Main Page   Class Hierarchy   Compound List   File List   Compound Members  

csTransform Class Reference

A class which defines a transformation from one coordinate system to another. More...

#include <transfrm.h>

Inheritance diagram for csTransform:

csReversibleTransform csOrthoTransform csCamera List of all members.

Public Methods

 csTransform ()
 Initialize with the identity transformation.

 csTransform (const csMatrix3 &other2this, const csVector3 &origin_pos)
 Initialize with the given transformation. More...

const csMatrix3GetO2T () const
 Get 'other' to 'this' transformation matrix. More...

const csVector3GetO2TTranslation () const
 Get 'world' to 'this' translation. More...

const csVector3GetOrigin () const
 Get origin of transformed coordinate system.

virtual void SetO2T (const csMatrix3 &m)
 Set 'other' to 'this' transformation matrix. More...

virtual void SetO2TTranslation (const csVector3 &v)
 Set 'world' to 'this' translation. More...

void SetOrigin (const csVector3 &v)
 Set origin of transformed coordinate system.

void Translate (const csVector3 &v)
 Move the 'other' to 'this' translation by a specified amount.

csVector3 Other2This (const csVector3 &v) const
 Transform vector in 'other' space v to a vector in 'this' space. More...

csVector3 Other2ThisRelative (const csVector3 &v) const
 Convert vector v in 'other' space to a vector in 'this' space. More...

csPlane3 Other2This (const csPlane3 &p) const
 Convert a plane in 'other' space to 'this' space.

csPlane3 Other2ThisRelative (const csPlane3 &p) const
 Convert a plane in 'other' space to 'this' space. More...

void Other2This (const csPlane3 &p, const csVector3 &point, csPlane3 &result) const
 Convert a plane in 'other' space to 'this' space. More...

csSphere Other2This (const csSphere &s) const
 Convert a sphere in 'other' space to 'this' space.


Static Public Methods

csTransform GetReflect (const csPlane3 &pl)
 Return a transform that represents a mirroring across a plane. More...


Protected Attributes

csMatrix3 m_o2t
 Transformation matrix from 'other' space to 'this' space.

csVector3 v_o2t
 Location of the origin for 'this' space.


Friends

csVector3 operator * (const csVector3 &v, const csTransform &t)
 Apply a transformation to a 3D vector.

csVector3 operator * (const csTransform &t, const csVector3 &v)
 Apply a transformation to a 3D vector.

csVector3operator *= (csVector3 &v, const csTransform &t)
 Apply a transformation to a 3D vector.

csPlane3 operator * (const csPlane3 &p, const csTransform &t)
 Apply a transformation to a Plane.

csPlane3 operator * (const csTransform &t, const csPlane3 &p)
 Apply a transformation to a Plane.

csPlane3operator *= (csPlane3 &p, const csTransform &t)
 Apply a transformation to a Plane.

csSphere operator * (const csSphere &p, const csTransform &t)
 Apply a transformation to a sphere.

csSphere operator * (const csTransform &t, const csSphere &p)
 Apply a transformation to a sphere.

csSphereoperator *= (csSphere &p, const csTransform &t)
 Apply a transformation to a sphere.

csMatrix3 operator * (const csMatrix3 &m, const csTransform &t)
 Multiply a matrix with the transformation matrix.

csMatrix3 operator * (const csTransform &t, const csMatrix3 &m)
 Multiply a matrix with the transformation matrix.

csMatrix3operator *= (csMatrix3 &m, const csTransform &t)
 Multiply a matrix with the transformation matrix.

csTransform operator * (const csTransform &t1, const csReversibleTransform &t2)
 Combine two transforms, rightmost first.


Detailed Description

A class which defines a transformation from one coordinate system to another.

The two coordinate systems are refered to as 'other' and 'this'. The transform defines a transformation from 'other' to 'this'.


Constructor & Destructor Documentation

csTransform::csTransform ( const csMatrix3 & other2this,
const csVector3 & origin_pos ) [inline]
 

Initialize with the given transformation.

The transformation is given as a 3x3 matrix and a vector. The transformation is defined to mean T=M*(O-V) with T the vector in 'this' space, O the vector in 'other' space, M the transformation matrix and V the transformation vector.


Member Function Documentation

const csMatrix3 & csTransform::GetO2T ( ) const [inline]
 

Get 'other' to 'this' transformation matrix.

This is the 3x3 matrix M from the transform equation T=M*(O-V).

const csVector3 & csTransform::GetO2TTranslation ( ) const [inline]
 

Get 'world' to 'this' translation.

This is the vector V from the transform equation T=M*(O-V).

csTransform csTransform::GetReflect ( const csPlane3 & pl ) [static]
 

Return a transform that represents a mirroring across a plane.

This function will return a csTransform which represents a reflection across the plane pl.

void csTransform::Other2This ( const csPlane3 & p,
const csVector3 & point,
csPlane3 & result ) const
 

Convert a plane in 'other' space to 'this' space.

This is an optimized version for which a point on the new plane is known (point). The result is stored in 'result'.

csVector3 csTransform::Other2This ( const csVector3 & v ) const [inline]
 

Transform vector in 'other' space v to a vector in 'this' space.

This is the basic transform function.

csPlane3 csTransform::Other2ThisRelative ( const csPlane3 & p ) const
 

Convert a plane in 'other' space to 'this' space.

This version ignores translation.

csVector3 csTransform::Other2ThisRelative ( const csVector3 & v ) const [inline]
 

Convert vector v in 'other' space to a vector in 'this' space.

Use the origin of 'other' space.

void csTransform::SetO2T ( const csMatrix3 & m ) [inline, virtual]
 

Set 'other' to 'this' transformation matrix.

this is the 3x3 matrix M from the transform equation T=M*(O-V).

Reimplemented in csCamera, csReversibleTransform, and csOrthoTransform.

void csTransform::SetO2TTranslation ( const csVector3 & v ) [inline, virtual]
 

Set 'world' to 'this' translation.

This is the vector V from the transform equation T=M*(O-V).

Reimplemented in csCamera.


The documentation for this class was generated from the following file:
Generated for Crystal Space by doxygen 1.2.5 written by Dimitri van Heesch, ©1997-2000