╪═╔╘┼ ╫╘╧╥╧╩ ┌╧╬╘. ⌠┼╨┼╥╪ ┬╥╧╙╪╘┼ ╧─╬╒ ╔┌ ═╧╬┼╘ ┌┴ ┌┼╥╦┴╠╧═ ╔ ╙─╫╔╬╪╘┼ ╬┴ ╬┼┼ ┌┼╥╦┴╠╧. ≡╧╥┴┌╔╘┼ ▄╘╒ ═╧╬┼╘╒ ╙╧ ┌╬┴▐┼╬╔┼═ ╨╤╘╪ ╠┴┌┼╥╧═, ▐╘╧┬┘ ╙╧┌─┴╘╪ ═╧╠╧╘. ≡╧╥┴┌╔╘┼ ╠┴┌┼╥╧═ ═╧╠╧╘ (╫┘╦╠└▐╔╫ ╔ ╫╦╠└▐╔╫ ╠┴┌┼╥), ▐╘╧┬┘ ╙╧┌─┴╘╪ ═┼▐. σ╙╠╔ ≈┘ ╚╧╘╔╘┼ ╬┼╙╦╧╠╪╦╧ ─╧╨╧╠╬╔╘┼╠╪╬┘╚ █┴╥╧╫, ≈┘ ═╧╓┼╘┼ ╨┼╥┼╘┴▌╔╘╪ ┌┼╥╦┴╠╧ ╬┴─ ═╧╬┼╘╧╩ ─╫┴╓─┘ ╔ ╨╧╥┴┌╔╘╪ ╠┴┌┼╥╧═ ═╧╬┼╘╒ ╙ ╒╫┼╠╔▐┼╬╬┘═ ┌╬┴▐┼╬╔┼═ (╙┴═╧┼ ┬╧╠╪█┼┼, ─╧ ─┼╙╤╘╔). ■╘╧┬┘ ╫┼╥╬╒╘╪╙╤ ╫ ╦╧═╬┴╘╒ ╙ ╥┘├┴╥╤═╔, ╨╧╙╘┴╫╪╘┼ ┌┼╥╦┴╠┴ ╫ ╔╚ ╬┴▐┴╠╪╬┘┼ ╨╧┌╔├╔╔, ╒┬┼╥╔╘┼ ╫╙┼ ╧┬▀┼╦╘┘, ┬╠╧╦╔╥╒└▌╔┼ ╠┴┌┼╥ ╔ ╦╧╙╬╔╘┼╙╪ ╨┼╥┼╦╠└▐┴╘┼╠╤. ⌠┼╨┼╥╪ ╔╙╨╧╠╪┌╒╤ ╨╥┴╫╒└ ╦╬╧╨╦╒ ═┘█╔ ╔╠╔ ╦╠┴╫╔█╒ "Tab" ╫┘╙╘┴╫╪╘┼ ╫ ╬┴▐┴╠╧ (╙╠┼╫┴) ╙╫╧┼╟╧ ╔╬╫┼╬╘┴╥╤ ═┼▐. ⌡─┴╥╪╘┼ ╬┼╙╦╧╠╪╦╧ ╥┘├┴╥┼╩ (╦┴╓─╧╟╧ ╨╧ ▐┼╘┘╥┼ ╥┴┌┴), ▐╘╧┬┘ ╨╥╧╩╘╔.

δ╧═╬┴╘┴ 3: Θ╙╨╧╠╪┌╒╩╘┼ ┌╧╬╘ ╔ ╨╥╧╙╠┼─╒╩╘┼ ╬┴─ ┬┼┌─╬╧╩ ╫ ╦╧═╬┴╘╒ ╨╧─ ≈┴═╔, ┴ ┌┴╘┼═ ╫ ╦╧═╬┴╘╒ ╙╨╥┴╫┴ ╧╘ ≈┴╙. σ╙╠╔ ╧╦╥╒╓┴└▌┼┼ ≈┴╙ ╦╧╠╪├╧ ╬┴▐╬┼╘ ═╔╟┴╘╪, ╔╙╨╧╠╪┌╒╩╘┼ ─╥╒╟╧╩ ┌╧╬╘.

δ╧═╬┴╘┴ 4: ≡╥╧╙╘╧ ╨╧─┬┼╥╔╘┼ ╨┴╥┘ Oxyd-╦┴═╬┼╩ ─╧╘╥┴╟╔╫┴╤╙╪ ─╧ Oxyd-╦┴═╬┼╩ ╧─╔╬┴╦╧╫╧╟╧ ├╫┼╘┴ ╙ ┴╦╘╔╫╔╥╧╫┴╬╬┘═╔ Oxyd-╦┴═╬╤═╔ (╨╧ ╧─╬╧═╒ ┌┴ ╥┴┌). ε┼ ╘╥╧╟┴╩╘┼ ╟╥╒┬┘┼ ╦┴═╬╔ (▐┼╥╬┘┼ ╦┴═╬╔). ≈┘ ╫┘╔╟╥┴╠╔!


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5.2 ≤╧╫┼╘┘ ─╠╤ ╬┼╙╦╧╠╪╦╔╚ ╒╥╧╫╬┼╩

I/6: Welcome to the Machine

≤╧╧┬▌┼╬╔┼ ╫┬╠╔┌╔ ╫┼╥╚╬┼╟╧-╨╥┴╫╧╟╧ ╒╟╠┴ ╙╧─┼╥╓╔╘ ╫┴╓╬┘╩ ╙╧╫┼╘.

I/8: Easy?

≡╧╙╘┴╫╪╘┼ ╨┼╥╫┘╩ ╙┼╟╒╬-╦┴═┼╬╪ ╫ ╫┼╥╚╬╔╩ ╠┼╫┘╩ ╒╟╧╠, ┴ ╫╘╧╥╧╩ ╬┴─ ╙┴═╧╩ ╨╥┴╫╧╩ ╙┼╟╒╬-╘╧▐╦╧╩.

I/31: Where Am I?

Θ╙╨╧╠╪┌╒╩╘┼ ─┼╥┼╫╤╬╬┘┼ ╤▌╔╦╔, ▐╘╧┬┘ ╬┼ ┌┴┬╠╒─╔╘╪╙╤.

I/32: The Grim Reaper

≈╙┼╟─┴ ╠╔ ≈┘ ╙▐╔╘┴┼╘┼, ▐╘╧ ≈┴█┴ ═┘█╪ ╨┼╥┼╫┼╥╬╒╘┴???

I/43: Sokoban Revival

≡╧═╬╔╘┼? ⁿ╘╧ ╨┼╥╫┘╩ ╒╥╧╫┼╬╪ ╧╥╔╟╔╬┴╠╪╬╧╟╧ ≤╧╦╧┬┴╬┴ … ∩╬ ╫┼─╪ ╬┼ ╘┴╦╧╩ ╘╥╒─╬┘╩!

I/65: Lasers 101

≡╧╙╘┴╫╪╘┼ ─╫┴ ┌┼╥╦┴╠┴ ╫╫┼╥╚╒ ╔ ╧─╬╧ ╫╬╔┌╒. ≡┼╥┼═┼▌┴╤ ┌┼╥╦┴╠┴ ╔ ╘╧▐╬╧ ├┼╠╤╙╪, ≈┘ ═╧╓┼╘┼ ╨╧╨┴╙╘╪ ╠┴┌┼╥╬┘═ ╠╒▐╧═ ╨╧ ╫╙┼═ Oxyd-╦┴═╬╤═.

I/72: Way to Go

∩─╬┴ ╔┌ ╙╔╬╔╚ ╘╧▐┼╦ ╫┼─┼╘ ╙┼┬╤ ╨╧-╥┴┌╬╧═╒. ≈╧╙╨╧╠╪┌╒╩╘┼╙╪ ▄╘╔═!

I/80: Meditation

≥┴╙╨╧╠╧╓╔╘┼ █┴╥╔╦╔ ╟╧╥╔┌╧╬╘┴╠╪╬╧.

II/15: Knock Knock!

≡╧╙╘╒▐╔╘┼╙╪ ╫ ╙╘┼╬┘.

II/27: Twelve doors

≈┘ ╧╘╦╥┘╠╔ ╫╙┼ ─╫┼╥╔ ╔ ╫╙┼ ╥┴╫╬╧ ╬┼ ═╧╓┼╘┼ ╨╥╧╩╘╔? ≈┘ ▐╘╧-╘╧ ╨╥╧╨╒╙╘╔╠╔!

II/40: Space Meditation

≤╠┘█┴╠╔ ╦╧╟─┴-╬╔┬╒─╪ ╧ ╨╥╧┬╠┼═┼ ╘╥┼╚ ╘┼╠?

II/44: Pharaos' Tombs

∩┬╥┴╘╔╘┼╙╪ ╦ "Easy Shifting ....".

II/56: Easy Shifting ....

∩┬╥┴╘╔╘┼╙╪ ╦ "Running Rings".

II/57: Floppy Swapping

≡┼╥╫╧┼--╬┴╩─╔╘┼ ─╔╙╦┼╘╒ ╔ ╫╧╠█┼┬╬╒└ ╨┴╠╧▐╦╒, ╧╬╔ ≈┴═ ╨╧╬┴─╧┬╤╘╙╤. ≈╘╧╥╧┼--╫╙┼╟─┴ ╬╧╙╔╘┼ ─╔╙╦┼╘╒ ╔ ╫╧╠█┼┬╬╒└ ╨┴╠╧▐╦╒ ╙ ╙╧┬╧╩. ⌠╥┼╘╪┼--╬┼╦╧╘╧╥┘┼ ╦┴═╬╔ ╨╧╚╧╓╔, ╬╧ ─┼╩╙╘╫╒└╘ ╬┼ ╧─╔╬┴╦╧╫╧.

II/59: The Disappearing Block

·┴╓═╔╘┼ ╠┴┌┼╥.

II/65: Laser Magic

≈╥┼═╤ ╒┌╬┴╘╪ ╬┼╙╦╧╠╪╦╧ ╫┼▌┼╩ ╧ ╨╥┼╧┬╥┴┌╧╫┴╬╔╔ ╧┬▀┼╦╘╧╫. ⁿ╦╙╨┼╥╔═┼╬╘╔╥╒╩╘┼!

II/69: Question of Speed

Θ╠╔ ╙╦╧╥┼┼: ≈╧╨╥╧╙ ╬┴▐┴╠┴???

II/77: Push Your Way

≤╬┴▐┴╠┴ ╬┴╩─╔╘┼ ╫╧╠█┼┬╬╒└ ╨┴╠╧▐╦╒!

II/97: Tool Time

≡╥╤▐╪╘┼ ╧╨┴╙╬┘┼ ╔╬╙╘╥╒═┼╬╘┘ ╧╘ ─┼╘┼╩.

II/99: Domain of Mysteries

∩╙╘╧╥╧╓╬╧ ╨╥╧─╫╔╟┴╩╘┼╙╪ ╦ ╒╙╨┼╚╒.

II/100: Patterns

σ╙╘╪ ╠╔ ┌─┼╙╪ ╨╧─╧┬╔┼?

III/14: Use the PIN

.... ╔╠╔ ╫╧╙╨╧╠╪┌╒╩╘┼╙╪ ≈┴█┼╩ ╠└┬╔═╧╩ ▄╬├╔╦╠╧╨┼─╔┼╩, ┼╙╠╔ ≈┘ ╬┼ ═╧╓┼╘┼ ╘╧▐╬╧ ╫╙╨╧═╬╔╘╪ ▐╔╙╠╧.

III/16: Control Panel

≤╧╧┬▌┼╬╔┼ ╫ ╠┼╫╧╩ ╦╧═╬┴╘┼ ╥┴╙╙╦┴╓┼╘ ≈┴═, ╦┴╦ ╥┴╙╨╧╠╧╓╔╘╪ ┬╠╧╦╔ ╫ ╨┼╥╫╧╩ ╙╘╥╧╦┼ ╨┼╥┼╦╠└▐┴╘┼╠┼╩. ≡╧╙╠┼ ▄╘╧╟╧, ╔╙╨╧╠╪┌╒╩╘┼ ╦╧─┘ ├╫┼╘╧╫, ╨╧╦┴┌┴╬╬┘╚ ╫ ╠┼╫╧╩ ╦╧═╬┴╘┼.

III/22: Portable Laser

Γ╒─╪╘┼ ╨╥╔┌╬┴╘┼╠╪╬┘!

III/27: Tricks and Traps

ε┼ ═╧╓┼╘┼ ╫┘┬╥┴╘╪╙╤ ╔┌ ╨┼╥╫╧╟╧ ▄╦╥┴╬┴? ≤╦╧╬├┼╬╘╥╔╥╒╩╘┼╙╪ ╙╬┴▐┴╠┴ ╬┴ ═╔╟┴└▌┼╩ ╘╧▐╦┼. ε┼ ═╧╓┼╘┼ ╬┴╩╘╔ ╨╧╙╠┼─╬╔╩ Oxyd-╦┴═┼╬╪? ß╦╘╔╫╔╥╒╩╘┼ ╘╥╔ ╔┌ ┬╧╠╪█╔╚ ═╔╟┴└▌╔╚ ╘╧▐┼╦ ╬┴ ╨┼╥╫╧═ ▄╦╥┴╬┼ ╔ ═┴╠┼╬╪╦╔╩ ╬┴ ╘╥┼╘╪┼═ ▄╦╥┴╬┼.

III/28: Wells

Γ╧╔╘┼╙╪ ╒═┼╥┼╘╪?

III/29: Push? Pull!

∩─╬┴ ╨┼╥┼╙╘┴╬╧╫╦┴ ╫╫┼╥╚ - ∩─╬┴ ╨┼╥┼╙╘┴╬╧╫╦┴ ╫╬╔┌ - τ╧╠╧╫╧╠╧═╦┴ ╫╨╥┴╫╧ - ≡╥╧─╧╠╓╔╘┼ ─┴╠╪█┼!

III/40: Snow White

⌠╥╔ ═┴╠┼╬╪╦╔╚ ▄╙╦╔═╧╙┴ - ≤╫╤┌┴╬╬┘┼ ╫ ╦╧╠╪├╧ ╬┴ ╠┼─╤╬╧═ ╨╧╠┼ - ε┼ ═╧╟╒╘ ╬┴╩╘╔ ╔╚ ═┴╠┼╬╪╦╔┼ ╔╟╠╒ - ≤╦╥┘╘┘┼ ╨╧─ ╙╬┼╓╬┘═ ╨╧╦╥╧╫╧═.

III/43: The Ditch

≈┘ ╬┼ ═╧╓┼╘┼ ╥┼█╔╘╪ ▄╘╧╘ ╒╥╧╫┼╬╪ ┬┼┌ ╨╧╘┼╥╔ ╙╫╧┼╟╧ "±".

III/49: What's the Problem?

∞╧╫╒█╦╔ ╨╧ ╫╙┼╩ ╘┼╥╥╔╘╧╥╔╔ … ▄╘╧ ═┼╙╘╬╧╙╘╪ ─╠╤ ═┼─╔╘┴├╔╔.

III/95: Jump and Run

σ╙╘╪ ╨╥╒╓╔╬┴, ╙╨╥╤╘┴╬╬┴╤ ┌┴ ┌┼╥╦┴╠╧═.

IV/6: TNT Shortage?

≤ ═╧╠╧╘╦╧═ ╨╥╧▌┼!

IV/17: Flood Gates

∩╙╘╧╥╧╓╬╧┼ ┌┴╘╧╨╠┼╬╔┼ ╧╨╥┼─┼╠┼╬╬┘╚ ╧┬╠┴╙╘┼╩ ═╧╓┼╘ ╨╥╔╟╧─╔╘╪╙╤. ε┼ ╨╧╦╔─┴╩╘┼ ╨┼╥╫╒└ ╦╧═╬┴╘╒ ┬┼┌ ┴╦╘╔╫┴├╔╔ ╬╔╓╬┼╟╧ ╨┼╥┼╦╠└▐┴╘┼╠╤. φ╬╧╟╔┼ ╔┌ ╫╙┼╚ ╬╔╓╬╔╚ ╨┼╥┼╦╠└▐┴╘┼╠┼╩ ─┼╩╙╘╫╒└╘ ╧─╔╬┴╦╧╫╧.

IV/25: Light Switches

·┴╓═╔╘┼ ╠┴┌┼╥┘, ┼╙╠╔ ≈┘ ╬┼ ─╧╙╘┴╘╧▐╬╧ ┬┘╙╘╥┘.

IV/27: Robbery

≡╥╧┬┼╥╔╘┼╙╪ ╫ ┬┴╬╦, ▐┼╥┼┌ ╘╥┼▌╔╬┘ ╫ ╨╧╠╒.

IV/34: Running Rings

∩┬╥┴╘╔╘┼╙╪ ╦ "Pharao's Tomb".

IV/39: How Many Spirals?

ε┼╦╧╘╧╥┘┼ ╠└─╔ ╫┘╨╥┘╟╔╫┴└╘ ╔┌ ╧╦╬┴ ╨╥╔ ╨╧╓┴╥┼ - ╨╧╙╘╒╨╔╘┼ ╔╬┴▐┼.

IV/47: Just Moving Blocks?

≤╠╔█╦╧═ ═╬╧╟╧ ─┼╥┼╫╤╬╬┘╚ ╤▌╔╦╧╫? δ┴╦ ┬┘ ≈┴═ ╒┬╥┴╘╪ ╧─╔╬?

IV/48: Artillery

≡╒█┼▐╬╧┼ ╤─╥╧ ╘╧╓┼ ╧╘╦╥┘╫┴┼╘ Oxyd-╦┴═╬╔.

IV/54: Fire Safety

≡┼╥┼╦╠└▐┴╘┼╠╪ ╫╥┼─╔╘ ≈┴═? ⌡╬╔▐╘╧╓╪╘┼ ┼╟╧!

IV/64: The Flagstone Reaper

ⁿ╘╧ ╫┘╨╧╠╬╤┼╘╙╤.

IV/65: Little Bit of Everything

ε┴╩─╔╘┼ ╙╨╧╙╧┬ ╒╬╔▐╘╧╓┼╬╔╤.

V/15: Solvable?

ε┼ ╬┴╨╧═╔╬┴┼╘ ╠╔ ≈┴═ ╧ ▐┼═-╘╧ ·≤α≈?

V/16: Draggers

≡╥╔╬╤╘╧ ╙▐╔╘┴╘╪, ▐╘╧ ▄╘╧╘ ╒╥╧╫┼╬╪--┌╠╧. ≤╒▌┼╙╘╫╒┼╘ ╔╙╘╧▐╬╔╦, ╙╨╥╤╘┴╬╬┘╩ ╫╧┌╠┼ ≈┴█┼╟╧ ╬┴▐┴╠╪╬╧╟╧ ╨╧╠╧╓┼╬╔╤.

V/24: Space Pirates

ⁿ╘╧╘ ╒╥╧╫┼╬╪ ╚╔╘╥┘╩. ≡╧─╧╓╟╔╘┼ ┬╧═┬╒ ╫╧┌╠┼ ─┼╥┼╫╤╬╬┘╚ ╤▌╔╦╧╫.

V/32: Walk the Plank

ε┼ ╚╫┴╘┴┼╘ ╨╔╥┴╘╧╫, ▐╘╧┬┘ ╨╧╦╧╥╔╘╪ ▄╘╧╘ ╒╥╧╫┼╬╪? σ╙╘╪ ─╥╒╟╧╩, ┬╧╠┼┼ ╨╥╧╙╘╧╩ ╨╒╘╪.

V/34: Island of Safety

ε┴▐╬╔╘┼ ┴╬┴╠╔┌ ╙ ╙╧╘╬╔.

V/45: Psycho Pushing

⌠╧╠╦┴╩ ╔ ┬┼╟╔.

V/58: Now What?

δ╧╟─┴ ≈┘ ╫╔─╔╘┼ ╨┼╥┼╙┼▐┼╬╔┼, ▐╘╧ ─╧╠╓╬╧ ┬┘╘╪ ╫ ╙╠┼─╒└▌┼═ ╥╤─╒?

V/78: Don't Be Greedy

τ─┼-╘╧ ╫ ▄╘╧═ ╥╒╦╧╫╧─╙╘╫┼ ┼╙╘╪ ╙╧╫┼╘ ╨╧╠╒▐█┼.

V/89: Ice-Bomb

≡╧─ ╦┴═╬┼═ ╙╨╥╤╘┴╬ ╠╒▐█╔╩ ╙╧╫┼╘.

V/91: Firefox

≡╧╠ ╟╧╥╔╘ ┬┘╙╘╥┼┼.

VI/8: Orbitting

ε┼ ╨╧┌╫╧╠╤╩╘┼ ╬╔▐┼═╒ ─╧╘╥┴╟╔╫┴╘╪╙╤ ─╧ ╟╥┴╬╔├.

VI/23: Prepare Your Defense

∞┴┌┼╥ ╔┌═┼╬╤┼╘ ╬┼ ╘╧╠╪╦╧ ╨╥┼─═┼╘┘.

esprit 43

≡╥╔╬┼╙╔╘┼ ╓┼╥╘╫╒ ╫╒╠╦┴╬╒.

esprit 52

Θ╟╥┴╩╘┼ ─╧ ╨╧╥┘ ─╧ ╫╥┼═┼╬╔.

esprit 100

≈┌╧╥╫╔╘┼ ╒╟╧╠.

Oxyd Magnum 99 (level 22): Letter Bomb

≡╧─╧╥╫╔╘┼ ╫┌╥┘╫┴└▌╔┼╙╤ ╦┴═╬╔.

PerOxyd 49 (level 22): Hidden Treasure

⌡─╧╙╘╧╫┼╥╪╘┼╙╪, ▐╘╧ ╒ ≈┴╙ ╫╙┼╟─┴ ┼╙╘╪ ─╧╙╘╒╨ ╦ ╦╧═╬┴╘┼ ╙ ╨┼╥┼╦╠└▐┴╘┼╠┼═ ╬┴ ╨╧╠╒. ≡╧╘╧═ ╔▌╔╘┼ ╫╘╧╥╧╩ ▄╦╥┴╬ ╙╧ "╙╨╥╤╘┴╬╬┘═╔ ╙╧╦╥╧╫╔▌┴═╔".


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

6. Γ╠┴╟╧─┴╥╬╧╙╘╔


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

6.1 τ╠┴╫╬┘┼ ╥┴┌╥┴┬╧╘▐╔╦╔

Raoul Bourquin

≥╒╦╧╫╧─╙╘╫╧ ╒╥╧╫╬╤═╔ ╔ ─╔┌┴╩╬, ┬┼╙├┼╬╬┘┼ ─╧╨╧╠╬┼╬╔╤ ╨╧ ╫╙┼═ ╫╧╨╥╧╙┴═

Siegfried Fennig

Σ╔┌┴╩╬ ╒╥╧╫╬┼╩, ╟╥┴╞╔╦┴

Martin Hawlisch

Σ╔┌┴╩╬ ╒╥╧╫╬┼╩, ╟╥┴╞╔╦┴, ╨╥╧╟╥┴══╔╥╧╫┴╬╔┼

Daniel Heck

τ╠┴╫╬┘╩ ╥┴┌╥┴┬╧╘▐╔╦, ╟╥┴╞╔╦┴, ─╧╦╒═┼╬╘┴├╔╤

Ronald Lamprecht

XML, ╟╥┴╞╔▐┼╙╦╔╩ ╔╬╘┼╥╞┼╩╙, ╨╥╧╟╥┴══╔╥╧╫┴╬╔┼ ╧╙╬╧╫╬╧╩ ▐┴╙╘╔, ─╧╦╒═┼╬╘┴├╔╤

Andreas Lochmann

≡╥╧╟╥┴══╔╥╧╫┴╬╔┼, ╥╒╦╧╫╧─╙╘╫╧ ╒╥╧╫╬╤═╔, ─╔┌┴╩╬ ╒╥╧╫╬┼╩, ─╧╦╒═┼╬╘┴├╔╤

Petr Machata

Σ╔┌┴╩╬ ╒╥╧╫╬┼╩, ╨╥╧╟╥┴══╔╥╧╫┴╬╔┼

Nat Pryce

Σ╔┌┴╩╬ ╒╥╧╫╬┼╩

Jacob Scott

Σ╔┌┴╩╬ ╒╥╧╫╬┼╩

Sven Siggelkow

Σ╔┌┴╩╬ ╒╥╧╫╬┼╩ ╔ ╙╨┼├╔┴╠╪╬┘┼ ┌╬┴╬╔╤ Oxyd

Ralf Westram

≡╥╧╟╥┴══╔╥╧╫┴╬╔┼, ─╔┌┴╩╬ ╒╥╧╫╬┼╩


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

6.2 ∩╙╧┬┘┼ ┬╠┴╟╧─┴╥╬╧╙╘╔

Johannes Fortmann

≡╧╥╘╔╥╧╫┴╬╔┼ ╬┴ Mac OS X, ╬┼═╬╧╟╧ ╨╥╧╟╥┴══╔╥╧╫┴╬╔╤, ╟╥┴╞╔╦┴

Dustin Norlander

Σ╔┌┴╩╬┼╥ █╥╔╞╘┴ "Dustismo"

Jeremy Sawicki

≡┼╥┼╥┴┬╧╘╦┴ ╞╧╥═┴╘┴ ╞┴╩╠┴ Oxyd, Oxydlib

Erich Schubert

≡┴╦┼╘┘ ─╠╤ Debian/Ubuntu

Meinolf Schneider

∩╥╔╟╔╬┴╠╪╬┴╤ ╔─┼╤ ╔╟╥┘-≤╨┴╙╔┬╧!

Andrew "Necros" Sega

φ╒┌┘╦┴ ╫ ═┼╬└ (Pentagonal Dreams)

David W. Skinner

φ╬╧╟╧ ╒╥╧╫╬┼╩ ─╠╤ ≤╧╦╧┬┴╬┴ ╙ ╙┴╩╘┴ http://users.bentonrea.com/~sasquatch/sokoban


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

6.3 ≡╧═╧▌╬╔╦╔

ε┴█┴ ╨╥╔┌╬┴╘┼╠╪╬╧╙╘╪ ╥┴┌╠╔▐╬┘═ ═┼╬╪█╔═ ╨╧═╧▌╬╔╦┴═:


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

6.4 Θ╙╨╧╠╪┌╒┼═╧┼ ╨╥╧╟╥┴══╬╧┼ ╧┬┼╙╨┼▐┼╬╔┼

SDL

http://www.libsdl.org/

SDL_image

http://www.libsdl.org/SDL_image

SDL_mixer

http://www.libsdl.org/SDL_mixer

Lua

http://www.lua.org

Oxydlib

http://www.sawicki.us/oxyd

toLua++

http://www.codenix.com/~tolua

zipios

http://zipios.sourceforge.net

Xerces C++

http://xml.apache.org/xerces-c


[Top] [Contents] [Index] [ ? ]

Table of Contents


[Top] [Contents] [Index] [ ? ]

About This Document

This document was generated by GeD on March, 25 2007 using texi2html 1.76.

The buttons in the navigation panels have the following meaning:

Button Name Go to From 1.2.3 go to
[ < ] Back previous section in reading order 1.2.2
[ > ] Forward next section in reading order 1.2.4
[ << ] FastBack beginning of this chapter or previous chapter 1
[ Up ] Up up section 1.2
[ >> ] FastForward next chapter 2
[Top] Top cover (top) of document  
[Contents] Contents table of contents  
[Index] Index index  
[ ? ] About about (help)  

where the Example assumes that the current position is at Subsubsection One-Two-Three of a document of the following structure:


This document was generated by GeD on March, 25 2007 using texi2html 1.76.