
Free Pascal :
Reference guide.

Reference guide for Free Pascal, version 0.99.12
1.6

July 1999

Michaël Van Canneyt

Contents

I The Pascal language 10

1 Pascal Tokens 11

1.1 Symbols . 11

1.2 Comments . 12

1.3 Reserved words . 12

Turbo Pascal reserved words . 12

Delphi reserved words . 13

Free Pascal reserved words . 13

Modifiers . 13

1.4 Identifiers . 13

1.5 Numbers . 14

1.6 Labels . 15

1.7 Character strings . 15

2 Constants 16

2.1 Ordinary constants . 16

2.2 Typed constants . 17

3 Types 18

3.1 Base types . 18

Ordinal types . 19

Real types . 22

3.2 Character types . 23

Char . 23

Strings . 23

Short strings . 23

Ansistrings . 24

Constant strings . 26

PChar . 26

3.3 Structured Types . 27

Arrays . 27

1

CONTENTS

Record types . 28

Set types . 32

File types . 32

3.4 Pointers . 33

3.5 Procedural types . 35

4 Objects 37

4.1 Declaration . 37

4.2 Fields . 38

4.3 Constructors and destructors . 39

4.4 Methods . 40

4.5 Method invocation . 41

4.6 Visibility . 43

5 Classes 45

5.1 Class definitions . 45

5.2 Class instantiation . 46

5.3 Methods . 47

invocation . 47

Virtual methods . 47

Message methods . 48

5.4 Properties . 49

6 Expressions 53

6.1 Expression syntax . 53

6.2 Function calls . 55

6.3 Set constructors . 56

6.4 Value typecasts . 57

6.5 The @ operator . 58

6.6 Operators . 58

Arithmetic operators . 58

Logical operators . 59

Boolean operators . 60

String operators . 60

Set operators . 60

Relational operators . 61

7 Statements 62

7.1 Simple statements . 62

Assignments . 62

Procedure statements . 63

2

CONTENTS

Goto statements . 64

7.2 Structured statements . 64

Compound statements . 65

The Case statement . 65

The If..then..else statement . 67

The For..to/downto..do statement 68

The Repeat..until statement . 69

The While..do statement . 69

The With statement . 70

Exception Statements . 71

7.3 Assembler statements . 71

8 Using functions and procedures 73

8.1 Procedure declaration . 73

8.2 Function declaration . 74

8.3 Parameter lists . 74

Value parameters . 75

Variable parameters . 75

Constant parameters . 76

Open array parameters . 76

8.4 Function overloading . 77

8.5 Forward defined functions . 77

8.6 External functions . 78

8.7 Assembler functions . 79

8.8 Modifiers . 79

Public . 80

cdecl . 80

popstack . 81

Export . 81

StdCall . 81

Alias . 81

8.9 Unsupported Turbo Pascal modifiers 82

9 Programs, units, blocks 83

9.1 Programs . 83

9.2 Units . 84

9.3 Blocks . 85

9.4 Scope . 86

Block scope . 86

Record scope . 87

Class scope . 87

3

CONTENTS

Unit scope . 87

9.5 Libraries . 88

10 Exceptions 90

10.1 The raise statement . 90

10.2 The try...except statement . 91

10.3 The try...finally statement . 92

10.4 Exception handling nesting . 93

10.5 Exception classes . 93

11 Using assembler 94

11.1 Assembler statements . 94

11.2 Assembler procedures and functions 94

II Reference : The System unit 96

12 The system unit 97

12.1 Types, Constants and Variables . 97

Types . 97

Constants . 97

Variables . 98

12.2 Functions and Procedures . 99

Abs . 99

Addr . 99

Append . 100

Arctan . 100

Assign . 100

Assigned . 101

BinStr . 101

Blockread . 102

Blockwrite . 103

Break . 103

Chdir . 104

Chr . 104

Close . 104

Concat . 105

Continue . 105

Copy . 106

Cos . 107

CSeg . 107

Dec . 107

4

CONTENTS

Delete . 108

Dispose . 108

DSeg . 109

Eof . 110

Eoln . 110

Erase . 111

Exit . 111

Exp . 112

Filepos . 113

Filesize . 114

Fillchar . 114

Fillword . 115

Flush . 115

Frac . 116

Freemem . 116

Getdir . 117

Getmem . 117

Halt . 117

HexStr . 118

Hi . 118

High . 119

Inc . 120

Insert . 120

Int . 121

IOresult . 121

Length . 122

Ln . 123

Lo . 123

LongJmp . 124

Low . 124

Lowercase . 124

Mark . 125

Maxavail . 125

Memavail . 126

Mkdir . 127

Move . 127

New . 127

Odd . 128

Ofs . 128

Ord . 128

5

CONTENTS

Paramcount . 129

Paramstr . 129

Pi . 130

Pos . 130

Power . 131

Pred . 131

Ptr . 131

Random . 132

Randomize . 132

Read . 133

Readln . 133

Release . 134

Rename . 134

Reset . 134

Rewrite . 135

Rmdir . 136

Round . 136

Runerror . 137

Seek . 137

SeekEof . 138

SeekEoln . 138

Seg . 139

SetJmp . 139

SetLength . 140

SetTextBuf . 140

Sin . 141

SizeOf . 142

Sptr . 142

Sqr . 143

Sqrt . 143

SSeg . 143

Str . 144

Succ . 144

Swap . 144

Trunc . 145

Truncate . 145

Upcase . 146

Val . 146

Write . 147

WriteLn . 147

6

List of Tables

3.1 Predefined ordinal types . 19

3.2 Predefined integer types . 20

3.3 Boolean types . 20

3.4 Supported Real types . 23

3.5 AnsiString memory structure . 24

3.6 PChar pointer arithmetic . 27

3.7 Set Manipulation operators . 32

6.1 Precedence of operators . 53

6.2 Binary arithmetic operators . 59

6.3 Unary arithmetic operators . 59

6.4 Logical operators . 59

6.5 Boolean operators . 60

6.6 Set operators . 61

6.7 Relational operators . 61

7.1 Allowed C constructs in Free Pascal 63

8.1 Unsupported modifiers . 82

7

LIST OF TABLES

About this guide

This document describes all constants, types, variables, functions and procedures as
they are declared in the system unit. Furthermore, it describes all pascal constructs
supported by Free Pascal, and lists all supported data types. It does not, however,
give a detailed explanation of the pascal language. The aim is to list which Pascal
constructs are supported, and to show where the Free Pascal implementation differs
from the Turbo Pascal implementation.

Notations

Throughout this document, we will refer to functions, types and variables with
typewriter font. Functions and procedures have their own subsections, and for
each function or procedure we have the following topics:

Declaration The exact declaration of the function.

Description What does the procedure exactly do ?

Errors What errors can occur.

See Also Cross references to other related functions/commands.

The cross-references come in two flavours:

• References to other functions in this manual. In the printed copy, a number
will appear after this reference. It refers to the page where this function is
explained. In the on-line help pages, this is a hyperlink, on which you can
click to jump to the declaration.

• References to Unix manual pages. (For linux related things only) they are
printed in typewriter font, and the number after it is the Unix manual
section.

Syntax diagrams

All elements of the pascal language are explained in syntax diagrams. Syntax
diagrams are like flow charts. Reading a syntax diagram means that you must get
from the left side to the right side, following the arrows. When you are at the right
of a syntax diagram, and it ends with a single arrow, this means the syntax diagram
is continued on the next line. If the line ends on 2 arrows pointing to each other,
then the diagram is ended.
Syntactical elements are written like this

-- syntactical elements are like this -�

Keywords you must type exactly as in the diagram:

-- keywords are like this -�

When you can repeat something there is an arrow around it:

--
6

this can be repeated -�

When there are different possibilities, they are listed in columns:

8

LIST OF TABLES

-- First possibility
Second possibility

-�

Note, that one of the possibilities can be empty:

--

First possibility
Second possibility

-�

This means that both the first or second possibility are optional. Of course, all
these elements can be combined and nested.

9

Part I

The Pascal language

10

Chapter 1

Pascal Tokens

In this chapter we describe all the pascal reserved words, as well as the various ways
to denote strings, numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special ASCII symbols in a Pascal
source file.

Recognised symbols

-- letter A...Z
a...z

-�

-- digit 0...9 -�

-- hex digit 0...9
A...F
a...f

-�

The following characters have a special meaning:

+ - * / = < > [] . , () : ^ @ { } $ #

and the following character pairs too:

<= >= := += -= *= /= (* *) (. .) //

When used in a range specifier, the character pair (. is equivalent to the left square
bracket [. Likewise, the character pair .) is equivalent to the right square bracket
]. When used for comment delimiters, the character pair (* is equivalent to the left
brace { and the character pair *) is equivalent to the right brace }. These character
pairs retain their normal meaning in string expressions.

11

1.2. COMMENTS

1.2 Comments

Free Pascal supports the use of nested comments. The following constructs are valid
comments:

(* This is an old style comment *)
{ This is a Turbo Pascal comment }
// This is a Delphi comment. All is ignored till the end of the line.

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 *) }
(* Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }
(* comment 1 // Comment 2 *)
// comment 1 (* comment 2 *)
// comment 1 { comment 2 }

The last two comments must be on one line. The following two will give errors:

// Valid comment { No longer valid comment !!
}

and

// Valid comment (* No longer valid comment !!
*)

The compiler will react with a ’invalid character’ error when it encounters such
constructs, regardless of the -So switch.

1.3 Reserved words

Reserved words are part of the Pascal language, and cannot be redefined. They will
be denoted as this throughout the syntax diagrams. Reserved words can be typed
regardless of case, i.e. Pascal is case insensitive. We make a distinction between
Turbo Pascal and Delphi reserved words, since with the -So switch, only the Turbo
Pascal reserved words are recognised, and the Delphi ones can be redefined. By
default, Free Pascal recognises the Delphi reserved words.

Turbo Pascal reserved words

The following keywords exist in Turbo Pascal mode

absolute
and
array
asm
begin
break
case

const
constructor
continue
destructor
div
do
downto

else
end
file
for
function
goto
if

implementation
in
inherited
inline
interface
label
mod

12

1.4. IDENTIFIERS

nil
not
object
of
on
operator
or

packed
procedure
program
record
repeat
self
set

shl
shr
string
then
to
type
unit

until
uses
var
while
with
xor

Delphi reserved words

The Delphi (II) reserved words are the same as the pascal ones, plus the following
ones:

as
class
except
exports

finalization
finally
initialization
is

library
on
property
raise

try

Free Pascal reserved words

On top of the Turbo Pascal and Delphi reserved words, Free Pascal also considers
the following as reserved words:

dispose
exit

false
new

true

Modifiers

The following is a list of all modifiers. Contrary to Delphi, Free Pascal doesn’t allow
you to redefine these modifiers.

absolute
abstract
alias
assembler
cdecl
default
export

external
far
forward
index
name
near
override

pascal
popstack
private
protected
public
published
read

register
stdcall
virtual
write

Remark that predefined types such as Byte, Boolean and constants such as maxint
are not reserved words. They are identifiers, declared in the system unit. This
means that you can redefine these types. You are, however, not encouraged to do
this, as it will cause a lot of confusion.

1.4 Identifiers

Identifiers denote constants, types, variables, procedures and functions, units, and
programs. All names of things that you define are identifiers. An identifier con-
sists of 255 significant characters (letters, digits and the underscore character), from
which the first must be an alphanumeric character, or an underscore () The fol-
lowing diagram gives the basic syntax for identifiers.

13

1.5. NUMBERS

Identifiers

-- identifier letter
6 letter

digit

-�

1.5 Numbers

Numbers are denoted in decimal notation. Real (or decimal) numbers are writ-
ten using engeneering notation (e.g. 0.314E1). Free Pascal supports hexadecimal
format the same way as Turbo Pascal does. To specify a constant value in hexadec-
imal format, prepend it with a dollar sign ($). Thus, the hexadecimal $FF equals
255 decimal. In addition to the support for hexadecimal notation, Free Pascal also
supports binary notation. You can specify a binary number by preceding it with a
percent sign (%). Thus, 255 can be specified in binary notation as %11111111. The
following diagrams show the syntax for numbers.

Numbers

-- hex digit sequence
6

hex digit -�

-- bin digit sequence
6

1
0

-�

-- digit sequence
6

digit -�

-- unsigned integer digit sequence
$ hex digit sequence
% bin digit sequence

-�

-- sign +
-

-�

-- unsigned real digit sequence
. digit sequence scale factor

-�

-- scale factor E
e sign

digit sequence -�

-- unsigned number unsigned real
unsigned integer

-�

-- signed number
sign

unsigned number -�

14

1.6. LABELS

1.6 Labels

Labels can be digit sequences or identifiers.

Label

-- label digit sequence
identifier

-�

1.7 Character strings

A character string (or string for short) is a sequence of zero or more characters from
the ASCII character set, enclosed by single quotes, and on 1 line of the program
source. A character set with nothing between the quotes (’’) is an empty string.

Character strings

-- character string
6

quoted string
control string

-�

-- quoted string ’
6

string character ’ -�

-- string character Any character except ’ or CR
”

-�

-- control string
6

unsigned integer -�

15

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both normal and typed constants.

2.1 Ordinary constants

Ordinary constants declarations are not different from the Turbo Pascal or Delphi
implementation.

Constant declaration

-- constant declaration
6

identifier = expression ; -�

The compiler must be able to evaluate the expression in a constant declaration at
compile time. This means that most of the functions in the Run-Time library can-
not be used in a constant declaration. Operators such as +, -, *, /, not, and,
or, div(), mod(), ord(), chr(), sizeof can be used, however. For more in-
formation on expressions, see chapter 6, page 53. You can only declare constants of
the following types: Ordinal types, Real types, Char, and String. The following
are all valid constant declarations:

Const
e = 2.7182818; { Real type constant. }
a = 2; { Ordinal (Integer) type constant. }
c = ’4’; { Character type constant. }
s = ’This is a constant string’; {String type constant.}
s = chr(32)
ls = SizeOf(Longint);

Assigning a value to an ordinary constant is not permitted. Thus, given the previous
declaration, the following will result in a compiler error:

s := ’some other string’;

16

2.2. TYPED CONSTANTS

2.2 Typed constants

Typed constants serve to provide a program with initialised variables. Contrary
to ordinary constants, they may be assigned to at run-time. The difference with
normal variables is that their value is initialised when the program starts, whereas
normal variables must be initialised explicitly.

Typed constant declaration

-- typed constant declaration
6

identifier : type = typed constant ; -

- -�

-- typed constant constant
address constant

array constant
record constant

procedural constant

-�

Given the declaration:

Const
S : String = ’This is a typed constant string’;

The following is a valid assignment:

S := ’Result : ’+Func;

Where Func is a function that returns a String. Typed constants also allow you
to initialize arrays and records. For arrays, the initial elements must be specified,
surrounded by round brackets, and separated by commas. The number of elements
must be exactly the same as the number of elements in the declaration of the type.
As an example:

Const
tt : array [1..3] of string[20] = (’ikke’, ’gij’, ’hij’);
ti : array [1..3] of Longint = (1,2,3);

For constant records, you should specify each element of the record, in the form
Field : Value, separated by commas, and surrounded by round brackets. As an
example:

Type
Point = record

X,Y : Real
end;

Const
Origin : Point = (X:0.0 , Y:0.0);

The order of the fields in a constant record needs to be the same as in the type
declaration, otherwise you’ll get a compile-time error.

17

Chapter 3

Types

All variables have a type. Free Pascal supports the same basic types as Turbo
Pascal, with some extra types from Delphi. You can declare your own types, which
is in essence defining an identifier that can be used to denote your custom type
when declaring variables further in the source code.

Type declaration

-- type declaration identifier = type ; -�

There are 7 major type classes :

Types

-- type simple type
string type

structured type
pointer type

procedural type
type identifier

-�

The last class, type identifier, is just a means to give another name to a type. This
gives you a way to make types platform independent, by only using your own types,
and then defining these types for each platform individually. The programmer that
uses your units doesn’t have to worry about type size and so on. It also allows
you to use shortcut names for fully qualified type names. You can e.g. define
system.longint as Olongint and then redefine longint.

3.1 Base types

The base or simple types of Free Pascal are the Delphi types. We will discuss each
separate.

18

3.1. BASE TYPES

Table 3.1: Predefined ordinal types

Name
Integer
Shortint
SmallInt
Longint
Byte
Word
Cardinal
Boolean
ByteBool
LongBool
Char

Simple types

-- simple type ordinal type
real type

-�

-- real type real type identifier -�

Ordinal types

With the exception of Real types, all base types are ordinal types. Ordinal types
have the following characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to
start counting them one bye one, in a specified order. This property allows
the operation of functions as Inc (120), Ord (128), Dec (107) on ordinal types
to be defined.

2. Ordinal values have a smallest possible value. Trying to apply the Pred (131)
function on the smallest possible value will generate a range check error if
range checking is enabled.

3. Ordinal values have a largest possible value. Trying to apply the Succ (144)
function on the largest possible value will generate a range check error if range
checking is enabled.

Integers

A list of pre-defined ordinal types is presented in table (3.1) The integer types, and
their ranges and sizes, that are predefined in Free Pascal are listed in table (3.2).
Free Pascal does automatic type conversion in expressions where different kinds of
integer types are used.

19

3.1. BASE TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0 .. 255 1
Shortint -127 .. 127 1
Integer -32768 .. 32767 21

Word 0 .. 65535 2
Longint -2147483648 .. 2147483648 4
Cardinal 0..4294967296 4

Table 3.3: Boolean types

Name Size Ord(True)
Boolean 1 1
ByteBool 1 Any nonzero value
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value

Boolean types

Free Pascal supports the Boolean type, with its two pre-defined possible values
True and False. It also supports the ByteBool, WordBool and LongBool types.
These are the only two values that can be assigned to a Boolean type. Of course,
any expression that resolves to a boolean value, can also be assigned to a boolean
type. Assuming B to be of type Boolean, the following are valid assignments:

B := True;
B := False;
B := 1<>2; { Results in B := True }

Boolean expressions are also used in conditions.

Remark: In Free Pascal, boolean expressions are always evaluated in such a way
that when the result is known, the rest of the expression will no longer be evaluated
(Called short-cut evaluation). In the following example, the function Func will never
be called, which may have strange side-effects.

...
B := False;
A := B and Func;

Here Func is a function which returns a Boolean type.

Remark: The WordBool, LongBool and ByteBool types were not supported by Free
Pascal until version 0.99.6.

Enumeration types

Enumeration types are supported in Free Pascal. On top of the Turbo Pascal
implementation, Free Pascal allows also a C-style extension of the enumeration
type, where a value is assigned to a particular element of the enumeration list.

20

3.1. BASE TYPES

Enumerated types

-- enumerated type (
6

identifier list
assigned enum list

,

) -�

-- identifier list
6

identifier
,

-�

-- assigned enum list
6

identifier := expression
,

-�

(see chapter 6, page 53 for how to use expressions) When using assigned enumerated
types, the assigned elements must be in ascending numerical order in the list, or
the compiler will complain. The expressions used in assigned enumerated elements
must be known at compile time. So the following is a correct enumerated type
declaration:

Type
Direction = (North, East, South, West);

The C style enumeration type looks as follows:

Type
EnumType = (one, two, three, forty := 40,fortyone);

As a result, the ordinal number of forty is 40, and not 3, as it would be when
the ’:= 40’ wasn’t present. The ordinal value of fortyone is then 41, and not
4, as it would be when the assignment wasn’t present. After an assignment in an
enumerated definition the compiler adds 1 to the assigned value to assign to the
next enumerated value. When specifying such an enumeration type, it is important
to keep in mind that you should keep the enumerated elements in ascending order.
The following will produce a compiler error:

Type
EnumType = (one, two, three, forty := 40, thirty := 30);

It is necessary to keep forty and thirty in the correct order. When using enumer-
ation types it is important to keep the following points in mind:

1. You cannot use the Pred and Succ functions on this kind of enumeration
types. If you try to do that, you’ll get a compiler error.

2. Enumeration types are by default stored in 4 bytes. You can change this
behaviour with the {$PACKENUM n} compiler directive, which tells the compiler
the minimal number of bytes to be used for enumeration types. For instance

Type
LargeEnum = (BigOne, BigTwo, BigThree);

{$PACKENUM 1}
SmallEnum = (one, two, three);

Var S : SmallEnum;

21

3.1. BASE TYPES

L : LargeEnum;
begin

WriteLn (’Small enum : ’,SizeOf(S));
WriteLn (’Large enum : ’,SizeOf(L));

end.

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in the Programmers’ guide, in the compiler directives
section.

Subrange types

A subrange type is a range of values from an ordinal type (the host type). To define
a subrange type, one must specify it’s limiting values: the highest and lowest value
of the type.

Subrange types

-- subrange type constant .. constant -�

Some of the predefined integer types are defined as subrange types:

Type
Longint = $80000000..$7fffffff;
Integer = -32768..32767;
shortint = -128..127;
byte = 0..255;
Word = 0..65535;

But you can also define subrange types of enumeration types:

Type
Days = (monday,tuesday,wednesday,thursday,friday,

saturday,sunday);
WorkDays = monday .. friday;
WeekEnd = Saturday .. Sunday;

Real types

Free Pascal uses the math coprocessor (or an emulation) for all its floating-point
calculations. The Real native type is processor dependant, but it is either Single
or Double. Only the IEEE floating point types are supported, and these depend
on the target processor and emulation options. The true Turbo Pascal compatible
types are listed in table (3.4). Until version 0.9.1 of the compiler, all the Real
types were mapped to type Double, meaning that they all have size 8. The SizeOf
(142) function is your friend here. The Real type of turbo pascal is automatically
mapped to Double. The Comp type is, in effect, a 64-bit integer.

22

file:../prog/prog.html

3.2. CHARACTER TYPES

Table 3.4: Supported Real types

Type Range Significant digits Size2

Single 1.5E-45 .. 3.4E38 7-8 4
Real 5.0E-324 .. 1.7E308 15-16 8
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4951 .. 1.1E4932 19-20 10
Comp -2E64+1 .. 2E63-1 19-20 8

3.2 Character types

Char

Free Pascal supports the type Char. A Char is exactly 1 byte in size, and contains
one character. You can specify a character constant by enclosing the character
in single quotes, as follows : ’a’ or ’A’ are both character constants. You can
also specify a character by their ASCII value, by preceding the ASCII value with
the number symbol (#). For example specifying #65 would be the same as ’A’.
Also, the caret character (^) can be used in combination with a letter to specify a
character with ASCII value less than 27. Thus ^G equals #7 (G is the seventh letter
in the alphabet.) If you want to represent the single quote character, type it two
times successively, thus ’’’’ represents the single quote character.

Strings

Free Pascal supports the String type as it is defined in Turbo Pascal and it supports
ansistrings as in Delphi. To declare a variable as a string, use the following type
specification:

ShortString

-- string type string
[unsigned integer]

-�

The meaning of a string declaration statement is interpreted differently depending
on the {$H} switch. The above declaration can declare an ansistrng or a short
string.

Whatever the actual type, ansistrings and short strings can be used interchangeably.
The compiler always takes care of the necessary type coversions. Note, however,
that the result of an expression that contains ansistrings and short strings will
always be an ansistring.

Short strings

A string declaration declares a short string in the following cases:

1. If the switch is off: {$H-}, the string declaration will always be a short string
declaration.

23

3.2. CHARACTER TYPES

Table 3.5: AnsiString memory structure

Offset Contains
-12 Longint with maximum string size.
-8 Longint with actual string size.
-4 Longint with reference count.
0 Actual string, null-terminated.

2. If the switch is on {$H+}, and there is a length specifier, the declaration is a
short string declaration.

The predefined type ShortString is defined as a string of length 255:

ShortString = String[255];

For short strings Free Pascal reserves Size+1 bytes for the string S, and in the
zeroeth element of the string (S[0]) it will store the length of the variable. If you
don’t specify the size of the string, 255 is taken as a default. For example in

{$H-}

Type
NameString = String[10];
StreetString = String;

NameString can contain maximum 10 characters. While StreetString can contain
255 characters. The sizes of these variables are, respectively, 11 and 256 bytes.

Ansistrings

If the {$H} switch is on, then a string definition that doesn’t contain a length
specifier, will be regarded as an ansistring.

Ansistrings are strings that have no length limit. They are reference counted.
Internally, an ansistring is treated as a pointer.

If the string is empty (’’), then the pointer is nil. If the string is not empty, then
the pointer points to a structure in heap memory that looks as in table (3.5).

Because of this structure, it is possible to typecast an ansistring to a pchar. If
the string is empty (so the pointer is nil) then the compiler makes sure that the
typecasted pchar will point to a null byte.

AnsiStrings can be unlimited in length. Since the length is stored, the length of an
ansistring is available immediatly, providing for fast access.

Assigning one ansistring to another doesn’t involve moving the actual string. A
statement

S2:=S1;

results in the reference count of S2 being decreased by one, The referece count of S1
is increased by one, and finally S1 (as a pointer) is copied to S2. This is a significant
speed-up in your code.

24

3.2. CHARACTER TYPES

If a reference count reaches zero, then the memory occupied by the string is deal-
located automatically, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just
memory for a pointer, not more. This pinter is guaranteed to be nil, meaning that
the string is initially empty. This is true for local, global or part of a structure
(arrays, records or objects).

This does introduce an overhead. For instance, declaring

Var
A : Array[1..100000] of string;

Will copy 1000000 times nil into A. When A goes out of scope, then the 100000
strings will be dereferenced one by one. All this happens invisibly for the program-
mer, but when considering performance issues, this is important.

Memory will be allocated only when the string is assigned a value. If the string
goes out of scope, then it is automatically dereferenced.

If you assign a value to a character of a string that has a reference count greater
than 1, such as in the following statements:

S:=T; { reference count for S and T is now 2 }
S[I]:=’@’;

then a copy of the string is created before the assignment. This is known as copy-
on-write semantics.

It is impossible to access the length of an ansistring by referring to the zeroeth char-
acter. The following statement will generate a compiler error if S is an ansistring:

Len:=S[0];

Instead, you must use the Length (122) function to get the length of a string.

To set the length of an ansistring, you can use the SetLength (140) function. Con-
stant ansistrings have a reference count of -1 and are treated specially.

Ansistrings are converted to short strings by the compiler if needed, this means that
you can mix the use of ansistrings and short strings without problems.

You can typecast ansistrings to PChar or Pointer types:

Var P : Pointer;
PC : PChar;
S : AnsiString;

begin
S :=’This is an ansistring’;
PC:=Pchar(S);
P :=Pointer(S);

There is a difference between the two typecasts. If you typecast an empty ansistring
to a pointer, the pointer wil be Nil. If you typecast an empty ansistring to a PChar,
then the result will be a pointer to a zero byte (an empty string).

The result of such a typecast must be used with care. In general, it is best to
consider the result of such a typecast as read-only, i.e. suitable for passing to a
procedure that needs a constant pchar argument.

It is therefore NOT advisable to typecast one of the following:

25

3.2. CHARACTER TYPES

1. expressions.

2. strings that have reference count larger than 0. (call uniquestring if you want
to ensure a string has reference count 1)

Constant strings

To specify a constant string, you enclose the string in single-quotes, just as a Char
type, only now you can have more than one character. Given that S is of type
String, the following are valid assignments:

S := ’This is a string.’;
S := ’One’+’, Two’+’, Three’;
S := ’This isn’’t difficult !’;
S := ’This is a weird character : ’#145’ !’;

As you can see, the single quote character is represented by 2 single-quote characters
next to each other. Strange characters can be specified by their ASCII value. The
example shows also that you can add two strings. The resulting string is just the
concatenation of the first with the second string, without spaces in between them.
Strings can not be substracted, however.

Whether the constant string is stored as an ansistring or a short string depends on
the settings of the {$H} switch.

PChar

Free Pascal supports the Delphi implementation of the PChar type. PChar is defined
as a pointer to a Char type, but allows additional operations. The PChar type can
be understood best as the Pascal equivalent of a C-style null-terminated string, i.e.
a variable of type PChar is a pointer that points to an array of type Char, which
is ended by a null-character (#0). Free Pascal supports initializing of PChar typed
constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;
var p : PChar;
begin

P := ’This is a null-terminated string.’;
WriteLn (P);

end.

Results in the same as

program two;
const P : PChar = ’This is a null-terminated string.’
begin

WriteLn (P);
end.

These examples also show that it is possible to write the contents of the string
to a file of type Text. The strings unit contains procedures and functions that
manipulate the PChar type as you can do it in C. Since it is equivalent to a pointer
to a type Char variable, it is also possible to do the following:

26

file:../strings/strings.html

3.3. STRUCTURED TYPES

Table 3.6: PChar pointer arithmetic

Operation Result
P + I Adds I to the address pointed to by P.
I + P Adds I to the address pointed to by P.
P - I Substracts I from the address pointed to by P.
P - Q Returns, as an integer, the distance between 2 addresses

(or the number of characters between P and Q)

Program three;
Var S : String[30];

P : PChar;
begin

S := ’This is a null-terminated string.’#0;
P := @S[1];
WriteLn (P);

end.

This will have the same result as the previous two examples. You cannot add
null-terminated strings as you can do with normal Pascal strings. If you want to
concatenate two PChar strings, you will need to use the unit strings. However, it is
possible to do some pointer arithmetic. You can use the operators + and - to do
operations on PChar pointers. In table (3.6), P and Q are of type PChar, and I is of
type Longint.

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Stuctured
types can be nested to unlimited levels.

Structured Types

-- structured type array type
record type
class type

class reference type
set type
file type

-�

Unlike Delphi, Free Pascal does not support the keyword Packed for all structured
types, as can be seen in the syntax diagram. It will be mentioned when a type
supports the packed keyword. In the following, each of the possible structured
types is discussed.

Arrays

Free Pascal supports arrays as in Turbo Pascal, multi-dimensional arrays and packed
arrays are also supported:

27

file:../strings/strings.html

3.3. STRUCTURED TYPES

Array types

-- array type
packed

array [
6

ordinal type
,

] of type -�

The following is a valid array declaration:

Type
RealArray = Array [1..100] of Real;

As in Turbo Pascal, if the array component type is in itself an array, it is possible to
combine the two arrays into one multi-dimensional array. The following declaration:

Type
APoints = array[1..100] of Array[1..3] of Real;

is equivalent to the following declaration:

Type
APoints = array[1..100,1..3] of Real;

The functions High (119) and Low (124) return the high and low bounds of the
leftmost index type of the array. In the above case, this would be 100 and 1.

Record types

Free Pascal supports fixed records and records with variant parts. The syntax
diagram for a record type is

Record types

-- record type
packed

record
field list

end -�

-- field list fixed fields

fixed fields ;
variant part ;

-�

-- fixed fields
6

identifier list : type
;

-�

-- variant part case
identifier :

ordinal type identifier of -

-
6

variant
;

-�

-- variant
6

constant , : (
field list

) -�

So the following are valid record types declarations:

28

3.3. STRUCTURED TYPES

Type
Point = Record

X,Y,Z : Real;
end;

RPoint = Record
Case Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

BetterRPoint = Record
Case UsePolar : Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

The variant part must be last in the record. The optional identifier in the case
statement serves to access the tag field value, which otherwise would be invisible
to the programmer. It can be used to see which variant is active at a certain time.
In effect, it introduces a new field in the record. Remark that it is possible to nest
variant parts, as in:

Type
MyRec = Record

X : Longint;
Case byte of

2 : (Y : Longint;
case byte of
3 : (Z : Longint);
);

end;

The size of a record is the sum of the sizes of its fields, each size of a field is rounded
up to two. If the record contains a variant part, the size of the variant part is
the size of the biggest variant, plus the size of the tag field type if an identifier
was declared for it. Here also, the size of each part is first rounded up to two.
So in the above example, SizeOf (142) would return 24 for Point, 24 for RPoint
and 26 for BetterRPoint. For MyRec, the value would be 12. If you want to read
a typed file with records, produced by a Turbo Pascal program, then chances are
that you will not succeed in reading that file correctly. The reason for this is that
by default, elements of a record are aligned at 2-byte boundaries, for performance
reasons. This default behaviour can be changed with the {$PackRecords n} switch.
Possible values for n are 1, 2, 4, 16 or Default. This switch tells the compiler to
align elements of a record or object or class that have size larger than n on n byte
boundaries. Elements that have size smaller or equal than n are aligned on natural
boundaries, i.e. to the first power of two that is larger than or equal to the size of
the record element. The keyword Default selects the default value for the platform
you’re working on (currently, this is 2 on all platforms) Take a look at the following
program:

Program PackRecordsDemo;
type

{$PackRecords 2}
Trec1 = Record

A : byte;

29

3.3. STRUCTURED TYPES

B : Word;
end;

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}
Trec3 = Record

A,B : byte;
end;

{$PackRecords 1}
Trec4 = Record

A,B : Byte;
end;

{$PackRecords 4}
Trec5 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;

end;

{$PackRecords 8}
Trec6 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;
end;

{$PackRecords 4}
Trec7 = Record

A : Byte;
B : Array[1..7] of byte;
C : byte;

end;

{$PackRecords 8}
Trec8 = Record

A : Byte;
B : Array[1..7] of byte;
C : byte;
end;

Var rec1 : Trec1;
rec2 : Trec2;
rec3 : TRec3;
rec4 : TRec4;
rec5 : Trec5;
rec6 : TRec6;
rec7 : TRec7;
rec8 : TRec8;

begin
Write (’Size Trec1 : ’,SizeOf(Trec1));

30

3.3. STRUCTURED TYPES

Writeln (’ Offset B : ’,Longint(@rec1.B)-Longint(@rec1));
Write (’Size Trec2 : ’,SizeOf(Trec2));
Writeln (’ Offset B : ’,Longint(@rec2.B)-Longint(@rec2));
Write (’Size Trec3 : ’,SizeOf(Trec3));
Writeln (’ Offset B : ’,Longint(@rec3.B)-Longint(@rec3));
Write (’Size Trec4 : ’,SizeOf(Trec4));
Writeln (’ Offset B : ’,Longint(@rec4.B)-Longint(@rec4));
Write (’Size Trec5 : ’,SizeOf(Trec5));
Writeln (’ Offset B : ’,Longint(@rec5.B)-Longint(@rec5),

’ Offset C : ’,Longint(@rec5.C)-Longint(@rec5));
Write (’Size Trec6 : ’,SizeOf(Trec6));
Writeln (’ Offset B : ’,Longint(@rec6.B)-Longint(@rec6),

’ Offset C : ’,Longint(@rec6.C)-Longint(@rec6));
Write (’Size Trec7 : ’,SizeOf(Trec7));
Writeln (’ Offset B : ’,Longint(@rec7.B)-Longint(@rec7),

’ Offset C : ’,Longint(@rec7.C)-Longint(@rec7));
Write (’Size Trec8 : ’,SizeOf(Trec8));
Writeln (’ Offset B : ’,Longint(@rec8.B)-Longint(@rec8),

’ Offset C : ’,Longint(@rec8.C)-Longint(@rec8));
end.

The output of this program will be :

Size Trec1 : 4 Offset B : 2
Size Trec2 : 3 Offset B : 1
Size Trec3 : 2 Offset B : 1
Size Trec4 : 2 Offset B : 1
Size Trec5 : 8 Offset B : 4 Offset C : 7
Size Trec6 : 8 Offset B : 4 Offset C : 7
Size Trec7 : 12 Offset B : 4 Offset C : 11
Size Trec8 : 16 Offset B : 8 Offset C : 15

And this is as expected. In Trec1, since B has size 2, it is aligned on a 2 byte
boundary, thus leaving an empty byte between A and B, and making the total size
4. In Trec2, B is aligned on a 1-byte boundary, right after A, hence, the total size of
the record is 3. For Trec3, the sizes of A,B are 1, and hence they are aligned on 1
byte boundaries. The same is true for Trec4. For Trec5, since the size of B – 3 – is
smaller than 4, B will be on a 4-byte boundary, as this is the first power of two that
is larger than it’s size. The same holds for Trec6. For Trec7, B is aligned on a 4
byte boundary, since it’s size – 7 – is larger than 4. However, in Trec8, it is aligned
on a 8-byte boundary, since 8 is the first power of two that is greater than 7, thus
making the total size of the record 16. As from version 0.9.3, Free Pascal supports
also the ’packed record’, this is a record where all the elements are byte-aligned.
Thus the two following declarations are equivalent:

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}

and

Trec2 = Packed Record

31

3.3. STRUCTURED TYPES

Table 3.7: Set Manipulation operators

Operation Operator
Union +
Difference -
Intersection *
Add element include
Delete element exclude

A : Byte;
B : Word;
end;

Note the {$PackRecords 2} after the first declaration !

Set types

Free Pascal supports the set types as in Turbo Pascal. The prototype of a set
declaration is:

Set Types

-- set type set of ordinal type -�

Each of the elements of SetType must be of type TargetType. TargetType can be
any ordinal type with a range between 0 and 255. A set can contain maximally 255
elements. The following are valid set declaration:

Type
Junk = Set of Char;

Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
WorkDays : Set of days;

Given this set declarations, the following assignment is legal:

WorkDays := [Mon, Tue, Wed, Thu, Fri];

The operators and functions for manipulations of sets are listed in table (3.7). You
can compare two sets with the <> and = operators, but not (yet) with the < and >
operators. As of compiler version 0.9.5, the compiler stores small sets (less than 32
elements) in a Longint, if the type range allows it. This allows for faster processing
and decreases program size. Otherwise, sets are stored in 32 bytes.

File types

File types are types that store a sequence of some base type, which can be any
type except another file type. It can contain (in principle) an infinite number of

32

3.4. POINTERS

elements. File types are used commonly to store data on disk. Nothing stops you,
however, from writing a file driver that stores it’s data in memory. Here is the type
declaration for a file type:

File types

-- file type file
of type

-�

If no type identifier is given, then the file is an untyped file; it can be considered
as equivalent to a file of bytes. Untyped files require special commands to act on
them (see Blockread (102), Blockwrite (103)). The following declaration declares a
file of records:

Type
Point = Record

X,Y,Z : real;
end;

PointFile = File of Point;

Internally, files are represented by the FileRec record, which is declared in the DOS
unit.

A special file type is the Text file type, represented by the TextRec record. A file
of type Text uses special input-output routines.

3.4 Pointers

Free Pascal supports the use of pointers. A variable of the pointer type contains an
address in memory, where the data of another variable may be stored.

Pointer types

-- pointer type ˆ type identifier -�

As can be seen from this diagram, pointers are typed, which means that they point
to a particular kind of data. The type of this data must be known at compile time.
Dereferencing the pointer (denoted by adding ^ after the variable name) behaves
then like a variable. This variable has the type declared in the pointer declaration,
and the variable is stored in the address that is pointed to by the pointer variable.
Consider the following example:

Program pointers;
type

Buffer = String[255];
BufPtr = ^Buffer;

Var B : Buffer;
BP : BufPtr;
PP : Pointer;

etc..

33

3.4. POINTERS

In this example, BP is a pointer to a Buffer type; while B is a variable of type
Buffer. B takes 256 bytes memory, and BP only takes 4 bytes of memory (enough
to keep an adress in memory). Remark: Free Pascal treats pointers much the same
way as C does. This means that you can treat a pointer to some type as being an
array of this type. The pointer then points to the zeroeth element of this array.
Thus the following pointer declaration

Var p : ^Longint;

Can be considered equivalent to the following array declaration:

Var p : array[0..Infinity] of Longint;

The difference is that the former declaration allocates memory for the pointer only
(not for the array), and the second declaration allocates memory for the entire
array. If you use the former, you must allocate memory yourself, using the Getmem
(117) function. The reference P^ is then the same as p[0]. The following program
illustrates this maybe more clear:

program PointerArray;
var i : Longint;

p : ^Longint;
pp : array[0..100] of Longint;

begin
for i := 0 to 100 do pp[i] := i; { Fill array }
p := @pp[0]; { Let p point to pp }
for i := 0 to 100 do

if p[i]<>pp[i] then
WriteLn (’Ohoh, problem !’)

end.

Free Pascal supports pointer arithmetic as C does. This means that, if P is a typed
pointer, the instructions

Inc(P);
Dec(P);

Will increase, respectively descrease the address the pointer points to with the size
of the type P is a pointer to. For example

Var P : ^Longint;
...
Inc (p);

will increase P with 4. You can also use normal arithmetic operators on pointers,
that is, the following are valid pointer arithmetic operations:

var p1,p2 : ^Longint;
L : Longint;

begin
P1 := @P2;
P2 := @L;
L := P1-P2;
P1 := P1-4;
P2 := P2+4;

end.

34

3.5. PROCEDURAL TYPES

Here, the value that is added or substracted is not multiplied by the size of the type
the pointer points to.

3.5 Procedural types

Free Pascal has support for procedural types, although it differs a little from the
Turbo Pascal implementation of them. The type declaration remains the same, as
can be seen in the following syntax diagram:

Procedural types

-- procedural type function header
procedure header of object

-

-

; call modifiers

-�

-- function header function formal parameter list : result type -�

-- procedure header procedure formal parameter list -�

-- call modifiers register
cdecl
pascal
stdcall

popstack

-�

For a description of formal parameter lists, see chapter 8, page 73. The two following
examples are valid type declarations:

Type TOneArg = Procedure (Var X : integer);
TNoArg = Function : Real;

var proc : TOneArg;
func : TNoArg;

One can assign the following values to a procedural type variable:

1. Nil, for both normal procedure pointers and method pointers.

2. A variable reference of a procedural type, i.e. another variable of the same
type.

3. A global procedure or function address, with matching function or procedure
header and calling convention.

4. A method address.

Given these declarations, the following assignments are valid:

Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
...
P := @printit;
Func := @Pi;

35

3.5. PROCEDURAL TYPES

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn’t
necessary to use the address operator (@) when assigning a procedural type variable,
whereas in Free Pascal it is required (unless you use the -So switch, in which case you
can drop the address operator.) Remark that the modifiers concerning the calling
conventions (cdecl, pascal, stdcall and popstack stick to the declaration; i.e.
the following code would give an error:

Type TOneArgCcall = Procedure (Var X : integer);cdecl;
var proc : TOneArgCcall;
Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
begin
P := @printit;
end.

Because the TOneArgCcall type is a procedure that uses the cdecl calling conven-
tion. At the moment, the method procedural pointers (i.e. pointers that point to
methods of objects, distinguished by the of object keywords in the declaration)
are still in an experimental stage.

36

Chapter 4

Objects

4.1 Declaration

Free Pascal supports object oriented programming. In fact, most of the compiler is
written using objects. Here we present some technical questions regarding object
oriented programming in Free Pascal. Objects should be treated as a special kind of
record. The record contains all the fields that are declared in the objects definition,
and pointers to the methods that are associated to the objects’ type.

An object is declared just as you would declare a record; except that you can now
declare procedures and functions as if they were part of the record. Objects can
”inherit” fields and methods from ”parent” objects. This means that you can use
these fields and methods as if they were included in the objects you declared as a
”child” object.

Furthermore, you can declare fields, procedures and functions as public or private.
By default, fields and methods are public, and are exported outside the current
unit. Fields or methods that are declared private are only accessible in the current
unit. The prototype declaration of an object is as follows:

object types

--

packed
object

heritage
6

component list
object visibility specifier

end

-

- -�

-- heritage (object type identifier) -�

-- component list

6
field definition

6
method definition

-�

-- field definition identifier list : type ; -�

-- method definition function header
procedure header

constructor header
desctuctor header

; method directives -�

37

4.2. FIELDS

-- method directives
virtual ;

abstract ;

-

-

call modifiers ;

-�

-- object visibility specifier private
public

-�

As you can see, you can repeat as many private and public blocks as you want.
Method definitions are normal function or procedure declarations. You cannot
put fields after methods in the same block, i.e. the following will generate an error
when compiling:

Type MyObj = Object
Procedure Doit;
Field : Longint;

end;

But the following will be accepted:

Type MyObj = Object
Public
Procedure Doit;

Private
Field : Longint;

end;

because the field is in a different section.

Remark: Free Pascal also supports the packed object. This is the same as an object,
only the elements (fields) of the object are byte-aligned, just as in the packed record.
The declaration of a packed object is similar to the declaration of a packed record :

Type
TObj = packed object;
Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

Similarly, the {$PackRecords } directive acts on objects as well.

4.2 Fields

Object Fields are like record fields. They are accessed in the same way as you
would access a record field : by using a qualified identifier. Given the following
declaration:

Type TAnObject = Object
AField : Longint;

38

4.3. CONSTRUCTORS AND DESTRUCTORS

Procedure AMethod;
end;

Var AnObject : TAnObject;

then the following would be a valid assignment:

AnObject.AField := 0;

Inside methods, fields can be accessed using the short identifier:

Procedure TAnObject.AMethod;
begin

...
AField := 0;
...

end;

Or, one can use the self identifier. The self identifier refers to the current instance
of the object:

Procedure TAnObject.AMethod;
begin

...
Self.AField := 0;
...

end;

You cannot access fields that are in a private section of an object from outside
the objects’ methods. If you do, the compiler will complain about an unknown
identifier. It is also possible to use the with statement with an object instance:

With AnObject do
begin
Afield := 12;
AMethod;
end;

In this example, between the begin and end, it is as if AnObject was prepended to
the Afield and Amethod identifiers. More about this in section 7.2, page 70

4.3 Constructors and destructors

As can be seen in the syntax diagram for an object declaration, Free Pascal supports
constructors and destructors. You are responsible for calling the constructor and
the destructor explicitly when using objects. The declaration of a constructor or
destructor is as follows:

Constructors and destructors

-- constructor declaration constructor header ; subroutine block -�

-- destructor declaration destructor header ; subroutine block -�

39

4.4. METHODS

-- constructor header constructor identifier
qualified method identifier

-

- formal parameter list -�

-- desctructor header destructor identifier
qualified method identifier

-

- formal parameter list -�

A constructor/destructor pair is required if you use virtual methods. In the dec-
laration of the object type, you should use a simple identifier for the name of
the constuctor or destructor. When you implement the constructor or destruc-
tor, you should use a qulified method identifier, i.e. an identifier of the form
objectidentifier.methodidentifier. Free Pascal supports also the extended
syntax of the New and Dispose procedures. In case you want to allocate a dynamic
variable of an object type, you can specify the constructor’s name in the call to New.
The New is implemented as a function which returns a pointer to the instantiated
object. Consider the following declarations:

Type
TObj = object;
Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

Then the following 3 calls are equivalent:

pp := new (Pobj,Init);

and

new(pp,init);

and also

new (pp);
pp^.init;

In the last case, the compiler will issue a warning that you should use the extended
syntax of new and dispose to generate instances of an object. You can ignore this
warning, but it’s better programming practice to use the extended syntax to create
instances of an object. Similarly, the Dispose procedure accepts the name of a
destructor. The destructor will then be called, before removing the object from the
heap. In view of the compiler warning remark, the now following Delphi approach
may be considered a more natural way of object-oriented programming.

4.4 Methods

Object methods are just like ordinary procedures or functions, only they have an
implicit extra parameter : self. Self points to the object with which the method
was invoked. When implementing methods, the fully qualified identifier must be
given in the function header. When declaring methods, a normal identifier must be
given.

40

4.5. METHOD INVOCATION

4.5 Method invocation

Methods are called just as normal procedures are called, only they have an object
instance identifier prepended to them (see also chapter 7, page 62). To determine
which method is called, it is necessary to know the type of the method. We treat
the different types in what follows.

Static methods

Static methods are methods that have been declared without a abstract or virtual
keyword. When calling a static method, the declared (i.e. compile time) method of
the object is used. For example, consider the following declarations:

Type
TParent = Object

...
procedure Doit;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...
procedure Doit;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method called Doit.
Consider now the following declarations and calls:

Var ParentA,ParentB : PParent;
Child : PChild;

ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Of the three invocations of Doit, only the last one will call TChild.Doit, the other
two calls will call TParent.Doit. This is because for static methods, the compiler
determines at compile time which method should be called. Since ParentB is of
type TParent, the compiler decides that it must be called with TParent.Doit, even
though it will be created as a TChild. There may be times when you want the
method that is actually called to depend on the actual type of the object at run-
time. If so, the method cannot be a static method, but must be a virtual method.

Virtual methods

To remedy the situation in the previous section, virtual methods are created. This
is simply done by appending the method declaration with the virtual modifier.
Going back to the previous example, consider the following alternative declaration:

41

4.5. METHOD INVOCATION

Type
TParent = Object

...
procedure Doit;virtual;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...
procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method called Doit.
Consider now the following declarations and calls :

Var ParentA,ParentB : PParent;
Child : PChild;

ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Now, different methods will be called, depending on the actual run-time type of the
object. For ParentA, nothing changes, since it is created as a TParent instance.
For Child, the situation also doesn’t change: it is again created as an instance of
TChild. For ParentB however, the situation does change: Even though it was de-
clared as a TParent, it is created as an instance of TChild. Now, when the program
runs, before calling Doit, the program checks what the actual type of ParentB is,
and only then decides which method must be called. Seeing that ParentB is of type
TChild, TChild.Doit will be called. The code for this run-time checking of the ac-
tual type of an object is inserted by the compiler at compile time. The TChild.Doit
is said to override the TParent.Doit. It is possible to acces the TParent.Doit from
within the varTChild.Doit, with the inherited keyword:

Procedure TChild.Doit;
begin

inherited Doit;
...

end;

In the above example, when TChild.Doit is called, the first thing it does is call
TParent.Doit. You cannot use the inherited keyword on static methods, only on
virtual methods.

Abstract methods

An abstract method is a special kind of virtual method. A method can not be
abstract if it is not virtual (this is not obvious from the syntax diagram). You
cannot create an instance of an object that has an abstract method. The reason is
obvious: there is no method where the compiler could jump to ! A method that is

42

4.6. VISIBILITY

declared abstract does not have an implementation for this method. It is up to
inherited objects to override and implement this method. Continuing our example,
take a look at this:

Type
TParent = Object

...
procedure Doit;virtual;abstract;
...
end;

PParent=^TParent;
TChild = Object(TParent)

...
procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method called Doit.
Consider now the following declarations and calls :

Var ParentA,ParentB : PParent;
Child : PChild;

ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

First of all, Line 3 will generate a compiler error, stating that you cannot generate
instances of objects with abstract methods: The compiler has detected that PParent
points to an object which has an abstract method. Commenting line 3 would allow
compilation of the program. Remark that if you override an abstract method, you
cannot call the parent method with inherited, since there is no parent method;
The compiler will detect this, and complain about it, like this:

testo.pp(32,3) Error: Abstract methods can’t be called directly

If, through some mechanism, an abstract method is called at run-time, then a run-
time error will occur. (run-time error 211, to be precise)

4.6 Visibility

For objects, only 2 visibility specifiers exist : private and public. If you don’t
specify a visibility specifier, public is assumed. Both methods and fields can be hid-
den from a programmer by putting them in a private section. The exact visibility
rule is as follows:

Private All fields and methods that are in a private block, can only be accessed
in the module (i.e. unit or program) that contains the object definition. They
can be accessed from inside the object’s methods or from outside them e.g.
from other objects’ methods, or global functions.

43

4.6. VISIBILITY

Public sections are always accessible, from everywhere. Fields and metods in a
public section behave as though they were part of an ordinary record type.

44

Chapter 5

Classes

In the Delphi approach to Object Oriented Programming, everything revolves around
the concept of ’Classes’. A class can be seen as a pointer to an object, or a pointer
to a record.

remark In earlier versions of Free Pascal it was necessary, in order to use classes, to
put the objpas unit in the uses clause of your unit or program. This is no longer
needed as of version 0.99.12. As of version 0.99.12 the system unit contains the
basic definitions of TObject and TClass, as well as some auxiliary methods for
using classes. The objpas unit still exists, and contains some redefinitions of basic
types, so they coincide with Delphi types. The unit will be loaded automatically if
you specify the -S2 or -Sd options.

5.1 Class definitions

The prototype declaration of a class is as follows :

Class types

--

packed
class

heritage
6

component list
class visibility specifier

end

-�

-- heritage (class type identifier) -�

-- component list

6
field definition

6
method definition
property definition

-�

-- field definition identifier list : type ; -�

-- method definition
class

function header
procedure header

constructor header
desctuctor header

; -

45

5.2. CLASS INSTANTIATION

-

virtual
; abstract

override
message integer constant

string constant

; call modifiers ;

-�

-- class visibility specifier private
protected

public
published

-�

Again, You can repeat as many private, protected, published and public blocks
as you want. Methods are normal function or procedure declarations. As you can
see, the declaration of a class is almost identical to the declaration of an object.
The real difference between objects and classes is in the way they are created (see
further in this chapter). The visibility of the different sections is as follows:

Private All fields and methods that are in a private block, can only be accessed
in the module (i.e. unit) that contains the class definition. They can be
accessed from inside the classes’ methods or from outside them (e.g. from
other classes’ methods)

Protected Is the same as Private, except that the members of a Protected
section are also accessible to descendent types, even if they are implemented
in other modules.

Public sections are always accessible.

Published Is the same as a Public section, but the compiler generates also type
information that is needed for automatic streaming of these classes. Fields
defined in a published section must be of class type. Array peroperties cannot
be in a published section.

5.2 Class instantiation

Classes must be created using their constructor. Remember that a class is a pointer
to an object, so when you declare a variable of some class, the compiler just allocates
a pointer, not the entire object. The constructor of a class returns a pointer to an
initialized instance of the object. So, to initialize an instance of some class, you
would do the following :

ClassVar := ClassType.ConstructorName;

You cannot use the extended syntax of new and dispose to instantiate and destroy
class instances. That construct is reserved for use with objects only. Calling the
constructor will provoke a call to getmem, to allocate enough space to hold the class
instance data. After that, the constuctor’s code is executed. The constructor has a
pointer to it’s data, in self.

Remarks:

• The {$PackRecords } directive also affects classes. i.e. the alignment in
memory of the different fields depends on the value of the {$PackRecords }
directive.

46

5.3. METHODS

• Just as for objects and records, you can declare a packed class. This has the
same effect as on an object, or record, namely that the elements are aligned
on 1-byte boundaries. i.e. as close as possible.

• SizeOf(class) will return 4, since a class is but a pointer to an object. To get
the size of the class instance data, use the TObject.InstanceSize method.

5.3 Methods

invocation

Method invocaticn for classes is no different than for objects. The following is a
valid method invocation:

Var AnObject : TAnObject;
begin

AnObject := TAnObject.Create;
ANobject.AMethod;

Virtual methods

Classes have virtual methods, just as objects do. There is however a difference
between the two. For objects, it is sufficient to redeclare the same method in a
descendent object with the keyword virtual to override it. For classes, the situation
is different: you must override virtual methods with the override keyword. Failing
to do so, will start a new batch of virtual methods, hiding the previous one. The
Inherited keyword will not jump to the inherited method, if virtual was used.

The following code is wrong:
Type ObjParent = Class

Procedure MyProc ; v i r t u a l ;
end ;
ObjChi ld = Class (ObjPArent)

Procedure MyProc ; v i r t u a l ;
end ;

The compiler will produce a warning:

Warning: An inherited method is hidden by OBJCHILD.MYPROC

The compiler will compile it, but using Inherited can produce strange effects.

The correct declaration is as follows:
Type ObjParent = Class

Procedure MyProc ; v i r t u a l ;
end ;
ObjChi ld = Class (ObjPArent)

Procedure MyProc ; overr ide ;
end ;

This will compile and run without warnings or errors.

47

5.3. METHODS

Message methods

New in classes are message methods. Pointers to message methods are stored in
a special table, together with the integer or string cnstant that they were declared
with. They are primarily intended to ease programming of callback functions in
several GUI toolkits, such as Win32 or GTK. In difference with Delphi, Free Pascal
also accepts strings as message identifiers.

Message methods that are declared with an integer constant can take only one var
argument (typed or not):

Procedure TMyObject . MyHandler (Var Msg) ; Message 1 ;

The method implementation of a message function is no different from an ordinary
method. It is also possible to call a message method directly, but you should not
do this. Instead use the TObject.Dispatch method.

The TOBject.Dispatch method can be used to call a message handler. It is de-
clared in the system unit and will accept a var parameter which must have at the
first position a cardinal with the message ID that should be called. For example:
Type

TMsg = Record
MSGID : C a r d i n a l
Data : P o i n t e r ;

Var
Msg : TMSg;

MyObject . Dispatch (Msg) ;

In this example, the Dispatch method will look at the object and all it’s ancestors
(starting at the object, and searching up the class tree), to see if a message method
with message MSGID has been declared. If such a method is found, it is called, and
passed the Msg parameter.

If no such method is found, DefaultHandler is called. DefaultHandler is a vir-
tual method of TObject that doesn’t do anything, but which can be overridden to
provide any processing you might need. DefaultHandler is declared as follows:

procedure d e f a u l t h a n d l e r (var message) ; v i r t u a l ;

In addition to the message method with a Integer identifier, Free Pascal also
supports a messae method with a string identifier:

Procedure TMyObject . MyStrHandler (Var Msg) ; Message ’ OnCl ick ’ ;

The working of the string message handler is the same as the ordinary integer
message handler:

The TOBject.DispatchStr method can be used to call a message handler. It is
declared in the system unit and will accept one parameter which must have at the
first position a string with the message ID that should be called. For example:
Type

TMsg = Record
MsgStr : Str ing [1 0] ; / / A r b i t r a r y length up to 2 55 c h a r a c t e r s .
Data : P o i n t e r ;

Var
Msg : TMSg;

MyObject . D i s p a t c h S t r (Msg) ;

In this example, the DispatchStr method will look at the object and all it’s an-

48

5.4. PROPERTIES

cestors (starting at the object, and searching up the class tree), to see if a message
method with message MsgStr has been declared. If such a method is found, it is
called, and passed the Msg parameter.

If no such method is found, DefaultHandlerStr is called. DefaultHandlerStr is a
virtual method of TObject that doesn’t do anything, but which can be overridden to
provide any processing you might need. DefaultHandlerStr is declared as follows:

procedure D e f a u l t H a n d l e r S t r (var message) ; v i r t u a l ;

In addition to this mechanism, a string message method accepts a self parameter:
TMyObject . StrMsgHandler (Data : P o i n t e r ; S e l f : TMyObject) ; Message ’ OnCl ick ’ ;

When encountering such a method, the compiler will generate code that loads the
Self parameter into the object instance pointer. The result of this is that it is
possible to pass Self as a parameter to such a method.

remark: The type of the Self parameter must be of the same class as the class you
define the method for.

5.4 Properties

Classes can contain properties as part of their fields list. A property acts like a
normal field, i.e. you can get or set it’s value, but allows to redirect the access
of the field through functions and procedures. They provide a means to associate
an action with an assignment of or a reading from a class ’field’. This allows for
e.g. checking that a value is valid when assigning, or, when reading, it allows to
construct the value on the fly. Moreover, properties can be read-only or write only.
The prototype declaration of a property is as follows:

Properties

-- property definition property identifier
property interface

-

- property specifiers -�

-- property interface
property parameter list

: type identifier -

-

index integerconstant

-�

-- property parameter list [
6

parameter declaration
;

] -�

-- property specifiers
read specifier write specifier

-

-

default specifier

-�

-- read specifier read field or method -�

-- write specifier write field or method -�

-- default specifier default
constant

nodefault

-�

49

5.4. PROPERTIES

-- field or method field identifier
method identifier

-�

A read specifier is either the name of a field that contains the property, or the
name of a method function that has the same return type as the property type.
In the case of a simple type, this function must not accept an argument. A read
specifier is optional, making the property write-only. A write specifier is op-
tional: If there is no write specifier, the property is read-only. A write specifier
is either the name of a field, or the name of a method procedure that accepts as a
sole argument a variable of the same type as the property. The section (private,
published) in which the specified function or procedure resides is irrelevant. Usu-
ally, however, this will be a protected or private method. Example: Given the
following declaration:

Type
MyClass = Class

Private
Field1 : Longint;
Field2 : Longint;
Field3 : Longint;
Procedure Sety (value : Longint);
Function Gety : Longint;
Function Getz : Longint;
Public
Property X : Longint Read Field1 write Field2;
Property Y : Longint Read GetY Write Sety;
Property Z : Longint Read GetZ;
end;

Var MyClass : TMyClass;

The following are valid statements:

WriteLn (’X : ’,MyClass.X);
WriteLn (’Y : ’,MyClass.Y);
WriteLn (’Z : ’,MyClass.Z);
MyClass.X := 0;
MyClass.Y := 0;

But the following would generate an error:

MyClass.Z := 0;

because Z is a read-only property. What happens in the above statements is that
when a value needs to be read, the compiler inserts a call to the various getNNN
methods of the object, and the result of this call is used. When an assignment is
made, the compiler passes the value that must be assigned as a paramater to the
various setNNN methods. Because of this mechanism, properties cannot be passed
as var arguments to a function or procedure, since there is no known address of the
property (at least, not always). If the property definition contains an index, then
the read and write specifiers must be a function and a procedure. Moreover, these
functions require an additional parameter : An integer parameter. This allows to
read or write several properties with the same function. For this, the properties
must have the same type. The following is an example of a property with an index:

50

5.4. PROPERTIES

uses objpas;
Type TPoint = Class(TObject)

Private
FX,FY : Longint;
Function GetCoord (Index : Integer): Longint;
Procedure SetCoord (Index : Integer; Value : longint);
Public
Property X : Longint index 1 read GetCoord Write SetCoord;
Property Y : Longint index 2 read GetCoord Write SetCoord;
Property Coords[Index : Integer] Read GetCoord;
end;

Procedure TPoint.SetCoord (Index : Integer; Value : Longint);
begin

Case Index of
1 : FX := Value;
2 : FY := Value;

end;
end;
Function TPoint.GetCoord (INdex : Integer) : Longint;
begin

Case Index of
1 : Result := FX;
2 : Result := FY;

end;
end;
Var P : TPoint;
begin

P := TPoint.create;
P.X := 2;
P.Y := 3;
With P do

WriteLn (’X=’,X,’ Y=’,Y);
end.

When the compiler encounters an assignment to X, then SetCoord is called with
as first parameter the index (1 in the above case) and with as a second parameter
the value to be set. Conversely, when reading the value of X, the compiler calls
GetCoord and passes it index 1. Indexes can only be integer values. You can also
have array properties. These are properties that accept an index, just as an array
does. Only now the index doesn’t have to be an ordinal type, but can be any type.

A read specifier for an array property is the name method function that has the
same return type as the property type. The function must accept as a sole arguent
a variable of the same type as the index type. For an array property, you cannot
specify fields as read specifiers.

A write specifier for an array property is the name of a method procedure that
accepts two arguments: The first argument has the same type as the index, and
the second argument is a parameter of the same type as the property type. As an
example, see the following declaration:

Type TIntList = Class
Private
Function GetInt (I : Longint) : longint;
Function GetAsString (A : String) : String;

51

5.4. PROPERTIES

Procedure SetInt (I : Longint; Value : Longint;);
Procedure SetAsString (A : String; Value : String);
Public
Property Items [i : Longint] : Longint Read GetInt

Write SetInt;
Property StrItems [S : String] : String Read GetAsString

Write SetAsstring;
end;

Var AIntList : TIntList;

Then the following statements would be valid:

AIntList.Items[26] := 1;
AIntList.StrItems[’twenty-five’] := ’zero’;
WriteLn (’Item 26 : ’,AIntList.Items[26]);
WriteLn (’Item 25 : ’,AIntList.StrItems[’twenty-five’]);

While the following statements would generate errors:

AIntList.Items[’twenty-five’] := 1;
AIntList.StrItems[26] := ’zero’;

Because the index types are wrong. Array properties can be declared as default
properties. This means that it is not necessary to specify the property name when
assigning or reading it. If, in the previous example, the definition of the items
property would have been

Property Items[i : Longint]: Longint Read GetInt
Write SetInt; Default;

Then the assignment

AIntList.Items[26] := 1;

Would be equivalent to the following abbreviation.

AIntList[26] := 1;

You can have only one default property per class, and descendent classes cannot
redeclare the default property.

52

Chapter 6

Expressions

Expressions occur in assignments or in tests. Expressions produce a value, of a
certain type. Expressions are built with two components: Operators and their
operands. Usually an operator is binary, i.e. it requires 2 operands. Binary op-
erators occur always between the operands (as in X/Y). Sometimes an operator is
unary, i.e. it requires only one argument. A unary operator occurs always before
the operand, as in -X.

When using multiple operands in an expression, the precedence rules of table (6.1)
are used. When determining the precedence, the compiler uses the following rules:

1. Operators with equal precedence are executed from left to right.

2. In operations with unequal precedences the operands belong to the operater
with the highest precedence. For example, in 5*3+7, the multiplication is
higher in precedence than the addition, so it is executed first. The result
would be 22.

3. If parentheses are used in an epression, their contents is evaluated first. Thus,
5*(3+7) would result in 50.

6.1 Expression syntax

An expression applies relational operators to simple expressions. Simple expressions
are a series of terms (what a term is, is explained below), joined by adding operators.

Expressions

Table 6.1: Precedence of operators

Operator Precedence Category
Not, @ Highest (first) Unary operators
* / div mod and shl shr as Second Multiplying operators
+ - or xor Third Adding operators
< <> < > <= >= in is Lowest (Last) relational operators

53

6.1. EXPRESSION SYNTAX

-- expression simple expression
*

<=

>

>=

=

<>

in

is

simple expression

-�

-- simple expression
6

term
+
-

or
xor

-�

The following are valid expressions:

GraphResult<>grError
(DoItToday=Yes) and (DoItTomorrow=No);
Day in Weekend

And here are some simple expressions:

A + B
-Pi
ToBe or NotToBe

Terms consist of factors, connected by multiplication operators.

Terms

-- term
6

factor
*

/

div
mod
and
shl
shr
as

-�

Here are some valid terms:

2 * Pi
A Div B
(DoItToday=Yes) and (DoItTomorrow=No);

Factors are all other constructions:

Factors

54

6.2. FUNCTION CALLS

-- factor (expression)
variable reference

function call
unsigned constant

not factor
sign factor

set constructor
value typecast
address factor

-�

-- unsigned constant unsigned number
character string

constant identifier
Nil

-�

6.2 Function calls

Function calls are part of expressions (although, using extended syntax, they can
be statements too). They are constructed as follows:

Function calls

-- function call function identifier
method designator

qualified method designator
variable reference

actual parameter list

-

- -�

-- actual parameter list (

6
expression

,

) -�

The variable reference must be a procedural type variable reference. A method
designator can only be used inside the method of an object. A qualified method
designator can be used outside object methods too. The function that will get called
is the function with a declared parameter list that matches the actual parameter
list. This means that

1. The number of actual parameters must equal the number of declared param-
eters.

2. The types of the parameters must be compatible. For variable reference pa-
rameters, the parameter types must be exactly the same.

If no matching function is found, then the compiler will generate an error. Depend-
ing on the fact of the function is overloaded (i.e. multiple functions with the same
name, but different parameter lists) the error will be different. There are cases when
the compiler will not execute the function call in an expression. This is the case
when you are assigning a value to a procedural type variable, as in the following
example:

55

6.3. SET CONSTRUCTORS

Type
FuncType = Function: Integer;

Var A : Integer;
Function AddOne : Integer;
begin

A := A+1;
AddOne := A;

end;
Var F : FuncType;

N : Integer;
begin

A := 0;
F := AddOne; { Assign AddOne to F, Don’t call AddOne}
N := AddOne; { N := 1 !!}

end.

In the above listing, the assigment to F will not cause the function AddOne to
be called. The assignment to N, however, will call AddOne. A problem with this
syntax is the following construction:

If F = AddOne Then
DoSomethingHorrible;

Should the compiler compare the addresses of F and AddOne, or should it call both
functions, and compare the result ? Free Pascal solves this by deciding that a
procedural variable is equivalent to a pointer. Thus the compiler will give a type
mismatch error, since AddOne is considered a call to a function with integer result,
and F is a pointer, Hence a type mismatch occurs. How then, should one compare
whether F points to the function AddOne ? To do this, one should use the address
operator @:

If F = @AddOne Then
WriteLn (’Functions are equal’);

The left hand side of the boolean expression is an address. The right hand side
also, and so the compiler compares 2 addresses. How to compare the values that
both functions return ? By adding an empty parameter list:

If F()=Addone then
WriteLn (’Functions return same values ’);

Remark that this behaviour is not compatible with Delphi syntax.

6.3 Set constructors

When you want to enter a set-type constant in an expression, you must give a set
constructor. In essence this is the same thing as when you define a set type, only you
have no identifier to identify the set with. A set constructor is a comma separated
list of expressions, enclosed in square brackets.

Set constructors

56

6.4. VALUE TYPECASTS

-- set constructor [

6
set group

,

] -�

-- set group expression
.. expression

-�

All set groups and set elements must be of the same ordinal type. The empty set
is denoted by [], and it can be assigned to any type of set. A set group with a
range [A..Z] makes all values in the range a set element. If the first range specifier
has a bigger ordinal value than the second the set is empty, e.g., [Z..A] denotes an
empty set. The following are valid set constructors:

[today,tomorrow]
[Monday..Friday,Sunday]
[2, 3*2, 6*2, 9*2]
[’A’..’Z’,’a’..’z’,’0’..’9’]

6.4 Value typecasts

Sometimes it is necessary to change the type of an expression, or a part of the
expression, to be able to be assignment compatible. This is done through a value
typecast. The syntax diagram for a value typecast is as follows:

Typecasts

-- value typecast type identifier (expression) -�

Value typecasts cannot be used on the left side of assignments, as variable typecasts.
Here are some valid typecasts:

Byte(’A’)
Char(48)
boolean(1)
longint(@Buffer)

The type size of the expression and the size of the type cast must be the same.
That is, the following doesn’t work:

Integer(’A’)
Char(4875)
boolean(100)
Word(@Buffer)

This is different from Delphi or Turbo Pascal behaviour.

57

6.5. THE @ OPERATOR

6.5 The @ operator

The address operator @ returns the address of a variable, procedure or function. It
is used as follows:

Address factor

-- addressfactor @ variable reference
procedure identifier
function identifier

qualified method identifier

-�

The @ operator returns a typed pointer if the $T switch is on. If the $T switch
is off then the address operator returns an untyped pointer, which is assigment
compatible with all pointer types. The type of the pointer is ^T, where T is the type
of the variable reference. For example, the following will compile

Program tcast;
{$T-} { @ returns untyped pointer }

Type art = Array[1..100] of byte;
Var Buffer : longint;

PLargeBuffer : ^art;

begin
PLargeBuffer := @Buffer;

end.

Changing the {$T-} to {$T+} will prevent the compiler from compiling this. It will
give a type mismatch error. By default, the address operator returns an untyped
pointer. Applying the address operator to a function, method, or procedure identi-
fier will give a pointer to the entry point of that function. The result is an untyped
pointer. By default, you must use the address operator if you want to assign a value
to a procedural type variable. This behaviour can be avoided by using the -So or
-S2 switches, which result in a more compatible Delphi or Turbo Pascal syntax.

6.6 Operators

Operators can be classified according to the type of expression they operate on. We
will discuss them type by type.

Arithmetic operators

Arithmetic operators occur in arithmetic operations, i.e. in expressions that con-
tain integers or reals. There are 2 kinds of operators : Binary and unary arithmetic
operators. Binary operators are listed in table (6.2), unary operators are listed in
table (6.3). With the exception of Div and Mod, which accept only integer expres-
sions as operands, all operators accept real and integer expressions as operands. For
binary operators, the result type will be integer if both operands are integer type
expressions. If one of the operands is a real type expression, then the result is real.

58

6.6. OPERATORS

Table 6.2: Binary arithmetic operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
Div Integer division
Mod Remainder

Table 6.3: Unary arithmetic operators

Operator Operation
+ Sign identity
- Sign inversion

As an exception : division (/) results always in real values. For unary operators,
the result type is always equal to the expression type. The division (/) and Mod
operator will cause run-time errors if the second argument is zero. The sign of the
result of a Mod operator is the same as the sign of the left side operand of the Mod
operator. In fact, the Mod operator is equivalent to the following operation :

I mod J = I - (I div J) * J

but it executes faster than the right hand side expression.

Logical operators

Logical operators act on the individual bits of ordinal expressions. Logical operators
require operands that are of an integer type, and produce an integer type result.
The possible logical operators are listed in table (6.4). The following are valid
logical expressions:

A shr 1 { same as A div 2, but faster}
Not 1 { equals -2 }
Not 0 { equals -1 }
Not -1 { equals 0 }
B shl 2 { same as B * 2 for integers }

Table 6.4: Logical operators

Operator Operation
not Bitwise negation (unary)
and Bitwise and
or Bitwise or
xor Bitwise xor
shl Bitwise shift to the left
shr Bitwise shift to the right

59

6.6. OPERATORS

Table 6.5: Boolean operators

Operator Operation
not logical negation (unary)
and logical and
or logical or
xor logical xor

1 or 2 { equals 3 }
3 xor 1 { equals 2 }

Boolean operators

Boolean operators can be considered logical operations on a type with 1 bit size.
Therefore the shl and shr operations have little sense. Boolean operators can only
have boolean type operands, and the resulting type is always boolean. The possible
operators are listed in table (6.5) Remark that boolean expressions are ALWAYS
evaluated with short-circuit evaluation. This means that from the moment the
result of the complete expression is known, evaluation is stopped and the result is
returned. For instance, in the following expression:

B := True or MaybeTrue;

The compiler will never look at the value of MaybeTrue, since it is obvious that
the expression will always be true. As a result of this strategy, if MaybeTrue is
a function, it will not get called ! (This can have surprising effects when used in
conjunction with properties)

String operators

There is only one string operator : +. It’s action is to concatenate the contents of
the two strings (or characters) it stands between. You cannot use + to concatenate
null-terminated (PChar) strings. The following are valid string operations:

’This is ’ + ’VERY ’ + ’easy !’
Dirname+’\’

The following is not:

Var Dirname = Pchar;
...

Dirname := Dirname+’\’;

Because Dirname is a null-terminated string.

Set operators

The following operations on sets can be performed with operators: Union, difference
and intersection. The operators needed for this are listed in table (6.6). The set
type of the operands must be the same, or an error will be generated by the compiler.

60

6.6. OPERATORS

Table 6.6: Set operators

Operator Action
+ Union
- Difference
* Intersection

Table 6.7: Relational operators

Operator Action
= Equal
<> Not equal
< Stricty less than
> Strictly greater than
<= Less than or equal
>= Greater than or equal
in Element of

Relational operators

The relational operators are listed in table (6.7) Left and right operands must be
of the same type. You can only mix integer and real types in relational expressions.
Comparing strings is done on the basis of their ASCII code representation. When
comparing pointers, the addresses to which they point are compared. This also is
true for PChar type pointers. If you want to compare the strings the Pchar points
to, you must use the StrComp function from the strings unit. The in returns True
if the left operand (which must have the same ordinal type as the set type) is an
element of the set which is the right operand, otherwise it returns False

61

Chapter 7

Statements

The heart of each algorithm are the actions it takes. These actions are contained
in the statements of your program or unit. You can label your statements, and
jump to them (within certain limits) with Goto statements. This can be seen in the
following syntax diagram:

Statements

-- statement
label : simple statement

structured statement
asm statement

-�

A label can be an identifier or an integer digit.

7.1 Simple statements

A simple statement cannot be decomposed in separate statements. There are basi-
cally 4 kinds of simple statements:

Simple statements

-- siple statement assignment statement
procedure statement

goto statement
raise statement

-�

Of these statements, the raise statement will be explained in the chapter on Excep-
tions (chapter 10, page 90)

Assignments

Assignments give a value to a variable, replacing any previous value the variable
might have had:

62

7.1. SIMPLE STATEMENTS

Table 7.1: Allowed C constructs in Free Pascal

Assignment Result
a += b Adds b to a, and stores the result in a.
a -= b Substracts b from a, and stores the result in a.
a *= b Multiplies a with b, and stores the result in a.
a /= b Divides a through b, and stores the result in a.

Assignments

-- assignment statement variable reference
function identifier

:=
+=
-=
*=
/=

expression -�

In addition to the standard Pascal assignment operator (:=), which simply re-
places the value of the varable with the value resulting from the expression on the
right of the := operator, Free Pascal supports some c-style constructions. All
available constructs are listed in table (7.1). For these constructs to work, you
should specify the -Sc command-line switch.

Remark: These constructions are just for typing convenience, they don’t generate
different code. Here are some examples of valid assignment statements:

X := X+Y;
X+=Y; { Same as X := X+Y, needs -Sc command line switch}
X/=2; { Same as X := X/2, needs -Sc command line switch}
Done := False;
Weather := Good;
MyPi := 4* Tan(1);

Procedure statements

Procedure statements are calls to subroutines. There are different possibilities for
procedure calls: A normal procedure call, an object method call (fully qualified
or not), or even a call to a procedural type variable. All types are present in the
following diagram.

Procedure statements

-- procedure statement procedure identifier
method identifier

qualified method identifier
variable reference

-

-

actual parameter list

-�

63

7.2. STRUCTURED STATEMENTS

The Free Pascal compiler will look for a procedure with the same name as given
in the procedure statement, and with a declared parameter list that matches the
actual parameter list. The following are valid procedure statements:

Usage;
WriteLn(’Pascal is an easy language !’);
Doit();

Goto statements

Free Pascal supports the goto jump statement. Its prototype syntax is

Goto statement

-- goto statement goto label -�

When using goto statements, you must keep the following in mind:

1. The jump label must be defined in the same block as the Goto statement.

2. Jumping from outside a loop to the inside of a loop or vice versa can have
strange effects.

3. To be able to use the Goto statement, you need to specify the -Sg compiler
switch.

Goto statements are considered bad practice and should be avoided as much as
possible. It is always possible to replace a goto statement by a construction that
doesn’t need a goto, although this construction may not be as clear as a goto
statement. For instance, the following is an allowed goto statement:

label
jumpto;

...
Jumpto :

Statement;
...
Goto jumpto;
...

7.2 Structured statements

Structured statements can be broken into smaller simple statements, which should
be executed repeatedly, conditionally or sequentially:

Structured statements

-- structured statement compound statement
repetitive statement

conditional statement
exception statement

with statement

-�

64

7.2. STRUCTURED STATEMENTS

Conditional statements come in 2 flavours :

Conditional statements

-- conditional statement if statement
case statement

-�

Repetitive statements come in 3 flavours:

Repetitive statements

-- repetitive statement for statament
repeat statement
while statement

-�

The following sections deal with each of these statements.

Compound statements

Compound statements are a group of statements, separated by semicolons, that are
surrounded by the keywords Begin and End. The Last statement doesn’t need to
be followed by a semicolon, although it is allowed. A compound statement is a way
of grouping statements together, executing the statements sequentially. They are
treated as one statement in cases where Pascal syntax expects 1 statement, such as
in if ... then statements.

Compound statements

-- compound statement begin
6

statement
;

end -�

The Case statement

Free Pascal supports the case statement. Its syntax diagram is

Case statement

-- case statement case expression of
6
case
; else part ;

-

- end -�

-- case
6

constant
.. constant
,

: statement -�

65

7.2. STRUCTURED STATEMENTS

-- else part else statement -�

The constants appearing in the various case parts must be known at compile-
time, and can be of the following types : enumeration types, Ordinal types (ex-
cept boolean), and chars. The expression must be also of this type, or a compiler
error will occur. All case constants must have the same type. The compiler will
evaluate the expression. If one of the case constants values matches the value of
the expression, the statement that follows this constant is executed. After that,
the program continues after the final end. If none of the case constants match the
expression value, the statement after the else keyword is executed. This can be
an empty statement. If no else part is present, and no case constant matches the
expression value, program flow continues after the final end. The case statements
can be compound statements (i.e. a begin..End block).

Remark: Contrary to Turbo Pascal, duplicate case labels are not allowed in Free
Pascal, so the following code will generate an error when compiling:

Var i : integer;
...
Case i of
3 : DoSomething;
1..5 : DoSomethingElse;

end;

The compiler will generate a Duplicate case label error when compiling this,
because the 3 also appears (implicitly) in the range 1..5. This is similar to Delhpi
syntax. The following are valid case statements:

Case C of
’a’ : WriteLn (’A pressed’);
’b’ : WriteLn (’B pressed’);
’c’ : WriteLn (’C pressed’);

else
WriteLn (’unknown letter pressed : ’,C);

end;

Or

Case C of
’a’,’e’,’i’,’o’,’u’ : WriteLn (’vowel pressed’);
’y’ : WriteLn (’This one depends on the language’);

else
WriteLn (’Consonant pressed’);

end;

Case Number of
1..10 : WriteLn (’Small number’);
11..100 : WriteLn (’Normal, medium number’);

else
WriteLn (’HUGE number’);

end;

66

7.2. STRUCTURED STATEMENTS

The If..then..else statement

The If .. then .. else.. prototype syntax is

If then statements

-- if statement if expression then statement
else statement

-

- -�

The expression between the if and then keywords must have a boolean return type.
If the expression evaluates to True then the statement following then is executed.

If the expression evaluates to False, then the statement following else is executed,
if it is present.

Be aware of the fact that the boolean expression will be short-cut evaluated. (Mean-
ing that the evaluation will be stopped at the point where the outcome is known
with certainty) Also, before the else keyword, no semicolon (;) is allowed, but
all statements can be compound statements. In nested If.. then .. else con-
structs, some ambiguity may araise as to which else statement pairs with which
if statement. The rule is that the else keyword matches the first if keyword not
already matched by an else keyword. For example:

If exp1 Then
If exp2 then

Stat1
else

stat2;

Despite it’s appearance, the statement is syntactically equivalent to

If exp1 Then
begin
If exp2 then

Stat1
else

stat2
end;

and not to

{ NOT EQUIVALENT }
If exp1 Then

begin
If exp2 then

Stat1
end

else
stat2

If it is this latter construct you want, you must explicitly put the begin and end
keywords. When in doubt, add them, they don’t hurt.

The following is a valid statement:

67

7.2. STRUCTURED STATEMENTS

If Today in [Monday..Friday] then
WriteLn (’Must work harder’)

else
WriteLn (’Take a day off.’);

The For..to/downto..do statement

Free Pascal supports the For loop construction. A for loop is used in case one
wants to calculated something a fixed number of times. The prototype syntax is as
follows:

For statement

-- for statement for control variable := initial value to
downto

-

- final value do statement -�

-- control variable variable identifier -�

-- initial value expression -�

-- final value expression -�

Statement can be a compound statement. When this statement is encountered, the
control variable is initialized with the initial value, and is compared with the final
value. What happens next depends on whether to or downto is used:

1. In the case To is used, if the initial value larger than the final value then
Statement will never be executed.

2. In the case DownTo is used, if the initial value larger than the final value then
Statement will never be executed.

After this check, the statement after Do is executed. After the execution of the state-
ment, the control variable is increased or decreased with 1, depending on whether
To or Downto is used. The control variable must be an ordinal type, no other types
can be used as counters in a loop.

Remark: Contrary to ANSI pascal specifications, Free Pascal first initializes the
counter variable, and only then calculates the upper bound.

The following are valid loops:

For Day := Monday to Friday do Work;
For I := 100 downto 1 do

WriteLn (’Counting down : ’,i);
For I := 1 to 7*dwarfs do KissDwarf(i);

If the statement is a compound statement, then the Break (103) and Continue (105)
reserved words can be used to jump to the end or just after the end of the For
statement.

68

7.2. STRUCTURED STATEMENTS

The Repeat..until statement

The repeat statement is used to execute a statement until a certain condition is
reached. The statement will be executed at least once. The prototype syntax of
the Repeat..until statement is

Repeat statement

-- repeat statement repeat
6

statement
;

until expression -�

This will execute the statements between repeat and until up to the moment
when Expression evaluates to True. Since the expression is evaluated after the
execution of the statements, they are executed at least once. Be aware of the fact
that the boolean expression Expression will be short-cut evaluated. (Meaning
that the evaluation will be stopped at the point where the outcome is known with
certainty) The following are valid repeat statements

repeat
WriteLn (’I =’,i);
I := I+2;

until I>100;
repeat
X := X/2

until x<10e-3

The Break (103) and Continue (105) reserved words can be used to jump to the end
or just after the end of the repeat .. until statement.

The While..do statement

A while statement is used to execute a statement as long as a certain condition
holds. This may imply that the statement is never executed. The prototype syntax
of the While..do statement is

While statements

-- while statement while expression do statement -�

This will execute Statement as long as Expression evaluates to True. Since
Expression is evaluated before the execution of Statement, it is possible that
Statement isn’t executed at all. Statement can be a compound statement. Be
aware of the fact that the boolean expression Expression will be short-cut evalu-
ated. (Meaning that the evaluation will be stopped at the point where the outcome
is known with certainty) The following are valid while statements:

I := I+2;
while i<=100 do

begin

69

7.2. STRUCTURED STATEMENTS

WriteLn (’I =’,i);
I := I+2;
end;

X := X/2;
while x>=10e-3 do

X := X/2;

They correspond to the example loops for the repeat statements.

If the statement is a compound statement, then the Break (103) and Continue (105)
reserved words can be used to jump to the end or just after the end of the While
statement.

The With statement

The with statement serves to access the elements of a record1 or object or class,
without having to specify the name of the each time. The syntax for a with state-
ment is

With statement

-- with statement
6

variable reference
,

do statement -�

The variable reference must be a variable of a record, object or class type. In the
with statement, any variable reference, or method reference is checked to see if it is
a field or method of the record or object or class. If so, then that field is accessed,
or that method is called. Given the declaration:

Type Passenger = Record
Name : String[30];
Flight : String[10];
end;

Var TheCustomer : Passenger;

The following statements are completely equivalent:

TheCustomer.Name := ’Michael’;
TheCustomer.Flight := ’PS901’;

and

With TheCustomer do
begin
Name := ’Michael’;
Flight := ’PS901’;
end;

The statement
1 The with statement does not work correctly when used with objects or classes until version

0.99.6

70

7.3. ASSEMBLER STATEMENTS

With A,B,C,D do Statement;

is equivalent to

With A do
With B do
With C do
With D do Statement;

This also is a clear example of the fact that the variables are tried last to first, i.e.,
when the compiler encounters a variable reference, it will first check if it is a field
or method of the last variable. If not, then it will check the last-but-one, and so on.
The following example shows this;

Program testw;
Type AR = record

X,Y : Longint;
end;

Var S,T : Ar;
begin

S.X := 1;S.Y := 1;
T.X := 2;T.Y := 2;
With S,T do

WriteLn (X,’ ’,Y);
end.

The output of this program is

2 2

Showing thus that the X,Y in the WriteLn statement match the T record variable.

Exception Statements

As of version 0.99.7, Free Pascal supports exceptions. Exceptions provide a conve-
nient way to program error and error-recovery mechanisms, and are closely related
to classes. Exception support is explained in chapter 10, page 90

7.3 Assembler statements

An assembler statement allows you to insert assembler code right in your pascal
code.

Assembler statements

-- asm statement asm assembler code end
registerlist

-�

-- registerlist [
6

stringconstant
,

] -�

71

7.3. ASSEMBLER STATEMENTS

More information about assembler blocks can be found in the Programmers’ guide.
The register list is used to indicate the registers that are modified by an assembler
statement in your code. The compiler stores certain results in the registers. If you
modify the registers in an assembler statement, the compiler should, sometimes,
be told about it. The registers are denoted with their Intel names for the I386
processor, i.e., ’EAX’, ’ESI’ etc... As an example, consider the following assembler
code:

asm
Movl $1,%ebx
Movl $0,%eax
addl %eax,%ebx

end; [’EAX’,’EBX’];

This will tell the compiler that it should save and restore the contents of the EAX
and EBX registers when it encounters this asm statement.

72

file:../prog/prog.html

Chapter 8

Using functions and
procedures

Free Pascal supports the use of functions and procedures, but with some extras:
Function overloading is supported, as well as Const parameters and open arrays.

Remark: In many of the subsequent paragraphs the words procedure and function
will be used interchangeably. The statements made are valid for both, except when
indicated otherwise.

8.1 Procedure declaration

A procedure declaration defines an identifier and associates it with a block of code.
The procedure can then be called with a procedure statement.

Procedure declaration

-- procedure declaration procedure header ; subroutine block ; -�

-- procedure header procedure identifier
qualified method identifier

-

- formal parameter list
modifiers

-�

-- subroutine block block
external directive

asm block
forward

-�

See section 8.3, page 74 for the list of parameters. A procedure declaration that
is followed by a block implements the action of the procedure in that block. The
following is a valid procedure :

Procedure DoSomething (Para : String);
begin

Writeln (’Got parameter : ’,Para);

73

8.2. FUNCTION DECLARATION

Writeln (’Parameter in upper case : ’,Upper(Para));
end;

Note that it is possible that a procedure calls itself.

8.2 Function declaration

A function declaration defines an identifier and associates it with a block of code.
The block of code will return a result. The function can then be called inside an
expression, or with a procedure statement, if extended syntax is on.

Function declaration

-- function declaration function header ; subroutine block ; -�

-- function header function identifier
qualified method identifier

-

- formal parameter list : result type
modifiers

-�

-- subroutine block block
external directive

asm block
forward

-�

The result type of a function can be any previously declared type. contrary to
Turbo pascal, where only simple types could be returned.

8.3 Parameter lists

When you need to pass arguments to a function or procedure, these parameters
must be declared in the formal parameter list of that function or procedure. The
parameter list is a declaration of identifiers that can be referred to only in that
procedure or function’s block.

Parameters

-- formal parameter list (
6

parameter declaration
;

) -�

-- parameter declaration value parameter
variable parameter
constant parameter

-�

Constant parameters and variable parameters can also be untyped parameters if
they have no type identifier.

74

8.3. PARAMETER LISTS

Value parameters

Value parameters are declared as follows:

Value parameters

-- value parameter identifier list :
array of

parameter type -�

When you declare parameters as value parameters, the procedure gets a copy of the
parameters that the calling block passes. Any modifications to these parameters
are purely local to the procedure’s block, and do not propagate back to the calling
block. A block that wishes to call a procedure with value parameters must pass
assignment compatible parameters to the procedure. This means that the types
should not match exactly, but can be converted (conversion code is inserted by the
compiler itself)

Take care that using value parameters makes heavy use of the stack, especially if
you pass large parameters. The total size of all parameters in the formal parameter
list should be below 32K for portability’s sake (the Intel version limits this to 64K).

You can pass open arrays as value parameters. See section 8.3, page 76 for more
information on using open arrays.

Variable parameters

Variable parameters are declared as follows:

Variable parameters

-- variable parameter var identifier list
:

array of
parameter type

-

- -�

When you declare parameters as variable parameters, the procedure or function
accesses immediatly the variable that the calling block passed in its parameter list.
The procedure gets a pointer to the variable that was passed, and uses this pointer
to access the variable’s value. From this, it follows that any changes that you make
to the parameter, will proagate back to the calling block. This mechanism can be
used to pass values back in procedures. Because of this, the calling block must pass
a parameter of exactly the same type as the declared parameter’s type. If it does
not, the compiler will generate an error.

Variable parameters can be untyped. In that case the variable has no type, and
hence is incompatible with all other types. However, you can use the address
operator on it, or you can pass it to a function that has also an untyped parameter.
If you want to use an untyped parameter in an assigment, or you want to assign to
it, you must use a typecast.

File type variables must always be passed as variable parameters.

You can pass open arrays as variable parameters. See section 8.3, page 76 for more
information on using open arrays.

75

8.3. PARAMETER LISTS

Constant parameters

In addition to variable parameters and value parameters Free Pascal also supports
Constant parameters. You can specify a constant parameter as follows:

Constant parameters

-- constant parameter const identifier list -
-

:
array of

parameter type

-�

A constant argument is passed by reference if it’s size is larger than a longint. It
is passed by value if the size equals 4 or less. This means that the function or
procedure receives a pointer to the passed argument, but you are not allowed to
assign to it, this will result in a compiler error. Likewise, you cannot pass a const
parameter on to another function that requires a variable parameter. The main use
for this is reducing the stack size, hence improving performance, and still retaining
the semantics of passing by value...

Constant parameters can also be untyped. See section 8.3, page 75 for more infor-
mation about untyped parameters.

You can pass open arrays as constant parameters. See section 8.3, page 76 for more
information on using open arrays.

Open array parameters

Free Pascal supports the passing of open arrays, i.e. you can declare a procedure
with an array of unspecified length as a parameter, as in Delphi. Open array
parameters can be accessed in the procedure or function as an array that is declared
with starting index 0, and last element index High(paremeter). For example, the
parameter

Row : Array of Integer;

would be equivalent to

Row : Array[0..N-1] of Integer;

Where N would be the actual size of the array that is passed to the function. N-1 can
be calculated as High(Row). Open parameters can be passed by value, by reference
or as a constant parameter. In the latter cases the procedure receives a pointer to
the actual array. In the former case, it receives a copy of the array. In a function or
procedure, you can pass open arrays only to functions which are also declared with
open arrays as parameters, not to functions or procedures which accept arrays of
fixed length. The following is an example of a function using an open array:

Function Average (Row : Array of integer) : Real;
Var I : longint;

Temp : Real;
begin

Temp := Row[0];

76

8.4. FUNCTION OVERLOADING

For I := 1 to High(Row) do
Temp := Temp + Row[i];

Average := Temp / (High(Row)+1);
end;

8.4 Function overloading

Function overloading simply means that you can define the same function more
than once, but each time with a different formal parameter list. The parameter
lists must differ at least in one of it’s elements type. When the compiler encounters
a function call, it will look at the function parameters to decide which one of the
defined functions it should call. This can be useful if you want to define the same
function for different types. For example, in the RTL, the Dec procedure is is defined
as:

...
Dec(Var I : Longint;decrement : Longint);
Dec(Var I : Longint);
Dec(Var I : Byte;decrement : Longint);
Dec(Var I : Byte);
...

When the compiler encounters a call to the dec function, it will first search which
function it should use. It therefore checks the parameters in your function call,
and looks if there is a function definition which matches the specified parameter
list. If the compiler finds such a function, a call is inserted to that function. If no
such function is found, a compiler error is generated. You cannot have overloaded
functions that have a cdecl or export modifier (Technically, because these two
modifiers prevent the mangling of the function name by the compiler).

8.5 Forward defined functions

You can define a function without having it followed by it’s implementation, by
having it followed by the forward procedure. The effective implementation of that
function must follow later in the module. The function can be used after a forward
declaration as if it had been implemented already. The following is an example of
a forward declaration.

Program testforward;
Procedure First (n : longint); forward;
Procedure Second;
begin

WriteLn (’In second. Calling first...’);
First (1);

end;
Procedure First (n : longint);
begin

WriteLn (’First received : ’,n);
end;
begin

Second;
end.

77

8.6. EXTERNAL FUNCTIONS

You cannot define a function twice as forward (nor is there any reason why you
would want to do that). Likewise, in units, you cannot have a forward declared
function of a function that has been declared in the interface part. The interface
declaration counts as a forward declaration. The following unit will give an error
when compiled:

Unit testforward;
interface
Procedure First (n : longint);
Procedure Second;
implementation
Procedure First (n : longint); forward;
Procedure Second;
begin

WriteLn (’In second. Calling first...’);
First (1);

end;
Procedure First (n : longint);
begin

WriteLn (’First received : ’,n);
end;
end.

8.6 External functions

The external modifier can be used to declare a function that resides in an external
object file. It allows you to use the function in your code, and at linking time, you
must link the object file containing the implementation of the function or procedure.

External directive

-- external directive external
string constant

name string constant
index integer constant

-

- -�

It replaces, in effect, the function or procedure code block. As such, it can be
present only in an implementation block of a unit, or in a program. As an example:

program CmodDemo;
{$Linklib c}
Const P : PChar = ’This is fun !’;
Function strlen (P : PChar) : Longint; cdecl; external;
begin

WriteLn (’Length of (’,p,’) : ’,strlen(p))
end.

Remark The parameters in our declaration of the external function should match
exactly the ones in the declaration in the object file. If the external modifier is
followed by a string constant:

78

8.7. ASSEMBLER FUNCTIONS

external ’lname’;

Then this tells the compiler that the function resides in library ’lname’. The com-
piler will then automatically link this library to your program.

You can also specify the name that the function has in the library:

external ’lname’ name Fname;

This tells the compiler that the function resides in library ’lname’, but with name
’Fname’. The compiler will then automatically link this library to your program,
and use the correct name for the function. Under Windows and os/2, you can
also use the following form:

external ’lname’ Index Ind;

This tells the compiler that the function resides in library ’lname’, but with index
Ind. The compiler will then automatically link this library to your program, and
use the correct index for the function.

8.7 Assembler functions

Functions and procedures can be completely implemented in assembly language.
To indicate this, you use the assembler keyword:

Assembler functions

-- asm block assembler ; declaration part asm statement -�

Contrary to Delphi, the assembler keyword must be present to indicate an assembler
function. For more information about assembler functions, see the chapter on using
assembler in the Programmers’ guide.

8.8 Modifiers

A function or procedure declaration can contain modifiers. Here we list the various
possibilities:

Modifiers

-- modifiers
6
; public

alias : string constant
interrupt

call modifiers

-�

-- call modifiers register
pascal
cdecl

stdcall
popstack

-�

79

file:../prog/prog.html

8.8. MODIFIERS

Free Pascal doesn’t support all Turbo Pascal modifiers, but does support a number
of additional modifiers. They are used mainly for assembler and reference to C
object files. More on the use of modifiers can be found in the Programmers’ guide.

Public

The Public keyword is used to declare a function globally in a unit. This is useful
if you don’t want a function to be accessible from the unit file, but you do want the
function to be accessible from the object file. as an example:

Unit someunit;
interface
Function First : Real;
Implementation
Function First : Real;
begin

First := 0;
end;
Function Second : Real; [Public];
begin

Second := 1;
end;
end.

If another program or unit uses this unit, it will not be able to use the function
Second, since it isn’t declared in the interface part. However, it will be possible to
access the function Second at the assembly-language level, by using it’s mangled
name (see the Programmers’ guide).

cdecl

The cdecl modifier can be used to declare a function that uses a C type calling
convention. This must be used if you wish to acces functions in an object file
generated by a C compiler. It allows you to use the function in your code, and at
linking time, you must link the object file containing the C implementation of the
function or procedure. As an example:

program CmodDemo;
{$LINKLIB c}
Const P : PChar = ’This is fun !’;
Function strlen (P : PChar) : Longint; cdecl; external;
begin

WriteLn (’Length of (’,p,’) : ’,strlen(p))
end.

When compiling this, and linking to the C-library, you will be able to call the strlen
function throughout your program. The external directive tells the compiler that
the function resides in an external object filebrary (see 8.6). Remark The parameters
in our declaration of the C function should match exactly the ones in the declaration
in C. Since C is case sensitive, this means also that the name of the function must be
exactly the same. the Free Pascal compiler will use the name exactly as it is typed
in the declaration.

80

file:../prog/prog.html
file:../prog/prog.html

8.8. MODIFIERS

popstack

Popstack does the same as cdecl, namely it tells the Free Pascal compiler that a
function uses the C calling convention. In difference with the cdecl modifier, it still
mangles the name of the function as it would for a normal pascal function. With
popstack you could access functions by their pascal names in a library.

Export

Sometimes you must provide a callback function for a C library, or you want your
routines to be callable from a C program. Since Free Pascal and C use different
calling schemes for functions and procedures1, the compiler must be told to generate
code that can be called from a C routine. This is where the Export modifier comes
in. Contrary to the other modifiers, it must be specified separately, as follows:

function DoSquare (X : Longint) : Longint; export;
begin
...
end;

The square brackets around the modifier are not allowed in this case. Remark: as of
version 0.9.8, Free Pascal supports the Delphi cdecl modifier. This modifier works
in the same way as the export modifier. More information about these modifiers
can be found in the Programmers’ guide, in the section on the calling mechanism
and the chapter on linking.

StdCall

As of version 0.9.8, Free Pascal supports the Delphi stdcall modifier. This modifier
does actually nothing, since the Free Pascal compiler by default pushes parameters
from right to left on the stack, which is what the modifier does under Delphi (which
pushes parameters on the stack from left to right). More information about this
modifier can be found in the Programmers’ guide, in the section on the calling
mechanism and the chapter on linking.

Alias

The Alias modifier allows you to specify a different name for a procedure or func-
tion. This is mostly useful for referring to this procedure from assembly language
constructs. As an example, consider the following program:

Program Aliases;
Procedure Printit; [Alias : ’DOIT’];
begin

WriteLn (’In Printit (alias : "DOIT")’);
end;
begin

asm
call DOIT
end;

end.
1More techically: In C the calling procedure must clear the stack. In Free Pascal, the subroutine

clears the stack.

81

file:../prog/prog.html
file:../prog/prog.html

8.9. UNSUPPORTED TURBO PASCAL MODIFIERS

Table 8.1: Unsupported modifiers

Modifier Why not supported ?
Near Free Pascal is a 32-bit compiler.
Far Free Pascal is a 32-bit compiler.

Remark: the specified alias is inserted straight into the assembly code, thus it is
case sensitive. The Alias modifier, combined with the Public modifier, make a
powerful tool for making externally accessible object files.

8.9 Unsupported Turbo Pascal modifiers

The modifiers that exist in Turbo pascal, but aren’t supported by Free Pascal, are
listed in table (8.1).

82

Chapter 9

Programs, units, blocks

A Pascal program consists of modules called units. A unit can be used to group
pieces of code together, or to give someone code without giving the sources. Both
programs and units consist of code blocks, which are mixtures of statements, pro-
cedures, and variable or type declarations.

9.1 Programs

A pascal program consists of the program header, followed possibly by a ’uses’
clause, and a block.

Programs

-- program program header ;
uses clause

block . -�

-- program header program identifier
(program parameters)

-

- -�

-- program parameters identifier list -�

-- uses clause uses
6

identifier
,

; -�

The program header is provided for backwards compatibility, and is ignored by
the compiler. The uses clause serves to identify all units that are needed by the
program. The system unit doesn’t have to be in this list, since it is always loaded
by the compiler. The order in which the units appear is significant, it determines
in which order they are initialized. Units are initialized in the same order as they
appear in the uses clause. Identifiers are searched in the opposite order, i.e. when
the compiler searches for an identifier, then it looks first in the last unit in the uses
clause, then the last but one, and so on. This is important in case two units declare
different types with the same identifier. When the compiler looks for unit files, it
adds the extension .ppu (.ppw for Win32 platforms) to the name of the unit. On
linux, unit names are converted to all lowercase when looking for a unit.

83

9.2. UNITS

If a unit name is longer than 8 characters, the compiler will first look for a unit
name with this length, and then it will truncate the name to 8 characters and look
for it again. For compatibility reasons, this is also true on platforms that suport
long file names.

9.2 Units

A unit contains a set of declarations, procedures and functions that can be used by
a program or another unit. The syntax for a unit is as follows:

Units

-- unit unit header interface part implementation part -
-

initialization part
finalization part

begin
6

statement
;

end . -�

-- unit header unit unit identifier ; -�

-- interface part interface
6 constant declaration part

type declaration part
procedure headers part

-�

-- procedure headers part procedure header
function header

;
call modifiers ;

-

- -�

-- implementation part implementation
uses clause

-

- declaration part -�

-- initialization part initialization
6

statement
;

-�

-- finalization part finalization
6

statement
;

-�

The interface part declares all identifiers that must be exported from the unit. This
can be constant, type or variable identifiers, and also procedure or function identifier
declarations. Declarations inside the implementation part are not accessible outside
the unit. The implementation must contain a function declaration for each function
or procedure that is declared in the interface part. If a function is declared in the
interface part, but no declaration of that function is present in the implementation
part, then the compiler will give an error.

When a program uses a unit (say unitA) and this units uses a second unit, say unitB,
then the program depends indirectly also on unitB. This means that the compiler
must have access to unitB when trying to compile the program. If the unit is not
present at compile time, an error occurs.

84

9.3. BLOCKS

Note that the identifiers from a unit on which a program depends indirectly, are
not accessible to the program. To have access to the identifiers of a unit, you must
put that unit in the uses clause of the program or unit where you want to yuse the
identifier.

Units can be mutually dependent, that is, they can reference each other in their
uses clauses. This is allowed, on the condition that at least one of the references
is in the implementation section of the unit. This also holds for indirect mutually
dependent units.

If it is possible to start from one interface uses clause of a unit, and to return there
via uses clauses of interfaces only, then there is circular unit dependence, and the
compiler will generate an error. As and example : the following is not allowed:

Unit UnitA;
interface
Uses UnitB;
implementation
end.

Unit UnitB
interface
Uses UnitA;
implementation
end.

But this is allowed :

Unit UnitA;
interface
Uses UnitB;
implementation
end.
Unit UnitB
implementation
Uses UnitA;
end.

Because UnitB uses UnitA only in it’s implentation section. In general, it is a bad
idea to have circular unit dependencies, even if it is only in implementation sections.

9.3 Blocks

Units and programs are made of blocks. A block is made of declarations of labels,
constants, types variables and functions or procedures. Blocks can be nested in
certain ways, i.e., a procedure or function declaration can have blocks in themselves.
A block looks like the following:

Blocks

-- block declaration part statement part -�

85

9.4. SCOPE

-- declaration part
6 label declaration part

constant declaration part
type declaration part

variable declaration part
procedure/function declaration part

-�

-- label declaration part label
6

label
,

; -�

-- constant declaration part const
6

constant declaration
typed constant declaration

-�

-- type declaration part type
6

type declaration -�

-- variable declaration part var
6

variable declaration -�

-- procedure/function declaration part
6

procedure declaration
function declaration

constructor declaration
destructor declaration

-�

-- statement part compound statement -�

Labels that can be used to identify statements in a block are declared in the label
declaration part of that block. Each label can only identify one statement. Con-
stants that are to be used only in one block should be declared in that block’s
constant declaration part. Variables that are to be used only in one block should be
declared in that block’s constant declaration part. Types that are to be used only
in one block should be declared in that block’s constant declaration part. Lastly,
functions and procedures that will be used in that block can be declared in the
procedure/function declaration part. After the different declaration parts comes
the statement part. This contains any actions that the block should execute. All
identifiers declared before the statement part can be used in that statement part.

9.4 Scope

Identifiers are valid from the point of their declaration until the end of the block
in which the declaration occurred. The range where the identifier is known is the
scope of the identifier. The exact scope of an identifier depends on the way it was
defined.

Block scope

The scope of a variable declared in the declaration part of a block, is valid from the
point of declaration until the end of the block. If a block contains a second block, in
which the identfier is redeclared, then inside this block, the second declaration will

86

9.4. SCOPE

be valid. Upon leaving the inner block, the first declaration is valid again. Consider
the following example:

Program Demo;
Var X : Real;
{ X is real variable }
Procedure NewDeclaration
Var X : Integer; { Redeclare X as integer}
begin
// X := 1.234; {would give an error when trying to compile}
X := 10; { Correct assigment}

end;
{ From here on, X is Real again}
begin
X := 2.468;

end.

In this example, inside the procedure, X denotes an integer variable. It has it’s own
storage space, independent of the variable X outside the procedure.

Record scope

The field identifiers inside a record definition are valid in the following places:

1. to the end of the record definition.

2. field designators of a variable of the given record type.

3. identifiers inside a With statement that operates on a variable of the given
record type.

Class scope

A component identifier is valid in the following places:

1. From the point of declaration to the end of the class definition.

2. In all descendent types of this class.

3. In all method declaration blocks of this class and descendent classes.

4. In a with statement that operators on a variable of the given class’s definition.

Note that method designators are also considered identifiers.

Unit scope

All identifiers in the interface part of a unit are valid from the point of declaration,
until the end of the unit. Furthermore, the identifiers are known in programs or
units that have the unit in their uses clause. Identifiers from indirectly dependent
units are not available. Identifiers declared in the implementation part of a unit
are valid from the point of declaration to the end of the unit. The system unit is
automatically used in all units and programs. It’s identifiers are therefore always
known, in each program or unit you make. The rules of unit scope implie that you

87

9.5. LIBRARIES

can redefine an identifier of a unit. To have access to an identifier of another unit
that was redeclared in the current unit, precede it with that other units name, as
in the following example:

unit unitA;
interface
Type

MyType = Real;
implementation
end.
Program prog;
Uses UnitA;

{ Redeclaration of MyType}
Type MyType = Integer;
Var A : Mytype; { Will be Integer }

B : UnitA.MyType { Will be real }
begin
end.

This is especially useful if you redeclare the system unit’s identifiers.

9.5 Libraries

Free Pascal supports making of dynamic libraries (DLLs under Win32 and os/2)
trough the use of the Library keyword.

A Library is just like a unit or a program:

Libraries

-- library library header ;
uses clause

block . -�

-- library header library identifier -�

By default, functions and procedures that are declared and implemented in library
are not available to a programmer that wishes to use your library.

In order to make functions or procedures available from the library, you must export
them in an export clause:

Exports clause

-- exports clause exports exports list ; -�

-- exports list
6

exports entry
,

-�

-- exports entry identifier
index integer constant

-

-

name string constant

-�

88

9.5. LIBRARIES

Under Win32, an index clause can be added to an exports entry. an index entry
must be a positive number larger or equal than 1. It is best to use low index values,
although nothing forces you to do this.

Optionally, an exports entry can have a name specifier. If present, the name specifier
gives the exact name (case sensitive) of the function in the library.

If neither of these constructs is present, the functions or procedures are exported
with the exact names as specified in the exports clause.

89

Chapter 10

Exceptions

As of version 0.99.7, Free Pascal supports exceptions. Exceptions provide a conve-
nient way to program error and error-recovery mechanisms, and are closely related
to classes. Exception support is based on 3 constructs:

Raise statements. To raise an exeption. This is usually done to signal an error
condition.

Try ... Except blocks. These block serve to catch exceptions raised within the
scope of the block, and to provide exception-recovery code.

Try ... Finally blocks. These block serve to force code to be executed irrespective
of an exception occurrence or not. They generally serve to clean up memory or
close files in case an exception occurs. The compiler generates many implicit
Try ... Finally blocks around procedure, to force memory consistence.

10.1 The raise statement

The raise statement is as follows:

Raise statement

-- raise statement
exception instance

at address expression

-�

This statement will raise an exception. If it is specified, the exception instance must
be an initialized instance of a class, which is the raise type. The address exception
is optional. If itis not specified, the compiler will provide the address by itself.
If the exception instance is omitted, then the current exception is re-raised. This
construct can only be used in an exception handling block (see further).

Remark: Control never returns after an exception block. The control is transferred
to the first try...finally or try...except statement that is encountered when
unwinding the stack. If no such statement is found, the Free Pascal Run-Time
Library will generate a run-time error 217 (see also section 10.5, page 93).

As an example: The following division checks whether the denominator is zero, and
if so, raises an exception of type EDivException

90

10.2. THE TRY...EXCEPT STATEMENT

Type EDivException = Class(Exception);
Function DoDiv (X,Y : Longint) : Integer;
begin

If Y=0 then
Raise EDivException.Create (’Division by Zero would occur’);

Result := X Div Y;
end;

The class Exception is defined in the Sysutils unit of the rtl. (section 10.5, page
93)

10.2 The try...except statement

A try...except exception handling block is of the following form :

Try..except statement

-- try statement try statement list except exceptionhandlers end -�

-- statement list
6

statement
;

-�

-- exceptionhandlers

6
exception handler

; else statement list
statement list

-�

-- exception handler on
identifier :

class type identifier do statement -�

If no exception is raised during the execution of the statement list, then all
statements in the list will be executed sequentially, and the except block will be
skipped, transferring program flow to the statement after the final end.

If an exception occurs during the execution of the statement list, the program
flow will be transferred to the except block. Statements in the statement list between
the place where the exception was raised and the exception block are ignored.

In the exception handling block, the type of the exception is checked, and if there
is an exception handler where the class type matches the exception object type,
or is a parent type of the exception object type, then the statement following the
corresponding Do will be executed. The first matching type is used. After the Do
block was executed, the program continues after the End statement.

The identifier in an exception handling statement is optional, and declares an ex-
ception object. It can be used to manipulate the exception object in the exception
handling code. The scope of this declaration is the statement block foillowing the
Do keyword.

If none of the On handlers matches the exception object type, then the statement list
after else is executed. If no such list is found, then the exception is automatically
re-raised. This process allows to nest try...except blocks.

91

10.3. THE TRY...FINALLY STATEMENT

If, on the other hand, the exception was caught, then the exception object is de-
stroyed at the end of the exception handling block, before program flow continues.
The exception is destroyed through a call to the object’s Destroy destructor.

As an example, given the previous declaration of the DoDiv function, consider the
following

Try
Z := DoDiv (X,Y);

Except
On EDivException do Z := 0;

end;

If Y happens to be zero, then the DoDiv function code will raise an exception.
When this happens, program flow is transferred to the except statement, where the
Exception handler will set the value of Z to zero. If no exception is raised, then
program flow continues past the last end statement. To allow error recovery, the
Try ... Finally block is supported. A Try...Finally block ensures that the
statements following the Finally keyword are guaranteed to be executed, even if
an exception occurs.

10.3 The try...finally statement

A Try..Finally statement has the following form:

Try...finally statement

-- trystatement try statement list finally finally statements end -�

-- finally statements statementlist -�

If no exception occurs inside the statement List, then the program runs as if the
Try, Finally and End keywords were not present.

If, however, an exception occurs, the program flow is immediatly transferred from
the point where the excepion was raised to the first statement of the Finally
statements.

All statements after the finally keyword will be executed, and then the exception will
be automatically re-raised. Any statements between the place where the exception
was raised and the first statement of the Finally Statements are skipped.

As an example consider the following routine:

Procedure Doit (Name : string);
Var F : Text;
begin

Try
Assign (F,Name);
Rewrite (name);
... File handling ...

Finally
Close(F);

end;

92

10.4. EXCEPTION HANDLING NESTING

If during the execution of the file handling an execption occurs, then program flow
will continue at the close(F) statement, skipping any file operations that might
follow between the place where the exception was raised, and the Close statement.
If no exception occurred, all file operations will be executed, and the file will be
closed at the end.

10.4 Exception handling nesting

It is possible to nest Try...Except blocks with Try...Finally blocks. Program
flow will be done according to a lifo (last in, first out) principle: The code of
the last encountered Try...Except or Try...Finally block will be executed first.
If the exception is not caught, or it was a finally statement, program flow will be
transferred to the last-but-one block, ad infinitum.

If an exception occurs, and there is no exception handler present, then a runerror
217 will be generated. If you use the sysutils unit, a default handler is installed
which will show the exception object message, and the address where the exception
occurred, after which the program will exit with a Halt instruction.

10.5 Exception classes

The sysutils unit contains a great deal of exception handling. It defines the following
exception types:

Exception = class(TObject)
private

fmessage : string;
fhelpcontext : longint;

public
constructor create(const msg : string);
constructor createres(indent : longint);
property helpcontext : longint read fhelpcontext write fhelpcontext;
property message : string read fmessage write fmessage;

end;
ExceptClass = Class of Exception;
{ mathematical exceptions }
EIntError = class(Exception);
EDivByZero = class(EIntError);
ERangeError = class(EIntError);
EIntOverflow = class(EIntError);
EMathError = class(Exception);

The sysutils unit also installs an exception handler. If an exception is unhandled
by any exception handling block, this handler is called by the Run-Time library.
Basically, it prints the exception address, and it prints the message of the Exception
object, and exits with a exit code of 217. If the exception object is not a descen-
dent object of the Exception object, then the class name is printed instead of the
exception message.

It is recommended to use the Exception object or a descendant class for all raise
statements, since then you can use the message field of the exception object.

93

Chapter 11

Using assembler

Free Pascal supports the use of assembler in your code, but not inline assembler
macros. To have more information on the processor specific assembler syntax and
its limitations, see the Programmers’ guide.

11.1 Assembler statements

The following is an example of assembler inclusion in your code.

...
Statements;
...
Asm

your asm code here
...

end;
...
Statements;

The assembler instructions between the Asm and end keywords will be inserted in
the assembler generated by the compiler. You can still use conditionals in your
assembler, the compiler will recognise it, and treat it as any other conditionals.

Remark: Before version 0.99.1, Free Pascal did not support reference to variables
by their names in the assembler parts of your code.

11.2 Assembler procedures and functions

Assembler procedures and functions are declared using the Assembler directive.
The Assembler keyword is supported as of version 0.9.7. This permits the code
generator to make a number of code generation optimizations.

The code generator does not generate any stack frame (entry and exit code for the
routine) if it contains no local variables and no parameters. In the case of functions,
ordinal values must be returned in the accumulator. In the case of floating point
values, these depend on the target processor and emulation options.

Remark: From version 0.99.1 to 0.99.5 (excluding FPC 0.99.5a), the Assembler
directive did not have the same effect as in Turbo Pascal, so beware! The stack

94

file:../prog/prog.html

11.2. ASSEMBLER PROCEDURES AND FUNCTIONS

frame would be omitted if there were no local variables, in this case if the assembly
routine had any parameters, they would be referenced directly via the stack pointer.
This was NOT like Turbo Pascal where the stack frame is only omitted if there
are no parameters and no local variables. As stated earlier, starting from version
0.99.5a, Free Pascal now has the same behaviour as Turbo Pascal.

95

Part II

Reference : The System unit

96

Chapter 12

The system unit

The system unit contains the standard supported functions of Free Pascal. It is the
same for all platforms. Basically it is the same as the system unit provided with
Borland or Turbo Pascal.

Functions are listed in alphabetical order. Arguments of functions or procedures
that are optional are put between square brackets.

The pre-defined constants and variables are listed in the first section. The second
section contains the supported functions and procedures.

12.1 Types, Constants and Variables

Types

The following integer types are defined in the System unit:

shortint = -128..127;
Longint = $80000000..$7fffffff;
integer = -32768..32767;
byte = 0..255;
word = 0..65535;

And the following pointer types:

PChar = ^char;
pPChar = ^PChar;

For the SetJmp (139) and LongJmp (124) calls, the following jump bufer type is
defined (for the I386 processor):

jmp_buf = record
ebx,esi,edi : Longint;
bp,sp,pc : Pointer;
end;

PJmp_buf = ^jmp_buf;

Constants

The following constants for file-handling are defined in the system unit:

97

12.1. TYPES, CONSTANTS AND VARIABLES

Const
fmclosed = $D7B0;
fminput = $D7B1;
fmoutput = $D7B2;
fminout = $D7B3;
fmappend = $D7B4;
filemode : byte = 2;

Further, the following non processor specific general-purpose constants are also
defined:
const

e r r o r a d d r : p o i n t e r = n i l ;
e r r o r c o d e : word = 0;
{ max l e v e l in dumping on e r r o r }

max frame dump : word = 20;

Remark: Processor specific global constants are named Testxxxx where xxxx
represents the processor number (such as Test8086, Test68000), and are used to
determine on what generation of processor the program is running on.

Variables

The following variables are defined and initialized in the system unit:

var
output,input,stderr : text;
exitproc : pointer;
exitcode : word;
stackbottom : Longint;
loweststack : Longint;

The variables ExitProc, exitcode are used in the Free Pascal exit scheme. It works
similarly to the one in Turbo Pascal:

When a program halts (be it through the call of the Halt function or Exit or through
a run-time error), the exit mechanism checks the value of ExitProc. If this one is
non-Nil, it is set to Nil, and the procedure is called. If the exit procedure exits,
the value of ExitProc is checked again. If it is non-Nil then the above steps are
repeated. So if you want to install your exit procedure, you should save the old
value of ExitProc (may be non-Nil, since other units could have set it before you
did). In your exit procedure you then restore the value of ExitProc, such that if it
was non-Nil the exit-procedure can be called.

The ErrorAddr and ExitCode can be used to check for error-conditions. If ErrorAddr
is non-Nil, a run-time error has occurred. If so, ExitCode contains the error code.
If ErrorAddr is Nil, then ExitCode contains the argument to Halt or 0 if the
program terminated normally.

ExitCode is always passed to the operating system as the exit-code of your process.

Under GO32, the following constants are also defined :

const
seg0040 = $0040;
segA000 = $A000;
segB000 = $B000;
segB800 = $B800;

98

12.2. FUNCTIONS AND PROCEDURES

These constants allow easy access to the bios/screen segment via mem/absolute.

12.2 Functions and Procedures

Abs

Declaration: Function Abs (X : Every numerical type) : Every numerical type;

Description: Abs returns the absolute value of a variable. The result of the function has the
same type as its argument, which can be any numerical type.

Errors: None.

See also: Round (136)

Program Example1 ;

{ Program to demonstrate the Abs f un c t i o n . }

Var
r : r e a l ;
i : i n t e g e r ;

begin
r := abs (−1 . 0) ; { r :=1.0 }
i := abs (−21) ; { i :=21 }

end .

Addr

Declaration: Function Addr (X : Any type) : Pointer;

Description: Addr returns a pointer to its argument, which can be any type, or a function or
procedure name. The returned pointer isn’t typed. The same result can be obtained
by the @ operator, which can return a typed pointer (Programmers’ guide).

Errors: None

See also: SizeOf (142)

Program Example2 ;

{ Program to demonstrate the Addr f un c t i o n . }

Const Zero : i n t e g e r = 0;

Var p : p o i n t e r ;
i : I n t e g e r ;

begin
p:=Addr (p) ; { P po in t s to i t s e l f }
p:=Addr (I) ; { P po in t s to I }
p:=Addr (Zero) ; { P po in t s to ’ Zero ’ }

end .

99

file:../prog/prog.html

12.2. FUNCTIONS AND PROCEDURES

Append

Declaration: Procedure Append (Var F : Text);

Description: Append opens an existing file in append mode. Any data written to F will be
appended to the file. If the file didn’t exist, it will be created, contrary to the
Turbo Pascal implementation of Append, where a file needed to exist in order to be
opened by Append. Only text files can be opened in append mode.

Errors: If the file can’t be created, a run-time error will be generated.

See also: Rewrite (135),Close (104), Reset (134)

Program Example3 ;

{ Program to demonstrate the Append f unc t i o n . }

Var f : t e x t ;

begin
Ass ign (f , ’ t e s t . t x t ’) ;
Rewrite (f) ; { f i l e i s opened fo r wr i t e , and emptied }
Writeln (F , ’ This i s the f i r s t l i n e of t e x t . t x t ’) ;
c l o s e (f) ;
Append(f) ; { f i l e i s opened fo r wr i t e , but NOT emptied .

any t ex t w r i t t e n to i t i s appended .}
Writeln (f , ’ This i s the second l i n e of t e x t . t x t ’) ;
c l o s e (f) ;

end .

Arctan

Declaration: Function Arctan (X : Real) : Real;

Description: Arctan returns the Arctangent of X, which can be any Real type. The resulting
angle is in radial units.

Errors: None

See also: Sin (141), Cos (107)

Program Example4 ;

{ Program to demonstrate the ArcTan func t i o n . }

Var R : Real ;

begin
R:=ArcTan (0) ; { R:=0 }
R:=ArcTan (1)/ pi ; { R:=0.25 }

end .

Assign

Declaration: Procedure Assign (Var F; Name : String);

100

12.2. FUNCTIONS AND PROCEDURES

Description: Assign assigns a name to F, which can be any file type. This call doesn’t open
the file, it just assigns a name to a file variable, and marks the file as closed.

Errors: None.

See also: Reset (134), Rewrite (135), Append (100)

Program Example5 ;

{ Program to demonstrate the Ass ign f un c t i o n . }

Var F : t e x t ;

begin
Ass ign (F , ’ ’) ;
Rewrite (f) ;
{ The f o l l ow i n g can be put in any f i l e by r e d i r e c t i n g i t

from the command l i n e .}
Writeln (f , ’ This goes to s t a n d a r d output ! ’) ;
C lose (f) ;
Ass ign (F , ’ Test . t x t ’) ;
rewr ite (f) ;
wr i te ln (f , ’ This doesn ’ ’ t go to s t a n d a r d output ! ’) ;
c l o s e (f) ;

end .

Assigned

Declaration: Function Assigned (P : Pointer) : Boolean;

Description: Assigned returns True if P is non-nil and retuns False of P is nil. The main use
of Assigned is that Procedural variables, method variables and class-type variables
also can be passed to Assigned.

Errors: None

See also: New (127)

BinStr

Declaration: Function BinStr Value : longint; cnt : byte) : String;

Description: BinStr returns a string with the binary representation of Value. The string has
at most cnt characters. (i.e. only the cnt rightmost bits are taken into account)
To have a complete representation of any longint-type value, you need 32 bits, i.e.
cnt=32

Errors: None.

See also: Str (144),Val (146),HexStr (118)

Program example81 ;

{ Program to demonstrate the BinStr f un c t i o n }

101

12.2. FUNCTIONS AND PROCEDURES

Const Value = 45678;

Var I : l o n g i n t ;

begin
For I :=8 to 2 0 do

Writeln (BinStr (Value , I) : 2 0) ;
end .

Blockread

Declaration: Procedure Blockread (Var F : File; Var Buffer; Var Count : Longint [;
var Result : Longint]);

Description: Blockread reads count or less records from file F. A record is a block of bytes
with size specified by the Rewrite (135) or Reset (134) statement.

The result is placed in Buffer, which must contain enough room for Count records.
The function cannot read partial records. If Result is specified, it contains the
number of records actually read. If Result isn’t specified, and less than Count
records were read, a run-time error is generated. This behavior can be controlled
by the {$i} switch.

Errors: If Result isn’t specified, then a run-time error is generated if less than count
records were read.

See also: Blockwrite (103), Close (104), Reset (134), Assign (100)

Program Example6 ;

{ Program to demonstrate the BlockRead and BlockWrite f u n c t i o n s . }

Var Fin , fo ut : F i le ;
NumRead , NumWritten : Word ;
Buf : Array [1 . . 2 0 4 8] of byte ;
Tota l : Long int ;

begin
Ass ign (Fin , Paramstr (1)) ;
Ass ign (Fout , Paramstr (2)) ;
Reset (Fin , 1) ;
Rewrite (Fout , 1) ;
Tota l :=0;
Repeat

BlockRead (Fin , buf , Sizeof (buf) , NumRead) ;
BlockWrite (Fout , Buf , NumRead , NumWritten) ;
inc (Tota l , NumWritten) ;

Unti l (NumRead=0) or (NumWritten<>NumRead) ;
Write (’ Copied ’ , Tota l , ’ byt es from f i l e ’ , paramstr (1)) ;
Writeln (’ to f i l e ’ , paramstr (2)) ;
c l o s e (f i n) ;
c l o s e (f out) ;

end .

102

12.2. FUNCTIONS AND PROCEDURES

Blockwrite

Declaration: Procedure Blockwrite (Var F : File; Var Buffer; Var Count : Longint);

Description: BlockWrite writes count records from buffer to the file F.A record is a block of
bytes with size specified by the Rewrite (135) or Reset (134) statement.

If the records couldn’t be written to disk, a run-time error is generated. This
behavior can be controlled by the {$i} switch.

Errors: A run-time error is generated if, for some reason, the records couldn’t be written
to disk.

See also: Blockread (102),Close (104), Rewrite (135), Assign (100)

For the example, see Blockread (102).

Break

Declaration: Procedure Break;

Description: Break jumps to the statement following the end of the current repetitive statement.
The code between the Break call and the end of the repetitive statement is skipped.
The condition of the repetitive statement is NOT evaluated.

This can be used with For, varrepeat and While statements.

Note that while this is a procedure, Break is a reserved word and hence cannot be
redefined.

Errors: None.

See also: Continue (105), Exit (111)

Program Example87 ;

{ Program to demonstrate the Break f un c t i o n . }

Var I : l o n g i n t ;

begin
I :=0;
While I <10 Do

begin
Inc (I) ;
I f I >5 Then

Break ;
Writeln (i) ;
end ;

I :=0;
Repeat

Inc (I) ;
I f I >5 Then

Break ;
Writeln (i) ;

Unti l I >=10;
For I :=1 to 1 0 do

begin

103

12.2. FUNCTIONS AND PROCEDURES

I f I >5 Then
Break ;

Writeln (i) ;
end ;

end .

Chdir

Declaration: Procedure Chdir (const S : string);

Description: Chdir changes the working directory of the process to S.

Errors: If the directory S doesn’t exist, a run-time error is generated.

See also: Mkdir (127), Rmdir (136)

Program Example7 ;

{ Program to demonstrate the ChDir f un c t i o n . }

begin
{ $I−}
ChDir (ParamStr (1)) ;
i f IOresu lt <>0 then

Writeln (’ Cannot change to d i r e c t o r y : ’ , paramstr (1)) ;
end .

Chr

Declaration: Function Chr (X : byte) : Char;

Description: Chr returns the character which has ASCII value X.

Errors: None.

See also: Ord (128), Str (144)

Program Example8 ;

{ Program to demonstrate the Chr f un c t i o n . }

begin
Write (chr (1 0) , chr (1 3)) ; { The same e f f e c t as Wr i t e ln ; }

end .

Close

Declaration: Procedure Close (Var F : Anyfiletype);

Description: Close flushes the buffer of the file F and closes F. After a call to Close, data can
no longer be read from or written to F. To reopen a file closed with Close, it isn’t
necessary to assign the file again. A call to Reset (134) or Rewrite (135) is sufficient.

Errors: None.

104

12.2. FUNCTIONS AND PROCEDURES

See also: Assign (100), Reset (134), Rewrite (135), Flush (115)

Program Example9 ;

{ Program to demonstrate the Close f un c t i o n . }

Var F : t e x t ;

begin
Ass ign (f , ’ Test . t x t ’) ;
ReWrite (F) ;
Writeln (F , ’ Some t e x t w r i t t e n to Test . t x t ’) ;
c l o s e (f) ; { F lu she s conten t s of b u f f e r to d i s k ,

c l o s e s the f i l e . Omitt ing t h i s may
cause data NOT to be w r i t t e n to d i s k .}

end .

Concat

Declaration: Function Concat (S1,S2 [,S3, ... ,Sn]) : String;

Description: Concat concatenates the strings S1,S2 etc. to one long string. The resulting string
is truncated at a length of 255 bytes. The same operation can be performed with
the + operation.

Errors: None.

See also: Copy (106), Delete (108), Insert (120), Pos (130), Length (122)

Program Example10 ;

{ Program to demonstrate the Concat f un c t i o n . }
Var

S : Str ing ;

begin
S:=Concat (’ This can be done ’ , ’ E a s i e r ’ , ’ with the + o p e r a t o r ! ’) ;

end .

Continue

Declaration: Procedure Continue;

Description: Continue jumps to the end of the current repetitive statement. The code between
the Continue call and the end of the repetitive statement is skipped. The condition
of the repetitive statement is then checked again.

This can be used with For, varrepeat and While statements.

Note that while this is a procedure, Continue is a reserved word and hence cannot
be redefined.

Errors: None.

See also: Break (103), Exit (111)

105

12.2. FUNCTIONS AND PROCEDURES

Program Example86 ;

{ Program to demonstrate the Cont inue f unc t i o n . }

Var I : l o n g i n t ;

begin
I :=0;
While I <10 Do

begin
Inc (I) ;
I f I <5 Then

Continue ;
Writeln (i) ;
end ;

I :=0;
Repeat

Inc (I) ;
I f I <5 Then

Continue ;
Writeln (i) ;

Unti l I >=10;
For I :=1 to 1 0 do

begin
I f I <5 Then

Continue ;
Writeln (i) ;
end ;

end .

Copy

Declaration: Function Copy (Const S : String;Index : Integer;Count : Byte) : String;

Description: Copy returns a string which is a copy if the Count characters in S, starting at
position Index. If Count is larger than the length of the string S, the result is
truncated. If Index is larger than the length of the string S, then an empty string
is returned.

Errors: None.

See also: Delete (108), Insert (120), Pos (130)

Program Example11 ;

{ Program to demonstrate the Copy f un c t i o n . }

Var S , T : Str ing ;

begin
T:= ’ 1 2 3 4 5 6 7 ’ ;
S:=Copy (T , 1 , 2) ; { S:= ’12 ’ }
S:=Copy (T , 4 , 2) ; { S:= ’45 ’ }
S:=Copy (T , 4 , 8) ; { S:= ’4567 ’ }

end .

106

12.2. FUNCTIONS AND PROCEDURES

Cos

Declaration: Function Cos (X : Real) : Real;

Description: Cos returns the cosine of X, where X is an angle, in radians.

Errors: None.

See also: Arctan (100), Sin (141)

Program Example12 ;

{ Program to demonstrate the Cos f un c t i o n . }

Var R : Real ;

begin
R:=Cos (Pi) ; { R:=−1 }
R:=Cos (Pi / 2) ; { R:=0 }
R:=Cos (0) ; { R:=1 }

end .

CSeg

Declaration: Function CSeg : Word;

Description: CSeg returns the Code segment register. In Free Pascal, it returns always a zero,
since Free Pascal is a 32 bit compiler.

Errors: None.

See also: DSeg (109), Seg (139), Ofs (128), Ptr (131)

Program Example13 ;

{ Program to demonstrate the CSeg f unc t i o n . }

var W : word ;

begin
W:=CSeg ; {W:=0, p rov ided fo r c omp a t i b i l i t y ,

FPC i s 32 b i t .}
end .

Dec

Declaration: Procedure Dec (Var X : Any ordinal type[; Decrement : Longint]);

Description: Dec decreases the value of X with Decrement. If Decrement isn’t specified, then 1
is taken as a default.

Errors: A range check can occur, or an underflow error, if you try to decrease X below its
minimum value.

See also: Inc (120)

107

12.2. FUNCTIONS AND PROCEDURES

Program Example14 ;

{ Program to demonstrate the Dec f un c t i o n . }

Var
I : I n t e g e r ;
L : Long int ;
W : Word ;
B : Byte ;
Si : S h o r t I n t ;

begin
I :=1;
L :=2;
W:=3;
B:=4;
Si :=5;
Dec (i) ; { i :=0 }
Dec (L , 2) ; { L :=0 }
Dec (W, 2) ; { W:=1 }
Dec (B,−2) ; { B:=6 }
Dec (Si , 0) ; { Si :=5 }

end .

Delete

Declaration: Procedure Delete (var S : string;Index : Integer;Count : Integer);

Description: Delete removes Count characters from string S, starting at position Index. All
characters after the delected characters are shifted Count positions to the left, and
the length of the string is adjusted.

Errors: None.

See also: Copy (106),Pos (130),Insert (120)

Program Example15 ;

{ Program to demonstrate the De le te f un c t i o n . }

Var
S : Str ing ;

begin
S:= ’ This i s not easy ! ’ ;
Delete (S , 9 , 4) ; { S:= ’ This i s easy ! ’ }

end .

Dispose

Declaration: Procedure Dispose (P : pointer);
Procedure Dispiose (P : Typed Pointer; Des : Procedure);

108

12.2. FUNCTIONS AND PROCEDURES

Description: The first form Dispose releases the memory allocated with a call to New (127).
The pointer P must be typed. The released memory is returned to the heap.

The second form of Dispose accepts as a first parameter a pointer to an object type,
and as a second parameter the name of a destructor of this object. The destructor
will be called, and the memory allocated for the object will be freed.

Errors: An error will occur if the pointer doesn’t point to a location in the heap.

See also: New (127), Getmem (117), Freemem (116)

Program Example16 ;

{ Program to demonstrate the Dispose and New f un c t i o n s . }

Type SS = Str ing [2 0] ;

AnObj = Object
I : i n t e g e r ;
Constructor I n i t ;
Destructor Done ;
end ;

Var
P : ˆ SS ;
T : ˆ AnObj ;

Constructor Anobj . I n i t ;

begin
Writeln (’ I n i t i a l i z i n g an i n s t a n c e of AnObj ! ’) ;

end ;

Destructor AnObj . Done ;

begin
Writeln (’ D e s t r o y i n g an i n s t a n c e of AnObj ! ’) ;

end ;

begin
New (P) ;
Pˆ:= ’ H e l l o , World ! ’ ;
Dispose (P) ;
{ P i s unde f i ned from here on !}
New(T, I n i t) ;
Tˆ. i :=0;
Dispose (T, Done) ;

end .

DSeg

Declaration: Function DSeg : Word;

Description: DSeg returns the data segment register. In Free Pascal, it returns always a zero,
since Free Pascal is a 32 bit compiler.

109

12.2. FUNCTIONS AND PROCEDURES

Errors: None.

See also: CSeg (107), Seg (139), Ofs (128), Ptr (131)

Program Example17 ;

{ Program to demonstrate the DSeg f unc t i o n . }

Var
W : Word ;

begin
W:=DSeg ; {W:=0, This f un c t i o n i s p rov ided fo r c omp a t i b i l i t y ,

FPC i s a 32 b i t com i l e r .}
end .

Eof

Declaration: Function Eof [(F : Any file type)] : Boolean;

Description: Eof returns True if the file-pointer has reached the end of the file, or if the file is
empty. In all other cases Eof returns False. If no file F is specified, standard input
is assumed.

Errors: None.

See also: Eoln (110), Assign (100), Reset (134), Rewrite (135)

Program Example18 ;

{ Program to demonstrate the Eof f un c t i o n . }

Var T1 , T2 : t e x t ;
C : Char ;

begin
{ Set f i l e to read from . Empty means from standard input .}
a s s i g n (t1 , paramstr (1)) ;
reset (t1) ;
{ Set f i l e to wr i t e to . Empty means to s tandard output . }
a s s i g n (t2 , paramstr (2)) ;
rewr ite (t2) ;
While not eof (t1) do

begin
read (t1 , C) ;
write (t2 , C) ;
end ;

C lose (t1) ;
C lose (t2) ;

end .

Eoln

Declaration: Function Eoln [(F : Text)] : Boolean;

110

12.2. FUNCTIONS AND PROCEDURES

Description: Eof returns True if the file pointer has reached the end of a line, which is demar-
cated by a line-feed character (ASCII value 10), or if the end of the file is reached.
In all other cases Eof returns False. If no file F is specified, standard input is
assumed. It can only be used on files of type Text.

Errors: None.

See also: Eof (110), Assign (100), Reset (134), Rewrite (135)

Program Example19 ;

{ Program to demonstrate the Eoln f un c t i o n . }

begin
{ This program wa i t s f o r keyboard input . }
{ I t w i l l p r i n t True when an empty l i n e i s put in ,

and f a l s e when you type a non−empty l i n e .
I t w i l l on ly stop when you p r e s s en te r .}

Writeln (eoln) ;
end .

Erase

Declaration: Procedure Erase (Var F : Any file type);

Description: Erase removes an unopened file from disk. The file should be assigned with
Assign, but not opened with Reset or Rewrite

Errors: A run-time error will be generated if the specified file doesn’t exist, or is opened
by the program.

See also: Assign (100)

Program Example20 ;

{ Program to demonstrate the Erase f un c t i o n . }

Var F : Text ;

begin
{ Create a f i l e with a l i n e of t ex t in i t }
Ass ign (F , ’ t e s t . t x t ’) ;
Rewrite (F) ;
Writeln (F , ’ Try and f i n d t h i s when I ’ ’ m f i n i s h e d ! ’) ;
c l o s e (f) ;
{ Now remove the f i l e }
Erase (f) ;

end .

Exit

Declaration: Procedure Exit ([Var X : return type)];

111

12.2. FUNCTIONS AND PROCEDURES

Description: Exit exits the current subroutine, and returns control to the calling routine. If
invoked in the main program routine, exit stops the program. The optional argu-
ment X allows to specify a return value, in the case Exit is invoked in a function.
The function result will then be equal to X.

Errors: None.

See also: Halt (117)

Program Example21 ;

{ Program to demonstrate the Ex i t f un c t i o n . }

Procedure DoAnExit (Yes : Boolean) ;

{ This p rocedure demonst ra tes the normal Ex i t }

begin
Writeln (’ H e l l o from DoAnExit ! ’) ;
I f Yes then

begin
Writeln (’ B a i l i n g out e a r l y . ’) ;
ex i t ;
end ;

Writeln (’ C o n t i n u i n g to the end . ’) ;
end ;

Function P o s i t i v e (Which : I n t e g e r) : Boolean ;

{ This f un c t i o n demonst ra tes the ex t r a FPC f e a t u r e of Ex i t :
You can s p e c i f y a r e tu rn va lue fo r the f un c t i o n }

begin
i f Which>0 then

ex i t (True)
e lse

ex i t (F a l s e) ;
end ;

begin
{ This c a l l w i l l go to the end }
DoAnExit (F a l s e) ;
{ This c a l l w i l l b a i l out e a r l y }
DoAnExit (True) ;
i f P o s i t i v e (−1) then

Writeln (’ The c o m p i l e r i s nuts , −1 i s not p o s i t i v e . ’)
e lse

Writeln (’ The c o m p i l e r i s not so bad , −1 seems to be n e g a t i v e . ’) ;
end .

Exp

Declaration: Function Exp (Var X : Real) : Real;

112

12.2. FUNCTIONS AND PROCEDURES

Description: Exp returns the exponent of X, i.e. the number e to the power X.

Errors: None.

See also: Ln (123), Power (131)

Program Example22 ;

{ Program to demonstrate the Exp f unc t i o n . }

begin
Writeln (Exp (1) : 8 : 2) ; { Should p r i n t 2 . 7 2 }

end .

Filepos

Declaration: Function Filepos (Var F : Any file type) : Longint;

Description: Filepos returns the current record position of the file-pointer in file F. It cannot
be invoked with a file of type Text. If you try to do this, a compiler error will be
generated.

Errors: None.

See also: Filesize (114)

Program Example23 ;

{ Program to demonstrate the F i l ePos f un c t i o n . }

Var F : F i le of Long int ;
L , FP : l o n g i n t ;

begin
{ F i l l a f i l e with data :

Each p o s i t i o n con ta i n s the p o s i t i o n ! }
Ass ign (F , ’ t e s t . dat ’) ;
Rewrite (F) ;
For L :=0 to 10 0 do

begin
FP:= FilePos (F) ;
Write (F , FP) ;
end ;

C lose (F) ;
Reset (F) ;
{ I f a l l goes we l l , noth ing i s d i s p l a y e d here . }
While not (Eof (F)) do

begin
FP:= FilePos (F) ;
Read (F , L) ;
i f L<>FP then

Writeln (’ Something wrong : Got ’ , l , ’ on pos ’ , FP) ;
end ;

C lose (F) ;
Erase (f) ;

end .

113

12.2. FUNCTIONS AND PROCEDURES

Filesize

Declaration: Function Filesize (Var F : Any file type) : Longint;

Description: Filesize returns the total number of records in file F. It cannot be invoked with
a file of type Text. (under linux, this also means that it cannot be invoked on
pipes.) If F is empty, 0 is returned.

Errors: None.

See also: Filepos (113)

Program Example24 ;

{ Program to demonstrate the F i l e S i z e f un c t i o n . }

Var F : F i le Of byte ;
L : F i le Of Long int ;

begin
Ass ign (F , paramstr (1)) ;
Reset (F) ;
Writeln (’ F i l e s i z e in bytes : ’ , F i l e S i z e (F)) ;
C lose (F) ;
Ass ign (L , paramstr (1)) ;
Reset (L) ;
Writeln (’ F i l e s i z e in L o n g i n t s : ’ , F i l e S i z e (L)) ;
C lose (f) ;

end .

Fillchar

Declaration: Procedure Fillchar (Var X;Count : Longint;Value : char or byte);;

Description: Fillchar fills the memory starting at X with Count bytes or characters with value
equal to Value.

Errors: No checking on the size of X is done.

See also: Fillword (115), Move (127)

Program Example25 ;

{ Program to demonstrate the F i l l C h a r f un c t i o n . }

Var S : Str ing [1 0] ;
I : Byte ;

begin
For i :=10 downto 0 do

begin
{ F i l l S with i spaces }
Fi l lChar (S , SizeOf (S) , ’ ’) ;
{ Set Length }
SetLength (S , I) ;
Writeln (s , ’∗ ’) ;
end ;

end .

114

12.2. FUNCTIONS AND PROCEDURES

Fillword

Declaration: Procedure Fillword (Var X;Count : Longint;Value : Word);;

Description: Fillword fills the memory starting at X with Count words with value equal to
Value.

Errors: No checking on the size of X is done.

See also: Fillchar (114), Move (127)

Program Example76 ;

{ Program to demonstrate the F i l lWord f un c t i o n . }

Var W : Array [1 . . 1 0 0] of Word ;

begin
{ Quick i n i t i a l i z a t i o n of a r r ay W }
F i l l W o r d (W, 1 0 0 , 0) ;

end .

Flush

Declaration: Procedure Flush (Var F : Text);

Description: Flush empties the internal buffer of an opened file F and writes the contents to
disk. The file is not closed as a result of this call.

Errors: If the disk is full, a run-time error will be generated.

See also: Close (104)

Program Example26 ;

{ Program to demonstrate the Flush f un c t i o n . }

Var F : Text ;

begin
{ Ass ign F to s tandard output }
Ass ign (F , ’ ’) ;
Rewrite (F) ;
Writeln (F , ’ This l i n e i s w r i t t e n f i r s t , but appears l a t e r ! ’) ;
{ At t h i s po in t the t ex t i s in the i n t e r n a l pa s ca l b u f f e r ,

and not yet w r i t t e n to s tandard output }
Writeln (’ This l i n e appears f i r s t , but i s w r i t t e n l a t e r ! ’) ;
{ A w r i t e l n to ’ output ’ a lways causes a f l u s h − so t h i s t ex t i s

w r i t t e n to sc r een }
Flush (f) ;
{ At t h i s po in t , the t ex t w r i t t e n to F i s w r i t t e n to sc r een . }
Write (F , ’ F i n i s h i n g ’) ;
C lose (f) ; { C lo s i ng a f i l e a lways causes a f l u s h f i r s t }
Writeln (’ o f f . ’) ;

end .

115

12.2. FUNCTIONS AND PROCEDURES

Frac

Declaration: Function Frac (X : Real) : Real;

Description: Frac returns the non-integer part of X.

Errors: None.

See also: Round (136), Int (121)

Program Example27 ;

{ Program to demonstrate the Frac f un c t i o n . }

Var R : Real ;

begin
Writeln (Frac (1 2 3 . 4 5 6) : 0 : 3) ; { Pr i n t s O.456 }
Writeln (Frac (− 1 2 3 . 4 5 6) : 0 : 3) ; { Pr i n t s −O.456 }

end .

Freemem

Declaration: Procedure Freemem (Var P : pointer; Count : Longint);

Description: Freemem releases the memory occupied by the pointer P, of size Count (in bytes),
and returns it to the heap. P should point to the memory allocated to a dynamical
variable.

Errors: An error will occur when P doesn’t point to the heap.

See also: Getmem (117), New (127), Dispose (108)

Program Example28 ;

{ Program to demonstrate the FreeMem and GetMem fun c t i o n s . }

Var P : P o i n t e r ;
MM : Long int ;

begin
{ Get memory fo r P }
MM:=MemAvail ;
Writeln (’ Memory a v a i l a b l e b e f o r e GetMem : ’ , MemAvail) ;
GetMem (P , 8 0) ;
MM:=MM−Memavail ;
Write (’ Memory a v a i l a b l e a f t e r GetMem : ’ , MemAvail) ;
Writeln (’ or ’ ,MM, ’ byt es l e s s than b e f o r e the c a l l . ’) ;
{ f i l l i t with spaces }
Fi l lChar (Pˆ , 8 0 , ’ ’) ;
{ Free the memory aga in }
FreeMem (P , 8 0) ;
Writeln (’ Memory a v a i l a b l e a f t e r FreeMem : ’ , MemAvail) ;

end .

116

12.2. FUNCTIONS AND PROCEDURES

Getdir

Declaration: Procedure Getdir (drivenr : byte;var dir : string);

Description: Getdir returns in dir the current directory on the drive drivenr, where drivenr
is 1 for the first floppy drive, 3 for the first hard disk etc. A value of 0 returns the
directory on the current disk. On linux, drivenr is ignored, as there is only one
directory tree.

Errors: An error is returned under dos, if the drive requested isn’t ready.

See also: Chdir (104)

Program Example29 ;

{ Program to demonstrate the GetDir f un c t i o n . }

Var S : Str ing ;

begin
GetDir (0 , S) ;
Writeln (’ Cur rent d i r e c t o r y i s : ’ , S) ;

end .

Getmem

Declaration: Procedure Getmem (var p : pointer;size : Longint);

Description: Getmem reserves Size bytes memory on the heap, and returns a pointer to this
memory in p. If no more memory is available, nil is returned.

Errors: None.

See also: Freemem (116), Dispose (108), New (127)

For an example, see Freemem (116).

Halt

Declaration: Procedure Halt [(Errnum : byte)];

Description: Halt stops program execution and returns control to the calling program. The
optional argument Errnum specifies an exit value. If omitted, zero is returned.

Errors: None.

See also: Exit (111)

Program Example30 ;

{ Program to demonstrate the Halt f un c t i o n . }

begin
Writeln (’ Before Halt . ’) ;
Halt (1) ; { Stop with e x i t code 1 }
Writeln (’ A f t e r Halt doesn ’ ’ t get executed . ’) ;

end .

117

12.2. FUNCTIONS AND PROCEDURES

HexStr

Declaration: Function HexStr (Value : longint; cnt : byte) : String;

Description: HexStr returns a string with the hexadecimal representation of Value. The string
has at most cnt charaters. (i.e. only the cnt rightmost nibbles are taken into
account) To have a complete representation of a Longint-type value, you need 8
nibbles, i.e. cnt=8.

Errors: None.

See also: Str (144), Val (146), BinStr (101)

Program example81 ;

{ Program to demonstrate the HexStr f un c t i o n }

Const Value = 45678;

Var I : l o n g i n t ;

begin
For I :=1 to 1 0 do

Writeln (HexStr (Value , I)) ;
end .

Hi

Declaration: Function Hi (X : Ordinal type) : Word or byte;

Description: Hi returns the high byte or word from X, depending on the size of X. If the size of
X is 4, then the high word is returned. If the size is 2 then the high byte is returned.
Hi cannot be invoked on types of size 1, such as byte or char.

Errors: None

See also: Lo (123)

Program Example31 ;

{ Program to demonstrate the Hi f un c t i o n . }

var
L : Long int ;
W : Word ;

begin
L :=1 Shl 1 6 ; { = $10000 }
W:=1 Shl 8 ; { = $100 }
Writeln (Hi (L)) ; { Pr i n t s 1 }
Writeln (Hi (W)) ; { Pr i n t s 1 }

end .

118

12.2. FUNCTIONS AND PROCEDURES

High

Declaration: Function High (Type identifier or variable reference) : Longint;

Description: The return value of High depends on it’s argument:

1.If the argument is an ordinal type, High returns the lowest value in the range
of the given ordinal type.

2.If the argument is an array type or an array type variable then High returns
the highest possible value of it’s index.

3.If the argument is an open array identifier in a function or procedure, then
High returns the highest index of the array, as if the array has a zero-based
index.

Errors: None.

See also: Low (124), Ord (128), Pred (131), Succ (144)

Program example80 ;

{ Example to demonstrate the High and Low f un c t i o n s . }

Type TEnum = (North , East , South , West) ;
TRange = 1 4 . . 5 5 ;
TArray = Array [2 . . 1 0] of Long int ;

Function Average (Row : Array of Long int) : Real ;

Var I : l o n g i n t ;
Temp : Real ;

begin
Temp := Row [0] ;
For I : = 1 to High (Row) do

Temp := Temp + Row[i] ;
Average := Temp / (High (Row)+1);

end ;

Var A : TEnum;
B : TRange ;
C : TArray ;
I : l o n g i n t ;

begin
Writeln (’ TEnum goes from : ’ , Ord(Low(TEnum)) , ’ to ’ , Ord(high (TEnum)) , ’ . ’) ;
Writeln (’ A goes from : ’ , Ord(Low(A)) , ’ to ’ , Ord(high (A)) , ’ . ’) ;
Writeln (’ TRange goes from : ’ , Ord(Low(TRange)) , ’ to ’ , Ord(high (TRange)) , ’ . ’) ;
Writeln (’ B goes from : ’ , Ord(Low(B)) , ’ to ’ , Ord(high (B)) , ’ . ’) ;
Writeln (’ TArray index goes from : ’ , Ord(Low(TArray)) , ’ to ’ , Ord(high (TArray)) , ’ . ’) ;
Writeln (’ C index goes from : ’ , Low(C) , ’ to ’ , high (C) , ’ . ’) ;
For I :=Low(C) to High (C) do

C[i] := I ;
Writeln (’ Average : ’ , Average (c)) ;

end .

119

12.2. FUNCTIONS AND PROCEDURES

Inc

Declaration: Procedure Inc (Var X : Any ordinal type[; Increment : Longint]);

Description: Inc increases the value of X with Increment. If Increment isn’t specified, then 1
is taken as a default.

Errors: If range checking is on, then A range check can occur, or an overflow error, if you
try to increase X over its maximum value.

See also: Dec (107)

Program Example32 ;

{ Program to demonstrate the Inc f un c t i o n . }

Const
C : C a r d i n a l = 1;
L : Long int = 1;
I : I n t e g e r = 1;
W : Word = 1;
B : Byte = 1;
SI : S h o r t I n t = 1;
CH : Char = ’ A’ ;

begin
Inc (C) ; { C:=2 }
Inc (L , 5) ; { L :=6 }
Inc (I ,−3) ; { I :=−2 }
Inc (W, 3) ; { W:=4 }
Inc (B, 1 0 0) ; { B:=101 }
Inc (SI ,−3) ; { Si :=−2 }
Inc (CH, 1) ; { ch := ’ B’ }

end .

Insert

Declaration: Procedure Insert (Const Source : String;var S : String;Index : Longint);

Description: Insert inserts string Source in string S, at position Index, shifting all characters
after Index to the right. The resulting string is truncated at 255 characters, if
needed. (i.e. for shortstrings)

Errors: None.

See also: Delete (108), Copy (106), Pos (130)

Program Example33 ;

{ Program to demonstrate the I n s e r t f un c t i o n . }

Var S : Str ing ;

begin
S:= ’ Free Pasca l i s d i f f i c u l t to use ! ’ ;
Inser t (’ NOT ’ , S , pos (’ d i f f i c u l t ’ , S)) ;

120

12.2. FUNCTIONS AND PROCEDURES

wr i te ln (s) ;
end .

Int

Declaration: Function Int (X : Real) : Real;

Description: Int returns the integer part of any Real X, as a Real.

Errors: None.

See also: Frac (116), Round (136)

Program Example34 ;

{ Program to demonstrate the In t f un c t i o n . }

begin
Writeln (Int (1 2 3 . 4 5 6) : 0 : 1) ; { Pr i n t s 123 .0 }
Writeln (Int (−1 2 3 . 4 5 6) : 0 : 1) ; { Pr i n t s −123.0 }

end .

IOresult

Declaration: Function IOresult : Word;

Description: IOresult contains the result of any input/output call, when the {$i-} compiler
directive is active, disabling IO checking. When the flag is read, it is reset to zero.
If IOresult is zero, the operation completed successfully. If non-zero, an error
occurred. The following errors can occur:

dos errors :

2 File not found.

3 Path not found.

4 Too many open files.

5 Access denied.

6 Invalid file handle.

12 Invalid file-access mode.

15 Invalid disk number.

16 Cannot remove current directory.

17 Cannot rename across volumes.

I/O errors :

100 Error when reading from disk.

101 Error when writing to disk.

102 File not assigned.

103 File not open.

104 File not opened for input.

105 File not opened for output.

121

12.2. FUNCTIONS AND PROCEDURES

106 Invalid number.

Fatal errors :

150 Disk is write protected.

151 Unknown device.

152 Drive not ready.

153 Unknown command.

154 CRC check failed.

155 Invalid drive specified..

156 Seek error on disk.

157 Invalid media type.

158 Sector not found.

159 Printer out of paper.

160 Error when writing to device.

161 Error when reading from device.

162 Hardware failure.

Errors: None.

See also: All I/O functions.

Program Example35 ;

{ Program to demonstrate the IOResu l t f un c t i o n . }

Var F : t e x t ;

begin
Ass ign (f , paramstr (1)) ;
{ $ i−}
Reset (f) ;
{ $ i +}
I f IOresu lt <>0 then

wr i te ln (’ F i l e ’ , paramstr (1) , ’ doesn ’ ’ t e x i s t ’)
e lse

wr i te ln (’ F i l e ’ , paramstr (1) , ’ e x i s t s ’) ;
end .

Length

Declaration: Function Length (S : String) : Byte;

Description: Length returns the length of the string S, which is limited to 255 for shortstrings.
If the strings S is empty, 0 is returned. Note: The length of the string S is stored
in S[0] for shortstrings only. Ansistrings have their length stored elsewhere, the
Length fuction should always be used on ansistrings.

Errors: None.

See also: Pos (130)

122

12.2. FUNCTIONS AND PROCEDURES

Program Example36 ;

{ Program to demonstrate the Length f un c t i o n . }

Var S : Str ing ;
I : I n t e g e r ;

begin
S:= ’ ’ ;
for i :=1 to 1 0 do

begin
S:=S+’∗ ’ ;
Writeln (Length (S) : 2 , ’ : ’ , s) ;
end ;

end .

Ln

Declaration: Function Ln (X : Real) : Real;

Description: Ln returns the natural logarithm of the Real parameter X. X must be positive.

Errors: An run-time error will occur when X is negative.

See also: Exp (112), Power (131)

Program Example37 ;

{ Program to demonstrate the Ln f unc t i o n . }

begin
Writeln (Ln (1)) ; { Pr i n t s 0 }
Writeln (Ln(Exp (1))) ; { Pr i n t s 1 }

end .

Lo

Declaration: Function Lo (O : Word or Longint) : Byte or Word;

Description: Lo returns the low byte of its argument if this is of type Integer or Word. It
returns the low word of its argument if this is of type Longint or Cardinal.

Errors: None.

See also: Ord (128), Chr (104), Hi (118)

Program Example38 ;

{ Program to demonstrate the Lo f un c t i o n . }

Var L : Long int ;
W : Word ;

begin

123

12.2. FUNCTIONS AND PROCEDURES

L :=(1 Shl 1 6) + (1 Shl 4) ; { $10010 }
Writeln (Lo(L)) ; { Pr i n t s 16 }
W:=(1 Shl 8) + (1 Shl 4) ; { $110 }
Writeln (Lo(W)) ; { Pr i n t s 16 }

end .

LongJmp

Declaration: Procedure LongJmp (Var env : Jmp Buf; Value : Longint);

Description: LongJmp jumps to the adress in the env jmp buf, and resores the registers that
were stored in it at the corresponding SetJmp (139) call. In effect, program flow
will continue at the SetJmp call, which will return value instead of 0. If you pas a
value equal to zero, it will be converted to 1 before passing it on. The call will not
return, so it must be used with extreme care. This can be used for error recovery,
for instance when a segmentation fault occurred.

Errors: None.

See also: SetJmp (139)

For an example, see SetJmp (139)

Low

Declaration: Function Low (Type identifier or variable reference) : Longint;

Description: The return value of Low depends on it’s argument:

1.If the argument is an ordinal type, Low returns the lowest value in the range
of the given ordinal type.

2.If the argument is an array type or an array type variable then Low returns
the lowest possible value of it’s index.

Errors: None.

See also: High (119), Ord (128), Pred (131), Succ (144)

for an example, see High (119).

Lowercase

Declaration: Function Lowercase (C : Char or String) : Char or String;

Description: Lowercase returns the lowercase version of its argument C. If its argument is a
string, then the complete string is converted to lowercase. The type of the returned
value is the same as the type of the argument.

Errors: None.

See also: Upcase (146)

124

12.2. FUNCTIONS AND PROCEDURES

Program Example73 ;

{ Program to demonstrate the Lowercase f un c t i o n . }

Var I : Long int ;

begin
For i := ord (’ A’) to ord (’ Z’) do

write (lowercase (chr (i))) ;
Writeln ;
Writeln (Lowercase (’ ABCDEFGHIJKLMNOPQRSTUVWXYZ’)) ;

end .

Mark

Declaration: Procedure Mark (Var P : Pointer);

Description: Mark copies the current heap-pointer to P.

Errors: None.

See also: Getmem (117), Freemem (116), New (127), Dispose (108), Maxavail (125)

Program Example39 ;

{ Program to demonstrate the Mark and Re l ease f u n c t i o n s . }

Var P, PP, PPP,MM : P o i n t e r ;

begin
Getmem (P , 1 0 0) ;
Mark (MM) ;
Writeln (’ Getmem 1 0 0 : Memory a v a i l a b l e : ’ , MemAvail , ’ (marked) ’) ;
GetMem (PP, 1 0 0 0) ;
Writeln (’ Getmem 1 0 0 0 : Memory a v a i l a b l e : ’ , MemAvail) ;
GetMem (PPP, 1 0 0 0 0 0) ;
Writeln (’ Getmem 10000 : Memory a v a i l a b l e : ’ , MemAvail) ;
R e l e a s e (MM) ;
Writeln (’ R e l e a s e d : Memory a v a i l a b l e : ’ , MemAvail) ;
{ At t h i s po in t , PP and PPP are i n v a l i d ! }

end .

Maxavail

Declaration: Function Maxavail : Longint;

Description: Maxavail returns the size, in bytes, of the biggest free memory block in the heap.
Remark: The heap grows dynamically if more memory is needed than is available.

Errors: None.

See also: Release (134), Memavail (126),Freemem (116), Getmem (117)

125

12.2. FUNCTIONS AND PROCEDURES

Program Example40 ;

{ Program to demonstrate the MaxAvail f u n c t i o n . }

Var
P : P o i n t e r ;
I : l o n g i n t ;

begin
{ This w i l l a l l o c a t e memory u n t i l t he r e i s no more memory}
I :=0;
While MaxAvail >=1000 do

begin
Inc (I) ;
GetMem (P, 1 0 0 0) ;
end ;

{ Defau l t 4MB heap i s a l l o c a t e d , so 4000 b lock s
shou ld be a l l o c a t e d .
When compi led with the −Ch10000 sw i tch , the program
w i l l be ab le to a l l o c a t e 10 b lock }

Writeln (’ A l l o c a t e d ’ , i , ’ b l o c k s of 1000 by tes ’) ;
end .

Memavail

Declaration: Function Memavail : Longint;

Description: Memavail returns the size, in bytes, of the free heap memory. Remark: The heap
grows dynamically if more memory is needed than is available.

Errors: None.

See also: Maxavail (125),Freemem (116), Getmem (117)

Program Example41 ;

{ Program to demonstrate the MemAvail f u n c t i o n . }

Var
P , PP : P o i n t e r ;

begin
GetMem (P , 1 0 0) ;
GetMem (PP, 1 0 0 0 0) ;
FreeMem (P , 1 0 0) ;
{ Due to the heap f r agmenta t i on i n t r oduced

By the p r e v i ou s c a l l s , the maximum amount of memory
i s n ’ t equa l to the maximum block s i z e a v a i l a b l e . }

Writeln (’ Tota l heap a v a i l a b l e (Bytes) : ’ , MemAvail) ;
Writeln (’ L a r g e s t b lock a v a i l a b l e (Bytes) : ’ , MaxAvail) ;

end .

126

12.2. FUNCTIONS AND PROCEDURES

Mkdir

Declaration: Procedure Mkdir (const S : string);

Description: Mkdir creates a new directory S.

Errors: If a parent-directory of directory S doesn’t exist, a run-time error is generated.

See also: Chdir (104), Rmdir (136)

For an example, see Rmdir (136).

Move

Declaration: Procedure Move (var Source,Dest;Count : Longint);

Description: Move moves Count bytes from Source to Dest.

Errors: If either Dest or Source is outside the accessible memory for the process, then a
run-time error will be generated. With older versions of the compiler, a segmentation-
fault will occur.

See also: Fillword (115), Fillchar (114)

Program Example42 ;

{ Program to demonstrate the Move f un c t i o n . }

Var S1 , S2 : Str ing [3 0] ;

begin
S1:= ’ H e l l o World ! ’ ;
S2:= ’ Bye , bye ! ’ ;
Move (S1 , S2 , Sizeof (S1)) ;
Writeln (S2) ;

end .

New

Declaration: Procedure New (Var P : Pointer[, Constructor]);

Description: New allocates a new instance of the type pointed to by P, and puts the address in
P. If P is an object, then it is possible to specify the name of the constructor with
which the instance will be created.

Errors: If not enough memory is available, Nil will be returned.

See also: Dispose (108), Freemem (116), Getmem (117), Memavail (126), Maxavail (125)

For an example, see Dispose (108).

127

12.2. FUNCTIONS AND PROCEDURES

Odd

Declaration: Function Odd (X : Longint) : Boolean;

Description: Odd returns True if X is odd, or False otherwise.

Errors: None.

See also: Abs (99), Ord (128)

Program Example43 ;

{ Program to demonstrate the Odd func t i o n . }

begin
I f Odd(1) Then

Writeln (’ E v e r y t h i n g OK with 1 ! ’) ;
I f Not Odd(2) Then

Writeln (’ E v e r y t h i n g OK with 2 ! ’) ;
end .

Ofs

Declaration: Function Ofs Var X : Longint;

Description: Ofs returns the offset of the address of a variable. This function is only supported
for compatibility. In Free Pascal, it returns always the complete address of the
variable, since Free Pascal is a 32 bit compiler.

Errors: None.

See also: DSeg (109), CSeg (107), Seg (139), Ptr (131)

Program Example44 ;

{ Program to demonstrate the Ofs f un c t i o n . }

Var W : P o i n t e r ;

begin
W:= P o i n t e r (Ofs (W)) ; { W conta i n s i t s own o f f s e t . }

end .

Ord

Declaration: Function Ord (X : Any ordinal type) : Longint;

Description: Ord returns the Ordinal value of a ordinal-type variable X.

Errors: None.

See also: Chr (104), Succ (144), Pred (131), High (119), Low (124)

128

12.2. FUNCTIONS AND PROCEDURES

Program Example45 ;

{ Program to demonstrate the Ord , Pred , Succ f u n c t i o n s . }

Type
TEnum = (Zero , One , Two , Three , Four) ;

Var
X : Long int ;
Y : TEnum;

begin
X:=125;
Writeln (Ord(X)) ; { Pr i n t s 125 }
X:=Pred (X) ;
Writeln (Ord(X)) ; { p r i n t s 124 }
Y:= One ;
Writeln (Ord(y)) ; { Pr i n t s 1 }
Y:=Succ (Y) ;
Writeln (Ord(Y)) ; { Pr i n t s 2}

end .

Paramcount

Declaration: Function Paramcount : Longint;

Description: Paramcount returns the number of command-line arguments. If no arguments
were given to the running program, 0 is returned.

Errors: None.

See also: Paramstr (129)

Program Example46 ;

{ Program to demonstrate the ParamCount and ParamStr f u n c t i o n s . }
Var

I : Long int ;

begin
Writeln (paramstr (0) , ’ : Got ’ , ParamCount , ’ command−l i n e parameter s : ’) ;
For i :=1 to ParamCount do

Writeln (ParamStr (i)) ;
end .

Paramstr

Declaration: Function Paramstr (L : Longint) : String;

Description: Paramstr returns the L-th command-line argument. L must be between 0 and
Paramcount, these values included. The zeroth argument is the name with which
the program was started.

In all cases, the command-line will be truncated to a length of 255, even though
the operating system may support bigger command-lines. If you want to access the

129

12.2. FUNCTIONS AND PROCEDURES

complete command-line, you must use the argv pointer to access the Real values
of the command-line parameters.

Errors: None.

See also: Paramcount (129)

For an example, see Paramcount (129).

Pi

Declaration: Function Pi : Real;

Description: Pi returns the value of Pi (3.1415926535897932385).

Errors: None.

See also: Cos (107), Sin (141)

Program Example47 ;

{ Program to demonstrate the Pi f un c t i o n . }

begin
Writeln (Pi) ; {3.1415926}
Writeln (Sin (Pi)) ;

end .

Pos

Declaration: Function Pos (Const Substr : String;Const S : String) : Byte;

Description: Pos returns the index of Substr in S, if S contains Substr. In case Substr isn’t
found, 0 is returned. The search is case-sensitive.

Errors: None

See also: Length (122), Copy (106), Delete (108), Insert (120)

Program Example48 ;

{ Program to demonstrate the Pos f un c t i o n . }

Var
S : Str ing ;

begin
S:= ’ The f i r s t space in t h i s s e n t e n c e i s at p o s i t i o n : ’ ;
Writeln (S , pos (’ ’ , S)) ;
S:= ’ The l a s t l e t t e r of the a l p h a b e t doesn ’ ’ t appear in t h i s s e n t e n c e ’ ;
I f (Pos (’ Z’ , S)=0) and (Pos (’ z ’ , S)=0) then

Writeln (S) ;
end .

130

12.2. FUNCTIONS AND PROCEDURES

Power

Declaration: Function Power (base,expon : Real) : Real;

Description: Power returns the value of base to the power expon. Base and expon can be of
type Longint, in which case the result will also be a Longint.

The function actually returns Exp(expon*Ln(base))

Errors: None.

See also: Exp (112), Ln (123)

Program Example78 ;

{ Program to demonstrate the Power f un c t i o n . }

begin
Writeln (Power (exp (1 . 0) , 1 . 0) : 8 : 2) ; { Should p r i n t 2 . 7 2 }

end .

Pred

Declaration: Function Pred (X : Any ordinal type) : Same type;

Description: Pred returns the element that precedes the element that was passed to it. If it is
applied to the first value of the ordinal type, and the program was compiled with
range checking on ({$R+}, then a run-time error will be generated.

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (128), Pred (131), High (119), Low (124)

for an example, see Ord (128)

Ptr

Declaration: Function Ptr (Sel,Off : Longint) : Pointer;

Description: Ptr returns a pointer, pointing to the address specified by segment Sel and offset
Off.

Remarks:

1.In the 32-bit flat-memory model supported by Free Pascal, this function is
obsolete.

2.The returned address is simply the offset. If you recompile the RTL with
-dDoMapping defined, then the compiler returns the following : ptr := pointer($e0000000+sel
shl 4+off) under dos, or ptr := pointer(sel shl 4+off) on other OSes.

Errors: None.

See also: Addr (99)

131

12.2. FUNCTIONS AND PROCEDURES

Program Example59 ;

{ Program to demonstrate the Ptr f un c t i o n . }

Var P : ˆ Str ing ;
S : Str ing ;

begin
S:= ’ H e l l o , World ! ’ ;
P:= Ptr (Seg (S) , Long int (Ofs (S))) ;
{P now po in t s to S !}
Writeln (Pˆ) ;

end .

Random

Declaration: Function Random [(L : Longint)] : Longint or Real;

Description: Random returns a random number larger or equal to 0 and strictly less than L. If
the argument L is omitted, a Real number between 0 and 1 is returned. (0 included,
1 excluded)

Errors: None.

See also: Randomize (132)

Program Example49 ;

{ Program to demonstrate the Random and Randomize f u n c t i o n s . }

Var I , Count , guess : Long int ;
R : Real ;

begin
Randomize ; { This way we gene ra te a new sequence eve ry time

the program i s run }
Count :=0;
For i :=1 to 1000 do

I f Random>0.5 then inc (Count) ;
Writeln (’ Generated ’ , Count , ’ numbers > 0.5 ’) ;
Writeln (’ out of 1000 g e n e r a t e d numbers . ’) ;
count :=0;
For i :=1 to 5 do

begin
write (’ Guess a number between 1 and 5 : ’) ;
readln (Guess) ;
I f Guess=Random(5)+1 then inc (count) ;
end ;

Writeln (’ You guessed ’ , Count , ’ out of 5 c o r r e c t . ’) ;
end .

Randomize

Declaration: Procedure Randomize ;

132

12.2. FUNCTIONS AND PROCEDURES

Description: Randomize initializes the random number generator of Free Pascal, by giving a
value to Randseed, calculated with the system clock.

Errors: None.

See also: Random (132)

For an example, see Random (132).

Read

Declaration: Procedure Read ([Var F : Any file type], V1 [, V2, ... , Vn]);

Description: Read reads one or more values from a file F, and stores the result in V1, V2, etc.;
If no file F is specified, then standard input is read. If F is of type Text, then the
variables V1, V2 etc. must be of type Char, Integer, Real, String or PChar. If
F is a typed file, then each of the variables must be of the type specified in the
declaration of F. Untyped files are not allowed as an argument.

Errors: If no data is available, a run-time error is generated. This behavior can be con-
trolled with the {$i} compiler switch.

See also: Readln (133), Blockread (102), Write (147), Blockwrite (103)

Program Example50 ;

{ Program to demonstrate the Read (Ln) f un c t i o n . }

Var S : Str ing ;
C : Char ;
F : F i le of char ;

begin
Ass ign (F , ’ ex50 . pp ’) ;
Reset (F) ;
C:= ’ A’ ;
Writeln (’ The c h a r a c t e r s b e f o r e the f i r s t space in ex50 . pp are : ’) ;
While not Eof (f) and (C<>’ ’) do

Begin
Read (F , C) ;
Write (C) ;
end ;

Writeln ;
C lose (F) ;
Writeln (’ Type some words . An empty l i n e ends the program . ’) ;
repeat

Readln (S) ;
u n t i l S=’ ’ ;

end .

Readln

Declaration: Procedure Readln [Var F : Text], V1 [, V2, ... , Vn]);

133

12.2. FUNCTIONS AND PROCEDURES

Description: Read reads one or more values from a file F, and stores the result in V1, V2,
etc. After that it goes to the next line in the file (defined by the LineFeed (#10)
character). If no file F is specified, then standard input is read. The variables V1,
V2 etc. must be of type Char, Integer, Real, String or PChar.

Errors: If no data is available, a run-time error is generated. This behavior can be con-
trolled with the {$i} compiler switch.

See also: Read (133), Blockread (102), Write (147), Blockwrite (103)

For an example, see Read (133).

Release

Declaration: Procedure Release (Var P : pointer);

Description: Release sets the top of the Heap to the location pointed to by P. All memory at
a location higher than P is marked empty.

Errors: A run-time error will be generated if P points to memory outside the heap.

See also: Mark (125), Memavail (126), Maxavail (125), Getmem (117), Freemem (116) New
(127), Dispose (108)

For an example, see Mark (125).

Rename

Declaration: Procedure Rename (Var F : Any Filetype; Const S : String);

Description: Rename changes the name of the assigned file F to S. F must be assigned, but not
opened.

Errors: A run-time error will be generated if F isn’t assigned, or doesn’t exist.

See also: Erase (111)

Program Example77 ;

{ Program to demonstrate the Rename func t i o n . }
Var F : Text ;

begin
Ass ign (F , paramstr (1)) ;
Rename (F , paramstr (2)) ;

end .

Reset

Declaration: Procedure Reset (Var F : Any File Type[; L : Longint]);

Description: Reset opens a file F for reading. F can be any file type. If F is an untyped or typed
file, then it is opened for reading and writing. If F is an untyped file, the record
size can be specified in the optional parameter L. Default a value of 128 is used.

134

12.2. FUNCTIONS AND PROCEDURES

Errors: If the file cannot be opened for reading, then a run-time error is generated. This
behavior can be changed by the {$i} compiler switch.

See also: Rewrite (135), Assign (100), Close (104), Append (100)

Program Example51 ;

{ Program to demonstrate the Reset f un c t i o n . }

Function F i l e E x i s t s (Name : Str ing) : boo lean ;

Var F : F i le ;

begin
{ $ i−}
Ass ign (F , Name) ;
Reset (F) ;
{ $I +}
F i l e E x i s t s :=(IoResult =0) and (Name<>’ ’) ;
C lose (f) ;

end ;

begin
I f F i l e E x i s t s (Paramstr (1)) then

Writeln (’ F i l e found ’)
e lse

Writeln (’ F i l e NOT found ’) ;
end .

Rewrite

Declaration: Procedure Rewrite (Var F : Any File Type[; L : Longint]);

Description: Rewrite opens a file F for writing. F can be any file type. If F is an untyped or
typed file, then it is opened for reading and writing. If F is an untyped file, the
record size can be specified in the optional parameter L. Default a value of 128 is
used. if Rewrite finds a file with the same name as F, this file is truncated to length
0. If it doesn’t find such a file, a new file is created.

Errors: If the file cannot be opened for writing, then a run-time error is generated. This
behavior can be changed by the {$i} compiler switch.

See also: Reset (134), Assign (100), Close (104), Flush (115), Append (100)

Program Example52 ;

{ Program to demonstrate the Rewr i te f un c t i o n . }

Var F : F i le ;
I : l o n g i n t ;

begin
Ass ign (F , ’ Test . dat ’) ;
{ Create the f i l e . Reco rd s i z e i s 4 }

135

12.2. FUNCTIONS AND PROCEDURES

Rewrite (F , Sizeof (I)) ;
For I :=1 to 1 0 do

BlockWrite (F , I , 1) ;
c l o s e (f) ;
{ F con ta i n s now a b ina r y r e p r e s e n t a t i o n of

10 l o n g i n t s go ing from 1 to 10 }
end .

Rmdir

Declaration: Procedure Rmdir (const S : string);

Description: Rmdir removes the directory S.

Errors: If S doesn’t exist, or isn’t empty, a run-time error is generated.

See also: Chdir (104), Mkdir (127)

Program Example53 ;

{ Program to demonstrate the MkDir and RmDir f u n c t i o n s . }

Const D : Str ing [8] = ’ TEST. DIR ’ ;

Var S : Str ing ;

begin
Writeln (’ Making d i r e c t o r y ’ , D) ;
Mkdir (D) ;
Writeln (’ Changing d i r e c t o r y to ’ , D) ;
ChDir (D) ;
GetDir (0 , S) ;
Writeln (’ Cur rent D i r e c t o r y i s : ’ , S) ;
WRiteln (’ Going back ’) ;
ChDir (’ . . ’) ;
Writeln (’ Removing d i r e c t o r y ’ , D) ;
RmDir (D) ;

end .

Round

Declaration: Function Round (X : Real) : Longint;

Description: Round rounds X to the closest integer, which may be bigger or smaller than X.

Errors: None.

See also: Frac (116), Int (121), Trunc (145)

Program Example54 ;

{ Program to demonstrate the Round func t i o n . }

begin

136

12.2. FUNCTIONS AND PROCEDURES

Writeln (Round (1 2 3 . 4 5 6)) ; { Pr i n t s 124 }
Writeln (Round (−1 2 3 . 4 5 6)) ; { Pr i n t s −124 }
Writeln (Round (1 2 . 3 4 5 6)) ; { Pr i n t s 12 }
Writeln (Round (−1 2 . 3 4 5 6)) ; { Pr i n t s −12 }

end .

Runerror

Declaration: Procedure Runerror (ErrorCode : Word);

Description: Runerror stops the execution of the program, and generates a run-time error
ErrorCode.

Errors: None.

See also: Exit (111), Halt (117)

Program Example55 ;

{ Program to demonstrate the RunError f un c t i o n . }

begin
{ The program w i l l s top end emit a run−e r r o r 106 }
RunError (1 0 6) ;

end .

Seek

Declaration: Procedure Seek (Var F; Count : Longint);

Description: Seek sets the file-pointer for file F to record Nr. Count. The first record in a file
has Count=0. F can be any file type, except Text. If F is an untyped file, with no
record size specified in Reset (134) or Rewrite (135), 128 is assumed.

Errors: A run-time error is generated if Count points to a position outside the file, or the
file isn’t opened.

See also: Eof (110), SeekEof (138), SeekEoln (138)

Program Example56 ;

{ Program to demonstrate the Seek f un c t i o n . }

Var
F : F i l e ;
I , j : l o n g i n t ;

begin
{ Create a f i l e and f i l l i t with data }
Ass ign (F , ’ t e s t . dat ’) ;
Rewrite (F) ; { Create f i l e }
Close (f) ;
Fi leMode :=2;
ReSet (F , Sizeof (i)) ; { Opened read / wr i t e }

137

12.2. FUNCTIONS AND PROCEDURES

For I :=0 to 1 0 do
BlockWrite (F , I , 1) ;

{ Go Back to the beg i n i ng of the f i l e }
Seek (F , 0) ;
For I :=0 to 1 0 do

begin
BlockRead (F , J , 1) ;
I f J<>I then

Writeln (’ E r r o r : expected ’ , i , ’ , got ’ , j) ;
end ;

C lose (f) ;
end .

SeekEof

Declaration: Function SeekEof [(Var F : text)] : Boolean;

Description: SeekEof returns True is the file-pointer is at the end of the file. It ignores all
whitespace. Calling this function has the effect that the file-position is advanced
until the first non-whitespace character or the end-of-file marker is reached. If the
end-of-file marker is reached, True is returned. Otherwise, False is returned. If the
parameter F is omitted, standard Input is assumed.

Errors: A run-time error is generated if the file F isn’t opened.

See also: Eof (110), SeekEoln (138), Seek (137)

Program Example57 ;

{ Program to demonstrate the SeekEof f un c t i o n . }
Var C : Char ;

begin
{ t h i s w i l l p r i n t a l l c h a r a c t e r s from standard input except

Whitespace c h a r a c t e r s . }
While Not SeekEof do

begin
Read (C) ;
Write (C) ;
end ;

end .

SeekEoln

Declaration: Function SeekEoln [(Var F : text)] : Boolean;

Description: SeekEoln returns True is the file-pointer is at the end of the current line. It ignores
all whitespace. Calling this function has the effect that the file-position is advanced
until the first non-whitespace character or the end-of-line marker is reached. If the
end-of-line marker is reached, True is returned. Otherwise, False is returned. The
end-of-line marker is defined as #10, the LineFeed character. If the parameter F is
omitted, standard Input is assumed.

Errors: A run-time error is generated if the file F isn’t opened.

138

12.2. FUNCTIONS AND PROCEDURES

See also: Eof (110), SeekEof (138), Seek (137)

Program Example58 ;

{ Program to demonstrate the SeekEoln f unc t i o n . }
Var

C : Char ;

begin
{ This w i l l read the f i r s t l i n e of s tandard output and p r i n t

a l l c h a r a c t e r s except wh i t e space . }
While not SeekEoln do

Begin
Read (c) ;
Write (c) ;
end ;

end .

Seg

Declaration: Function Seg Var X : Longint;

Description: Seg returns the segment of the address of a variable. This function is only sup-
ported for compatibility. In Free Pascal, it returns always 0, since Free Pascal is a
32 bit compiler, segments have no meaning.

Errors: None.

See also: DSeg (109), CSeg (107), Ofs (128), Ptr (131)

Program Example60 ;

{ Program to demonstrate the Seg f un c t i o n . }
Var

W : Word ;

begin
W:=Seg (W) ; { W conta i n s i t s own Segment }

end .

SetJmp

Declaration: Function SetJmp (Var Env : Jmp Buf) : Longint;

Description: SetJmp fills env with the necessary data for a jump back to the point where it was
called. It returns zero if called in this way. If the function returns nonzero, then it
means that a call to LongJmp (124) with env as an argument was made somewhere
in the program.

Errors: None.

See also: LongJmp (124)

139

12.2. FUNCTIONS AND PROCEDURES

program example79 ;

{ Program to demonstrate the set jmp , longjmp f un c t i o n s }

procedure dojmp (var env : jmp buf ; v a l u e : l o n g i n t) ;

begin
v a l u e :=2;
Writeln (’ Going to jump ! ’) ;
{ This w i l l r e t u rn to the set jmp c a l l ,

and r e tu rn va lue i n s t e ad of 0 }
longjmp (env , v a l u e) ;

end ;

var env : jmp buf ;

begin
i f set jmp (env)=0 then

begin
wr i te ln (’ Passed f i r s t t ime . ’) ;
dojmp (env , 2) ;
end

else
wr i te ln (’ Passed second time . ’) ;

end .

SetLength

Declaration: Procedure SetLength(var S : String; Len : Longint);

Description: SetLength sets the length of the string S to Len. S can be an ansistring or a short
string. For ShortStrings, Len can maximally be 255. For AnsiStrings it can
have any value. For AnsiString strings, SetLength must be used to set the length
of the string.

Errors: None.

See also: Length (122)

Program Example85 ;

{ Program to demonstrate the SetLength f un c t i o n . }

Var S : Str ing ;

begin
F i l lChar (S [1] , 1 0 0 , # 3 2) ;
S e t l e n g t h (S , 1 0 0) ;
Writeln (’ ” ’ , S , ’ ” ’) ;

end .

SetTextBuf

Declaration: Procedure SetTextBuf (Var f : Text; Var Buf[; Size : Word]);

140

12.2. FUNCTIONS AND PROCEDURES

Description: SetTextBuf assigns an I/O buffer to a text file. The new buffer is located at Buf
and is Size bytes long. If Size is omitted, then SizeOf(Buf) is assumed. The
standard buffer of any text file is 128 bytes long. For heavy I/0 operations this
may prove too slow. The SetTextBuf procedure allows you to set a bigger buffer
for your application, thus reducing the number of system calls, and thus reducing
the load on the system resources. The maximum size of the newly assigned buffer
is 65355 bytes. Remark 1: Never assign a new buffer to an opened file. You can
assign a new buffer immediately after a call to Rewrite (135), Reset (134) or Append,
but not after you read from/wrote to the file. This may cause loss of data. If you
still want to assign a new buffer after read/write operations have been performed,
flush the file first. This will ensure that the current buffer is emptied. Remark 2:
Take care that the buffer you assign is always valid. If you assign a local variable
as a buffer, then after your program exits the local program block, the buffer will
no longer be valid, and stack problems may occur.

Errors: No checking on Size is done.

See also: Assign (100), Reset (134), Rewrite (135), Append (100)

Program Example61 ;

{ Program to demonstrate the SetTextBuf f un c t i o n . }

Var
Fin , Fout : Text ;
Ch : Char ;
Buf in , Bufout : Array [1 . . 1 0 0 0 0] of byte ;

begin
Ass ign (Fin , paramstr (1)) ;
Reset (Fin) ;
Ass ign (Fout , paramstr (2)) ;
Rewrite (Fout) ;
{ This i s ha rmles s be fo r e IO has begun }
{ Try t h i s program aga in on a big f i l e ,

a f t e r commenting out the f o l l ow i n g 2
l i n e s and r e comp i l i n g i t . }

SetTextBuf (Fin , Buf in) ;
SetTextBuf (Fout , Bufout) ;
While not eof (Fin) do

begin
Read (Fin , ch) ;
write (Fout , ch) ;
end ;

C lose (Fin) ;
C lose (Fout) ;

end .

Sin

Declaration: Function Sin (X : Real) : Real;

Description: Sin returns the sine of its argument X, where X is an angle in radians.

Errors: None.

141

12.2. FUNCTIONS AND PROCEDURES

See also: Cos (107), Pi (130), Exp (112), Ln (123)

Program Example62 ;

{ Program to demonstrate the Sin f un c t i o n . }

begin
Writeln (Sin (Pi) : 0 : 1) ; { Pr i n t s 0 . 0 }
Writeln (Sin (Pi / 2) : 0 : 1) ; { Pr i n t s 1 . 0 }

end .

SizeOf

Declaration: Function SizeOf (X : Any Type) : Longint;

Description: SizeOf returns the size, in bytes, of any variable or type-identifier. Remark: this
isn’t really a RTL function. Its result is calculated at compile-time, and hard-coded
in your executable.

Errors: None.

See also: Addr (99)

Program Example63 ;

{ Program to demonstrate the SizeOf f un c t i o n . }
Var

I : Long int ;
S : Str ing [1 0] ;

begin
Writeln (SizeOf (I)) ; { Pr i n t s 4 }
Writeln (SizeOf (S)) ; { Pr i n t s 11 }

end .

Sptr

Declaration: Function Sptr : Pointer;

Description: Sptr returns the current stack pointer.

Errors: None.

See also: SSeg (143)

Program Example64 ;

{ Program to demonstrate the SPtr f un c t i o n . }
Var

P : Long int ;

begin
P:= Sptr ; { P Conta ins now the cu r r en t s tack p o s i t i o n . }

end .

142

12.2. FUNCTIONS AND PROCEDURES

Sqr

Declaration: Function Sqr (X : Real) : Real;

Description: Sqr returns the square of its argument X.

Errors: None.

See also: Sqrt (143), Ln (123), Exp (112)

Program Example65 ;

{ Program to demonstrate the Sqr f un c t i o n . }
Var i : I n t e g e r ;

begin
For i :=1 to 1 0 do

wr i te ln (Sqr (i) : 3) ;
end .

Sqrt

Declaration: Function Sqrt (X : Real) : Real;

Description: Sqrt returns the square root of its argument X, which must be positive.

Errors: If X is negative, then a run-time error is generated.

See also: Sqr (143), Ln (123), Exp (112)

Program Example66 ;

{ Program to demonstrate the Sqrt f un c t i o n . }

begin
Writeln (Sqrt (4) : 0 : 3) ; { Pr i n t s 2 . 000 }
Writeln (Sqrt (2) : 0 : 3) ; { Pr i n t s 1 . 414 }

end .

SSeg

Declaration: Function SSeg : Longint;

Description: SSeg returns the Stack Segment. This function is only supported for compatibility
reasons, as Sptr returns the correct contents of the stackpointer.

Errors: None.

See also: Sptr (142)

Program Example67 ;

{ Program to demonstrate the SSeg f un c t i o n . }
Var W : Long int ;

begin
W:=SSeg ;

end .

143

12.2. FUNCTIONS AND PROCEDURES

Str

Declaration: Procedure Str (Var X[:NumPlaces[:Decimals]]; Var S : String);

Description: Str returns a string which represents the value of X. X can be any numerical
type. The optional NumPLaces and Decimals specifiers control the formatting of
the string.

Errors: None.

See also: Val (146)

Program Example68 ;

{ Program to demonstrate the Str f un c t i o n . }
Var S : Str ing ;

Function IntToStr (I : Long int) : Str ing ;

Var S : Str ing ;

begin
Str (I , S) ;
IntToStr :=S ;

end ;

begin
S:= ’∗ ’ +IntToStr (−233)+ ’∗ ’ ;
Writeln (S) ;

end .

Succ

Declaration: Function Succ (X : Any ordinal type) : Same type;

Description: Succ returns the element that succeeds the element that was passed to it. If it is
applied to the last value of the ordinal type, and the program was compiled with
range checking on ({$R+}), then a run-time error will be generated.

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (128), Pred (131), High (119), Low (124)

for an example, see Ord (128).

Swap

Declaration: Function Swap (X) : Type of X;

Description: Swap swaps the high and low order bytes of X if X is of type Word or Integer, or
swaps the high and low order words of X if X is of type Longint or Cardinal. The
return type is the type of X

Errors: None.

See also: Lo (123), Hi (118)

144

12.2. FUNCTIONS AND PROCEDURES

Program Example69 ;

{ Program to demonstrate the Swap func t i o n . }
Var W : Word ;

L : Long int ;

begin
W:= $1234 ;
W:=Swap(W) ;
i f W<>$3412 then

wr i te ln (’ E r r o r when swapping word ! ’) ;
L:= $12345678 ;
L:=Swap(L) ;
i f L<>$56781234 then

wr i te ln (’ E r r o r when swapping Long int ! ’) ;
end .

Trunc

Declaration: Function Trunc (X : Real) : Longint;

Description: Trunc returns the integer part of X, which is always smaller than (or equal to) X
in absolute value.

Errors: None.

See also: Frac (116), Int (121), Round (136)

Program Example54 ;

{ Program to demonstrate the Trunc f un c t i o n . }

begin
Writeln (Trunc (1 2 3 . 4 5 6)) ; { Pr i n t s 123 }
Writeln (Trunc (−1 2 3 . 4 5 6)) ; { Pr i n t s −123 }
Writeln (Trunc (1 2 . 3 4 5 6)) ; { Pr i n t s 12 }
Writeln (Trunc (−1 2 . 3 4 5 6)) ; { Pr i n t s −12 }

end .

Truncate

Declaration: Procedure Truncate (Var F : file);

Description: Truncate truncates the (opened) file F at the current file position.

Errors: Errors are reported by IOresult.

See also: Append (100), Filepos (113), Seek (137)

Program Example71 ;

{ Program to demonstrate the Truncate f un c t i o n . }

Var F : F i le of l o n g i n t ;

145

12.2. FUNCTIONS AND PROCEDURES

I , L : Long int ;

begin
Ass ign (F , ’ t e s t . dat ’) ;
Rewrite (F) ;
For I :=1 to 1 0 Do

Write (F , I) ;
Writeln (’ F i l e s i z e b e f o r e Truncate : ’ , F i l e S i z e (F)) ;
C lose (f) ;
Reset (F) ;
Repeat

Read (F , I) ;
Unti l i =5;
Truncate (F) ;
Writeln (’ F i l e s i z e a f t e r Truncate : ’ , F i l e s i z e (F)) ;
C lose (f) ;

end .

Upcase

Declaration: Function Upcase (C : Char or string) : Char or String;

Description: Upcase returns the uppercase version of its argument C. If its argument is a string,
then the complete string is converted to uppercase. The type of the returned value
is the same as the type of the argument.

Errors: None.

See also: Lowercase (124)

Program Example72 ;

{ Program to demonstrate the Upcase f un c t i o n . }

Var I : Long int ;

begin
For i := ord (’ a ’) to ord (’ z ’) do

write (upcase (chr (i))) ;
Writeln ;
{ This doesn ’ t work in TP, but i t does in Free Pasca l }
Writeln (Upcase (’ a b c d e f g h i j k l m n o p q r s t u v w x y z ’)) ;

end .

Val

Declaration: Procedure Val (const S : string;var V;var Code : word);

Description: Val converts the value represented in the string S to a numerical value, and stores
this value in the variable V, which can be of type Longint, Real and Byte. If
the conversion isn’t succesfull, then the parameter Code contains the index of the
character in S which prevented the conversion. The string S isn’t allowed to contain
spaces.

146

12.2. FUNCTIONS AND PROCEDURES

Errors: If the conversion doesn’t succeed, the value of Code indicates the position where
the conversion went wrong.

See also: Str (144)

Program Example74 ;

{ Program to demonstrate the Val f un c t i o n . }
Var I , Code : I n t e g e r ;

begin
Val (ParamStr (1) , I , Code) ;
I f Code<>0 then

Writeln (’ E r r o r at p o s i t i o n ’ , code , ’ : ’ , Paramstr (1) [Code])
e lse

Writeln (’ Value : ’ , I) ;
end .

Write

Declaration: Procedure Write ([Var F : Any filetype;] V1 [; V2; ... , Vn)];

Description: Write writes the contents of the variables V1, V2 etc. to the file F. F can be a
typed file, or a Text file. If F is a typed file, then the variables V1, V2 etc. must
be of the same type as the type in the declaration of F. Untyped files are not
allowed. If the parameter F is omitted, standard output is assumed. If F is of
type Text, then the necessary conversions are done such that the output of the
variables is in human-readable format. This conversion is done for all numerical
types. Strings are printed exactly as they are in memory, as well as PChar types.
The format of the numerical conversions can be influenced through the following
modifiers: OutputVariable : NumChars [: Decimals] This will print the
value of OutputVariable with a minimum of NumChars characters, from which
Decimals are reserved for the decimals. If the number cannot be represented with
NumChars characters, NumChars will be increased, until the representation fits. If
the representation requires less than NumChars characters then the output is filled
up with spaces, to the left of the generated string, thus resulting in a right-aligned
representation. If no formatting is specified, then the number is written using its
natural length, with nothing in front of it if it’s positive, and a minus sign if it’s
negative. Real numbers are, by default, written in scientific notation.

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled
with the {$i} switch.

See also: WriteLn (147), Read (133), Readln (133), Blockwrite (103)

WriteLn

Declaration: Procedure WriteLn [([Var F : Text;] [V1 [; V2; ... , Vn)]];

Description: WriteLn does the same as Write (147) for text files, and emits a Carriage Return -
LineFeed character pair after that. If the parameter F is omitted, standard output
is assumed. If no variables are specified, a Carriage Return - LineFeed character
pair is emitted, resulting in a new line in the file F. Remark: Under linux, the
Carriage Return character is omitted, as customary in Unix environments.

147

12.2. FUNCTIONS AND PROCEDURES

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled
with the {$i} switch.

See also: Write (147), Read (133), Readln (133), Blockwrite (103)

Program Example75 ;

{ Program to demonstrate the Write (ln) f un c t i o n . }

Var
F : F i l e of Long int ;
L : Long int ;

begin
Write (’ This i s on the f i r s t l i n e ! ’) ; { No CR/LF pa i r ! }
Writeln (’ And t h i s too . . . ’) ;
Writeln (’ But t h i s i s a l r e a d y on the second l i n e . . . ’) ;
Ass ign (f , ’ t e s t . dat ’) ;
Rewrite (f) ;
For L :=1 to 1 0 do

write (F , L) ; { No w r i t e l n a l l owed here ! }
Close (f) ;

end .

148

Index

Abs, 99
Addr, 99
Append, 100
Arctan, 100
Assign, 100
Assigned, 101

BinStr, 101
Blockread, 102
Blockwrite, 103
Break, 103

Chdir, 104
Chr, 104
Close, 104
Concat, 105
Continue, 105
Copy, 106
Cos, 107
CSeg, 107

Dec, 107
Delete, 108
Dispose, 108
DSeg, 109

Eof, 110
Eoln, 110
Erase, 111
Exit, 111
Exp, 112

Filepos, 113
Filesize, 114
Fillchar, 114
Fillword, 115
Flush, 115
Frac, 116
Freemem, 116

Getdir, 117
Getmem, 117

Halt, 117
HexStr, 118
Hi, 118

High, 119

Inc, 120
Insert, 120
Int, 121
IOresult, 121

Length, 122
Ln, 123
Lo, 123
LongJmp, 124
Low, 124
Lowercase, 124

Mark, 125
Maxavail, 125
Memavail, 126
Mkdir, 127
Move, 127

New, 127

Odd, 128
Ofs, 128
Ord, 128

Paramcount, 129
Paramstr, 129
Pi, 130
Pos, 130
Power, 131
Pred, 131
Ptr, 131

Random, 132
Randomize, 132
Read, 133
Readln, 133
Release, 134
Rename, 134
Reset, 134
Rewrite, 135
Rmdir, 136
Round, 136
Runerror, 137

Seek, 137

149

INDEX

SeekEof, 138
SeekEoln, 138
Seg, 139
SetJmp, 139
SetLength, 140
SetTextBuf, 140
Sin, 141
SizeOf, 142
Sptr, 142
Sqr, 143
Sqrt, 143
SSeg, 143
Str, 144
Succ, 144
Swap, 144

Trunc, 145
Truncate, 145

Upcase, 146

Val, 146

Write, 147
WriteLn, 147

150

	The Pascal language
	Pascal Tokens
	Symbols
	Comments
	Reserved words
	Identifiers
	Numbers
	Labels
	Character strings

	Constants
	Ordinary constants
	Typed constants

	Types
	Base types
	Character types
	Structured Types
	Pointers
	Procedural types

	Objects
	Declaration
	Fields
	Constructors and destructors
	Methods
	Method invocation
	Visibility

	Classes
	Class definitions
	Class instantiation
	Methods
	Properties

	Expressions
	Expression syntax
	Function calls
	Set constructors
	Value typecasts
	The @ operator
	Operators

	Statements
	Simple statements
	Structured statements
	Assembler statements

	Using functions and procedures
	Procedure declaration
	Function declaration
	Parameter lists
	Function overloading
	Forward defined functions
	External functions
	Assembler functions
	Modifiers
	Unsupported Turbo Pascal modifiers

	Programs, units, blocks
	Programs
	Units
	Blocks
	Scope
	Libraries

	Exceptions
	The raise statement
	The try...except statement
	The try...finally statement
	Exception handling nesting
	Exception classes

	Using assembler
	Assembler statements
	Assembler procedures and functions

	Reference : The System unit
	The system unit
	Types, Constants and Variables
	Functions and Procedures

