
JetComp.exe Readme File

Table of Contents

Introduction..1
Localization and Support..1
Instructions...1
Errors Encountered in Earlier Versions of the Microsoft Jet Database Engine...2
MSysCompactError Table..3
Issues Fixed by Updated Compact Utility..4
Sample Code to View Rows Containing Modified Column Data..5

Introduction

This Readme file includes sample code that allows you to easily view rows of data in which the Jet
database engine found problems during the Compact process. The Jet database engine generates an error if
it encounters a problem during the Compact process and then creates the MSysCompactError table in the
destination database. You can use Jetcomp.exe on secured databases and databases that have a database
password.

Jetcomp.exe is a standalone utility that allows you to compact databases created with Microsoft Jet
database engine 3.x and 4.x. This utility may be used in conjunction with Microsoft Jet database engine 3.x
and 4.x for recovering corrupted databases. Although it is possible to use the Microsoft Access Compact
utility or the CompactDatabase method with Microsoft Jet database engine 3.x and 4.x, Jetcomp.exe may
be able to recover some databases that these utilities could not. This is because the Microsoft Access
Compact utility and the CompactDatabase method attempt to open and close a database before attempting
to compact it. In certain cases where these utilities may not be able to reopen the database, Compact will
be unable to proceed, preventing recovery of the database. Jetcomp.exe does not attempt to open and close
the database before compacting, and may be able to recover some databases that the Microsoft Access
compact utility and the CompactDatabase method could not. Jetcomp.exe is a freely distributable utility,
but requires that you have one of the following products installed:

 Microsoft Office 97
 Microsoft Office 2000
 Microsoft Access 97
 Microsoft Access 2000
 Microsoft Visual Basic® 5.0
 Microsoft Visual Basic 6.0
 A Microsoft Office Developer Edition 97 run-time application that includes the run-time version of
 Microsoft Access 97
 A Microsoft Office Developer 2000 run-time application that includes the run-time version of
 Microsoft Access 2000
 A Microsoft Visual Basic 5.0 run-time application that includes Microsoft Jet database engine 3.5
 A Microsoft Visual Basic 6.0 run-time application that includes Microsoft Jet database engine 3.5 or 4.0

Localization and Support

The User Interface of JetComp.exe is in English only and is not supported by Microsoft Product Support
Services. JetComp.exe can be used to compact databases in any language supported by the Microsoft Jet
database engine.

Instructions

1. Double-click JetComp.exe.

2. In the Database to Compact From (Source) box, type the path and name of the database that you
want to compact.

3. In the Database to Compact Into (Destination) box, type the path and name of the new
compacted database that you want to create.

4. Under Additional Compact Options, set the appropriate options.
5. Click Compact.

Errors Encountered in Earlier Versions of the Microsoft Jet Database Engine

In the course of using Microsoft Jet database engine 3.x, you may have encountered the following errors.

Error # Error Description
3197 The Microsoft Jet database engine stopped the process because you and another user are

attempting to change the same data at the same time.
3343 Unrecognized database format ‘databasename.mdb'.
3015 ‘databasename.mdb' isn't an index in this table. Look in the Indexes collection of the

TableDef object to determine the valid index names.

These errors typically relate to some form of corruption in the database. Error 3015 resulted in the Jet
database engine not being able to gain access to the database. Error 3343 required you to run the Jet
database engine repair utility.

The following is a description of what the errors really signified.

Error # Error Description Cause/Problem
3197 The Microsoft Jet database engine stopped the

process because you and another user are
attempting to change the same data at the
same time.

This is typically occurs when a long
value column (an OLE or MEMO data-
type) has bad data stored in it. Long
value columns are typically stored in a
separate page from the page that the
row is stored in. If a long value column
is present in the table schema, the Jet
database engine will attempt to read the
long value page when reading the row
of data. In order to read the long value
page, there is a pointer in the row of
data. This error is generated when the
Jet database engine cannot properly
read the long value page from the
pointer present in the data row. When
viewing a row that exhibits this
behavior in Microsoft Access data-
windows, the user will typically see the
number sign (#) for the entire row.

3343 Unrecognized database format
‘databasename.mdb'.

This is typically occurs when the Jet
database engine was improperly shut
down during the process of writing to
disk.

3015 ‘databasename.mdb' isn't an index in this
table. Look in the Indexes collection of the
TableDef object to determine the valid index
names.

This is typically occurs when there is an
index missing on the MSysObjects
table. This is typically caused if the
repair process is aborted.

2

In order to remedy these problems, Microsoft Jet database engine 3.51 and 4.x have enhanced the compact
process. With Microsoft Jet database engine 3.51 and 4.x, all of the errors described above will be
eliminated and repaired if possible. Compact now assumes all the functionality that the Jet database engine
repair process included and it is no longer recommended that you use the Jet database engine repair
process.

Compact should always be run on a regular basis because it creates a new database with the data and tables
in contiguous and sorted order. It also refreshes the statistics in the database and causes all stored queries
to recompile. Ultimately, this reduces the size of the database and can significantly increase performance.

MSysCompactError Table

If any of the errors described above are encountered, compact should be run as soon as possible. If an error
is discovered, the Jet database engine will create a table called MSysCompactError. This table will have
the following schema.

Column Name DataType Description
ErrorCode Integer Error number generated from the Jet

database engine. Note that this error number
is an internal Jet database engine error
number and does not correlate to error
numbers that are returned from Visual Basic
for Applications.

ErrorDescription Memo Error message from the Jet database engine
error file. Microsoft Jet database engine
3.51 currently uses a non-descriptive error
message because the Jet database engine
could not modify the error file for this
release. The Jet database engine 4.x
provides a more descriptive error message.

ErrorRecId Binary The bookmark of the row as it relates to the
destination database for a row that had long
value column values changed to
################. Note that this
bookmark is only guaranteed to be good
when using the OpenRecordSet method’s
dbOpenTable type. The bookmark may also
become invalid if rows are modified in the
table after compact.

ErrorTable TEXT (64) The name of the table that contained the
partial bad row, if the partial bad row was
retrievable.

It is important to note that this table will only persist in the database until the following compact. Compact
will not copy any tables where the table name starts with MSysCompactError to the destination database.
This is done for maintenance, and the existence of tables where the name starts with MSysCompactError
indicates that the previous compact encountered problems. It is important that you do not have any
tables that start with MSysCompactError or they will not be present in the destination database
after running compact.

In addition to the Jet database engine creating the MSysCompactError table, the Jet database engine will
return an error message at the completion of compact to signify that a problem was encountered.

3

Unfortunately, modifying the error DLL (msjter35.dll for 3.51) was not an option due to localization issues
and Microsoft was forced to use a non-descriptive error message. The error message for 4.x has been
update to be more meaningful, as stated below.

Jet Version Error # The Jet database engine error message
3.51x 8119 Record(s) can't be read; no read permission on

'databasename.mdb'.
4.x 8119 Errors encountered in compact process

Issues Fixed by Updated Compact Utility

Compact will currently fix the following issues with a database.

Problem Result Resolution
Missing index(s) on
MSysObjects.

Database cannot be opened and is
unusable.

Compact will ignore the existence
of indexes on the MSysObjects
table and will scan the table
instead. The destination database
will contain the necessary indexes
on the MSysObjects table to
allow the database to be opened.

Commit bytes are left in a suspect
state.

Database cannot be opened and
typically required the repair
process to be run.

Compact will ignore the status of
the commit bytes and continue to
process while correcting for any
errors.

Properties are missing for a table. The table cannot be open from
Microsoft Access, but may be
able to be open from DAO’s
OpenRecordSet method.
Properties for a table are stored in
MSysObjects in the LVProp
column. This column is a long
value column falling under the
issues discussed above.

The Jet database engine will reset
the LVProp column to NULL,
effectively removing all
properties for the table. It will
also log a row in
MSysCompactError, but there
will not be a bookmark to identify
the row in the destination
database.

Pointers in non-system table long
value columns point to invalid
locations.

The Jet database engine will
typically return error # 3197,
which appears to be a multi-user
error.

The Jet database engine will reset
the LV column to sixteen number
signs (#). This is done to allow
the user to see what LV column
could not be read. The Jet
database engine will also log a
row in MSysCompactError with a
bookmark to identify the row in
the destination database.

Size of LV column in data row is
different than size reported in LV
page.

The Jet database engine will
typically return error # 3197,
which appears to be a multi-user
error.

The Jet database engine will reset
the LV column to sixteen number
signs (#). This is done to allow
the user to see what LV column
could not be read. The Jet
database engine will also log a
row in MSysCompactError with a
bookmark to identify the row in
the destination database.

When the Jet database engine compact encountered errors, it would delete the destination database upon
completion of compact. This has now been modified so that the destination database will not be deleted if

4

the compact process encounters errors described above. However, if some other error is encountered that
will prevent the destination database from being usable, compact will delete the destination database. If
compact is run from the Microsoft Access toolbar and you choose the destination database name to be the
same as the source database name and an error described above is encountered, a database called
DB?.MDB will be left on disk. The source database will remain unaltered.

Sample Code to View Rows Containing Modified Column Data

While the MSysCompactError table will give a bookmark value to the row that had corruption on it,
Microsoft is providing code to make it easier for you to view what rows had column data that the Jet
database engine could not read. The code below will create additional tables from the rows in the
MSysCompactError table that compact created. The code will create tables that start with
MSysCompactError and will have the original table name appended to MSysCompactError. The created
table will have the exact schema as the original table and will only contain the rows that had column data
value modified from the compact process. This will allow you to easily view rows that were affected by
the compact process. It is important to remember that any subsequent compact will remove these
tables.

Copy and paste the following code into a new Microsoft Access module and run the code. Note that this
code will not work with Visual Basic because of the CurrentDB call, but it can be easily modified to
DAO’s OpenDatabase method.

Sub main()
 On Error GoTo ErrorHandler
 Dim db As DAO.Database, vBookMark As Variant, _
 rsMSysCompactError As DAO.Recordset, strErrorTable As String, _
 rsErrorTable As DAO.Recordset, fldErrorField As DAO.Field, _
 strSQLSEL As String, strColumnValue As Variant, _
 qdTemp As QueryDef, strSQLINS As String, intLoop As Integer, _
 lngTableNameLength As Long, _
 colErrorCollection As New Collection, intErrorCount As Integer

 Set db = CurrentDb()
 ' Walk through the MSysCompactError table to find rows that reflect
 ' lost data values.
 Set rsMSysCompactError = db.OpenRecordset("SELECT * FROM
MSysCompactError WHERE ErrorRecId IS NOT NULL", dbOpenDynaset)
 intErrorCount = 0
 While Not rsMSysCompactError.EOF
 ' Get the name of the table that had column data missing.
 strErrorTable = rsMSysCompactError!ErrorTable
 ' Check to see that tablename is not greater than 48 characters
 ' to stay under 64 character tablename limit.
 lngTableNameLength = Len(strErrorTable)
 If lngTableNameLength > 48 Then
 strErrorTable = Mid(strErrorTable, 1, 48)
 ' See if this truncated table name already exists.
 On Error Resume Next
 colErrorCollection.Add strErrorTable, strErrorTable
 ' If this already exists in the collection, then there is a
 ' duplicate table name.
 If Err = 457 Then
 ' Truncate one more digit to append on the intErrorCount
 ' number to eliminate the duplicate table name.
 strErrorTable = Mid(strErrorTable, 1, 47)

5

 strErrorTable = strErrorTable &
Mid((Str(intErrorCount)), 2, 1)
 intErrorCount = (intErrorCount + 1)
 End If
 End If

 ' Get the bookmark value of the row that had lost column data.
 vBookMark = rsMSysCompactError!ErrorRecId
 ' Open table that has lost column data.
 Set rsErrorTable = db.OpenRecordset(strErrorTable, dbOpenTable,
dbReadOnly)
 ' Move to row that has lost column data.
 rsErrorTable.Bookmark = vBookMark
 ' Start to build SQL string to call up in a table window.
 strSQLSEL = "SELECT * INTO MSysCompactError" & strErrorTable & "
FROM " & strErrorTable & " WHERE "
 strSQLINS = "INSERT INTO MSysCompactError" & strErrorTable & "
SELECT * FROM " & strErrorTable & " WHERE "
 intLoop = 0
 For Each fldErrorField In rsErrorTable.Fields
 strColumnValue = fldErrorField.Value
 ' Logic to build predicate based on various data types.
 If Not IsNull(strColumnValue) Then
 ' Can't use ordinal as no guarantee of first column
 ' being zero.
 ' Check to see if this is the first column or not to
 ' build SQL statement.
 If intLoop = 0 Then
 If fldErrorField.Type = dbDate Then
 strSQLSEL = strSQLSEL & "[" & fldErrorField.Name
& "] = " & "#" & strColumnValue & "#"
 strSQLINS = strSQLINS & "[" & fldErrorField.Name
& "] = " & "#" & strColumnValue & "#"
 Else
 If fldErrorField.Type = dbText Or
fldErrorField.Type = dbChar Or fldErrorField.Type = dbMemo Then
 strSQLSEL = strSQLSEL & "[" &
fldErrorField.Name & "] = " & "'" & strColumnValue & "'"
 strSQLINS = strSQLINS & "[" &
fldErrorField.Name & "] = " & "'" & strColumnValue & "'"
 Else
 strSQLSEL = strSQLSEL & "[" &
fldErrorField.Name & "] = " & strColumnValue
 strSQLINS = strSQLINS & "[" &
fldErrorField.Name & "] = " & strColumnValue
 End If
 End If
 Else
 If fldErrorField.Type = dbDate Then
 strSQLSEL = strSQLSEL & " AND " & "[" &
fldErrorField.Name & "] = " & "#" & strColumnValue & "#"
 strSQLINS = strSQLINS & " AND " & "[" &
fldErrorField.Name & "] = " & "#" & strColumnValue & "#"
 Else
 If fldErrorField.Type = dbText Or
fldErrorField.Type = dbChar Or fldErrorField.Type = dbMemo Then

6

 strSQLSEL = strSQLSEL & " AND " & "[" &
fldErrorField.Name & "] = " & "'" & strColumnValue & "'"
 strSQLINS = strSQLINS & " AND " & "[" &
fldErrorField.Name & "] = " & "'" & strColumnValue & "'"
 Else
 strSQLSEL = strSQLSEL & " AND " & "[" &
fldErrorField.Name & "] = " & strColumnValue
 strSQLINS = strSQLINS & " AND " & "[" &
fldErrorField.Name & "] = " & strColumnValue
 End If
 End If
 End If
 End If
 intLoop = (intLoop + 1)
 ' QJet limitation for maximum conditions is reached.
 If intLoop = 39 Then
 Exit For
 End If
 Next fldErrorField
 On Error Resume Next
 ' Create error table if it does not exist.
 db.Execute strSQLSEL, dbFailOnError
 If Err = 3010 Then
 On Error GoTo ErrorHandler
 ' Add rows to error table if it already exists.
 db.Execute strSQLINS, dbFailOnError
 End If
 rsErrorTable.Close
 rsMSysCompactError.MoveNext
 Wend
 rsMSysCompactError.Close
 MsgBox "Done!"
 Exit Sub
ErrorHandler:
 MsgBox "An error has occurred " & Err & " " & Error
 Resume Next
End Sub

7

	Introduction
	Localization and Support
	Instructions
	Errors Encountered in Earlier Versions of the Microsoft Jet Database Engine
	MSysCompactError Table
	Issues Fixed by Updated Compact Utility
	Sample Code to View Rows Containing Modified Column Data

