
 Welcome to HyperString!
©1996-97 EFD Systems

HyperString is a comprehensive and diverse library with well over 200 routines designed to exploit the full potential of
the versatile new 32-bit long dynamic string type.    Full source code is available.   

You must read the license agreement before using this product.

API (38)
Arrays (12)
Base64 (12)
Checksum/CRC (6)
Communicate (5)
Compression (8)
Convert (15)
Count (4)
Edit (25)
Hash/Encrypt (4)
Integer Date/Time (15)
Match (3)
Math (10)
Miscellaneous (23)
Pad/Trim/Slice (12)
Search (18)
Test (8)
Tokens (15)

Technical Support

Math
function          EnCodeBCD(const Source:AnsiString):AnsiString;
function          DeCodeBCD(const Source:AnsiString):AnsiString;
function          AddUSI(const X,Y:Integer):Integer;
function          SubUSI(const X,Y:Integer):Integer;
function          MulUSI(const X,Y:Integer):Integer;
function          DivUSI(const X,Y:Integer):Integer;
function          ModUSI(const X,Y:Integer):Integer;
function          CmpUSI(const X,Y:Integer):Integer;
function          USIToStr(const X:Integer):AnsiString;
function          StrToUSI(const Source:AnsiString):Integer;

Binary Coded Decimal (BCD) conversion and unsigned integer (USI) math.

Note: The fact that the unsigned Cardinal type can only hold 31-bits leaves Delphi programmers without any true,
native 32-bit unsigned integer type.    A standard Integer can hold a full 32-bits; however, the value is always treated
as signed. The above functions are designed to fill this gap by providing for unsigned manipulation of standard
integer types.    For the sake of clarity, a “u” naming prefix is recommended for integers being used as unsigned
containers.   

To initialize an integer to an unsigned value greater than 2^31, the constant must be provided in either hex or string
format (with the help of StrToUSI).    For example, the compiler will balk at uI := 4,294,967,295 but will accept uI :=
$FFFFFFFF or uI := StrToUSI(‘4,294,967,295’).

Contents

API
function          GetUser: AnsiString;
function          GetNetUser: AnsiString;
function          GetComputer: AnsiString;
function          GetDrives: AnsiString;
function          RemoteDrive(const Drv:Char):Boolean;
function          GetDisk(const Drv:Char; var CSize,Available,Total:DWord):Boolean;
function          GetVolume(const Drv:Char; var Name,FSys:AnsiString; var S:DWord):Boolean;
function          GetWinDir: AnsiString;
function          GetSysDir: AnsiString;
function          GetTmpDir: AnsiString;
function          GetTmpFile(const Path,Prefix: AnsiString): AnsiString;
function          GetDOSName(const LongName: AnsiString): AnsiString;
function          GetWindows: AnsiString;
function          GetClasses: AnsiString;
function          GetWinClass(const Title: AnsiString): AnsiString;
function        GetCPU:AnsiString;
function        GetDefaultPrn:AnsiString;
function        IsWinNT:Boolean;
procedure GetMemStatus(var RAMTotal,RAMUsed,PGTotal,PGUsed:Integer);
procedure GetComList(Strings: TStrings);
function          GetKeyValues(const Root:HKey;Key,Values:AnsiString): AnsiString;
function          SetTaskBar(const Visible:Bool): Boolean;
procedure NoTaskBtn;
procedure KillOLE;
function          GetProcID(const hWnd:THandle): THandle;
function          KillProc(const ClassName:AnsiString): Boolean;
function          DOSExec(const CmdLine:AnsiString; const DisplayMode:Integer): Boolean;
function          WaitExec(const CmdLine:AnsiString; const DisplayMode:Integer): Integer;
procedure DebugConsole;
procedure DebugMsg;
function          ShellFileOp(const S,D:AnsiString; const FileOp,Flgs:Integer):Boolean;
function          FormatDisk(Drive:Word):Boolean;
procedure TrayInsert;
procedure TrayClose(var Action:TCloseAction);
procedure TrayDelete;
function          SetAppPriority(const Priority:DWord):Boolean;
function          GetFileDate(const FileName: AnsiString): AnsiString;
function          MapNetDrive: Integer;

Contents

Convert
function    IntToChr(const X: Integer): AnsiString;
function    ChrToInt(const Src: AnsiString): Integer;
function    WordToChr(const X: Word): AnsiString;
function    ChrToWord(const Src: AnsiString): Word;
function    SngToChr(const X: Single): AnsiString;
function    ChrToSng(const Src: AnsiString): Single;
function    DblToChr(var X: Double): AnsiString;
function    ChrToDbl(const Src: AnsiString): Double;
function    CurToChr(var X: Currency): AnsiString;
function    ChrToCur(const Src: AnsiString): Currency;
function    BinToInt(const Src: AnsiString): Integer;
function    IntToBin(const X: Integer): AnsiString;
function    HexToInt(const Src: AnsiString): Integer;
function    NumToWord(const Src: AnsiString; Dollars: Boolean): AnsiString;
function    OrdSuffix(const X: Integer): AnsiString;

Note: See Base64 for alternate numeric conversion routines which may be better suited for database use.

Contents

Search
function    ScanF(const Src, Search: AnsiString; Start: Integer): Integer;
function    ScanR(const Src, Search: AnsiString; Start: Integer): Integer;
function    ScanC(const Src: AnsiString; X: Char; Start: Integer): Integer;
function    ScanB(const Src: AnsiString; Start: Integer): Integer;
function    ScanL(const Src: AnsiString; Start: Integer): Integer;
function    ScanU(const Src: AnsiString; X: Char; Start: Integer): Integer;
function    ScanCC(const Src: AnsiString; X: Char; Cnt: Integer): Integer;
function    ScanNC(const Src: AnsiString; X: Char): Integer;
function    ScanNB(const Src: AnsiString; X: Char): Integer;
function    ScanT(const Src, Table: AnsiString; Start: Integer): Integer;
function    ScanRT(const Src, Table: AnsiString; Start: Integer): Integer;
function    ScanNT(const Src, Table: AnsiString; Start: Integer): Integer;
function    ScanRNT(const Src, Table: AnsiString; Start: Integer): Integer;
function    ScanP(const Src, Search: AnsiString; var Start: Integer): Integer;
function    ScanW(const Src, Search: AnsiString; var Start: Integer): Integer;
function    ScanQ(const Src, Search: AnsiString; Start: Integer): Integer;
function    ScanQC(const Src, Search: AnsiString; Start: Integer): Integer;
function    ScanZ(const Src, Search: AnsiString; Defects: Integer; var Start: Integer): Integer;

Contents

Pad/Trim/Slice
function          LTrim(const Src: AnsiString; X: Char): AnsiString;
function          RTrim(const Src: AnsiString; X: Char): AnsiString;
function          CTrim(const Src: AnsiString; X: Char): AnsiString;
function          LStr(const Src: AnsiString; Cnt: Integer): AnsiString;
function          RStr(const Src: AnsiString; Cnt: Integer): AnsiString;
function          CStr(const Src: AnsiString; Index, Cnt: Integer): AnsiString;
procedure LPad(var Src:    AnsiString;    const X: Char; Cnt: Integer);
procedure RPad(var Src:    AnsiString;    const X: Char; Cnt: Integer);
procedure CPad(var Src:    AnsiString;    const X: Char; Cnt: Integer);
procedure LText(var Src: AnsiString);
procedure RText(var Src: AnsiString);
procedure CText(var Src: AnsiString);

Contents

Tokens
function    Parse(const Src, Table: AnsiString; var Index: Integer): AnsiString;
function    ParseWord(const Src, Table: AnsiString; var Index: Integer): AnsiString;
function    ParseTag(const Src, Start, Stop: AnsiString; var Index: Integer): AnsiString;
function    Fetch(const Src, Table: AnsiString; Num: Integer; DelFlg: Bool): AnsiString;
function    GetDelimiter: Char;
function    SetDelimiter(Delimit: Char): Boolean;
function    InsertToken(var Src:AnsiString; const Token: AnsiString; Index: Integer): Boolean;
function    DeleteToken(var Src: AnsiString; var Index: Integer): Boolean;
function    ReplaceToken(var Src, Token: AnsiString; Index: Integer): Boolean;
function    GetToken(const Src: AnsiString; Index: Integer): AnsiString;
function    PrevToken(const Src: AnsiString; var Index: Integer): Boolean;
function    NextToken(const Src: AnsiString; var Index: Integer): Boolean;
function    GetTokenNum(const Src: AnsiString; Index: Integer): Integer;
function    GetTokenPos(const Src: AnsiString; Num: Integer): Integer;
function    GetTokenCnt(const Src: AnsiString): Integer;

Definitions:
Token - A properly delimited sub-string (may include null string).
Word - A non-null token.

Contents

Match
function    Similar(const S1, S2: AnsiString): Integer;
function    Soundex(const Src: AnsiString): Integer;
function    MetaPhone(const Name: AnsiString): Integer;

Contents

Count
function    CountF(const Src: AnsiString; X: Char;Start: Integer): Integer;
function    CountR(const Src: AnsiString; X: Char; Start: Integer): Integer;
function    CountT(const Src, Table: AnsiString): Integer;
function    CountW(const Src, Table: AnsiString): Integer;

Contents

Compression
procedure    IniRLE;
function            RLE(const Bfr: AnsiString; L:Word): AnsiString;
function            RLD(const Bfr: AnsiString; L:Word): AnsiString;
procedure    IniSQZ;
function            SQZ(const Bfr: AnsiString; L:Word): AnsiString;
function            UnSQZ(const Bfr: AnsiString; L:Word): AnsiString;
function            BPE(const Bfr: AnsiString; L:Word): AnsiString;
function            BPD(const Bfr: AnsiString; L:Word): AnsiString;

Note: Though not exactly state-of-the-art, these routines can provide effective data compression for a wide variety of
applications.    Simple, easy to use and extremely compact; all of the above routines combined represent less than 5K
of code.

Contents

Communicate
function    ListComm: AnsiString;
function    OpenComm(const Mode: AnsiString): THandle;
function    ReadComm(const pHnd: THandle, var Bfr: AnsiString): Integer;
function    WriteComm(const pHnd: THandle, const Bfr: AnsiString): Integer;
function    CloseComm(const pHnd: Thandle): Boolean;

Note: These functions provide rudimentary support for establishing a communication session under Win32.    Once a
session has been established, additional setup and configuration (using API functions) will most likely be required for
any serious work.    See WIN32.HLP for more.

Contents

Test
function    IsNum(const Src: AnsiString): Boolean;
function    IsHex(const Src: AnsiString): Boolean;
function    IsFloat(const Src: AnsiString): Boolean;
function    IsAlpha(const Src: AnsiString): Boolean;
function    IsAlphaNum(const Src: AnsiString): Boolean;
function    IsMask(const Src, Mask: AnsiString; Index: Integer): Boolean;
function    IsNull(const Src: AnsiString): Boolean;
function    IsDateTime(const Src: AnsiString): Boolean;

Contents

Edit
function          MakeNum(var Src: AnsiString): Integer;
function          MakeFloat(var Src: AnsiString): Integer;
function          MakeFixed(var Src: AnsiString; const Count: Byte): Integer;
function          MakeAlpha(var Src: AnsiString): Integer;
function          MakeAlphaNum(var Src: AnsiString): Integer;
function          DupChr(const X: Char; Cnt: Integer): AnsiString;
procedure UCase(var Source: AnsiString; const Index, Count: Integer);
procedure LCase(var Source: AnsiString; const Index, Count: Integer);
procedure ProperCase(var Src:    AnsiString);
procedure MoveStr(const S: AnsiString; XS: Integer; var D: AnsiString; const XD, Cnt: Integer);
procedure FillStr(var Src: AnsiString; const Index: Integer; X: Char);
procedure FillCnt(var Src: AnsiString; const Index,Cnt: Integer; X: Char);
function          Compact(var Src: AnsiString): Integer;
function          DeleteC(var Src: AnsiString; const X: Char): Integer;
function          DeleteD(var Src: AnsiString; const X: Char): Integer;
function          DeleteT(var Src: AnsiString; const Table: AnsiString): Integer;
function          DeleteNT(var Src: AnsiString; const Table: AnsiString): Integer;
procedure ReplaceC(var Src: AnsiString; const X, Y: Char);
procedure ReplaceT(var Src: AnsiString; const Table: AnsiString; X: Char);
procedure ReplaceS(var Src: AnsiString; const Target, Replace: AnsiString);
procedure OverWrite(var Src: AnsiString;    const Replace: AnsiString; Index: Integer);
procedure Translate(var Src: AnsiString; const Table, Replace: AnsiString);
procedure RevStr(var Src: AnsiString);
procedure IncStr(var Src: AnsiString);
function          TruncPath(var Src: AnsiString; const Count:Integer): Boolean;

Contents

Arrays
procedure StrSort(var A: array of AnsiString; const Cnt: Integer);
function          StrSrch(var A: array of AnsiString; const Target: AnsiString; Cnt: Integer): Integer;
function          StrDelete(var A: array of Ansistring; const Target, Cnt: Integer): Boolean;
function          StrInsert(var A: array of Ansistring; const Target, Cnt: Integer): Boolean;
procedure StrSwap(var S1, S2: AnsiString);
procedure Dim(var P; const Size:Integer; Initialize:Boolean);
function        Capacity(var P):Integer;
type                        TIntegerArray
type                        TWordArray
type                        TSingleArray
type                        TDoubleArray
type                        TCurrencyArray

Contents

Hash/Encrypt
function          Hash(const Src: AnsiString): Integer;
procedure EnCipher(var Src: AnsiString);
procedure DeCipher(var Src: AnsiString);
procedure Crypt(var Src, Key: AnsiString);

Contents

Integer Date/Time
function          TDT2IDT(const TDT: TDateTime): IDateTime;
function         IDT2TDT(const IDT: IDateTime): TDateTime;
function          StrToITime(const Source: AnsiString): IDateTime;
function          StrToIDate(const Source: AnsiString): IDateTime;
function         StrToIDateTime(const Source: AnsiString): IDateTime;
function          IDateToStr(const IDT: IDateTime): AnsiString;
function          ITimeToStr(const IDT: IDateTime): AnsiString;
function          IDateTimeToStr(const IDT: IDateTime): AnsiString;
function          EncodeITime(const D,H,M,S: Word): IDateTime;
procedure DecodeITime(const IDT: IDateTime; var D,H,M,S: Word);
function          EncodeIDate(const Y,M,D: Word): IDateTime;
procedure DecodeIDate(const IDT: IDateTime; var Y,M,D: Word);
function          RoundITime(const IDT: IDateTime;Mns: Word): IDateTime;
function          WeekNum(const TDT: TDateTime): Word;
function          ISOWeekNum(const TDT: TDateTime): Word;

Note: These routines are similar to the built-in TDateTime routines but use a more efficient Integer type; IDateTime,
which is half the size of TDateTime .    More importantly; integer data is more easily ported across operating and
development environments.    Efficiency and portability is achieved at the expense of range, accuracy and clarity (the
units are more obscure, see below). However, the ensuing losses are insignificant for many applications.    IDateTime
can store any date/time value from 1900 through 2079 with an accuracy of +/- 2 seconds.   

The internal IDateTime unit of time is a ‘tik’ with 65536 (2^16) tiks in a day.

Contents

Checksum/CRC
function          CRC16(const IniCRC: Word; Src: AnsiString): Word;
function          CRC32(const IniCRC: Integer; Src: AnsiString): Integer;
function          ChkSum(const Src: AnsiString): Word;
procedure MakeSumZero(var Src: AnsiString);
function          CreditSum(const Src: AnsiString): Integer;
function          ISBNSum(const Src: AnsiString): Integer;

Contents

Base64
function    EnCodeInt(const X: Integer): AnsiString;
function    DeCodeInt(const Src: AnsiString): Integer;
function    EnCodeWord(const X: Word): AnsiString;
function    DeCodeWord(const Src: AnsiString): Word;
function    EnCodeSng(const X: Single): AnsiString;
function    DeCodeSng(const Src: AnsiString): Single;
function    EnCodeDbl(var X: Double): AnsiString;
function    DeCodeDbl(const Src: AnsiString): Double;
function    EnCodeCur(var X: Currency): AnsiString;
function    DeCodeCur(const Src: AnsiString): Currency;
function    EnCodeStr(var Src: AnsiString): AnsiString;
function    DeCodeStr(var Src: AnsiString): AnsiString;

Note: Encoding using the character subset specified by Internet proposal RFC 1521 (the MIME standard). The
resultant data is safe for Internet, database, mainframe and registry use. EnCodeStr complies strictly with the RFC by
adding ‘fill’ to produce a resultant whose length is a factor of 4.    The specialized numeric routines produce efficient,
fixed-length codes without ‘fill’.   

Useful for enhancing database formats with limited native support for numeric data.    Virtually any type data can be
encoded and stored in a registry string key.    Provides a mild form of encryption.

Contents

 +Miscellaneous
function          UnSignedCompare(const X, Y: Integer): Boolean;
function          LoBit(const X: Integer): Integer;
function          HiBit(const X: Integer): Integer;
function          RotL(const X, Cnt: Integer): Integer;
function          RotR(const X, Cnt: Integer): Integer;
function          TestBit(const X, Cnt: Integer): Boolean;
procedure IntSwap(var I1, I2: Integer);
procedure ISortA(var A: array of integer; const Cnt: Integer);
procedure ISortD(var A: array of integer; const Cnt: Integer);
function          IntSrch(var A: array of integer; const Target, Cnt: Integer): Integer;
function          UniqueApp(const Title: AnsiString): Boolean;
function          CalcStr(var Source: AnsiString): Double;
function          RndToFlt(const X:Extended):Extended;
function          RndToInt(const X:Extended):Integer;
function          IPower(const X,Y:Integer):Integer;
function          IPower2(const Y:Integer):Integer;
procedure SpeakerBeep;
function          iMin(const A,B: Integer): Integer;
function          iMax(const A,B: Integer): Integer;
function          iMid(const A,B,C: Integer): Integer;
function          GetKeyToggle(const Key: Integer): Boolean;
procedure FlashSplash(BitMap:TGraphic; const Title: AnsiString);
procedure KillSplash;

Contents

function TDT2IDT (const TDT: TDateTime): IDateTime;

Converts TDateTime units to IDateTime format.

Group

function IDT2TDT (const IDT: IDateTime): TDateTime;

Converts IDateTime units to TDateTime format.

Group

function StrToITime (const Source: AnsiString): IDateTime;

Functional equivalent of StrToTime for IDateTime units.

Group

function StrToIDate (const Source: AnsiString): IDateTime;

Functional equivalent of StrToDate for IDateTime units.

Group

function StrToIDateTime (const Source: AnsiString): IDateTime;

Functional equivalent of StrToDateTime for IDateTime units.

Group

function IDateToStr (const IDT: IDateTime): AnsiString;

Functional equivalent of DateToStr for IDateTime units.

Group

function ITimeToStr (const IDT: IDateTime): AnsiString;

Functional equivalent of TimeToStr for IDateTime units.

Group

function IDateTimeToStr (const IDT: IDateTime): AnsiString;

Functional equivalent of DateTimeToStr for IDateTime units.

Group

function EncodeITime (const D,H,M,S: Word): IDateTime;

Similar to EncodeTime but with some important differences..   

- Encoding of milli-seconds is not supported.

- A number of days (D) can be specified as part of the time increment to be encoded.   

The reason for these differences is the more obscure units used by IDateTime.    For example, an increment of 1 day,
6 hours in TDateTime units is simply 1.25.    The same increment in IDateTime units is 81920. This is more a problem
of interpretation rather than function.    Aside from the different units, simple date/time arithmetic works much the
same with IDateTime as with TDateTime.   

Group

procedure DecodeITime (const IDT: IDateTime; var D,H,M,S: Word);

Similar to DecodeTime but with some important differences.    See EncodeITime for further discussion.

Group

function EncodeIDate (const Y,M,D: Word): IDateTime;

Functional equivalent of EncodeDate for IDateTime units.

Group

procedure DecodeIDate (const IDT: IDateTime; var Y,M,D: Word);

Functional equivalent of DecodeDate for IDateTime units.

Group

function RoundITime (const IDT:IDateTime; Mns:Word): IDateTime;

Native format rounding of IDateTime values to the nearest 1,5,6,15 or 30 minutes as specified by Mns. Factors for
these common increments are hard coded.    Any other increment is undefined and    the original value will be
returned.   

Note: This routine eliminates the need to decode and re-encode merely for the sake of rounding.    Remember that
IDateTime values (and this function) are only accurate to within +/- 2 seconds.    In other words, rounded values may
still differ by up to 2 seconds from the correct HH:MM value upon decoding.

Group

function WeekNum (const TDT:TDateTime):Word;

Provides a work week index (0-52, Monday is first day of work week) for a given date per US calendar.    Week 0 is
the week containing the first Monday of the year.

Note: Occasionally, there are 53 weeks per year, 1996 for example.

Group

function ISOWeekNum (const TDT:TDateTime):Word;

Provides a week-of-the-year index (0-52) for a given date per ISO 8601.    Week 0 is the week containing January 4,
Monday is first day of week.

Note: Occasionally, there are 53 weeks per year, 1998 for example.

Group

function Compact(var Source:AnsiString):Integer;

Compact a string by moving embedded spaces and control char. to the right where they can be deleted if necessary
using RTrim or SetLength.   

Returns: Valid char. count; length less any chars. moved and converted to spaces.   

Group

function DeleteC(var Source:AnsiString;const X:Char):Integer;

Convert specified char. into right justified spaces which can be deleted if necessary using RTrim or SetLength.

Returns: Valid char. count; length less any chars. moved and converted to spaces.

Group

function DeleteD(var Source:AnsiString;const X:Char):Integer;

Convert trailing duplicates of specified char. into right justified spaces which can be deleted if necessary using RTrim
or SetLength. Only duplicates are affected, the first character in a run of duplicates is left in place.

Returns: Valid char. count; length less any chars. moved and converted to spaces.

Group

function DeleteT(var Source:AnsiString;const Table:Ansistring):Integer;

Convert any Table chars into right justified spaces which can be deleted if necessary using RTrim or SetLength.

Returns: Valid char. count; length less any chars. moved and converted to spaces.

Group

function DeleteNT(var Source:AnsiString;const Table:Ansistring):Integer;

Convert any non-Table chars into right justified spaces which can be deleted if necessary using RTrim or SetLength.

Returns: Valid char. count; length less any chars. moved and converted to spaces.

Example: One application might be to filter keystroke errors from user input.

Source:='$123X4.56    ';
I:=DeleteNT(Source,'$+-.0123456789');

On return, I=8, Source='$1234.56      '.    To remove trailing spaces, SetLength(Source,I);

Group

function IsFloat(const Source:AnsiString):Boolean;

Determine if a string contains characters,0-9,space,E,+.-.    This function only verifies the char. sub-set, see IsMask
for format checking.

function IsNum(const Source:AnsiString):Boolean;

Determine if a string contains only digit characters, 0-9 and space.    This function only verifies the char. sub-set, see
IsMask for format checking.

Group

function IsHex(const Source:AnsiString):Boolean;

Determine if a string contains only hexadecimal digit characters, 0-9, A-F and space.    This function only verifies the
char. sub-set, see IsMask for format checking.

Group

function IsNull(const Source:AnsiString):Boolean;

Determine if a string contains only characters, 0-32 and 255.    This function only verifies the char. sub-set, see
IsMask for format checking.

Group

function IsDateTime(const Source:AnsiString):Boolean;

Determine if a string contains only char. 0-9,space,-,DateSeperator,TimeSeparator. This function only verifies the
char. sub-set, see IsMask for format checking.

Group

function IsAlpha(const Source:AnsiString):Boolean;

Determine if a string contains only alpha characters and spaces. See IsMask for format checking.

Group

function IsAlphaNum(const Source:AnsiString):Boolean;

Determine if a string contains only alpha characters, digits and spaces. See IsMask for format checking.

Group

function MakeAlphaNum(var Source:AnsiString):Integer;

Convert any non-alphanumeric char. into right justified spaces which can be deleted if necessary using RTrim or
SetLength.

Returns: Valid char. count; length less any chars. moved and converted to spaces.

Group

function MakeAlpha(var Source:AnsiString):Integer;

Convert non-alpha char. into right justified spaces which can be deleted if necessary using RTrim or SetLength.

Returns: Valid char. count; length less any chars. moved and converted to spaces.

Group

function MakeNum(var Source:AnsiString):Integer;

Convert non-numeric char. into right justified spaces which can be deleted if necessary using RTrim or SetLength.

Returns: Valid char. count; length less any chars. moved and converted to spaces.

Group

function MakeFloat(var Source:AnsiString):Integer;

Convert chars other than 0..9,E,+,-, decimal into right justified spaces which can be deleted if necessary using RTrim
or SetLength.

Returns: Valid char. count; length less any chars. moved and converted to spaces.

Group

function MakeFixed(var Source:AnsiString; const Count:Integer):Integer;

Convert chars other than 0..9,+,-, decimal into right justified spaces, add or removes digits as necessary to provide
Count decimal places.    Extend length if needed.

Returns: Valid char. count; length less any chars. moved and converted to spaces.

Group

function ChrToInt(const Source:AnsiString):Integer;

Convert any 4 char. string into an integer. See IntToChr for discussion.

Group

function ChrToWord(const Source:AnsiString):Word;

Convert any 2 Char string into a word. See IntToChr for discussion.

Group

function IntToChr(const X:Integer):AnsiString;

Convert any integer into a 4 byte MSB (Most Significant Byte first) string representation.

To preclude possible confusion,    we’ll address some typical questions.

1) Why do this?

In order to turn the lowly string into a complex, variable length data container. For example, with this routine you can
easily tag a string with one or more numeric integer values (a database record number perhaps) without using
additional data structures. Simply convert the integer and append to the end of the string. To retrieve the integer
value, apply the complimentary ChrToInt function to the last 4 chars. of the string. Much more elaborate structures are
possible.

Admittedly, this is a hack but it works<g>.

2) Why MSB (also known as 'big-endian')?

Strings are normally compared and sorted on a left to right, MSB basis.    Using this basis allows converted integers to
be compared and sorted properly as strings.    It should be pointed out that string comparisons are unsigned.

Note: This and related routines output characters in the range 0..255. Embedded nulls and control char. are fully
supported with AnsiStrings; however, “binary” strings are not suitable for use in API calls or registry storage. The
Base64 routines provide a similar but less efficient alternative that is safe for almost any use.

Group

function WordToChr(const X:Word):AnsiString;

Convert any word into a 2 Char string.    See IntToChr for discussion.

Group

function SngToChr(const X:Single):AnsiString;

Convert any single into a 4 byte MSB string representation. See IntToChr for discussion.    This conversion is
'internally exact'. In other words, converting from single to string and back again yields the original 'internal'
representation exactly.    However; as is always the case with floating point, the internal representation only
approximates the real value.

Group

function ChrToSng(const Source:AnsiString):Single;

Convert any 4 char. string into a single floating point value. See IntToChr for discussion.

Group

function DblToChr(var X:Double):AnsiString;

Convert any Double (or compatible type such as TDateTime) into an 8 byte MSB string representation.

See IntToChr for further discussion.

Group

function ChrToDbl(const Source:AnsiString):Double;

Convert any 8 char. string into a Double floating point value. See IntToChr for discussion. As is typical with floating
point, the representation is only approximate.

Group

function CurToChr(var X:Currency):AnsiString;

Convert a Currency type into an 8 byte MSB string representation. See IntToChr for discussion.

Group

function ChrToCur(const Source:AnsiString):Currency;

Convert any 8 char. string into a Currency value. See IntToChr for discussion.

Group

function IntToBin(const X:Integer):AnsiString;

Convert any integer into a 32 byte right justified 1/0 string.    Use LTrim to remove leading zeros if desired.

Group

function BinToInt(const Source:AnsiString):Integer;

Convert a right justified 1/0 binary string into an integer.

Group

function HexToInt(const Source:AnsiString):Integer;

Convert a hexadecimal string into an integer. Prefixes and invalid characters (other than 0-9,A-F) are ignored.   

Note: Similar results can be achieved by prefixing Source with ‘$’ and applying StrToInt; however, this function is
generally more efficient since it eliminates the need to create an intermediate string.

Group

function EnCodeInt(const X:Integer):AnsiString;

Encode any integer as a truncated 6 char base64 string that is Internet, mainframe, database and Registry safe.

Group

function DeCodeInt(const Source:AnsiString):Integer;

Decode a 6 Char integer string created with EnCodeInt and return the original integer value.

Group

function EnCodeWord(const X:Word):AnsiString;

Encode any Word as a truncated 3 char base64 string that is Internet, mainframe, database and Registry safe.

Group

function DeCodeWord(const Source:AnsiString):Word;

Decode a 3 char Integer string created with EnCodeInt and return the numeric value.

Group

function EnCodeSng(const X:Single):AnsiString;

Encode any Single floating point value as a 6 char base64 string that is Internet, mainframe, database and Registry
safe.    This conversion is 'internally exact'.

Group

function DeCodeSng(const Source:AnsiString):Single;

Decode a 6 char Integer string created with EnCodeSng and return the original floating point single value.

Group

function EnCodeDbl(var X:Double):AnsiString;

Encode any Double (or compatible type such as TDateTime) as an 11 char base64 string that is Internet, mainframe,
database and Registry safe.    This conversion is 'internally exact'.

Group

function DeCodeDbl(const Source:AnsiString):Double;

Decode an 11 char Double string created with EnCodeDbl and return the original numeric floating point value.

Group

function EnCodeCur(var X:Currency):AnsiString;

Encode any Currency type as an 11 char base64 string that is Internet, mainframe, database and Registry safe.   
This conversion is 'internally exact'.

Group

function DeCodeCur(const Source:AnsiString):Currency;

Decode an 11 char Currency string created with EnCodeCur and return the original Currency type value.

Group

function EnCodeStr(var Source:AnsiString):AnsiString;

Encode a string using base64 encoding compatible with Internet protocol RFC 1521 (the MIME standard).    Data
encoded in this manner is safe for Internet, mainframe, database and Registry storage and use. By definition, the
resultant string length is always a factor of 4 and at least 1/3 greater than the original.

Group

function DeCodeStr(var Source:AnsiString):AnsiString;

Decode a base64 string created with EnCodeStr and return the original. The length of the encoded Source string
should be a multiple of 4, any fractional excess will be ignored.

Group

function Soundex(const Source:AnsiString):Integer;

Encode a string as a 4 byte integer value using the Soundex table originally provided by your friendly US Census
Bureau:

Note: This function returns an Integer for faster and more efficient comparisons. If you prefer the more traditional
string representation, simply apply IntToChr to the resultant integer.

Group

procedure EnCipher(var Source:AnsiString);

Fast, 7-bit ASCII (char. 32..127) encryption designed for database use. Control and high order (8 bit) characters are
passed through unchanged.

Uses a hybrid method...random table substitution with bit-mangled output. No passwords to worry with, the algorithm
and built-in table are the password.

The output from this procedure appears quite random and provides good, convenient security against the casual
snoop armed with a file viewer.    However, keep in mind that the complementary DeCipher algorithm is available in
the marketplace and anyone with access to it will be able to easily decode your data.

Note: When displaying enciphered strings, remember that some characters within the output range are interpreted by
VCL components; for example, '&'.

Group

procedure DeCipher(var Source:AnsiString);

Decrypts a string previously encrypted with EnCipher.

Group

procedure Crypt(var Source,Key:Ansistring);

Encrypt AND decrypt strings using a reversible, ‘pseudo-key’ technique somewhat similar to S-Coder (DDJ, Jan.
1990). To decrypt, simply re-apply the procedure using the same password Key.

This is a much improved implementation of the popular, reversible XOR technique.    The provided Key is not used to
directly encrypt the Source string.    Instead, Key is used to seed a linear feedback ‘pseudo-key’ generator.    The
generated ‘pseudo-key’, which typically has a repeat cycle 256 times longer than Key itself, is actually used to
encrypt the Source. The end result is a fast, simple and much more secure algorithm.    A similar level of security with
simple XOR would require the use of a random, non-sense password hundreds of bytes long.    Here are some
suggestions for further enhancing security.

- Use a longer Key.
- Double or triple encrypt the string using different keys. To decrypt, re-apply the keys in reverse order.
- EnCipher the string before using Crypt.    To de-crypt, simply re-apply Crypt then DeCipher.
- Use a combination of the above.

Note: Output characters are in the range, 0..255.    Key is case sensitive.

Group

function Hash(const Source:Ansistring):Integer;

Generate an integer hash key for the input string.

Returns:    32 bit +/- integer hash key, zero if null string

Note: This is a highly efficient, verified, general purpose hashing algorithm based upon the published research of
Peter J. Weinberger of AT&T Bell Labs and others.    This implementation has been used for years in UNIX object
files.

CRC and Checksum routines can also be used effectively for hashing.

Group

function ScanF(const Source,Search:AnsiString;Start:Integer):Integer;

Forward scan from specified Start position looking for Search key.    Search may contain any number of '?' wildcards
to match any character. For case insensitive scan, specify Start as negative.

Returns:    Position where/if found; otherwise, 0

Group

function ScanR(const Source,Search:AnsiString;Start:Integer):Integer;

Reverse scan from specified Start position (1 = First Char, 0 = String End) looking for Search key.    Search may
contain '?' wildcards to match any character. For case insensitive scan, specify Start as negative.

Returns:    Position where/if found; otherwise, 0

Group

function ScanC(const Source:AnsiString;X:Char;Start:Integer):Integer;

Forward scan from Start looking for next matching char. (X). This and the complementary ScanB (backwards scan)
are optimized for case sensitive single character searching.

Returns: Position where/if found; otherwise, 0

Group

function ScanCC(const Source:AnsiString;X:Char;Count:Integer):Integer;

Forward scan from beginning of string looking for the Count instance of char. X.

Returns: Position where/if found; otherwise, 0

Group

function ScanB(const Source:AnsiString;X:Char;Start:Integer):Integer;

Backward/reverse scan from Start location (1 = First Char., 0 = String End) looking for single character, X.

Returns: Position where/if found; otherwise, 0

Group

function ScanL(const Source:AnsiString;Start:Integer):Integer;

Forward scan from Start location looking for next lowercase (ASCII 97..122) character.

Returns: Position where/if found; otherwise, 0

Group

function ScanU(const Source:AnsiString;Start:Integer):Integer;

Forward scan from Start location looking for next uppercase (ASCII 65..90) character.

Returns: Position where/if found; otherwise, 0

Group

function ScanNC(const Source:AnsiString;X:Char):Integer;

Forward scan looking for first NON-matching character.

Returns: Position where/if found; otherwise, 0

Group

function ScanNB(const Source:AnsiString;X:Char):Integer;

Backward/Reverse scan looking for first NON-matching character.

Returns: Position where/if found; otherwise, 0

Group

function ScanT(const Source,Table:AnsiString;Start:Integer):Integer;

Forward scan from Start looking for any char. in Table. For case insensitive scan, specify Start as negative.

Returns:    Position where/if found; otherwise, 0

Group

function ScanRT(const Source,Table:AnsiString;Start:Integer):Integer;

Reverse scan from Start looking for any char. in Table. For case insensitive scan, specify Start as negative.

Returns:    Position where/if found; otherwise, 0

Group

function ScanNT(const Source,Table:AnsiString;Start:Integer):Integer;

Forward scan from Start looking for first char. NOT in table. For case insensitive scan, specify Start as negative.

Returns:    Position where/if found; otherwise, 0

Group

function ScanRNT(const Source,Table:AnsiString;Start:Integer):Integer;

Reverse scan from Start looking for first char. NOT in table. For case insensitive scan, specify Start as negative.

Returns:    Position where/if found; otherwise, 0

Group

function ScanP(const Source,Search:AnsiString;var Start:Integer):Integer;

Exhaustive forward scan from Start looking for the longest partial match of Search. Search may contain '?' wildcards
to match any character.

Returns:    Match length.    Start = Match position.

Note: To continue a search, Start must be manually incremented beyond the last returned match position. If a perfect
match is found, resultant = Length(Search).    If no partial match, resultant = 0 and Start = 0.

Group

function ScanW(const Source,Search:AnsiString;var Start:Integer):Integer;

Forward scan from Start looking for a match of Search pattern string containing wildcards:

    ‘*’      = match any string (including null string)
    ‘?’    = match any single character
    ‘#’    = match any numeric character (0..9)
    ‘@’ = match any alpha character (A..Z, a..z)
 else = match given character

For case insensitive, specify Start as negative.

Returns:    Matching length, Start = match location.    If no match, Result = 0 and Start = 0;

Note: To continue a search, Start must be manually incremented beyond the last returned match position.   

The function returns as soon as a substring satisfying the pattern has been found.    When using wildcards, the results
must be examined carefully.    For example, given a Search pattern of ‘abc*’; a match of the first 3 characters is all
that is required.      Therefore; if a match is found, the returned match length will never be greater than 3.   

Likewise, with a search string of ‘*abc’ ; the first character at Start will always match.    In this case, match length may
vary from 3 to the length of Source.

Group

function ScanQ(const Source,Search:Ansistring;Start:Integer):Integer;

"Quick" forward scan using the primary Boyer-Moore heuristic. Search key length is limited to 256 characters or less
and may contain '?' wildcards to match any character. For case insensitive scan, specify Start as negative.

This algorithm is often dramatically faster than a brute force sequential search; however, there are cases where it
may actually be slower.

1) Very short Search key string (less than 3 chars).
2) Relatively short Source string (less than 256 chars).
3) A match is located very near the given Start position.    Typically, there is no way to know this in advance.
4) Source contains an inordinately large number of a sub-string matching the rightmost part of Search key. For
example, if Search ends with '...ing' (as in 'String') and Source contains many, many instances of the 'ing' sequence.
In this case, the algorithm may waste significant time investigating false leads.

This function is probably at it's best when working with relatively long strings and medium sized keys.

Group

function ScanQC(const Source,Search:Ansistring; Start:Integer):Integer;

Continue a "Quick" forward scan begun by an initial call to ScanQ.    This routine avoids time consuming initialization
by assuming that Source and Search have not changed since the last call to ScanQ.    The programmer is responsible
for insuring that this is the case.

Example: The code snippet below counts all occurances of a search string.    Note how Start is incremented beyond
the previous instance.

Count := 0;
Start := ScanQ(Source, Search, 1);
while Start > 0 do begin
        Inc(Count);     
        Start := ScanQC(Source, Search, Start + Length(Search));
end;

Group

function ScanZ(const Source,Search:Ansistring; Defects:Integer; var Start:Integer):Integer;

Forward scan from Start looking for an approximate, “fuzzy” match of Search.    Defects is the max. number of
character “defects” allowed in a matching sub-string. Typically, 0<Defects<Length(Search).    A “defect” is defined as
one of the following:

- Extra/missing character (isolated single characters only)
- Character mismatch
- Adjacent characters swapped

If Defects=0, a perfect match is required.    If Defects >= Length(Search), any string will match. Use negative start for
case insensitive scan (case difference NOT considered a defect).

Returns:    Length of matching sub-string, Start = sub-string location.    Resultant = 0 and Start is undefined if no
match. Match length may differ from Length(Search) since extra/missing characters are allowable defects. To
continue a search, manually adjust Start beyond the returned match.

Example:

Given:

Source := ’Where is Hillerd ?’;
Search := ’Dillard’;
Defects := 2;
Start := 5;

ScanZ(Source,Search,Defects,Start) returns a match length of 7 at Start = 10.    In this case, ‘Hillerd’    and ‘Dillard’
are a match with defects at the 1st and 5th positions.

Notes:

The algorithm correctly diagnoses most minor spelling defects but will not identify words distorted by gross errors
such as multiple adjacent characters missing.

The function always returns the first match found.    An overly large Defect value often produces nothing more than a
pre-mature or unwanted match.

“Fuzzy” algorithms can sometimes yield logically correct results that are somewhat unexpected.    For example,
‘Hillerd’ is also a match for ‘billed’, ‘killed’ or ‘willed’ with two defects (mismatched 1st and extra/missing 6th).

Group

procedure ProperCase(var Source:AnsiString);

Upper case the first alpha character in each word, lower case all other characters. Any char. less than ASCII 48 (0) is
considered a word delimiter.

Group

function CountT(const Source,Table:AnsiString):Integer;

Count all instances of Table characters within Source.

Group

function CountW(const Source,Table:AnsiString):Integer;

Count all words (non-null tokens) in Source delimited by any char in Table.    Use GetTokenCnt if null tokens are to be
included.

Group

procedure Translate(var Source:AnsiString;const Table,Replace:AnsiString);

Replace all chars. found in Table with the corresponding character from Replace table.    By definition, the 2 tables
must be the same size.

Group

procedure ReplaceT(var Source:AnsiString;const Table:AnsiString;X:Char);

Search and replace all chars. found in Table with a given replacement character.

Group

procedure ReplaceS(var Source:AnsiString;const Target,Replace:Ansistring);

Replaces all instances of Target sub-string with Replace sub-string.

Example: ReplaceS(Source,#9,DupChr(#32,8)); replaces all tabs with 8 spaces.

Group

function LStr(const Source:Ansistring;Count:Integer):Ansistring;

Conveniently retrieve Count chars from the left of Source.

For VB converts, similar to LEFT$().

Group

function RStr(const Source: Ansistring; Count: integer): Ansistring;

Conveniently retrieve Count chars from the right of Source.

For VB converts, similar to RIGHT$().

Group

function CStr(const Source:Ansistring;Index,Count:Integer):Ansistring;

Retrieve Count chars from any location inside Source.    Yes, we know it’s essentially the same as Delphi’s Copy but
we just had to satisfy some strange sense of symmetry and completeness by rounding out the trio (LStr, RStr and
CStr).    Anyway, it’s cheaper than psychotherapy.

For VB converts, similar to MID$() function.

Group

function    DupChr(const X:Char;Count:Integer):AnsiString;

Manufacture a string of length Count by duplicating char. X.

Group

procedure LPad(var Source: Ansistring;const X:Char;Count:Integer);

Append characters (X) to left of Source as required to increase length to Count.

Group

procedure RPad(var Source: Ansistring;const X:Char;Count:Integer);

Append characters (X) to right of Source as required to increase length to Count.

Group

procedure CPad(var Source: Ansistring; const X:Char;Count:Integer);

Append characters (X) to left and right of Source as required to increase length to Count while keeping existing text
centered.

Group

procedure LText(var Source: AnsiString);

Left justify text within Source by moving leading spaces and control char. to end.    Length    is not changed.

Group

procedure RText(var Source: AnsiString);

Right justify text within Source by moving trailing spaces and control char. to front.    Length is not changed.

Group

procedure CText(var Source: AnsiString);

Center text within Source by moving leading and trailing spaces and control char. as necessary. Length is not
changed.

Group

procedure FillStr(var Source:AnsiString;const Index:Integer;X:Char);

Fill Source starting at Index location using Char X. Includes range checking to prevent memory corruption.

Group

procedure FillCnt(var Source:AnsiString;const Index,Cnt:Integer;X:Char);

Fill Source starting at Index location with Cnt characters of X. Includes range checking to prevent memory corruption.

Group

procedure OverWrite(var Source:AnsiString; const Replace:AnsiString;Index:Integer);

Overwrite Source text at Index location with Replace text. A companion to the native Insert and Delete functions.
Built-in range checking prevents memory corruption.

Group

procedure MoveStr(const S:AnsiString;XS:Integer;var D:AnsiString;const XD,Cnt:Integer);

Generic string move utility. Overwrite destination string D starting at location XD using Cnt characters taken from
source string S at location XS. Full range checking is included to prevent memory corruption.

Example: MoveStr(Source,SIndex,Dest,DIndex,Count)

Group

function Parse(const Source,Table:AnsiString;var Index:Integer):AnsiString;

Sequential, left to right token parsing using a table of delimiter characters. Intended for applications where there is
limited control over the delimiters. Index is a pointer (initialize to '1' for first token) updated by the function to point to
next token.    To retrieve the next token, simply call the function again using the prior returned Index value.

Note: If returned Index > Length or Index < 1, no additional tokens are available.

Group

function ParseWord(const Source,Table:AnsiString;var Index:Integer):AnsiString;

Similar to Parse but null tokens are ignored. Intended for parsing “freeform” text.

Index is a pointer (initialize to '1' for first word) updated by the function to point to next word.    To retrieve the next
word, simply call the function again using the prior returned Index value.

Note: If Length(Resultant) = 0, no additional words are available.

Example: Parse all words from freeform text (S) into a ListBox.

I := 1;
T := #9#10#13#32#44#46#59;    //common delimiters in freeform text
repeat
        W := ParseWord(S,T,I);
        if Length(W)>0 then
                ListBox1.Items.Add(W)
        else break;
until True=False;

Group

function ParseTag(const Source, Start, Stop:AnsiString;var Index:Integer):AnsiString;

Sequential, left to right parsing of tokens delimited by start/stop “tags” such as those commonly found in HTML and
XML strings. Index is a pointer (initialize to '1' for first token) updated by the function to point to next token.    To
retrieve the next token, simply call the function again using the prior returned Index value.

Note: If returned Index > Length or Index < 1, no additional tokens are available.

Example: Parse all “anchor” tags in an HTML document.

- Allocate a string (S) to hold the entire document
- Allocate an index variable (I) and initialize to 1
- Open the document file and read into string
- Repeatedly call ParseTag(S, ’<A’ , ’/A>’, I) until no more tokens

Some HTML tokens (such as “paragraph”) may span multiple lines.    This function returns the entire token, including
line breaks.    Use DeleteT with Table = line break (usually CRLF) to remove breaks from tokens if desired.

Group

function Fetch(const Source,Table:AnsiString; Num:Integer; DelFlg:Bool):AnsiString;

Retrieve tokens by number (first = 1) using a table of delimiter characters. Intended for applications where there is
limited control over the delimiters.    If DelFlg is True, the returned token includes the terminating delimiter.

Note: If the specified token is not found, a null string is returned.    This routine was added by request as a
convenience feature.    Locating a token by number requires a sequential search from the start of the string.   
GetToken is a much more efficient alternative if the approximate position of the desired token is known as a result of
a scan or other means.

Group

function SetDelimiter(Delimit:Char):Boolean;

Set the HyperString delimiter character to be used by tokens and other functions. The default delimiter is a comma
(ASCII 44). Returns False if delimiter is a null (zero); otherwise, True.

Group

function GetDelimiter:Char;

Return the current HyperString delimiter character being used by tokens and other functions.

Supports writing well behaved record handlers by allowing routines to save and restore (via SetDelimiter) the
delimiter setting.

Group

function GetToken(const Source:Ansistring;Index:Integer):Ansistring;

Retrieves the token from Source associated with the given string Index position.

Tokens are referenced by string Index position.    A valid Index is any string position between delimiters (string start
and end are also delimiters).    For example, with the string below, any Index position from 9 to 17 would retrieve the
'Wednesday' token.

1…                    9…
Tuesday,Wednesday,Thursday

This method of token referencing is highly efficient and allows ordinary scan/search functions to be easily used with
tokenized strings as well.    After scanning for a desired sub-string, the corresponding token can be quickly and easily
retrieved using the sub-string’s index position.

Note: Index is indeterminate if Source[Index] = Delimiter. Use Index = 1 for first token, Index = Length(Source) for
Last.    Invalid or indeterminate Index returns a null string.

Group

function InsertToken(var Source:AnsiString; const Token:Ansistring;Index:Integer):Boolean;

Insert token into Source at the token position referenced by Index; shifting existing tokens as necessary.    Use zero
Index to append a new token. Returns False if Index is invalid.   

Tokens are referenced by string Index position.    A valid Index is any character position between delimiters (string
start and end are considered delimiters).    For example, with the string below, Index positions from 9 to 17 all
reference the 'Wednesday' token.

1…                    9…
Tuesday,Wednesday,Thursday

This method of token referencing is highly efficient and allows oridnary scan/search functions to be used with
tokenized strings as well.    After scanning for a desired sub-string, the corresponding token can be retrieved, deleted,
replaced or a new token inserted using the sub-string’s index position.

Group

function DeleteToken(var Source:Ansistring; var Index:Integer):Boolean;

Delete token from Source at referenced Index position; shifting tokens as necessary to fill the voided position.
Returns False if Index is invalid. If Source[Index] = Delimiter, the delimiter is deleted. Index points to the next token if
successful (resultant = True). See GetToken for more.

Group

function ReplaceToken(var Source,Token:Ansistring;Index:Integer):Boolean;

Replace the token in Source at the given Index position.    Returns False if Index is invalid. See GetToken for more.

Group

function PrevToken(const Source:Ansistring;var Index:Integer):Boolean;

Move string Index pointer to preceding token in Source.    Returns False and Index is undefined if no token precedes
current.    See GetToken for more.

Group

function NextToken(const Source:Ansistring;var Index:Integer):Boolean;

Move string Index pointer to following token in Source.    Returns False and Index is undefined if no following token is
found. See GetToken for more.

Group

function GetTokenNum(const Source:Ansistring;Index:Integer):Integer;

Translate a string Index position into a token number (First = 1). Returns zero if Index is invalid or indeterminate.

Tokens are normally referenced by string index position (see GetToken) so this function should rarely be used.

Group

function GetTokenPos(const Source:Ansistring;Num:Integer):Integer;

Translate a token number (First = 1) into a string index position.

Returns: First valid string index for token Num;    zero if token is not found.

This function complements GetTokenNum.    Tokens are normally referenced by string index for greater efficiency.
See GetToken for more.

Group

function GetTokenCnt(const Source:Ansistring):Integer;

Count the total number of tokens in Source based upon the delimiters present in the string. Null tokens will be
included in the total.    CountW is an alternative which ignores nulls and uses multiple delimiters from a table.

Returns: Total number of delimiters + 1

Group

function ChkSum(const Source:AnsiString):Word;

Fletcher's Checksum, IEEE Transactions on Communications, Jan. 1982. Error detection nearly as good as 16-bit
CRC but much "cheaper" to calc, also has some special properties.

Max. error rates:   

16-bit CRC              = 0.001526%
16-bit Fletcher = 0.001538%

Group

procedure MakeSumZero(var Source:AnsiString);

Appends 2 chars (range 0..255) to Source in order to force the string to "sum to zero" with the complementary
Fletcher checksum routine. Make strings self-checking!

Note: The appended chars. may be null; therefore, the resultant string should not be cast as null terminated.

Group

function CreditSum(const Source:AnsiString):Word;

Shifted Mod 10 checksum of the type used for credit card encoding.    Result = 0 if Source is a potentially valid credit
card number string. Result = -1 if Source is null.    Non-numeric ASCII characters (outside the range [‘0’..’9’]) are
ignored.

Note:    This checksum is primarily used to help detect data entry errors associated with 16 digit “major” credit card
numbers.    Further checks are needed to verify that a given string is in fact a valid card number.    “Minor” issuers
(department stores, auto clubs, etc.) may have their own encoding rules.    For example, an auto club (“gas card”)
may use 14 digits and a checksum of 3.

“Major” US credit cards have 16 digit numbers with the first digit indicating card type as follows:

3 - American Express, Carte Blanche, Diners Club
4 - Visa
5 - Master Card, Choice
6 - Discover Card

Group

function ISBNSum(const Source:AnsiString):Boolean;

International Standard Book Number (ISBN) checksum.    Returns True if the given string is a potentially valid ISBN
alpha-numeric book identifier.

Group

function CRC32(const IniCRC:Integer;Source:AnsiString):Integer;

Standard, table based CRC32 calculation. Initial call MUST use IniCRC:=-1 (or $FFFFFFFF). To add subsequent
strings to the calcs, use IniCrc:= Prior CRC32 resultant. Final resultant must be inverted using NOT operator to
conform to specs.    Equivalent Pascal implementation might be:

for I:=1 to Length(Source) do
    CRC:=((CRC SHR 8) AND $FFFFFF) XOR CRCTable[(CRC XOR Source[I]) AND $FF];

The code below calculates a combined CRC32 value (X) for strings S1 and S2.

var
    X :Integer;
begin
    X := -1;
    X := CRC32(X,S1);
    X := CRC32(X,S2);
    X := NOT X;
end;

Group

function CRC16(const IniCRC:Word;Source:AnsiString):Word;

Standard, table based CRC16 calculation. Initial string MUST use IniCRC:=-1 (or $FFFF). To add subsequent strings
to the calcs, use IniCrc:= Prior CRC16 resultant. Final resultant must be inverted using NOT operator to conform to
specs.    Equivalent Pascal implementation might be:

for I:=1 to Length(Source) do
    CRC:=((CRC SHR 8) AND $FF) XOR CRCTable[(CRC XOR Source[I]) AND $FF];

The code below calculates a combined CRC16 value (X) for strings S1 and S2.

var
    X : Word;
begin
    X := -1;
    X := CRC16(X,S1);
    X := CRC16(X,S2);
    X := NOT X;
end;

Group

function CountF(const Source: Ansistring;X:Char;Start:Integer): Integer;

Count instances of char X. from Start location Forward.

Group

function CountR(const Source: Ansistring;X:Char;Start:Integer): Integer;

Count instances of char X. in Reverse, from Start location backward.

Group

function LTrim(const Source:AnsiString;X:Char):AnsiString;

Trim specified char. X from the front of the string and return shortened string.

Group

function RTrim(const Source:AnsiString;X:Char):AnsiString;

Trim specified char. X from the end of Source string and return shortened string.

Group

function CTrim(const Source:AnsiString;X:Char):AnsiString;

Trim specified char. X from both ends of Source string and return shortened string.

Group

procedure ReplaceC(var Source: Ansistring;const X,Y:Char);

Search and replace all instances of char. X with char Y. To remove a character entirely, see DeleteC.

Group

procedure RevStr(var Source:AnsiString);

Reverse the characters; first to last, in the Source string.

Group

procedure IncStr(var Source:AnsiString);

Increment the characters in an alphanumeric string.    Only string positions containing alphanumeric characters (0-9,
A-Z, a-z) are considered.    Therefore, the string to be incremented must be properly initialized.    Incrementation is
case-sensitive, overflows are ignored.

Example: IncStr(‘1a-9Z-99’) yields ‘1b-0A-00’.

Group

function TruncPath(var Source:AnsiString; const Count:Integer)Boolean;

Attempts to shorten a file path to Count characters by replacing text between backslashes with an ellipsis and
dropping characters from the file name if necessary.    Retains as much of the file name as possible.    Returns True if
file path was shortened to Count or fewer characters.

Example:

S := ’c:\this\is\an\example\filepath.doc’;
TruncPath(S,24);

returns True with    S = ‘c:\this\…\filepath.doc’

Group

procedure ISortA(var A:array of integer;const Cnt:Integer);

Sort an integer array into ascending, UNSIGNED order using CombSort; a generalized and much improved
implementation of BubbleSort (see Byte magazine, April 1991). This assembler implementation is extremely compact
and reasonably fast. Cnt = Total number of elements to be sorted if array is partially filled, use -1 for full array).

Note: BubbleSort is routinely chastised for being a “simple but slow” sorting technique, too slow for much practical
use.    With regard to the typical BubbleSort, this may be true but there is more.    From a certain perspective,
BubbleSort is merely a flawed implementation of an otherwise respectable sorting algorithm.    A few simple
modifications transforms BubbleSort into the more generalized CombSort which provides very respectable
performance while retaining the highly attractive simplicity.

Group

procedure ISortD(var A:array of integer;const Cnt:Integer);

Sort an integer array into descending, UNSIGNED order using CombSort. This assembler implementation is
extremely compact and reasonably fast. Cnt = Total number of elements to be sorted (supports partially filled arrays,
use -1 for full array). See ISortA for additional comments.

Group

function IntSrch(var A:array of integer;const Target,Cnt:Integer):Integer;

UNSIGNED binary search of an integer array.    Array is assumed to be sorted in ascending order.    Cnt = number of
elements to search (supports partially filled arrays, -1 = All elements).

Returns: Element offset of match if found; otherwise,-1

Group

procedure StrSort(var A:array of Ansistring; const Cnt:Integer);

Fast, "semi-sort" (uses first 2 char. only) of a string array into ascending order. This is "good enough" in many cases
but obviously of little value if most or all strings share the same first 2 characters.    A semi-sorted array can usually be
searched much faster (see StrSrch) than a non-sorted one. The number of elements to be sorted must be provided in
Cnt (-1 = All).    Any blank elements are up front after sorting.

Group

function StrSrch(var A:array of Ansistring;const Target:Ansistring; Cnt:Integer):Integer;

Binary search of string array for Target string.    Array is assumed to be in "semi-sorted" order as provided by StrSort. 
Cnt = Number of elements to search for a partially filled array (-1 = All).

Returns: Offset of matching element if found; otherwise,-1

Group

function GetUser: Ansistring;

Returns the ID for the current system user. Returns null string if function fails.

Group

function GetNetUser: Ansistring;

Returns the network ID for the current system user. Returns null string if function fails.

Note: If a null string is returned, call GetLastError for an extended error code.    For example, if GetLastError =
ERROR_NO_NETWORK, no network is currently available.    See GetLastError in WIN32.HLP for details.

Group

function GetComputer: Ansistring;

Returns the current workstation name. Returns null string if function fails.

Group

function GetDrives: Ansistring;

Returns a string containing all valid drive letters.    Removable drives are lower case, all others are upper case.

Group

function RemoteDrive(const Drv:Char): Boolean;

Returns True if the specified drive letter can be identified as a networked drive.

Group

function GetDisk(const Drv:Char; var CSize,Available,Total:DWord):Boolean;

Returns disk size statistics --- cluster size, available and total number of clusters.

Group

function GetVolume(const Drv:Char; var Name,FSys:AnsiString; var S:DWord):Boolean;

Returns volume name, file system and serial number for a given drive.

Group

function GetWinDir: Ansistring;

Returns the Windows directory.

Group

function GetSysDir: Ansistring;

Returns the Windows\System directory.

Group

function GetTmpDir: Ansistring;

Returns the preferred directory for temporary files.

Group

function GetTmpFile(const Path,Prefix:AnsiString): Ansistring;

Returns a temporary filename.    Use Path :=’.’ for current directory, Path:=GetTmpDir for Windows temp directory.   
Prefix is up to 3 char. used as the start of the file name.    Returns null string on error.

Group

function GetDOSName(const LongName:Ansistring): Ansistring;

Returns the short, DOS equivalent for a long file name.

Group

function GetWindows: Ansistring;

Returns a tokenized string listing the titles of all currently active windows.    Use SetDelimiter first to specify the active
token delimiter to be used.

Group

function GetClasses: Ansistring;

Returns a tokenized string containing the class names of all currently active windows.    Use SetDelimiter to specify
the delimiter.

Example:

procedure ListAllClasses;
//Retrieve all class names and parse them into a listbox
var
    S,T,X:AnsiString;
    I:Integer;
begin
    SetDelimiter(#44); //use a comma delimiter
    S:=GetClasses;
    I:=1;
    repeat
        X:=Parse(S,’,’,I);
        if Length(X)>0 then ListBox1.Items.Add(X);
    until I=0;
end;

Group

function GetWinClass(const Title:Ansistring): Ansistring;

Returns the class name for a given Window title.    Class names are fixed whereas windows titles may be changed at
will.

Group

procedure GetMemStatus(var RAMTotal, RAMUsed, PGTotal, PGUsed:Integer);

Returns current status of Windows memory.

RAMTotal = Total physical memory available to Windows
RAMUSed = Percent of RAMTotal currently in use
PGTotal = Total swap file available to Windows
PGUsed = Percent of PGTotal currently in use

Group

procedure GetComList(Strings: TStrings);

Interrogates the Registry to obtain a list of all available COM ports and load them directly into a TStrings list.    If a
modem is attached to the port, the ‘Model’ string parameter is included following the port name.

Example: GetComList(ListBox1.Items);    //loads list of available ports into ListBox1

Group

function GetCPU:AnsiString;

Returns identifying string for installed CPU type as follows:

80386 = Intel 386
80486 = Intel 486
80586 = Intel Pentium
4000      = Mips
21064 = DEC Alpha

Group

function GetDefaultPrn:AnsiString;

Returns info on the current system default printer as a tokenized string (comma delimited) of the form: PrinterName,
DriverName, Port.    Returns null string on error.

Group

function IsWinNT:Boolean;

Returns true if OS is WIndowsNT, false otherwise (Windows95).

Group

function GetKeyValues(const Root:HKey;Key,Values:AnsiString):AnsiString;

Reads multiple, enumerated values from a given registry key and returns the data as a tokenized string.    If a given
value is not found, a '?' is returned as a placeholder.

Note: The incoming Values string must be delimited using commas.    The resultant string is delimited using the
current internal delimiter setting.      See SetDelimiter for more details.

Example:    This example reads 5 values from the registry in order to set the caption of Label1 to show the Windows
version, the version number, the current registered owner, the registered organization and the Windows product ID.

Label1.Caption:=GetKeyValues(HKEY_LOCAL_MACHINE, 'SOFTWARE\Microsoft\Windows\CurrentVersion',
                                      'Version,VersionNumber,RegisteredOwner,RegisteredOrganization,ProductId');

Group

function SetTaskBar(const Visible:Bool):Boolean;

Enables/Disables the Windows taskbar based upon the provided Visible parameter.    Not a very ‘Windows friendly’
function but one that is necessary if you want your app to have the entire screen available.    Make sure the taskbar is
enabled before your app ends.

Group

procedure NoTaskBtn;

Prevents the display of a taskbar button for the application.   

Note: This routine is typically used in Project Source just after Application.Initialize.

Group

procedure KillOLE;

Unloads (actually de-references) OLE automation DLLs thus reducing the memory requirements of simple
applications by roughly 1 meg.

WARNING: DO NOT use this routine unless you are confident that your app does not use OLE or variant data types. 
The data access components (TTable and TDataSource) have the potential to make use of variant data types.

Group

function GetProcID(const hWnd:THandle):THandle;

Returns a process handle given any Window handle created by the process.    The provided handle can be used with
GetExitCodeProcess and other API functions to monitor and control the external process.

Note: To obtain the current process handle, use the GetCurrentProcess API function.

Example: The following function goes to great lengths to determine if NotePad is running.

function NotePadAlive: Boolean;
var
    hWnd:THandle;
    Status:DWord;
begin
      Result:=False;
      hWnd:=FindWindow('NOTEPAD',nil);
      if IsWindow(hWnd) then
            if GetExitCodeProcess(GetProcID(hWnd),Status) then
                  Result := Status=STILL_ACTIVE;
end;

Group

function KillProc(const ClassName:AnsiString):Boolean;

Terminates the first process with the given window class name.

Example: KillProc('NOTEPAD') shuts down Windows Notepad if it is running.

Note: This is a rather rude, unconditional termination of an external process and should be used carefully. DLLs
being used by the process may not be properly de-referenced.

Group

function DOSExec(const CmdLine:AnsiString; const DisplayMode:Integer):Boolean;

Execute a DOS app and automatically close the window on termination.    Path is optional but CmdLine must include
the executable's extension.    DisplayMode is usually either sw_ShowNormal or sw_Hide.    Returns True if execution
succeeds.

Note:    Use WaitExec if a return code is required.

Group

function WaitExec(const CmdLine:AnsiString; const DisplayMode:Integer):Integer;

Execute an app, wait for it to terminate and then return the exit code.    DisplayMode is usually either sw_ShowNormal
or sw_Hide.    Returns -1 if execution fails; otherwise, the return code is as provided by the executed app.

Group

procedure DebugConsole;

Implements a DOS-style console window for the display of debug messages using DebugMsg().    As a safety
precaution, the Delphi IDE must be up and running; otherwise, this routine has no effect.   

An internal flag tracks the current state and alternately creates and destroys the console.    The initial call creates the
console window, the next call destroys it.

Note:    To avoid a resource handle leak, the console must be destroyed before terminating the application.

Group

procedure DebugMsg(const Msg:AnsiString);

Display a message in the debug console window created by DebugConsole.      If the console window is not active,
this procedure has no effect.   

Group

function ShellFileOp(const S,D:AnsiString; const FileOp,Flgs:Integer):Boolean;

Convenient interface to the myriad of options available for file operations using the Win95 shell.    See
ShFileOperation and SHFileOpStruct in WIN32.HLP for further discussion.

Note: ShellAPI must be added to the ‘uses’ clause.

(S)ource and (D)estination may contain multiple file paths and/or names separated by Delimiter.

FileOp can be FO_COPY, FO_DELETE, FO_MOVE or FO_RENAME.

Flgs can be any of the fFlags listed in SHFileOpStruct.    Flags may be OR’ed together.

Returns True if operation succeeds and no user abort.

Example:    Copy 3 files (File.001,File.002 and File.003) from the current directory to the \TEMP directory.   
Automatically rename the files if copies already exist.

SetDelimiter(#44); //use comma delimiter
ShellFileOp(‘File.001,File.002,File.003’, ’\Temp’,
  FO_COPY, FOF_RENAMEONCOLLISION);

Group

function FormatDisk(Drive:Word):Boolean;

Convenient modal interface to disk formating dialog.    Drive is ASCII code for the disk drive, 65=A, 66=B, etc.

Returns True if Drive is valid and no user abort.

Group

procedure TrayInsert;

Simplified system tray interface.    Places the application icon into the system tray with the application title used as the
“hint” displayed whenever the mouse is held over the icon.    Clicking the tray icon re-activates and re-displays the
Main form.

Note:    This procedure has no effect once an icon has been added to the tray.   

Example: Standard usage places the following code in the Main form’s OnClose event handler.

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
        TrayInsert;                                //put icon into tray
        TrayClose(Action):      //alternative close
end;

It is often desirable to load the application directly into the tray with the Main form displayed only on request.    The
additional code below shows how to achieve this.

{Project source startup code}
begin
        Application.Initialize;
        Application.ShowMainForm := False;
        Application.CreateForm(TForm1, Form1);
        ShowWindow(Application.Handle, SW_HIDE);
        Application.Run;
end.

{Unit code}
procedure TForm1.FormCreate(Sender: TObject);
begin
        TrayInsert;    //add icon to tray on startup
end;

In order to manually terminate a tray application, some alternative means (button, menu selection, etc.) must be
provided to remove the tray icon and actually end the program.    The code below shows a tray application being
terminated as a result of a button click.

procedure TForm1.Button1Click(Sender: TObject);
begin
        TrayDelete;  //remove the tray icon
        Application.ProcessMessages;      //clear any pending events
        Application.Terminate;                                //end the application, really
end;

Group

procedure TrayClose(var Action:TCloseAction);

Alternative close procedure for tray applications.    In effect, the Main form is hidden while the application remains
active.    Has no effect unless an icon has been previously added to the system tray using TrayInsert.

Group

procedure TrayDelete;

Removes an icon previously inserted into the system tray using TrayInsert.

Group

function SetAppPriority(const Priority:DWord):Boolean;

Set the execution priority for the current application process.    Priority must be one of the following:

NORMAL_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS

See the Win32 docs for discussion.

Group

function GetFileDate(const FileName:AnsiString):AnsiString;

Returns file date and time string associated with a given filename.

Group

function MapNetDrive:Integer;

Invokes a dialog box for mapping network drives.    Returns NO_ERROR if a connection was established, returns -1
on user abort.    Any other value indicates either a network error or insufficient available memory.

Group

function UnSignedCompare(const X,Y:Integer):Boolean;

Does a full 32 bit unsigned integer compare for sorting and searching purposes. Returns True if X is greater than Y
(exchange required for ascending order)

Group

function LoBit(const X:Integer):Integer;

Scans an integer for lowest non-zero bit.

Returns:    bit#, (0-31) of lowest 1 bit, -1 if X = 0

Group

function HiBit(const X:Integer):Integer;

Scans an integer for highest non-zero bit.    See LoBit for return value.

Group

function RotL(const X,Cnt:Integer):Integer;

Rotate integer X left the number of bits specified in Cnt.

Group

function RotR(const X,Cnt:Integer):Integer;

Rotate integer X right the number of bits specified in Cnt.

Group

function TestBit(const X,Cnt:Integer):Boolean;

Tests the Cnt bit (0..31) of integer X. Returns True if bit is set (1); otherwise, False.

Group

function MetaPhone(const Name:AnsiString):Integer;

Phonetic spelling algorithm, similar to Soundex but more selective. Original algorithm by Lawrence Philips, 'Computer
Language', Dec. 1990. There are a number of problems with this article --- discrepancies between code and text;
some code is clearly missing. The implementation here more closely follows that of Gary Parker, 'C Gazette',
June/July, 1991.

Returns:    Integer representing phonetic spelling if Length(Name)>1; otherwise; 0.    Integers are provided for faster
comparison. If you prefer the more traditional string resultant, apply IntToChr.

Group

function NumToWord(const Source:AnsiString;Dollars:Bool):AnsiString;

Returns an English word translation of a numeric string.    'Dollars' is a logical flag (True/False) indicating that ‘Dollars’
and ‘Cents’ word units are to be included.

Group

function OrdSuffix(const X:Integerl):AnsiString;

Returns a two character English ordinal string suffix for an integer, ‘st’, ‘nd’, ‘rd’ or ‘th’ as in 1st, 2nd, 3rd, 4th, 12th,
542nd, etc..

Group

function Similar(const S1,S2:Ansistring):Integer;

Ratcliff/Obershelp pattern matching algorithm (DDJ, July 88). Returns a percentage ratio (0 - 100) representing the
similarity of strings S1 & S2:

100 = Total match---identical
        0 = Total mismatch---nothing in common

Uppercase the two strings for case insensitivity.

Note: This routine uses an internal stack.    To avoid potential overflow with very long strings, input strings are limited
to 255 characters or less.

Group

procedure IntSwap(var I1,I2:Integer);

Quickly exchange the value of two Integers.

Group

function StrDelete(var A:array of Ansistring; const Target,Cnt:Integer):Boolean;

Delete Target element in a string array by doing a safe, "ring copy" of array elements downward (to lower index). If
the array is zero based, Target = Element Index; otherwise, Target = Index - Base.   

Cnt = Total active element count prior to the deletion; -1 = Full array.

Returns: True if successful and elements following Target are shifted downward to next lower index.

Note: The target element is not actually deleted but rather moved to the end of the array (to A[Cnt-1] if zero based).   
This last element can be deleted if desired; however, it may be more convenient and efficient timewise to simply
leave it in place and adjust the active element count to exclude it.

Group

function StrInsert(var A:array of Ansistring; const Target,Cnt:Integer):Boolean;

Insert an element into a string array by doing a safe,"ring copy" of array elements upward (to next higher index)
starting at Target element. If the array is zero based, Target = Element Index; otherwise, Target = Index - Base

Cnt = Total active element count prior to the insertion.    Must be less than the dimensioned size of the array
(Dimensioned Size = High(A)-Low(A)+1).    In other words, the array must have space available to hold the inserted
element.

Returns: True if Cnt is less than the dimensioned array size. Elements from Target to Cnt are shifted upward to next
higher index.

Group

procedure StrSwap(var S1,S2:AnsiString);

Quickly exchange 2 strings.    Much, much faster than using assignments.

Group

procedure Dim(var P; const Size:Integer; Initialize:Boolean);

Allocate memory for a dynamic array.

P is a pointer to one of the pre-defined HyperString dynamic array types.    Size is the desired array size in bytes.   
Initialize indicates if new array elements are to be initialized to zero.    Existing elements retain their current value.

Upon return, P = address of the allocated memory block if sufficient memory was available; otherwise, P = nil.    Once
initialized, P should not be manually altered.    Automatic de-referencing allows P to be used for array indexing without
alteration or cumbersome pointer syntax.    See dynamic array above for examples.

Group

function Capacity(const P):Integer;

Determine the current memory allocation (bytes) for a dynamic array.

P is a pointer to one of the pre-defined HyperString dynamic array types previously initialized using Dim.   

Group

Dynamic Arrays

HyperString offers a set of basic, pre-defined, single dimension dynamic array container types along with Dim and
Capacity routines to simplify dynamic array use and management. By following the HyperString source code
example, multi-dimension arrays can easily be created. Type names reflect the data contained; TIntegerArray,
TWordArray, TSingleArray, TDoubleArray and TCurrencyArray.

Usage
With HyperString; fast, efficient dynamic arrays are as easy as 1-2-3.

1) Declare and initialize a pointer to the appropriate container type.   
2) Dynamically allocate (and re-allocate as needed) an array size of up to 2 giga-bytes using Dim.   
3) Access the array as needed using the pointer from step 1.    With automatic de-referencing,    the resulting syntax

is virtually identical to that of a static array.

The currently allocated array size (bytes) is always readily available with the Capacity function. The following
example illustrates the use of a dynamic integer array.

var
    iArray: ^TIntegerArray;                      //pointer to dynamic integer array
begin
    iArray:=nil;  //initialize the pointer (very important);
    try
        Dim(iArray, 100*SizeOf(Integer),False);      //create 100 elements (0..99)
        if iArray<>nil then begin  //size OK?
           iArray[50]:=123;  //set arbitrary value
            ShowMessage(IntToStr(iArray[50]));            //show that it worked
            Dim(iArray,1000*SizeOf(Integer),True); //re-size (with initialization)
            ShowMessage(IntToStr(iArray[999]));        //show initialization (should be 0)
            ShowMessage(IntToStr(iArray[50]));            //show persistence    (should be 123)
        end;
    finally
        Dim(iArray,0, False);                          //release array memory (very important)
    end;
end;

Indexing
As shown above, dynamic array elements are addressed in the same familiar manner as static arrays.    In order to
achieve maximum speed and efficiency, bounds checking is NOT provided.    The user is solely responsible for proper
array indexing.

CleanUp
The programmer is responsible for releasing all dynamic array memory (allocated by Dim) before the program ends.   
Failure to do so will produce a memory leak.    For local arrays, a try..finally exception block can be used (see
example above) to insure that memory gets released. For global arrays, a call to Dim should be placed inside
Form.Close or some other event which is triggered in case of an abrupt shutdown.    If an array has already been de-
allocated, Dim has no effect.

Discussion
Array pointers must be initialized to nil before being used.

Empirical studies have shown that 2 is an ideal factor for efficient dynamic array management under Win32.    For
example; when expanding an array, the size should ideally be doubled.    Likewise, an array should not be shrunk until
it’s size can be cut in half.    This approach tends to minimize potential memory fragmentation and time spent on
memory management.

With any dynamic array implementation, access speed must suffer due to the required runtime address manipulation.
With the HyperString approach, access times are generally 2-3 times that of static arrays.

Group

Technical Support

We want to know about any problems you encounter when using this product. The best way to contact us is via e-
mail at:

efd@mindspring.com

We use this library ourselves so in essence, your problems are our problems.    We can’t write your application for
you; however, we will do our best to resolve any issues you bring to our attention.

Source

The full source code for HyperString is only $30US.    A great deal of the source is efficient, hand optimized and
thoroughly commented BASM code. The Object Pascal compiler is certainly impressive but our tests show that the
human mind armed with an assembler can still produce more optimal object code in many cases.   

Currently, there are three ways to order the source code.

1) From CompuServe.   

Type “GO SWREG” and register #14172.

Delivery is by e-mail to your CompuServe address.    This is the most efficient method for us so we absorb the
transaction fees when you order from CIS.

2) From the World Wide Web.

With a major credit card, use the secure link from our web site at: http://www.mindspring.com/~efd

Delivery is by e-mail to your Internet address unless otherwise requested.    An additional $2 charge is added for
credit card processing fees.    The generic order form describes this charge as ‘shipping & handling’.

3) By mail.   

Send check or money order (US banks only) for $30US + 2$ shipping and handling to:

EFD Systems
304 Smokerise Circle
Marietta, GA 30067
USA

Delivery on 3.5” floppy disk is by a ground carrier of our choice.

function IsMask(const Source,Mask:AnsiString;Index:Integer):Boolean;

Validate Source from start to Index (-1 = Full) for conformance to a 'picture mask' (similar to Delphi's EditMask)
composed from the following special character set.

A - Alphanumeric required (a..z,A..Z,0..9)
a - Alphanumeric permitted
C - Alphabetic required (a..z,A..Z)
c - Alphabetic permitted
0 - Numeric required (0..9)
9 - Numeric permitted
- +/- permitted
? - Any required (#0..#255)
@ - Any permitted
| - Literal next, required
\ - Literal next, permitted

Example 1: IsMask(Source,’#09999\.999’,-1) fully validates a +/- numeric entry with 1 to 5 digits to the left of the
decimal point and up to 3 trailing digits. Decimal point is allowed but not required.

Example 2: IsMask(Source,’00000\-9999’,-1) fully validates a US postal code.    5 digits are required, a dash and 4
additional digits are allowed but not required.

Example 3: IsMask(Source,’000|-00|-0000’,6) partially validates a US Employee ID number through the sixth char
(the one just before the second dash).      All digits and dashes are required. For this partial validation, the second
dash and the last 4 digits may be missing.

Note: Extra trailing spaces are ignored, leading spaces are included in validation.    Index provides support for partial,
incremental validation. If Index <> -1, validation is only performed on the characters present.    In other words, Source
is allowed to be incomplete when compared to Mask. Index = -1 MUST be used to FULLY validate the entire Mask.

Group

procedure UCase(var Source:AnsiString;const Index,Count:Integer);

Upper case Count chars. in Source starting at Index.

Group

procedure LCase(var Source:AnsiString;const Index,Count:Integer);

Lower case Count chars. in Source starting at Index.

Group

function UniqueApp(const Title:AnsiString):Boolean;

Uses the Win32 GlobalAtom table to determine if an application is already loaded.    Inserts a user-provided Title
string into the GlobalAtom table as a signal that the app is loaded.    Before insertion, the table is scanned (case-
insensitive) for an existing instance of the title string.    If found, the app must already be loaded OR a previous
instance failed to cleanup the table.    A dialog box alerts the user with the opportunity to either abort or continue
loading.   

Proper use requires an initial call at startup to modify the GlobalAtom table and the exact same call again at
shutdown to clean things up.    An internal flag tracks the current mode, either startup or shutdown.    All your app must
do is insure that the same Title string is provided to each call. Typically, the calls are placed inside the main form’s
OnCreate and OnClose events but Project Source can also be used (see examples below, use one approach or the
other but not both).    If the initial call fails (instance found, user aborts), the table is not altered and there is no need to
clean up.

Returns: True if unique instance or user override; otherwise, False.

unit Example;    //Utilizing Main’s OnCreate/OnClose events

interface

uses
    Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls, ExtCtrls, HyperStr;
type
    TForm1 = class(TForm)
        procedure FormCreate(Sender: TObject);
        procedure FormClose(Sender: TObject; var Action: TCloseAction);
const
    AppTitle='EFD Systems Test'; // Define our unique Title string

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
    if Not UniqueApp(AppTitle) then Halt;
end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
    UniqueApp(AppTitle);    //clean up the GlobalAtom table
end;

end.

//--
program Test;    //Utilizes Project Source.   

uses
    HyperStr;      //Be sure to add this

{$R *.RES}

begin //Note: This is a ‘formless’ app
    if Not UniqueApp('EFD Systems Test') then Exit;
    Application.Initialize;
    Application.Run;
    UniqueApp('EFD Systems Test');
end.

Group

function CalcStr(var Source:AnsiString):Double;

Provides mathematical string expression evaluation.    Supports 4 basic math operators, powers, exponents,
parenthesis’s, Ln(), Exp() and Abs().    Other functions supported in source code version (MATH unit required).    An
exception is raised if the string cannot be fully evaluated for any reason.

Note: This function is a working demonstration of    the power of HyperString. The entire source listing is less than
100 lines.

Group

function RndToFlt(const X:Extended):Extended;

Implements the popular 'biased' method of rounding whereby midpoint values are always rounded up to the next
higher integer.    This rounding method is widely used; hence, the demand for this function. Unfortunately, this method
is based solely on convention rather than logic.       

A value exactly mid-way between integers is as close to the lower integer as it is to the higher. Convention favors the
higher value but there is no logical basis for favoring one over the other.    The best (and perhaps the only) way to
avoid bias in this case is to rely on random chance.

Computers are rather poor at random acts so Intel and the native Round() function do the next best thing by always
favoring the nearest EVEN integer. For example; 1.5 rounds to 2, 2.5 also rounds 2 but 3.5 rounds to 4.    This may
initially seem ludicrous but statistically; over a range of randomly chosen midpoint values, it produces the same
overall effect as random rounding.    Midpoint values are rounded DOWN half the time and rounded UP the other half. 
Thus, the overall rounding errors tend to balance out and minimize any bias.

To illustrate, the table below computes the total of the first 4 midpoint fractions using both biased and unbiased
rounding.    As you can see, biased rounding (as provided by this function) quickly introduces a significant error into
the overall resultant.

                        Biased                              Unbiased (even integer method)
                        ------------                      -------------
                        0.5 --> 1                          0.5 --> 0
                        1.5 --> 2                          1.5 --> 2
                        2.5 --> 3                          2.5 --> 2
                        3.5 --> 4                          3.5 --> 4
                        ------------                      -------------
    Total    8.0              10                      8.0              8

Group

function RndToInt(const X:Extended):Integer;

Implements the popular 'biased' method of rounding floating point values whereby fractions of 0.5 and greater are
rounded up to the next higher integer.    Note that this function returns an INTEGER resultant.    See RndToFlt for
discussion.

Group

function IPower(const X,Y:Integer):Integer;

Calculates integer powers (X^Y) without floating point Math unit.    Max. Y = 30.    Resultant = Zero on error or
overflow.

Group

function IPower2(const Y:Integer):Integer;

Calculates integer powers    of 2 (2^Y) without floating point Math unit.    Max. Y = 30.    Resultant = Zero on error or
overflow.

Group

procedure SpeakerBeep;

Old fashioned DOS style beep using the system speaker in Win95.    Faster than the sound card, works even with
sound driver muted.

Group

function iMax(const A,B:Integer):Integer;

Returns larger value, A or B.

Group

function iMin(const A,B:Integer):Integer;

Returns smaller value, A or B.

Group

function iMid(const A,B,C:Integer):Integer;

Returns mid-range value, A, B or C.    If any two are equal, the common value is returned.

Example: A:=5; B:=9; C:=10; iMid(A,B,C) returns 9;

Group

function GetKeyToggle(const Key:Integer):Boolean;

Returns True if the specified key is depressed or toggled on.    Any valid virtual key code may be specified.    The
standard keyboard toggle switches are VK_INSERT,VK_NUMLOCK,VK_SCROLL and VK_CAPITAL.

Group

procedure FlashSplash(BitMap:TGraphic; const Title:AnsiString);

Dynamically create and display a modal splash form or ‘About’ box.    Form shows a small user-specified graphic
(64x64 max.) and form caption (Title) along with version info strings; ProductName, ProductVersion, LegalCopyright,
CompanyName and LegalTrademarks (see Project | Options) and some Windows related info.

Example: Display a splash form with icon for 6 seconds.

FlashSplash(Application.Icon, ‘Welcome to’);
SleepEx(6000,False);
KillSplash;

Group

procedure KillSplash;

Destroy the splash form previously created by FlashSplash and free all associated memory.

Group

function ListComm:AnsiString;

Returns a tokenized string containing all available COM ports listed in the Registry.    Use SetDelimiter first to specify
the token delimiter to be used.

Group

function OpenComm(const Mode:AnsiString):THandle;

Open a COM port for synchronous, non-overlapped read/write operation with default I/O buffer sizes, timeouts
disabled and no    flow control.    Communication parameters are provided in a DOS-style MODE string. Returns the
port handle if successful; otherwise, an exception is raised.   

Example: Given a valid port identifier string (‘COM1:’, ‘COM2:’, etc.), the following function opens the port and
checks for the presence of a modem.

function ModemThere(const Port :AnsiString):Boolean;
var
    Handle:THandle;
    Reply:AnsiString;
begin
    Result := False;
    try
        Handle := OpenComm(Port + ‘ BAUD=1200 PARITY=N DATA=8 STOP=1’);
        WriteComm(Handle,’ATZ’#13);
        SetLength(Reply,32);          //attempt to read 32 characters
        FillCnt(Reply,1,32,#0);      //initialize (just to be absolutely safe)
        Sleep(2000);                                    //give modem 2 seconds to respond
        if ReadComm(Handle, Reply) > 0 then Result    := Pos(‘OK’,Reply) > 0;
    finally
        CloseComm(Handle);   
    end;
end;

TIP: The universal syntax for COM ports in Win32 is ‘\\.\COMXX:’ where XX is the port number.    This syntax works
for all ports but is only absolutely required for ports above COM9:.

Group

function ReadComm(const pHnd:THandle; var Bfr:AnsiString):Integer;

Attempt to read Length(Bfr) bytes from an open COM port.    Returns the number of bytes actually read.   

Note:    Any characters available in the receive buffer are returned in the event of a timeout.

Group

function WriteComm(const pHnd:THandle; const Bfr:AnsiString):Integer;

Attempt to write Length(Bfr) bytes to an open COM port.    Returns the number of bytes actually written.   

Note:    Flow control (if enabled) may cause this function to terminate with a count of the characters successfully
transmitted.

Group

function CloseComm(const pHnd:THandle):Boolean;

Close an open COM port.    Returns True if successful.

Group

function EnCodeBCD(const Source:AnsiString):AnsiString;

Encodes an ASCII numeric string (0..9) into Intel packed Binary Coded Decimal format.

Group

function DeCodeBCD(const Source:AnsiString):AnsiString;

Decodes a string from Intel packed Binary Coded Decimal format into numeric ASCII (0..9).

Group

function AddUSI(const X,Y:Integer):Integer;

Unsigned 32-bit integer addition; X+Y.    An overflow exception is generated if the resultant exceeds 4,294,967,295.

Group

function SubUSI(const X,Y:Integer):Integer;

Unsigned 32-bit integer subtraction, X - Y. An overflow exception is generated if the resultant is negative (Y>X).

Group

function MulUSI(const X,Y:Integer):Integer;

Unsigned 32-bit integer multiplication. An overflow exception is generated if the resultant exceeds 4,294,967,295.

Group

function DivUSI(const X,Y:Integer):Integer;

Unsigned 32-bit integer division quotient, X Div Y.   

Group

function ModUSI(const X,Y:Integer):Integer;

Unsigned 32-bit integer division remainder, X Mod Y.   

Group

 function CmpUSI(const X,Y:Integer):Integer;

Unsigned 32-bit integer comparison.    Returns zero if X=Y, positive if X>Y, negative if X<Y.   

Group

function USIToStr(const X:Integer):AnsiString;

Convert an integer value to an unsigned numeric string.       

Group

function StrToUSI(const Source:AnsiString):Integer;

Convert unsigned numeric string to an integer value. Generates an overflow exception if resultant exceeds
4,294,967,295 or the input is otherwise invalid.

Group

procedure IniRLE;

Initialize internal data structures in preparation for Run Length Encoding (RLE) or decoding of a new data stream.

Group

function RLE(const Bfr:AnsiString; L:Word):AnsiString;

Compress a string buffer containing repeated character sequences by applying a "safe" run length encoding (RLE)
technique.    Effective buffer length may be specified in L. If L=0 or L>Length(Bfr) then Length(Bfr) is used.

This routine is "safe" in that it avoids adding control characters to the output.    High order ASCII characters (192..255)
are used to represent repeat counts.

Note: Buffer length is intentionally limited to Word range to prevent overflow during de-compression.    Larger strings
must be sub-divided for processing.

Input may include any binary 8-bit character; however, large numbers of widely dispersed higher order characters
(192..255) can    result in output length actually exceeding input.

Group

function RLD(const Bfr:AnsiString; L:Word):AnsiString;

De-code a buffer string previously compressed using RLE.    An internal buffer will overflow and generate an access
exception if Length(Result) exceeds Word range.    See RLE for further discusssion.

Be sure to re-initialize using IniRLE before start of de-compression.

Group

procedure IniSQZ;

Initialize internal data structures in preparation for compression or de-compression of a new data stream.

Group

function SQZ(const Bfr:AnsiString; L:Word):AnsiString;

Compress a string buffer using an adaptive, variable-length encoding technique.    Effective buffer length may be
specified in L. If L=0 or L>Length(Bfr) then Length(Bfr) is used.

Note: Buffer length is intentionally limited to Word range to prevent internal overflow during de-compression.   

This is a sequential, stream oriented compression method designed for use with 8-bit data.    Large strings and files
may be conveniently sub-divided for sequential processing.    Initialization using IniSQZ is required prior to processing
any string or file that is to be independently de-compressable.

Compression ratio may vary; a 30-40% reduction seems typical with English text.    Both compression and de-
compression are reasonably fast.

Example:   

The code segment below sequentially reads a file of unknown size and produces a second, compressed output file.   
File open and close have been omitted.

IniSQZ;
SetLength(InBuffer,32767);
repeat
        BlockRead(InFile, InBuffer[1], Length(InBuffer), InSize);
        if InSize = 0 then break;
        OutBuffer := SQZ(InBuffer, InSize);
        BlockWrite(OutFile, OutBuffer[1], Length(OutBuffer));
until InSize < Length(InBuffer);

Group

function UnSQZ(const Bfr:AnsiString; L:Word):AnsiString;

De-compress a buffer string previously compressed using SQZ.   

Note: An internal 64K buffer is used for de-compression.    This buffer will overflow and generate an address
exception if the expanded data exceeds 64K.    To avoid any potential for overflow, Bfr should be 32K or less.   

This is a sequential, stream oriented compression method.    Large strings and files may be conveniently sub-divided
for processing; however, initialization and data sequence must match that used for compression.   

Example:   

The code segment below sequentially reads a compressed file of unknown size and produces a second, de-
compressed output file.    File open and close have been omitted.    See SQZ for a corresponding compression
example.

IniSQZ;
SetLength(InBuffer,32767);
repeat
        BlockRead(InFile, InBuffer[1], Length(InBuffer), InSize);
        if InSize = 0 then break;
        OutBuffer := UnSQZ(InBuffer, InSize);
        BlockWrite(OutFile, OutBuffer[1], Length(OutBuffer));
until InSize < Length(InBuffer);

Group

function BPE(const Bfr:AnsiString; L:Word):AnsiString;

Compress a text string buffer using an exhaustive, multi-pass, block-oriented “byte pair encoding” technique.   
Effective buffer length may be specified in L. If L=0 or L>Length(Bfr) then Length(Bfr) is used.

Note: Buffer length is intentionally limited to Word range to prevent overflow during de-compression.    Large files and
strings must be sub-divided for processing. To avoid any potential for overflow, Bfr should be 32K or less.

This is a block-oriented compression method.    Initialization is automatic at the start of each block.    Output is a
complete, stand alone compressed data block.    De-compression with BPD requires the full, complete block as
originally produced by this routine.

Designed for use with 7-bit ASCII text.    Control and 8-bit characters are tolerated but the effective compression ratio
may be    reduced.    Large numbers of 8-bit characters may result in output length actually exceeding the input.

Compression ratio may vary; a 50% reduction seems typical with English text.    Compression is rather slow but de-
compression is very fast.

Group

function BPD(const Bfr:AnsiString; L:Word):AnsiString;

De-code a string buffer previously compressed using BPE.     

Note: This is a block-oriented compression method.    As such, only whole, autonomous data blocks as originally
produced by BPE can be successfully de-compressed.    Incomplete, sub-divided blocks or other data will produce
unpredictable results.

See BPE for further discusssion.

Group

License Agreement and Disclaimer

*** THIS IS NOT PUBLIC DOMAIN SOFTWARE ***

By using this product, you indicate your understanding and acceptance of the terms and conditions below.

This software (the product) is copyright 1996-97, EFD Systems, all rights reserved.    Except as detailed herein, you
(the user) are granted a license to use this software without payment of fees.    You may distribute the software
(excluding source code) to others for similar use, provided that no fees are charged (excluding on-line access fees)
and the software is distributed in it's entirety, including this documentation file.

The software and the source code shall NOT be used in the production of any similar or competing product which
reproduces or duplicates some or all of this product's features and functionality.    If your intended use does not clearly
conform to these requirements, you must request and receive written permission from the author before using the
software.

If purchased, a source code license grants you the non-transferable right to view and modify the source code on a
private, personal use basis.    Except as noted above, machine readable object code derived from the source may be
incorporated into software authored and distributed by you without payment of royalty fees.    The source code itself
may not be reproduced or redistributed under any circumstances.    Any further distribution of the source code;
whether deliberate, the result of negligence or otherwise, shall be considered a willful, intentional copyright violation.

THIS SOFTWARE IS PROVIDED SOLELY AS-IS AND WITHOUT WARRANTY INCLUDING WITHOUT LIMITATION
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.    THE
USER AGREES TO INDEMNIFY AND HOLD THE AUTHOR HARMLESS FROM AND AGAINST ANY AND ALL
CLAIMS ARISING FROM OR RELATED TO USE OF THE PRODUCT. UNDER NO CIRCUMSTANCES SHALL THE
AUTHOR'S LIABILITY EXCEED THE SOFTWARE LICENSE FEE.

By using this product, you indicate your understanding and acceptance of the terms and conditions above.

Long Dynamic Strings (AnsiStrings)

This is a concise background primer for those unfamiliar with the new 32-bit long dynamic string type known as
AnsiString.

Structure

Under the hood, an AnsiString is fundamentally a pointer to a dynamic memory block.    Implicit pointer de-
referencing; provided courtesy of the compiler, tends to obscure this. In response to an AnsiString declaration, only a
string header; which includes a pointer, is allocated.    Memory storage for the actual string data (referenced by the
pointer) is dynamically allocated on assignment.    In contrast, the older Pascal style strings were always allocated a
static 256 byte memory block.    The first byte of the block held the effective length; therefore, usable string length was
limited to 255 bytes.

Efficiency

The dynamic memory used by AnsiStrings is transparently managed (allocated, de/re-allocated as required) by the
Delphi memory manager.    As a result, an AnsiString can be assigned any length within the limits of available
memory.    A string that holds 2 bytes can be easily and effortlessly expanded to hold 2 million bytes.    As you can
see, this is much more powerful than the older string implementation.    However, with power comes responsibility.   
Abuse of the memory manager is tempting and can adversely affect performance. Consider this example:

Poor:    S2 := ’’;
for I := 2 to Length(S1) do S2 := S2 + S1[I];

Better: SetLength(S2, Length(S1) - 1);
for I := 2 to Length(S1) do S2[I-1] := S1[I];

The same result is achieved in each case but the second is potentially much more efficient.    In the first case, string
S2 is being built incrementally, byte by byte.    As the string outgrows it’s memory allocation, a whirlwind of behind the
scenes activity is triggered.    A new, larger memory block is allocated, existing string data is copied to the new block
and finally the old block is freed.    This is all handled transparently but it still takes time.    Depending upon
Length(S1), the re-allocation process may be triggered dozens of times from within the loop.    In the second example,
memory is explicitedly allocated once in advance.

Most complaints regarding AnsiString performance can be traced to memory manager abuse and overuse.    As
shown in the second code example, such abuse can be avoided; however, for those accustomed to the older static
strings, some changes in coding style may be required.    Aside from their more powerful, dynamic nature; AnsiStrings
are simply a linear sequence of bytes (like all strings) and are every bit as fast and efficient as the older Pascal
variety.

Compatibility

Windows is largely written in C.    As a result, WinAPI functions expect C-style, null terminated strings.    For
compatibility, AnsiStrings are also null terminated.    Outside the API functions, this terminating null is not normally
accessible and thus can not and does not serve as the primary indicator of string length.       

If a null doesn’t do it, what does determine the length of an AnsiString?    Instead of an embedded length indicator,
effective string length is stored in the AnsiString header, alongside the dynamic memory block pointer.    This requires
a very small amount of storage overhead but the benefits are well worth it.    AnsiStrings are much easier to use and
more efficient than C-style strings and much more versatile than the older Pascal strings.    String length is readily
accessible using the Length() function whereas in C, a time consuming scan is required.    Length can be set
implicitedly by assignment or explicitedly using SetLength().    As was shown above, more efficient memory
management can be achieved by explicitedly pre-setting length whenever possible.

Versatility

Within an AnsiString, a character is a character.    No single character has any special significance over any other, not
even a null.    Therefore; an AnsiString is in effect a managed, dynamic, binary buffer.    As such, AnsiStrings can be
used for a whole range of applications previously beyond the reach of strings.    For example, dynamically allocated
buffers    (GetMem(), GlobalAlloc(), etc.) with pointer addressing and mandatory cleanup (FreeMem(), GlobalFree(),
etc.) can often be replaced by a safer, more convenient AnsiString buffer.    To illustrate, HyperString features a rather

unique implementation of dynamic numeric arrays using AnsiStrings as container structures.

Summary

AnsiStrings are a new, more powerful string type available for the first time with Delphi32.    With proper coding, these
new strings are just as efficient and much more powerful and versatile than the older Pascal strings.    At the same
time, they offer compatibility with the C strings used by the WinAPI.   

With power, versatility and compatibility, why use anything but AnsiStrings?
   

