
DSAMsg unit
This unit provides "Don't Show Again" dialog and form services.    Included is a form class that you can
descend your own forms from, routines for showing standarad TForm descendants, and replacement
rountines for the MessageDlg function.    DSA services allow the user to specify whether or not they want
to see the dialog or form in the future with only minimal effort on the application programmer's part.

The dialog has a check box positioned at the bottom left corner which the user can check to specify that
he does not wish to see it again. If checked, calling the function again will not display the dialog, it will
simply return a default value immediately.

Procedures to get and set the state of the dialog are also provided so that you can programmatically re
enable a dialog that has been hidden by the user.

Components
TDSAForm

Routines
DSAClear
DSAFormClear
DSAFormGetState
DSAFormSetState
DSAGetState
DSAIdentsClear
DSAIdentsGetState
DSAIdentsMessageDlg
DSAIdentsSetState
DSAIdentsShowModal
DSAMessageDlg
DSASetState
DSAShowModal
Register

Constants
DefaultFilename
DontShowMsgText
DSA_CHECKBOX_NAME
RegRootKey
UseRegistry

 TDSAForm Component   
Properties Methods
Unit
DSAMsg
Description
The TDSAForm class is a TForm descendant that you can base your forms on to easily provide "Don't
Show Again" functionalitiy.    Several properties have been added to provide complete control over where
the information on the displayable state of the dialog is stored, but you will often find that simply leaving
them blank (which uses default values based on your application) will be sufficient.

The DSA_CheckBox property is key as it defines the TCheckbox component on the form to be used to
indicate whether or not the user wishes to see the form in the future or not.    You must assign a
TCheckbox to it, or the DSA state can not be saved.

The two key methods that you need to be aware of are DSAShow and DSAShowModal.    Because the
Show and ShowModal methods of TForm are not virtual, they can not be overriden by descendants.   
Therefore, I had to provide completely new equivalents of these functions.    One nice side effect of this is
that if you want to treat the form as DSA in some situations but not others, you would simply call the old
methods and not have to fool with making sure it was displayable first.

Design time support of the new properties is available for Delphi 3.    Previous versions of Delphi and C+
+Builder 1.0 do NOT support design time access of TForm descendants.    Sorry, just be happy Borland
added it to Delphi 3 (and I presume C++ B 3.0).    Unlike a normal component, TForm descendant classes
must also have a package installed for the registration process to work.    See the installation notes in
DSAMsg.Txt for complete installation instructions.

If you are not using Delphi 3, you can still have your forms descend from TDSAForm, you simply won't
have design time access to the properties.    In that case you will have to set the property values in code,
most likely in the form's OnCreate event handler or just after calling the form's Create constructor if
operating outside of the form's code.

Properties
 Run-time only

 Key properties
 DSA_CheckBox DSA_Filename DSA_Showable
 DSA_DefaultResult DSA_ID DSA_UseRegistry

Methods
 Key methods

 DSAClear DSAShow DSAShowModal

DSA_CheckBox property   
Applies to
TDSAForm
Declaration
property DSA_CheckBox: TCheckBox;
Description
The DSA_CheckBox property identifies the TCheckBox component on the form that should be treated as
the "Don't Show Again" checkbox.    If this property is blank (NIL), DSA functionality is disabled for the
form (i.e. DSAShowModal and DSAShow will always show the form).

Simply assign any existing TCheckBox component on the form to this property and when the form is
destroyed, this checkbox will be used to indicate the displayable state of the form for future calls to
DSAShow and DSAShowModal.

If the box is checked, that indicates that it should not be shown in the future.    The checkbox's caption
should be worded accordingly.

DSA_DefaultResult property   
Applies to
TDSAForm
Declaration
property DSA_DefaultResult: integer;
Description
The DSA_DefaultResult property is used to specify what value the DSAShowModal method should return
if the user has elected not to display the form.

DSA_Filename property   
Applies to
TDSAForm
Declaration
property DSA_Filename: string;
Description
DSA_Filename is the INI file name (DSA_UseRegistry = FALSE) or Registry path (Win32 only,
DSA_UseRegistry = TRUE) that is used in conjunction with the DSA_ID property to store the displayable
state of the form.

If this value is blank, the value of the DefaultFilename global is used.

DSA_ID property   
Applies to
TDSAForm
Declaration
property DSA_ID: string;
Description
DSA_ID is the INI section name (DSA_UseRegistry = FALSE) or Registry path subkey (Win32 only,
DSA_UseRegistry = TRUE) that is used in conjunction with the DSA_Filename property to store the
displayable state of the form.

If this value is blank, the value of the ClassName property is used.

DSA_Showable property   
Applies to
TDSAForm
Declaration
property DSA_Showable: boolean;
Description
The DSA_Showable property is used to check or set the displayable state of the form.

Normally, there is no way to re enable a form once the user has turned it off since it isn't displayed any
longer.    However, it is wise to include the ability to turn these back on in case the user disabled it by
accident, or changes its mind.    This functionality is often found in a configuration/settings dialog.

Setting this value to FALSE is equivalent to calling the DSAClear method.

DSA_UseRegistry property   
Applies to
TDSAForm
Declaration
property DSA_UseRegistry: boolean;
Description
The DSA_UseRegistry property is used to indicate if the displayable state of the form should be stored in
the registry or an INI file.    The actual location in the registry or INI file is controlled by the DSA_Filename
and DSA_ID properties.    This property merely indicates how those values should be interpretted.

This property is not avaible under Delphi 1.

DSAClear method   

Applies To
TDSAForm
Declaration
procedure DSAClear;
Description
Use the DSAClear method to reset form's displayable state.    That is, if the user has elected not to show
the form, you can reset it so that it will show up again.

Normally, there is no way to re enable a form once the user has turned it off since it isn't displayed any
longer.    However, it is wise to include the ability to turn these back on in case the user disabled it by
accident, or changes its mind.    This functionality is often found in a configuration/settings dialog.

DSAShow method   

Applies To
TDSAForm
Declaration
procedure DSAShow;
Description
Shows the form modelessly, or not if the user has requested that it not be shown.    In that case, the
window is simply closed.    The instance of the form is not freed unless you have set CloseAction to
caFree in then OnClose event handler.

Note that this function MUST be used in place of the normal Show method because Show is not virtual
(i.e. it can't be overriden to modify behavior).    One nice side effect of this is that if you want to treat the
form as DSA in some situations but not others, you would simply call the Show method and not have to
fool with making sure it was displayable first.

DSAShowModal method   

Applies To
TDSAForm
Declaration
function DSAShowModal: Integer;
Description
Shows the form modally, or not if the user has requested that it not be shown.    In that case, the window
is simply closed and the value of DSA_DefaultResult is returned.    The instance of the form is not
automatically freed, and must be treated as you would any normal TForm.

Note that this function MUST be used in place of the normal ShowModal method because ShowModal is
not virtual (i.e. it can't be overriden to modify behavior).    One nice side effect of this is that if you want to
treat the form as DSA in some situations but not others, you would simply call the ShowModal method
and not have to fool with making sure it was displayable first.

Register routine   

Unit
DSAMsg
Declaration
procedure Register;
Description
Registers the class for use in the Delphi 3 IDE.    This applies ONLY to Delphi 3.    Previous versions of
Delphi and C++Builder 1.0 do NOT support design time access of TForm descendants.    Sorry, just be
happy Borland added it to Delphi 3 (and I presume C++B 3.0).    Unlike a normal component, TForm
descendant classes must also have a package installed for the registration process to work.    See the
installation notes in DSAMsg.Txt for complete installation instructions.

DefaultFilename constant   
Example

Unit
DSAMsg
Declaration
DefaultFilename: string = '';
Description
This writeable constant (also known as a static variable) allows you to control the default registry key or
INI filename to use when storing dialog display state information.

This value is used by DSAMessageDlg, and also by DSAIdentsMessageDlg when the Filename
parameter has been left blank.

If you are compiling for Win32, the default is 'Software\your_app_title\DSADialogs' where 'your_app title'
is the value returned by Application.Title.

If you are compiling for Win16, the default is an INI file with the same name as your executable, and in the
same directory.

Example
This example will cause all DSAMessageDlg calls, and DSAIdentsMessageDlg with the Filename
parameter blank to store values in the registry under the given key (must be running under Win32).

 UseRegistry := TRUE;
 RegistryRootKey := HKEY_LOCAL_MACHINE;
 DefaultFilename := 'Software\MyApp\DSADialogs';

This example will cause all DSAMessageDlg calls, and DSAIdentsMessageDlg with the Filename
parameter blank to store values in an INI file.

 {$IFDEF WIN32}
 UseRegistry := FALSE;
 {$ENDIF}
 DefaultFilename := 'MyApp.ini';

DontShowMsgText constant   
Example

Unit
DSAMsg
Declaration
DontShowMsgText: string = '&Don''t show this message again';
Description
This writeable constant (also known as a static variable) allows you to control the text that appears next to
the check box in DSAMessageDlg and DSAIdentsMessageDlg generated dialogs.    By default, this value
is "&Don't show this message again".    If you do not like this, or if using a foreign language, you can
change the text by assigning your own value.

Example
This example will cause the the text in all DSAMessageDlg to read "Don't show this stinking box any
more!'.

 DontShowMsgText := 'Don''t show this stinking box any more!';

DSA_CHECKBOX_NAME constant

Unit
DSAMsg
Declaration
DSA_CHECKBOX_NAME = '__DSA_CheckBox';
Description
This constant is the string that is assigned to the Name property of the checkbox that is created by the
various DSA dialog functions.    It is included in case you ever needed to find the checkbox component.   
You can simply search for it using the FindComponent method, passing this value as the parameter.

Example
This call will re-enable a DSAMessageDlg dialog that has the text 'All temporary files have been deleted.'.
   
 DSAClear('All temporary files have been deleted.');

DSAClear routine   
Example

Unit
DSAMsg
Declaration
procedure DSAClear(const Msg: string);
Description
Use the DSAClear procedure to reset a DSAMessageDlg dialog that has been disabled by the user.   
Simply pass the same text in the Msg parameter as you do in the Msg parameter of the DSAMessageDlg
function.

Normally, there is no way to re-enable a dialog once the user has turned it off since it isn't displayed any
longer.    However, it is wise to include the ability to turn these back on in case the user disabled it by
accident, or changes its mind.    This functionality is often found in a configuration/settings dialog.

Example
This call will re-enable a DSAShowModal form that is of the type TMyDSAForm. Notice that you do not
need an instance of the class, just type name.

 DSAFormClear(TMyDSAForm);

DSAFormClear routine   
Example

Unit
DSAMsg
Declaration
procedure DSAFormClear(const AFormClass: TFormClass);
Description
Use the DSAFormClear procedure to reset a DSAShowModal form that has been disabled by the user.   
Simply pass the class type of the form that was passed to the DSAShowModal function.

Normally, there is no way to re enable a dialog once the user has turned it off since it isn't displayed any
longer.    However, it is wise to include the ability to turn these back on in case the user disabled it by
accident, or changes its mind.    This functionality is often found in a configuration/settings dialog.

Example
This example illustrates how to check the displayable state of a class named TMyDSAForm and reset it to
be displayable if it is not.

 if not DSAFormGetState(TMyDSAForm) then
 DSAFormSetState(TMyDSAForm, TRUE);

DSAFormGetState routine   
Example

Unit
DSAMsg
Declaration
function DSAFormGetState(const AFormClass: TFormClass): boolean;
Description
This routine allows you to get the displayable state a form that is used with the DSAShowModal or
DSAIdentsShowModal function.

Simply pass the form class to the function and if the form has been disabled by the user, this function
returns FALSE; otherwise, TRUE is returned.

This function is useful when allowing users to restore DSA dialogs that they have hidden.

Example
This example illustrates how to check the displayable state of a class named TMyDSAForm and reset it to
be displayable if it is not.

 if not DSAFormGetState(TMyDSAForm) then
 DSAFormSetState(TMyDSAForm, TRUE);!!! ENTER DESCRIPTION OF EXAMPLE HERE

DSAFormSetState routine   
Example

Unit
DSAMsg
Declaration
procedure DSAFormSetState(const AFormClass: TFormClass; Value: boolean);
Description
This routine allows you to set the displayable state a form that is used with the DSAShowModal or
DSAIdentsShowModal function.

Simply pass the form class to the function and a boolean value indicating whether or not the form should
be displayed.

This function is useful when allowing users to override DSA dialogs settings, in a configuration dialog for
instance.

Example
This example illustrates how to check the displayable state of a DSAMessageDlg that was displayed with
the text "Are you sure you want to crash the system?" and reset it to be displayable if it is not.

 if not DSAGetState('Are you sure you want to crash the system?') then
 DSASetState('Are you sure you want to crash the system?', TRUE);

DSAGetState routine   
Example

Unit
DSAMsg
Declaration
function DSAGetState(Msg: string): boolean;
Description
This routine allows you to get the displayable state for a dialog that is used with the DSAMessageDlg
function.

Simply pass the same message string to the function that is passed to the DSAMessageDlg function and
if the dialog has been disabled by the user, this function returns FALSE; otherwise, TRUE is returned.

This function is useful when allowing users to restore DSA dialogs that they have hidden.

Example
This call will clear the state of a dialog stored in the 'Software\MyApp\WarningDialogs\NoNet' key
(UseRegistry set to TRUE and running under Win32).

 DSAIdentsClear('Software\MyApp\WarningDialogs', 'NoNet');

This call will clear the state of a dialog stored in the 'MyApp.INI' file, in the 'NoNet' section.

 DSAIdentsClear('MyApp.ini', 'NoNet');

DSAIdentsClear routine   
Example

Unit
DSAMsg
Declaration
procedure DSAIdentsClear(Filename, ID: string);
Description
Use the DSAIdentsClear procedure to reset a DSAIdentsMessageDlg dialog that has been disabled by
the user.    Simply pass the same values in the Filename and ID parameters as you do in the Filename
and ID parameters of the DSAIdentsMessageDlg function.

Normally, there is no way to re-enable a dialog once the user has turned it off since it isn't displayed any
longer.    However, it is wise to include the ability to turn these back on in case the user disabled it by
accident, or changes its mind.    This functionality is often found in a configuration/settings dialog.

Example
This call will check the state of a dialog stored in the 'Software\MyApp\WarningDialogs\NoNet' key
(UseRegistry set to TRUE and running under Win32) and restore it if needed.

 if not DSAIdentsGetState('Software\MyApp\WarningDialogs', 'NoNet') then
 DSAIdentsSetState('Software\MyApp\WarningDialogs', 'NoNet', TRUE);

This call will clear the state of a dialog stored in the 'MyApp.INI' file, in the 'NoNet' section.

 if not DSAIdentsGetState('MyApp.ini', 'NoNet') then
 DSAIdentsSetState('MyApp.ini', 'NoNet', TRUE);

DSAIdentsGetState routine   
Example

Unit
DSAMsg
Declaration
function DSAIdentsGetState(Filename, ID: string): boolean;
Description
This routine allows you to get the displayable state for a dialog that is used with the
DSAIdentsMessageDlg function.

Simply pass the same Filename and ID parameters to the function that are passed to the
DSAIdentsMessageDlg function and if the dialog has been disabled by the user, this function returns
FALSE; otherwise, TRUE is returned.

This function is useful when allowing users to restore DSA dialogs that they have hidden.

Example
This example shows a warning dialog, unless the user has indicated that it should not be shown.    In that
case, the value mrYes is immediately returned.    The display state information will be saved to a registry
key named 'Software\MyApp\WarningDialogs\NoNet' (UseRegistry set to TRUE and running under
Win32).

 DSAMessageDlg('The network is unavailble. Cancel the operation?', mtWarning,
[mbYes, mbNo], 0, 'Software\MyApp\WarningDialogs', 'NoNet', mrOK);

This example shows is the same, except storage is to an INI file (UseRegistry must by FALSE if running
under Win32).

 DSAMessageDlg('The network is unavailble. Cancel the operation?', mtWarning,
[mbYes, mbNo], 0, 'MyApp.ini', 'NoNet', mrOK);

DSAIdentsMessageDlg routine   
Example

Unit
DSAMsg
Declaration
function DSAIdentsMessageDlg(const Msg: string; AType: TMsgDlgType; AButtons:
TMsgDlgButtons; HelpCtx: Longint; Filename, ID: string; DefaultResult: word):
Word;
Description
A MessageDlg replacement function.    This function will display a dialog that is identical to the one that
MessageDlg will display, except it will also include a check box in the bottom left corner of the dialog.    If
the user checks it before closing the dialog, the dialog will not be displayed in the future when this
function is called.

The text that appears next to the check box is "Don't show this message again", but this can be changed
by using the DontShowMsgText global variable.

If the user elects not to display the dialog in the future, this function stores a value in an INI file or the
registry (Win32 only) to identify this fact.    Where this value is stored is controlled by the Filename and ID
parameters, along with three global variables defined in the DSAMsg unit: UseRegistry, RegRootKey, and
DefaultFilename.    These values can be changed in your program if you so desire.    If you leave the
Filename parameter blank, the value in DefaultFilename will be used.    If this is also blank, or if ID is
blank, an exception will be raised.

If you need to re-enable a dialog that has been disabled, you can use the DSAIdentsClear function,
passing it the same Filename and ID parameters as you pass to this function.    The dialog will then be
displayed when this function is called.

The message box displays the value of the Msg parameter.    Use the AType parameter to indicate the
purpose of the dialog.    Use the AButtons parameter to indicate what buttons should appear in the
message box.    Use the HelpCtx parameter to specify the context ID for the help topic that should appear
when the user clicks the help button or presses F1 while the dialog is displayed.    Filename is the INI file
name or Registry path (Win32 only) that is used in conjunction with the ID identifier to store the
displayable state of the dialog.    Use the DefaultResult value to specify what value to return if the user
has elected not to display the dialog.

DSAIdentsMessageDlg returns the value of the button the user selected, or the value of the DefaultResult
parameter if the dialog was not displayed. These are the possible return values if DefaultResult is not
used:

mrNone mrAbort mrYes
mrOk mrRetry mrNo
mrCancel mrIgnore mrAll

Example
This code will check the state of a dialog stored in the 'Software\MyApp\WarningDialogs\NoNet' key
(UseRegistry set to TRUE and running under Win32) and restore it if needed.

 if not DSAIdentsGetState('Software\MyApp\WarningDialogs', 'NoNet') then
 DSAIdentsSetState('Software\MyApp\WarningDialogs', 'NoNet', TRUE);

This code will check the state of a dialog stored in the 'MyApp.INI' file, in the 'NoNet' section and restore it
if needed.

 if not DSAIdentsGetState('MyApp.ini', 'NoNet') then
 DSAIdentsSetState('MyApp.ini', 'NoNet', TRUE);

DSAIdentsSetState routine   
Example

Unit
DSAMsg
Declaration
procedure DSAIdentsSetState(Filename, ID: string; Value: boolean);
Description
This routine allows you to set the displayable state for a dialog that is used with the
DSAIdentsMessageDlg function.

Simply pass the same Filename and ID parameters to the function that are passed to the
DSAIdentsMessageDlg function and and a boolean value indicating whether or not the dialog should be
displayed by DSAIdentsMessageDlg.

This function is useful when allowing users to set preferences for showing or hiding DSA dialogs from a
central location (say a configuration dialog that lists all DSA dialogs).

Example
This example illustrates how to display an existing form named TMyCustomForm with DSA functionality,
storing the displayable state in an INI file.

 var
 MyForm: TMyCustomForm;
 begin
 MyForm := TMyCustomForm.Create(Application);
 try
 if DSAIdentsShowModal(MyForm, 'MyApp.ini', 'DSADialogs', mrYes) = mrYes
then
 begin
 { user selected the Yes button, or dialog wasn't supposed to display }
 end;
 finally
 MyForm.Free;
 end;
 end;

DSAIdentsShowModal routine   
Example

Unit
DSAMsg
Declaration
function DSAIdentsShowModal(const AForm: TForm; Filename, ID: string;
DefaultResult: word): Word;
Description
A TForm.ShowModal replacement function.    This function will display the form passed in the AForm
parameter using the form class' ShowModal function.    However, before ShowModal is called, the function
will add a check box in the bottom left corner of the form.    If the user checks it before closing the form,
the form will not be displayed in the future when this function is called.

The text that appears next to the check box is "Don't show this message again", but this can be changed
by using the DontShowMsgText global variable.

If the user elects not to display the form in the future, this function stores a value in an INI file or the
registry (Win32 only) to identify this fact.    Where this value is stored is controlled by the Filename and ID
parameters, along with three global variables defined in the DSAMsg unit: UseRegistry, RegRootKey, and
DefaultFilename.    These values can be changed in your program if you so desire.    If you leave the
Filename parameter blank, the value in DefaultFilename will be used.    If this is also blank, or if ID is
blank, an exception will be raised.

If you need to re-enable a form that has been disabled, you can use the DSAIdentsClear function,
passing it the same Filename and ID parameters as you passed to this function.    The form will then be
displayed when this function is called.

AForm is an instance of the form you want to display already created.    Filename is the INI file name or
Registry path (Win32 only) that is used in conjunction with the ID identifier to store the displayable state of
the dialog.    DefaultResult value is used to specify what value to return if the user has elected not to
display the form.

DSAIdentsShowModal returns the same value that TForm.ShowModal returns, except if the form is not
displayed.    In that case, the value of the DefaultResult parameter is returned.

Example
This example shows a simple message dialog, unless the user has indicated that it should not be shown. 
In that case, the value mrOk is immediately returned.

 DSAMessageDlg('All temporary files have been deleted.', mtInformation,
[mbOK], 0, mrOK);

DSAMessageDlg routine   
Example

Unit
DSAMsg
Declaration
function DSAMessageDlg(const Msg: string; AType: TMsgDlgType; AButtons:
TMsgDlgButtons; HelpCtx: Longint; DefaultResult: word): Word;
Description
A MessageDlg replacement function.    This function will display a dialog that is identical to the one that
MessageDlg will display, except it will also include a check box in the bottom left corner of the dialog.    If
the user checks it before closing the dialog, the dialog will not be displayed in the future when this
function is called.

The text that appears next to the check box is "Don't show this message again", but this can be changed
by using the DontShowMsgText global variable.

If the user elects not to display the dialog in the future, this function stores a value in an INI file or the
registry (Win32 only) to identify this fact.    Where this value is stored is controlled by three global
variables defined in the DSAMsg unit: UseRegistry, RegRootKey, and DefaultFilename.    These values
can be changed in your program if you so desire.    A unique identifier based on the Msg parameter will
also be used.    If you need more precise control over the storage location, you should use the
DSAIdentsMessageDlg.

If you need to re-enable a dialog that has been disabled, you can use the DSAClear function, passing it
the same Msg parameter as you pass to this function.    The dialog will then be displayed when this
function is called.

The message box displays the value of the Msg parameter.    Use the AType parameter to indicate the
purpose of the dialog.    Use the AButtons parameter to indicate what buttons should appear in the
message box.    Use the HelpCtx parameter to specify the context ID for the help topic that should appear
when the user clicks the help button or presses F1 while the dialog is displayed. Use the DefaultResult
value to specify what value to return if the user has elected not to display the dialog.

DSAMessageDlg returns the value of the button the user selected, or the value of the DefaultResult
parameter if the dialog was not displayed. These are the possible return values if DefaultResult is not
used:

mrNone mrAbort mrYes
mrOk mrRetry mrNo
mrCancel mrIgnore mrAll

Example
This example illustrates how to check the displayable state of a DSAMessageDlg that was displayed with
the text "Are you sure you want to crash the system?" and reset it to be displayable if it is not.

 if not DSAGetState('Are you sure you want to crash the system?') then
 DSASetState('Are you sure you want to crash the system?', TRUE);

DSASetState routine   
Example

Unit
DSAMsg
Declaration
procedure DSASetState(Msg: string; Value: boolean);
Description
This routine allows you to set the displayable state for a dialog that is used with the DSAMessageDlg
function.

Simply pass the same message string to the function that is passed to the DSAMessageDlg function and
a boolean value indicating whether or not the dialog should be displayed by DSAMessageDlg.

This function is useful when allowing users to set preferences for showing or hiding DSA dialogs from a
central location (say a configuration dialog that lists all DSA dialogs).

Example
This example illustrates how to display an existing form named TMyCustomForm with DSA functionality,
storing the displayable state in the default location.

 var
 MyForm: TMyCustomForm;
 begin
 MyForm := TMyCustomForm.Create(Application);
 try
 if DSAShowModal(MyForm, mrYes) = mrYes then
 begin
 { user selected the Yes button, or dialog wasn't supposed to display }
 end;
 finally
 MyForm.Free;
 end;
 end;

DSAShowModal routine   
Example

Unit
DSAMsg
Declaration
function DSAShowModal(const AForm: TForm; DefaultResult: word): Word;
Description
A TForm.ShowModal replacement function.    This function will display the form passed in the AForm
parameter using the form class' ShowModal function.    However, before ShowModal is called, the function
will add a check box in the bottom left corner of the form.    If the user checks it before closing the form,
the form will not be displayed in the future when this function is called.

The text that appears next to the check box is "Don't show this message again", but this can be changed
by using the DontShowMsgText global variable.

If the user elects not to display the form in the future, this function stores a value in an INI file or the
registry (Win32 only) to identify this fact.    Where this value is stored is controlled by three global
variables defined in the DSAMsg unit: UseRegistry, RegRootKey, and DefaultFilename.    These values
can be changed in your program if you so desire.    A unique identifier based on the class name of the
form will also be used.    If you need more precise control over the storage location, you should use the
DSAIdentsShowModal function.

If you need to re-enable a form that has been disabled, you can use the DSAFormClear function, passing
it the class type of the form variable you passed to this function.    The form will then be displayed when
this function is called.

AForm is an instance of the form you want to display already created.    The DefaultResult value is used to
specify what value to return if the user has elected not to display the form.

DSAShowModal returns the same value that TForm.ShowModal returns, except if the form is not
displayed.    In that case, the value of the DefaultResult parameter is returned.

RegRootKey constant   
Example

Unit
DSAMsg
Declaration
RegRootKey: HKey = HKEY_CURRENT_USER;
Description
This writeable constant (also known as a static variable) allows you to control which root registry key is
used when storing DSAMessageDlg dialog display state information to the registry.    By default, the
HKEY_CURRENT_USER key is used, as that is the recommend key for applications to use However, you
may assign any of the HKEY_* constants to this to change the root key.

This is only available under Win32.    It does not exist in Delphi 1 since the registry is not the same as it is
in Win32.    Only INI files can be used in Delphi 1.

Example
This example will cause all DSAMessageDlg calls, and DSAIdentsMessageDlg with the Filename
parameter blank to store values in the registry under the given key (must be running under Win32).

 UseRegistry := TRUE;
 RegistryRootKey := HKEY_LOCAL_MACHINE;
 DefaultFilename := 'Software\MyApp\DSADialogs';

UseRegistry constant   
Example

Unit
DSAMsg
Declaration
UseRegistry: boolean = TRUE;
Description
This writeable constant (also known as a static variable) allows you to control whether the
DSAMessageDlg dialog display state storage uses the registry or an INI file.    By default, the registry is
used for Win32 (Windows 95 and Windows NT), but simply setting this to FALSE will cause values to
saved in an INI file.

This is only available under Win32.    It does not exist in Delphi 1 since the registry is not the same as it is
in Win32.    Only INI files can be used in Delphi 1.

Example
This example will cause all DSAMessageDlg calls, and DSAIdentsMessageDlg with the Filename
parameter blank to store values in an INI file.

 {$IFDEF WIN32}
 UseRegistry := FALSE;
 {$ENDIF}
 DefaultFilename := 'MyApp.ini';

