
Free Pascal
Programmers’ manual

Programmers’ manual for Free Pascal, version 0.99.12
1.6

July 1999

Michaël Van Canneyt



Contents

1 Compiler directives 9

1.1 Local directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

$A or $ALIGN: Align Data . . . . . . . . . . . . . . . . . . . . . . . . 9

$ASMMODE : Assembler mode . . . . . . . . . . . . . . . . . . . . . . . 9

$B or $BOOLEVAL: Complete boolean evaluation . . . . . . . . . . . . 10

$C or $ASSERTIONS : Assertion support . . . . . . . . . . . . . . . . . 10

$DEFINE : Define a symbol . . . . . . . . . . . . . . . . . . . . . . . . 10

$ELSE : Switch conditional compilation . . . . . . . . . . . . . . . . . 11

$ENDIF : End conditional compilation . . . . . . . . . . . . . . . . . 11

$ERROR : Generate error message . . . . . . . . . . . . . . . . . . . . 11

$F : Far or near functions . . . . . . . . . . . . . . . . . . . . . . . . 11

$FATAL : Generate fatal error message . . . . . . . . . . . . . . . . . 12

$GOTO : Support Goto and Label . . . . . . . . . . . . . . . . . . . . 12

$H or $LONGSTRINGS : Use AnsiStrings . . . . . . . . . . . . . . . . . 13

$HINT : Generate hint message . . . . . . . . . . . . . . . . . . . . . 13

$HINTS : Emit hints . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

$IF : Start conditional compilation . . . . . . . . . . . . . . . . . . . 13

$IFDEF : Start conditional compilation . . . . . . . . . . . . . . . . . 13

$IFNDEF : Start conditional compilation . . . . . . . . . . . . . . . . 13

$IFOPT : Start conditional compilation . . . . . . . . . . . . . . . . . 13

$INFO : Generate info message . . . . . . . . . . . . . . . . . . . . . 14

$INLINE : Allow inline code. . . . . . . . . . . . . . . . . . . . . . . . 14

$I or $IOCHECKS : Input/Output checking . . . . . . . . . . . . . . . 14

$I or $INCLUDE : Include file . . . . . . . . . . . . . . . . . . . . . . 15

$I or $INCLUDE : Include compiler info . . . . . . . . . . . . . . . . . 15

$I386 XXX : Specify assembler format . . . . . . . . . . . . . . . . . 16

$L or $LINK : Link object file . . . . . . . . . . . . . . . . . . . . . . 16

$LINKLIB : Link to a library . . . . . . . . . . . . . . . . . . . . . . . 16

$M or $TYPEINFO : Generate type info . . . . . . . . . . . . . . . . . 17

$MACRO : Allow use of macros. . . . . . . . . . . . . . . . . . . . . . . 17

1



CONTENTS CONTENTS

$MESSAGE : Generate info message . . . . . . . . . . . . . . . . . . . 17

$MMX : Intel MMX support . . . . . . . . . . . . . . . . . . . . . . . . 17

$NOTE : Generate note message . . . . . . . . . . . . . . . . . . . . . 18

$NOTES : Emit notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

$OUTPUT FORMAT : Specify the output format . . . . . . . . . . . . . 19

$P or $OPENSTRINGS : Use open strings . . . . . . . . . . . . . . . . . 19

$PACKENUM : Minimum enumeration type size . . . . . . . . . . . . . 19

$PACKRECORDS : Alignment of record elements . . . . . . . . . . . . . 19

$Q $OVERFLOWCHECKS: Overflow checking . . . . . . . . . . . . . . . . 20

$R or $RANGECHECKS : Range checking . . . . . . . . . . . . . . . . . 20

$SATURATION : Saturation operations . . . . . . . . . . . . . . . . . . 20

$SMARTLINK : Use smartlinking . . . . . . . . . . . . . . . . . . . . . 20

$STATIC : Allow use of Static keyword. . . . . . . . . . . . . . . . . 21

$STOP : Generate fatal error message . . . . . . . . . . . . . . . . . . 21

$T or $TYPEDADDRESS : Typed address operator (@) . . . . . . . . . 21

$UNDEF : Undefine a symbol . . . . . . . . . . . . . . . . . . . . . . . 21

$V or $VARSTRINGCHECKS : Var-string checking . . . . . . . . . . . . 22

$WAIT : Wait for enter key press . . . . . . . . . . . . . . . . . . . . . 22

$WARNING : Generate warning message . . . . . . . . . . . . . . . . . 22

$WARNINGS : Emit warnings . . . . . . . . . . . . . . . . . . . . . . . 22

$X or $EXTENDEDSYNTAX : Extended syntax . . . . . . . . . . . . . . 22

1.2 Global directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

$APPTYPE : Specify type of application (Win32 only) . . . . . . . . . 23

$D or $DEBUGINFO: Debugging symbols . . . . . . . . . . . . . . . . . 23

$DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

$E : Emulation of coprocessor . . . . . . . . . . . . . . . . . . . . . . 23

$G : Generate 80286 code . . . . . . . . . . . . . . . . . . . . . . . . 24

$INCLUDEPATH : Specify include path. . . . . . . . . . . . . . . . . . 24

$L or $LOCALSYMBOLS: Local symbol information . . . . . . . . . . . 24

$LIBRARYPATH : Specify library path. . . . . . . . . . . . . . . . . . . 25

$M or $MEMORY: Memory sizes . . . . . . . . . . . . . . . . . . . . . . 25

$MODE : Set compiler compatibility mode . . . . . . . . . . . . . . . . 25

$N : Numeric processing . . . . . . . . . . . . . . . . . . . . . . . . . 26

$O : Overlay code generation . . . . . . . . . . . . . . . . . . . . . . 26

$OBJECTPATH : Specify object path. . . . . . . . . . . . . . . . . . . . 26

$S : Stack checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

$UNITPATH : Specify unit path. . . . . . . . . . . . . . . . . . . . . . 26

$W or $STACKFRAMES : Generate stackframes . . . . . . . . . . . . . . 27

$Y or $REFERENCEINFO : Insert Browser information . . . . . . . . . 27

2



CONTENTS CONTENTS

2 Using conditionals, messages and macros 28

2.1 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Using Assembly language 35

3.1 Intel syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 AT&T Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Calling mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Ix86 calling conventions . . . . . . . . . . . . . . . . . . . . . . . . 40

M680x0 calling conventions . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Signalling changed registers . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Register Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Intel x86 version . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Motorola 680x0 version . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Linking issues 43

4.1 Using external functions or procedures . . . . . . . . . . . . . . . . . 43

4.2 Using external variables . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Linking to an object file . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Linking to a library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Making libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Exporting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Exporting variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Compiling libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Moving units into a library . . . . . . . . . . . . . . . . . . . . . . . 50

Unit searching strategy . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Using smart linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Objects 52

5.1 Constructor and Destructor calls . . . . . . . . . . . . . . . . . . . . 52

5.2 Memory storage of objects . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 The Virtual Method Table . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Generated code 54

6.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Intel MMX support 56

7.1 What is it about ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Saturation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Restrictions of MMX support . . . . . . . . . . . . . . . . . . . . . . 57

3



CONTENTS CONTENTS

7.4 Supported MMX operations . . . . . . . . . . . . . . . . . . . . . . . 58

7.5 Optimizing MMX support . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Memory issues 59

8.1 The 32-bit model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.2 The stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Intel x86 version . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Motorola 680x0 version . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.3 The heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

The heap grows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Using Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Using the split heap . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.4 Using dos memory under the Go32 extender . . . . . . . . . . . . . 63

9 Optimizations 65

9.1 Non processor specific . . . . . . . . . . . . . . . . . . . . . . . . . 65

Constant folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Constant merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Short cut evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Constant set inlining . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Small sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Range checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Shifts instead of multiply or divide . . . . . . . . . . . . . . . . . . 66

Automatic alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Smart linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Inline routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Case optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Stack frame omission . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Register variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Intel x86 specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Motorola 680x0 specific . . . . . . . . . . . . . . . . . . . . . . . . 69

9.2 Optimization switches . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.3 Tips to get faster code . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.4 Floating point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Intel x86 specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Motorola 680x0 specific . . . . . . . . . . . . . . . . . . . . . . . . 71

A Anatomy of a unit file 72

A.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 reading ppufiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.3 The Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4



CONTENTS CONTENTS

A.4 The sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.5 Creating ppufiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B Compiler and RTL source tree structure 77

B.1 The compiler source tree . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.2 The RTL source tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C Compiler limits 79

D Compiler modes 80

D.1 FPC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

D.2 TP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

D.3 Delphi mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D.4 GPC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D.5 OBJFPC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

E Using makefile.fpc 83

E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

E.2 Programs needed to use the makefile . . . . . . . . . . . . . . . . . . 83

E.3 Variables used by makefile.fpc . . . . . . . . . . . . . . . . . . . . . . 84

Required variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Directory variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Target variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Compiler command-line variables . . . . . . . . . . . . . . . . . . . . 85

E.4 Variables set by makefile.fpc . . . . . . . . . . . . . . . . . . . . . . . 86

Directory variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Program names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

File extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Target files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

E.5 Rules and targets created by makefile.fpc . . . . . . . . . . . . . . . . 89

Pattern rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Build rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Cleaning rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

archiving rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Informative rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

E.6 Using the provided template . . . . . . . . . . . . . . . . . . . . . . . 90

F Compiling the compiler yourself 92

F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

F.2 Before you begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

F.3 Compiling using make . . . . . . . . . . . . . . . . . . . . . . . . . . 93

F.4 Compiling by hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5



CONTENTS CONTENTS

Compiling the RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Compiling the compiler . . . . . . . . . . . . . . . . . . . . . . . . . 95

6



List of Tables

1.1 Formats generated by the x86 compiler . . . . . . . . . . . . . . . . . 19

2.1 Symbols defined by the compiler. . . . . . . . . . . . . . . . . . . . . 29

2.2 Predefined macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Calling mechanisms in Free Pascal . . . . . . . . . . . . . . . . . . . 40

5.1 Object memory layout . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Virtual Method Table memory layout . . . . . . . . . . . . . . . . . 53

8.1 Stack frame when calling a procedure . . . . . . . . . . . . . . . . . 60

F.1 Possible defines when compiling FPC . . . . . . . . . . . . . . . . . . 96

7



LIST OF TABLES LIST OF TABLES

About this document

This is the programmer’s manual for Free Pascal.

It describes some of the peculiarities of the Free Pascal compiler, and provides
a glimpse of how the compiler generates its code, and how you can change the
generated code. It will not, however, provide you with a detailed account of the
inner workings of the compiler, nor will it tell you how to use the compiler (described
in the Users’ guide). It also will not describe the inner workings of the Run-Time
Library (RTL). The best way to learn about the way the RTL is implemented is
from the sources themselves.

The things described here are useful if you want to do things which need greater
flexibility than the standard Pascal language constructs. (described in the Reference
guide)

Since the compiler is continuously under development, this document may get out
of date. Wherever possible, the information in this manual will be updated. If you
find something which isn’t correct, or you think something is missing, feel free to
contact me1.

1at Michael.VanCanneyt@wisa.be

8

file:../user/user.html
file:../ref/ref.html
file:../ref/ref.html


Chapter 1

Compiler directives

Free Pascal supports compiler directives in your source file. They are not the same
as Turbo Pascal directives, although some are supported for compatibility. There is
a distinction between local and global directives; local directives take effect from the
moment they are encountered, global directives have an effect on all of the compiled
code.

Many switches have a long form also. If they do, then the name of the long form
is given also. For long switches, the + or - character to switch the option on or off,
may be replaced by ON or OFF keywords.

Thus {$I+} is equivalent to {$IOCHECKS ON} or {$IOCHECKS +} and {$C-} is equiv-
alent to {$ASSERTIONS OFF} or {$ASSERTIONS -}

The long forms of the switches are the same as their Delphi counterparts.

1.1 Local directives

Local directives can occur more than once in a unit or program, If they have a
command-line counterpart, the command-line artgument is restored as the default
for each compiled file. The local directives influence the compiler’s behaviour from
the moment they’re encountered until the moment another switch annihilates their
behaviour, or the end of the current unit or program is reached.

$A or $ALIGN: Align Data

This switch is recognized for Turbo Pascal Compatibility, but is not yet imple-
mented. The alignment of data will be different in any case, since Free Pascal is a
32-bit compiler.

$ASMMODE : Assembler mode

The {$ASMMODE XXX directive informs the compiler what kind of assembler it can
expect in an asm block. The XXX should be replaced by one of the following:

att Indicates that asm blocks contain AT&T syntax assembler.

intel Indicates that asm blocks contain Intel syntax assembler.

9



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

direct Tells the compiler that asm blocks should be copied directly to the assem-
bler file.

These switches are local, and retain their value to the end of the unit that is
compiled, unless they are replaced by another directive of the same type. The
command-line switch that corresponds to this switch is -R.

$B or $BOOLEVAL: Complete boolean evaluation

This switch is understood by the Free Pascal compiler, but is ignored. The com-
piler always uses shortcut evaluation, i.e. the evaluation of a boolean expression is
stopped once the result of the total exression is known with certainty.

So, in the following example, the function Bofu, which has a boolean result, will
never get called.

If False and Bofu then
...

$C or $ASSERTIONS : Assertion support

The {$ASSERTION} switch determines if assert statements are compiled into the
binary or not. If the switch is on, the statement

Assert(BooleanExpression,AssertMessage);

Will be compiled in the binary. If te BooleanExpression evaluates to False, the
RTL will check if the AssertErrorProc is set. If it is set, it will be called with as
parameters the AssertMessage message, the name of the file, the LineNumber and
the address. If it is not set, a runtime error 227 is generated.

The AssertErrorProc is defined as

Type
TAssertErrorProc=procedure(const msg,fname:string;lineno,erroraddr:longint);

Var
AssertErrorProc = TAssertErrorProc;

This can be used mainly for debugging purposes. The SYSTEM unit sets the
AssertErrorProc to a handler that displays a message on stderr and simply exits.
The SYSUTILS unit catches the run-time error 227 and raises an EAssertionFailed
exception.

$DEFINE : Define a symbol

The directive

{$DEFINE name}

defines the symbol name. This symbol remains defined until the end of the current
module (i.e. unit or program), or until a $UNDEF name directive is encountered.

If name is already defined, this has no effect. Name is case insensitive.

10



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

$ELSE : Switch conditional compilation

The {$ELSE } switches between compiling and ignoring the source text delimited by
the preceding {$IFxxx} and following {$ENDIF}. Any text after the ELSE keyword
but before the brace is ignored:

{$ELSE some ignored text}

is the same as

{$ELSE}

This is useful for indication what switch is meant.

$ENDIF : End conditional compilation

The {$ENDIF} directive ends the conditional compilation initiated by the last {$IFxxx}
directive. Any text after the ENDIF keyword but before the closing brace is ignored:

{$ENDIF some ignored text}

is the same as

{$ENDIF}

This is useful for indication what switch is meant to be ended.

$ERROR : Generate error message

The following code

{$ERROR This code is erroneous !}

will display an error message when the compiler encounters it, and increase the
error count of the compiler. The compiler will continue to compile, but no code will
be emitted.

$F : Far or near functions

This directive is recognized for compatibility with Turbo Pascal. Under the 32-bit
programming model, the concept of near and far calls have no meaning, hence the
directive is ignored. A warning is printed to the screen, telling you so.

As an example, : the following piece of code :

{$F+}

Procedure TestProc;

begin
Writeln (’Hello From TestProc’);

end;

begin
testProc

end.

11



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

Generates the following compiler output:

malpertuus: >pp -vw testf
Compiler: ppc386
Units are searched in: /home/michael;/usr/bin/;/usr/lib/ppc/0.9.1/linuxunits
Target OS: Linux
Compiling testf.pp
testf.pp(1) Warning: illegal compiler switch
7739 kB free
Calling assembler...
Assembled...
Calling linker...
12 lines compiled,
1.00000000000000E+0000

You can see that the verbosity level was set to display warnings.

If you declare a function as Far (this has the same effect as setting it between
{$F+}...{$F-} directives), the compiler also generates a warning :

testf.pp(3) Warning: FAR ignored

The same story is true for procedures declared as Near. The warning displayed in
that case is:

testf.pp(3) Warning: NEAR ignored

$FATAL : Generate fatal error message

The following code

{$FATAL This code is erroneous !}

will display an error message when the compiler encounters it, and trigger and
increase the error count of the compiler. The compiler will immediatly stop the
compilation process.

$GOTO : Support Goto and Label

If {$GOTO ON} is specified, the compiler will support Goto statements and Label
declarations. By default, $GOTO OFF is assumed. This directive corresponds to the
-Sg command-line option.

As an example, the following code can be compiled:

{$GOTO ON}

label Theend;

begin
If ParamCount=0 then

GoTo TheEnd;
Writeln (’You spcified command-line options’);

TheEnd:
end.

12



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

$H or $LONGSTRINGS : Use AnsiStrings

If {$LONGSTRINGS ON} is specified, the keyword String (no length specifier) will
be treated as AnsiString, and the compiler will treat the corresponding varible as
an ansistring, and will generate corresponding code.

By default, the use of ansistrings is off, corresponding to {$H-}.
This feature is still experimental, and should be used with caution for the time
being.

$HINT : Generate hint message

If the generation of hints is turned on, through the -vh command-line option or the
{$HINTS ON} directive, then

{$Hint This code should be optimized }

will display a hint message when the compiler encounters it.

$HINTS : Emit hints

{$HINTS ON} switches the generation of hints on. {$HINTS OFF} switches the gen-
eration of hints off. Contrary to the command-line option -vh this is a local switch,
this is useful for checking parts of your code.

$IF : Start conditional compilation

The directive {$IF expr} will continue the compilation if the boolean expression
expr evaluates to true. If the compilation evaluates to false, then the source are
skipped to the first {$ELSE} or {$ENDIF} directive.

The compiler must be able to evaluate the expression at compile time. This means
that you cannot use variables or constants that are defined in the source. Macros
and symbols may be used, however.

More information on this can be found in the section about conditionals.

$IFDEF : Start conditional compilation

The {$IFDEF name} will skip the compilation of the text that follows it if the symbol
name is not defined. If it is defined, then compilation continues as if the directive
wasn’t there.

$IFNDEF : Start conditional compilation

The {$IFNDEF name} will skip the compilation of the text that follows it if the
symbol name is defined. If it is not defined, then compilation continues as if the
directive wasn’t there.

$IFOPT : Start conditional compilation

The {$IFOPT switch} will compile the text that follows it if the switch switch is
currently in the specified state. If it isn’t in the specified state, then compilation
continues after the corresponding {$ENDIF} directive.

13



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

As an example:

{$IFOPT M+}
Writeln (’Compiled with type information’);

{$ENDIF}

Will compile the writeln statement if generation of type information is on.

Remark: The {$IFOPT} directive accepts only short options, i.e. {$IFOPT TYPEINFO}
will not be accepted.

$INFO : Generate info message

If the generation of info is turned on, through the -vi command-line option, then

{$INFO This was coded on a rainy day by Bugs Bunny }

will display an info message when the compiler encounters it.

$INLINE : Allow inline code.

The {$INLINE ON} directive tells the compiler that the Inline procedure modifier
should be allowed. Procedures that are declared inline are copied to the places
where they are called. This has the effect that there is no actual procedure call, the
code of the procedure iis just copied to where the procedure is needed. By default,
Inline procedures are not allowed. You need to specify this directive if you want
to use inlined code. This directive is equivalent to the command-line switch -Si.

Inline code is NOT exported from a unit. This means that if you call an inline
procedure from another unit, a normal procedure call will be performed. Only
inside units, Inline procedures are really inline.

$I or $IOCHECKS : Input/Output checking

The {$I-} or {$IOCHECKS OFF} directive tells the compiler not to generate in-
put/output checking code in your program. By default, the compiler does not
generate this code, you must switch it on using the -Ci command-lne switch.

If you compile using the -Ci compiler switch, the Free Pascal compiler inserts
input/output checking code after every input/output call in your program. If an
error occurred during input or output, then a run-time error will be generated. Use
this switch if you wish to avoid this behavior. If you still want to check if something
went wrong, you can use the IOResult function to see if everything went without
problems.

Conversely, {$I+} will turn error-checking back on, until another directive is en-
countered which turns it off again.

The most common use for this switch is to check if the opening of a file went without
problems, as in the following piece of code:

...
assign (f,’file.txt’);
{$I-}
rewrite (f);
{$I+}

14



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

if IOResult<>0 then
begin
Writeln (’Error opening file : "file.txt"’);
exit
end;

...

$I or $INCLUDE : Include file

The {$I filename} or {$INCLUDE filename} directive tells the compiler to read
further statements from the file filename. The statements read there will be in-
serted as if they occurred in the current file.

The compiler will append the .pp extension to the file if you don’t specify an exten-
sion yourself. Do not put the filename between quotes, as they will be regarded as
part of the file’s name.

You can nest included files, but not infinitely deep. The number of files is restricted
to the number of file descriptors available to the Free Pascal compiler.

Contrary to Turbo Pascal, include files can cross blocks. I.e. you can start a block
in one file (with a Begin keyword) and end it in another (with a End keyword).
The smallest entity in an include file must be a token, i.e. an identifier, keyword or
operator.

The compiler will look for the file to include in the following places:

1. It will look in the path specified in the include file name.

2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the include file search path.

You can add directories to the include file search path with the -I command-line
option.

$I or $INCLUDE : Include compiler info

In this form:

{$INCLUDE %xxx%}

where xxx is one of TIME, DATE, FPCVERSION or FPCTARGET, will generate a macro
with the value of these things. If xxx is none of the above, then it is assumed to be
the value of an environment variable. It’s value will be fetched, and inserted in the
code as if it were a string.

For example, the following program

Program InfoDemo;

Const User = {$I %USER%};

begin
Write (’This program was compiled at ’,{$I %TIME%});
Writeln (’ on ’,{$I %DATE%});
Writeln (’By ’,User);

15



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

Writeln (’Compiler version : ’,{$I %FPCVERSION%});
Writeln (’Target CPU : ’,{$I %FPCTARGET%});

end.

Creates the following output :

This program was compiled at 17:40:18 on 1998/09/09
By michael
Compiler version : 0.99.7
Target CPU : i386

$I386 XXX : Specify assembler format

This switch selects the assembler reader. {$I386 XXX} has the same effect as
{$ASMMODE XXX}, section 1.1, page 9

$L or $LINK : Link object file

The {$L filename} or {$LINK filename} directive tells the compiler that the file
filename should be linked to your program.

The compiler will look for this file in the following way:

1. It will look in the path specified in the object file name.

2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the object file search path.

You can add directories to the object file search path with the -Fo option.

On linux systems, the name is case sensitive, and must be typed exactly as it
appears on your system.

Remark : Take care that the object file you’re linking is in a format the linker
understands. Which format this is, depends on the platform you’re on. Typing ld
on the command line gives a list of formats ld knows about.

You can pass other files and options to the linker using the -k command-line option.
You can specify more than one of these options, and they will be passed to the linker,
in the order that you specified them on the command line, just before the names of
the object files that must be linked.

$LINKLIB : Link to a library

The {$LINKLIB name} will link to a library name. This has the effect of passing
-lname to the linker.

As an example, consider the following unit:

unit getlen;

interface
{$LINKLIB c}

function strlen (P : pchar) : longint;cdecl;

16



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

implementation

function strlen (P : pchar) : longint;cdecl;external;

end.

If one would issue the command

ppc386 foo.pp

where foo.pp has the above unit in its uses clause, then the compiler would link
your program to the c library, by passing the linker the -lc option.

The same effect could be obtained by removing the linklib directive in the above
unit, and specify -k-lc on the command-line:

ppc386 -k-lc foo.pp

$M or $TYPEINFO : Generate type info

For classes that are compiled in the {$M+ } or {$TYPEINFO ON} state, the compiler
will generate Run-Time Type Information (RTTI). All descendent objects of an
object that was compiled in the {$M+} state will get RTTI information too, as well
as any published classes. By default, no Run-Time Type Information is generated.
The TPersistent object that is present in the FCL (Free Component Library)
is generated in the {$M+} state. The generation of RTTI allows programmers to
stream objects, and to access published properties of objects, without knowing the
actual class of the object.

The run-time type information is accessible through the TypInfo unit, which is part
of the Free Pascal Run-Time Library.

$MACRO : Allow use of macros.

In the {$MACRO ON} state, the compiler allows you to use C-style (although not
as elaborate) macros. Macros provide a means for simple text substitution. More
information on using macros can be found in the section 2.3, page 33 section. This
directive is equivalent to the command-line switch -Sm.

$MESSAGE : Generate info message

If the generation of info is turned on, through the -vi command-line option, then

{$MESSAGE This was coded on a rainy day by Bugs Bunny }

will display an info message when the compiler encounters it. The effect is the same
as the {$INFO} directive.

$MMX : Intel MMX support

As of version 0.9.8, Free Pascal supports optimization for the MMX Intel processor
(see also 7).

17



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

This optimizes certain code parts for the MMX Intel processor, thus greatly im-
proving speed. The speed is noticed mostly when moving large amounts of data.
Things that change are

• Data with a size that is a multiple of 8 bytes is moved using the movq assembler
instruction, which moves 8 bytes at a time

Remark that MMX support is NOT emulated on non-MMX systems, i.e. if the pro-
cessor doesn’t have the MMX extensions, you cannot use the MMX optimizations.

When MMX support is on, you aren’t allowed to do floating point arithmetic. You
are allowed to move floating point data, but no arithmetic can be done. If you wish
to do floating point math anyway, you must first switch of MMX support and clear
the FPU using the emms function of the cpu unit.

The following example will make this more clear:

Program MMXDemo;

uses cpu;

var
d1 : double;
a : array[0..10000] of double;
i : longint;

begin
d1:=1.0;

{$mmx+}
{ floating point data is used, but we do _no_ arithmetic }
for i:=0 to 10000 do

a[i]:=d2; { this is done with 64 bit moves }
{$mmx-}

emms; { clear fpu }
{ now we can do floating point arithmetic }
....

end.

See, however, the chapter on MMX (7) for more information on this topic.

$NOTE : Generate note message

If the generation of notes is turned on, through the -vn command-line option or
the {$NOTES ON} directive, then

{$NOTE Ask Santa Claus to look at this code }

will display a note message when the compiler encounters it.

$NOTES : Emit notes

{$NOTES ON} switches the generation of notes on. {$NOTES OFF} switches the gen-
eration of notes off. Contrary to the command-line option -vn this is a local switch,
this is useful for checking parts of your code.

18



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

Table 1.1: Formats generated by the x86 compiler

Switch value Generated format
att AT&T assembler file.
o Unix object file.
obj OMF file.
wasm assembler for the Watcom assembler.

$OUTPUT FORMAT : Specify the output format

{$OUTPUT FORMAT format} has the same functionality as the -A command-line op-
tion : It tells the compiler what kind of object file must be generated. You can
specify this switch only befor the Program or Unit clause in your source file. The
different kinds of formats are shown in table (1.1).

$P or $OPENSTRINGS : Use open strings

$PACKENUM : Minimum enumeration type size

This directive tells the compiler the minimum number of bytes it should use when
storing enumerated types. It is of the following form:

{$PACKENUM xxx}
{$MINENUMSIZE xxx}

Where the form with $MINENUMSIZE is for Delphi compatibility. xxx can be one of
1,2 or 4, or NORMAL or DEFAULT, corresponding to the default value of 4.

As an alternative form one can use {$Z1}, {$Z2} {$Z4}. Contrary to Delphi, the
default size is 4 bytes ({$Z4}).
So the following code

{$PACKENUM 1}
Type

Days = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

will use 1 byte to store a variable of type Days, wheras it nomally would use 4 bytes.
The above code is equivalent to

{$Z1}
Type

Days = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

Remark: Sets are always put in 32 bit or 32 bytes, this cannot be changed

$PACKRECORDS : Alignment of record elements

This directive controls the byte alignment of the elements in a record, object or
class type definition.

It is of the following form:

19



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

{$PACKRECORDS n}

Where n is one of 1,2,4,16 or NORMAL or DEFAULT. This means that the elements of a
record that have size greater than n will be aligned on n byte boundaries. Elements
with size less than or equal to n will be aligned to a natural boundary, i.e. to a
power of two that is equal to or larger than the element’s size.

The default alignment (which can be selected with DEFAULT) is 2, contrary to Turbo
Pascal, where it is 1.

More information on this and an example program can be found in the reference
guide, in the section about record types.

Remark: Sets are always put in 32 bit or 32 bytes, this cannot be changed

$Q $OVERFLOWCHECKS: Overflow checking

The {$Q+} or {$OVERFLOWCHECKS ON} directive turns on integer overflow checking.
This means that the compiler inserts code to check for overflow when doing com-
putations with integers. When an overflow occurs, the run-time library will print a
message Overflow at xxx, and exit the program with exit code 215.

Remark: Overflow checking behaviour is not the same as in Turbo Pascal since
all arithmetic operations are done via 32-bit values. Furthermore, the Inc() and
Dec() standard system procedures are checked for overflow in Free Pascal, while
in Turbo Pascal they are not.

Using the {$Q-} switch switches off the overflow checking code generation.

The generation of overflow checking code can also be controlled using the -Co com-
mand line compiler option (see Users’ guide).

$R or $RANGECHECKS : Range checking

By default, the compiler doesn’t generate code to check the ranges of array in-
dices, enumeration types, subrange types, etc. Specifying the {$R+} switch tells
the computer to generate code to check these indices. If, at run-time, an index or
enumeration type is specified that is out of the declared range of the compiler, then
a run-time error is generated, and the program exits with exit code 201.

The {$RANGECHECKS OFF} switch tells the compiler not to generate range checking
code. This may result in faulty program behaviour, but no run-time errors will be
generated.

Remark: Range checking for sets and enumerations are not yet fully implemented.

$SATURATION : Saturation operations

This works only on the intel compiler, and MMX support must be on ({$MMX +})
for this to have any effect. See the section on saturation support (section 7.2, page
57) for more information on the effect of this directive.

$SMARTLINK : Use smartlinking

A unit that is compiled in the {$SMARTLINK ON} state will be compiled in such a
way that it can be used for smartlinking. This means that the unit is chopped
in logical pieces: each procedure is put in it’s own object file, and all object files

20

file:../user/user.html


CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

are put together in a big archive. When using such a unit, only the pieces of code
that you really need or call, will be linked in your program, thus reducing the
size of your executable substantially. Beware that using smartlinked units slows
down the compilation process, because a separate object file must be created for
each procedure. If you have units with many functions and procedures, this can
be a time consuming process, even more so if you use an external assembler (the
assembler is called to assemble each procedure or function code block).

The smartlinking directive should be specified before the unit declaration part:

{$SMARTLINK ON}

Unit MyUnit;

Interface
...

This directive is equivalent to the -Cx command-line switch.

$STATIC : Allow use of Static keyword.

If you specify the {$STATIC ON} directive, then Static methods are allowed for ob-
jects. Static objects methods do not require a Self variable. They are equivalent
to Class methods for classes. By default, Static methods are not allowed.

This directive is equivalent to the -St command-line option.

$STOP : Generate fatal error message

The following code

{$STOP This code is erroneous !}

will display an error message when the compiler encounters it. The compiler will
immediatly stop the compilation process.

It has the same effect as the {$FATAL} directive.

$T or $TYPEDADDRESS : Typed address operator (@)

In the {$T+} or {$TYPEDADDRESS ON} state the @ operator, when applied to a
variable, returns a result of type ^T, if the type of the variable is T. In the {$T-}
state, the result is always an untyped pointer, which is assignment compatible with
all other pointer types.

$UNDEF : Undefine a symbol

The directive

{$UNDEF name}

un-defines the symbol name if it was previously defined. Name is case insensitive.

21



CHAPTER 1. COMPILER DIRECTIVES 1.1. LOCAL DIRECTIVES

$V or $VARSTRINGCHECKS : Var-string checking

When in the + or ON state, the compiler checks that strings passed as parameters
are of the same, identical, string type as the declared parameters of the procedure.

$WAIT : Wait for enter key press

If the compiler encounters a

{$WAIT }

directive, it will resume compiling only after the user has pressed the enter key.
If the generation of info messages is turned on, then the compiler will display the
follwing message:

Press <return> to continue

before waiting for a keypress. Careful ! This may interfere with automatic compi-
lation processes. It should be used for debuggig purposes only.

$WARNING : Generate warning message

If the generation of warnings is turned on, through the -vw command-line option
or the {$WARNINGS ON} directive, then

{$WARNING This is dubious code }

will display a warning message when the compiler encounters it.

$WARNINGS : Emit warnings

{$WARNINGS ON} switches the generation of warnings on. {$WARNINGS OFF} switches
the generation of warnings off. Contrary to the command-line option -vw this is a
local switch, this is useful for checking parts of your code.

$X or $EXTENDEDSYNTAX : Extended syntax

Extended syntax allows you to drop the result of a function. This means that you
can use a function call as if it were a procedure. Standard this feature is on. You
can switch it off using the {$X-} or {$EXTENDEDSYNTAX OFF}directive.

The following, for instance, will not compile :

function Func (var Arg : sometype) : longint;
begin
... { declaration of Func }
end;

...

{$X-}
Func (A);

22



CHAPTER 1. COMPILER DIRECTIVES 1.2. GLOBAL DIRECTIVES

The reason this construct is supported is that you may wish to call a function for
certain side-effects it has, but you don’t need the function result. In this case you
don’t need to assign the function result, saving you an extra variable.

The command-line compiler switch -Sa1 has the same effect as the {$X+} directive.

1.2 Global directives

Global directives affect the whole of the compilation process. That is why they also
have a command-line counterpart. The command-line counterpart is given for each
of the directives.

$APPTYPE : Specify type of application (Win32 only)

The {$APPTYPE XXX} accepts one argument that can have two possible values : GUI
or CONSOLE. It is used to tell the windows Operating system if an application is
a console application or a graphical application. By default, a program compiled
by Free Pascal is a console application. Running it will display a console window.
Specifying the {$APPTYPE GUI} directive will mark the application as a graphical
application; no console window will be opened when the application is run. If run
from the command-line, the command prompt will be returned immediatly after
the application was started.

Care should be taken when compiling GUI applications; the Input and Output files
are not available in a GUI application, and attempting to read from or write to
them will result in a run-time error.

It is possible to determine the application type of a windows application at runtime.
The IsConsole constant, declared in the Win32 system unit as

Const
IsConsole : Boolean

contains True if the application is a console application, False if the application is
a GUI application.

$D or $DEBUGINFO: Debugging symbols

When this switch is on ({$DEBUGINFO ON}), the compiler inserts GNU debugging
information in the executable. The effect of this switch is the same as the command-
line switch -g. By default, insertion of debugging information is off.

$DESCRIPTION

This switch is recognised for compatibility only, but is ignored completely by the
compiler. At a later stage, this switch may be activated.

$E : Emulation of coprocessor

This directive controls the emulation of the coprocessor. There is no command-line
counterpart for this directive.

23



CHAPTER 1. COMPILER DIRECTIVES 1.2. GLOBAL DIRECTIVES

Intel x86 version

When this switch is enabled, all floating point instructions which are not supported
by standard coprocessor emulators will give out a warning.

The compiler itself doesn’t do the emulation of the coprocessor.

To use coprocessor emulation under dos go32v1 there is nothing special required,
as it is handled automatically. (As of version 0.99.10, the go32v1 platform is no
longer be supported)

To use coprocessor emulation under dos go32v2 you must use the emu387 unit,
which contains correct initialization code for the emulator.

Under linux, the kernel takes care of the coprocessor support.

Motorola 680x0 version

When the switch is on, no floating point opcodes are emitted by the code generator.
Instead, internal run-time library routines are called to do the necessary calcula-
tions. In this case all real types are mapped to the single IEEE floating point
type.

Remark : By default, emulation is on. It is possible to intermix emulation code
with real floating point opcodes, as long as the only type used is single or real.

$G : Generate 80286 code

This option is recognised for Turbo Pascal compatibility, but is ignored.

$INCLUDEPATH : Specify include path.

This option serves to specify the include path, where the compiler looks for include
files. {$INCLUDEPATH XXX will add XXX to the include path. XXX can contain one or
more paths, separated by semi-colons or colons.

for example

{$INCLUDEPATH ../inc;../i386}

{$I strings.inc}

Will add the directories ../inc and ../i386 to the include path of the compiler. The
compiler will look for the file strings.inc in both these directories, and will include
the first found file. This directive is equivalent to the -Fi command-line switch.

Caution is in order when using this directive: If you distribute files, the places of
the files may not be the same as on your machine; moreover, the directory structure
may be different. In general it would be fair to say that you should avoid using
absolute paths, instead use relative paths, as in the example above. Only use this
directive if you are certain of the places where the files reside. If you are not sure,
it is better practice to use makefiles and makefile variables.

$L or $LOCALSYMBOLS: Local symbol information

This switch (not to be confused with the {$L file} file linking directive) is recog-
nised for Turbo Pascal compatibility, but is ignored. Generation of symbol infor-

24



CHAPTER 1. COMPILER DIRECTIVES 1.2. GLOBAL DIRECTIVES

mation is controlled by the $D switch.

$LIBRARYPATH : Specify library path.

This option serves to specify the library path, where the linker looks for static or
dynamic libraries. {$LIBRARYPATH XXX} will add XXX to the library path. XXX can
contain one or more paths, separated by semi-colons or colons.

for example

{$LIBRARYPATH /usr/X11/lib;/usr/local/lib}

{$LINKLIB X11}

Will add the directories /usr/X11/lib and /usr/local/lib to the linker library path.
The linker will look for the library libX11.so in both these directories, and use the
first found file. This directive is equivalent to the -Fl command-line switch.

Caution is in order when using this directive: If you distribute files, the places of
the libraries may not be the same as on your machine; moreover, the directory
structure may be different. In general it would be fair to say that you should avoid
using this directive. If you are not sure, it is better practice to use makefiles and
makefile variables.

$M or $MEMORY: Memory sizes

This switch can be used to set the heap and stacksize. It’s format is as follows:

{$M StackSize,HeapSize}

where StackSize and HeapSize should be two integer values, greater than 1024.
The first number sets the size of the stack, and the second the size of the heap.
(Stack setting is ignored under linux). The two numbers can be set on the com-
mand line using the -Ch and -Cs switches.

$MODE : Set compiler compatibility mode

The {$MODE} sets the compatibility mode of the compiler. This is equivalent to
setting one of the command-line options -So, -Sd, -Sp or -S2. it has the following
arguments:

Default Default mode. This reverts back to the mode that was set on the command-
line.

Delphi Delphi compatibility mode. All object-pascal extensions are enabled. This
is the same as the command-line option -Sd.

TP Turbo pascal compatibility mode. Object pascal extensions are disabled, ex-
cept ansistrings, which remain valid. This is the same as the command-line
option -So

FPC FPC mode. This is the default, if no command-line switch is supplied.

OBJFPC Object pascal mode. This is the same as the -S2 command-line option.

GPC GNU pascal mode. This is the same as the -Sp command-line option.

For an exact description of each of these modes, see appendix D, on page 80.

25



CHAPTER 1. COMPILER DIRECTIVES 1.2. GLOBAL DIRECTIVES

$N : Numeric processing

This switch is recognised for Turbo Pascal compatibility, but is otherwise ignored,
since the compiler always uses the coprocessor for floating point mathematics.

$O : Overlay code generation

This switch is recognised for Turbo Pascal compatibility, but is otherwise ignored.

$OBJECTPATH : Specify object path.

This option serves to specify the object path, where the compiler looks for object
files. {$OBJECTPATH XXX will add XXX to the object path. XXX can contain one or
more paths, separated by semi-colons or colons.

for example

{$OBJECTPATH ../inc;../i386}

{$L strings.o}

Will add the directories ../inc and ../i386 to the object path of the compiler. The
compiler will look for the file strings.o in both these directories, and will link the
first found file in the program. This directive is equivalent to the -Fo command-line
switch.

Caution is in order when using this directive: If you distribute files, the places of
the files may not be the same as on your machine; moreover, the directory structure
may be different. In general it would be fair to say that you should avoid using
absolute paths, instead use relative paths, as in the example above. Only use this
directive if you are certain of the places where the files reside. If you are not sure,
it is better practice to use makefiles and makefile variables.

$S : Stack checking

The {$S+} directive tells the compiler to generate stack checking code. This gen-
erates code to check if a stack overflow occurred, i.e. to see whether the stack has
grown beyond its maximally allowed size. If the stack grows beyond the maximum
size, then a run-time error is generated, and the program will exit with exit code
202.

Specifying {$S-} will turn generation of stack-checking code off.

The command-line compiler switch -Ct has the same effect as the {$S+} directive.

$UNITPATH : Specify unit path.

This option serves to specify the unit path, where the compiler looks for unit files.
{$UNITPATH XXX} will add XXX to the unit path. XXX can contain one or more paths,
separated by semi-colons or colons.

for example

{$UNITPATH ../units;../i386/units}

Uses strings;

26



CHAPTER 1. COMPILER DIRECTIVES 1.2. GLOBAL DIRECTIVES

Will add the directories ../units and ../i386/units to the unit path of the compiler.
The compiler will look for the file strings.ppu in both these directories, and will
link the first found file in the program. This directive is equivalent to the -Fu
command-line switch.

Caution is in order when using this directive: If you distribute files, the places of
the files may not be the same as on your machine; moreover, the directory structure
may be different. In general it would be fair to say that you should avoid using
absolute paths, instead use relative paths, as in the example above. Only use this
directive if you are certain of the places where the files reside. If you are not sure,
it is better practice to use makefiles and makefile variables.

$W or $STACKFRAMES : Generate stackframes

The {$W} switch directove controls the generation of stackframes. In the on state
({$STACKFRAMES ON}), the compiler will generate a stackframe for every procedure
or function.

In the off state, the compiler will omit the generation of a stackframe if the following
conditions are satisfied:

• The procedure has no parameters.

• The procedure has no local variables.

• If the procedure is not an assembler procedure, it must not have a asm ...
end; block.

• it is not a constuctor or desctructor.

If these conditions are satisfied, the stack frame will be omitted.

$Y or $REFERENCEINFO : Insert Browser information

This switch controls the generation of browser inforation. It is recognized for com-
patibility with Turbo Pascal and Delphi only, as Browser information generation is
not yet fully supported.

27



Chapter 2

Using conditionals, messages
and macros

The Free Pascal compiler supports conditionals as in normal Turbo Pascal. It does,
however, more than that. It allows you to make macros which can be used in your
code, and it allows you to define messages or errors which will be displayed when
compiling.

2.1 Conditionals

The rules for using conditional symbols are the same as under Turbo Pascal. Defin-
ing a symbol goes as follows:

{$Define Symbol }

From this point on in your code, the compiler knows the symbol Symbol. Symbols
are, like the Pascal language, case insensitive.

You can also define a symbol on the command line. the -dSymbol option defines
the symbol Symbol. You can specify as many symbols on the command line as you
want.

Undefining an existing symbol is done in a similar way:

{$Undef Symbol }

If the symbol didn’t exist yet, this doesn’t do anything. If the symbol existed
previously, the symbol will be erased, and will not be recognized any more in the
code following the {$Undef ...} statement.

You can also undefine symbols from the command line with the -u command-line
switch..

To compile code conditionally, depending on whether a symbol is defined or not,
you can enclose the code in a {$ifdef Symbol} .. {$endif} pair. For instance the
following code will never be compiled :

{$Undef MySymbol}
{$ifdef Mysymbol}

DoSomething;

28



CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS2.1. CONDITIONALS

Table 2.1: Symbols defined by the compiler.

Free
VERv

VERv r
VERv r p

OS

...
{$endif}

Similarly, you can enclose your code in a {$Ifndef Symbol} .. {$endif} pair. Then
the code between the pair will only be compiled when the used symbol doesn’t exist.
For example, in the following example, the call to the DoSomething will always be
compiled:

{$Undef MySymbol}
{$ifndef Mysymbol}

DoSomething;
...

{$endif}

You can combine the two alternatives in one structure, namely as follows

{$ifdef Mysymbol}
DoSomething;

{$else}
DoSomethingElse

{$endif}

In this example, if MySymbol exists, then the call to DoSomething will be compiled.
If it doesn’t exist, the call to DoSomethingElse is compiled.

The Free Pascal compiler defines some symbols before starting to compile your
program or unit. You can use these symbols to differentiate between different
versions of the compiler, and between different compilers. In table (2.1), a list of
pre-defined symbols is given1. In that table, you should change v with the version
number of the compiler you’re using, r with the release number and p with the
patch-number of the compiler. ’OS’ needs to be changed by the type of operating
system. Currently this can be one of DOS, GO32V2, LINUX, OS2, WIN32, MACOS, AMIGA
or ATARI.

The OS symbol is undefined if you specify a target that is different from the platform
you’re compiling on. The -TSomeOS option on the command line will define the
SomeOS symbol, and will undefine the existing platform symbol2.

As an example : Version 0.9.1 of the compiler, running on a Linux system, defines
the following symbols before reading the command line arguments: FPC, VER0,
VER0 9, VER0 9 1 and LINUX. Specifying -TOS2 on the command-line will undefine
the LINUX symbol, and will define the OS2 symbol.

Remark: Symbols, even when they’re defined in the interface part of a unit, are
not available outside that unit.

1Remark: The FPK symbol is still defined for compatibility with older versions.
2In versions prior to 0.9.4, this didn’t happen, thus making Cross-compiling impossible.

29



CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS2.1. CONDITIONALS

Except for the Turbo Pascal constructs, from version 0.9.8 and higher, the Free
Pascal compiler also supports a stronger conditional compile mechanism: The {$If
} construct.

The prototype of this construct is as follows :

{$If expr}
CompileTheseLines;

{$else}
BetterCompileTheseLines;

{$endif}

In this directive expr is a Pascal expression which is evaluated using strings, unless
both parts of a comparision can be evaluated as numbers, in which case they are
evaluated using numbers3. If the complete expression evaluates to ’0’, then it is
considered false and rejected. Otherwise it is considered true and accepted. This
may have unexpected consequences :

{$If 0}

Will evaluate to False and be rejected, while

{$If 00}

Will evaluate to True.

You can use any Pascal operator to construct your expression : =, <>, >, <, >=,
<=, AND, NOT, OR and you can use round brackets to change the precedence of the
operators.

The following example shows you many of the possibilities:

{$ifdef fpc}

var
y : longint;

{$else fpc}

var
z : longint;

{$endif fpc}

var
x : longint;

begin

{$if (fpc_version=0) and (fpc_release>6) and (fpc_patch>4)}
{$info At least this is version 0.9.5}
{$else}
{$fatal Problem with version check}
{$endif}

{$define x:=1234}

3Otherwise {$If 8>54} would evaluate to True

30



CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS2.1. CONDITIONALS

{$if x=1234}
{$info x=1234}
{$else}
{$fatal x should be 1234}
{$endif}

{$if 12asdf and 12asdf}
{$info $if 12asdf and 12asdf is ok}
{$else}
{$fatal $if 12asdf and 12asdf rejected}
{$endif}

{$if 0 or 1}
{$info $if 0 or 1 is ok}
{$else}
{$fatal $if 0 or 1 rejected}
{$endif}

{$if 0}
{$fatal $if 0 accepted}
{$else}
{$info $if 0 is ok}
{$endif}

{$if 12=12}
{$info $if 12=12 is ok}
{$else}
{$fatal $if 12=12 rejected}
{$endif}

{$if 12<>312}
{$info $if 12<>312 is ok}
{$else}
{$fatal $if 12<>312 rejected}
{$endif}

{$if 12<=312}
{$info $if 12<=312 is ok}
{$else}
{$fatal $if 12<=312 rejected}
{$endif}

{$if 12<312}
{$info $if 12<312 is ok}
{$else}
{$fatal $if 12<312 rejected}
{$endif}

{$if a12=a12}
{$info $if a12=a12 is ok}
{$else}
{$fatal $if a12=a12 rejected}
{$endif}

31



CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS2.2. MESSAGES

{$if a12<=z312}
{$info $if a12<=z312 is ok}
{$else}
{$fatal $if a12<=z312 rejected}
{$endif}

{$if a12<z312}
{$info $if a12<z312 is ok}
{$else}
{$fatal $if a12<z312 rejected}
{$endif}

{$if not(0)}
{$info $if not(0) is OK}
{$else}
{$fatal $if not(0) rejected}
{$endif}

{$info *************************************************}
{$info * Now have to follow at least 2 error messages: *}
{$info *************************************************}

{$if not(0}
{$endif}

{$if not(<}
{$endif}

end.

As you can see from the example, this construct isn’t useful when used with normal
symbols, but it is if you use macros, which are explained in section 2.3, page 33,
they can be very useful. When trying this example, you must switch on macro
support, with the -Sm command-line switch.

2.2 Messages

Free Pascal lets you define normal, warning and error messages in your code. Mes-
sages can be used to display useful information, such as copyright notices, a list of
symbols that your code reacts on etc.

Warnings can be used if you think some part of your code is still buggy, or if you
think that a certain combination of symbols isn’t useful. In general anything which
may cause problems when compiling.

Error messages can be useful if you need a certain symbol to be defined to warn that
a certain variable isn’t defined or so, or when the compiler version isn’t suitable for
your code.

The compiler treats these messages as if they were generated by the compiler. This
means that if you haven’t turned on warning messages, the warning will not be
displayed. Errors are always displayed, and the compiler stops if 50 errors have
occurred. After a fatal error, the compiler stops at once.

32



CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS2.3. MACROS

For messages, the syntax is as follows :

{$Message Message text }

Or

{$Info Message text }

For notes:

{$Note Message text }

For warnings:

{$Warning Warning Message text }

For errors :

{$Error Error Message text }

Lastly, for fatal errors :

{$Fatal Error Message text }

or

{$Stop Error Message text }

The difference between $Error and $FatalError or $Stop messages is that when
the compiler encounters an error, it still continues to compile. With a fatal error,
the compiler stops.

Remark : You cannot use the ’}’ character in your message, since this will be treated
as the closing brace of the message.

As an example, the following piece of code will generate an error when the symbol
RequiredVar isn’t defined:

{$ifndef RequiredVar}
{$Error Requiredvar isn’t defined !}
{$endif}

But the compiler will continue to compile. It will not, however, generate a unit file
or a program (since an error occurred).

2.3 Macros

Macros are very much like symbols in their syntax, the difference is that macros
have a value whereas a symbol simply is defined or is not defined. If you want macro
support, you need to specify the -Sm command-line switch, otherwise your macro
will be regarded as a symbol.

Defining a macro in your program is done in the same way as defining a symbol; in
a {$define } preprocessor statement4:

4In compiler versions older than 0.9.8, the assignment operator for a macros wasn’t :=, but =

33



CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS2.3. MACROS

Table 2.2: Predefined macros

Symbol Contains
FPC VERSION The version number of the compiler.
FPC RELEASE The release number of the compiler.
FPC PATCH The patch number of the compiler.

{$define ident:=expr}

If the compiler encounters ident in the rest of the source file, it will be replaced
immediately by expr. This replacement works recursive, meaning that when the
compiler expanded one of your macros, it will look at the resulting expression again
to see if another replacement can be made. You need to be careful with this, because
an infinite loop can occur in this manner.

Here are two examples which illustrate the use of macros:

{$define sum:=a:=a+b;}
...
sum { will be expanded to ’a:=a+b;’

remark the absence of the semicolon}
...
{$define b:=100}
sum { Will be expanded recursively to a:=a+100; }
...

The previous example could go wrong :

{$define sum:=a:=a+b;}
...
sum { will be expanded to ’a:=a+b;’

remark the absence of the semicolon}
...
{$define b=sum} { DON’T do this !!!}
sum { Will be infinitely recursively expanded... }
...

On my system, the last example results in a heap error, causing the compiler to
exit with a run-time error 203.

Remark: Macros defined in the interface part of a unit are not available outside
that unit ! They can just be used as a notational convenience, or in conditional
compiles.

By default, from version 0.9.8 of the compiler on, the compiler predefines three
macros, containing the version number, the release number and the patch number.
They are listed in table (2.2).

Remark: Don’t forget that macros support isn’t on by default. You need to compile
with the -Sm command-line switch.

34



Chapter 3

Using Assembly language

Free Pascal supports inserting of assembler instructions in your code. The mecha-
nism for this is the same as under Turbo Pascal. There are, however some substan-
tial differences, as will be explained in the following.

3.1 Intel syntax

As of version 0.9.7, Free Pascal supports Intel syntax for the Intel family of Ix86
processors in it’s asm blocks.

The Intel syntax in your asm block is converted to AT&T syntax by the compiler,
after which it is inserted in the compiled source. The supported assembler constructs
are a subset of the normal assembly syntax. In what follows we specify what
constructs are not supported in Free Pascal, but which exist in Turbo Pascal:

• The TBYTE qualifier is not supported.

• The & identifier override is not supported.

• The HIGH operator is not supported.

• The LOW operator is not supported.

• The OFFSET and SEG operators are not supported. use LEA and the various
Lxx instructions instead.

• Expressions with constant strings are not allowed.

• Access to record fields via parenthesis is not allowed

• Typecasts with normal pascal types are not allowed, only recognized assembler
typecasts are allowed.
Example:

mov al, byte ptr MyWord -- allowed,
mov al, byte(MyWord) -- allowed,
mov al, shortint(MyWord) -- not allowed.

• Pascal type typecasts on constants are not allowed.
Example:

35



CHAPTER 3. USING ASSEMBLY LANGUAGE 3.1. INTEL SYNTAX

const s= 10; const t = 32767;

in Turbo Pascal:

mov al, byte(s) -- useless typecast.
mov al, byte(t) -- syntax error!

In this parser, either of those cases will give out a syntax error.

• Constant references expressions with constants only are not allowed (in all
cases they do not work in protected mode, under linux i386).
Examples:

mov al,byte ptr [’c’] -- not allowed.
mov al,byte ptr [100h] -- not allowed.

(This is due to the limitation of Turbo Assembler).

• Brackets within brackets are not allowed

• Expressions with segment overrides fully in brackets are presently not sup-
ported, but they can easily be implemented in BuildReference if requested.
Example:

mov al,[ds:bx] -- not allowed

use instead:

mov al,ds:[bx]

• Possible allowed indexing are as follows:

– Sreg:[REG+REG*SCALING+/-disp]

– SReg:[REG+/-disp]

– SReg:[REG]

– SReg:[REG+REG+/-disp]

– SReg:[REG+REG*SCALING]

Where Sreg is optional and specifies the segment override. Notes:

1. The order of terms is important contrary to Turbo Pascal.

2. The Scaling value must be a value, and not an identifier to a symbol.
Examples:

const myscale = 1;
...
mov al,byte ptr [esi+ebx*myscale] -- not allowed.

use:

mov al, byte ptr [esi+ebx*1]

• Possible variable identifier syntax is as follows: (Id = Variable or typed con-
stant identifier.)

1. ID

2. [ID]

36



CHAPTER 3. USING ASSEMBLY LANGUAGE 3.1. INTEL SYNTAX

3. [ID+expr]

4. ID[expr]

Possible fields are as follow:

1. ID.subfield.subfield ...

2. [ref].ID.subfield.subfield ...

3. [ref].typename.subfield ...

• Local Labels: Contrary to Turbo Pascal, local labels, must at least contain
one character after the local symbol indicator.
Example:

@: -- not allowed

use instead, for example:

@1: -- allowed

• Contrary to Turbo Pascal local references cannot be used as references, only
as displacements.
example:

lds si,@mylabel -- not allowed

• Contrary to Turbo Pascal, SEGCS, SEGDS, SEGES and SEGSS segment overrides
are presently not supported. (This is a planned addition though).

• Contrary to Turbo Pascal where memory sizes specifiers can be practically
anywhere, the Free Pascal Intel inline assembler requires memory size speci-
fiers to be outside the brackets.
example:

mov al,[byte ptr myvar] -- not allowed.

use:

mov al,byte ptr [myvar] -- allowed.

• Base and Index registers must be 32-bit registers. (limitation of the GNU
Assembler).

• XLAT is equivalent to XLATB.

• Only Single and Double FPU opcodes are supported.

• Floating point opcodes are currently not supported (except those which in-
volve only floating point registers).

The Intel inline assembler supports the following macros :

@Result represents the function result return value.

Self represents the object method pointer in methods.

37



CHAPTER 3. USING ASSEMBLY LANGUAGE 3.2. AT&T SYNTAX

3.2 AT&T Syntax

Free Pascal uses the gnu as assembler to generate its object files for the Intel Ix86
processors . Since the gnu assembler uses AT&T assembly syntax, the code you
write should use the same syntax. The differences between AT&T and Intel syntax
as used in Turbo Pascal are summarized in the following:

• The opcode names include the size of the operand. In general, one can say
that the AT&T opcode name is the Intel opcode name, suffixed with a ’l’,
’w’ or ’b’ for, respectively, longint (32 bit), word (16 bit) and byte (8 bit)
memory or register references. As an example, the Intel construct ’mov al bl
is equivalent to the AT&T style ’movb %bl,%al’ instruction.

• AT&T immediate operands are designated with ’$’, while Intel syntax doesn’t
use a prefix for immediate operands. Thus the Intel construct ’mov ax, 2’
becomes ’movb $2, %al’ in AT&T syntax.

• AT&T register names are preceded by a ’%’ sign. They are undelimited in
Intel syntax.

• AT&T indicates absolute jump/call operands with ’*’, Intel syntax doesn’t
delimit these addresses.

• The order of the source and destination operands are switched. AT&T syntax
uses ’Source, Dest’, while Intel syntax features ’Dest, Source’. Thus the
Intel construct ’add eax, 4’ transforms to ’addl $4, %eax’ in the AT&T
dialect.

• Immediate long jumps are prefixed with the ’l’ prefix. Thus the Intel ’call/jmp
section:offset’ is transformed to ’lcall/ljmp $section,$offset’. Sim-
ilarly the far return is ’lret’, instead of the Intel ’ret far’.

• Memory references are specified differently in AT&T and Intel assembly. The
Intel indirect memory reference

Section:[Base + Index*Scale + Offs]

is written in AT&T syntax as :

Section:Offs(Base,Index,Scale)

Where Base and Index are optional 32-bit base and index registers, and Scale
is used to multiply Index. It can take the values 1,2,4 and 8. The Section is
used to specify an optional section register for the memory operand.

More information about the AT&T syntax can be found in the as manual, although
the following differences with normal AT&T assembly must be taken into account :

• Only the following directives are presently supported:

.byte

.word

.long

.ascii

.asciz

.globl

38



CHAPTER 3. USING ASSEMBLY LANGUAGE 3.3. CALLING MECHANISM

• The following directives are recognized but are not supported:

.align

.lcomm

Eventually they will be supported.

• Directives are case sensitive, other identifiers are not case sensitive.

• Contrary to GAS local labels/symbols must start with .L

• The not operator ’!’ is not supported.

• String expressions in operands are not supported.

• CBTW,CWTL,CWTD and CLTD are not supported, use the normal intel
equivalents instead.

• Constant expressions which represent memory references are not allowed even
though constant immediate value expressions are supported.
examples:

const myid = 10;
...
movl $myid,%eax -- allowed
movl myid(%esi),%eax -- not allowed.

• When the .globl directive is found, the symbol following it is made public
and is immediately emitted. Therefore label names with this name will be
ignored.

• Only Single and Double FPU opcodes are supported.

The AT&T inline assembler supports the following macros :

RESULT represents the function result return value.

SELF represents the object method pointer in methods.

OLDEBP represents the old base pointer in recusrive routines.

3.3 Calling mechanism

Procedures and Functions are called with their parameters on the stack. Contrary
to Turbo Pascal, all parameters are pushed on the stack, and they are pushed right
to left, instead of left to right for Turbo Pascal. This is especially important if you
have some assembly subroutines in Turbo Pascal which you would like to translate
to Free Pascal.

Function results are returned in the accumulator, if they fit in the register.

The registers are not saved when calling a function or procedure. If you want to
call a procedure or function from assembly language, you must save any registers
you wish to preserve.

The first thing a procedure does is saving the base pointer, and setting the base
pointer equal to the stack pointer. References to the pushed parameters and local
variables are constructed using the base pointer.

39



CHAPTER 3. USING ASSEMBLY LANGUAGE 3.3. CALLING MECHANISM

Table 3.1: Calling mechanisms in Free Pascal

Modifier Pushing order Stack cleaned by Parameters in registers
(none) Right-to-left Function No
cdecl Right-to-left Caller No
export Right-to-left Caller No
stdcall Right-to-left Function No
popstack Right-to-left Caller No

When the procedure or function exits, it clears the stack.

When you want your code to be called by a C library or used in a C program,
you will run into trouble because of this calling mechanism. In C, the calling
procedure is expected to clear the stack, not the called procedure. In other words,
the arguments still are on the stack when the procedure exits. To avoid this problem,
Free Pascal supports the export modifier. Procedures that are defined using the
export modifier, use a C-compatible calling mechanism. This means that they can
be called from a C program or library, or that you can use them as a callback
function.

This also means that you cannot call this procedure or function from your own
program, since your program uses the Pascal calling convention. However, in the
exported function, you can of course call other Pascal routines.

As of version 0.9.8, the Free Pascal compiler supports also the cdecl and stdcall
modifiers, as found in Delphi. The cdecl modifier does the same as the export
modifier, and stdcall does nothing, since Free Pascal pushes the paramaters from
right to left by default. In addition to the Delphi cdecl construct, Free Pascal
also supports the popstack directive; it is nearly the same a the cdecl directive,
only it still mangles the name, i.e. makes it into a name such as the compiler uses
internally.

All this is summarized in table (3.1). The first column lists the modifier you specify
for a procedure declaration. The second one lists the order the paramaters are
pushed on the stack. The third column specifies who is responsible for cleaning the
stack: the caller or the called function. Finally, the last column specifies if registers
are used to pass parameters to the function.

More about this can be found in chapter 4, page 43 on linking.

Ix86 calling conventions

Standard entry code for procedures and functions is as follows on the x86 architec-
ture:

pushl %ebp
movl %esp,%ebp

The generated exit sequence for procedure and functions looks as follows:

leave
ret $xx

Where xx is the total size of the pushed parameters.

40



CHAPTER 3. USING ASSEMBLY LANGUAGE3.4. SIGNALLING CHANGED REGISTERS

To have more information on function return values take a look at section 3.5, page
41.

M680x0 calling conventions

Standard entry code for procedures and functions is as follows on the 680x0 archi-
tecture:

move.l a6,-(sp)
move.l sp,a6

The generated exit sequence for procedure and functions looks as follows:

unlk a6
move.l (sp)+,a0 ; Get return address
add.l #xx,sp ; Remove allocated stack
move.l a0,-(sp) ; Put back return address on top of the stack

Where xx is the total size of the pushed parameters.

To have more information on function return values take a look at section 3.5, page
41.

3.4 Signalling changed registers

When the compiler uses variables, it sometimes stores them, or the result of some
calculations, in the processor registers. If you insert assembler code in your program
that modifies the processor registers, then this may interfere with the compiler’s
idea about the registers. To avoid this problem, Free Pascal allows you to tell the
compiler which registers have changed. The compiler will then avoid using these
registers. Telling the compiler which registers have changed, is done by specifying
a set of register names behind an assembly block, as follows:

asm
...

end [’R1’,...,’Rn’];

Here R1 to Rn are the names of the 32-bit registers you modify in your assembly
code.

As an example :

asm
movl BP,%eax
movl 4(%eax),%eax
movl %eax,__RESULT
end [’EAX’];

This example tells the compiler that the EAX register was modified.

3.5 Register Conventions

The compiler has different register conventions, depending on the target processor
used.

41



CHAPTER 3. USING ASSEMBLY LANGUAGE3.5. REGISTER CONVENTIONS

Intel x86 version

When optimizations are on, no register can be freely modified, without first being
saved and then restored. Otherwise, EDI is usually used as a scratch register and
can be freely used in assembler blocks.

Motorola 680x0 version

Registers which can be freely modified without saving are registers D0, D1, D6, A0,
A1, and floating point registers FP2 to FP7. All other registers are to be considered
reserved and should be saved and then restored when used in assembler blocks.

42



Chapter 4

Linking issues

When you only use Pascal code, and Pascal units, then you will not see much of
the part that the linker plays in creating your executable. The linker is only called
when you compile a program. When compiling units, the linker isn’t invoked.

However, there are times that you want to link to C libraries, or to external object
files that are generated using a C compiler (or even another pascal compiler). The
Free Pascal compiler can generate calls to a C function, and can generate functions
that can be called from C (exported functions). More on these calling conventions
can be found in section 3.3, page 39.

In general, there are 2 things you must do to use a function that resides in an
external library or object file:

1. You must make a pascal declaration of the function or procedure you want to
use.

2. You must tell the compiler where the function resides, i.e. in what object file
or what library, so the compiler can link the necessary code in.

The same holds for variables. To access a variable that resides in an external object
file, you must declare it, and tell the compiler where to find it. The following
sections attempt to explain how to do this.

4.1 Using external functions or procedures

The first step in using external code blocks is declaring the function you want to
use. Free Pascal supports Delphi syntax, i.e. you must use the external directive.
The external directive replaces, in effect, the code block of the function. As such,
It cannot be used in an interface section of a unit, but must always reside in the
implementation section.

There exist four variants of the external directive :

1. A simple external declaration:

Procedure ProcName (Args : TPRocArgs); external;

The external directive tells the compiler that the function resides in an
external block of code. You can use this together with the {$L } or {$LinkLib

43



CHAPTER 4. LINKING ISSUES4.1. USING EXTERNAL FUNCTIONS OR PROCEDURES

} directives to link to a function or procedure in a library or external object
file. Object files are looked for in the object search path (set by -Fo) and
libraries are searched for in the linker path (set by -Fl).

2. You can give the external directive a library name as an argument:

Procedure ProcName (Args : TPRocArgs); external ’Name’;

This tells the compiler that the procedure resides in a library with name
’Name’. This method is equivalent to the following:

Procedure ProcName (Args : TPRocArgs);external;
{$LinkLib ’Name’}

3. The external can also be used with two arguments:

Procedure ProcName (Args : TPRocArgs); external ’Name’
name ’OtherProcName’;

This has the same meaning as the previous declaration, only the compiler will
use the name ’OtherProcName’ when linking to the library. This can be used
to give different names to procedures and functions in an external library.

This method is equivalent to the following code:

Procedure OtherProcName (Args : TProcArgs); external;
{$LinkLib ’Name’}

Procedure ProcName (Args : TPRocArgs);

begin
OtherProcName (Args);

end;

4. Lastly, onder Windows and os/2, there is a fourth possibility to specify an
external function: In .DLL files, functions also have a unique number (their
index). It is possible to refer to these fuctions using their index:

Procedure ProcName (Args : TPRocArgs); external ’Name’ Index SomeIndex;

This tells the compiler that the procedure ProcName resides in a dynamic link
library, with index SomeIndex.

Remark : Note that this is ONLY available under Windows and os/2.

In earlier versions of the Free Pascal compiler, the following construct was also
possible :

Procedure ProcName (Args : TPRocArgs); [ C ];

This method is equivalent to the following statement:

Procedure ProcName (Args : TPRocArgs); cdecl; external;

However, the [ C ] directive is no longer supported as of version 0.99.5 of Free
Pascal, therefore you should use the external directive, with the cdecl directive,
if needed.

44



CHAPTER 4. LINKING ISSUES 4.2. USING EXTERNAL VARIABLES

4.2 Using external variables

Some libaries or code blocks have variables which they export. You can access
these variables much in the same way as external functions. To access an external
variable, you declare it as follows:

Var
MyVar : MyType; external name ’varname’;

The effect of this declaration is twofold:

1. No space is allocated for this variable.

2. The name of the variable used in the assembler code is varname. This is a
case sensitive name, so you must be careful.

The variable will be accessible with it’s declared name, i.e. MyVar in this case.

A second possibility is the declaration:

Var
varname : MyType; cvar; external;

The effect of this declaration is twofold as in the previous case:

1. The external modifier ensures that no space is allocated for this variable.

2. The cvar modifier tells the compiler that the name of the variable used in
the assembler code is exactly as specified in the declaration. This is a case
sensitive name, so you must be careful.

In this case, you access the variable with it’s C name, but case insensitive. The first
possibility allows you to change the name of the external variable for internal use.

In order to be able to compile such statements, the compiler switch -Sv must be
used.

As an example, let’s look at the following C file (in extvar.c):

/*
Declare a variable, allocate storage
*/
int extvar = 12;

And the following program (in extdemo.pp):

Program ExtDemo;

{$L extvar.o}

Var { Case sensitive declaration !! }
extvar : longint; cvar;external;
I : longint; external name ’extvar’;

begin
{ Extvar can be used case insensitive !! }
Writeln (’Variable ’’extvar’’ has value : ’,ExtVar);
Writeln (’Variable ’’I’’ has value : ’,i);

end.

45



CHAPTER 4. LINKING ISSUES 4.3. LINKING TO AN OBJECT FILE

Compiling the C file, and the pascal program:

gcc -c -o extvar.o extvar.c
ppc386 -Sv extdemo

Will produce a program extdemo which will print

Variable ’extvar’ has value : 12
Variable ’I’ has value : 12

on your screen.

4.3 Linking to an object file

Having declared the external function or variable that resides in an object file,
you can use it as if it was defined in your own program or unit. To produce an
executable, you must still link the object file in. This can be done with the {$L
file.o} directive.

This will cause the linker to link in the object file file.o. On linux systems, this
filename is case sensitive. Under dos, case isn’t important. Note that file.o must
be in the current directory if you don’t specify a path. The linker will not search
for file.o if it isn’t found.

You cannot specify libraries in this way, it is for object files only.

Here we present an example. Consider that you have some assembly routine that
calculates the nth Fibonacci number :

.text
.align 4

.globl Fibonacci
.type Fibonacci,@function

Fibonacci:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
xorl %ecx,%ecx
xorl %eax,%eax
movl $1,%ebx
incl %edx

loop:
decl %edx
je endloop
movl %ecx,%eax
addl %ebx,%eax
movl %ebx,%ecx
movl %eax,%ebx
jmp loop

endloop:
movl %ebp,%esp
popl %ebp
ret

Then you can call this function with the following Pascal Program:

46



CHAPTER 4. LINKING ISSUES 4.4. LINKING TO A LIBRARY

Program FibonacciDemo;

var i : longint;

Function Fibonacci (L : longint):longint;cdecl;external;

{$L fib.o}

begin
For I:=1 to 40 do

writeln (’Fib(’,i,’) : ’,Fibonacci (i));
end.

With just two commands, this can be made into a program :

as -o fib.o fib.s
ppc386 fibo.pp

This example supposes that you have your assembler routine in fib.s, and your
Pascal program in fibo.pp.

4.4 Linking to a library

To link your program to a library, the procedure depends on how you declared the
external procedure.

In case you used the follwing syntax to declare your procedure:

Procedure ProcName (Args : TPRocArgs); external ’Name’;

You don’t need to take additional steps to link your file in, the compiler will do all
that is needed for you. On Windows NT it will link to Name.dll, on linux your
program will be linked to library libname, which can be a static or dynamic library.

In case you used

Procedure ProcName (Args : TPRocArgs); external;

You still need to explicity link to the library. This can be done in 2 ways:

1. You can tell the compiler in the source file what library to link to using the
{$LinkLib ’Name’} directive:

{$LinkLib ’gpm’}

This will link to the gpm library. On linux systems, you needn’t specify the
extension or ’lib’ prefix of the library. The compiler takes care of that. On
dos or Windows systems, you need to specify the full name.

2. You can also tell the compiler on the command-line to link in a library: The
-k option can be used for that. For example

ppc386 -k’-lgpm’ myprog.pp

Is equivalent to the above method, and tells the linker to link to the gpm
library.

47



CHAPTER 4. LINKING ISSUES 4.5. MAKING LIBRARIES

As an example; consider the following program :

program printlength;

{$linklib c} { Case sensitive }

{ Declaration for the standard C function strlen }
Function strlen (P : pchar) : longint; cdecl;external;

begin
Writeln (strlen(’Programming is easy !’));

end.

This program can be compiled with :

ppc386 prlen.pp

Supposing, of course, that the program source resides in prlen.pp.

You cannot use procedures or functions that have a variable number of arguments
in C. Pascal doesn’t support this feature of C.

4.5 Making libraries

Free Pascal supports making shared or static libraries in a straightforward and easy
manner. If you want to make libraries for other Free Pascal programmers, you just
need to provide a command line switch. If you want C programmers to be able to
use your code as well, you will need to adapt your code a little. This process is
described first.

Exporting functions

When exporting functions from a library, there are 2 things you must take in ac-
count:

1. Calling conventions.

2. Naming scheme.

The calling conventions are controlled by the modifiers cdecl, popstack, pascal,
stdcall. See section 3.3, page 39 for more information on the different kinds of
calling scheme.

The naming conventions can be controlled by 3 modifiers:

cdecl: A function that has a cdecl modifier, will be used with C calling conven-
tions, that is, the caller clears the stack. Also the mangled name will be the
name exactly as in the declaration. cdecl is part of the function declaration,
and hence must be present both in the interface and implementation section
of a unit.

export: A function that has an export modifier, uses also the exact declaration
name as its mangled name. Under Windows NT and os/2, this modifier
signals a function that is exported from a DLL. The calling conventions used
by a export procedure depend on the OS. This keyword can be used only in
the implementation section.

48



CHAPTER 4. LINKING ISSUES 4.5. MAKING LIBRARIES

Alias: The alias modifier can be used to give a supplementary assembler name
to your function. This doesn’t modify the calling conventions of the function.

If you want to make your procedures and functions available to C programmers, you
can do this very easily. All you need to do is declare the functions and procedures
that you want to make available as export, as follows:

Procedure ExportedProcedure; export;

Remark : You can only declare a function as exported in the Implementation
section of a unit. This function may not appear in the interface part of a unit. This
is logical, since a Pascal routine cannot call an exported function, anyway.

However, the generated object file will not contain the name of the function as you
declared it. The Free Pascal compiler ”mangles” the name you give your function.
It makes the name all-uppercase, and adds the types of all parameters to it. There
are cases when you want to provide a mangled name without changing the calling
convention. In such cases, you can use the Alias modifier.

The Alias modifier allows you to specify another name (a nickname) for your
function or procedure.

The prototype for an aliased function or procedure is as follows :

Procedure AliasedProc; [ Alias : ’AliasName’];

The procedure AliasedProc will also be known as AliasName. Take care, the name
you specify is case sensitive (as C is).

Remark: If you use in your unit functions that are in other units, or system
functions, then the C program will need to link in the object files from the units
too.

Exporting variables

Similarly as when you export functions, you can export variables. When exportig
variables, one should only consider the names of the variables. To declare a variable
that should be used by a C program, one declares it with the cvar modifier:

Var MyVar : MyTpe; cvar;

This will tell the compiler that the assembler name of the variable (the one which
is used by C programs) should be exactly as specified in the declaration, i.e., case
sensitive.

It is not allowed to declare multiple variables as cvar in one statement, i.e. the
following code will produce an error:

var Z1,Z2 : longint;cvar;

Compiling libraries

Once you have your (adapted) code, with exported and other functions, you can
compile your unit, and tell the compiler to make it into a library. The compiler will
simply compile your unit, and perform the necessary steps to transform it into a
static or shared (dynamical) library.

You can do this as follows, for a dynamical library:

49



CHAPTER 4. LINKING ISSUES 4.5. MAKING LIBRARIES

ppc386 -CD myunit

On linux this will leave you with a file libmyunit.so. On Windows and os/2, this
will leave you with myunit.dll.

If you want a static library, you can do

ppc386 -CS myunit

This will leave you with libmyunit.a and a file myunit.ppu. The myunit.ppu is the
unit file needed by the Free Pascal compiler.

The resulting files are then libraries. To make static libraries, you need the ranlib or
ar program on your system. It is standard on any linux system, and is provided
with the GCC compiler under dos. For the dos distribution, a copy of ar is included
in the file gnuutils.zip.

BEWARE: This command doesn’t include anything but the current unit in the
library. Other units are left out, so if you use code from other units, you must
deploy them together with your library.

Moving units into a library

You can put multiple units into a library with the ppumove command, as follows:

ppumove -e ppl -o name unit1 unit2 unit3

This will move 3 units in 1 library (called libname.so on linux, name.dll on Windows)
and it will create 3 files unit1.ppl, unit2.ppl and unit3.ppl, which are unit files, but
which tell the compiler to look in library name when linking your executable.

The ppumove program has options to create statical or dynamical libraries. It is
provided with the compiler.

Unit searching strategy

When you compile a program or unit, the compiler will by default always look for
.ppl files. If it doesn’t find one, it will look for a .ppu file.

To be able to differentiate between units that have been compiled as static or
dynamic libraries, there are 2 switches:

-XD: This will define the symbol FPC LINK DYNAMIC

-XS: This will define the symbol FPC LINK STATIC

Definition of one symbol will automatically undefine the other.

These two switches can be used in conjunction with the configuration file ppc386.cfg.
The existence of one of these symbols can be used to decide which unit search path
to set. For example:

# Set unit paths

#IFDEF FPC_LINK_STATIC
-Up/usr/lib/fpc/linuxunits/staticunits
#ENDIF

50



CHAPTER 4. LINKING ISSUES 4.6. USING SMART LINKING

#IFDEF FPC_LINK_DYNAMIC
-Up/usr/lib/fpc/linuxunits/sharedunits
#ENDIF

With such a configuration file, the compiler will look for it’s units in different
directories, depending on whether -XD or -XS is used.

4.6 Using smart linking

You can compile your units using smart linking. When you use smartlinking, the
compiler creates a series of code blocks that are as small as possible, i.e. a code
block will contain only the code for one procedure or function.

When you compile a program that uses a smart-linked unit, the compiler will only
link in the code that you actually need, and will leave out all other code. This
will result in a smaller binary, which is loaded in memory faster, thus speeding up
execution.

To enable smartlinking, one can give the smartlink option on the command line :
-Cx, or one can put the {$SMARTLINK ON} directive in the unit file:

Unit Testunit

{SMARTLINK ON}
Interface
...

Smartlinking will slow down the compilation process, especially for large units.

When a unit foo.pp is smartlinked, the name of the codefile is changed to libfoo.a.

Technically speaking, the compiler makes small assembler files for each procedure
and function in the unit, as well as for all global defined variables (whether they’re
in the interface section or not). It then assembles all these small files, and uses ar
to collect the resulting object files in one archive.

Smartlinking and the creation of shared (or dynamic) libraries are mutually exclu-
sive, that is, if you turn on smartlinking, then the creation of shared libraries is
turned of. The creation of static libraries is still possible. The reason for this is
that it has little sense in making a smarlinked dynamical library. The whole shared
library is loaded into memory anyway by the dynamic linker (or Windows NT),
so there would be no gain in size by making it smartlinked.

51



Chapter 5

Objects

In this short chapter we give some technical things about objects. For instructions
on how to use and declare objects, see the Reference guide.

5.1 Constructor and Destructor calls

When using objects that need virtual methods, the compiler uses two help pro-
cedures that are in the run-time library. They are called Help Destructor and
Help Constructor, and they are written in assembly language. They are used to
allocate the necessary memory if needed, and to insert the Virtual Method Table
(VMT) pointer in the newly allocated object.

When the compiler encounters a call to an object’s constructor, it sets up the stack
frame for the call, and inserts a call to the Help Constructor procedure before
issuing the call to the real constructor. The helper procedure allocates the needed
memory (if needed) and inserts the VMT pointer in the object. After that, the real
constructor is called.

A call to Help Destructor is inserted in every destructor declaration, just before
the destructor’s exit sequence.

5.2 Memory storage of objects

Objects are stored in memory just as ordinary records with an extra field : a pointer
to the Virtual Method Table (VMT). This field is stored first, and all fields in the
object are stored in the order they are declared. This field is initialized by the call
to the object’s Constructor method.

If the object you defined has no virtual methods, then a nil is stored in the VMT
pointer. This ensures that the size of objects is equal, whether they have virtual
methods or not.

The memory allocated looks as in table (5.1).

5.3 The Virtual Method Table

The Virtual Method Table (VMT) for each object type consists of 2 check fields
(containing the size of the data), a pointer to the object’s ancestor’s VMT (Nil

52

file:../ref/ref.html


CHAPTER 5. OBJECTS 5.3. THE VIRTUAL METHOD TABLE

Table 5.1: Object memory layout

Offset What
+0 Pointer to VMT.
+4 Data. All fields in the order the’ve been declared.
...

Table 5.2: Virtual Method Table memory layout

Offset What
+0 Size of object type data
+4 Minus the size of object type data. Enables determining of valid VMT pointers.
+8 Pointer to ancestor VMT, Nil if no ancestor available.
+12 Pointers to the virtual methods.
...

if there is no ancestor), and then the pointers to all virtual methods. The VMT
layout is illustrated in table (5.2).

The VMT is constructed by the compiler. Every instance of an object receives a
pointer to its VMT.

53



Chapter 6

Generated code

The Free Pascal compiler relies on the assembler to make object files. It generates
just the assembly language file. In the following two sections, we discuss what is
generated when you compile a unit or a program.

6.1 Units

When you compile a unit, the Free Pascal compiler generates 2 files :

1. A unit description file (with extension .ppu, or .ppw on Windows NT ).

2. An assembly language file (with extension .s).

The assembly language file contains the actual source code for the statements in
your unit, and the necessary memory allocations for any variables you use in your
unit. This file is converted by the assembler to an object file (with extension .o)
which can then be linked to other units and your program, to form an executable.

By default (compiler version 0.9.4 and up), the assembly file is removed after it
has been compiled. Only in the case of the -s command-line option, the assembly
file must be left on disk, so the assembler can be called later. You can disable the
erasing of the assembler file with the -a switch.

The unit file contains all the information the compiler needs to use the unit:

1. Other used units, both in interface and implementation.

2. Types and variables from the interface section of the unit.

3. Function declarations from the interface section of the unit.

4. Some debugging information, when compiled with debugging.

5. A date and time stamp.

Macros, symbols and compiler directives are not saved to the unit description file.
Aliases for functions are also not written to this file, which is logical, since they
cannot appear in the interface section of a unit.

The detailed contents and structure of this file are described in the first appendix.
You can examine a unit description file using the dumpppu program, which shows
the contents of the file.

54



CHAPTER 6. GENERATED CODE 6.2. PROGRAMS

If you want to distribute a unit without source code, you must provide both the
unit description file and the object file.

You can also provide a C header file to go with the object file. In that case, your
unit can be used by someone who wishes to write his programs in C. However, you
must make this header file yourself since the Free Pascal compiler doesn’t make one
for you.

6.2 Programs

When you compile a program, the compiler produces again 2 files :

1. An assembly language file containing the statements of your program, and
memory allocations for all used variables.

2. A linker response file. This file contains a list of object files the linker must
link together.

The link response file is, by default, removed from the disk. Only when you specify
the -s command-line option or when linking fails, then the file is left on the disk.
It is named link.res.

The assembly language file is converted to an object file by the assembler, and then
linked together with the rest of the units and a program header, to form your final
program.

The program header file is a small assembly program which provides the entry point
for the program. This is where the execution of your program starts, so it depends
on the operating system, because operating systems pass parameters to executables
in wildly different ways.

It’s name is prt0.o, and the source file resides in prt0.s or some variant of this name.
It usually resided where the system unit source for your system resides. It’s main
function is to save the environment and command-line arguments and set up the
stack. Then it calls the main program.

55



Chapter 7

Intel MMX support

7.1 What is it about ?

Free Pascal supports the new MMX (Multi-Media extensions) instructions of Intel
processors. The idea of MMX is to process multiple data with one instruction,
for example the processor can add simultaneously 4 words. To implement this
efficiently, the Pascal language needs to be extended. So Free Pascal allows to
add for example two array[0..3] of word, if MMX support is switched on. The
operation is done by the MMX unit and allows people without assembler knowledge
to take advantage of the MMX extensions.

Here is an example:

uses
MMX; { include some predefined data types }

const
{ tmmxword = array[0..3] of word;, declared by unit MMX }
w1 : tmmxword = (111,123,432,4356);
w2 : tmmxword = (4213,63456,756,4);

var
w3 : tmmxword;
l : longint;

begin
if is_mmx_cpu then { is_mmx_cpu is exported from unit mmx }

begin
{$mmx+} { turn mmx on }

w3:=w1+w2;
{$mmx-}

end
else

begin
for i:=0 to 3 do

w3[i]:=w1[i]+w2[i];
end;

end.

56



CHAPTER 7. INTEL MMX SUPPORT 7.2. SATURATION SUPPORT

7.2 Saturation support

One important point of MMX is the support of saturated operations. If a operation
would cause an overflow, the value stays at the highest or lowest possible value for
the data type: If you use byte values you get normally 250+12=6. This is very
annoying when doing color manipulations or changing audio samples, when you
have to do a word add and check if the value is greater than 255. The solution
is saturation: 250+12 gives 255. Saturated operations are supported by the MMX
unit. If you want to use them, you have simple turn the switch saturation on:
$saturation+

Here is an example:

Program SaturationDemo;
{

example for saturation, scales data (for example audio)
with 1.5 with rounding to negative infinity

}

var
audio1 : tmmxword;

const
helpdata1 : tmmxword = ($c000,$c000,$c000,$c000);
helpdata2 : tmmxword = ($8000,$8000,$8000,$8000);

begin
{ audio1 contains four 16 bit audio samples }

{$mmx+}
{ convert it to $8000 is defined as zero, multiply data with 0.75 }
audio1:=tmmxfixed16(audio1+helpdata2)*tmmxfixed(helpdata1);

{$saturation+}
{ avoid overflows (all values>$7fff becomes $ffff) }
audio1:=(audio1+helpdata2)-helpdata2;

{$saturation-}
{ now mupltily with 2 and change to integer }
audio1:=(audio1 shl 1)-helpdata2;

{$mmx-}
end.

7.3 Restrictions of MMX support

In the beginning of 1997 the MMX instructions were introduced in the Pentium
processors, so multitasking systems wouldn’t save the newly introduced MMX reg-
isters. To work around that problem, Intel mapped the MMX registers to the FPU
register.

The consequence is that you can’t mix MMX and floating point operations. After
using MMX operations and before using floating point operations, you have to call
the routine EMMS of the MMX unit. This routine restores the FPU registers.

Careful: The compiler doesn’t warn if you mix floating point and MMX operations,
so be careful.

The MMX instructions are optimized for multi media (what else?). So it isn’t

57



CHAPTER 7. INTEL MMX SUPPORT7.4. SUPPORTED MMX OPERATIONS

possible to perform each operation, some opertions give a type mismatch, see section
7.4 for the supported MMX operations

An important restriction is that MMX operations aren’t range or overflow checked,
even when you turn range and overflow checking on. This is due to the nature of
MMX operations.

The MMX unit must always be used when doing MMX operations because the exit
code of this unit clears the MMX unit. If it wouldn’t do that, other program will
crash. A consequence of this is that you can’t use MMX operations in the exit code
of your units or programs, since they would interfere with the exit code of the MMX
unit. The compiler can’t check this, so you are responsible for this !

7.4 Supported MMX operations

Still to be written...

7.5 Optimizing MMX support

Here are some helpful hints to get optimal performance:

• The EMMS call takes a lot of time, so try to seperate floating point and MMX
operations.

• Use MMX only in low level routines because the compiler saves all used MMX
registers when calling a subroutine.

• The NOT-operator isn’t supported natively by MMX, so the compiler has to
generate a workaround and this operation is inefficient.

• Simple assignements of floating point numbers don’t access floating point reg-
isters, so you need no call to the EMMS procedure. Only when doing arithmetic,
you need to call the EMMS procedure.

58



Chapter 8

Memory issues

8.1 The 32-bit model.

The Free Pascal compiler issues 32-bit code. This has several consequences:

• You need a 386 processor to run the generated code. The compiler functions
on a 286 when you compile it using Turbo Pascal, but the generated programs
cannot be assembled or executed.

• You don’t need to bother with segment selectors. Memory can be addressed
using a single 32-bit pointer. The amount of memory is limited only by the
available amount of (virtual) memory on your machine.

• The structures you define are unlimited in size. Arrays can be as long as you
want. You can request memory blocks from any size.

The fact that 32-bit code is used, means that some of the older Turbo Pascal
constructs and functions are obsolete. The following is a list of functions which
shouldn’t be used anymore:

Seg() : Returned the segment of a memory address. Since segments have no more
meaning, zero is returned in the Free Pascal run-time library implementation
of Seg.

Ofs() : Returned the offset of a memory address. Since segments have no more
meaning, the complete address is returned in the Free Pascal implementation
of this function. This has as a consequence that the return type is Longint
instead of Word.

Cseg(), Dseg() : Returned, respectively, the code and data segments of your
program. This returns zero in the Free Pascal implementation of the system
unit, since both code and data are in the same memory space.

Ptr: Accepted a segment and offset from an address, and would return a pointer
to this address. This has been changed in the run-time library. Standard it
returns now simply the offset. If you want to retain the old functionality, you
can recompile the run-time library with the DoMapping symbol defined. This
will restore the Turbo Pascal behaviour.

memw and mem These arrays gave access to the dos memory. Free Pascal sup-
ports them on the go32v2 platform, they are mapped into dos memory space.
You need the GO32 unit for this. On other platforms, they are not supported

59



CHAPTER 8. MEMORY ISSUES 8.2. THE STACK

Table 8.1: Stack frame when calling a procedure

Offset What is stored Optional ?
+x parameters Yes
+12 function result Yes
+8 self Yes
+4 Frame pointer of parent procedure Yes
+0 Return address No

You shouldn’t use these functions, since they are very non-portable, they’re specific
to dos and the ix86 processor. The Free Pascal compiler is designed to be portable
to other platforms, so you should keep your code as portable as possible, and not
system specific. That is, unless you’re writing some driver units, of course.

8.2 The stack

The stack is used to pass parameters to procedures or functions, to store local
variables, and, in some cases, to return function results.

When a function or procedure is called, then the following is done by the compiler :

1. If there are any parameters to be passed to the procedure, they are pushed
from right to left on the stack.

2. If a function is called that returns a variable of type String, Set, Record,
Object or Array, then an address to store the function result in, is pushed on
the stack.

3. If the called procedure or function is an object method, then the pointer to
self is pushed on the stack.

4. If the procedure or function is nested in another function or procedure, then
the frame pointer of the parent procedure is pushed on the stack.

5. The return address is pushed on the stack (This is done automatically by the
instruction which calls the subroutine).

The resulting stack frame upon entering looks as in table (8.1).

Intel x86 version

The stack is cleared with the ret I386 instruction, meaning that the size of all
pushed parameters is limited to 64K.

DOS

Under the DOS targets, the default stack is set to 256Kb. This value cannot be
modified for the GO32V1 target. But this can be modified with the GO32V2 target
using a special DJGPP utility stubedit. It is to note that the stack size may be
changed with some compiler switches, this stack size, if greater then the default
stack size will be used instead, otherwise the default stack size is used.

60



CHAPTER 8. MEMORY ISSUES 8.3. THE HEAP

Linux

Under Linux, stack size is only limited by the available memory of the system.

OS/2

Under OS/2, stack size is determined by one of the runtime environment variables
set for EMX. Therefore, the stack size is user defined.

Motorola 680x0 version

All depending on the processor target, the stack can be cleared in two manners, if
the target processor is a MC68020 or higher, the stack will be cleared with a simple
rtd instruction, meaning that the size of all pushed parameters is limited to 32K.

Otherwise on MC68000/68010 processors, the stack clearing mechanism is sligthly
more complicated, the exit code will look like this:

{
move.l (sp)+,a0
add.l paramsize,a0
move.l a0,-(sp)
rts

}

Amiga

Under AmigaOS, stack size is determined by the user, which sets this value using
the stack program. Typical sizes range from 4K to 40K.

Atari

Under Atari TOS, stack size is currently limited to 8K, and it cannot be modified.
This may change in a future release of the compiler.

8.3 The heap

The heap is used to store all dynamic variables, and to store class instances. The
interface to the heap is the same as in Turbo Pascal, although the effects are maybe
not the same. On top of that, the Free Pascal run-time library has some extra
possibilities, not available in Turbo Pascal. These extra possibilities are explained
in the next subsections.

The heap grows

Free Pascal supports the HeapError procedural variable. If this variable is non-nil,
then it is called in case you try to allocate memory, and the heap is full. By default,
HeapError points to the GrowHeap function, which tries to increase the heap.

The growheap function issues a system call to try to increase the size of the memory
available to your program. It first tries to increase memory in a 1 Mb. chunk. If
this fails, it tries to increase the heap by the amount you requested from the heap.

61



CHAPTER 8. MEMORY ISSUES 8.3. THE HEAP

If the call to GrowHeap has failed, then a run-time error is generated, or nil is
returned, depending on the GrowHeap result.

If the call to GrowHeap was successful, then the needed memory will be allocated.

Using Blocks

If you need to allocate a lot of small blocks for a small period, then you may
want to recompile the run-time library with the USEBLOCKS symbol defined. If it is
recompiled, then the heap management is done in a different way.

The run-time library keeps a linked list of allocated blocks with size up to 256
bytes1. By default, it keeps 32 of these lists2.

When a piece of memory in a block is deallocated, the heap manager doesn’t re-
ally deallocate the occupied memory. The block is simply put in the linked list
corresponding to its size.

When you then again request a block of memory, the manager checks in the list if
there is a non-allocated block which fits the size you need (rounded to 8 bytes). If
so, the block is used to allocate the memory you requested.

This method of allocating works faster if the heap is very fragmented, and you
allocate a lot of small memory chunks.

Since it is invisible to the program, this provides an easy way of improving the
performance of the heap manager.

Using the split heap

Remark : The split heap is still somewhat buggy. Use at your own risk for the
moment.

The split heap can be used to quickly release a lot of blocks you allocated previously.

Suppose that in a part of your program, you allocate a lot of memory chunks on
the heap. Suppose that you know that you’ll release all this memory when this
particular part of your program is finished.

In Turbo Pascal, you could foresee this, and mark the position of the heap (using
the Mark function) when entering this particular part of your program, and release
the occupied memory in one call with the Release call.

For most purposes, this works very good. But sometimes, you may need to allo-
cate something on the heap that you don’t want deallocated when you release the
allocated memory. That is where the split heap comes in.

When you split the heap, the heap manager keeps 2 heaps: the base heap (the
normal heap), and the temporary heap. After the call to split the heap, memory
is allocated from the temporary heap. When you’re finished using all this memory,
you unsplit the heap. This clears all the memory on the split heap with one call.
After that, memory will be allocated from the base heap again.

So far, nothing special, nothing that can’t be done with calls to mark and release.
Suppose now that you have split the heap, and that you’ve come to a point where
you need to allocate memory that is to stay allocated after you unsplit the heap
again. At this point, mark and release are of no use. But when using the split heap,
you can tell the heap manager to –temporarily– use the base heap again to allocate

1The size can be set using the max size constant in the heap.inc source file.
2The actual size is max size div 8.

62



CHAPTER 8. MEMORY ISSUES8.4. USING DOS MEMORY UNDER THE GO32 EXTENDER

memory. When you’ve allocated the needed memory, you can tell the heap manager
that it should start using the temporary heap again. When you’re finished using
the temporary heap, you release it, and the memory you allocated on the base heap
will still be allocated.

To use the split-heap, you must recompile the run-time library with the TempHeap
symbol defined. This means that the following functions are available :

procedure Split_Heap;
procedure Switch_To_Base_Heap;
procedure Switch_To_Temp_Heap;
procedure Switch_Heap;
procedure ReleaseTempHeap;
procedure GetTempMem(var p : pointer;size : longint);

Split Heap is used to split the heap. It cannot be called two times in a row, without
a call to releasetempheap. Releasetempheap completely releases the memory used
by the temporary heap. Switching temporarily back to the base heap can be done
using the Switch To Base Heap call, and returning to the temporary heap is done
using the Switch To Temp Heap call. Switching from one to the other without
knowing on which one your are right now, can be done using the Switch Heap call,
which will split the heap first if needed.

A call to GetTempMem will allocate a memory block on the temporary heap, whatever
the current heap is. The current heap after this call will be the temporary heap.

Typically, what will appear in your code is the following sequence :

Split_Heap
...
{ Memory allocation }
...
{ !! non-volatile memory needed !!}
Switch_To_Base_Heap;
getmem (P,size);
Switch_To_Temp_Heap;
...
{Memory allocation}
...
ReleaseTempHeap;
{All allocated memory is now freed, except for the memory pointed to by ’P’ }
...

8.4 Using dos memory under the Go32 extender

Because Free Pascal is a 32 bit compiler, and uses a dos extender, accessing DOS
memory isn’t trivial. What follows is an attempt to an explanation of how to access
and use dos or real mode memory3.

In Proteced Mode, memory is accessed through Selectors and Offsets. You can think
of Selectors as the protected mode equivalents of segments.

In Free Pascal, a pointer is an offset into the DS selector, which points to the Data
of your program.

3Thanks to an explanation of Thomas schatzl (E-mail:tom at work@geocities.com).

63



CHAPTER 8. MEMORY ISSUES8.4. USING DOS MEMORY UNDER THE GO32 EXTENDER

To access the (real mode) dos memory, somehow you need a selector that points
to the dos memory. The GO32 unit provides you with such a selector: The
DosMemSelector variable, as it is conveniently called.

You can also allocate memory in dos’s memory space, using the global dos alloc
function of the GO32 unit. This function will allocate memory in a place where dos

sees it.

As an example, here is a function that returns memory in real mode dos and returns
a selector:offset pair for it.

procedure dosalloc(var selector : word;
var segment : word;
size : longint);

var result : longint;

begin
result := global_dos_alloc(size);
selector := word(result);
segment := word(result shr 16);

end;

(You need to free this memory using the global dos free function.)

You can access any place in memory using a selector. You can get a selector using
the allocate ldt descriptor function, and then let this selector point to the
physical memory you want using the set segment base address function, and set
its length using set segment limit function. You can manipulate the memory
pointed to by the selector using the functions of the GO32 unit. For instance with
the seg fillchar function. After using the selector, you must free it again using
the free ldt selector function.

More information on all this can be found in the Unit reference, the chapter on the
GO32 unit.

64

file:../units/units.html


Chapter 9

Optimizations

9.1 Non processor specific

The following sections describe the general optimizations done by the compiler, they
are not processor specific. Some of these require some compiler switch override while
others are done automatically (those which require a switch will be noted as such).

Constant folding

In Free Pascal, if the operand(s) of an operator are constants, they will be evaluated
at compile time.

Example

x:=1+2+3+6+5;
will generate the same code as

x:=17;

Furthermore, if an array index is a constant, the offset will be evaluated at compile
time. This means that accessing MyData[5] is as efficient as accessing a normal
variable.

Finally, calling Chr, Hi, Lo, Ord, Pred, or Succ functions with constant parameters
generates no run-time library calls, instead, the values are evaluated at compile
time.

Constant merging

Using the same constant string two or more times generates only one copy of the
string constant.

Short cut evaluation

Evaluation of boolean expression stops as soon as the result is known, which makes
code execute faster then if all boolean operands were evaluated.

65



CHAPTER 9. OPTIMIZATIONS 9.1. NON PROCESSOR SPECIFIC

Constant set inlining

Using the in operator is always more efficient then using the equivalent <>, =, <=,
>=, < and > operators. This is because range comparisons can be done more easily
with in then with normal comparison operators.

Small sets

Sets which contain less then 33 elements can be directly encoded using a 32-bit
value, therefore no run-time library calls to evaluate operands on these sets are
required; they are directly encoded by the code generator.

Range checking

Assignments of constants to variables are range checked at compile time, which
removes the need of the generation of runtime range checking code.

Remark: This feature was not implemented before version 0.99.5 of Free Pascal.

Shifts instead of multiply or divide

When one of the operands in a multiplication is a power of two, they are encoded
using arithmetic shift instructions, which generates more efficient code.

Similarly, if the divisor in a div operation is a power of two, it is encoded using
arithmetic shift instructions.

The same is true when accessing array indexes which are powers of two, the address
is calculated using arithmetic shifts instead of the multiply instruction.

Automatic alignment

By default all variables larger then a byte are guaranteed to be aligned at least on
a word boundary.

Furthermore all pointers allocated using the standard runtime library (New and
GetMem among others) are guaranteed to return pointers aligned on a quadword
boundary (64-bit alignment).

Alignment of variables on the stack depends on the target processor.

Remark: Quadword alignment of pointers is not guaranteed on systems which
don’t use an internal heap, such as for the Win32 target.

Remark: Alignment is also done between fields in records, objects and classes, this
is not the same as in Turbo Pascal and may cause problems when using disk I/O
with these types. To get no alignment between fields use the packed directive or
the {$PackRecords n} switch. For further information, take a look at the reference
manual under the record heading.

Smart linking

This feature removes all unreferenced code in the final executable file, making the
executable file much smaller.

Smart linking is switched on with the -Cx command-line switch, or using the
{$SMARTLINK ON} global directive.

66



CHAPTER 9. OPTIMIZATIONS 9.1. NON PROCESSOR SPECIFIC

Remark: Smart linking was implemented starting with version 0.99.6 of Free
Pascal.

Inline routines

The following runtime library routines are coded directly into the final executable
: Lo, Hi, High, Sizeof, TypeOf, Length, Pred, Succ, Inc, Dec and Assigned.

Remark: Inline Inc and Dec were not completely implemented until version 0.99.6
of Free Pascal.

Case optimization

When using the -O1 (or higher) switch, case statements will be generated using a
jump table if appropriate, to make them execute faster.

Stack frame omission

Under specific conditions, the stack frame (entry and exit code for the routine, see
section 3.3) will be omitted, and the variable will directly be accessed via the stack
pointer.

Conditions for omission of the stack frame :

• The function has no parameters nor local variables.

• Routine does not call other routines.

• Routine does not contain assembler statements. However, a assembler rou-
tine may omit it’s stack frame.

• Routine is not declared using the Interrupt directive.

• Routine is not a constructor or destructor.

Register variables

When using the -Or switch, local variables or parameters which are used very often
will be moved to registers for faster access.

Remark: Register variable allocation is currently an experimental feature, and
should be used with caution.

Intel x86 specific

Here follows a listing of the optimizing techniques used in the compiler:

1. When optimizing for a specific Processor (-Op1, -Op2, -Op3, the following
is done:

• In case statements, a check is done whether a jump table or a sequence
of conditional jumps should be used for optimal performance.

• Determines a number of strategies when doing peephole optimization,
e.g.: movzbl (%ebp), %eax will be changed into xorl %eax,%eax; movb
(%ebp),%al for Pentium and PentiumMMX.

67



CHAPTER 9. OPTIMIZATIONS 9.1. NON PROCESSOR SPECIFIC

2. When optimizing for speed (-OG, the default) or size (-Og), a choice is made
between using shorter instructions (for size) such as enter $4, or longer in-
structions subl $4,%esp for speed. When smaller size is requested, things
aren’t aligned on 4-byte boundaries. When speed is requested, things are
aligned on 4-byte boundaries as much as possible.

3. Fast optimizations (-O1): activate the peephole optimizer

4. Slower optimizations (-O2): also activate the common subexpression elimina-
tion (formerly called the ”reloading optimizer”)

5. Uncertain optimizations (-Ou): With this switch, the common subexpression
elimination algorithm can be forced into making uncertain optimizations.

Although you can enable uncertain optimizations in most cases, for people
who do not understand the following technical explanation, it might be the
safest to leave them off.

If uncertain optimizations are enabled, the CSE algortihm assumes
that
• If something is written to a local/global register or a proce-

dure/function parameter, this value doesn’t overwrite the value
to which a pointer points.

• If something is written to memory pointed to by a pointer vari-
able, this value doesn’t overwrite the value of a local/global vari-
able or a procedure/function parameter.

The practical upshot of this is that you cannot use the uncertain optimiza-
tions if you both write and read local or global variables directly and through
pointers (this includes Var parameters, as those are pointers too).

The following example will produce bad code when you switch on uncertain
optimizations:

Var temp: Longint;

Procedure Foo(Var Bar: Longint);
Begin

If (Bar = temp)
Then

Begin
Inc(Bar);
If (Bar <> temp) then Writeln(’bug!’)

End
End;

Begin
Foo(Temp);

End.

The reason it produces bad code is because you access the global variable Temp
both through its name Temp and through a pointer, in this case using the Bar
variable parameter, which is nothing but a pointer to Temp in the above code.

On the other hand, you can use the uncertain optimizations if you access
global/local variables or parameters through pointers, and only access them
through this pointer1.

1 You can use multiple pointers to point to the same variable as well, that doesn’t matter.

68



CHAPTER 9. OPTIMIZATIONS 9.2. OPTIMIZATION SWITCHES

For example:

Type TMyRec = Record
a, b: Longint;

End;
PMyRec = ^TMyRec;

TMyRecArray = Array [1..100000] of TMyRec;
PMyRecArray = ^TMyRecArray;

Var MyRecArrayPtr: PMyRecArray;
MyRecPtr: PMyRec;
Counter: Longint;

Begin
New(MyRecArrayPtr);
For Counter := 1 to 100000 Do

Begin
MyRecPtr := @MyRecArrayPtr^[Counter];
MyRecPtr^.a := Counter;
MyRecPtr^.b := Counter div 2;

End;
End.

Will produce correct code, because the global variable MyRecArrayPtr is not
accessed directly, but only through a pointer (MyRecPtr in this case).

In conclusion, one could say that you can use uncertain optimizations only
when you know what you’re doing.

Motorola 680x0 specific

Using the -O2 switch does several optimizations in the code produced, the most
notable being:

• Sign extension from byte to long will use EXTB

• Returning of functions will use RTD

• Range checking will generate no run-time calls

• Multiplication will use the long MULS instruction, no runtime library call will
be generated

• Division will use the long DIVS instruction, no runtime library call will be
generated

9.2 Optimization switches

This is where the various optimizing switches and their actions are described,
grouped per switch.

-On: with n = 1..3: these switches activate the optimizer. A higher level auto-
matically includes all lower levels.

69



CHAPTER 9. OPTIMIZATIONS 9.3. TIPS TO GET FASTER CODE

• Level 1 (-O1) activates the peephole optimizer (common instruction se-
quences are replaced by faster equivalents).

• Level 2 (-O2) enables the assembler data flow analyzer, which allows
the common subexpression elimination procedure to remove unnecessary
reloads of registers with values they already contain.

• Level 3 (-O3) enables uncertain optimizations. For more info, see -Ou.

-OG: This causes the code generator (and optimizer, IF activated), to favor faster,
but code-wise larger, instruction sequences (such as ”subl $4,%esp”) instead
of slower, smaller instructions (”enter $4”). This is the default setting.

-Og: This one is exactly the reverse of -OG, and as such these switches are mu-
tually exclusive: enabling one will disable the other.

-Or: This setting (once it’s fixed) causes the code generator to check which vari-
ables are used most, so it can keep those in a register.

-Opn: with n = 1..3: Setting the target processor does NOT activate the opti-
mizer. It merely influences the code generator and, if activated, the optimizer:

• During the code generation process, this setting is used to decide whether
a jump table or a sequence of successive jumps provides the best perfor-
mance in a case statement.

• The peephole optimizer takes a number of decisions based on this setting,
for example it translates certain complex instructions, such as

movzbl (mem), %eax|

to a combination of simpler instructions

xorl %eax, %eax
movb (mem), %al

for the Pentium.

-Ou: This enables uncertain optimizations. You cannot use these always, however.
The previous section explains when they can be used, and when they cannot
be used.

9.3 Tips to get faster code

Here, some general tips for getting better code are presented. They mainly concern
coding style.

• Find a better algorithm. No matter how much you and the compiler tweak the
code, a quicksort will (almost) always outperform a bubble sort, for example.

• Use variables of the native size of the processor you’re writing for. For the
80x86 and compatibles, this is 32 bit, so you’re best of using longint and
cardinal variables.

• Turn on the optimizer.

• Write your if/then/else statements so that the code in the ”then”-part gets
executed most of the time (improves the rate of successful jump prediction).

70



CHAPTER 9. OPTIMIZATIONS 9.4. FLOATING POINT

• If you are allocating and disposing a lot of small memory blocks, check out
the heapblocks variable (heapblocks are on by default from release 0.99.8 and
later)

• Profile your code (see the -pg switch) to find out where the bottlenecks are.
If you want, you can rewrite those parts in assembler. You can take the code
generated by the compiler as a starting point. When given the -a command-
line switch, the compiler will not erase the assembler file at the end of the
assembly process, so you can study the assembler file.

Note: Code blocks which contain an assembler block, are not processed at all
by the optimizer at this time. Update: as of version 0.99.11, the Pascal code
surrounding the assembler blocks is optimized.

9.4 Floating point

This is where can be found processor specific information on floating point code
generated by the compiler.

Intel x86 specific

All normal floating point types map to their real type, including comp and extended.

Motorola 680x0 specific

Early generations of the Motorola 680x0 processors did not have integrated floating
point units, so to circumvent this fact, all floating point operations are emulated
(with the $E+ switch, which is the default) using the IEEE Single floating point
type. In other words when emulation is on, Real, Single, Double and Extended all
map to the single floating point type.

When the $E switch is turned off, normal 68882/68881/68040 floating point opcodes
are emitted. The Real type still maps to Single but the other types map to their
true floating point types. Only basic FPU opcodes are used, which means that it
can work on 68040 processors correctly.

Remark: Double and Extended types in true floating point mode have not been
extensively tested as of version 0.99.5.

Remark: The comp data type is currently not supported.

71



Appendix A

Anatomy of a unit file

A.1 Basics

The best and most updated documentation about the ppu files can be found in
ppu.pas and ppudump.pp which can be found in rtl/utils/.

To read or write the ppufile, you can use the ppu unit ppu.pas which has an object
called tppufile which holds all routines that deal with ppufile handling. While
describing the layout of a ppufile, the methods which can be used for it are presented
as well.

A unit file consists of basically five or six parts:

1. A unit header.

2. A file interface part.

3. A definition part. Contains all type and procedure definitions.

4. A symbol part. Contains all symbol names and references to their definitions.

5. A browser part. Contains all references from this unit to other units and
inside this unit. Only available when the uf has browser flag is set in the
unit flags

6. A file implementation part (currently unused).

A.2 reading ppufiles

We will first create an object ppufile which will be used below. We are opening unit
test.ppu as an example.

var
ppufile : pppufile;

begin
{ Initialize object }

ppufile:=new(pppufile,init(’test.ppu’);
{ open the unit and read the header, returns false when it fails }

if not ppufile.open then
error(’error opening unit test.ppu’);

72



APPENDIX A. ANATOMY OF A UNIT FILE A.3. THE HEADER

{ here we can read the unit }

{ close unit }
ppufile.close;

{ release object }
dispose(ppufile,done);

end;

Note: When a function fails (for example not enough bytes left in an entry) it sets
the ppufile.error variable.

A.3 The Header

The header consists of a record containing 24 bytes:

tppuheader=packed record
id : array[1..3] of char; { = ’PPU’ }
ver : array[1..3] of char;
compiler : word;
cpu : word;
target : word;
flags : longint;
size : longint; { size of the ppufile without header }
checksum : longint; { checksum for this ppufile }

end;

The header is already read by the ppufile.open command. You can access all
fields using ppufile.header which holds the current header record.

73



APPENDIX A. ANATOMY OF A UNIT FILE A.4. THE SECTIONS

field description
id this is allways ’PPU’, can be checked with

function ppufile.CheckPPUId:boolean;
ver ppu version, currently ’015’, can be checked with

function ppufile.GetPPUVersion:longint; (returns 15)
compiler compiler version used to create the unit. Doesn’t contain the

patchlevel. Currently 0.99 where 0 is the high byte and 99 the
low byte

cpu cpu for which this unit is created. 0 = i386 1 = m68k
target target for which this unit is created, this depends also on the cpu!

For i386: 0 Go32v1
1 Go32V2
2 Linux-i386
3 OS/2
4 Win32

For m68k: 0 Amiga
1 Mac68k
2 Atari
3 Linux-m68k

flag the unit flags, contains a combination of the uf constants which
are definied in ppu.pas

size size of this unit without this header
checksum checksum of the interface parts of this unit, which determine if a

unit is changed or not, so other units can see if they need to be
recompiled

A.4 The sections

After this header follow the sections. All sections work the same! A section consists
of entries and ends also with an entry, but containing the specific ibend constant
(see ppu.pas for a list of constants).

Each entry starts with an entryheader.

tppuentry=packed record
id : byte;
nr : byte;
size : longint;

end;

field Description
id this is 1 or 2 and can be checked to see whether the entry is

correctly found. 1 means its a main entry, which says that it is
part of the basic layout as explained before. 2 means that it it a
sub entry of a record or object.

nr contains the ib constant number which determines what kind of
entry it is.

size size of this entry without the header, can be used to skip entries
very easily.

To read an entry you can simply call ppufile.readentry:byte, it returns the
tppuentry.nr field, which holds the type of the entry. A common way how this
works is (example is for the symbols):

repeat

74



APPENDIX A. ANATOMY OF A UNIT FILE A.5. CREATING PPUFILES

b:=ppufile.readentry;
case b of

ib<etc> : begin
end;

ibendsyms : break;
end;

until false;

Then you can parse each entry type yourself. ppufile.readentry will take care
of skipping unread bytes in the entry and reads the next entry correctly! A special
function is skipuntilentry(untilb:byte):boolean; which will read the ppufile
until it finds entry untilb in the main entries.

Parsing an entry can be done with ppufile.getxxx functions. The available func-
tions are:

procedure ppufile.getdata(var b;len:longint);
function getbyte:byte;
function getword:word;
function getlongint:longint;
function getreal:ppureal;
function getstring:string;

To check if you’re at the end of an entry you can use the following function:

function EndOfEntry:boolean;

notes:

1. ppureal is the best real that exists for the cpu where the unit is created for.
Currently it is extended for i386 and single for m68k.

2. the ibobjectdef and ibrecorddef have stored a definition and symbol sec-
tion for themselves. So you’ll need a recursive call. See ppudump.pp for a
correct implementation.

A complete list of entries and what their fields contain can be found in ppudump.pp.

A.5 Creating ppufiles

Creating a new ppufile works almost the same as writing. First you need to init the
object and call create:

ppufile:=new(pppufile,’output.ppu’);
ppufile.create;

After that you can simply write all needed entries. You’ll have to take care that
you write at least the basic entries for the sections:

ibendinterface
ibenddefs
ibendsyms
ibendbrowser (only when you’ve set uf_has_browser!)
ibendimplementation
ibend

75



APPENDIX A. ANATOMY OF A UNIT FILE A.5. CREATING PPUFILES

Writing an entry is a little different than reading it. You need to first put everything
in the entry with ppufile.putxxx:

procedure putdata(var b;len:longint);
procedure putbyte(b:byte);
procedure putword(w:word);
procedure putlongint(l:longint);
procedure putreal(d:ppureal);
procedure putstring(s:string);

After putting all the things in the entry you need to call ppufile.writeentry(ibnr:byte)
where ibnr is the entry number you’re writing.

At the end of the file you need to call ppufile.writeheader to write the new
header to the file. This takes automatically care of the new size of the ppufile.
When that is also done you can call ppufile.close and dispose the object.

Extra functions/variables available for writing are:

ppufile.NewHeader;
ppufile.NewEntry;

This will give you a clean header or entry. Normally called automatically in
ppufile.writeentry, so you can’t forget it.

ppufile.flush;

to flush the current buffers to the disk

ppufile.do_crc:boolean;

set to false if you don’t want that the crc is updated, this is necessary if you write
for example the browser data.

76



Appendix B

Compiler and RTL source
tree structure

B.1 The compiler source tree

All compiler source files are in one directory, normally in source/compiler. For more
informations about the structure of the compiler have a look at the Compiler Manual
which contains also some informations about compiler internals.

The compiler directory contains a subdirectory utils, which contains mainly the
utilities for creation and maintainance of the message files.

B.2 The RTL source tree

The RTL source tree is divided in many subdirectories, but is very structured and
easy to understand. It mainly consists of three parts:

1. A OS-dependent directory. This contains the files that are different for each
operating system. When compiling the RTL, you should do it here. The
following directories exist:

• atari for the atari. Not maintained any more.

• amiga for the amiga. Not maintained any more.

• go32v1 For dos, using the GO32v1 extender. Not maintained any more.

• go32v2 For dos, using the GO32v2 extender.

• linux for linux platforms. It has two subdirect

• os2 for os/2.

• win32 for Win32 platforms.

2. A processor dependent directory. This contains files that are system indepen-
dent, but processor dependent. It contains mostly optimized routines for a
specific processor. The following directories exist:

• i386 for the Intel series of processors.

• m68k for the motorola m68000 series of processors.

77



APPENDIX B. COMPILER AND RTL SOURCE TREE STRUCTUREB.2. THE RTL SOURCE TREE

3. An OS-independent and Processor independent directory: inc. This contains
complete units, and include files containing interface parts of units.

78



Appendix C

Compiler limits

Although many of the restrictions imposed by the MS-DOS system are removed
by use of an extender, or use of another operating system, there still are some
limitations to the compiler:

1. Procedure or Function definitions can be nested to a level of 32.

2. Maximally 255 units can be used in a program when using the real-mode
compiler (i.e. a binary that was compiled by Borland Pascal). When using
the 32-bit compiler, the limit is set to 1024. You can change this by redefining
the maxunits constant in the files.pas compiler source file.

79



Appendix D

Compiler modes

Here we list the exact effect of the different compiler modes. They can be set with
the $Mode switch, or by command line switches.

D.1 FPC mode

This mode is selected by the $MODE FPC switch. On the command-line, this means
that you use none of the other compatibility mode switches. It is the default mode
of the compiler. This means essentially:

1. You must use the address operator to assign procedural variables.

2. A forward declaration must be repeated exactly the same by the implementa-
tion of a function/procedure. In particular, you can not omit the parameters
when implementing the function or procedure.

3. Overloading of functions is allowed.

4. Nested comments are allowed.

5. The Objpas unit is NOT loaded.

6. You can use the cvar type.

7. PChars are converted to strings automatically.

D.2 TP mode

This mode is selected by the $MODE TP switch. On the command-line, this mode is
selected by the -So switch.

1. You cannot use the address operator to assign procedural variables.

2. A forward declaration must not be repeated exactly the same by the imple-
mentation of a function/procedure. In particular, you can omit the parameters
when implementing the function or procedure.

3. Overloading of functions is not allowed.

4. The Objpas unit is NOT loaded.

80



APPENDIX D. COMPILER MODES D.3. DELPHI MODE

5. Nested comments are not allowed.

6. You can not use the cvar type.

D.3 Delphi mode

This mode is selected by the $MODE DELPHI switch. On the command-line, this
mode is selected by the -Sd switch.

1. You can not use the address operator to assign procedural variables.

2. A forward declaration must not be repeated exactly the same by the im-
plementation of a function/procedure. In particular, you can not omit the
parameters when implementing the function or procedure.

3. Overloading of functions is not allowed.

4. Nested comments are not allowed.

5. The Objpas unit is loaded right after the system unit. One of the consequences
of this is that the type Integer is redefined as Longint.

D.4 GPC mode

This mode is selected by the $MODE GPC switch. On the command-line, this mode
is selected by the -Sp switch.

1. You must use the address operator to assign procedural variables.

2. A forward declaration must not be repeated exactly the same by the imple-
mentation of a function/procedure. In particular, you can omit the parameters
when implementing the function or procedure.

3. Overloading of functions is not allowed.

4. The Objpas unit is NOT loaded.

5. Nested comments are not allowed.

6. You can not use the cvar type.

D.5 OBJFPC mode

This mode is selected by the $MODE OBJFPC switch. On the command-line, this
mode is selected by the -S2 switch.

1. You must use the address operator to assign procedural variables.

2. A forward declaration must be repeated exactly the same by the implementa-
tion of a function/procedure. In particular, you can not omit the parameters
when implementing the function or procedure.

3. Overloading of functions is allowed.

4. Nested comments are allowed.

81



APPENDIX D. COMPILER MODES D.5. OBJFPC MODE

5. The Objpas unit is loaded right after the system unit. One of the consequences
of this is that the type Integer is redefined as Longint.

6. You can use the cvar type.

7. PChars are converted to strings automatically.

82



Appendix E

Using makefile.fpc

E.1 Introduction

Free Pascal comes with a special makefile, makefile.fpc, which can be included in any
makefile you use to compile with Free Pascal. There is a template Makefile provided
also. All sources from the Free Pascal team are compiled with this system.

These files are installed in the following directories:

linux

Dos or Windows

The template Makefile searches for the makefile.fpc in the following places :

1. The file pointed to by the FPCMAKE environment variable.

2. The directory pointed to by the FPCDIR envinonment variable.

3. The directory pointed to by the DEFAULTFPCDIR make variable.

4. The current directory.

Thus, setting FPCMAKE or FPCDIR as an environment string will ensure that make-
file.fpc is always found, and will be read by all makefiles, derived from the template.

The following sections explain what variables are set by makefile.fpc, what vari-
ables it expects to be set, and what targets it defines. After that, some settings in
the template makefile are explained.

E.2 Programs needed to use the makefile

The following programs are needed by the makefile to function correctly:

cp a copy program.

date a program that prints the date.

install a program to install files.

make the make program, obviously.

83



APPENDIX E. USING MAKEFILE.FPCE.3. VARIABLES USED BY MAKEFILE.FPC

pwd a program that prints the current working directory.

rm a program to delete files.

These are standard programs on linux systems, with the possible exception of make.
For dos or Windows NT, they can be found in the file gnuutils.zip on the Free
Pascal FTP site.

E.3 Variables used by makefile.fpc

Many variables affect the behaviour of the makefile. The variables can be split in
several groups:

Required variables

Directory variables

Target variables

Compiler command-line variables

Each group will be discussed separately in the subsequent.

Required variables

In principle, the makefile.fpc only expects one variable to be set:

FPCDIR This is the base directory of Free Pascal sources. The makefile expects
to find a directory rtl below this directory.

Directory variables

The first set of variables controls the directories used in the makefile:

INC this is a list of directories, separated by spaces, that will be added as include
directories to the compiler command-line.

LIBDIR is a list of library paths, separated by spaces. Each directory in the list
is prepended with -Fl and added to the compiler options.

NEEDLIBDIR is a space-separated list of library paths. Each directory in the
list is prepended with -Fl and added to the compiler options.

NEEDOBJDIR is a list of object file directories, separated by spaces. Each
directory in the list is prepended with -Fo and added to the compiler options.

NEEDUNITDIR is a list of unit directories, separated by spaces. Each directory
in the list is prepended with -Fu and is added to the compiler options.

OBJDIR is a list of object file directories, separated by spaces, that is added to
the object files path, i.e. Each directory in the list is prepended with -Fo.

OSINC this is a space-separated list of OS-dependent directories that will be added
as include directories to the compiler command line.

84



APPENDIX E. USING MAKEFILE.FPCE.3. VARIABLES USED BY MAKEFILE.FPC

PROCINC is a space-separated list of processor-dependent directories that will
be added as include directories to the compiler command-line.

RTL If RTLDIR is not set, RTL is used to construct RTLDIR, after which RTLDIR is
added to the compiler unit path, with -Fu prepended. If RTLDIR is not set, it
is set to $(RTL)/$(OS TARGET).

RTLDIR Directory where the RTL unit sources are. If RTLDIR is not set, it is set
to $(RTL)/$(OS TARGET).
If RTL is also not set, it is set to $(FPCDIR)/rtl/$(OS TARGET).

TARGETDIR If set, this directory is added as the output directory of the com-
piler, where all units and executables are written, i.e. it gets -FE prepended.

UNIT If UNITDIR is not set, UNIT is used to construct UNITDIR. UNITDIR is added
to the compiler unit path, with -Fu prepended.

UNITDIR Directory where the RTL compiled units are. If UNITDIR is not set, it
is set to $(UNIT)/$(OS TARGET).
If UNIT is also not set, it is set to $(FPCDIR)/rtl/$(OS TARGET).

UNITS The content of this variable are appended to the BASEINSTALLDIR variable
to install the units.

UNITTARGETDIR If set, this directory is added as the output directory of
the compiler, where all units are written, i.e. it gets -FU prepended. This
overrides TARGETDIR.

Target variables

The second set of variables controls the targets that are constructed by the makefile:

DEFAULTUNITS If defined, only units will be made by the makefile. If not
defined, then executables are made also.

EXEOBJECTS This is a list of executable names that will be compiled. the
makefile appends $(EXEEXT) to these names.

LOADEROBJECTS is a list of space-separated names that identify loaders to
be compiled. This is mainly used in the compiler’s RTL sources.

UNITOBJECTS This is a list of unit names that will be compiled. The makefile
appends $(PPUEXT) to each of these names to form the unit file name. The
sourcename is formed by adding $(PASEXT).

ZIPNAME is the name of the archive that will be created by the makefile.

ZIPTARGET is the target that is built before the archive is made. this target is
built first. If successful, the zip archive will be made.

Compiler command-line variables

The following variables control the compiler command-line:

CFGFILE if this variable is set, it will be used as the name of the config file to
be used by the compiler.

85



APPENDIX E. USING MAKEFILE.FPCE.4. VARIABLES SET BY MAKEFILE.FPC

CPU the CPU type is added as a define to the compiler command line. Automat-
ically determined by the makefile.

LIBNAME if smartlinking is requested (i.e. SMARTLINK is set to YES), this is the
name of the static library to produce. Don’t add lib to this, the compiler
will do that.

LIBTYPE if set to shared, then the compiler will emit a shared library, with
name LIBNAME.If LIBTYPE is set to static, the compiler will emit a static,
smartlinked library,

NEEDGCCLIB if this variable is defined, then the path to libgcc is added to the
library path.

NEEDOTHERLIB (linux only) If this is defined, then the makefile will append
all directories that appear in /etc/ld.so.conf to the library path.

OPT Any options that you want to pass to the compiler. The contents of OPT is
simply added to the compiler command-line.

OPTDEF Are optional defines, added to the command-line of the compiler. They
do not get -d prepended.

OS TARGET What platform you want to compile for. Added to the compiler
command-line with a -T prepended.

SMARTLINK if SMARTLINK is set to YES then the compiler will output smartlinked
units if LIBTYPE is not set to shared.

E.4 Variables set by makefile.fpc

All of the following variables are only set by makefile.fpc, if they aren’t already
defined. This means that you can override them by setting them on the make
command line, or setting them in the makefile you use, BEFORE makefile.fpc is
included. The following sets of variables are defined:

Directory variables

Program names

File extensions item[Target files]

Each of these sets is discussed in the subsequent:

Directory variables

The following directories are defined by the makefile:

BASEDIR is set to the current directory if the pwd command is available. If not,
it is set to ’.’.

BASEINSTALLDIR is the base for all directories where units are installed. On
linux, this is set to $(PREFIXINSTALLDIR)/lib/fpc/$(RELEASEVER).
On other systems, it is set to $(PREFIXINSTALLDIR)

86



APPENDIX E. USING MAKEFILE.FPCE.4. VARIABLES SET BY MAKEFILE.FPC

BININSTALLDIR is set to $(BASEINSTALLDIR)/bin on linux, and
$(BASEINSTALLDIR)/bin/$(OS TARGET) on other systems. This is the place
where binaries are installed.

GCCLIBDIR (linux only) is set to the directory where libgcc.a is.

LIBINSTALLDIR is set to $(BASEINSTALLDIR) on linux,
and $(BASEINSTALLDIR)/lib on other systems.

OTHERLIBDIR (linux only) is set to the full set of paths in /etc/ld.so.conf

PREFIXINSTALLDIR is set to /usr on linux, /pp on dos or Windows NT.

SHARED LIBINSTALLDIR is where shared libraries are installed. This equals
$(PREFIXINSTALLDIR)/lib on linux, and SHARED UNITINSTALLDIR on other
systems.

SHARED UNITINSTALLDIR is where units from libraries are installed. This
equals $(UNITINSTALLDIR)/shared

STATIC LIBINSTALLDIR is where static libraries will be installed. By de-
fault, it equals $(STATIC UNITINSTALLDIR).

STATIC UNITINSTALLDIR is where static, smartlinked units will be installed.
It equals $(UNITINSTALLDIR)/static.

UNITINSTALLDIR is where units will be installed. This is set to
$(BASEINSTALLDIR)/$(UNITPREFIX)
on linux. On other systems, it is set to
$(BASEINSTALLDIR)/$(UNITPREFIX)/$(OS TARGET).

Program names

The following variables are program names, used in makefile targets.

AS The assembler. Default set to as.

COPY a file copy program. Default set to cp -fp.

CMP a program to compare files. Default set to cmp.

DEL a file removal program. Default set to rm -f.

DELTREE a directory removal program. Default set to rm -rf.

DATE a program to display the date.

DIFF a program to produce diff files.

ECHO an echo program.

INSTALL a program to install files. Default set to install -m 644 on linux.

INSTALLEXE a program to install executable files. Default set to install -m 755
on linux.

LD The linker. Default set to ld.

LDCONFIG (linux only) the program used to update the loader cache.

87



APPENDIX E. USING MAKEFILE.FPCE.4. VARIABLES SET BY MAKEFILE.FPC

MKDIR a program to create directories if they don’t exist yet. Default set to
install -m 755 -d

MOVE a file move program. Default set to mv -f

PP the Free Pascal compiler executable. Default set to ppc386.exe

PPAS the name of the shell script created by the compiler if the -s option is
specified. This command will be executed after compilation, if the -s option
was detected among the options.

PPUMOVE the program to move units into one big unit library.

SED a stream-line editor program. Default set to sed.

UPX an executable packer to compress your executables into self-extracting com-
pressed executables.

ZIPEXE a zip program to compress files. zip targets are made with this program

File extensions

The following variables denote extensions of files. These variables include the .
(dot) of the extension. They are appended to object names.

ASMEXT is the extension of assembler files produced by the compiler.

LOADEREXT is the extension of the assembler files that make up the executable
startup code.

OEXT is the extension of the object files that the compiler creates.

PACKAGESUFFIX is a suffix that is appended to package names in zip targets.
This serves so packages can be made for different OSes.

PASEXT is the extension of pascal files used in the compile rules. It is determined
by looking at the first EXEOBJECTS source file or the first UNITOBJECTS files.

PPLEXT is the extension of shared library unit files.

PPUEXT is the extension of default units.

SHAREDLIBEXT is the extension of shared libraries.

SMARTEXT is the extension of smartlinked unit assembler files.

STATICLIBEXT is the extension of static libraries.

Target files

The following variables are defined to make targets and rules easier:

COMPILER is the complete compiler commandline, with all options added, after
all Makefile variables have been examined.

DATESTR contains the date.

EXEFILES is a list of executables that will be created by the makefile.

88



APPENDIX E. USING MAKEFILE.FPCE.5. RULES AND TARGETS CREATED BY MAKEFILE.FPC

EXEOFILES is a list of executable object files that will be created by the makefile.

LOADEROFILES is a list of object files that will be made from the loader as-
sembler files. This is mainly for use in the compiler’s RTL sources.

UNITFILES a list of unit files that will be made. This is just the list of unit
objects, with the correct unit extension appended.

UNITOFILES a list of unit object files that will be made. This is just the list of
unit objects, with the correct object file extension appended.

E.5 Rules and targets created by makefile.fpc

The makefile.fpc defines a series of targets, which can be called by your own
targets. They have names that resemble default names (such as ’all’, ’clean’), only
they have fpc prepended.

Pattern rules

The makefile makes the following pattern rules:

units how to make a pascal unit form a pascal source file.

executables how to make an executable from a pascal source file.

object file how to make an object file from an assembler file.

Build rules

The following build targets are defined:

fpc all target that builds all units and executables as well as loaders. If DEFAULTUNITS
is defined, executables are excluded from the targets.

fpc exes target to make all executables in EXEOBJECTS.

fpc loaders target to make all files in LOADEROBJECTS.

fpc sharedlib target that makes all units as dynamic libraries.

fpc staticlib target that makes all units as smartlinked units.

fpc units target to make all units in UNITOBJECTS.

Cleaning rules

The following cleaning targets are defined:

fpc clean cleans all files that result when fpc all was made.

fpc libsclean is the same as fpc clean, but also removes any shared or dynamic
libraries that may have been built.

fpc cleanall is the same as both previous target commands, but also deletes all
object, unit and assembler files that are present.

89



APPENDIX E. USING MAKEFILE.FPCE.6. USING THE PROVIDED TEMPLATE

archiving rules

The following archiving targets are defined:

fpc zipinstalladd will add to a (possibibly existing) archive file (it’s name is taken
from $(ZIPNAME).

fpc zipinstall is the same, only the archive is cleared first.

The zip is made uzing the ZIPEXE program. Under linux, a .tar.gz file is created.

Informative rules

The following targets produce information about the makefile:

fpc cfginfo gives general configuration information: the location of the makefile,
the compiler version, target OS, CPU.

fpc dirinfo gives the directories, used by the compiler.

fpc info executes all other info targets.

fpc installinfo gives all directories where files will be installed.

fpc objectinfo lists all objects that will be made.

fpc toolsinfo lists all defined tools.

E.6 Using the provided template

The template makefile that comes with Free Pascal does nothing other than of-
fering you some variables to be set for the makefile.fpc. After that it loads the
makefile.fpc in the indicated places.

Finally it declares a set of default targets:

all calls fpc all.

clean calls fpc clean.

install calls fpc install.

info calls fpc info.

staticlib calls fpc staticlib.

sharedlib calls fpc sharedlib.

libsclean calls fpc libsclean.

staticinstall calls fpc staticinstall.

sharedinstall calls fpc sharedinstall.

libinstall calls fpc libinstall.

You can override each of these targets to suit your setup.

If you just have to compile some units and programs, you only need to set the
following variables:

90



APPENDIX E. USING MAKEFILE.FPCE.6. USING THE PROVIDED TEMPLATE

UNITOBJECTS names of units you wish to be built.

EXEOBJECTS names of executables you wish to be built.

You may want to set some of the following variables:

INC,PROCINC or OSINC To indicate where include files can be found.

NEEDOPT additional options added to the compile command.

NEEDUNITDIR space-separated list of directories where units that you need
are located.

TARGETDIR,UNITTARGETDIR where do you want executables and units
to be written. Be aware that setting this variable may interfere with make,
since it will not find the target files.

DEFAULTUNITS if you define this variable (to whatever value you want) then
the all target will by default only make the units.

You may also set any of the variables that appear in the previous sections, to
override default behaviour of the makefile.

After having set these variables, you can run ’make info’ to see whether all variables
are set to you satisfaction. If the makefile.fpc is not found, this command will inform
you of this.

After that, a simple ’make all’ will make all units and executables.

91



Appendix F

Compiling the compiler
yourself

F.1 Introduction

The Free Pascal team releases at intervals a completely prepared package, with
compiler and units all ready to use, the so-called releases. After a release, work
on the compiler continues, bugs are fixed and features are added. The Free Pascal
team doesn’t make a new release whenever they change something in the compiler,
instead the sources are available for anyone to use and compile. Compiled versions
of RTL and compiler are also made daily, and put on the web.

There are, nevertheless, circumstances when you’ll want to compile the compiler
yourself. For instance if you made changes to compiler code, or when you download
the compiler via CVS.

There are essentially 2 ways of recompiling the compiler: by hand, or using the
makefiles. Each of these methods will be discussed.

F.2 Before you begin

To compile the compiler easily, it is best to keep the following directory structure
(a base directory of /pp/src is supposed, but that may be different):

/pp/src/Makefile
/makefile.fpc
/rtl/linux

/inc
/i386
/...

/compiler

If you want to use the makefiles, you must use the above directory tree.

The compiler and rtl source are zipped in such a way that if you unzip both files in
the same directory (/pp/src in the above) the above directory tree results.

The makefile.fpc and Makefile come from the base.zip file on the ftp site. If you
compile manually, you don’t need them.

92



APPENDIX F. COMPILING THE COMPILER YOURSELFF.3. COMPILING USING MAKE

There are 2 ways to start compiling the compiler and RTL. Both ways must be
used, depending on the situation. Usually, the RTL must be compiled first, before
compiling the compiler, after which the compiler is compiled using the current com-
piler. In some special cases the compiler must be compiled first, with a previously
compiled RTL.

How to decide which should be compiled first? In general, the answer is that you
should compile the RTL first. There are 2 exceptions to this rule:

1. The first case is when some of the internal routines in the RTL have changed,
or if new internal routines appeared. Since the OLD compiler doesn’t know
about these changed internal routines, it will emit function calls that are based
on the old compiled RTL, and hence are not correct. Either the result will
not link, or the binary will give errors.

2. The second case is when something is added to the RTL that the compiler
needs to know about (a new default assembler mechanism, for example).

How to know if one of these things has occurred ? There is no way to know, except
by mailing the Free Pascal team. If you cannot recompile the compiler when you
first compile the RTL, then try the other way.

F.3 Compiling using make

When compiling with make it is necessary to have the above directory structure.
Compiling the compiler is achieved with the target cycle.

Under normal circumstances, recompiling the compiler is limited to the following
instructions (assuming you start in directory /pp/src):

cd compiler
make cycle

This will work only if the makefile.fpc is installed correctly and if the needed tools
are present in the PATH. Which tools must be installed can be found in appendix E.

The above instructions will do the following:

1. Using the current compiler, the RTL is compiled in the correct directory,
which is determined by the OS you are under. e.g. under linux, the RTL is
compiled in directory rtl/linux.

2. The compiler is compiled using the newly compiled RTL. If successful, the
newly compiled compiler executable is copied to a temporary executable.

3. Using the temporary executable from the previous step, the RTL is re-compiled.

4. Using the temporary executable and the newly compiled RTL from the last
step, the compiler is compiled again.

The last two steps are repeated 3 times, until three passes have been made or until
the generated compiler binary is equal to the binary it was compiled with. This
process ensures that the compiler binary is correct.

Compiling for another target: When you want to compile the compiler for another
target, you must specify the OS TARGET makefile variable. It can be set to the
following values: win32, go32v2, os2 and linux. As an example, cross-compilation
for the go32v2 target from the win32 target is chosen:

93



APPENDIX F. COMPILING THE COMPILER YOURSELFF.4. COMPILING BY HAND

cd compiler
make cycle OS_TARGET=go32v2

This will compile the go32v2 RTL, and compile a go32v2 compiler.

If you want to compile a new compiler, but you want the compiler to be compiled
first using an existing compiled RTL, you should specify the all target, and specify
another RTL directory than the default (which is the ../rtl/$(OS TARGET) direc-
tory). For instance, assuming that the compiled RTL units are in /pp/rtl, you
could type

cd compiler
make clean
make all UNITDIR=/pp/rtl

This will then compile the compiler using the RTL units in /pp/rtl. After this has
been done, you can do the ’make cycle’, starting with this compiler:

make cycle PP=./ppc386

This will do the make cycle from above, but will start with the compiler that was
generated by the make all instruction.

In all cases, many options can be passed to make to influence the compile process.
In general, the makefiles add any needed compiler options to the command-line, so
that the RTL and compiler can be compiled. You can specify additional options
(e.g. optimization options) by passing them in OPT.

F.4 Compiling by hand

Compiling by hand is difficult and tedious, but can be done. We’ll treat the com-
pilation of RTL and compiler separately.

Compiling the RTL

To recompile the RTL, so a new compiler can be built, at least the following units
must be built, in the order specified:

loaders the program stubs, that are the startup code for each pascal program. These
files have the .as extension, because they are written in assembler. They must
be assembled with the gnu as assembler. These stubs are in the OS-dependent
directory, except for linux, where they are in a processor dependent subdi-
rectory of the linux directory (i386 or m68k).

system the system unit. This unit is named differently on different systems:

• Only on GO32v2, it’s called system.

• For linux it’s called syslinux.

• For Windows NT it’s called syswin32.

• For os/2 it’s called sysos2

This unit resides in the OS-dependent subdirectories of the RTL.

strings The strings unit. This unit resides in the inc subdirectory of the RTL.

94



APPENDIX F. COMPILING THE COMPILER YOURSELFF.4. COMPILING BY HAND

dos The dos unit. It resides in the OS-dependent subdirectory of the RTL. Possibly
other units will be compiled as a consequence of trying to compile this unit
(e.g. on linux, the linux unit will be compiled, on go32, the go32 unit will be
compiled).

objects the objects unit. It resides in the inc subdirectory of the RTL.

To compile these units on a i386, the following statements will do:

ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 -Us -Sg syslinux.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 ../inc/strings.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 dos.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 ../inc/objects.pp

These are the minimum command-line options, needed to compile the RTL.

For another processor, you should change the i386 into the appropriate proces-
sor. For another operating system (target) you should change the syslinux in the
appropriate system unit file, and you should change the target OS setting (-T).

Depending on the target OS there are other units that you may wish to compile,
but which are not strictly needed to recompile the compiler. The following units
are available for all plaforms:

objpas Needed for Delphi mode. Needs -S2 as an option. Resides in the objpas
subdirectory.

sysutils many utility functions, like in Delphi. Resides in the objpas directory, and
needs -S2 to compile.

typinfo functions to access RTTI information, like Delphi. Resides in the objpas
directory.

math math functions like in Delphi. Resides in the objpas directory.

mmx extensions for MMX class Intel processors. Resides in in the i386 directory.

getopts a GNU compatible getopts unit. resides in the inc directory.

heaptrc to debug the heap. resides in the inc directory.

Compiling the compiler

Compiling the compiler can be done with one statement. It’s always best to remove
all units from the compiler directory first, so something like

rm *.ppu *.o

on linux, and on dos

del *.ppu
del *.o

After this, the compiler can be compiled with the following command-line:

ppc386 -Tlinux -Fu../rtl/linux -di386 -dGDB pp.pas

So, the minimum options are:

95



APPENDIX F. COMPILING THE COMPILER YOURSELFF.4. COMPILING BY HAND

Table F.1: Possible defines when compiling FPC

Define does what
USE RHIDE Generates errors and warnings in a format recognized

by RHIDE.
TP Needed to compile the compiler with Turbo or Borland Pascal.
Delphi Needed to compile the compiler with Delphi from Borland.
GDB Support of the GNU Debugger.
I386 Generate a compiler for the Intel i386+ processor family.
M68K Generate a compiler for the M68000 processor family.
USEOVERLAY Compiles a TP version which uses overlays.
EXTDEBUG Some extra debug code is executed.
SUPPORT MMX only i386: enables the compiler switch MMX which

allows the compiler to generate MMX instructions.
EXTERN MSG Don’t compile the msgfiles in the compiler, always use

external messagefiles (default for TP).
NOAG386INT no Intel Assembler output.
NOAG386NSM no NASM output.
NOAG386BIN leaves out the binary writer.

1. The target OS. Can be skipped if you’re compiling for the same target as the
compiler you’re using.

2. A path to an RTL. Can be skipped if a correct ppc386.cfg configuration is on
your system. If you want to compile with the RTL you compiled first, this
should be ../rtl/OS (replace the OS with the appropriate operating system
subdirectory of the RTL).

3. A define with the processor you’re compiling for. Required.

4. -dGDB is not strictly needed, but is better to add since otherwise you won’t
be able to compile with debug information.

5. -Sg is needed, some parts of the compiler use goto statements (to be specific:
the scanner).

So the absolute minimal command line is

ppc386 -di386 -Sg pp.pas

You can define some other command-line options, but the above are the minimum.
A list of recognised options can be found in table (F.1).

This list may be subject to change, the source file pp.pas always contains an up-to-
date list.

96


	Compiler directives
	Local directives
	Global directives

	Using conditionals, messages and macros
	Conditionals
	Messages
	Macros

	Using Assembly language
	Intel syntax
	AT&T Syntax
	Calling mechanism
	Signalling changed registers
	Register Conventions

	Linking issues
	Using external functions or procedures
	Using external variables
	Linking to an object file
	Linking to a library
	Making libraries
	Using smart linking

	Objects
	Constructor and Destructor calls
	Memory storage of objects
	The Virtual Method Table

	Generated code
	Units
	Programs

	Intel MMX support
	What is it about ?
	Saturation support
	Restrictions of MMX support
	Supported MMX operations
	Optimizing MMX support

	Memory issues
	The 32-bit model.
	The stack
	The heap
	Using dos�uturelet @let@token memory under the Go32 extender

	Optimizations
	 Non processor specific 
	Optimization switches
	Tips to get faster code
	 Floating point 

	Anatomy of a unit file
	Basics
	reading ppufiles
	The Header
	The sections
	Creating ppufiles

	Compiler and RTL source tree structure
	The compiler source tree
	The RTL source tree

	Compiler limits
	Compiler modes
	FPC mode
	TP mode
	Delphi mode
	GPC mode
	OBJFPC mode

	Using makefile.fpc
	Introduction
	Programs needed to use the makefile
	Variables used by makefile.fpc
	Variables set by makefile.fpc
	Rules and targets created by makefile.fpc
	Using the provided template

	Compiling the compiler yourself
	Introduction
	Before you begin
	Compiling using make
	Compiling by hand


