
    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Okay folks… you now have some new competition. Elliot Glen Vivrette was born on November 24th, 1997
and weighed in at a healthy 10 lbs 6 oz. He will shortly be starting some private tutoring in Delphi
programming by his dad. Just as soon as we teach him to walk, talk, and speak of course…

This is going to be a bit of a small issue, due to some of the additional responsibilities I am facing towards
the end of this year. I am working to simplify things quite a bit and am looking forward to streamlining the
production of future issues of UNDU. I will get my act together again, so please be patient!

As a look ahead to next month, I will be having a full review of the latest version of WinHelp Office by
Blue Sky Software. I put together this latest issue with it and I must say it is very impressive. They have
very smoothly integrated their RoboHelp tool into Word 97 and it is great for making stand-alone help
files, HTML docs, Help files for applications, or whatever your heart desires. It is going to save me a load
of time. Look forward to a full look at this latest version next issue. I am like a kid in a candy store with this
one!

The randomly selected winner of the UNDU prize this month is Alan Lloyd for his beginners article on
Pointers . His prize is a copy of Kick-Ass Java Programming by Tonny Espeset (Coriolis Group Books).

- Robert

RGB and HSL Colour Models
More on Moving from VB to Delphi
A Second Look at MicroEdge's Visual SlickEdit
Delphi an the Year 2000

Delphi Users Groups
Tips & Tricks
UNDU Subscriber List
Index of Past Issues
Where To Find UNDU

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Index of Past Issues
Below is a complete index of all principle articles in past issues of the Unofficial Newsletter of Delphi
Users. Provided that you have the prior issues in the same directory as this issue, you can click on any of
these hotspots to go directly to that article. To return to the index, you can click on the Back button, or you
can use the History list. Once you jump to one of these issues, you can navigate through the issue as
you would normally, but you will need to go to the History list to get back to this index. There will be an
updated index included in all future issues of UNDU.

Issue #1 - March 15, 1995
What You Can Do
Component Design
Currency Edit Component
Sample Application
The Bug Hunter Report
About The Editor
SpeedBar And The ComponentPalette
Resource Name Case Sensitivity
Lockups While Linking
Saving Files In The Image Editor
File Peek Application

Issue #2 - April 1, 1995
Books On The Way
Making A Splash Screen
Linking Lockup Revisited
Problem With The CurrEdit Component
Return Value of the ExtractFileExt Function
When Things Go Wrong
Zoom Panel Component

Issue #3 - May 1, 1995
Articles
Books
Connecting To Microsoft Access
Cooking Up Components
Copying Records in a Table
CurrEdit Modifications by Bob Osborn
CurrEdit Modifications by Massimo Ottavini
CurrEdit Modifications by Thorsten Suhr
Creating A Floating Palette
What's Hidden In Delphi's About Box?
Modifications To CurrEdit

Periodicals
Progress Bar Bug
Publications Available
Real Type Property Bug
TIni File Example
Tips & Tricks
Unit Ordering Bug
When Things Go Wrong

Issue #4 - May 24, 1995
Cooking Up Components
Food For Thought - Custom Cursors
Why Are Delphi EXE's So Big?
Passing An Event
Publications Available
Running From A CD
Starting Off Minimized
StatusBar Component
TDBGrid Bug
Tips & Tricks
When Things Go Wrong

Issue #5 - June 26, 1995
Connecting To A Database
Cooking Up Components
DateEdit Component
Delphi Power Toolkit
Faster String Loading
Font Viewer
Image Editor Bugs
Internet Addresses
Loading A Bitmap
Object Alignment Bug
Second Helping - Custom Cursors
StrToTime Function Bug
The Aquarium
Tips & Tricks
What's New
When Things Go Wrong

Issue #6 - July 25, 1995
A Call For Standards
Borland Visual Solutions Pack - Review
Changing a Minimized Applications Title
Component Create - Review
Counting Components On A Form
Cooking Up Components
Debug Box Component
Dynamic Connections To A DLL
Finding A Component By Name
Something Completely Unrelated - TVHost
Status Bar Component

The Loaded Method
Tips & Tricks
What's In Print

Issue #7 - August 31, 1995
ChartFX Article
Component Cookbook
Compression Shareware Component
Corrected DebugBox Source
Crystal Reports - Review
DBase On The Fly
Debug Box Article
Faster String Loading
Formula One - Review
Gupta SQL Windows
Header Converter
Light Lib Press Release
Limiting Form Size
OLE Amigos!
Product Announcements
Product Reviews
Sending Messages
Study Group Schedule
The Beginners Corner
Tips & Tricks
Wallpaper
What's In Print

Issue #8 - October 10, 1995
Annotating A Help System
Core Concepts In Delphi
Creating DLL's
Delphi Articles Recently Printed
Delphi Informant Special Offers
Delphi World Tour
Getting A List Of All Running Programs
How To Use Code Examples
Keyboard Macros in the IDE
The Beginners Corner
Tips & Tricks
Using Delphi To Perform QuickSorts

Issue #9 - November 9, 1995
Using Integer Fields to Store Multiple Data Elements in Tables
Core Concepts In Delphi
Delphi Internet Sites
Book Review - Developing Windows Apps Using Delphi
Object Constructors
QSort Component
The Component Cookbook
TSlideBar Component
TCurrEdit Component

The Delphi Magazine
Tips & Tricks
Using Sample Applications

Issue #10 - December 12, 1995
A Directory Stack Component
A Little Help With PChars
An Extended FileListBox Component
Application Size & Icon Tip
DBImage Discussion
Drag & Drop from File Manager
Modifying the Resource Gauge in TStatusBar
Playing Wave Files from a Resource
Review of Orpheus and ASync Professional
The Component Cookbook
Tips & Tricks
UNDU Readers Choice Awards
Using Integer Fields to Store Multiple Data Elements in Tables

Issue #11 - January 18th, 1996
Core Concepts With Delphi - Part I
Core Concepts With Delphi - Part II
Dynamic Delegation
Data-Aware DateEdit Component
ExtFileListBox Component
DBExtender Product Announcement
Dynamic Form Creation
Finding Run-Time Errors
Selecting Objects in the Delphi IDE
The Beginners Corner
The Delphi Magazine
Top Ten Tips For Delphi
The Component Cookbook
Tips & Tricks
The UNDU Awards

Issue #12 - Feburary 23rd, 1996
The Beginners Corner
Delphi Projects
Marketing Your Components
An LED Component
A 3D Progress Bar
Common Strings Functions
Checking if your application is running already
AutoRepeat for SpeedButtons
Form and Component Creation Tip
Detecting a CD-ROM Drive
Drawing Metafiles in Delphi
Shazam Review
Product Announcement - Dr. Bob's Delphi Experts
Book Review - Instant Delphi Programming
Tips & Tricks

The Component Cookbook

Issue #13 - May 1st, 1996
Core Concepts - Sorting
Delphi Information Connection
Creating Resource-Only DLL's
Quick Reports
TIFIMG Product Announcement

Issue #14 - June 1st, 1996
A 3-D Component
An Animation Component
A Bug In TGauge
The Component Cookbook
A Look At Cross Tabs
New Book - Delphi In Depth
New Book - The Revolutionary Guide to Delphi 2
Making the Enter Key Work Like the Tab Key
Jumping Straight to Form Level
Making Menu Items Work Like Radio Buttons
Modifying The System Menu
Products & Reviews
The Beginners Corner
The UNDU Awards
Tips & Tricks

Issue #15 - August 1st, 1996
UNDU - A Work In Progress…
UNDU Prizes!
The UNDU Subscriber List
Core Concepts With Delphi - Parameter Passing
Delphi Programmers Book Shelf
Component Cookbook
Tips & Tricks
How to 'Catch'Keys
Working with String Grids
Coloring Columns in a Grid
Solving a DLL problem
Reducing Memory Requirements
Creating an AutoDialer component

Issue #16 - September 1st, 1996
Menu Buttons
Core Concepts With Delphi - Enumerated Types
Extending The INI Component
Limiting Multiple Instances Of a Program in Delphi 2.0
How to Draw a Rubber-Banding Line
Marching Ants!
How to Restrict the Mouse Cursor
How to make a Color ComboBox
A Better Way to Create Menu Items
Splash Screen

Splash Screen with a Time Delay

Issue #17 - October 1st, 1996
Does Windows 95 give you a Square Deal?
The Great StringList
Manipulating Regions with Delphi
Tips & Tricks
When Delphi's smart-linker doesn't seem so smart
Cut, Copy, & Paste
A Quick Way of Setting the Tab Order
Background Bitmaps on Forms
Non-Rectangular Windows

Issue #18 - November 1st, 1996
Object Express by OOPSoft Inc
Tips & Tricks
The Component Cookbook
IniOut Component Property Manager
New Book - Delphi Component Design by Danny Thorpe
Storing Fonts in INI Files
Sorting Columns in a DBGrid
What's Your Version Number
Drawing MetaFiles
Adding Undo to your Edit Menu
How To Put Anything In Your Delphi EXE
Delphi Newsgroups
A Simple Clipboard Viewer Component

Issue #19 - January 1st, 1997
Speed Daemon Review
A Look at MagiKit
Humor - Are You Computer Illiterate?
Tips & Tricks
The Component Cookbook
Using the SHFileOperation to Copy/Move/Delete/Rename Files
How to create a Polygon Splash screen
Is Someone else running?
Lock Violation
Printing Directly to a printer
Refreshing MDI Menus
Extending the Background Bitmap Technique
Paradox File Size Limits
Safer use of Enumerated Types
Simplifying Code management with Include
A Look at the TreeView Control
Text, Aligned in a Grid
TPageControl Flambé
Big Bitmaps
Masks ala Transparency

Issue #20 - March 1st, 1997
Learning How To Drive - Disk Information in Delphi

Delphi Books & Periodicals
Questions (and Answers) From Readers
Tips & Tricks
The Component Cookbook
Is Someone Else Running - Revisited!
InputQueryEx
Multi-colored text in a string grid
Converting Pascal Source to HTML
Processing large database tables
SHFileOperation Revisited
How to Make Your EXE's Lighter!
Form Aspect Ratio
Previous Instances Revisited
Printing Raw data to the Printer
Tip Of The Day Component
TFieldPanel

Issue #21 - May 1st, 1997
Video Capture in Delphi
Review - Delphi Component Design
Product Announcement - Addict for Delphi
Questions (and Answers) From Readers
Tips & Tricks
The Component Cookbook
Low Level Windows Stuff
Listing Procedures
Hiding Apps from the Task Bar
Excel OLE Tips
Playing Sounds Asynchronously
Bitmaps on StringGrids
How To Find Up-to-date Delphi 2 Books
Margin Marker in Delphi 1 & 2
Lock Violations
Object Creation Tip
How to Compress a Bitmap
TEndSession

Issue #22 - June, 1997
Getting Control of the Control Panel
Review of Animated Tray Icon
Review of Visual SlickEdit
Review of IniOut
Review of Addict 2.2
SQLExpress Announcement
Delphi Users Groups
Tips & Tricks
Bitmaps In String Grids
A Cure for Previous Instance Problems
Word Search Tip
Unbridled Acceleration
Showing The Caret Positioin
Using The Windows 95 Registry
Wallpapering MDI Forms
InputQueryEX

Delphi 2 & 3 on the Same Computer

Issue #23 - September, 1997

Return to Front Page

Where To Find UNDU
When each issue of UNDU is complete, I put them in the following locations:
1. UNDU's official web site at http://www.informant.com/undu/index.htm. This site houses all

the issues in both HTML and Windows HLP format. Click on the large icons for the HTML versions
and the small red book icons for downloadable Windows HLP files.

2. Borland's Delphi forum on CompuServe (GO DELPHI) in the "Delphi IDE" file section. This forum will
only hold the issues in Windows HLP format.

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Tips & Tricks
Jens Fudge brings us a quick tip that I think is quite handy. Many times when accessing Master-Detail
tables that involve queries to get the detail records, you may have some un-needed processing overhead
as you scroll through master records. Jens discusses this and offers a solution in his tip on Speeding up
Master-Detail Tables.
Alan Lloyd also brings us two interesting discussions this month. First, he has a beginners discussion on
pointers in his article on Beginners Block – Intro to Pointers . Then, he carries on the discussion about
pointers by explaining how Delphi free's objects. Check this second part out in the article on Nil Pointers –
How Delphi Free's Objects .
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

UNDU Subscriber List
The subscriber list is a method by which I can notify the readers when a new issue is out. I will maintain a
list of reader's email addresses and when a new issue is released, I will fire off a batch mailing to notify
everyone that it is available.
This is what you need to do to get on the subscriber list… Simply send me an email to my CompuServe
address (RobertV@compuserve.com) and put the words SUBSCRIBE UNDU anywhere in the subject
line or in the main body of the message. If you no longer wish to be notified of future issues (i.e. you are
on the list and want off…) just send an email with the words UNSUBSCRIBE UNDU.
That's all there is to it!

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Delphi Users Groups
If you run a Delphi Users Group that is not on this list, please feel free to send me an email with the
essentials. Please include basic information about where and when the group meets, and particularly any
web links you may have to support the group. I am going to keep the info to a minimum so I can include in
each issue (or maybe every other issue). I have provided a sample form to help you provide the right
information.

Arizona
Tucson Delphi Users Group - TDug

California
Orange County Delphi Users Group

North Bay Delphi SIG

Canada
Metro Halifax Delphi Developers Group

The Toronto Area Delphi Developers Association

Colorado
Western Slope Visual Developers Group

Iowa
Central Iowa Delphi Users Group

Massachusetts
The Delphi Developers Group of Greater Boston

Michigan
Royal Oak Delphi Users Group

North Carolina
Research Triangle Park Delphi Users Group

Ohio
Delphi SIG of the Greater Cleveland PC Users Group

Pennsylvania
Pittsburgh Area Delphi Users Group

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: Orange County Delphi Users Group
Person(s) In Charge: Maurie Seymour
Meeting Date/Time: Second Saturday of each month at 1:00pm
Meeting Location: 1520 Brookhollow Drive, Suite 38, Santa Ana, CA
Dues: ???
Email Address: delphibegin.sig@ocipug.org or mauries@pacbell.net
Phone Number: (714) 633-2914
Internet URL: http://www.ocipug.org
Description:

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: Pittsburgh Area Delphi Users Group
Person(s) In Charge: Kirk A. Farra
Meeting Date/Time: Second Thursday of the month at 7:00pm
Meeting Location: Mastech Inc.
Dues: None
Email Address:
Phone Number: (412) 452-6121
Internet URL: http://www.nauticom.net/www/kfarra
Description: We cover Delphi and any related products/tools. Members are

exposed to many 3rd party components and have a local support
network for Q/A. Members get to review many products before they
are released and get information on local job opportunities and
contracting positions.

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: Central Iowa Delphi Users Group
Person(s) In Charge: David W. Body
Meeting Date/Time: Third Thursday of every month at 5:30pm
Meeting Location: Offices of Iowa Bankers Association, Liberty Building, 418 6th

Ave. Suite 430, Des Moines, Iowa.
Dues: None
Email Address:
Phone Number: (515) 984-6243
Internet URL: http://www.bigcreek.com/delphi
Description:

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: Royal Oak Delphi Users Group
Person(s) In Charge: ???
Meeting Date/Time: First Thursday of each month at 7:00pm
Meeting Location: William Beaumont Hospital (Lower Level), Royal Oak, MI.

Classrooms in AB-West building.
Dues: None
Email Address: ???
Phone Number: (810) 551-5000
Internet URL: http://ourworld.compuserve.com/homepages/STNICOL/
Description: Constructing DLL's, SQL Server 6.5, CGI, Email enabled

databases, data collection alternatives, VCL parties, book
review night, etc.

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: Metro Halifax Delphi Developers Group
Person(s) In Charge: Dave Hackett
Meeting Date/Time: First Tuesday of each month from 7:00pm to 9:00pm
Meeting Location: Maritime Life Business Park
Dues: None
Email Address: 71650.2646@compuserve.com
Phone Number:
Internet URL:
Description: News, Q&A, Presentations

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: North Bay Delphi Special Interest Group
Person(s) In Charge: Bjarne Winkler
Meeting Date/Time: Second and Fourth Wednesday of each month from 7:00pm to 9:00pm
Meeting Location:
Dues:
Email Address: nts4618086@aol.com
Phone Number:
Internet URL:
Description: Announcements, Q&A, Special topics each meeting.

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: Research Triangle Park Delphi Users Group
Person(s) In Charge: Mark Hutchinson
Meeting Date/Time: Third Wednesday of each month, 5pm
Meeting Location: New Horizons Computer Learning Center - Willow Oak Bldg, Suite

116, 4625 Creekstone Drive, Durham, NC
Dues:
Email Address: aikimark@aol.com
Phone Number:
Internet URL: http://www.geocities.com/CapeCanaveral/Lab/1185/rtpdig.html
Description:

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: The Toronto Area Delphi Developers Association (TaDDA!)
Person(s) In Charge: Henri Fournier (President), Robert Kozak (Membership Director),

Ted Nye (Executive Director)
Meeting Date/Time: First Tuesday of each month
Meeting Location: North Youk Public Library, Toronto, Ontario, Canada
Dues: $60.00/year
Email Address: membership@TaDDA.COM
Phone Number: (416) 366-7150
Internet URL: http://www.tadda.com
Description: 3 Hours. Sessions by well known Delphi experts such as Mark

Miller, Ray Konopka, Charlie Calvert, etc. and in depth sessions
on all aspects of Delphi for New to Advanced users.

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: The Delphi Developers Group of Greater Boston
Person(s) In Charge: Al Reinhart, DisCom Systems
Meeting Date/Time: Third Monday of each month, 7pm
Meeting Location: 10 New England Executive Park, Burlington MA
Dues:
Email Address: reinhart@discom.com
Phone Number: 508-869-6417
Internet URL:
Description:

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: Delphi SIG of the Greater Cleveland PC Users Group
Person(s) In Charge: Bill Querry
Meeting Date/Time: Fourth Wednesday of each month, 6:30pm – 8:30 pm
Meeting Location: 2747 SOM Center Rd, Willoughby OH 44094
Dues: Free for Meetings. $25/year for GCPCUG
Email Address: bq@bigfoot.com
Phone Number: 440-944-9980
Internet URL: www.gcpcug.org
Description: Demos of some feature of Delphi or 3rd Party Add-On. General

discussion of user's current projects & problems. Talk about
latest magazines/book releases.

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: Western Slope Visual Developers Group
Person(s) In Charge: Shane Holmes, Software Engineer, ViA Software Services
Meeting Date/Time: Last Wednesday of each month, 6:30pm
Meeting Location: ViA Software Services, 743 Horizon Court, Suite 368, Grand

Junction, CO 81506
Dues: Free
Email Address: sholmes@viagj.com
Phone Number: 970-257-7010, 970-248-9733
Internet URL: http://www.gj.net/~hap
Description:

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Group Name: Tucson Delphi Users Group - TDug
Person(s) In Charge: Matthew J. Brock, Oscar Speed
Meeting Date/Time: Third Saturday of each month, 9:00am-10:00am
Meeting Location: DRA Software Training Center, 3434 E. 22nd St. Suite 100,

Tucson, AZ
Dues: Free
Email Address: mjb@azstarnet.com
Phone Number: 520-571-7203
Internet URL:
Description: One or more presentations, Q&A, Product Reviews

Return to Delphi Users Groups

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Form For Users Groups
If your Delphi Users Group is not mentioned in the list, please take a moment to email me the particulars
about your group. To make the information as uniform as possible, please cut and paste this form into an
email and send it to me at RobertV@compuserve.com. Please only send one if you are in charge of the
group… I don't want to have to wade through 30-40 copies for each group… Thanks!

Group Name:
Person(s) In Charge:
Meeting Date/Time:
Meeting Location (include City & State):
Dues:
Email Address:
Phone Number:
Internet URL:
Brief description of meeting format:

Return to Delphi Users Groups

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

RGB and HSL Colour Models
by Grahame Marsh - grahame.s.marsh@corp.courtaulds.co.uk
RGB Model
The colour model most famliar to Delphi programmers will be the RGB colour model where a colour is
represented by intensity values of red, green and blue light within a colour.    This is not suprising as the
RGB model is normally used for devices that emit light. It is also very easy to understand,    In Delphi (and
Windows in general) valid red, green and blue light intensities are represented using 0 to indicate a
minimum value and 255 to indicate a maximum intensity.    This illustration shows how the three primary
colours can be combined to produce four additional colours:

Note that for display devices, the colour black results from the absence of colour. The following are the
eight colours and their associated RGB values:

Colour Red Green Blue
Red 255 0 0
Green 0 255 0
Blue 0 0 255
Cyan 0 255 255
Magenta 255 0 255
Yellow 255 255 0
Black 0 0 0
White 255 255 255

Delphi defines and uses TColor as a means of storing the the complete colour information in a single 32

bit value.    The internal storage, in hexadecimal, is $00BBGGRR - the low-order byte is used to store the
red intensity, the second byte contains the green and the third the blue.    The high order byte is usually
zero but has its uses.    Delphi can also represent some TColor colours with negative values but this
specialist use I shall ignore here.

You can use the RGB function to combine three colour intensities to make a TColor and use the
GetRValue, GetGValue and GetBValue    functions to extract the intensity values from a TColor.

The HSL Colour Model
The HSL colour model is very different.    It represents colours based on a scale of 0 to 1 using three
parameters:

· Hue - a measure of the colour tint (red, green etc) present
· Saturation - a measure of the amout of colour present (a saturation of zero is a total absence of

colour (black, grey, white), a saturation of 1 is a totally pure colour tint)
· Luminosity (or lightness) - the brightness of a colour (a luminosity of 0 is black, and 1 is white,

between 0 and 1 are shades of grey or colour.    A luminosity of 0.5 is used for generating a pure
colour.)

You can see HSL colours in use in the common colour pick dialog box where the scale 0 to 1 is replaced
by 0 to 240.    But I define the scales as 0 to 1 above as the universal representation as using the 0 to 240
scale is handy as only three bytes are needed to represent the values.

The eight common colour values are now (on the 0 to 240 scale):

Colour Hue Sat. Lum.
Red 0 240 120
Green 40 240 120
Blue 80 240 120
Cyan 120 240 120
Magenta 160 240 120
Yellow 200 240 120
Black * 0 0
White * 0 240

* - undefined - not needed

Note that saturation and luminosity are unchanged as the "colour"    changes, and that hue is not used for
black or white, and finally that zero saturation is the absence of colour.

The following illustration shows the colour spectrum control and the luminosity slide control that appears
in the common colour dialog box (with the screen in 256 colour mode).    The spectrum control shows the
colours available at a luminosity of 120.

The RGB model scores on it's simplicity, so what are the advantages of the HSL colour model?    I think
there are several:

· You can generate grey scales using only one parameter - the luminosity when saturation is set to
0.

· You can vary the colour by varying the hue alone such that the brightness remains unchanged
· You can fade or darken several colours, or whole bitmaps, such that the lightness (or darkness)

stay in step

I suppose it comes down to that the HSL model is easier to use visually because it suits the eye, whereas
the RGB model is easier to use in programming.    What lead me to need to use the HSL model was the
last point above.    I wanted to draw an overlay image over a coloured bitmap.    But the bitmap was too
bright to see the overlayed lines properly without using very thick lines. But by fading the colours towards
white (by uniformally increasing the luminosity of all of the colours that made up the bitmap's palette), the
black lines of the overlay became much clearer.

So what's the catch?    The big catch is that Windows does not include any routines to convert between
the RGB and HSL colour models.    So I include with this article four functions to convert between the
models.    The interface looks like this:

var
    HSLRange : integer = 240;

// convert a HSL value into a RGB in a TColor
// HSL values are 0.0 to 1.0
function HSLtoRGB (H, S, L: double): TColor;

// convert a HSL value into a RGB in a TColor
// SL values are 0 to the HSLRange variable
// H value is to HSLRange-1
function HSLRangeToRGB (H, S, L : integer): TColor;

// convert a RGB value (as TColor) into HSL
// HSL values are 0.0 to 1.0
procedure RGBtoHSL (RGB: TColor; var H, S, L : double);

// convert a RGB value (as TColor) into HSL
// SL values are 0 to the HSLRange variable
// H value is to HSLRange-1
procedure RGBtoHSLRange (RGB: TColor; var H, S, L : integer);

Also included is a simple form which illustrates a rudimentary colour picker, to show how easy it is to

include a HSL colour picker with your applications. Hope you find this useful!

Cheers!

        Grahame

Source Code for HSL1

Source Code for HSLUtils

Form Definition for HSL1

References
· WIN32.HLP - search on "HSL"
· http://www.r2m.com/win-developer-faq/graphics/8.html
· Fundamentals of Interactive Computer Graphics by Foley and van Dam

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Source Code for HSL1.PAS
unit HSL1;

// primative HSL colour picker

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 ExtCtrls, StdCtrls, ComCtrls, Buttons;

type
 THSLDemoForm = class(TForm)
 HSLImage: TImage;
 HueTrackBar: TTrackBar;
 SatTrackBar: TTrackBar;
 Bevel1: TBevel;
 ColourSwatch: TShape;
 Bevel2: TBevel;
 Label1: TLabel;
 Label2: TLabel;
 Label3: TLabel;
 Label4: TLabel;
 Label5: TLabel;
 Label6: TLabel;
 Label7: TLabel;
 LumTrackBar: TTrackBar;
 Bevel3: TBevel;
 ReportListView: TListView;
 Bevel4: TBevel;
 UseLumBtn: TBitBtn;
 Lum120Btn: TBitBtn;
 procedure HSLMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
 procedure FormCreate(Sender: TObject);
 procedure RedoSwatch(Sender: TObject);
 procedure Lum120BtnClick(Sender: TObject);
 procedure HSLImageClick(Sender: TObject);
 procedure HSLMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure HSLMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure UseLumBtnClick(Sender: TObject);
 private
 FSaturation,
 FHue : integer;
 FMode256,
 FTracking : boolean;
 public
 end;

var
 HSLDemoForm: THSLDemoForm;

implementation

{$R *.DFM}

uses
 HSLUtils;

procedure THSLDemoForm.FormCreate(Sender: TObject);
var
 DC : hDC;
begin
 DC := GetDC(0);
 try
 FMode256 := GetDeviceCaps(DC, BITSPIXEL) = 8
 finally
 ReleaseDC (0,DC)
 end;

 Lum120Btn.Click;
 UseLumBtn.Click
end;

procedure THSLDemoForm.RedoSwatch(Sender: TObject);
var
 Hue,
 Saturation,
 Luminosity : byte;
 Colour : TColor;
begin
 Hue := HueTrackBar.Position;
 Saturation := 240 - SatTrackBar.Position;
 Luminosity := 240 - LumTrackBar.Position;
 Colour := HSLRangetoRGB (Hue, Saturation, Luminosity);
 ColourSwatch.Brush.Color := Colour;

 with ReportListView do
 begin
 Items[0].SubItems[0] := IntToStr (GetRValue (Colour));
 Items[1].SubItems[0] := IntToStr (GetGValue (Colour));
 Items[2].SubItems[0] := IntToStr (GetBValue (Colour));
 Items[4].SubItems[0] := IntToStr (Hue);
 Items[5].SubItems[0] := IntToStr (Saturation);
 Items[6].SubItems[0] := IntToStr (Luminosity)
 end
end;

procedure THSLDemoForm.Lum120BtnClick(Sender: TObject);
begin
 LumTrackBar.Position := 120;
 RedoSwatch (Self)
end;

procedure THSLDemoForm.HSLMouseMove(Sender: TObject; Shift: TShiftState; X, Y:
Integer);
begin
 FSaturation := Y;
 FHue := X;
 if FTracking then
 HSLImageClick (Self)
end;

procedure THSLDemoForm.HSLImageClick(Sender: TObject);
begin
 HueTrackBar.Position := FHue;
 SatTrackBar.Position := FSaturation;
 RedoSwatch (Self)
end;

procedure THSLDemoForm.HSLMouseDown(Sender: TObject; Button: TMouseButton; Shift:
TShiftState; X, Y: Integer);

begin
 FTracking := true
end;

procedure THSLDemoForm.HSLMouseUp(Sender: TObject; Button: TMouseButton; Shift:
TShiftState; X, Y: Integer);
begin
 FTracking := false
end;

procedure THSLDemoForm.UseLumBtnClick(Sender: TObject);
const
 Box256 = 4;
var
 Hue,
 Sat : integer;
 HSLBitmap : TBitmap;
begin
 Screen.Cursor := crHourglass;
 try
 HSLBitmap := TBitmap.Create;
 with HSLBitmap do
 begin
 Width := 239;
 Height := 240;

 if FMode256 then
 for Hue := 0 to Width div Box256 do
 for Sat := 0 to Height div Box256 do
 begin
 Canvas.Brush.Color := HSLRangeToRGB (Hue*Box256, 240-Sat*Box256, 240 -
LumTrackBar.Position);
 Canvas.FillRect (Rect(Hue*Box256, Sat*Box256, Hue*Box256+Box256,
Sat*Box256+Box256))
 end
 else
 for Hue := 0 to 239 do
 for Sat := 0 to 240 do
 Canvas.Pixels [Hue, 240-Sat] := HSLRangeToRGB (Hue, Sat, 240 -
LumTrackBar.Position)
 end;
 HSLImage.Picture.Bitmap := HSLBitmap
 finally
 Screen.Cursor := crDefault
 end
end;

end.

Return to Article

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Source Code for HSLUtils.PAS
//--
//
// HSL - RGB colour model conversions
//
// These four functions can be used to convert between the RGB and HSL colour
// models. RGB values are represented using the 0-255 Windows convention and
// always encapsulated in a TColor 32 bit value. HSL values are available as
// either 0 to 1 floating point (double) values or as a 0 to a defined integer
// value. The colour common dialog box uses 0 to 240 by example.
//
// The code is based on that found (in C) on:
//
// http:/www.r2m.com/win-developer-faq/graphics/8.html
//
// Grahame Marsh 12 October 1997
//
// Freeware - you get it for free, I take nothing, I make no promises!
//
// Please feel free to contact me: grahame.s.marsh@corp.courtaulds.co.uk
//
// Revison History:
// Version 1.00 - initial release 12-10-1997
//
//--

unit HSLUtils;

interface

uses
 Windows, Graphics;

var
 HSLRange : integer = 240;

// convert a HSL value into a RGB in a TColor
// HSL values are 0.0 to 1.0 double
function HSLtoRGB (H, S, L: double): TColor;

// convert a HSL value into a RGB in a TColor
// SL values are 0 to the HSLRange variable
// H value is to HSLRange-1
function HSLRangeToRGB (H, S, L : integer): TColor;

// convert a RGB value (as TColor) into HSL
// HSL values are 0.0 to 1.0 double
procedure RGBtoHSL (RGB: TColor; var H, S, L : double);

// convert a RGB value (as TColor) into HSL
// SL values are 0 to the HSLRange variable
// H value is to HSLRange-1
procedure RGBtoHSLRange (RGB: TColor; var H, S, L : integer);

implementation

function HSLtoRGB (H, S, L: double): TColor;
var
 M1,
 M2: double;

 function HueToColourValue (Hue: double) : byte;
 var
 V : double;
 begin
 if Hue < 0 then
 Hue := Hue + 1
 else
 if Hue > 1 then
 Hue := Hue - 1;

 if 6 * Hue < 1 then
 V := M1 + (M2 - M1) * Hue * 6
 else
 if 2 * Hue < 1 then
 V := M2
 else
 if 3 * Hue < 2 then
 V := M1 + (M2 - M1) * (2/3 - Hue) * 6
 else
 V := M1;
 Result := round (255 * V)
 end;

var
 R,
 G,
 B: byte;
begin
 if S = 0 then
 begin
 R := round (255 * L);
 G := R;
 B := R
 end else begin
 if L <= 0.5 then
 M2 := L * (1 + S)
 else
 M2 := L + S - L * S;
 M1 := 2 * L - M2;
 R := HueToColourValue (H + 1/3);
 G := HueToColourValue (H);
 B := HueToColourValue (H - 1/3)
 end;

 Result := RGB (R, G, B)
end;

function HSLRangeToRGB (H, S, L : integer): TColor;
begin
 Result := HSLToRGB (H / (HSLRange-1), S / HSLRange, L / HSLRange)
end;

// Convert RGB value (0-255 range) into HSL value (0-1 values)

procedure RGBtoHSL (RGB: TColor; var H, S, L : double);

 function Max (a, b : double): double;
 begin
 if a > b then
 Result := a
 else
 Result := b

 end;

 function Min (a, b : double): double;
 begin
 if a < b then
 Result := a
 else
 Result := b
 end;

var
 R,
 G,
 B,
 D,
 Cmax,
 Cmin: double;

begin
 R := GetRValue (RGB) / 255;
 G := GetGValue (RGB) / 255;
 B := GetBValue (RGB) / 255;
 Cmax := Max (R, Max (G, B));
 Cmin := Min (R, Min (G, B));

// calculate luminosity
 L := (Cmax + Cmin) / 2;

 if Cmax = Cmin then // it's grey
 begin
 H := 0; // it's actually undefined
 S := 0
 end else begin
 D := Cmax - Cmin;

// calculate Saturation
 if L < 0.5 then
 S := D / (Cmax + Cmin)
 else
 S := D / (2 - Cmax - Cmin);

// calculate Hue
 if R = Cmax then
 H := (G - B) / D
 else
 if G = Cmax then
 H := 2 + (B - R) /D
 else
 H := 4 + (R - G) / D;

 H := H / 6;
 if H < 0 then
 H := H + 1
 end
end;

procedure RGBtoHSLRange (RGB: TColor; var H, S, L : integer);
var
 Hd,
 Sd,
 Ld: double;
begin
 RGBtoHSL (RGB, Hd, Sd, Ld);

 H := round (Hd * (HSLRange-1));
 S := round (Sd * HSLRange);
 L := round (Ld * HSLRange);
end;

end.

Return to Article

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Form Definition for HSL1.DFM
object HSLDemoForm: THSLDemoForm
 Left = 340
 Top = 225
 BorderStyle = bsDialog
 Caption = 'HSL colour picker demo'
 ClientHeight = 384
 ClientWidth = 593
 Font.Charset = DEFAULT_CHARSET
 Font.Color = clWindowText
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 OnCreate = FormCreate
 PixelsPerInch = 96
 TextHeight = 13
 object Bevel3: TBevel
 Left = 8
 Top = 8
 Width = 417
 Height = 361
 end
 object Bevel4: TBevel
 Left = 432
 Top = 8
 Width = 145
 Height = 233
 end
 object Bevel1: TBevel
 Left = 16
 Top = 32
 Width = 257
 Height = 257
 end
 object Bevel2: TBevel
 Left = 464
 Top = 16
 Width = 81
 Height = 81
 end
 object HSLImage: TImage
 Left = 24
 Top = 40
 Width = 240
 Height = 241
 Cursor = crCross
 OnClick = HSLImageClick
 OnMouseDown = HSLMouseDown
 OnMouseMove = HSLMouseMove
 OnMouseUp = HSLMouseUp
 end
 object ColourSwatch: TShape
 Left = 472
 Top = 24
 Width = 65
 Height = 65
 end
 object Label1: TLabel
 Left = 264
 Top = 16

 Width = 60
 Height = 16
 Caption = 'Saturation'
 Font.Charset = DEFAULT_CHARSET
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 end
 object Label3: TLabel
 Left = 328
 Top = 272
 Width = 6
 Height = 13
 Caption = '0'
 end
 object Label4: TLabel
 Left = 26
 Top = 344
 Width = 6
 Height = 13
 Caption = '0'
 end
 object Label5: TLabel
 Left = 256
 Top = 344
 Width = 18
 Height = 13
 Caption = '239'
 end
 object Label6: TLabel
 Left = 128
 Top = 344
 Width = 25
 Height = 16
 Caption = 'Hue'
 Font.Charset = DEFAULT_CHARSET
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 end
 object Label2: TLabel
 Left = 328
 Top = 40
 Width = 18
 Height = 13
 Caption = '240'
 end
 object Label7: TLabel
 Left = 352
 Top = 16
 Width = 63
 Height = 16
 Caption = 'Luminosity'
 Font.Charset = DEFAULT_CHARSET
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False

 end
 object SatTrackBar: TTrackBar
 Left = 280
 Top = 32
 Width = 45
 Height = 257
 Max = 240
 Orientation = trVertical
 Frequency = 10
 Position = 0
 SelEnd = 0
 SelStart = 0
 TabOrder = 1
 TickMarks = tmBottomRight
 TickStyle = tsAuto
 OnChange = RedoSwatch
 end
 object HueTrackBar: TTrackBar
 Left = 16
 Top = 296
 Width = 257
 Height = 45
 Max = 239
 Orientation = trHorizontal
 PageSize = 1
 Frequency = 10
 Position = 0
 SelEnd = 0
 SelStart = 0
 TabOrder = 0
 TickMarks = tmBottomRight
 TickStyle = tsAuto
 OnChange = RedoSwatch
 end
 object LumTrackBar: TTrackBar
 Left = 360
 Top = 32
 Width = 45
 Height = 257
 Max = 240
 Orientation = trVertical
 Frequency = 10
 Position = 120
 SelEnd = 0
 SelStart = 0
 TabOrder = 2
 TickMarks = tmTopLeft
 TickStyle = tsAuto
 OnChange = RedoSwatch
 end
 object ReportListView: TListView
 Left = 440
 Top = 112
 Width = 129
 Height = 121
 Color = clBtnFace
 Columns = <
 item
 Caption = 'Parameter'
 Width = 75
 end
 item
 Caption = 'Value'

 end>
 Items.Data = {
 CA0000000700000000000000FFFFFFFFFFFFFFFF010000000000000003526564
 013000000000FFFFFFFFFFFFFFFF010000000000000005477265656E01300000
 0000FFFFFFFFFFFFFFFF010000000000000004426C7565013000000000FFFFFF
 FFFFFFFFFF00000000000000000000000000FFFFFFFFFFFFFFFF010000000000
 000003487565013000000000FFFFFFFFFFFFFFFF01000000000000000A536174
 75726174696F6E013000000000FFFFFFFFFFFFFFFF01000000000000000A4C75
 6D696E6F736974790130}
 TabOrder = 3
 ViewStyle = vsReport
 end
 object UseLumBtn: TBitBtn
 Left = 336
 Top = 304
 Width = 75
 Height = 25
 Caption = 'Apply Lum.'
 TabOrder = 4
 OnClick = UseLumBtnClick
 end
 object Lum120Btn: TBitBtn
 Left = 336
 Top = 336
 Width = 75
 Height = 25
 Caption = 'Lum. = 120'
 TabOrder = 5
 OnClick = Lum120BtnClick
 end
end

Return to Article

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

More on Moving from VB to Delphi
by Michael Cone - mikecone@advancedtubular.com
This is an article for VB programmers who have just "signed on with a tour" for Delphi.    If you and Delphi
are already real cozy, then this article isn't really for you.    If you, however, find that the Delphi learning
curve is looking steeper all the time, then I invite you to read on.
Like many Delphi users, I am a total convert from Visual Basic.    Some of my older applications are still
written in VB, so I must use it, at times, to maintain code.    However, I avoid VB like the plague with all
new projects. Experiencing Delphi's robustness, speed, and power for the first time created an emotion of
being freed from prison.    I had wasted too much time attempting to coax VB to run large projects.   
Delphi needs no such coaxing.    Its performance was so superior to VB that I wrote to the Delphi team
praising them for their excellent effort in turning out such a great product.    That was with Delphi 1.    Now,
with Delphi 3 on my computer, my praise is still the same, in spite of some of its relatively minor
shortcomings.
As a former VB programmer, I assure you this: You are indeed on the right track with Delphi.    It is
incredibly powerful, and yet, if you want it to, it takes care of many of the minutely detailed programming
tasks automatically.    (You just read my nutshell explanation of "RAD" – short for Rapid Application
Development.)    I don't say this as a warning, but as something to look forward to: It takes a long time for
average programmers (like me) to plummet the depth of its riches.    For example, a comforting thought is
that most of the Delphi development environment is actually written using Delphi!    That is a true
testimony of its power.    (VB is absolutely not written in VB.    Microsoft knows better than attempting
something like that.)    The fact is, that it is really, really hard for a VB programmer to find limits in Delphi.   
(C programmers can find a few limitations in Delphi, but they are WAY beyond the average VB
programmer's ability.    And even so, enterprising Delphi-supporting companies always find ways around
the obscure way-out problems anyway.)

With this in mind, these are some foundational tips for former VB programmers who have fallen in love
with Delphi.

TIP ONE:

Do not hope to rely on a VB to Delphi Translator
That sounds pretty dreary, but it's actually good advice.    I have read comments about VB to Delphi
translators, and how they could be useful to VB programmers changing to Delphi.    My company has one
of them that we paid a lot for, and it is gathering dust on our shelves.    It creates code that is strewn with
extra support code in order to make our old VB code run in Delphi.    The converted code is something
akin to a Frankenstein.    It is an ugly patch-work, and will never be as good as clean Pascal.    I'm not
going to name the translator software, because the resulting code is not the fault of the translator.    In
fact, I am amazed at the amount of effort the VB to Delphi translators must go through to perform this
feat.    The problem is that the traditional Visual Basic way of thinking, especially through VB version 3, is
much different than ANY version of Delphi.

So, my recommendation is that it is far better to re-write your code in Delphi Pascal than to attempt to use
a translator to do it for you.    Not only is it cleaner, but I am convinced that Delphi programmers save
thousands of future hours by completely re-writing code that is robust and finely tuned Pascal, not Pascal
that hangs on to Visual Basic paradigms.

TIP TWO:

Make good use of free technical documents and source code snippets on the Internet
There are probably thousands of Delphi programmers who share really good tips and examples for free
on the Internet.    (Yes, The Unofficial Newsletter of Delphi Users is very good example of this kind of
incredible value.)    Search for "Delphi" (or "Borland Delphi) using a search engine like Yahoo, and you will
begin a trail of finding plenty of source code showing how to do practically whatever is needed to be done.
Learning from example snippets of source code is CRITICAL to understanding Delphi - one step at time.   
With all of this shared knowledge, new Delphi programmers can find solutions to almost any programming
problem we want to solve.

TIP THREE:

Take the time to get used to thinking about programming from the perspective of Delphi
objects.
Delphi allows you to program similarly to the traditional VB style of code, but its whole structure is built
around OBJECTS.    I know that many VB programmers, if they are honest, may ask "What in the world is
an "object" anyway?!".    Objects are confusing, frustrating, and even a little scary at first for some VB
programmers, but the rewards of understanding and using them are incredible.      Be comforted if you are
struggling with the concept of objects.    Many professional programmers also struggle with the concept at
first.    In fact, it was using Delphi that the definition and use of objects finally became clear to me a few
years ago.

Objects are a bit like really fancy VB TYPE structures.    If you've ever used a TYPE structure, then you
know that they combine a whole bunch of variables under a single new variable name.    (If you don't
know what a TYPE structure is you're probably already confused.    Send me an e-mail, and I'll teach you
what a BASIC "TYPE" is.)    Well, objects are WAY more powerful than VB TYPE structures, because they
not only contain multiple variables, but they also contain functions and procedures (procedures are like
VB SUBs).    So objects don't only store variables, they can even do things with the variables, like perform
calculations, and store the results – all inside the object.

Because of this, some really useful thing happens with Delphi objects.    For example, all of this internal
capability that you program into an object follows it wherever it goes.    If you take the source code for an
independent object, and copy it from one program to another, it is relatively easy to get it to work properly
in the new program.    A well written object frees you from thinking about the ramification of all those
GLOBAL and SHARED variables that were intertwined in your old VB code. With objects, all you have to
remember is that "all that stuff is already inside it, so I'm not going to worry about it."    If you ever do copy
an object as I described above, then you've will have practiced the famous idea of "re-use" that gets
bantered about so often in programming circles. Remember that the example that I describe here is only
a single example of the benefits of objects.    There are other benefits to objects that some programmers
may consider even more important than easy re-use.    But what I've given you here should serve as an
incentive to get going with objects.

"How," you may ask, "is the best way to learn how to use objects?"    First, I suggest that you learn the
basic structure of an object by examining someone else's simple working object (per TIP TWO above).   
The structure not only defines what the object does through internal functions and procedures, but also
controls the variable scope rules of an object ("scope" means "what part of the program sees each
particular variable"). It is very important, for example, to understand what the "Private" versus the "Public"
sections of a Delphi object do.    Variables, functions, and procedures defined under the "Private" section
are only visible to the source code that is part of the object itself, never to the outside. Functions and
procedures under the "Public" section, however, can be accessed by source code outside the object.   
Second, I suggest that you take the example object and experiment with it by making changes to it
following the structure of what the programmer has already done.    For example, add a variable under the
Private section, then try to access it inside one of the object's procedures or functions.   

FINALLY

Of course, there are many other basic tips that could be covered for VB programmers.    For example, A
basic discussion of variable scope rules with the VB programmer in mind would be helpful.    Or how about
a discussion of "what in the world is that variable in that parameter line?"        It is normal for VB
programmers to have questions about these and other Delphi topics at first.    So be persistent - Delphi is
worth the effort!

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Delphi and the Turn of the New Century
by Kevin S. Gallagher
Pharmaceutical perceptional example:
"A drug was issued with an expiration date of "00". An elderly woman who needed the drug interpreted
the "00" as "invalid" and decided not to take the drug. Her condition deteriorated until the situation was
identified and rectified. The case is still pending." (Source: GartnerGroup)

This is not an isolated incident nor is this a worst case scenario, it doesn't take a lot to show what will
happen if an application is not geared to handle dealing with multiple centuries. The question is, will the
applications I work with be ready, and how about other programs which handle my credit cards and other
bills!!! Well the top candidates for failing to work with more then one century are applications that reside
on large monolithic mainframes, AS400s, or have to depend on them. How did we all get into such a
pickle? There are many reasons, just search the web and you will see things like: "My application will not
be around at the turn of the century",    "It take to much of a computers resources to use four digits to
store the century and year"    or one that haunts even Microsoft, "Downwards compatibility".    So what is a
person to do to resolve the situation, there is no one answer because there are so many reasons to what
caused the problem on any one given application.

For those of us who are writing new application and have selected Delphi for the language of choice, well
you are in luck! Unlike Microsoft Visual Basic which handles dates fairly well Delphi excels with working
with dates. The Delphi help says that it can handle dates in the range of 1899 to 2099 and Visual Basic's
range is 1899 to 2030. I am sure Microsoft will argue the point as always, but that does not help
programmers who need to project into the future and end up with a language barrier.

The hardest part of working with dates in Delphi is knowing were to get help, what routines are available
and what are things to watch out for. Other visual languages are no different in the above statement, they
just have less things available. So once you know the basics the rest is easy. Do not fear January 3, 2000
coming, instead sit back and watch the poor souls who are not as fortunate as us Delphi programmers!

The first thing to understand about dates in Delphi is that date/time information is stored in a float format
(X.Y) were the X is the date information and Y is the time information.    You would think it would be a pain
in the butt to retrieve date/time information from such a format, but as you might guess Delphi provides us
with methods to extract the needed information. Delphi provides TDateTime type for working with dates,
for example if you want to know the current date we would use the Date function which returns
TDateTime type and would be converted to a string using DateToStr as shown below:

MessageDlg('Today is ' + DateToStr(Date),mtInformation,[mbOk],0);

To extract any part of the date (Month,Day,Year) then there is a procedure called DeCodeDate
var
 TheMonth,TheDay,TheYear:word;
begin
 DecodeDate(Date,TheYear,TheMonth,TheDay);

 Label1.Caption := IntToStr(TheMonth) + '/' + IntToStr(TheDay) +
IntToStr(TheYear);

If you look at the declaration for DecodeDate as shown below:
procedure DecodeDate(Date: TDateTime; var Year, Month, Day: Word);

Notice that the second, third and fourth parameters are passed by reference as stated with the key word
"var", this allows the procedure to alter there values and deliver to us broken segments of the date past to
it. Once the procedure returns these values you can change them and "encode" them back into a suitable
date format using a function called EncodeDate which returns as no surprise a TDateTime variable.

function EncodeDate(Year, Month, Day: Word): TDateTime;

An example might be, your boss says that the company is extending the amount of time the a customer
can take to pay bills at this time of year, so you might code something that gets the current month from
the a field in the customer table and increment the month. The example below contains less code then
needed for the requirement above, but shows how to use DecodeDate to gather a date from a table and
EncodeDate to place the date back into the same field with the month incremented by one month. Also
note that in real life we need to take into consideration that if the month was incremented and the day
becomes invalid because the next month has less days in it we need to code some logical statements to
prevent this, the required logic does not exist in this example:

procedure Tform1.cmdTraverseClick(Sender: TObject);
var
 Month,Day,Year:word;
begin

 while not Table1.Eof do begin
 Table1.Edit;
 DecodeDate(Table1.FieldByName('TheDate').AsDateTime,Year,Month,Day);
 if Month <> 12 then
 Inc(Month)
 else
 Month := 1;

 try
 Table1.FieldByName('TheDate').AsDateTime :=
 EncodeDate(Year,Month,Day);
 Table1.Post;
 except on E:EConvertError do ShowMessage('Error adding month');
 end;
 Table1.Next;
 end;
end;

Well I lied about incrementing months, Delphi has a function called IncMonth which handles the problem
were the next month has less days in it then the month before we add a month to it. Just goes to show
you the power of Delphi!

// Example of IncMonth:
Table1.FieldByName('TheDate').AsDateTime :=
 IncMonth(Table1.FieldByName('TheDate').AsDateTime,1);

if the date in 'TheDate' field was 03/31/2078, after using IncMonth the field would contain 04/30/2078. If
we had simply used Inc(Month,1) an exception would have been generated.

When working with dates retrieved from databases there is always a possibility that the field you want to
get a date from has no value stored in it. In the old days for languages such as dBase, Fox Pro and
Clipper and empty date would be "    /    /    " and you could check for it by using a function called Empty(),
in Delphi an empty date shows up as "12/31/1899". To validate we have a proper date you can code a
routine (shown below) which can do the validation for us:

function IsValidDate(ADate: TDateTime): Boolean;
var

 Year, Month, Day: Word;
 begin
 try
 DecodeDate(ADate, Year, Month, Day);
 Result := Trunc(ADate) > 0;
 except
 Result := False;
 end;
end;

if not IsValidDate(Table1.FieldByName('Expires').AsDateTime) then

Since we are on the topic of dissecting dates into separate pieces it is good to know that even though
Delphi always returns the century and year in from a date you may not always be able to see the century
part. This is due to a setting under MS-Windows95 called "Regional Settings" which we have direct
access to under Control Panel, on a tabbed page called "Dates".    Here you will find a setting called
"Short Date Format" which tells Windows how to display dates i.e. M/d/yy, MM/dd/yyyy. If the end users
computer is setup with the setting that only has two Y's in it then only the year is shown and not the
century! This is a minor nascence which will mostly cause your forms to display with less information and
under some circumstances not allow the user to distinguish between two different centuries when they
need to make visual comparisons on date fields.

One method to insure that the century is shown in your applications is to change the settings via your
setup program through the system    registry. The only problem is that the user can change the setting
through Control Panel because they like a particular view of dates. A much better approach is to have
your application change the setting at program startup and then restoring the old setting when the
application terminates. For example, place code in the main forms OnActivate event to query/change the
Short Date Format, save the old setting. In the OnClose event of the main form retrieve the old setting
and restore it.   

To accomplish this task there are several variables in SysUtils
DateSeparator: Char;
ShortDateFormat: string;
LongDateFormat: string;
ShortMonthNames: array[1..12] of string;
LongMonthNames: array[1..12] of string;
ShortDayNames: array[1..7] of string;
LongDayNames: array[1..7] of string;

which give us access to information taken from the system registry and used in your applications. Also the
"application" object has a property called UpdateFormatSettings which is used to either allow the current
application to see changes that may occur in Control Panel during program execution or to ignore
changes. Below shows the basic logic to control the Short Date Format as described above:

procedure Tform1.FormActivate(Sender: TObject);
begin
 SetCentury(True);
end;

In another global unit:
procedure SetCentury(L:boolean);
var
 S,Temp:String;
begin
 S := DateSeparator;
 Temp := 'yy';
 if L then Temp := 'yyyy';
 SetShortDateFormat('MM' + S + 'dd' + S + Temp);
end;

In the OnActivate event a routine called SetCentury is called with a boolean value of True which toggles
how the century setting is to be set i.e. show century by passing true or pass false to not show the
century. Note that in SetCentury I ask Delphi to give us the current date separator so that when the Short
Date Format is set we use the prefer separator of the person using the computer. Next there is the actual
routine to set the Short Date:

function SetShortDateFormat(S:String): boolean;
var
 DefLCID: LCID;
 Buffer: array[0..255] of char;
begin
 Application.UpdateFormatSettings := True;

 StrPCopy(Buffer,S);
 DefLCID := GetThreadLocale;

 Result := False;

 if SetLocaleInfo(DefLCID,LOCALE_SSHORTDATE,Buffer) then begin
 { If the setting has been updated then Buffer (same as S)
 is placed into the variable ShortDateFormat. The application
 will now recognize the new setting. }
 ShortDateFormat := Buffer;
 Result := True;
 end;
 Application.UpdateFormatSettings := False;
end;

If you are not well versed in Delphi then this would not be an easy routine to write. There are several API
calls which are used, and in case you have not noticed most API calls are not documented with Delphi
programmers in mind.

As mentioned above we now know that Delphi stores various registry settings for us, but what if you need
to get this information on your own? Below shows how to get the ShortDateFormat directly from Windows:

function GetShortDateFormat: String;
var
 L: Integer;
 DefLCID: LCID;
 Buffer: array[0..255] of char;
begin
 Result := '';

 DefLCID := GetThreadLocale;
 L := GetLocaleInfo(DefLCID,LOCALE_SSHORTDATE,Buffer,SizeOf(Buffer));

 if L > 0 then
 SetString(Result,Buffer, L -1);
end;

The most important piece of information is the second parameter    which specifies the setting to get. To
learn about other constants, go into Delphi help and search in the index for LOCALE, this will show all the
other available constants for regional settings. If you want to know how easy Delphi made getting
information then look at    GetDateFormat

int GetDateFormat(

 LCID Locale, // locale for which date is to be formatted
 DWORD dwFlags, // flags specifying function options
 CONST SYSTEMTIME * lpDate, // date to be formatted
 LPCTSTR lpFormat, // date format string
 LPTSTR lpDateStr, // buffer for storing formatted string
 int cchDate // size of buffer

);

not a pleasant sight! Lastly on Short Date Format, if you need to quickly determine if the century is to be
shown then use

if Pos('YYYY', AnsiUpperCase(ShortDateFormat)) > 0 then

if Pos returns 0 then we immediately know that the century will not display.

Closing up on the settings in SysUtils, some are stored in arrays and can be accessed by referencing
them by their index, i.e. ShortMonthNames[1] returns the short name for the first month of the year. The
example below fills four list boxes with Short/Long month names and also Short and Long day names
according to the locale settings.

for i := 1 to 12 do begin
 ListBox1.Items.Add(ShortMonthNames[i]);
 ListBox2.Items.Add(LongMonthNames[i]);
 if i <= 7 then begin
 ListBox3.Items.Add(ShortDayNames[i]);
 ListBox4.Items.Add(LongDayNames[i]);
 end;
 end;

List of other useful date routines
Date Returns the current date.
DateTimeToStr Converts a value from time format to a string.
DateTimeToString Converts a value from time format to a string.
DateToStr Converts a value from date format to a string.
DayOfWeek Returns the current day of the week
DecodeDate Decodes the specified date
DecodeTime Decodes the specifies time.
EncodeDate Returns values specified in date format.
EncodeTime Returns values specified in time format.
FormatDateTime Formats a date and time using the specified format.
IsLeapYear Determines if a year is a leap year
Now Returns the current date and time.
StrToDate Coverts a string to a date format.
StrToDateTime Converts a string to a date/time format.
StrToTime Converts a string to a time format.
Time Returns the current time.
TimeToStr Converts a time format to a string.

There are also other misc. functions like DateTimeToTimeStamp and DateTimeToSystemTime which are
not needed as much as the ones listed above, but it is good to know they exists.

Well hopefully I have armed you with enough information to show that working with dates and dealing with
centuries in Delphi is not difficult. Take some time and experiment with working with dates before leaping
head first into a project that is date intense and all will be fine.

You can get the source code for the projects associated with this file at
http://www.informant.com/undu/dn971201/year2k.zip.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Speeding Up Master-Detail Tables
By Jens Fudge, LPTdata Denmark - archer@post4.tele.dk
If you've ever built an application that has two tabel grids connected (by TQuery's) to especially a remote
database, the easy way is to set the detail-querys datasource property to the master-querys
datasource...This will result in the detail grid only showing records with foreign key to the master.
However, if there are 5000 records in the master, and to each master there is 50000 detail's, your user
will have a problem using the arrow-keys to go through the master table. In fact each time you change
record in the master table, you will be sending a query across the network to select all records in the
detail table that match the current record in the master table. Sometimes a user is on a current record (in
the master) and he can see the next interesting record is 7 records down. He might press the down-
arrow-key numerous times until he gets there. This will be very slow, and he'll probably end up one or two
records below the desired, and he has to press the up-arrow-key a couple of times. A way to work around
this is to user the master-datasource's property OnDataChange, and NOT point the detail query's
datasource property to anything!!!
On the OnDataChange property of the master datasource, simply reset a timer...

Begin
 {This actually resets the timer if its running....}
 Timer1.enabled := false;
 Timer1.enabled := true;
end;

The timer's interval is set to 300

The OnTimer on the timer procedure you send the query yourself.....
begin
 Timer1.enabled := false;
 with Query_detail.SQL do
 begin
 clear;
 add(SELECT FIELD FROM TABLE WHERE);
 add(FOREIGN_KEY = :primarykey);
 end;
 Query_detail.prepare;
 Query_detail.parambyname('primarykey').asString :=
Query_master.FieldByName('PK').value;
 try
 Query_detail.open;
 Except on EdatabaseError do
 begin
 timer1.enabled := false;
 YourErrorHandling;
 end;
end;

 By using this method, the user can scroll through the master table very quickly, using the up and down-
arrow-key, without the detail having to keep up. When the user stops the detail    will follw up. The only
draw-back, as far as I can see, is that if the user changes the contents of a master-record, the detail
query will be sent again. There should actually be a OnRowChange or OnRecordChange event on a
TQuery, perhaps someone will make it some day.

 Hope all you db-programmers find this tip usefull

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

:Beginners Block
by Alan Lloyd - alanglloyd@aol.com
begin
{ more pointers than Custer saw - part one}
When micro-computers first appeared, programming was a matter of hand entering values into memory
locations, and keeping a list of what went where. Data locations held values, and machine code locations
held processor instructions. To add A to B one had to remember (on paper if necessary) that variable A
was held in location 2A3, and B in 1E7. So move the contents of 2A3 into one register, the contents of
1E7 into another, add the two registers - now where do I put the result, ah yes back in 23C, but that's
where I put a character    This sordid activity came to a halt when the program was held in a file, and
a clever program turned A + B = C into the correct form.

What we had was a compiler (of sorts) which knew that A was held in 2A3, and whenever A was needed,
it used the contents of 2A3. 2A3 was a pointer to the value of variable A, and that, as they say, was
History^ :-)) (why History^, well the Delphi operator ^ (known as a caret) means 'contents' when appended
to a pointer).

So a pointer is the memory address of an item of interest which is held in the PC's memory. Pointers can
be the address of a variable (of any type), of a procedure, of a function, or even the address of a pointer
to another item of interest. In fact as far as data is concerned, the compiler only deals with pointers in the
program it is compiling. Sure, it holds a list of names (which humans readily understand) corresponding to
those pointers, but no variable, procedure, or other name gets into the executable code, only pointers.

Pointers can be generic or typed, and the Delphi compiler's strict typing comes into play when pointers
are used. To get the address of an item to assign it to a pointer variable we use the @ operator as a
prefix, so @MyInt returns the address of MyInt. This pointer (the result of an @ operation) is a generic
pointer, it can be assigned to a pointer of any type. But when used directly to obtain the contents of an
address (by using the ^ suffix operator without assigning it to a typed pointer) it must usually be type-cast.

Let's declare some, types and values of pointers and variables
type
 Pinteger = ^Integer; {pointer to an integer}
var
 MyInt1, MyInt2 : integer;
 PtrToInt1, PtrToInt2 : Pinteger;

Notice first of all the convention for naming pointers and pointer types with a 'P' or 'Ptr' prefix. Secondly
that pointer types are declared using the ^ (caret) prefix operator.

We can now say
begin
 MyInt := 23; { set a value for MyInt }
 PtrToInt1 := @MyInt; { assign the address of MyInt to PtrToAnInt }
 PtrToInt1^ := 18; { set the contents of the address in PtrToAnInt to}

 { 18. MyInt now a value of 18 }
 YourInt := 36;
 PtrToInt2 := @YourInt;
 PtrToInt2^ := PtrToInt1^; { YourInt is set to the same value as MyInt}
end;

Similarly with strings we can say
type
 Pstring = ^string; {pointer to a string}
var
 MyString : string;
 PtrToStringA : Pstring;
begin
 MyString := 'Hello World';
 PtrToStringA := @MyString;
 PtrToStringA^ := 'Bonjour ami'; {MyString is now 'Bonjour ami'
end;

The value of a pointer is a number, and the contents of the address with that number may be a string, an
integer, or whatever. The @ operator returns a generic pointer (it can point to any variable) but the
variable we allocate it to is usually a typed pointer. De-referencing is obtaining the value of the address
pointed to by the pointer. The value returned by a typed pointer which is de-referenced, is of the type
corresponding to the pointer. So de-referencing a string pointer returns a string type, de-referencing an
integer pointer returns an integer type. The compiler ensures that you assign the de-referenced types
correctly. You can of course type-cast the pointers, or their de-referenced values, but as with all type-
casts, the compiler trusts you to know what you are doing. When you assign a generic pointer to a typed
pointer, the compiler cannot check that what you are doing is correct, because the generic pointer can
point to anything. So we can code :-

type
 PLongInt : ^LongInt;
var
 MyString : string;
 PtrToLongInt : PLongInt;
 MyLongInt : LongInt;
Begin
 MyString := 'Hello World';
 PtrToStringA := @MyString[1];
 PtrToLongInt := @MyString[1];
 MyLongInt := PtrLongInt^;
end;

Remember that a Delphi string's first byte (MyString[0]) is the number of characters, and the second byte
is the first character, so what we've done is to turn the byte values of the first four characters of Hello into
the value of one longint. MyLongInt is 1802200392 because the byte values of the string 'Hell' (longints
are four bytes long) are 48h 65h 6Bh 6Bh which if the bytes are interpreted as a longint instead of a string
(and the byte order reverses) become 6B6B6548h which equals 1802200392d. The data are just values
in the computer memory, what they mean is up to the compiler and (particularly when you are dealing with
pointers) you.

In order to display the values of the pointers (not what they point to) in labels on a form, we would not be
able to simply do an IntToStr on them, because they are of type 'pointer to string', 'pointer to integer', or
'pointer to longint', even though they are all numbers. We have to type-cast them to an integer and then
perform an IntToStr on them .:-

Label1.Caption := IntToStr(integer(PtrToLongInt));
Label2.Caption := IntToStr(PtrToLongInt^);
Label3.Caption := IntToStr(integer(PtrToStringA));
Label4.Caption := PtrToStringA^;

Having said all the above, Delphi deals with most aspects of referencing and de-referencing in the
background, and you don't have to get involved with this low-level stuff. But there are some areas where

you have to know what is happening in order to properly handle objects and structures for instance, or in
order to do a legitimate but crafty hack. Next issue of UNDU I'll deal with strings and PChars, functions
and procedures, pointers to structures, auto-de-referencing

end;

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997

Freeing Objects and Nil Pointers
by Alan Lloyd - alanglloyd@aol.com
An interesting discussion recently on a newsgroup centred on occasional GPFs when freeing an object
which was conditionally created. In other words :-

var
 MyStringList : TStringList
Begin
if (some_condition) then
 MyStringList := TStringList.Create(Self);
 etc
end;

Later on…
MyStringList.Free;

Now the Free method will only Destroy an object when the pointer to that object is not free, but occasional
GPFs by the enquirer suggested that the pointer was not always nil (maybe because sometimes local
variables do not get initialised). This raised an explanation of what happens in such a situation. When you
declare an object . . .

MyStringList : TStringlist

 . . . the compiler allocates an address for MyStringList to use to point to the memory containing all the
bits of MyStringList. This address is a pointer to MyStringList, and should contain the value Nil because
MyStringList has not been created. (* we'll refer back here later). When MyStringList has been created
this address will contain the valid address of MyStringList.

 When the time comes for MyStringList to be destroyed, Delphi looks at this pointer to MyStringList, if it
has a value of Nil then it assumes MyStringList has not been created, and there is no need or mandate to
free anything. However if it has a value other than Nil then it attempts to free TStringList amount of
memory starting from the address in MyStringList.

HOWEVER (referring to the previous *) if the pointer has an initial value other than Nil (say because the
memory was not properly initialised) then Delphi will attempt to free the TStringList amount of memory
starting at whatever (random) address it finds. But because the value is meaningless it will be attempting
to free memory it has no right to touch and will receive a BIG GPF.

Therefore - for conditional object creation, do your own initialising to Nil . . .
MyStringList := nil;
if (some_condition) then
 MyStringList := TStringList.Create(Self);

. . . and all should be well. I have seen programmer recommendations to always set object pointers to nil
before creating them and after Free-ing or specifically FreeMem-ing them. Certainly if an object is
conditionally created, this would be good practice.

Note that this is NOT creating MyStringList, only filling the pointer to MyStringList with nil, Delphi is doing
the referencing for you, giving you the same as

var
 MyStringList :TStringList;

 Ptr : ^TStringList;
Begin
 Ptr := @MyStringList; {get address of MyStringList pointer}
 Ptr^ := nil; {set its contents to nil}
end;

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #24 - December 1997
Visual SlickEdit 3.0 – Delphi Edition
By Robert Vivrette – RobertV@csi.com
Visual SlickEdit is a great programmers editor and it continues to get better with each new release. This
latest release, Version 3.0 – Delphi Edition is no exception. This latest edition was released just a couple
of weeks ago and I got an opportunity to check out all the new features. For those of you who missed my
initial review of VSE, you can check it out in the June 1st issue of UNDU (Issue #22). In this review, I am
going to be covering just the changes since this prior version.

One of the first things you will notice in version 3.0 is the revised user interface as shown below:

On the left side, you can see a tree-like arrangement that shows all the files associated with a project.
When you select the Procs tab, it allows you to view a list of just the procedure headers associated with a
particular unit. This list can of course be sorted in a few different ways. By double-clicking on a header,
VSE will take you to that procedure and display it in the code editing window on the right.
The code editor has undergone a number of nice enhancements with this new version.

In my prior review, I noted that the Delphi support was a little weak in areas like function keys usage. For
example, in the old version, the key combination for compiling or running your project was different for
VSE and Delphi. This has been corrected in this latest version. While in VSE, you can hit F9 and your
program will be compile and executed. A small addition, but one that is appreciated for those who
repeatedly code and test an application.

In my pre-release version of VSE, I did encounter one problem with file sharing. Occasionally, when I
switched back and forth, I would get a error box from Delphi saying that another user was already using a

file. By clicking "Retry" it went ahead normally, so this was only a minor problem in my mind. Also, as I
said this was a pre-release version of the product, so they likely have corrected this.

Some of the additional features in this latest version include:

· C++/Java/Delphi Class Browser.    Displays class members, optionally shows inherited accessible
members, views inheritance, searches for members, etc.

· Dynamic tagging.    Automatically updates project tag files and global tag files.    Tracks current
function, functions/methods in current file, and tag symbols for word at cursor.

· Customizable dockable tool bars.    Project toolbar with tabs for Class Browser, tags in file, file
open, and project files.    Output toolbar with tabs for tag symbol tracking, multi-file search output,
and compilation output.

· Improved SmartPaste for character selections
· Multi-file spell checking
· Improved Multi-file searching
· Special character display
· More options in the code beautifier
· Support for Microsoft IntelliMouse (32-bit only)
· Color coding can now be configured for 4 multi-line comments.

My one big wish-list item I would like is still a deeper integration with the Delphi IDE. As it stands, VSE is
still a separate code editor that runs along with Delphi and synchronizes information between them. But I
would still like to see the editor as a replacement to the Delphi IDE code editor. That way, you could
launch Delphi, and VSE and all its tremendous power would be right there in the code editing window. But
in fairness, this would probably be quite an effort and would make a very Delphi-specific version    that
would be hard to keep up to date with the other versions of VSE. One of the features that MicroEdge
prides themselves on is that whatever operating system you have and whatever programming language
you are working on, there is a version of VSE that will work for you.

VSE continues to grow stronger and stronger in its Delphi and this latest version is a great addition to any
Delphi Programmer's repertoire. There are literally hundereds of advanced features that you may not ever
use in VSE, but you will be glad they are there when you need them.

You can learn more about Visual SlickEdit v3.0 Delphi Edition at http://www.slickedit.com

Return to Front Page

