
BackMenu - The Pop-Up Menu
BackMenu is a program that allows you to define a pop-up menu on the Windows 3.1 background and
use it to quickly run applications and tools. The idea came from using X-Windows and Sunview, where
the user has a root menu that can be configured.
It allows you to describe a set of actions and associate command lines with them. To bring up the menu
simply click with the mouse button (left, middle or right) on the Windows desktop. This will bring up the
description list. Selecting a description will cause the appropriate command line to be executed.
Help for BackMenu is available on:-

· What is the format for a BackMenu menu file?
· How do I create invisible sub-menus?
· How do I actually create a menu?
· How do I make BackMenu start applications automatically?
· How do I make BackMenu the Windows shell?
· How can I use BackMenu from another application?
· What keyword commands are there?
· How do I construct a command line?
· What is an alias or tool?
· How do I write an external keyword for BackMenu?

BackMenu - Creating a menu.
A BackMenu menu is simply a set of lines (one for each description/command line pair). Additionally,
comments may be placed within the menu file. These are lines that start with a semicolon (;). Any text
following it on that line is ignored.
The syntax for a menu item is given below. Items contained within square brackets are optional. For
more detailed information on the command line parameters, see the BackMenu command syntax. For
more details on the keywords, see the keyword summary.

Menu Text,[@]command-line
or

Menu Text, $Keyword [Keyword Parameters]
Blank lines may be placed between items, to cause a separator line to be placed in the menu.
BackMenu also supports cascading menus.    A cascading menu item is one that has multiple options
associated with it. By clicking on the item, another menu appears with the options on it. It is even
possible to have further cascading menus associated with one or more items within that menu.
Associating multiple items with a single menu item is simple. The definition is:-

>Item Name
Sub menu item 1, command-line
Sub menu item 2, command-line
...

!
That is, the sub-menu is enclosed between a '>' and a '!'. The text that follows the '>' is the text to appear
in the menu (a description of the sub-menu). For example :-

;
; Example BackMenu menu file
;
Word-processing, {DIR=c:\work}Write
Spreadsheet, C:\Windows\Excel\Excel

Program Manager Groups, $Groups
>BackMenu Options

About...,$About

Set Options, $SetOptions
Edit Menu, $EditMenu

Exit Windows, $ExitWindows NoConfirm
!

Defining items within a sub-menu is done in exactly the same way as for a main menu (even to the
extent of adding a sub-menu to this sub-menu). E.g.:-

>Editors
Andy's editor, AE.EXE
Notepad, NOTEPAD.EXE

>Word processors
Word for Windows, WORD.EXE
Windows Write, WRITE.EXE

!
Multi-Pad, MULTIPAD.EXE

!
...

There is no limit to the number of items you can have in any particular menu. BackMenu will split the
menu into multiple columns when it gets over a certain size. How big is that size? See the $SetOptions
dialog box.

BackMenu - Invisible Sub-Menus
You can have sub-menus which are processed by BackMenu but do not form part of the menu
displayed. To do this, use '<' rather than '>' when defining the sub-menu. How is this useful? If you use
the auto run (@) operator, you can create a little start-up menu which contains a list of everything you
want to run, but which won't appear in the menu. For example :-

;
; Some Auto run items
;
<Startup

Clock,@clock.exe
File Manager,@{XPOS=50 YPOS=100}File Manager

!
>Main

Command Window,dosprmpt.pif
...

Note that anything contained between '<' and '!' will not be visible. If you define any sub menus or other
commands in a hidden menu, they won't appear, regardless of whether they are visible or not.

BackMenu - Editing and Checking the Menu
You can use any text editor to create the BackMenu menu file. By default, BackMenu looks for a file
called BACKMENU.INI in the same directory as BACKMENU.EXE. The menu file name can be changed
by using the $SetOptions dialog box.
BackMenu checks the menu file before attempting to create your menu. If BackMenu encounters an
error, you have the option to load an editor and edit the menu file, and the currently loaded menu will be
left unchanged. BackMenu will insert a comment below the line which caused the error (or at the end of
the file if the error is a missing "!"). The editor used is configurable and can be set from the $SetOptions
dialog box. If no editor is specified (i.e. the entry is blank), BackMenu will default to using Notepad.
Currently, BackMenu checks for lines that are too long, contain invalid keywords or problems in the
definition of cascading menus.
BackMenu will automatically monitor the menu file and reload it if the file is modified. It checks the file
every time the menu is accessed and a small delay is encountered if the menu has to be reloaded
(along with a message and the usual animated cursor). The menu is parsed at this time as well and so it
is possible for an error dialog box to appear as described above.

BackMenu - Auto-running Applications
If you install BackMenu as the shell, it will start any programs contained within the Program Manager
start-up group. It is also possible, however,    to mark applications within the menu so that, when
BackMenu is invoked, the marked applications are run automatically. To do this, insert an at symbol (@)
before the command line for that item. E.g.

;
; Example of an menu using Auto-Run feature
;
>My Apps

Clock, @clock.exe
Screen Saver, @c:\winapps\saver\Saver.exe

Free Memory, FREEMEM.EXE
!

In the example above, clock.exe and saver.exe will be executed when BackMenu is run. If you use the
choose to reload the menu file, however, the @ will be ignored. This allows you to use BackMenu to
decide which program you want running.

There may be times when you've selected some applications to run, but don't actually want them to start
up when you run BackMenu. You can do this by holding down either shift key while BackMenu is
loading. This will cause BackMenu to ignore any @'s that you've placed in the menu file, and also ignore
the start-up group (if BackMenu is the shell).

BackMenu - Using it as the Start-Up Shell
BackMenu can be used in place of Program Manager as the default shell for Windows.    To install it
simply edit SYSTEM.INI which is in the windows directory. In the [boot] section of the file there is a line
which will read:-

shell=progman.exe
Replace it with:-

shell=backmenu.exe
and you're away.    We've noticed that some ill-behaved installation routines set this back without asking;
sorry, we can't alter other people's inconsiderate coding!    Similarly, some install routines expect
Program Manager to be running; just start a copy before starting the installation.
If BackMenu and its DLLs are not on the DOS path, BackMenu will not be usable as the shell because
of the way Windows finds DLLs.    To get round this problem, the program BDSHELL.EXE is provided,
which makes the conditions right for loading BackMenu and then loads BackMenu.    If you know
BackMenu is not on the path or experience errors when starting Windows with BackMenu set as the
shell, use the line:-

shell=c:\winapps\backdesk\bdshell.exe
in SYSTEM.INI. Replace c:\winapps\backdesk with the actual location of the file. BDSHELL must be in
the same directory as BackMenu and its associated files.

BackMenu - Access From Other Applications
The BackDesk DLL (BACKDESK.DLL) contains three accessible functions that can be called from other
applications to let you use some of the features of BackMenu. They are:-
integer BD_IsBackMenuRunning()
Is BackMenu installed and running? This function returns an integer which is 1 if BackMenu is running
and 0 if not.

ActivateBackMenu()
Allows the menu to be popped up by another application. This function takes no parameters.
integer BM_Execute(integer,string,integer)
Execute a application using the BackMenu command line syntax. This function takes three parameters.
The first is an integer which contains the window identifier for the application making the call. For macro
languages, use 0 for this value. The second parameter is the BackMenu command string. Please note
that you can not execute any keywords using this function. The third parameter describes how the
resulting application's window is to appear. The values it can take are as follows:-

0 Hidden
1 Normal
2 Minimised
3 Maximised

Any attributes in the BackMenu command will override the action of this value.

Here are a couple of Microsoft Word-For-Windows macro that demonstrate how to use these functions

Declare Sub ActivateBackMenu Lib "BACKDESK.DLL"
Declare Function BD_IsBackMenuRunning Lib "BACKDESK.DLL" As Integer

Sub MAIN
If BD_IsBackMenuRunning <> 0 Then

ActivateBackMenu
Else

MsgBox "BackMenu isn't running"
End If

End Sub

Declare Function BM_Execute(Owner As Integer, Command$ As String, ShowAs
As Integer) Lib "BACKDESK.DLL" As Integer

Sub MAIN
ret = BM_Execute(0, "{XPOS=100 YPOS=100}NOTEPAD.EXE", 1)

End Sub

Writing similar Excel macros is left as an exercise for the reader.

Keyword Commands
Click on the command you want help on. In the full descriptions, optional parameter are enclosed in
square brackets [] and replaceable parameters are enclosed in angle brackets <>.
From V3.10, it is possible to extend the keyword commands available by writing external keywords and
installing them into BackMenu. Some of the existing keywords have been moved over to the external
keyword system and it is hoped, in time, that all keywords in BackMenu will be provided this way. For
more information, see Writing External keyword DLLs for BackDesk V3.10

Keyword Short Description
$About Display version information
$AliasOptions Change BackMenu alias settings
$AliasToBack Send the aliases/tools behind all other windows
$AliasToFront Bring the aliases/tools above all other windows
$ArrangeAlias Arrange the aliases along one side of the screen
$CallDLL Execute a function within another DLL
$DefaultPrinter List the printers available and let you choose the default
$EditMenu Edit the current menu.
$Execute Choose an application to execute
$ExitWindows Exit Windows
$Groups Display a menu containing the Program Manager Groups
$HideAlias Remove all aliases/tools from the screen.
$Info Display system information
$LoadMenu Load in another menu-file to replace the current.
$Net... A set of network keywords that allow you to add/browse/delete network

resources.
$NewAlias Create a new alias
$ReloadMenu Re-load in the default menu-file
$RemoveMenu End the BackMenu application
$RestartWindows Restart Windows
$RunFile Execute a set of commands contained within a file
$SaveAlias Save all the alias/tool positions.
$SetOptions Set various BackMenu options
$ShowAlias Bring all aliases/tools back onto the screen
$SnapAlias Position aliases using a grid.
$StartSaver Start the Windows screen saver
$Tasks Display a menu containing all the executing applications.
$XKeywordManager Provide management of external keywords

$About in BMKEYW.DLL
This one is simple. It presents you with a dialog box telling you all sorts of useful information, like the
version number of the application and how to register.
If you've registered (thank you!) then you get to see you name as a reminder of your support for this
product.

$AliasOptions
Want to fiddle with the way in which aliases (and tools) operate in BackMenu? Then look no further than
the dialog box shown below. Click on something... Go on...

See Also

Other Alias Keywords
$AliasToFront $AliasToBack $HideAlias $ShowAlias $ArrangeAlias $SnapAlias $NewAlias $SaveAlias

Other ways of setting things
$SetOptions BackDrop Control Panel

Use other mouse button for multiple select
You can select a whole group of aliases/tools by clicking on the desktop and dragging with the other
mouse button (i.e. the one not being used to pop-up BackMenu). This might get in the way of other
desktop applications (like Norton Desktop for Windows), so you can selectively enable/disable it.

Show Alias/Tools in BackMenu task list
Choose whether you want all the tools and tasks to be displayed in the BackMenu task list (as provided
by $Tasks). Aliases are prefixed with "Alias -" and tools with "Tool -". If you've got a lot of aliases, we
suggest you un-check this option.
Note This does not remove the aliases and tools from the Task Manager task

list.

Confirm save of Alias/Tool positions on exit
Normally when you exit Windows, or remove BackMenu, the positions of the various tools and aliases
are saved automatically so they can be restored later. However, you can choose whether this happens.
You can also set whether or not BackMenu will ask before saving by checking the Confirm option. If
Confirm is set, BackMenu will prompt first, like this :-

Display Alias Captions
Turns the title shown below an alias or tool on and off. Turning off alias captions means you can pack
your aliases closer together, but you only then have the icon as an indication of what the alias does.

Confirm Alias Removal
If you highlight an alias and press "CTRL+ALT+X", or choose "Close..." from it's system menu, the alias
is destroyed. If this option is checked, however, the alias will ask for conformation thus :-

General Settings
Clicking on this button brings up the BackDrop control panel which then lets you fiddle even more!

Font
Choose which font is used to display the text in the captions below the aliases.

Nail Alias/Tools to Desktop
Controls whether or not all aliases or tool can be moved from their current positions. This switch is very
useful if you want to stop your beautiful aliases/tools layout from being spoilt by a twitch of the mouse.
This setting is global, but can be overriden for an individual alias (so you can fine tune your layout to
perfection). For more information see BackDrop Aliases and Tools - Configuring.

$AliasToBack [Selected]
Move aliases/tools behind all the other windows.

See Also

$AliasToFront $HideAlias $ShowAlias $ArrangeAlias $SnapAlias $NewAlias $SaveAlias $AliasOptions

Normally the keyword will operate on all of the aliases and tools. If Selected is specified, only those
aliases and tools that gave been grouped will be modified.
Note to me: link to general stuff

$AliasToFront
Bring all of the aliases/tools to the front of all other windows.

See Also

$AliasToBack $HideAlias $ShowAlias $ArrangeAlias $SnapAlias $NewAlias $SaveAlias $AliasOptions

$ArrangeAlias [Selected]
Arrange the aliases along one side of the desktop. depending on the gravity set using the BackDrop
control panel.

See Also

$AliasToFront $AliasToBack $HideAlias $ShowAlias $SnapAlias $NewAlias $SaveAlias $AliasOptions

$CallDLL <DLL Name> <Function Name> <String>
The $CallDLL is a powerful hook, through which the functionality of BackMenu can be extended.
Programmers may write functions within a DLL that performs some function, and have it executed
through BackMenu. Parameters may be passed to the function in the form of a string as this allows the
most flexible way to pass parameters of different type.    The % and * characters may be used to prompt
for a parameter or get a file name from a list as with the other keywords.    A prototype for a C function
that could be called from BackMenu is:-

/*--*/
void FAR PASCAL ShowBox(LPSTR Params)

{
 MessageBox(GetActiveWindow(),Params,"BackMenu DLL Test",

MB_OK);
}
/*--*/

A Turbo Pascal program that would work is as follows:
LIBRARY CommandLine;

{Sample procedure callable using $CALLDLL from BackMenu.}
{Not even slightly copyright.}

USES
Strings, WinProcs, WinTypes;

PROCEDURE ShowBox(Params : pChar); EXPORT;
BEGIN

 MessageBox(GetActiveWindow, Params, 'BackMenu DLL Test', mb_Ok)

END; {PROCEDURE CommandLine}

EXPORTS
ShowBox ;

BEGIN

END.
If you write any useful DLLs which use this facility, please let us know.

The name of the DLL within which the function resides.

The name of the function contained within <DLL Name> which is to be called.

The rest of the data after the function name is combined into a single string and passed to the function.

$DefaultPrinter in DEFPRN.DLL
This keyword presents you with a pull-right menu containing all of the available printers you have
currently installed. One of these printers has a tick against it, signifying it is your current default printer.

Choosing any printer from the list will make it your default printer.

$EditMenu
Use the editor defined using $SetOptions to edit the current menu.

$Execute [Browse]
Want to run an application but it doesn't appear within your menu? This keyword provides a dialog box
(shown below) within which you can type the command line to execute.

Command
Type in the command line to be executed. A previous history of the last 10 commands is kept and can be
accessed by clinking on the down arrow.

Browse...
Rather than typing in the location of a file, you can use the browse button to bring up a dialog box which
can then be used to find the file.

Takes you straight to the dialog box for finding a file. It's just as though you choose $Execute and
clicked on the Browse... button straight away.

$ExitWindows [NoConfirm] in BMKEYW.DLL
Exit windows and return back to DOS (or whatever operating system you are using).

The NoConfirm option disables the warning message.

$Groups [Sorted] in PMGROUPS.DLL
Provide a pull-right menu which contains all of the Program Manager groups. Each group will be
displayed and will provide access, via another pull-right menu, to the applications contained within.

Note The menu and all sub-menus are built when BackMenu is loading the menu file. If you make any
changes to the groups, these will not be reflected by BackMenu until the menu file is re-read. It is
possible to force BackMenu to re-read the group files by executing the $ReloadMenu command,
however this will only work if the NoGroups parameter is not supplied.

See Also

$ReloadMenu

The group descriptions, and all the entries within each group, will be sorted alphabetically.

$HideAlias [Selected]
Removes, but does not destroy, the aliases/tools from the screen. Useful for uncluttering your desktop.

See Also

$AliasToFront $AliasToBack $ShowAlias $ArrangeAlias $SnapAlias $NewAlias $SaveAlias
$AliasOptions

$Info
Want to know lots of interesting facts about your Windows environment? Then look no further than this
keyword. It will tell you more things than you ever wanted to know.

$LoadMenu [PopUp] <Menu File>
Replaces the current menu with one contained in the specified file.
E.g.

My Menu,$LoadMenu c:\users\ian\mymenu.ini

Causes the new menu to pop-up as soon as it has been loaded, rather than waiting for you to click on
the background.

The DOS path and file name of the menu to be loaded.

$NewAlias
Displays the dialog box shown below which is used to create a new aliases.

See Also

$AliasToFront $AliasToBack $HideAlias $ShowAlias $ArrangeAlias $SnapAlias $SaveAlias
$AliasOptions
General Information On Aliases

Alias Caption
The text that appears under the alias on the desktop. Be as descriptive as you like...

Alias File Name
The actual file name to be associated with the alias. This is then turned into a command to be executed
when you double click on the alias. It can contain any or all of the attributes described in the BackMenu
syntax summary. You can also associate any of the keywords as an alias command line. Click on the
down arrow to get a list of them all.
An alias file name may contain a hash (#) character which denotes where in the command any files
dropped on the alias are to appear. This is more fully described in the BackDrop alias/Tool summary.

$ReloadMenu [NoGroups] [FreeDLLs]
The menu defined using $SetOptions will be re-read and replace the current menu. All of the Program
Manager group files will be re-read if the $Groups keyword is encountered within the menu.

See Also

$LoadMenu

The Program Manager group files will be not be re-scanned, BackMenu will use the internal
representation it creates when it is first run.

Any DLL references made using $CallDLL will be freed and the libraries are removed from memory.

$RemoveMenu [NoConfirm]
Remove BackMenu from the Windows environment. All of the aliases and tools will be removed from the
desktop and the menu destroyed.    You will be prompted to confirm that you really want to remove such
a useful application.

If you answer in the affirmative, BackMenu will no longer be available, and the following message will
appear.

$RestartWindows [NoConfirm]
Want to shutdown Windows and then re-enter it so some changes you've made come into effect? Then
$ExitWindows is the keyword for you. Answering yes to the question...

will cause Windows to close down (just like $ExitWindows) and then restart.

$RunFile <file name>
Want to execute more than one command at once? $RunFile lets you do this. You create a text file
which contains a list of commands, one per line, which are to be executed. The name of this file can
then be given to $RunFile, and BackMenu will execute all of the commands listed.
E.g.
The file loadsfun.run contains:-

{XDESK=0 YDESK=2}c:\windows\sol.exe
{XDESK=1 YDESK=2}towers.exeTOWERS_SELL
{XDESK=2 YDESK=2}arachnid.exe

To run this little lot
Loads'o'Fun,$RunFile c:\backdesk\loadsfun.run

The full path and file name of the text file containing a list of commands to run.

$SaveAlias
A small safety feature. This keyword stores the positions of all of the aliases and tools straight away.
Useful if you've just spent a long time arranging things.

See Also

$AliasToFront $AliasToBack $HideAlias $ShowAlias $ArrangeAlias $SnapAlias $NewAlias
$AliasOptions

$SetOptions
Lets you fiddle about with all sorts of settings to do with the secret innermost workings of BackMenu.
Using this keyword will present you with a dialog box as shown below. Click on an item of interest for
more information.

Default Menu File
The name of the file containing the menu you want loaded when BackMenu starts up

Default for Browse
When using the Browse... button from any of the BackMenu dialogs, this string will be used to set the
list of files initially displayed. You can edit this to include/exclude your favourite file types.

Hot Key
Choose which key pops-up the BackMenu menu. At the moment you're limited to ALT+F1 - ALT+F12.

Wrap menu on more than
Stop your long menu's from extending off the top and bottom of your display. This value defines how
many lines a menu must contain before it is split vertically. For example, if the wrap value is set to 10, a
19 item menu will appear like this:-

Editor for Menu File
If BackMenu finds an error in your menu, or you activate the $EditMenu keyword, the application
filename set here will be used to edit the menu. If its blank, then NOTEPAD.EXE is run.
Reload Groups when Auto-Loading Menu
BackMenu auto-detects if the menu has changed and will automatically load the new menu file. If this
option is checked, it will also re-scan the program manager groups as well, otherwise it will use the
previous values it found.

Mouse Button for Menu
Which button causes BackMenu to appear? You can select that here. If you're going to use the middle
mouse button, make sure that the mouse driver you're running supports it.

Enable Dragndrop Aliases and Tools
BackMenu can provide aliases which act as shortcuts to your most frequently used applications.
However, these aliases can interfere with other Windows Applications (such as Norton Desktop), so this
check box allows you to enable (checked) or disable (unchecked) them. For more information on aliases
and tools see the BackDrop Aliases and Tools section.

$ShowAlias
Re-displays any hidden aliases/tools. Useful for cluttering your uncluttered desktop.

See Also

$AliasToFront $AliasToBack $HideAlias $ArrangeAlias $SnapAlias $NewAlias $SaveAlias $AliasOptions

$SnapAlias [Selected]
Is the layout of your aliases and tools looking a little ragged? Want to line them up in neat rows and
columns? $SnapAlias does all this, and no more. The grid used is defined using the settings contained
within the BackDrop control panel

See Also

$AliasToFront $AliasToBack $HideAlias $ShowAlias $ArrangeAlias $NewAlias $SaveAlias
$AliasOptions

$StartSaver
If you've got a screen saver enabled, then this keyword will activate it. Useful if you want to lock your
display in an unsecured environment.
Note This keyword only works with screen savers accessed through the

Control Panel. It will not work with other 3rd party savers such as After
Dark.

$Tasks in BMKEYW.DLL
Provides a pull right menu which contains a list of all of the currently executing applications. If you select
one of them, it will be brought to the front of all of the other windows and given the focus. An example of
a task list is given below.

A Note about External Keywords
This keyword is an external keyword and, as such, may not be available if it has been uninstalled. For
more information, see $XKeywordManager and the External Keywords section.

$XKeywordManager in XKEYMAN.DLL
This keyword is used to add, edit or remove any of the external keywords installed as a part of
Backmenu. On executing it, you will be presented with a dialog box similar to the one shown below.
Please click on an area of interest:-

Installed Keywords
This list shows all of the installed external keywords available to use in BackMenu. You may select one
or more of these to edit or remove. Selecting an individual keyword will cause its description to appear in
the panel below.

Keyword Description
The description (supplied by the external keyword library) of the currently selected keyword.

Available Keywords from Library
This list shows all of the external keywords it is possible to install from this library. You may select one or
more of these to add. Selecting an individual keyword will cause its description to appear in the panel
below.

Add the selected keywords to the installed set.

$XKeywordManager - Installing a new External Keyword
Installing a new external keyword is simple. First of all, use the common dialog box shown below to
locate the external keyword library.

Once youve located the library (and there are no problems), a dialog will appear listing the external
keyword or keywords available to you. Choose the ones you wish to install and then click Add.

You might get an message box containing an error message if something goes wrong during the
installation process.

$XKeywordManager - Editing an existing External Keyword
Editing a keyword lets you change the name of the external keyword library which contains the keyword
selected. You will be presented with the following dialog box.

This button lets you search for the new location of the library containing the external keyword. It brings
up a dialog box similar to the following:-

When youve edited the external keyword library, press this button to have BackMenu use your new
settings.

$XKeywordManager - Removing an External Keyword
If you no longer want to use a particular external keyword, you can remove it from the set available and
thus free up any resources it may have used. To do this, choose remove from the $XkeywordManager
dialog box. You will be asked if this is something you really want to do.

Please note
1. Your menu will be reloaded and parsed as soon as you have finished with this keyword. If

you have removed any external keywords and they still exist within your menu,
BackMenu will report them as an error. We suggest you remove all occurances of any
external keywords you wish to remove before you actually remove them through
$XKeywordManager.

2. $XKeywordManager is itself an external keyword and therefore can be removed, thus
preventing anyone from tampering with the set if installed external keywords. The only
way to reinstall this keyword is to follow the instructions given in So how do I use my
shiney new external keyword in BackMenu?.

BackDrop Aliases and Tools
This section describes how aliases and tools work within the BackDesk package. Although they are
dealt with separately, you need to be running BackMenu in order to use them. BackMenu does all of the
caring for the aliases, saving them when you quit BackMenu and restoring them again the next time you
start it up.

BackDrop Aliases and Tools - What are they?
BackDrop Aliases and Tools - How do I use them?
BackDrop Aliases and Tools - Keyboard short cuts
Drag'n'Drop Tools supplied with BackDesk

BackDrop Aliases and Tools - What are they?

So, what is an Alias?

A BackDrop alias is an icon which appears on the desktop and represents a particular file on your
machine. This file can be either an application program or a data file and    you can use any icon you like
to represent it. Aliases can be activated simply by double-clicking on the alias icon. If the alias is an
application program, it will be executed. If the alias is a data file, BackDrop will use the file association
(as set up using File Manager) defined for that file type to "execute" it. An error will occur if no
association exists.
An alias can also be used as the source for a drag'n'drop operation. You can drag aliases and drop them
on applications (or other aliases or tools, more later) in the same way you can drag files from File
Manager. If an alias is defined correctly, you can also drag files from File Manager and drop them on the
alias. In order for an alias to be a destination for a drag'n'drop, it must be an alias to an application
program.
The alias definition can be thought of just like a command line. Normally the command line is simply the
file name associated with the alias, in which case activating an alias is just like double clicking on the
associated file in File Manager. Because it is a command-line, however, you can also use all of the
BackMenu attributes available in your menu definitions (in fact, BackDrop just uses the BackMenu
execution engine to actually do the work).
So, you can have an alias with a definition like:-

{XDESK=1 YDESK=1 XPOS=100 YPOS=100}c:\windows\system.ini
which, when double-clicked, causes Notepad (the default association with .INI files) to be run at
(100,100) on desktop [1,1]. You can still also this alias and drop it on a running Notepad, in which case
the Notepad will open the file c:\windows\system.ini.
Aliases can also have files dropped on them. To make an alias "drop aware", you    use the hash (#)
symbol in the alias command line. This hash is replaced with the file dropped on the alias and the
resulting command is executed. So another alias might be defined as:-

{XDESK=1 YDESK=2}notepad.exe #

If this alias is double clicked, Notepad will be executed. If a file is dropped on the alias, the # is replaced
with the file and resulting command executed. If the alias in our first example were to be dragged and
dropped on this alias, Notepad would open on desktop [1,2] with the file c:\windows\system.ini. Note that
the attributes for the original alias are lost, Windows drag'n'drop only allows file names to be passed to
the application. It is even possible to drag this second example and drop it on another alias or
application. If this were to happen, the application would try and open NOTEPAD.EXE (probably not
what you'd want to happen, but its possible).
You can define what happens if more than one file is dropped on an alias at once (i.e. you select 4 files
in File Manager and drop them on your notepad alias). Two things can happen; the alias command is
executed once for each file dropped (so you'd get 4 Notepads running in our example). The alternative is
to have all of the files replace the #, in which case one Notepad is run with all 4 files on its command
line. Both of these modes of operation are available to each alias.

OK, but what is a Tool?

A tool is a simple application written to run in conjunction with the BackDrop alias system. It appears just
like an alias, and operates in the same way. Any tools executed are saved along with the aliases by

BackDrop, and started up again the next time BackMenu is used.
The difference is that a tool is a running process and so can do more interesting things with the files
dropped on it. For example, one of the tools supplied with BackDrop is a wallpaper changer. You can
drop bitmap files on it and the background wallpaper will change. This tool does much more than this, it
allows you to keep and manager separate wallpaper lists, and have your wallpaper change while you
are using Windows. This behaviour would be impossible to do with a simple alias.

BackDrop Aliases and Tools - How do I use them?
The way in which aliases and tools can be used is summarised in the introduction. However, there are
various operations you can perform on them which are summarised in the list below.

Creating a new alias or tool
Selecting aliases and tools
Moving aliases and tools
Configuring aliases and tools
Saving and loading aliases and tools
Closing aliases and tools
Disabling aliases and tools

BackDrop Aliases and Tools - Creating
There are three ways to create an alias:-

· By selecting a menu item using the $NewAlias keyword. A dialog box will prompt you for details of
the alias.

· By dragging a file from File Manager and dropping it on the desktop. A default Icon is chosen for
the alias depending on the type of file dropped.

· By using the T2Alias tool.

BackDrop Aliases and Tools - Selecting
An alias or tool can be selected (activated) in a number of ways. To do this, use the mouse button not
assigned to bring up the alias/tool menu (see the BackDrop control panel for details on how to set this).
You can:-

· Click on the alias/tool to select it. Depending on the mouse button chosen for the alias menu, a
menu might appear.

· Shift click on an alias to add or remove an alias/tool from a collection.
· Click and hold the mouse button on the desktop (not using the mouse button defined to activate

the BackMenu menu) and drag a rectangle around any aliases/tools. The aliases/tools whose
centre falls within the rectangle are selected. Holding the shift key down while performing this
operation will add the aliases/tools selected to the current selected set.

Once the aliases have been selected, you can perform group operations on them.

See Also

Moving Aliases/Tools Closing Aliases/Tools $AliasToBack $ArrangeAlias
$HideAlias $SnapAlias

BackDrop Aliases and Tools - Moving
Once a single alias or tool (or group of them) has been selected, you can move them about. This can be
done with either the keyboard or the mouse :-

· Cursor keys can be used to move the currently selected aliases/tools.
· Click, hold and dragging on an alias/tool will move the currently selected set.

See Also

Selecting Aliases/Tools

BackDrop Aliases and Tools - Configuring
Aliases can be configured by using their menu. Click on the alias using the button defined to activate the
menu (see the BackDrop control panel for details on how to set this). Each tool has its own menu, see
the help for that tool for details on how to use it.
There are two dialog boxes available to configure aliases. The first, displayed by selecting "Alias
Details...",    allows you to define how the alias works.

The second, displayed by selecting "Alias Icon...", allows you to choose the icon used to represent the
alias.

Alias Caption
The text displayed under the alias. You can remove the caption from an alias in one of three ways :-

· Leave this entry blank.
· Turn off the "Show Alias Title" setting in this dialog box.
· Disable the captions for all aliases via the $AliasOptions configuration dialog box

Alias Command Line
The command to be executed when the alias is double-clicked. This normally contains the name of the
file used to create the alias, but you can use any part of the BackMenu command line syntax (as
described in the introduction).

Show Alias Title
Check this option if you want the caption to appear below the alias icon. If you have disabled all alias
captions via the $AliasOptions configuration dialog box, this option will be greyed out.

Treat Multiple Files As One
This option decides what happens when you drop more than one file onto an alias. Normally, the alias
command line is executed with the hash character replaced for each file dropped. If this option is
checked, however, the alias command line is executed once with the hash character replaced by all of
the files.

Allow Alias to be moved
Setting Nail Alias/Tools to Desktop within the $AliasOptions dialog means aliases and tools stay put.
Checking this option lets you override the global setting and fine tune the position of the alias. This
option is always set for newly created aliases (i.e. from $NewAlias or from a drag/drop operation).

Shows you all of the icons available from the file displayed below. Select the icon you want to use and
click the "OK" button.

Browse...
Displays a dialog box from which you can choose the executable or library file to look for icons in.

File Name for Icon(s)
Type in here the name of the file you want to extract the icons from. Click on "OK" and any icons found
in the file will be displayed for you to choose from.

BackDrop Aliases and Tools - Saving and Loading
The position, icon, command-line etc. of an alias or tool is stored away in a file called SP-SERV.INI
which is located in your Window's directory. Please feel free to have a look at this file, but don't touch
anything! SP-Services applications use this file to store essential information, changing entries could
cause unpredictable results.
The current set of aliases and tools are loaded whenever BackMenu is run, that's all there is to it!
Alias and tool information is always saved if you execute the $SaveAlias keyword. You can also tell
BackMenu to save these settings whenever you quit the application (or exit Windows). BackMenu can
be set up to prompt you (if you don't always want to save the aliases you've got), or even not to save
anything at all (see the $AliasOptions keyword for details on how this can be configured).
This last option may not seem to be useful, but is if you've gone to a lot of trouble to create the perfect
set of aliases and tools. If you turn off the "save when quitting" option, this set will never change and is
safe from accidental moving/deleting/changing (unless you use the $SaveAlias keyword). The flip side is
you have to remember to explicitly save your alias and tool set-up whenever you change it - it's your
choice.

BackDrop Aliases and Tools - Closing.
You can close an alias or tool by using CTRL+ALT+X. This applies to all of the currently selected aliases
and tools so use these keys with care!
Note ALT+F4 does not remove an alias/tool.

BackDrop Aliases and Tools - Keyboard short cuts
You can alter the general layout and state of aliases and tools by using the keyboard. Most of these
keyboard short cuts have equivalent BackMenu keywords. These keyboard short cuts can be grouped
into two distinct classes.

· Those that affect only the selected aliases and tools (CTRL + key).
· Those that affect all aliases and tools (CTRL + ALT + key).

The table below shows the various keyboard short cuts.

Keyboard short cut Function Keyword Equivalent
CTRL+A Arrange selected Aliases/Tools $ArrangeAlias selected
CTRL+ALT+A Arrange all Aliases/Tools $ArrangeAlias
CTRL+B Selected Aliases/Tools to back $AliasToBack selected
CTRL+ALT+B All Aliases/Tools to back $AliasToBack
CTRL+ALT+F Bring all Aliases/Tool to front $AliasToFront
CTRL+G Snap selected Aliases/Tools to grid $SnapAlias selected
CTRL+ALT+G Snap all Aliases/Tools $SnapAlias
CTRL+H Hide Selected Aliases/Tools $HideAlias selected
CTRL+ALT+H Hide All Aliases/Tools $HideAlias
CTRL+ALT+R Restore all Alias/Tool positions Note 1
CTRL+ALT+S Show all Alias/Tools $ShowAlias
CTRL+ALT+X Close selected Aliases/Tools Note 2

Closing Aliases and Tools
Like all good rules, this one has an exception and that is CTRL+ALT+X. This exception allows you to
close one or a whole group of aliases/tools in one stroke. As this is such a powerful command it needs a
powerful set of keys to activate it. You're far less likely to hit CTRL+ALT+X than CTRL+X by accident.

Restore all Alias/Tool positions
If you inadvertently muck up your wonderful alias/tool layout, it is possible to repent. See BackDrop
Aliases and Tools - Restoring their positions for more details.

BackDrop Aliases and Tools - Restoring their positions
Moved all of your aliases and tools around and decided the layout is no good? Inadvertently dragged an
alias instead of clicking on it? Chosen to arrange the aliases when you really meant to snap them to the
grid? If any of these situations arise then the restore keyboard shortcut is designed for you. Simply press
CTRL+ALT+R and the aliases and tools will be restored to their last remembered position.

How does BackDrop decide when to remember the positions of all of the aliases and tools? If you leave
them alone (i.e. don't move them) for a period of about 30 seconds, BackDrop decides that you're happy
with the layout and so remembers it.

Note Currently there is no keyword equivalent to this command, it only works from the keyboard.

BackDrop Aliases and Tools - Enabling and Disabling
We hope you will find the aliases and tools a useful addition to your desktop. However, you may wish to
disable this feature for some reason (e.g. it conflicts with another Desktop application). To do this, un-
check the Enable Dragndrop Aliases and Tools option from the $SetOptions dialog box. If, at some later
stage you wish to use aliases and tools again, simply check this option.

Note BackMenu will have to be restarted before this change can take effect. If youve installed
BackMenu as the shell, youll have to restart Windows. BackMenu will inform you of the correct
course of action via a message box.

An Overview of BackMenu Command Line Syntax

This section describes just what you can place on a BackMenu command line. This command line can
appear in many places within BackMenu.

1. As part of the definition of a menu.
2. As part of the definition of an alias.
3. In a text file grouped with other commands, to be executed together via $RunFile.
4. As an entry in the dialog box accessed via $Execute.

Most of the time, the command line used within BackMenu will look exactly the same as commands
entered at the DOS prompt. However, because BackMenu is executing Windows programs, it can have
a lot more control over exactly how an application starts up.

A BackMenu command line can consist of 3 parts:-

1. An optional set of attributes which are applied to an application and are contained within curly
braces {}

2. The name of the application to be run
3. Any parameters that are to be passed to the application.

E.g.

{NOR XDESK=2 YDESK=2 XPOS=10 YPOS=10}NOTEPAD.EXE hello.txt

Click on the part of the command line you would like more help with.

You can use this command line syntax from other applications (e.g. Program Manager) by using BDX,
supplied with this package.

The Command Line Attributes - Overview
The BackMenu command line attributes give you complete control over how the application starts up.
You can:-

Specify start-up state, size and position
Control the virtual desktop
Specify the default directory
Run a single instance only
Delay before moving and sizing
Stop BackMenu interpreting the application parameters

These attributes are placed on the command line before the application program name and enclosed in
curly brackets {}. The general format for an attribute is

NAME=numeric-value
or

NAME="string"
Only the first few characters of an attribute are required to differentiate between them. In the following
examples, the minimum number of characters required are shown in capital letters.
Please click on the list above for more information about the various attributes.

The Command Line Attributes - Start-up State, Size and Position
When executing an application, BackMenu gives you complete control over how and where it will appear
on the screen. You can specify an application's:-

· Position {XPOs and YPOs}
· Size {WIDth and HEIght}
· State {NORmal, MAXimized, MINimized, HIDden}

These attributes can be mixed and matched. For example, to start up Notepad at location (100,100) on
the screen, you might execute:-

{XPOS=100 YPOS=100}NOTEPAD.EXE
To also make this window 200x300 you would execute:-

{XPOS=100 YPOS=100 WIDTH=200 HEIGHT=300}NOTEPAD.EXE

The Command Line Attributes - Controlling the Virtual Desktop
If you're running BigDesk, then you can also use the following attributes for extra control over how an
application starts up. The attributes XDEsk and YDEsk specify which desktop the application will use.
Desktops are numbered from 0 from the top-left corner.   
For example, to start up Seahaven Towers on the middle desktop of a (3x3) set-up you would use:-

{XDESK=1 YDESK=1}TOWERS.EXE
These can be used alongside the normal positioning controls, or instead of. For example, you can
specify screen position as well as the desktop. In this case the window will be placed at the required
position relative to that desktop. For example:-

{XDESK=2 YDESK=0 XPOS=0 YPOS=0}MINES.EXE
will be placed in the very top-left hand corner of the specified desktop. It is possible, by using large or
negative screen co-ordinates, to position a window so it straddles several desktops. If you don't want
this to happen, you can specify the SNAp attribute which ensures the whole window (or as much of it as
possible) is on the specified desktop.
You can also make use of the other facilities available through BigDesk, such as the keep-to-front and
keep-with-desktop options, which can be set for a particular application. BackMenu supports two
attributes, TOFront and TODesk.

TOFront makes the application float above all other windows (except those which are themselves
TOFront).
TODesk makes an application stay with you when you move from desktop to desktop, rather than
remaining in its specified place.

For example:-
{XPOS=0 YPOS=0 WIDTH=100 HEIGHT=100 TOFRONT TODESK}CLOCK.EXE

will execute a clock in the top-left hand corner of the screen, that will float above all other windows and
will remain with you whatever desktop you are on.

A very addictive single pack patience game also available from Clarity Systems :->

The Command Line Attributes - Single Instance Applications
There may be instances when you want to execute something once and once only. If the application is
already running you'd rather switch to it than start up a new copy. This may be because the application
can only have one copy running at a time (e.g. BigDesk). Or, it mat be simply that you don't want to
clutter your desktop with multiple copies of the same thing.
A good example of this is using a particular help file. Each time you select the help file from BackMenu,
a copy of WINHELP will be run with the help file displayed in it. It would be better to switch to the window
containing the help if it exists, and only execute it if not.
BackMenu lets you perform the above feat by providing the SINgle attribute. This tells BackMenu to look
and see if there is another copy of the application running before it tries to execute it. However, for
BackMenu to perform this feat, you must tell it how to identify another copy of the application. This is
done by using the TITle and/or CLAss attribute along with SINgle.
With the TITle attribute you can specify all (or part) of the title of a window of the application to look for.
BackMenu will examine all of the currently available windows and see if any start with the title given. If it
finds one, it will make that window active then give up. Otherwise, will execute the command. The
CLAss attribute works in a similar manner except the entire class name must be specified. CLAss is only
provided for power users who like nothing better than rolling their sleeves up and rummaging around
below the surface. Most of the time the TITle attribute will suffice.
For example, if you wish to execute only one copy of the Windows 3.1 SDK help file:-

{SINGLE TITLE="Windows 3.1 SDK"}WINHELP.EXE c:\windev\help\win31wh.hlp

The Command Line Syntax - The Default Directory
Occasionally, you may want an application to start up using a particular directory as default. This
directory would be presented to you the first time you opened a document. By default, BackMenu uses
the directory of the application, however, it is possible to override this using the DIRectory attribute.
For example, you have all of your spreadsheet documents in your own personal directory. To execute
Excel and have it use that directory you might use:-

{MAX DIR=c:\ian\excel\finance}EXCEL.EXE

The Command Line Attributes - Delaying the Use of Attributes
BackMenu provides a powerful attribute set with which you can specify position/size/state of an
application. However, there are applications which remember their own size/position information which
can lead to problems,
A prime example of this is the support for running DOS based applications in a window.    There is an
option in the Fonts... dialog box that makes Windows save the size/position of that DOS box on exit. If
we now try and position this DOS box using    BackMenu attributes, things start to go wrong.
BackMenu executes the DOS program and re-locates the relevant window. Windows then comes along.
notices the settings have been saved from before and so uses those to re-position the DOS box. A tug-
of-war develops which BackMenu quickly loses. The DOS box appears where you last moved it and not
where you wanted it to. This problem is compounded if you run several copies of a particular program;
they all appear on top of one another!
To try and solve this problem, the DELay attribute was introduced. This attribute, surprisingly enough,
delays the application of all other attributes by a certain amount of time, specified in milliseconds. This
gives Windows (or the application) time to think it has positioned the window before BackMenu sneaks
in and re-positions it. You may think that this is anti-social behaviour, but there are only certain
applications where this attribute is required and you don't have to use it if you don't want to :->
To execute two DOS prompts at different locations, the following commands might be executed:-

{DELAY=500 XPOS=0 YPOS=0}COMMAND.COM
{DELAY=500 XPOS=0 YPOS=300}COMMAND.COM

The Command Line Attributes - Literal application parameters
BackMenu is able to process the parameters of an application and prompt for files if you specify wild-
cards (for more information, see The Application Parameters - Prompting for files). However, there may
be times when you wish to parse these parameters untouched into the application itself. To do this,
specify the LITeral attribute, which tells BackMenu to leave the application parameters alone.

The Application Program.
This part of the BackMenu command line normally contains the file name (possibly with a full path) of
the application which is to be executed. It is, however, possible to place the name of a document file
here instead. Windows provides the ability to make associations between applications and particular file
name extensions. For example, Notepad is associated with any file ending in .txt. This information is
used in applications such as File Mangler, which lets you double-click on a file and execute the
application associated with it. BackMenu provides the same service, For example:-

{XPOS=100 YPOS=100}c:\winapps\backdesk\readme.txt
will cause Notepad (or whatever else has been associated with .txt files) to run and display the file name
given. If no association exists, then the command line will fail to execute.

The Application Parameters
Application parameters are passed directly to the executing application, which then process them in
some manner. For example :-

NOTEPAD.EXE c:\windows\win.ini
causes Notepad to be run and load in win.ini from the windows directory. BackMenu provides some
extra features that allow you to modify the application parameters before passing them to the
application. These features are:-

Prompting for the application parameters
Prompting for files

The Application Parameters - Prompting
BackMenu lets you prompt for the entire application parameters. To do this, you place a percent (%) or
ampersand (&) character at the start of the application parameters. BackMenu will then prompt with a
dialog box containing any text which follows the % or &.

% The text is readable.
& The text is protected (comes out as ***). This is for security (e.g. prompting for a

password).
For example, if you were to execute the following:-

{XPOS=40 YPOS=50}NOTEPAD.EXE %foo.txt
The following dialog box would appear:-

You can then edit the application parameters to your heart's content before clicking on OK to have those
parameters used.

The Application Parameters - Prompting for files
BackMenu lets you prompt for files in the application parameters. To do this, use the standard DOS wild
cards (* and ?). BackMenu will prompt with a dialog box which will allow you to wander the disk looking
for the file of your choice. Note that this only works if the LITeral attribute has not been specified. If it
has, the application parameters, along with any wild-cards, will be passed to the application.
For example, if you were to execute the following:-

{XPOS=40 YPOS=50}NOTEPAD.EXE *.txt
The following dialog box would appear:-

BackDesk V3.10

Welcome to the wonderful world of BackDesk!
BackDesk is a suite of utilities to enhance your Windows environment and make your work easier.
BackDesk is not free; it is distributed as Shareware, allowing you to try before you buy.
Help is available on:-

· What's New in Version 3.10

· BackMenu - the pop-up menu
· BigDesk - The virtual desktop
· BackDrop - aliases and tools on the desktop
· BME - A new Windows editor for your BackMenu menu.

· WRunServ/WRun - Run Windows programs from a DOS box.
· WCopy/WPaste - Access the Windows clipboard in a DOS box.
· Shareware - How to do the decent thing and register your copy
· Known Problems and how to get support

Hey, I just got an error dialog!

Some applications running as icons, e.g. Program Mangler

Another Window's program, e.g. Notepad

This is BigDesk, the virtual desktop utility

This is BackMenu, the pop-up root menu utility

These are Aliases using the BackDrop facilities

This is the Desktop or Background on which the wallpaper is displayed

BackMenu does not appear to be running.    Click below to start it, then use the BackMenu button on the
toolbar again to pop-up the BackMenu.

LAUNCH BACKMENU!

BigDesk does not appear to be running. Click below to start it.

LAUNCH BIGDESK!

Understanding DOS is left as an exercise for the reader.

BackDesk - What's New in Version 3.10

V3.10 of BackDesk has several new features/enhancements as well as many bug fixes. The major new
enhancements are:-

· Installable external keywords
· Disabling DragnDrop aliases/tools (to work with other desktop applications)
· An Uninstall option
· You can Nail aliases and tools to the desktop (see $AliasOptions for details)
· You can use the BackDesk command line syntax from other applications using BDX.
· You can edit your menu using BME - a WYSIWIG menu editor
· BackMenu is NT Friendly. See the section Running BackDesk under Windows NT

New Keywords in 3.10

A few new keywords have been implemented.
$DefaultPrinter Displays the printers available and allows you to select the default.
$Net... A set of network keywords that allow you to add/browse/delete network

resources.
$XKeywordManager Allows you to add/edit/delete the external keywords available within

BackMenu

New Attributers in 3.10

· LITeral stops BackMenu from interpreting any wild-cards (* and ?) it finds in the
application parameters

Bug Fixes in 3.10

· BigDesk will now cope if you change video resolution while it is running
· If you use wild-card parameters on a BackMenu command line and press cancel, a

spurious error is no longer given.
· Numerous other bug-fixes which Ive forgotten

As well as these additions, all of the original features which make BackDesk V3.xx great are still present
with one exception. The system menu entries, which allowed you to activate BackMenu and/or BigDesk
from the system menu in any other application has been removed - it caused too many problems with
other applications. Sorry!

· List of supplied files
· Drag'n'Drop Tools

BackMenu

The syntax used within BackMenu has been revised as we were running out of strange characters to
use as tokens. Instead the syntax uses an attribute system, where the attributes and any associated
values are placed at the start of the command. The new syntax is:-

@{attribute List}Command parameters
The @ is used, as before, for auto-start and is optional.

The command and parameters are self explanatory.
The attribute list allows you to modify the manner in which the application is run. With them you can
specify the size and position of the window, the start-up directory or any number of other things. The
current set of attributes is described in BackMenu - Command Line Syntax

New Keywords in 3.00

A few new keywords have been implemented.
$AliasOptions Change BackMenu alias settings
$AliasToBack Send the aliases/tools behind all other windows
$AliasToFront Bring the aliases/tools above all other windows
$ArrangeAlias Arrange the aliases along one side of the screen
$EditMenu Edit the current menu.
$HideAlias Remove all aliases/tools from the screen.
$LoadMenu Load in another menu-file to replace the current.
$NewAlias Create a new alias
$RestartWindows Restart Windows
$RunFile Execute a set of commands contained within a file
$SaveAlias Save all the alias/tool positions.
$ShowAlias Bring all aliases/tools back onto the screen
$SnapAlias Position aliases using a grid.
$StartSaver Start the Windows screen saver

And a few keywords have been enhanced
$Execute Choose an application to execute
$Groups Display a menu containing the Program Manager Groups
$SetOptions Set various BackMenu options

BackDrop - Drag and drop aliases

Aliases may be made between files in the system and icons displayed on the desktop. These icons have
a raised look and italicised caption. These aliases are created by dragging files from an application that
is a Windows 3.1 drag'n'drop source (e.g. File Manager) and dropping them onto the desktop. An alias
icon is created using any association information or an icon from an executable. These aliases are
stored as part of the BackMenu settings and so persist from session to session.
Once created, an alias may:-

· Be moved around the screen. Simply click-and-drag the mouse over the alias to move it. Multiple
aliases can be dragged as one, by using SHIFT+Click to select more than one.

· Be double clicked. This executes the file associated with the alias. For example, an alias for
NOTEPAD.EXE will execute Notepad when double clicked. Aliases for data files rather than
executables will use the associations defined using File Manager. For example, double clicking
on an alias for WIN.INI will start notepad with WIN.INI loaded.

· Be dropped on from File Manager. This executes the file associated with the alias, as with double
clicking, but also passes the name of the file dropped as a command line. If the file is an
executable, the dropped file will be passed as a command line parameter and the program should
start up with that file loaded. For example, dragging SP-SERV.INI from File Manager and
dropping it on an alias for NOTEPAD.EXE will start up Notepad with the SP-SERV.INI file loaded.

· Be dropped on from other aliases. Exactly the same rules apply as for files from File Manager, as
each alias is an indirection to a file.

· Be dragged and dropped onto other executing applications. Any application that already
understands the Windows 3.1 drag'n'drop protocol may have aliases dropped onto it in exactly
the same way that files dragged from File Manager may be dropped. For example, dragging an
alias for WIN.INI and dropping it onto a Notepad application will cause Notepad to load in
WIN.INI.

Each alias may also be configured. A menu allows you to change the alias details or icon. The alias can
also be closed and thus destroyed. Note that closing an alias does not delete the associated file, but
only gives up some screen real estate.
The icon for an alias may be changed by selecting a file containing one or several icons and then
choosing one. The icon may be in an executable, dynamic link library or icon file. If no icon can be
found, a default is used. The name of the file and icon number are stored as part of the alias. Move the
file and BackMenu will no longer be able to locate the icon and so it will revert to the BackDrop one.
The alias details dialog box allows you to change the caption for the alias and the associated file. This is
shown as the alias command line with the file as the first item. By changing this item, the file associated
with the alias is changed. You can also modify the command line, by adding in parameters etc. There is
a special symbol (#) which denotes the location in the command line of a file if one is dropped onto this
alias. E.g. the alias command

C:\COMMAND.COM /C COPY # a:
will expand into

C:\COMMAND.COM /C COPY FOO.TXT a:
if the file FOO.TXT is dropped onto this alias. Note that the command line may contain any of the
attributes described above.

BigDesk

You can drag a file from any Windows 3.1 drag'n'drop source (e.g. File Manager or a BackMenu alias)
and drop it onto the virtual desktop. The program will be started up at the location dropped. Simple as
that really.
The Save/Load Window Positions item from the Desktop menu allows you to save the positions of all
executing applications and restore them later. This option generates a file called BIGDESK.DTF (for
Desk Top File) in the same directory as BIGDESK.EXE. There's also an 'expert system' which uses a
file called BIGDESK.RUL (for RULebase) to decide what items to store in .DTF files and how they
should be stored.
CTRL+Left click on the background of the window when the title bar is removed and the system menu
will appear.

BackDesk Package Contents
The files included in this package are:

BACKMENU.EXE Pop-up menu
BIGDESK.EXE Virtual desktop
BACKDESK.HLP This help file
BDUNINST.EXE A simple "uninstall" program

Required file for BigDesk:
BIGDESK.RUL The default rule-base for BigDesk

Required files for BackMenu:
PMGROUPS.DLL Program Manager group file reader
SAMPLE.MNU Sample pop-up menu file

XKEYMAN.DLL External keyword manager
BMKEYW.DLL External Keyword Library containing system keywords

Required files for any part of BackDesk:
BACKDESK.DLL Back-end engine for BigDesk and BackMenu
BACKDROP.DLL Drag'n'drop library
BDCONFIG.CPL BackDesk control panel applet
BDCONFIG.HLP Help for BDCONFIG.CPL
CTL3D.DLL Flashy 3D dialog stuff from MS

Optional files - BackDrop tools:
WALLPAPR.EXE Change your wallpaper every few minutes
DROPCLIP.EXE Stack-up multiple files for a single drop
DUSTBIN.EXE Drag'n'drop dustbin
T2ALIAS.EXE Create an alias from a running program
COPYTOOL.EXE Gather files into a single destination

Optional files - external keywords:
DEFPRN.DLL Choose the default printer from a menu
XK_NET.DLL Add/Delete/Browse the network from a menu

Optional files - DOS tools:
WCOPY.EXE Copy a file/stdin to the Windows clipboard
WPASTE.EXE Paste the Windows clipboard to stdout
WRUN.EXE Run a Windows program from a DOS box.
WRUNSERV.EXE Windows server required for WRUN.EXE
WINSTART.EXE Stub for programmers incorporating WRUN

Optional files - other:
POPGROUP.EXE Display a .GRP file as a pop-up menu
BDSHELL.EXE BackDesk shell stub to avoid Windows "feature"
README.TXT Introductory stuff for the "GUI-challenged"
BDX.EXE Execute a BackDesk command line from another application
BME.EXE A WYSIWYG menu editor

Drag'n'Drop tools
The drag'n'drop system also allows tools to be written, which may then interact with the rest of the
drag'n'drop environment. This appear as icons on the desktop in the same manner as aliases, except
the caption is not italicised. The tools act in the same manner as aliases. Each can have files or other
aliases dropped onto them. The tools, however, are windows programs and perform some set function
with these files. Tools may also be saved along with aliases and so can be automatically reloaded when
the system is started once more. BackDesk comes with five of these tools:-

· WallPaper is a tool that accepts bitmap files (by dropping) and then cycles through each as the
background wallpaper. The delay between changes can be set in minutes. You can fiddle with
settings for each wallpaper (i.e. whether it is tiled or centred).

· DropClip allows a batch of files to be "saved up" over a period of time, and then dragged onto
another application. This tool is useful if you want to drag files from File Manager in one desktop
to another program in another desktop. As the virtual desktop does not dynamically scroll, the
files can be dragged and dropped into DropClip, the desktop focus moved, and dragged out of
DropClip and into the other program.

· Dustbin is a drag'n'drop file and alias remover. Simply drag the aliases or files that are to be
removed and drop them onto the dustbin icon. Note that files dropped into the dustbin are
irretrievably deleted.

· TaskToAlias is a tool to create an alias from a program that's already running. Double click on it
and you'll get a spyglass cursor. Position this over any other window and click and an alias will be
created for you from the details of the program over which you clicked.

· CopyTool is a tool to help you gather together a set of files for copying to somewhere else. Drag
any file from a program like File Manager, drop onto CopyTool. Set the options in CopyTool to tell
it where and when to copy the files.

· PopGroup is not really a tool but there's nowhere else to tell you so... This program pops up a
menu listing the contents of the Program Manager group file (.GRP) supplied to it as a command
line parameter.    Associate it with the .GRP extension in File Manager.

Help Error Dialogs
If you just got an error dialog saying "Routine not found", it means that WinHelp can't see
BACKDESK.DLL - you probably moved something! Don't worry, it just means that the BigDesk and
BackMenu buttons above won't work.

Uninstalling BackDesk
We hope you will find BackDesk a useful and powerful addition to your Windows environment. However,
we realise that there may come a time when you no longer wish to run our package so weve included a
handy uninstall applet. Simply double-click on the Uninstall BackDesk icon within the BackDesk
Program Manager group and BackDesk will be removed.

Running BackDesk under Windows NT
It is possible to use the 16 bit version of BackDesk on Windows NT as well as Windows 3.10 and
Windows for Workgroups 3.11. At present the only limitations are :-

· BackMenu will not be able to show your Windows NT Program Manager groups. If you have
installed Windows NT over Windows 3.10/3.11, BackMenu will display those groups, otherwise
your $Groups menu entry is removed from the menu. We're working on this one

· Setting BackMenu to be your default shell will have no effect, you will always have Program
Manager loaded.

· $ExitWindows and $RestartWindows will log you out, not exit or restart Windows NT.
· If you have full window dragging enabled, you may notice it takes time for the background to be

repainted as you drag a window around. Don't worry, this is purely cosmetic and we're working on
a solution.

All you have to do to make BackDesk work under NT is tell BackMenu. To do that, you simply place the -
NT switch on the command line for BackMenu. You can do this by editing the BackMenu entry in the
BackDesk 3.10 group. Select the icon in the group and choose File/Properties. In the edit box entitled
'Command Line' move the cursor to the end of the line and add -NT. Be sure there is a space between
the end of the BackMenu application name and -NT. Choose OK, and that should be it.
If you run BackMenu without this switch, everything will still start up but you will not be able to display
the BackMenu menu. The simplest way to remedy this problem is to log out and log back in again (this
will close down the errant BackMenu, its the easiest way to be sure). It is also a good idea to do this if
you get the error 'Unable to create background window'.
Please note this is late-breaking code added to BackDesk 3.10, so there may be problems we have not
foreseen. Please drop us a line if you encounter any problems running BackDesk under Windows NT
(see the Shareware section for details)

BigDesk
One of the best things about Windows is that you can run several programs at once.    The only real
problem with this (apart, perhaps, from excruciating slowness when there are 30 or so copies of some
game running at the same time) is that the screen gets awfully cluttered.    BigDesk is the answer to this
problem, and we think you're going to like it once you get the idea.

Imagine that you had nine monitors attached to your computer, all hidden behind a wall.    Imagine a
one-screen-sized hole in the wall.    Now imagine that you can move the hole to look at any of the
screens or even at parts of several of them.    That's the thing BigDesk is going to give you.    In order to
use BigDesk to the full you will probably also need a copy of BackMenu, to provide you with a pop-up
program menu on each of these 'virtual' screens.

For more information on using BigDesk, choose one of the sections below:-

· Mouse Operation
· Keyboard Operation
· Menu Operation
· The 'Set Options...' Dialog Box
· Drag'n'Drop
· The Application Menu
· Desktop Saving and Loading
· The BigDesk Rule-Base
· Using BigDesk from External Applications

BigDesk - Mouse Operation
There are several different operations which can be performed with the mouse. These are summarised
in the table below

Mouse & Keyboard
Operation

Where? Effect

Right Click anywhere Move the virtual desktop to that location.
If Snap Desktop to Grid is enabled, the
desktop will be located to the nearest
grid.

Right Click and Drag anywhere Drag the virtual desktop around. If Snap
Desktop Grid is enabled, the desktop can
only be moved in units of the grid size.

SHIFT+Right Click
and Drag

anywhere Drag the virtual desktop around.
Overrides the Snap Desktop to Grid
setting so the desktop can be placed
anywhere.

Left Click window Brings that window to the front of all other
windows

Left Click and Drag background Move the map window around on the real
desktop (only if the title bar has been
turned off).

Left Click and Drag window Move that window anywhere on the virtual
desktop. The Window will be snapped to
the upper left corner of a grid cell if the
Snap To Grid option is set and the
window is within the snap distance.

Shift Left Click and
Drag

window Move that window anywhere on the virtual
desktop. The Window will be placed
anywhere regardless of settings.

Left Click and Drag background Move the BigDesk window around on the
Windows desktop, but only if the No Title
Bar option is enabled.

Left Double Click window Activates that window and changes the
virtual desktop so that window can be
seen.

Left Double Click icon Restores that window to the current
virtual desktop.

CTRL+Left Click background Brings up the BigDesk system menu if the
No Title Bar option is set.

ALT+Left Click window Display a menu for that window from
which you may perform both Windows
and BigDesk operations.

BigDesk - Keyboard Operation
When BigDesk has the focus (i.e. is the window which is receiving all your attention at the moment &
has the 'active' colour to its title bar), you can use the cursor keys (arrows, home, end, page up, page
down) to navigate around the desktop.    The grid cell selector will move in the direction of the arrow
pressed, with the other keys allowing diagonal movement.

BigDesk - Menu Operation
The menu operations are all to be found on the System menu.    To access this, click once on the icon or,
with the map window open, click on the bar in the top left corner or press Alt+Spacebar. You can also get
at the System menu by CTRL+Left click on the BigDesk window. For this to work, you need to click over
the background of the BigDesk window not over any of the applications it is displaying. You'll see a
menu which looks something like this :-

Standard System Menu Entries
We'll assume you can handle these. If not, please consult your Windows User Guide.

Set Options...
Allows you to tweak the various options in BigDesk. For more details, see BigDesk - Options.

Save BigDesk Window Position
Save the current size, position and state of the map.    Note that the identity, state and position of the
applications which are executing are not saved, to do this see BigDesk - Desktop Saving and Loading.

About...
We'll leave you to explore this on your own.

No Title Bar
You can toggle BigDesk's title bar on or off by selecting this option. The system menu is still accessible
(CTRL+Left click on the map background) and you can move the map window around (Left click and
drag on the map background) with the title bar turned off.

BigDesk - The Desktop System Menu
This menu lets you save and load the identities, sizes and positions of all of the currently executing
Windows applications. For more information, click on a menu entry below or see BigDesk - Desktop
Saving and Loading.

BigDesk - Options
Selecting the 'Set Options...' menu item from the system menu will produce the following dialog box. As
ever, click for more information:-

BigDesk - Keep Window To Front
Want to keep the BigDesk map visible all of the time? Then check this option in the 'Set Options...' dialog
box. When it is enabled, BigDesk will keep its icon or map display on top of any window you may open.   
It may get in the way of something like word-processing, but is a very useful option if you are switching
between virtual screens often.

BigDesk - Track Active Window
When this option is enabled in the 'Set Options...' dialog box, changing the window focus with Alt+Esc
and Alt+Tab results in the newly selected window being moved to give the best view (all on screen if grid
snap is off,    in the cell with the largest proportion of the window if grid snap is on).

BigDesk - Snap To Grid
This option, set in the 'Set Options...' dialog box, places a grid over the entire virtual desktop, the size of
each cell in the grid is that of the screen. You can think of this grid as a group of separate, easily
accessible desktops - each one a simple right mouse click away.
The grid allows you to partition your windows up into groups (e.g. Word processors in the bottom left of
the map, File Manager in the centre and Program Manager in the top right). By using the BackMenu
attributes with the applications you execute, you can control how and where on this grid they are started.
If you turn off this option, the virtual desktop becomes one large area of which you can view any part by
using the right mouse button.

BigDesk - Update Desktop Map
BigDesk will update its map of the desktop every second. Normally this is fine as you can see windows
appearing as they are created. On some slower systems this may cause delays or slow response, so
you can turn this feature off. If you do this, however, the map display will only update when you click on
BigDesk.
To set this option, use the 'Set Options...' dialog box.

BigDesk - Virtual Desktop Width/Height
The 'Set Options...' dialog box allows you to decide how large the virtual desktop is to be. The units are
in 'real desktops'    ; you can make both the width and the height anything from 1 to 8 times the size of
your real desktop. Don't forget that the desktop has to show on the icon or window! The bigger desktop
you have the smaller the detail on the map will be.

BigDesk - Snap Edge
When moving application windows around on the BigDesk map, you may want them to be aligned on
the grid (if you have it enabled).The value here defines how close (in pixels on the map display) the top
left hand corner of the application window has to be to a grid point for the window to be snapped to that
grid point. This option only works if you have Snap Desktop to Grid    enabled. To turn off this feature,
give it a distance value of 0. This option is set in the 'Set Options...' dialog box.

BigDesk - Display Window
This option, set from the 'Set Options' dialog box, lets you decide how BigDesk displays windows on it's
map. There are three choices:-

Title Bar displays the window's title along the top of the rectangle.
Application Icon Displays the icon in the centre of the rectangle.
Both Does what it says!

BigDesk - Exit BigDesk
You    can decide what BigDesk is to do with all the windows spread over the virtual desktop when you
close it. There are 4 options,    one of which can be chosen from the 'Set Options...' dialog box:-

Scale To Screen Move all windows onto the screen, giving them a position which roughly
denotes where they were on the virtual desktop.

Cascade All Windows Move all windows onto the screen offsetting each a little to the right and
down from the previous.

Tile All Windows Move all windows onto screen and arrange them so they cover the
screen.

Do Nothing Leave all windows in their current positions, regardless of where they are
on the virtual desktop

BigDesk - The Application Menu
If you ALT+Left Click on any of the applications in the map window, a menu is displayed which lets you
do all manner of interesting things to that window. This menu is shown below. Please note that some of
the options shown here may not be available (they will be greyed out). Click on an option which interests
you:-

Restore/Maximize/Minimize
Change the state of the window (just like the real Restore/Maximize/Minimize from the real system
menu). Some of these will be greyed out if the window can't (or doesn't want to) change to a particular
state.

Close
Closes the application Please don't try and use ALT+F4 as this will close BigDesk instead.

Stay With Viewport
If you choose this option, the window will remain with the viewport regardless of where you move it. You
get a window that will follow you around as you move over the virtual desktop (just like the BackMenu
attribute TODesk). You can toggle this on or off and the state will be saved if you use the "Save Desktop
File..." menu option
Please note this works for windows which are not currently visible as well as those which can be seen. If
you give this property to a window which is above the current viewport it will follow you around but stay
above the viewport. Useful?

Keep Window To Front
This option allows you to make the window float above all other windows (just like the BackMenu
attribute TOFront). You can toggle this on or off and the state will be saved if you use the "Save Desktop
File..." menu option

BigDesk - Drag'n'Drop
Do you want to run programs quickly and have them start up in a particular place on the virtual desktop?
If typing in a BackMenu command line isn't for you, then the drag'n'drop support in BigDesk certainly is.
You can drag a file from File Manager (or one of your aliases) and drop it on the BigDesk map. The point
at where you drop it will be the point at which it will be started up    Please note that if you do drag an
alias, BigDesk will ignore any special command line parameters or attributes you may have specified.

BigDesk - Desktop Saving and Loading
Want to try and capture a particular session and come back to it later? The BigDesk desktop loading and
saving lets you do that (or at least come close).
To save the current set of applications, choose 'Save Window Positions...' from the 'Desktop' choice on
the system menu. A dialog box will appear, asking where you want to save the details; you can choose
the default (BIGDESK.DTF) or select a different file.
To load a desktop choose 'Restore Window Positions' from the 'Desktop' choice on the system menu,
select a file containing the desktop layout and BigDesk will try and restore it.

What Information Can BigDesk Really Save?
We'd be lying if we said that the desktop saving process captured the entire state of all of the
applications you were using and would let you continue from exactly where you left off; that's a whole
other can of worms. What BigDesk can do is work out which applications are running and saves a
sequence of commands which will restore that layout. It saves the following
· The names of the executable files needed to run each application (along with any command line

parameters used when the application was run).
· Position information for each of the windows used within each application.

How does BigDesk restore the desktop
The procedure BigDesk follows when loading a desktop file is simple. For each of the applications
BigDesk has to load, it first looks to see if that application is running. If it is, BigDesk repositions it so the
window or windows are in the saved positions. If the application cannot be found, BigDesk executes it
using the command line information found during saving, and then positions any windows it can identify.

Why might My Desktop not be restored properly?
There are a number of reasons why the desktop might not appear as expected :-
· Any windows which were not around when the desktop was saved will not be moved. This includes

any windows which might be created as part of starting an application, but were subsequently
closed before the desktop was saved.

· Any application which has a dialog box or other window which is appears before the main
application window. In this case BigDesk will probably apply the position information to the dialog
box and not the main window. To stop this from happening, define a rule in the rule-base for that
application with a suitable DELay attribute so BigDesk waits for the dialog box to disappear. This is
only a problem if the application isn't running when you load the desktop.

· BigDesk is only able to extract the command line used to start an application. If you didn't run an
application with any parameters, or you interactively opened a file, BigDesk will not be able to have
the appellation open the correct file for you.

To try and help overcome some of these problems, a rule-base is provided which lets you tailor the way
BigDesk saves information about particular applications.

BigDesk - The Rule-Base for Desktop Saving and Loading
The biggest headache when trying to write a general desktop saving/loading routine is catering for all of
the special cases. It's possible to write code that'll work for 90% of the time, but you can guarantee that
most people run the applications that fall into the other 10%. So, to try and provide the ultimate desktop
software, we have introduced the BigDesk rule-base.
The rule-base lets us (and you) cater for that other 10% of applications where some fiddling is required.
The way it works is very simple. There is a file called BIGDESK.RUL that contains a list of application file
names (or wild card specifications) which can modify how the entry for that application get saved when
the locations of the windows on the desktop are saved.
The rule-base is split into two parts, program name mapping and attribute mapping. The rules are
applied in the order they are listed in the rule-base. The format for a rule-base file is very simple:-

[Program Names]
OldProgam=NewProgram
...

[Program Attributes]
Program=Attributes
...

BigDesk - Rule-Base Program Name Mapping
The program name mapping section "[Program Names]" allows BigDesk to map from the names of
applications found when interrogating the Windows task database, to the names of applications that you
might want to save. An example of why you need this is an application called Lotus Organiser. As far as
Windows is concerned, the task is called    ORGANISER.BIN. If BigDesk were to save that name. it
would not be able to re-load the application.

Each entry in the program name mapping takes the form:-
OldProgramName=NewProgramName

Where OldProgram name can be explicit or contain wild-card characters (* ?).For the organiser problem
above, a rule might look like the following:-

ORGANISER.BIN=c:\winapps\organise\ORGANISER.EXE
and BigDesk will do the translation when it comes to saving the desktop. Note you can have wild-card
characters on the left of the =, but not on the right. So you can't have:-

.BIN=.EXE
which we admit is very useful, but we haven't got round to writing it yet!
You can have:-

*.BIN=c:\tmp\foo.exe
which will match anything ending in .BIN and replace it with c:\tmp\foo.exe

The program name mapping section also lets you define which applications are not saved. If you run
BackMenu as you shell, then there's no need to save it as part of the desktop. By having an entry in this
list with nothing on the right-hand side, an application can be "ignored". For example:-

BACKMENU.EXE=
PROGMAN.EXE=

will cause BigDesk to ignore BackMenu and Program Manager when saving the desktop. Note that if
you change the name of a program, then it will be the new name that is used to search the attribute
mapping section, and not the old one. Simple, isn't it!

BigDesk - Rule-Base Program Attribute Mapping
The attribute mapping section "[Program Attributes]" lets you fiddle with the attributes that are
saved as part of the desktop file. You can do three things

· Override the value of an attribute
· Remove an attribute
· Leave the attribute value alone

Each entry in this section takes the form:-
ProgramName=List of Attributes

Where the ProgramName can be explicit or contain wild-card characters. You can have rules like:-
WINFILE.EXE=NOCMDLINE
*.EXE=NOWIDTH

which will mean that BigDesk will not try and save the command line parameters for File Manager and
all .EXE programs will not have any width information stored about them. To set an attribute value, you
use the attributes as defined by the BackMenu command line syntax For any attribute that takes a value,
however, there is now an equivalent that removes that attribute. Most of them are obvious as they have
the name NOxxx. Here's a complete list:-

NODIR, NOXPOs, NOYPOs, NOXDEsk, NOYDEsk, NOWIDth, NOHEIght,
NODELay, NOSNAp, NOCMDline, NOTOFront, NOTODesk

You can also re-enable attributes again (i.e. turn them back on). This can be done one of two ways.
Either you can specify an attribute with a particular value, or you can specify an attribute with no value,
and the previous value is reinstated. Here's a few examples that might clarify this.

[Program Attributes]
*.EXE=NOWIDTH
BOXWORLD.EXE=WIDTH=100

BigDesk is going to save the position of BOXWORLD.EXE. It currently exists at (100,150) on the screen
and is 200x200. The rules are parsed in the order in which they occur. So, for BOXWORLD.EXE, the
first rule we meet is *.EXE. This rule matches and so the width attribute is removed from the settings for
BOXWORLD. The next rule that matches is the one for BOXWORLD.EXE itself, and this reinstates the
width parameter and sets it to 100. The entry saved for BOXWORLD.EXE would be:-

{XPOS=100 YPOS=150 WIDTH=100 HEIGHT=200}BOXWORLD.EXE
If, instead, the second rule was replaced with:-

BOXWORLD.EXE=WIDTH
then the WIDTH attribute would be reinstated and retain its old value. The entry saved this time would
be:-

{XPOS=100 YPOS=150 WIDTH=200 HEIGHT=200}BOXWORLD.EXE
Finally, if the rule for BOXWORLD.EXE is removed entirely, then the entry saved is:-

{XPOS=100 YPOS=150 HEIGHT=200}BOXWORLD.EXE

A note about DOS based programs
When saving the desktop, BigDesk is able to extract the names of any DOS-based applications running
as DOS boxes or full screen applications. It cannot detect, however, what state such an application is in
and so may not restore it    properly. Each DOS based application uses the rule-base in the same
manner as windows programs except it is possible to provide settings that apply to all DOS-based

programs. Whenever a DOS program is having the rule-base applied, BigDesk also looks for an entry
for the Windows component (WINOA386.MOD for Enhanced mode and WINOA286.MOD for standard
mode). By having one of these as an entry in the rule-base, attributes can be applied to all DOS-based
programs.
For example:-

WINOA386.MOD=DELAY=500
This will cause the DELay attribute to be set for every and any DOS program saved as a part of the
desktop.

Don't save the working directory for any applications matching this rule

Don't save the X co-ordinate of the window for any applications matching this rule

Don't save the Y co-ordinate of the window for any applications matching this rule

Don't save the X co-ordinate of the desktop for any applications matching this rule

Don't save the Y co-ordinate of the desktop for any applications matching this rule

Don't save the width of the window for any applications matching this rule

Don't save the height of the window for any applications matching this rule

Don't save the initial delay for any applications matching this rule (this is only useful if a previous rule
has defined a DELay)

Don't save the snap-to-window state for any applications matching this rule (this is only useful if a
previous rule has used SNAp)

Don't save the command line parameters for any applications matching this rule,

Don't save the to-front state for any applications matching this rule,

Don't save the keep-with-desktop state for any applications matching this rule,

BigDesk - Access From Other Applications
The BackDesk DLL (BACKDESK.DLL) contains two accessible functions that can be called from other
applications to let you gain access to BigDesk. They are:-
integer BD_IsBigDeskRunning()
Is BigDesk installed and running? This function returns an integer which is 1 if BigDesk is running and 0
if not.

ActivateBigDesk()
Allows the BigDesk map window to be given the focus. This function takes no parameters.

Here is a Microsoft Word-For-Windows macro that demonstrate how to use these functions

Declare Sub ActivateBigDesk Lib "BACKDESK.DLL"
Declare Function BD_IsBigDeskRunning Lib "BACKDESK.DLL" As Integer

Sub MAIN
If BD_IsBigDeskRunning <> 0 Then

ActivateBigDesk
Else

MsgBox "BigDesk isn't running"
End If

End Sub

Writing a similar Excel macro is left as an exercise for the reader.

What is WRunServ/WRun?
Ever been running a DOS box within Windows and wanted to start up another Windows application
without leaving the command prompt? If you're running Windows in 386 Enhanced mode, then the
WRunServ/WRun utilities will let you do this. There are two programs:-

· WRunServ is a Windows application that has to be run to make this magic happen.
· WRun is    the DOS program that you use to run other Windows (or even DOS) applications from

the command prompt.
For more help, choose an item below:-

What is WRunServ?
What is WRun?
How do I get it all to work?

WRunServ - The Windows WRun Server
WRunServ has to be running in order for WRun to work. Normally, when WRunServ is run, it appears as
an icon. It can't do much once started. There's an impressive about box and that's about all. If you don't
want the icon cluttering up your desktop, you can run WRunServ with the -hide parameter. No icon, no
clutter (well, less clutter), and all of the same functionality.

WRun - The DOS->Windows command line parser
WRun accepts any commands using the BackMenu command syntax, so you can use any of the
attributes to control how the application is run. Note that you can't use any of the keywords with WRun
(e.g. $SaveAlias).For example:-

WRUN notepad.exe c:\autoexec.bat
starts up notepad with your autoexec.bat file loaded. Also:-

WRUN {XDESK=1 YDESK=1 WIDTH=400 HEIGHT=400}clock.exe
will start up the clock application on desktop [1,1] size 400x400.

WRun/WRunServ - How do I get it all to work?
To make this magic happen simply:-

1. From within Windows, start the WRunServ application. If you're going to use WRun a lot, then we
suggest you put WRunServ in your Program Manager Start-up group. If you don't want the
WRunServ icon cluttering up your desktop, put -hide on the command line.

2. From a command prompt, type: WRUN the-application-you-want-to-run.
That's it, enjoy.

WCopy and WPaste - access to the Windows clipboard from DOS
WCopy and WPaste are two command prompt utilities which allow you to copy from and paste to the
Windows clipboard. Windows must be running in 386 Enhanced mode for these    utilities to work. In
brief:-

· WCOPY takes stdin and places it on the Windows clipboard as text.
· WPASTE takes the text on the Windows clipboard and copies it to stdout.

Because WCopy and WPaste use stdin & stdout, you can use all of the DOS file redirection operators
(> , < , |). For example, to copy your autoexec.bat to the clipboard, type:-

WCOPY < c:\autoexec.bat
or, to place the directory listing of the current directory onto the clipboard type:-

dir | WCOPY
To place the contents of the clipboard into a file, say foo.txt, type:-

WPASTE > foo.txt
and to view the contents of the clipboard using MORE :-

WPASTE | more
For more information on using redirection within DOS, see your DOS manual.

SP Services Shareware
Software You Want

At Prices You Can Afford!

BackDesk is distributed as Shareware - you should have received it free of charge (or at most have
paid for its delivery) so that you can see if you really like it before you pay for it.
BackDesk is not free or public domain, it is not a broken demonstration or Lite version of something
else. It is fully function, commercial software that we have chosen to sell by the try before you buy   
method. We trust you to pay for BackDesk just like a shopkeeper would trust you to pay for any other
package before leaving the store. If you dont want it, please put it back on the shelf!
If you install BackDesk and continue to use any of it as part of the way you work for over two weeks,
you must either pay for it or stop using it.

More information:

How to register and pay for BackDesk

Site and multiple licenses

Terms and conditions

Register BackDesk NOW!

If you've found that part or all of BackDesk fits in with the way you work, please register and support an
under-paid University research fellow ;-) !

For just £25, you can register THE WHOLE SUITE, and receive a nice certificate on recycled paper and
a registration number to allow you to enter your name or other personal details on the opening windows
and About... boxes.

We also offer low-cost upgrades to existing users.

We don't supply a disk or a manual with your registration (that's one reason why it's cheap!).

Just print out the order form, fill in the details and fax it to SP Services on (01703) 322416 . If you've no
fax, post the form to:

SP Services
PO Box 456
Southampton,
United Kingdom
SO17 1LP

You'll have to do this if you don't want to pay by credit card, too, but please note we prefer payment in
pounds sterling. If you really must use a company order and expect to be invoiced, we charge £5 per
month for the extra work involved in invoicing, issuing statements, sending in the bailiffs etc.    We also
accept orders by electronic mail.

Upgrade Pricing
For £15, you can swap an earlier registration for just BackMenu or BigDesk (please quote your serial
number when upgrading).
For £10, you can upgrade an earlier BackDesk registration (again, please quote your serial number).

If you need a disk, we'll send you the current version of BackDesk on a disk filled with all our other
products too for £5 extra.    Please ensure you indicate the disk format on the order!

All the documentation is on the disk in this help file and we prefer not to waste paper, so we don't supply
a printed manual.    (In response to customer demand, we can also supply a printed version of this help
file for an additional £7 or £12 if you want it delivered by air mail).

 REGISTRATION APPLICATION FORM

SP Services, PO Box 456, Southampton, SO17 1LP, UK,    Fax: +44 1703 322416
Please mark the options that apply to your order.    All prices in Sterling; please add £6 if paying with a non-UK cheque or in another currency.

(     ) Please register my copy of BackDesk v3 for £25
(     ) Please upgrade me from BackMenu/BigDesk for £15

(     ) Please upgrade me from BackDesk v2 for £10
(       ) - I need a receipt please.  (       ) - Please invoice my company (£5 extra/month due)
(       ) - I want a laser printed manual delivered surface mail (£7 extra)    (       ) - delivered air mail (£12 extra)
(       ) - I want a 3½ product disk containing BackDesk and all other SPS products    (£5)
(       ) - I want a 3½ disk containing    your other favourite non-SPS shareware    (£5 extra)

I authorise you to charge my credit card with the total sum identified above; I
understand that I will receive one of your very nice registration certificates, appropriate
registration number(s) and the undying gratitude of Ian Heath in return for this sum (no disk

or manual unless ordered).
I got BackDesk from ____________________ and have version 3.10.

My Details () Upgrades: enter serial number

Name _____________________________________

Company _____________________________________

Address _____________________________________

_____________________________________ Include postal code

Phone__________________________ Fax/e-mail      __________________________

Payment Type (         )    Cheque payable to SP Services

(         )    Visa (         )    Mastercard (           )    American Express

Card number ________________________________

Card expiry date ________________ (include both start & end date for Amex)

I agree to the Terms and Conditions in the Help File

Signature ____________________________________

EXACT personalisation details for opening screen:

"Registered to __"

That's +44 1703 322416 if you're not in Britain...

International Orders
Please do register!    It's really easy; you simply send in your credit card details & address, we debit your
credit card in pounds sterling, and the credit card company do all the hard stuff about currency
conversion.    As a special incentive, there are no extra shipping costs for non-UK orders!    If you really
cannot avoid paying in a currency other than pounds sterling via a UK bank, please add the equivalent
of £5 sterling to the price you send to cover part of our currency exchange costs.

We apologise if this seems expensive to US customers, but the price is a fair one for Europe and is
distorted by exchange rates and market prices to seem expensive in the US.    At least we're not
charging you for shipping!

Electronic Mail
Send orders by e-mail to:
Internet: sphipps@cix.compulink.co.uk
CompuServe: 100016,1625
You will get an e-mail reply as soon as the message is received, followed by a registration certificate in
the post.    Please supply all the same details with your order.
We can also provide registered users with support by e-mail or in our support conference on Cix (+44
181 390 1244), called SPS.

Site and Multiple Licenses
If you want to register for a network, or for a mega-corporation, please calculate a fee using the following
table.
For three or more registrations, the price is...

up to 10 30 50 75 100 200 copies
each £20 £17 £15 £12 £10 £9

Over 200 copies: £1500 one-time charge for first address, then £100 per additional address. We only do
bulk registrations of the whole BackDesk package, not the parts seperately.    Bulk registrations include
one copy of the latest version on disk. Wrun and the clipboard tools are available as a separate OEM
package - please contact us for details.

For bulk upgrade pricing, please contact SP Services, fax 01703 322416

Creepy Disclaimer (the small print in big letters)

Don't forget that there are no warranties associated with this software beyond saying that it will do what
it says in this help file (apart from your legal rights, of course).    If you manage to mess up your
installation and think it has something to do with BackDesk, we're sorry but it only cost £25, didn't it.   
Now for BIG money we'll give you a warranty!    However, registered users may e-mail us or fax 01703
322416 and we will do our best to satisfy your requests.    All prices are subject to sudden, unexpected
change, and all errors are regrettable, human and apologised for.    Once you have a license, you can
use our software 'like a book' as they say - do what you wish with it as long as only one person can ever
use the licensed copy at any one time. We only sell the permission to use, not the software. (We can
translate this section into legalese if you wish!)

DISCLAIMER AND AGREEMENT
(You asked for it!)

Users of BackDesk must accept this disclaimer of warranty. If you do not accept this disclaimer, do not
use the programs.

THE BACKDESK SOFTWARE SUITE IS SUPPLIED AS IS. THE PUBLISHER DISCLAIMS ALL
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES
OF MERCHANTABILITY AND OF FITNESS FOR ANY PURPOSE. THE PUBLISHER ASSUMES NO
LIABILITY FOR DAMAGES, DIRECT OR CONSEQUENTIAL, WHICH MAY RESULT FROM THE USE
OF BACKDESK, EVEN IF THE PUBLISHER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

THE LICENCE AGREEMENT AND WARRANTY SHALL BE CONSTRUED, INTERPRETED AND
GOVERNED BY THE LAWS OF ENGLAND AND WALES. YOU MAY HAVE OTHER RIGHTS WHICH
VARY FROM ONE STATE TO ANOTHER.

BackDesk is shareware, and is provided at no charge to users for evaluation. Feel free to share it with
your friends and colleagues, but please do not give it away altered or as part of another system. The
essence of shareware software is to provide computer users with quality software without high prices,
and at the same time to provide incentive for programmers to continue to develop new products.

If you find the BackDesk or any part of it useful, and you are continuing to use it after the trial period of
28 days, you must make the registration. In return you will be given a user name, serial number and
registration number to disable the shareware reminders. This information will be good for all future
shareware releases of BackDesk v3.x. You will be informed when major releases become available.

A site licence for over 2 copies may be obtained at a reduced cost by contacting SP Services by post or
email.

Any person or organisation wanting to distribute BackDesk for profit must first contact SP Services by
post or email for authorisation. Cost recovery is not considered for profit.

Copyright for this software remains the property of Clarity Systems Ltd.    BackDesk was written by Dr
Ian Heath assisted by Nick Beitner who wrote the BackDrop library. James Pharaoh wrote BME.

If you see this prisoner, do not attempt to approach him; he
may be dangerous. In particular he may start wibbling about
SimCity, MicroCosm, Yes and other topics. Contact the police
at once and please, be gentle, he has had a hard time over
the past year being nagged to write BackDesk v3.

I can be contacted at:

Internet: pharaoh@dircon.co.uk
CompuServe: 100541,1116
Snail Mail: James Pharaoh, SP Services, PO Box 456,
Southampton SO17 1LP

SP Services
PO Box 456
Southampton
SO17 1LP
United Kingdom
Fax +44 1703 322416
E-mail sphipps@cix.compulink.co.uk
CompuServe 100016,1625

Known Problems with BackDesk v3.10
The following problems were known as of 20th January 1995:

Dustbin may freeze when deleting aliases
BigDesk doesn't save File Manager details correctly

If you encounter problems you can't solve, please report by e-mail with full details of the
problem and how to recreate it, plus details of your system and its configuration (a listing
as produced by MSD.EXE is helpful, as is a Dr Watson trace if available).    Note that we
cannot fix problems we can't reproduce, nor do we promise to neccessarily make any
changes.

Dustbin may freeze the system
On certain machines it has been reported that dustbin can freeze the computer when
deleting aliases. We don't know whats causing it yet so we thought we'd tell you about it
anyway. This should be fixed in a future release.

BigDesk doesn't save File Manager details correctly during desktop save
File Manager, for some reason, causes BigDesk problems when you try and save a desktop
layout with it running. Problems include saving garbled characters for the File Manager
command line, or not saving the applications file name at all.

Writing External keyword DLLs for BackDesk V3.10

BackDesk now provides a powerful way for programmers to extend the functionality of the system
without having to modify the BackDesk application. Instead, you can now write external keyword DLLs,
and attach these to BackDesk via the SP-SERV.INI file. Once this has been done, BackMenu will
automatically make these new keywords available to the user in a transparent manner. You have
complete access to the "command lines" for these keywords and can parse and detect errors.
In order to develop external keywords for BackDesk, youll need the BackDesk external keywords SDK.
It contains all of the header files and libraries required for both C and Pascal development. Look for
BDSDK3.ZIP the same place you found this package or contact S.P. Services for more details.

What can I do with these keywords?
How do I write an external keyword handler for BackMenu?
What are these functions I have to write?
So how do I use my shiney new external keyword in BackMenu?
Where have all these constants and structure come from?

What can I do with these external keywords?

Anything you want to do! The system is completley flexible and caters for any kind of external keyword.
This can range from simple keywords (like $About) which can take arbitrary parameters to more
complex keywords generating multiple cascading menus (like $Groups).

How do I write an external keyword handler for BackMenu?

Within a BackMenu menu, each entry has a unique identifier which is used by BackMenu to determine
which entry was chosen (Command IDs). As the menu is built, BackMenu allocates a command ID to
each description in the menu and keeps track of the command line associated with that description by
using the Command IDs. The same is true for the current BackMenu keywords. Each instance of a
keyword has its own Command ID (or possibly set of Command Ids) which are used to make the magic
happen.
The external keywords work by having each instance allocate itself a set of unique Command IDs from
the external keywords Command ID pool. BackDesk then uses these IDs to work out which external
keyword was chosen from the menu, and calls the relevant function inside the external keyword handler.
A keyword can occur inside a menu many times. BackDesk allocates each instance    a unique ID and so
can tell them apart (useful if you've got a keyword which can have different command lines). By default,
each keyword (and each instance) will use one Command ID. It is possible, however, to ask for more.
When BackMenu builds the menu, you will be given a chance to insert into that menu via the "parse"
function. Whenever BackMenu comes across one of your keywords, it will call your supplied "parse"
function, which can then go about the merry business of checking any command line supplied to your
keyword, constructing a cascading menu (if you need to) and generally having a good time.
The parse function can be called in one of two circumstances
1. BackMenu is performing a keyword integruity check - so all you have to do is check any command

line parameters to your keyword and tell BackMenu whether they are worthy or not.
2. BackMenu is building the menu, so you can do any extra stuff like building a cascading menu to
hang off your keyword.

You also have to tell BackMenu at this point how many Command IDs you've used. For a simple
external keyword, this will be 1, but for complex cascading menus you'll obviously need more. If the
number of Command IDs that you are going to use will change dynamically during the lifetime of your
cascading menu, we recommend that you build an upper limit into your DLL and ask for that many.
Please also note that there isn't an inexhaustible supply of these Command Ids, so don't ask for 2000 of
them when you're only really ever going to use 200 - Its not very friendly :-<
If you do want to build a cascading menu, you might want to modify it before it is displayed to the user
(like the $Tasks menu which always shows the current set of Windows open). To do this, you provide a
"Popup" function. It will be called just before your menu appears, allowing you to perform any
modifcations (except deleting it :->). Anyone who has    written code for WM_INITMENUPOPUP will
understand whats going on here.
If you do modify your menu, remember the golden rule:-

Don't use any command IDs outside of the range given to you. (The Popup function is given the
base Command ID and number of Command IDs used for this instance of the keyword). If you do
use IDs outside your alotted range, nasty things will (probably) happen.

That only leaves one thing - how to make anything actually happen. This is where your "Cmd" function
comes in (this is the only function that HAS to be in the DLL. All of the others are optional). Your "Cmd"
function will be called if one of two things happen.

1. The user clicks on your keyword (or a part of the cascading menu for your    keyword).
2. The executes a $keyword by some other means (part of an alias, typed in the "Execute" dialog
box.

Its up to you to do the hard part - making things happen.
All you have to do is create a Windows dynamic link library using you favouriteprogramming language.
This DLL has to contain one or more of the functions described below. Once the DLL is written, you can
"install" it by modifyingSP-SERV.INI, or using the supplied $XKeywordManager external keyword. Once
this is done, the new external keyword is available and can be used in the BackMenu menu or even

from another source (e.g. alias, command line...)

What are these functions I have to write for an external keyword?
There are 6 different functions you can provide in your DLL which will be used by BackMenu to make the
magic happen! Of these functions, only one is required, all of the others are optional - making it very
simple to add keywords. The basic rule is:-

The more complex your Keyword, the more functions you must support.
Here are the functions - in each case the function name is prefixed with a string which is defined for
each external keyword. This means you can have handlers for several keywords in the same DLL. In the
examples shown below, the prefix is denoted by <KeywordPrefix>.

<KeywordPrefix>Init()
<KeywordPrefix>Parse()
<KeywordPrefix>PopUp()
<KeywordPrefix>Cmd()
<KeywordPrefix>Info()
<KeywordPrefix>Done()

KeywordLibInfo()

<KeywordPrefix>Init()
C int <KeywordPrefix>Init(void)

Pascal function <KeywordPrefix>Init: integer; export;

Description

This function is called once when your DLL is loaded by BackDesk.

Retun Value

<> 0 if your initialisation was sucessful, 0 if not.

Comments

None

<KeywordPrefix>Parse()
C int <KeywordPrefix>Parse(LPSTR szCmdLine, WPARAM

wCmdIDBase, KEYWORD_PARSE_PTR kppInfo)

Pascal function <KeywordPrefix>Parse(pszCmdLine : pChar; wCmdIDBase :
word; pkpInfo : KEYWORD_PARSE_PTR): integer; export;

Description

Parses an instance of your keyword in the menu

Parameters

szCmdLine the "command line" for this keyword.
wCmdIDBase the start of the set of Command IDs allocated for this instance of your

keyword.
kppInfo A structure you fill in to return extra information to BackMenu

Return Value

0 if the parsing is sucessful, < 0 if not. If you return an error <= KEYC_USER_ERROR_BASE,
BackMenu will display the user defined error associated with the value (otherwise, a generic error
message is displayed).

Comments

This function can be called on two accounts. First is the BackMenu menu integruity check. In this case
wCmdIDBase will have the value KEYWORD_CMD_PARSE and kppInfo will be NULL. All you have to
do is look at szCmdLine and tell BackMenu whether it is OK or not. The other time this function is called
is when the menu is actually being built. In this case, wCmdIDBase is the base command ID for this
instance of the keyword, and kppInfo points to a parsing structure which has three fields :-
kppInfo->wFlags set on input and output with information aboutthe parsing
kppInfo->hMenu set on output if you build a cascading menu.
kppInfo->wNumCmdIDs set on input to 1, set this to the number of Command IDs you've used in

creating this instance.
Only one flag of wFlags may be set when this function is called, KEYF_IS_INVISIBLE. If this flag is set,
your menu occurs inside an invisible menu (one started by <Menu-Name rather than >Menu-Name). If
this is the case, DON'T actually build your menu as the value of kppInfo->hMenu will be ignored and
you'll use up valuable system resources.
The other flags in kppInfo->wFlags are:-
KEYF_GREYED which you can set if you want your keyword entry to appear greyed out.
KEYF_MENU which you set if you've created a cascading menu and put the handle in

kppInfo->hMenu.
KEYF_POPUP_SUBMENUS which lets you receive notification when ANY of the sub-menus in your

menu are activated and not just the top-level menu (requires
KEYF_MENU)

<KeywordPrefix>PopUp()
C BOOL <KeywordPrefix>PopUp (HMENU hMenu, HMENU hSubMenu,

WPARAM wCmdIDBase, WPARAM wNumCmdIDs)

Pascal function <KeywordPrefix>PopUp(MenuHandle, subMenuHandle :
HMENU; wCmdIDBase : word; wNumCmdIDs : word): boolean;
export;

Description

Called just before a menu, created during <KeywordPrefix>Parse, is displayed.

Parameters

hMenu/MenuHandle The menu handle of the entire menu created by the keyword
hSubMenu/SubMenuHandle If the KEYF_POPUP_SUBMENUS flag was specified at parse time, this

parameter contains the menu handle of the currently activated sub-menu
within your menu. If not, it will contain the same value as hMenu.

wCmdIDBase the start of the Command IDs for this instance of the keyword
wNumCmdIDs The number of Command IDs used in this instance.

Returns

TRUE if all goes well, false if there's a problem.

Comments

At this point you can use the SDK menu functions to modify (but not delete) the menu referred to by
hMenu. You may modify/delete any sub-menu menu contained within the your keyword's menu
hierarchy (e.g. the menu passed in as hSubMenu). Be aware that hSubMenu can be the same menu as
hMenu, so exercise caution before deleting hSubMenu. This function is called as a direct result of a
WM_INITMENUPOPUP, so use the same rules you'd use in handling that message.

<KeywordPrefix>Cmd()
C int <KeywordPrefix>Cmd(WPARAM wCmdID, WPARAM

wCmdIDBase, WPARAM wNumCmdIDs, HMENU hMenu,
LPSTR szCmdLine)

Pascal function <KeywordPrefix>Cmd(wCmdID : word; wCmdIDBase : word;
wNumCmdIDs : word; MenuHandle : HMENU; pszCmdLine :
pChar): integer; export;

Description

Do your stuff - this function allows your keyword to actually perform some task.
Parameters
wCmdID The ID of the item actually chosen (it may not be wCmdIDBase if you've

got a cascading menu).
wCmdIDBase The base values of Command IDs for this instance of the keyword (an

effective way of differentiating between instances of the same keyword).
wNumCmdIDs The number of Command IDs used in this instance.
hMenu/MenuHandle The BackMenu menu (so you can get at any menu entries you wish)
szCmdLine The "command line" for this instance of the keyword. This will be set

even if the wCmdID is part of a cascading menu.
Return Value
This function has many return values, all of which are supplied in XKEYBITS.H. An error condition is
signified by returning a value < 0. The only errors that should be returned are:-
KEYC_NO_EXECUTE Returned if this keyword can only exist within a menu (i.e. it cascades)

and the user has tried to execute it elsewhere (e.g. Alias).
KEYC_RELOAD_MENU Not really an error - it tells BackMenu to reload the current menu (useful

for certain keywords that change the state of the system e.g.
$XKeywordManager).

KEYC_USER_ERROR_BASE You can return a user defined error value (<= this value). BackMenu will
then ask you for a string to describe this error via the
<KeywordPrefix>Info function described later.

Comments

This function will be called in one of two circumstances. Firstly, the user might cause the keyword to be
executed in some manner other than selecting it from a menu. In this case, wCmdID and wCmdIDBase
are both KEYWORD_CMD_EXECUTE, and hMenu is NULL.
Otherwise, the "Cmd" originated from a menu. Its up to you to decide what to do.

<KeywordPrefix>Info()
C int <KeywordPrefix>Info(WPARAM wInfo, LPSTR szBuffer, WORD

wBufSize)

Pascal function <KeywordPrefix>Info(wInfo : word; szBuffer : pChar;
wBufSize : word): integer; export;

Description

Called by the system to extract information about your keyword.

Parameters

wInfo The information requested (see Comments).
szBuffer A buffer into which the information is to be placed.
wBufSize The maximum size of that buffer.

Return Value

Error is < 0, otherwise return TRUE or an appropriate value depending on the information requested
(see Comments).

Comments

The wInfo parameter defines the information wanted. It will be one of the following:-
KEYI_KEYWORD Return the Keyword string in szBuffer (e.g. "XKeywordManager").
KEYI_DESCRIPTION Return a concise description of the function of this keyword in szBuffer.
KEYI_PREFIX Return the Prefix string used to locate the functions within this DLL in

szBuffer.
KEYI_ICON_FILENAME Return the name of the file containing the icon to be used for this

keyword in szBuffer.
KEYI_ICON_NUMBER Return the index of the icon within the file given by

KEYI_ICON_FILENAME in the return value of the function. Icon indexes
start at 0. Note this is NOT the resource number of the icon within the
file.

KEYI_NUM_LIST_DESCRIPTIONS
Return the number of descriptions which can be added to a drop-down
list box so this keyword can be used externally (e.g. as an alias). This is
returned in the return value of this function. The maximum number of list
descriptions allowed is defined by the symbol
MAX_LIST_DESCRIPTIONS.

KEYI_LIST_DESCRIPTION Return a description based from this value, in szBuffer.
(e.g. ..DESCRIPTION,.DESCRIPTION+1,..DESCRIPTION+2).

KEYI_USER_ERROR Return a string describing the user defined error based from this value in
szBuffer. This is the absolute value of the error value returned by
<KeywordPrefix>Parse or <KeywordPrefix>Cmd.

<KeywordPrefix>Done()
C void <KeywordPrefix>Done(WORD wReason)

Pascal procedure <KeywordPrefix>Done(wReason : word); export;

Description

Called when the external keyword is unloaded for any reason.

Parameters

wReason The reason for unloading. It can be KEYR_TERMINATE (just shutting
down), KEYR_NO_FREE_CMDS (not enough Command IDs left) and
KEYR_TOO_MANY_CMDS (you've asked for more Command IDs than
there are anyway).

Returns

None

Comments

None

KeywordLibInfo()
C int KeywordLibInfo(WORD wKeyword, WORD wInfo, LPSTR

szBuffer, WORD wBufSize)

Pascal function KeywordLibInfo(wKeyword : word; wInfo : word; szBuffer :
pChar; wBufSize : word): integer; export;

Description

Each external keyword library MUST have this function within it. It only needs to exist once, no matter
how many external keywords are supported by the library. It provides a gateway by which the BackDesk
external keywords system can interrogate the library and find out its capabilities.

Parameters

wKeyword The zero based keyword index for which information is required.
wInfo The information requested (see Comments).
szBuffer A buffer into which the information is to be placed.
wBufSize The maximum size of that buffer.

Return Value

Error is < 0, otherwise return TRUE or an appropriate value depending on the information requested
(see Comments).

Comments

This funtion mainly acts as a multiplexer. There are two information requests which it has to handle,
otherwise it should pass the request on to the relevant keyword information handler. The information
values it must support are:-
KEYLI_NUM_KEYWORDS Return the number of keywords supported by this library as the return

vale of this function.
KEYLI_KEYWORD_NUM A keyword is supplied via the szBuffer parameter and this function must

map it to a zero based value which can then be used to refer to the
keyword via the wKeyword parameter. This value is returned as the
return value of the function or is -1 if the keyword is not supported.

So how do I use my shiney new external keyword in BackMenu?
With the advent of $XKeywordManager, all you have to do is use the keyword to install/remove/edit any
external keywords. However, for completness (and in case something goes wrong), this next section is
supplied for reference only.
Information about the external keywords is stored in SP-SERV.INI. All you have to do is add the name of
your keyword (without the $) and the location of the external keyword library to the list of external
keywords which are stored in a section like so:-

[External Keywords]
MyKeyword=c:\windows\backdesk\mykeyword.dll
XKeywordManager=c:\windows\backdesk\xkeyman.dll

Where have all these constants and structure come from?
xkeybits.h - C include file

// Flags for A_KEYWORD_PARSE

#define KEYF_GREYED 0x0001
#define KEYF_MENU 0x0002
#define KEYF_IS_INVISIBLE 0x0004
#define KEYF_POPUP_SUBMENUS 0x0008

typedef struct
{

WORD wFlags ;
HMENU hMenu ;
WPARAM wNumCmdIDs ;

} A_KEYWORD_PARSE, FAR *KEYWORD_PARSE_PTR ;

// Reason values for _Done

#define KEYR_TERMINATE 0x0000
#define KEYR_NO_FREE_CMDS 0x0001
#define KEYR_TOO_MANY_CMDS 0x0002

// General purpose constants

#define MAX_KEYWORD_LEN 64
#define MAX_KEYWORD_CMD_LEN 128

#define KEYWORD_CMD_BASE 0x8000
#define KEYWORD_CMD_MAX 0xFFFF
#define KEYWORD_CMD_EXECUTE 0x0000
#define KEYWORD_CMD_PARSE 0x0000
#define KEYWORD_NO_CMD_IDS 0xFFFF

// Keyword CMD return codes

#define KEYC_NO_MEMORY -1
#define KEYC_UNKNOWN_KEYWORD -2
#define KEYC_UNKNOWN_INSTANCE -3
#define KEYC_NO_CMD_FN -4
#define KEYC_NO_EXECUTE -5
#define KEYC_RELOAD_MENU -6
#define KEYC_NO_KEYWORDS_LOADED -7

#define KEYC_USER_ERROR_BASE -256

#define KEYC_OK 1

// Keyword Info constants

#define KEYI_KEYWORD 1
#define KEYI_DESCRIPTION 2
#define KEYI_PREFIX 3
#define KEYI_NUM_LIST_DESCRIPTIONS 95
#define KEYI_LIST_DESCRIPTION 96
#define MAX_LIST_DESCRIPTIONS 32

// Keyword Library Info constants

#define KEYLI_NUM_KEYWORDS 128
#define KEYLI_KEYWORD_NUM 129

#define KEYI_USER_ERROR 256

xkeyword.pas - Pascal TPU source file

unit xKeyWord;

{Pascal interface to BackMenu Add-ons API }
{(c) 1994-5, Clarity Systems Ltd }

interface

uses winprocs, wintypes;

const
 KEYF_GREYED = 1;
 KEYF_MENU = 2;
 KEYF_IS_INVISIBLE = 4;
 KEYF_POPUP_SUBMENUS = 8;
 KEYR_TERMINATE = 0;
 KEYR_NO_FREE_CMDS = 1;
 KEYR_TOO_MANY_CMDS = 2;
 MAX_KEYWORD_LEN = 64;
 MAX_KEYWORD_CMD_LEN = 128;
 KEYWORD_CMD_BASE = $8000;
 KEYWORD_CMD_MAX = $FFFF;

 KEYWORD_CMD_EXECUTE = 0;
 KEYWORD_CMD_PARSE = 0;
 KEYWORD_NO_CMD_IDS = $FFFF;
 KEYC_NO_MEMORY = -1;
 KEYC_UNKNOWN_KEYWORD = -2;
 KEYC_UNKNOWN_INSTANCE = -3;
 KEYC_NO_CMD_FN = -4;
 KEYC_NO_EXECUTE = -5;
 KEYC_RELOAD_MENU = -6;
 KEYC_NO_KEYWORDS_LOADED = -7;
 KEYC_USER_ERROR_BASE = -256;

 KEYC_OK = 1;

{Keyword Info constants}

 KEYI_KEYWORD = 1;
 KEYI_DESCRIPTION = 2;
 KEYI_PREFIX = 3;
 KEYI_ICON_FILENAME = 4;
 KEYI_ICON_NUMBER = 5;
 KEYI_NUM_LIST_DESCRIPTIONS = 95;
 KEYI_LIST_DESCRIPTION = 96;
 MAX_LIST_DESCRIPTIONS = 32;

{Keyword Library Info constants}

 KEYLI_NUM_KEYWORDS = 128;
 KEYLI_KEYWORD_NUM = 129;

 KEYI_USER_ERROR = 256;

type
 A_KEYWORD_PARSE = record
 wFlags : word;
 MenuHandle : HMENU;
 wNumCmdIDs : word
 end; {record A_KEYWORD_PARSE}
 KEYWORD_PARSE_PTR = ^A_KEYWORD_PARSE;

{Useful functions from backDesk... }
function BM_BreakMenu(MenuHandle : HMENU): HMENU;
{Splits the menu concerned into balanced columns according to BackMenu
settings }

function BM_CopyMax(pszDest : pChar; pszSource : pChar; wcbMax : word):
word;
{Copies as much of Source into Dest as will fit}

implementation

function BM_BreakMenu; external 'BACKDESK.DLL';
function BM_CopyMax; external 'BACKDESK.DLL';

begin
 {No initialisation necessary}
end.

Networking - External Keywords
The supplied keyword library, XK_NET.DLL, contains three keywords to help with accessing the network
functions in Windows for Workgroups.

$NetConn Displays a dialog to allow you to add a new network link.
$NetDisc Displays a dialog showing your current network links and lets you break one.
$NetLinks Displays a cascading menu of network links that allows you to browse a linked resource

and add/remove links.

All of these keywords provide control of both printers and disks. You can add them to your BackMenu
installation using the $XKeywordManager command.

$NetConn - Connect a new net link
The $NetConn keyword, provided by the XK_NET.DLL external keyword library, displays the standard
Windows for Workgroups Connect Network Drive dialog. Add the optional parameter Printer to display a
Connect Network Printer dialog instead.

Select Drive Combo - Use this control to pick the drive letter with which you want to associate this new
network link.

Select Network Resource Combo - Use this control to type in a new network UNC name for the
resource you want to link or to select one you have chosen previously.

Workgroup System View - The workgroups on your network are shown here. Double-click on a
workgroup name to display the machines available in that workgroup. Click on a machine name to view
the shareable resources on that machine.

Shareable Resource List - This box displays the resources available for sharing on the system you have
selected. Click on a resource to place its name in the Path combo box above.

Add to Reconnection List - Check this box if you want Windows for Workgroups to attempt to link to this
resource every time you restart Windows.

Browse Behaviour - Uncheck this box to stop the network search that takes place each time the dialog is
displayed.

$NetDisc - Disconnect Net Resource
The $NetDisc keyword, provided by the XK_NET.DLL external keyword library, displays the standard
Windows for Workgroups Disconnect Network Drive dialog. Add the optional parameter Printer to display
a Disconnect Network Printer dialog instead.

If no resources are currently linked, a message is displayed.

$NetLinks - Cascading Networking Menu
Add $NetLinks to your BackMenu to display a cascading menu showing currently linked network drives
and printers and offering the opportunity to disconnect or browse them or to connect new ones.

Add the parameter NoConfirm to suppress display of confirmation dialogs when resources are
disconnected.

Add the parameter Force to allow resources that are currently in use to be disconnected.

This keyword is provided by the XK_NET.DLL external keyword library.

BackDesk Command Executor, BDX.EXE
So youd like to use BigDesk but not BackMenu? How do you pass BackDesk parameter lists to BigDesk
when executing programs, so that programs appear on the right desktops?

Well, all you have to do is prefix the command line with BDX (assuming BDX.EXE has been placed on
your path). BDX will then pass the full command line to BackDesk for execution just like a BackMenu
command line. Any valid menu command may be executed, including keywords.

For example,
BDX {TODESK} CLOCK

will launch the clock and make it stick to the desktop.

BME - The BackMenu Menu Editor
Welcome to BME, an easy-to-use menu editor for BackDesk. Help can be found on any aspect of using
BME, just click on an item of interest from the picture below

You can also get more information on
· Creating a Menu Item
· Editing a Menu Item
· Moving a Menu Item
· Deleting a Menu Item

Help Button
Brings you right here, there's little more to say than that.

New Button
If you're sure you really want to, you can erase all of the entries in the menu being edited. Don't worry,
this won't have any effect on the BackMenu menu until you decide to save your work.

Load Button
Displays a dialog box asking for the name of a menu file to load. Choosing one and pressing OK will let
you edit the menu contained within that file.

Save Button
Displays a dialog box asking for the file name and location in which to save the edited menu. Please note,
if you save your menu to a different file from the one it was loaded, BackMenu will not see that the menu
has changed and so the new menu will not be loaded.    Either copy the changes back over the original
menu file or change the name of the menu file which BackMenu loads (see $SetOptions for more details)

Exit Button
Quits BME and, if you've done any editing, asks if you want to save your shiny new menu.

BME - Editing a Menu
Clicking in the BME window displays the menu you are editing, as shown below. From here you can :-

· Add a new item to the menu
· Edit/Move/Delete an existing item
· Edit/Move the title of a group of items which exist as a pull-right menu

Click on the list above or on the picture below for more information

What Kind of Item?
Depending on the type of item chosen, a different dialog will appear to let you edit that item. BME
understands about three different types of items:-

· A Menu Entry
· A Comment
· A Separator

Choose the item you are interested in.

A Menu Entry
Selecting this entry will allow you to edit, move and/or delete it. For more information see BME - Editing a
Menu Entry.

A Menu Separator
Selecting this separator allows you to move or delete it. For more information see BME - Editing a Menu
Separator.

A Menu Comment
Selecting this comment allows you to edit, move and/or delete it. For more information see BME - Editing
a Menu Comment.

A Pull-Right Menu
Selecting this menu will cause it's contents to be displayed. You can then edit any of the items which form
a part of that menu, or choose to look at any pull-right menus it contains.

New Item
Selecting this item allows you to append a new item to the end of your menu. Once appended, you can
edit it like any other menu item. For more information see BME - Adding a New Menu Item.

Edit Menu
Selecting this item allows you to edit and/or move the pull-right menu which contains it. For more
information see BME - Editing a Pull-Right Menu.

Edit Menu
Selecting this item allows you to edit and/or move the pull-right menu which contains it. In the case of the
top-level menu, this item is grayed out. For more information see BME - Editing a Pull-Right Menu.

Invisible Pull-Right Menu
Selecting this menu will cause it's contents to be displayed. You can then edit any of the items which form
a part of that menu, or choose to look at any pull-right menus it contains. This menu will not be displayed
during normal use. For more information see BME - Editing a Pull-Right Menu.

BME - Adding a New Menu Item
By choosing ** New Item ** from the bottom of any menu, you can choose to append any one of four
different items to the menu as shown below.

Click on an item to find out how to add it.

Item
Appends a new entry to the menu. This is a standard BackMenu entry with a description and associated
command to be run. Choosing this will cause a dialog to be displayed which will allow you to create the
new entry. For more information see BME - Editing a Menu Entry.

Menu
Appends a new pull-right menu to the menu, displaying a dialog which allows you to create it. For more
information see BME - Editing a Pull-Right Menu.

Separator
Appends a new separator to the menu. For more information see BME - Editing a Separator.

Comment
Appends a new comment to the menu, displaying a dialog box which allows you to create it. For more
details see BME - Editing a Comment.

BME - Editing a Menu Entry
Whether you are editing an existing BackMenu entry or creating a new entry from scratch, the following
dialog box appears. Click on an area of interest.

Name
This is the description of the entry that will appear in the menu.

Command
The command line to be executed. Clicking on the drop down button gives a list of the available keywords
(see KeywordCommands for more details).

Browse
Click on this button to display a directory listing box where you can roam your disk looking for possible
programs to run.

Default Directory
Enter the name of the directory you want to be in when the program is run.

Parameters
Enter any of the BackMenu attributes here. You can also use the edit button to do this interactively. For
more details see BME - Editing a Menu Entry - Editing Attributes or BackDesk Command Line Attributes

Edit
Displays a dialog box where you can edit the individual attributes. For more details see BME - Editing a
Menu Entry - Editing Attributes.

Load on Startup
Check this box if you want this command to be run when BackMenu first loads.

Disable
Press this button to disable the entry (comment it out). Useful if youre temporarily removing a program.

Move
Press this button if you want to move the entry elsewhere within the current menu. For more details see
BME - Moving a Menu Item.

Delete
Press here to delete the entry from the current menu.

BME - Editing a Menu Entry - Editing Attributes
This dialog box lets you edit each attribute individually. you can find more out by clicking on the picture
below or by checking out BackDesk Command Line Attributes.

Attribute List
The complete list of BackDesk attributes is available here. Click on the down arrow to choose the one you
wish to edit/include

Active
Check this box if you want to add attribute displayed above to the set for the current entry. Un-check it to
remove the attribute.

Parameters
Type any additional parameters required for the attribute here (e.g. the x-coordinate for XPOS). Note that
some attributes do not require any additional parameters and so in some instances you will not be able to
type here.

Description
Gives a brief description of the chosen attribute

BME - Editing a Pull-Right Menu
Whether you are editing an existing BackMenu menu or creating a new menu from scratch, the following
dialog box appears. Click on an area of interest.

Name
Type here the name as you wish it to appear in the parent menu.

Hidden
Check this box if you want the menu to be hidden (i.e. not selectable in normal use). Useful if you want to
hide away a set of programs to be launched when BackMenu is first started (see the Active check box in
BME - Editing a BackMenu Entry).

Move
Press this button if you want to move the menu elsewhere within the parent menu. For more details see
BME - Moving a Menu Item.

BME - Editing a Menu Separator
Whether you are editing an existing BackMenu separator or creating a new one from scratch, the
following dialog box appears. Click on an area of interest.

Move
Select this option and choose OK if you want to move the separator elsewhere within the current menu.
For more details see BME - Moving a Menu Item.

Delete
Select this option and choose OK to delete the entry from the current menu.

BME - Editing a Menu Comment
Whether you are editing an existing BackMenu comment or creating a new one from scratch, the
following dialog box appears. Click on an area of interest.

Comment
Enter your comment here. You don't need to place a semi-colon at the start, BME will do that for you.

Extra Stuff
Type an extra information you want associated with the comment

Delete
Press this button to delete the comment from the menu

Enable
Press this button to enable (i.e. uncomment) a menu entry that you've disabled. For more details see the
Disable button in BME - Editing a BackMenu Entry

Move
Press this button if you want to move the comment elsewhere within the current menu. For more details
see BME - Moving a Menu Item.

BME - Moving a Menu Item
Whether it is a menu entry, pull-right menu, separator or comment, if you choose to move a menu item,
you'll end up at a dialog box which looks something like the one below.

Description
This line will tell you the name of the item you are moving

List
This list shows the names of all of the items contained in the menu within which you are moving your
item. Choose the item you wish your item to go before, and press OK.

BME - Deleting a Menu Item
Deleting a menu entry, separator or comment couldn't be easier. Simply press the Delete button from
within the relevant dialog box. To delete a pull-right menu, simply delete all of the items contained within
that menu.

