GoniometrickΘ funkcie
Zßkladn² vz╗ah:
eia = cosa + isina
Vz╗ahy medzi funkciami
i) eiae-ia = (cosa + isina)(cosa - isina) = cos2a + sin2a = 1
ii) tg2a + 1 = (cos2a + sin2a)/cos2a = 1/cos2a
Funkcia
| sina
| cosa
| tga
| cotga
|
sina=
| sina
| (1-cos2a)
| tga/(1+tg2a)
| 1/(1+cotg2a)
|
cosa=
| (1-sin2a)
| cosa
| 1/(1+tg2a)
| cotga/(1+cotg2a)
|
tga=
| sina/(1-sin2a)
| (1-cos2a)/cosa
| tga
| 1/cotga
|
cotga=
| (1-sin2a)/sina
| cosa/(1-cos2a)
| 1/tga
| cotga
|
Funkcie s·Φtu a rozdielu
ei(a+b) = eiaeib
cos(a+b) + isin(a+b) = (cosa + isina)(cosb + isinb) =
= cosacosb - sinasinb + i(cosasinb + sinacosb)
sin(a b) = cosasinb sinacosb
| sin(2a) = 2sinacosa
|
| sin2(a/2) = (1 - cosa)/2
|
cos(a b) = cosacosb sinasinb
| cos(2a) = cos2a - sin2a
|
| cos2(a/2) = (1 + cosa)/2
|
tg(a b) = (tga tgb)/(1 tgatgb)
| tg(2a) = 2tga/(1 - tg2a)
|
| tg2(a/2) = (1 - cosa)/(1 + cosa)
|
cotg(a b) = (cotgacotgb 1)/(cotgb cotga)
| cotg(2a) = (cotg2a - 1)/(2cotga)
|
| cotg2(a/2) = (1 + cosa)/(1 - cosa)
|
S·Φty a rozdiely funkciφ
cos(a + b) + cos(a - b) = cosacosb - sinasinb + cosacosb + sinasinb =
= 2cosacosb = |substit·cia a = (x + y)/2, substit·cia b = (x - y)/2| =
= 2cos[(x + y)/2]cos[(x - y)/2] = cosx + cosy
sina + sinb = 2sin[(a + b)/2]cos[(a - b)/2]
|
sina - sinb = 2cos[(a + b)/2]sin[(a - b)/2]
|
cosa + cosb = 2cos[(a + b)/2]cos[(a - b)/2]
|
cosa - cosb = -2sin[(a + b)/2]sin[(a - b)/2]
|
tga tgb = sin(a b)/(cosacosb)
|
cotga cotgb = sin(b a)/(sinasinb)
|
tga cotgb = cos(a b)/(cosasinb)
|
S·Φiny funkciφ
cos(a - b) - cos(a + b) = cosacosb + sinasinb - cosacosb + sinasinb =
= 2sinasinb
sinasinb = [cos(a - b) - cos(a + b)]/2
|
cosacosb = [cos(a - b) + cos(a + b)]/2
|
sinacosb = [sin(a + b) + sin(a - b)]/2
|
tgatgb = (tga + tgb)/(cotga + cotgb)
|
cotgacotgb = (cotga + cotgb)/(tga + tgb)
|
tgacotgb = (tga + cotgb)/(cotga + tgb)
|
Funkcie nßsobkov uhlov
e3ia = (eia)3
(cos3a + isin3a) = (cosa + isina)3
cos3a + isin3a = cos3a + 3icos2asina + 3i2cosasin2a + i3sin3a
cos3a + isin3a = cos3a - 3cosasin2a + i(3cos2asina + sin3a)
sin3a = 3sina - 4sin3a
|
sin4a = 8sinacos3a - 4sinacosa
|
sin5a = 16sinacos4a - 12sinacos2a + sina
|
sinna = nsinacosn-1a - C(3,n)sin3acosn-3a + C(5,n)sin5acosn-5a - ..
|
cos3a = 4cos3a - 3cosa
|
cos4a = 8cos4a - 8cos2a + 1
|
cos5a = 16cos5a - 20cos3a + 5cosa
|
cosna = cosna - C(2,n)sin2acosn-2a + C(4,n)sin4acosn-4a - ..
|
|
|
|