
Contents
Overview
Who Are These Guys, Anyway?

Introduction

Registration

License Agreement

Acknowledgments

Installation
Minimum Requirements

How to Install PRIME 5

Custom Toolbars

File Inventory

Technical Support

How to Uninstall PRIME 5

PRIME 5 Custom VBA Procedures
You Can Call PRIME 5 Custom VBA Functions and Subroutines

Custom VBA Procedure Categories

Custom VBA Procedure Summary

PRIME 5 Utilities
Cell Protection Viewer

Create Program Manager Icon

Name Assistant

Toolbar Assistant

TUGExcel Tools

Window Assistant

Zoomer

Who Are These Guys, Anyway?
Well, since a picture's worth a thousand words, here's a rare photograph of the co-conspirators, er, co-
founders of PRIME Consulting Group, also pen pals in the production of The Underground Guide to Excel
5.0 for Windows and The Underground Guide to Microsoft Office, OLE, and VBA. This appears to be one
of the secret entrances to The Underground. Judging by the ambiance, deep in the heart of a teeming
industrial sector somewhere in the Western United States ...

Introduction
PRIME 5 is a collection of add-on utilities for Microsoft Excel 5 for Windows, and is distributed as
shareware. The only difference between the unregistered and the registered versions is that registered
users receive a diskette version that contains no nag screens. Thanks in advance for registering!

PRIME 5 was developed by PRIME Consulting Group, Inc., the firm whose principals Timothy-James Lee
and Lee Hudspeth co-authored The Underground Guide to Excel 5.0 for Windows (Addison-Wesley) and
The Underground Guide to Microsoft Office, OLE, and VBA (Addison-Wesley). In fact, The Underground
Guide to Excel was the genesis of PRIME 5. PRIME Consulting Group, Inc. (PCG) co-authored the
Microsoft Education Services (MES, formerly Microsoft University) WordBasic development course. Jim
and Lee served as Technical Editors, along with the indefatigable Scott Krueger, on Leonhard and Chen's
Hacker's Guide to Word for Windows, first edition (Addison-Wesley). PCG developed PRIME 4, a Word
2 / PackRat 4 / FAXit integration application. PCG developed and self-published Hacker's Guide to
PackRat 4.

PRIME Consulting Group, Inc. is a member of the Microsoft Solution Provider program, and is both a
certified Microsoft Consulting Partner and Microsoft Training Partner. The firm's staff are certified to teach
the following MES courses:

· Introduction to Programming for Microsoft Windows Using Microsoft Visual Basic 3.0

· Programming in Microsoft Visual Basic 3.0

· Application Development Using Microsoft Word

In addition, PRIME Consulting Group offers its own courses.

· Putting OLE 2, VBA, and DDE to Work: Integrating Windows Applications

· The Underground Guide to Excel 5, Live!

· The Underground Guide to Word 6, Live!

For more information about PRIME Consulting Group's consulting, training, and development services,
including a complete courseware catalog and schedule, please call 310-318-5212.

Registration
PRIME 5 is shareware. You give it a whirl and if you like it, we'd very much appreciate it if you'd buy it
within 30 days of first starting to tinker with it. The benefits of registering include:

· No nag screens.

· The most recent versions of all PRIME 5's components.

· Free telephone support via a toll call.

· Additional free support on CompuServe.

Thanks in advance for registering!

For single-user license agreement details, see License Agreement.

For site licensees: if your organization uses more than one copy of PRIME 5 at a time, you should license
as many copies of PRIME 5 as you have copies of Microsoft Excel 5 for Windows. It's that simple.

PRIME 5 is $29.95US plus $4.50US shipping and handling, $9.50US outside North America. Site licenses
(more than ten users) are available at considerable savings.

You can register right now by calling 800-317-5525, or 314-965-5630. We take Mastercard, Visa,
American Express, purchase orders, and try hard to ship within 24 hours. To register by mail, send a
check (in U.S. dollars, please) to:

PRIME Consulting Group, Inc.
c/o Advanced Support Group, Inc.
11900 Grant Place
Des Peres, Missouri USA 63131

License Agreement
This License Agreement is entered into between PRIME Consulting Group, Inc. as Licensor and recipient
of enclosed diskette and related materials as Licensee.

This is a legal agreement between Licensor and Licensee. If Licensee does not agree to the terms of this
Agreement, Licensee shall promptly return the disk(s) and accompanying material to Licensor.

Licensor hereby grants to Licensee the right to install the PRIME 5 components ¾ including but not
limited to DLLs, macros, workbooks, add-ins, and XLLs ("PRIME 5") ¾ on any one (1) personal computer.
If Licensor installs PRIME 5 on a network server, Licensor agrees that one and only one user shall have
access to that specific installed copy of PRIME 5. Use of PRIME 5 by more than one user is a violation of
the terms of this agreement.

Use of PRIME 5 covered by this license by Licensee constitutes acceptance by Licensee of the terms and
conditions of this agreement and Licensee agrees to be bound by the terms of same.

For the purpose of this agreement both parties hereby agree that the word "use" means loading files
containing PRIME 5 features (PRIME5.XLA or any other related workbook, add-in, DLL, or XLL supplied
with PRIME 5) into RAM as well as installation on a hard disk or other storage device. In no event shall
the term "use" include the right to modify, update, publicize, publish, republish, copyright, sell or transfer
either this license, or the rights granted by this license, or the technology thereunder in relation thereto.

This license is limited to Licensee, which may access PRIME 5 from a hard disk, or any other method
Licensee chooses to utilize, so long as Licensee otherwise complies with the terms of this License
Agreement.

Licensee agrees and acknowledges that PRIME 5 was specifically written for Microsoft Excel for Windows
version 5.0 through 5.0c and Microsoft Windows 3.1, and that PRIME 5 may or may not work with any
other version of these applications and operating systems/environments, either earlier or later.

LICENSOR DISCLAIMS, AND LICENSEE AGREES AND ACKNOWLEDGES THE DISCLAIMER OF
ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
SHALL LICENSOR, OR ANY PERSON, FIRM OR ENTITY RELATED OR AFFILIATED THEREWITH,
BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PURPOSE, BUSINESS INTERRUPTION, BUSINESS INFORMATION, OR
ANY OTHER PECUNIARY LOSS WHATSOEVER, ARISING OUT OF THE USE OF, OR THE INABILITY
TO USE, THE SUBJECT OF THIS LICENSE.

Licensee acknowledges that it has no rights whatsoever to copyright, in any country, anything in relation
to PRIME 5, and promises and represents that it shall not attempt to do so, the same being exclusively
vested in Licensor.

In the event Licensee breaches any term of this License Agreement it shall pay to Licensor, in addition to
damages, all costs of suit and/or appeal to enforce the terms of this License Agreement, including, but not
limited to, reasonable attorney's fees.

Both parties agree that this Agreement represents the complete and final agreement and understanding
between the parties and all other prior and/or contemporaneous understandings or agreements are
merged herein and shall have no further force and/or effect, and, that this Agreement is an "Integrated"
agreement, and shall be governed exclusively by the laws of the United States of America and the State

of California.

Acknowledgments
PRIME 5 was conceived and developed by PRIME Consulting Group, Inc.

We'd like to thank Woody Leonhard for his boundless support and encouragement. Ad infinitum. Amen.

Kudos and back-slapping are certainly due to Bill Edmett and Jonathan Sachs for exquisite programming,
design, and technical writing contributions to PRIME 5. Bill implemented Cell Protection Viewer. Jonathan
implemented Zoomer, and many of his procedures from PRIME 6 for Word's API ported quite nicely to
Excel VBA, yes indeedy.

Thanks to Brian Gray of Aries Entertainment for a superb job on the setup routine. (Aries Multimedia is
located in Fresno, California, 209-222-9171, CompuServe 73750,253.)

PRIME 5 wouldn't be what it is without the input we received from our beta testers (any PRIME 5 errors,
goofs, or general misbehaviors are of course credited solely to PRIME Consulting Group), listed here in
alphabetical order ...

Dick Apcar, Mark Bennett, Brad Brunell, Roy Busdiecker, Paul Cameron, Vince Chen, Peter Deegan,
Stephen Edgington, Michael Gordon, Kurt Haeusermann, Arthur Hixon, Michael J. Holden, Stephen
James, Joel Kanter, Doug Klippert (Doug, please accept our sincerest apologies for accidentally omitting
your name from the PRIME 6 for Word help file's beta acknowledgments section), John Kois, Ray
Lassiter, Woody Leonhard, Jeffrey Leyser, Justin Maas, Scot Maga, Tom Manuel, Ken Mocabee, Dick
Moffat, Erik Mogensen, Ellen Nagler, Rob Perelli-Minetti, Jim Powell, Adam Rodman, Kurt Shadle, Terry
Sherb, Paul Solyn, Dan Strange, Stephen Stuart, Karl Swensson, Pete Thompson, and Bill Walton. (If we
left you out or misspelled your name, sorry, let us know and we'll send you some home-baked fudge,
OK?)

Thanks to Tailor-Made Marketing and Advertising Programs for marketing and public relations consulting
services par excellence. (Tailor-Made is located in Hermosa Beach, California, 310-318-7099).

We used WexTech Systems' amazing Doc-To-Help to produce this User's Guide and help file for PRIME
5.

Related Topics:
Buy PRIME 6 for Word Now (Puh-leez)!
And Don't Forget to Buy WOPR 6 for Word Too!

Buy PRIME 6 for Word Now (Puh-leez)!
From PRIME Consulting Group, Inc., the perfect compliment to Word 6 includes utilities like Fast Spell
Checker for quicker spell checking with all misspelled words in a document available in a single list.
FileNew for complete template management. AutoText Lister for viewing local and global AutoText
contents and statistics side-by-side. Window Manager for one-stop window management. Document
Variable Manager for adding, viewing, modifying, deleting or cataloging those pesky document variables.
Bookmark Manager, the definitive utility for dealing with bookmarks. Zoomer, Macro Manager, Toolbar
Lister, ResetChar, ProgMan Icon Generator, 36 custom WordBasic subroutines and functions, a list of
Word and WordBasic bugs and workarounds, et cetera.

List price is $39.95 (plus $4.50 shipping and handling in the USA and Canada; $9.50, all other countries).
Just mention that you're a registered owner of PRIME 5 for Excel and get $5.00 off the price of PRIME 6
for Word!

Call Advanced Support Group at 800-788-0787 or 314-965-5630.

And Don't Forget to Buy WOPR 6 for Word Too!
Call Advanced Support Group at 800-659-4696 or 314-965-5630.

A synopsis of WOPR 6's features:

· Enveloper

· File Manager

· Stellar Spellar

· Toolbar Editor

· File New

· 2x4

· TSS Address Book Lite

· Clip Art Scrapbook

· WinBreak Lite

· and a dozen or so LittleWOPRs

Minimum Requirements
To successfully run PRIME 5 you need the following.

· Microsoft Excel for Windows 5.0 or later (to find out about or order maintenance releases of Excel
call Microsoft at 800-426-9400; see also Custom Menu Item and Toolbar Button Deficiencies in
Excel 5.0 and 5.0a)

· PRIME 5.0 for Excel is compatible with Excel 5.0, 5.0a, and 5.0c (all 16-bit versions) running
under all currently available Windows operating systems:

a) Windows 3.1

b) Windows for Workgroups 3.1 and 3.11

c) Windows NT 3.5

d) Windows 95

· A separate version of PRIME 5 is available specifically for 32-bit Excel 5. You can order "PRIME
5.0 for Excel NT/95" directly by calling Advanced Support Group at 800-317-5525 (314-965-5630
outside the U.S.).

Related Topics:
Custom Menu Item and Toolbar Button Deficiencies in Excel 5.0 and 5.0a

Custom Menu Item and Toolbar Button Deficiencies in Excel 5.0 and
5.0a
Excel 5.0 and Excel 5.0a (the "a" suffix indicates a maintenance release) are missing several important
visual features related to custom menu items and custom toolbar buttons. These custom objects should
inherit (a) the status bar text of their assigned macros, (b) the help context ID of their assigned macros,
and (c) the custom help file's name. (When you click on a custom toolbar button with Excel's Help button
¾ and that button has been assigned to a macro ¾ if the macro has a "help context ID" then you'll
immediately see the appropriate help file topic for that custom button. The same effect occurs when you
select a custom menu item then press F1.) But they do not inherit these important properties in Excel 5.0
and 5.0a. Instead, these objects display inappropriate values on the status bar and, when clicked with the
Help button, go to Excel's help file instead of the correct custom help file.

These very useful features only work properly in Excel 5.0c. As of this writing "c" is the very latest
maintenance release. We urge you to upgrade to 5.0c by calling Microsoft at 800-426-9400. It's a free
upgrade.

How to Install PRIME 5
PRIME 5 is installed via an automated setup routine (SETUP.EXE). For instructions on how to uninstall
PRIME 5, see How to Uninstall PRIME 5.

1. Exit Excel if it's already running.

2. Go to Program Manager, select File then choose Run.

3. Type "a:\setup.exe" (without the quotes) and press Enter or click OK. (If you're installing from your
b: diskette drive, type "b:\setup.exe".)

4. Follow the instructions on the installation screen.

5. When installation is complete, it leaves you in Notepad to review the latest PRIME 5
README.TXT file. Exit Notepad when you've reviewed any relevant late-breaking news.

6. Start Excel.

You'll see PRIME 5's toolbar displayed. If for some reason you don't see it, select View on the
main menu bar, select Toolbars, scroll down the Toolbars list until you see "PRIME 5.0," select the
PRIME 5.0 check box, then click OK.

Each PRIME 5 utility has its own menu item hanging off various standard menu bar commands (this
applies to the built-in Worksheet, Chart, and Visual Basic Module menu bars only), as well as its own
button on the PRIME 5.0 toolbar.

Custom Toolbars
PRIME 5 comes with its own custom toolbar called "PRIME 5.0." This toolbar is automatically created on
the way in and destroyed on the way out. However, PRIME 5 does store this toolbar's last position so
when it is recreated ¾ the next time you start Excel ¾ it will reappear where you left it. Any buttons you
add to or delete from this toolbar will remain added or deleted for the life of the current Excel session only;
these button additions/deletions will be discarded at the end of the current Excel session.

When PRIME 5 starts for the first (and only the first) time, it creates three custom toolbars.

· Underground Guide to Excel Auditing

· Underground Guide to Excel Formatting

· Underground Guide to Excel Standard

The configuration of these toolbars matches those recommended in our book The Underground Guide to
Excel 5.0 for Windows (Lee Hudspeth and Timothy-James Lee, Addison-Wesley, ISBN 0-201-40651-9).
These toolbars and their related features are described in detail in the following sections. For more
information on the macros assigned to these custom toolbar buttons, see The Macros Behind the Buttons.

Related Topics:
Swapping Excel's Built-in Toolbars for the Underground Guide Versions
"Underground Guide to Excel Auditing" Custom Toolbar
"Underground Guide to Excel Formatting" Custom Toolbar
"Underground Guide to Excel Standard" Custom Toolbar
The Macros Behind the Buttons

Swapping Excel's Built-in Toolbars for the Underground Guide
Versions
We may be biased, but we're going to suggest that you hide Excel's built-in Standard, Formatting, and
Auditing toolbars and activate ours (the Underground Guide to Excel versions). Here's how.

1. Select View / Toolbars / clear the Standard check box only if it is checked / click OK. This hides
Excel's Standard toolbar. (Note: you can combine steps 1-3 into one step by not clicking the OK
button until you've hidden the last toolbar in the series.)

2. Select View / Toolbars / clear the Formatting check box only if it is checked / click OK.

3. Select View / Toolbars / clear the Auditing check box only if it is checked / click OK.

4. Typically, upon first installing PRIME 5, you'll see the TUGExcel Standard, Formatting, and
Auditing toolbars floating in the upper left portion of your display space. If you see them right now
then you don't have to make them visible and you can skip to the next step. Otherwise, Select
View / Toolbars / select the Underground Guide to Excel Standard check box, repeat this step for
the Underground Guide to Excel Formatting toolbar and the Underground Guide to Excel Auditing
toolbar, and click OK when you're done.

5. You can now position any or all of the three visible Underground Guide to Excel toolbars as you
wish.

"Underground Guide to Excel Auditing" Custom Toolbar
The following table shows what command or feature is called by each button on the Underground Guide
to Excel Auditing custom toolbar. Note: the button numbers shown here ignore gaps.
Button Number Command/Feature Called
1 built-in Trace Precedents
2 built-in Remove Precedent Arrows
3 built-in Trace Dependents
4 built-in Remove Dependent Arrows
5 built-in Remove All Arrows
6 built-in Trace Error
7 built-in Attach Note
8 built-in Show Info Window
9 PRIME Formula Flipper
10 PRIME Notation Style Flipper
11 PRIME Edit Go To Special

"Underground Guide to Excel Formatting" Custom Toolbar
The following table shows what command or feature is called by each button on the Underground Guide
to Excel Formatting custom toolbar. Note: the button numbers shown here ignore gaps.
Button Number Command/Feature Called
1 built-in Style
2 built-in Font
3 built-in Font Size
4 built-in Bold
5 built-in Italic
6 built-in Underline
7 built-in Align Left
8 built-in Center
9 built-in Align Right
10 built-in Center Across Columns
11 built-in Borders
12 built-in Drop Shadow
13 built-in Light Shading
14 built-in Toggle Grid
15 built-in Full Screen

"Underground Guide to Excel Standard" Custom Toolbar
The following table shows what command or feature is called by each button on the Underground Guide
to Excel Standard custom toolbar. Note: the button numbers shown here ignore gaps.
Button Number Command/Feature Called
1 PRIME New Workbook
2 built-in Open

3 built-in Save
4 PRIME File Close
5 PRIME Exit Excel
6 built-in Print
7 built-in Print Preview
8 built-in Spelling
9 built-in Set Print Area
10 built-in Cut
11 built-in Copy
12 built-in Paste
13 built-in Format Painter
14 built-in Undo
15 built-in Repeat
16 built-in Paste Names
17 built-in AutoSum
18 built-in ChartWizard
19 built-in Text Box
20 built-in Shape
21 built-in Zoom Control
22 built-in TipWizard
23 built-in Help

The Macros Behind the Buttons
Since The Underground Guide to Excel 5.0 for Windows was published we've fine-tuned the macros
behind the TUGExcel toolbar buttons, primarily just incorporating calls to various PRIME 5 API
procedures. Here's an updated source code listing.

(Portions of the following sections reprinted by permission of Addison-Wesley from The Underground
Guide to Excel 5.0 for Windows).

Related Topics:
New Workbook (TUGExcel Standard)
File Close (TUGExcel Standard)
Exit Excel (TUGExcel Standard)
Formula Flipper (TUGExcel Auditing)
Notation Style Flipper (TUGExcel Auditing)
Edit Go To Special (TUGExcel Auditing)

New Workbook (TUGExcel Standard)
The first three buttons on Excel's ship-with Standard toolbar deal with files, creating books, opening
existing books, and saving files to disk. Open and Save work fine, but we had best deal with the way the
first button, New, behaves. This button gives you a new book, bang! "What's wrong with this," you ask?
Well, you should be using templates, and you should be able to click on this button and choose what
template to use when creating a new book instead of being forced to accept the default book template.

Here's our replacement for Excel's ship-with "new file/workbook" button.

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Sub sFileNew()
 ExecuteExcel4Macro "NEW?()"
End Sub

File Close (TUGExcel Standard)
Did you notice anything odd about the first three buttons of Excel's ship-with Standard toolbar? What's
missing from this group? Well, if you're like us, you will probably close every file you open at some point,
so how about a FileClose button? Microsoft left it out of Excel. They put one in WinWord, but they left it off
the toolbar; you have to put it on yourself. In Excel they left it out, period, as in there ain't no such animal.

Here's the code behind our button for closing files/workbooks.

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Sub sFileClose()
 If fblnNullMenuState Then
 Beep
 Exit Sub
 End If
 On Error Resume Next
 ActiveWorkbook.Close
End Sub

Exit Excel (TUGExcel Standard)
This is a completely new addition, and if it had been a snake, well, we'd be snake-bit. Thanks to Bill
Walton for requesting such a useful addition to the TUGExcel Standard toolbar.

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Sub sFileExit()
 Application.Quit
End Sub

Formula Flipper (TUGExcel Auditing)
You can flip a sheet between formulas and results using the CTRL + ` (back apostrophe) key
combination. But since we think it is such a useful tool, we've added it to the Auditing toolbar as a custom
button.

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Sub sFormulaFlipper()
 If fblnNullMenuState Then
 Beep
 Exit Sub
 End If
 intRC = fintActiveSheetType
 If intRC = 1 Or intRC = 4 Or intRC = 5 Then
 ' DisplayFormulas applies only to all worksheet sheet types
 On Error GoTo EndMacro
 ActiveWindow.DisplayFormulas = Not ActiveWindow.DisplayFormulas
 Else
 Beep
 End If
 Exit Sub
EndMacro:
End Sub

Notation Style Flipper (TUGExcel Auditing)
Good ol' R1C1 notation is a great tool in the spreadsheet auditor's kit. In fact, it is so useful that ¾ you
guessed it! ¾ we've added a button to the Auditing toolbar to toggle worksheets between A1 and R1C1.

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Sub sNotationStyleFlipper()
 If fblnNullMenuState Then
 Beep
 Exit Sub
 End If
 On Error GoTo EndMacro
 ' since ReferenceStyle applies to the Application object, don't
 ' need to trap for any particular sheet type as the active sheet
 If Application.ReferenceStyle = xlA1 Then
 Application.ReferenceStyle = xlR1C1
 Else
 Application.ReferenceStyle = xlA1
 End If
 Exit Sub
EndMacro:
End Sub

Edit Go To Special (TUGExcel Auditing)
Last, but certainly not least, in our arsenal of trouble trappers are the features provided in the Edit Go To
Special dialog box. This dialog box presents an impressive array of tools for finding problems in
spreadsheet models.

Go To Special is a way to select a number of cells within a worksheet simultaneously, based on specific
criteria. Set the criteria by selecting one of several radio buttons (sure, sure, "option" buttons if you
prefer). After you have the cells selected, you can use the Tab key to jump from selected cell to selected
cell through the worksheet.

Ordinarily, getting to the Edit Go To Special dialog box is a little convoluted. You have to pull down the
Edit menu, click Go To, and then, from the Go To dialog box, click the Special button. Whew, finally the
Go To Special dialog box is displayed. Here's the code behind the custom button that makes this a single-
click joy.

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Sub sEditGotoSpecial()
 If fblnNullMenuState Then
 Beep
 Exit Sub
 End If
 intRC = fintActiveSheetType
 If intRC = 1 Or intRC = 3 Or intRC = 4 Or intRC = 5 Then
 ' native EditGoTo Special OK only for all worksheet sheet
 ' types and dialog sheets
 On Error GoTo EndMacro
 Application.Dialogs(xlDialogSelectSpecial).Show
 Else
 Beep
 End If
 Exit Sub
EndMacro:
 If Err = 1004 Then
 MsgBox "No cells found.", vbExclamation
 End If
End Sub

File Inventory
A file inventory follows. Each file's required storage path is shown in parentheses.

· CSLIDER.DLL (Windows System) ¾ custom control used by ZOOMXL.XLL

· CTL3D.DLL (Windows System) ¾ substitutes 3D controls for Windows' standard "flat" controls

· CUSTOM.MPP (master diskette) ¾ sample Project source file for use with OLE Automation
Routine (for more information see sOLEAutoRoutine)

· CUSTOM.XLS (master diskette) ¾ sample Excel source file for use with OLE Automation Routine
(for more information see sOLEAutoRoutine)

· DDEROUTI.XLS (master diskette) ¾ sample Excel source file for use with various DDE
procedures (for more information see Dynamic Data Exchange)

· DUMMY1.DOC (master diskette) ¾ sample Word source file for use with OLE Automation
Routine (for more information see sOLEAutoRoutine)

· OAROUTIN.XLS (master diskette) ¾ source code for OLE Automation Routine (for more
information see sOLEAutoRoutine)

· P5UNINST.XLS (master diskette) ¾ open this Excel workbook to uninstall PRIME 5 (for more
information see Uninstall PRIME 5 Automatically Using P5UNINST.XLS)

· PRIME5.XLA (Excel's Library Path) ¾ add-in where all the utilities live

· P5.HLP (Windows) ¾ help file

· README.TXT (master diskette) ¾ general last-minute comments and stuff

· ZOOMXL.XLL (Excel's Library Path) ¾ Zoomer XLL

Technical Support
For technical support call 314-965-5630, fax 314-966-1833, or use CompuServe (type GO WOPR).

How to Uninstall PRIME 5
You can uninstall PRIME 5 automatically or manually. Follow the steps in the subsequent sections as
appropriate.

Related Topics:
Uninstall PRIME 5 Automatically Using P5UNINST.XLS
Uninstall PRIME 5 Manually

Uninstall PRIME 5 Automatically Using P5UNINST.XLS
To remove PRIME 5 from your system using our automated uninstall application, follow these steps.

1. Start Excel if it isn't already open.

2. Open P5UNINST.XLS. (Note: if you want to edit this project for any reason, simply select Tools /
Protection / Unprotect… for the workbook and both sheets. The passwords are empty strings.)

3. Uninstall PRIME 5 for Excel as per the instructions therein.

4. Exit Excel. This step is important due to the way Excel's own Add-in Manager updates
EXCEL5.INI.

Uninstall PRIME 5 Manually
To manually remove PRIME 5 from your system, follow these steps.

1. Start Excel if it isn't running.

2. Select Tools / Add-ins / clear the "PRIME 5 for Excel" check box / OK.

3. Select Tools / Add-ins / clear the "PRIME Zoomer for Excel 5" check box / OK.

4. Close Excel if it's still running.

5. Remove PRIME5.XLA from Excel's Library Path.

6. Remove P5.HLP from Windows.

7. Remove ZOOMXL.XLL from Excel's Library Path.

To remove PRIME 5 from memory while Excel is still running, select Tools / Add-ins / clear the "PRIME 5
for Excel" check box / OK. Repeat this procedure for the "PRIME Zoomer for Excel 5" check box.

You Can Call PRIME 5 Custom VBA Functions and
Subroutines
This section contains Application Programming Interface (API) specifications for the VBA functions and
subroutines stored in PRIME 5's public procedures.

Note that for simplicity we have omitted from each procedure's section title the required "As type"
argument components . The true, correct argument typing information is displayed in the body
text immediately following each section title.

Additional notes:

1. For a listing of PRIME 5's custom VBA procedures by category, see Custom VBA Procedure
Categories.

2. For a summary of PRIME 5's custom VBA procedures, see Custom VBA Procedure Summary.

3. Each example source code block comes with its own Option Explicit statement in order to
reinforce the importance of using VBA's strong data typing capabilities.

4. Each example source code block comes with its own module-level declarations. Many of these
variable and constant declarations appear redundant because they would ordinarily be declared
globally. But for your ease of use and testing we're supplying each test procedure with turnkey
declarations.

5. To copy example source code directly from the help file, select Edit / Copy / select the code
statements of interest / click the Copy button. Now the code is on the clipboard and you can paste
it directly into your VBA module.

6. See How to Establish a Direct Reference to PRIME5.XLA for important information about how to
use PRIME 5's public procedures from within your own procedures. PRIME 5's function
procedures are stored in a module called modFunctions, and PRIME 5's subroutines are stored in
a module called modSubroutines.

7. Many of the OLE Automation procedures in PRIME 5's API are discussed in even more detail
(including source code listings) in The Underground Guide to Microsoft Office, OLE, and VBA.
Also, a stripped-down version of Name Assistant is used as an exercise in building a custom
dialog-box-based application in the book's Chapter 6 (including source code listings).

8. Function procedures are all stored in PRIME5.XLA's module called modFunctions.

9. Subroutine procedures are all stored in PRIME5.XLA's module called modSubroutines.

10. All procedure listed in this section are declared as Public.

Related Topics:
How to Establish a Direct Reference to PRIME5.XLA
Coding and Naming Conventions
fblnDDEFileStatus(strSourceFileName, strShortTopic, intSysChanNum)
fblnIsValidToolbarName(strToolbarName)
fblnIsWorkbookOpen(strFullName)
fblnNullMenuState

fblnObjectExists(objCollection, vntIdentifier)
fblnOnlyOneTrueElement(vntArrayOfBooleans)
fintActiveSheetType
fintAppLoad(strModuleName, strShellName)
fintFirstTrueElement(vntArrayOfBooleans)
fintOAAppLoad(objOAServer, strOAServerName, strModuleName)
fintOAFileStatus(objOAServer, strShellName, strSourceFileName)
fintSheetType(shtObject)
fintSplitVertical(intPercent)
fintUsageCount(hMod)
fintWindowCountHidden
fintWorkbookCountHidden(strHiddenWorkbookNames())
flngBinSearch(strList(), lngCount, strVal)
flngBinSearchInit(strList(), lngCount, strVal)
flngDeleteFromArray(strArray(), lngSize, lngDeletePt)
fobjSelectedObject(objCollection, strListControl(), objListControl)
fstrActiveWorkbookName(intPathName)
fstrFileNameFromPath(strSourceFileName)
fstrGetCellContents(vntRange)
fstrGetHostTitleBar
fstrGetRangeAddress(strRangeName, intNotation)
fstrGetRangeFromRefersTo(strRefersTo)
fstrGetSheetFromRefersTo(strRefersTo)
fstrPathFromParts(strPath, strFile)
fstrReplaceMarker(strMsg, strReplacement)
fvntGetCellResults(vntRange, blnFormatting)
fvntMax(x, y)
fvntMin(x, y)
fvntOAFileNames(objCollection)
fvntOAWindowFileNames(objCollection)
fvntWorkbookNames
sActiveWorkbookNames(strNames())
sActiveWorkbookSheetNames(strArray(), intOrder)
sGetToolbarButtonInfo(strTheToolbarName, strButtonInfo())
sInsertInArray(strArray(), lngSize, lngInsertPt, strElement)
sMsgStrArray(strArray(), intElements, strName)
sNotImplemented(strDboxTitle, strPrompt)
sOAGetOpenFiles(objOAServer, strShellName, strFileNames())
sOAShutDownApp(objOAServer, strShellName, intAppStatus)

sOLEAutoRoutine
sShellSort(strArray())
sShutDownApp(intSysChanNum, strShellName intAppStatus)
sWaitCursor(blnState)

How to Establish a Direct Reference to PRIME5.XLA
To use PRIME 5's public procedures from within your own procedures, you must first establish a
reference to them. This is the way Excel is designed. If an XLA (add-in) is installed but there's no
reference to it, you can run all the add-in's utilities but can't refer directly to its procedures. If an add-in is
installed and there is a reference to it, you can run its utilities and refer directly to its public procedures.
Here's how to establish a reference to the PRIME 5 add-in.

1. Select Tools / References.

2. Locate PRIME5.XLA in the Available References list (towards the bottom of the list).

3. Select PRIME5.XLA.

4. Click OK.

Note that once you establish a reference, you don't have to do so again in the current or any future Excel
session (unless you manually clear the reference, of course).

Here's an example of a reference to a PRIME 5 public function procedure.

strPrompt = fstrReplaceMarker("The answer is <<>>.", "LtCmdrData")
If you have your own fstrReplaceMarker() procedure in the active workbook and want to specifically refer
to ours instead, then use the following syntax.

strPrompt = [PRIME5.XLA].modFunctions.fstrReplaceMarker("The answer is
<<>>.", "LtCmdrData")

PRIME 5's function procedures are stored in a module called modFunctions, and PRIME 5's subroutines
are stored in a module called modSubroutines.

Coding and Naming Conventions
This discussion of conventions involves

· variable names

· procedure names

· control names

(Portions of this section and sub-sections reprinted by permission of Addison-Wesley from The
Underground Guide to Microsoft Office, OLE, and VBA).

Related Topics:
Variable Naming Conventions
Procedure Naming Conventions
Control Naming Conventions
OLE Automation Object Variable Naming Conventions

Variable Naming Conventions
To maintain order and improve readability as projects reach a certain critical "confusion mass," we
strongly recommend you follow the naming and other coding conventions outlined in the Microsoft Office
Developer's Kit (ODK). The first step to take on the path to consistent use of conventions is in naming
variables and functions. The conventions shown in the following table are straight out of the ODK.
Data Type Prefix Example
Boolean bln blnFound
Currency cur curRevenue
Date (Time) dat datStart
Double dbl dblTolerance
Error err errOrderNum
Integer int intQuantity
Long lng lngDistance
Object obj objCurrent
Single sng sngAverage
String str strFName
User-defined type udt udtEmployee
Variant vnt vntCheckSum

By convention, user-defined constant names are in all capitals, like this.

Const MSG_HELLO = "Hello World"
(Historical note ¾ A small part of these conventions can be found in the Microsoft Visual Basic 3.0
Programmer's Reference. For what it's worth, as best as our moles can determine these conventions
started out somewhere deep in the labyrinths of Microsoft Consulting Services, Microsoft's mysto
consulting division. They then found their way into Microsoft Education Services' Visual Basic 3
courseware and a Knowledge Base article, and now have come home to roost in the ODK for all the world
to see.)

Procedure Naming Conventions
Note that you should use these data type prefixes for both variables and functions. Remember that a
function returns a value, and that the return value must be typed (the default is Variant). No data type
prefix is required for a subroutine because it doesn't itself return a value.

We prefer an additional convention whereby the single-letter "f" prefix is placed at the beginning of a
function's name, and the single-letter "s" prefix for a subroutine's name. Thus you might end up with a
function named "fblnDDEFileStatus()" where "f" is for function, "bln" is for a Boolean return type, and
"DDEFileStatus" is the descriptive portion of the function name.

Variant functions deserve special mention. You can get away with dropping the As [type] component of
the opening Function statement, in which case VBA internally declares it to be a Variant function.
However, we suggest you not get lazy! In the interest of clarity if you want to use the Variant type you
should explicitly include As Variant and be sure to name the function with the "f" and "vnt" prefixes like
this.

Function fvntIAmVariant() As Variant
 fvntIAmVariant = Array("Underground Guide to Excel", _
 "Underground Guide to Office, OLE 2, & VBA", _
 "Underground Guide to Unix", _
 "Underground Guide to Word")
End Function

Control Naming Conventions
The ODK lists control naming conventions on pages 251-2 of Appendix B.

OLE Automation Object Variable Naming Conventions
In summary, here are the components of our multi-application OLE Automation object variable naming
convention. For a more extensive discussion see The Underground Guide to Microsoft Office, OLE, and
VBA.

1. A one-letter abbreviation designating the OLEAuto server application ¾ "e" for Excel, "p" for
Project, "v" for Visual Basic, and "w" for Word (all in lower-case).

2. The characters "obj" to designate this is a generic object type variable (all in lower-case).

3. The three-consonant abbreviation of the OLEAuto server's object type (normal capitalization), for
example, "Dlg" for a DialogSheet object.

4. A discretionary name (normal capitalization), for example, "ConfRoom101" to refer to the
resource known around the water cooler as Conference Room 101.

5. The exception to the three-consonant abbreviation rule is our use of "App" for the ubiquitous
Application object, instead of the rather awkward "Ppl" mandated by strictest adherence to the
letter of the law. ("Ppl" represents the first three consonants of the word "Application" with the first
letter capitalized for distinction.)

fblnDDEFileStatus(strSourceFileName, strShortTopic,
intSysChanNum)

Function fblnDDEFileStatus(strSourceFileName As String, strShortTopic As
String, intSysChanNum As Integer) As Boolean

Determine if a particular file is currently loaded in the server application. This function assumes you've
already started a valid conversation on intSysChanNum.

Inputs:

· strSourceFileName - the fully-qualified topic's filename

· strShortTopic - special case for Excel 5 where sheets are represented like
"[book_name]sheet_name", for example, "[CUSTOM.XLS]CUSTOM"

· intSysChanNum - channel number of initial System topic

Returns:    Boolean.

Example source code:

For an example of how to use this procedure, see DDEROUTI.XLS from your master diskette.

See also

fintAppLoad(strModuleName, strShellName)

sShutDownApp(intSysChanNum, strShellName intAppStatus)

fblnIsValidToolbarName(strToolbarName)
Function fblnIsValidToolbarName(ByVal strToolbarName As String) As
Boolean

See if a given string is a valid toolbar name. Ported from PRIME 6.0's WordBasic global procedure library
(renamed from fIsValidToolbarName).

Inputs:

· strToolbarName - the toolbar's name

Returns:    Boolean.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Dim strQuote As String
Sub Test_fblnIsValidToolbarName()
 Dim strTemp As String
 strQuote = Chr(34)
 strTemp = "TUG Is Cool"
 strPrompt = "PRIME fblnIsValidToolbarName(" & _
 strQuote & strTemp & strQuote & _
 ") returns " & fblnIsValidToolbarName(strTemp)
 MsgBox strPrompt
End Sub

See also

sGetToolbarButtonInfo(strTheToolbarName, strButtonInfo())

fblnIsWorkbookOpen(strFullName)
Function fblnIsWorkbookOpen(strFullName As String) As Boolean

Indicates whether a specific fully-qualified workbook is open right now. The caller is responsible for
passing a valid fully-qualified name. NOTE: Providing only an 8.3 filename in strFullName will return False
as this function is looking at the FullName property.

Inputs:

· strFullName - the fully-qualified name of the workbook

Returns:    Boolean.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fblnIsWorkbookOpen()
 Dim strTestXLSName As String
 strTestXLSName = "C:\FOOBAR\FOOBAR.XLS"
 MsgBox fblnIsWorkbookopen(strTestXLSName)
End Sub

See also

fintWorkbookCountHidden(strHiddenWorkbookNames())

fstrActiveWorkbookName(intPathName)

fstrFileNameFromPath(strSourceFileName)

fstrPathFromParts(strPath, strFile)

fblnNullMenuState
Function fblnNullMenuState() As Boolean

Indicates whether Excel is in "null menu" state (only File and Help in the active menu bar).

Inputs:    None.

Returns:    Boolean.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub sAnybodyHome()
 If fblnNullMenuState Then
 MsgBox "Excel is in null menu mode."
 Else
 MsgBox "Excel is not in null menu mode."
 End If
End Sub

fblnObjectExists(objCollection, vntIdentifier)
Function fblnObjectExists(objCollection As Object, vntIdentifier As
Variant) As Boolean

Determines if an object in a particular collection with a given identifier exists right now. The built-in
function IsObject() is designed to tell you if a valid object is an OLE programmable object, and it causes a
run-time error if the object in question does not currently exist. For example, the statements

IsObject(MenuBars(xlWorksheet))
and

IsObject(MenuBars("Worksheet"))
both return True, but

IsObject(MenuBars("ACMEAddIn"))
causes a run-time error 1004. Since it's often helpful to know if an object exists now or not, without
causing an error, the custom function fblnObjectExists() allows you to pass an identifier along with the
object's parent collection and see if it exists.

Inputs:

· objCollection - the object's parent collection or a pointer to it

· vntIdentifier - the numeric or string identifier of the object inside its parent collection, e.g.,
xlWorksheet (-4167) or "Worksheet" for the Worksheet MenuBar object

Returns:    Boolean.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fblnObjectExists()
 Dim mnb As MenuBar
 ' xlWorksheet = -4167 = "Worksheet"
 If Not fblnObjectExists(MenuBars, xlWorksheet) Then
 ' exit gracefully if the primary menu bar doesn't exist
 MsgBox "Uh oh!"
 Exit Sub
 Else
 Set mnb = MenuBars(xlWorksheet)
 MsgBox "Got it!"
 End If
End Sub

fblnOnlyOneTrueElement(vntArrayOfBooleans)
Function fblnOnlyOneTrueElement(vntArrayOfBooleans As Variant) As
Boolean

Looks at an array of Booleans to see if only one element is True. Useful when dealing with multi-select list
boxes. If the function returns True then you can deal with the list box as though it were a single-selection
list box. For more information about getting the state of multi-select list controls see the VBA help file topic
on the Selected property.

Inputs:

· vntArrayOfBooleans - an array of Booleans in a Variant

Returns:    Boolean.

See also

fintFirstTrueElement(vntArrayOfBooleans)

fintActiveSheetType
Function fintActiveSheetType() As Integer

Positively identify the active sheet's type using a proprietary return code scheme. There's no special
significance to these return values other than they appear in order of most frequent occurrence in the
"real world."

Inputs:    None.

Returns:    Integer (see below).

· 1 - Worksheet sheet

· 1 - embedded chart as window (NB:    it's embedded chart)

· 2 - "standard" Chart sheet

· 2 - empty Chart sheet

· 3 - DialogSheet sheet

· 4 - Excel 4 macro sheet

· 5 - Excel 4 macro sheet (intl)

· 6 - Module sheet

· 7 - Info window

· 0 - any error condition

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub sWhatPlanetYouFrom()
 Dim sht As Object
 Dim strTemp As String
 For Each sht In Sheets
 sht.Select
 strTemp = "The sheet " & sht.Name
 strTemp = strTemp & " has a type of" & _
 Str(fintActiveSheetType)
 MsgBox strTemp
 Next sht
End Sub

See also

fintSheetType(shtObject)

sActiveWorkbookSheetNames(strArray(), intOrder)

fintAppLoad(strModuleName, strShellName)
Function fintAppLoad(strModuleName As String, strShellName As String) As
Integer

Loads an application if it isn't already running, leaves it alone if it is already running, and returns an
integer indicating final status either way. Does not use OLE Automation! Therefore, this function is
general-purpose and not subject to the numerous application-specific problems observed with Office 4.x
and OLE Automation.

When using Shell, if the executable file isn't in a subdirectory that's explicitly in your Path environment
variable, you must use a fully-qualified executable filename.

Inputs:

· strModuleName - the target app's module name

· strShellName - the target app's shell name

Returns:    Integer (see below).

· 0 - error

· 1 - was already loaded

· 2 - was not already loaded

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Const WORD6_MODULE_NAME = "WINWORD.EXE"
Const WORD6_SHELL_NAME = "WINWORD"
Dim strQuote As String
Sub Test_fintAppload()
 strModuleName = WORD6_MODULE_NAME
 strQuote = Chr(34)
 strShellName = WORD6_SHELL_NAME
 intRC = fintAppLoad(strModuleName, strShellName)
 strPrompt = "PRIME fintAppLoad(" & _
 strQuote & strModuleName & strQuote & _
 ", " & strQuote & strShellName & strQuote & _
 ") returns " & LTrim(Str(intRC))
 MsgBox strPrompt
End Sub

For another example of how to use this procedure, see DDEROUTI.XLS from your master diskette.

See also

fblnDDEFileStatus(strSourceFileName, strShortTopic, intSysChanNum)

sShutDownApp(intSysChanNum, strShellName intAppStatus)

fintFirstTrueElement(vntArrayOfBooleans)
Function fintFirstTrueElement(vntArrayOfBooleans As Variant) As Integer

Looks at an array of Booleans and returns index of the first True one. If none are True, returns 0.

Inputs:

· vntArrayOfBooleans - an array of Booleans in a Variant

Returns:    Integer.

See also

fblnOnlyOneTrueElement(vntArrayOfBooleans)

fintOAAppLoad(objOAServer, strOAServerName, strModuleName)
Function fintOAAppLoad(objOAServer As Object, strOAServerName As String,
strModuleName As String) As Integer

Uses OLE Automation to load an application if it isn't already running, connect to it if it is already running,
and returns an integer indicating final status either way.

Inputs:

· objOAServer - pointer to the server

· strOAServerName - the server's top-level class name, for example, "Excel.Application" for Excel
5

· strModuleName - the server's module name

Returns:    Integer (see below).

· 0 - error

· 1 - was already loaded

· 2 - was not already loaded

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

For an example of how to use this procedure, see OAROUTIN.XLS from your master diskette and
sOLEAutoRoutine.

See also

fintOAFileStatus(objOAServer, strShellName, strSourceFileName)

fvntOAFileNames(objCollection)

fvntOAWindowFileNames(objCollection)

sOAGetOpenFiles(objOAServer, strShellName, strFileNames())

sOAShutDownApp(objOAServer, strShellName, intAppStatus)

sOLEAutoRoutine

fintOAFileStatus(objOAServer, strShellName, strSourceFileName)
Function fintOAFileStatus(objOAServer As Object, strShellName As String,
strSourceFileName As String) As Integer

Uses OLE Automation to determine if a file is already open. This function assumes you've already Set a
valid object variable.

Inputs:

· objOAServer - pointer to the server

· strShellName - server's shell name

· strSourceFileName - source filename (should be fully qualified)

Returns:    Integer (see below).

· 0 = bogus filename

· 1 = already open

· 2 = we opened it successfully

· 3 = filename is OK but the file open method failed

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

For an example of how to use this procedure, see OAROUTIN.XLS from your master diskette and
sOLEAutoRoutine.

See also

fintOAAppLoad(objOAServer, strOAServerName, strModuleName)

fvntOAFileNames(objCollection)

fvntOAWindowFileNames(objCollection)

sOAGetOpenFiles(objOAServer, strShellName, strFileNames())

sOAShutDownApp(objOAServer, strShellName, intAppStatus)

sOLEAutoRoutine

fintSheetType(shtObject)
Function fintSheetType(shtObject As Object) As Integer

This is a generalized form of fintActiveSheet() and works on any sheet, not just the active sheet.

Positively identify the passed sheet's type using a proprietary return code scheme. There's no special
significance to these return values other than they appear in order of most frequent occurrence in the
"real world."

Inputs:

· shtObject - alias for the sheet object of interest

Returns:    Integer (see below).

· 1 - Worksheet sheet

· 1 - embedded chart as window (NB:    it's embedded chart)

· 2 - "standard" Chart sheet

· 2 - empty Chart sheet

· 3 - DialogSheet sheet

· 4 - Excel 4 macro sheet

· 5 - Excel 4 macro sheet (intl)

· 6 - Module sheet

· 7 - Info window

· 0 - any error condition

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fintSheetType()
 ' set up Sheet1 as a worksheet, Chart1 as a chart sheet,
 ' and Module1 as a module sheet
 MsgBox fintSheetType(Sheets("Sheet1"))
 MsgBox fintSheetType(Sheets("Chart1"))
 MsgBox fintSheetType(Sheets("Module1"))
End Sub

See also

fintActiveSheetType

sActiveWorkbookSheetNames(strArray(), intOrder)

fintSplitVertical(intPercent)
Function fintSplitVertical(intPercent As Integer) As Integer

Vertically splits the active window on a percentage basis. Note that "Vertical" refers to the pane
orientation, so the SplitVertical property indicates where a split bar is horizontally located along the
vertical pane axis. Returns -1 if an error; if no error, returns the SplitVertical value.

Inputs:

· intPercent - percent of height at which to split

Returns:    Integer.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fintSplitVertical()
 ' set up and activate Sheet1 as a worksheet in a maximized window
 MsgBox fintSplitVertical(50)
End Sub

fintUsageCount(hMod)
Function fintUsageCount(ByVal hMod As Integer)

Get an application's true running instance count (includes hidden instances). Written by Vincent Chen.

Inputs:

· hMod - Module handle of the target application

Returns:    Integer.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fintUsageCount()
 Dim hMod As Integer, n As Integer
 hMod = GetModuleHandle("WINWORD.EXE")
 n = fintUsageCount(hMod)
 MsgBox n & ", " & GetModuleUsage(hMod)
End Sub

fintWindowCountHidden
Function fintWindowCountHidden() As Integer

Count the number of hidden windows in Excel.

Inputs:    None.

Returns:    Integer.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fintWindowCountHidden()
 Dim intVisibleWindows As Integer
 intVisibleWindows = Windows.Count - fintWindowCountHidden()
 MsgBox "There are exactly " & intVisibleWindows & _
 " visible windows right now."
End Sub

See also

fintWorkbookCountHidden(strHiddenWorkbookNames())

fintWorkbookCountHidden(strHiddenWorkbookNames())
Function fintWorkbookCountHidden(strHiddenWorkbookNames() As String) As
Integer

Count the number of open hidden workbooks (not necessarily the same as the number of hidden
windows).

Inputs:

· strHiddenWorkbookNames() - returns packed with any hidden workbook names

Returns:    Integer.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Dim strPrompt As String
Sub sPeekABoo()
 Dim i As Integer
 Dim intCountHidden As Integer
 Dim strArray() As String
 Dim strPrompt As String
 intCountHidden = fintWorkbookCountHidden(strArray())
 strPrompt = "fintWorkbookCountHidden() returns " & _
 LTrim(Str(intCountHidden))
 MsgBox strPrompt
 For i = 0 To UBound(strArray)
 MsgBox strArray(i)
 Next i
End Sub

See also

fblnIsWorkbookOpen(strFullName)

fintWindowCountHidden

flngBinSearch(strList(), lngCount, strVal)
Function flngBinSearch(strList() As String, lngCount As Long, strVal As
String) As Long

This function does a binary search and returns the 0-based index of the matching strList() element if a
match is found (the search is case-sensitive), and returns a negative number if no match is found. In this
case, to find the index where strVal should be inserted, subtract the return value from -1.

Inputs:

· strList() is an array containing a string list; the function assumes the list is sorted alphabetically in
ascending order

· lngCount is the number of entries in the list (not necessarily the number of elements in the array)

· strVal is the string to search for

Returns:    Long.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_flngBinSearch()
 Dim i As Integer
 Dim intCount As Integer
 Dim intUBound As Integer
 Dim lngRC As Long
 Dim strList() As String
 Dim strValue As String
 intCount = 10
 intUBound = intCount - 1
 strValue = "Index item 4"
 ReDim strList(intUBound)
 For i = 0 To intUBound
 strList(i) = "Index item " + LTrim(Str(i))
 Next i
 sMsgStrArray strList(), intCount, "strList()"
 lngRC = flngBinSearch(strList(), CLng(intCount), strValue)
 MsgBox lngRC
End Sub

See also

flngBinSearchInit(strList(), lngCount, strVal)

flngDeleteFromArray(strArray(), lngSize, lngDeletePt)

sInsertInArray(strArray(), lngSize, lngInsertPt, strElement)

sMsgStrArray(strArray(), intElements, strName)

sShellSort(strArray())

flngBinSearchInit(strList(), lngCount, strVal)
Function flngBinSearchInit(strList() As String, lngCount As Long, strVal
As String) As Long

Same as flngBinSearch(), but searches for an initial match, e.g., a search for "xyz:" finds a match on
"xyz:abc".

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_flngBinSearchInit()
 Dim intCount As Integer
 Dim intUBound As Integer
 Dim lngRC As Long
 Dim strList() As String
 Dim strValue As String
 intCount = 3
 intUBound = intCount - 1
 strValue = "xyz:"
 ReDim strList(intUBound)
 strList(0) = "xyz:abc"
 strList(1) = "xyz:bcd"
 strList(2) = "yza:abc"
 sMsgStrArray strList(), intCount, "strList()"
 lngRC = flngBinSearchInit(strList(), CLng(intCount), strValue)
 MsgBox lngRC
End Sub

See also

flngBinSearch(strList(), lngCount, strVal)

flngDeleteFromArray(strArray(), lngSize, lngDeletePt)

sInsertInArray(strArray(), lngSize, lngInsertPt, strElement)

sMsgStrArray(strArray(), intElements, strName)

sShellSort(strArray())

flngDeleteFromArray(strArray(), lngSize, lngDeletePt)
Function flngDeleteFromArray(strArray() As String, lngSize As Long,
lngDeletePt As Long) As Long

Delete an entry from a string array.

Inputs:

· strArray() - the array to delete from (ASSUMED TO BE 0-BASED)

· lngSize - the absolute number of elements in the array (one greater than the upper boundary
dimension since strArray() is assumed to be 0-based)

· lngDeletePt - the 0-based index of the element to delete

Returns:    Long. If the highest element was deleted, the function returns lngDeletePt - 1, else it returns
lngDeletePt. If the only remaining element was deleted, the function makes strArray(0) null and returns -1.

Even though VBA has built-in mechanisms for calculating an array's upper and lower boundary and
hence its size (for a 0-based array, size equals UBound() +1), WordBasic has no UBound() function. So
we left the lngSize argument in the VBA version of the function for compatibility across multiple dialects of
Basic.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_flngDeleteFromArray()
 Dim i As Integer
 Dim intSize As Integer
 Dim lngDeletePt As Long
 Dim lngRC As Long
 Dim strArray() As String
 intSize = 5
 ReDim strArray(intSize - 1)
 lngDeletePt = 3
 For i = 0 To intSize - 1
 strArray(i) = "Index " + LTrim(Str(i))
 Next i
 sMsgStrArray strArray(), intSize, "strArray()"
 lngRC = flngDeleteFromArray(strArray(), CLng(intSize), lngDeletePt)
 MsgBox lngRC
 sMsgStrArray strArray(), intSize, "strArray()"
End Sub

See also

flngBinSearch(strList(), lngCount, strVal)

flngBinSearchInit(strList(), lngCount, strVal)

sInsertInArray(strArray(), lngSize, lngInsertPt, strElement)

sMsgStrArray(strArray(), intElements, strName)

sShellSort(strArray())

fobjSelectedObject(objCollection, strListControl(), objListControl)
Function fobjSelectedObject(objCollection As Object, strListControl() As
String, objListControl As Object) As Object

Return an object (not just its identifier) that is represented by a specific, selected item (the upper-most
one) in a dialog box's multi-select list control.

Inputs:

· objCollection - the object's parent collection or a pointer to it

· strListControl() - the string array that is supplying the contents of the list control (ASSUMED TO
BE 0-BASED)

· objListControl - the list control object or a pointer to it

Returns:    Object.

See also

fintFirstTrueElement(vntArrayOfBooleans)

fstrActiveWorkbookName(intPathName)
Function fstrActiveWorkbookName(intPathName As Integer) As String

Provide the active workbook's 8.3 or full name depending on input.

Inputs:

· intPathName - equal to 0 indicates return 8.3 filename; not equal to 0 indicates return full
filename (complete with path)

Returns:    String.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub sHeyYouWithTheFocus()
 MsgBox fstrActiveWorkbookName(0)
 MsgBox fstrActiveWorkbookName(1)
End Sub

See also

fblnIsWorkbookOpen(strFullName)

fvntWorkbookNames

fstrFileNameFromPath(strSourceFileName)
Function fstrFileNameFromPath(strSourceFileName As String) As String

Strips the 8.3 filename from a fully qualified filename. Returns a zero-length string if no "\" is found.

Inputs:

· strSourceFileName - the fully qualified filename

Returns:    String.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fstrFileNameFromPath()
 MsgBox fstrFileNameFromPath("C:\OLEDDE2\CUSTOM.XLS")
End Sub

See also

fblnIsWorkbookOpen(strFullName)

fstrPathFromParts(strPath, strFile)

fstrGetCellContents(vntRange)
Function fstrGetCellContents(vntRange As Variant) As String

Provide a cell's contents in string (viewable) format.

Inputs:

· vntRange - Either a pointer to a cell object or just a plain A1-style cell address. Note that in the
case of something like Sheets("Sheet1").Range("H3"), the Range method's Syntax 1 dictates that
the address must be in A1 notation. If vntRange is just a plain A1-style cell address, the function
assumes caller passes the address in the format sheet_name!A1_address, i.e., the sheet's name
and the bang are required.

Returns:    String.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub sGenieInABottle2()
 Dim objRange As Range
 Dim strA1Address As String
 strA1Address = "Sheet1!H1"
 ' strA1Address = "RangeName1" ' this works fine!
 Set objRange = Sheets("Sheet1").Range("H1")
 MsgBox "Passing objRange returns " & _
 fstrGetCellContents(objRange)
 MsgBox "Passing an A1 notation address returns " & _
 fstrGetCellContents(strA1Address)
End Sub

See also

fvntGetCellResults(vntRange, blnFormatting)

fstrGetHostTitleBar
Function fstrGetHostTitleBar() As String

Get Excel's current title bar text.

Inputs:    None.

Returns:    String.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Dim strModuleName As String
Dim strShellName As String
Dim strTitleBar As String
Sub sThisProcedureIsMinimalist()
 Dim intAppStatus As Integer
 strModuleName = "WINWORD.EXE"
 strShellName = "WINWORD"
 strTitleBar = fstrGetHostTitleBar()
 intAppStatus = fintAppLoad(strModuleName, strShellName)
 ' interact with OLE Automation or DDE server,

' then bring the focus back to Excel if needed...
 AppActivate strTitleBar
 ' shut down the server
 ' and so on...
End Sub

fstrGetRangeAddress(strRangeName, intNotation)
Function fstrGetRangeAddress(strRangeName As String, intNotation As
Integer) As String

Determine a range name's address in A1 or R1C1 notation. Return an empty string if the range name is
invalid.

Inputs:

· strRangeName - the range name

· intNotation - the notation desired (0 for A1, <> 0 for R1C1)

Returns:    String.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub sGiveMeARange()
 Dim i As Integer
 Dim objName As Object
 Dim strTemp As String
 For i = 0 To 1
 With ActiveWorkbook
 ' walk through the active workbook's Names collection
 For Each objName In .Names
 strTemp = objName.Name
 If i = 0 Then
 ' A1 notation request
 strTemp = strTemp & " A1 address is "
 Else
 ' R1C1 notation request
 strTemp = strTemp & " R1C1 address is "
 End If
 strTemp = strTemp & _
 fstrGetRangeAddress(objName.Name, i)
 MsgBox strTemp
 Next objName
 End With
 ' pass a bogus range name
 strTemp = "Smoky" & " A1 address is " & _
 fstrGetRangeAddress("Smoky", i)
 MsgBox strTemp
 Next i
End Sub

fstrGetRangeFromRefersTo(strRefersTo)
Function fstrGetRangeFromRefersTo(strRefersTo As String) As String

Parses the range from a Name object's RefersTo property string. Returns an empty string if RefersTo has
no bang character; absence of a bang character typically indicates a named formula. If there is a bang in
RefersTo, the function does not do any validation of the resulting range string. An exception to the "there's
no bang so it's a named formula" rule would be a named formula like

=VALUE("Hello!")
In a cell this formula would result in a #VALUE! error but could nonetheless exist as a named formula.

Inputs:

· strRefersTo - the Name object's RefersTo property string

Returns:    String.

Example source code:

Example source code for calling fstrGetRangeFromRefersTo() is provided with the example source code
in the section fstrGetSheetFromRefersTo(strRefersTo).

See also

fstrGetSheetFromRefersTo(strRefersTo)

fstrGetSheetFromRefersTo(strRefersTo)
Function fstrGetSheetFromRefersTo(strRefersTo As String) As String

Parses the sheet name from a Name object's RefersTo property string. Returns an empty string if
RefersTo has no bang character; absence of a bang character typically indicates a named formula.
Returns an empty string if the parsed sheet name proves to be invalid for the active workbook. An
exception to the "there's no bang so it's a named formula" rule would be a named formula like

=VALUE("Hello!")
In a cell this formula would result in a #VALUE! error but could nonetheless exist as a named formula. In
this case, the string

VALUE("Hello
would be tested and proven to be an invalid sheet name so the function would return an empty string.

Inputs:

· strRefersTo - the Name object's RefersTo property string

Returns:    String.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fstrGetSheetFromRefersTo()
 ' manually create a range name "RangeName1" that refers to
 ' A1:B2 on Sheet1
 Const MSG_3D_OR_NAMED_FORMULA = "Must be a 3-D range or " & _
 "a named formula."
 Dim strRange As String
 Dim strRefersTo As String
 Dim strSheet As String
 strRefersTo = ActiveWorkbook.Names("RangeName1").RefersTo
 strSheet = fstrGetSheetFromRefersTo(strRefersTo)
 If strSheet = "" Then
 MsgBox MSG_3D_OR_NAMED_FORMULA
 Exit Sub
 Else
 Sheets(strSheet).Activate
 End If
 strRange = fstrGetRangeFromRefersTo(strRefersTo)
 If strRange = "" Then
 MsgBox MSG_3D_OR_NAMED_FORMULA
 Exit Sub
 Else
 Range(strRange).Select
 End If
End Sub

See also

fstrGetRangeFromRefersTo(strRefersTo)

fstrPathFromParts(strPath, strFile)
Function fstrPathFromParts(strPath As String, strFile As String) As
String

This function assembles a complete path name from its parts, consisting of the path, a backslash if
necessary, and the filename.

Inputs:

· strPath - the pathname, which may be null

· strFile - the filename

This function does not validate strPath or strFile in any way. That is the caller's responsibility.

Returns:    String.

See also

fblnIsWorkbookOpen(strFullName)

fstrFileNameFromPath(strSourceFileName)

fstrReplaceMarker(strMsg, strReplacement)
Function fstrReplaceMarker(strMsg As String, strReplacement As String)
As String

Provide a simple way to replace a marker in global constant message strings with context-relevant,
current information. If the marker isn't found, function returns an empty string.

Inputs:

· strMsg - message string (must contain the "<<>>" marker)

· strReplacement - string to replace the marker with

Returns:    String.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Const MSG_NAME_MGR_DELETE = "You are about to delete name <<>>. " & _
 "Are you sure?"
Dim strPrompt As String
Sub Test_fstrReplaceMarker()
 MsgBox MSG_NAME_MGR_DELETE
 strPrompt = fstrReplaceMarker(MSG_NAME_MGR_DELETE, _
 "LtCmdrData")
 MsgBox strPrompt
End Sub

fvntGetCellResults(vntRange, blnFormatting)
Function fvntGetCellResults(vntRange As Variant, blnFormatting As
Boolean) As Variant

Provide a cell's results.

Caller is responsible for handling the case where fvntGetCellResults is returned as an error type
(VarType() returns vbError or 10).

Inputs:

· vntRange - Either a pointer to a cell object or just a plain A1-style cell address. Note that in the
case of something like Sheets("Sheet1").Range("H3"), the Range method's Syntax 1 dictates that
the address must be in A1 notation. If vntRange is just a plain A1-style cell address, the function
assumes caller passes the address in the format sheet_name!A1_address, i.e., the sheet's name
and the bang are required.

· blnFormatting - If True then return formatting characters, e.g., "$7,000.55 " (string type) for a
constant of 7000.545 with the format code of $#,##0.00_);($#,##0.00); else don't return formatting
characters.

Returns:    Variant.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub sACellularMeisterstuck()
 Dim blnFormatting As Boolean
 Dim intAnswer As Integer
 Dim objRange As Range
 Dim strA1Address As String
 Dim vntResults As Variant
 strA1Address = "Sheet1!H14"
 Set objRange = Sheets("Sheet1").Range("H14")
 intAnswer = MsgBox("Do you want to see formatting characters " & _
 "(if any)?", vbYesNo + vbQuestion)
 If intAnswer = vbYes Then
 blnFormatting = True
 Else
 blnFormatting = False
 End If
 vntResults = fvntGetCellResults(objRange, blnFormatting)
 If IsError(vntResults) Then
 MsgBox "The cell contains an error value."
 ElseIf IsEmpty(vntResults) Then
 MsgBox "The cell is empty."
 Else MsgBox "Passing objRange returns " & _
 fvntGetCellResults(objRange, blnFormatting)
 MsgBox "Passing an A1 notation address returns " & _

 fvntGetCellResults(strA1Address, blnFormatting)
 End If
End Sub

See also

fstrGetCellContents(vntRange)

fvntMax(x, y)
Function fvntMax(x As Variant, y As Variant) As Variant

Returns the maximum of two values.

Inputs:

· x - a value

· y - a value

Returns:    Variant.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fvntMax()
 Dim x As Long
 Dim y As Long
 Dim strTemp As String
 x = -1
 y = 42
 strTemp = LTrim(Str(fvntMax(x, y)))
 MsgBox "PRIME fvntMax(-1, 42) returns " & strTemp
 x = 42
 y = -1
 strTemp = LTrim(Str(fvntMax(x, y)))
 MsgBox "PRIME fvntMax(42, -1) returns " & strTemp
End Sub

See also

fvntMin(x, y)

fvntMin(x, y)
Function fvntMin(x As Variant, y As Variant) As Variant

Returns the minimum of two values.

Inputs:

· x - a value

· y - a value

Returns:    Variant.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_fvntMin()
 Dim x As Long
 Dim y As Long
 Dim strTemp As String
 x = -1
 y = 42
 strTemp = LTrim(Str(fvntMin(x, y)))
 MsgBox "PRIME fvntMin(-1, 42) returns " & strTemp
 x = 42
 y = -1
 strTemp = LTrim(Str(fvntMin(x, y)))
 MsgBox "PRIME fvntMin(42, -1) returns " & strTemp
End Sub

See also

fvntMax(x, y)

fvntOAFileNames(objCollection)
Function fvntOAFileNames(objCollection As Object) As Variant

Uses OLE Automation to provide an array of the full names (path plus 8.3 name) of all open (hidden and
unhidden) files in the server.

Inputs:

· objCollection - points to server's collection of "file" objects (in Excel, it's the Workbooks collection;
in Project it's the Projects collection)

Returns:    Variant array.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

For an example of how to use this procedure, see OAROUTIN.XLS from your master diskette and
sOLEAutoRoutine.

See also

fintOAAppLoad(objOAServer, strOAServerName, strModuleName)

fintOAFileStatus(objOAServer, strShellName, strSourceFileName)

fvntOAWindowFileNames(objCollection)

sOAGetOpenFiles(objOAServer, strShellName, strFileNames())

sOAShutDownApp(objOAServer, strShellName, intAppStatus)

sOLEAutoRoutine

fvntOAWindowFileNames(objCollection)
Function fvntOAWindowFileNames(objCollection As Object) As Variant

Uses OLE Automation to provide an array of the full names (path plus 8.3 name) of all files in each of the
server's child windows.

Inputs:

· objCollection - points to server's Windows collection

Returns:    Variant array.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

For an example of how to use this procedure, see OAROUTIN.XLS from your master diskette and
sOLEAutoRoutine.

See also

fintOAAppLoad(objOAServer, strOAServerName, strModuleName)

fintOAFileStatus(objOAServer, strShellName, strSourceFileName)

fvntOAFileNames(objCollection)

sOAGetOpenFiles(objOAServer, strShellName, strFileNames())

sOAShutDownApp(objOAServer, strShellName, intAppStatus)

sOLEAutoRoutine

fvntWorkbookNames
Function fvntWorkbookNames() As Variant

Provide an array of the full names (path plus 8.3 name) of all open (hidden and unhidden) workbooks.

Inputs:    None.

Returns:    Variant array.

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub sWhatsYourName()
 Dim i As Integer
 Dim intUBound As Integer
 Dim strTemp() As String
 Dim vntTemp As Variant
 vntTemp = fvntWorkbookNames
 intUBound = UBound(vntTemp)
 For i = 0 To intUBound
 MsgBox vntTemp(i)
 Next i
End Sub

See also

fstrActiveWorkbookName(intPathName)

sActiveWorkbookNames(strNames())
Sub sActiveWorkbookNames(strNames() As String)

Load an array argument with the active workbook's names. Caller is responsible for making sure there is
an active workbook.

Inputs:

· strNames() - string array to be filled with the names

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub sShowMeAllNames()
 Dim i As Integer
 Dim strNames() As String
 sActiveWorkbookNames strNames()
 For i = 0 To UBound(strNames)
 MsgBox "Name" & Str(i + 1) & " is " & strNames(i)
 Next i
End Sub

sActiveWorkbookSheetNames(strArray(), intOrder)
Sub sActiveWorkbookSheetNames(strArray() As String, intOrder As Integer)

Returns a list of all the active workbook's sheet names, either in positional (collection) order, or sorted
alphabetically.

Inputs:

· strArray() - array to pack with the names

· intOrder - if equal to 0 then leave in positional order; if not equal to 0 then sort alphabetically

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub sMyKingdom()
 Dim i As Integer
 Dim strArray() As String
 sActiveWorkbookSheetNames strArray(), 1
 For i = 0 To UBound(strArray)
 MsgBox strArray(i)
 Next i
End Sub

See also

fintActiveSheetType

sGetToolbarButtonInfo(strTheToolbarName, strButtonInfo())
Sub sGetToolbarButtonInfo(ByVal strTheToolbarName As String,
strButtonInfo() As String)

Return a toolbar's contents (structure described below).

Inputs:

· strTheToolbarName - the toolbar's name

· strButtonInfo() - array used to return contents to caller

Returns an array in a redimensioned strButtonInfo(); each item is comprised of strTheToolbarName's
button information as three concatenated items:    (1) button number (1-based), (2) " - ", and (3) category
item name; validates strTheToolbarName and redimensions strButtonInfo() to 0 if bogus
strTheToolbarName.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Dim strPrompt As String
Dim strQuote As String
Sub Test_sGetToolbarButtonInfo()
 Dim strButtonInfo() As String
 Dim strToolbarName As String
 strQuote = Chr(34)
 strToolbarName = "Standard"
 sGetToolbarButtonInfo strToolbarName, strButtonInfo()
 strPrompt = "PRIME sGetToolbarButtonInfo() for " & _
 "the toolbar " & _
 strQuote & strToolbarName & strQuote & _
 " returns strButtonInfo(0) as " & _
 strQuote & strButtonInfo(0) & strQuote
 MsgBox strPrompt
End Sub

See also

fblnIsValidToolbarName(strToolbarName)

sInsertInArray(strArray(), lngSize, lngInsertPt, strElement)
Sub sInsertInArray(strArray() As String, lngSize As Long, lngInsertPt As
Long, strElement As String)

This subroutine inserts an entry in a string array.

Inputs:

· strArray() is the target array

· lngSize is the number of elements in the array (one greater than the upper boundary dimension)

· lngInsertPt is the 0-based index of the element before which the entry is to be inserted

· strElement is the string to be inserted

Even though VBA has built-in mechanisms for calculating an array's upper and lower boundary and
hence its size (for a 0-based array, size equals UBound() +1), WordBasic has no UBound() function. So
we left the lngSize argument in the VBA version of the function for compatibility across multiple dialects of
Basic.

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_sInsertInArray()
 Dim intCount As Integer
 Dim intUBound As Integer
 Dim strList() As String
 Dim strValue As String
 intCount = 3
 intUBound = intCount - 1
 strValue = "I want in!"
 ReDim strList(intUBound)
 strList(0) = "xyz:abc"
 strList(1) = "xyz:bcd"
 strList(2) = "yza:abc"
 sMsgStrArray strList(), intCount, "strList()"
 sInsertInArray strList(), CLng(intCount), 1, strValue
 sMsgStrArray strList(), UBound(strList) + 1, "strList()"
End Sub

See also

flngBinSearch(strList(), lngCount, strVal)

flngBinSearchInit(strList(), lngCount, strVal)

flngDeleteFromArray(strArray(), lngSize, lngDeletePt)

sMsgStrArray(strArray(), intElements, strName)

sShellSort(strArray())

sMsgStrArray(strArray(), intElements, strName)
Sub sMsgStrArray(strArray() As String, intElements As Integer, strName
As String)

Development utility to display the first n elements of an array.

Inputs:

· strArray() - the subject array

· intElements - the absolute number of elements to display

· strName - the name of the array (or any text the caller provides) displayed in the resulting
message box's title bar

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Dim strQuote As String
Sub sShowMenuBarCaptions()
 Dim i As Integer
 Dim mnbActive As MenuBar
 Dim mnuObject As Menu
 Dim strArray() As String
 strQuote = Chr(34)
 Set mnbActive = Application.ActiveMenuBar
 MsgBox "The active menu bar's caption is " & _
 strQuote & mnbActive.Caption & strQuote
 ' examine the MenuBars collection
 MsgBox "The number of objects in the Menubars collection is " & _
 LTrim(Str(MenuBars.Count))
 ReDim strArray(MenuBars.Count - 1)
 For i = 0 To MenuBars.Count - 1
 strArray(i) = MenuBars(i + 1).Caption
 Next i
 sMsgStrArray strArray(), UBound(strArray) + 1, _
 "strArray (Menubar captions)"
 ' examine the Menus collection
 MsgBox "The number of Menu objects in the active menu bar is " & _
 LTrim(Str(mnbActive.Menus.Count))
 ReDim strArray(mnbActive.Menus.Count - 1)
 i = 0
 For Each mnuObject In mnbActive.Menus
 strArray(i) = mnuObject.Caption
 i = i + 1
 Next mnuObject
 sMsgStrArray strArray(), UBound(strArray) + 1, _
 "strArray (Menu captions)"

End Sub
See also

flngBinSearch(strList(), lngCount, strVal)

flngBinSearchInit(strList(), lngCount, strVal)

flngDeleteFromArray(strArray(), lngSize, lngDeletePt)

sInsertInArray(strArray(), lngSize, lngInsertPt, strElement)

sShellSort(strArray())

sNotImplemented(strDboxTitle, strPrompt)
Sub sNotImplemented(ByVal strDboxTitle As String, strPrompt As String)

Display a "not implemented" message for work-in-process features.

Inputs:

· strDboxTitle - message box title

· strPrompt - local portion of the message text

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_sNotImplemented()
 sNotImplemented "See Ya in the Underground!", _
 "Tachyon Detector."
End Sub

sOAGetOpenFiles(objOAServer, strShellName, strFileNames())
Sub sOAGetOpenFiles(objOAServer As Object, strShellName As String,
strFileNames() As String)

Uses OLE Automation to stuff an array with the fully qualified path-and-filenames of only non-macro child
windows.

Inputs:

· objOAServer - a pointer to the OLE Automation server's Application (top-level) object

· strShellName - used as a unique hook to each server

· strFileNames() - string array to be loaded with fully qualified non-macro child windows, i.e.,
documents only

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

For an example of how to use this procedure, see OAROUTIN.XLS from your master diskette and
sOLEAutoRoutine.

See also

fintOAAppLoad(objOAServer, strOAServerName, strModuleName)

fintOAFileStatus(objOAServer, strShellName, strSourceFileName)

fvntOAFileNames(objCollection)

fvntOAWindowFileNames(objCollection)

sOAShutDownApp(objOAServer, strShellName, intAppStatus)

sOLEAutoRoutine

sOAShutDownApp(objOAServer, strShellName, intAppStatus)
Sub sOAShutDownApp(objOAServer As Object, strShellName As String,
intAppStatus As Integer)

Use OLE Automation methods to shut down an OLEAuto-invoked application.

Inputs:

· objOAServer - a pointer to the OLE Automation server's Application (top-level) object

· strShellName - the server application's shell name

· intAppStatus - the return code for a call to fintAppLoad()

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA)

For an example of how to use this procedure, see OAROUTIN.XLS from your master diskette and
sOLEAutoRoutine.

See also

fintOAAppLoad(objOAServer, strOAServerName, strModuleName)

fintOAFileStatus(objOAServer, strShellName, strSourceFileName)

fvntOAFileNames(objCollection)

fvntOAWindowFileNames(objCollection)

sOAGetOpenFiles(objOAServer, strShellName, strFileNames())

sOLEAutoRoutine

sOLEAutoRoutine
This procedure effectively demonstrates how PRIME 5's various OLE Automation procedures can work
together to produce a turnkey, customized OLE Automation controller application. The source code for
this routine is provided in the workbook OAROUTIN.XLS (see your master diskette and also The
Underground Guide to Microsoft Office, OLE, and VBA).

The sOLEAutoRoutine procedure is simply one example of how you might stitch together your own
OLEAuto quilt. It orchestrates all the general-purpose functions and subroutines you'll need to put an
OLEAuto session together. This is why you'll see an entire section of sOLEAutoRoutine commented like
this, "Put your OLEAuto commands below (examples follow)." It (and the accompanying procedures) is
written to work from within any OLEAuto-compatible client, which as of the date of this writing are Excel,
Project, and Visual Basic 3. The specific code you see throughout this and following sections was taken
directly from an Excel project. To port the code to run from inside Project, you'll have to make a relatively
small number of changes. We discuss this port to Project later in this section. Porting to Visual Basic 3 is
rendered a bit more tedious by the fact that VB3 doesn't support VBA named arguments, so for that port
to work you have to convert all the VBA named arguments to positional arguments. Tedious? Yes, but
nonetheless all the code herein is ready to be ported to any VBA dialect as well as VB3. Three utilities for
the price of one!

Here are the steps for setting up sOLEAutoRoutine.

1. Make sure you've established a reference to PRIME5.XLA.

2. Throughout sOLEAutoRoutine, comment out all initializations that refer to Excel in the "Case
where Excel is the server" section, if they aren't already. We assume here that Excel is the client
in your first test.

3. Throughout sOLEAutoRoutine in Excel, pick either Project or Word as the target server, un-
remark all initializations that refer to the target application and comment out all initializations that
refer to the other application.

4. Calibrate your chosen server's target file. For example, make sure the filename variable for the
target file points to a valid directory and filename, and so on. Of course, you may want to test
these out-of-bounds, error-producing conditions as well.

5. Run sOLEAutoRoutine.

Here are the steps for porting this utility from Excel VBA to Project VBA.

1. Use the clipboard to copy the contents of Excel's modules over to Project.

2. Throughout modOLEAutoRoutine in Project, comment out all Application.StatusBar references
because Project doesn't support the StatusBar property. (Tip: use a module-wide Edit / Replace.)

3. Throughout sOLEAutoRoutine in Project, comment out all initializations that refer to Project in the
"Case where Project is the server" section.

4. Throughout sOLEAutoRoutine in Project, pick either Excel or Word as the target server, un-
remark all initializations that refer to the target application and comment out all initializations that
refer to the other application.

5. Run sOLEAutoRoutine.

See also

fintOAAppLoad(objOAServer, strOAServerName, strModuleName)

fintOAFileStatus(objOAServer, strShellName, strSourceFileName)

fvntOAFileNames(objCollection)

fvntOAWindowFileNames(objCollection)

sOAGetOpenFiles(objOAServer, strShellName, strFileNames())

sOAShutDownApp(objOAServer, strShellName, intAppStatus)

sShellSort(strArray())
sShellSort(strArray() As String)

Sort a string array. Ported w/ permission from WOPR 2's ShellSort, © 1991-92 Pinecliffe International.
CRITICAL:    Option Compare Text must be set in sShellSort's owner module. This sub will not behave
properly if the default Option Compare Binary is used. A fast, practical sort routine based on Donald L.
Shell's technique (CACM 2, July 1959, pp 30-32), as adapted by Don Knuth ("The Art of Computer
Programming, Vol 3, Sorting and Searching", Addison-Wesley, 1975, pp 84-87); see Knuth for a detailed
description.

Inputs:

· strArray() - target string array (ASSUMED TO BE 0-BASED)

Example source code (see also The Underground Guide to Microsoft Office, OLE, and VBA):

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Sub Test_sShellSort()
 Dim strArray() As String
 Dim strTemp As String
 GoTo Init1
Init1:
 ' ----- Ordinary, simple test
 ReDim strArray(2)
 strArray(0) = "C"
 strArray(1) = "B"
 strArray(2) = "a"
 GoTo StartTest
Init2:
 ' ----- Single-element, 0-based test with element *not* empty
 ReDim strArray(0)
 strArray(0) = "Sheet3"
 GoTo StartTest
Init3:
 ' ----- Single-element, 0-based test with element empty
 ReDim strArray(0)
 GoTo StartTest
 ' ----- End of test initializations
StartTest:
 sMsgStrArray strArray(), UBound(strArray) + 1, _
 "strArray() unsorted"
 sShellSort strArray()
 sMsgStrArray strArray(), UBound(strArray) + 1, _
 "strArray() sorted by sShellSort()"
End Sub

See also

flngBinSearch(strList(), lngCount, strVal)

flngBinSearchInit(strList(), lngCount, strVal)

flngDeleteFromArray(strArray(), lngSize, lngDeletePt)

sInsertInArray(strArray(), lngSize, lngInsertPt, strElement)

sMsgStrArray(strArray(), intElements, strName)

sShutDownApp(intSysChanNum, strShellName intAppStatus)
Sub sShutDownApp(intSysChanNum As Integer, strShellName As String,
intAppStatus As Integer)

Use DDEExecute commands to shut down a DDE-invoked application. Assumes that intSysChanNum is
valid.

Inputs:

· intSysChanNum - channel number of initial System topic

· strShellName - shell name of source application

· intAppStatus - machine state from fintAppLoad()

Example source code:

' Copyright © 1994-95 PRIME Consulting Group, Inc.
Option Explicit
Const WORD6_MODULE_NAME = "WINWORD.EXE"
Const WORD6_SHELL_NAME = "WINWORD"
Sub Test_sShutDownApp()
 Dim intAppStatus As Integer
 Dim intSysChanNum As Integer
 strModuleName = WORD6_MODULE_NAME
 strShellName = WORD6_SHELL_NAME
 intAppStatus = fintAppLoad(strModuleName, strShellName)
 intSysChanNum = DDEInitiate(strShellName, "SYSTEM")
 sShutDownApp intSysChanNum, strShellName, intAppStatus
End Sub

For another example of how to use this procedure, see DDEROUTI.XLS from your master diskette.

See also

fblnDDEFileStatus(strSourceFileName, strShortTopic, intSysChanNum)

fintAppLoad(strModuleName, strShellName)

sWaitCursor(blnState)
Sub sWaitCursor(blnState As Boolean)

WordBasic has a built-in WaitCursor command but oddly, Excel VBA does not. So we added one. Our
custom procedure changes the mouse cursor to an hourglass or back to a standard arrow.

Inputs:

· blnState - a Boolean when True turns on the hourglass cursor; when False turns on the standard
arrow cursor

Custom VBA Procedure Categories
The following sections provide a categorized listing of all PRIME 5 for Excel custom VBA procedures.

For an overview of PRIME 5's custom VBA procedures, see You Can Call PRIME 5 Custom VBA
Functions and Subroutines.

For a summary of PRIME 5's custom VBA procedures, see Custom VBA Procedure Summary.

Related Topics:
Arrays
Custom Dialogs
Dynamic Data Exchange
Excel Environment
Files
Messaging
Numerical Analysis
Objects (General)
OLE Automation
Ranges
Sheets
Windows (Excel Windows)
Windows Environment
Workbooks

Arrays
The following procedures relate to arrays.

flngBinSearch(strList(), lngCount, strVal)

flngBinSearchInit(strList(), lngCount, strVal)

flngDeleteFromArray(strArray(), lngSize, lngDeletePt)

sInsertInArray(strArray(), lngSize, lngInsertPt, strElement)

sMsgStrArray(strArray(), intElements, strName)

sShellSort(strArray())

Custom Dialogs
The following procedures relate to custom dialogs.

fblnOnlyOneTrueElement(vntArrayOfBooleans)

fintFirstTrueElement(vntArrayOfBooleans)

fobjSelectedObject(objCollection, strListControl(), objListControl)

Dynamic Data Exchange
The following procedures relate to Dynamic Data Exchange.

fblnDDEFileStatus(strSourceFileName, strShortTopic, intSysChanNum)

fintAppLoad(strModuleName, strShellName)

sShutDownApp(intSysChanNum, strShellName intAppStatus)

Excel Environment
The following procedures relate to the Excel environment.

fblnNullMenuState

fstrGetHostTitleBar

Files
The following procedures relate to files.

fstrFileNameFromPath(strSourceFileName)

fstrPathFromParts(strPath, strFile)

Messaging
The following procedures relate to messaging.

fstrReplaceMarker(strMsg, strReplacement)

sNotImplemented(strDboxTitle, strPrompt)

sWaitCursor(blnState)

Numerical Analysis
The following procedures relate to numerical analysis.

fvntMax(x, y)

fvntMin(x, y)

Objects (General)
The following procedures relate to general objects.

fblnIsValidToolbarName(strToolbarName)

fblnObjectExists(objCollection, vntIdentifier)

sActiveWorkbookNames(strNames())

sGetToolbarButtonInfo(strTheToolbarName, strButtonInfo())

OLE Automation
The following procedures relate to OLE Automation.

fintOAAppLoad(objOAServer, strOAServerName, strModuleName)

fintOAFileStatus(objOAServer, strShellName, strSourceFileName)

fvntOAFileNames(objCollection)

fvntOAWindowFileNames(objCollection)

sOAGetOpenFiles(objOAServer, strShellName, strFileNames())

sOAShutDownApp(objOAServer, strShellName, intAppStatus)

Ranges
The following procedures relate to ranges.

fstrGetCellContents(vntRange)

fstrGetRangeAddress(strRangeName, intNotation)

fstrGetRangeFromRefersTo(strRefersTo)

fstrGetSheetFromRefersTo(strRefersTo)

fvntGetCellResults(vntRange, blnFormatting)

Sheets
The following procedures relate to sheets.

fintActiveSheetType

fintSheetType(shtObject)

sActiveWorkbookSheetNames(strArray(), intOrder)

Windows (Excel Windows)
The following procedures relate to Excel window objects, not "Windows" as in the Windows operating
environment.

fintSplitVertical(intPercent)

fintWindowCountHidden

Windows Environment
The following procedures relate to the Windows environment.

fintUsageCount(hMod)

Workbooks
The following procedures relate to workbooks.

fblnIsWorkbookOpen(strFullName)

fintWorkbookCountHidden(strHiddenWorkbookNames())

fstrActiveWorkbookName(intPathName)

fvntWorkbookNames

sActiveWorkbookNames(strNames())

sActiveWorkbookSheetNames(strArray(), intOrder)

Custom VBA Procedure Summary
This section provides a summary of all PRIME 5 for Excel custom VBA procedures. The summary table is
sorted in alphabetical order by procedure name.

For an overview of PRIME 5's custom VBA procedures, see You Can Call PRIME 5 Custom VBA
Functions and Subroutines.

For a listing of PRIME 5's custom VBA procedures by category, see Custom VBA Procedure Categories.
Procedure Name Description
fblnDDEFileStatus Determine if a particular file is currently

loaded in the DDE server application (see
fblnDDEFileStatus(strSourceFileName,
strShortTopic, intSysChanNum))

fblnIsValidToolbarName See if a given string is a valid toolbar name
(see
fblnIsValidToolbarName(strToolbarName))

fblnIsWorkbookOpen Indicates whether a specific fully-qualified
workbook is open right now (see
fblnIsWorkbookOpen(strFullName))

fblnNullMenuState Indicates whether Excel is in null menu state
(see fblnNullMenuState)

fblnObjectExists Determines if an object in a particular
collection with a given identifier exists right
now (see fblnObjectExists(objCollection,
vntIdentifier))

fblnOnlyOneTrueElement Looks at an array of Booleans to see if only
one element is True (see
fblnOnlyOneTrueElement(vntArrayOfBoolean
s))

fintActiveSheetType Positively identify the active sheet's type
using a proprietary return code scheme (see
fintActiveSheetType)

fintAppLoad Loads an application if it isn't already running,
leaves it alone if it is already running, and
returns an integer indicating final status (uses
Shell, not OLE Automation) (see
fintAppLoad(strModuleName, strShellName))

fintFirstTrueElement Looks at an array of Booleans and returns
index of the first True one (see
fintFirstTrueElement(vntArrayOfBooleans))

fintOAAppLoad Uses OLE Automation to load an application
if it isn't already running, connect to it if it is
already running, and returns an integer
indicating final status (see
fintOAAppLoad(objOAServer,
strOAServerName, strModuleName))

fintOAFileStatus Uses OLE Automation to determine if a file is
already open (see
fintOAFileStatus(objOAServer, strShellName,
strSourceFileName))

fintSheetType A generalized form of fintActiveSheet() that
works on any sheet, not just the active sheet
(see fintSheetType(shtObject))

fintSplitVertical Vertically splits the active window on a

percentage basis (see
fintSplitVertical(intPercent))

fintUsageCount Get an application's true running instance
count (includes hidden instances) (see
fintUsageCount(hMod))

fintWindowCountHidden Count the number of hidden windows in
Excel (see fintWindowCountHidden)

fintWorkbookCountHidden Count the number of open hidden workbooks
(see
fintWorkbookCountHidden(strHiddenWorkboo
kNames()))

flngBinSearch Does a binary search of a string array's
elements and returns the 0-based index of
the matching element if a match is found (see
flngBinSearch(strList(), lngCount, strVal))

flngBinSearchInit Same as flngBinSearch but searches for an
initial match (see flngBinSearchInit(strList(),
lngCount, strVal))

flngDeleteFromArray Delete an entry from a string array (see
flngDeleteFromArray(strArray(), lngSize,
lngDeletePt))

fobjSelectedObject Return an object that is represented by a
specific, selected item (the upper-most one)
in a dialog box's multi-select list control (see
fobjSelectedObject(objCollection,
strListControl(), objListControl))

fstrActiveWorkbookName Provide the active workbook's 8.3 or full
name (see
fstrActiveWorkbookName(intPathName))

fstrFileNameFromPath Strips the 8.3 filename from a fully qualified
filename (see
fstrFileNameFromPath(strSourceFileName))

fstrGetCellContents Provide a cell's contents in string (viewable)
format (see fstrGetCellContents(vntRange))

fstrGetHostTitleBar Get Excel's current title bar text (see
fstrGetHostTitleBar)

fstrGetRangeAddress Determine a range name's address in A1 or
R1C1 notation (see
fstrGetRangeAddress(strRangeName,
intNotation))

fstrGetRangeFromRefersTo Parses the range from a Name object's
RefersTo property string (see
fstrGetRangeFromRefersTo(strRefersTo))

fstrGetSheetFromRefersTo Parses the sheet name from a Name object's
RefersTo property string (see
fstrGetSheetFromRefersTo(strRefersTo))

fstrPathFromParts Assembles a complete path name from its
parts, consisting of the path, a backslash if
necessary, and the filename (see
fstrPathFromParts(strPath, strFile))

fstrReplaceMarker Provide a simple way to replace a marker in
global constant message strings with context-
relevant, current information (see
fstrReplaceMarker(strMsg, strReplacement))

fvntGetCellResults Provide a cell's results (see
fvntGetCellResults(vntRange, blnFormatting))

fvntMax Returns the maximum of two values (see
fvntMax(x, y))

fvntMin Returns the minimum of two values (see
fvntMin(x, y))

fvntOAFileNames Uses OLE Automation to provide an array of
the full names (path plus 8.3 name) of all
open (hidden and unhidden) files in the
server (see fvntOAFileNames(objCollection))

fvntOAWindowFileNames Uses OLE Automation to provide an array of
the full names (path plus 8.3 name) of all files
in each of the server's child windows (see
fvntOAWindowFileNames(objCollection))

fvntWorkbookNames Provide an array of the full names (path plus
8.3 name) of all open (hidden and unhidden)
workbooks (see fvntWorkbookNames)

sActiveWorkbookNames Load an array argument with the active
workbook's names (see
sActiveWorkbookNames(strNames()))

sActiveWorkbookSheetNames Returns a list of all the active workbook's
sheet names, either in positional (collection)
order, or sorted alphabetically (see
sActiveWorkbookSheetNames(strArray(),
intOrder))

sGetToolbarButtonInfo Return a toolbar's contents (see
sGetToolbarButtonInfo(strTheToolbarName,
strButtonInfo()))

sInsertInArray Inserts an entry in a string array (see
sInsertInArray(strArray(), lngSize, lngInsertPt,
strElement))

sMsgStrArray Development utility to display the first n
elements of an array (see
sMsgStrArray(strArray(), intElements,
strName))

sNotImplemented Display a "not implemented" message for
work-in-process features (see
sNotImplemented(strDboxTitle, strPrompt))

sOAGetOpenFiles Uses OLE Automation to stuff an array with
the fully qualified path-and-filenames of only
non-macro child windows (see
sOAGetOpenFiles(objOAServer,
strShellName, strFileNames()))

sOAShutDownApp Use OLE Automation methods to shut down
an OLEAuto-invoked application (see
sOAShutDownApp(objOAServer,
strShellName, intAppStatus))

sShellSort Sort a string array (see sShellSort(strArray()))
sShutDownApp Use DDEExecute commands to shut down a

DDE-invoked application (see
sShutDownApp(intSysChanNum,
strShellName intAppStatus))

sWaitCursor Change the mouse cursor to an hourglass or
back to a standard arrow (see
sWaitCursor(blnState))

Cell Protection Viewer
PRIME Cell Protection Viewer provides an at-a-glance visual display of all unlocked or locked (or both)
cells in the current worksheet. The utility can examine either the current selection or the used area. You
can also set your own preference settings for the desired outcome of both cell protection states.

If the current worksheet is protected with a password you will be prompted with the Unprotect Sheet
dialog. If you enter the correct password, the utility will continue and then prompt you to protect the
worksheet again if you so desire. If you do not enter the correct password then a message box will
explain that you cannot continue.

Specify the range to scan by selecting one of the Current Selection or Used Area option buttons in the
Range frame. The used area ¾ also called the "used range" ¾ of a worksheet is defined as the range
bounded by the upper left corner cell (A1 or R1C1) through the current lower right corner cell (the one you
get to when you press Ctrl + End).

Specify the cells affected by selecting one of the Unlocked, Locked, or Both option buttons in the Cells
Affected frame. This determines which protection state will be tested for when the sheet is scanned and
so determines which cells will be formatted.

Click the Setup button to choose your own color preferences for both unlocked and locked cells. The
utility's default color for unlocked cells is yellow. The utility's default color for locked cells is gray. The
Setup push button is a toggle. When you click Setup the dialog box gets taller momentarily and the
Setup button label changes to Save. When you click Save the current settings are saved in PRIME5.INI,
the dialog is reduced to its original size, and the button label changes back to Setup.

When the dialog is in its taller Setup mode, three new controls appear. A Color drop-down list box allows
you to choose a color format for cells affected (locked or unlocked). The Defaults button returns the
format applied to unlocked and locked cells to the utility's default colors, yellow and gray respectively. This
only affects what the utility suggests as defaults from this point forward, it does not ever apply these
colors until you explicitly click OK in the main dialog box. To clear all pattern formatting from a category of
cells, select the "(none)" item at the top of the Color drop-down list.

If you want to save your preferences, click the Save button, otherwise click Cancel.

Click the OK button to invoke Cell Protection Viewer and change the color of all unlocked or locked (or
both) cells in the chosen range.

Click Cancel to dismiss the utility.

Click Help to get context-sensitive help on this utility.

Create Program Manager Icon
From within Excel, create a Program Manager Item for the current workbook in the Program Group of
your choice. You can also add a new Program Group, all from the same dialog box.

When invoked, this utility first checks to see if the current workbook has been saved. If it has not been
saved, then it prompts you via the Save As dialog to save the file. If you save the file, the utility's main
dialog box appears, but if you cancel out of Save As then a message box explains you must save a file at
least once before creating a Program Manager icon for it.

The Choose Existing Group list box displays all Program Groups sorted alphabetically.

The New Item Description (40 chars max) text box displays the current workbook name in its DOS 8.3
filename format. You can overtype this if you like. Program Item descriptions are limited to a maximum of
40 characters.

The Items Currently in Chosen Group list box displays all Program Items in the current Group, sorted
alphabetically.

The Add Group button invokes a new dialog box panel with an Add a New Group text box and the prior
New Item Description (40 chars max) text box. Once you enter a new Group and click OK, the new
Group is added to Program Manager and the current document is added to the new Group. The new
Item's description comes from the New Item Description (40 chars max) text box.

Click Help to get context-sensitive help on this utility.

Name Assistant
PRIME Name Assistant provides a list of all names in the current workbook, including hidden names, and
displays statistics for those names. Name Assistant also allows you to go to a range name's location,
paste a list of all names and their statistics into a worksheet, toggle names between visible and hidden,
and delete names.

If you're familiar with what a name in Excel is, keep reading. Otherwise, you might want to study the
section A Primer on Excel Names, then come back to this topic. Here is a list of Name Assistant's
advantages over Excel's native name-handling features.

1. PRIME Name Assistant shows you absolutely all names.

Excel's Name Box only displays the first 100 names, so if you've got a workbook with more than
100 names you won't see all of them in the Name Box. (Unlike the Name Box, Excel's Edit Go To
dialog box and Excel's various Insert Name dialog boxes do not truncate after the 100th name.)

2. PRIME Name Assistant displays all names, both visible and hidden.

 Excel, by design, doesn't display hidden names. You can look for them in the Name Box, the Edit Go
To dialog, and the various Insert Name dialogs but none of them reveal hidden names. Even the
Insert Name / Paste Name dialog's Paste List feature doesn't reveal hidden names. This isn't a
big surprise since a hidden name is, well, hidden. There's nothing wrong with Excel's design per
se, but if you have a legitimate need to see hidden names then PRIME Name Assistant is for
you.Excel, by design, doesn't display hidden names. You can look for them in the Name Box, the
Edit Go To dialog, and the various Insert Name dialogs but none of them reveal hidden names.
Even the Insert Name / Paste Name dialog's Paste List feature doesn't reveal hidden names. This
isn't a big surprise since a hidden name is, well, hidden. There's nothing wrong with Excel's
design per se, but if you have a legitimate need to see hidden names then PRIME Name
Assistant is for you.

3. PRIME Name Assistant's list of names is multi-selectable.

None of Excel's native name-handling features are multi-selectable, only single-selectable. This
means, for example, using Excel's Define Name dialog you can only delete one name at a time.
With PRIME Name Assistant you can delete several or even all names from the same list.
(Deleting all names our way is a quick three-click process.)

4. PRIME Name Assistant allows you to toggle a name between hidden and visible.

Excel's native name-handling feature set doesn't allow this.

5. PRIME Name Assistant displays the full name of every name, which makes it possible to
distinguish between (and go to) duplicate book-level and sheet-level names.

Excel's native name-handling feature set makes it almost impossible to dig your way out of the
dark, deep hole that awaits you if you should ever use the same name in both a book-level and a
sheet-level context. We advise against having names in the same book like "Snout" and "Sheet1!
Snout" but if you should do this, PRIME Name Assistant reveals (and goes to) these names
regardless of which sheet is active.

The Names list box shows all visible and hidden names in the current workbook. Name Assistant's list
box is multi-select! For more information about names in Excel, see A Primer on Excel Names.

The Statistics frame displays the reference behind the current name and its visibility status.

Click the Go To button to activate the range referred to by the current name. You can also go to a name
by double-clicking it. An appropriate, graceful error message appears if the selected name is a range that
can't be activated on screen; for example, if the name points to a 3-D range or if the name represents a
named formula. (This feature acts only on the upper-most name in a multiple selection.) Due to a bug in
Excel, while a custom dialog box is displayed, Excel will not display the current selection or the active cell.
The name's sheet will be activated, but you won't be able to see the range in the usual way without
canceling the dialog box. Our workaround is to align the active window's upper-most row and left-most
column in such a way that these row and column headings "reveal" the active cell's address. See the next
paragraph for details.

The Align window with range's upper left corner check box provides a workaround for a bug in Excel.
The bug is this: while a custom dialog box is displayed, Excel will not display the current selection or the
active cell. It will allow you to change sheets, and make selections, but you won't be able to actually see
the active sheet's selection or the active cell on your screen until you close the dialog box. Even though
you could look at the Statistics frame's text to see what the target name's range is, we also give you this
alignment check box option. If Align window with range's upper left corner is checked (the default)
when you Go To a name, Name Assistant forces the window's upper-most row and left-most column to
match the name's upper-left corner cell row and column. This way the row and column headers reveal the
active cell's address while the active cell is handily tucked into the window's upper left corner. If this check
box is cleared when you Go To a name, this alignment doesn't occur. Name Assistant remembers this
check box's setting based on the setting in effect when you last closed the dialog box (the setting is stored
for you in PRIME5.INI). It's a "set once and forget it" preference that you can still override at any time.

Click the Paste Names button to paste, at the location of the active cell, three columns of information
about each name: (1) the name itself, (2) the name's visibility status, and (3) the range or formula the
name refers to. This feature is only available when the current sheet is a worksheet, Excel 4 macro sheet,
or Excel 4 international macro sheet. This feature warns you prior to the paste that if there is data in the
destination area of the current worksheet, the data will be overwritten and that the action can't be undone,
at which point you can proceed or cancel the operation. (This feature always includes all names
regardless of the current selections in the Names list box.)

Click the Toggle Visible button to toggle the visibility status between visible and hidden. (This feature
acts on all the names in a multiple selection.)

Click the Delete button to delete names. (This feature acts on all the names in a multiple selection.)

Click the Cancel button to exit the utility.

Click Help to get context-sensitive help on this utility.

Related Topics:
A Primer on Excel Names

A Primer on Excel Names
What exactly is a name in Excel? You can name a cell, a group of cells (contiguous or noncontiguous), a
row, a column, a group of rows and/or columns, or the entire bloody worksheet. A name is usually
referred to as a range name even if it references a single cell.

You can use alphanumeric characters in your names, so long as you do not try to use a name that Excel
might mistake for a cell reference. For example, you cannot name a cell A1, A1, $A1, or R1C5, no
matter what notation style you are currently using. You're limited to 255 characters. Spaces are verboten.
You can't start a name with a number, period, or question mark. You can't partake of most
nonalphanumeric characters, although you can use:

· the underscore character _

· the backslash character \

· the period . (but not as the first character)

· the question mark ? (but not as the first character)

You should use proper case for your range names. For example, you could use a name like MyCoolCell.
This has several benefits. It makes the name easier to read, does not require you to type separator
characters like those just mentioned, and if you type the name in lowercase in a formula and Excel
recognizes it, Excel switches it to proper case.

The Name Box is a drop-down list box that displays the first 100 range names in the current sheet and/or
book. This list is sorted alphabetically. You have to watch the 100-name limitation because once you get
used to always using the Name Box, you may think a name is missing in action when in reality you
exceeded the list limit.

A book-level name is a defined range that means the same range on the same sheet no matter which
sheet in the book you refer to it from. For example, you select cell A1 on Sheet1 and name it "Lobster."
Say you add several sheets to this book. You are working in Sheet3 and want to reference the total in cell
A1 on Sheet1. No problem, just a quick =Lobster and you've got it. Pull down the Name Box (or pop up
the Go To box), select Lobster, and there you are. Sheet1 cell A1. Every time. From any sheet in the
book.

A sheet-level name is local to the sheet that owns it. How do you create a sheet-level name? You define a
sheet-level name the same way you do a book-level name, only you preface the name with the sheet
name. It works like this: if you select cell B2 on Sheet2 and you want to make it local (sheet-level) to that
sheet, you might name it Sheet2!Snout instead of just Snout. The name of the sheet precedes the range
name and is separated from the name by an exclamation point. The name is Snout, but it is local (sheet-
level) to Sheet2. If you go to Sheet1 and pull down the Name Box, Snout does not appear. It doesn't exist
on Sheet1 nor is it a book-level name available across the entire book. You can refer to it if you include
the sheet name in the reference. A formula on Sheet 1 like =Sheet2!Snout returns the contents of B2 from
Sheet2. When dealing with sheet-level names, be aware that they take precedence over identical book-
level names.

A 3-D name is a name applied to a 3-D reference, which in turn is a reference to a range of sheets in a
workbook. You can create a 3-D name only through the Define Name dialog box. You type in a name and,
in the Refers to text box, you type in the 3-D range using the syntax =Sheet1:Sheet3!A1, which is the
same syntax as a 3-D reference that you might use in a formula. If you create this 3-D name and call it

"Sales," you could enter a formula like =SUM(Sales) anywhere in a worksheet in this book and get the
sum of cells A1 in sheets 1, 2, and 3. 3-D names only appear in the Define Name dialog box. You won't
find them in the Go To dialog box or the Name Box.

A named formula is a name that refers to either a constant or a formula. You can create a variable, that is,
a range name, and set the name equal to a constant or a formula. Say you want to use a percentage in
different calculations scattered throughout your sheet. The usual way is to stick the percentage in a cell
and either name it and use the name or use the cell reference wherever you need to reference that
percentage. But what if you don't want the percentage on the worksheet? No problem, pop up the Define
Name dialog box, enter a name like OverHead, and type =3% in the Refers to text box. The 3% is not
entered anywhere on the sheet. You can define a name to refer to a formula that does not exist on any
sheet. To have a name refer to a formula (not simply a constant), create a name and in the Refers to text
box type in the formula.

A hidden name is a name that is not visible. It doesn't appear in Excel's Name Box, Edit Go To dialog, or
any of the various Insert Name dialogs. Names you create via Excel's user interface are visible by default,
except for named formulas which are hidden by default.

(Portions of this section reprinted by permission of Addison-Wesley from The Underground Guide to Excel
5.0 for Windows).

Toolbar Assistant
PRIME Toolbar Assistant provides a complete list of all active toolbars by name (this includes all hidden
and visible toolbars), along with their button contents. Button contents include slot numbers and
assignments, ToolTip text, the fully qualified macro assignment, whether the button is built-in or custom,
and the button id number. Toolbar Assistant allows you to add or change the ToolTip text and the macro
assignment for any button on the fly. You can catalog this comprehensive list into a table on a worksheet.

The Toolbar Names drop-down list box shows all toolbar names listed in the order in which they appear
in the native Toolbars dialog (not alphabetical). Selecting a toolbar other than Standard updates the
Button Contents list box, which contains a list of each button slot and its current assignment (a blank
represents a space or gap on the toolbar, which does occupy a slot). Button separator slots (slots
occupied by a space instead of a button image) are represented as "<space>" in the utility's dialog box
and the catalog.

The ToolTip text box displays the ToolTip text for the current toolbar button (the one selected in the
Button Contents list box).

To update a toolbar button's ToolTip, type new text in the ToolTip text box then click the Update ToolTip
button. The change takes effect immediately. Gap buttons can't have a ToolTip, and if you try it anyway
the utility produces a message box to this effect. If you set a toolbar button's ToolTip to an empty string,
Excel automatically sets the ToolTip to read "Custom" and there's nothing you can do about it.

If a toolbar button is assigned to a custom (user-defined) macro, the Macro text box displays the fully-
qualified name of that macro. If a toolbar button is a built-in button, the Macro text box is empty.

To update a toolbar button's assigned macro, type a new name in the Macro text box and then click the
Update Macro button. The utility doesn't validate the macro name you enter here.

The Read-only frame contains two text boxes that display read-only values for the current toolbar button.
The Built-in text box displays "Built-in" if a toolbar button is built-in (including gap buttons) and "Custom"
if it is a custom button. The ID text box displays the toolbar button identification number if a toolbar button
is built-in. The ID text box is empty if a toolbar button is custom. Note that in this context the terms built-in
and custom refer to the button object itself, not its face (the image on the button). Meaning, a built-in
toolbar button is one that ships with Excel and a custom toolbar button is one that does not ship with
Excel. These terms describe the button object itself, not the button face.

The Log All button generates a six-column table at the active cell location that you can then print or save.
Toolbar Assistant's log table column headings are:

· Toolbar Name

· Button Slot Number

· Button Name (ToolTip Text)

· Button Macro Assignment (individual cell contents is #N/A if none)

· Button Built-in vs. Custom Status

· Button ID Number

Note that in Excel VBA, toolbar name strings are case insensitive.

Click Help to get context-sensitive help on this utility.

TUGExcel Tools
Popularized in The Underground Guide to Excel 5.0 for Windows, these six handy utilities fire up Excel's
most frequently used features with a single click. This is what Making It Easier(TM) is all about!

Related Topics:
Edit Go To Special
Exit Excel
File Close
Formula Flipper
New Workbook
Notation Style Flipper

Edit Go To Special
Ordinarily, getting to the Edit Go To Special dialog box is a little convoluted. You have to pull down the
Edit menu, click Go To, and then, from the Go To dialog box, click the Special button. Whew, finally the
Go To Special dialog box is displayed. But with the TUGExcel Edit Go To Special utility, it's just one click
away.

Click on the Edit Go To Special button on the TUGExcel Auditing toolbar. For more information see Edit
Go To Special (TUGExcel Auditing).

Exit Excel
Once you've used this little gem, you won't be able to live without it! TUGExcel Exit Excel dismisses Excel
with one simple click. If you have unsaved or changed files in your workspace, Excel prompts you to save
them as usual.

Click on the Exit Excel button on the TUGExcel Standard toolbar. For more information see Exit Excel
(TUGExcel Standard).

File Close
TUGExcel File Close improves your productivity by 50%! (Well, at least for every File Close process.)
TUGExcel File Close is a single-click tool that closes the active workbook and all its open windows. If the
workbook is unsaved or has changed, Excel prompts you to save it as usual.

Click on the File Close button on the TUGExcel Standard toolbar. For more information see File Close
(TUGExcel Standard).

Formula Flipper
The TUGExcel Formula Flipper utility proves invaluable every single time you audit a workbook. One click
toggles your display between result view and formula view.

Click on the Formula Flipper button on the TUGExcel Auditing toolbar. For more information see Formula
Flipper (TUGExcel Auditing).

New Workbook
The TUGExcel New Workbook utility gives you single-click access to all your Excel workbook templates,
unlike Excel's native feature that forces you to accept the default workbook template.

Click on the New Workbook button on the TUGExcel Standard toolbar. For more information see New
Workbook (TUGExcel Standard).

Notation Style Flipper
The TUGExcel Formula Flipper utility proves invaluable every single time you audit a workbook. One click
instantly toggles your worksheet display between A1 and R1C1 notation style.

Click on the Notation Style Flipper button on the TUGExcel Auditing toolbar. For more information see
Notation Style Flipper (TUGExcel Auditing).

Window Assistant
PRIME Window Assistant allows you to select for closing one, several, or all visible Excel windows. You
can also create a new window, split a window, arrange windows, and activate a specific window.

The Windows list box shows all visible windows in the current Excel session. Window Assistant's list box
is multi-select! As you navigate the Windows list either with the mouse or the arrow keyboard keys, the
label below the list box displays the name of the active sheet for that particular window.

To close one window, simply select the window from the list and click Close Selected Window(s). You
can also close a window by double-clicking it.

To close more than one selected window, make the multiple selection and click Close Selected
Window(s). When closing multiple windows that share the same workbook (for example, TUG.XLS:3 and
TUG.XLS:2 and TUG.XLS:1), when Excel finally gets down to the last such window for that workbook it
determines if the workbook has been changed and prompts you to save it accordingly. You can save it,
not save it, or cancel the operation entirely as you would normally.

To close all windows, click Close All Windows. Window Assistant closes all listed windows, then ends
automatically. This leaves Excel in null menu mode, with no visible workbooks open and only File and
Help in the menu bar. As with Close Selected Windows(s), Excel always prompts you to save, not save,
or cancel for any dirty workbook(s).

New Window opens a new window with the same contents as the current window in the Windows list
and then activates that new window. This is equivalent to selecting Window then choosing New Window
in Excel's native menu. (This feature acts only on the upper-most window in a multiple selection.)

Split a Window splits the current window in the Windows list into two equally sized horizontal panes, and
then activates that window. This is equivalent to selecting Window then choosing Split in Excel's native
menu. Clicking on Split a Window a second time has no effect. (This feature acts only on the upper-most
window in a multiple selection.) Only worksheets, macro sheets, and dialog sheets can be split by VBA. If
the current window in the list is not a worksheet, a macro sheet, or a dialog sheet, the utility gives you an
error message to this effect.

Arrange All Windows invokes Excel's native Arrange Windows dialog box and you can interact with it as
you ordinarily would.

Activate and Wait activates the current window (or the upper-most window in a multiple selection) and
leaves the dialog running.

Activate and Quit activates the current window (or the upper-most window in a multiple selection) then
quits the utility.

Click Help to get context-sensitive help on this utility.

Zoomer
PRIME Zoomer makes it easy to control your worksheet's zoom setting. You can control the zoom setting
with a slider (like the controls on a stereo) or select it from customized lists of recent and fixed settings.

There are three ways to use the slider:

· Drag the thumb bar to the setting you want. Watch the Zoom control to see how the zoom will be
set. When the zoom value is right, click OK.

· Click the slider to the left or right of the thumb bar to move the zoom setting down or up 1% at a
time. Click OK.

· Double-click at any point on the slider to move the thumb bar to that point. Click OK.

There are other ways to change the zoom setting:

· Type a new value into the Zoom control. Click OK.

· Click an entry in the list of Previous settings or Fixed settings. Click OK.

· Double-click a Previous or Fixed entry. (You need not click OK.)

· Click Fit Selection. (You need not click OK.)

· Click Fit Used Area. (You need not click OK.)

Helpful hints:

· The Customize button opens the Zoomer Customize dialog box. This box controls aspects of
PRIME Zoomer's operation such as the number of previous zoom settings in the Previous list
and the contents of the Fixed list.

· The lists of Previous and Fixed settings are enabled only when there actually are previous
settings and fixed settings to select.

· The slider scale shows the range of settings that all of the PRIME Zoomer controls accept. If you
wish, you can change this scale to be narrower than the native View Zoom command's range of
zoom settings (10% to 400%). Narrowing the range of the slider scale makes the slider more
precise. Click the Customize button to change the slider's scale.

The Previous list box contains up to five of the most recent zoom values you have set with PRIME
Zoomer. To change the number of values in the Previous list box, click the Customize button.

The Fixed list box contains up to five fixed zoom values that you use frequently. To add, delete, or change
the values in the Fixed list box, click the Customize button.

The Fit Selection button sets the zoom to the largest value that lets only the selected range appear in the
active window.

The Fit Used Area button sets the zoom to the largest value that lets only the used area appear in the
active window.

Click Help to get context-sensitive help on this utility.

Related Topics:
Zoomer Customization
Zoomer Customization Error Messages

Zoomer Customization
The PRIME Zoomer Customize dialog box lets you customize PRIME Zoomer's behavior.

Slider Range Minimum and Maximum set the range of the slider. These values also set limits on the
values that may appear in the Previous and Fixed Settings lists, and the values you may enter in the
Zoom control.

Previous Settings controls the number of previous settings that the Previous list will retain. It may be set
to any value from 0 (an empty list) to 5.

Fixed Settings lets you specify up to five values to appear in the Fixed list. To make less than five values
appear in the list, set one or more to 0%. The 0% values need not be the last ones. Non-zero values will
appear in the Fixed list in the same order as in this dialog box.

If you enter an invalid value in any field, PRIME Zoomer will beep and display a message on the status
line when you try to leave the field. For more detailed explanations of these errors, see Zoomer
Customization Error Messages.

Zoomer Customization Error Messages
Minimum must be at least 10% & no greater than Maximum.

The value of Slider Range Minimum is invalid. It must be a number no smaller than 10 (10%) and no
greater than the value of Slider Range Maximum.

Maximum must be no less than Minimum & no greater than 400%.

The value of Slider Range Maximum is invalid. It must be a number no smaller than the value of Slider
Range Minimum and no greater than 400 (400%).

The number of previous settings must be 0 to 5.

The value of Previous Settings is invalid. It must be a number in the range 0 to 5. A value of 0 makes
PRIME Zoomer's Previous list empty; you will not be able to select it.

A Fixed Setting must be at least as great as Minimum and no greater than Maximum, or zero.

One of the Fixed Settings is invalid. Each Fixed Setting must be a number no smaller than the value of
Slider Range Minimum and no greater than the value of Slider Range Maximum.

The Fixed Settings may also be zero. A zero setting is inactive; it will not appear in PRIME Zoomer's
Fixed list.

Glossary of Terms
3-D Name
Bang Character
Book-level Name
Hidden Name
Name Box
Named Formula
ODK
PRIME 6 for Word
Sheet-level Name
The Underground Guide to Excel 5.0 for Windows
The Underground Guide to Microsoft Office, OLE, and VBA
Used Area
VBA
WOPR

3-D Name
A name applied to a 3-D reference, which in turn is a reference to a range of sheets in a workbook.

Bang Character
The term "bang" is slang for the exclamation mark character.

Book-level Name
A defined range that means the same range on the same sheet no matter which sheet in the book you
refer to it from.

Hidden Name
A hidden name is a name that is not visible. It doesn't appear in Excel's Name Box, Edit Go To dialog, or
any of the various Insert Name dialogs. Names you create via Excel's user interface are visible by default,
except for named formulas which are hidden by default.

Name Box
A drop-down list box, located immediately to the left of the formula bar, that displays the first 100 range
names in the current sheet and/or book. This list is sorted alphabetically.

Named Formula
A name that refers to either a constant or a formula

ODK
The Microsoft Office Developer's Kit is comprised of a book for designing and programming integrated
solutions, the Object Model Reference Chart, and a CD-ROM. You can get an ODK of your very own by
calling 800-426-9400 extension 11771 and the nice Developer Services folks will sell you a copy for $100
or so. Or, if you have Visual Basic 3 Professional it comes with! If you have an older version of VB3-Pro
that did not come with the ODK, call the 800 number above and you can get it for $50. And if you
subscribe to MSDN, the ODK is on the MSDN CD-ROM. You don't get the hard copy components (the
book and the Reference Chart) but their components are on the CD.

PRIME 6 for Word
A shareware add-in for Word 6 from PRIME Consulting Group. PRIME 6 for Word addresses many of
Word's, er, uhm, shortcomings, and takes many of Word's good features and makes 'em even better!
According to Woody Leonhard, "PRIME 6 is fantastic! A great set of Word enhancements. Don't run Word
without it."

PRIME 6 includes these utilities: Fast Spell Checker for quicker spell checking with all misspelled words
in a document available in a single list; FileNew for complete template management; AutoText Lister for
viewing local and global AutoText contents and statistics side-by-side; Window Manager for one-stop
window management; Document Variable Manager for adding, viewing, modifying, deleting or cataloging
those pesky document variables; Bookmark Manager, the definitive utility for dealing with bookmarks;
plus Zoomer, Macro Manager, Toolbar Lister, ResetChar, ProgMan Icon Generator, 36 custom WordBasic
subroutines and functions, and a list of Word and WordBasic bugs and workarounds.

To place an order call Advanced Support Group at 800-788-0787 or 314-965-5630.

Sheet-level Name
A sheet-level name is local to the sheet that owns it.

The Underground Guide to Excel 5.0 for Windows
The Underground Guide to Excel 5.0 for Windows by Lee Hudspeth and Timothy-James Lee, published
by Addison-Wesley, ISBN 0-201-40651-9, $19.95 U.S., $25.95 Canada.

To get a copy, enter your local bookstore and tell the clerk, "Yo, I hear TUGExcel is on the New York
Times' Best Seller list this week. Again. And I'd like to buy, oh, 20 or 30 copies, thank you." Note: If the
bookstore does not have any copies, grab the store manager by the lapels and, with a feverish look in
your eyes, scream, "I've gotta get UNDERGROUND!" Be sure to have bail money handy if this approach
is taken. If all else fails, you can always order the book directly from Addison-Wesley by telephone (via
USA Direct Sales)! The number to call is: 1-800-822-6339.

The Underground Guide to Microsoft Office, OLE, and VBA
They're back! In their never-ending quest for truth by the gleaming merciless truckload, Lee Hudspeth and
Timothy-James Lee bring you The Underground Guide to Microsoft Office, OLE, and VBA, published by
Addison-Wesley, ISBN 0-201-41035-4, $24.95 U.S., $31.95 Canada.

TUGOffice is known to lurk in mass quantities at retail bookstores worldwide. If all else fails, you can
always order the book directly from Addison-Wesley by telephone (via USA Direct Sales)! The number to
call is: 1-800-822-6339.

Used Area
Also called the "used range." This range of a worksheet is defined as the range bounded by the upper left
corner cell (A1 or R1C1) through the current lower right corner cell (the one you get to when you press
Ctrl + End).

VBA
Visual Basic for Applications, also called Visual Basic, Applications Edition.

WOPR
Woody's Office POWER Pack, a collection of Word 6 add-ins from Pinecliffe International. To place an
order for WOPR 6, call 800-659-4696 (or 314-965-5630 outside the US). For additional information call
314-965-5630.

