
 TEkRtf v. 1.85
Properties      Methods      Events      Report template      Example

Unit
EkRtf

Description
TEkRtf report is non visual component that allows you to use all power of MS Word or other rtf-compatible
editor to create, preview, edit and print your reports.

How to make it working:

Design time:
· create report template in MS Word
· save it in RTF format
· place TEkRTF component on form or data module
· fill required properties

Run time:
· prepare data in your application - fill property VarList if necessary, prepare Datasets.
· run report using one of Execute methods
· run MS Word (or other editor) if you want to view, edit or print your document

See more details in report template and code examples sections.

TEkRtf Properties
Methods      Events      Report template

InFile
OutFile
Charset
ColorCount
ColorTable
DecimalRSeparator
DecimalRTerminator
DisableControls
ExecuteSuccessful
Lang
LastErrMsg
Options
UDFList
VarList
TrueValue
FalseValue

How to specify DataSets included in report see creating report template and methods Execute,
ExecuteOpen.

TEkRtf Methods
Properties      Events      Report template      Example

Managing variables

VarByName
ClearVars
CreateVar
FreeVar

Executing report

Execute
ExecuteOpen
ExecuteStream
SetTemplateBuffer
FreeTemplate

Other

txt2rtf
ShellOpenFile
Version

Code example
Properties Methods Events

Component TEkRTF is used In this example with properties:
Lang=wdEnglishUS, Name=InvRTF, properties INFILE, OUTFILE filled with corresponding file names.
The other properties are left without changing.

There are used tables ORDERS, CUST, ITEMS from DBDEMOS database. In the table ITEMS   
MasterFields=OrderNo, MasterSource=OrdersSource. Tables are in data module named DM.

Report template:

Before the executing report an user chooses an order number in ORDERS table. Corresponded record
in the table becomes the current. Block Scan-Endscan inserts all records from table ITEMS, which are
linked with OrderNo from table ORDERS.

Code to generate a report:

//Calculate variable Esum
Esum:=CalcExtSum();
//Add variables to varlist
InvRtf.ClearVars;
InvRtf.CreateVar('Esum', Esum);
InvRtf.CreateVar('Freight', Dm.Orders.FieldByName('Freight').AsFloat);
InvRtf.CreateVar('Total', Esum + Dm.Orders.FieldByName('Freight').AsFloat);
//Generate report
InvRtf.ExecuteOpen([Dm.Cust, Dm.Orders, Dm.items], SW_SHOW);

Result:

See also creating report template, Insert picture example, InsertRtfMemo

TEkRtf font charset
Properties Methods Events

Name Value
ANSI_CHARSET 0
DEFAULT_CHARSET 1
RUSSIAN_CHARSET 204
OEM_CHARSET 255
SYMBOL_CHARSET 2
MAC_CHARSET 77
SHIFTJIS_CHARSET 128
HANGEUL_CHARSET 129
JOHAB_CHARSET 130
GB2312_CHARSET 134
CHINESEBIG5_CHARSET 136
GREEK_CHARSET 161
TURKISH_CHARSET 162
HEBREW_CHARSET 177
ARABIC_CHARSET 178
BALTIC_CHARSET 186
THAI_CHARSET 222
EASTEUROPE_CHARSET 238

TEkRtf    Events
Properties      Methods      Report template      Example

OnFinished
OnImageFormat
OnScanBefore
OnScanRecord
OnScanEof

TEkRtf Lang property
Properties Methods Events

Name Value
WdAfrikaans 1078
WdAlbanian 1052
WdArabic 1025
WdArabicAlgeria 5121
WdArabicBahrain 15361
WdArabicEgypt 3073
WdArabicIraq 2049
WdArabicJordan 11265
WdArabicKuwait 13313
WdArabicLebanon 12289
WdArabicLibya 4097
WdArabicMorocco 6145
WdArabicOman 8193
WdArabicQatar 16385
WdArabicSyria 10241
WdArabicTunisia 7169
WdArabicUAE 14337
WdArabicYemen 9217
WdArmenian 1067
WdAssamese 1101
WdAzeriCyrillic 2092
WdAzeriLatin 1068
WdBasque 1069
WdBelgianDutch 2067
WdBelgianFrench 2060
WdBengali 1093
WdBrazilianPortuguese 1046
WdBulgarian 1026
WdBurmese 1109
WdByelorussian 1059
WdCatalan 1027
WdChineseHongKong 3076
WdChineseMacao 5124
WdChineseSingapore 4100
WdCroatian 1050
WdCzech 1029
WdDanish 1030
WdDutch 1043
WdEnglishAUS 3081
WdEnglishBelize 10249
WdEnglishCanadian 4105
WdEnglishCaribbean 9225
WdEnglishIreland 6153
WdEnglishJamaica 8201
WdEnglishNewZealand 5129
WdEnglishPhilippines 13321
WdEnglishSouthAfrica 7177
WdEnglishTrinidad 11273
WdEnglishUK 2057
WdEnglishUS 1033
WdEnglishZimbabwe 12297

WdEstonian 1061
WdFaeroese 1080
WdFarsi 1065
WdFinnish 1035
WdFrench 1036
WdFrenchCameroon 11276
WdFrenchCanadian 3084
WdFrenchCotedIvoire 12300
WdFrenchLuxembourg 5132
WdFrenchMali 13324
WdFrenchMonaco 6156
WdFrenchReunion 8204
WdFrenchSenegal 10252
WdFrenchWestIndies 7180
WdFrenchZaire 9228
WdFrisianNetherlands 1122
WdGaelicIreland 2108
WdGaelicScotland 1084
WdGalician 1110
WdGeorgian 1079
WdGerman 1031
WdGermanAustria 3079
WdGermanLiechtenstein 5127
WdGermanLuxembourg 4103
WdGreek 1032
WdGujarati 1095
WdHebrew 1037
WdHindi 1081
WdHungarian 1038
WdIcelandic 1039
WdIndonesian 1057
WdItalian 1040
WdJapanese 1041
WdKannada 1099
WdKashmiri 1120
WdKazakh 1087
WdKhmer 1107
WdKirghiz 1088
WdKonkani 1111
WdKorean 1042
WdLanguageNone 0
WdLao 1108
WdLatvian 1062
WdLithuanian 1063
WdMacedonian 1071
WdMalayalam 1100
WdMalayBruneiDarussalam 2110
WdMalaysian 1086
WdMaltese 1082
WdManipuri 1112
WdMarathi 1102
WdMexicanSpanish 2058
WdMongolian 1104
WdNepali 1121
WdNoProofing 1024
WdNorwegianBokmol 1044

WdNorwegianNynorsk 2068
WdOriya 1096
WdPolish 1045
WdPortuguese 2070
WdPunjabi 1094
WdRhaetoRomanic 1047
WdRomanian 1048
WdRomanianMoldova 2072
WdRussian 1049
WdRussianMoldova 2073
WdSamiLappish 1083
WdSanskrit 1103
WdSerbianCyrillic 3098
WdSerbianLatin 2074
WdSesotho 1072
WdSimplifiedChinese 2052
WdSindhi 1113
WdSlovak 1051
WdSlovenian 1060
WdSorbian 1070
WdSpanish 1034
WdSpanishArgentina 11274
WdSpanishBolivia 16394
WdSpanishChile 13322
WdSpanishColombia 9226
WdSpanishCostaRica 5130
WdSpanishDominicanRepublic 7178
WdSpanishEcuador 12298
WdSpanishElSalvador 17418
WdSpanishGuatemala 4106
WdSpanishHonduras 18442
WdSpanishModernSort 3082
WdSpanishNicaragua 19466
WdSpanishPanama 6154
WdSpanishParaguay 15370
WdSpanishPeru 10250
WdSpanishPuertoRico 20490
WdSpanishUruguay 14346
WdSpanishVenezuela 8202
WdSutu 1072
WdSwahili 1089
WdSwedish 1053
WdSwedishFinland 2077
WdSwissFrench 4108
WdSwissGerman 2055
WdSwissItalian 2064
WdTajik 1064
WdTamil 1097
WdTatar 1092
WdTelugu 1098
WdThai 1054
WdTibetan 1105
WdTraditionalChinese 1028
WdTsonga 1073
WdTswana 1074
WdTurkish 1055

WdTurkmen 1090
WdUkrainian 1058
WdUrdu 1056
WdUzbekCyrillic 2115
WdUzbekLatin 1091
WdVenda 1075
WdVietnamese 1066
WdWelsh 1106
WdXhosa 1076
WdZulu 1077

TEkRtf Charset property
Methods      Events      Report template Properties

property Charset: TFontCharset;
Sets font charset in output document. This property is usefull for not English reports.
See also: list of charsets

TEkRTF Properties
InFile
OutFile
Charset
ColorCount
ColorTable
DecimalRSeparator
DecimalRTerminator
DisableControls
ExecuteSuccessful
Lang
LastErrMsg
Options
UDFList
VarList
TrueValue
FalseValue

TEkRtf DisableControls property
Methods      Events      Report template Properties

property DisableControls: boolean;
If this property set to true then method DisableControls will be executed in all datasets before
processing report template.

Creating report template
Properties Methods Events

You may create a pattern of report by any available editor facilities, using font formatting, justification,
colour, tables and other ways of formatting.

All controlling words, variables and data fields must be comprised between symbols "\" (back slash), for
instance: \date\ or \Query1:CustNo\

You may reference to field names using field numbers. For example: \Query1:(0)\, \Table1:(5)\

Report generator ignores spaces in field names and keywords. However, if you want to use names with
spaces, you may write it between chars "[" and "]" for example \Table1:[Field name with spaces]\

You may create report variable in code with CreateVar method and modify it with VarByName method:
EKRTF1.CreateVar('name','Michael');
EKRTF1.VarByName('name').AsString:='John Smith';
Variables, will appear in VarList property in format variablename=value. For instance: if in the list VarList
is kept a line name=John Smith, in the pattern of report must be a field \name\.

Datasets may be identified by name or by means of char a-z in that order, in which they were sent in
Execute method.

In addition to using database fields and variables you may create user defined functions, for example \
myfunc(a:field1, a:field2)\. See UDFList property for details.

User defined and format functions may have constant parameters. Constants are defined with double
quotes, single quotes, or "~" symbols. For example: \"constant1"\, \'constant2' \, \~constant3~\. If you
need to place string with "\" symbol in a report template, you also may use a constant, for example: \"c:\
My Documents\"\.

You may insert all records of dataset in the document as a table rows or in any free form. For this use
keywords \Scan(datasetname)\ and \endscan\. Inside cycle scan-endscan may be located block of text
with data fields and variables, for example:

Lines with words "scan", "endscan" are excluded from the result document. However, if in step of
designing a report you want to see as will look a result, you may set an attribute "hidden font" for words
scan, endscan.

Full format of scan block is:

\Scan(DataSet) [, while(UDF(...))] [,page] [,noeof] [,function1,...,functionN]\
...

\Scanentry [,function1,...,functionN]\
...
\Scanfooter [,function1,...,functionN]\
...
\Endscan [,function1,...,functionN]\

If keyword "while" defined in scan expression, scan block will be terminated when user function UDF(...)
returns false result. "While" is often used with records grouped by some data field.

Option "page" forces to begin every record of scanned dataset (besides first) from new page.
If you use option "noeof" report generator will skip entire scan block if scanned DataSet will have no any
records. This option is useful when making master-details reports.

Words "Scanentry" and "Scanfooter" are optional. You may add them when using option "noeof" in "scan"
keyword, or if you want to make some special functionality calling optional scan block functions.

Use option "noeof" with keyword \Scanentry\ to manage scan block with some header section. Every
new record of dataset will return control to the position of \Scanentry\ keyword. However, if dataset has no
any records, entire block from "scan" to the "endscan" will be missed. For example:

You may use keyword \Scanfooter\ to manage scan block with some footer section. Every time when
report generator gets "Scanfooter", it returns control to the position of \Scanentry\ or \Scan\ keyword. If
dataset has no any records, entire block from "scan" to the "endscan" will be missed. For example:

\Scanentry\ and \Scanfooter\ may be used simultaneously:

NOTE: You must type keywords \scan(datasetname)\, \scanentry\ and \endscan\ all with the same format
attributes, for example with    font Arial, 10, regular (or other that you like). It guarantees that format
attributes inside block scan-endscan will be correct in output document.

If you use "page" option and table immediately after "scan" keyword in report template, keep in mind that
you should have at least one paragraph (empty line) before the table in RTF document, otherwise, RTF
editor such as MS Word ignores "new page" control.

See also code example, functions in scan block commands, format functions

Limitation of this version:

Cycles scan - endscan must be outside of tables.

TEkRtf Lang property
Methods      Events      Report template Properties

property Lang:Word;
Sets language identifier in output document. Default value=wdLanguageNone.
See also: list of languages

TEkRtf VarList property
Methods      Events      Report template Properties

property VarList:TStrings;
This property contains list of variables included in report. Format of strings is variablename=value. For
example - if you have variable \date\ in report template, you must add string in VarList anything like
date=01/10/2000. If you have variable \name\ in your report, string in VarList will be like name=John
Smith.

See also CreateVar method

TEkRtf TrueValue property
Methods      Events      Report template Properties

property TrueValue:string;
Value of this property will come up in fields of type boolean if they will be True.
For example, if property TrueValue='Yes' and data field Query1.field1=True then field \Query1:field1\ in
report will be Yes.

See also FalseValue, Format functions

TEkRtf FalseValue property
Methods      Events      Report template Properties

property FalseValue:string;
Value of this property will come up in fields of type boolean if they will be False.
For example, if property FalseValue='No' and data field Query1.field1=False then field \Query1:field1\
in report will be No.

See also TrueValue, Format functions

TEkRtf Format functions
Methods      Events      Report template      Properties

You may use different format functions and properties depending on data type that you want to place in
your report:

Numbers - fexp, ffix, fnum, ffixr, fnumr, fcur functions.

Dates - fdtm function

Graphics - fimg function, OnImageFormat event.

Hyperlink - flnk function.

Boolean - TrueValue, FalseValue properties.

See also creating report template.

TEkRtf OnFinished event
Properties      Methods      Events      Report template      Example

property OnFinished : TNotifyEvent;
Event OnFinished appears after performing the methods Execute, ExecuteOpen.
In the procedure of processing a given event you may insert a code for some additional actions.

procedure TForm1.EkRtf1Finished(Sender: TObject);
begin
showmessage('report finished');
//Here you can do something
end;

OnFinished
OnImageFormat
OnScanBefore
OnScanRecord
OnScanEof

TEkRtf OnImageFormat event
Properties      Methods      Events      Report template      Example

type TEkOnImageFormat = procedure(FormatIndex:integer; var
ImageFormat:TEkImageFormat) of object;
property OnImageFormat:TEkOnImageFormat;
Event OnImageFormat occurs when report generator is ready to put graphic image in result document. It
happens when data field of type ftGraphic presents in report template or when you use function fimg to
out data field or variable as graphic image.

FormatIndex is parameter from function fimg (0 by default). ImageFormat is the default format for
graphic image. You may change it in given event before the image will be putted in report.

procedure TForm1.EkRTF1ImageFormat(FormatIndex: Integer;
 var ImageFormat: TEkImageFormat);
begin
 with ImageFormat do
 begin
 Proportional:=true;
 case FormatIndex of
 1: ScaleX:=50;
 2: FitScaleToY(120);
 end;
 end;
end;

TEkImageFormat
TEkImageFormat Properties      TEkImageFormat Methods

Unit
EkRtf

Description
Use TEkImageFormat to set scale and border properties for graphic images in report.
TEkImageFormat Properties      TEkImageFormat Methods

See also OnImageFormat event

TEkRtf Format graphics
Methods      Events      Report template      Properties      Format functions

You may insert graphic images in report from blob, graphic fields and from external graphic files. For this
use function fimg. For example: \fimg(a:field2)\, \fimg(a:field2,1)\.

Function format for blob and graphic fields is: \fimg(FieldName,[FormatIndex])\, where FieldName is
name of data field. FormatIndex is number that will be passed into OnImageFormat event. This
parameter is 0 by default and is not required. You may use this number in event OnImageFormat when
formatting different images in report.

Function format for variables is the same: \fimg(VarName,[FmtNumber])\. Variable VarName must
contain string with filename to be inserted in the report. For example: if variable MyPicture='c:\pictures\
chart1.bmp', in the report template may be string \fimg(MyPicture)\. String constant is also allowed as
argument for fimg format.

You may insert graphics through the user defined function. For details see TEkUDF TPicture example

See also OnImageFormat event

TEkRtf InFile property
Methods      Events      Report template Properties

property Infile:TFileName;
The name of input RTF file with report template. Required for Execute, ExecuteOpen methods.

See also OutFile property

TEkImageFormat properties
TEkImageFormat      TEkImageFormat Methods

property Border:TEkImageBorder;
Represents border type, width and color for given image. By default images putted in the report have no
borders.

property SizeXmm:Double;
Width of image in millimeters. Set width of image in OnImageFormat event. This property is
recommended for using when you need to set exact size of graphic in report.

property SizeYmm:Double;
Height of image in millimeters. Set height of image in OnImageFormat event. This property is
recommended for using when you need to set exact size of graphic in report.

property SizeX:Word;
Width of image in pixels. Read only.

property SizeY:Word;
Height of image in pixels. Read only.

property ScaleX:Word;
Image scale X in percent. 100 by default.

property ScaleY:Word;
Image scale Y in percent. 100 by default.

property Proportional:Boolean;
If this property is set to true, then changing ScaleX will change proportional ScaleY, changing ScaleY will
change proportional ScaleX. If you want to set ScaleX different to ScaleY - set proportional=false first.

See also OnImageFormat event

TEkImageBorder

Unit
EkRtf

Description

type TEkImageBorder=record
 BrType:TEkImageBorderType;
 Width:Single;
 ColorIndex:Word;
 end;
TEkImageBorder represents border properties for graphic images in report.
BrType is border type, width - border width in points (0.25-3.5), ColorIndex - Index from ColorTable   
(0..ColorCount).

See also OnImageFormat event

TEkRtf ColorCount property
Methods      Events      Report template Properties

property ColorCount:Word;
Number of colors in color table that report generator adds to output rtf document. Read only.

See also: ColorTable property, TEkImageBorder

TEkImageBorderType

Unit
EkRtf

Description

type TEkImageBorderType=0..6;
Describes border type for images in report. You may use constants defined in unit EkRTF for variables of
this type.

constant value description
brNone 0 No borders.
brSingle 1 Single border.
brDouble 2 Double border.
brThick 3 Thick border
brShadow 4 Shadow border
brDot 5 Dotted border
brHair 6 Hairline border

See also OnImageFormat event, TEkImageBorder, TEkImageFormat

TEkRtf ColorTable property
Methods      Events      Report template Properties

type TEkColorArray=array of TEkColor;
property ColorTable:TEkColorArray;
Each RTF document may contain table of colors used in document body.    In addition RTF generator
adds 16 color table entries to output document. These color entries may be redefined before generating
report. For example:

EkRtf1.ColorTable[0].color:=clAqua;

Colors are used in methods like TEkImageFormat.SetBorderType

Color Red Green Blue
 0 $00 $00 $00
 1 $00 $00 $FF
 2 $00 $FF $FF
 3 $00 $FF $00
 4 $FF $00 $FF
 5 $FF $00 $00
 6 $FF $FF $00
 7 $FF $FF $FF
 8 $00 $00 $80
 9 $00 $80 $80
10 $00 $80 $00
11 $80 $00 $80
12 $80 $00 $00
13 $80 $80 $00
14 $80 $80 $80
15 $C0 $C0 $C0

See also: ColorCount property, TEkImageBorder

TEkImageFormat methods
TEkImageFormat      TEkImageFormat Properties

constructor create(x,y:Word);
Use Create to programmatically instantiate a TEkImageFormat object. Create sets: SizeX=x, SizeY=y,
ScaleX=100, ScaleY=100, Proportional=true.

procedure FitScaleToX(x:word);
Sets such scale that width of image was equal x pixels.If proportional=true ScaleY also will be changed.

procedure FitScaleToY(y:word);
Sets such scale that height of image was equal y pixels.If proportional=true ScaleX also will be changed.

procedure SetSizeXY(x,y:word);
Sets SizeX=x, SizeY=y, ScaleX=100, ScaleY=100. This method do not changes actual size of image. It
only needs for size reinitialization of TEkImageFormat instance.

procedure SetBorderType(BrType:TEkImageBorderType; BrWidth:Single;
ColorIndex:Word);
Sets image border with specified parameters.

See also OnImageFormat event

TEkColor
TEkColor Properties      TEkColor Methods

Unit
EkRtf

Description
TEkColor is used to specify the color values. It has properties to operate with color value as standard
Delphi TColor type and as its red, green, blue parts separately.

See also ColorTable

TEkColor properties
TEkColor      TEkColor Methods

property r:byte;
Red intensity of color.

property g:byte;
Green intensity of color.

property b:byte;
Blue intensity of color.

property color:TColor;
Represents color as standard Delphi TColor type.

TEkColor methods
TEkColor      TEkColor Properties

constructor create;
Use Create to programmatically instantiate a TEkColor object. Create method sets R=0, B=0, G=0 that
equals clBlack color value.

TEkRtf OutFile property
Methods      Events      Report template Properties

property OutFile:TFileName;
The name of output RTF file that contains result document generated with Execute or ExecuteOpen
methods.

See also InFile property

TEkRtf Options property
Methods      Events      Report template Properties

Specifies various display and behavioral properties of the report.

type
TEkRTFOption=(eoGraphicsWmfCompatible, eoGraphicsBinary, eoClearMissedFields,
eoDotAsColon, eoNumericFormatClearZero);
TEkRTFOptions=set of TEkRTFOption;
property Options:TEkRTFOptions;

Description
Set Options to include the desired properties for the report.

eoGraphicsWMFCompatible - Graphics inserted in report will be in WMF compatible format. Set this
option if you use WordPad or other free and shareware RTF editors. You may clear this option when
using MS Word editor.

eoGraphicsBinary - Graphics inserted in report will be in binary format. For using with most free and
shareware RTF editors you must clear this option. Your report will be compatible with most editors, but
file with graphic picture will be very large size, because graphics inserted in report will be in hexadecimal
text format. You may set this option when using MS Word editor.

To get smallest RTF file set eoGraphicsWMFCompatible to false, eoGraphicsBinary to true. To get
largest, but compatible with most editors RTF file set eoGraphicsWMFCompatible to true,
eoGraphicsBinary to false.

eoClearMissedFields - Field, inserted in report template, will be deleted if RTF generator cannot find
it's name in VarList and if name of the field is not a database field name.

eoDotAsColon - if this is True (by default), report generator will use "." as ":" in field names. For
example - \a.field1\ will be interpreted as \a:field1\. This option appeared with v. 1.6. You may set this
option to False if you need compatibility with first versions of EK RTF. Use scan blocks in new reports
instead of fields with "." in MS Word table if you need to make cycle on a dataset.

eoNumericFormatClearZero - if this is True, all fields formatted with numeric formats such as fnum(),
fcur() and so on, will be filtered for non-zero values. Zero numbers will be deleted from output result.

See also Format graphics

TEkRtf OnScanBefore event
Properties      Methods      Events      Report template      Example

type TEkOnScanBefore = procedure(ScanInfo:TEkScanInfo) of object;
property OnScanBefore : TEkOnScanBefore;
Event OnScanBefore appears before moving on first record of dataset when processing Scan-endscan
block. Use this event with ScanInfo parameter to initialize variables and to make other necessary
preparations for scan.

procedure TForm1.InvScanScanBefore(ScanInfo: TEkScanInfo);
begin
 case ScanInfo.Number of
 1: // before first scan in report template
 begin
 //Use Rows selected for the report in the grid
 ScanInfo.UseSelectedRows:=true;
 ScanInfo.SelectedRows:=Form2.DBGrid.SelectedRows;
 Total:=0;
 end;
 2: //before second scan in report template
 begin
 {.......}
 end;
 end;
end;
See also OnScanRecord, OnScanEof

TEkScanInfo
TEkScanInfo Properties

Unit
EkRtf

Description
Use TEkScanInfo to access Scan-endscan information in report.

TEkScanInfo Properties

See also OnScanBefore, OnScanRecord, OnScanEof events

TEkScanInfo properties
TEkScanInfo

property Number:integer;
Number of Scan in report template. For example:

\scan(Items)\ <-- 1
        \scan(Orders)\ <-- 2
        \endscan\

        \scan(Clients)\ <-- 3
        \endscan\
\endscan\

property DataSet:TDataSet;
DataSet used in Scan-endscan for moving.

property SelectedRows:TBookMarkList;
Scan moves from first to last record on dataset by default. You may specify TBookMarkList instance to
scan dataset only on selected records.
For example:
ScanInfo.SelectedRows := DBGrid1.SelectedRows.
Property UseSelectedRows must be set to true.

property UseSelectedRows:boolean;
If this property=true then Scan uses property SelectedRows for moving on DataSet.

See also OnScanBefore, OnScanRecord, OnScanEof events

TEkRtf Execute method
Properties      Methods      Events      Report template

procedure Execute(DS:Array of TDataSet);
This method reads input file, specified in property InFile (or specified with method SetTemplateBuffer),
and puts result document into file specified in property OutFile.

See also ExecuteOpen, ExecuteStream

TEkRtf SetTemplateBuffer method
Properties      Methods      Events      Report template

procedure SetTemplateBuffer(Buffer:pointer; Size:longint);
Sets pointer to memory area where program will search RTF template for report processing. Use this
method instead of property InFile. For example, you may load report from blob field:

procedure TForm1.LoadTemplate;
var BS:TBlobStream;
 buffer:pointer;
 size:longint;
begin
 BS:=TBlobStream.create(Table1.FieldByName('BlobField') As
TBlobField ,bmRead);
 size:=BS.Seek(0,soFromEnd);
 BS.Seek(0,soFromBeginning);
 GetMem(Buffer,size);
 BS.Read((Buffer)^,size);
 BS.Free;
 EKRTF1.SetTemplateBuffer(Buffer, Size);
end;
See also FreeTemplate

TEkRTF methods
ClearVars
CreateVar
Execute
ExecuteOpen
ExecuteStream
FreeVar
SetTemplateBuffer
ShellOpenFile
txt2rtf
FreeTemplate
VarByName
Version

TEkRtf FreeTemplate method
Properties      Methods      Events      Report template

procedure FreeTemplate;
Frees memory previously associated with SetTemplateBuffer method.

TEkRtf ExecuteStream method
Properties      Methods      Events      Report template

procedure ExecuteStream(DS:Array of TDataSet; OutStream:TStream);
This method reads input template and puts result document in stream specified in OutStream variable.
You may use streams with TRichEdit or other third-party RTF control. For, example:

procedure TForm1.Button1Click(Sender: TObject);
var S:TMemoryStream;
begin
S:=TMemoryStream.Create;
Ekrtf1.ExecuteStream([],S);
RichEdit1.Lines.LoadFromStream(S);
S.Free;
end;

See also Execute, ExecuteOpen

TEkRtf ExecuteOpen method
Properties      Methods      Events      Report template

procedure ExecuteOpen(DS:Array of TDataSet; ShowCmd:Integer);
This method is similar to Execute. After processing report template it runs output file with windows
application associated with RTF files.
Additional parameter ShowCmd indicates how the application is to be shown when it is opened.    This
parameter can be one of the following values:

Value Meaning

SW_SHOW - Activates the window and displays it in its current size and position.

SW_MAXIMIZE - Maximizes the specified window.

SW_MINIMIZE - Minimizes the specified window and activates the next top-level window in the Z order.

SW_RESTORE - Activates and displays the window. If the window is minimized or maximized, Windows
restores it to its original size and position. An application should specify this flag when restoring a
minimized window.

SW_SHOWDEFAULT - Sets the show state based on the SW_ flag specified in the STARTUPINFO
structure passed to the CreateProcess function by the program that started the application. An application
should call ShowWindow with this flag to set the initial show state of its main window.

SW_SHOWMAXIMIZED - Activates the window and displays it as a maximized window.

SW_SHOWMINIMIZED - Activates the window and displays it as a minimized window.

SW_SHOWNORMAL - Activates and displays a window. If the window is minimized or maximized,
Windows restores it to its original size and position. An application should specify this flag when
displaying the window for the first time.

More details in Win32 API help.

See also Execute, ExecuteStream, ShellOpenFile

TEkRtf Format hyperlinks
Methods      Events      Report template      Properties      Format functions

You may insert values of variables and database fields as hyperlink. For this use function flnk. For
example: \flnk(var1)\. Expression for var1 should be like    var1=http://www.yahoo.com or var1=c:\
docs\report1.doc. You may specify text name for the link using symbol "|", for example: var1=c:\docs\
report1.doc|The last report or var1=http://www.torry.net|Torry Delphi pages.

Report generator does not change text attributes for hyperlink, so you may set it by yourself in report
template: flnk(var1) .

TEkRtf OnScanRecord event
Properties      Methods      Events      Report template      Example

type TEkOnScanRecord = procedure(ScanInfo:TEkScanInfo) of object;
property OnScanRecord : TEkOnScanRecord;
Event OnScanRecord appears when dataset stays on a record in Scan-endscan block. You may use this
event with ScanInfo parameter to calculate some variables and for other additional operations.

procedure TForm1.InvScanScanRecord(ScanInfo: TEkScanInfo);
begin
 case ScanInfo.Number of
 1: // first scan in report template
 begin
 Total:=Total+Table1.FieldByName('Sum').AsFloat;
 end;
 2: //second (nested) scan in report template
 begin
 {.......}
 end;
 end;
end;
See also OnScanBefore, OnScanEof

TEkRtf ExecuteSuccessful property
Methods      Events Properties

property ExecuteSuccessful:boolean;
Read only. True if last called Execute method was performed successfully. False if errors (exceptions)
were occured during report execution. Example:

try
EKRTF1.Execute([]);
except
{handling exceptions}
end;
if EKRTF1.ExecuteSuccessful then
{do something}
else showmessage('Can''t create report. Reason:'+EKRTF1.LastErrMsg);

See also: LastErrMsg

Scan functions
Properties Methods Events

You may add optional functions to commands "scan", "scanentry", "scanfooter", "endscan".
These functions are SUM, CTN, CTS. You may use these functions to sum or count values of data fields
and report variables. Common format is:

 \scancommand,, function1(source,destination)...functionN(...)\

Each function is performed when report generator gets corresponded scan command.

The first argument in each function is source data field or report variable. Result of each function is
stored in report variable, that you specify as "destination" argument. Function may have noreset option -
in this case its result will not be initiated with zero value if function was computed at least once. If result
variable does not exists it will be created automatically.

Besides SUM, CTN, CTS functions you may call user defined functions. User defined functions are
created through the UDFList property.

Sometimes it is necessary to declare report variable inside the report template, especially if this variable
is an argument for user defined function. For this use VAR function.

See also creating report template, format functions

Scan functions - Cts
Properties Methods Events

CTS(SOURCE, DESTINATION [, NORESET]) - counts data field or report variable for not empty string
values. String values containing only spaces are considered as empty.

source - data field or report variable to count.
destination - report variable to store result of the function.
noreset - use this option if you don't want to initialize destination variable with zero value. New not zero
values of the source field will be counted beginning from the previous result of the function.

Example of a report:

\scan(a)\
\a:number\ - \a:svalue\
\endscan, ctn(a:svalue,c_value)\
Count of not empty string values: \c_value\

\scan(b)\
\b:number\ - \b:svalue\
\endscan, ctn(b:svalue,c_value,noreset)\
Count of not empty string values in both tables: \c_value\

Result may be like this:

1 - apples
2 -
3 - bananas
Count of not empty string values: 2

1 - tomatoes
Count of not empty string values in both tables: 3

See also scan functions

Scan functions - Sum
Properties Methods Events

SUM(SOURCE, DESTINATION [, NORESET]) - totals data field or report variable.

source - data field or report variable to sum.
destination - report variable to store result of the function.
noreset - use this option if you don't want to initialize destination variable with zero value. New values of
the source field will be added to the previous result of the function.

Example of a report:

\scan(a)\
\a:number\ - \a:value\
\endscan, sum(a:value,s_value)\
total: \s_value\

\scan(b)\
\b:number\ - \b:value\
\endscan, sum(b:value,s_value,noreset)\
All totals: \s_value\

Result may be like this:

1 - 5
2 - 10
3 - 4
total: 19

1 - 10
All totals: 29

See also scan functions

Scan functions - Ctn
Properties Methods Events

CTN(SOURCE, DESTINATION [, NORESET]) - counts data field or report variable for values <> 0

source - data field or report variable to count.
destination - report variable to store result of the function.
noreset - use this option if you don't want to initialize destination variable with zero value. New not zero
values of the source field will be counted beginning from the previous result of the function.

Example of a report:

\scan(a)\
\a:number\ - \a:value\
\endscan, ctn(a:value,c_value)\
Count of non zero values: \c_value\

\scan(b)\
\b:number\ - \b:value\
\endscan, ctn(b:value,c_value,noreset)\
Count of non zero values in both tables: \c_value\

Result may be like this:

1 - 5
2 - 0
3 - 4
Count of non zero values: 2

1 - 10
Count of non zero values in both tables: 3

See also scan functions

TEkRtf LastErrMsg property
Methods      Events Properties

property LastErrMsg:string;
Read only. This property contains last error message, if errors (exceptions) were occured during last
report execution. Use it together with ExecuteSuccessful property. Example:

if EKRTF1.ExecuteSuccessful then
{do something}
else showmessage('Can''t create report. Reason:'+EKRTF1.LastErrMsg);

See also: ExecuteSuccessful

TEkRtf DecimalRSeparator property
Methods      Events Properties

property DecimalRSeparator:char;
Value of this property will be used in ffixr and fnumr format functions for float numbers. Char defined as
DecimalRSeparator will appear instead of standard decimal separator in float numbers. This property is
"-" by default.
For example, if DecimalRSeparator='-' and data field Query1.field1=10.5 then field \
fnumr(Query1:field1)\ in report will be 10-5
If fractional part of number equals 0 then DecimalRTerminator will be used.

See also DecimalRTerminator, Format functions

TEkRtf Format numbers
Methods      Events      Report template      Properties Format functions

You may format values of numeric fields and variables using exponent, fixed, numeric or currency
format. For this in report template use functions fexp, ffix, ffixr, fnum, fnumr or fcur. For example: \
fnum(a:field1)\, \fcur(a:field2,4)\, \fexp(a:field3,10:2)\

General format for all functions is \func(name[,[precision:]decimals])\

Where Name specifies the name of data field or variable.

The Precision parameter specifies the precision of the given value. It should be 7 or less for values of
type Single, 15 or less for values of type Double, and 18 or less for values of type Extended. Precision
parameter may be omitted. By default Precision=18.

The meaning of the Decimals parameter depends on the particular function used. This parameter also
may be omitted. By default Decimals=2 for fexp, ffix, fnum functions. Decimals=value of global variable
CurrencyDecimals (unit SysUtils) when used fcur.

fexp(name[,[precision:]decimals])
Scientific format. The value is converted to a string of the form "-d.ddd...E+dddd". The resulting string
starts with a minus sign if the number is negative, and one digit always precedes the decimal point. The
total number of digits in the resulting string (including the one before the decimal point) is given by the
Precision parameter. The "E" exponent character in the resulting string is always followed by a plus or
minus sign and up to four digits. The Decimals parameter specifies the minimum number of digits in the
exponent (between 0 and 4).

ffix(name[,[precision:]decimals])
Fixed point format. The value is converted to a string of the form "-ddd.ddd...". The resulting string starts
with a minus sign if the number is negative, and at least one digit always precedes the decimal point.
The number of digits after the decimal point is given by the Decimals parameter--it must be between 0
and 18. If the number of digits to the left of the decimal point is greater than the specified precision, the
resulting value will use scientific format.

ffixr(name[,[precision:]decimals])
The same as ffix function, except that DecimalRSeparator property will be used instead of default
decimal separator char. DecimalRTerminator char will be at the end of integer values.

fnum(name[,[precision:]decimals])
Number format. The value is converted to a string of the form "-d,ddd,ddd.ddd...". The fNum function
corresponds to the fFix function, except that the resulting string contains thousand separators.

fnumr(name[,[precision:]decimals])
The same as fnum function, except that DecimalRSeparator property will be used instead of default
decimal separator char. DecimalRTerminator char will be at the end of integer values.

fcur(name[,[precision:]decimals])
Currency format. The value is converted to a string that represents a currency amount. The conversion
is controlled by the CurrencyString, CurrencyFormat, NegCurrFormat, ThousandSeparator, and
DecimalSeparator global variables, all of which are initialized from the Currency Format in the
International section of the Windows Control Panels. The number of digits after the decimal point is
given by the Decimals parameter--it must be between 0 and 18.

See also creating report template, Format functions

TEkRtf DecimalRTerminator property
Methods      Events Properties

property DecimalRTerminator:char;
Value of this property will be used in ffixr and fnumr format functions for float and integer numbers. Char
defined as DecimalRTerminator will appear at the end of integer or float number without fractional part.
This property is "=" by default.
For example, if DecimalRTerminator='=' and data field Query1.field1=10.0 then field \
fnumr(Query1:field1)\ in report will be 10=

See also DecimalRSeparator, Format functions

TEkRtf OnScanEof event
Properties      Methods      Events      Report template      Example

type TEkOnScanEof = procedure(ScanInfo:TEkScanInfo) of object;
property OnScanEof : TEkOnScanEof;
Event OnScanEof appears after moving from last record of dataset in Scan-endscan block. You may use
this event with ScanInfo parameter to make some additional operations.

procedure TForm1.InvScanScanEof(ScanInfo: TEkScanInfo);
begin
 case ScanInfo.Number of
 1: // first scan in report template
 begin
 EkRTF1.Add('Total='+FloatToStr(Total));
 end;
 2: //second (nested) scan in report template
 begin
 {.......}
 end;
 end;
end;
See also OnScanBefore, OnScanRecord

TEkRtf Format dates
Methods      Events      Report template      Properties      Format functions

Function fdtm uses FormatDateTime Delphi function to format dates. Syntax is
fdtm(dataset:field,format_var) or fdtm(variable,format_string), where format_string is string
constant or report variable with format pattern for FormatDateTime function.

For example:
var1='2/15/95 10:30am'
format_var='"The meeting is on" dddd, mmmm d, yyyy, ' + '"at" hh:mm AM/PM'

field \fdtm(var1,format_var)\ in report will be: The meeting is on Wednesday, February 15, 1995 at
10:30 AM

See help on FormatDateTime function for details.

TEkRtf CreateVar method
Properties      Methods      Events

procedure CreateVar(Name:string; Value:string);overload;
procedure CreateVar(Name:string; Value:Double);overload;
procedure CreateVar(Name:string; Value:TDateTime;
IgnoreTime:boolean);overload;
procedure CreateVar(Name:string; Value:boolean);overload;

This method creates report variable using the Value of certain type and inserts it in the VarList.

String variables are stored in VarList without any conversions:
EKRTF1.CreateVar('Var1','Text line 1');
In VarList you'll have a string 'Var1=Text line 1'

Float variables are stored in VarList by FloatToStr function. Example:
EKRTF1.CreateVar('Var1',10.5);

TDateTime variables are stored by functions DateToStr (without time) or DateTimeToStr (with time).
To specify whether you want to store time part or not, use IgnoreTime variable. For example, if you are
using an expression like EKRTF1.CreateVar('TodayDate',Now(),true), you'll have value of
TodayDate like 10/05/2001.

If you add this variable using EKRTF1.CreateVar('TodayDate',Now(),false), you'll have value
of TodayDate something like 10/05/2001 9:15:42.

Boolean variables are stored in VarList according with TrueValue and FalseValue properties. For
example, if TrueValue='Yes' and FalseValue='No', you'll have strings in VarList 'Var1=Yes' for True
values, and 'Var1=No' for False values.
If for some reason you set property TrueValue equal to FalseValue, CreateVar with boolean variable will
use strings 'True' and 'False' to add it to VarList.

If report variable with given Name already exists, you'll get an exception with message 'Can't add report
variable ...'.

To manipulate with existing report variables in code use function VarByName.

See also FreeVar, ClearVars

TEkRtf ClearVars method
Properties      Methods      Events

procedure ClearVars;
Deletes all report variables. Example:
EKRTF1.ClearVars;
Identical to EKRTF1.VarList.clear;

See also FreeVar, CreateVar

TEkReportVariable
TEkReportVariable Properties

Unit
EkRtf

Description
TEkReportVariable is used to manipulate with report variables as with integer, float, date, string or
boolean values.
See TEkReportVariable properties for details.

See also TEkRTF VarByName method

 TEkUDFList component
TEkUDFList Properties TEkUDFList Methods

Unit
EkFunc

Description

TEkUDFList is class derived from TComponent. It is used in conjunction with TEkRTF to centralize the
response to user defined functions in the RTF report template. UDF list component contains the
Functions property, which is collection of TEkUDF items . Add TEkUDFList component to your form or
data module, open the Functions property to display the UDF list editor, from which you can add, delete,
and rearrange functions. Each TEkUDF item has OnCalculate event where you can write code of user
defined function.

TEkReportVariable AsInteger property
TEkReportVariable TEkReportVariable Properties

Represents the value of the report variable as an integer value.

property AsInteger: Int64;
Reading AsInteger converts the value of the report variable to an integer using the StrToInt64 function.
Setting AsInteger converts the integer to a string using the IntToStr function.

TEkUDFList properties
TEkUDFList TEkUDFList methods

Count
Functions

TEkReportVariable AsBoolean property
TEkReportVariable TEkReportVariable Properties

Represents the value of the report variable as a boolean value.

property AsBoolean: Boolean;
AsBoolean returns True on reading the value of the report variable if its text is the same as TrueValue
string or if its text is word 'True' (not case sensitive). False returned in all other conditions.
Setting AsBoolean converts boolean value to a string using TrueValue or FalseValue properties. If for
some reason you set property TrueValue equal to FalseValue, AsBoolean will use strings 'True' and
'False' to store the value of the variable.

TEkReportVariable properties
TEkReportVariable

AsString
AsFloat
AsInteger
AsDate
AsDateTime
AsBoolean
Name

TEkReportVariable AsFloat property
TEkReportVariable TEkReportVariable Properties

Represents the value of the report variable as a floating-point value.

property AsFloat: Double;
Reading AsFloat converts the value of the report variable to a floating-point value using the StrToFloat
function. Setting AsFloat converts the floating-point value to a report variable using the FloatToStr
function.

TEkReportVariable AsString property
TEkReportVariable TEkReportVariable Properties

Represents the value of the report variable.

property AsString: string;
This property provides a uniform interface that allows applications to get or set string values of report
variable. String values need no conversion, because the native format of a report variable in VarList is a
string.

TEkReportVariable AsDate property
TEkReportVariable TEkReportVariable Properties

Represents the value of the report variable as value of date.

property AsDate: TDateTime;
Reading AsDate converts the value of the report variable to a date-time using the StrToDate function.
Setting AsDate converts the date-time value to a string using the DateToStr function.

See also AsDateTime

TEkRtf FreeVar method
Properties      Methods      Events

procedure FreeVar(Name:string);
Deletes report variable identified by Name. Example:
EKRTF1.FreeVar('Var1');

See also ClearVars, CreateVar

TEkReportVariable AsDateTime property
TEkReportVariable TEkReportVariable Properties

Represents the value of the report variable as TDateTime value.

property AsDateTime: TDateTime;
Reading AsDateTime converts the value of the report variable to a date-time using the StrToDateTime
function. Setting AsDateTime converts the date-time value to a string using the DateTimeToStr function.

See also AsDate

TEkReportVariable Name property
TEkReportVariable TEkReportVariable Properties

property Name: String;
Returns the name of the variable wich was used in method CreateVar of TEkRTF.

TEkUDFList methods
TEkUDFList TEkUDFList properties

Create
Destroy
FindFunction
Version

TEkUDFList Count property
TEkUDFList TEkUDFList properties TEkUDFList methods

property Count:integer;
Returns the count of user defined functions in collection Functions of TEkUDFList component.

TEkUDFList Create method
TEkUDFList TEkUDFList properties TEkUDFList methods

constructor Create(AOwner: TComponent);override;
Creates an instance of a TEkUDFList component.

Call Create to instantiate an UDF List declared in an application if it was not placed on a form at design
time. Create calls its inherited Create constructor and creates an empty Functions collection.

TEkUDFCollection

Unit
EkFunc

Description

TEkUDFCollection is class derived from TCollection. It holds the collection of TEkUDF objects.

Methods:

constructor Create(FnList:TEkUDFList);
Constructor creates new TEkUDFCollection object. FnList is TEkUDFList component which holds the
TEkUDFCollection object. You don't need to call it directly if you place TEkUDFList component on a form
or data module at design time.

function Add:TEkUDF;
This function adds new TEkUDF objects to the collection. At design time you may use UDF List Functions
property editor to add UDF to the collection.

Properties:

property Items[Index:integer]:TEkUDF;
Use Items to access individual TEkUDF object in the collection. The value of the Index parameter
corresponds to the Index property of TEkUDF item. It represents the position of the item in the collection.

See also: TEkUDFList, TEkUDF

TEkUDFList Destroy method
TEkUDFList TEkUDFList properties TEkUDFList methods

destructor Destroy;override;
Do not call Destroy directly. Instead call Free to verify that the component is not already freed before
calling Destroy. Destroy frees the Functions collection of UDF List, and then calls its inherited Destroy
destructor.

TEkUDFList FindFunction method
TEkUDFList TEkUDFList properties TEkUDFList methods

function FindFunction(Name:string):integer;
If UDF with specified name exists in the Functions collection, FindFunction returns its number from 0 to
Functions.Count-1. If UDF with such name doesn't exists FindFunction returns -1.

TEkUDFList Functions property
TEkUDFList TEkUDFList properties TEkUDFList methods

property Functions:TEkUDFCollection;
Returns the collection of user defined functions in TEkUDFList component.

TEkRtf VarByName method
Properties      Methods      Events

function VarByName(VarName:string):TEkReportVariable;
Returns report variable specified in VarName string as TEkReportVariable object. Example:
n:=EKRTF1.VarByName('Var1').AsInteger;
EKRTF1.VarByName('DateVar').AsDate:=Now();

Variable must be already defined when you use it with VarByName function.

See also CreateVar

TEkUDF
TEkUDF properties TEkUDF events

Unit
EkFunc

Description

TEkUDF is class derived from TCollectionItem. It is used in conjunction with TEkUDFCollection object. It
represents the definition of user function defined in RTF report template. RTF report template is InFile in
TEkRTF component.

See also: TEkUDFList

TEkRtf UDFList property
Methods      Events      Report template Properties

property UDFList:TEkUDFList;
Specifies the UDF List component with user defined functions.

Scan functions - Var
Properties Methods Events

VAR(VAR1, ... , VAR N) - creates variables VAR1, ... VAR N if they don't exist.

Initial value for each new created variable is empty string. If report variable exists, it is not changed in any
way. When you use declared variable with UDF, you may need to init its value by your own code.

Example:

\scan(a), var(totsal), myinit(totsal)\

\scan(b), mysum(b:field1,totsal)\
\b:number\      \b:field1\
\endscan\
total: \totsal\
\endscan\

See also scan functions, constants

TEkRtf ShellOpenFile method
Properties      Methods      Events      Report template

function ShellOpenFile(const FileName:string; ShowCmd: Integer): THandle;
virtual;
This function opens file specified in FileName using associated windows application.
If the function succeeds, the return value is the instance handle of the application that was run. If the
function fails, the return value is an error value that is less than or equal to 32.

Additional parameter ShowCmd indicates how the application will be shown after opening. It works the
same way as in ExecuteOpen method.

More details in Win32 API help.

TEkRtf txt2rtf method
Properties      Methods      Events

function txt2rtf(s:string):string;
Converts text string s into its RTF code representation. This function is used internally. You don't need to
call it directly from your application.

InsertRtfMemo procedure

Inserts rich formatted text in the report.

Unit
EkRtfStream

procedure InsertRtfMemo(Sender:TObject; OutputStream:TStream; var
RtfContent:string);
InsertRtfMemo procedure may be called from a user defined function with result type
udfrTMemoryStream.
Sender is a parameter of TEkRtf type. OutputStream is an output report results stream, usually it is
UDFResult object in the UDF OnCalculate event code. RtfContent is RTF formatted string copied from a
rich text blob field or rtf file.

When using InsertRtfMemo within UDF, always set the ResultType of user function to
udfrTMemoryStream.

There is an example code of user function named "InsertRtf". Function has one argument - the name of
blob data field.

procedure TForm1.EkUDFList1Functions0Calculate(Sender: TObject;
 Args: TEkUDFArgs; ArgCount: Integer; UDFResult: TObject);
var s:string;
begin //************** code of user function InsertRtf(DataField) *****
 if not (UDFResult is TMemoryStream) then raise Exception.Create('Result type
of user function InsertRtf must be set to udfrTMemoryStream!');

 If not (Args[0] is TBlobField) then raise Exception.Create('Blob data field
as argument expected in user function InsertRtf!');

 s:=TBlobField(Args[0]).AsString;

 InsertRtfMemo(Sender, TMemoryStream(UDFResult), s);
end;
In a report template reference to this function looks like \InsertRtf(Table1:RichTextField)\

See also Insert picture example, InsertRtfMemoStream

TEkUDF properties, events
TEkUDF

Properties:

ArgMinCount
ArgMaxCount
Name
ResultType

Events:

OnCalculate

TEkUDF Name property
TEkUDF TEkUDF properties

type TEkUDFName=string;
property Name:TEkUDFName;
Use this property to set the name of the user defined function which you use in the RTF report template.
Name of the function is case insensitive. Rules for function naming is the same as for identifiers.

See also: TEkUDFList

TEkUDF ArgMinCount property
TEkUDF TEkUDF properties

property ArgMinCount:word;
Use this property to set minimal required number of arguments for user defined function. If number of
arguments is less than ArgMinCount, exception EIllegalFunctionUse will be generated.

See also: ArgMaxCount, TEkUDFList

TEkRtf Version method
Properties      Methods      Events

function Version:longint;
Returns number of EK RTF component version as integer value. For example, version 1.81 will return
number 181 and so on ...

TEkUDF ArgMaxCount property
TEkUDF TEkUDF properties

property ArgMaxCount:word;
Use this property to set maximum allowed number of arguments for user defined function. If number of
arguments is more than ArgMaxCount, exception EIllegalFunctionUse will be generated.

See also: ArgMinCount, TEkUDFList

TEkUDF ResultType property
TEkUDF TEkUDF properties

type TEkUDFResultType=0..255;
property ResultType:TEkUDFResultType;
Use this property to define what type of result will process the user defined function. Type of result is the
actual type of UDFResult TObject variable in the event OnCalculate.

There are constants defined in the unit ConsCom for ResultType property:

const udfrNil=0;
 udfrTEkReportVariable=1;
 udfrTPicture=2;
 udfrTMemoryStream=3;

Your code must operate with UDFResult object in according with its ResultType property. If
ResultType<>udfrNil, UDFResult object will be created before processing OnCalculate event.

Example:
Let ResultType=udfrTEkReportVariable. In the code you may operate with result as shown below

with UDFResult as TEkReportVariable do begin
 AsString:='abc';
end;
or

TEkReportVariable(UDFResult).AsString:='abc';

udfrTMemoryStream is used internally. Don't use it unless your want to write directly into output RTF
code.

See also: TEkUDF OnCalculate event, TEkUDFList

InsertRtfMemoStream procedure

Inserts rich formatted text in the report.

Unit
EkRtfStream

procedure InsertRtfMemoStream(Sender:TObject; OutputStream:TStream; var
RtfContent:TStream);

InsertRtfMemoStream procedure may be called from a user defined function with result type
udfrTMemoryStream.
Sender is a parameter of TEkRtf type. OutputStream is an output report results stream, usually it is
UDFResult object in the UDF OnCalculate event code. RtfContent is stream with RTF formatted text
copied from a rich text blob field, rtf file or from another stream.

When using InsertRtfMemoStream within UDF, always set the ResultType of user function to
udfrTMemoryStream.

There is an example code of user function named "InsertRtf". Function has one argument - the name of
blob data field.

procedure TForm1.EkUDFList1Functions0Calculate(Sender: TObject;
 Args: TEkUDFArgs; ArgCount: Integer; UDFResult: TObject);
var st:TStream;
begin //************** code of user function InsertRtf(DataField) *****
 if not (UDFResult is TMemoryStream) then raise Exception.Create('Result type
of user function InsertRtf must be set to udfrTMemoryStream!');

 If not (Args[0] is TBlobField) then raise Exception.Create('Blob data field
as argument expected in user function InsertRtf!');

 st:=TStringStream.Create(TBlobField(Args[0]).AsString);

 InsertRtfMemoStream(Sender, TMemoryStream(UDFResult), st);
 st.Free;
end;
In a report template reference to this function looks like \InsertRtf(Table1:RichTextField)\

See also Insert picture example, IsertRtfMemo

TEkUDF OnCalculate event
TEkUDF TEkUDF properties

type
TEkUDFArgs=array of TObject;
TEkUDFResult=TObject;

TEkUDFOnCalculate = procedure(Sender:TObject; Args:TEkUDFArgs;
ArgCount:integer; UDFResult:TEkUDFResult) of object;
property OnCalculate:TEkUDFOnCalculate;
Use this event to realize code responsible for UDF action.
The Sender parameter in an event handler informs Delphi which component received the event, and
therefore called the handler.
Args is array of TObjects passed to function. It may be TEkReportVariable, TField or result of another
UDF function. Constants passed to a function become in Args as report variables.
ArgCount is number of arguments.
Result of user function is UDFResult object. Type of UDFResult defined in ResultType property.

Example:

This is definition of user function with name GetAmt with one numeric argument. Argument may be
database field or report variable. Function returns string 'Zero' if argument=0, otherwise function returns
argument itself as string.

procedure TForm1.EkUDFList1Functions0Calculate(Sender: TObject;
 Args: TEkUDFArgs; ArgCount: Integer; UDFResult: TObject);
var s:string;
 n:Double;
begin
//************ GetAmt UDF Code ***********************

 s:='';

 if Args[0] is TField then s:=TField(Args[0]).AsString;
 if Args[0] is TEkReportVariable then s:=TEkReportVariable(Args[0]).AsString;
 With UDFResult as TEkReportVariable do begin
 n:=StrToFloat(s);
 if n=0 then AsString:='Zero' else AsString:=s;
 end;

end;
In a report template you may reference to the user function as \GetAmt(A:AmountPay)\ or \
GetAmt(var1)\.

See also: user defined function TPicture example

TEkUDF OnCalculate event TPicture example
TEkUDF TEkUDF properties

This is an example of user defined function with ResultType udfrTPicture. This function has no any
arguments, it just gets a TImage component Image1, which is on a Form1, draws its picture.graphic on a
result bitmap and returns it to the calling TEkRTF component.

procedure TForm1.EkUDFList1_GetPicture_Calculate(Sender: TObject; Args:
TEkUDFArgs; ArgCount: Integer; UDFResult: TObject);
begin
 With UDFResult as TPicture do begin
 Bitmap.Width:=Image1.Width;
 Bitmap.Height:=Image1.Height;
 Bitmap.Canvas.Draw(0,0,Image1.Picture.Graphic);
 end;
end;

See also: OnCalculate event, InsertRtfMemo

TEkUDFList Version method
TEkUDFList TEkUDFList properties TEkUDFList methods

function Version:longint;
Returns version number of    UDF List component as integer value. For example, version 1.70 will return
number 170 and so on ...

HelpScribble
HelpScribble is a help authoring tool written by Jan Goyvaerts and available for download at
http://www.jgsoft.com/. This help file was created with the free trial version of HelpScribble,
which is why you can read this ad. Once the author of this help file is so honest to buy the
shareware he uses, you will not see this ad again in his help files.
Recompiling the help project with the full version is all it takes to get rid of this
ad and the little footers below each topic.

HelpScribble is a stand-alone help authoring tool. It does not require an expensive word
processor. (Only a help compiler as Microsoft likes keeping the .hlp format secret. Not my
fault.)

Here are some of HelpScribble's features:

· The Setup program will properly install and uninstall HelpScribble and all of its
components, including registry keys.

· Create, edit and navigate through topics right in the main window. No need to mess with
heaps of dialog boxes.

· All topics are listed in a grid in the main window so you won't lose track in big help
projects. You can even set bookmarks.

· Use the built-in Browse Sequence Editor to easily create browse sequences.
· Use the built-in Window Editor to change the look of your help window and create

secondary windows.
· Use the built-in Contents Editor to create Windows 95-style contents files. Works a lot

better than Microsoft's HCW.
· No need to mess with Microsoft's SHED: use the built-in SHG Editor to create hotspot

bitmaps. Draw your hotspots on the bitmap and pick the topic to link to from the list.
· With the built-in Macro Editor you can easily compose WinHelp macros whenever needed.

It will tell you what the correct parameters are and provide information on them.
· If you have a problem, just consult the online help. The help file was completely created

with HelpScribble, of course.
· HelpScribble is shareware. However, the unregistered version is not crippled in any way. It

will only add a small note to your help topics to encourage you to be honest and to register
the shareware you use.

These options are very interesting for Delphi and C++Builder developers:

· If you are a component writer, use the Delphi Parser to build an outline help file for your
component. Just fill in the spaces and you are done. HelpScribble can also extract the
comments from your source file and use them as the default descriptions.

· If you are an application writer, HelpScribble provides you with a property editor for the
HelpContext property. You can select the topic you need from a list of topic titles or simply
instruct to create a new topic. No need to remember obscure numbers.

· The property editor also provides a tree view of all the components on your form and their
HelpContext properties. This works very intuitively. (Much nicer than those help tools that
simply mess with your .dfm files.)

· HelpScribble can perform syntax highlighting on any Delphi source code in your help file.

HelpScribble is shareware, so feel free to grab your copy today from my web site at
http://www.jgsoft.com/

