Microsoft FCI/FDI Library Description

Copyright © 1996-1997 Microsoft Corporation. All rights reserved.

Abstract

This document describes use of the functions in the Microsoft File Compression Interface and File Decompression
Interface libraries or in CABINET.DLL to create or extract from Microsoft Cabinet Files.

Table of Contents

Microsoft FCI/FDI Library Description

INTRODUCTION 1
FCI 1
FCICREATE. ...ttt et ettt e e e et e e e e et e e e e eeeataeeeeeeetaaeeeeeeeataseeeeeestaaaeeeeeeeaaeaaaaeaaaaaaaaeeees 1
FCTADDEFILE.oviiiii ittt ettt e ettt e e e e et e e e e e eetaeeeeeeeatareeeeeetaraaeeeeeeeaaaaeaaaaaaaaeeees 1
FOTELUSHCABINETcvvviiiiietieeeeeeeetteeeeeeeeateeeeeeeeaaeeeeeeestaseeeseesestaseeesseaaaseeesessteseeesassseseessenaaneaesseeseeeeeeeeees 1
FCIFLUSHEOLDER.......coottttiiieeietieet ettt eeetae e e e eetee e e e e eeataae e e e sesaaaeeeeeeesaaeseeesensaeseeeseensaseeeeeasnsseeeeessnssrneees 1
FCIDESTROY ..eevvvteee ettt ettt ettt e e e ettt e e e e ettt e e e senaaaeeeeeeasaaaeeeeeenaaaeseessassasseessensaseeeesessaseeeessanenneeeeees 1
FDI 1
) D) (@) 227N 1 TR RRRTPURRNE 1
) D) 0 L 05N 23101 S TN 1
I D) (616)) TSSO SRR UOPRRPRRTROt 1
FDIDESTROY ...eeeieeiiieieeeeeetteee e eeett e e e ee e e e e ettt e e e e eeaaaeeeeeeeataaeeeeeeettaseeeeeetaseeeseessseeeeeesastasseesenssseseeeeenrrrees 1

Page 2 of 22

March 20, 1997

Microsoft FCI/FDI Library Description

Introduction

The FCI (File Compression Interface) and FDI (File Decompression Interface) libraries provide the ability to create
and extract files from cabinets (also known as “CAB files”). In addition, the libraries provide compression and
decompression capability to reduce the size of file data stored in cabinets.

The FCI and FDI libraries, FCI.LIB and FDI.LIB, are available in both 32-bit and 16-bit forms. However, the 16-
bit version will run more slowly than the 32-bit version.

FCI and FDI support multiple simultaneous contexts, so it is possible to create or extract multiple cabinets
simultaneously within the same application. If the application is multi-threaded, it is also possible to run a different
context in each thread; however, it is not permitted for the application to use the same context simultaneously in
multiple threads (e.g. one cannot call FCIAddFile from two different threads, using the same FCI context).

FCI and FDI operate using the technique of function callbacks; some of the parameters of the FCI and FDI APIs are
pointers to functions in the client application. The parameters and purpose of these functions are explained fully in
this document. The fei int.h and fd_int.h header files provide macros for declaring the callback functions, and use
keywords such HUGE, FAR, and DIAMONDAPI, which ensure that the functions are properly defined for both 32-
bit and 16-bit operation. For example, in the case of the memory allocation and memory free functions, the
following definitions exist in fci_int.h:

#define FNFCIALLOC (fn) void HUGE * FAR DIAMONDAPI fn (ULONG cb)
#define FNFCIFREE (fn) void FAR DIAMONDAPI fn (void HUGE *pv)

These declarations can be used as follows:

FNFCIALLOC (mem_alloc)
{
return malloc (cb);

}

FNFCIFREE (mem_ free)
{
return free (memory);

}

some_function()
{
hfci = FCICreate (
&erf,
filedest,
mem alloc,
mem_free,
etc.
);
}

It should be noted that the FCI callback function names all begin with the string “FCI”. In addition, the FCI and
FDI i/o functions (open, close, read, write, seek) take different parameters, and cannot be used interchangeably.

The FDI i/o functions take parameters which are identical to those of the C run-time library routines _open, close,

read, write, and Iseek. The FCI i/o functions take similar parameters, with the addition of an error pointer in
which to return an i/o error, and the client’s context pointer originally passed in to the FCICreate API.

Page 3 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

Two example applications are provided; testfci and testfdi. These applications demonstrate how all of the FCI and
FDI APIs, respectively, may be used.

Page 4 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FCI

The five FCI (File Compression Interface) APIs are:

FCICreate Create an FCI context

FCIAddFile Add a file to the cabinet under construction
FCIFlushCabinet Complete the current cabinet

FCIFlushFolder Complete the current folder and start a new folder
FCIDestroy Destroy an FCI context

Page 5 of 22

March 20, 1997

Microsoft FCI/FDI Library Description

FCICreate

Usage

HFCI DIAMONDAPI FCICreate (

PERF perft,
PFNFCIFILEPLACED pfnfiledest,
PFNFCIALLOC pfnalloc,
PFNFCIFREE pfnfree,
PFNFCIOPEN pfnopen,
PFNFCIREAD pfnread,
PENFCIWRITE pfnwrite,
PFNFCICLOSE pfnclose,
PENFCISEEK pfnseek,
PEFNFCIDELETE pfndelete,
PENFCIGETTEMPFILE pfnfcigtf,
PCCAB pccab,
void FAR * pv

)7

Parameters

perf Pointer to an error structure

pfinfiledest Function to call when a file is placed

pfnalloc Memory allocation function

pfinfree Memory free function

pfnopen Function to open a file

pfnread Function to read data from a file

pfawrite Function to write data to a file

pfnclose Function to close a file

pfnseek Function to seek to a new position in a file

pfitemp Function to obtain a temporary file name

pfidelete Function to delete a file

pccab Parameters for creating cabinet

pv Client context parameter

Description

The FCICreate API creates an FCI context that is passed to other FCI APIs.

The perf parameter should point to a global or allocated ERF structure. Any errors returned by FCICreate or
subsequent FCI APIs using the same context will cause the ERF structure to be filled out.

The pfnalloc and pfufree parameters should point to memory allocation and memory free functions which will be
called by FCI to allocate and free memory. These two functions take parameters identical to the standard C malloc
and free functions.

The pfnopen, pfuread, pfawrite, pfnclose, pfnseek, and pfndelete parameters should point to functions which perform

file open, file read, file write, file close, file seek, and file delete operations respectively. These functions must
accept parameters similar to those for the standard open, read, write, close, Iseek, and remove functions, with

Page 6 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

the addition of two additional parameters to the list; €T and PV. The €I parameter is an in¢ *, and upon entry into
the function, *err will equal zero. However, if the function returns failure, *err should be set to an error code of the
application’s choosing, which will be returned via perf (the error code is not used by FCI, and is not required to
conform to C run-time library errno conventions). The PV parameter will equal the client’s context parameter
passed in to FCICreate.

The pfntemp parameter should point to a function which returns the name of a suitable temporary file. Three
parameters will be passed to this function; pSzTempName, an area of memory to store the filename,
cbTempName, the size of the memory area, and PV, the client’s context pointer. The filename returned by this
function should not occupy more than cbTempName bytes. FCI may open several temporary files at once, so it

is important to ensure that a different filename is returned each time, and that the file does not already exist. The
function should return TRUE for success, or FALSE for failure.

The pfnfiledest parameter should point to a function which will be called whenever the location of a file or file
segment on a particular cabinet has been finalized. This information is useful only when files are being stored
across multiple cabinets. The parameters passed to this function are pCCab, a pointer to the CCAB structure of
the cabinet on which the file has been stored, pstiIe, the filename of the file which has been placed, CbFile, the
file size, and fContinuation, a boolean which signifies whether the file is a later segment of a file which has been
split across cabinets. In addition, the client context value, PV, is also passed as a parameter.

The pccab parameter should point to an initialized CCAB structure, which will provide FCI with details on how to
build the cabinet. The CCAB fields are explained below:

The cb field, the media size, specifies the maximum size of a cabinet which will be created by FCI. If necessary,
multiple cabinets will be created. To ensure that only one cabinet is created, a sufficiently large number should be
used for this parameter.

The cbFolderThresh field specifies the maximum number of compressed bytes which may reside in a folder
before a new folder is created. A higher folder threshold improves compression performance (since creating a new
folder resets the compression history), but increases random access time to the folder.

The iCab field is used by FCI to count the number of cabinets that have been created so far. This value can also be
read by the application to determine the name of a cabinet. See the GetNextCab parameter of the FCIAddFile API
for details.

The iDisk field is used in a similar manner to iCab. See the GetNextCab parameter of the FCIAddFile API for
details.

The setID field is for the use of the application, and can be initialized with any number. The set ID is stored in
the cabinet.

The szDisk field should contain a disk-specific string (such as “Disk1”, “Disk2”, etc.) corresponding to the disk
on which the cabinet is placed. Alternatively, if cabinets are not spanning multiple disks, the string can simply be a
null string. This field is stored in the cabinet and is used upon extraction to prompt the user to insert the correct
disk. See the FCIAddFile API for details.

The szCab field should contain a string which contains the name of the first cabinet to be created (e.g.
“APP1.CAB”). In the event of multiple cabinets being created, the GetNextCab function called by the
FCIAddFile API allows subsequent cabinet names to be specified.

The szCabPath field should contain the complete path of where to create the cabinet (e.g. “C:\MYFILES\”).

Page 7 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

The cbReserveCFHeader, cbReserveCFFolder, and cbReserveCFData fields can be set to create per-
cabinet, per-folder, and per-datablock reserved sections in the cabinet. For example, setting
cbReserveCFHeader to 6144 is commonly used to reserve a 6k space in the cabinet file as needed for
codesigning. The other reserved sections are not commonly used.

Returns

If successful, a non-NULL HFCI context pointer is returned. If unsuccessful, NULL is returned, and the error
structure pointed to by perfis filled out.

Page 8 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FCIAddFile

Usage

BOOL DIAMONDAPI FCIAddFile (

HFCI hfci,
char *pszSourceFile,
char *pszFileName,
BOOL fExecute,
PFNFCIGETNEXTCABINET GetNextCab,
PEFNFCISTATUS pfnProgress,
PENFCIGETOPENINFO pfnOpenlInfo,
TCOMP typeCompress

)

Parameters

hfci FCI Context pointer originally returned by FCICreate

pszSourceFile Name of file to add (should include path information)
pszFileName Name under which to store the file in the cabinet

fExecute Boolean indicating whether the file should be executed when it is extracted
GetNextCab Function called to obtain specifications on the next cabinet to create
pfinProgress Progress function called to update the user

pfnOpenlnfo Function called to open a file and return file date, time and attributes

typeCompress ~ Compression type to use

Description

The FCIAddFile API adds a file to the cabinet under construction.
The hfci parameter must be the context pointer returned by a previous call to FCICreate.

The pszSourceFile parameter specifies the location of the file to be added to the cabinet, and should therefore
include as much path information as possible (e.g. “C:\MYFILES\TEST.EXE”).

The pszFileName parameter specifies the name of the file inside the cabinet, and should not include any path
information (e.g. “TEST.EXE”).

The fExecute parameter specifies whether the file should be executed automatically when the cabinet is extracted.
When set, the A EXEC attribute will be added to the file entry in the CAB. This mechanism is used in some
Microsoft self-extracting executables, and could be used for this purpose in any custom extract application.

The GetNextCab parameter should point to a function which is called whenever FCI wishes to create a new cabinet,
which will happen whenever the size of the cabinet is about to exceed the media size as specified in the cb field of
the CCAB structure passed to FCICreate. The GetNextCab function is called with three parameters which are
explained below:

The first parameter, PCCab, is a pointer to a copy of the CCAB structure of the cabinet which has just been

completed. However, the 1Cab field will have been incremented by one. When this function returns, the next
cabinet will be created using the fields in this structure, so these fields should be modified as is necessary. In

Page 9 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

particular, the szCab field (the cabinet name) should be changed. If creating multiple cabinets, typically the 1 Cab
field is used to create the name; for example, the GetNextCab function might include a line which does:

sprintf (pccab->szCab, “FO00%d.CAB”, pccab->iCab);
Similarly, the disk name, media size, folder threshold, etc. parameters may also be modified.

The second parameter, COPrevCab, is an estimate of the size of the cabinet which has just been completed.

The last parameter, PV, is the application-defined value originally passed to FCICreate.
The GetNextCab function should return TRUE for success, or FALSE to abort cabinet creation.

The pfnProgress parameter should point to a function which is called periodically by FCI so that the application may
send a progress report to the user. The progress function has four parameters; typeStatus, which specifies the
type of status message, Cb1 and Cb2, which are numbers, the meaning of which is dependent upon typeStatus,
and PV, the application-specific context pointer.

The typeStatus parameter may take on values of statusFile, statusFolder, or statusCabinet. If
typeStatus equals statusFile then it means that FCI is compressing data blocks into a folder. In this case,

cb1 is either zero, or the compressed size of the most recently compressed block, and cb2 is either zero, or the
uncompressed size of the most recently read block (which is usually 32K, except for the last block in a folder, which

may be smaller). There is no direct relation between CD1 and Cb2; FCI may read several blocks of uncompressed
data before emitting any compressed data; if this happens, some StatusFile messages may contain, for example,
cb1 =0 and cb2 = 32K, followed later by other messages which contain Cb1 = 20K and cb2 = 0.

If typeStatus equals statusFolder then it means that FCI is copying a folder to a cabinet, and Cb1 is the
amount copied so far, and CD2 is the total size of the folder. Finally, if typeStatus equals statusCabinet,
then it means that FCI is writing out a completed cabinet, and Cb1 is the estimated cabinet size that was previously
passed to GetNextCab, and CO2 is the actual resulting cabinet size.

The progress function should return 0 for success, or -1 for failure, with an exception in the case of

statusCabinet messages, where the function should return the desired cabinet size (ch2), or possibly a value
rounded up to slightly higher than that.

The pfnOpenlnfo parameter should point to a function which opens a file and returns its datestamp, timestamp, and
attributes. The function will receive five parameters; pSZName, the complete pathname of the file to open;
pdate, a memory location to return a FAT-style date code; ptime, a memory location to return a FAT-style time

code; pattribs, a memory location to return FAT-style attributes; and PV, the application-specific context pointer
originally passed to FCICreate. The function should open the file using a file open function compatible with those
passed in to FCICreate, and return the resulting file handle, or -1 if unsuccessful.

The typeCompress parameter specifies the type of compression to use, which may be either

tcompTYPE_NONE for no compression, or tcompTYPE_MSZIP for Microsoft ZIP compression.

Other compression formats may be supported in the future.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned, and the error structure pointed to by perf
(from FCICreate) is filled out.

Page 10 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

Page 11 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FCIFlushCabinet

Usage

BOOL DIAMONDAPI FCIFlushCabinet (

HFCI hfci,
BOOL fGetNextCab,
PENFCIGETNEXTCABINET GetNextCab,
PEFNFCISTATUS pfnProgress
)
Parameters
hfci FCI Context pointer originally returned by FCICreate
fGetNextCab Name of file to add (should include path information)
GetNextCab Function called to obtain specifications on the next cabinet to create
pfnProgress Progress function called to update the user
Description

The FCIFlushCabinet API forces the current cabinet under construction to be completed immediately and written
to disk. Further calls to FCIAddFile will cause files to be added to another cabinet. It is also possible that there
exists pending data in FCI’s internal buffers that will may require spillover into another cabinet, if the current
cabinet has reached the application-specified media size limit.

The hfci parameter must be the context pointer returned by a previous call to FCICreate.

The fGetNextCab flag determines whether the function pointed to by the supplied GetNextCab parameter, will be
called. If fGetNextCab is TRUE, then GetNextCab will be called to obtain continuation information. Otherwise, if
fGetNextCab is FALSE, then GetNextCab will be called only if the cabinet overflows.

The pfnProgress parameter should point to a function which is called periodically by FCI so that the application may

send a progress report to the user. This function works in an identical manner to the progress function passed to
FCIAddFile.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned, and the error structure pointed to by perf’
(from FCICreate) is filled out.

Page 12 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FCIFlushFolder

Usage

BOOL DIAMONDAPI FCIFlushFolder (

HFCI hfci,
PENFCIGETNEXTCABINET GetNextCab,
PENFCISTATUS pfnProgress
)
Parameters
hfci FCI Context pointer originally returned by FCICreate
GetNextCab Function called to obtain specifications on the next cabinet to create
pfnProgress Progress function called to update the user
Description

The FCIFlushFolder API forces the current folder under construction to be completed immediately, effectively
resetting the compression history at this point (if compression is being used).

The Afci parameter must be the context pointer returned by a previous call to FCICreate.

The supplied GetNextCab function will be called if the cabinet overflows, which is a possibility if the pending data
buffered inside FCI causes the application-specified cabinet media size to be exceeded.

The pfnProgress parameter should point to a function which is called periodically by FCI so that the application may

send a progress report to the user. This function works in an identical manner to the progress function passed to
FCIAddFile.

Page 13 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FCIDestroy

Usage

BOOL DIAMONDAPI FCIDestroy (

HFCI hfci
)
Parameters
hfci FCI context handle returned by FCICreate
Description

The FCIDestroy API destroys an Afci context, freeing any memory and temporary files associated with the context.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned. The only reason for failure is that the Afci
passed in was not a proper context handle.

Page 14 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FDI

The four FDI (File Decompression Interface) APIs are:

FDICreate Create an FDI context

FDlIsCabinet Determines whether a file is a cabinet, and returns information if so
FDICopy Extracts files from cabinets

FDIDestroy Destroy an FDI context

Page 15 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FDICreate

Usage

HFCI DIAMONDAPI FDICreate (

PFNALLOC pfnalloc,
PENFREE pfnfree,
PEFNOPEN pfnopen,
PEFNREAD pfnread,
PENWRITE pfnwrite,
PENCLOSE pfnclose,
PEFNSEEK pfnseek,
int cpuType,
PERF perf

)

Parameters

pfnalloc Memory allocation function

pfinfree Memory free function

pfiopen File open function

pfiread File read function

pfiwrite File write function

pfnclose File close function

pfnseek File seek function

cpuType Type of CPU

perf Pointer to an error structure

Description

The FDICreate API creates an FDI context that is passed to other FDI APIs.

The pfnalloc and pfufree parameters should point to memory allocation and memory free functions which will be
called by FDI to allocate and free memory. These two functions take parameters identical to the standard C malloc
and free functions.

The pfnopen, pfuread, pfnwrite, pfuclose, and pfnseek parameters should point to functions which perform file open,
file read, file write, file close, and file seek operations respectively. These functions should accept parameters
identical to those for the standard open, read, write, close, and _Iseek functions, and should likewise have
identical return codes. Note that the FDI i/o functions do not take the same parameters as the FCI i/o functions.

It is not necessary for these functions to actually call open etc.; these functions could instead call fopen, fread,
fwrite, fclose, and fseek, or CreateFile, ReadFile, WriteFile, CloseHandle, and SetFilePointer, etc. However, the
parameters and return codes will have to be translated appropriately (e.g. the file open mode passed in to pfiopen).

The cpuType parameter should equal one of CPUB0386 (indicating that 80386 instructions may be used),

cpu80286 (indicating that only 80286 instructions may be used), or COUUNKNOWN (indicating that FDI
should determine the CPU type). The cpuType parameter is looked at only by the 16-bit version of FDI; it is
ignored by the 32-bit version of FDI.

Page 16 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

The perf parameter should point to a global or allocated ERF structure. Any errors returned by FDICreate or
subsequent FDI APIs using the same context will cause the ERF structure to be filled out.

Returns

If successful, a non-NULL HFDI context pointer is returned. If unsuccessful, NULL is returned, and the error
structure pointed to by perfis filled out.

Page 17 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FDlIsCabinet

Usage

BOOL DIAMONDAPI FDIIsCabinet (
HFDI hfdi,
int hf,
PFDICABINETINFO pfdici

Parameters

hfdi FDI Context pointer originally returned by FDICreate

hf File handle returned by a call to the application’s file open function
pfdici Pointer to a cabinet info structure

Description

The FDIlIsCabinet API determines whether a given file is a cabinet, and if so, returns information about the cabinet
in the provided FDICABINETINFO structure.

The Afdi parameter is the context pointer returned by a previous call to FDICreate.

The hf parameter must be a file handle on the file being examined. The file handle must be of the same type as
those used by the file i/o functions passed to FDICreate.

The pfdici parameter should point to an FDICABINETINFO structure, which will receive the cabinet details if the
file is indeed a cabinet. The fields of this structure are as follows:

The cbCabinet field contains the length of the cabinet file, in bytes. The CFolders field contains the number
of folders in the cabinet. The CFiles field contains the total number of files in the cabinet. The SetlD field
contains the set ID (an application-defined magic number) of the cabinet. The iCabinet field contains the number
of this cabinet in the set (0 for the first cabinet, 1 for the second, and so forth). The fReserve field is a boolean

indicating whether there is a reserved area present in the cabinet. The haspreV field is a boolean indicating
whether this cabinet is chained to the previous cabinet, by way of having a file continued from the previous cabinet

into the current one. The hasnext field is a boolean indicating whether this cabinet is chained to the next cabinet,
by way of having a file continued from this cabinet into the next one.

Returns

If the file is a cabinet, then TRUE is returned and the FDICABINETINFO structure is filled out. If the file is not a
cabinet, or some other error occurred, then FALSE is returned. In either case, it is the responsibility of the
application to close the file handle passed to this function.

Page 18 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FDICopy

Usage

BOOL FAR DIAMONDAPI FDICopy (

HFDI hfdi,

char FAR *pszCabinet,
char FAR *pszCabPath,
int flags,

PFNFDINOTIFY pfnfdin,
PENFDIDECRYPT pfnfdid,

void FAR *pvUser
)7
Parameters
hfdi FDI Context pointer originally returned by FDICreate
pszCabinet Name of cabinet file, excluding path information
pszCabPath File path to cabinet file
flags Flags to control the extract operation
pfinfdin Pointer to a notification (status update) function
pfinfdid Pointer to a decryption function
pvUser Application-specified value to pass to notification function
Description

The FDICopy API extracts one or more files from a cabinet. Information on each file in the cabinet is passed back
to the supplied pfnfdin function, at which point the application may decide to extract or not extract the file.

The Afdi parameter is the context pointer returned by a previous call to FDICreate.

The pszCabinet parameter should be the name of the cabinet file, excluding any path information, from which to
extract files. Ifa file is split over multiple cabinets, FDICopy does allow subsequent cabinets to be opened.

The pszCabPath parameter should be the file path of the cabinet file (e.g. “C:\MYCABS\”). The contents of
pszCabPath and pszCabinet will be strung together to create the full pathname of the cabinet.

The flags parameter is used to set flags for the decoder. At this time there are no flags defined, and the flags
parameter should be set to zero.

The pfnfdin parameter should point to a file notification function, which will be called periodically to update the
application on the status of the decoder. The pfirfdin function takes two parameters; fdint, an integral value
indicating the type of notification message, and pfdin, a pointer to an FDINOTIFICATION structure.

The fdint parameter may equal one of the following values; fdintCABINET _INFO (general information
about the cabinet), FINEPARTIAL _FILE (the first file in the cabinet is a continuation from a previous cabinet),
fdintCOPY _FILE (asks the application if this file should be copied), fdintCLOSE_FILE_INFO (close
the file and set file attributes, date, etc.), or FAiNtNEXT _CABINET (file continued on next cabinet).

Page 19 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

The pfdin parameter will point to an FDINOTIFICATION structure with some or all of the fields filled out,
depending on the value of the fdint parameter. Four of the fields are used for general data; cb (a long integer), and

pszl, psz2,and psz3 (pointers to strings), the meaning of which are highly dependent on the fdint value. The
pv field will be the value the application originally passed in as the pvUser parameter to FDICopy.

The pfnfdin function must return a value to FDI, which tells FDI whether to continue, abort, skip a file, or perform
some other operation. The values which can be returned depend on fdint, and are explained below.

Note that it is possible that future versions of FDI will have additional notification messages. Therefore, the

application should ignore values of fdint it does not understand, and return zero to continue (preferably), or -1
(negative one) to abort.

If fdint equals fdintCABINET _INFO then the following fields will be filled out; psz1 will point to the name
of the next cabinet (excluding path information); psz2 will point to the name of the next disk; psz3 will point to
the cabinet path name; set ID will equal the set ID of the current cabinet; and i Cabinet will equal the cabinet
number within the cabinet set (0 for the first cabinet, 1 for the second cabinet, etc.) The application should return 0
to indicate success, or -1 to indicate failure, which will abort FDICopy. An fdintCABINET _INFO
notification will be provided exactly once for each cabinet opened by FDICopy, including continuation cabinets
opened due to files spanning cabinet boundaries.

If fdint equals fdintCOPY _FILE then the following fields will be filled out; psz1 will point to the name of a
file in the cabinet; cb will equal the uncompressed size of the file; date will equal the file’s 16-bit FAT date; t ime
will equal the file’s 16-bit FAT time; and attribs will equal the file’s 16-bit FAT attributes. The application may
return one of three values; 0 (zero) to skip (i.e. not copy) the file; -1 (negative one) to abort FDICopy; or a non-zero
(and non-negative-one) file handle for the destination to which to write the file. The file handle returned must be
compatible with the PENCLOSE function supplied to FDICreate. The fdintCOPY _FILE notification is
called for each file that starts in the current cabinet, providing the opportunity for the application to request that the
file be copied or skipped.

If fdint equals fdintCLOSE_FILE_INFO then the following fields will be filled out; psz1 will point to the
name of a file in the cabinet; hf will be a file handle (which originated from fFdintCOPY_FILE); date will
equal the file’s 16-bit FAT date; t ime will equal the file’s 16-bit FAT time; attributes will equal the file’s 16-
bit FAT attributes (minus the A EXEC bit); and cb will equal either zero (0) or one (1), indicating whether the file
should be executed after extract (one), or not (zero). It is the responsibility of the application to execute the file if
cb equals one. The fdintCLOSE_FILE_INFO notification is called after all of the data has been written to
a target file. The application must close the file (using the provided hf handle), and set the file date, time, and
attributes. The application should return TRUE for success, or FALSE or -1 (negative one) to abort FDICopy.

FDI assumes that the target file was closed, even if this callback returns failure; FDI will not attempt to use
PFNCLOSE to close the file.

If fdint equals fdintPARTIAL _FILE then the following fields will be filled out; psz1 will point to the name
of the file continued from a previous cabinet; psz2 will point to the name of the cabinet on which the first segment
of the file exists; psz3 will point to the name of the disk on which the first segment of the file exists. The
fdintPARTIAL_FILE notification is called for files at the beginning of a cabinet which are continued from a
previous cabinet. This notification will occur only when FDICopy is started on the second or subsequent cabinet
in a series, which has files continued from a previous cabinet. The application should return zero (0) for success, or
-1 (negative one) for failure, which will abort FDICopy.

If fdint equals fdintNEXT_CABINET then the following fields will be filled out; psz1 will point to the
name of the next cabinet on which the current file is continued; psz2 will point to the name of the next disk on

Page 20 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

which the current file is continued; psz 3 will point to the cabinet path information; and fdie will equal a success

or error value. The FAdiNtNEXT_CABINET notification is called only when fdintCOPY _FILE was

instructed to copy a file in the current cabinet that is continued in a subsequent cabinet. It is important that the
cabinet path name, psz3, be validated before returning (psz 3, which points to a 256 byte array, may be modified
by the application; however, it is not permissible to modify psz1 or psz2). The application should ensure that the
cabinet exists and is readable before returning; if necessary, the application should issue a disk change prompt and
ensure that the cabinet file exists. When this function returns to FDI, FDI will verify that the setID and
iCabinet fields of the supplied cabinet match the expected values for that cabinet. If not, FDI will continue to
send fdintNEXT_CABINET notification messages with the £die field set to

FDIERROR_WRONG _CABINET, until the correct cabinet file is specified, or until this function returns -

1 (negative one) to abort the FDICopy call. If after returning from this function, the cabinet file is not present and
readable, or has been damaged, then the £die field will equal one of the following values;

FDIERROR_CABINET NOT_FOUND, FDIERROR_NOT_A_CABINET,
FDIERROR_UNKNOWN_CABINET_VERSION, FDIERROR_CORRUPT_CABINET,
FDIERROR_BAD_COMPR_TYPE, FDIERROR_RESERVE_MISMATCH,
FDIERROR_WRONG _CABINET. If there was no error, fdie will equal FDIERROR_NONE.

The application should return 0 (zero) to indicate success, or -1 (negative one) to indicate failure, which will abort

FDICopy.

The pfndid parameter is reserved for encryption, and is currently not used by FDI. This parameter should be set to
NULL.

The pvUser parameter should contain an application-defined value which will be passed back as a field in the
FDINOTIFICATION structure of the notification function. It not required, this field may be safely set to NULL.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned, and the error structure pointed to by perf
(from FDICreate) is filled out.

Page 21 of 22 March 20, 1997

Microsoft FCI/FDI Library Description

FDIDestroy

Usage

BOOL DIAMONDAPI FDIDestroy (

HFDI hfdi
)
Parameters
hfdi FDI context handle returned by FDICreate
Description

The FDIDestroy API destroys an Afdi context, freeing any memory and temporary files associated with the context.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned. The only reason for failure is that the Afdi
passed in was not a proper context handle.

Page 22 of 22 March 20, 1997

