
GDIdb Professional Help Index

For help and information on the GDIdb Script Language click on Contents. Tutorials on
working with GDIdb scripts are provided in the Script Studio help, (select Script Studio from
the Tools menu to open Script Studio). An .rtf version of the Script reference and Script
tutorials may be downloaded from the GDIdb web site.

Introduction
GDIdb Professional Overview

How To ...
Get Going Quickly
Use ODBC
Use SQL
Managing your Web Site
Execute GDIdb from the command line
Register GDIdb
Troubleshoot Errors

Commands
File menu
Project menu
View menu
Tools menu
Help menu

File menu commands

The File menu offers the following commands:

Open/Run Script Open a file select dialog allowing the user to
choose a script for execution.

Open/Edit Script Opens a file select dialog allowing the user to
select a script file for editing.

Edit Output Files Opens the output file edit dialog.

Open/Edit
Database

Opens (user defined) project database.

Exit Exits GDIdb.

Project menu commands

The Project menu offers the following commands:

Preview Web Site Opens the top-level project HTML document
in your web browser.

Publish Publish your project database to the web.
Upload to Web
Server

FTP upload project output files to the web
server.

Reset Project
Upload Status

Resets current project changed-only files
upload status.

Project Settings Open the project settings dialog.

Upload to Web Server

The Upload to Web Server sub-menu offers the following commands:

Changed Files Only Upload project output files which have
changed since the last Publish/FTP upload.

All Output Files Upload all project output files to web server.
All Files In Directory Upload all files in project local HTML directory.

(This command will also upload files not
created by GDIdb)

View menu commands

The View menu offers the following commands:

Show Main Toolbar Shows/hides the main GDIdb toolbar.
Show Project Toolbar Shows/hides the GDIdb Project toolbar.
Show Status Bar Show/hide the status bar.
Show Project Scripts
Window

Show/hide the project scripts window.

View Scripter List
Output

Opens the project scripter output listing
with your text editor.

System Event Log Opens the system event log dialog.

Tools menu commands

The Tools menu offers the following commands:

Script Wizard Opens the Script Wizard utility.
Script Studio Opens the Script Studio application.
HTML Processor Opens the HTML Processor utility.
Clear Status Error
Flag

Resets the error flag in the program
status bar.

Program Settings Open program settings dialog.

Help menu commands

The Help menu offers the following commands, which provide you with assistance in
operating GDIdb:

Help Topics Offers you an index to topics on which you can
get help.

About Displays program version and registration
details.

Exit command (File menu)

Exit will terminate execution of GDIdb.

Note: If "Close window shuts program down" is not selected under Program Behavior in the
Program Settings dialog, this is the only way the program can be shut down- all other
program close functions merely hide the GDIdb window. Once hidden, the window may be
re-enabled by double clicking on the GDIdb icon in the status area of the task bar.

Script Wizard

GDIdb creates HTML documents by executing a script file. Although you can write script files
from scratch using Script Studio, Script Wizard provides a simple way of creating a script
without the need to learn the GDIdb script language.

After running script wizard, add HTML to the script file by selecting Open/Edit Script from the
File menu.

Script Studio

GDIdb creates HTML documents by executing a script file. Although the fastest method of
generating a script file is to use the Script Wizard utility, Script Studio can be used to create
your own script from scratch almost as easily.
Script Studio combines an HTML text editor with Wizards to generate GDIdb script for most
common tasks.

HTML Processor

The HTML Processor utility will process any existing HTML files you have so that they are
suitable to cut and paste directly into your script file. Run HTML Processor and click on help
for more info.

Edit Default Script

GDIdb creates HTML documents by executing a script file. Selecting Edit Default script file
opens the default project script file for editing. (The default project script file is defined
under Project Settings/Publish Actions under the Project menu and is the Script file executed
on project publish and auto-publish commands.)

The text editor used for this operation is defined in Program Settings/Helper Applications
under the Tools menu.

Open/Edit Script

GDIdb creates HTML documents by executing a script file. Selecting Open/Edit Script from
the will open a file dialog allowing you to select a script file for editing.

The text editor used for this operation is defined in Program Settings/Helper Applications
under the Tools menu.

Open/Edit Database

Use this menu command as a shortcut for executing your project database software. You
need to enter the path to your project database program in Project Settings/Helper
Applications under the Project menu.

Example:
The following command line opens the demo database (supplied with GDIdb) using Microsoft
Access on the author's computer.

C:\MSOffice\Access\Msaccess.exe "c:\progra~1\GDIdb\projects\default\workweb.mdb"

Publish

Once a script file has been created and GDIdb has been correctly configured, Publish is the
only action needed to operate the software. The sequence of events triggered by publish is
defined under Project Settings under the Project menu. The possible actions are:

1. The off-line project script file is run.
2. A dial-up Internet connection is made.
3. The on-line project script file is run.
4. The HTML files generated by the scripter are copied to the web server.
5. A user-defined DOS or Windows command is executed.

Open/Run Script

GDIdb creates HTML documents by running a script file. After selecting this option from the
menu, GDIdb will present you with a dialog allowing you to select a script file for execution.
GDIdb also supports drag and drop of script files onto the program window as a convenient
method of running a script file.

After running this script, GDIdb will have generated HTML files from the contents of your
project datasource, you can preview the way your web site will look by selecting Preview
Web Site from the Project menu or copy the HTML files to your web server by selecting
Upload to Web Server from the Project menu.

Note:
The default script is automatically run if you select Publish

Upload to Web Server- Changed Files Only

After your HTML documents have been generated by running a script file , they need to be
copied to your web server. Selecting upload to Web Server- Changed Files Only triggers the
following series of events:

1. If enabled under Project Settings/Publish Actions, a dial-up Internet connection is made.
2. All files generated by executing a script which have changed since the last publish or
upload are copied to the web server.
3. Any files which were uploaded to the web server on the previous publish or upload, but
which do not appear in the set of files generated by the last-run script are deleted from the
web server if Delete old files from Web Server is enabled in Project Settings (under the
Project menu).
4. The dial-up connection is disconnected.
5. The list of changed-only files kept by GDIdb is reset to indicate that the server is fully up-
to-date.
6. The record of current web server files kept by GDIdb is modified to include all (and only)
those files generated by the last-run script.

Notes:
1. You can configure Publish and Auto-Publish operations to upload changed files only in the
Project Settings dialog. (Under the Project Menu.)
2. Files are automatically moved to the web server if you select Publish.

Upload to Web Server- All Output Files

After your HTML documents have been generated by running a script file , they need to be
copied to your web server. Selecting upload to Web Server- All Output Files triggers the
following series of events:

1. If enabled under Project Settings/Publish Actions, a dial-up Internet connection is made.
2. All files generated by executing a script are copied to the web server.
3. Any files which were uploaded to the web server on the previous publish or upload, but
which do not appear in the set of files generated by the last-run script are deleted from the
web server if Delete old files from Web Server is enabled in Project Settings (under the
Project menu).
4. The dial-up connection is disconnected.
5. The list of changed-only files kept by GDIdb is reset to indicate that the server is fully up-
to-date.
6. The record of current web server files kept by GDIdb is modified to include all (and only)
those files generated by the last-run script.

Notes:
1. Files are automatically moved to the web server if you select Publish.

Upload to Web Server- All Files In Directory

This command is provided to allow you to upload files required in your web site which may
not have been generated by GDIdb, such as .jpg or .gif files.
Selecting upload to Web Server- All Files In Directory triggers the following series of events:

1. If enabled under Project Settings/Publish Actions, a dial-up Internet connection is made.
2. All files in the local HTML directory (defined in Project Settings) are copied to the web
server.
3. The dial-up connection is disconnected.

Notes:
1. Sub-directories of the HTML directory will not be copied.
2. Files are automatically moved to the web server if you select Publish.
3. The record of files held on the web server is not modified by this command.
4. The record of changed-only files held by GDIdb is not modified by this command.
5. Unlike other GDIdb upload methods, this command will not delete old (un-referenced) files
from the web server.

Preview Web Site

After running a script file you can preview the HTML generated by GDIdb before moving the
files to your web server. The web browser used in this operation is defined in Program
Settings/Helper Applications (under the Tools menu).
Note: By default, the HTML generated by GDIdb is stored in a sub-directory of the project
directory called html. Remember to put any GIF or jpg files that your site uses in this
directory, otherwise the preview of the web site will be incomplete.

Show Project Scripts Window

The project scripts window displays all of the GDIdb script files in the current project
directory. Right-click on a script file name in this window to edit, run or delete a script file. If
you wish to change the project script directory, you can enter the path to the new directory
in Scripter Settings in the Project Settings dialog.

Project Scripts Window

The project scripts window displays all of the GDIdb script files in the current project
directory. Right-click on a script file name in this window to edit, run or delete a script file. If
you wish to change the project script directory, you can enter the path to the new directory
in Scripter Settings in the Project Settings dialog.

View Scripter List Output

GDIdb will generate a scripter list file if Generate Scripter List file is enabled in Project
Settings (under the Project menu). This file shows the output of the scripter, if the system
reports that there are errors in your script file, you can view the list file to see exactly where
your script went wrong.

Notes:
1. This control will be disabled if Generate Scripter List file in Project Settings (under the
Project menu) is not enabled.
2. As errors terminate execution of the script, the error will always be at the end of the file.

The text editor used for this operation is defined in Program Settings/Helper Applications
(under the Tools menu).The list file is stored in the project directory in a file called
“listfile.txt”.

System Event Log

GDIdb will generate a system log file if Generate System Log is enabled in the Program
Settings dialog (under the Tools menu). GDIdb will write time and date stamped information
to this file indicating the results of each of the following operations:

1. Publish
2. Run Default Script
3. Open/Run Script
4. Upload to Web Server
5. Auto Publish

The system event log dialog includes filters allowing you to view entries with errors only or
recent (last 5 days) entries only. The log is stored in the GDIdb program directory in a file
called “logfile.txt”, if you click on the reset log button GDIdb will delete the contents of this
file.

Notes:
1. This control will be disabled if Generate System Event Log (in Program Settings under the
Tools menu) is not enabled.

Edit Output Files

After a script file has been run, GDIdb will have created a list of files to be transferred to
your web server. You may view/edit the files before transferring them to your web server by
selecting Edit Output Files under the Files menu.
To edit a file, double-click on a filename (or select it and press the edit button) to open the
HTML file in your text editor. If you wish to have the names of any files you edit added to
GDIdb's changed only file list check the "Mark opened files as changed" box.

Note: If you check the "View changed files only" box, only those files which have changed
since the last project publish or FTP upload will be shown. (This is the list of files that will be
copied to the web server if Upload changed only files is selected under FTP Options in the
Project Settings dialog.)
If View changed only files is left unchecked, all of the files generated by the last-run script in
the current project will be shown. (This is the list of files that will be copied to the web server
if Upload all GDIdb output files is selected in FTP Options.)

Clear Status Error Flag

Any errors encountered by GDIdb whilst publishing, executing script files or moving files to
your web server will set the error status flag in the status bar (When set, an exclamation
mark will appear in the right hand corner of the status bar).

The error status flag is provided as a fast means of checking for publishing errors without
having to examine the system log and will remain set until manually reset.

Select Clear Status Error Flag under the Tools menu to reset this indicator.

Show Project Toolbar

Select this menu item to show/hide the GDIdb project toolbar. The project toolbar allows
common project commands to be conveniently executed and is situated on the left of the
program window.

Show Status Bar

Select this menu item to show/hide the GDIdb status bar.

Show Main Toolbar

Select this menu item to show/hide the main GDIdb toolbar. The main toolbar contains a
drop-down listbox containing the name of the current project, together with buttons for
adding and deleting projects.

Reset Project Upload Status

If you are using the GDIdb upload changed files only feature, (configured under FTP Options
in the Project Settings dialog) you may wish to reset the current project's list of upload files,
causing all files to be uploaded on the next publish operation. Reset Project Upload Status
will result in all script output files being marked as changed.

Project Settings

Project settings are unique for each project. To edit a project's settings, select the project
name from the project drop-down listbox in the GDIdb toolbar before opening the project
Settings dialog. GDIdb stores the following configuration information in the Project Settings
dialog:

Publish Actions
Scripter Settings
ODBC
Helper Applications
FTP Logon
FTP Firewall
FTP Options
On Error

FTP Logon (Project Settings dialog)

If Transfer HTML files to Web Server is enabled on the Publish Actions dialog, GDIdb must
know the following information before it can successfully execute Publish, Auto Publish and
Upload Files to Web Server commands.

Host Name
This is the domain name you use when uploading files to your web server (e.g.
www.yourcompanyname.com). Sometimes the host name for FTP upload is different to the
name in your web URL. If you are not sure what it is, check the documentation provided by
your web server provider.

Port
This is the port number on which your web server accepts FTP connections. The default
value is 21.

Username
This is the username used when logging on to your web server to upload files by FTP. If you
are not sure what it is, check the documentation provided by your web server provider.

Password
This is the password used to log on to your web server. If you are not sure what it is, check
the documentation provided by your web server provider.

Account
This is the account name used to log on to your web server. It is almost certainly not
required, in which case leave it blank.

Use passive mode
Some firewalls require a passive mode FTP transfer. Check this box if you have difficulty
connecting through your firewall.

Web Server Directory
This is the root directory on your web server where your HTML documents will be stored.
After logging on to the web server, GDIdb will change to this directory before starting FTP
upload of the files. Leave this box blank if the files are to go in the root directory of the web
server, otherwise enter the pathname you require. e.g. homepages/fred

Helper Applications (Project Settings dialog)

Database Software:
If you select Open/Edit Database from the File menu, this command line will be executed.
Enter (or browse for) the path to your database software, followed by the path to the
database file you wish to open. This information is optional and does not need to be
provided in order for the project to work.

 Example:
The following command line opens the demo database (supplied with GDIdb) using Microsoft
Access on the author's computer.

C:\MSOffice\Access\Msaccess.exe "c:\progra~1\GDIdb\projects\default\workweb.mdb"

Publish Actions (Project Settings dialog)
When GDIdb executes either a Publish or Auto-Publish command, a set sequence of events is
triggered. Tick the check boxes of all the actions that you would like to occur on these
commands (for the currently-selected project). The sequence of execution of these events is
from top to bottom of the dialog.

1. Run this off-line script file. You will almost certainly want a script file to be run on
Publish. Enter the name of the script file you wish to run in the edit box. Typically this script
is used to perform off-line tasks (such as generating web site HTML files) before GDIdb
connects to the Internet and FTP's the output files to the web server (if applicable).

2. Establish dial-up Internet connection. If you want GDIdb to dial up your Internet
connection before transferring files to your web server, tick this box. The dial-up connection
will be maintained until the following FTP operation is complete (if selected) and the second
script file has been run (if applicable).

3. Run this on-line script file. If you want a script file to be run after the dial-up Internet
connection is made, check the box. Enter the name of the script file you wish to run in the
edit box. Typically this script is used to perform on-line tasks (such as retrieving e-mails from
a POP3 mailbox) whilst your computer is connected to the Internet.

4. FTP HTML files to Web Server. If you check this box, GDIdb will establish a FTP
connection with your web server and transfer all of the HTML files generated by the last run
script file. Make certain that you have all of your web server details entered on the Project
Settings/Web Server dialog.

5. Execute this command. If you would like GDIdb to execute a DOS/Windows command
after all of the above actions are complete, check the box and enter the command in the
edit box.

FTP Firewall (Project Settings dialog)
Firewall type
If you are not connecting to the Internet via a firewall or proxy, leave firewall type set to
none. Otherwise, select the appropriate firewall logon for the firewall or proxy you are using.

Host Name
Enter the domain name or IP address of your proxy server.

Port
Enter the port number on which your proxy server accepts FTP connections. The default is
21.

User name
Enter the user name needed to log on to your firewall. Leave blank if not required.

Password
Enter the password needed to log on to your firewall. Leave blank if not required.

FTP Options (Project Settings dialog)
Upload changed only output files: (See notes below)

If you are publishing a large database, a complete upload of all of the files generated
by GDIdb may take some time. If only a few records in your database have changed,
there will only be a few HTML files which require updating. Selecting this option will
result in GDIdb only moving those files to the web server which have changed since
the last time this project was published.

Upload all output files:
Select this option if you require GDIdb to upload all output files on each publish and
auto-publish operation.

Upload all files in directory:
Select this option if you want GDIdb to upload all files in the local HTML directory to
the web server on publish operations. Files which exist in sub-directories of the local
HTML directory will not be copied to the web server using this option and delete old
files from web server cannot be used if this option is set.

Delete old files from web server: (See notes below)
GDIdb will normally overwrite existing files of the same name, although if you check this box
GDIdb will delete any files moved to the web server on the previous publish which do not
appear in the list of files generated by the current publish operation. This option is useful to
prevent a build-up of un-referenced files developing on the web server as your database
contents reduce.

Generate error on local file not found:
Whenever a script file is run, GDIdb will add the names of any changed files to the changed
file upload list. This list is only ever reset by a FTP upload operation, if you run your script
several times between uploads there is the possibility of a filename appearing on this list
(generated the 1st time the script was run) which no longer exists (deleted the 2nd time the
script was run). Check the box if you would like to terminate an FTP upload if this situation
occurs.

Resume failed upload:
Normally if an upload fails on an error a repeat upload attempt will start from the beginning.
If you are using the upload changed-only files option, check this box to resume the next
upload where the previous failed upload left off.

FTP Re-Try
In the event of a failed FTP upload, GDIdb can be configured to re-attempt the operation.
Enter the amount of attempts you would like GDIdb to make before terminating the
operation with an error, together with the pause (in minutes) between re-tries. This feature
is provided mainly to increase the reliability of auto-publish operation, if you are initiating
the upload manually we recommend a value of 1.

Notes:
1/ Do not run multiple scripts from the same project if you select either Upload changed-only
GDIdb output files or Delete old files from web server. Their correct operation depends upon
the project being used to maintain a single web site by running a single project script.
2/ If you select “Upload changed-only GDIdb output files” and “Delete old files from web

server” you must also select “Delete old HTML files when script is run” under Scripter
Settings. If you do not do this, there is a risk that under certain circumstances some required
files may not be uploaded to your web server.

Scripter Settings (Project Settings dialog)
Project script directory
The default project script directory is named after the project and is found inside a directory
called "projects" within the GDIdb program directory. If you wish to use a different directory
for storing your project scripts, enter the path here.

Root HTML directory
The default project html directory (where HTML files generated by GDIdb are stored) is called
html and can be found within the project directory. If you would like to change the html
directory, enter the path (either relative to the GDIdb current project directory or an
absolute path) in the Root HTML directory edit box. e.g. a path of C:\mydir will cause all
project html files to be stored in mydir located in the root directory of the C drive.

Delete old HTML files when script file is run
If this box is checked, GDIdb will delete all HTML files (from the local project HTML directory)
generated by the last-run script which were not overwritten by the current script. Check the
box to prevent a build-up of unused HTML files in your local HTML directory, leave it
unchecked if you wish to keep HTML generated by the last-run script.

Generate scripter list file
GDIdb will create a list file every time a script file is run if this option is selected. If your
script is producing error messages, enable this option, re-run the script and then view the
scripter list file by selecting View Scripter List Output from the View menu. It should be
possible to see where in the script the error was encountered, the error will always be at the
end of the list file since any errors will terminate script execution.

Generate error if function name not found
GDIdb will generate an error if the text label following a & character is not a recognized
GDIdb function or subroutine name. If you clear the checkbox, GDIdb will ignore any function
names it does not recognize. This allows you to include (for example) sequences such as
 in your HTML without preceding them with a \ character- note however that a miss-
typed function or subroutine name will not be picked up as an error!

ODBC (Project Settings dialog)
Datasource Column Data
GDIdb needs to allocate memory as a temporary store for your datasource data. Enter the
maximum amount of memory (in Kilobytes) that should be allocated for each column. This
figure will also be used in the instance that GDIdb is unable to find out from the database
how big the data field is. GDIdb will check for overrun of this buffer whilst fetching data from
the datasource and halt the script with error 18 if it occurs. The default value for this setting
is 64Kb.
Note: Binary records are extracted from the database in Hex, this means that you must
allocate twice as much memory for binary records than the actual size of the database
record.

ODBC Cursor Library
GDIdb requires a scrolling database cursor. If you are using an ODBC driver that does not
support a scrolling cursor, GDIdb can use the ODBC cursor library to provide this
functionality. If you select Use if needed, GDIdb will attempt to decide whether the ODBC
cursor library is required.
If your ODBC driver supports a scrolling cursor directly, it is inadvisable to force use of the
ODBC cursor library, as this will result in slower script execution and increased memory
usage.

On Error (Project Settings dialog)
If GDIdb encounters an error during any project operation, you may wish to configure the
software to automatically take some action. The On Error dialog allows you to enter the path
to a script file which will be run on any project error condition. If you are using the auto-
publish feature for example, this script could be used to alert you to the error by sending
you an e-mail containing the error message.

Example:

get error message
&defvar(?errormsg?)
&geterror(?errormsg?)

dial Internet connection
&dialup(TRUE)
{

send e-mail
&sendmail ("smtpmail.mydomain.com" , "gdidb@mydomain.com " ,

"me@mydomain.com ")
{

HEADER:
From: "GDIdb"
To: "Me" <me@mydomain.com >
Subject: GDIdb Error!
Date: ?gdidbdate.dn?, ?gdidbdate.d? ?gdidbdate.mn? ?gdidbdate.y? ?gdidbtime?

BODY:
On ?gdidbdate? at ?gdidbtime? the following error occurred:
?errormsg?

}
}

Program Settings

GDIdb stores the following configuration information in the Program Settings dialog:

Auto-Publish project
Auto-Publish Schedule
Connection Details
Helper Applications
Program Behavior
Network Control

Helper Applications (Program Settings dialog)
Editors/Web Browser:
GDIdb uses external software to edit scripts, view list files and preview HTML. You need to
enter the full pathname for your preferred text editors and web browser in the text boxes
provided if you wish to change them from the defaults.
(e.g.: c:\program files\plus!\microsoft internet\iexplore.exe)

The default web browser is initialized to the default Windows web browser defined on your
system.

Note: If you delete the text contained in the web browser edit box and restart GDIdb, the
web browser text box will be initialized to the path of the current Windows default web
browser.

Auto-Publish Schedule (Program Settings dialog)
GDIdb can automatically publish projects at pre-determined intervals.
Check the Program Settings/Publish Actions dialog to make certain that auto-publish is
enabled and that a properly configured project is selected in the drop-down list box.

Auto-Publish Times
Enter a list of times here when you require GDIdb to publish your project. The time must be
entered using the 24 hour clock in the format: HH:MM and be between the values 0:00 and
23:59 e.g.: 15:30
Connection times are only accurate to within 1 minute.

Auto-Publish Days
Tick the days when you want publishing to occur.

Note:
Changes made to the publish schedule will sometimes not take effect until the following day.
If it is important that they take effect immediately, shut down and restart GDIdb. Any auto-
publish actions that are pending when GDIdb is run will occur within a minute of the program
being started up.

Connection Details (Program Settings dialog)

If you are using a dial-up Internet connection to copy your HTML files to your web server,
you need to fill in your Internet account details here. You will also need to tick the “Establish
Dial Up Internet connection” check box on the Publish Actions dialog under Project Settings.

Phone Book entry:
This is the name given to the Windows 95/N.T. Dialup connection that you will be using to
connect to the Internet. Select the connection you require from the drop-down list box, if the
list box is empty, you will need to create a phone book entry before continuing (Click on My
Computer/ Dial Up Networking).

Username:
This is the username used to log on to your Internet connection. If you are not sure what it
is, check the documentation provided by your Internet service provider.

Password:
This is the password used to log on to your Internet connection. If you are not sure what it is,
check the documentation provided by your Internet service provider.

Number of times to attempt connection:
If your Internet service provider is engaged or there is some other reason why the dial-up
connection does not succeed, this is the number of times GDIdb will attempt to connect
before canceling the operation. We recommend a value of 3.

Program Behavior (Program Settings dialog)
Process Priority
Select the process priority you wish to assign to GDIdb. A high priority will ensure GDIdb
executes as fast as possible, a low priority will allow GDIdb to run in the background without
slowing your other software down.

Program Window
If Close window shuts program down is not selected, clicking the [X] icon in the top-right of
the program window will merely hide the program window. Use this feature if you'd like to
run GDIdb in the background. Double-click the GDIdb program icon in the status area of the
Windows taskbar to make the program window visible.
Select Hide window on startup if you would like the window to be hidden when GDIdb is run.
Selecting Show window on error will result in a hidden program window becoming visible in
the instance that an error is encountered during an auto-publish operation.
Selecting Allow multiple instances of GDIdb will allow more than one copy of GDIdb to run at
the same time. If you wish to run multiple instances of the program, it is advisable to run a
separate physical copy of the program- you can do this by copying all of the contents of the
GDIdb program directory into a new folder.

Logging
GDIdb will generate a system log file if this option is enabled. GDIdb will write time and date
stamped information to this file indicating the results of each of the following operations:

1. Publish
2. Run Default Script
3. Open/Run Script
4. Upload to Web Server
5. Auto Publish

If you are using the auto publish feature, we recommend that you enable logging, as it may
otherwise be difficult to troubleshoot errors. View the log contents by selecting System
Event Log from the View menu.

Auto-Publish Project (Program Settings dialog)

Check Enable Auto-Publish if you would like to have a project automatically published to a
predefined schedule. You will need to select the project to be used in this operation from the
drop-down listbox.
It is a good idea to check that the project dialup and web server settings are correct first by
manually executing publish and checking for error messages.
The sequence of events triggered by auto-publish is defined in Project Settings/Publish
Actions (under the Project menu). The possible actions are:

1. The off-line project script file is run.
2. A dial-up Internet connection is made.
3. The on-line project script file is run.
4. The HTML files generated by the scripter are copied to the web server.
5. A user-defined DOS or Windows command is executed.

If GDIdb encounters problems whilst auto publishing, the error flag in the right hand side of
the program status bar will be set. View the system log by selecting System Event Log from
the View menu for details of the problem.

If you are using GDIdb in auto publish mode, you can configure the software to run
unobtrusively in the background. Place a shortcut to GDIdb in your startup folder (see
Windows Help) and enable Hide Window on startup in the Program Settings/Program
Behavior dialog (Under the Tools menu). GDIdb will now start invisibly whenever you start up
Windows, double-click on the GDIdb icon in the status area of the Windows taskbar to bring
up the GDIdb window should you wish to alter any settings.

Select Show Window on Error in the Program Settings dialog and the program window will
automatically appear if GDIdb encounters problems whilst publishing your project.

Note:
The only files copied to the web server by the auto publish command are the HTML files
generated by GDIdb. Any other files in the HTML directory (such as .GIF or .JPG files) are not
copied. These files should be transferred to the web server manually.

Network Control (Program Settings dialog)

GDIdb can be operated from a remote workstation on your network (or the Internet) via a
TCP/IP network connection. This feature allows several people to operate GDIdb (running on
a central server) from their desktop P.C.
Check Enable network control server to enable this feature, GDIdb will then listen for
network connections on the specified port.
A simple remote control client is included with GDIdb, this program (called "remote.exe")
may be found in the GDIdb program directory.

Note: You must restart GDIdb before any changes made to Remote Control Server Settings
will take effect.

User level access security is provided by a user name and password, which must be supplied
before remote commands may be executed. User names and passwords are checked against
a file called "passwords.txt" which GDIdb keeps in the program directory (you can add/delete
users from the Network Control dialog).

Comman
d

Function

run Executes the off-line script of the current
project unless a script name is passed as
an argument, e.g. run script.scp

ftp Performs an FTP upload (using the
publish settings of the current project).

publish Publishes the current project.
user Initiates logon of the user name passed

as an argument, e.g. user philip
pass Completes logon by providing the

password of the user, e.g. pass
philspassword

help Lists the available remote commands.
state Returns the logon state. (0=not logged

on, 1=user name provided, 2=user fully
logged on.)

lock Claims program lock, preventing other
remote control clients from executing
run, ftp, publish, project and lock
commands. If lock cannot be gained (i.e.
it's already held by someone else) GDIdb
will return 551 Busy.

unlock Releases the program lock (above).
project Changes to the project name passed as

an argument, e.g. project default.
logof Closes the network connection.

GDIdb will return a response code (together with a short message) for each command.
These are as follows:

Response Meaning
220 Connection successful- server awaiting

logon.
331 User name accepted, server awaiting

password.
230 User logged in .
500 Command not understood.
214 Command successful.
200 Command successful.
503 Bad sequence of commands (e.g.

attempt to execute publish command
before logging in).

530 User not logged in (login failed).
550 There was an error (either in a script file

execution or a FTP upload). The actual
GDIdb error message will follow the error
code.

551 GDIdb is busy & the command was
ignored.

GDIdb can accept up to 10,000 simultaneous remote control network connections, if the
program is currently processing an action it will however return response 551 and ignore the
command. If you are using the project command to publish different projects from different
workstations you should use the lock command to gain exclusive control of GDIdb before
changing project.

Note: When executing the publish command, GDIdb V4.1 and earlier returned 2 responses,
one for the script execution and one for the FTP upload. With this version this is no longer
the case- only a single response message will be returned. In addition, passing a script file
name with a publish command is no longer supported.

Example:
A typical telnet remote control session might proceed as follows:

220 Hi from GDIdb
user harry<cr>
331 Password required for harry
pass harry1<cr>
230 OK
run script.scp<cr>
200 OK
ftp<cr>
200 OK

Application Title (Program Settings dialog)
Application Title
Enter the text that you wish to be displayed as the application title.

Application welcome message
Enter the text that you wish to be displayed in the GDIdb status window when the
application is first run.

Don’t show this dialog in future
After customizing the identity of GDIdb, tick this box to hide the Application Title dialog.
Please note that after doing this, the only way of making the dialog re-appear is by editing
(or deleting) the gdidbl.ini file found in the GDIdb program directory.

Project Toolbar

The project toolbar is displayed to the left of the application window. The project toolbar
provides quick mouse access to common GDIdb project commands.

Main Toolbar

The main program toolbar is displayed on the top of the application window. The main
toolbar provides quick mouse access to many GDIdb program commands.

Status Bar

The status bar is displayed at the bottom of the GDIdb window.

The left area of the status bar describes actions of menu items as you use the arrow keys to
navigate through menus. This area similarly shows messages that describe the actions of
toolbar buttons as you depress them, before releasing them. If after viewing the description
of the toolbar button command you wish not to execute the command, then release the
mouse button while the pointer is off the toolbar button.

The right areas of the status bar indicate the following:

Indicator Description
IDLE/BUSY Indicates whether the program is currently processing an action.
! A '!' in the Status bar error indicator indicates that there has been an

operational error since the flag was last cleared. The flag may be cleared by
selecting Clear Status Error Flag from the Tools menu.

Cancel

Press the cancel button to terminate the current command.

FTP Upload

The FTP upload button on the project toolbar will initiate FTP upload of GDIdb script output
files to the web server. The FTP settings for this operation are the same as those used for a
publish operation and are configured in the Project Settings property sheet (under the
Project menu).
Further FTP commands are available under the Project menu.

Project Select

The project select combo box allows the active project to be changed.

Project Add

The new project command allows the creation of a new GDIdb project.

Project Delete

The delete project command will delete the current project.

Note: All files stored in the project directory and html sub-directory will be deleted on this
command.

Index command

Use this command to display the opening screen of Help. From the opening screen, you can
jump to step-by-step instructions for using GDIdb and various types of reference information.

Once you open Help, you can click the Contents button whenever you want to return to the
opening screen.

Using Help command

Use this command for instructions about using Help.

About command

Use this command to display the version number and registration details of your copy of
GDIdb.

Context Help command

Use the Context Help command to obtain help on some portion of GDIdb. When you choose
the Toolbar's Context Help button, the mouse pointer will change to an arrow and question
mark. Then click somewhere in the GDIdb window, such as another Toolbar button. The Help
topic will be shown for the item you clicked.

Shortcut
Keys: SHIFT+F1

Title Bar

The title bar is located along the top of a window. To move the window, drag the title bar.

Note: You can also move dialog boxes by dragging their title bars.

Move command

Use this command to display a four-headed arrow so you can move the active window or
dialog box with the arrow keys.

Shortcut
Keys: CTRL+F7

Close command

Use this command to hide the program window.

Double-clicking a Control-menu box is the same as choosing the Close command.

Shortcuts
Keys: ALT+F4

Restore command

Use this command to return the active window to its size and position before you chose the
Maximize or Minimize command.

Switch to command

Use this command to display a list of all open applications. Use this "Task List" to switch to or
close an application on the list.

Shortcut
Keys: CTRL+ESC

Dialog Box Options
When you choose the Switch To command, you will be presented with a dialog box with the
following options:
Task List

Select the application you want to switch to or close.
Switch To

Makes the selected application active.
End Task

Closes the selected application.
Cancel

Closes the Task List box.
Cascade

Arranges open applications so they overlap and you can see each title bar. This option
does not affect applications reduced to icons.

Tile
Arranges open applications into windows that do not overlap. This option does not affect
applications reduced to icons.

Arrange Icons
Arranges the icons of all minimized applications across the bottom of the screen.

No Help Available

No help is available for this area of the window.

No Help Available

No help is available for this message box.

GDIdb Professional

GDIdb Professional provides a complete scripting solution for small businesses using a dial-
up or ISDN Internet connection. From automatically publishing database data on your web
site to receiving and processing web form data submitted on your web site, GDIdb
professional provides the most powerful and flexible solution without requiring the luxury of
a leased-line Internet connection and in-house web server. Because GDIdb is script based,
you may feel that there is a lot to understand. but there is a big payback for the effort.
Simply put, with GDIdb you get the site looking and working 100% how you want it. If you're
in a hurry, the Script Wizard utility provided with GDIdb can produce one of 5 template
scripts from your database data in minutes- you still have control over the appearance of the
web site generated by adding HTML to the Script Wizard script. If you'd like to really get to
grips with the tool, follow the tutorials provided in the Script Studio utility help (Run Script
Studio from the GDIdb Tools menu). Both the tutorials and the script language reference are
also available (as downloads from the GDIdb web site) as .rtf files, allowing you to print out a
hard copy to work with.

Here's what you can do with GDIdb Professional
Database publishing
1. Format your database data on your web page any way you want it
2. Create any linked structure that you can imagine from simple & complex relational
databases
3. Once the script is written, publish your site at the click of a button
4. Minimize upload times by only uploading files that have changed since the last publish
5. Automatically publish your database to a preset schedule of unattended publishing
6. Work with or without CGI scripts to produce a static html "snapshot" of your database or
to provide a flat-file database on your web server synchronized with a database on your
local P.C
Data retrieval
1. Retrieve data from a form on your web page and get it back into a database on your
desktop P.C.
2. Give your database an e-mail address, where e-mails are automatically loaded into a
database table.
3. Collect data from the web (via HTTP) and insert into a database.
Scripted e-mail
1. Send and receive e-mails as scripted responses to actions (such as form data submitted
on your web page).
2. Create subscriber mailing lists (requires only 2 free POP3 mailboxes).
3. Generate personalized e-mails from database data.

Creating a web site without CGI scripts
GDIdb works by locally executing a script file that describes how to construct a web site from
the datasource, the output of this process is a web site that represent both the structure of
the database and the information within it. A Script Wizard is included with GDIdb, this utility
provides an easy way to create the script you need without having to learn the GDIdb script
language, although by editing the script file manually you have total control over the
appearance and structure of the HTML generated by GDIdb. A wizard-driven script
development tool (Script Studio) is included with the software to further develop your
scripts. The data source itself must be available (as an ODBC compatible database or
spreadsheet file) to the computer on which GDIdb is running.
After converting the datasource content to HTML, GDIdb can establish a dial-up connection
to your Internet service provider and use this connection to copy the HTML documents to

your web server. If you are publishing a large database, GDIdb can be configured to upload
only those files which have changed since the last publish, allowing you to keep your web
site up-to-date without having to upload the whole site each time.
Each stage of the operation, from editing and running a script file to uploading the HTML
files to the web server can be done manually, although the Publish function will complete
the whole process. An auto-publish facility is included, allowing a schedule of unattended
publishing to be created. Clicking the publish button on the GDIdb program toolbar is all that
is required to publish your database/spreadsheet to the web, allowing manual updating of
the web site to be easily performed.

Using GDIdb with CGI scripts
GDIdb can also be used in conjunction with CGI scripts on the web server. The software
provides powerful features for automatically synchronizing a flat-file database on your web
server with the contents of a database or spreadsheet held on your local P.C. Because the
system can refresh the server side database by uploading only those database records
which have changed since the last update, a large database on the web server may be kept
fully up-to-date without having to spend hours uploading the entire set of data each time. An
auto-publish feature is provided to automatically update the server-side database at pre-
defined times and days.

Script Language Overview
This concise script language reference is provided in the GDIdb main program help file, if
you are a non-programmer you may prefer to work through the somewhat easier to digest
tutorials and information included in the Script Studio Help file!

The core of a GDIdb project is a script file. For database/web publishing, this script forms a
template for the design of your web site and contains HTML along with embedded functions
to control how the datasource information is merged with the HTML. Tutorials are provided in
the Script Studio help- we recommend that you work your way through these for a quick
introduction to the script language.
If you're a seasoned programmer you might find GDIdb script language itself is a bit unusual.
(See the description of blocks below.) The language has been designed to focus totally on
the job of merging database data with text or HTML, we hope that once you've got the hang
of the basics you'll agree that the way we've done it makes sense.
Rather than start writing your own scripts from scratch, we suggest that you run ScriptWiz to
generate a basic script file, which you can build on. It is far easier to start with something
that is already working and modify it until it is what you require. If you want to write your
own script from scratch, please follow the Script Studio tutorials first.

Note: If you wish to cancel execution of a running script, press the esc key.

Conventions:

Special characters:
The characters & \ ? # () } and { have special meanings in script files. To include one of
these characters in your HTML, insert a \ character before the character, e.g. if you want a ?
character to appear in your HTML you must put the sequence \? in your script file. To insert
the \ character itself in your HTML, use the sequence \\ in your script file.

Comment text:
If a # character is found in the script file, the script processor ignores all characters until the
end of the line. Use this character to mark the start of a comment line.

Function names:
GDIdb has 2 different types of functions. All functions whose name begins with an
ampersand & character do not return a value, if a value is generated by the function it is
normally assigned to the variable(s) passed as the 1st argument(s) to the function. These
functions may be mixed with your HTML to provide database data just where you want it.
Functions whose name does not begin with an ampersand return a value, and must be used
within an expression.

Function arguments:
Script function arguments may consist of text strings or arithmetic/Boolean expressions. If
the argument type (text or numeric) is unknown, arguments enclosed within double-quotes
are treated as a text string value, otherwise GDIdb attempts to evaluate the argument as a
arithmetic/Boolean expression.

Blocks:
Most script functions operate on blocks. A block is defined as the text contained within a set
of opening and closing curly braces { } placed immediately after the function. The text
contained within the curly braces may consist of HTML or further GDIdb functions. Like many
programming languages (e.g. Perl and C), GDIdb script language uses { } enclosed blocks
to define scope of execution, e.g. a block following an if statement will only be executed if
the argument to the if statement evaluates true. GDIdb extends the use of blocks to include

database variable scope and html output file scope.

Variables:
All script variable names (datasource, system and user-defined) start and end with the ?
character. At any point in a script file where GDIdb encounters a variable, (except within
function arguments) GDIdb will substitute the contents of that variable. This allows variables
and HTML to be freely mixed.
Datasource variable names are taken directly from the column names of the recordset
returned by a previous &sql or &getdata function.
Script system variables override any datasource variables of the same name.

Alternate Syntax:
See help topics on alternate script syntax for more information on the GDIdb alternate script
syntax.

Script Language- Alternate Syntax
GDIdb script language has been based on block-structured languages such as C and Perl. An
alternate HTML tag-like syntax is however supported to allow the use of template HTML files
which may be edited using a WYSIWYG HTML editor.

The alternate syntax has the following rules:

1. All function names start with <f instead of &
2. All function names end with >
3. Any arguments to the function are passed after the function name, but before the closing
> character. There must be a space between the function name and the first argument,
multiple arguments are separated using a comma.
4. Any functions that operate on blocks do not need to be followed with a { character, but
the block must be closed with a </functionname> tag.
5. When making arithmetic comparisons, the following characters are illegal for obvious
reasons < >. Instead, you can use the alternative comparison operators outlined in the help
section on arithmetic expressions.
6. If you are using template HTML files, do not precede special GDIdb characters with a \
character either in your HTML or in text strings passed to function arguments. (The GDIdb
pre-processor will add the \ character.)

Example:

&print("Hello!")

becomes:

<fprint "Hello">

&getdata("SELECT * FROM Table")
{

?row1?
}

becomes:

<fgetdata "SELECT * FROM Table">

?row1?

</fgetdata>

&if(?test?>1)
{

. . .
}
&else
{

. . .
}

becomes:

<fif ?test?gt1>
. . .

</fif>
<felse>

. . .
</felse>

Arithmetic and Boolean Expressions
GDIdb script language supports basic arithmetic and Boolean expressions, these may be
used whenever a function argument expects a numeric value. An arithmetic/Boolean
expression may consist of a series of numbers, variables, functions and operators, the
allowable operators are:

+ Unary plus
- Unary minus
+ Addition
- Subtraction
/ Division
/i Integer division
% Integer modulus
* Multiplication
! Logical NOT (unary)
~ Bit-wise NOT (unary)
== test for equality
!= test for inequality
< or lt test for less than
<= or le test for less than or equal to
> or gt test for greater than
>= or ge test for greater than or equal to
& Bitwise AND
| Bitwise OR
^ Bitwise XOR
&& Boolean AND
|| Boolean OR

Operator and function precedence (highest at the top) is:
() Use brackets to force highest precedence.
+ - (When used as unary operators)
! ~ fn(n)
* / /i %
+ - (When used as add/subtract)
& | && || ^
< <= > >=    ==    !=

Expressions are evaluated left to right.

The return value from a Boolean operator is 1 if true and 0 if false.

GDIdb supports floating-point arithmetic, the following are all valid numbers:
143
245.67
2.3472e22
6.4353e-221

The numeric range allowed is 1.7E–308 to 1.7E+308 with 15 digits of precision. Please note
that GDIdb stores numeric values in variables as the decimal representation (there is no
difference between a text string of numeric digits and a numeric value).

See help topics on the &assign function for details on how to assign the results of an
arithmetic/Boolean expression to a variable.

Example:

(2+6)/4 Returns 2

(2+3)>1 Returns 1 (true)

(4*5)>500 Returns 0 (false)

Text String Expressions
Many Script functions take string expressions as their arguments. A text string expression
consists of "" enclosed text which may contain embedded variables. Any embedded
variables will be translated when the string expression is evaluated.

Special characters:
The characters & \ ? # () } and { have special meanings. To include one of these
characters in a text string expression, insert a \ character before the character, e.g. if you
want a ? character to appear in your text, you must put the sequence \? in your text string
expression. To insert the \ character itself in your text, use the sequence \\ in your text string
expression.

Escape characters:
Escape characters allow you to include ASCII control characters in a text string. Available
escape characters are:

Escape
sequence:

Inserts:

\n New line
\t Tab
\v Vertical tab
\b Backspace
\r Carriage return
\f Form Feed
\a Alert (Bell)
\0 NULL character

Note:
If you pass a text string to a function using a variable, it must still be enclosed in double
quote characters. Variables appearing without enclosing double-quotes are assumed to
contain numeric values rather than text, if the variable contains text an error will be caused
by GDIdb attempting to treat it as a numeric expression.

 Examples:

&defvar(?var1?,?var2?)
&assign(?var1?,"index.html")

&html("?var1?")
{

&assign(?var2?,"Writing to file ?var1?")

Variable ?var2? contains the text "Writing to file index.html"
}

abs(n)

Use this function to calculate the absolute value of a number

The abs function will return the absolute value of the number passed as the argument (e.g.
remove the sign). This function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,abs (-0.2))
variable ?var1? will now contain 0.2

acos(n)

Use this function to calculate the arccosine of a number

The acos function will return the arccosine (in radians) of the number passed as the
argument. This function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,acos (0.2))
variable ?var1? will now contain the arccosine of 0.2

&arraydelete(?variablename1?,?variablename2?..)

Use this function to delete arrays of variables

The &arraydelete is similar to in operation to the &delete function and will delete all
elements of each of the user-defined variable arrays passed as arguments to the function.
Please see the section on Variable Arrays for a more in-depth treatment of how GDIdb
handles arrays.

Alternate syntax:
<farraydelete ?variablename1?,?variablename2?,..>

Note: Any arrays still in existence at the end of the script are automatically deleted.

Example:

&html(“index.html”)
{

declare array
&defvar(?myvar[10]?)

&assign(?myvar[4]?,"Hello!")
referencing ?myvar[4]? will insert "Hello" in the html file
?myvar[4]?

&arraydelete(?myvar?)

Any references to array ?myvar? will now cause an error

}

&arraysize(?variablename?,?arrayname?)

Use this function to find out how many elements are in a variable array

The &arraysize will calculate the number of elements in the array passed as the second
argument and assign this number to the variable passed as the first argument. If the
variable array does not exist, a value of zero is assigned.
Please see the section on Variable Arrays for a more in-depth treatment of how GDIdb
handles arrays.

Alternate syntax:
<farraysize ?variablename?,?arrayname?>

Example:

&html(“index.html”)
{

declare array
&defvar(?myvar[10]?)

declare variable
&defvar(?asize?)

&assign(?myvar[4]?,"Hello!")
referencing ?myvar[4]? will insert "Hello" in the html file
?myvar[4]?

&arraysize(?asize?,?myvar?)
the following reference to ?asize? will insert '10' into the html file
?asize?

&arraydelete(?myvar?)

&arraysize(?asize?,?myvar?)
the following reference to ?asize? will insert '0' into the html file
?asize?

}

&ascii(?varname?,"string",n)

Use this function to get the ASCII code of a character in a text string

The &ascii function assigns the ASCII code of the character at index n in the text string
expression passed as a second argument to the variable passed as the first argument. The
index is zero-based, e.g. index of 0 will evaluate the first character in the string. If a third
argument is not supplied, an index of zero is assumed.

Alternate syntax:
<fascii ?varname?,"string",n>

Example:

&html("index.html")
{

&defvar(?var1?,?var2?)
&assign(?var1?,"abc")

&ascii(?var2?,"?var1?",1)
?var2? will now contain 98 (the ascii code for 'b')
?var2?

}

asin(n)

Use this function to calculate the arcsine of a number

The asin function will return the arcsine (in radians) of the number passed as the argument.
This function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,asin (0.2))
variable ?var1? will now contain the arcsine of 0.2

&assign(?variablename?,expression..)

Use this function to set the value of a variable

The &assign function is used to assign the results of an arithmetic/Boolean expression or a
text string expression to a user-defined variable. Before the variable may be assigned to, it
must have been declared using the &defvar function.

GDIdb will attempt to evaluate the expression passed to the assign function as an
arithmetic/Boolean expression unless the expression is enclosed in double quotes in which
case it is evaluated as a text string expression
Note that ? enclosed variables embedded in arithmetic/Boolean expressions and text strings
will have the variable value substituted. If you wish to include a ? or “ character in a text
string, it must be preceded by a \ character.

Alternate syntax:
<fassign ?variablename?,expression..>

Notes:
1. If you wish to assign a text string to a variable, the text string must be enclosed in double
quotes even if the source text is in a variable.
e.g.
&assign(?var1?,"text message")
&assign(?var2?,"?var1?")
If you do not include the double quotes in the second &assign function, the assign function
will attempt to evaluate the contents of ?var1? as an arithmetic/Boolean expression, which
will result in an error.

2. &assign(?var?,1+2/3)
is the GDIdb equivalent of the BASIC statement
LET var=1+2/3

3. Multiple assignments can be made with a single &assign function by passing the assign
function a list of variable-value pairs, e.g:
&assign(?var1?,28 , ?var2? , "Test Message" , ?var3? , 34)
-assigns values to variables ?var1?,?var2? and ?var3?

Examples:

&html(“index.html”)
{

declare variable myvar
&defvar(?myvar?)

assign the value 5 to myvar
&assign(?myvar?,5)

insert the value held in myvar (5) into the HTML file
?myvar?

add the value 10 to myvar and assign this value back to myvar
&assign(?myvar?,?myvar?+10)

insert the value held in myvar (15) into the HTML file
?myvar?

create a text message using the contents of myvar
&assign(?myvar?,”Five plus Ten=?myvar?”)

insert the value held in myvar (“Five plus Ten=15”) into the HTML file
?myvar?

}

atan(n)

Use this function to calculate the arctangent of a number

The atan function will return the arctangent (in radians) of the number passed as the
argument. This function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,atan (0.2))
variable ?var1? will now contain the arctangent of 0.2

&break
Use this function to jump out of a script program loop

The break function is used to terminate execution of the smallest enclosing &loop,
&foreachrow, &do, &while, &for or &getdata block. The &break function will cause script
execution to resume after the end of the &loop, &foreachrow, &do, &while, &for or &getdata
block in which it was encountered.

Alternate syntax:
<fbreak>

Example:

The following example will write all the numbers between 9 and 1
to htmlfile1.html

&html(“htmlfile1.html”)
{

create a count variable, & initialize to 10
&defvar(?var1?)
&assign(?var1?,10)

this loop statement would normally execute indefinitely,
as it will always evaluate true
&loop(1)
{

&dec(?var1?)

check to see if variable has been decrement to zero
&if(?var1?==0)
{

break loop if variable has been decremented to zero
&break

}
?var1?

}
}

&chr(?variablename?,n)

Use this function to convert an ASCII code into it's character

The &chr function assigns the variable passed as the first argument the character whose
ASCII code is passed as the second argument.

Alternate syntax:
<fchr ?variablename?,n>

Example:

&html("index.html")
{

&defvar(?char?)
&chr(?char?,65)
variable ?char? now contains the character 'A'
?char?

}

&cls
Use this function to clear all text from the GDIdb status window

The &cls function clears the GDIdb status display window.

Alternate syntax:
<fcls>

Example:

clear status window
&cls
print message on first line of status window
&print("Starting Script execution")

&continue
Use this function to go back to the start of a GDIdb script loop

The &continue function will cause the script to start executing back at the start of the
smallest enclosing &loop, &foreachrow, &do, &while, &for or &getdata block. The script
between the &continue function and the block closing brace will not be executed.

Alternate syntax:
<fcontinue>

Example:

The following example will write all the numbers between 9 and 5
to htmlfile1.html

&html(“htmlfile1.html”)
{

create a count variable, & initialize to 10
&defvar(?var1?)
&assign(?var1?,10)

the following loop will loop 10 times
&loop(?var1?!=0)
{

&dec(?var1?)

check to see if count variable ?var1? is less than 5
&if(?var1?<5)
{

jump back to start of loop if ?var1? is less than 5
&continue

}
?var1?

}
}

cos(n)

Use this function to calculate the cosine of a number

The cos function will return the cosine of the angle (in radians) passed as the argument. This
function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,cos(1.2))
variable ?var1? will now contain the cosine of 1.2

&dataread(?variablename? ,"filename")

Use this function to read the contents of a text file into a variable

The &dataread function will read the contents of the text file whose name is passed as the
second argument into the variable passed as the first argument. Only text files may be used
with this function, as user variables cannot contain binary data. If only a filename is
provided, &dataread will include the contents of the file in the currently opened HTML file.
The second argument to the function must be a text string expression

Alternate syntax:
<fdataread ?variablename?,"filename">

Note: The file path may be an absolute path or may be relative to the current GDIdb project
directory.

Example:

&html(“htmlfile1.html”)
{

include the contents of "mytext.txt" into the HTML file
&dataread("mytext.txt")

the following would have the same effect:
&defvar(?var1?)
&dataread(?var1?,"mytext.txt")
?var1?

}

&datasource(“ODBC connect string”)

Use this function to tell GDIdb how to connect to your database

The &datasource function is used to declare the ODBC connect string that will be used for all
following datasource operations involving the &sql and &getdata functions and tells GDIdb
how to make a connection to your database. The function may be called at any time to
change the ODBC connect string used in all subsequent operations. If the &datasource
function is not called before a &sql or &getdata function is used, a dialogue will open when
the script file is run allowing the user to select a data source. The argument to the function
must be a text string expression

Alternate syntax:
<fdatasource "ODBC connect string">

The connect string contains information such as:
An ODBC Data Source Name (DSN) OR the path to a database/spreadsheet file, the name of
the ODBC driver to use and login and password information. (Locked databases only)

Each item of information in the connection string must be separated with a semicolon.
Remember that the \ character is a special character in GDIdb script language, to include a
single \ character in your connect string, you must insert two \\ characters.

Allowed keywords are:
ODBC DSN DSN=
ODBC Driver Driver=
Logon I.D. UID=
Password PWD=
File name DBQ=

Note that when specifying the ODBC driver, the driver name must be enclosed with curly
braces { }

GDIdb will try to connect to your database with the information you supply, but if the
information supplied in the connect string is insufficient to make the connection, a dialog will
open when the script is run asking for the missing information.

See ODBC Help for more information on connect strings.

Example:

Use “globaldata” ODBC DSN.
&datasource(“DSN=globaldata”)

Connect directly to a unlocked Microsoft Access file (the example provided with GDIdb)
&datasource(“Driver={Microsoft Access Driver (*.mdb)};DBQ=c:\\program files\\gdidb\\
workweb.mdb”)

Connect directly to a Microsoft Access file as user “Admin”, Password “secret”
&datasource(“Driver={Microsoft Access Driver (*.mdb)};UID=admin;PWD=secret;DBQ=c:\\
program files\\gdidb\\workweb.mdb”)

Connect directly to a Microsoft Excel file
&datasource("Driver={Microsoft Excel Driver (*.xls)};DBQ=c:\\program files\\gdidb\\
foodstore.xls")

&datawrite("filename",?variablename?,code)

Use this function to write a database field or variable contents to a file

The &datawrite function is used to write the contents of a variable directly to a file. If used
with a datasource variable, a binary transfer is made, allowing binary datasource fields (i.e.
image files) to be turned directly into files. Any files created by the &datawrite function are
stored in the local HTML directory. The local root HTML directory and the web server root
HTML directory can both be configured in the Project Settings dialog (under the Project
menu). The maximum size of the datasource field is restricted to the value set on the ODBC
dialog of Project Settings. The filename must be passed as the first argument to the function
and must be a text string expression, the second argument to the function is the datasource
variable containing the data.

The file path can consist of a filename and directory path, if you are writing data files to sub-
directories you must ensure that the sub-directories exist, both on your web server and in
your project local HTML directory. The file path given must be relative to the root HTML
directory.
GDIdb keeps a list of filenames created by the &datawrite and &html functions, all files on
this list are transferred to the web server on publish and Upload to Web Server commands.
You may view this list and edit the files themselves by selecting Edit Output Files (under the
Files menu).

Alternate syntax:
<fdatawrite "filename",?variablename?,code>

Notes:
1. See help topics on the &filelink    function, which provides the recommended method for
including binary files on your web site.
2. You cannot use a file path that attempts to create a file in a directory above the local
HTML root directory or a file path that is not relative to the local HTML root directory. e.g.
both of the following file paths are illegal: "C:\html\index.html" and "/mydir/index.html"
3. Directories in the file path may be separated with forward slashes or backward slashes-
remember that when using backward slashes in a string expression that you will need two
backward slashes: e.g. "mydir\\index.html"
4. Microsoft Access stores binary files as packaged OLE objects. Pass a code of jtolepk to
the function to extract an OLE Package from a binary database field (see example below).
OLE objects other than Packages are not supported, also since this feature uses
undocumented aspects of OLE and MS Access, it's operation is not guaranteed either with
current or future releases of Microsoft software.
5. The default action of the &datawrite function is to convert binary type records from Hex
(this is the format in which they are extracted from the database) into binary. Pass a code of
nohexconv to prevent binary conversion or pass a code of hexconv to force Hex.
conversion of non-binary database records.
6. Multiple codes may be combined using the | OR operator, e.g: jtolepk | nohexconv.

Example:

Use globaldata ODBC DSN
&datasource(“DSN=globaldata”)

&html(“index.html”)
{

&sql (“SELECT * FROM Categories")

{
extract binary datasource field ?imagefield?
and write to file
&datawrite("mydir/picture1.jpg",?imagefield?,jtolepk)

include image on web page

}
}

&datecomp(?variablename?,”date1”,”date2”)

Use this function to compare 2 time or date values

The &datecomp function will compare the ODBC style time/date strings passed as the
second and third arguments to the function and assign the results of the comparison to the
variable passed as the first argument. The function may be used to compare times only or
dates only, in which case the date strings passed need only contain that information.

Alternate syntax:
<fdatecomp ?variablename?,”date1”,”date2”>

Notes:
1/ The type of information passed in each string must match, e.g. time only, date only or
time and date.
2/ Dates before Jan 1 1970 are not allowed.

Condition Return
value

Date1 > Date2 1
Date1 = Date2 0
Date1 < Date2 -1

Example:

&defvar(?temp?)

&datecomp(?temp?,”?datefield?”,”1999-01-15 12:32:00”)

&if(?temp?>0)
{

&print(“Date is after:32:00 on 15/1/1999”)
}

&dateformat(?variablename?,”formatspec”,”date”)

Use this function to format an ODBC date string

The &dateformat function will format the ODBC style date string passed as a third argument
according to the format specification passed as a second argument. The formatted text
string is assigned to the variable passed as the first argument.

Alternate syntax:
<fdateformat ?variablename?,”formatspec”,”date”>

Notes:
1/ The third argument may be an ODBC time/date value, or a date string of the form yyyy-
mm-dd.
2/ Dates before Jan 1 1970 are not allowed.

Format code Returned value
%a Short weekday name
%A Full weekday name
%b Short month name
%B Full month name
%c Date & time appropriate for

locale
%d Day of month as a number
%j Day of year as a number
%m Month as a number
%U Week of year as a number
%w Weekday as a number
%W Week of year as a number
%y Year without century
%Y Year with century

Example:

&defvar(?temp?)

&dateformat(?temp?,”%A the %d of %B, ‘%y”,”1999-7-23”)

prints “Friday the 23 of July, ‘99”
&print(“?temp?”)

&dec(?variablename?)

Use this function to subtract 1 from a variable

The &dec function will decrement the numeric value of the variable passed as an argument
by one and re-assign the result to that variable.

Alternate syntax:
<fdec ?variablename?>

Example:

&html(“index.html”)
{

&defvar(?myvar?)

&assign(?myvar?,5)

print the contents of myvar (5) to the HTML file
?myvar?

&dec(?myvar?)

print the contents of myvar (4) to the HTML file
?myvar?

}

&dec2hex(?variablename?,n,code)

Use this function to turn a decimal number into a hexadecimal number

The &dec2hex function will convert the number passed as the second argument into a text
string representing the number in hexadecimal. An (optional) code may be passed as a third
argument, to pack the text string with leading zeros.

Alternate syntax:
<fdec2hex ?variablename?,n,code>

code digits
(min)

byte 2
word 4
dword 8

Example:

&html("index.html")
{

&defvar(?hexnum?)
&dec2hex(?hexnum?,65535)
?hexnum? now contains the text 'FFFF'
?hexnum?

&dec2hex(?hexnum?,3,byte)
?hexnum? now contains the text '03'
?hexnum?

}

&defsub(“subroutinename”)

Use this function to create a new subroutine (a bit of script that you can execute like a
GDIdb function)

The &defsub function is used to declare a block of code as a subroutine. The code itself must
be enclosed in curly braces { } and must follow the &defsub() function. The argument to the
function is used as the subroutine name and must be a text string expression
You can declare a subroutine anywhere within a script file, the code is only executed when:
· It is invoked by a &gosub() function.
· It is invoked as a function by placing the subroutine name in your script, preceded with a

& character.
If the subroutine is invoked as a function, you may pass numeric or string expression
arguments to it in a similar fashion to other GDIdb script functions. When the subroutine is
run, GDIdb creates an array of user variables (named ?argv?) from any arguments passed.
This array may be used in exactly the same way as user-defined variables, although it must
be remembered that the variables only exist for the scope of the subroutine block- GDIdb
automatically deletes them on return from the subroutine.

Alternate syntax:
<fdefsub "subroutinename">
. . .
</fdefsub>

Notes:
1/ You may require local variables in your subroutine, for example if you wish to use
recursion. Although GDIdb does not support true local variables, you can achieve a similar
effect by creating all of the variables that you require to be local at the start of the
subroutine and then deleting them at the end of the subroutine, just before the closing curly
brace character. See help topics on &defvar and &delete functions for further information.
2/ The &defsub function can also be used to create a routine that will handle script errors. To
do this, give the subroutine the name on_error. GDIdb only allows a single error handler
routine in the script. See help topics on the &retry function for more information.

Example:

The following code demonstrates options for executing subroutines

&html(“index.html”)
{

call subroutine1 using &gosub
&gosub(“mysub1”)

call subroutine1 as a function
&mysub1

call subroutine 2, passing 2 text strings as arguments
&mysub2("Hello","there")

}

&defsub(“mysub1”)
{

&print("Hello from subroutine 1")
}

&defsub(“mysub2”)
{

&print("?argv[1]? ?argv[2]? from subroutine 2")
}

&defvar(?variablename?)

Use this function to create new variables or arrays

The &defvar function declares a user-defined variable. All user-defined variables must be
declared with &defvar before they are referenced in a script file. On creation, user-defined
variables contain an empty text string. Multiple variables can be declared using the same
defvar function by separating the list of variable names with a comma. If the variable is
supplied with an index, the variable is created as an array sized to the index value, e.g:

&defvar(?myarray[10]?)

Creates a variable array with 10 elements.

GDIdb variables are not typed, the same variable may be used to hold numeric or text
values.

All user variables have global scope, that is they may be referenced anywhere in the script
file, including subroutines and blocks of code other than where they were declared.

Please see the section on Variable Arrays for a more in-depth treatment of how GDIdb
handles variables and arrays.

Alternate syntax:
<fdefvar ?variablename?>

Note:
The characters & \ ? # () } and { have special meanings for GDIdb. If you want to include
one of these characters in your variable name, insert a \ character before the character, e.g.
to include a ? in your variable name, you must insert the sequence \?. To insert the \
character itself in the variable, use the sequence \\. We do not recommend creating user-
defined variables which include GDIdb special characters in the name.

Example:

&html(“index.html”)
{

declare variable myvar
&defvar(?myvar?)

assign the value 5 to myvar
&assign(?myvar?,5)

write the contents of myvar (5) to the HTML file

?myvar?
}

&delete(?varname1?,?varname2?,..)

Use this function to delete variables after you've finished using them

The &delete function is the opposite of the &defvar function and will delete a user variable.
Please see the section on Variable Arrays for a more in-depth treatment of how GDIdb
handles variables and arrays.

Alternate syntax:
<fdelete ?varname1?,?varname2?,..>

Note: Any variables still in existence at the end of the script are automatically deleted.

Example:

The delete function can be used to provide variables that are local to subroutines, e.g

&html("index.html")
{

&defvar(?var1?)
&assign(?var1?,132)

?var1?
the above reference to ?var1? will insert 132 into the html file

&mysub

?var1?
the above reference to ?var1? will still insert 132 into the html file

}

&defsub("mysub")
{

&html("file1.html")
{

create a new variable called ?var1?- if ?var1? already exists,
this &defvar will "mask" it
&defvar(?var1?)

&assign(?var1?,"abc")
?var1?
the above reference to ?var1? will insert "abc" into the html file

&delete(?var1?)
any further references to ?var1? will now fail, unless ?var1?
was previously defined, in which case it will revert to it's
previous value.

}
}

&deletemail(n)

Use this function to delete an e-mail from a POP3 mail box

The &deletemail function will delete message n from a POP3 mailbox. The function must be
called from inside an open POP3 session.

Alternate syntax:
<deletemail n>

Example:

define variables used
&defvar(?header?,?body?)

create a POP3 e-mail session with the server
&pop3session("mail.mydomain.com","myemailbox","mypassword")
{

get message number 1 without deleting it
&getmsg(?header?,?body?,1,nodel)

print the e-mail header and body in the status window
&print("Header: ?header?")
&print("Body: ?body?")

delete mail from the server
&deletemail(1)

}

&dialup(n)

Use this function to dial your internet connection from within a script

The &dialup function will establish a dial-up Internet connection using the configuration
stored in Tools/Program Settings. The dial-up connection is maintained for the scope of the
block following the function. An optional argument n allows the connection to be
conditionally established, if n evaluates FALSE then GDIdb will not attempt to connect to the
Internet. If omitted, n defaults to TRUE.

Alternate syntax:
<fdialup n>
. . .
</fdialup>

Example:

Establish a dial-up Internet connection
&dialup(1)
{

and then send an e-mail
&sendmail ("post.myserver.com" , "me@myemail.com" , "philip@gdidb.com")
{
HEADER:
From: me@myemail.com
To: "Phil" <philip@gdidb.com>
Subject: GDIdb
Date: ?gdidbdate.dn?, ?gdidbdate.d? ?gdidbdate.mn? ?gdidbdate.y? ?gdidbtime?
BODY:
Hello,
I'm just sending you an email to say how useful I'm finding your software!
}

}

&die
Use this function to halt a script with an error message

The &die function is used to force the script to halt. This function may be useful if for any
reason you wish to terminate the script with an error state, thus preventing an FTP upload of
any files generated by a publish or auto-publish operation. A message passed as an
argument to the function will be written to the log file as the exit message if logging is
enabled. If you wish your message to show up in the log file with the error filter on, you must
precede your message with "ERROR- "

Alternate syntax:
<fdie>

Note: The script may be halted at any time by pressing <ESC>

Example:

&if(?recordsetsize?==0)
{

&die("ERROR- script halted because the database is empty!")
}

&html("index.html")
{

<HTML>
<P>This file is only written if recordsetsize>0
</HTML>

}

&directory(“pathname”)

Use this function to manage directories from within your script

The &directory function allows you to manage directories from within your script in a similar
fashion to the way the &html function works with files. If the directory specified in the
pathname passed as an argument to the function does not exist, GDIdb will create the
directory in your local HTML directory. In addition, the new directory will be created on the
web server when a publish or FTP upload operation is executed. If you are using the “Delete
old files from web server” option, directories that are no longer referenced by the script will
be deleted after the FTP upload is complete. The pathname passed as an argument must be
relative to your local HTML directory and must not attempt to create a directory above the
local HTML directory (e.g. the path ../mydir is illegal).

Notes:
1/ The directory must not already exist unless it also exists on the web server. If the
&directory function does not have to create the directory, the directory will not be created
on the server during an upload.
2/ If you select “Delete old files when script is run” (Under Project Settings/Scripter Settings)
un-referenced directories will also be deleted from your local HTML directory, together with
any files they contain. Do not manually create directories within directories generated by a
&directory function as this will prevent the directory being automatically removed when it is
no longer referenced.
3/ An error in creating a directory on the remote FTP server will not interrupt the file upload
process. If you receive “unable to write file to target directory” error messages from the
remote server, please check that all directories were successfully created on the remote
server.
4/ The directory path should be specified UNIX style with forward-slash characters (e.g. /)
separating directories in the pathname.

Alternate syntax:
<fdirectory “pathname”>

Example:

create a directory called “home”
&directory(“home”)

create a directory called “mydir” in the “home” directory
&directory(“home/mydir”)

The following file will be written to the new directory created above.
&html("home/mydir/index.html")
{

<HTML>
</HTML>

}

&do
Use this function to repeat a section of your script

The &do function allows a block to be repeatedly executed in the event that the argument to
the &while function following the &do block returns true. The block to be executed must be
enclosed by opening and closing curly braces { } and may consist of HTML and further
GDIdb functions. The argument to the & while function can be an arithmetic/Boolean
expression,and should return a Boolean result, although any non-zero value will be treated
as TRUE.

Alternate syntax:
<fdo>
. . .
</fdo>
<fwhile TRUE>

Example:

Open HTML file for writing
&html(“index.html”)
{

declare user variable “count” and set it to a value of 10
&defvar(?count?)
&assign(?count?,10)

loop until count is zero. This function will loop 10 times
&do
{
write the current value of count to the HTML file

?count?

Decrement count
&dec(?count?)

}
&while(?count?>0)

}

&else
Use this function after an &if, &elseif &foreachrow or &getdata function to do things in
your script when a database field (or whole database table) is empty

The &else function allows a block to be executed in the event that the previous &if or &elseif
function’s argument evaluated false or in the event that a previous &foreachrow or &getdata
function failed to find any data.

Alternate syntax:
<felse>
. . .
</felse>

Example:

Use globaldata ODBC DSN
&datasource(“DSN=globaldata”)

Get all data from table “categories” from globaldata ODBC DSN
&sql (“SELECT * FROM Categories")
{

The following block is only run if the recordset returned from &sql contains data
&if (?recordsetsize?>0)
{
<H1>The database table “categories” does contain data. </H1>
}

The following block is only run if the recordset returned from &sql does not contain
data
&else
{
<H1>The database table “categories” is empty.</H1>
}

}

&elseif(expression)

Use this function to test data for multiple conditions

The &elseif function provides similar functionality to the C case statement. The function
allows a block to be executed in the event that:
(a) The argument to the &elseif function returns true.
(b) A previous &if or &elseif evaluated FALSE.
The block to be executed must be enclosed by opening and closing curly braces { } and
may consist of HTML and further GDIdb functions.
The &elseif function can be followed by an &else function or a further &elseif function to
execute code in the instance where the argument to the &elseif function returns false. If the
argument to the function is an arithmetic/Boolean expression,it should return a Boolean
result, although any non-zero value will be treated as TRUE.
The &elseif function can also be used to test text strings. See the help section on &strcmp
for a full list of the text string tests that are possible- the only difference between the
argument list for &strcmp and &elseif is that a variable is not required as the first argument
of the &elseif function. (See example below)

Alternate syntax:
<felseif expression>
. . .
</felseif>

Example:

&defvar(?m?)

&input(?m?)

&if("?m?",eq,"q")
{

&print("You entered q")
}
&elseif("?m?",eq,"w")
{

&print("You entered w")
}
&elseif("?m?",eq,"e")
{

&print("You entered e")
}
&else
{

&print("I'm not sure what you entered!")
}

&exec("commandline")

Use this function to run other Windows programs from within your script

The &exec function allows a DOS/Windows command-line argument to be executed, allowing
DOS batch files or other software to be run from a GDIdb script.

Alternate syntax:
<fexec "commandline">

Example:

run the Windows Clock program

&exec("clock.exe")

exp(n)

Use this function to calculate the exponential of a number

The exp function will return the exponential of the number passed as the argument. This
function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,exp (0.2))
variable ?var1? will now contain the exponential of 0.2

&export("filename",n)

Use this function to create a CSV export of your database table

The &export function exports the current recordset to the file passed as the first argument. A
second argument specifies the number of rows to export, if omitted all rows are exported.
CSV formatting is used.

Alternate syntax:
<fexport "filename",n>

Example:

export 1 row of the current recordset as a CSV file

&export("exportfile.txt",1)

&filelink("source file","target file")

Use this function to include external files in your web site.

The &filelink function allows external files to be included in your web site, and is the
recommended method of including image files with web pages. In addition the &filelink
function allows you to use the GDIdb changed-only files upload feature to maintain HTML
documents on your web site that are not generated by GDIdb. The first argument to the
function should be the path to an existing file, the second argument specifies the path in
your local HTML directory (and your web server) where the file will be written. The function
will check the source file each time that the script is run, if the file has changed it will be
added to the GDIdb changed files upload list.

Alternate syntax:
<ffilelink "source file","target file">

Example:

Link to static HTML pages not created by GDIdb

&filelink("C:\\mysite\\html\\index.html","index.html")
&filelink("C:\\mysite\\html\\contents.html","contents.html")

Include the image file whose name is contained in the database field
"gifname" on the web site

&html("picpage.html")
{

<HTML>

&filelink("C:\\mysite\\images\\?gifname?","?gifname?")

</HTML>
}

&filetest(?varname?,"filepath",code)

Use this function to retrieve file status information

The &filetest function is used to retrieve status information from a file. The status of the file
name passed as a second argument to the function is assigned to the variable passed as the
first argument. An optional code passed as the third argument determines the nature of the
file status information retrieved. Possible codes are as follows:

Code Returned information
ctime File creation time.
mtime File last modified time
atime File last accessed time
fsize File size in bytes
exist (The default) Returns TRUE if file

exists, otherwise FALSE
fattr File attribute code

Notes:
1/ If the file does not exist, the function will halt the script with an error unless the (default)
code of exist is passed as a 3rd argument.
2/ For ctime, mtime and atime, file creation/modified/accessed time is returned in the
same format as for ODBC database time/date fields, so the &format function can be used to
extract and format the relevant information.
3/ If a code of fattr is passed, the returned attribute value will be the logical OR of the
following values:

Attribut
e value

Meaning

0 Normal
1 Read only
2 Hidden
4 System
8 Volume
16 Directory
32 Archive

Alternate syntax:
<ffiletest ?varname?, "filepath",code>

Example:

Get the creation date and time of “index.html”

&filetest(?myvar?,"C:\\mysite\\html\\index.html",ctime)

&for(?variablename?,start,test,increment)

Use this function to repeat a section of your script a specified number of times

The &for function provides a more comprehensive version of the &repeat function and allows
a block to be repeated a specified number of times. The block to be executed must be
enclosed by opening and closing curly braces { } and may consist of HTML and further
GDIdb functions.

Alternate syntax:
<ffor ?variablename,start,test,increment>
. . .
</ffor>

The arguments to the function must be as follows:

Argument Function
1 The name of the variable used as

an index count.
2 The initial value of ?variablename?
3 The test expression- the loop will

be repeated whilst this evaluates
true

4 The loop increment, the result of
this expression is added to ?
variablename? on each iteration of
the loop.

Arguments 2,3 & 4 must be arithmetic/Boolean expressions.

Example:

Open HTML file for writing
&html(“index.html”)
{

declare user variable “count”
&defvar(?count?)

loop until count is zero. This function will loop 5 times
&for(?count?,0,?count?<10,2)
{
write the current value of count to the HTML file

?count?
}

}

&foreachrow(n)

Use this function to process each row of data in a database table accessed by a &sql
function

The &foreachrow function allows a block to be automatically repeated for each row of the
recordset returned by a previous &sql function. The block to be repeated must be enclosed
by opening and closing curly braces { } and may consist of HTML and further GDIdb
functions.

If the function is supplied with an (optional) argument n, it will only loop for the first n rows
in the recordset. A subsequent &foreachrow function will start where the previous one left
off, allowing you to use this feature to spread the data from a large table across multiple
HTML documents.

If no argument is supplied or n is greater than the number of rows in the recordset, the
function will loop through all rows in the recordset. If zero rows of data are returned by the
&sql function, the block of code following the &foreachrow function will not be executed.

The &foreachrow function can be followed by a &else function to execute code in the
situation where the recordset returned by the &sql function is empty. If the &sql function
returns 1 or more rows of data, the block of code following the &else function will not be
executed.

Alternate syntax:
<fforeachrow n>
. . .
</fforeachrow>

Note: This function is depreciated by the newer &getdata function.

Example:

Use globaldata ODBC DSN
&datasource(“DSN=globaldata”)

Get all data from table “categories” from globaldata ODBC DSN
&sql (“SELECT * FROM Categories")
{

Print out the contents of 1st 5 rows of data from the categoryname column
of the recordset
&foreachrow(5)
{
<H3>Category=?categoryname?</H3>
}

if the &foreachrow function fails to find any data, include a sorry
message in the HTML
&else
{
<H3>Sorry! Table “categories” contains no data!</H3>
}

}

&format(?varname?,"formatspec",expression)

Use this function to reformat floating-point numeric values, or to reformat ODBC time/date
values

The &format function will evaluate the expression passed as the 3rd argument, format the
result according to the format specification passed as the 2nd argument, and assign the
result to the variable passed as the 1st argument. Numeric format and ODBC time/date
formats are supported.

Alternate syntax:
<fformat ?varname?,"formatspec",expression>

Note: See also the &dateformat function for formatting date strings

ODBC Time/Date Formatting
The ODBC time/date format specification must start with the & character, and is of the form:
"&type.[field][delimiter][.."

type meaning
d format expression as an ODBC date
t format expression as an ODBC time

For type d, the possible field values are:
field meaning
d insert the day value in the output at this

point
m insert the month value in the output at this

point
y insert the year value in the output at this

point

For type t, the possible field values are:
field meaning
h insert the hour value in the output at this

point
m insert the minute value in the output at

this point
s insert the seconds value in the output at

this point

The delimiter value may be any character or sequence of characters other than valid field
characters, and is used to separate the hour/minute/second or day/month/year values.

For ODBC time/date formatting the 3rd argument must be a text string expression. Valid
input strings are:

input string valid for
"yy-mm-dd
hh:mm:ss"

time or date formatting

"yy-mm-dd" date formatting only
"hh:mm:ss" time formatting only

Numeric Formatting

For numeric formatting, the 3rd argument may be either a text string expression
(representing a valid floating-point number) or an arithmetic expression.
The numeric format specification must start with a % character and is similar to standard C
conventions, e.g.:

"%[flag] [width] [.precision] type"

flag meaning
- left align result (default is right align)
+ prefix output with a + or - sign
0 add leading zeros until the width

specification is reached
blank    '
'

prefix the output with a space if no sign
appears

D forces the output to contain a decimal
point, prevents truncation of trailing zeros

width is an (optional) width value specifying the minimum number of characters in the
formatted value, blanks are added to ensure that this minimum length is reached.

precision is an (optional) value specifying the number of decimal places required.

type meaning
e Value formatted using scientific notation

(e.g. 1.234e+11)
E Similar to the e format except that E rather

than e appears in front of the exponent.
f Value formatted as a standard decimal

number. (e.g. 432.567) The number of
digits before the decimal point depends on
the magnitude of the value, the number of
digits after the decimal point depends on
the precision.

g Value formatted as one of the above, the
most compact form is used. (This is the
default GDIdb numeric data format.)

G Similar to the g format except that E rather
than e appears in front of the exponent.

Example:

format numeric value held in ?number? as a currency
value, e.g. 2 decimal places, displayed with trailing zeros
e.g. if ?number?=12, ?i? will be set to 12.00
or if ?number?=12.1234 ?i? will be set to 12.12
&format(?i?,"%\#.2f",?number?)

format ODBC time/date field ?datefield? as a date in the form dd/mm/yy,
store the result in ?i?
&format(?i?,"&d.d/m/y","?datefield?")

as above, but in the form dd mm yy
&format(?i?,"&d.d m y","?datefield?")

as above, but show the month 1st & don't show the year
&format(?i?,"&d.m d","?datefield?")

&ftoint(?varname?,"string")

Use this function to convert a floating point number (or text string) into an integer number

The &ftoint function is used to evaluate the text in the text string expression passed as a
second argument as a floating-point number. This number is converted to an integer and
assigned to the variable passed as the first argument.

Alternate syntax:
<fftoint ?varname?,"string">

Example:

&html("index.html")
{

&defvar(?var1?,?var2?)
&assign(?var1?,"346.826e2")

&ftoint(?var2?,"?var1?")
?var2? will now contain 34683
?var2?

}

&ftpcommand("string")

Use this function to execute a command on an FTP server

The &ftpcommand function will execute the text string expression passed as an argument on
a FTP server. The function must be used within a FTP session.

Alternate syntax:
<fftpcommand "string">

Example:

log onto FTP server
&ftpsession("ftp.mydomain.com","anonymous","me@mydomain.com")
{

change permissions on a file
&ftpcommand("SITE CHMOD 755 myscript.pl")

}

&ftpdel("remote file path")

Use this function to delete a file from an FTP server

The &ftpdel function must be used from within an FTP session. The function will delete the
file passed as an argument from the remote FTP server.

Alternate syntax:
<ftpdel "remote file path">

Example:

log onto FTP server
&ftpsession("ftp.mydomain.com","anonymous","me@mydomain.com")
{

upload a file
&ftpput("C:\\data.txt ","data.txt")
download a file
&ftpget("C:\\data2.txt ","data2.txt")
delete a file from the FTP server
&ftpdel("olddata.txt")

}

&ftpget("local file path","remote file path")

Use this function to download a file from an FTP server

The &ftpget function must be used from within an FTP session. The function will download
the file passed as a second argument from the remote FTP server to the file path passed as
the first argument to the function.

Alternate syntax:
<ftpget "local file path","remote file path">

Example:

log onto FTP server
&ftpsession("ftp.mydomain.com","anonymous","me@mydomain.com")
{

upload a file
&ftpput("C:\\data.txt ","data.txt")
download a file
&ftpget("C:\\data2.txt ","data2.txt")
delete a file from the FTP server
&ftpdel("olddata.txt")

}

&ftpmkdir("path")

Use this function to create a directory on a FTP server

The &ftpmkdir function must be used from within an FTP session. The function will create a
directory on the FTP server, pass the name of the new directory to the function as an
argument.

Alternate syntax:
<fftpmkdir "path">

Example:

log onto FTP server
&ftpsession("ftp.mydomain.com","anonymous","me@mydomain.com")
{

create a directory called “mydir” in directory “home” .
Note: the “home” directory must already exist.
&ftpmkdir("home/mydir")

}

&ftpput("local file path","remote file path")

Use this function to upload a file to an FTP server

The &ftpput function must be used from within an FTP session. The function will upload the
file passed as the first argument to the remote FTP server to the file path passed as the
second argument to the function.

Alternate syntax:
<fftpput "local file path","remote file path">

Example:

log onto FTP server
&ftpsession("ftp.mydomain.com","anonymous","me@mydomain.com")
{

upload a file
&ftpput("C:\\data.txt ","data.txt")
download a file
&ftpget("C:\\data2.txt ","data2.txt")
delete a file from the FTP server
&ftpdel("olddata.txt")

}

&ftprmdir("path")

Use this function to remove a directory from an FTP server

The &ftprmdir function must be used from within an FTP session. The function will remove a
directory from the FTP server, pass the name of the directory to the function as an
argument.

Alternate syntax:
<fftprmdir "path">

Example:

log onto FTP server
&ftpsession("ftp.mydomain.com","anonymous","me@mydomain.com")
{

delete the directory called “mydir” in directory “home” .
&ftprmdir("home/mydir")

}

&ftpsession("server", "logon", "password", ”acct”,port,mode,
"proxyname", proxytype, ”proxylogon”, ”proxypass”, proxyport)

Use this function to start a FTP session with a remote server

The &ftpsession function logs GDIdb on to a FTP server. GDIdb will remain logged on to the
server for the scope of the block of code following the function. The server domain name or
IP address is passed as the first argument to the function, the username and password are
passed as the second and third arguments respectively. Only the 1st 3 arguments are
required by the function, all remaining arguments are optional. Note that if you want to pass
a server port to the function, you must also pass an empty string (e.g. “”) as the acct
argument. Remaining arguments are as follows:

Alternate syntax:
<fftpsession"server","logon","password",”acct”,port,mode,"proxyname",proxytype,”proxylo
gon”,”proxypass”,proxyport>
. . .
</fftpsession>

acct- FTP “account” name (usually not required)
port- FTP server port (the default is 21)
mode- FTP transfer mode, pass TRUE for passive, FALSE for active (default is FALSE)
proxyname- host name or IP address of proxy or firewall
proxytype- a numeric code describing the firewall or proxy type
proxylogon- firewall or proxy logon name
proxypass- firewall or proxy password
proxyport- firewall or proxy port (the default is 21)

Valid proxytype codes are as follows:
Code Proxy type
0 No firewall (the default)
1 SITE hostname
2 USER after logon
3 Proxy OPEN
4 Transparent
5 USER with no logon
6 USER fireID@remotehost
7 USER remoteID@remotehost

fireID
8 USER

remoteID@fireID@remotehost

Example:

log onto FTP server
&ftpsession("ftp.mydomain.com","anonymous","me@mydomain.com")
{

upload a file
&ftpput("C:\\data.txt ","data.txt")
download a file
&ftpget("C:\\data2.txt ","data2.txt")
delete a file from the FTP server
&ftpdel("olddata.txt")

}

&getcol(?variablename?,n1,n2)

Use this function to get data from a given column number of your database table

The &getcol function returns the contents of column n1 in the current row of the recordset. If
a variable is passed as the first argument, the data will be assigned to that variable,
otherwise the data will be written to the current HTML file. The last argument n2 is used to
pass the index to the recordset that contains the data. (An index of 0 will return data from
the current recordset.)

Alternate syntax:
<fgetcol ?variablename?,n1,n2>

Example:

write the contents of column 3 in the current recordset to the current HTML file.

&getcol(3,0)

&getdata(“SQL statement”,n)

Use this function to access a table in your database and process each record within it

The &getdata function does the following:

1. An SQL query is made on the datasource (named in a previous &datasource function)
using the text string expression supplied as an argument to the &getdata function.
2. The block following the &getdata function (consisting of HTML and further GDIdb functions
enclosed in curly braces { }) is repeated for each row of the recordset (table of data) that
the SQL query returns.

If the function is supplied with an (optional) second argument n, it will only loop for the first
n rows in the recordset. If no second argument is supplied or n is greater than the number of
rows in the recordset, the function will loop through all rows in the recordset. If zero rows of
data are returned by the SQL statement, the block of code following the & getdata function
will not be executed.

The & getdata function can be followed by a &else function to execute code in the situation
where the recordset returned by the SQL statement is empty. If the function returns 1 or
more rows of data, the block of code following the &else function will not be executed.

Alternate syntax:
<fgetdata "SQL statement",n>
. . .
</fgetdata>

Note: This function is equivalent to the &sql function and the &foreachrow function
combined. (Both of which it depreciates)

Example:

Use globaldata ODBC DSN
&datasource(“DSN=globaldata”)

Print out the contents of 1st 5 rows of data from the categoryname column
of the recordset
&getdata (“SELECT * FROM Categories",5)
{

<H3>Category=?categoryname?</H3>
}

if the &getdata function fails to find any data, include a sorry
message in the HTML
&else
{

<H3>Sorry! Table “categories” contains no data!</H3>
}

&geterror(?var?,code)

Use this function to retrieve the last project error message or code.

The &geterror function allows you to load the last project (or script) error message or code
into a user variable. Pass a second argument of FALSE if you just wish to retrieve the error
code number, or TRUE if you wish to retrieve the whole error message. The second
argument is optional, and defaults to TRUE if omitted.

Alternate syntax:
<fgeterror ?var?,code>

Example:

get error message
&defvar(?errormsg?)
&geterror(?errormsg?)

dial Internet connection
&dialup(TRUE)
{

send e-mail
&sendmail ("smtpmail.mydomain.com" , "gdidb@mydomain.com " ,

"me@mydomain.com ")
{

HEADER:
From: "GDIdb"
To: "Me" <me@mydomain.com >
Subject: GDIdb Error!
Date: ?gdidbdate.dn?, ?gdidbdate.d? ?gdidbdate.mn? ?gdidbdate.y? ?gdidbtime?

BODY:
On ?gdidbdate? at ?gdidbtime? the following error occurred:

?errormsg?
}

}

&getmails("server","mailbox","password",code,port)

Use this function to pick up e-mails from a POP3 mail box

The &getmails function provides an easy way of collecting and processing e-mails from a
POP3 post box. The POP3 server name or IP address, mailbox and password must be passed
as arguments to the function. An optional 4th argument code of nodel will cause the e-mails
to be left on the server, a code of del will result in all e-mails being deleted from the server
after GDIdb has collected them. If omitted, this code defaults to del. An optional 5th
argument allows the server port to be specified. If the port is specified, a code must also be
passed as a 4th argument (this can be the default del). If the server port is omitted, it will
default to port 110.
If the &getmails function finds any e-mails in the mailbox, the block of code following the
function will be repeated once for each e-mail awaiting collection. Three user variables are
created at the start of this block of code, ?mailnumber?, ?mailbody? and ?
mailheader?. ?mailnumber? will contain the number of the e-mail currently being
processed, ?mailbody? and ?mailheader? will contain that e-mail's body and header text
respectively.
An &else function following the &getmails function allows code to be executed in the
instance that the mailbox was empty.

Alternate syntax:
<fgetmails "server","mailbox","password",code,port>
. . .
</fgetmails>

Note: These variables are automatically deleted as the &getmails function loses scope.

Example:

connect to a POP3 mail server & get all e-mails
&getmails("mail.mydomain.com","gdidb.test","gdidb",nodel)
{

&print("Getting mail: ?mailnumber?")

store both the e-mail header and the e-mail body text in a database
&sqlnr("INSERT INTO tblEmails (mailheader,mailbody) VALUES('?mailheader?','?

mailbody?')")
}
&else
{

&print("There are no e-mails awaiting collection")
}

&getmsg(?header?,?body?,n,code)

Use this function to get an e-mail from a POP3 mail box

The &getmsg function will collect message n from a POP3 mailbox. The function must be
called from inside an open POP3 session. If successful, the e-mail header is assigned to the
variable passed as the first argument, and the e-mail body is assigned to the variable
passed as the second argument. An optional 4th argument code of nodel will result in the
mail being collected but left on the server, a code of del will remove the e-mail from the
server after it has been collected. If the 4th argument is omitted it defaults to del.

Alternate syntax:
<fgetmsg ?header?,?body?,n,code>

Note: See the &getmails function for an easier way of picking up e-mails.

Example:

define variables used
&defvar(?header?,?body?)

create a POP3 e-mail session with the server
&pop3session("mail.mydomain.com","myemailbox","mypassword")
{

get message number 1
&getmsg(?header?,?body?,1,nodel)

print the e-mail header and body in the status window
&print("Header: ?header?")
&print("Body: ?body?")

}

&getrow(n)

Use this function to work with a specific row of data in the database table

The &getrow function retrieves row n of the recordset. The argument to the function can be
an arithmetic expression. This function must be preceded by a call to &sql to generate a
recordset. Care must be taken not to call &getrow when there is no corresponding row of
data available in the recordset, as it will cause an error.

Alternate syntax:
<fgetrow n>

Example:

Get all data from table “categories” from globaldata ODBC DSN
&sql (“SELECT * FROM Categories")
{

&getrow(2)
any further datasource variables used will return the contents of row 2

}

&gosub(“subroutinename”)

Use this function to execute a subroutine

The &gosub function is used to execute a block of code as a subroutine. The code itself must
be declared using the &defsub function somewhere within the script file. The argument to
the function must be a text string expression
Note: &gosub is largely obsolete and is included primarily for backwards compatibility.
Subroutines declared using the &defsub function can be more conveniently executed by
placing a & character in front of the subroutine name. See &defsub for more details.

Alternate syntax:
<fgosub "subroutinename>
or:
<fsubroutinename>

Example:

The following code will write <H1>Hello!</H1> twice to index.html

&html(“index.html”)
{

&gosub(“hello”)
&gosub(“hello”)

}

&defsub(“hello”)
{

<H1>Hello!</H1>
}

&hex2dec(?variablename?,hex)

Use this function to turn a hexadecimal number into a decimal number

The &hex2dec function will attempt to evaluate the text string expression passed as the
second argument to the function as a hexadecimal number. The resulting decimal number is
assigned to the variable passed as the first argument.

Alternate syntax:
<fhex2dec ?variablename?,hex>

Example:

&html("index.html")
{

&defvar(?num?)
&hex2dec(?num?,"FFFF")
?num? now contains the numeric value 65535

?num?
}

&html(“filename”,format)

Use this function to create a new HTML web page in your script

The &html function allows the script file to write HTML to the file path which has been
passed as the first argument to the function. The HTML to be written to the file must be
enclosed in curly braces immediately after the function, this HTML may contain further
GDIdb functions. The file path passed to &html must be a text string expression.
The file path can consist of a filename and directory path, if you are writing HTML to sub-
directories you must ensure that the sub-directories exist, both on your web server and in
your local HTML directory. The file path given must be relative to the root HTML directory.
The local root HTML directory and the web server root HTML directory can both be
configured in Project Settings (under the Project menu).

Alternate syntax:
<fhtml "filename",format>
. . .
</fhtml>

Various formatting options are allowed. The default behavior when formatting the HTML
before writing it to the file is to strip extraneous whitespace characters. Formatting codes
can be combined using the | OR operator, e.g. formatcr | cr2br will strip carriage returns
and translate return characters into
 tags.

CODE ACTION
formatcr Only strip extra carriage return

characters (remove blank lines).
formatnone Perform no formatting.
cr2br Translate carriage return characters

contained in variables to

HTML tags before including them in
the HTML file.

cr2brstrip As above but the actual carriage
return\linefeed characters are
stripped from the output.

hiascii Convert high ASCII characters
contained in variables into &#nn;
sequences before including them in
the HTML file.

GDIdb keeps a list of filenames created by the &datawrite and &html functions, all files on
this list are transferred to the web server on Publish and Upload to Web Server commands.
You may view this list and edit the HTML files themselves by selecting Edit Output Files
(under the File menu)

Notes:
1. An &html(“newfilename”) function embedded in this HTML will direct output to
newfilename for the scope of it’s curly braces, output thereafter will revert to the previous
file.
2. You cannot use a file path that attempts to create a file in a directory above the HTML root
directory or a file path that is not relative to the local html root directory. e.g. both of the
following file paths are illegal: "C:\html\index.html" and "/mydir/index.html"
3. Directories in the file path may be separated with forward slashes or backward slashes-
remember that when using backward slashes in a string expression that you will need two

backward slashes: e.g. "mydir\\index.html"
4. The &html function will format the HTML before writing it to the file. Tab characters and
blank lines will be removed.

Example:

The following script will produce 2 html files and demonstrates
the use of nested &html functions.
#
Note: for this script to work, directory "mydir" must exist within the
local HTML directory and within the web server root directory.

&html(“mydir/htmlfile1.html”,cr2br)
{

<HTML>
<BODY>
<H1>This HTML will be written to a file called htmlfile1.html</H1>

link to htmlfile2

direct HTML output to “htmlfile2.html”
&html(“mydir/htmlfile2.html”)
{

<HTML>
<H1>This HTML will be written to HTML file “htmlfile2.html”</H1>
</HTML>

}

<H1>And this html will be written to file “htmlfile1.html” again</H1>
</BODY>
</HTML>

}

&htmlrootdir("filepath")

Use this function to change the GDIdb HTML directory from within a script

The &htmlrootdir function allows the local project root HTML directory to be changed from
within a script file. This change will remain in force, even after the script has terminated. (i.e.
the new path will appear in the Project Settings dialog) The argument to the function must
be a text string expression which evaluates to the path for the directory you wish to use.

Alternate syntax:
<fhtmlrootdir "filepath">

Remember to use double \ characters in the file path.

Example:

change the root HTML directory to C:\html

&htmlrootdir("c:\\html ")

&http(?header?,?content?,"url","command",port,"content")

Use this function to communicate with a HTTP server

The &http function allows you to do the following tasks:
1/ Fetch a file from a web server
2/ Fetch the status of a file from a web server
3/ Submit data to a CGI script via HTTP

The required URL is passed as the 3rd argument to the function, the HTTP command is
passed as the 4th argument. Variables passed as arguments 1 and 2 will be assigned the
returned header and content respectively. An optional 5th argument specifies the server
port- if omitted this defaults to port 80, an optional 6th argument allows CGI data to be
passed using a POST command. Note that data passed with a POST command must still be
URL encoded using the &pack function, if you pass a 6th argument you must also pass a
value for the server port (use the default value of 80).

Alternate syntax:
<fhttp ?header?,?content?,"url","command",port,"content">

Valid HTTP commands are (they must be in upper case)
Comman
d

Function

GET Get the HTTP header
and the document.

HEAD Get the HTTP header
only

POST Post data

For reference, the code returned in the HTTP header will have the following meaning. For
information on how to extract the code from the header see the example below.

Code Meaning
200 OK
201 Created
202 Accepted
204 No Content
301 Moved Permanently
302 Moved Temporarily
304 Not Modified
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable

Example:

these variables will be used to store the returned document & header
&defvar(?content?,?header?)

get the index page from www.mydomain.com
&http(?header?,?content?,"http://www.mydomain.com","GET")

extract the server return code from the header.
&split(?c?,"?header?")
&if(?c[2]?!=200)
{

&print("There was an error fetching the document!")
}

&arraydelete(?c?)

Example2:

Send some text to a CGI script via HTTP
&defvar(?value?,?header?,?content?)

this is the text string that will be sent
&assign(?value?,"The following characters should not be used in a URL .: ;'~?/|\")

replace spaces with + characters before using &pack to format
&replace(?value?,"?value?"," ","+")
&pack(?value?,"?value?")

send the result as a name-value pair to the CGI script
&http(?header?,?content?,"http://www.mydomain.com/cgi-bin/data.pl\?data=?value?","GET")

&if(expression)

Use this function to test database data and do different things depending on the data
value

The &if function allows a block to be executed in the event that the argument to the &if
function returns true. The block to be executed must be enclosed by opening and closing
curly braces { } and may consist of HTML and further GDIdb functions.
The &if function can be followed by an &else    or a &elseif function to execute code in the
instance where the argument to the &if function returns false. If the argument to the
function is an arithmetic/Boolean expression,it should return a Boolean result, although any
non-zero value will be treated as TRUE.
The &if function can also be used to test text strings. See the help section on &strcmp for a
full list of the text string tests that are possible- the only difference between the argument
list for &strcmp and &if is that a variable is not required as the first argument of the &if
function. (See example below)

Alternate syntax:
<fif expression>
. . .
</fif>

Example:

Use globaldata ODBC DSN
&datasource(“DSN=globaldata”)

Get all data from table “categories” from globaldata ODBC DSN
&sql (“SELECT * FROM Categories")
{

The following block is only run if the recordset returned from &sql is contains data
&if (?recordsetsize?>0)
{
<H1>The database table “categories” does contain data. </H1>
}

&if("?JobCat?",eq,"Electronic engineers")
{
<H1>"Electronic engineers" is the current job category</H1>
}

}

&ignore
Use this function to skip the script function that caused an error

The &ignore function is used to return from an error handler subroutine back to the point in
the script just after the function where the error occurred, and is similar in function to
&return.
GDIdb allows a single error handler routine, this is simply a subroutine defined with a
&defsub function with the special name on_error. If GDIdb encounters an error in the script,
this subroutine will be run. If return from this subroutine is via the &ignore function GDIdb
will attempt continue script execution just after the function that caused the error, if return
is via an &return function (or the subroutine is allowed to terminate naturally) GDIdb will halt
execution of the script at the function that caused the error.

Notes:
1/ The on_error subroutine will catch most (but not all) script errors. It is therefore advisable
to use the &geterror function to return and test the script error code in order to make sure
that you are only catching errors that you intend to catch.
2/ Errors in the error handler cannot be caught.

Alternate syntax:
<fignore>

Example:

the following function contains a syntax error (too many arguments in function)
&print("hello","there")

because the above error was caught & skipped, the following function will be run
successfully
&print("Hello there")

this error handler will result in all script errors being ignored
&defsub("on_error")
{

skip over all errors in script
&ignore

}

&inc(?variablename?)

Use this function to add 1 to a numeric variable

The &inc function will increment the numeric value of the variable passed as an argument
by one and re-assign the result to that variable.

Alternate syntax:
<finc ?variablename?>

Example:

&html(“index.html”)
{

&defvar(?myvar?)

&assign(?myvar?,5)

print the contents of myvar (5) to the HTML file
?myvar?

&inc(?myvar?)

print the contents of myvar (6) to the HTML file
?myvar?

}

&include("filename",codes)

Use this function to include template HTML files within your script

The &include function allows you to include another file within your script file before the
script file is run. Although there are several reasons as to why you might want to do this, the
primary reason that the function has been provided is to allow the use of HTML template
files. The first argument to the function should be the name of the file you wish to include,
the second argument to the function should be a list of | separated format control codes.
These format codes allow you to choose which special GDIdb characters are preceded with a
\ character (which will cause GDIdb to treat them as normal characters). If you are editing
HTML template files with a WYSIWYG HTML editor, you will probably wish to include all
format codes with the exception of fq.

Alternate syntax:
<finclude "filename",codes>

Notes:
1. This function is executed by the GDIdb pre-processor (i.e. before the script file is run) .
This means that you cannot include variables in the function argument!

Possible format codes are:

Code Character
fq ?
fh #
fb { }
ff \
fa &

Example:

&html("index.html")
{

include HTML template
&include ("template1.html",fh|fb|ff|fa)

}

&input(?variablename?,"message")

Use this function to get values from the user at the time the script is run

The &input function will open a dialog box allowing the user to enter a text string. If the user
presses the OK button, the text string is assigned to the variable passed as the first
argument to the function, if the user presses the Cancel button the existing contents of the
variable are left unchanged. An optional string expression may be passed as a second
argument- this will be displayed on the dialog box.

Alternate syntax:
<finput ?variablename?,"message">

Note: Script execution will halt until the user presses the OK or Cancel button. For this
reason, do not use the &input function if you intend to run the script using auto-publish!

Example:

this simple calculator program retrieves an arithmetic
expression from the user, evaluates it using the
assign function & displays the answer in a message box

&defvar(?var1?)
&input(?var1?,"Enter arithmetic expression")
&assign(?var1?,?var1?)
&msgbox("Result=?var1?")

int(n)

Use this function to calculate the integer value of a number

The int function will return the integer value of the number passed as the argument (e.g.
strip all digits after the decimal point). This function must be used within an arithmetic
expression.

Example:

&defvar(?var1?)
&assign(?var1?,int (1.2))
variable ?var1? will now contain 1

&join(?var?,?array?)

Use this function to turn all the contents of a variable array into a single variable

The &join function joins all elements of the array passed as a second argument and assigns
the resulting value to the variable passed as the first argument.

Alternate syntax:
<fjoin ?var?,?array?>

Example:

declare variables
&defvar(?ary[4]?,?v?)

assign each element of the array 1 word
&assign(?ary[1]?,"Hello ",?ary[2]?,"there ",?ary[3]?,"Fred ",? ary[4]?,"!!")

join all of the words together, & assign result to ?v?
&join(?v?,?ary?)

display message "Hello there Fred !!"
&msgbox("?v?")

ln(n)

Use this function to calculate the natural log of a number

The ln function will return the natural log of the number passed as the argument. This
function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,ln (0.2))
variable ?var1? will now contain the natural log of 0.2

&log(message)

Use this function to write your own messages to the GDIdb log file

The &log function writes the string expression passed as an argument to the system log. The
text will be written even if generate system log is not enabled under Program Settings. The
log entry will be time and date stamped.

Alternate syntax:
<flog "message">

Example:

&log("Starting to write file index.html")
&html(“index.html”)
{

<HTML>
. . .
</HTML>

}

log10(n)

Use this function to calculate the log(10) of a number

The log10 function will return the logarithm (to the base 10) of the number passed as the
argument. This function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,log10 (0.2))
variable ?var1? will now contain the log of 0.2

&loop(expression)

Use this function to automatically repeat a part of your script

The &loop function allows a block to be repeatedly executed in the event that the argument
to the &loop function returns true. The block to be executed must be enclosed by opening
and closing curly braces { } and may consist of HTML and further GDIdb functions. The
argument to the function can be an arithmetic/Boolean expression,and should return a
Boolean result, although any non-zero value will be treated as TRUE.

Alternate syntax:
<floop expression>
. . .
</floop>

Example:

Open HTML file for writing
&html(“index.html”)
{

declare user variable “count” and set it to a value of 10
&defvar(?count?)
&assign(?count?,10)

loop until count is zero. This function will loop 10 times
&loop (?count?>0)
{
write the current value of count to the HTML file

?count?

Decrement count
&dec(?count?)

}

}

&mailheader(?from?,?subject?,?date?,"header text")

Use this function to extract fields from an e-mail header

The &mailheader function provides an easy way of extracting the from, subject and date text
from an e-mail header. The from, subject and date text will be assigned to variables passed
as the 1st, 2nd and 3rd arguments respectively. The 4th argument must be a text string
expression containing the e-mail header.

Alternate syntax:
<fmailheader ?from?,?subject?,?date?,"header text" >

Example:

&getmails("post.mydomain.com","mymailbox ","mypassword")
{

get the fields out of the e-mail header
&mailheader (?from?,?subject?,?date?,"?mailheader?")
&print("You just got an e-mail from ?from?")

}

&mailtxt("server","from","to","text" ,port)

Use this function to e-mail a text string

GDIdb software license conditions (registered or un-registered use) require you to have read,
understood and accepted GDI's Spam statement before using this function.

The &mailtxt function will connect to the SMTP server whose name or IP address is passed
as the 1st argument and mail the text passed as the 4th argument to the e-mail address
passed as a 3rd argument. The second argument should contain the "from" e-mail address-
this address will be used by the server as the return path should delivery fail. No text
formatting is performed, and no e-mail header is appended to the text.
An optional 5th argument allows the server port to be specified- if omitted this defaults to
25.

Alternate syntax:
<fmailtxt "server","from","to","text" ,port>

Notes:
1/ For a more useful way of sending an e-mail message, see the &sendmail function
2/ Multiple e-mail addresses may be included in the "to" field, each must be separated by a
comma
3/ Only Internet e-mail addresses are valid, e.g. me@mydomain.com

Example:

&mailtxt("smtpmail.mydomain.com","me@mydomain.com","fred@hisdomain.com ","This
text will be e-mailed to Fred! ")

&midstr(?varname?,"string",n1,n2)

Use this function to extract part of a text string

The &midstr function extracts the text sub-string from the string expression (passed as the
second argument to the function) starting at (zero-based) position n1 and of length n2. This
sub-string is assigned to the variable passed as the first argument to the function.

Alternate syntax:
<fmidstr ?varname?,"string",n1,n2>

Example:

&html(“htmlfile1.html”)
{

&defvar(?var1?)
&assign(?var1?, "Hello there Fred!")

?var1? contains "Hello there fred"

&midstr(?var1?,"?var1?",12,4)

?var1? now contains "fred"

}

&mkldir("dir")

Use this function to create new sub-directory in your local HTML directory

The &mkldir function can be used to create a new directory. The directory must be a sub-
directory of your local html directory, if the directory already exists, the function will not
generate an error. The argument to the function must be a text string expression which
evaluates to the new directory name. See also help topics on the &directory function which
allows the creation/deletion of local and remote (on your web server) directories.

Alternate syntax:
<fmkldir "dir">

Example:

make a directory called "mydir" in the local html directory
&mkldir("mydir")

&msgbox(?variablename?,"text",stylecode)

Use this function to add a Windows message box dialog to your script

The &msgbox function opens a dialog box containing a user-defined message "text" which
must be a text string expression. If a user variable is passed as the first argument, a style
argument must also be included- when the user closes the dialog box by clicking a button,
this variable will contain a code indicating which button was clicked. Combine icon and
button styles using the | operator, e.g. okcancel | iconexclamation will produce a
message box with OK and cancel buttons and a exclamation icon.

Alternate syntax:
<fmsgbox ?variablename?,"text",stylecode>

Note: Script execution will halt until the user dismisses the dialog. For this reason, do not
use the &msgbox function if you intend to run the script using auto-publish, unless you
intend it to halt operation of the program.

stylecode meaning
mbok Single O.K. Button (The

default)
okcancel O.K. and Cancel Buttons
yesno Yes and No Buttons
yesnocancel Yes, No and Cancel Buttons
iconexclamation Exclamation icon
iconwarning Warning icon
iconinformation Information icon
iconquestion Question mark icon
iconerror Error icon

Return codes assigned to ?variablename? are:

Button Code
Yes 6
No 7
OK 1
Cancel 2

Example:

messagebox with no icon and a single (O.K.) button
&msgbox("Hello")

messagebox with warning icon and a single (O.K.) button
& msgbox("Hello",iconwarning)

&defvar(?returnval?)
messagebox with information icon and yes/no/cancel buttons
& msgbox(?returnval?,"Hello",yesnocancel | iconinformation)

variable ?returnval? will now contain a code indicating
which button was pressed
&if(?retval?==Yes)

{
&msgbox("You pressed the Yes button!")

}

&msgno(?varname?)

Use this function to find out the number of e-mails in your POP3 mail box

The &msgno function will return the number of waiting e-mails in a POP3 mail box, and
assign the result to the variable passed as an argument. The function must be used from
within a POP3 session.

Alternate syntax:
<fmsgno ?varname?>

Example:

define variables used
&defvar(?num?)

create a POP3 e-mail session with the server
&pop3session("mail.mydomain.com","myemailbox","mypassword")
{

get message number
&msgno(?num?)

&print("There are ?num? e-mails awaiting collection")
}

&nextrow
Use this function to move on to the next row in a table

The &nextrow function makes the next row of datasource data available. This function must
be preceded by a call to &sql to generate a recordset. Care must be taken not to call
&nextrow when there are no more rows of data available in the recordset, as it will cause an
error.

Alternate syntax:
<fnextrow>

Example:

Get all data from table “categories” from globaldata ODBC DSN

&datasource(“DSN=globaldata”)

&sql (“SELECT * FROM Categories")
{

Print out the contents of the first row of data from the
categoryname column of the recordset

<H3>Category=?categoryname?</H3>

&nextrow

Print out the contents of the second row of data from the
categoryname column of the recordset

<H3>Category=?categoryname?</H3>
}

&pack(?varname?,"text")

Use this function to format text for submission to a CGI script via HTTP

The &pack function is used to convert a text string into a suitable format for passing to a CGI
script via HTTP. All characters which may not be included in a web URL are translated into
their hexadecimal character code. Hex characters are preceded with a % character. The
string to be converted is passed as the second argument to the function, the processed
string is assigned to the variable passed as the first argument.

Alternate syntax:
<fpack ?varname?,"text">

Note: Before using this function, space characters should be translated into + characters
using the &replace function.

Example:

Send some text to a CGI script via HTTP
&defvar(?value?,?header?,?content?)

this is the text string that will be sent
&assign(?value?,"The following characters should not be used in a URL .: ;'~?/|\")

replace spaces with + characters before using &pack to format
&replace(?value?,"?value?"," ","+")
&pack(?value?,"?value?")

send the result as a name-value pair to the CGI script
&http(?header?,?content?,"http://www.mydomain.com/cgi-bin/data.pl\?data=?value?","GET")

&pop3session("server","mailbox","password",port)

Use this function to open a session with a POP3 e-mail server

The &pop3session function will connect to a POP3 e-mail server for the scope of the block
following the function. The server domain name or IP address is passed as the 1st argument,
the mail box name is passed as the 2nd argument and the mailbox password is passed as
the 3rd argument. An optional 4th argument specifies the server port- if omitted this
defaults to port 110.

Alternate syntax:
<fpop3session 2server","mailbox","password",port>
. . .
</fpop3session>

Note: See the &getmails function for an easier way of picking up e-mails.

Example:

define variables used
&defvar(?header?,?body?)

create a POP3 e-mail session with the server
&pop3session("mail.mydomain.com","myemailbox","mypassword")
{

get message number 1
&getmsg(?header?,?body?,1,nodel)

print the e-mail header and body in the status window
&print("Header: ?header?")
&print("Body: ?body?")

}

&print("message")

Use this function to display messages in the GDIdb status area of the window

The &print function displays the string expression passed as an argument in the program
status window. If the function is not given an argument, it will print a blank line.

Alternate syntax:
<fprint "message">

Example:

&print("Starting to write file index.html")
&html(“index.html”)
{

}

&repeat(?varname?,n)

Use this function to repeat a section of your script a specified number of times

The &repeat function provides a simplified version of the &for function. A repeat count is
passed as an argument to the function, an (optional) variable passed as the first argument
to the function will have the current repeat count assigned to it on each iteration of the loop.

Alternate syntax:
<frepeat ?varname?,n>
. . .
</frepeat>

Example:

Create a graph of X squared on the web page using plus signs

&html("index.html")
{

&defvar(?count?)
<H1>Graph showing the function of X^2</H1>

&for(?count?,0,?count?<10,1)
{

<NOBR>&repeat(?count?*?count?){+}</NOBR>

}

}

&replace(?variablename?,"string1","string2","string3",n)

Use this function to find and replace in a text string

The &replace function searches for the sub-string string2 inside string1, if found it will
replace it with string3. The result is assigned to ?variablename?. The &replace function will
only replace the first n occurrences, if the 5th argument is omitted (or set to -1), all
occurrences will be changed.

Alternate syntax:
<freplace ?variablename?,"string1","string2","string3",n>

Example:

replace all line breaks with HTML
 tags in the
database field "databasefield". Assign the result to ?myvar?

&replace(?myvar?,"?databasefield?","\r\n","
")

&retry
Use this function to re-try the script function that caused an error

The &retry function is used to return from an error handler subroutine back to the point in
the script where the error occurred, and is similar in function to &return.
GDIdb allows a single error handler routine, this is simply a subroutine defined with a
&defsub function with the special name on_error. If GDIdb encounters an error in the script,
this subroutine will be run. If return from this subroutine is via the &retry function GDIdb will
attempt to re-execute the function that triggered the error, if return is via an &return
function (or the subroutine is allowed to terminate naturally) GDIdb will halt execution of the
script at the function that caused the error.

Notes:
1/ The on_error subroutine will catch most (but not all) script errors. It is therefore advisable
to use the &geterror function to return and test the script error code in order to make sure
that you are only catching errors that you intend to catch (see example below).
2/ Errors in the error handler cannot be caught.

Alternate syntax:
<fretry>

Example:

&defvar(?num?,?er?)

allow 5 re-tries
&assign(?num?,5)

our error handler will only catch errors in the following function
&ftpsession("server","logon","password")
{

}

&defsub("on_error")
{

get the error code
&geterror(?er?,FALSE)

catch FTP connection error only
&if(?er?==26)
{

check for re-try count reached
&if(?num?!=0)
{

&print("Error ?er? encountered, re-trying function...")
&dec(?num?)
&retry

}
}

}

&return
Use this function to return from a subroutine to the point in the script where the
subroutine was called

The &return function is used to return directly from a subroutine. You do not need to place a
&return function at the end of a subroutine. (Return from a subroutine after the closing curly
brace character is automatic.)
The return function can also be used to terminate execution of a script- if it is encountered
outside of a subroutine, execution of the script will halt without error at that point.

Alternate syntax:
<freturn>

Example:

&defsub(“mysubroutine”)
{

&if(?var1?==6)
{

&return
}
&html("file?var1?.html")
{

<HTML>
<P>This file is only written if var1 does not equal 6
</HTML>

}
}

&runscript("script.scp")

Use this function to run a script from within a script

The &runscript function allows a script file to be executed from within a script. The argument
to the function must be a text string expression which evaluates to the file path for the script
file you wish to execute. The script executes in isolation from the script in which it was
called, the child script may not access variables from the parent script. If generate Scripter
list file (in Project Settings under the Project menu) is enabled, the list file will contain output
from both the parent and the child scripts. HTML files created by the child script will be
added to those generated by the parent script.

Alternate syntax:
<frunscript "script.scp">

Example:

&runscript("script.scp")

&sendmail("server","from","to",code,port)

Use this function to send an e-mail

GDIdb software license conditions (registered or un-registered use) require you to have read,
understood and accepted GDI's Spam statement before using this function.

The &sendmail function allows an e-mail message to be sent from within a GDIdb script. All
text enclosed between the opening and closing curly brace characters following the function
will be formatted as an e-mail and sent to the e-mail address specified in the 3rd argument
of the function. The mail will be sent via the SMTP server whose name or IP address is
passed as the 1st argument, a "from" e-mail address must be passed as a 2nd argument-
this address will be used as the e-mail return path if there are delivery problems.
The e-mail text must consist of 2 sections- e-mail header and e-mail body. The start of the e-
mail header must be marked by the label HEADER:<cr> The start of the e-mail body must
be marked by the label BODY:<cr> If the formatnone or formatcr format options are
used, the BODY: label must be placed at the start of a new line with no spaces or tab
characters before it.
Database or user-defined variables may be used anywhere in the e-mail, as may further
GDIdb functions.
Optional codes may be passed to the function (as the 4th argument) to control text
formatting and error checking when the e-mail is sent. These are as follows:

Alternate syntax:
<fsendmail "server","from","to",code,port>
. . .
</fsendmail>

CODE ACTION
format Strip extra carriage returns

and tab characters from text
(the default).

formatcr Only strip extra carriage
returns from text.

formatnone Perform no text formatting
on the e-mail.

cr2br Translate carriage return
characters in database
variables to
 HTML
tags.

cr2brstrip As above but the actual
carriage return\linefeed
characters are stripped from
the output.

Formatting codes can be combined using the | OR operator, e.g. formatcr | cr2br will strip
carriage returns and translate return characters into
 tags.
An optional 5th argument allows the server port to be specified. If the port is specified, a
code must also be passed as a 4th argument (this can be the default format) . If the server
port is not specified, it defaults to port 25.

Notes:
1/ Multiple e-mail addresses may be included in the "to" field, each must be separated by a
comma
2/ Only Internet e-mail addresses are valid, e.g. me@mydomain.com

Example:

&sendmail ("smtpmail.mydomain.com" , "me@mydomain.com " , "fred@hisdomain.com")
{

HEADER:
From: "Me" < me@mydomain.com >
To: "Fred" < fred@hisdomain.com >
Subject: Test email
Date: ?gdidbdate.dn?, ?gdidbdate.d? ?gdidbdate.mn? ?gdidbdate.y? ?gdidbtime?

BODY:
Hello,
This is a test of the GDIdb SMTP mail send function.
Did you receive it O.K\?

}

sin(n)

Use this function to calculate the sine of a number

The sin function will return the sine of the angle (in radians) passed as the argument. This
function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,sin (1.2))
variable ?var1? will now contain the sine of 1.2

&sleep(n)

Use this function to pause a script

The &sleep function will halt execution of the script file for n milliseconds.

Alternate syntax:
<fsleep n>

Example:

Pause for 1 second

&sleep(1000)

&split(?array?,"string","c")

Use this function to split a text string into separate strings on occurrences of a given
character or sub-string

The &split function will split the string passed as a second argument into sub strings. For
each of these sub strings, a new element of the array variable whose name is passed as the
first argument will be created. The character or string used to mark the split position is
passed as the third argument. The third argument is optional, if omitted the string will be
split on spaces.

Alternate syntax:
<fsplit ?array?,"string","c">

Example:

&defvar(?count?)

split the text string "Hello there Fred !!" into separate words
&split(?array?,"Hello there Fred !!")

display each word separately
&repeat(?count?,4)
{

&print("?array[?count?]?")
}

&sql(“SQL statement”,ccode)

Use this function to access a table in your database

The &sql function performs a SQL query on the datasource named by a preceding
&datasource function. The data returned by the function may be accessed and merged with
HTML by using datasource variables. The argument to the function must be a text string
expression,
Notes:
1. The datasource data made available by &sql is only available for the scope of the opening
& closing curly braces { } following the function.
2. If the text between the opening & closing curly braces contains another &sql function, the
previous &sql function’s data will be masked. Check out the section on datasource variables
to find out how to access it.
3. If the SQL statement does not return a recordset an error will result. Use the &sqlnr
function instead.
4. If the recordset returned by the &sql function is empty, an attempt to reference database
fields will cause an error. Use an &if function to check that ?recordsetsize? is larger than 0
before attempting to access database data.

Alternate syntax:
<fsql "SQL statement,ccode>
. . .
</fsql>

Example:

Use globaldata ODBC DSN
&datasource(“DSN=globaldata”)

Execute a select query on the database and process the returned recordset
&sql (“SELECT * FROM Categories")
{

Print out the contents of the first row of data from the categoryname column
of the recordset
<H3>Category=?categoryname?</H3>

}

&sqlnr(“SQL statement”)

Use this function to insert data into your database

The &sqlnr function performs a SQL query on the datasource named by a preceding
&datasource function. The SQL query should not return a recordset, if you wish to generate a
recordset use the &sql function instead. The argument to the function must be a text string
expression,

Alternate syntax:
<fsqlnr "SQL statement">

Example:

Use globaldata ODBC DSN
&datasource(“DSN=globaldata”)

Execute an append query to add data to the database
&sqlnr("INSERT INTO Jobs (JCatKey, JobTitle, JobDesc) VALUES(5, 'Analogue Engineer,M4', A
Company in the West of England needs an analogue engineer to work on a new range of
state-of-the art Audio equipment. The experienced candidate will have experience in low-
noise Audio preamplifier design and be capable of a high degree of self-motivation..')")

sqrt(n)

Use this function to calculate the square root of a number

The sqrt function will return the square root of the number passed as the argument. This
function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,sqrt (0.2))
variable ?var1? will now contain the square root of 0.2

&strcmp(?varname?,"string",COMP,"string",..)

Use this function to compare text strings

The &strcmp function is used to compare text string expressions, the result of the
comparison is assigned to the variable passed as the first argument.

The &strcmp function makes a comparison of pairs of string expressions and assigns the
combined Boolean result to variable ?varname?.

Alternate syntax:
<fstrcmp ?varname?,"string",COMP,"string",..>

Each string in the comparison must be a text string expression,
and COMP is the code indicating the comparison to be made. Valid codes are:

COMP String Comparison result
eq True if string1 is the same as string2
ne True if string1 is different to string2
lt True if string1 is less than string2

(lexicographical)
gt True if string1 is greater than string2

(lexicographical)
in True if string1 exists anywhere within string2
ni True if string1 does not exist anywhere within

string2

In addition, if you require that the comparison made between the two strings is not case-
sensitive, append .nc onto the end of the code, e.g:

&strcmp(?var1?,"THERE",in,"Hello there Fred!") -Evaluates false
&strcmp(?var1?,"THERE",in.nc,"Hello there Fred!") -Evaluates true

Multiple string comparisons can be made using a single &strcmp function, the results (string
expressions evaluated left to right) are combined using a combine code CC. Valid codes are:

CC Logical Combination result
AND True if comparison 1 and

comparison 2 are both true.
OR True if either comparison 1 or

comparison 2 are true.

Example:

&html(“htmlfile1.html”)
{

&defvar(?var1?,?var2?,?var3?)

&assign(?var1?,"John",?var2?,"Fred")

compare variables ?var1? and ?var2? with the text strings
"John" and "Fred" respectively. Assign the Boolean
result to ?var3?

&strcmp(?var3?,"?var1?",eq,"John",AND, "?var2?",eq,"Fred")
&if(?var3?)
{

<H1>Variable var1 contains the name "John",
and variable var2 contains the name "Fred</H1>

}
}

&strin(?varname?,"string1","string2")

Use this function to search for a word in a text string

The &strin function searches for sub-string string1 within string2 and assigns the (zero-
based) position of the sub-string within string2 to variable ?varname?. If the string is not
found, ?varname? is assigned the value -1

Arguments two and three must be text string expressions.

Alternate syntax:
<fstrin ?varname?,"string1","string2">

Example:

&html(“htmlfile1.html”)
{

&defvar(?var1?,?var2?)
&assign(?var1?, "Hello there Fred!")

&strin(?var2?,"there","?var1?")

&if(?var2?!=-1)
{

<H1>Variable var1 contains the word "there" at position ?var2?</H1>
}
&else
{

<H1>Text string was not found!</H1>
}

}

&striphtml (?varname?,"text")

Use this function to strip HTML tags from text

The &striphtml function will strip all HTML tags from the text string passed as a second
argument- the result is assigned to the variable passed as the first argument.

Alternate syntax:
<fstriphtml ?varname?,"text">

Example:

&defvar(?var1?)
&assign(?var1?,"<html><body>Hello!</body></html>")

&striphtml(?var1?,"?var1?")

variable ?var1? will now contain the text "Hello!"

&strlen(?varname?,"string")

Use this function to get the length of a text string

The &strlen function calculates the length of the text string expression. passed as the
second argument and assigns this value to the variable passed as the first argument to the
function.

Alternate syntax:
<fstrlen ?varname?,"string">

Example:

&html(“htmlfile1.html”)
{

&defvar(?var1?,?var2?)
&assign(?var1?, "Hello there Fred!")
&strlen(?var2?,"?var1?")
?var2? now contains the value 17

}

&strtrim(?varname?,"string")

Use this function to remove leading & trailing whitespace characters from a text string

The &strtrim function will remove leading and trailing whitespace characters from the text
string expression passed as the second argument to the function. After processing, the
string is assigned to the variable passed as the first argument to the function.

Alternate syntax:
<fstrtrim ?varname?,"string">

Example:

&html(“htmlfile1.html”)
{

&defvar(?var1?)
&assign(?var1?, "                  Hello there Fred!                          ")

?var1? contains the text string "                    Hello there Fred!                          "

&strtrim(?var1?,"?var1?")

?var1? now contains the text string "Hello there Fred!"
}

tan(n)

Use this function to calculate the tangent of a number

The tan function will return the tangent of the angle (in radians) passed as the argument.
This function must be used inside an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,tan (1.2))
variable ?var1? will now contain the tangent of 1.2

&tolower(?varname?,"string")

Use this function to convert a text string to lower case

The &tolower function will convert all of the characters in the text string expression passed
as the second argument into lower case. The resulting text string is assigned to the variable
passed as the first argument to the function.

Alternate syntax:
<ftolower ?varname?,"string">

Example:

&html(“htmlfile1.html”)
{

&defvar(?var1?)
&assign(?var1?,"HELLO")

&tolower(?var1?,"?var1?")

variable ?var1? will now contain the text "hello"

}

&toupper(?varname?,"string")

Use this function to convert a text string to upper case

The &toupper function will convert all of the characters in the text string expressionpassed
as the second argument into upper case. The resulting text string is assigned to the variable
passed as the first argument to the function.

Alternate syntax:
<ftoupper ?varname?,"string">

Example:

&html(“htmlfile1.html”)
{

&defvar(?var1?)
&assign(?var1?,"hello")

&toupper(?var1?,"?var1?")

variable ?var1? will now contain the text "HELLO"

}

&unpack(?varname?,"string")

Use this function to unpack text strings encoded by a web browser

The &unpack function is used to unpack text strings that have been encoded by a web
browser for passing to a CGI script. The function will scan the string passed as a second
argument for the % character, if any are found the following 2 digits are assumed to be the
hex code for the actual string character. The &unpack function allows GDIdb to process web-
submitted data which has been e-mailed straight from the web server with no processing.

Alternate syntax:
<funpack ?varname?,"string">

Example:

note: the HEX code for a space character is 20

&defvar(?var1?)
&assign(?var1?,"hello%20there")
&unpack (?var1?,"?var1?")
variable ?var1? will now contain the text "hello there"

&while
Use this function to repeat a section of your script in combination with a &do function

The &while function can only be used as part of a &do loop. See help topics on the
&loopfunction if you are converting a script from an earlier version of GDIdb.

alog10(n)

Use this function to calculate the antilog (base 10) of a number

The alog10 function will return the antilog (to the base 10) of the number passed as the
argument. This function must be used within an arithmetic expression.

Example:

&defvar(?var1?)
&assign(?var1?,alog10(0.2))
variable ?var1? will now contain the antilog of 0.2

Datasource Variables
Datasource variables allow data extracted from your datasource to be merged with your
HTML and are automatically created by GDIdb &sql and &getdata functions. The name of a
datasource variable is taken directly from the name of the column of data in the
database/spreadsheet table whose data it will contain. Question marks define the start and
end of a datasource variable name. (e.g. ?columname?)

The characters & \ ? # () } and { have special meanings for GDIdb. If your datasource
column name includes one of these characters, insert a \ character before the character,
e.g. if you have a ? in your datasource column name, you must put the sequence \? in the
variable name. To insert the \ character itself in the variable, use the sequence \\.

Datasource variables may be mixed with HTML in your script file- when the script is run
GDIdb will insert the datasource data from the column whose name matches the datasource
variable name.

The row of data returned in the datasource variables can be set using the &getrow and
&nextrow functions, although (more conveniently) the &foreachrow and &getdata functions
allow you to iterate through each row of data automatically.

Nested &sql and &getdata functions each mask the previous function’s data, in order to
access this a relative index must be added to the variable. This is a number enclosed in
square brackets[] which must appear before the closing ‘?’ character. (e.g. ?columname[-5]?
) The index value must be zero or less and indicates the depth of nested &sql functions that
separate the variable from it’s defining &sql or &getdata function. (e.g. ?columname[-1]? will
return ?columname? from the previous function, ?columname[0]? is equivalent to ?
columname?)

In addition, a (1 based) positive index may be supplied to a datasource variable, the data
returned will then be relative to the first rather than the last &sql/&getdata function as
follows:

?columname[1]? The contents of ?columname? from the top-level &sql/&getdata
function.
?columname[2]? The contents of ?columname? from the &sql/&getdata function the
next level down.

In addition to the variable names defined by the column names in the datasource, there are
three datasource system variables that you can use in your script. These are:
?recordsetsize? this variable returns the number of rows of data created by the &sql and
&getdata functions.
?rownumber? this variable returns the actual row of datasource data currently being
processed. This variable will increment with each loop of a &foreachrow or & getdata
function.
?numcolumns? this variable returns the number of columns which exist in the recordset.

Note:
Database variables are read-only and can not be re-assigned.

System Variables
GDIdb has system variables which can be used to access the system time and date
information. These are as follows:

VARIABLE CONTAINS
?gdidbtime? The current time in the format

hh:mm:ss
?gdidbtime.h? The current time. (Hours only)
?gdidbtime.m? The current time. (Minutes only)
?gdidbtime.s? The current time. (Seconds only)
?gdidbdate? The current date in the format

mm/dd/yy.
?gdidbdate.d? The current day of the month as a

number.
?gdidbdate.dn? The name of the current day of the

month .
?gdidbdate.m? The current month as a number.
?gdidbdate.mn? The name of the current month .
?gdidbdate.y? The current year as a number.

Arithmetic Constants
GDIdb has the following labels defined as arithmetic constants. Constants may be used in
place of the corresponding value in arithmetic expressions- note however that the constant
names are not case-sensitive. GDIdb does not support user-defined constants.

Constant Value
byte 2
Cancel 2
cr2br 4
cr2brstrip 8
del 0
dword 8
fa 2
fb 16
ff 8
fh 1
format 0
formatcr 1
formatnone 2
fq 4
hexconv 4
hiascii 64
iconerror 16
iconexclamation 48
iconinformation 64
iconquestion 32
iconwarning 48
jtolepk 1
nf 0
No 7
nodel 128
nohexconv 2

OK 1
okcancel 1
PI 3.141593
word 4
Yes 6
yesno 4
yesnocancel 3
false 0
true 1

User-defined Variables
GDIdb supports user-defined variables, these must be declared using the &defvar function
before they can be used. The &assign function can be used to set the value of user-defined
variables. Once created, user-defined variables may be used in a similar way as datasource
and system variables, any point where the variable name appears in a script enclosed within
? characters, GDIdb will substitute the actual variable value. Unlike system and datasource
variables however, it is possible to assign a new value to a user variable using the &assign
function.

The characters & \ ? # () } and { have special meanings for GDIdb. We do not recommend
using these characters in user-defined variables, if you do however you must precede the
character with a \, e.g. if you wish to have a ? in your variable name, you must put the
sequence \? in the variable name. To insert the \ character itself in the variable, use the
sequence \\.

Variable names are limited in length to 255 characters.

User-defined variables are not typed and may be used to hold text and numeric values,
numeric values are held as the text string representation of the number. See help topics on
arithmetic expressions for more information.

Because there is no difference between numeric & text string variables, string functions will
work with numeric values stored in variables and variables containing text strings
(consisting for example of an arithmetic expression) may be evaluated as numeric values.

User-defined Variable Arrays
GDIdb supports user-defined variable arrays as an extension of user-defined variables. When
GDIdb creates a variable using the &defvar function, an instance of that variable is added to
GDIdb's internal variable list, which contains the names of all of the variables that have been
defined at that point in the script. If the &defvar function is used to declare a variable that
already exists, a new variable of that name is added to the end of the GDIdb variable list and
any references to the variable will access the new variable. The original variable of that
name still exists within the GDIdb variable list however and can be accessed in a similar
fashion to nested database variables, e.g:

?variablename? Refers to the last-defined variable of this name
?variablename[-1] Refers to the previously-defined variable of this name.

?variablename[0]? is the same as ?variablename?

In addition, a positive (1 based) index can be used. A positive index will cause GDIdb to
search from the other end of the variable list so that:

?variablename[1]? Refers to the first defined instance of ?variablename?
?variablename[2]? Refers to the second defined instance of ?variablename?

To assist with the creation of arrays, the &defvar function allows the creation of an array of
any length. It is important to realize though that arrays and normal variables are actually the
same thing, hence:

&defvar(?myarray[100]?)

is exactly the same as the following bit of code:

&defvar(?count?)
&for(?count?,0,?count?<100,1)
{

execute the &defvar function 100 times
&defvar(?myarray?)

}

and:

&arraydelete(?myarray?)

is exactly the same as the following bit of code:

&defvar(?count?,?size?)

calculate the size of the array
&arraysize(?size?,?myarray?)

&for(?count?,0,?count?<?size?,1)
{

execute the &delete function 100 times
&delete(?myarray?)

}

The size of an array may be changed at any time, use &delete to delete a single element

from the array and &defvar to add a single item to the end of the array, e.g:

extract data from a database and save in an array, which grows dynamically
for each record of database data

&getdata("SELECT * FROM Sheet")
{

for each row in the database table, create a new ?myarray? variable
&defvar(?myarray?)

and assign it the contents of the database "product" field
&assign(?myarray?,"?product?")

}

get the size of the array

&defvar(?asize?,?count?)
&arraysize(?asize?,?myarray?)

&html("index.html")
{

print the contents of each of the array variables to index.html"
&for(?count?,1,?count?<=?asize?,1)
{
?myarray[?count?]?
}

}

even though the array was created using multiple &defvar functions, it
is easier to delete it using the &arraydelete function

&arraydelete(?myarray?)

How to: Test for empty datasource fields
You may wish to have your script include (or exclude) certain HTML in the instance that a
datasource field is empty. The solution is to test the contents of the datasource field using
the &if function. Before checking a datasource field for emptiness, use the &strtrim function
to remove any space characters (some database software will pad out empty fields with
spaces). See the help section on the &if and &strcmp functions for details on the full range
of tests that are possible.

Here's how to do it:

put this line at the top of your script file
&defvar(?var1?)

and the following lines at the point where you
wish to make the test.

remove space characters
&strtrim(?var1?,"?mydatasourcefield?")

compare the text string with "" (which represents an empty string)
use the &if function to include different HTML depending on the test outcome

&if("?var1?",eq,"")
{

<H1>This HTML will appear if the datasource field is empty</H1>
}
&else
{

<H1>This HTML will appear if the datasource field is not empty</H1>
}

How to: Test datasource fields for a specific word
You may wish to have your script include (or exclude) certain HTML in the instance that a
datasource field contains a certain word. The solution is to test the contents of the
datasource field using the &if function. See the help section on the &if and &strcmp function
for details on the full range of tests that are possible.

Here's how to do it:

search the datasource field 'Name' for the word "fred"

use the &if function to include different HTML depending on the test outcome
&if("fred",in.nc,"?Name?")
{

<H1>This HTML will appear if the datasource field contains "fred"</H1>
}
&else
{

<H1>This HTML will appear if the datasource field does not contain "fred"</H1>
}

How to: Test numeric datasource fields for a certain value
You may wish to have your script include (or exclude) certain HTML in the instance that a
numeric datasource field contains a certain value. The solution is to use the &if function to
do a numeric test on the datasource field. See the help section on arithmetic expressions for
more details on the range of possible tests.

Here's how to do it:

use the &if function to include different HTML depending on the test outcome

&if(?mydatasourcefield?==5)
{

<H1>This HTML will appear if the datasource field contains 5</H1>
}
&else
{

<H1>This HTML will appear if the datasource field does not contain 5</H1>
}

How to: Create unique filenames
If you are creating several HTML files from within a loop in your script, you need to make
sure that all the files generated will have a unique name in order to prevent them from
overwriting each other. GDIdb provides a system variable ?rownumber? which can be used
to create a unique filename for each row of a datasource table. Wherever ?rownumber?
appears in your script, it will be replaced by the current row number of the current
datasource table. See the help section on datasource variables for more info on this topic.

Here's how to do it:

The following script will produce a file for each row of the datasource table.
The first file will be called "file1.html", the second "file2.html" and so on

&getdata("SELECT * FROM Table")
{

&html("file?rownumber?.html")
{

<HTML>
</HTML>

}
}

if you are using nested &getdata or &sql functions, you need to create the filename
using the rownumber from each table in order for it to be unique. Note the x placed
between the ?rownumber? variables- this ensures that a different filename is created
on row 1 of table 1/Row 11 of table2 than is on row 11 of table1 and row1 of table2 !

&getdata("SELECT * FROM Table1")
{

&getdata("SELECT * FROM Table2 WHERE KeyField=?Table1Key?")
{

&html("file?rownumber[-1]?x?rownumber?.html")
{

<HTML>
</HTML>

}
}

}

another way of creating a unique filename is as follows. Note that
this method will not work well with GDIdb's "changed-only files"
publishing feature (delete the first row of the first table in your
datasource and GDIdb will upload all of the files again!).

put these 2 lines at the top of your script file
&defvar(?filecount?)
&assign(?filecount?,0)

and generate files with the following 2 lines:
&inc(?filecount?)
&html("file?filecount?.html")
{

<HTML>

</HTML>
}

How to: Sort your data
The SQL "ORDER BY" statement allows the returned recordset to be sorted on a datasource
field. You can specify that the sort be ascending or descending.

Here's how to do it:

Descending sort data using field "Rating"
&getdata("SELECT * FROM Table ORDER BY Rating DESC")
{

. . .
}

Ascending sort data using field "Rating"
&getdata("SELECT * FROM Table ORDER BY Rating ASC")
{

. . .
}

How to: Create variable-length tables in Excel
Whenever you create a table using Excel, GDIdb will extract the whole of the table contents-
this includes all of the cells that you selected when you created the table. If you wish to
create a table where entries may be deleted or added to, without having to re-define the
table, follow this procedure:

1. When you create your table by selecting an area of the worksheet, select an area which is
as big as you think the table is ever likely to become.
2. A ScriptWiz- generated script will insert blank spaces in the HTML for all of the un-filled
cells in the worksheet table. To prevent this, modify the SQL statement in the &getdata or
&sql function to the following:

&getdata("SELECT * FROM sheet WHERE Not ([sheet]![Item]='')")

"Item" must be the name of a column in the table which, when full, will contain text. The
above SQL will result in GDIdb only extracting data from rows in the table where the "Item"
column actually contains data.

How to: Use GDIdb to include image files
GDIdb provides two functions to help you include image files on your web site. These are:

1. The &datawrite function which will extract binary database fields and write the contents
to a file.
2. The &filelink function which allows you to create a link to an external file. When you run
your script, this file will be copied to the local HTML directory, and if it has changed since the
last publish operation, will be marked for uploading to the web server.

Because the &datawrite function uses unsupported aspects of ODBC and OLE to extract
binary database fields, the &filelink function provides the preferred method of managing
image files.

Here's how to do it:

1. Create a new directory to hold your web site image files (e.g. C:\mysite\images)
2. Put a text field in your database table, this will be used to contain the filename of the
image.
3. Add a &filelink function to your script, e.g.

put all the images whose names are contained in the database field imagefield
on a web page

&html("index.html")
{

<HTML>
&getdata("SELECT * FROM MyTable")
{

&filelink("C:\\mysite\\images\\?imagefield?","?imagefield?")

}
</HTML>

}

When you add a new record to your database, enter the file name in the file name text field
and place the image file itself in the directory created above (C:\mysite\images) . That's it!

Note: the &filelink function can also be used to provide changed-only uploading of any other
files on your web site!

SQL
Structured Query Language is the standard language used to communicate with database
software. GDIdb &sql and &getdata functions use SQL to query the chosen ODBC datasource
for the data that will be included in the web site. SQL is a complex and powerful language
and a full treatment of it is outside the scope of this text, however a few useful SQL
commands are:

1. To make the entire contents of a datasource table "Tablename" accessible to GDIdb:
&sql(“SELECT * FROM Tablename”)

2. To retrieve all the records from datasource table “Tablename” where the value of
ColumnName is 5: &sql(“SELECT * FROM Tablename WHERE
Tablename.ColumnName=5”)

3. To retrieve all the records from one column called ColumnName from a datasource table
called Tablename: &sql(“SELECT ColumnName FROM Tablename”)

4. To retrieve all the records from datasource table “Tablename” where the text in column
ColumnName contains the word ‘television’: &sql(“SELECT * FROM Tablename WHERE
Tablename.ColumnName LIKE ‘%television%’”)

Note: GDIdb uses ODBC SQL conventions, this means that (when embedded in a text string
in a LIKE clause) the wildcard character for 1 or more of any characters is % not * and the
wildcard character for 1 of any character is _ not ?
Furthermore, if you are accessing your datasource using the ‘Jet’ database engine (used to
access most databases apart from Oracle and SQL Server), the text string to match in the
LIKE clause must be enclosed in ‘single quotes’ and not “double quotes”.
(See above example.)

Whilst your script will work if you always use SELECT * to make all datasource columns
available to your script, it may run faster if you just ask for the column names that you are
actually going to access, particularly if there are many columns in the table.

Tip: If you have a copy of Microsoft Access, you don’t need to learn SQL. Simply construct a
select query to extract the data you want. (Using Access visual query design tools.) Once
you have a query that returns the data you wish to use from GDIdb, select View/SQL on the
Access menu. The query you have designed will be displayed as a text SQL query, simply cut
and paste this text and use it as the argument to a &sql or &getdatafunction in your GDIdb
Script. If your SQL statement includes the wildcard pattern-matching characters ? or * or
text strings enclosed in double quotes “, remember to translate them to the ODBC SQL
equivalents mentioned above.

ODBC
Open Data Base Connectivity is a system provided in Windows to allow a range of different
database applications to exchange data. The setup program for GDIdb will install ODBC if
you do not already have it on your computer. (click on My Computer - Control Panel where
you should find an icon named ODBC)

GDIdb is supplied with the Microsoft data access pack, which installs the latest version of
ODBC, plus drivers for the following data sources: Microsoft Access, Excel, FoxPro, dBase,
Paradox, SQL Server and Text files. If you wish to extract data from a database/spreadsheet
that is not listed above, you will need to obtain and install a suitable ODBC driver before you
can use GDIdb with your datasource.

GDIdb allows you to extract data directly from either a database/spreadsheet file or an ODBC
Data Source Name (DSN). A DSN is simply a convenient way of storing all of the datasource
connect information (file name, path, user I.D, connect password, database type etc) under
a simple name.

If you want to create a new ODBC DSN from your database or spreadsheet, double-click on
the ODBC icon and click “add” to add a user DSN. You will then be prompted to select an
ODBC driver appropriate for the datasource you are connecting to. ODBC as installed by
GDIdb comes with ODBC drivers for Microsoft Access, Excel, FoxPro, Paradox, Text Files and
SQL Server. If your datasource is not one of these you will need to obtain and install an
appropriate driver from the vendor of your database software. Once you have selected the
ODBC driver, you will be presented with a dialog in which you need to enter a datasource
name. This will be the name GDIdb will use to access the datasource. Next you will need to
attach the DSN to your database file or database server. Press the Select button (in the
Datasource group of buttons), browse for the datasource file and click OK once you have it
selected.

Note: GDIdb will not run if ODBC is not installed on your computer.

Steps to publishing your datasource
We recommend that you follow the tutorials provided in the Script Studio Help before
embarking on a serious web project. However, if you want to get going quickly, follow these
steps to publish your datasource on the Web.

1. Create a new GDIdb project. Click the "New Project" button on the GDIdb toolbar to
create a new web project. All project files and settings will be stored under this new project
name.

2. Create a GDIdb Script File. The simplest way of creating a script file is to run Script
Wizard (Under Tools on the GDIdb menu), which will automatically generate a basic script
file. After you have run Script Wizard, you can add html to the script file by selecting
Open/Edit script from the File menu.
You can learn more about how to write script files from scratch in the help and also by
looking at the example scripts provided. There are several example scripts stored in the
GDIdb program folder which you can experiment with and examine for programming tips-
these script files work with the Microsoft Access and Excel files included with the installation.

3. Test run your script. If everything is set up correctly, you should be able to select
open/run script from the GDIdb File menu and run your script. Any errors in the process of
connecting to your datasource and generating the HTML for your web site will be reported
by the software. If the script produces errors when run, select View Scripter List Output
(under the View menu) to troubleshoot the script.

4. Preview Web Site. If no errors were reported, you may preview the web site generated
by GDIdb by selecting Edit/Preview web site from the GDIdb menu.

5. Configure GDIdb. Make certain that you have included all relevant information in both
Program Settings and Project Settings.

6. Upload to Web Server. Select Actions/Upload to Web Server from the menu to transfer
the HTML generated by GDIdb to your web server.

7. Publish your Data. If you have entered the name of your script file in Project
Settings/Publish Actions, you should now be able to complete the whole operation of running
your script file and transferring the HTML generated by GDIdb to your web server simply by
clicking the publish button.

Once you have got this far, study help topics on auto publish for information on how to
configure GDIdb for scheduled unattended operation.

Steps to retrieving web form data
GDIdb Professional makes the job of getting web form data back into a database on your
desktop P.C. pretty easy:

1. Create the HTML page that you want displayed after the web form has been submitted
by the visitor to your web site. Script Wizard will ask you for the name of this file later.

2. Run Script Wizard (Under the Tools Menu) and select web form data retrieval under
script type. Once finished, Script Wizard will generate a GDIdb script file, a Perl web server
CGI script (to be copied to your cgi-bin directory) and a basic HTML form page (to be copied
to your web server HTML directory).

3. Copy the CGI and HTML files to your web server. You may also need to set execute
permissions on the CGI script depending on your web server.

4. Run the GDIdb script file whenever you want GDIdb to collect data off the web form. If
you want this to be done automatically, see help topics on auto-publishing for information on
how to set GDIdb up to collect data to a pre-defined schedule.

Getting going quickly
The following links will take you to a step by step guide:

Web/Database publishing
Web form data retrieval

Software Registration
GDIdb Software needs to be registered if you intend to use it beyond the 31 day evaluation
period, after which it will require a registration key to run.

A document named “resellers.html” in the GDIdb program directory lists regional GDIdb
resellers, alternatively for an up-to-date list of resellers or on-line ordering direct from our
web site please visit the following URL:

http://www.gdidb.com/

If you have obtained a key, enter your registration name and key in the dialog which
appears when GDIdb is started.
Details of the registration name and key can be found on GDIdb Help/About menu item.

Executing GDIdb from the command line
GDIdb can be executed from the command line by typing the program file name. If the
program file name is followed by a path to a script file, GDIdb will execute the script file and
then shut down. If you wish to publish a project, pass /p as an argument, or
projectname /p if you wish to publish a project other than the current GDIdb project. This
version of the software no longer allows you to specify a script file name when executed with
the /p option.

Note: If your script or project name has spaces in it, you must surround the name in double
quotes, e.g. “my project”

Examples:

gdidb<cr> Executes GDIdb from the command
line.

gdidb script.scp<cr> Execute a GDIdb script file.
gdidb projectname
/p<cr>

Publish the specified GDIdb project.

GDIdb turns the data in your database/spreadsheet into HTML documents by executing a
script file. This file is effectively a template describing the web site that will be constructed
from your data and consists of HTML and functions telling GDIdb what database data you
wish to include. Run Script Wizard (under Tools) to create a basic script file.

Managing your Web Site with GDIdb

GDIdb includes powerful tools for managing your web site. GDIdb can even be used to
manage changed-only uploading of files in your web site that are not created by GDIdb (see
help topics on &filelink    for more info). If you have a large database and want to update
your web site frequently, we recommend the following settings:

Project Settings/FTP Options (under the Project menu)
Select Upload changed-only GDIdb output files
Enable Delete old files from web server

Project Settings/Scripter Settings (under the Project menu)
Enable Delete old html files

With the settings shown above, you can update your site by clicking the publish button (or
clicking the run button followed by the FTP button) on the GDIdb project toolbar. GDIdb will
detect which files have changed since the last publish or upload operation and only these
files will be uploaded. Files (generated in previous publish operations) which no longer
appear in your web site will be automatically deleted, both from your local project html
directory and from the web server.

Note: GDIdb needs to keep track of files which have changed between publish operations.
For the above configuration to work correctly, you must not run any scripts from within the
current project except for the script used to build the site. If you wish to use changed-only
publishing in the instance where you are using several different scripts to build the web site,
either: (a) Disable Delete old files from web server and Delete old HTML files or (b) Run each
script from a separate project.

GDIdb keeps the following files in the project directory:
1. A file containing file names created by last-run script.
2. A file containing the names of files whose contents changed in the last-run script.
3. A file containing the list of file names that are currently held on the web server.

GDIdb Projects
If you are using GDIdb to do several different jobs, you can store all files and settings for
each project by setting up a GDIdb project for each job. To create a new project, click the
"New Project" button on the main GDIdb toolbar. You will be prompted for the project name.
Creating a new project will result in the following actions:
1/ A new directory will be created in the GDIdb projects directory. (The projects directory is a
sub-directory of the GDIdb program directory) The directory will be given the same name as
the project.
2/ A directory called html will be created within the new project directory. This will be used
as the new project's default local HTML directory.
3/ A new key is created in the program .ini file to store the project settings.

GDIdb file upload status is maintained in a series of files, these files contain information on:
1/ The list of file names created by the last-run script.
2/ The list of output files whose contents have changed since the last publish.
3/ The list of files currently held on the web server.

As these files are written to the project directory, each project will operate in isolation.

If you wish to delete a project, click the "Delete Project" button on the main GDIdb toolbar.
Deleting a project will result in the following actions:
1/ The project directory is deleted, together with all contents.
2/ The project .ini file key is deleted.

System Error Codes
The following table contains a description of GDIdb error codes, together with suggestions
for remedies for common problems.

COD
E

DESC. REMEDY

1 Message returned
from ODBC driver.

An error occurred whilst
GDIdb was working with
your datasource. The error
message itself will usually
indicate the problem, if the
message you receive is
"Driver not capable" try
setting the ODBC cursor
library radio button to
"Always use" (under ODBC
in the Project Settings
dialog).

2 attempt made to
auto-publish non
existent project

The project whose name
appears in the auto-publish
project combo box (in
Program Settings) does not
exist.

3 attempt made to
fetch non-existent
recordset column

The index supplied to a
getcol function referred to
a column which does not
exist.

4 unable to open
export file for writing

Check that the file path
supplied to an export
function is a valid file path.

5 no valid recordset
available

Make sure that your export
function is inside a valid
recordset.

6 error writing to
export file

Undefined file error.

7 POP3 network socket
creation error

GDIdb was unable to
create a network socket.
Try restarting the program.

8 unable to extract
OLE package

The GDIdb datawrite
function was unable to
extract the OLE Package
from the variable passed
as an argument (see notes
on OLE in datawrite help).

9 HEX conversion error There was an error whilst
converting a binary field

from hexadecimal to
binary. The record may not
be in hexadecimal- try
including a nohexconv
tag in your datawrite
function.

10 unable to allocate
memory for data
buffer

GDIdb was unable to
allocate memory for
conversion of a binary
database record. This may
indicate an error with your
database data.

11 filelink function
could not open
source file

GDIdb could not open the
source file specified in a
filelink function. Check file
name and path.

12 filelink function
could not write to
target directory

GDIdb could not write the
file specified in a filelink
function to the target
directory. Check target file
name and path.

13 attempt made to
fetch data from
empty recordset

If you use datasource
variables inside a sql
function recordset, an error
will be caused if the
recordset returned is
empty. Use the if function
to check that ?
recordsetsize? is larger
than zero before
referencing datasource
data.

14 syntax error in
format specification
or input data

Either there are invalid
characters in the format
specification (2nd
argument) of a format
function, or the data
passed to the function (3rd
argument) is in the
incorrect input format.

15 nesting of POP3
sessions is illegal.

You can only have one
POP3 session open at any
one time. GDIdb does not
allow multiple POP3
sessions to be nested.

16 function requires an
open POP3 session

This function must be used
inside an open POP3
session. See help topics on

the pop3session function
for more info.

17 HEX conversion error There was an error whilst
converting a hex character
code to an ASCII character
in an unpack function input
string. One of the 2
characters following a % in
the string is an illegal hex.
character.

18 datasource column
data larger than
buffer. Increase
ODBC memory
allocation.

Increase the amount of
memory allocated for
datasource column data
(on the ODBC dialog of
Project Settings).

19 out of memory! GDIdb was unable to
allocate the memory
needed to temporarily
store the database data.
Try shutting down other
programs, if your
datasource table has many
fields, try including only
those fields you actually
need in the SQL SELECT
statement.

20 Nesting of FTP
sessions not allowed

You cannot open an FTP
session within the scope of
an existing FTP session.

21 unable load
rasapi.dll. The
system may not
have dial-up
networking installed.

GDIdb failed to initialize
Windows RAS/Dial-Up
networking. Check that
you have Windows
RAS/Dial-Up networking
installed & that it is
operating correctly before
checking "Establish dial-up
Internet connection" in
settings.

22 unable to get RAS
DLL function pointer.

See above.

23 unable to allocate
memory whilst
enumerating RAS
connections.

Your computer is out of
memory. Shut down any
other applications you
have running.

24 unspecified RAS
error whilst

See error 21

attempting to
enumerate current
RAS connections.

25 dialup connection
could not be
established. Check
dialup settings.

This could be caused by
incorrect logon/password
information in settings,
your ISP's number being
unavailable or engaged or
a problem with your
modem or telephone line.

26 connection to server
could not be
established.

This error indicates one of
the following problems:
Incorrect server
logon/password info,
incorrect server host name
or simply that the server
itself is not responding.

27 specified web server
upload directory
could not be opened.

The root web server
directory specified in
settings does not exist or
you do not have access
rights to open it.

28 upload list file could
not be opened.

GDIdb creates an upload
file list when a script is run.
Re-run your script to create
a new upload list file and
select Upload To Web
Server- All Output Files.

29 “FTP server error
message”.

There was a problem
encountered whilst trying
to copy a file from your PC
to the web server. There
may be a problem with the
file on your PC or there
may have been an FTP
error uploading it to the
web server. Select Reset
Project Upload Status
(Under the Tools menu)
and re-try.

30 file does not exist. An attempt was made to
copy a non-existent file to
the web server. This is
usually caused by GDIdb's
"changed files only" list
becoming out of synch
with the contents of the
local project HTML
directory. Select Reset

Project Upload Status
(Under the Tools menu)
and re-try.

31 upload cancelled by
user.

Pressing ESC during an
upload will terminate the
upload with this error code.

32 arithmetic/Boolean
expression contains
syntax errors.

Check the section in Help
on Arithmetic expressions
for information on GDIdb
arithmetic expressions.

33 arithmetic/Boolean
expression contains
illegal characters.

Check the section in Help
on Arithmetic expressions
for information on the
allowable characters in a
GDIdb arithmetic
expression.

34 divide by zero in
arithmetic/Boolean
expression.

You have attempted to
divide a number by zero in
a arithmetic expression.

35 system out of
memory! Please free
up some resources
and restart GDIdb.

GDIdb needed more
memory than the system
could allocate. Shut down
any other programs you
have running, re-start
GDIdb & re-try.

36 enter time in the
form hh:mm

The time must be entered
in the correct format, with
a colon separating hours &
minutes. The 24 Hour clock
is used to separate a.m.
and p.m.

37 unable to run text
editor. Check
program settings.

The path for your text
editor program is defined
in the GDIdb Program
Settings dialog (under the
Tools menu). Check that
this path is valid.

38 unable to run utility The installation creates 2
files in the program
directory, scriptwiz.exe
and h2s.exe. Check that
they exist- if not, re-install
GDIdb.

39 HTML log file not
found. (Before
previewing HTML,

If your script file
terminated on errors, you
will not be able to preview

you need to run a
script.)

the HTML generated. Re-
run your script file to
generate a new HTML log
file.

40 unable to run web
browser. Check
Helper Apps settings
under Tools/Program
Settings.

The path for your web
browser program is defined
in the GDIdb Program
Settings dialog. Check that
this path is valid. If you
clear the edit box & restart
GDIdb, the text box will be
set to the path to the
Windows default web
browser.

41 illegal zero-length
split string

The string used as a split
sting in a split function
cannot be zero length.

42 unable to run
database. Check
Helper Apps settings
under Project
Settings.

The path for your database
program is defined in the
GDIdb Project Settings
dialog. Check that this
path is valid.

43 user database has
not been defined.
Check Helper Apps
settings under
Project Settings.

See above.

44 syntax error in
function argument.

Check help sections on
arithmetic expressions and
text string expressions for
correct syntax.

45 newline character
found in text string.

GDIdb text strings cannot
be spread across multiple
lines. This error probably
indicates a syntax error.

46 newline found in
expression.

GDIdb expressions cannot
be spread over multiple
lines. This error probably
indicates a syntax error in
your expression.

47 syntax error in text
string.

Check help sections on
text string expressions for
correct syntax.

48 syntax error in
variable name.

Check help sections on
variables for allowable
variable names.

49 premature end of
script.

GDIdb reached the end of
the script file whilst
processing a function
argument. Check for
missing argument closing
bracket.

50 variable name ?? not
allowed.

You must have a variable
name enclosed between
the ?? characters.

51 Unused.

52 function attempted
to set datasource
cursor after the last
record in the
recordset..

Usually caused by calling
the getnextrow function at
the end of a recordset.
Check for end of recordset
before calling getnextrow

53 reference made to
database when no
database
connections exist.

Internal error.

54 unrecognized
variable name.

A variable name was found
which does not match a
column name in any open
database or any of the
variables in the user-
defined variable list. Check
name.

55 ?var? is not a
recognized variable
name.

Variable ?Var? does not
exist, either as a user
variable or a datasource
field.

56 unused.

57 closing character not
found on variable
name or index.

End of script file reached
before closing ? character
found in variable name.

58 variable index must
be followed by
closing '?' of variable
name.

Check help sections on
variables for allowable
variable names.

59 invalid index
supplied to
datasource variable.

The index supplied to a
datasource variable
references a datasource
which does not exist.

60 datasource SQL
open failed due to
too many open

GDIdb allows a maximum
of 10 database
connections to be open at

datasources. any one time.

61 dial-up networking
error.

There was an error whilst
trying to retrieve the list of
dial-up networking address
book entries defined on
your computer. Your
computer may not have
dial-up networking
installed. Please install
dial-up networking if you
want GDIdb to establish a
dial-up connection to the
Internet.

62 Unused.

63 unable to create file.
Check directory
path.

Check that the directory
path given in html or
writedata functions refers
to a directory that exists.
GDIdb will not create the
directory if it does not
exist.
Also check help on html or
writedata functions for
allowable output file paths.

64 variable name
exceeds maximum
allowed length.

GDIdb variables are limited
in length to 255
characters.

65 an undefined error
occurred whilst
running script file.

Internal error.

66 the script file "xx.xx"
could not be opened.

Check that the script file
path given in Project
settings/publish actions
refers to a file which exists.

67 file could not be
opened for writing.

Check that you do not
have GDIdb log files open
in any other applications
(such as text editors) and
re-try.

68 illegal number of
arguments in
function.

There was an illegal
number of arguments
passed to the function in
which the error occurred.
Check the help section for
the function in which the
error occurred.

69 do block must be
followed by while
function.

See help section for do
function.

70 program block
closed without
having been opened

A program block was
closed (either with a }
character or a
</ffunctionname> tag)
without having been
opened.

71 unused

72 '\' character found at
end of file.

A '\' character must always
be followed by another
character in your script.

73 opening curly braces
found without owner
function.

An opening curly brace
character must be
preceded by an
appropriate function.

74 attempt made to
write HTML without
open file.

GDIdb will treat any text
which it does not recognize
as a comment, variable or
function as HTML. All HTML
must be placed within the
block of code that must
follow a html function.

75 end of file found
before closing '?'
character in variable
name.

You have probably missed
off the closing ? character
of a variable name,
alternatively there may be
a ? in your HTML which you
need to precede with a \
character.

76 function not yet
defined.

Internal error.

77 function/subroutine
functionname not
recognized.

GDIdb has found what it
thinks to be a function
name but does not
recognize it as a known
GDIdb function or a user-
defined subroutine.

78 an attempt was
made to access
datasource data
when there was no
datasource open.

Internal error.

79 end of script
reached before
program block

GDIdb functions which
operate on blocks of code
must have the block of

closed. code closed by the
appropriate } character
(normal script syntax) or
</functionname>
(alternate script syntax.

80 premature end of
script.

The script file ended
prematurely. Check that all
variable names are closed
with a ? character.

81 unable to write
HTML file to disk.
Check directory
path.

Check that the directory
path given in a html
function refers to a
directory that exists. GDIdb
will not create the
directory if it does not
exist.
Also check help on the
html function for allowable
output file paths.

82 opening curly brace
character expected.

Some GDIdb functions
must be followed
immediately by a curly
brace enclosed block.
Check the help section for
the function which caused
the error.

83 error in function
name function.

GDIdb function and
subroutine names cannot
exceed 20 characters in
length.

84 break function found
without enclosing
loop.

The break function can
only be used within a
program loop. Check help
topics on break for more
info.

85 continue function
found without
enclosing loop.

The continue function can
only be used within a
program loop. Check help
topics on continue for
more info.

86 unrecognized
operator in function
argument.

Check help topics on the
function in which the error
occurred for allowable
operator codes.

87 script terminated on
die function.

If your script terminates on
a die function, it will cause
an error. (This does not

mean anything has
actually gone wrong) Use
return to terminate a script
prematurely without error.

88 unable to run text
editor. Check
program settings.

Check the paths given for
program files under
Tools/Program
Settings/Helper
Applications.

89 file could not be
opened.

A function was unable to
open the file passed as an
argument. Check file path.

90 control code in
argument not
recognized.

Check help topics on the
function in which the error
occurred for allowable
control codes.

91 else or elseif
function found
without preceding if,
elseif, foreachrow or
getdata

Check help topics on else
for more info.

92 hexadecimal number
contains invalid
characters.

Valid characters in a
hexadecimal number are
characters 0-9 and A-F
inclusive.

93 command line failed. An exec function failed to
execute the passed
command line. Check
command line for errors.

94 local HTML directory
could not be opened.
Check program
settings.

Check that the path given
in Project Settings for the
local root HTML directory
refers to a directory that
exists. GDIdb will not
create the directory if it
does not exist.

95 illegal file path. Check help topics on html
and writedata functions for
information on valid GDIdb
output file paths.

96 ampersand
character must be
followed by function
name.

The & character is used to
mark the start of a function
name. There must not be a
space between the & and
the name of the function.

97 variable name
exceeds maximum
allowed length.

GDIdb variables are limited
in length to 255
characters.

98 newline character
found in variable
name.

Variable names cannot be
spread over multiple lines.
Check for closing ?
character in the variable
name.

99 child script
terminated with
errors.

A child script executed
from the current script
using the runscript
function terminated with
errors- see list file for more
info.

100 HTTP socket creation
error

GDIdb was unable to
create a network socket.
Try restarting the program.

101 while function can
now only be used in
a do loop

If this error has occurred
after upgrading your copy
of GDIdb, you'll need to
check that you are not
using the while function in
the same way as a loop
function (this is no longer
allowed). See help topics
on the &loop function
which you should use
instead.

102 unable to connect to
POP3 server

GDIdb was unable to
connect to the POP3
server. Check that the
server name or IP address
are correct.

103 POP3 network error There was a network error
whilst GDIdb was
communicating with a
POP3 server. Try re-running
the script.

104 (POP3 server error
message)

The server error message
should indicate the nature
of the problem.

105 unable to connect to
web server

GDIdb was unable to
connect to the web server.
Check that the URL is
correct.

106 HTTP network error There was a network error

whilst GDIdb was
communicating with a web
server. Try re-running the
script.

107 SMTP network
socket creation error

GDIdb was unable to
create a network socket.
Try restarting the program.

108 unable to connect to
SMTP server

GDIdb was unable to
connect to the SMTP
server. Check that the
server domain name or IP
address is correct.

109 invalid SMTP server
response

There was an error whilst
GDIdb was logging on to a
SMTP mail server. Try
running the script again.

110 SMTP mail error
"server msg"

There was an error whilst
GDIdb was sending an e-
mail. The server response
should indicate the nature
of the error.

111 SMTP network error There was a network error
whilst GDIdb was
communicating with a
SMTP server. Try re-running
the script.

112 email must have a
header

E-mail text should start
with the label "HEADER:"
after which the mail
header text should appear.

113 email must have a
body

E-mail text should start
with the label "BODY:" after
which the mail body text
should appear. If you are
using the formatnone or
formatcr options, the
BODY: label must not be
preceded with whitespace
characters (e.g. tabs or
spaces).

114 function requires an
open FTP session

The function which caused
the error must appear
inside an open FTP session.
See help topics on the
ftpsession function for
more info.

115 FTP error: “server
error message”

There was an FTP error
whilst communicating with
the FTP server. The server
return message should
indicate the nature of the
problem.

116 unable to open
include file

Check the file path given in
an include function. Note:
the include function is run
before the script is
executed- you cannot
therefore use variables in
the file name!

117 block nesting error Code blocks following a
GDIdb function must be
closed with a } character
(normal script syntax) or
</functionname>
(alternate script syntax).

118 ignore or retry
function
encountered outside
of an error handler.

The &ignore and &retry
functions may only be
used within an on_error
subroutine.

119 an error occurred
whilst
communicating with
HTTP server.

This error could be due to
an incorrect URL, the web
server being down or a
busy network.

120 unable to allocate
memory.

GDIdb was unable to
allocate memory whilst
loading a script file. Try
shutting other applications
down and re-running the
script.

121 script file not
encoded.

The royalty-free GDIdb
runtime version can only
execute encoded scripts.
(Select Tools/Run-time
encode from the Script
Studio menu.)

122 unable to create
directory.

GDIdb was not able to
create the specified
directory. Check that the
pathname is correct.

123 illegal code in
argument.

The control code passed to
a function was invalid.

124 error in date string A text string that was
passed to a &datecomp or
&dateformat function

contained an illegal date or
was not in the correct
format.

Web/Database Publishing
The following example scripts are provided as a resource of web/database publishing
techniques:

Script Description
alphabetgroup.s
cp

This script extracts data from the rreview.mdb music CD review
Access database. Pages are produced where database records
are grouped under a letter of the alphabet using the first letter
of the CD name.

colors.scp This script demonstrates the use of GDIdb hexadecimal functions
to generate HEX color codes in HTML.

foodstore.scp This basic script takes the contents of an Excel spreadsheet and
displays the data on a single HTML page as a table.

graphs.scp This script demonstrates one possible way of displaying numeric
data graphically on a web page.

personals.zip This zip file contains all of the files needed to implement a flat-
file database on the web server that is kept in synch with a local
MS Access database. A Perl server script is included to search
the database files, together with the HTML search form page.
You will need to know a bit about Perl and CGI programming to
make use of the techniques in this example.

rreview.scp This script takes data from a 3-table MS Access database and
uses it to build a 3 tier site where Music CD's are grouped under
music styles, and CD tracks are grouped under CD's.

workweb.scp This script takes data from a 2-table MS Access database where
jobs are grouped under job categories. The database structure is
replicated in the web site produced by the script.

workweb2.scp This script takes data from a single database table, but uses
keyword pattern matching in the SQL statements to group the
database records under various categories.

workweb3.scp This script demonstrates a method for splitting the contents of a
database table across several pages. This may be useful if your
table contains a lot of data.

workweb4.zip This script is functionally equivalent to workweb.scp above, but
has been implemented using HTML template files (created using
Netscape WYSIWYG HTML editor). The zip archive includes both
the script file plus the HTML templates.

E-mail Scripting
The following example scripts are provided as a resource of e-mail scripting techniques:

Script Description
maillist.scp This script demonstrates how it is possible to set up a mailing list

using GDIdb. A simple command processor allows SUBSCRIBE
and UNSUBSCRIBE commands, although the e-mail addresses of
everyone on the list are held in the email.mdb MS Access
database which can be manually administrated.

mailshot.zip This script demonstrates the use of GDIdb to send a
personalized mail-shot to a list of people held on a database.

mailshot2.scp This script demonstrates the use of GDIdb to send a mail-shot to
a list of people held on a database. Because the e-mail is not
personalized, it will send much faster then the mailshot.scp
example.

HTTP Scripting
The following example scripts are provided as a resource of HTTP scripting techniques:

Script Description
linkcheck.zip This script demonstrates the use of GDIdb to check a list of

hyperlinks kept in a database. GDIdb will retrieve the header for
each URL, if any of the URL's return a code of 404 (not found)
GDIdb will delete the record from the database.

submit.scp This script will automatically submit a database of web URL's to
the top 8 Web search engines.

General Scripting
The following example scripts are provided as a resource of general scripting techniques:

Script Description
calculator.zip This script turns GDIdb into a simple calculator, and

demonstrates various programming techniques.

calctest.scp This script will time the time it takes you to evaluate an
arithmetic expression, and test the answer to see if it's correct.

calctest2.scp This script is identical to the above script except that it has been
written using the GDIdb alternate (HTML tag-like) syntax.

GDI's policy on UCE (Spam e-mail)
GDIdb contains script functions that could be used to generate UCE (Spam e-mail). It is not
however the intention of Global Data Industries that our efforts in creating this software
result in yet more spam on the Internet. Please therefore note that use of our software to
generate UCE is against the terms and conditions of your license to use GDIdb (registered or
unregistered), and to do so will make you and your organization liable to criminal
proceedings for breach of GDIdb license conditions.

Furthermore, please note that when connecting to an SMTP server to transmit outgoing e-
mails GDIdb will identify to the server both the hardware source of the e-mail (your
machine's network address) and the software (GDIdb) from which it was sent thereby

facilitating your identification and prosecution in the event your usage of GDIdb software
breaches the license conditions set out herein.

Global Data Industries term as UCE any e-mail which contravenes either our GDIdb
Acceptable Use Policy (AUP) or the AUP of your Internet Service Provider (ISP) or the AUP of
the SMTP server to which GDIdb will connect to send e-mail (if different from your ISP).
Please contact your ISP if you require clarification on what is/isn't acceptable.

GDIdb Acceptable use policy

What is not acceptable use of GDIdb:
1. GDIdb may not be used to send e-mail to any e-mail address obtained via "web
harvesting" software, or procured as part of a commercial bulk mail database.

2. GDIdb may not be used to send e-mail to any e-mail address were the e-mail recipient has
indicated that he/she does not wish to receive e-mail, either from yourself or your
organization.

3. GDIdb may not be used to send any e-mail without the e-mail recipient being made aware
of you or your organization as the source of the e-mail.

4. GDIdb may not be used to send any e-mail without the e-mail recipient being provided
with an e-mail address whereby he/she may contact either yourself or your organization.

Typical acceptable uses of GDIdb:
1. GDIdb may be used to send e-mail to any e-mail address where the recipient has
volunteered his/her e-mail address to either yourself or your organization for the purpose of
receiving e-mails either from yourself or your organization (e.g. the e-mail is contacting an
existing customer or member of your organization) and where the From: or Reply-to: tags in
the mail header are set to a valid e-mail address owned either by yourself or your
organization.

2. GDIdb may be used to send e-mails as part of an automated business system (e.g. off-line
web site order processing using GDIdb) where the sending of the e-mail was initiated by the
e-mail recipient and is sent to the e-mail address supplied by the recipient and where the
From: or Reply-to: tags in the mail header are set to a valid e-mail address owned either by
yourself or your organization.

Using GDIdb V4 Scripts
In order to allow the new features that have appeared in this release, there have been a few
changes to the GDIdb script language syntax which may cause you problems when running
scripts written for a previous release. Mostly these differences will cause your script to stop
running with an error, you can then correct the error by checking out help topics on the
function at the point at which the error occurred.

Changes which will not halt script execution but may result in your script running
differently are as follows:
1. The arithmetic operators & and | now provide bit-wise AND and OR operation respectively.
Logical AND and OR is now supported with the && and || operators. Search your script for
any &if functions, if you are using the & and | operators, replace them with && and ||
respectively. Note: the difference between the 2 operators is subtle, and most of the time
they will actually do the same job.

2. The &split function has been modified to return a new element even when the element is
zero-length (e.g. split char end of line). This may result in an additional array element being
returned when compared a previous release of GDIdb.

Changes which will halt operation with an error are as follows:
1. &sql function no longer supports the norecordset option. (Use the &sqlnr function
instead.)

2. &msgbox, &html and &datawrite option code handling has changed slightly. (Multiple
option codes are now combined using the | OR operator instead of being comma-separated.)

3. The # character is no longer used in a    &format specification. Use the D character
instead.

4. The &while function can now only be used as part of a &do loop. (Use the &loop function
to replace a stand-alone &while function.)

Using GDIdb V4 Projects
In order to allow the new features that have appeared in this release, there have been a few
changes to GDIdb which may cause you problems when running projects created on a
previous release. Mostly these differences will cause your project to stop running with an
error, you can then correct the error by checking out help topics on the error message.

Changes which will halt operation with an error are as follows:
1. Network remote control server- publish will now only return a single OK msg, script file
can no longer be passed with a publish command.

2. Command-line operation no longer allows a script to be passed with the /p option. Instead,
a project name is passed- GDIdb will publish the project.

