GpHugeFile
Units
Classes

Other Types
Global Constants

Units
GPHugeF

Classes

EGpHugefFile
EGpHugeFileStream
TGpHugeFile
TGpHugeFileStream

Types

Hugelnt
TGpHugeFileStreamAccess
THFError

THFOpenOption
THFOpenOptions

Global Constants

hcHFFailedToAllocateBuffer
hcHFInvalidBlockSize
hcHFInvalidHandle
hcHFInvalidSeekMode
hcHFReadInBufferedWriteMode
hcHFUnexpected
hcHFUnexpectedEOF
hcHFUnknownWindowsError
hcHFWindowsError
hcHFWriteFailed
hcHFWritelnBufferedReadMode

String Handling Routines

Various utility routines/method/classes for string handling

File/Directory Name Manipulation Routines
Various utility routines/method/classes

Components

Buttons

Labels

Legend

& - Marks that the item has an associated example. (this bitmap is a hyperlink.)

B - Marks that the item has documented bugs.

2] - Marks that the item has documented todo's.

(A todo is something which should be fixed before the next release (or "real soon"!))

Relevant to classes and interfaces only

& - Marks that the class/interface has a property, method or event with examples.

- Marks that the class/interface has a property, method or event with documented bugs.
L4 - Marks that the class/interface has a property, method or event with documented todo's.

Note that a symbol in the last group is not present if the corresponding symbol in the first
group is present.

GPHugeF Unit {button &Top,JI(*',"IDH_Unit_GPHugeF')} {button
&Classes,JI(*',"IDH_UnitTopic_GPHugeF Classes')} {button

&Types JI(*',"IDH_UnitTopic_GPHugeF_OtherTypes')} {button
&Const,JI(*!,"IDH_UnitTopic_GPHugeF_GlobalConstants')}
Dependencies Legend

Interface to 64-bit file functions with some added functionality.

Description
(c) 2000 Primoz Gabrijelcic
Free for personal and commercial use. No rights reserved.

Author : Primoz Gabrijelcic
Creation date : 1998-09-15
Last modification: 2001-07-02
Version : 3.07
Classes
EGpHugeFile

Base exception class for all exceptions raised in TGpHugeFile and descendants.
EGpHugeFileStream

Base exception class for exceptions created in TGpHugeFileStream.
TGpHugeFile

Encapsulation of 64-bit file functions, supporting normal, buffered, and direct access with
some additional twists.

TGpHugeFileStream
TStream descendant, wrapping a TGpHugeFile.

Other Types
Hugelnt

Alias for int64 so it is Delphi-version-independent (as much as that is possible at all).
TGpHugeFileStreamAccess

All possible ways to access TGpHugeFileStream.
THFError

Result of TGpHugeFile reset and rewrite methods.
THFOpenOption

TGpHugeFile reset/rewrite options.
THFOpenOptions

Set of all TGpHugeFile reset/rewrite options.

Global Constants
hcHFFailedToAllocateBuffer
Failed to allocate buffer.
hcHFInvalidBlockSize
Invalid block size.
hcHFInvalidHandle
Invalid file handle.
hcHFInvalidSeekMode
Invalid 'mode' parameter passed to Seek function.
hcHFReadlnBufferedWriteMode
Read operation encountered while in buffered write mode.
hcHFUnexpected
Exception was handled and converted to EGpHugeFile but was not expected and is not
categorised.
hcHFUnexpectedEOF

Unexpected end of file.
hcHFUnknownWindowsError
Unknown Windows error.
hcHFWindowsError
Windows error.
hcHFWriteFailed
Write failed - not all data was saved.
hcHFWritelnBufferedReadMode
Write operation encountered while in buffered read mode.

Author
Primoz Gabrijelcic

EGpHugeFile Object {button &Top,JI(*'," IDH_Class_EGpHugeFile')}
Hierarchy

Base exception class for all exceptions raised in TGpHugeFile and descendants.
Unit

GPHugeF

Declaration
EGpHugeFile = class (Exception)

EGpHugeFileStream Object {button &Top,JI(*!,'IDH_Class_EGpHugeFileStream')}
Hierarchy

Base exception class for exceptions created in TGpHugeFileStream.

Unit

GPHugeF

Declaration
EGpHugeFileStream = class (EGpHugeFile)

TGpHugeFile Object {button &Top,JI(*'," IDH_Class_TGpHugeFile')} {button
&Properties,]I("'," IDH_ClassTopic_TGpHugeFile Properties')} {button
&Methods,JI(*',"IDH_ClassTopic_TGpHugeFile_Methods') }

Hierarchy Properties Methods

Encapsulation of 64-bit file functions, supporting normal, buffered, and direct access with
some additional twists.

Unit
GPHugeF

Declaration
TGpHugeFile = class (TObject)

Introduced Properties
FileDate

File date/time.
FileName

File name.
IsBuffered

True if access to file is buffered.
WindowsError

Last Windows error code.

Introduced Public Methods

BlockRead
Reads 'count' number of 'block size' large units (see 'blockSize' parameter to Reset and
Rewrite methods) from a file (or buffer if access is buffered).

BlockReadUnsafe
Reads 'count' number of 'block size' large units (see 'blockSize' parameter to Reset and
Rewrite methods) from a file (or buffer if access is buffered).

BlockWrite
Writes 'count' number of 'block size' large units (see 'blockSize' parameter to Reset and
Rewrite methods) to a file (or buffer if access is buffered).

BlockWriteUnsafe
Writes 'count' number of 'block size' large units (see 'blockSize' parameter to Reset and
Rewrite methods) to a file (or buffer if access is buffered).

Close

Closes open file.
Create

Standard TGpHugeFile constructor.
CreateEx

Extended TGpHugeFile constructor.
Destroy

TGpHugeFile destructor.
FileExists

Tests if a specified file exists.
FilePos

Returns file pointer position in 'block size' large units (see 'blockSize' parameter to Reset
and Rewrite methods).

FileSize
Returns the size of file in 'block size' units (see 'blockSize' parameter to Reset and Rewrite
methods).

Flush
Flushed file buffers.

IsOpen

Returns true if file is open.
Reset
Simplest form of Reset, emulating Delphi's Reset.
ResetBuffered
Buffered Reset.
ResetEx
Full form of Reset.
Rewrite
Simplest form of Rewrite, emulating Delphi's Rewrite.
RewriteBuffered
Buffered Rewrite.
RewriteEx
Full form of Rewrite.
Seek
Repositions file pointer.
Truncate
Truncates file at current position.

TGpHugeFile Properties

Properties Methods

In TGpHugeFile
FileDate
» FileName

[IsBuffered

[WindowsError

TGpHugeFile Methods

Properties Methods
In TGpHugeFile

a

O

FilePos

AccessFile

AllocBuffer
BlockRead
BlockReadUnsafe
BlockWrite
BlockWriteUnsafe

CheckHandle

FreeBuffer
GetDate
InitReadBuffer

InitWriteBuffer
IsOpen

LoadedToTheEOF
Reset
ResetBuffered
ResetEx

Rewrite
RewriteBuffered
RewriteEx

RoundToPageSize

2]
.y

ee

SetDate

Transmit
Truncate

Win32Check

FileDate property
File date/time.

Applies to
TGpHugeFile

Declaration
Property FileDate

TDateTime Read GetDate Write SetDate;

FileName property
File name.

Applies to
TGpHugeFile

Declaration
Property FileName : string Read hfName;

IsBuffered property
True if access to file is buffered.

Applies to
TGpHugeFile

Declaration
Property IsBuffered : boolean Read hfBuffered;

WindowsError property
Last Windows error code.

Applies to
TGpHugeFile

Declaration
Property WindowsError : DWORD Read hfWindowsError;

_FilePos method
Returns file pointer position in bytes.

Applies to
TGpHugeFile

Declaration
Function FilePos: Hugelnt;

Yirtual |

Description

Used only internally.
Returns

File pointer position in bytes.
Raises

Various - system exceptions.

Implementation
function TGpHugeFile. FilePos: Hugelnt;

var
off: TLargelInteger;
begin
CheckHandle;
off.QuadPart := 0;

off.LowPart :=

SetFilePointer (hfHandle, off.LowPart, @off.HighPart, FILE CURRENT) ;
Win32Check (off.LowPart <> SFFFFFFFF,' FilePos');
Result := off.QuadPart;

End;

_FileSize method
Returns file size.

Applies to
TGpHugeFile

Declaration
Function FileSize: Hugelnt;

Yirtual |

Description

If available, returns cached size.
Returns

File size in bytes.

Raises

EGpHugefFile - on Windows errors.

Implementation
function TGpHugeFile. FileSize: Hugelnt;
begin
if hfCachedSize < 0 then
hfCachedSize := FileSize;
Result := hfCachedSize;
End;

_Seek method
See Also

Internal implementation of Seek method.

Applies to
TGpHugeFile

Declaration
Procedure Seek(offset: Hugelnt; movePointer: boolean);

Virtual |

Description

Called from other methods, too. Moves actual file pointer only when necessary or required
by caller. Handles hfoCloseOnEOF files if possible.

Parameters

offset

Offset from beginning of file in 'block size' large units (see 'blockSize' parameter to Reset
and Rewrite methods).

movePointer

If true, Windows file pointer will always be moved. If false, it will only be moved when Seek
destination does not lie in the buffer.

Raises
Various - system exceptions.

Implementation
procedure TGpHugeFile. Seek(offset: Hugelnt; movePointer: boolean);
var
off: TLargelInteger;
begin
if (not hfBuffered) or movePointer or (not hfHalfClosed) then
CheckHandle;
if hfBlockSize <> 1 then
off.QuadPart := offset*hfBlockSize
else
off.QuadPart := offset;
if hfBuffered then begin
if hfBufWrite then
FlushBuffer
else begin
if not movePointer then begin
if (off.QuadPart >= hfBufFileOffs) or
(off.QuadPart < (hfBufFileOffs-hfBufSize)) then

movePointer := true
else
hfBufOffs := {$IFNDEF D4plus}Trunc{SENDIF}

(off.QuadPart- (hfBufFileOffs-hfBufSize));
end;
if movePointer then begin
if hfHalfClosed then begin
if off.QuadPart <> hfBufFileOffs then //2.26: allow seek to EOF
CheckHandle; // bang!
end
else begin
SetLastError (0);
Win32Check (SetFilePointer (

hfHandle, off.LowPart, @Qoff.HighPart, FILE BEGIN)<>$SFFFFFFFF,' Seek');
end;
//3.02: Seek to EOF in hfHalfClosed state must not invalidate the buffer
if not (hfHalfClosed and (off.QuadPart = hfBufFileOffs)) then begin

hfBufFileOffs := off.QuadPart;
hfBufFilePos := off.QuadPart;
hfBufOffs = 0y
hfBufSize = 0;
hfCloseOnNext := false;
end;
end
else if not LoadedToTheEOF then
hfCloseOnNext := false;
end;

end
else begin
SetLastError (0);

Win32Check (SetFilePointer (hfHandle,off.LowPart, @off.HighPart, FILE BEGIN)<>SFFF
FFFFF, 'Seek');

end;

hfBufFilePos := off.QuadPart;
End;

AccessFile method
See Also

Opens/creates a file.

Applies to
TGpHugeFile

Declaration
Function AccessFile(blockSize: integer; reset: boolean; diskLockTimeout:
integer; diskRetryDelay: integer; waitObject: THandle): THFError;

Yirtual |

Description

AccessFile centralizes file opening in TGpHugeFile. It will set appropriate sharing mode, open
or create a file, and even retry in a case of locked file (if so required).

Parameters

blockSize

Basic unit of access (same as RecSize parameter in Delphi's Reset and Rewrite).

reset

True if file is to be reset, false if it is to be rewritten.

diskLockTimeout

Max time (in milliseconds) AccessFile will wait for lock file to become free.

diskRetryDelay

Delay (in milliseconds) between attempts to open locked file.

waitObject

Handle of 'terminate' event (semaphore, mutex). If this parameter is specified (not zero) and
becomes signalled, AccessFile will stop trying to open locked file and will exit with.

Returns

Status (ok, file locked, other error).

Raises
EGpHugeFile - if 'blockSize' is less or equal to zero.

Implementation

function TGpHugeFile.AccessFile (blockSize: integer; reset: boolean;
diskLockTimeout: integer; diskRetryDelay: integer;
waitObject: THandle): THFError;

var
start: int64;

function Elapsed: boolean;

var
stop: int64;
begin
if diskLockTimeout = 0 then
Result := true
else begin
stop := GetTickCount;

if stop < start then
stop := stop + $100000000;
Result ((stop-start) > diskLockTimeout) ;
end;
end; { Elapsed }

const
FILE SHARING ERRORS: set of byte = [ERROR SHARING VIOLATION,

ERROR LOCK VIOLATION];

var
awaited : boolean;
creat : DWORD;

shareMode: DWORD;
begin { TGpHugeFile.AccessFile }
if blockSize <= 0 then
raise EGpHugeFile.CreateFmtHelp (sBlockSizeMustBeGreaterThanZero,
[FileName], hcHFInvalidBlockSize) ;

hfBlockSize := blockSize;
start := GetTickCount;
repeat

if reset then begin
if hfCanCreate then

creat := OPEN_ALWAYS
else
creat := OPEN EXISTING;
end
else
creat := CREATE ALWAYS;
SetLastError (0) ;
hfWindowsError := 0;

if hfShareModeSet then begin
if hfDesiredShareMode = S$FFFF then begin
if hfDesiredAcc = GENERIC READ then

shareMode := FILE SHARE READ
else
shareMode := 0
end
else
shareMode := hfDesiredShareMode
end

else begin
if hfDesiredAcc = GENERIC READ then

shareMode := FILE SHARE READ
else
shareMode := 0;
end;
hfHandle :=
CreateFile (PChar (hfName), hfDesiredAcc, shareMode,nil, creat,hfFlags,0);
awaited := false;
if hfHandle = INVALID HANDLE VALUE then begin
hfWindowsError := GetLastError;

if (hfWindowsError in FILE SHARING ERRORS) and (diskRetryDelay > 0) and
(not Elapsed) then
if waitObject <> 0 then
awaited := WaitForSingleObject (waitObject, diskRetryDelay) <>
WAIT TIMEOUT
else
Sleep (diskRetryDelay) ;
end
else begin
hfWindowsError := 0;
hfIsOpen := true;
end;
until (hfWindowsError = 0) or (not (hfWindowsError in FILE SHARING ERRORS))
or Elapsed or awaited;

if hfWindowsError = 0 then

Result := hfOK
else if hfWindowsError in FILE SHARING ERRORS then
Result := hfFileLocked
else
Result := hfError;
if Result = hfOK then
AllocBuffer;

End;

AllocBuffer method
Allocates file buffer (after freeing old buffer if allocated).

Applies to
TGpHugeFile

Declaration
Procedure AllocBuffer;

Yirtual |

Description

Calculates correct buffer size for direct access files and locks buffer if required. Used only
internally.

Raises

Various - system exceptions.

Implementation
procedure TGpHugeFile.AllocBuffer;

begin
FreeBuffer;
if hfBufferSize = 0 then
hfBufferSize := BUF SIZE;

// round up buffer size to be the multiplier of page size
// needed for FILE FLAG NO_BUFFERING access, does not hurt in other cases
hfBufferSize := RoundToPageSize (hfBufferSize);
SetLastError (0);
hfBuffer :=
VirtualAlloc(nil,thufferSize,MEM_RESERVE+MEM_COMMIT,PAGE_READWRITE);
Win32Check (hfBuffer<>nil, 'AllocBuffer');
if hfLockBuffer then begin
SetLastError (0) ;
Win32Check (Virtuallock (hfBuffer, hfBufferSize), 'AllocBuffer');
if hfBuffer = nil then
raise EGpHugeFile.CreateFmtHelp (sFailedToAllocateBuffer,
[FileName], hcHFFailedToAllocateBuffer);
end;
End;

BlockRead method
See Also

Reads 'count' number of 'block size' large units (see 'blockSize' parameter to Reset and
Rewrite methods) from a file (or buffer if access is buffered).

Applies to
TGpHugeFile

Declaration
Procedure BlockRead (var buf; count: DWORD; wvar transferred: DWORD) ;

Parameters

buf

Buffer for read data.

count

Number of 'block size' large units to be read.
transferred

(out) Number of 'block size' large units actually read.

Raises
EGpHugefFile - on Windows errors.

Implementation
procedure TGpHugeFile.BlockRead (var buf; count: DWORD; wvar transferred:
DWORD) ;

var
closeNow : boolean;
oldBufSize: DWORD;
trans : DWORD;
begin
try
if (not hfBuffered) or (not hfHalfClosed) then
CheckHandle;
closeNow := hfCloseOnNext;
if hfBlockSize <> 1 then
count := count * hfBlockSize;
oldBufSize := hfBufSize;

if hfBuffered then
Fetch (buf, count, trans)
else begin
SetLastError (0);
Win32Check (ReadFile (hfHandle, buf, count, trans,nil), 'BlockRead’') ;

hfBufFilePos := hfBufFilePos + trans;
end;
if hfBlockSize <> 1 then

transferred := trans div hfBlockSize
else

transferred := trans;

if hfCloseOnEOF then begin
if closeNow then begin

if FilePos >= FileSize then begin
hflLastSize := FileSize;
CloseHandle (hfHandle) ;
hfHandle := INVALID HANDLE VALUE;
hfHalfClosed := true; // allow FilePos to work until TGpHugeFile.Close
hfCloseOnNext := false;
//3.03: reset the buffer pointer

hfBufOffs := hfBufOffs + (oldBufSize - hfBufSize);
//2.26: rewind the buffer for Seek to work
hfBufSize := oldBufSize;
end;
end
else
hfCloseOnNext := (hfHandle <> INVALID HANDLE VALUE) and
LoadedToTheEOF;
end;
except
on EGpHugeFile do
raise;
on E:Exception do
raise EGpHugeFile.CreateHelp (E.Message, hcHFUnexpected) ;
end;
End;

BlockReadUnsafe method
See Also

Reads 'count' number of 'block size' large units (see 'blockSize' parameter to Reset and
Rewrite methods) from a file (or buffer if access is buffered).

Applies to
TGpHugeFile

Declaration
Procedure BlockReadUnsafe (var buf; count: DWORD) ;

Parameters

buf

Buffer for read data.

count

Number of 'block size' large units to be read.

Raises
EGpHugeFile - on Windows errors or if not enough data could be read from file.

Implementation
procedure TGpHugeFile.BlockReadUnsafe (var buf; count: DWORD) ;
var
transferred: DWORD;
begin
BlockRead (buf, count, transferred) ;
if count <> transferred then begin
if hfBuffered then
raise EGpHugeFile.CreateHelp (sEndOfFile, hcHFUnexpectedEOF)
else
Win32Check (false, 'BlockReadUnsafe');
end;
End;

BlockWrite method
See Also

Writes 'count' number of 'block size' large units (see 'blockSize' parameter to Reset and
Rewrite methods) to a file (or buffer if access is buffered).

Applies to
TGpHugeFile

Declaration
Procedure BlockWrite (const buf; count: DWORD; wvar transferred: DWORD) ;

Parameters

buf

Data to be written.

count

Number of 'block size' large units to be written.
transferred

(out) Number of 'block size' large units actually written.

Raises
EGpHugefFile - on Windows errors.

Implementation
procedure TGpHugeFile.BlockWrite (const buf; count: DWORD; wvar transferred:
DWORD) ;
var
trans: DWORD;
begin
try
CheckHandle;
if hfBlockSize <> 1 then
count := count * hfBlockSize;
if hfBuffered then
Transmit (buf, count, trans)
else begin
SetLastError (0) ;
Win32Check (WriteFile (hfHandle,buf, count, trans,nil), 'BlockWrite');
hfBufFilePos := hfBufFilePos + trans;
end;
if hfBlockSize <> 1 then
transferred := trans div hfBlockSize
else
transferred := trans;
hfCachedSize := -1;
except
on EGpHugeFile do
raise;
on E:Exception do
raise EGpHugeFile.CreateHelp (E.Message, hcHFUnexpected) ;
end;
End;

BlockWriteUnsafe method
See Also

Writes 'count' number of 'block size' large units (see 'blockSize' parameter to Reset and
Rewrite methods) to a file (or buffer if access is buffered).

Applies to
TGpHugeFile

Declaration
Procedure BlockWriteUnsafe (const buf; count: DWORD) ;

Parameters

buf

Data to be written.

count

Number of 'block size' large units to be written.

Raises
EGpHugeFile - on Windows errors or if data could not be written completely.

Implementation
procedure TGpHugeFile.BlockWriteUnsafe (const buf; count: DWORD) ;
var
transferred: DWORD;
begin
BlockWrite (buf, count, transferred) ;
if count <> transferred then begin
if hfBuffered then
raise EGpHugeFile.CreateFmtHelp (sWriteFailed, [FileName], hcHFWriteFailed)
else
Win32Check (false, 'BlockWriteUnsafe') ;
end;
End;

CheckHandle method

Checks if file is open.

Applies to
TGpHugeFile

Declaration
Procedure CheckHandle;

Yirtual |

Description

Called from various TGpHugeFile methods.
Raises

EGpHugeFile - if file is not open.

Implementation
procedure TGpHugeFile.CheckHandle;
begin
if hfHandle = INVALID HANDLE VALUE then
raise EGpHugeFile.CreateFmtHelp (sFileNotOpen,
[FileName], hcHFInvalidHandle) ;
End;

Close method
Closes open file.

Applies to
TGpHugeFile
Declaration
Procedure Close;

Description
If file is not open, do nothing.

Raises
EGpHugefFile - on Windows errors.

Implementation
procedure TGpHugeFile.Close;

begin
try
if IsOpen then begin
FreeBuffer;
if hfHandle <> INVALID HANDLE VALUE then begin // may be freed in BlockRead
CloseHandle (hfHandle) ;
hfHandle := INVALID HANDLE VALUE;
end;
hfHalfClosed := false;
hfIsOpen := false;
hfCloseOnEOF := false;
end;
except
on EGpHugeFile do
raise;

on E:Exception do
raise EGpHugeFile.CreateHelp (E.Message, hcHFUnexpected) ;
end;
End;

Create method

Standard TGpHugeFile constructor.
Applies to

TGpHugeFile

Declaration
Procedure Create(fileName: string);

Description
Prepares file for full, share none, access.

Parameters
fileName
Name of file to be accessed.

Implementation

constructor TGpHugeFile.Create (fileName: string);

begin
CreateEx (fileName, FILE ATTRIBUTE NORMAL,GENERIC READ+GENERIC WRITE, 0);
hfShareModeSet := false;

End;

CreateEx method
Extended TGpHugeFile constructor.

Applies to
TGpHugeFile

Declaration

Procedure CreateEx(fileName: string; FlagsAndAttributes: DWORD =

FILE ATTRIBUTE NORMAL; DesiredAccess: DWORD = GENERIC READ+GENERIC WRITE;
DesiredShareMode: DWORD = S$SFFFF);

Description
Caller can specify desired flags, attributes, and access mode.

Parameters

fileName

Name of file to be accessed.

FlagsAndAttributes

Flags and attributes, see CreateFile help for more details.
DesiredAccess

Desired access flags, see CreateFile help for more details.

Implementation
constructor TGpHugeFile.CreateEx (fileName: string; FlagsAndAttributes,
DesiredAccess, DesiredShareMode: DWORD) ;

begin
inherited Create;
hfBlockSize =1,
hfBuffer := nil;
hfBuffered := false;
hfCachedSize = -1
hfDesiredAcc := DesiredAccess;
hfDesiredShareMode := DesiredShareMode;
hfShareModeSet 1= true;
hfFlagNoBuf 1= ((FILE_FLAG_NO_BUFFERING AND FlagsAndAttributes) <>
0):
hfFlags := FlagsAndAttributes;
hfHandle = INVALID_HANDLE_VALUE;
hfName := fileName;

End;

Destroy method
TGpHugeFile destructor.

Applies to
TGpHugeFile

Declaration
Procedure Destroy;

Description
Will close file if it is still open.

Implementation
destructor TGpHugeFile.Destroy;
begin
Close;
inherited Destroy;
End;

Fetch method
See Also

Reads 'count' number of bytes large units from a file (or buffer if access is buffered).

Applies to
TGpHugeFile
Declaration

Procedure Fetch(var buf; count:

Virtual |

Parameters

buf

Buffer for read data.

count

Number of bytes to be read..
transferred

(out) Number of bytes actually read..

Raises

DWORD; wvar transferred: DWORD) ;

EGpHugeFile - when trying to read while in buffered write mode.

Various - system exceptions.

Implementation

procedure TGpHugeFile.Fetch(var buf; count: DWORD; wvar transferred:

var
got : DWORD;
bufp : pointer;
read : DWORD;
trans: DWORD;
begin
if hfBufWrite then

raise EGpHugeFile.CreateFmtHelp (sReadWhileInBufferedWriteMode,
[FileName], hcHFReadInBufferedWriteMode) ;

transferred := 0;
got := hfBufSize-hfBufOffs;
if got <= count then begin

if got > 0 then begin // read from buffer
Move (OffsetPtr (hfBuffer, hfBufOffs)",buf,got);

transferred := got;

Dec (count, got) ;

hfBufFilePos
end;

I~

bufp := OffsetPtr (@buf,got);

hfBufOffs := 0;

hfBufFileOffs-hfBufSize+hfBufOffs+got;

if count >= hfBufferSize then begin // read directly
read := (count div hfBufferSize)*hfBufferSize;

if hfHalfClosed then
trans := 0 //2.26

else if not ReadFile (hfHandle,bufp”,read, trans,nil) then

Exit;

hfBufFileOffs := hfBufFileOffs+trans;
hfBufFilePos := hfBufFileOffs;

Inc(transferred, trans);
Dec (count, read) ;

bufp := OffsetPtr (bufp,read);

if trans < read then

DWORD) ;

Exit; // EOF
end;
// £ill the buffer
if not hfHalfClosed then begin
if LoadedToTheEOF then
hfBufSize := 0
else begin
SetLastError (0);

Win32Check (ReadFile (hfHandle, hfBuffer”, hfBufferSize, hfBufSize,nil), 'Fetch');
hfBufFileOffs := hfBufFileOffs+hfBufSize;
end;
end
else begin

//3.03: when reacing end of buffer in hfHalfClosed mode, buffer must not

// be invalidated
hfBufOffs := hfBufSize;
Exit;
end;
end
else

bufp := @buf;
if count > 0 then begin // read from buffer
got := hfBufSize-hfBufOffs;
if got < count then
count := got;
if count > 0 then
Move (OffsetPtr (hfBuffer, hfBufOffs) ", bufp”, count);
Inc (hfBufOffs, count);
Inc (transferred, count) ;
hfBufFilePos := hfBufFileOffs-hfBufSize+hfBufOffs;
end;
End;

FileExists method
Tests if a specified file exists.

Applies to
TGpHugeFile

Declaration
Function FileExists: boolean;

Returns
True if file exists.

Implementation
function TGpHugeFile.FileExists: boolean;
begin

FileExists := SysUtils.FileExists (hfName);
End;

FilePos method
See Also

Returns file pointer position in 'block size' large units (see 'blockSize' parameter to Reset and
Rewrite methods).

Applies to
TGpHugeFile

Declaration
Function FilePos: Hugelnt;

Description
Position is retrieved from cached value.

Returns
File pointer position in 'block size' large units.

Raises
EGpHugefFile - on Windows errors.

Implementation
function TGpHugeFile.FilePos: Hugelnt;
begin
try
if not hfHalfClosed then
CheckHandle;
if hfBlockSize <> 1 then
Result := {SIFDEF
D4plus}Trunc{SELSE}int {$SENDIF} (hfBufFilePos/hfBlockSize)
else
Result := hfBufFilePos;
except
on EGpHugeFile do
raise;
on E:Exception do
raise EGpHugeFile.CreateHelp (E.Message, hcHFUnexpected) ;
end;
End;

FileSize method
See Also

Returns the size of file in 'block size' units (see 'blockSize' parameter to Reset and Rewrite
methods).

Applies to
TGpHugeFile

Declaration
Function FileSize: Hugelnt;

Returns
Size of file in 'block size' units.

Raises
EGpHugefFile - on Windows errors.

Implementation
function TGpHugeFile.FileSize: Hugelnt;
var
realSize: Hugelnt;
size : TLargelnteger;
begin
try
if hfHalfClosed then
Result := hflLastSize //2.26: hfoCloseOnEOF support
else begin
CheckHandle;
SetLastError (0);
size.LowPart := GetFileSize (hfHandle,(@size.HighPart);
Win32Check (size.LowPart<>SFFFFFFFF, 'FileSize');
if hfBufFilePos > size.QuadPart then
realSize := hfBufFilePos
else
realSize := size.QuadPart;
if hfBlockSize <> 1 then
Result := {$IFDEF D4plus}Trunc{SELSE}int{S$SENDIF}
(realSize/hfBlockSize)
else
Result := realSize;
end;
except
on EGpHugeFile do
raise;
on E:Exception do
raise EGpHugeFile.CreateHelp (E.Message, hcHFUnexpected) ;
end;
End;

Flush method
Flushed file buffers.

Applies to
TGpHugeFile

Declaration
Procedure Flush;

Raises
EGpHugefFile - on Windows errors.

Implementation
procedure TGpHugeFile.Flush;
begin
CheckHandle;
SetLastError (0);
Win32Check (FlushBuffer, 'Flush');
SetLastError (0) ;
Win32Check (FlushFileBuffers (hfHandle), 'Flush');
End;

FlushBuffer method
Flushed file buffers (internal implementation).

Applies to
TGpHugeFile

Declaration
Function FlushBuffer: boolean;

Yirtual |

Returns
False if data could not be written.

Implementation
function TGpHugeFile.FlushBuffer: boolean;
var
written: DWORD;
begin
if (hfBufOffs > 0) and hfBufWrite then begin
if hfFlagNoBuf then

hfBufOffs := RoundToPageSize (hfBufOffs);
Result := WriteFile (hfHandle,hfBuffer”, hfBufOffs,written,nil);
hfBufFileOffs := hfBufFileOffs+written;
hfBufOffs = 0;
hfBufFilePos := hfBufFileOffs;

if hfFlagNoBuf then
FillChar (hfBuffer”, hfBufferSize,0);
end
else
Result := true;
End;

FreeBuffer method
Frees memory buffer if allocated.

Applies to
TGpHugeFile

Declaration
Procedure FreeBuffer;

Yirtual |

Description

Used only internally.

Raises

Various - system exceptions.

Implementation
procedure TGpHugeFile.FreeBuffer;
begin
if hfBuffer <> nil then begin
SetLastError (0);
Win32Check (FlushBuffer, 'FreeBuffer');
if hflLockBuffer then begin
SetLastError (0);
Win32Check (VirtualUnlock (hfBuffer, hfBufferSize), 'FreeBuffer');
end;
SetLastError (0);
Win32Check (VirtualFree (hfBuffer, 0,MEM RELEASE), 'FreeBuffer');
hfBuffer := nil;
end;
End;

GetDate method
Returns file date in Delphi format.

Applies to
TGpHugeFile

Declaration
Function GetDate: TDateTime;

Yirtual |

Returns

Returns file date in Delphi format.
Raises

EGpHugefFile - on Windows errors.

Implementation
function TGpHugeFile.GetDate: TDateTime;

begin
try
CheckHandle;
Result := FileDateToDateTime (FileAge (FileName)) ;
except
on EGpHugeFile do
raise;

on E:Exception do
raise EGpHugeFile.CreateHelp (E.Message, hcHFUnexpected) ;
end;
End;

InitReadBuffer method
Initializes buffer for reading.

Applies to
TGpHugeFile

Declaration
Procedure InitReadBuffer;

Yirtual |

Implementation
procedure TGpHugeFile.InitReadBuffer;
begin
hfBufOffs := 0
hfBufSize := 0
hfBufFileOffs := 0;
hfBufWrite = £
End;

InitWriteBuffer method
Initializes buffer for writing.

Applies to
TGpHugeFile

Declaration
Procedure InitWriteBuffer;

Yirtual |

Implementation
procedure TGpHugeFile.InitWriteBuffer;
begin
hfBufSize i=
hfBufOffs =
hfBufFileOffs
hfBufWrite 1=
End;

~.

Il
+ O O O

rue;

IsOpen method
Returns true if file is open.

Applies to
TGpHugeFile

Declaration
Function IsOpen: boolean;

Returns
True if file is open.

Implementation

function TGpHugeFile.IsOpen:

begin
Result := hfIsOpen;
End;

boolean;

LoadedToTheEOF method
Returns true if file is loaded into the buffer up to the last byte.

Applies to
TGpHugeFile

Declaration
Function LoadedToTheEOF: boolean;

Yirtual |

Returns
Returns true if file is loaded into the buffer up to the last byte.

Implementation
function TGpHugeFile.LoadedToTheEOF: boolean;
begin
Result := (hfBufFileOffs >= (FileSize*hfBlockSize));
End;

Reset method
Simplest form of Reset, emulating Delphi's Reset.

Applies to
TGpHugeFile

Declaration
Procedure Reset (blockSize: integer = 1);

Parameters
blockSize
Basic unit of access (same as RecSize parameter in Delphi's Reset and Rewrite).

Raises
EGpHugeFile - if file could not be opened.

Implementation
procedure TGpHugeFile.Reset (blockSize: integer);
begin
Win32Check (ResetEx (blockSize,0,0,0, [hfoBuffered]) = hfOK, 'Reset');
End;

ResetBuffered method
See Also

Buffered Reset.

Applies to
TGpHugeFile

Declaration
Procedure ResetBuffered(blockSize: integer = 1; bufferSize: integer = 0;
lockBuffer: boolean = false);

Description
Caller can specifiy size of buffer and require that buffer is locked in memory (Windows
require that for direct access files (FILE_FLAG_NO_BUFFERING) to work correctly).

Parameters

blockSize

Basic unit of access (same as RecSize parameter in Delphi's Reset).
bufferSize

Size of buffer. 0 means default size (BUF_SIZE, currently 64 KB).
lockBuffer

If true, buffer will be locked.

Raises
EGpHugeFile - if file could not be opened.

Implementation
procedure TGpHugeFile.ResetBuffered(blockSize, bufferSize: integer;
lockBuffer: boolean);

var
options: THFOpenOptions;
begin
options := [hfoBuffered];

if lockBuffer then
Include (options,hfolLockBuffer);
Win32Check (ResetEx (blockSize,bufferSize,0,0,0options) =
hfOK, 'ResetBuffered');
End;

ResetEx method
Full form of Reset.

Applies to
TGpHugeFile

Declaration

Function ResetEx (blockSize: integer = 1; bufferSize: integer = 0;
diskLockTimeout: integer = 0; diskRetryDelay: integer = 0; options:
THFOpenOptions = []; waitObject: THandle = 0): THFError;

Description
Will retry if file is locked by another application (if diskLockTimeout and diskRetryDelay are
specified). Allows caller to specify additional options. Does not raise an exception on error.

Parameters

blockSize

Basic unit of access (same as RecSize parameter in Delphi's Reset).

bufferSize

Size of buffer. 0 means default size (BUF_SIZE, currently 64 KB).

diskLockTimeout

Max time (in milliseconds) AccessFile will wait for lock file to become free.
diskRetryDelay

Delay (in milliseconds) between attempts to open locked file.

options

Set of possible open options.

waitObject

Handle of 'terminate' event (semaphore, mutex). If this parameter is specified (not zero) and
becomes signalled, AccessFile will stop trying to open locked file and will exit with.

Returns
Status (ok, file locked, other error).

Implementation

function TGpHugeFile.ResetEx (blockSize, bufferSize: integer;
diskLockTimeout: integer; diskRetryDelay: integer;
options: THEOpenOptions; waitObject: THandle): THEFError;

begin
hfWindowsError := 0;
try
{ There's a reason behind this 'if IsOpen...' behaviour. We definitely

don't want to release file handle if ResetEx is called twice in a row as
that could lead to all sorts of sharing problems.
Delphi does this wrong - if you Reset file twice in a row, handle will be
close and fill will be reopened.
}
if hfCloseOnEOF and IsOpen then
Close; //2.26
if IsOpen then begin
if not hfReading then

FlushBuffer;
hfBuffered := false;
Seek (0) ;
FreeBuffer;
end;
hfBuffered := hfoBuffered in options;
hfCloseOnEOF := ([hfoCloseOnEOF,hfoBuffered] * options) =

[hfoCloseOnEOF, hfoBuffered];

hfCanCreate := hfoCanCreate in options;
if hfBuffered then begin

hfBufferSize := bufferSize;

hfLockBuffer := hfolockBuffer in options;
end;
if not IsOpen then

Result :=

AccessFile (blockSize, true,diskLockTimeout,diskRetryDelay,waitObject)
else begin

hfBlockSize := blockSize;
AllocBuffer;
Result := hfOK;

end;

if Result <> hfOK then
Close

else begin
if hfBuffered then

InitReadBuffer;
hfBufFilePos := 0;
hfReading := true;
hfHalfClosed := false;

end;
except

Result := hfOK;
end;

End;

Rewrite method
Simplest form of Rewrite, emulating Delphi's Rewrite.

Applies to
TGpHugeFile

Declaration
Procedure Rewrite (blockSize: integer = 1);

Parameters
blockSize
Basic unit of access (same as RecSize parameter in Delphi's Rewrite).

Raises
EGpHugeFile - if file could not be opened.

Implementation
procedure TGpHugeFile.Rewrite (blockSize: integer);
begin
Win32Check (RewriteEx (blockSize,0,0,0, [hfoBuffered]) = hfOK, 'Rewrite');
End;

RewriteBuffered method
See Also

Buffered Rewrite.

Applies to
TGpHugeFile

Declaration
Procedure RewriteBuffered(blockSize: integer = 1; bufferSize: integer = 0;
lockBuffer: boolean = false);

Description
Caller can specifiy size of buffer and require that buffer is locked in memory (Windows
require that for direct access files (FILE_FLAG_NO_BUFFERING) to work correctly).

Parameters

blockSize

Basic unit of access (same as RecSize parameter in Delphi's Rewrite).
bufferSize

Size of buffer. 0 means default size (BUF_SIZE, currently 64 KB).
lockBuffer

If true, buffer will be locked.

Raises
EGpHugeFile - if file could not be opened.

Implementation
procedure TGpHugeFile.RewriteBuffered(blockSize, bufferSize: integer;
lockBuffer: boolean);

var
options: THFOpenOptions;
begin
options := [hfoBuffered];

if lockBuffer then
Include (options,hfolLockBuffer);
Win32Check (RewriteEx (blockSize,bufferSize, 0,0,0ptions) =
hfOK, 'RewriteBuffered');
End;

RewriteEx method
Full form of Rewrite.

Applies to
TGpHugeFile

Declaration

Function RewriteEx (blockSize: integer = 1; bufferSize: integer = 0;
diskLockTimeout: integer = 0; diskRetryDelay: integer = 0; options:
THFOpenOptions = []; waitObject: THandle = 0): THFError;

Description
Will retry if file is locked by another application (if diskLockTimeout and diskRetryDelay are
specified). Allows caller to specify additional options. Does not raise an exception on error.

Parameters

blockSize

Basic unit of access (same as RecSize parameter in Delphi's Rewrite).

bufferSize

Size of buffer. 0 means default size (BUF_SIZE, currently 64 KB).

diskLockTimeout

Max time (in milliseconds) AccessFile will wait for lock file to become free.
diskRetryDelay

Delay (in milliseconds) between attempts to open locked file.

options

Set of possible open options.

waitObject

Handle of 'terminate' event (semaphore, mutex). If this parameter is specified (not zero) and
becomes signalled, AccessFile will stop trying to open locked file and will exit with.

Returns
Status (ok, file locked, other error).

Implementation

function TGpHugeFile.RewriteEx (blockSize, bufferSize: integer;
diskLockTimeout: integer; diskRetryDelay: integer;
options: THEOpenOptions; waitObject: THandle): THEFError;

begin
hfWindowsError := 0;
try
{ There's a reason behind this 'if IsOpen...' behaviour. We definitely

don't want to release file handle if ResetEx is called twice in a row as
that could lead to all sorts of sharing problems.
Delphi does this wrong - if you Reset file twice in a row, handle will be
close and fill will be reopened.
}
if hfCloseOnEOF and IsOpen then
Close; //2.26

if IsOpen then begin

hfBuffered := false;
Seek (0) ;
Truncate;
FreeBuffer;
end;
hfBuffered := hfoBuffered in options;
if hfBuffered then begin
hfBufferSize := bufferSize;

hfLockBuffer := hfolockBuffer in options;

end;
if not IsOpen then
Result :=

AccessFile (blockSize, false,diskLockTimeout,diskRetryDelay,waitObject)
else begin

hfBlockSize := blockSize;
AllocBuffer;
Result := hfOK;

end;

if Result <> hfOK then
Close

else begin
if hfBuffered then

InitWriteBuffer;
hfBufFilePos := 0;
hfReading := false;
hfHalfClosed := false;

end;
except

Result := hfOK;
end;

End;

RoundToPageSize method
Rounds parameter next multiplier of system page size.

Applies to
TGpHugeFile

Declaration
Function RoundToPageSize (bufSize: DWORD) : DWORD;

Yirtual |

Description

Used to determine buffer size for direct access files (FILE_FLAG_NO_BUFFERING).
Parameters

bufSize

Initial buffer size.

Returns

bufSize Required buffer size.

Implementation
function TGpHugeFile.RoundToPageSize (bufSize: DWORD) : DWORD;
var

sysInfo: TSystemInfo;

begin
GetSystemInfo (sysInfo) ;
Result := (((bufSize-1) div sysInfo.dwPageSize) + 1) * sysInfo.dwPageSize;

End;

Seek method
See Also

Repositions file pointer.

Applies to
TGpHugeFile

Declaration
Procedure Seek (offset: Hugelnt);

Description
Moves actual file pointer only when necessary.

Parameters

offset

Offset from beginning of file in 'block size' large units (see 'blockSize' parameter to Reset
and Rewrite methods).

Raises
EGpHugefFile - on Windows errors.

Implementation
procedure TGpHugeFile.Seek(offset: Hugelnt);
begin
try
_Seek (offset, false);
except
on EGpHugeFile do
raise;
on E:Exception do
raise EGpHugeFile.CreateHelp (E.Message, hcHFUnexpected) ;
end;
End;

SetDate method
Sets file date.

Applies to
TGpHugeFile

Declaration
Procedure SetDate (const Value: TDateTime) ;

Yirtual |

Parameters
Value
new file date.

Implementation
procedure TGpHugeFile.SetDate (const Value: TDateTime) ;
var
err: integer;
begin
try
CheckHandle;
err := FileSetDate (hfHandle,DateTimeToFileDate (Value))
if err <> 0 then
raise EGpHugeFile.CreateFmtHelp (sFileFailed+SysErrorMessage (err),
['SetDate',hfName], hcHFWindowsError) ;
except
on EGpHugeFile do
raise;
on E:Exception do
raise EGpHugeFile.CreateHelp (E.Message, hcHFUnexpected) ;
end;
End;

Transmit method
See Also

Writes 'count' number of bytes large units to a file (or buffer if access is buffered).

Applies to
TGpHugeFile

Declaration
Procedure Transmit (const buf; count: DWORD; war transferred: DWORD) ;

Virtual |

Parameters

buf

Data to be written.

count

Number of bytes to be written.
transferred

(out) Number of bytes actually written.
Raises

EGpHugeFile - when trying to write while in buffered read mode and file pointer is not at end
of file.

Various - system exceptions.

Implementation
procedure TGpHugeFile.Transmit (const buf; count: DWORD; wvar transferred:
DWORD) ;

var
place : DWORD;
bufp : pointer;
send : DWORD;
written: DWORD;
begin

if not hfBufWrite then begin
//2.32: If we are at the end of file, we can switch into write mode
if FilePos = FileSize then begin

InitWriteBuffer;
hfReading := false;
end
else

raise EGpHugeFile.CreateFmtHelp (sWriteWhileInBufferedReadMode,
[FileName], hcHFWriteInBufferedReadMode) ;

end;
transferred := 0;
place := hfBufferSize-hfBufOffs;

if place <= count then begin

Move (buf,OffsetPtr (hfBuffer, hfBufOffs)”,place); // £ill the buffer

hfBufOffs := hfBufferSize;

hfBufFilePos := hfBufFileOffs+hfBufOffs;

if not FlushBuffer then
Exit;

transferred := place;

Dec (count,place) ;

bufp := OffsetPtr (@buf,place);

if count >= hfBufferSize then begin // transfer N* (buffer size)
send := (count div hfBufferSize) *hfBufferSize;
if not WriteFile (hfHandle,bufp”,send,written,nil) then

Exit;
hfBufFileOffs := hfBufFileOffs+written;
hfBufFilePos := hfBufFileOffs;
Inc (transferred,written);
Dec (count, send) ;

bufp := OffsetPtr (bufp,send);
end;
end
else
bufp := @buf;

if count > 0 then begin // store leftovers
Move (bufp”,0ffsetPtr (hfBuffer, hfBufOffs)*, count);
Inc (hfBufOffs, count);
Inc(transferred, count) ;
hfBufFilePos := hfBufFileOffs+hfBufOffs;
end;
End;

Truncate method
Truncates file at current position.

Applies to
TGpHugeFile

Declaration
Procedure Truncate;

Raises
EGpHugefFile - on Windows errors.

Implementation
procedure TGpHugeFile.Truncate;
begin
try
CheckHandle;
if hfBuffered then
_Seek(FilePos, true);
SetLastError (0) ;
Win32Check (SetEndOfFile (hfHandle), 'Truncate') ;
except
on EGpHugeFile do
raise;
on E:Exception do
raise EGpHugeFile.CreateHelp (E.Message, hcHFUnexpected) ;
end;
End;

Win32Check method
Checks condition and creates appropriately formatted EGpHugeFile exception.

Applies to
TGpHugeFile

Declaration
Procedure Win32Check(condition: boolean; method: string);

Yirtual |

Parameters

condition

If false, Win32Check will generate an exception.
method

Name of TGpHugeFile method that called Win32Check.
Raises

EGpHugeFile - if (not condition).

Implementation
procedure TGpHugeFile.Win32Check (condition: boolean; method: string);
var

Error: EGpHugeFile;

begin
if not condition then begin
hfWindowsError := GetLastError;
if hfWindowsError <> ERROR_SUCCESS then
Error := EGpHugeFile.CreateFmtHelp(sFileFailed+SWin32Error,
[method, hfName, hfWindowsError, SysErrorMessage (hfWindowsError)],
hcHFWindowsError)
else
Error := EGpHugeFile.CreateFmtHelp (sFileFailed+SUnkWin32Error,

[method, hfName], hcHFUnknownWindowsError) ;
raise Error;
end;
End;

TGpHugeFileStream Object {button &Top,JI(*!," IDH_Class TGpHugeFileStream')}
{button &Properties,]JI("',"IDH_ClassTopic_TGpHugeFileStream_Properties')} {button
&Methods,JI(*',"IDH_ClassTopic_TGpHugeFileStream_Methods')}

Hierarchy Properties Methods

TStream descendant, wrapping a TGpHugeFile.
Unit
GPHugeF

Declaration
TGpHugeFileStream = class (TStream)

Description
Although it does not support huge files fully (because of TStream limitations - 'longingt’ is
used instead of 'int64' in critical places), you could still use it as a buffered file stream.

Introduced Properties
FileName

Name of underlying file.
Size

Stream size.
WindowsError

Last Windows error code.

Introduced Public Methods
Create

Initializes stream and opens file in required access mode.
CreateFromHandle

Initializes stream and assigns it an already open TGpHugeFile object.

Destroy Virtual |
Destroys stream and file access object (if created in constructor).

Read Virtual |

Reads 'count' number of bytes into buffer.

Seek Yirtual |

Repositions stream pointer.

Write MI

Writes 'count' number of bytes to the file.

TGpHugeFileStream Properties

Properties Methods

In TGpHugeFileStream
ﬂ FileName

Size

- WindowsError

TGpHugeFileStream Methods

Properties Methods

In TGpHugeFileStream

Create
CreateFromHandle
Destroy
- GetFileName
- GetSize
- GetWindowsError
Read
Seek
- SetSize
- Win32Check

Write

FileName property
Name of underlying file.

Applies to
TGpHugeFileStream

Declaration
Property FileName : string Read GetFileName;

Size property
Stream size.

Applies to

TGpHugeFileStream

Declaration

Property Size : longint Read GetSize Write SetSize;

Description
Reintroduced to override GetSize (static in TStream) with faster version.

WindowsError property
Last Windows error code.

Applies to
TGpHugeFileStream

Declaration
Property WindowsError : DWORD Read GetWindowsError;

Create method
Initializes stream and opens file in required access mode.

Applies to
TGpHugeFileStream

Declaration
Procedure Create (const fileName: string; access: TGpHugeFileStreamAccess;

openOptions: THFOpenOptions = [hfoBuffered]);
Parameters

fileName

Name of file to be accessed.

access

Required access mode.
openOptions
Set of possible open options.

Implementation
constructor TGpHugeFileStream.Create (const fileName: string;
access: TGpHugeFileStreamAccess; openOptions: THEOpenOptions):;

begin
inherited Create;
hfsExternalHF := false;
case access of
accRead:
begin
hfsFile := TGpHugeFile.CreateEx(fileName, FILE ATTRIBUTE NORMAL,
GENERIC_READ) ;
hfsFile.Win32Check (hfsFile.ResetEx(1,0,0,0,o0penOptions) = hfOK,
'Reset');
end; //accRead
accWrite:
begin
hfsFile := TGpHugeFile.CreateEx(fileName, FILE ATTRIBUTE NORMAL,
GENERIC_WRITE) ;
hfsFile.Win32Check (hfsFile.RewriteEx (1,0,0,0, openOptions) = hfOK,
'Rewrite') ;
end; //accWrite
accReadWrite:
begin
hfsFile := TGpHugeFile.CreateEx(fileName, FILE ATTRIBUTE NORMAL,
GENERICiREAD+GENERIC7WRITE) ;
hfsFile.Win32Check (hfsFile.ResetEx(1,0,0,0,o0openOptions) = hfOK,
'Reset');
end; // accReadWrite
accAppend:
begin
hfsFile := TGpHugeFile.CreateEx(fileName, FILE ATTRIBUTE NORMAL,
GENERIC_READ+GENERIC_WRITE) ;
hfsFile.Win32Check (hfsFile.ResetEx(1,0,0,0,o0penOptions) = hfOK,
'Reset');

hfsFile.Seek (hfsFile.FileSize);
end; //accAppend
end; //case
End;

CreateFromHandle method
Initializes stream and assigns it an already open TGpHugeFile object.

Applies to
TGpHugeFileStream

Declaration
Procedure CreateFromHandle (hf: TGpHugeFile);

Parameters
hf
TGpHugeFile object to be used for data storage.

Implementation
constructor TGpHugeFileStream.CreateFromHandle (hf: TGpHugeFile);
begin
inherited Create;
hfsExternalHF := true;
hfsFile := hf;
End;

Destroy method
Destroys stream and file access object (if created in constructor).

Applies to
TGpHugeFileStream

Declaration
Procedure Destroy;

Implementation
destructor TGpHugeFileStream.Destroy;
begin
if (not hfsExternalHF) and assigned(hfsFile) then begin
hfsFile.Close;
hfsFile.Free;
hfsFile := nil;
end;
inherited Destroy;
End;

GetFileName method
Returns file name.

Applies to
TGpHugeFileStream

Declaration
Function GetFileName: string;

Yirtual |

Returns
Returns file name or empty string if file is not open.

Implementation
function TGpHugeFileStream.GetFileName: string;

begin
if assigned(hfsFile) then
Result := hfsFile.FileName
else
Result := '"';

End;

GetSize method
Returns file size.

Applies to
TGpHugeFileStream

Declaration
Function GetSize: longint;

Yirtual |

Description

Better compatibility with hfCloseOnEOF files than default TStream.GetSize.
Returns

Returns file size in bytes or -1 if file is not open.

Implementation

function TGpHugeFileStream.GetSize: longint;

begin
if assigned(hfsFile) then
Result := hfsFile.FileSize
else
Result := -1;

End;

GetWindowsError method
Returns last Windows error code.

Applies to
TGpHugeFileStream

Declaration
Function GetWindowsError: DWORD;

Yirtual |

Returns
Last Windows error code.

Implementation

function TGpHugeFileStream.GetWindowsError:

begin
if hfsWindowsError <> 0 then
Result := hfsWindowsError
else if assigned(hfsFile) then
Result := hfsFile.WindowsError
else
Result := 0;

End;

DWORD;

Read method
Reads 'count' number of bytes into buffer.

Applies to
TGpHugeFileStream

Declaration
Function Read (var buffer; count: longint): longint;

Parameters

buffer

Buffer for read data.

count

Number of bytes to be read.
Returns

Actual number of bytes read.
Raises

EGpHugefFile - on Windows errors.

Implementation

function TGpHugeFileStream.Read (var buffer; count: longint):

var
bytesRead: cardinal;

begin
hfsFile.BlockRead (Buffer, Count,bytesRead) ;
Result := longint (bytesRead) ;

End;

longint;

Seek method
Repositions stream pointer.

Applies to
TGpHugeFileStream

Declaration
Function Seek (offset: longint; mode: word): longint;

Parameters

offset

Offset from start, current position, or end of stream (as set by the 'mode' parameter).

mode

Specifies starting point for offset calculation (soFromBeginning, soFromCurrent, soFromEnd).
Returns

New position of stream pointer.

Raises

EGpHugefFile - on Windows errors.

EGpHugeFileStream - on invalid value of 'mode' parameter.

Implementation
function TGpHugeFileStream.Seek (offset: longint; mode: word): longint;
begin
if mode = soFromBeginning then
hfsFile.Seek (offset)
else if mode = soFromCurrent then
hfsFile.Seek (hfsFile.FilePostoffset)
else if mode = soFromEnd then
hfsFile.Seek (hfsFile.FileSize+offset)
else
raise EGpHugeFileStream.CreateFmtHelp (sInvalidMode,
[FileName], hcHFInvalidSeekMode) ;
Result := hfsFile.FilePos;
End;

SetSize method
Sets stream size.

Applies to
TGpHugeFileStream

Declaration
Procedure SetSize (newSize: longint);

Description

Truncates underlying file at specified position.
Parameters

newsSize

New stream size.

Raises

EGpHugeFile - on Windows errors.

Implementation

procedure TGpHugeFileStream.SetSize (newSize:

begin
hfsFile.Seek (newSize);
hfsFile.Truncate;

End;

longint) ;

Win32Check method
Checks condition and creates appropriately formatted EGpHugeFileStream exception.

Applies to
TGpHugeFileStream

Declaration
Procedure Win32Check(condition: boolean; method: string);

Yirtual |

Parameters

condition

If false, Win32Check will generate an exception.

method

Name of TGpHugeFileStream method that called Win32Check.
Raises

EGpHugeFileStream - if (not condition).

Implementation
procedure TGpHugeFileStream.Win32Check (condition: boolean; method: string);
var

Error: EGpHugeFileStream;

begin
if not condition then begin
hfsWindowsError := GetLastError;
if hfsWindowsError <> ERROR_SUCCESS then
Error := EGpHugeFileStream.CreateFmtHelp (sStreamFailed+SWin32Error,
[method, FileName, hfsWindowsError, SysErrorMessage (hfsWindowsError)],
hcHFWindowsError)
else
Error := EGpHugeFileStream.CreateFmtHelp (sStreamFailed+SUnkWin32Error,

[method, FileName], hcHFUnknownWindowsError) ;
raise Error;
end;
End;

Write method
Writes 'count' number of bytes to the file.

Applies to
TGpHugeFileStream
Declaration

Function Write (const buffer; count: longint): longint;

Parameters

buffer

Data to be written.

count

Number of bytes to be written.
Returns

Actual number of bytes written.
Raises

EGpHugefFile - on Windows errors.

Implementation

function TGpHugeFileStream.Write (const buffer; count:

var
bytesWritten: cardinal;

begin
hfsFile.BlockWrite (buffer, count,bytesWritten);
Result := longint (bytesWritten);

End;

longint) :

longint;

Hugelnt type

Alias for int64 so it is Delphi-version-independent (as much as that is possible at all).
Unit
GPHugeF

Declaration
HugeInt = LONGLONG;

TGpHugeFileStreamAccess type

All possible ways to access TGpHugeFileStream.

Unit
GPHugeF

Declaration
TGpHugeFileStreamAccess = (accRead,

Values

accRead

Read access.

accWrite

Write access.
accReadWrite

Read and write access.
accAppend

accWrite,

accReadWrite,

accAppend) ;

Same as accReadWrite, just that Position is set immediatly after the end of file.

THFError type

Result of TGpHugeFile reset and rewrite methods.
Unit
GPHugeF

Declaration
THFError = (hfOK, hfFileLocked, hfError);

Values

hfOK

File opened successfully.

hfFileLocked

Access to file failed because it is already open and compatible sharing is not allowed.
hfError

Other file access errors (file/path not found...).

THFOpenOption type

TGpHugeFile reset/rewrite options.
Unit
GPHugeF

Declaration
THFOpenOption = (hfoBuffered, hfolLockBuffer, hfoCloseOnEOF, hfoCanCreate);

Values

hfoBuffered

Open file in buffered mode. Buffer size is either default (BUF_SIZE, currently 64 KB) or
specified by the caller in ResetEx or RewriteEx methods.

hfoLockBuffer

Buffer must be locked (Windows require that for direct access files
(FILE_FLAG_NO_BUFFERING) to work correctly).

hfoCloseOnEOF

Valid only when file is open for reading. If set, TGpHugeFile will close file handle as soon as
last block is read from the file. This will free file for other programs while main program may
still read data from TGpHugeFile's buffer. (*)

After the end of file is reached (and handle is closed):

¢ FilePos may be used.
¢ FileSize may be used.
e Seek and BlockRead may be used as long as the request can be fulfilled from the buffer.

Use of this option is not recommended when access to the file is random. (*) It was designed
to use with sequential or almost sequential access to the file. hfoCloseOnEOF is ignored if
hfoBuffered is not set. hfoCloseOnEOF is ignored if used in RewriteEx.

(*) hfoCloseOnEOF can cope with a program that alternately calls BlockRead and Seek
requests. When BlockRead reaches EOF, this condition will be marked but file handle will not
be closed yet. When BlockRead is called again, file will be closed, but only if between those
calls Seek did not invalidate the buffer (Seek that can be fulfilled from the buffer is OK). This
works with programs that load a small buffer and then Seek somewhere in the middle of this
buffer (like ReadIn function in TGpTextFile class does).

hfoCanCreate

Reset is allowed to create a file if it doesn't exist.

THFOpenOptions type

Set of all TGpHugeFile reset/rewrite options.
Unit
GPHugeF

Declaration
THFOpenOptions = set of THFOpenOption;

hcHFFailedToAllocateBuffer global constant

Failed to allocate buffer.
Unit
GPHugeF

Declaration
hcHFFailedToAllocateBuffer = 1005;

hcHFInvalidBlockSize global constant

Invalid block size.
Unit
GPHugeF

Declaration
hcHFInvalidBlockSize = 1003;

hcHFInvalidHandle global constant

Invalid file handle.
Unit
GPHugeF

Declaration
hcHFInvalidHandle = 1004;

hcHFInvalidSeekMode global constant

Invalid 'mode' parameter passed to Seek function.
Unit
GPHugeF

Declaration
hcHFInvalidSeekMode = 1010;

hcHFReadlnBufferedWriteMode global constant

Read operation encountered while in buffered write mode.
Unit
GPHugeF

Declaration
hcHFReadInBufferedWriteMode = 1007;

hcHFUnexpected global constant

Exception was handled and converted to EGpHugeFile but was not expected and is not
categorised.

Unit

GPHugeF

Declaration
hcHFUnexpected = 1000;

hcHFUnexpectedEOF global constant

Unexpected end of file.
Unit
GPHugeF

Declaration
hcHFUnexpectedEOF = 1008;

hcHFUnknownWindowsError global constant

Unknown Windows error.
Unit
GPHugeF

Declaration
hcHFUnknownWindowsError = 1002;

hcHFWindowsError global constant

Windows error.
Unit
GPHugeF

Declaration
hcHFWindowsError = 1001;

hcHFWriteFailed global constant

Write failed - not all data was saved.
Unit
GPHugeF

Declaration
hcHFWriteFailed = 1009;

hcHFWritelnBufferedReadMode global constant

Write operation encountered while in buffered read mode.
Unit
GPHugeF

Declaration
hcHFWriteInBufferedReadMode = 1006;

Hierarchy
Exception

I
EGpHugeFile

Direct subclasses
EGpHugeFileStream

Hierarchy
Exception

I
EGpHugeFile

I
EGpHugeFileStream

Subclasses
None

Hierarchy

TObject

I
TGpHugeFile

Subclasses
None

See Also
. Reset, Rewrite

See Also
. ResetEx, RewriteEx

See Also
. Reset, Rewrite

See Also
. Reset, Rewrite

See Also
. Reset, Rewrite

See Also
. Reset, Rewrite

See Also
. Reset, Rewrite

See Also
. Reset, Rewrite

See Also
. Reset, Rewrite

See Also
. BUF_SIZE

See Also
. BUF_SIZE

See Also
. Reset, Rewrite

See Also
. Reset, Rewrite

Hierarchy
TStream

I
TGpHugeFileStream

Subclasses
None

