
Math2 - Version 1.5

The unit MATH2 offers some of the most fundamental procedures of univariate statistics (such as mean 
values, standard deviations, or the correlation coefficient for a series of data pairs). In addition, several 
more advanced mathematical methods (such as the calculation of eigenvectors and principal 
components, a simple clustering algorithm, and the approximation of the normal and the t-distribution) are
contained in this unit. The unit MATH2 also contains a simple, yet powerful class (TCurveFit) which 
supports curve fitting of bivariate data.

MATH2 uses the unit DCommon which supplies some oftenly used numerical constants and a special 
procedure type (FeedbackProc). Note that only those declarations of DCommon are documented in this 
help file which are important for the unit MATH2.

Math1 is released under the shareware concept. The unregistered version is fully functional with one 
exception: the shareware version runs properly only when the Delphi, or C++Builder IDE is also up and 
running.

Product information
Interface of unit MATH2
Installation of MATH2
Delphi and C++Builder issues

Class TCurveFit:

CalcGaussFit CalcHyperbolFit
CalcLinFit CalcLogFit
CalcParabolFit CalcReciLinFit
CalcStatistics CorrCoeff
EnterStatValue Init
MeanDiff MeanX
MeanY NumData
StdDevDiff StdDevX
StdDevY

Various procedures and functions:

CalcCovar CalcEigVec
CalcFishQ CalcGaussKernel
CalcGaussKernelMat CalcPrincComp
FeedBackProcType FindCenters
FindNearestNeighbors GetEigenResult
MathFeedBackProc MeanDistanceKNN
nDistri nDistriQuantile
ProcStat RemoveEigenMatrix
tDistriQuantile





 TCurveFit
See also:

The class TCurveFit provides a means of calculating regression estimators for certain types of functions. 
In addition, TCurveFit calculates the most important statistical parameters, such as the mean values, the 
standard deviation, and the correlation coefficient of a series of data pairs. In order to utilize the class 
TCurveFit, you have to enter the data pairs (x and y) by the method EnterStatValue. The regression 
parameters can be obtained then by calling the appropriate regression method.

The following table summarizes the routines of TCurveFit:

Init initialize the processing machine
EnterStatValue enter a pair of data 
CalcStatistics calculate mean values, standard deviations, and the correlation coefficient
CalcGaussFit calculate the best Gaussean fit (normal distribution)
CalcHyperbolFit calculate the best hyperbolic fit to the data
CalcLinFit calculate the best linear fit to the data
CalcLogFit calculate the best logarithmic fit
CalcParabolFit calculate the best parabolic fit to the data
CalcReciLinFit calculate the best reciprocal linear fit to the data

In addition, TCurveFit also provides all important univariate parameters for the entered data pairs:

CorrCoeff correlation coefficient
MeanDiff mean of differences between x and y
MeanX mean of x values
MeanY mean of y values
NumData number of data pairs
StdDevDiff standard deviation of differences between x and y
StdDevX standard deviation of x values
StdDevY standard deviation of y values



 CalcCovar 
See also: CorrCoeff

Declaration: function CalcCovar (InData, CovarMat: TMatrix; LoC, HiC: integer; 
LoR, HiR: integer; Scaling: integer): boolean;

The routine CalcCovar calculates the covariance matrix, or alternatively, the scatter matrix, or the 
correlation matrix for a given data matrix. The resulting covariance matrix is of the dimension (HiC-
LoC+1)*(HiC-LoC+1), this means that the rows of the data matrix are seen as objects and the columns
are seen as variables.

The parameter InData contains the input data. The parameter CovarMat holds a pointer to a matrix 
which will contain the covariance matrix to be calculated.

The parameters LoC, HiC, LoR, and HiR specify the range of the data matrix, which should be used for 
the calculation. This enables the user to calculate 'local' covariance matrices which originate only from a 
part of the data. 

The parameter Scaling determines how to scale the data before calculating the result matrix. This will 
lead to three different matrices, depending on the value of Scaling:

Scaling Action Resulting matrix
0 none scatter matrix of InData
1 mean centering covariance matrix of InData
2 standardization correlation matrix of InData

Standardization of the data (sometimes called 'autoscaling') is performed by scaling the data in a way that
the mean of each columns becomes zero and the variance becomes 1.0. The covariance matrix of 
standardized data is usually called 'correlation matrix'.

The function CalcCovar returns the value TRUE if the calculation of the covariance matrix has been 
performed successfully. A FALSE value indicates that the calculation has not been completed successfully
(mostly due to lack of memory or too small a matrix of CovarMat).

Hint: The user is responsible by his own that the matrix CovarMat has been declared large 
enough to hold the resulting covariance matrix. This matrix has to be quadratic and of 
size (HiC-LoC+1)*(HiC-LoC+1). If the matrix CovarMat is too large the covariance 
matrix is stored in the matrix elements with the lowest indices (starting at 1). The unused 
elements are not changed at all.

Example: COVAR.DPR 
The example program COVAR.DPR shows the application of the function CalcCovar. The
user can enter values into a matrix and calculate either the scatter matrix, the covariance 
matrix, or the correlation matrix.



 CalcDiffMat
See also: CalcCovar

Declaration: function CalcDiffMat (InData, DiffMat: TMatrix; LoC, HiC: integer;
LoR, HiR: integer; Scaling: integer): boolean;

The routine CalcDiffMat calculates the difference matrix from a given data matrix. The resulting matrix is 
of the dimension (HiC-LoC+1)*(HiC-LoC+1), this means that the rows of the data matrix are seen as 
objects and the columns are seen as variables.

The parameter InData holds a pointer to the matrix of the input data. This matrix is an object of the class
TMatrix. The parameter DiffMat holds a pointer to a matrix which will contain the difference matrix to be 
calculated.

The parameters LoC, HiC, LoR, and HiR specify the range of the data matrix, which should be used for 
the calculation. This enables to calculate 'local' difference matrices which originates from only a part of the
data. Normally the calculation will be performed for the whole data matrix InData (LoC=1, 
HiC=InData.NrOfColumns, LoR=1, and HiR=InData.NrOfRows).

The parameter Scaling determines how to scale the data before calculating the result matrix. This will 
lead to three different matrices, depending on the parameter Scaling:

Scaling Action Resulting matrix
0 none difference matrix of InData
1 mean centering ??? matrix of InData
2 standardization ??? matrix of InData

Standardization of the data (sometimes called 'autoscaling') is performed by scaling the data in a way that
the mean of each columns becomes zero and the variance becomes 1.0. 

The function CalcDiffMat returns the value TRUE if the calculation of the difference matrix has been 
performed successfully. A returned value of FALSE indicates that the calculation could not finished 
properly (mostly due to lack of memory or too small a matrix DiffMat).

Hint: The user is responsible by his own that the matrix DiffMat has been declared large 
enough to hold the resulting difference matrix. This matrix has to be quadratic and of size 
(HiC-LoC+1)*(HiC-LoC+1). If the matrix DiffMat is too large the difference matrix is 
stored in the matrix elements with the lowest indices (starting at 1). The unused elements 
are not changed at all.



 CalcEigVec
See also: CalcPrincComp, GetEigenResult, RemoveEigenMatrix

Declaration: function CalcEigVec (InMat: TMatrix): boolean;

The routine CalcEigVec calculates the eigenvectors and eigenvalues of a symmetrical matrix InMat. The 
parameter InMat is a pointer to an instance of the class Matrix. The function CalcEigVec returns the 
value TRUE, if the calculations have been completed successfully.

The results of CalcEigVec (i.e. the eigenvalues and the eigenvectors) are stored in memory and can be 
read by the routine GetEigenResult. Please note that the 16-bit version of the unit MATH2 allows only a 
maximum of 90 eigenvectors, whereas the 32-bit version allows 1000 eigenvectors.

Hint: The eigenvalues and eigenvectors are stored in memory as long as either a new 
calculation is performed or the results are removed from the memory by explicitly calling 
the routine RemoveEigenMatrix.

Example: The statement success := CalcEigVec (data); calculates the eigenvectors and 
eigenvalues of the matrix data. The variable success is set TRUE, if the calculation has
been performed successfully.



 CalcFishQ 
See also: CalcStatistics

Declaration: function CalcFishQ (m1,m2,s1,s2: Double): Double;

The Fisher ratio is often used to enumerate the degree of overlap of two distributions. The procedure 
CalcFishQ calculates the Fisher ratio from the mean values and the standard deviations of the two 
distributions.

Hint: If the sum of the standard deviations falls below 10E-6, a value of 10E-6 is substituted for 
it.



 CalcGaussKernel
See also: CalcGaussKernelMat

Declaration: function CalcGaussKernel (Probe, RefCenter: TVector; Width: 
Double): Double;

The function CalcGaussKernel calculates the value of a given n-dimensional Gaussean kernel. The 
parameters RefCenter and Width define the position and the width of the kernel. The parameter Probe
specifies the position in the n-dimensional space where to calculate the value of the kernel.

Hint: The user has to ensure that the dimensionalities of the vectors Probe and RefCenter 
are equal. A mismatch of these would result in erroneous results without notification.



 CalcGaussKernelMat
See also: CalcGaussKernel

Declaration: function CalcGaussKernelMat (Probe: TVector; RefCenterMat: 
TMatrix; RefCenterIx: integer; Width: Double): Double;

The function CalcGaussKernelMat calculates the value of a given n-dimensional Gaussean kernel. The 
parameters RefCenterMat, RefCenterIx, and Width define the position and the width of the 
Gaussean kernel. The parameter Probe specifies a point in the n-dimensional space where to calculate 
the value of the kernel.

The routine CalcGaussKernelMat is equivalent to CalcGaussKernel with the exception that the position of 
the kernel is defined by the row RefCenterIx of the matrix RefCenterMat. This can be of some benefit
when calculating the effect of several Gaussean kernels which are defined by the rows of a matrix.

Hint: The user has to ensure that the dimension of the vector Probe and the first dimension of 
the matrix RefCenterMat are equal. A mismatch of these would result in erroneous 
results without notification.



 CalcGaussFit
See also: CalcLinFit, CalcLogFit

Class: TCurveFit

Declaration: procedure CalcGaussFit (var k0, k1, k2, FitQual: double);

The procedure CalcGaussFit calculates the best fitting Gaussean curve (normal distribution) for a given 
set of data. The curve is determined by the equation 

The values of x and y are given by the data samples, the parameters k0, k1, and k2 are estimated by 
CalcGaussFit using a least squares approximation.

The data points [x,y] have to be entered using the routine EnterStatValue. A minimum number of 3 values 
is required in order to apply CalcGaussFit. Do not forget to reset the statistics calculation before entering 
any new data sets (use the method Init)

In addition to the parameters k0, k1, and k2, CalcGaussFit returns the goodness of fit FitQual. This 
parameter may vary between 0.0 and 1.0, indicating the best possible fit if FitQual equals 1.0.

Hint: The quality of fit calculated by CalcGaussFit is not adjusted for the degree of freedoms in 
the regression parameters. 

Example: CURVEFIT.DPR
This application lets you draw points in a chart and calculate various types of regression 
curves. Note, that CURVEFIT.DPR uses the components RCHART and NUMLAB for the 
user interface, which are not included with the MATH2 package.



 CalcHyperbolFit
See also: CalcReciLinFit

Class: TCurveFit

Declaration: CalcHyperbolFit (var k0,k1: double; var FitQual: double);

The procedure CalcHyperbolFit calculates the best fitting Hyperbola for a given set of data. The 
Hyperbola is determined by the equation 

The values of x and y are given by the data samples, the parameters k0, and k1 are estimated by 
CalcHyperbolFit using a least squares approximation.

The data points [x,y] have to be entered using the routine EnterStatValue. A minimum number of 2 values 
is required in order to apply CalcHyperbolFit. Do not forget to reset the statistics calculation before 
entering any new data sets (use Init)

In addition to the parameters k0, and k1, CalcHyperbolFit returns the goodness of fit in the parameter 
FitQual. This quality of fit may vary between 0.0 and 1.0, indicating the best possible fit if FitQual 
equals 1.0.

Hint: The quality of fit calculated by CalcHyperbolFit is not adjusted for the degree of freedoms 
in the regression parameters. 

Example: CURVEFIT.DPR
This application lets you draw points in a chart and calculate various types of regression 
curves. Note, that CURVEFIT.DPR uses the components RCHART and NUMLAB for the 
user interface, which are not included with the MATH2 package.



 CalcLinFit
See also: CalcLogFit, CalcParabolFit, CalcReciLinFit

Class: TCurveFit

Declaration: CalcLinFit (var k, d, FitQual: Double);

The procedure CalcLinFit estimates the best fit of a straight line to a sample of two-dimensional data 
points using linear regression. The line is defined by the equation

y = kx + d.

The data points have to be entered by using the procedure EnterStatValue. A minimum number of 2 
values is required in order to apply CalcLinFit. Do not forget to reset the statistics calculation before 
entering any new data sets (use Init)

The procedure CalcLinFit returns the following parameters: k and d define the slope and the offset of the 
line, and FitQual returns the goodness of fit of the regression. FitQual equals the square of the 
correlation coefficient. A good representation of the data samples yields a value near to 1.0 for FitQual.

Hint: The quality of fit calculated by CalcLinFit is not adjusted for the degree of freedoms in the 
regression parameters. 

Example: CURVEFIT.DPR
This application lets you draw points in a chart and calculate various types of regression 
curves. Note, that CURVEFIT.DPR uses the components RCHART and NUMLAB for the 
user interface, which are not included with the MATH2 package.



 CalcLogFit
See also: CalcLinFit

Class: TCurveFit

Declaration: procedure CalcLogFit (var k0, k1, FitQual: double);

The procedure CalcLogFit calculates the best fitting logarithmic curve for a given set of data. The curve is 
determined by the equation 

y = k0 + k1 * ln(x)

The values of x and y are given by the data samples, the parameters k0, and k1 are estimated by 
CalcLogFit using a least squares approximation.

The data points [x,y] have to be entered using the routine EnterStatValue. A minimum number of 2 values 
is required in order to apply CalcLogFit. Do not forget to reset the statistics calculation before entering any
new data sets (use the method Init)

In addition to the parameters k0, and k1, CalcLogFit the quality of fit FitQual. This parameter may vary 
between 0.0 and 1.0, indicating the best possible fit if FitQual equals 1.0.

Hint: The quality of fit calculated by CalcLogFit is not adjusted for the degree of freedoms in 
the regression parameters. 

Example: CURVEFIT.DPR
This application lets you draw points in a chart and calculate various types of regression 
curves. Note, that CURVEFIT.DPR uses the components RCHART and NUMLAB for the 
user interface, which are not included with the MATH2 package.



 CalcParabolFit
See also: CalcHyperbolFit, CalcLinFit

Class: TCurveFit

Declaration: CalcParabolFit (var k0,k1,k2: Double; var FitQual: Double);

The procedure CalcParabolFit calculates the best fitting parabola for a given set of data. The parabola is 
determined by the equation 

The values of x and y are given by the data samples, the parameters k0, k1, and k2 are estimated by 
CalcParabolFit using a least squares approximation.

The data points [x,y] have to be entered using the routine EnterStatValue. A minimum number of 3 values 
is required in order to apply CalcParabolFit. Do not forget to reset the statistics calculation before entering
any new data sets (use the method Init)

In addition to the parameters k0, k1, and k2, CalcParabolFit returns the goodness of fit FitQual. This 
parameter may vary between 0.0 and 1.0, indicating the best possible fit if FitQual equals 1.0.

Hint: The quality of fit calculated by CalcParabolFit is not adjusted for the degree of freedoms 
in the regression parameters. 

Example: CURVEFIT.DPR
This application lets you draw points in a chart and calculate various types of regression 
curves. Note, that CURVEFIT.DPR uses the components RCHART and NUMLAB for the 
user interface, which are not included with the MATH2 package.



 CalcReciLinFit
See also: CalcHyperbolFit, CalcLinFit, CalcParabolFit

Class: TCurveFit

Declaration: procedure CalcReciLinFit (var k0, k1, FitQual: double);

The procedure CalcReciLinFit calculates the best fitting reciprocal line curve for a given set of data. The 
curve is determined by the equation 

The values of x and y are given by the data samples, the parameters k0, and k1 are estimated by 
CalcReciLinFit using a least squares approximation.

The data points [x,y] have to be entered using the routine EnterStatValue. A minimum number of 2 values 
is required in order to apply CalcReciLinFit. Do not forget to reset the statistics calculation before entering
any new data sets (use the method Init)

In addition to the parameters k0, and k1 CalcReciLinFit returns the goodness of fit FitQual. This 
parameter may vary between 0.0 and 1.0, indicating the best possible fit if FitQual = 1.0.

Hint: The quality of fit calculated by CalcReciLinFit is not adjusted for the degree of freedoms 
in the regression parameters. 

Example: CURVEFIT.DPR
This application lets you draw points in a chart and calculate various types of regression 
curves. Note, that CURVEFIT.DPR uses the components RCHART and NUMLAB for the 
user interface, which are not included with the MATH2 package.



 CalcPrincComp
See also: RemoveEigenMatrix, GetEigenResult

Declaration: function CalcPrincComp (InData: TMatrix; LoC, HiC: integer; LoR, 
HiR: integer; Scaling: integer): boolean;

The procedure CalcPrincComp calculates the principal components of the matrix Indata (Principal 
Component Analysis, PCA). The rows of the data matrix are objects, the columns are variables. The 
resulting principal components can be read using the routine GetEigenResult. All eigenvalues are scaled 
to their sum equal 1.0. The eigenvectors are arranged according to decreasing eigenvalues, thus the first 
eigenvector corresponds to the first principal component.

The function CalcPrincComp allocates some memory for the storage of the covariance and the 
eigenvector matrix. The memory for the eigenvector matrix is not deallocated after finishing 
CalcPrincComp and must be deallocated explicitly by calling the routine RemoveEigenMatrix. If 
CalcPrincComp is called several times the old eigenvector matrix is released and a new one is allocated.

The parameters LoC, HiC, LoR, and HiR specify the area of the matrix which is used for the principal 
component analysis. This facilitates the calculation of the principal components of only parts of the input 
data. Usually, the PCA is applied to all the available data (LoC=1, HiC=InData.NrOfColumns, LoR=1, and 
HiR=InData.NrOfRows).

The parameter Scaling determines, whether the data should be before calculating the principal 
components:

Scaling Result
0 PCA is based on scatter matrix of InData
1 PCA is based on covariance matrix of InData
2 PCA is based on correlation matrix of InData

The function CalcPrincComp returns a TRUE value, if the PCA has been completed successfully. If 
FALSE is returned, the calculation has been aborted (mostly due to lack of memory). 



 CalcStatistics
See also: Init, EnterStatValue, CalcLinFit

Class: TCurveFit

Declaration: CalcStatistics (var NumData: longint; var MeanX, MeanY, StdevX, 
StdevY, MeanDiff, StdevDiff, rxy: Double);

The procedure CalcStatistics calculates the mean values, the standard deviations and the correlation 
coefficient of pairs of numbers. In addition, the mean and the standard deviation of the difference of the 
pairs are calculated.

In order to make use of CalcStatistics the user has first initialize the internal registers (Init). Thereafter the 
pairs of x-y-values have to be entered to the register by using the procedure EnterStatValue. The 
procedure CalcStatistics evaluates the parameters using the data entered to far. It calculates the mean 
values and the standard deviations of x, y, and the difference x-y, as well as the correlation coefficient 
between x and y. In addition, the number of data points entered is returned in the parameter NumData.

This procedure can also be used to calculate the mean value and standard deviation for a single series of
data. In this case one of the values of the data pair [x,y] should be set to zero when using the procedure 
EnterStatValue. The calculated correlation coefficient is then, of course, invalid.

Hint 1: Since it is only meaningful to calculate the standard deviation and the correlation 
coefficient with at least 3 data points the procedure CalcStatistics refuses to calculate 
these measures if less than 3 data points have been entered. The standard deviations 
and the correlation coefficient are set to 0.0 in this case.

Hint 2: All the parameters returned by CalcStatistics can also be accessed individually by the 
appropriate properties (CorrCoeff, MeanDiff, MeanX, MeanY, NumData, StdDevDiff, 
StdDevX, StdDevY).



 CorrCoeff
See also: EnterStatValue, CalcStatistics, NumData

Class: TCurveFit

Declaration: property CorrCoeff: double;

The read-only property CorrCoeff returns the correlation coefficient between the x- and y-values entered 
by the method EnterStatValue. Note, that at least 3 data pairs have to be entered to calculate a valid 
correlation coefficient.



 EnterStatValue 
See also: Init, CalcStatistics, CalcLinFit

Class: TCurveFit

Declaration: EnterStatValue (x,y: double);

The procedure EnterStatValue is used to enter data points for later statistical evaluation. The parameters 
x and y are of the type double. A maximum of approx. 2 billion data pairs can be stored; a larger number
of calls to EnterStatValue results in a corrupted calculation of the statistical parameters. 



 FeedBackProcType
See also: ProcStat, MathFeedBackProc

Declaration: FeedBackProcType = procedure (StateCnt: longint);

This procedure type is used as call-back routine in lengthy mathematical calculations. It is declared in unit
DCommon.



 FindCenters
See also: MeanDistanceKNN, FindNearestNeighbors

Declaration: FindCenters (InMat: TMatrix; RowLo, RowHi: integer; NumCent: 
integer;  var Centers: TMatrix; var MeanDist: double); 

If a matrix is seen as a collection of measurements (rows=objects, columns=variables) it is sometimes 
useful to calculate prototype objects which are representative for the whole data set. This calculation of 
the prototypes is equal to the searching of clusters in an n-dimensional space, where n is the number of 
variables per object. 

The procedure FindCenters calculates the specified number of centers NumCent. The parameters RowLo 
and RowHi determine which objects are used for the calculation.

The centers are calculated as follows: First, the two objects are searched which exhibit the smallest 
distance of each other. This pair of data is now replaced by their center of gravity. The calculation of the 
center of gravity allows for the number of data points already used in preceding unifications. Now the 
unification is repeated until only NumCent points are left. These points are equal to the inquired centers.

The procedure FindCenters returns the found prototypes in the matrix Centers and the mean distance 
between them in the parameter MeanDist. The user has to take care of by himself that the matrix 
Centers is large enough to accept all calculated prototype points (i.e. Centers has to have at least 
NumCent rows and InMat.NrOfCOlumns columns). If the matrix 'Centers' is too small the result will be 
truncated accordingly. If it is too large, rows from NumCent+1 on are not defined and excess columns are 
set to zero values.

Hint 1: The time it takes to compute the prototypes increases with the third power of the number 
of objects. Thus it is strongly recommended not to use this algorithm for more than 
approx. 200 objects.

Hint 2: FindCenters stores the original data of the matrix in a file named MAT.$$$ in order to 
reload the data after the calculation of the prototype points. The auxiliary file MAT.$$$ is 
automatically deleted after the execution of FindCenters.

Example: FINDCENT.DPR
The example application FINDCENT shows the usage of FindCenters to find centers in a 
two-dimensional data array. Note, that FINDCENT.DPR uses the components RCHART 
and NUMLAB for the user interface, which are not included with the MATH2 package.



 FindNearestNeighbors
See also: FindCenters, MeanDistanceKNN

Declaration: FindNearestNeighbors (k: integer; InMat: TMatrix; FirstObj, 
LastObj: integer; DatVec: TVector; KNNList: TMatrix);

This routine calculates the k nearest neighbors of the vector DatVec in the matrix InMat. The rows are 
considered to be objects, the columns are the variables. The user has to ensure that both the x-dimension
of InMat and the length of DatVec are equal to each other. The result is returned as an ordered list in 
the matrix KNNList (size 2 x k), the first row specifying the nearest neighbor. The first column of 
KNNList holds the indices into the data matrix InMat, the second column holds the distances to these 
neighbors. The parameters FirstObj and LastObj define the index of the first and the last object of 
matrix Inmat to be included with the kNN search.



 GetEigenResult
See also: CalcEigVec, CalcPrincComp

Declaration: function GetEigenResult (EigVecNum: integer; VecElem: integer): 
real;

The routine GetEigenResult returns one element of a specific eigenvector. The parameter EigVecNum 
defines the number of the eigenvector, the parameter VecElem specifies the number of the element of 
that vector. If VecElem is set to zero the routine returns the eigenvalue of the eigenvector EigVecNum. 
Any invalid parameters result in a zero return value.

Hint: The function GetEigenResult is also used in connection with the procedure 
CalcPrincComp to read the principal components.

Example: The statement "if (GetEigenResult (2,0) > 0.1) then ..." checks if the 
eigenvalue of the second eigenvector is larger than 0.1.



Literature References
See also:

Hartung .....



 Init
See also: EnterStatValue, CalcStatistics, CalcLinFit, CalcParabolFit

Class: TCurveFit

Declaration: Init;

The procedure Init initializes the internal variables which are used to calculate fundamental statistical 
parameters (cf. CalcStatistics). Be sure to apply Init before entering any data.



 MathFeedBackProc
See also: ProcStat

Declaration: MathFeedBackProc : FeedBackProcType; 

Some math calculations can consume a lot of computer time during which the application may show no 
reaction. In order to avoid this unfavourable situation, all the potentially time-consuming routines (i.e. 
CalcCovar, CalcEigVec, CalcPrincComp, and FindCenters) have implemented a call to a special 
procedure, MathFeedBackProc, which is executed at regular intervals. The global variable ProcStat is 
automatically incremented and passed as a parameter to MathFeedBackProc.

The procedure MathFeedBackProc is in fact a procedure pointer which is initially set to NIL. The user may
assign any procedure of the type FeedBackProcType to it.

Below you find short instructions how to implement a call-back routine:

1. Declare the routine which does the actual feedback (e.g. showing a progress bar, or something like 
that). This procedure has to have exactly the same declaration as FeedBackProcType. Don't forget 
to declare this procedure as far:

procedure ShowProgress (cnt: longint); far;

begin      { here the display of the progress takes place }
Form1.Label1.Caption := IntToStr (cnt);  
end;

Note, that the cnt parameter of the call back procedure passes the value of the variable ProcStat.

2. Before starting the time-consuming math procedure (FindCenters, in this example), assign the 
feedback procedure to the procedure variable MathFeedbackProc. You should also set the variable
ProcStat to some defined value. After the completion of the time-consuming procedure you may 
reset the MathFeedbackProc to NIL.

...
ProcStat := 0;
MathFeedbackProc := ShowProgress;
FindCenters (Data, 1, Data.NrOfRows, NCenters, Centers, Md);
MathFeedbackProc := NIL;
...

Hint 1: An example how to implement a call-back routine can also be found in the sample 
program FINDCENT.DPR.

Hint 2: Alternatively, you can use a timer interrupt which displays the contents of the variable 
ProcStat to display the progress of some calculation.



 MeanDiff
See also: EnterStatValue, CalcStatistics, NumData, MeanX, MeanY

Class: TCurveFit

Declaration: property MeanDiff: double;

The read-only property MeanDiff returns the mean value of the difference between the x- and the y-values
entered by the method EnterStatValue:



 MeanX
See also: EnterStatValue, CalcStatistics, NumData, MeanDiff, MeanY

Class: TCurveFit

Declaration: property MeanX: double;

The read-only property MeanX returns the mean value of the x-values entered by the method 
EnterStatValue.



 MeanY
See also: EnterStatValue, CalcStatistics, NumData, MeanX, MeanDiff

Class: TCurveFit

Declaration: property MeanY: double;

The read-only property MeanY returns the mean value of the y-values entered by the method 
EnterStatValue.



 MeanDistanceKNN 
See also: FindCenters

Declaration: MeanDistanceKNN (InMat: TMatrix; kn: integer; var DistVec: 
TVector);

The procedure MeanDistanceKNN calculates the mean distance of the kn nearest neighbors of each 
sample in the matrix InMat. The rows of the matrix InMat are seen as objects (samples), the columns 
are regarded as variables (measurements) which define the data space.

The results are stored in the vector DistVec. The user has to assure that the vector DistVec is large 
enough to accept the distances of all objects (DistVec has to have at least InMat.NrOfRows rows). If 
the vector DistVec is too small the result will be truncated accordingly. 



 nDistri
See also: tDistriQuantile, nDistriQuantile

Declaration: function nDistri (x: double): double;

The function nDistri returns the integral of the normal distribution between minus infinity and the value of 
the parameter x. The returned value may vary between 0.0 and 1.0.

Hint: The calculated value is an approximation based on a formula given by Hartung [Hartung 
Vol. 1, page 890] and is correct to about 3 decimal places.



 nDistriQuantile
See also: tDistriQuantile, nDistri

Declaration: function nDistriQuantile (Gamma: Double): Double;

The function nDistriQuantile returns the quintile value of the standard normal distribution for a given 
significance level Gamma. The parameter Gamma may take any value in the open interval (0,1). If 
nDistriQuantile is called using an invalid value of Gamma, a value of 0.0 is returned.

Hint 1: Do not mix up the function nDistriQuantile with the Gaussean density function and the 
cumulative normal distribution. nDistriQuantile returns the argument x for a given definite 
integral of value Gamma for this density function.

Hint 2: The calculated value is an approximation based on a formula given by Hartung [Hartung 
Vol. 1, page 891] and is correct to about 3 decimal places.



 NumData
See also: EnterStatValue, CalcStatistics

Class: TCurveFit

Declaration: property NumData: longint;

The read-only property NumData returns the number of data pairs entered so far by the method 
EnterStatValue. The method Init resets NumData to zero.



 ProcStat
See also: MathFeedBackProc, CalcCovar, CalcEigVec, CalcPrincComp, FindCenters

Declaration: ProcStat: longint;

This globally defined variable serves as a means for communicating the state of some potentially lengthy 
calculations to the outside world. It is incremented on a regular basis by certain routines (CalcCovar, 
CalcEigVec, CalcPrincComp, and FindCenters). Thus a timer interrupt routine can access this variable 
and display its value during the calculations. This method provides an efficient way to check whether the 
system hangs or is involved in lengthy calculations. The initialization of ProcStat is left up to the user.

Alternatively, a routine showing the progress of some calculation can be assigned to the call-back routine 
MathFeedBackProc. This routine is called whenever ProcStat is increased.



 RemoveEigenMatrix
See also: CalcEigVec, CalcPrincComp

Declaration: RemoveEigenMatrix;

The procedure RemoveEigenMatrix removes an eigenvector matrix from the memory. If no matrix is 
stored in the memory, the call to RemoveEigenMatrix is without any consequence.



 StdDevDiff
See also: EnterStatValue, CalcStatistics, NumData, StdDevX, StdDevY

Class: TCurveFit

Declaration: property StdDevDiff: double;

The read-only property StdDevDiff returns the standard deviation of the difference between the x- and the
y-values entered by the method EnterStatValue.



 StdDevX
See also: EnterStatValue, CalcStatistics, NumData, StdDevDiff, StdDevY

Class: TCurveFit

Declaration: property StdDevX: double;

The read-only property StdDevX returns the standard deviation of the x-values entered by the method 
EnterStatValue.



 StdDevY
See also: EnterStatValue, CalcStatistics, NumData, StdDevX, StdDevDiff

Class: TCurveFit

Declaration: property StdDevY: double;

The read-only property StdDevY returns the standard deviation value of the y-values entered by the 
method EnterStatValue.



 tDistriQuantile
See also: nDistri, nDistriQuantile

Declaration: function tDistriQuantile (Gamma: Double; ndata: integer): Double;

The function tDistriQuantile returns the value of the t-distribution (Students distribution) for a given 
significance level Gamma and a specified number of data points ndata. The parameter Gamma may take 
any value in the open interval (0,1). The parameter ndata may take values between 1 and MaxInt. If 
tDistriQuantile is called using invalid arguments a value of 0.0 is returned.

Hint: The calculated value is an approximation based on a formula given by Hartung [Hartung Vol. 1, 
page 892] and is correct to about 3-4 decimal places.



 Delphi and C++Builder Issues
See also: Installation of Math2

Any component of SDL comes both for the Delphi and the C++Builder environment. Thus, you get full 
support both for Delphi and C++Builder with our components. The following general directory layout of the
delivered zip files makes it easier to access the parts you need:

Please note, that the RES files of the sample applications are supplied both as a 16-bit and a 32-bit 
version (denoted by the extension RES16, and RES32). You have to rename the proper version to RES 
before compiling the sample applications.



 Registration of Math2
See also: How to order

The unit Math2 is a shareware component. You can register it for US$ 29.60. In return, you get the 
newest version of Math2 and unlimited free updates by email. The registered version is, of course, fully 
functional and does no longer need the Delphi, or the C++Builder IDE. The user may then create stand-
alone programs which can be deployed without paying any further licences.

Please note, that the unit MATH2 is based on three other units (Math1, Vector, and Matrix), which are 
included with the registered version of MATH2. The sources of MATH2 are available separately at a price 
of US$ 150,- (again, including the sources of Math1, Vector, and Matrix).

 Click here for further details and infos on available discounts.



 Installation of Math2
See also: Delphi and C++Builder Issues

The installation of the unit is a two-part process. First you have to copy the DCU file(s) to the Delphi (C++ 
Builder) library. Secondly, you should install the help file of this component into the help system of Delphi 
(C++ Builder).

Note: The unit MATH2 is not a visual component. You therefore cannot install it in the VCL 
palette. The routines of MATH2 are used by including MATH2 into the 'uses' statement 
of your program.

Delphi installation

C++ Builder installation



 Interface of Math2
Note: you may have to switch to small fonts to get a legible interface list.

interface
  uses dcommon, math1, matrix, vector;

  type
    CombiType  = array[0..255] of byte;
    TCurveFit =
      class (TObject)
      private
        sumx, sumy        : double;
        sumxq, sumyq      : double;
        sumDiff, SumDiffq : double;
        sumxy             : double;
        sumx2y, sumx3     : double;
        sumx4             : double;
        sum1byy           : double;
        sum1byyq          : double;
        sumxbyy           : double;
        sumybyx           : double;
        sum1byx           : double;
        sum1byxq          : double;
        sumlnx            : double;
        sumlnxq           : double;
        sumylnx           : double;
        sumlny            : double;
        sumlnyq           : double;
        sumxlny           : double;
        sumxqlny          : double;
        FNumData          : longint;
        function GetMeanX: double;
        function GetMeanY: double;
        function GetStdDevX: double;
        function GetStdDevY: double;
        function GetMeanDiff: double;
        function GetStdDevDiff: double;
        function GetRxy: double;
      public
        constructor Create;
        destructor Destroy; override;
        procedure Init;
        procedure EnterStatValue (x,y: double);
        procedure CalcStatistics (var NumData: longint;
             var MeanX, MeanY, StdevX, StdevY, MeanDiff,
             StdevDiff, rxy: double);
        procedure CalcGaussFit (var k0, k1, k2, FitQual: double);
        procedure CalcLinFit (var k, d, FitQual: double);
        procedure CalcLogFit (var k0, k1, FitQual: double);
        procedure CalcParabolFit (var k0, k1, k2, FitQual: double);
        procedure CalcReciLinFit (var k0, k1, FitQual: double);
        procedure CalcHyperbolFit (var k0, k1, FitQual: double);
        property  NumData: longint read FNumData;
        property  MeanX: double read GetMeanX;
        property  MeanY: double read GetMeanY;
        property  StdDevX: double read GetStdDevX;
        property  StdDevY: double read GetStdDevY;
        property  MeanDiff: double read GetMeanDiff;
        property  StdDevDiff: double read GetStdDevDiff;



        property  CorrCoeff: double read GetRxy;
      end;

  var
    ProcStat         : longint;                   { state of process }
    MathFeedBackProc : FeedBackProcType;  { global math feedback procedure }

  function  CalcCovar
             (InData : TMatrix;                         { input data }
            CovarMat : TMatrix;                  { covariance matrix }
            LoC, HiC : integer;                   { range of columns }
            LoR, HiR : integer;                      { range of rows }
             Scaling : integer)   { 0=none, 1=mean cent., 2=autoscl. }
                     : boolean;                    { TRUE if success }
  function  CalcEigVec
              (InMat : TMatrix)             { symmetric input matrix }
                     : boolean;                    { TRUE if success }
  function  CalcFishQ
              (m1,m2,                     { mean values, class 1 & 2 }
               s1,s2 : double)                 { standard deviations }
                     : double;                        { Fisher ratio }
  function  CalcGaussKernel
              (Probe : TVector;                     { probe position }
           RefCenter : TVector;                   { center of kernel }
               Width : double)                     { width of kernel }
                     : double;                              { result }
  function  CalcGaussKernelMat
              (Probe : TVector;                     { probe position }
        RefCenterMat : TMatrix;           { matrix of kernel centers }
         RefCenterIx : integer;       { index into the kernel matrix }
               Width : double)                     { width of kernel }
                     : double;                              { result }
  function  CalcPrincComp
             (InData : TMatrix;              { pointer to data array }
            LoC, HiC : integer;                   { range of columns }
            LoR, HiR : integer;                      { range of rows }
             Scaling : integer)  { 0=none, 1=mean cent., 2=autoscal. }
                     : boolean;                    { TRUE if success }
  procedure FindCenters
              (InMat : TMatrix;                        { data matrix }
        RowLo, RowHi : integer;                { first & last object }
             NumCent : integer;                  { number of centers }
         var Centers : TMatrix;                  { matrix of centers }
        var MeanDist : double);                      { mean distance }
  procedure FindNearestNeighbors
                  (k : integer;                { number of neighbors }
               InMat : TMatrix;              { matrix to be searched }
            FirstObj : integer;                       { first object }
             LastObj : integer;                        { last object }
              DatVec : TVector;              { vector to be searched }
             KNNList : TMatrix);                            { result }
  function  GetEigenResult
          (EigVecNum : integer;              { number of eigenvector }
             VecElem : integer)                     { vector element }
                     : real;                        { matrix element }
  procedure MeanDistanceKNN
              (InMat : TMatrix;                        { data matrix }
                  kn : integer;             { # of nearest neighbors }
            FirstRow : integer;            { first object to be used }
             LastRow : integer;             { last object to be used }
          var DistVec: TVector);               { result for each obj }
  function  nDistri
                  (x : double)                            { argument }



                     : double;          {integral of norm.dens.funct.}
  function  nDistriQuantile
              (Gamma : double)                  { significance level }
                     : double;                 { normal distribution }
  procedure RemoveEigenMatrix;
  function tDistriQuantile
              (Gamma : double;                  { significance level }
               ndata : integer)                     { number of data }
                     : double;                      { t-distribution }



Free Additional Help Files
Back to the Contents

For technical reasons, this help file is restricted to a single component or unit. If you want to have the 
cumulative help for all components available from SDL, you may download a free copy of the cumulative 
help from one of the following web sites:

http://www.lohninger.com/
or

http://qspr03.tuwien.ac.at/lo/



 How to order
Back to the Contents

For registration please run the program REGISTER.EXE (which prints the registration form) and send the 
printed form together with the proper amount of money (preferrably credit cards or cash, for cheques 
please add US$ 5,-) to the following address:

      Software Development Lohninger
      P.O.B. 123
      A-1061 Vienna
      Austria, Europe
      email: helpdesk@lohninger.com

The components are preferrably delivered by email. For quick delivery (within 24 hours), please fax the 
order form (credit card orders, only) to the fax number indicated at our home page:

http://www.lohninger.com/
There are several additional Delphi / C++Builder components, and other software products available from 
SDL. Ordering several components (w/o source code) together will entitle you to a discount:

2 components -10 %
3..5 components -20 %
more than 5 -30 %

Special offer 1: The maximum registration fee is limited to US$55,- (take all components and pay only 
US$ 55,-). This special offer and the discount are not applicable to the prices of the sources.

Special offer 2: Purchase the sources of all of our components for only US$410,- 

Both offers include
· unlimited free updates by email

· free registered copies of any future components 
· free support for both the Delphi and the C++Builder version of the components

For the latest release of SDL´s Delphi and C++Builder components and for pricing information see 
http://www.lohninger.com/ or write to the address above.



 C++Builder Installation
See also: Delphi installation

1. Please mind that the unit is not a visual component. Therefore, this unit cannot be installed in the C+
+Builder VCL. 

1.1 Copy the OBJ file(s) to the directory where the C++Builder library is located    
(XXX/CBuilder/Lib).

1.2 Copy the HPP file(s) into the include directory (XXX/CBuilder/Include)

2. Adding the help file to the C++Builder help system

2.1    (optional) Copy the HLP file(s) to the help directory of C++Builder 
2.2    Run the OpenHelp application from the C++Builder group menu.
2.3    Click on the Add button, and add the help file(s) to the Available Help Files list
2.4    Select the help file(s) and click on >
2.5    Click on OK. Thereafter the C++Builder help system knows about the new 

component(s).

As an alternative, you could install the cumulative help file LOCOMP.HLP which 
covers all components of SDL. The cumulative help is available for free at the 
following web site:

htpp://www.lohninger.com/



 Delphi Installation
See also: C++ Builder installation

1. Please mind that the unit is not a visual component. Therefore, this unit cannot be installed in the 
Delphi VCL.

1.1 Copy the DCU file(s) to the directory where the Delphi library is located. 

2. Merging the help keywords into the master help index

2.1    Copy the HLP and the KWF files to the directory where the master help file 
DELPHI.HLP is located (usually \DELPHI\BIN).

2.2    Run the HELPINST application from the Delphi group menu.
2.3    Open the master index DELPHI.HDX
2.4    Add the keyword file (.KWF)
2.5 Save and compile the new index. Thereafter the Delphi master help index 

includes the keywords for the component's Help screens.

As an alternative, you could install the cumulative help file LOCOMP.HLP into the 
Delphi Tools menu. This approach is far better and much more reliable than merging 
the help files into the master help index. The cumulative help is available for free at 
the following web site:

htpp://www.lohninger.com/
-------------------------------
Note: Assure yourself that the PATH environment variable includes the directory where the help file is 

stored. Otherwise the Windows help system will not find the new help file. Alternatively, you can 
copy the help file to the Windows directory.



A personal remark

We are putting much effort into the production of    most reliable components and 
units for other programmers. Everybody    who is using our software gets our 
expertise at a competitive price. But this is only possible if everybody who uses our 
software, registers it and pays for it. So, if you don't want to kill the shareware idea,
don't hesitate to support our work and register this piece of software.

Hans Lohninger
Vienna, Austria.




