
Mi
crosoft Component Services

Server Operating System

A Technology Overview

®

© 1998 Microsoft Corporation. All rights reserved.
The information contained in this document represents the current view of Microsoft Corporation on the issues
discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should
not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of
any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR
IMPLIED IN THIS DOCUMENT.
Microsoft, Visual Basic, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.
Other product or company names mentioned herein may be the trademarks of their respctive owners.
Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA
04

Microsoft Component Services 1

Introducing Microsoft Component Services..............................1
The Component Object Model (COM) and Distributed COM (DCOM) 1
Microsoft Transaction Server (MTS) 1
Microsoft Internet Information Server (IIS) and Active Server Pages (ASP) 3
Microsoft Message Queue (MSMQ) 4
Putting the pieces together: An Example 5
Looking to the future: COM+ 6

CONTENTS

Every creator of enterprise software has the same goal: to produce the most
effective applications in the least time. And every one of those creators knows that
exploiting the services available in their environment is a key part of achieving that
goal. As new innovations arise, application developers flock to them, creating new
paradigms for software development.

There is no better example of this phenomenon than the tremendous popularity of
Microsoft® component services. These services—the Component Object Model
(COM) and Distributed COM, Microsoft Transaction Server, Microsoft Internet
Information Server, and Microsoft Message Queue services in Windows NT®
Server—focus on building better enterprise applications. By combining the best of
today's standard technologies with new and innovative approaches, Microsoft has
created a powerful, yet easy-to-use platform for building distributed applications.
And as part of the Windows NT operating system, this application platform is
available today to millions of developers. As a result, Microsoft's component
services are becoming a foundation for a new generation of enterprise applications.

The Component Object Model (COM) and Distributed COM
(DCOM)
Component-based development has become the software concept du jour, with its
own conferences, magazines, and consultants. But the original component
technology, and the one that is by far the most widely used, is Microsoft's
Component Object Model (COM). Introduced in 1993, COM is now a mature
foundation for component-based development, and it is the rare application for
Windows® and Windows NT that doesn't use COM in some way. With its integrated
services, and its excellent tool support from Microsoft and others, COM makes it
easy to develop powerful component-based applications.

From its original application on a single machine, COM has expanded to allow ac-
cess to components on other systems. Distributed COM (DCOM), introduced in
1996, makes it possible to create networked applications built from components.
Available on various versions of UNIX, IBM mainframes, and other systems, DCOM
is used today in applications ranging from cutting edge medical technology to tradi-
tional accounting and human resources systems. Once a bleeding edge technol-
ogy, distributed components have gone mainstream, and the primary technologies
enabling this are COM and DCOM.

Microsoft Component Services: A Technology Overview 1

INTRODUCING
MICROSOFT
COMPONENT SERVICES

Microsoft Transaction Server (MTS)
Building robust server applications that can scale to the enterprise is no mean feat.
While some developers are capable of creating the necessary infrastructure
services to accomplish this, it makes far more sense to provide these services in a
standard way. This is exactly what the Microsoft Transaction Server does in
Windows NT Server. By providing support for scalability, security, transactions, and
more, MTS solves a range of fundamental problems, allowing enterprise developers
to focus on the business problems at hand. And by offering its services through a
remarkably easy-to-use programming model, MTS makes what might be a guru-
only technology into a mainstream business tool.

Shipping since 1996, MTS was the first commercial software to combine transac-
tions with components. In fact, every MTS-based application is built from COM
components, and clients can access those applications remotely via DCOM. Other
key MTS features include:
 Automatic transactions - MTS introduced the innovation of automatic transac-

tions, which allow configuring a component's transactional requirements when
that component is deployed. The result is a much greater potential for reuse of
business objects built as MTS components.

 Configurable security - By allowing an administrator to define roles, then
specify which interfaces and components can be accessed by clients in each
role, MTS greatly simplifies the work required to create secure server applica-
tions.

 Database connection pooling - Components can reuse existing connections
to a database rather than recreating new ones, greatly improving application
performance and scalability.

 Support for multiple databases and resource managers - MTS-based appli-
cations can access SQL Server™, Oracle, and DB2 databases, as well as
other resource managers such as Microsoft Message Queue.

 Automatic thread support - Application developers can write single-threaded
components, then let MTS assign threads to those components as needed.

 Component state management - Components must give up any in-memory
state when each transaction ends. This makes it easier to build correct applica-
tions while still allowing efficient resource sharing. MTS also provides the
Shared Property Manager (SPM) for components that wish to store and later
retrieve their in-memory state.

 Process isolation through packages - Individual applications can be grouped
into one or more packages, and each package can run in its own process. This
allows greater fault tolerance, since the failure of a single component will bring
down only the package that component is part of.

 Integration with mainframe transactions - Through the COM Transaction In-
tegrator, MTS transactions can initiate and control CICS transactions on IBM
mainframes.

 A broad range of development tools - MTS allows developers to build appli-

2 Microsoft Component Services: A Technology Overview

cations in any of today's popular languages, including Microsoft® Visual
Basic®, Java, C++, Cobol, and others.

MTS provides a rich set of integrated services, all focused on making it easy to
build scalable, transaction-oriented, server-side components and applications. And
best of all, all of these services are shipping today.

For additional information on MTS, you can access the MTS Reviewers Guide on
the COM Web site at http://www.microsoft.com/com/mts/revguide-f.htm.

Microsoft Internet Information Server (IIS) and Active Server
Pages (ASP)
Web technology has been the great software success story of the last ten years.
Web-based applications have become an indispensable part of the distributed
world, and so platforms for building them have become indispensable, too.
Microsoft Windows NT Server's Internet Information Server (IIS), accessible from
popular browsers, provides all the standard services one expects from a Web
server: support for HTTP, Secure Sockets Layer (SSL), common gateway interface
(CGI), and more. But because it is a part of Microsoft component services, IIS offers
much more.

Along with support for standard CGI applications, for example, IIS also allows the
creation of Active Server Pages (ASP). An ASP contains a simple program—a
script—written in a simple language such as Microsoft Visual Basic Scripting
Edition (VBScript) and executed at the server. ASPs offer developers many
benefits, including:
 Access to COM objects - Because an ASP script can create and use COM

objects, the entire world of component-based applications is accessible to it.
 Integration with MTS-based applications - Since MTS is built on COM, it's

easy to access transactional applications from ASP scripts.
 Transactional ASP scripts - It's also possible to load MTS directly into IIS,

creating ASP scripts that are themselves transactional—all operations per-
formed by the script can succeed or fail as a unit.

 Process isolation - ASP scripts can run in the same process as IIS, offering
the best performance, or in a separate process, offering greater isolation in the
event of failures.

 Support for standard, well-known languages - Since VBScript is a subset of
Visual Basic, millions of developers essentially know it today. ASP scripts can
also be written in JavaScript, another popular and well-supported language.

Combining standard Web services with the innovations of components and
transactions, as is done with ASP scripts, is an excellent example of the power
provided by Microsoft component services.

Microsoft Component Services: A Technology Overview 3

http://www.microsoft.com/com/mts/revguide-f.htm

Microsoft Message Queue (MSMQ)
DCOM provides synchronous communication using remote procedure calls, while
Web-based applications rely on HTTP. But many distributed applications need the
non-blocking, asynchronous communication provided by message queuing.
Microsoft Message Queue (MSMQ) provides exactly this kind of service in Windows
NT Server. With MSMQ, an application can send messages to another application
without waiting for a response (in fact, the target application might not even be
running). Those messages are sent into a queue, where they are stored until a
receiving application removes them. If a response is expected, the sender can
check a response queue at its leisure—there's no obligation to block waiting for a
message. Message queuing is a flexible, reliable approach to communication, one
that's appropriate for many kinds of applications.

MSMQ is very rich technology. Among its most important features are:
 COM-based access - The services of MSMQ can be accessed through a sim-

ple interface provided by COM components. This makes it straightforward to
send and receive messages from within an ASP script, an MTS-based applica-
tion, or any software that can use COM.

 Integration with MTS - Because MSMQ supports transactions, MTS-based
applications can include the act of sending or receiving a message in a larger
atomic unit. All of the operations in that transaction will succeed or fail as a
group.

 Automatic message journaling - If requested, MSMQ will keep copies of
messages sent or received by applications. Journals provide audit trails and
can also make recovering from some kinds of failure easier.

 Automatic notification - If requested, MSMQ can notify a sending application
that messages were (or were not) received and processed correctly. This ser-
vice lets sending applications know when they can treat messages as delivered
or, when failures occur, when they must take corrective action.

 Built-in data integrity, data privacy, and digital signature services - MSMQ
can digitally sign and encrypt messages for transfer across the network. This
protects messages from being viewed or changed during transmission (even
when sent over public networks such as the Internet), and ensures that servers
do not receive messages from unauthorized senders.

 Message priority support - MSMQ allows assigning priorities to messages
and queues, then routes and delivers messages based on these priorities. Pri-
orities let applications handle the most important messages first.

 Support for multiple platforms - MSMQ is available on many operating sys-
tems, including various versions of UNIX, IBM mainframes, and more, through
Microsoft partner Level 8 Systems. Level 8 also provides gateways to existing
messaging products such as IBM MQ Series.

4 Microsoft Component Services: A Technology Overview

By providing the flexible, reliable style of communication that message queuing
makes possible, then linking this to other platforms, MSMQ plays a critical role in
Microsoft component services.

For additional information on MSMQ, you can access the MSMQ Reviewers Guide
at http://www.microsoft.com/NTServer/Basics/TechPapers/RevGuides.asp.

Putting the pieces together: An Example
The easiest way to understand how Microsoft component services work together is
to look at an example. Suppose a catalog marketing firm chooses to build a
Windows NT-based order entry system using Microsoft component services:
COM/DCOM, MTS, IIS with Active Server Pages, and MSMQ. The diagram below
shows how this might look.

The heart of the system is one or more COM components that contain the business
logic necessary to fill orders. These order entry components access databases to
determine whether there is sufficient inventory available to fill a particular order, and
they must be able to simultaneously handle many order requests. Accordingly,
these components are built to run under MTS, which provides multi-database trans-
actions, scalability services, and more.

When an order has been completed, an order entry component sends a message
to a warehouse indicating that the order should be packaged and shipped. Since
there's no need for the component to wait for the order to be sent off, this request is

Microsoft Component Services: A Technology Overview 5

http://www.microsoft.com/NTServer/Basics/TechPapers/RevGuides.asp

made using MSMQ. An application in the warehouse then extracts orders from a
queue when convenient and ensures that they are filled.

But how are orders created? In this system, there are two different user interfaces
to the order entry components. Like most catalog companies, this organization has
operators who take phone calls from customers placing orders. These operators sit
at workstations running Microsoft Windows 98 or Windows NT operating sys-
tems and use a custom client to create orders. This client communicates directly
with the order entry components on the server using DCOM.

This organization also allows customers to place orders directly over the Internet.
To allow this, an ASP script has been written that is accessed through IIS. A cus-
tomer using any Web browser can visit the company's Web site, access this ASP
script, and submit an order. Because ASP scripts can easily use COM objects, a
customer ordering via the Web relies on the same MTS components for order entry,
as does the DCOM client. All that changes is how that component is accessed.

As this example illustrates, all of the Microsoft component services work together to
provide a complete solution, with each technology playing its role. The result is a
textbook example of synergy: the whole is much greater than the sum of the parts.

Looking to the future: COM+
The evolution of Microsoft component services continues with COM+. By enhanc-
ing and extending existing services, COM+ further increases the value these ser-
vices provide. COM+ includes:
 A publish and subscribe service - Provides a general event mechanism that

allows multiple clients to “subscribe” to various “published” events. When the
publisher fires an event, the COM+ Events system iterates through the sub-
scription database and notifies all subscribers.

 An in-memory database, with support for transactions - The IMDB provides
an application with fast access to data, without incurring the overhead associ-
ated with storing and accessing durable state to and from physical disk.

 Queued components - Allows clients to invoke methods on COM components
using an asynchronous model. Such as model is particularly useful in on unre-
liable networks and in disconnected usage scenarios.

 Dynamic Load balancing - Automatically spreads client requests across multi-
ple equivalent COM components.

 Full integration of MTS into COM - Includes broader support for attribute-
based programming, improvements in existing services such as Transactions,
Security and Administration, as well as improved interoperability with other
transaction environments through support for the Transaction Internet Protocol
(TIP).

6 Microsoft Component Services: A Technology Overview

COM+ builds on what already exists—it is not a revolutionary departure. Microsoft
component services provide an infrastructure for building enterprise applications,
and enterprises seldom welcome revolutions in their infrastructure. But software
technology cannot stand still. The goal, then, must be to provide useful innovations
that make it easier to create great applications without disrupting what's already in
place. By extending and further unifying the existing component services, COM+
does exactly this.

Taken as a whole, Microsoft component services provide a powerful, flexible, and
easy-to-use platform for building distributed applications. Nothing else available of-
fers the same level of integration, broad tool support, and solid services.

Microsoft Component Services: A Technology Overview 7

	Introducing Microsoft Component Services
	The Component Object Model (COM) and Distributed COM (DCOM)
	Microsoft Transaction Server (MTS)
	Microsoft Internet Information Server (IIS) and Active Server Pages (ASP)
	Microsoft Message Queue (MSMQ)
	Putting the pieces together: An Example
	Looking to the future: COM+

