
Snoop
Snoop is a freeware memory-leak tracking utility for Borland Delphi 2 and 3.

Snoop interfaces smoothly with your programs and takes note of all memory allocations and
deallocations and where in your code they occur. When your program ends Snoop creates a report of all
the memory blocks that didn't get deallocated.

Snoop checks memory handled by:

· The GetMem, ReallocMem, and FreeMem standard procedures
· The New and Dispose standard procedures
· Allocation and deallocation of objects through constructors and destructors
· Allocation and deallocation of dynamic strings

Snoop can also optionally check for corruption of memory when you write beyond the bounds of a
memory block. Snoop can now be used to debug dlls. Version 2 is completely re-written for greater
accuracy, stability, and speed.

Snoop Monitor
When Snoop terminates it sends a report to Snoop Monitor.

If a monitor window is currently visible it will receive the report. Otherwise the stand-alone monitor is
executed and used to view the report.

That's all there is to it.

Author and License
This version 2.08 of the Snoop package.

Snoop and Snoop Monitor are written by Robert R. Marsh, S.J. and are made available free of charge.
You may use them and distribute it freely as long as you make no charge for fro and you include all the
accompanying files.

Snoop is just another program. I am sure you will find bugs or cases in which it fails to work properly. I
cannot see how it could damage your work but be warned—in programming anything is possible. Use
Snoop at your own risk. I make no legally-binding promises whatsoever about Snoop's behavior or
usefulness.

If you like Snoop and find it useful you might like to make a small donation to your favorite charity. Also, I
always like to hear from users with comments, suggestions, or even bug-reports. I can be contacted at:

rrm@sprynet.com

If you are reporting a bug please specify which version of Snoop you are using and which version of
Delphi.

The web page below is the home Snoop and my Quick DataBase (QDB) components for Delphi 1, 2, &
3. Stop by and take a look:

http://home.sprynet.com/sprynet/rrm/

Snoop and Snoop Monitor are copyright 1997, 1998, Robert R. Marsh, S.J. and the British Province of
the Society of Jesus. All rights reserved.

How to use Snoop
1) Make sure you have the correct version of snoop.dcu for your version of Delphi (2 or 3) and that
snoop.dcu is in a directory accessible by your project (e.g., the "...\Delphi 3\Lib" directory).

2) Include Snoop in the uses clause of your program's project (*.dpr) file. E.g.,

program snooper;

 uses
 Snoop,
 Forms,
 other in 'other.pas' {Form1};
 ...

3) Change your project's compiler and linker options:

· debug information must be on.
· stack frames must be on.
· map file must be detailed.

If you omit any of these settings your project will halt with an error message. Remember to rebuild the
project after changing the settings.

4) Save your project. The Snoop Monitors rely on information stored in the project options file which
must be up to date if they are to locate your source code.

5) Build your program and run it. When your application terminates it will produce a report.

NOTES:

Optimization
Unlike some other memory-tracking products Snoop does not demand that you switch off optimization.
If you are having problems, however, a first move should be to switch off optimization and see if it makes
a difference in your case.

Symbol Information
Also, though not necessary for Snoop itself to work, sometimes to help the Snoop Monitor Expert
correctly locate all source code files you should enable generation of debug symbol information. Since
this generates some extra large files and can considerably slow the compile/link cycle this option is not
recommended unless unavoidable.

Directory Information
If you are specifying a search path or output directory in the compiler options page you should make sure
that these optins have been saved to disk (Save All) so that Snoop can access the information.

Reports
Snoop reports are available in two forms: as a file dump and as a display in Snoop Monitor.

The file dump has the form:

SNOOP Report on SNOOPER.EXE generated at 5/27/1998 7:30:15 PM

At peak 3,257 pointers were allocated
amounting to 567,233 bytes of memory

Memory Not Freed:
unitname line bytes contents
other 40 26 m: 03 67 34 86 12 ...

other 49 44 o: TStringList

other 50 150 s: a bit of text

aunit 16 4 m: 00 00 00 00
 aunit 34
 other 43

Unit Map:
aunit c:\otherplace\units\aunit.pas
other c:\otherplace\other.pas

Snoop reports the peak memory demand of your application and shows both the number of pointers
allocated and the total memory consumed at that point.

Under the heading "Memory Not Freed:" unitname and line show the location of any dangling pointers.
The size of the memory leak is given by bytes. The final column contains the contents of the allocated
memory in a format appropriate to its type.

· Ordinary memory allocations are prefixed with m: and show a hex dump of up to 20 bytes of
the memory's contents

· Object allocations are prefixed with o: and show the object's class name
· String allocations (long or AnsiStrings) are prefixed with s: and show the string value

The location given is the place of allocation of the memory in question except in the case of object
allocations which are hard to track down accurately: instead Snoop reports the location of the previous
memory allocation. In conjunction with the class name this is usually enough information to trace forward
in your code and locate the dangling object.

The indented lines of the above report which only contain unit and line information give information about
the call stack of the leak follow. In the case above 4 bytes of memory were allocated at line 16 of
aunit.pas and never freed. Line 16 is within a routine which was called from line 34 of the same unit which
in its turn was called from line 43 of other.pas. Note that call stack locations are only reported when they
lie within code with available debug information.

The final section, headed "Unit Map:" lists the units referenced in the map file of your project alongside
the physical source files to which they correspond. If you find any files listed incorrectly setting the
compiler debug option to include "local symbols" might correct the problem

Snoop Monitor displays reports in a more accessible manner.

Debugging DLLs
Dynamic link libraries are not directly executable but run as part of a host application.

To use Snoop to track memory leaks in a DLL you need to include snoop.dcu in the uses clause of the
DLL and ensure that the DLL projects compiler and linker options are set to generate debug information,
stack frames, and a detailed map file.

When you run the DLL's host application you must supply the command line
parameter /SnoopDLL=<dllname>, where <dllname> is the name of the DLL. The DLL must be in the
same directory as the host application.

N.B. The memory-leak report generated will only cover the address space of the DLL and not the host
application.

Checking for memory corruption
Snoop offers limited checking for memory corruption arising from overwritten memory.

For example, it is quite common to allocate an array with N elements (i.e., from 0..N-1) and then assign to
the Nth element, thus overwriting memory belonging to another object. If range-checking were enabled
such a bug would be flagged immediately but if for some reason you have switched range-checking off
the effect can be delayed and lead to mysterious bugs that are hard to track down.

If you start Snoop with the command-line parameter /SnoopCorruption, Snoop checks every block
about to be freed or reallocated to see if it has been corrupted and, if so, triggers an exception. If your
project is running in the IDE the exception will occur at the place where the memory was allocated.
Snoop also checks the list of dangling pointers to see if any have been corrupted.

N.B. If a memory-corruption exception occurs any memory-leak reports will be spurious. You should fix
the corruption problem before checking for memory leaks.

N.B.B. Memory corruption errors are nasty. Since Snoop checks for corruption when it frees blocks there
is no guarantee that it will catch them before they cause a problem. Even when Snoop does catch one
there may be a crash in the process.

Options
Location of the File Report
Report Modes
Activation at Start Up
Selective Snooping
Disabling Snoop
Internal Memory Management
Corruption Checking
Snooping on the dpr file
Command-Line Parameters

Installation
Snoop Monitor comes in two versions:

· A stand-alone application which must be placed in your windows directory

· A Delphi Expert which may be placed anywhere but must be registered. You register Snoop
Monitor using the supplied SnoopReg program which registers the expert in its current
location and also adds a registry entry locating the Snoop help file.

How to use Snoop Monitor
Snoop Monitor displays the same information as the file report but adds some capabilities:

· different kinds of memory allocation are color-coded
· the display can be sorted by clicking the head of a grid column
· a hint shows the hex dump as a string

· leak reports can be saved (File|Save As...) for future viewing (File|Open...)
· the monitor is configurable and its state can be saved
· clicking the button in the title bar rolls up the monitor

The expert version of Snoop Monitor has all the functionality of the stand-alone application and more.

Expert version
In addition to all the functionality of the stand-alone Snoop Monitor the expert version:

· lets you click on a line of the report and be taken directly to the place in your source code were
a leak occurred

· when a leak has a call stack to report the unit name is followed by "..." and can be right-clicked
to popup a menu with the call locations (selecting one of these jumps you into source code)

Issues
· If clicking on a line in the Snoop Monitor report doesn't jump you to the right place in your source code

try setting the compiler debug option to include symbol information.

· Delphi 2 map files don't handle included files too well so the line numbers reported by Snoop may be
incorrect under those circumstances.

· Under Delphi 2 Snoop may report leaks apparently arising from snoop.pas. These are object
allocations which, in fact, occur outside snoop.pas but are listed under the last memory allocation. You
can ignore such object allocations but if you discover memory or string allocations attributed to
snoop.pas I would be glad to hear of them.

Location of the File Report
By default the Snoop report is sent to a file with the same name as the project being debugged and the
extension snp. If you wish to change the name or location of the report file you can simply assign the new
filename to the SnoopLogFile variable somewhere in your program, e.g.:

SnoopLogFile:='AnotherFileName.txt';

Report Modes
By default Snoop generates both a file report and report for Snoop Monitor. Each of these modes of
reporting can be suppressed via command line switches.

/SnoopNoFileShow suppresses the file report
/SnoopNoMonShow suppresses the monitor report

Activation at Start Up
In normal operation the Snoop memory manager is actively snooping on memory allocations from
(nearly) the very first moments of your program's execution. If this is undesirable it can be overridden by
supplying as a command-line parameter /SnoopDormant, e.g.,

snooper /snoopdormant;

If you initiate your program with snooping deactivated in this way you can switch snooping on selectively.

Selective Snooping
The Snoop memory manager can be switched off and on via the Switch procedure. The current status of
the memory manager is returned by the Snooping function. To use these routines within a unit Snoop
must be referenced in the unit's uses clause.

procedure TForm1.Button1Click(Sender: TObject);
var
 MyObject: TMyObject;
begin
 Switch(Onn);
 MyObject:=TMyObject.Create;
 MyObject.DoStuff;
 MyObject.Free;
 Switch(Off);
end;

Notice the predefined constants Onn (not a misspelling!) and Off (with the values true and false,
respectively).

You need to take care when switching Snoop on and off that you place the switches symmetrically, i.e., in
such a way that you expect the program's memory to be in the same state at each point. If you mismatch
them the results will be misleading.

Disabling Snoop
Because Snoop degrades the performance of your program it is important that Snoop not be active in
the release version of your application. You can, of course, remove any references to Snoop from your
program code but, even without changing your source, Snoop will recognize when it is running outside
the Delphi IDE and avoid loading, so cutting out any performance hit. This behavior can be overridden via
the command line.

If you want Snoop to be loaded when running outside the IDE use the /SnoopAlive parameter. If you
want Snoop not to be loaded when running inside the IDE use the /SnoopDead parameter.

N.B. The /SnoopDead parameter has a different effect from the /SnoopDormant parameter.
SnoopDormant loads the Snoop memory manager but leaves it dormant (ready to be made active using
Switch). SnoopDead doesn't load the memory manager at all.

Internal Memory Management
Snoop expects initially to track 10,000 pointers but whenever it runs out of space it doubles the size of its
internal structures. Repeated doublings will impose a performance hit which is best avoided by
persuading Snoop to prepare to track the correct number of pointers from the start via the command-line
parameter /SnoopNum, e.g., the command line below prepares Snoop to track 200,000 pointers.

snooper /snoopnum=200000

You can use Snoop's report of peak pointer allocation to judge a good value for /SnoopNum.

If memory is tight, however, you might want to start Snoop with smaller internal structures. You cannot,
though, make /SnoopNum less than 1,000—which corresponds to roughly 40K of memory used
internally.

Corruption Checking
Corruption checking can be turned on and off selectively via the CheckForCorruption procedure, e.g.,

CheckForCorruption(Onn);

Snooping on the dpr file
Generally any leaks which occur "beneath" the level of your own code will percolate upwards and be
captured. Most of these leaks end up registering in the project (dpr) file where they are of very little
diagnostic use. By default Snoop suppresses reporting of all leaks in the dpr file but there may be
circumstances where you need to see what is going on in there. The /SnoopProject command line option
turns on the reporting of leaks in the dpr file.

Command-Line Parameters
Parameter Equivalent Purpose
SnoopAlive $A Load Snoop even if outside IDE
SnoopDead $D Don't load Snoop even if in IDE

SnoopDormant $N Snoop is dormant until switched on
NoSnooping $N same as SnoopDormant

SnoopCorruption $C When active check for corruption

SnoopNum=nnnn Adjust memory requirements
SnoopDLL=<dllname> Track the named DLL

SnoopNoFileShow $F Suppress the file report
SnoopNoMonShow $M Suppress the monitor report

SnoopProject $P Enable report of leaks in dpr file

Snoop's parameters can appear anywhere on the command line, even mixed among the parameters of
your program. If conflicting switches are present the latest in the command line takes effect. Note that
some of the parameters have a hierarchy.

SnoopAlive/SnoopDead > NoSnooping/SnoopDormant > SnoopCorruption

For example, SnoopCorruption achieves nothing if SnoopDead is present.

The standard parameters must be separated by spaces or slashes but the $-equivalents can be collapsed
into a single block, e.g., $ANCF is equivalent to /SnoopAlive /SnoopDormant /SnoopCorruption
/SnoopNoFileShow

Version History
This is version 2.08

2.08 Released July 25, 1998
Fixed an obscure bug to do with D2 map files.

2.07 Fixed a problem with Snoop Monitor (not) appearing on screen in some circumstances
Continued to improve the location of source files
Note: D2's map files seem to be less reliable than D3 ... I'm working on it

2.06 Fixed a problem with D2 map files ("map corrupted")
Fixed problem jumping into source files in Search Path

2.05 Released June 1, 1998
Fixed problem with jumping into source code from call stack popup list
Fixed call stack information for reallocations

2.04 Added command-line option to show leaks in the dpr file

2.03 Added a roll-up button in the Snoop Monitor title bar
Added extra call stack information.

2.02 Corrected a problem with the memory dump
Extended corruption checking to dangling pointers

2.01 Released May 16, 1998
Fixed a bug in expert not locating source files in some circumstances

2.0 Released May 16, 1998
Complete re-write with new algorithm.
More accurate.
Distinguishes object creation from ordinary memory allocation.
Improved Snoop Monitor

1.4 Released April 30, 1998
Improved performance
Tracks peak memory allocation
Works with DLL files
Changed behavior of /SnoopNum
Added Snoop Monitor and monitor reporting
Added /SnoopNoFileShow and /SnoopNoMinShow

1.3 Released October 25, 1997
Made thread-safe
Added /SnoopNum parameter

1.2 Released May 24, 1997
Versions for both Delphi 2 and Delphi 3
Filters out leak warnings for 'end.' statements

1.11 Fixed a rare list-index problem

1.10 Released May 18, 1997
Fixed a bug with the /NoSnooping parameter

 No longer needs to have stack frames enabled

 Added overwrite checking (/SnoopCorruption)
Now possible to leave Snoop in finished programs

 SnoopLogFile now defaults to <YourExeName>.snp
 Made some considerable speed enhancements

1.01 First public version—released April 20, 1997

1.00 First private version

