
Contents

Index of all included TIs
File Ext Size Date Time Description
-------- --- ---------- -------- ------ -------------------------------
ti2529 asc 7690 02/28/96 009:53 Uninstalling Delphi (16 bit)
ti2558 asc 4954 02/28/96 009:53 Installing Delphi on a Network
ti2602 asc 1130 02/28/96 009:53 Making a form selectable without the
main form.
ti2616 asc 728 02/28/96 009:53 How to get a file's date and time
stamp.
ti2617 asc 2355 02/28/96 009:53 Lists the virtual key values
ti2619 asc 1374 02/28/96 009:53 How to paint the form with a bitmap.
ti2621 asc 3432 02/28/96 009:53 How to associate a string with a
component.
ti2622 asc 1803 02/28/96 009:53 How close a file opened from a Delphi
DLL in VB.
ti2645 asc 1354 02/28/96 009:54 How to readln longer than 255 chars.
ti2647 asc 1455 02/28/96 009:54 A VERY short primer on dynamic memory
allocation.
ti2654 asc 1462 02/28/96 009:54 How to use array of const.
ti2656 asc 28722 08/05/96 2:01p Function mapping from the Paradox
Engine to BDE
ti2659 asc 715 02/28/96 009:54 Making your own hotkeys.
ti2661 asc 1180 02/28/96 009:54 How to scroll your form with pgUP and
pgDn.
ti2683 asc 2298 02/28/96 009:54 Drag a form without clicking the
caption bar
ti2695 asc 7849 02/28/96 009:54 New Language Features in Delphi 2.0 -
32 Bit
ti2711 asc 3309 12/13/95 3:37p How to Circumvent the "index not
found" Exception.
ti2719 asc 4564 02/28/96 009:54 College Student Guide to Reading and
Writing Files
ti2751 asc 1268 03/12/97 4:01p Some current internal limits of BDE
ti2751 asc 2349 04/02/97 4:59p Some current internal limits of BDE
ti2751 asc 1091 08/05/96 2:04p Some current internal limits of IDAPI
Some current internal limits of BDE
ti2752 asc 2525 08/05/96 2:05p Local SQL Reserved Words.
ti2761 asc 22071 08/05/96 2:05p Introduction to BDE Programming
ti2762 asc 8285 08/05/96 2:06p Comparison filters.
ti2763 asc 11534 08/05/96 2:07p Using a continue node in a filter.
ti2767 asc 18281 02/28/96 009:54 Delphi Fact Sheet
ti2768 asc 7882 11/05/96 11:31a Delphi Quick Info Sheet
ti2770 asc 16424 01/23/97 4:04p BDE Frequently Asked Questions.
ti2776 asc 4522 02/28/96 009:55 List of Delphi Books From Third-Party
Publishers
ti2777 asc 2167 02/28/96 009:55 Instructions for Running Delphi from
CD-ROM
ti2778 asc 1645 11/13/96 008:07 Making your Delphi apps show
minimized.
ti2779 asc 39024 02/28/96 009:55 Delphi Client/Server and Power Builder
Compared
ti2780 asc 33015 02/28/96 009:55 Delphi vs Visual Basic

ti2781 asc 3525 02/28/96 009:55 Step by Step Configuration of an ODBC
Driver
ti2783 asc 7141 02/28/96 009:55 Creating Database Aliases in Code
ti2790 asc 3638 06/24/96 4:03p Creating & Deleting TFields at run-
time
ti2791 asc 3671 02/28/96 009:55 How to iterate through the fields of a
table
ti2792 asc 1242 02/28/96 009:55 How to match file date/time stamps.
ti2793 asc 6303 02/28/96 009:55 Adding Graphics in Your Listboxes and
Comboboxes
ti2796 asc 1673 02/28/96 009:56 Using OnHint Events Among Mulitiple
Forms
ti2798 asc 1636 02/28/96 009:56 Making the Enter key work like a Tab
in a TDBGrid
ti2799 asc 994 02/28/96 009:56 Moving to a tab by name on a TabSet
ti2800 asc 1131 02/28/96 009:56 Calling a Delphi DLL from C
ti2801 asc 1127 02/28/96 009:56 Getting a query's Memo field as a
string
ti2803 asc 1292 02/28/96 009:56 How to encrypt a String
ti2804 asc 1010 02/28/96 009:56 Undo in a Memo field
ti2805 asc 837 02/28/96 009:56 Getting the Line number in a memo
Field
ti2807 asc 4528 02/28/96 009:56 Loading Bitmaps Into dBASE And Paradox
BLOB Fields
ti2809 asc 1373 02/28/96 009:56 Printing the contents of a TMemo or
TListbox
ti2810 asc 2193 02/28/96 009:56 Extracting A Bitmap From A BLOB Field
ti2811 asc 9000 02/28/96 009:56 Bitmaps And InterBase BLOB Fields
ti2812 asc 1220 02/28/96 009:56 Control Font Styles
ti2814 asc 5584 02/28/96 009:56 Handling EDBEngineError Exceptions
ti2815 asc 1142 02/28/96 009:57 How to handle text drawing in a
TDBGrid
ti2816 asc 1809 02/28/96 009:57 Trouble running Delphi programs from
Delphi
ti2817 asc 2529 08/05/96 2:09p Understanding the PARADOX.NET file
with the BDE
ti2818 asc 1123 02/28/96 009:57 Searching your application's help file
ti2820 asc 7824 02/28/96 009:57 Searching Through Query Result Sets
ti2821 asc 18965 02/28/96 009:57 dBASE .DBF File Structure
ti2822 asc 3165 08/05/96 2:11p Setting File Handles For A Windows BDE
Application
ti2824 asc 1880 02/28/96 009:57 Passing a Variable to a ReportSmith
Report
ti2825 asc 8640 02/28/96 009:57 Extracting Index Data From A Table
ti2834 asc 2993 02/28/96 009:57 Redistributing the Borland Database
Engine
ti2837 asc 5740 02/28/96 009:57 Cascading Deletes With Pdox
Referential Integrity
ti2838 asc 17091 02/28/96 009:57 dBASE Expression Indexes: A Primer
ti2840 asc 1388 02/28/96 009:57 Removing the vertical scrollbar from a
TDBGrid
ti2841 asc 1475 02/28/96 009:58 Delphi Consultants and Training
Centers
ti2842 asc 5441 02/28/96 009:58 InterBase BLOB Fields: A Primer
ti2844 asc 9985 02/28/96 009:58 Using The ASCII Driver With Comma-
delimited Files
ti2849 asc 5669 02/28/96 009:58 Determining Record Number In A dBASE

Table
ti2854 asc 7288 02/28/96 009:58 Managing disk volume labels in Delphi
ti2855 asc 2249 02/28/96 009:58 How to copy files in Delphi.
ti2856 asc 1184 02/28/96 009:58 How to terminate all running
applications
ti2857 asc 1326 02/28/96 009:58 How to check to see if a drive is
ready.
ti2858 asc 2716 02/28/96 009:58 How to do pointer arithmetic in
Delphi.
ti2859 asc 1432 02/28/96 009:58 How to do bit-wise manipulation.
ti2860 asc 2058 05/21/96 008:30 Basic Delphi DLL template
ti2861 asc 6567 02/28/96 009:58 Form display with different screen
resolutions.
ti2862 asc 924 02/28/96 009:58 How to keep the app iconized.
ti2863 asc 1064 02/28/96 009:58 How to use a custom cursor.
ti2864 asc 1323 02/28/96 009:59 How to use a popup menu with a VBX.
ti2865 asc 1556 02/28/96 009:59 How to set a max and min form size.
ti2866 asc 1328 02/28/96 009:59 How to get the windows and DOS
versions.
ti2867 asc 1073 02/28/96 009:59 How to tell what kind of drive is
used.
ti2869 asc 2503 02/28/96 009:59 How to determine the current record
number.
ti2870 asc 1098 03/01/96 10:23a How to automate logon for Paradox
tables
ti2873 asc 1051 05/21/96 008:30 packing a dBASE table
ti2892 asc 2424 05/21/96 008:30 string manipulation routines
ti2894 asc 1148 02/28/96 009:59 WinExecAndWait
ti2895 asc 1795 05/21/96 008:30 How to check for app already running.
ti2896 asc 1614 06/14/96 4:06p How to use a form several times
ti2899 asc 2212 02/28/96 009:59 Manually Installing Delphi
ti2901 asc 1463 06/14/96 4:07p Printing in the DOS IDE under Windows
95
ti2903 asc 1420 06/14/96 4:07p Different colored characters in a
string grid
ti2906 asc 2576 02/28/96 009:59 Returns the amount required to repay a
debt.
ti2909 asc 895 02/28/96 009:59 How to click and move components at
runtime.
ti2919 asc 1703 08/05/96 2:12p Changing the NET DIR Programmatically
ti2936 asc 7586 03/05/96 0:54p Delphi 1.02 Maintenance Release
Information
ti2938 asc 5050 06/24/96 4:04p Creating Dynamic Components at Runtime
ti2945 asc 1076 03/04/96 009:54 Loading a Custom Cursor from a RES
File
ti2947 asc 4742 03/05/96 0:54p Loading Bitmaps and Cursors from RES
Files
ti2948 asc 3651 03/04/96 009:54 SQL: Embedded Spaces in Field/Column
Names
ti2949 asc 5018 03/04/96 009:54 Dynamically Allocating Arrays
ti2950 asc 5230 03/04/96 009:54 Resource Expert: What It Is and How to
Install It
ti2951 asc 45706 03/04/96 009:54 Delphi Configuration Files
ti2953 asc 3050 03/04/96 009:54 BDE: Writing Buffer to Disk
ti2954 asc 2335 03/04/96 009:54 Creating and Using Parameterized
Queries
ti2955 asc 7536 03/04/96 009:55 Working With Auto-increment Field

Types
ti2956 asc 2526 03/04/96 009:55 How to Populate a TDBComboBox Or
TDBListBox
ti2957 asc 7906 05/21/96 008:32 New Language Features in Delphi 2.0
ti2958 asc 3528 03/04/96 009:55 Preventing a Form from Resizing
ti2961 asc 2134 06/14/96 4:08p SQL: Sorting on a Calculated Column
ti2962 asc 3249 06/14/96 4:08p SQL: Using the SUBSTRING Function
ti2963 asc 1490 06/14/96 4:08p SQL: Summarizing a Calculated Column
ti2964 asc 8680 03/04/96 009:55 Managing Data Segment Size
ti2967 asc 4287 02/28/97 2:27p Validating input in TEdit components
ti2967 asc 4155 03/04/96 009:55 Validating input in TEdit components
Validating input in TEdit components
ti2970 asc 38485 05/21/96 008:32 DDE: A simple example
ti2976 asc 6138 05/21/96 008:33 TDBGrid and Multi-Selecting Records
ti2976 asc 6140 06/03/97 006:58 TDBGrid and Multi-Selecting Records
TDBGrid and Multi-Selecting Records
ti2977 asc 2847 05/21/96 008:33 Listing the field structures of a
table.
ti2979 asc 2176 06/14/96 4:08p Showing deleted records in a dBASE
table.
ti2980 asc 2293 06/14/96 4:08p Determining a memo's number of lines
showing.
ti2981 asc 6040 05/21/96 008:33 Delphi 2.0 Install Issues
ti2988 asc 5675 06/14/96 4:08p How to Validate ISBNs
ti2989 asc 5118 06/24/96 4:04p BDE setup for Peer-To-Peer(Non-
Dedicated) Networks
ti2993 asc 2570 08/05/96 2:14p Removing "Lock file has grown too
large" Error
ti2996 asc 16887 05/06/96 0:53p Delphi 2.0 for Windows 95 & Windows NT
Factsheet
ti3003 asc 7089 05/17/96 10:11a Delphi Client/Server Suite 2.0 for
Windows 95 & NT
ti3005 asc 6241 06/14/96 4:08p Performing database queries in a
background thread
ti3009 asc 1479 10/23/96 10:03a How to check a ComboBox without
OnClick ocurring.
ti3050 asc 987 06/14/96 4:09p TForm.MDIChildren[] Array and Form
Creation
ti3051 asc 6443 06/12/96 10:10a Delphi Client/Server Certification
Program
ti3052 asc 3130 06/12/96 10:10a Authorized Client/Server Education
Centers
ti3053 asc 6981 06/12/96 10:10a Delphi Client/Server 2.0 Courseware
ti3054 asc 8639 06/12/96 10:10a Study Objectives for the Delphi
Client/Server Exam
ti3055 asc 4356 06/12/96 10:11a Delphi Client/Server 2.0 Train-the-
Trainer Class
ti3078 asc 5161 12/13/96 1:07p Redistributing Applications using the
ISP
ti3089 asc 7732 08/14/96 4:08p Sharing Violation Error with Paradox
Tables
ti3096 asc 1633 08/21/96 2:04p How to Create a TDBGrid Lookup Field
in Delphi 2.0
ti3097 asc 2532 08/20/96 10:09a Dynamically Creating Page Controls and
Tab Sheets
ti3098 asc 780 08/20/96 10:09a Navigating a Multiselected Listbox
ti3099 asc 3311 08/20/96 10:09a Making Your Delphi 2.0 Applications

"Sing"
ti3100 asc 1832 08/20/96 10:09a Obtaining the Physical Path of a Table
ti3101 asc 1871 08/21/96 4:05p Making Accelerators Work with a
TPageControl
ti3102 asc 4382 08/21/96 4:05p How to Dynamically Create A Page
Control
ti3103 asc 6612 08/21/96 4:05p BDE Callbacks to Provide Status on
Operations
ti3104 asc 4546 08/20/96 10:09a Accessing Paradox Tables on CD or
Read-Only Drive
ti3105 asc 11317 08/21/96 10:26a Synchronize a DLL to an Open Dataset
ti3106 asc 3073 08/20/96 10:10a Clean-Boot Delphi 2.0 Installation
ti3128 asc 875 11/13/96 10:11a Creating a Wallpaper Using Delphi
ti3133 asc 1374 10/04/96 10:03a Detecting Windows Shutdown
ti3136 asc 1846 11/13/96 10:13a Returning Default Cursor after Running
Queries
ti3137 asc 2617 11/13/96 10:14a Dynamic creation and circularly
linking forms
ti3138 asc 5011 11/13/96 10:14a Avoid using Resource Heap with Tabbed
Notebooks
ti3144 asc 8513 11/13/96 10:15a The DocOutput Object: Properties and
Methods
ti3145 asc 6996 11/13/96 10:15a The DocOutput Object: Properties and
Methods
The DocInput Object: Properties and Methods
ti3150 asc 2730 10/21/96 1:02p Creating Class Properties
ti3151 asc 2476 11/13/96 10:16a Optimizing Oracle Connections with
Windows 95
ti3152 asc 4872 11/13/96 10:17a Connecting to a 32-bit Sybase server
ti3153 asc 6305 11/13/96 10:17a Hints on Overcoming Installation
Problems
ti3155 asc 7636 11/13/96 008:10 A Better Way To Print a Form
ti3156 asc 8424 11/13/96 008:11 Creating a DataAware Control for
Browsing Data
ti3157 asc 1252 11/13/96 008:11 Using InputBox, InputQuery, and
ShowMessage
ti3158 asc 4473 11/13/96 008:11 Create a new file with the .wav
extension.
ti3159 asc 1774 11/13/96 1:09p Using MS Internet Explorer 3.0 in
Delphi 2
ti3160 asc 10624 11/20/96 11:10a BDE and Database Desktop Locking
Protocol
ti3162 asc 2218 11/22/96 5:09p Getting a record member char array
into a memo.
ti3164 asc 10086 12/09/96 2:08p How to Get the Most Out of DBDEMOS
ti3165 asc 2160 12/09/96 2:09p Exposing a multi string object in COM
ti3166 asc 4179 12/09/96 2:09p Getting runtime properties at runtime
ti3170 asc 2135 12/20/96 4:09p Search and replace in strings: a task
made easy
ti3171 asc 6215 04/10/97 10:03a Dynamically creating a TTable & fields
at runtime
ti3171 asc 6215 04/10/97 11:03a Dynamically creating a TTable & fields
at runtime
ti3171 asc 6215 04/15/97 4:25p Dynamically creating a TTable & fields
at runtime
ti3171 asc 6216 12/20/96 4:09p Dynamically creating a TTableand
fields at runtime

Dynamically creating a TTable & fields at runtime
ti3172 asc 2262 01/22/97 11:08a Activation and Use of the CPUWindow in
the IDE
ti3172 asc 2544 06/02/97 007:00 Activation and Use of the CPUWindow in
the IDE
Activation and Use of the CPUWindow in the IDE
ti3187 asc 3244 01/08/97 3:59p Passing Multidimensional Arrays as
Parameters
ti3188 asc 2040 01/14/97 11:08a Steps for FAT32 Support with the BDE
ti3188 asc 1927 03/28/97 11:04a Steps for FAT32 Support with the BDE
ti3188 asc 2311 04/02/97 4:03p Steps for FAT32 Support with the BDE
ti3188 asc 3043 04/03/97 008:03 Steps for FAT32 Support with the BDE
Steps for FAT32 Support with the BDE
ti3192 asc 2478 01/31/97 008:06 This document implements Drag and Drop
ti3192 asc 2479 02/03/97 10:07a Implementing Drag and Drop
Functionality
ti3192 asc 2480 02/04/97 008:06 Implementing Drag and Drop
Functionality
Implementing Drag and Drop Functionality
ti3194 asc 5209 02/28/97 2:27p Trapping Windows Messages in Delphi
ti3195 asc 1499 07/25/97 007:21 test document please check out &
delete after appr
Hmm. a funny name, but I left the it here anyway.:-}
ti3196 asc 4385 02/28/97 2:27p Direct Commands to Printer -
Passthrough/Escape
ti3197 asc 3210 02/28/97 2:27p Creating a form based on a string
ti3198 asc 1189 02/28/97 2:27p Finding the color depth of a canvas
ti3198 asc 1178 03/03/97 007:28 Finding the color depth of a canvas
Finding the color depth of a canvas
ti3199 asc 1390 02/28/97 2:27p Using FindFirst and the
WIN_32_FIND_DATA structure
ti3200 asc 1572 02/28/97 2:27p Setting the pixels per inch property
of TPrinter
ti3201 asc 7577 02/28/97 2:27p How to use a string table resource
ti3201 asc 7577 03/03/97 008:28 How to use a string table resource
ti3201 asc 7577 03/03/97 10:07a How to use a string table resource
How to use a string table resource
ti3202 asc 3369 03/06/97 10:08a Borland Assist for Delphi/400
ti3202 asc 3333 03/07/97 10:31a Borland Assist for Delphi/400
ti3202 asc 3333 03/10/97 007:05 Borland Assist for Delphi/400
Borland Assist for Delphi/400
ti3204 asc 2728 04/02/97 4:04p TRichEdit Printing in Delphi 2 &
Windows NT 4.0
ti3209 asc 5874 04/02/97 4:05p How to use a user defined resource.
ti3209 asc 5723 04/03/97 11:04a How to use a user defined resource.
ti3209 asc 5723 04/03/97 11:25a How to use a user defined resource.
How to use a user defined resource.
ti3210 asc 3055 04/02/97 4:05p A better way to do pointer arithmetic
ti3210 asc 2924 04/03/97 11:05a A better way to do pointer arithmetic
ti3210 asc 2924 04/03/97 11:26a A better way to do pointer arithmetic
A better way to do pointer arithmetic
ti3211 asc 1566 04/02/97 4:05p Assuring Proper Font Scaling When
Printing
ti3211 asc 1566 04/09/97 008:28 Assuring Proper Font Scaling When
Printing
Assuring Proper Font Scaling When Printing
ti3211 asc 1566 04/09/97 10:04a Assuring Proper Font Scaling When

Printing
ti3212 asc 27912 04/01/97 11:26a BDE Error listing
ti3212 asc 27912 04/09/97 007:25 BDE Error listing
ti3212 asc 27912 04/14/97 1:25p BDE Error listing
ti3212 asc 27912 06/19/97 10:00a BDE Error listing
BDE Error listing
ti3213 asc 7171 07/07/97 007:59 Delphi 3 file types with descriptions
ti3213 asc 7171 07/07/97 008:22 Delphi 3 file types with descriptions
ti3213 asc 7171 07/07/97 009:59 Delphi 3 file types with descriptions
Delphi 3 file types with descriptions
ti3214 asc 2678 07/07/97 007:59 Moving Projects Between Machines or
Directories
ti3214 asc 2678 07/07/97 008:22 Moving Projects Between Machines or
Directories
ti3214 asc 2678 07/07/97 10:00a Moving Projects Between Machines or
Directories
Moving Projects Between Machines or Directories
ti3215 asc 6648 07/07/97 008:00 An example of drag and drop between
DBGrids
ti3215 asc 6648 07/07/97 008:22 An example of drag and drop between
DBGrids
ti3215 asc 6648 07/07/97 10:00a An example of drag and drop between
DBGrids
An example of drag and drop between DBGrids
ti3216 asc 1812 07/07/97 008:01 Looping Through the Controls and
Components Arrays
ti3216 asc 1812 07/07/97 008:22 Looping Through the Controls and
Components Arrays
ti3216 asc 1812 07/07/97 10:01a Looping Through the Controls and
Components Arrays
Looping Through the Controls and Components Arrays
ti3217 asc 3492 07/07/97 008:01 Adding ODBC Drivers in Delphi 3.0
ti3217 asc 3492 07/07/97 008:22 Adding ODBC Drivers in Delphi 3.0
ti3217 asc 3492 07/07/97 10:01a Adding ODBC Drivers in Delphi 3.0
Adding ODBC Drivers in Delphi 3.0
ti3218 asc 1623 07/07/97 008:01 Delphi/400: Activating your License
Key
ti3218 asc 1623 07/07/97 008:22 Delphi/400: Activating your License
Key
ti3218 asc 1623 07/07/97 10:02a Delphi/400: Activating your License
Key
Delphi/400: Activating your License Key
ti3231 asc 3911 07/22/97 3:51p Displaying System Resources in Win 95
and NT 4
ti3232 asc 2765 07/22/97 3:52p Edit Controls that Align Under NT 4
ti3233 asc 1708 07/22/97 3:52p How do I map a network drive in
Windows NT or '95?
ti3234 asc 2808 07/22/97 3:52p Adding shortcuts to Win95/WinNT4
Desktop/StartMenu
ti3235 asc 2111 07/22/97 3:52p Minimizing Application When a Form
Minimizes
ti3239 asc 3211 08/11/97 009:54 Graying Out Enabled/Disabled Data
Aware Controls
ti3240 asc 9202 08/11/97 009:54 Exposing a multi string object in COM
ti3241 asc 1781 08/11/97 009:54 Getting Version Information From Your
Program
ti8520 asc 4191 08/21/96 10:27a Delphi Titles from Leading Book

Publishers
ti9604 asc 3034 04/25/96 10:19a An Overview of Borland Online
Information Services
ti9605 asc 7073 01/13/97 2:16p Technical Support & Customer Support
Phone Numbers
ti9605 asc 7487 02/04/97 2:08p Technical Support & Customer Support
Phone Numbers
ti9605 asc 7603 03/05/97 10:08a Technical Support & Customer Support
Phone Numbers
ti9605 asc 7543 03/21/97 4:06p Developer Support & Customer Support
Phone Numbers
ti9605 asc 7543 03/24/97 006:07 Developer Support & Customer Support
Phone Numbers
ti9605 asc 3924 06/05/97 10:02a Developer Support & Customer Support
Phone Numbers
Developer Support & Customer Support Phone Numbers
ti9652 asc 8614 04/23/96 3:53p Borland International's TechFax System
ti9656 asc 9312 04/25/96 10:21a Technical Support Via the Internet
ti9677 asc 1764 04/25/96 10:22a Borland's Technical Suport Download
Bulletin Board
ti9800 asc 14748 01/13/97 4:08p Borland Assist
ti9800 asc 14915 02/04/97 2:12p Borland Assist
ti9800 asc 15042 03/05/97 10:12a Borland Assist
ti9800 asc 15153 03/06/97 2:28p Borland Assist
ti9800 asc 15116 03/07/97 10:31a Borland Assist
ti9800 asc 15116 03/10/97 007:05 Borland Assist
ti9800 asc 24569 05/13/97 4:02p Borland Assist
ti9800 asc 24684 06/05/97 10:04a Borland Assist
Borland Assist

About Delphi Tis
Welcome to Delphi TIs, a list of the Borland Delphi Technical Information Documents, brought to you by D
C AL CODA.

Contained in this Help file are all the Delphi TI files that were found on the Borland FTP site, as of the
Help File creation date. If there is enough interest and we have the time, this Help file will be periodically
updated.

This Help File is provided as is, with no guarantee that the TIs contained are accurate. You use this
information and Help file at your own risk. We will not be help liable for any harm you think use of this
information or Help file has or has not caused.

We have left the TIs just as they were downloaded from Borland's FTP site. The _Index file was edited, to
remove references to the zipped files. There seems to be some duplication of a few TIs, maybe due to
revised TIs being published. The _Index file is really of limited use in this Help file, but it has been
included anyway.

Using this Help file:

Of course you all know how to use a help file.:-}

But, one suggestion is to make a Find word list (database) in Windows 95. You can then do a Find on any
words and easily view the results.

History:

9/21/1997:
Initial release to a few Delphi Mailing Lists

9/28/1997:
Made the Contents topic the Index of all included TIs
Added links to the Index of TIs, so you can browse the Index and jump to the TI from there

9/29/1997:
Compiled it without compression, because on my system, I could not create a Find database with the
Help File compiled in compressed form.

Errors:

If you find errors in the actual working or layout of the Help File, please let us know at:

kenhale@dcalcoda.com

We hope to keep the latest version, if we can afford the space, on the D C AL CODA web site:

http://www.dcalcoda.com/

We will make this file available on some of the great Delphi Web sites.

If you find errors in the actual TI text or code, I am not sure what you should do.:-}

Thanks:

This Help file is given to the international Delphi community in appreciation for all the help we have gotten
and that happens on a day to day basis. It is a joy to program in Delphi and a joy to see such help and
communication going on.

Thanks also to Jan Goyvaerts for writing HelpScribble (in Delphi!), which was to create this Help file.

Thank you!

Ken Hale and Coda Hale
kenhale@dcalcoda.com
http://www.dcalcoda.com/

A VERY short primer on dynamic memory allocation.
 NUMBER : 2647
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : A VERY short primer on dynamic memory allocation.

Q: How do I reduce the amount of memory taken from the data
segment? (or How do I allocate memory dynamically?)

A:

Let's say your data structure looks like this:

 type
 TMyStructure = record
 Name: String[40];
 Data: array[0..4095] of Integer;
 end;

That's too large to be allocated globally, so instead of
declaring a global variable,

 var
 MyData: TMyStructure;

you declare a pointer type,

 type
 PMyStructure = ^TMyStructure;

and a variable of that type,

 var
 MyDataPtr: PMyStructure;

Such a pointer consumes only four bytes of the data segment.

Before you can use the data structure, you have to allocate it
on the heap:

 New(MyDataPtr);

and now you can access it just like you would global data. The
only difference is that you have to use the caret operator to
dereference the pointer:

 MyDataPtr^.Name := 'Lloyd Linklater';
 MyDataPtr^.Data[0] := 12345;

Finally, after you're done using the memory, you deallocate it:

 Dispose(MyDataPtr);

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Installing Delphi on a Network
 NUMBER : 2558
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Installing Delphi on a Network

 ----Installing Delphi to a network drive-----

 Note:

 Delphi was never intended to be run from a network, and Borland
 makes no claims in it's ability to do so. This information is
 provided solely as a starting point and is NOT intended to be
 a cookbook.
 This TI is assuming a basic Windows 3.1 or 3.11 installation.
 if you are using another operating system, appropriate adjustments
 will, of course, need to be made.

1. Install Delphi to the Network from any Workstation, but be sure
 to check the "Windows Lan" option if Windows is installed on a
 server and it's directories are read only.

2. Edit DELPHI.INI in the windows directory.
 -enter:
 [Globals]
 PrivateDir = your local directory
 -add:
 [Library]
 SearchPath = Netdrive:\DELPHI\LIB
 ComponentLibrary= your local directory\COMPLIB.DCL

 This will allow each user to have his own private options,
 private DFM file, as well as a private Component Library. If a
 public component library is desired, the ComponentLibray line
 may be left out.

3. Copy COMPLIB.DCL and DELPHI.DMT from the DELPHI\BIN directory
 to the local private directories.

4. Copy DELPHI.INI to all machines to be running Delphi.

 If Windows is on the network, everyone will need to set up
 their local directories identically, since it will only
 have that one INI file to work from.

5. If the WINSYS option was selected at install time, there was
 a DELPHI\WINSYS directory created. There is a bug in the install
 engine, and not all of the needed files get included. Copy the
 files from: CDROM:\RUNIMAGE\WINDOWS and

 CDROM:\RUNIMAGE\WINDOWS\SYSTEM into the WINSYS directory. Then
 this directory will need to be included in the path. If you wish
 to copy these files into the WINDOWS\SYSTEM directory, be sure
 to back up those directories first, in case of file collisions.
 Care should be taken to not overwrite newer versions of these
 files. You may find the DOS program REPLACE.EXE useful in
 accomplishing this.

6. If there was no WINSYS directory created (Step 5),
 Copy CD:RUNIMAGE\WINDOWS and CD:\RUNIMAGE\WINODWS\SYSTEM
 directories to all Workstations. Put these files in a separate
 directory and include it in the path.(This will make
 uninstalling much easier.)

7. Copy the group file created in the windows directory
 to all other stations to be using Delphi.

8. Use Program Manager to create the group on these machines.

9. Modify the path on all workstations that will run Delphi as
 follows:

 PATH=C:\IBLOCAL\BIN;C:\DELPHI\BIN

 All users must load the DOS command SHARE(Assuming windows
 3.1) before using Delphi.

10. The following line should be added to each user's AUTOEXEC.BAT:

 SHARE /F:4096 /L:40

11. Modify the WIN.INI on all machines (assuming a local windows
 installation,) adding the following:

 [IDAPI]
 DLLPATH=X:\IDAPI;C:\IDAPI
 CONFIGFILE01=X:\IDAPI\IDAPI.CFG

 [Borland Language Drivers]
 LDPath=X\IDAPI\LANGDRV

 [BWCC]
 BitmapLibrary=BWCC.DLL

 [Interbase]
 RootDirectory=X:\IBLOCAL

 [Paradox Engine]
 UserName=PxEngine
 NetNamePath=X:\
 MaxTables=64
 RecBufs=64
 MaxLocks=64
 MaxFiles=64
 SwapSize=64
 NetNameFDSM=

 [DDE Servers]
 DBD=X:\DBD\DBD

 [DBD]
 WORKDIR=X:\DBD
 PRIVDIR=C:\DBD\DBDPRIV

 Where X is the Network Drive and path installed to.
 Note that PRIVDIR is set locally.

Note, Delphi will install numerous INI files to the Windows
directory. These files can be copied over to other workstations
only if the corresponding INI files do not already reside there.
(They shouldn't) If this is the case you will have to manually
attach these files to the ends of the existing ones.

The INI files that Delphi installs are:

RS_SQLIF INI
WINHELP INI
MULTIHLP INI
DELPHI INI
ODBCINST INI
ODBC INI
RPTSMITH INI
RS_RUN INI
ODBCISAM INI

The configuration described above should allow for the installed
location to be set read only after it is installed, but this was
only tested with a local installation of Windows.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Making a form selectable without the main form.
 NUMBER : 2602
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Making a form selectable without the main form.

Q: How do I make it so that only the form I select comes to
the top? (i.e. without the main form)

A: Try this in any secondary window that you DON'T want
dragging the program along:

 ...
 private {This goes in the for's type declaration.}
 { Private declarations }
 procedure CreateParams(VAR Params: TCreateParams); override;
 ...

procedure TForm2.CreateParams(VAR Params: TCreateParams);
begin
 Inherited CreateParams(Params);
 Params.WndParent := GetDesktopWindow;
end;

 By setting the form's parent window handle to the
desktop, you remove the link that would normally force the
whole application to come to the top when this form comes to
the top.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to get a file's date and time stamp
 NUMBER : 2616
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to get a file's date and time stamp.

Q: How do I get a file's date and time stamp?

A:

function GetFileDate(TheFileName: string): string;
var
 FHandle: integer;
begin
 FHandle := FileOpen(TheFileName, 0);
 try
 Result := DateTimeToStr(FileDateToDateTime(FileGetDate(FHandle)));
 finally
 FileClose(FHandle);
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Lists the virtual key values
 NUMBER : 2617
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Lists the virtual key values

Q: What are the values for the virtual keys?

A:

 vk_LButton = $01;
 vk_RButton = $02;
 vk_Cancel = $03;
 vk_MButton = $04; { NOT contiguous with L & RBUTTON }
 vk_Back = $08;
 vk_Tab = $09;
 vk_Clear = $0C;
 vk_Return = $0D;
 vk_Shift = $10;
 vk_Control = $11;
 vk_Menu = $12;
 vk_Pause = $13;
 vk_Capital = $14;
 vk_Escape = $1B;
 vk_Space = $20;
 vk_Prior = $21;
 vk_Next = $22;

 vk_End = $23;
 vk_Home = $24;
 vk_Left = $25;
 vk_Up = $26;
 vk_Right = $27;
 vk_Down = $28;
 vk_Select = $29;
 vk_Print = $2A;
 vk_Execute = $2B;
 vk_SnapShot = $2C;
{ vk_Copy = $2C not used by keyboards }
 vk_Insert = $2D;
 vk_Delete = $2E;
 vk_Help = $2F;
{ vk_A thru vk_Z are the same as their ASCII equivalents: 'A' thru 'Z' }
{ vk_0 thru vk_9 are the same as their ASCII equivalents: '0' thru '9' }

 vk_NumPad0 = $60;
 vk_NumPad1 = $61;
 vk_NumPad2 = $62;
 vk_NumPad3 = $63;
 vk_NumPad4 = $64;
 vk_NumPad5 = $65;

 vk_NumPad6 = $66;
 vk_NumPad7 = $67;
 vk_NumPad8 = $68;
 vk_NumPad9 = $69;
 vk_Multiply = $6A;
 vk_Add = $6B;
 vk_Separator = $6C;
 vk_Subtract = $6D;
 vk_Decimal = $6E;
 vk_Divide = $6F;
 vk_F1 = $70;
 vk_F2 = $71;
 vk_F3 = $72;
 vk_F4 = $73;
 vk_F5 = $74;

 vk_F6 = $75;
 vk_F7 = $76;
 vk_F8 = $77;
 vk_F9 = $78;
 vk_F10 = $79;
 vk_F11 = $7A;
 vk_F12 = $7B;
 vk_F13 = $7C;
 vk_F14 = $7D;
 vk_F15 = $7E;
 vk_F16 = $7F;
 vk_F17 = $80;
 vk_F18 = $81;
 vk_F19 = $82;
 vk_F20 = $83;
 vk_F21 = $84;
 vk_F22 = $85;
 vk_F23 = $86;
 vk_F24 = $87;
 vk_NumLock = $90;
 vk_Scroll = $91;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to paint the form with a bitmap.
 NUMBER : 2619
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to paint the form with a bitmap.

Q: How do I paint the background of my form with a bitmap as tiles?

A:

unit Unit1;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs;

type
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 procedure FormPaint(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;
 Bitmap: TBitmap;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 Bitmap := TBitmap.Create;
 Bitmap.LoadFromFile('C:\WINDOWS\cars.BMP');
end;

procedure TForm1.FormPaint(Sender: TObject);
var
 X, Y, W, H: LongInt;
begin
 with Bitmap do begin
 W := Width;
 H := Height;
 end;
 Y := 0;

 while Y < Height do begin
 X := 0;
 while X < Width do begin
 Canvas.Draw(X, Y, Bitmap);
 Inc(X, W);
 end;
 Inc(Y, H);
 end;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to associate a string with a component.
 NUMBER : 2621
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to associate a string with a component.

Q: Is there a way to associate a string with each component?

A: Since the Tag property is a longint, you can type cast it
as a Pointer or PChar. So, you can basically store a pointer
to a record by using the Tag property.

Note: You're not going to be able to store the string, or
pointer rather, at design time. This is something you'll have
to do at run time. Take a look at this example:

 var
 i: integer;
 begin
 for i := 0 to ComponentCount - 1 do

 if Components[i] is TEdit then
 Components[i].Tag := LongInt(NewStr('Hello '+IntToStr(i)));
 end;

Here, I loop through the components on the form. If the
component is a TEdit, I assign a pointer to a string to its Tag
property. The NewStr function returns a PString (pointer to a
string). A pointer is basically the same as a longint or
better, occupies the same number of bytes in memory. Therefore,
you can type cast the return value of NewStr as a LongInt and
store it in the Tag property of the TEdit component. Keep in
mind that this could have been a pointer to an entire record.
Now I'll use that value:

 var
 i: integer;
 begin
 for i := 0 to ComponentCount - 1 do
 if Components[i] is TEdit then begin
 TEdit(Components[i]).Text := PString(Components[i].Tag)^;
 DisposeStr(PString(Components[i].Tag));
 end;
 end;

Here, again I loop through the components and work on only the
TEdits. This time, I extract the value of the component's Tag
property by typecasting it as a PString (Pointer to a string)
and assigning that value to the TEdit's Text property. Of
course, I must dereference it with the caret (^) symbol. Once
I do that, I dispose of the string stored in the edit

component. Important note: if you store anything in the
TEdit's Tag property as a pointer, you are responsible for
disposing of it also.

FYI, Since Delphi objects are really pointers to class
instances, you can also store objects in the Tag property. As
long as you remember to Free them.

Three methods spring to mind to use Tags to access strings that
persist from app to app.

1. If your strings stay the same forever, create a string
resource in Resource Workshop (or equiv) and use the Tags as
indexes into your string resource.

2. Use TIniFile and create a section for your strings, and
give each string a name with number so that your ini file has a
section like this:

[strings]
string1=Aristotle
string2=Plato
string3=Well this is Delphi, after all

Then you can fetch them back out this way:

 var s1: string;
 ...
 s1 := IniFile1.ReadString('strings', 'string'+IntToStr(Tag), '');

3. Put your strings into a file, with each followed by a
carriage return. Read them into a TStringList. Then your Tags
become an index into this stringlist:

 StringList1.LoadFromFile('slist.txt');
 ...
 s1 := StringList1[Tag];

Given the way Delphi is set up, I think the inifile method is easiest.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How close a file opened from a Delphi DLL in VB.
 NUMBER : 2622
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : How close a file opened from a Delphi DLL in VB.

Q: How do I close a file that was opened in a DLL (Delphi
made) and called from VB?

A: This is a known problem. It comes from the fact that VB
closes the 5 DOS standard handles (0..4) at startup. So the
open file routine will reuse one of these handles to open the
first disk file. That is not a problem in using the file, but
the Pascal Close routine has a build-in safety feature: it
refuses to close a file that has one of the standard handles!
That is a Good Thing under DOS but screws up the works in your
situation since the file opened by the DLL is never closed, not
even when the DLL goes down! VC++ is obviously less restricted
and will close a standard handle.

You can fix this problem yourself. Instead of using the Pascal
Close/CloseFile routine to close the file in the DLL, use one
of these:

Procedure ReallyCloseFileVar(Var F); Assembler;
{ F should be a file type }
Asm
 les bx, F { store F in es:bx }
 mov bx, word ptr es:[bx] { store handle in bx }
 mov ah, $3E { function 3Eh = close file }
 call Dos3Call { execute int 21h }
End;

Procedure ReallyCloseFileHandle(FileHandle: word); assembler;
{ FileHandle is the DOS file handle }
asm
 mov bx, Handle { store handle in bx }
 mov ah, $3E { function 3Eh = close file }
 call DOS3Call { execute int 21h }
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to readln longer than 255 chars.
 NUMBER : 2645
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : How to readln longer than 255 chars.

Q: How can I readln() from a file when the lines are longer
than 255 bytes?

A: ReadLn will accept an array [0..something] of Char as
buffer to put the read characters in and it will make a proper
zero-terminated char out of them. The only limitation is this:
the compiler needs to be able to figure out the size of the
buffer at compile time, which makes the use of a variable
declared as PChar and allocated at run-time impossible.

Workaround:

 Type
 {use longest line you may encounter here}
 TLine = Array [0..1024] of Char;

 PLine = ^TLine;

 Var
 pBuf: PLine;
 ...
 New(pBuf);

 ...
 ReadLn(F, pBuf^);

To pass pBuf to functions that take a parameter of type Pchar,
use a typecast like PChar(pBuf).

Note: you can use a variable declared as of type TLine or an
equivalent array of char directly, of course, but I tend to
allocate anything larger than 4 bytes on the heap...

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Uninstalling Delphi (16 bit)
 NUMBER : 2529
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Uninstalling Delphi

 Uninstalling Delphi (16 bit)

Contents

Introduction
A) Deleting Directories
B) Deleting the Program Group
C) Removing .INI files
D) Editing WIN.INI
E) Editing WINHELP.INI
F) Editing your AUTOEXEC.BAT
G) Removing files placed in WINDOWS and WINDOWS\SYSTEM directories

Introduction

 This document describes the process of "uninstalling" Delphi
from your system. It is a good idea to have a back up of your
system files, due to the fact that you will need to use the
'delete' command.
 This document assumes the product was installed to C: drive,
with default directories and full (default) installation settings.
Any deviations from the default settings may require adjustments/
changes to the instructions below.

A) Deleting Directories

If you have any program that uses IDAPI, please disregard
any mention of deleting it or its directory below.

If you wish to delete directories using DOS commands, see
section 1 below. To use Windows, see section 2.

 1) To erase directories from your hard drive on a system
 with DOS 6.0 or greater, you need to be in the root
 directory (i.e. C:\>) and type DELTREE <DIR NAME> and
 hit return(Example: C:\>deltree delphi). Answer Yes
 when it prompts to delete all subdirectories (see
 below for the list of directories to delete). For
 versions of DOS lower than 6.0, you need to go into
 each directory and type DEL *.* until all directories
 are empty. Then DOS will allow you to delete the
 directory names with the command RD <DIR NAME>.

 2) From Windows, go to File Manager. Using File Manager,
 select the <DIR NAME> folder. Then hit the Delete key.
 Answer Yes to All when prompted to delete subdirectories.

 The directories you need to delete are:

 C:\Delphi C:\Rptsmith
 C:\Rs_run C:\Dbd
 C:\Iblocal C:\Idapi
 * C:\Informix

 * - Client/ Server version only

B) Deleting the Program Group

To delete the program group 'Delphi' in Windows 3.1 and
Windows NT, highlight the group without opening it, and
press the Delete key. Under Windows 95, the folders will
have been removed by deleting the directories in the
previous section.

C) Removing .INI files

Delete the following .INI files from your \WINDOWS directory
(CAUTION: if you have any other Borland products or any programs
that use ODBC, back up the .INI files listed below before
deleting them. Then test all other programs to insure they
run normally!):

 DELPHI.INI
BORHELP.INI
DBD.INI

 INTERBAS.INI
 * ODBC.INI
 * ODBCINST.INI
 * ODBCISAM.INI

RPTSMITH.INI
RS_RUN.INI
RS_SQLIF.INI
VSL.INI
MULTIHLP.INI

 * - files used by ODBC applications

D) Editing WIN.INI

Make a backup of your WIN.INI file. Then, in your \WINDOWS
directory, remove the following sections from your WIN.INI
file(CAUTION: If any other program uses Paradox Engine,
IDAPI, or Database Desktop, use discretion in deleting

these lines!):

[DDE Servers]
DBD=C:\DBD\DBD

[DBD]
WORKDIR=C:\DBD
PRIVDIR=C:\DBD\DBDPRIV

[Interbase]
RootDirectory=C:\IBLOCAL

 * [IDAPI]
DLLPATH=C:\IDAPI
CONFIGFILE01=C:\IDAPI\IDAPI.CFG

 * [Borland Language Drivers]
LDPath=C:\IDAPI\LANGDRV

 * - DO NOT delete these if other programs use IDAPI

Remember to save your new WIN.INI.

E) Editing WINHELP.INI

Remove the following lines from WINHELP.INI located in your
WINDOWS directory:

BDECFG.HLP=C:\IDAPI
DBD.HLP=C:\DBD
DELPHI.HLP=C:\DELPHI\BIN
WINAPI.HLP=C:\DELPHI\BIN
CWG.HLP=C:\DELPHI\BIN
CWH.HLP=C:\DELPHI\BIN
LOCALSQL.HLP=C:\DELPHI\BIN
VQB.HLP=C:\DELPHI\BIN
SQLREF.HLP=C:\IBLOCAL\BIN
WISQL.HLP=C:\IBLOCAL\BIN
RPTSMITH.HLP=C:\rptsmith
RS_DD.HLP=C:\rptsmith
SBL.HLP=C:\rptsmith
RS_RUN.HLP=C:\rptsmith
RCEXPERT.HLP=C:\DELPHI\RCEXPERT
DRVDBASE.HLP=C:\WINDOWS\SYSTEM
DRVPARDX.HLP=C:\WINDOWS\SYSTEM
ODBCINST.HLP=C:\WINDOWS\SYSTEM

F) Editing your AUTOEXEC.BAT

First, make a backup of your AUTOEXEC.BAT file. Then edit your
AUTOEXEC.BAT and remove C:\IBLOCAL\BIN; and C:\IDAPI; from

your PATH statement if they are present.
(Example:
 (OLD) PATH = C:\;C:\WINDOWS;C:\DOS;C:\IDAPI;C:\IBLOCAL\BIN;
 (NEW) PATH = C:\;C:\WINDOWS;C:\DOS;)
Remember to save your new AUTOEXEC.BAT.

G) Removing files from your WINDOWS and WINDOWS\SYSTEM directories

Please note: These files are listed for reference ONLY. It IS NOT
recommended that you delete these files. Deletion of certain files
used by other programs WILL cause your system to crash.

CAUTION!!!!CAUTION!!!!CAUTION!!!!CAUTION!!!!CAUTION!!!!CAUTION!!!!

Many files shown in this section are shared by other programs.
Deleting them may cause other programs not to work INCLUDING
WINDOWS. If you wish to remove files from these directories,
please do so ONLY at your own discretion. One possible method
would be to delete a file, and run ALL other programs on your
system to make sure they work. Copies of all files listed below
are located on the Delphi CD in the runimage directory. You may
copy files from the CD if one that is required is inadvertantly
deleted. Please be careful.

CAUTION!!!!CAUTION!!!!CAUTION!!!!CAUTION!!!!CAUTION!!!!CAUTION!!!!

Files placed or updated in your \WINDOWS directory by Delphi:

DELPHI.CBT M3OPEN.DLL
M3OPEN.EXE MBW.EXE
MFTP.EXE MHPARPA.DLL
MNETONE.EXE MNOVLWP.DLL
MPATHWAY.DLL MPCNFS.EXE
MPCNFS2.EXE MPCNFS4.DLL
MSOCKLIB.DLL MVWASYNC.EXE
MWINTCP.EXE WINSOCK.DLL

Files placed or updated in your \WINDOWS\SYSTEM directory by
Delphi:

BIBAS04.DLL BIFLT04.DLL
BIMDS04.DLL BIPDX04.DLL
BIPDX04.HLP BIUTL04.DLL
BIVBX11.DLL BLBAS04.DLL
BLINT04.DLL BLINT04.HLP
BLMDS04.DLL BLODBC.LIC
BLUTL04.DLL BOLE16D.DLL
BTRV110.DLL BWCC.DLL
CHART2FX.VBX COMPOBJ.DLL

 * COREWIN.DLL CTL3D.DLL
CTL3DV2.DLL * DBNMP3.DLL
DRVACCSS.HLP DRVBTRV.HLP
DRVDBASE.HLP DRVEXCEL.HLP
DRVFOX.HLP DRVTEXT.HLP

GAUGE.VBX * LDLLSQLW.DLL
MSJETDSP.DLL MULTIHLP.DLL
NWCALLS.DLL NWIPXSPX.DLL

 * NWNETAPI.DLL ODBC.DLL
ODBCADM.EXE ODBCCURS.DLL
ODBCINST.DLL ODBCINST.HLP
OLE2.DLL OLE2.REG
OLE2CONV.DLL OLE2DISP.DLL
OLE2NLS.DLL OLE2PROX.DLL

 * ORA6WIN.DLL * ORA7WIN.DLL
PICT.VBX PXENGCFG.EXE
PXENGWIN.DLL QEBI.LIC
RED110.DLL SIMADMIN.DLL
SIMBA.DLL STDOLE.TLB
STORAGE.DLL STRESS.DLL
SWITCH.VBX TXTISAM.DLL
TYPELIB.DLL * W3DBLIB.DLL
XBS110.DLL XLSISAM.DLL

 * - Client/ Server version only

All .BOR files are backup files that Delphi renamed and replaced
with updated or modified files, you may use these files in
comparison to the files you have changed. If you have installed
any software after the .BOR file was created or the .BOR file is
the same as the file it replaced, the .BOR file can be deleted.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to use array of const.
 NUMBER : 2654
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to use array of const.

Q: How do I use "array of const"?

A: An array of const is in fact an open array of TVarRec (a
predeclared Delphi type you can look up in the online help). So
the following is Object Pascal psuedocode for the general battle
plan:

procedure AddStuff(Const A: Array of Const);
Var i: Integer;
Begin
 For i:= Low(A) to High(A) Do
 With A[i] Do
 Case VType of
 vtExtended: Begin
 { add real number, all real formats are converted to
 extended automatically }
 End;
 vtInteger: Begin

 { add integer number, all integer formats are converted
 to LongInt automatically }
 End;
 vtObject: Begin
 If VObject Is DArray Then
 With DArray(VObject) Do Begin
 { add array of doubles }
 End
 Else If VObject Is IArray Then
 With IArray(VObject) Do Begin
 { add array of integers }
 End;
 End;
 End; { Case }
End; { AddStuff }

For further information see "open arrays" in the on-line help.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Function mapping from the Paradox Engine to BDE
 NUMBER : 2656
 PRODUCT : BDE
 VERSION : 2.x
 OS : Windows
 DATE : August 5, 1996

 TITLE : Function mapping from the Paradox Engine to BDE

 Types

Paradox Engine BDE Variable name in this doc

PXCODE DBIResult rslt
TABLEHANDLE hDBICur tabH
RECORDHANDLE pBYTE recH
FIELDNUMBER UINT16 iFld
LOCKHANDLE UINT32
RECORDNUMBER UINT32 recNum
BLOBHANDLE INT16

 Functions

Paradox Engine BDE

BLANK DbiPutField(tabH, iFld, recH, NULL);
 (Cannot compare Field Data with BLANK in
 IDAPI. Use the value returned from
 DbiGetField in bIsBlank to determine if a
 field is blank.)

ISBANK() Use the blank parameter in
 DbiGetField(tabH, iFld, recH, pDest,
 &bIsBlank);
 or
 DbiVerifyField(tabH, iFld, pSrc, &bIsBlank);

PXBlobClone() Not Supported.
 (Private BLOBs are not supported in IDAPI)

PXBlobClose()
accept == FALSE DbiFreeBlob(tabH, recH, iFld);
accept == TRUE Not required in IDAPI. Note that
 DbiFreeBlob(tabH, recH, iFld) needs to be
 called _after_ adding a record containing a
 BLOB to a table.

PXBlobDrop() DbiGetRecord(tabH, dbiNOLOCK, recH, NULL);
 DbiTruncateBlob(tabH, recH, iFld, 0);
 DbiModifyRecord(tabH, recH, FALSE);

PXBlobGet() DbiGetBlob(tabH, recH, iFld, iOff, iLen,

 pDest, &iRead);

PXBlobGetSize() DbiGetBlobSize(tabH, recH, iFld, piSize);

PXBlobOpenRead() DbiOpenBlob(tabH, recH, iField,dbiREADONLY);

PXBlobOpenWrite() DbiOpenBlob(tabH, recH, iField,
 dbiREADWRITE);

PXBlobPut() DbiPutBlob(tabH, recH, iFld, iOff, iLen,
 pSrc);

PXBlobQuickGet() DbiGetBlobHeading(tabH, iFld, recH, &iSize);
 (Paradox Tables only.)

PXDateDecode() DbiDateDecode(dateD, piMon, piDay, piYear);

PXDateEncode() DbiDateEncode(iMon, iDay, iYear, pdateD);

PXErrMsg() DbiGetErrorString(iErrorCode, szError);
 or
 DbiGetErrorInfo(&ErrInfo);
 (Must be called imediately after the
 offending function - privides more
 information than DbiGetErrorString.)

PXExit() DbiCloseDatabase(&hDb);
 DbiExit();

PXFldBlank() DbiGetField(tabH, iFld, recH, NULL,
 &bIsBlank);
 or
 DbiVerifyField(tabH, iFld, pSrc, &bIsBlank);
 bIsBlank = TRUE is field is blank.

PXFldHandle() DbiGetFieldDescs(tabH, &fldDesc);
 fldDesc.iFldNum;

PXFldName() DbiGetFieldDescs(tabH, &fldDesc);
 fldDesc.szName;

PXFldType() DbiGetFieldDescs(tabH, &fldDesc);
 fldDesc.iFldType;
 fldDesc.iSubType;

PXGetAlpha() DbiGetField(tabH, iFld, recH,
 (pBYTE)szString, &bIsBlank);

PXGetDate() DbiGetField(tabH, iFld, recH,
 (pBYTE)&Date, &bIsBlank);

PXGetDefaults() DbiOpenCfgInfoList(hCfg, eOpenMode,
 eConfigMode, pszCfgPath,
 &tabH);

PXGetDoub() DbiGetField(tabH, iFld, recH,

 (pBYTE)&Double, &bIsBlank);

PXGetLong() DbiGetField(tabH, iFld, recH,
 (pBYTE)&Long, &bIsBlank);

PXGetShort() DbiGetField(tabH, iFld, recH,
 (pBYTE)&Short, &bIsBlank);

PXInit() Not Supported. See PXWinInit.

PXKeyAdd() DbiAddIndex(hDb, tabH, szTblName, szTblType,
 &IdxDesc);

PXKeyDrop() DbiDeleteIndex(hDb, tabH, szTblName,
 szTblType, NULL, NULL,
 iIndexId);

PXKeyMap() Not Supported.
 (Key Mapping is no longer needed - all
 pertinent information is put in the index
 descriptor - IdxDesc)

PXKeyNFlds() DbiGetIndexSeqNo(tabH, NULL, NULL, 0,
 &seqNo);
 DbiGetIndexDesc(tabH, seqNo, &idxDesc);
 idxDesc.iFldsInKey;
 (Note that Paradox in the only database
 which has the concept of a primary index)

PXKeyQuery() Not Supported.
 (The BDE does not have any function like
 this. You need to call DbiGetIndexDescs()
 and then look for the index you want. Once
 found all the information about that index
 is available to you in the structure.)

PXNetErrUser() DbiErrGetErrorContext(ecUSERNAME,
 szUserName);

PXNetFileLock() DbiAcqPersistTableLock(hDb, (pCHAR)fileName,
 Driver);

PXNetFileUnlock() DbiRelPersistTableLock(hDb, (pCHAR)fileName,
 Driver);

PXNetInit() Not Support. See PXWinInit.

PXNetRecGotoLock() Not Supported.
 (Can be simulated by setting a bookmark on
 the record which is locked and then
 switching to that bookmark:
 DbiSetToBookMark(tabH, pBookMark);)

PXNetRecLock() DbiGetRecord(tabH, dbiWRITELOCK, NULL,
 NULL);

PXNetRecLocked() DbiIsRecordLocked(tabH, edbiLock, piLocks);

PXNetRecUnlock() DbiRelRecordLock(tabH, FALSE);
 or durring the update of the record -
 DbiModifyRecord(tabH, recH, TRUE);

PXNetTblChanged() Need to register a cbTABLECHANGED callback.
 (Paradox only.)

PXNetTblLock() DbiAcqTableLock(tabH, eLockType);
 (Note that only Read and Write locks
 are supported by this function. For a
 FL on a table, open the table with
 the dbiOPENEXCL parameter or use the
 DbiAcqPersistTableLock function.)

PXNetTblRefresh() DbiForceReread(tabH);

PXNetTableUnlock() DbiRelTableLock(tabH, eLockType);

PXNetUserName() DbiGetNetUserName(pzName);

PXPswAdd() DbiAddPassword(szPassword);
 (Paradox tables only.)

PXPswDel() DbiDropPassword(szPassword);
 (Paradox tables only.)

PXPutAlpha() DbiPutField(tabH, iFld, recH,
 (pBYTE)szString);

PXPutBlank() DbiPutField(tabH, iFld, recH, NULL);

PXPutDate() DbiPutField(tabH, iFld, recH,
 (pBYTE)&Date);

PXPutDoub() DbiPutField(tabH, iFld, recH,
 (pBYTE)&Double);

PXPutLong() DbiPutField(tabH, iFld, recH,
 (BYTE)&Long);

PXPutShort() DbiPutField(tabH, iFld, recH,
 (pBYTE)&Short);

PXRawGet() DbiSetProp((hDBIObj)tabH, curXLTMODE,
 xltNONE)
 DbiGetRecord(tabH, NULL, recH, NULL);

PXRawPut() DbiSetProp((hDBIObj)tabH, curXLTMODE,
 xltNONE)
 DbiInsertRecord(tabH, dbiNOLOCK, recH,
 pDest);

PXRecAppend() DbiAppendRecord(tabH, recH);

PXRecBufClose() The application needs to release the memory
 associated with the record buffer. In 'C',
 call: free(recH).
 (Record buffers in IDAPI are owned by the
 application.)

PXRecBufCopy() The application needs to copy the memory
 which is used for the record buffer. In 'C',
 call:
 memcpy(recHDest, recHSource, size).
 (Record buffers in IDAPI are owned by the
 application.)

PXRecBufEmpty() DbiInitRecord(tabH, recH);

PXRecBufOpen() The application needs to allocate memory for
 record buffer. In 'C', call:
 DbiGetCursorProps(tabH, &CurProps);
 recH = (pBYTE)malloc(CurProps.iRecBufSize
 * sizeof(BYTE));
 (Record buffers in IDAPI are owned by the
 application.)

PXRecDelete() DbiDeleteRecord(tabH, NULL);

PXRecFirst() DbiSetToBegin(tabH);
 DbiGetNextRecord(tabH, dbiNOLOCK, NULL,
 NULL);
 (IDAPI has the concept of Beginning of file,
 which is before the first record).

PXRecGet() DbiGetRecord(tabH, dbiNOLOCK, recH, NULL);

PXRecGoto() Not supported by the SQL Drivers.
 Example for use with 'C':
 DBIResult gotoRec(hDBICur tabH,
 UINT32 recNum)
 {
 DBIResult lastError;
 CURProps curProps;

 lastError = DbiGetCursorProps(tabH,
 &curProps);
 if (lastError != DBIERR_NONE)
 {
 return lastError;
 }

 if (!strcmp(curProps.szTableType,
 szPARADOX))
 {
 lastError = DbiSetToSeqNo(tabH,
 recNum);
 }
 else if (!strcmp(curProps.szTableType,
 szDBASE))

 {
 lastError = DbiSetToRecordNo(tabH,
 recNum);
 }
 else
 {
 lastError = DBIERR_NOTSUPPORTED;
 }

 return lastError;
 }

PXRecInsert() DbiInsertRecord(tabH, dbiNOLOCK, recH);

PXRecLast() DbiSetToEnd(tabH);
 DbiGetPriorRecord(tabH, dbiNOLOCK, NULL,
 NULL);
 (IDAPI has the concept of End of File, which
 is after the last record).

PXRecNext() DbiGetNextRecord(tabH, dbiNOLOCK, NULL,
 NULL);

PXRecNFlds() DbiGetCursorProps(tabH, &CurProps);
 lFlds = CurProps.iFields;

PXRecNum() Not supported for SQL Tables.
 Example for use with 'C':
 DBIResult getCurRecNum(hDBICur tabH,
 UINT32 *recNum)
 {
 DBIResult lastError;
 CURProps curProps;
 RECProps recProps;

 lastError = DbiGetCursorProps(tabH,
 &curProps);
 if (lastError != DBIERR_NONE)
 {
 return lastError;
 }

 if (!strcmp(curProps.szTableType,
 szPARADOX))
 {
 lastError = DbiGetSeqNo(tabH,
 (pUINT32)recNum);
 }
 else if (!strcmp(curProps.szTableType,
 szDBASE))
 {
 lastError = DbiGetRecord(tabH,
 dbiNOLOCK,
 NULL,
 &recProps);
 *recNum = recProps.iPhyRecNum;

 }
 else
 {
 lastError = DBIERR_NOTSUPPORTED;
 }

 return lastError;
 }

PXRecPrev() DbiGetPriorRecord(tabH, dbiNOLOCK, NULL,
 NULL);

PXRecUpdate() DbiModifyRecord(tabH, recH, TRUE);

PXSave() DbiForceReread(tabH);

PXSetDefaults() DbiOpenCfgInfoList()

PXSetHWHandler() Not Supported

PXSrchFld() DbiSetToKey(tabH, keySEARCHEQ, FALSE, iFlds
 iLen, pIdxBuf);

PXSrchKey() DbiSwitchToIndex(&tabH, NULL, NULL, 0,
 TRUE);
 DbiSetToKey(tabH, keySEARCHEQ, FALSE, iFlds
 iLen, pIdxBuf);
 (can only search on the currently active
 index)

PXTblAdd() DbiBatchMove(NULL, hSrcCur, NULL, hDestCur,
 batAPPEND, 0, NULL, NULL, NULL,
 NULL, NULL, NULL, NULL, NULL,
 NULL, NULL, NULL, TRUE, FALSE,
 NULL, TRUE);

PXTblClose() DbiCloseCursor(&tabH);

PXTblCopy() DbiCopyTable(hDb, TRUE, szSrcName,
 szPARADOX, szDestName);

PXTblCreate() DbiCreateTable(hDb, TRUE, &TblDesc);

PXTblCreateMode() DbiCreateTable(hDb, TRUE, &TblDesc);
 (Use the optional parameters to change the
 level of the table.)

PXTblDecrypt() Only Supported for Paradox Tables
 Example for use with 'C':
 DBIResult decryptTable(hDBIDb hDb,
 const char *tableName)
 {
 CRTblDesc crTblDesc;
 DBIResult lastError;

 // Clear the buffer

 memset(&crTblDesc, 0,
 sizeof(CRTblDesc));

 // name of the table
 strcpy(crTblDesc.szTblName, tableName);

 lastError = DbiDoRestructure(hDb, 1,
 &crTblDesc,
 NULL, NULL,
 NULL,
 FALSE);

 return lastError;
 }

PXTblDelete() DbiDeleteTable(hDb, szTblName, szPARADOX);

PXTblEmpty() DbiEmptyTable(hDb, tabH, szTblName,
 szPARADOX);

PXTblEncrypt() (Only Supported for Paradox Tables)
 Example for use with 'C':
 DBIResult encryptTable(hDBIDb hDb,
 const char *tableName,
 const char *password)
 {
 CRTblDesc crTblDesc;
 DBIResult lastError;

 // Clear the buffer
 memset(&crTblDesc, 0,
 sizeof(CRTblDesc));

 // name of the table
 strcpy(crTblDesc.szTblName, tableName);
 // Master password suplied for the table
 crTblDesc.bProtected = TRUE;
 // Password for the table
 strcpy(crTblDesc.szPassword, password);

 lastError = DbiDoRestructure(hDb, 1,
 &crTblDesc,
 NULL, NULL,
 NULL, FALSE);

 return lastError;
 }

PXTblExist() Not directly supported. Need to use
 DbiOpenTableList to get a list of available
 tables, and then search that list for the
 table. Example for use with 'C':
 BOOL tableExists(hDBIDb hDb,
 const char *userName,
 const char *tableName,
 const char *tableType)

 {
 BOOL exists = FALSE;
 BOOL isLocal = TRUE;
 hDBICur tabH = 0;
 char *tblName;
 TBLBaseDesc tblDesc;
 CHAR remoteName[DBIMAXNAMELEN+1];
 DBIResult lastError;

 if ((!strcmp(tableType, szPARADOX)) ||
 (!strcmp(tableType, szDBASE)) ||
 (!strcmp(tableType, szASCII)))
 {
 tblName = _fstrtok((pCHAR)tableName,
 ".");
 isLocal = TRUE;
 }
 else if ((!strcmp(tableType, "ORACLE"))
 ||
 (!strcmp(tableType, "SYBASE")))
 {
 strcpy(remoteName, userName);
 strcat(remoteName, ".");
 strcat(remoteName, tableName);
 tblName = (pCHAR)tableName;
 isLocal = FALSE;
 }
 else
 {
 strcpy(remoteName, tableName);
 tblName = (pCHAR)tableName;
 isLocal = FALSE;
 }

 if (tblName == NULL)
 {
 lastError = DBIERR_INVALIDTABLENAME;
 return FALSE;
 }

 lastError = DbiOpenTableList(hDb, FALSE,
 TRUE,"*.*",
 &tabH);
 if (lastError != DBIERR_NONE)
 {
 return FALSE;
 }

 lastError = DbiSetToBegin(tabH);
 if (lastError != DBIERR_NONE)
 {
 return FALSE;
 }

 while ((DbiGetNextRecord(tabH,dbiNOLOCK,
 (pBYTE)&tblDesc,

 NULL))
 == DBIERR_NONE)
 {
 if (!stricmp(tblDesc.szName,
 tblName))
 {
 // Check if the types match
 if (strcmp(tblDesc.szType,
 tableName) &&
 (isLocal))
 {
 // keep searching it the
 // table is of the wrong
 // type
 continue;
 }
 lastError = DBIERR_NONE;
 DbiCloseCursor(&tabH);
 return TRUE;
 }
 }

 if (tabH)
 {
 DbiCloseCursor(&tabH);
 }

 lastError = DBIERR_NOSUCHTABLE;

 return exists;
 }

PXTblMaxSize() DbiCreateTable(hDb, TRUE, &TblDesc);
 (This is done using the optional parameters
 in the table descriptor)

PXTblName() DbiGetCursorProps(tabH, &CurProps);
 strcpy(szTblName, CurProps.szName);

PXTblNRecs() DbiGetRecordCount(tabH, &iRecCount);
 (This function returns an approximation of
 the number of records in the table.)

PXTblOpen() DbiOpenTable(hDb, szTblName, szPARADOX,
 NULL, NULL, indexID,
 dbiREADWRITE, dbiOPENSHARED,
 xltFIELD, TRUE, NULL, &tabH);

PXTblProtected() Not directly supported. For local tables,
 need to call DbiOpenTableList and get the
 information for that table.
 Example for use with 'C':
 BOOL isProtected(hDBIDb hDb,
 const char *tableName,
 const char *tableType)
 {

 BOOL protect = FALSE;
 hDBICur tabH = 0;
 char *tblName;
 TBLFullDesc tblDesc;
 DBIResult lastError;

 // Different methodology required for
 // local and remote tables
 if ((!strcmp(tableType, szPARADOX)) ||
 (!strcmp(tableType, szDBASE)) ||
 (!strcmp(tableType, szASCII)))
 {
 tblName = _fstrtok((pCHAR)tableName,
 ".");
 if (tblName == NULL)
 {
 lastError =
 DBIERR_INVALIDTABLENAME;
 return FALSE;
 }

 lastError = DbiOpenTableList(hDb,
 TRUE, TRUE,
 "*.*", &tabH);
 if (lastError != DBIERR_NONE)
 {
 return FALSE;
 }

 lastError = DbiSetToBegin(tabH);
 if (lastError != DBIERR_NONE)
 {
 return FALSE;
 }

 while ((DbiGetNextRecord(tabH,
 dbiNOLOCK,
 (pBYTE)&tblDesc,
 NULL))
 == DBIERR_NONE)
 {
 if (!stricmp(
 tblDesc.tblBase.szName,
 tblName))
 {
 if (stricmp(
 tblDesc.tblBase.szType,
 tableType))
 {
 // Keep searching if the
 // type doesn't match
 continue;
 }
 if (
 tblDesc.tblExt.bProtected
 == TRUE)

 {
 // Table is protected
 lastError = DBIERR_NONE;
 DbiCloseCursor(&tabH);
 return TRUE;
 }
 else
 {
 lastError = DBIERR_NONE;
 DbiCloseCursor(&tabH);
 return FALSE;
 }
 }
 }

 if (tabH)
 {
 DbiCloseCursor(&tabH);
 }

 lastError = DBIERR_NOSUCHTABLE;
 }
 else
 {
 lastError = DbiOpenTable(hDb,
 (pCHAR)tableName,
 (pCHAR)tableType,
 NULL, NULL, NULL,
 dbiREADONLY,
 dbiOPENSHARED,
 xltNONE, FALSE,
 NULL, &tabH);
 if (lastError == DBIERR_NONE)
 {
 DbiCloseCursor(&tabH);
 protect = FALSE;
 return protect;
 }
 else if (lastError ==
 DBIERR_INVALIDPASSWORD)
 {
 lastError = DBIERR_NONE;
 protect = TRUE;
 return protect;
 }
 }

 return protect;
 }

PXTblRename() DbiRenameTable(hDb, szOldName, szTableType,
 szNewName);

PXTblUpgrade() DbiDoRestructure(hDb, 1, pTblDesc, pSaveAs,
 NULL, NULL, FALSE);

 (Need to use the Optional Parameters to set
 the level of the table. Local tables only.)

PXWinInit() DbiInit(NULL);
 DbiOpenDatabase(NULL, NULL, dbiREADWRITE,
 dbiOPENSHARED, NULL, 0,
 NULL, NULL, &hDb);

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Making your own hotkeys.
 NUMBER : 2659
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Making your own hotkeys.

Q: How can I trap for my own hotkeys?

A: First: set the form's KeyPreview := true;

Then, you do something like this:

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
 if (ssCtrl in Shift) and (chr(Key) in ['A', 'a']) then
 ShowMessage('Ctrl-A');
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to scroll your form with pgUP and pgDn.
 NUMBER : 2661
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to scroll your form with pgUP and pgDn.

Q. How can you do scrolling functions in a TForm component
using keyboard commands? For example, scrolling up and down
when a PgUp or PgDown is pressed. Is there some simple way to
do this or does it have to be programmed by capturing the
keystrokes and manually responding to them?

A. Form scrolling is accomplished by modifying the
VertScrollbar or HorzScrollbar Postion properties of the
form. The following code demonstrates how to do this:

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);
const
 PageDelta = 10;
begin
 With VertScrollbar do
 if Key = VK_NEXT then
 Position := Position + PageDelta
 else if Key = VK_PRIOR then
 Position := Position - PageDelta;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Introduction to BDE Programming
 NUMBER : 2761
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : August 5, 1996

 TITLE : Introduction to BDE Programming

 Introduction to BDE Programming
 BDE v2.0

I) Project Setup
 This section covers the basics of what needs to be
 done in order to set up a Borland Database Engine
 project or makefile.

II) Design Overview
 A high level overview of the steps that are required
 to create a simple application which retrieves fields
 from a table

III) Design Specifics
 Detailed description, with code examples, of the
 steps described in part II.

IV) Error Handler
 This section contains the error handler used by this
 example.

I) Project Setup
================

This document provides a quick introduction to programming
with the Borland Database Engine. By the end of this section,
you should have a simple EasyWin, BDE example which gets
a record from a table and displays the first two fields.

The following steps must be followed when starting to write a
BDE application.

First, set up the project or makefile
MAIN.CPP - File to contain your code
DBERR.CPP - Error handling routine
IDAPI.LIB - BDE Import Library
MAIN.DEF - Module Definition file

Select the large memory model.

For this simple application, set the target to be an EasyWin
application. This way we don't have to deal with any Windows UI
issues.

It is also suggested to install the IDAPI.TOK file so as to have
syntax hilighting for BDE functions and types (directions on
this are included in the \BDE\DOC\IDAPITOK.TXT file).

The on-line help file, IDAPI.HLP, can also be incorporated into
the BC 4.5 OpenHelp architecture, allowing context sensitive
help on IDAPI types and functions.

Other required setup:

The Borland Database Engine is fairly stack intensive,
especially when doing batch operations and queries, so it is
generally recommended that the stack be set to a minimum of 25k
(for Windows C/C++ applications, the stack size is set in the
module definition file)

Increase the number of file handles available to the application.
By default, the BDE assumes that it has access to 48 physical
file handles (set by the BDE Configuration utility, System
page | MAXFILEHANDLES option, 5-255). Due to this default
setting, it is usually best to set the number of file handles
available to an application to a minimum of 68 using the Windows
API function SetHandleCount. Seemingly random errors can occur
when the BDE does not have access to enough file handles.

Use the Debug Layer when developing applications. The debug layer
performs much stricter error checking than the regular DLL,
resulting in fewer GP faults and less re-booting of your machine.
It will also produce a trace output of which IDAPI functions were
called by an application. Note that use of the debug layer
requires the use of both the Debug DLL (Set using the DLLSwap
utility), as well as a call to the DbiDebugLayerOptions function.

Make certain to compile with 'Allocate enums as ints' selected
(in the BC 4.x IDE, Options | Project | Compiler | Code
Generation). A number of structures, such as CURProps, make use
of enumerations. Within the DLL, these are allocated as two
byte values. Turning off this option will result in your code
passing only one byte. This error generally manifests itself
with stack corruption problems, such as GP faults when calling
or returning from a function.

Within a module to contain BDE code, include the following header
files:
WINDOWS.H
IDAPI.H

Note that order is important. The WINDOWS.H file must be included
before IDAPI.H.

II) Design Overview
===================

Before we start writing code, a brief overview of what needs to
be done to get a record from a tables:

Increase the number of file handles available to the application
Initialize the Borland Database Engine
Enable the debug layer
Open a database object
Set the database object to point to the directory containing the
 table
Set the directory for temporary objects
Open a table, creating a cursor object
Get the properties of the table
Using these properties, allocate memory for a record buffer
Position the cursor on the desired record
Get the desired record from the cursor (table)
Get the desired field(s) from the record
Free all resources

Note that throughout the following short example unfamiliar
variable types may be used. These are IDAPI variable types that
are defined in the IDAPI.H header file. For example, BYTE,
BOOL, CHAR, and FLOAT.

III) Design Specifics
=====================

Increase the number of file handles available to the application
--

A call to the Windows API function SetHandleCount will
increase the number of file handles available to an application
in the Windows environment:

int HandlesAvail;
int HandlesWanted;

HandlesAvail = 0;
HandlesWanted = 68;

HandlesAvail = SetHandleCount(HandlesWanted);
if (HandlesAvail < HandlesWanted)
{
 // Display message re: not enough available
 // file handles
 return;
}

Note that in non-trivial cases it is recommended to determine
the number of file handles that are specified in the BDE
configuration file. This would be done using the
DbiOpenCfgInfoList function, which will be described in a
later section on configuration management.

Initialize the Borland Database Engine

The Borland Database Engine is initialized using the DbiInit
function:

 CHKERR(DbiInit(NULL));

Note that the CHKERR macro is defined in the DBERR.H
file, which is a part of the Error Handling module. The call
to DbiInit allocates system resources for the client.

Enable the Debug layer

The following code is used to enable the debug layer,
outputting trace information to a text file on disk.

DbiDebugLayerOptions(DEBUGON | OUTPUTTOFILE, "MYTRACE.INF");

Note that in certain situations, you may also want to use the
FLUSHEVERYOP flag, which will force output to the trace
file after every operation. While this is slower, it is useful
when a GP fault occurs....

Open a database object

The next step that is needed is to open a database object. All
table access must be performed within the context of a
database. Local databases generally use what is referred to as
the "STANDARD" database, which is what we will be using in this
example. The preferred method would be to create an alias to a
local directory and using that as the database. This allows for
easy modification in the future if one day it is decided to move
the application from using dBASE tables to using InterBase
tables. The DbiOpenDatabase function is used to open a database:

hDBIDb hDb; // Handle to the Database

hDb = 0; // Initialize to zero for cleanup
 // purposes

CHKERR_CLEANUP(
 DbiOpenDatabase(NULL, // Database name
 // - NULL for standard Database
 NULL, // Database type -
 // NULL for standard Database
 dbiREADWRITE, // Open mode - Read/Write or
 // Read only
 dbiOPENSHARED, // Share mode - Shared or
 // Exclusive
 NULL, // Password - not needed for the
 // STANDARD database
 NULL, // Number of Optional Parameters
 NULL, // Field Desc for Optional
 // Parameters
 NULL, // Values for the
 // Optional Parameters

 &hDb) // Handle to the database
);

// At the end of the function
CleanUp:
 // Close only if open
 if (hDb != 0)
 {
 DbiCloseDatabase(&hDb);
 }

Set the database object to point to the directory containing
--
the table

The working directory next needs to be set to the directory
containing the table. While it is possible to open a table in
other directories, specifying the absolute path, it is generally
recommended to open tables in the working directory, as a
number of operations, such as getting a list of available
tables, work off the current directory. The DbiSetDirectory
function is used to set the working directory (using the default
location of the BDE example tables):

CHKERR_CLEANUP(
 DbiSetDirectory(hDb, // Handle to the
 // database which is being modified
 "C:\\BDE\\EXAMPLES\\TABLES")
 // The new working directory
);

Note that the full, absolute path needs to be used. Relative
paths are not supported.

Set the directory for temporary objects

While not all BDE applications create temporary objects, but
larger applications will at one time or another. For example,
the result set from a query or the records which cause a key
violation in a restructure will be placed in a temporary table.
By default, this temporary, or private directory, as it is
called, is the startup directory. This will cause a problem if
the application is run off a network or a CD-ROM., as the
directory cannot be shared, and it must we writable. The
DbiSetPrivateDir function is used to set the private directory
for a client:

CHKERR_CLEANUP(
 DbiSetPrivateDir("c:\\<SOMEDIR>")
 // Select a directory on a local drive that is not
 // used by other applications.
);

Note that the full, absolute path needs to be used. Relative

paths are not supported.

Open a table, creating a cursor object

Next, open the table. Upon opening a table, a cursor object is
created and returned to the calling application. A cursor
object is basically an abstraction which allows queries and
tables to be accessed in the same method:

hDBICur hCur; // Handle to the cursor (table)
CHAR szTblName[DBIMAXNAMELEN]; // Table name - DBIMAXNAMELEN
 // is defined in IDAPI.H
CHAR szTblType[DBIMAXNAMELEN]; // Table Type

hCur = 0; // Initialize to zero for cleanup
 // purposes

strcpy(szTblName, "customer"); // Name of the table
strcpy(szTblType, szPARADOX); // Type of the tables
 // - szPARADOX is defined in IDAPI.H

CHKERR_CLEANUP(
 DbiOpenTable(hDb, // Handle to the
 // database to which this cursor will
 // be related
 szTblName, // Name of the table
 szTblType, // Type of the table - only
 // used for local tables
 NULL, // Index Name - Optional
 NULL, // IndexTagName - Optional.
 // Only used by dBASE
 0, // IndexId - 0 = Primary. Optional.
 // Paradox and SQL only
 dbiREADWRITE, // Open Mode -
 // Read/Write or Read Only
 dbiOPENSHARED, // Shared mode -
 // SHARED or EXCL
 xltFIELD, // Translate mode
 // FIELD or NONE
 // FIELD: Convert data from table
 // format to C format
 // NONE: Leave data in it's native
 // state
 FALSE,// Unidirectional -
 // False means can navigate forward
 // and back.
 NULL, // Optional Parameters.
 &hCur)// Handle to the cursor
);

CleanUp:
 // Close only if open
 if (hCur != 0)
 {
 DbiCloseCursor(&hCur); // Note the use of DbiCloseCursor

 // - there is no DbiCloseTable.
 }

Get the properties of the table

We next need to determine the size of the record buffer for
the table. This information is gotten from the cursor via the
DbiGetCursorProps function. The Cursor properties include
information on the table name, size, type, number of fields,
and record buffer size. More information can be found on
cursor properties in the on-line help under CURProps.

CURProps curProps; // Properties of the cursor

CHKERR_CLEANUP(
 DbiGetCursorProps(hCur, // Handle to the cursor
 &curProps) // Properties of the cursor
 // (table)
);

curProps.iRecBufSize contains the size of the record buffer.

Using these properties, allocate memory for a record buffer

pBYTE pRecBuf; // Pointer to the record buffer

pRecBuf = NULL; // For cleanup purposes

// Allocate memory for the record buffer
pRecBuf = (pBYTE)malloc(curProps.iRecBufSize * sizeof(BYTE));
if (pRecBuf == NULL)
{
 // Display some error message
 goto CleanUp;
}

CleanUp:
 if (pRecBuf)
 {
 free(pRecBuf);
 }

Position the cursor on the desired record

The DbiSetToBegin() function is used to position the cursor
to the "crack" before the first record in the table. Crack
semantics basically allow for the current location of the cursor
to be before the first record, between records, or after the
last record. One of the reasons for having crack semantics is to
allow the use of one function to access all records in a table.
For example, in place of having to use DbiGetRecord the first
time, and DbiGetNextRecord each subsequent time, it is now
possible to use DbiGetNextRecord to get all records in a table.

CHKERR_CLEANUP(
 DbiSetToBegin(hCur) // Position the specified cursor
 // to the crack before the first record
);

Get the desired record from the cursor (table)
--

The DbiGetNextRecord function is normally used to get a
record from a table. Note that the current record of the cursor
is set to the record returned by this function (the next record
in the table):

CHKERR_CLEANUP(
 DbiGetNextRecord(hCur, // Cursor from which to get the
 // record.
 dbiNOLOCK, // Lock Type
 pRecBuf, // Buffer to store the record
 NULL) // Record properties -
 // don't need in this case
);

Get the desired field(s) from the record
--

The last step is to get the field values out of the record
buffer and into some local variable. Note that in this case we
are making assumptions about which field is at which ordinal
position within the table, as well as the size of the field. In
general, it is recommended to use DbiGetFieldDescs to get
information about a field before retrieving it. Also note that a
single function, DbiGetField, is used to get all fields, other
than BLOBs, from a table.

FLOAT custNum;
BOOL isBlank;

CHKERR_CLEANUP(
 DbiGetField(hCur, // Cursor which contains the record
 1, // Field Number of the "Customer" field.
 pRecBuf, // Buffer containing the record
 (pBYTE)&custNum, // Variable for the Customer
 // Number
 isBlank) // Is the field blank?
);

Free all resources

After all desired operations have been performed, the
resources allocated on behalf of the application need to be
cleaned up. In addition to any memory explicitly allocated
using malloc or new, all engine objects must also be cleaned
up, including the cursor, database, and engine:

CleanUp:

 if (pRecBuf)
 {
 // Free the record buffer
 free(pRecBuf);
 }
 if (hCur !=0)
 {
 // Close the cursor
 DbiCloseCursor(&hCur);
 }
 // Close only if open
 if (hDb != 0)
 {
 // Close the database
 DbiCloseDatabase(&hDb);
 }

 // Close the BDE.
 DbiExit();

IV) Error handler

// DBERR.H

// This file contains macros to use around BDE functions
// which are not expected to fail, or which would
// result in a fatal error. More explicit error handling needs
// to be done in the application when a non-fatal
// error can occur, for example, getting an End of file error,
// DBIERR_EOF, from a DbiGetNextRecord
// loop.

#ifndef __DBERR_H
#define __DBERR_H

#include <idapi.h>

// Macro to use when no cleanup is required

#define CHKERR(parm) DBIError(__FILE__, __LINE__, \
 #parm, parm) ; \
 if (GlobalDBIErr) { \
 return GlobalDBIErr ;}

// Macro to use when cleanup must be done within a function
// for example, to close open tables or to free allocated memory.
// Note: must have a CleanUp label defined in each function
// where this macro is used. The CleanUp
// label should start the section of a function which frees the
// resources allocated within a given function

#define CHKERR_CLEANUP(parm) DBIError(__FILE__, __LINE__, \
 #parm, parm) ; \
 if (GlobalDBIErr) { \
 goto CleanUp ;}

// Global variable to contain the result code
extern DBIResult GlobalDBIErr;

// Prototype for the error handling function
DBIResult DBIError(pCHAR, UINT16, pCHAR, DBIResult);

#endif

// DBERR.C

#include <string.h>
#include "DBERR.h"

// The way to use this macro is to include the DBERR.H.
// Then pass an IDAPI function as a parameter to the
// macro:
//
// #define CHKERR(parm) DBIError(__FILE__, __LINE__, \
// #parm, parm) ; \
// if (GlobalDBIErr) { \
// return GlobalDBIErr ;}
//
// You would then use it as such:
// CHKERR(DbiCreateTable(hDb, bOverWrite,
// &crTblDsc)) ;

// Global variable to hold return value from BDE functions
DBIResult GlobalDBIErr;

// Global variables to contain the error messages. Defined
// globally to ensure that an error message can be displayed
// even if the system is out of memory (and to keep it off
// the stack)

// Contains just the BDE error message
static char szDBIStatus[(DBIMAXMSGLEN * 7)+1];

// Contains the entire message, including file name and line
// number of the offending function.
static char szMessage[(DBIMAXMSGLEN * 7)+1+110];

//==
// Function:
// DBIError();
//
// Input: module name (pCHAR), line number (UINT16),
// Engine function name (pCHAR),
// Result (DBIResult)
//
// Return: A DBIResult value.
//
// Description:
// This is a function which takes in the information of
// where the error occurred and displays error
// information in a message box.

//==
DBIResult
DBIError (pCHAR module, UINT16 line, pCHAR function,
 DBIResult retVal)
{
 DBIErrInfo ErrInfo; // Structure to contain the error
 // information

 if (retVal == DBIERR_NONE)
 {
 GlobalDBIErr = DBIERR_NONE;
 return retVal;
 }
 // Don't want to call functions if the DLL is not there....
 if (retVal != DBIERR_CANTFINDODAPI)
 {
 // Get as much error information as possible
 DbiGetErrorInfo(TRUE, &ErrInfo);

 // Make certain information is returned on the correct
 // error (that this function was called
 // immediately after the function that caused the error.
 if (ErrInfo.iError == retVal)
 {
 strcpy(szDBIStatus, ErrInfo.szErrCode);

 if (strcmp(ErrInfo.szContext1, ""))
 {
 strcat(szDBIStatus, ErrInfo.szContext1);
 }
 if (strcmp(ErrInfo.szContext2, ""))
 {
 strcat(szDBIStatus, ErrInfo.szContext2);
 }
 if (strcmp(ErrInfo.szContext3, ""))
 {
 strcat(szDBIStatus, ErrInfo.szContext3);
 }
 if (strcmp(ErrInfo.szContext4, ""))
 {
 strcat(szDBIStatus, ErrInfo.szContext4);
 }
 }
 else {
 DbiGetErrorString(retVal, szDBIStatus);
 }

 sprintf(szMessage,
 "Module:\t\t%s\nFunction:\t%s\nLine:\t\t%d\n"
 "Category:\t%d\nCode:\t\t%d\nError:\r\n\r\n%s\n",
 module, function, line, ErrCat(retVal),
 ErrCode(retVal), szDBIStatus);

 MessageBox(NULL, szMessage, "BDE Error",
 MB_ICONEXCLAMATION);
 }

 else
 {
 // Display an error message if the BDE DLL's cannot be
 // found.
 MessageBox(NULL, "Cannot find Borland Database"
 " Engine files: Check the [IDAPI] section"
 " in WIN.INI.", "BDE Initialization Error",
 MB_ICONHAND | MB_OK);
 }

 GlobalDBIErr = retVal;
 return retVal;
}

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

New Language Features in Delphi 2.0 - 32 Bit
 NUMBER : 2695
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : February 28, 1996

 TITLE : New Language Features in Delphi 2.0 - 32 Bit

New Language Features in Delphi 2.0 - 32

Delphi32 defines several new data types that reduce the limitation
set by Windows 3.1. Delphi32 has also changed a few data types to
take advantage of the 32 bit environment.

New data types include:

 Character type
 String type
 Variant type
 Currency type

Changed data types:

 Integer
 Cardinal

Additional Syntax:

 Unit finalization section

New Data Types
--- ---- -----

Character Type

Delphi 2.0 introduces new wide character types to support Unicode.
Delphi 1.0 treated characters as 8-bit values of type Char.

These are the standard types that represent characters in Delphi32.

 ANSIChar - A standard 8-bit ANSI character, equivalent to the
 Char type in previous versions of Delphi.

 WideChar - A 16-bit character, representing a Unicode character.
 If the high-order byte is zero, the low-order byte
 contains an ANSI character.

 Char - By default, Char is equivalent to ANSIChar. Char
 works in the same way as the implementation-dependent
 Integer type, which is equivalent to SmallInt in
 16-bit versions of Delphi and to LongInt in 32-bit
 versions of Delphi. In Delphi 2.0, Char defaults to

 an 8-bit value.

Character-pointer types:

 Pointer type Character type

 PANSIChar ANSIChar

 PWideChar WideChar
 PChar Char

 The semantics of all the character-pointer types are
 identical. The only thing that varies is the size of
 the character pointed to.

String Type

Delphi 2.0 supports strings of nearly unlimited length in addition
to the 255-character counted strings previously supported. A new
compiler directive, $H, controls whether the reserved word "string"
represents a short string or the new, long string. The default
state of $H, is $H+, using long strings by default. Alll Delphi 2.0
components use the new long string type.

These are the new string types.

 ShortString - A counted string with a maximum length of 255
 characters. Equivalent to string in Delphi 1.0. Each
 element is of type ANSIChar.
 AnsiString - A new-style string of variable length, also called a

 "long string." Each element is of type ANSIChar.
 string - Either a short string or an ANSI string, depending on
 the value of the $H compiler directive.

Here are the compatibility issues.

Although most string code works interchangeably between short strings
and long strings, there are certain short-string operations that
either won't work on long strings at all or which operate more
efficiently when done a different way. The following table summarizes
these changes.

Short String Long string
operation equivalent Explanation

PString type string All long strings are dynamically
 allocated, so PString is redundant
 and requires more bookkeeping.
S[0] := L SetLength(S,L) Because long strings are
 SetString(S,P,L) dynamically allocated, you must

 call the SetLength procedure to
 allocate the appropriate amount

 of memory.
StrPCopy
(Buffer, S) PChar(S) You can typecast long strings

 into null-terminated strings. The
 address of the long string is the

 address of its first character,
 and the long string is followed by

 a null.
S := StrPas(P) S := P Long strings can automatically copy

 from null-terminated strings.

Long strings cannot be passed to OpenString-type parameters or var
short-string parameters.

Varient Type

Delphi 2.0 introduces variant types to give you the flexibility to
dynamically change the type of a variable. This is useful when
implementing OLE automation or certain kinds of database operations
where the parameter types on the server are unknown to your
Delphi-built client application.

A variant type is a 16-byte structure that has type information
embedded in it along with its value, which can represent a string,
integer, or floating-point value. The compiler recognizes the
standard type identifier Variant as the declaration of a variant.

In cases where the type of a variant is incompatible with the type
needed to complete an operation, the variant will automatically
promote its value to a compatible value, if possible. For instance,
if a variant contains an integer and you assign it to a string, the
variant converts its value into the string representing the integer
number, which is then assigned to the string.

You can also assign a variant expression to a variable of a standard
type or pass the variant as a parameter to a routine that expects
a standard type as a parameter. Delphi coerces the variant value
into a compatible type if necessary, and raises an exception if it
cannot create a compatible value.

Currency Type

Delphi 2.0 defines a new type called Currency, which is a
floating-point type specifically designed to handle large values
with great precision. Currency is assignment-compatible with all
other floating-point types (and variant types), but is actually
stored in a 64-bit integer value much like the Comp type.

Currency-type values have a four-decimal-place precision. That
is, the floating-point value is stored in the integer format
with the four least significant digits implicitly representing
four decimal places.

Changed Data Types
------- ---- -----
The implementation-dependent types Integer and Cardinal are
32-bit values in Delphi 2.0, where they were 16-bit values in
Delphi 1.0. To explicitly declare 16-bit integer data types, use
the SmallInt and Word types.

Additional Syntax
---------- ------
You can include an optional finalization section in a unit.
Finalization is the counterpart of initialization, and takes
place when the application shuts down. You can think of the
finalization section as "exit code" for a unit. The finalization
section corresponds to calls to ExitProc and AddExitProc in
Delphi 1.0.

The finalization begins with the reserved word finalization. The
finalization section must appear after the initialization section,
but before the final end. statement.

Once execution enters an initialization section of a unit, the
corresponding finalization section is guaranteed to execute when
the application shuts down. Finalization sections must handle
partially-initialized data properly, just as class destructors
must.

Finalization sections execute in the opposite order that units
were initialized. For example, if your application initializes
units A, B, and C, in that order, it will finalize them in the
order C, B, and A.

The outline for a unit therefore looks like this:

unit UnitName;
interface
{ uses clause; optional }
...
implementation
{ uses clause; optional }
...
initialization { optional }
...
finalization { optional }
...
end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to Circumvent the "index not found" Exception.
 NUMBER : 2711
 PRODUCT : Delphi
 VERSION : All
 OS : Windows
 DATE : December 13, 1995

 TITLE : How to Circumvent the "index not found" Exception.

Q: How do I open a dBASE table without the required MDX file?
 I keep getting an "Index not found..." exception.

A: When you create a dBASE table with a production index (MDX), a
 special byte is set in the header of the DBF file. When you
 subsequently attempt to re-open the table, the dBASE driver
 will read that special byte, and if it is set, it will also
 attempt to open the MDX file. When the MDX file cannot be
 opened, an exception is raised.

 To work around this problem, you need to reset the byte (byte
 28 decimal) in the DBF file that causes the MDX dependency
 to zero.

 The following unit is a simple example of how to handle the
 exeption on the table open, reset the byte in the DBF file,
 and re-open the table.

unit Fixit;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls, DB, DBTables, Grids, DBGrids;

type
 TForm1 = class(TForm)
 Table1: TTable;
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

const

 TheTableDir = 'c:\temp\';
 TheTableName = 'animals.dbf';

procedure RemoveMDXByte(dbFile: String);
{ This procedure accepts a DBF file as a parameter. It will patch}
{ the DBF header, so that it no longer requires the MDX file }
const
 Value: Byte = 0;
var
 F: File of byte;
begin
 AssignFile(F, dbFile);
 Reset(F);
 Seek(F, 28);
 Write(F, Value);
 CloseFile(F);
end;

procedure TForm1.Button1Click(Sender: TObject);
{ This procedure is called in response to a button click. It }
{ attempts to open a table, and, if it can't find the .MDX file, }
{ it patches the DBF file and re-execute the procedure to }
{ re-open the table without the MDX }
begin
 try
 { set the directory for the table }
 Table1.DatabaseName := TheTableDir;
 { set the table name }
 Table1.TableName := TheTableName;
 { attempt to open the table }
 Table1.Open;
 except
 on E:EDBEngineError do
 { The following message indicates the MDX wasn't found: }
 if Pos('Index does not exist. File', E.Message)>0 then begin
 { Tell user what's going on. }
 MessageDlg('MDX file not found. Attempting to open
 without index.', mtWarning, [mbOk], 0);
 { remove the MDX byte from the table header }
 RemoveMDXByte(TheTableDir + TheTableName);
 { Send the button a message to make it think it was }
 { pressed again. Doing so will cause this procedure to }
 { execute again, and the table will be opened without }
 { the MDX }
 PostMessage(Button1.Handle, cn_Command, bn_Clicked, 0);
 end;
 end;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

College Student Guide to Reading and Writing Files
 NUMBER : 2719
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : College Student Guide to Reading and Writing Files

College Student Crib Notes to:

1) Printing out your programs' output to a file.
2) Printing out your programs' output to the printer.
3) Reading from an input file.

Printing Out Your Programs Output to a File
-------- --- ---- -------- ------ -- - ----
Often times, professors will require more than your honesty
and good faith to receive full credit for your program. They
will want to see both your program listing and the output
generated from the program. But how do you do this in Delphi
and our Pascal Products ???

Simply in Delphi

 program CrtApp;
 uses WinCrt;
 var outfile: TextFile;
 begin
 AssignFile(outfile, 'c:\outfile.txt');
 Rewrite(outfile);
 writeln(outfile, 'Hello World from Delphi');
 writeln(outfile, 'My Program works, and here is ' +
 'the output to prove it...');
 CloseFile(outfile);
 end.

Simply in Pascal

 Program HelloWorld;
 var
 outfile: text;
 begin
 assign(outfile, 'c:\output.txt');
 rewrite(outfile);
 writeln(outfile, 'Hello World');
 writeln(outfile, 'My Program works, and here is the
 output to prove it...');
 close(outfile);
 end.

Printing Out Your Programs' Output to the Printer

-------- --- ---- --------- ------ -- --- -------
In some cases, there may be a need to print output directly to
the printer. This is the way.

In Delphi ...

 program CrtApp;
 uses WinCrt;
 var outfile: TextFile;
 begin
 assignfile(outfile, 'LPT1');
 rewrite(outfile);
 writeln(outfile, 'Hello World from Delphi');
 writeln(outfile, 'My Program works, and here is ' +
 'the output to prove it...');
 closefile(outfile);
 end.

In Pascal ...

 Program HelloWorld;
 var
 outfile: text;
 begin
 assign(outfile, 'LPT1');
 rewrite(outfile);
 writeln(outfile, 'Hello World');
 writeln(outfile, 'My Program works, and here is the
 output to prove it...');
 close(outfile);
 end.

Reading From an Input File
------- ---- -- ----- ----
Many times, it will be neccessary to read information from an
input file supplied by another person. This is an example of
how to implement this.

In Delphi ...

 program CrtApp;
 uses WinCrt;
 var
 infile, outfile: TextFile;
 num_lines, x: integer;
 line: string;
 begin
 assignfile(infile, 'C:\INFILE.TXT');
 assignfile(outfile, 'C:\OUTFILE.TXT');
 reset(infile); {reset moves the pointer to the beginning}
 {of the file. }
 rewrite(outfile); {clears the contents of the file}
 readln(infile, num_lines);
 for x:= 1 to num_lines do
 begin

 readln(infile, line);
 writeln(outfile, line);
 end;
 closefile(infile);
 closefile(outfile);
 end.

In Pascal ...

 Program ReadInput;
 var
 infile, outfile: text;
 num_lines, x: integer;
 line: string;
 begin
 assign(infile, 'C:\INFILE.TXT');
 assign(outfile, 'C:\OUTFILE.TXT');
 reset(infile); {reset moves the pointer to the beginning}
 {of the file. }
 rewrite(outfile); {clears the contents of the file}
 readln(infile, num_lines);
 for x:= 1 to num_lines do
 begin
 readln(infile, line);
 writeln(outfile, line);
 end;
 close(infile);
 close(outfile);
 end.

{START INFILE.TXT}
2
Hello World
My Program works, and here is the output to prove it.
{END INFILE.TXT}

For further reference, please check your Programmer's Reference.
Look for the topics (AssignFile, Assign, Reset, Rewrite, readln,
writeln, Close, CloseFile)

This document was written and inspired by the author's sympathy
for the starving college student-- only because he was recently
in your shoes..!!

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Some current internal limits of BDE
 NUMBER : 2751
 PRODUCT : BDE
 VERSION : 2.x
 OS : Windows
 DATE : April 2, 1997

 TITLE : Some current internal limits of BDE

Here are the maximum limits for some common BDE objects.

GENERAL LIMITS

48 Clients in system
32 Sessions per client
32 Open databases per session
32 Loaded drivers
64 Sessions in system
4000 Cursors per session
16 Entries in error stack
8 Table types per driver
16 Field types per driver
8 Index types per driver
48K Size of configuration (IDAPI.CFG) file

PARADOX LIMITS

127 Tables open per system
64 Record locks on one table (16Bit)
255 Record locks on one table (32Bit)
255 Records in transactions on a table (32 Bit)
512 Open physical files
 (DB, PX, MB, X??, Y??, VAL, TV)
300 Users in one PDOXUSRS.NET file
255 Number of fields per table
255 Size of character fields
2 Billion records in a table
2 Billion bytes in .DB (Table) file
10800 Bytes per record for indexed tables
32750 Bytes per record for non-indexed tables
127 Number of secondary indexes per table
16 Number of fields in an index
255 Concurrent users per table
256 Megabytes of data per BLOb field
100 Passwords per session
15 Password length
63 Passwords per table
159 Fields with validity checks (32 Bit)
63 Fields with validity checks (16 Bit)

DBASE LIMITS

256 Open dBASE tables per system (16 Bit)
350 Open dBASE tables per system (32 Bit)
100 Record locks on one dBASE table (16 and 32 Bit)
100 Records in transactions on a dBASE table (32 Bit)
1 Billion records in a table
2 Billion bytes in .DBF (Table) file
4000 Size in bytes per record (dBASE 4)
32767 Size in bytes per record (dBASE for Windows)
255 Number of fields per table (dBASE 4)
1024 Number of fields per table (dBASE for Windows)
47 Number of index tags per .MDX file
254 Size of character fields
10 Open master indexes (.MDX) per table

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Local SQL Reserved Words.
 NUMBER : 2752
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : August 5, 1996

 TITLE : Local SQL Reserved Words.

 This file contains an alphabetical list of words reserved by
 Local SQL in the Borland Database Engine. Note that this file
 is provided as-is.

 ACTIVE, ADD, ALL, AFTER, ALTER, AND, ANY, AS, ASC, ASCENDING,
 AT, AUTO, AUTOINC, AVG

 BASE_NAME, BEFORE, BEGIN, BETWEEN, BLOB, BOOLEAN, BOTH, BY,
 BYTES

 CACHE, CAST, CHAR, CHARACTER, CHECK, CHECK_POINT_LENGTH,
 COLLATE, COLUMN, COMMIT, COMMITTED, COMPUTED, CONDITIONAL,
 CONSTRAINT, CONTAINING, COUNT, CREATE, CSTRING, CURRENT,
 CURSOR

 DATABASE, DATE, DAY, DEBUG, DEC, DECIMAL, DECLARE, DEFAULT,
 DELETE, DESC, DESCENDING, DISTINCT, DO, DOMAIN, DOUBLE, DROP

 ELSE, END, ENTRY_POINT, ESCAPE, EXCEPTION, EXECUTE, EXISTS,
 EXIT, EXTERNAL, EXTRACT

 FILE, FILTER, FLOAT, FOR, FOREIGN, FROM, FULL, FUNCTION

 GDSCODE, GENERATOR, GEN_ID, GRANT, GROUP,
 GROUP_COMMIT_WAIT_TIME

 HAVING, HOUR

 IF, IN, INT, INACTIVE, INDEX, INNER, INPUT_TYPE, INSERT,
 INTEGER, INTO, IS, ISOLATION

 JOIN

 KEY

 LONG, LENGTH, LOGFILE, LOWER, LEADING, LEFT, LEVEL, LIKE,
 LOG_BUFFER_SIZE

 MANUAL, MAX, MAXIMUM_SEGMENT, MERGE, MESSAGE, MIN, MINUTE,
 MODULE_NAME, MONEY, MONTH

 NAMES, NATIONAL, NATURAL, NCHAR, NO, NOT, NULL,
 NUM_LOG_BUFFERS, NUMERIC

 OF, ON, ONLY, OPTION, OR, ORDER, OUTER, OUTPUT_TYPE, OVERFLOW

 PAGE_SIZE, PAGE, PAGES, PARAMETER, PASSWORD, PLAN, POSITION,
 POST_EVENT, PRECISION, PROCEDURE, PROTECTED, PRIMARY,
 PRIVILEGES

 RAW_PARTITIONS, RDB$DB_KEY, READ, REAL, RECORD_VERSION,
 REFERENCES, RESERV, RESERVING, RETAIN, RETURNING_VALUES,
 RETURNS, REVOKE, RIGHT, ROLLBACK

 SECOND, SEGMENT, SELECT, SET, SHARED, SHADOW, SCHEMA,
 SINGULAR, SIZE, SMALLINT, SNAPSHOT, SOME, SORT, SQLCODE,
 STABILITY, STARTING, STARTS, STATISTICS, SUB_TYPE, SUBSTRING,
 SUM, SUSPEND

 TABLE, THEN, TIME, TIMESTAMP, TIMEZONE_HOUR, TIMEZONE_MINUTE,
 TO, TRAILING, TRANSACTION, TRIGGER, TRIM

 UNCOMMITTED, UNION, UNIQUE, UPDATE, UPPER, USER

 VALUE, VALUES, VARCHAR, VARIABLE, VARYING, VIEW

 WAIT, WHEN, WHERE, WHILE, WITH, WORK, WRITE

 YEAR

 OPERATORS:

 ||, -, *, /, <>, <, >, ,(comma), =, <=, >=, ~=, !=, ^=, (,)

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Drag a form without clicking the caption bar
 NUMBER : 2683
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Drag a form without clicking the caption bar

{
Q: How can I make a form move by clicking and dragging in the client area
 instead of on the caption bar?

A: The easiest way to do this is to "fool" Windows into thinking that
 you're actually clicking on the caption bar of a form. Do this by
 handling the wm_NCHitTest windows message as shown in the sample unit
 below.

 TIP: If you want a captioness borderless window similar to a floating
 toolbar, set the Form's Caption to an empty string, disable all of the
 BorderIcons, and set the BorderStyle to bsNone.
}

unit Dragmain;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls;

type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 procedure WMNCHitTest(var M: TWMNCHitTest); message wm_NCHitTest;
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.WMNCHitTest(var M: TWMNCHitTest);
begin
 inherited; { call the inherited message handler }
 if M.Result = htClient then { is the click in the client area? }
 M.Result := htCaption; { if so, make Windows think it's }
 { on the caption bar. }
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 Close;
end;

end.

{ The text representation of the .DFM file is below:

object Form1: TForm1
 Left = 203
 Top = 94
 BorderIcons = []
 BorderStyle = bsNone
 ClientHeight = 273
 ClientWidth = 427
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 PixelsPerInch = 96
 TextHeight = 16
 object Button1: TButton
 Left = 160
 Top = 104
 Width = 89
 Height = 33
 Caption = 'Close'
 TabOrder = 0
 OnClick = Button1Click
 end
end

}

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Comparison filters.
 NUMBER : 2762
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : August 5, 1996

 TITLE : Comparison filters.

/*

 This example shows how to set a filter on the first N
 characters of a character field. To use this example, backup
 the FILTER.C file in the BDE\EXAMPLES\SNIPIT directory. Copy
 this file to FILTER.C in that directory. Then compile and
 run SNIPIT, running the 'Cursor: Setting and Using filters'
 example.

*/

// BDE - (C) Copyright 1994 by Borland International

// Filter.c
#include "snipit.h"

static const char szTblName[] = "customer";
static const char szTblType[] = szPARADOX;

//==
// Function:
// Filter();
//
// Description:
// This example shows how to use filters to limit the
// result set of a table. Filters perform a function
// similar to that of ranges, but more powerful
// operations are supported.
//==
void
Filter (void)
{
 hDBIDb hDb; // Handle to the database.
 hDBICur hCur; // Handle to the table.
 pBYTE pcanExpr; // Structure containing
 // filter info.
 hDBIFilter hFilter; // Filter handle.
 UINT16 uSizeNodes; // Size of the nodes in the
 // tree.
 UINT16 uSizeCanExpr; // Size of the header
 // information.
 UINT16 uSizeLiterals; // Size of the literals.
 UINT16 uTotalSize; // Total size of the filter
 // expression.
 UINT32 uNumRecs = 10; // Number of records to

 // display.
 CANExpr canExp; // Contains the header
 // information.
 UINT16 Nodes[] = // Nodes of the filter
 // tree.
 {
 // Offset 0
 nodeCOMPARE, // canCompare.nodeClass
 canEQ, // canCompare.canOp
 1, // canCompare.bCaseInsensitive
 5, // canCompare.iParialLen (0 if
 // full length)
 12, // canBinary.iOperand1
 20, // canBinary.iOperand2
 // Offsets in the Nodes array

 // Offset 12
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 2, // canField.iFieldNum
 0, // canField.iNameOffset: szField
 // is the literal at offset 0

 // Offset 20
 nodeCONST, // canConst.nodeClass
 canCONST, // canConst.canOp
 fldZSTRING, // canConst.iType
 6, // canConst.iSize
 5 // canConst.iOffset: szConst is
 // the literal at offset
 // strlen(szField) + 1
 };

 // Name of the field for the third node of the tree.
 CHAR szField[] = "NAME";
 // Value of the constant for the second node of the tree.
 CHAR szConst[] = "OCEAN";
 // Return value from IDAPI functions.
 DBIResult rslt;

 Screen("*** Filter Example ***\r\n");

 BREAK_IN_DEBUGGER();

 Screen(" Initializing IDAPI...");
 if (InitAndConnect(&hDb) != DBIERR_NONE)
 {
 Screen("\r\n*** End of Example ***");
 return;
 }

 Screen(" Setting the database directory...");
 rslt = DbiSetDirectory(hDb, (pCHAR) szTblDirectory);
 ChkRslt(rslt, "SetDirectory");

 Screen(" Open the %s table...", szTblName);

 rslt = DbiOpenTable(hDb, (pCHAR) szTblName,
 (pCHAR) szTblType, NULL, NULL, 0,
 dbiREADWRITE, dbiOPENSHARED, xltFIELD,
 FALSE, NULL, &hCur);
 if (ChkRslt(rslt, "OpenTable") != DBIERR_NONE)
 {
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Go to the beginning of the table
 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table...", szTblName);
 DisplayTable(hCur, uNumRecs);

 uSizeNodes = sizeof(Nodes); // Size of the nodes.
 // Size of the literals.
 uSizeLiterals = strlen(szField) + 1 + strlen(szConst) + 1;
 // Size of the header information.
 uSizeCanExpr = sizeof(CANExpr);
 // Total size of the filter.
 uTotalSize = uSizeCanExpr + uSizeNodes + uSizeLiterals;

 // Initialize the header information
 canExp.iVer = 1; // Version.
 canExp.iTotalSize = uTotalSize; // Total size of the
 // filter.
 canExp.iNodes = 3; // Number of nodes.
 canExp.iNodeStart = uSizeCanExpr; // The offset in the
 // buffer where the
 // expression nodes
 // start.

 // The offset in the buffer where the literals start.
 canExp.iLiteralStart = uSizeCanExpr + uSizeNodes;
 // Allocate space for the filter expression.
 pcanExpr = (pBYTE)malloc(uTotalSize * sizeof(BYTE));
 if (pcanExpr == NULL)
 {
 Screen(" Could not allocate memory...");
 DbiCloseCursor(&hCur);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Initialize the filter expression.
 memmove(pcanExpr, &canExp, uSizeCanExpr);
 memmove(&pcanExpr[uSizeCanExpr], Nodes, uSizeNodes);

 memmove(&pcanExpr[uSizeCanExpr + uSizeNodes],
 szField, strlen(szField) + 1); // First litteral
 memmove(&pcanExpr[uSizeCanExpr + uSizeNodes +

 strlen(szField) + 1],
 szConst, strlen(szConst) + 1); // Second litteral

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Add a filter to the %s table which will"
 " limit the records\r\n which are displayed"
 " to those whose %s field starts with '%s'...",
 szTblName, szField, szConst);
 rslt = DbiAddFilter(hCur, 0L, 1, FALSE, (pCANExpr)pcanExpr,
 NULL, &hFilter);
 if (ChkRslt(rslt, "AddFilter") != DBIERR_NONE)
 {
 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");
 free(pcanExpr);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Activate the filter.
 Screen(" Activate the filter on the %s table...",
 szTblName);
 rslt = DbiActivateFilter(hCur, hFilter);
 ChkRslt(rslt, "ActivateFilter");

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table with the filter"
 " set...", szTblName);
 DisplayTable(hCur, uNumRecs);

 Screen("\r\n Deactivate the filter...");
 rslt = DbiDeactivateFilter(hCur, hFilter);
 ChkRslt(rslt, "DeactivateFilter");

 Screen("\r\n Drop the filter...");
 rslt = DbiDropFilter(hCur, hFilter);
 ChkRslt(rslt, "DropFilter");

 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");

 free(pcanExpr);

 Screen(" Close the database and exit IDAPI...");
 CloseDbAndExit(&hDb);

 Screen("\r\n*** End of Example ***");
}

DISCLAIMER: You have the right to use this technical information

subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Using a continue node in a filter.
 NUMBER : 2763
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : August 5, 1996

 TITLE : Using a continue node in a filter.

/*

 This example shows the use of a canContinue node. A
 Continue node is used to stop evaluating when a certain
 condition is false for the first time.

 This filter will limit the result set to those customers
 living in Hawaii, you are listed in the table before the
 customer with ID 1624.

 Picture of the filter expression:

 AND
 / \
 / \
 / \
 / \
 EQ Continue
 / \ |
 / \ |
 / \ |
 Field 2 szConst NE
 (STATE/PROV) (HI) / \
 / \
 / \
 Field1 fConst
 (CUSTOMER NO)(1624.0)

*/

// BDE - (C) Copyright 1994 by Borland International

// Filter.c
#include "snipit.h"

static const char szTblName[] = "customer";
static const char szTblType[] = szPARADOX;

//===
// Function:
// Filter();
//
// Description:

// This example shows how to use filters to limit the
// result set of a table. Filters perform a function
// similar to that of ranges, but more powerful
// operations are supported.
//==
void
Filter (void)
{
 hDBIDb hDb; // Handle to the database.
 hDBICur hCur; // Handle to the table.
 pBYTE pcanExpr; // Structure containing
 // filter info.
 hDBIFilter hFilter; // Filter handle.
 UINT16 uSizeNodes; // Size of the nodes in the
 // tree.
 UINT16 uSizeCanExpr; // Size of the header
 // information.
 UINT16 uSizeLiterals; // Size of the literals.
 UINT16 uTotalSize; // Total size of the filter
 // expression.
 UINT32 uNumRecs = 10; // Number of records to
 // display.
 CANExpr canExp; // Contains the header
 // information.

 UINT16 Nodes[] = // Nodes of the filter tree.
 {
 // Offset 0. Node 1.
 nodeBINARY, // canBinary.nodeClass
 canAND, // canBinary.canOp
 8, // canBinary.iOperand1 - node 2
 34, // canBinary.iOperand2 - node 5
 // Offsets in the Nodes array

 // Offset 8. Node 2.
 nodeBINARY, // canBinary.nodeClass
 canEQ , // canBinary.canOp
 16, // canBinary.iOperand1 - node 3
 24, // canBinary.iOperand2 - node 4
 // Offsets in the Nodes array

 // Offset 16. Node 3.
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 5, // canField.iFieldNum
 11, // canField.iNameOffset: szField2
 // is the literal at offset
 // strlen(szField1) + 1

 // Offset 24. Node 4.
 nodeCONST, // canConst.nodeClass
 canCONST, // canConst.canOp
 fldZSTRING, // canConst.iType
 3, // canConst.iSize
 31, // canConst.iOffset: fconst is
 // the literal at offset

 // strlen(szField1) + 1 +
 // sizeof(fConst) +
 // strlen(szField2) + 1

 // Offset 34. Node 5.
 nodeUNARY, // canBinary.nodeClass
 canCONTINUE, // canBinary.canOp
 40, // canBinary.iOperand1 - node 6
 // Offsets in the Nodes array

 // Offset 40. Node 6.
 nodeBINARY, // canBinary.nodeClass
 canNE , // canBinary.canOp
 48, // canBinary.iOperand1 - node 7
 56, // canBinary.iOperand2 - node 8
 // Offsets in the Nodes array

 // Offset 48. Node 7.
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 1, // canField.iFieldNum
 0, // canField.iNameOffset:
 // szField1 is the literal at
 // offset 0.

 // Offset 56. Node 1.
 nodeCONST, // canConst.nodeClass
 canCONST, // canConst.canOp
 fldFLOAT, // canConst.iType
 8, // canConst.iSize
 23, // canConst.iOffset: fconst is
 // the literal at offset
 // strlen(szField1) + 1 +
 // strlen(szField2) + 1
 };

 // Name of the field for the third node of the tree.
 CHAR szField1[] = "CUSTOMER NO";
 // Name of the field for the third node of the tree.
 CHAR szField2[] = "STATE/PROV";
 // Value of the constant for the second node of the tree.
 FLOAT fConst = 1624.0;
 // Value of the constant for the second node of the tree.
 // Field #7
 CHAR szConst[] = "HI";

 DBIResult rslt; // Return value from IDAPI functions.

 Screen("*** Filter Example ***\r\n");

 BREAK_IN_DEBUGGER();

 Screen(" Initializing IDAPI...");
 if (InitAndConnect(&hDb) != DBIERR_NONE)
 {
 Screen("\r\n*** End of Example ***");

 return;
 }

 Screen(" Setting the database directory...");
 rslt = DbiSetDirectory(hDb, (pCHAR) szTblDirectory);
 ChkRslt(rslt, "SetDirectory");

 Screen(" Open the %s table...", szTblName);
 rslt = DbiOpenTable(hDb, (pCHAR) szTblName,
 (pCHAR) szTblType,
 NULL, NULL, 0, dbiREADWRITE,
 dbiOPENSHARED, xltFIELD, FALSE, NULL,
 &hCur);
 if (ChkRslt(rslt, "OpenTable") != DBIERR_NONE)
 {
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Go to the beginning of the table
 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table...", szTblName);
 DisplayTable(hCur, uNumRecs);

 // Size of the nodes.
 uSizeNodes = sizeof(Nodes);
 // Size of the literals.
 uSizeLiterals = strlen(szField1) + 1 + sizeof(fConst) +
 strlen(szField2) + 1 + strlen(szConst)
 + 1;
 // Size of the header information.
 uSizeCanExpr = sizeof(CANExpr);
 // Total size of the filter.
 uTotalSize = uSizeCanExpr + uSizeNodes + uSizeLiterals;
 // Initialize the header information
 canExp.iVer = 1; // Version.
 canExp.iTotalSize = uTotalSize; // Total size of the filter.
 canExp.iNodes = 8; // Number of nodes.
 canExp.iNodeStart = uSizeCanExpr; // The offset in the
 // buffer where the
 // expression nodes
 // start.
 // The offset in the buffer where the literals start.
 canExp.iLiteralStart = uSizeCanExpr + uSizeNodes;

 // Allocate space for the filter expression.
 pcanExpr = (pBYTE)malloc(uTotalSize * sizeof(BYTE));
 if (pcanExpr == NULL)
 {
 Screen(" Could not allocate memory...");
 DbiCloseCursor(&hCur);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");

 return;
 }

 // Initialize the filter expression.
 memmove(pcanExpr, &canExp, uSizeCanExpr);
 memmove(&pcanExpr[uSizeCanExpr], Nodes, uSizeNodes);

 memmove(&pcanExpr[uSizeCanExpr + uSizeNodes],
 szField1, strlen(szField1) + 1); // First litteral

 memmove(&pcanExpr[(uSizeCanExpr + uSizeNodes +
 strlen(szField1) + 1)],
 szField2, strlen(szField2) + 1); // First litteral

 memmove(&pcanExpr[(uSizeCanExpr + uSizeNodes +
 strlen(szField1) + 1 +
 strlen(szField2) + 1)],
 &fConst, sizeof(fConst)); // Second litteral

 memmove(&pcanExpr[(uSizeCanExpr + uSizeNodes +
 strlen(szField1) + 1 +
 strlen(szField2) + 1 + sizeof(fConst))],
 szConst, strlen(szConst) + 1); // First litteral

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Add a bug filter to the %s table which will"
 " limit the records\r\n which are displayed"
 " to those whose %s field is greater than %.1lf...",
 szTblName, szField1, fConst);
 rslt = DbiAddFilter(hCur, 0L, 1, FALSE, (pCANExpr)pcanExpr,
 NULL, &hFilter);
 if (ChkRslt(rslt, "AddFilter") != DBIERR_NONE)
 {
 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");
 free(pcanExpr);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Activate the filter.
 Screen(" Activate the filter on the %s table...",
 szTblName);
 rslt = DbiActivateFilter(hCur, hFilter);
 ChkRslt(rslt, "ActivateFilter");

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table with the filter"
 " set...", szTblName);
 DisplayTable(hCur, uNumRecs);

 Screen("\r\n Deactivate the filter...");
 rslt = DbiDeactivateFilter(hCur, hFilter);
 ChkRslt(rslt, "DeactivateFilter");

 Screen("\r\n Drop the filter...");
 rslt = DbiDropFilter(hCur, hFilter);
 ChkRslt(rslt, "DropFilter");

 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");

 free(pcanExpr);

 Screen(" Close the database and exit IDAPI...");
 CloseDbAndExit(&hDb);

 Screen("\r\n*** End of Example ***");
}

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi Fact Sheet
 NUMBER : 2767
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Delphi Fact Sheet

 Delphi Fact Sheet

Delphi is the only Windows development tool to combine the
Rapid Application Development (RAD) benefits of visual
component-based design with the power of an optimizing
native code compiler and scalable database access.

Delphi represents the next generation in:

 - Performance--with the world's fastest compiler
 - Rapid Application Development--via visual Two-Way-Tools()
 - Component Reuse--a true object-oriented environment
 - Scalable Database Access--the fast track to client/server

The fastest way to the fastest applications

 Delphi is the next generation Windows development tool,
 combining the most intuitive visual design environment with
 the unrivaled performance of a world-class optimizing native
 code compiler. It compiles Windows applications at more than
 350,000 lines per minute.* An automatic MAKE facility
 ensures that only code that has been changed is recompiled
 for maximum efficiency, and the built-in assembler allows
 for ultimate fine-tuned performance.

 The resulting executable files (EXEs) are lean, highly
 efficient, and run up to 10 to 20 times faster than
 interpreted p-code. Delphi executables are immediately
 deployable, royalty-free, and require no runtime interpreter
 Dynamic Link Library (DLL), so maximum performance is
 guaranteed.

RAD, from prototype to production

 The comprehensive suite of visual design and debugging tools
 accelerate development so you move seamlessly from
 prototyping to deployment. You'll create high-performance
 applications in record time with the gallery of reusable
 forms, project templates, programming experts, and context-
 sensitive intelligent help.

 And smart computer-based tutorials guide you through your
 project and help explain concepts. The Object Inspector;
 provides complete access to properties and events of a
 selected component, with smart Property Editors for rapid

 design changes. The Project Manager provides an overview of
 all forms and code for a development project, while the
 ObjectBrowser() provides a graphical view of the overall
 object hierarchy.

 The sophisticated GUI Debugger jumps directly to the point
 in the source code where problems occur, so you can find and
 fix problems quickly and easily. And full support for
 conditional breakpoints, watchpoints, call stack monitoring,
 single-step execution, and trace mode are included.

 A suite of powerful Windows resource editors lets you create
 and modify menus, icons, cursors, and bitmaps for low-level
 debugging. The WinSight() utility allows you to monitor the
 Windows messaging flow, while WinSpector() instantly
 provides comprehensive diagnostic details.

Visual Two-Way-Tools for power programming

 With Delphi, you can always get to your code, and everything
 you can do visually can also be done in code. Innovative
 Two-Way-Tools maximize your productivity by letting you move
 seamlessly between the visual design environment and the
 synchronized underlying source code.

 Switching between the visual design mode and the intelligent
 BRIEF;-style source code editor is rapid and intuitive. It
 supports advanced editing features such as Color Syntax
 Highlighting, macro recording, column block marking, and
 regular expression support.

Reuse components to maximize productivity

 The comprehensive Visual Component Library (VCL), a
 collection of more than 75 objects such as dialogs, buttons,
 and list boxes, includes a host of additional reusable
 objects including database controls, notebook tabs, grids,
 multimedia controls, and much more!

 The completely customizable Integrated Development
 Environment can be tailored to individual or corporate
 preferences. Custom reusable components and commercial VBXs
 are easily added to the fully reconfigurable Component
 Palette. You can create and install your own application and
 form templates. And the Delphi component-based architecture
 allows you to seamlessly integrate DLLs, VBBX controls, and
 OLE 2.0 servers into your applications.

Integrated database support and reporting capabilities

 Delphi incorporates the Borland Database Engine (BDE),
 providing direct access to data stored in dBASE, Paradox,
 and the Local InterBase Server, and to other data formats
 via ODBC. And data-aware controls allow manipulation of live
 data at design time, improving project turnaround time.

 A comprehensive selection of Visual Data Objects helps make
 sophisticated database application design a breeze. And the
 included Database Desktop() utility lets you create or
 restructure tables and manage connections, insulating
 compiled Delphi applications from changes in database
 locations.

 Delphi also includes the PC version of ReportSmith;
 Borland's award-winning database reporting and query tool
 that supports live data access at design time. ReportSmith
 supports a wide range of popular database formats, and

 provides a variety of graphing, tabulating, and charting
 options.

The ultimate complementary tool

 If you prefer to work with a variety of programming tools,
 Delphi is the perfect addition to your toolset. It allows
 you to create reusable DLLs that can be called from
 applications built with C++, Paradox, dBASE, PowerBuilder,
 Visual Basic, and other popular development tools. Delphi
 can also use standard VBX controls, OLE2.0 servers, DLLs
 created by other development tools, Microsoft multimedia,
 MAPI, and pen computing APIs. No matter what you program
 with today, the Delphi component-based design makes it a
 valuable addition that leverages your existing investment in
 code.

 Delphi gives you the control and flexibility you demand with
 complete access to the Windows API, while shielding you from
 the complexities of Windows programming.

Object-Oriented Programming

 The underlying Object Pascal language has been enhanced to
 fully support exception handling. All your GPFs, disk I/O
 errors, and other dreaded problems are automatically
 trapped. And it offers all of the benefits of a structured
 programming language and a true object-oriented development
 tool, including polymorphism, inheritance, and
 encapsulation. So Delphi applications are incredibly robust
 and deliver superior solutions for all of your mission-
 critical projects.

 Enhanced compiler features such as conditional compilation
 and smart linking make it even easier to rapidly design
 professional applications intended for a variety of target
 environments.

Fast track to Windows 95

 Delphi applications developed for the Windows 3.1 operating
 environment will also run under Windows 95 and Windows NT.
 Upgrading them to full 32-bit performance simply involves a

 single-click recompile with the forthcoming Windows 95
 version of Delphi. No rewriting of code is necessary!

Smooth scaling to client/server

 Delphi provides an easy path to the fast-growing market of
 client/server applications development. Transparent local
 SQL development is possible with Delphi, using the built-in
 Local InterBase Server, which enables you to rapidly develop
 high-performance ANSI SQL-92 compliant applications for
 standalone systems.

 To make the transition from Delphi to professional
 client/server development and deployment using external
 database hosts, upgrade to Delphi Client/Server. It's a
 quick and easy process requiring no additional coding.
 Delphi Client/Server features high-performance native
 drivers for Oracle, Sybase, Informix, and InterBase, along
 with team development support, a Visual Query Builder tool,
 and much more.

Delphi, the developer's solution

 - Quickly and easily customize the Component Palette.
 - Delphi gives you everything you need for Rapid
 Application Development.
 - Manage all your code and visual objects with the Object
 Inspector.
 - Two-Way-Tools give you complete control of your code.
 - The Visual Component Library lets you build complete
 database applications in minutes.

Quotes:

"It's going to change our lives, you know."
--J.D. Hildebrand, Editor
Windows Tech Journal

"When it comes to keeping required coding to a minimum,
Delphi excels..."
 --Windows Sources
December 1994

"Delphi gives developers exactly what they need to create
complete applications, posthaste."
--Susan Ryan
InfoWorld

"5 Stars--Excellent"
 --PC/Computing
February 1995

Delphi Specifications

Optimizing Native Code Compiler
 - Compiles at over 350,000 lines per minute*

 - Create fast standalone EXEs with no runtime interpreter
 Dynamic Link Library (DLL)
 - Applications run up to 10 to 20 times faster than
 interpreted p-code
 - Create DLLs that work with C++, dBASE, Paradox, Visual
 Basic, PowerBuilder, and others
 - Access to all Windows API functions and messages
 - Optimized case statements, sets, 32-bit math operations,
 string and file routines, and more
 - Math coprocessor and emulator support
 - Automatic built-in MAKE facility
 - Conditional compilation
 - Smart Linker removes unused objects and code
 - Command-line compiler and MAKE facility
 - Built-in assembler for tuning performance
 - Linker optimization for smaller EXEs

Integrated Development Environment
 - Integrated visual form designer with over 75 components
 - Two-Way-Tools automatically synchronize code and visual
 representations
 - Object Inspector allows visual customization of
 components without writing code
 - Built-in tools for alignment, scaling, sizing, and tab
 order
 - ObjectBrowser displays object hierarchy, units, globals,
 and code references
 - Project Manager displays all files and forms
 - Customizable environment including SpeedBar, Component
 Palette, editor, and browser
 - Intuitive Icon, Bitmap, and Menu editors
 - Open environment for adding your own tools, experts,
 components, and Property Editors

Visual Component Library (VCL)
 - Customizable palette of over 75 reusable componnents
 - Support for the latest Microsoft systems technologies
 including OLE 2.0, DDE, VBXs, DLLs, MAPI, and ODBC
 - Standard components for menus, bitmapped buttons, masked
 edit fields, panels, graphics, notebook tabs, grids,
 outlines, list boxes, combo boxes, check boxes, labels,
 and more
 - Visual Data Objects for accessing databases, tables,
 queries, reports, SQL stored procedures, as well as data-
 aware grids, navigators, lookup lists, edit fields, list
 boxes, combo boxes, memos, bitmaps, and more
 - "Live" design-time data access
 - Extend the VCL at any time with third-party libraries or
 with your own objects created with Delphi
 - Database Field Editor for validation rules, display
 format, edit mask, and field width

 - Standard dialog objects for file operations, printing,
 font and color selection, and searching
 - System objects for accessing OLE 2.0 servers, DDE,
 multimedia and file, and directory lists

 - Support for MDI, printing, annd graphics
 - 2-D and 3-D charts with included ChartFX control
 - Compatible with hundreds of VBX controls
 - Includes sample objects with complete source code written
 in Delphi
 - VCL source code available separately

Object Pascal Language
 - High-performance, structured, object-oriented language
 - Complete support for inheritance, polymorphism, and
 encapsulation
 - Control over privacy with Public, Private, Protected, and
 Published reserved words
 - Create components with properties and events
 - Use inheritance to customize any object
 - Automatic runtime type information and object persistence
 - Automatic, extensible exception handling
 - Support for open arrays, user-defined types, objects, and
 pointers
 - Advanced language support for delegation and class
 references
 - Separate compilation of units and DLLs
 - Over 150 library routines for mathematical operations,
 string manipulation, text formatting, and file management
 - WinCRT unit for ccreating standard Pascal "console"
 programs
 - Compiles Borland Pascal 7.0 for Windows code

Powerful Editing
 - Full-featured BRIEF-style editing
 - Unlimited undo and redo
 - No limit on file size
 - Macro record and playback
 - Column block marking
 - Regular expression (GREP-style) search
 - Customizable Color Syntax Highlighting
 - Selectable editor keystrokes with support for BRIEF and
 Epsilon

Integrated Debugging
 - Integrated GUI Debugger with single-step and trace
 - Conditional breakpoints and watchpoints
 - Call stack view for tracing code execution
 - Evaluate and modify expressions and variables
 - WinSight Windows message trace utility
 - WinSpector postmortem analysis tool
 - Compatible with Turbo Debugger for Windows (available
 separately)

Borland Database Engine
 - High-performance engine with native drivers for dBASE,
 Paradox, and Local InterBase Server
 - Fully scalable support for migrating applications from
 desktop to client/sserver
 - Royalty-free deployment of database engine
 - Space-efficient deployment of database applications

 - Includes Database Desktop for managing database aliases
 as well as creating and restructuring tables
 - ODBC support for Access, Btrieve, Excel, DB2, AS/400,
 Ingres, HP ALBASE/SQL, and gateways like IBM DDCS/2,
 Micro Decisionware and Sybase Net-gateway. (available
 separately)
 - Delphi Client/Server includes SQL Link native drivers for
 InterBase, Oracle, Sybase, Microsoft SQL Server, and
 Informix. (available separately)

Local InterBase 4.0 Server
 - High-performance ANSI SQL-92 compliant
 - Ideal for "off-line" development and single-user
 applications
 - Computed fields
 - Outer joins and join expressions in the where clause
 - Complex data including Binary Large Objects (BLObs()) and
 multidimensional arrays
 - Advanced features including stored procedures, triggers,
 and constraints
 - Fully scalable to InterBase on NT, NetWare, and UNIX
 platforms
 - Local InterBase Server Deployment Kit available
 separately

ReportSmith 2.5
 - Award-winning database reporting and query tool
 - Access ReportSmith from the Delphi Tools menu and TReport
 component
 - Features "live" report writing
 - Adaptive data access works with any size database
 - Prebuilt report templates and styles
 - Crosstab and mailing label reports
 - Multilevel sorting
 - Custom group specifications
 - Onscreen Print Preview mode
 - Free distribution of ReportSmith runtime module
 - Fully compatible with ReportSmith SQL edition

Documentation and Help
 - Extensible gallery of application templates and experts
 - Seven Interactive Tutors() with "live" interaction
 - Over 5Mb of on-line help
 - Five manuals with over 1,200 pages of documentation:
 Delphi User's Guide, Component Writer's Guide, Database
 Application Developer's Guide, Creating Reports, and
 InterBase User's Guide

Minimum System Requirements
 - Intel 386-baased PC or higher
 - Microsoft Windows 3.1 or later, 100%-compatible version
 - 6Mb of extended memory or higher
 - 30Mb hard disk space
 - CD-ROM drive (3.5" disks available separately)

Networks Supported

 Any Microsoft Windows 3.1 compatible network, including OS/2
 2.1, Novell NetWare, Windows for Workgroups 3.11, and
 Windows NT 3.11.

*Pentium 90MHz

Copyright 1995 Borland International, Inc. All rights
reserved. All Borland product names are trademarks of
Borland International, Inc. Borland's DELPHI products and
services are not associated with or sponsored by Delphi
Internet, an on-line service and Internet access provider.
Corporate Headquarters: 100 Borland Way, Scotts Valley,
California 95066-3249, 408-431-1000. Offices in: Australia
(61-02-911-1000), Belgium (32-2-47-99-903), Brazil (55-11-
851-5326), Canada (416-229-6000), Chile (56-2-233-7113),
Denmark (45-48-14-00-01), France (33-1-41-23-11-00), Germany
(49-6103-9790), Hong Kong (852-2540-4380), Italy (39-2-26-91-
51), Japan (81-03-5350-9370), Korea (82-02-551-2795), Latin
American Headquarters in U.S.A. (408-431-1074), Malaysia (60-
03-230-2618), Netherlands (31-020-540-54-00), New Zealand
(64-9-443-8890), Singapore (65-339-8122), Spain (34-1-650-72-
50), Sweden (46-8-634-35-00), Switzerland (41-031-761-2604)
Taiwan (886-2-718-6627), and United Kingdom (44-734-321-150)

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

List of Delphi Books From Third-Party Publishers
 NUMBER : 2776
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : List of Delphi Books From Third-Party Publishers

The Delphi Programmer Explorer
by J. Duntemann/J. Mischel/D. Taylor
Coriolis Group
ISBN: 1-883577-25-X $39.99
A new type of tutorial: Theory and practice alternate in short
chapters, with the emphasis on creating useful software starting
on the very first page.

Delphi for Dummies
by Neil Rubenking
IDG Press
ISBN: 1-56884-200-7 $19.99
Readers will learn about Borland's new language in the easy to
understand style of the Dummies series.

Teach Yourself Delphi
by Devra Hall
MIS Press
ISBN: 1-55828-390-0 $27.95
Here is a complete, self-guided tour to the new development
environment from Borland, encompassing all the features of the
language and all the tools, tricks, and advantages of Delphi.

Delphi Nuts and Bolts
by Gary Cornell and Troy Strain
Osborne-McGraw-Hill
ISBN: 0-07-882-136-3 $24.95
If you are an experienced programmer and want a fast introduction
to Delphi, this book is for you.

Software Engineering with Delphi
by Edward C. Webber, J. Neal Ford, and Christopher R. Webber
Prentice Hall Professional, Trade & Reference
A guide to developing client/server applications with an emphasis
on Delphi's object-oriented tools.

Delphi by Example
by Blake Watson
Que
ISBN: 1-56529-757-1 $29.99
Aimed at the beginning programmer who has no prior experience
with other languages or development products, this book presents
basic concepts of programming along with a clear explanation of

the key development tools that are part of Delphi.

Using Delphi, Special Edition
by John Matcho and Eric Uber
Que
ISBN: 1-56529-823-3 $29.99
This 3-part tutorial on the most important Delphi features covers
how to install the product and develop applications using
Delphi's visual tools, explores the Windows application
development process, and deals with some advanced programming
topics.

Developing Client/Server Applications with Delphi
by Vince Killen and Bill Todd
Sams Publishing
Walks the reader through the development process of creating
real-world C/S applications, explaining in detail what the
thought processes must be even before any code is written.

Delphi Developer's Guide
by Xavier Pacheco/Steve Teixeira
Sams Publishing
ISBN: 0-672-30704-9 $45.00
Intermediate to advanced guide to developing applications using
Delphi.

Master Delphi
by Charlie Calvert
Sams Publishing
ISBN: 0-672-30499-6 $45.00
Comprehensive tutorial/reference for intermediate programming
with Delphi.

Teach Yourself Delphi in 21 Days
by Andrew Wozniewicz
Sams Publishing
ISBN: 0-672-30470-8 $29.99
Introduces Delphi to the beginning programmer and includes
question-and-answer section at end of each less to test readers
progress as they learn.

Mastering Delphi
by Marco Cantu
Sybex
ISBN: 0-7821-1739-2 $29.99
Introduces programmers to Delphi's features and techniques,
including secrets of the environment, the programming language,
the custom components and Windows programming in general.

Delphi How-To
by Gary Frerking

Waite Group Press
ISBN: 1-57169-019-0 $34.95
Presents large collection of programming problems and their
solutions in standard, easy-to-use reference format, including
unique solutions that use VBX controls and easy ways to build
multimedia projects with Delphi.

Developing Windows Applications Using Delphi
by Paul Penrod
John Wiley
ISBN: 0-471-11017-5 $29.95
This introduction for traditional C programmers who want to make
the transition to rapid application development also provides
detailed instructions for building sophisticated Windows
applications and for creating graphical interfaces.

Instant Delphi
by Dave Jewell
Wrox Press
ISBN: 1-874416-57-5 $19.95
Instant Delphi is the fast-paced tutorial guide for the
programmer who wants to get up to speed on the Delphi product as
quickly as possible.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

BDE Frequently Asked Questions.
 NUMBER : 2770
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : January 23, 1997

 TITLE : BDE Frequently Asked Questions.

This document contains information most often provided to
users of this section. First, there is a listing of common
Technical Information Documents (TI's) that can be
downloaded from the Borland FTP site, CompuServe, and the
Borland Download BBS. The documents are also available
through the TechFax line of Borland Assist. Following the
TI list, there is a listing of the most frequently asked
questions and answers.

TECHNICAL INFORMATION DOCUMENTS

TI2546.ZIP Problem Report Form
TI2656.ZIP Function mapping from the Paradox Engine to BDE
TI2751.ZIP Some Internal BDE Limits (can change at any time)
TI2752.ZIP Local SQL Reserved words
TI2761.ZIP Getting started using the BDE
TI2762.ZIP Comparison filters
TI2763.ZIP Using a continue node in a Filter
TI2817.ZIP Understanding the PARADOX.NET file with the BDE
TI2822.ZIP Setting File Handles For A Windows BDE Application
TI2919.ZIP Changing the NET DIR Programmatically
TI2989.ZIP BDE setup for Peer-To-Peer(Non-Dedicated) Networks
TI2993.ZIP Removing "Lock file has grown too large" Error
TI3089.ZIP Sharing Violation Error with Paradox Tables
TI3188.ZIP Steps for FAT32 Support with the BDE
TI9410.ZIP Overview information on the BDE

FREQUENTLY ASKED QUESTIONS AND ANSWERS

1) General
2) Paradox Table Specifics
3) dBASE Table Specifics

GENERAL

Q: Is there any "Getting started" information on the BDE?

A: Yes - get the file TI2761.ZIP for information on getting
 started with the BDE.

Q: What's the difference between Paradox for Windows and the
 Borland Database Engine (BDE)?

A: Paradox for Windows is a database Application and
 development system. The BDE is a programming
 tool allowing C, C++, and Pascal programmers access to
 Paradox, dBASE, Text, as well as other data sources using
 either the Borland SQL Links for Windows native drivers,
 or using third-party ODBC drivers. The BDE contains the
 core DLLs that Paradox for Windows, as well as dBASE for
 Windows, use for their core data access. More general
 information on the BDE can be found in the file
 TI9410.ZIP.

Q: What basic steps can I follow to make my BDE application
 run smoothly?

A: 1) Increase stack size to 20K. (16 bit only)
 2) Increase the number of file handles available to your
 application using the Windows API function
 SetHandleCount. (16 bit only)
 3) Check the return values of each and every BDE function
 call and provide some means for handling the result of
 any return value other than DBIERR_NONE. (See next
 question also).
 4) Take a look at TI2761.ZIP, which describes the basic
 steps that are required in setting up a BDE
 application.

Q: I'm having trouble with my program, and the debugger has
 traced the problem into a BDE DLL. Does this mean that
 there is a bug in the BDE?

A: Not necessarily. Frequently if a prior call to the
 BDE has failed due to being passed an invalid handle or
 for some other reason, this will leave the BDE in an
 unpredictable state which will later cause a GP fault.
 The solution is to check the return values of each and
 every function call you make. The BDE sample applications
 contain error handling routines.

Q: Why is my application having problems when share is
 loaded?

A: One possibility is that share could be running out of
 locks or file handles. The command line 'share /L:200
 /F:4096' will increase the number of files that can be
 locked to 200 and the memory available for files to 4096
 (the default is 20 and 2048). See your DOS or WINDOWS
 manual for more information on share.

 This information only applies to Windows 3.1. Windows for
 Workgroups, Windows 95 and Windows NT load share
 automatically. Windows 3.1 users can get this same
 functionality and not have to worry about running out of
 locks or file handles by obtaining the Windows 3.1 version
 of VSHARE.DLL from Microsoft.

Q: Is there a version of the Database Framework (DBF) for the
 BDE? Is there a C++ Framework for the BDE?

A: An example framework, roughly 95% compatible with the
 Paradox Engine DBF, is available on CompuServe in the
 BDEVTOOLs forum, LIBrary 4: KDBF.ZIP.

Q: Why am I getting the error: "Could not initialize IDAPI -
 not initialized for accessing network drives" when
 attempting to open a table on a network?

A: 1) Make certain the network control directory (NET DIR) is
 set to a directory on the network (not local). This is
 set in the BDE Configuration utility.
 2) Make certain that you have read/write/create rights to
 the network control directory, as well as the directory
 containing the table.
 3) Make certain that the private directory is set to a
 local directory. For example, in the Database Desktop
 (DBD), the private directory is set in the WIN.INI
 file, in the [DBD] section, PrivDir. If it is set to a
 directory on the network, this error can occur.
 4) Old lock files exist in the private directory. Either
 the application previously crashed, resulting in
 improper cleanup, or another application is using the
 same private directory.
 5) Under Windows for Workgroups (WfW), search your hard
 drive for the NWCALLS.DLL. Rename/backup the older
 versions of this file and run again.

 If this fails to resolve the problem, you will need to
 make certain to not use the NetBEUI protocol as the
 default network protocol in Windows Setup. Select
 NetWare (or some other protocol) as the networking
 protocol, and everything should work successfully.

Q: Why am I getting the error "Cannot find NetWare.DLL"?

A: An outdated netware.drv is found in the System.ini file.
 A newer version of this file should be gotten from your
 network administrator, and/or Novell.

Q: How do I use the BDE in a DLL that is called from Paradox
 for Windows or dBASE for Windows?

A: Make certain to use dynamic linking when using the
 BDE in a DLL called from another application. This will be
 done automatically when using the IDAPI.LIB that ships
 with the BDE, but will not be done if an import library
 was created using IMPLIB (the shipping IDAPI.LIB is more
 than a standard import library).

Q: Why am I having problems getting information from the
 DbiGetFieldDescs function?

A: Make certain to have 'Allocate Enums as Ints' set
 (Options | Compiler | Code Generation in BC 4.x, Options |
 Project | Compiler | Code Generation in BC 5.). The
 FLDDesc structure, which is used by DbiGetFieldDesc,
 contains an enum, which within the DLL is set to the
 same size as an int (two bytes).

Q: Why am I having stack corruption problems? or
 Why is my application crashing when calling or returning
 from a function?

A: First, make certain that you have 25k of stack allocated
 for your application. Then, make certain that you have
 'Allocate enums as ints' selected. A number of structures,
 including CURProps, make use of enumerations. As there
 enumerations are allocated two bytes within the DLL, we
 need to make certain that the application is passing two
 bytes as well. This is done with the 'Allocate enums as
 ints' option.

Q: How can I optimize BDE performance on table operations?

A: Although there are a number of ways to improve BDE
 performance, some general things to try are as follows:
 1) Keep the number of maintained secondary indexes to a
 minimum; sometimes it is better to delete the index
 and recreate it than to perform a number of table
 operations with the indexes in place.
 2) If possible, increase the size of the swap buffer
 and the number of file handles that the BDE has
 available to it. This will decrease the Engine's
 need to swap resources. Note: make certain to
 increase the file handles available to your
 application using SetHandleCount, as well as
 increasing the number of file handles available to
 the BDE in IDAPI.CFG.
 3) Open the table exclusively.
 4) Batch as many opperations as possible - do not read/
 write records one as a time. Use DbiBatchMove,
 DbiCopyTable, DbiReadBlock, and/or DbiWriteBlock.
 5) When using DbiWriteBlock, try to work in multiples
 of the physical block size, usually 2k or 4k.
 6) If you are opening and closing one or more tables
 repeatedly, consider calling DbiAcqPersistTableLock
 on a non-existent file after you initialize the
 BDE. This will create the .LCK file so that it will
 not have to be created each time a table is opened,
 created, etc. (Note: you'll also want to call
 DbiRelPersistTableLock before calling DbiExit).
 7) Used Cached Updates
 Paradox Tables Only.
 8) Work with in-memory tables when possible (Note that
 in-memory tables cannot be the source table to
 DbiBatchMove).

Q: What are the current versions of the BDE?

A: For 16 bit, it is 2.52. It may be obtained by downloading
 BDE252.ZIP.
 For 32 bit, it is 3.5. It may be obtained by downloading
 BDE35F.ZIP.

Q: Can I use the DOS Power Pack with the Borland Database
 Engine?

A: No. The BDE makes use of Windows API functions that are
 not emulated by the DOS Power Pack.

Q: Why am I getting the error 'Invalid BLOB Handle in record
 Buffer' when I attempt to modify a record containing a
 BLOB?

A: This error can occur for two different reasons.

 Case 1 - BDE API Application
 This error is caused by not setting up the record
 correctly. Make certain to call DbiInitRecord on the
 record buffer before reading the record from the table.

 CASE 2 - Any BDE Application
 This error occurs when scrolling through more than 64
 blobs in the results of a dead query. The solution is to
 either make the results of the query a live result set,
 or somehow limitscrolling blobs. (Such as having your
 SELECT statement select fewer records.)

 NOTE:A future release of the BDE is planned to be able to
 be configured to get past the present hard coded limit.

Q: Why does my application crash when using filters?

A: Beside the general suggestion at the top of this file, as
 well as errors in setting up offsets of the filter, this
 error can be caused by setting the iPriority parameter to
 DbiAddFiler to 0. Make certain to set this value to 1.
 (There is a misprint in some copies of the BDE Users
 Guide to set this to 0).

Q: What's new in the 32 bit version?

A: 1) Long filename support.
 2) UNC filename support.
 3) Transactions on Paradox and dBASE tables.
 4) Cached Updates.
 5) The method for preparing queries has changed, requiring
 the use of a new BDEfunction, DbiQAlloc, to obtain a
 statement handle.
 6) BDE Configuration Information can now optionally be
 stored in the registry.
 7) New SQL Engine.

Q: Why am I getting the error "Too many open files" in the 16

 bit version?

A: You need to call SetHandleCount and make sure the value is
 larger than the MAXFILEHANDLES statement in BDECFG.

PARADOX TABLE SPECIFICS

Q: How do I access tables in a read-only directory (such as
 a table on a CD-ROM)?

A: A directory lock needs to be placed within the directory
 containing the table to prevent the BDE from attempting
 to create a lock file (.LCK) in that directory. An
 example of this is included in the SNIPIT example
 application, in the file RDOLOCK.C.

Q: I got "Table locked/busy" and it's neither?

A: This error happens when the application tries to lock a
 table when the corresponding prevent lock already exists,
 or when the application tries to set a prevent lock and a
 conflicting lock already exists. Check for old, unused
 lock files. Delete any .lck files that may exist after all
 BDE applications have terminated. Also run the TUtility
 program to test for table validity.

Q: Why do I get the error "Multiple Paradox Net Files Found?"

A: In addition to the case of two application referencing
 different physical PARADOX.NET files, this error message
 can be caused by old .LCK files or when two applications
 using the same NET file are mapped differently. Also
 make certain that the BDE DLL's are not left in memory.
 This error can also occur if differnt mapping are used to
 reference the same file. For example, if h:\one\two on
 one system points to the same physical location as
 h:\three on another system, the BDE will not recognize
 that it is only a single .NET file. Make certain that the
 path matches.

Q: I am working with a Peer-to-Peer network, like Windows
 for Workgroups, Lantastic, or Personal Netware, and I am
 getting "Multiple Paradox Net Files Found", what is wrong?

A: The BDE requires that everyone use the exact same
 directory and drive letter. Therefore, if the tables are
 on c:\tables on the shared drive and user maps the shared
 drive as f: then f:\tables points to the same place as
 the shared drive's c:\tables. However, the drive letter
 must also match. The way around this is to subst drive
 c: as drive f: This way both c: and f: point to the same
 drive. Now f:\tables on the shared drive's computer
 points to the c:\tables and everyone is using f:\tables.
 For more information on the subst command look in your DOS

 manual. However, remember that if LASTDRIVE is set to f:
 in your CONFIG.SYS then the last drive you can subst is f:

Q. I am getting the error "Lock file has grown too large". What
 is the solution?

A. Download TI2993 for a detailed answer.

dBASE TABLE SPECIFICS

Q: How do I insert a Date into a dBASE table using Local SQL?

A: 'INSERT INTO myTable (myField) value ("01/01/94")'

Q: How can I create a case-insensitive index?

A: Case insensitive indexes are not directly supported, but
 can be simulated using an expression index with the upper()
 function.

Q: Why can I insert a duplicate record into a dBASE table
 when I have a unique index defined?

A: dBASE does not enforce the uniqueness within the table -
 only within the index. When the table is opened on that
 index, only one record with a given key value will be
 present in the index, but both values exist in the table.

Q: Why am I getting the error DBIERR_NOSUCHINDEX, "Index does
 not exist", when I attempt to open a FOX table?

A: The BDE currently does not transparently support FOX (CDX)
 indexes. When a FOX table has a CDX index, it is marked as
 the production index of that table. The BDE by design has
 to open the production index when the table is opened. As
 it cannot access the FOX production index (CDX), it
 returns as error. Currently, to open a FoxPro table with
 an index, you must use an ODBC driver. In a future release
 of the BDE native support for .CDX indexes is planned.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi Quick Info Sheet
 NUMBER : 2768
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : November 5, 1996

 TITLE : Delphi Quick Info Sheet

 Borland Delphi for Windows Quick Info Guide

RADical performance Windows development

 Delphi is the only Windows development tool to combine the
 Rapid Application Development (RAD) benefits of visual
 component-based design, with the power of an optimizing
 native code compiler and scalable database access.

Delphi represents the next generation in:

 - Performance--with the world's fastest compiler
 - Rapid Application Development--via visual Two-Way-Tools
 - Component Reuse--a true object-oriented
 environment Scalable Database Access--the fast track to
 client/server

The fastest way to the fastest applications

 Delphi is the next-generation Windows development tool,
 combining the visual design environment with the unrivaled
 performance of a world-class optimizing native code
 compiler. Delphi includes the world's fastest compiler,
 capable of compiling Windows applications at more than
 350,000 lines per minute, resulting in executable files
 (EXEs) that are robust and lightning-fast.

 Delphi executables are also immediately deployable and
 completely royalty-free, and no runtime interpreter Dynamic
 Link Library (DLL) is required. Delphi applications
 typically execute up to 10 to 20 times faster than
 interpreted p-code.

 Only Borland can offer this unique combination of integrated
 tools including its award-winning report writer,
 ReportSmith, the Borland Database Engine, and the Local
 InterBase Server.

RAD, from prototype to production

 Delphi accelerates Windows development by providing a
 comprehensive suite of visual design and debugging tools
 that move you seamlessly from prototyping to deployment of
 finished applications. Delphi's Two-Way-Tools help you

 optimize your programming time by switching effortlessly
 between visual design and the underlying source code.

Reuse components to maximize productivity

 Included with Delphi is the comprehensive Visual Component
 Library (VCL), a collection of more than 75 standard Windows
 objects such as dialogs, buttons, and list boxes, along with
 a host of additional reusable objects including database
 controls, notebook tabs, grids, multimedia controls, and
 much more! Delphi's Integrated Development Environment (IDE)
 is fully customizable. Custom reusable components, external
 DLLs, and commercial VBXs can be rapidly added to Delphi's
 Component Palette.

 Delphi is a true object-oriented development tool, including
 polymorphism, inheritance, and encapsulation. Delphi's
 component-based architecture allows you to seamlessly
 integrate DLLs, VBX controls, and OLE 2.0 servers into your
 applications.

Smooth scaling to client/server

 Delphi has been designed to provide an easy path to the
 fast-growing market of client/server applications
 development. Transparent local SQL development is possible
 with Delphi, using the built-in Local InterBase Server,
 which enables you to rapidly develop high-performance ANSI
 SQL-92 compatible applications for standalone systems.

"Delphi is Visual Basic done right." --PC/Computing,
February 1995

Delphi Product Information:

Product
 - Delphi for Windows CD-ROM only. Estimated street price
 $350*
 - Special Introductory Offer of $199.95 for first 90 days
 (3/1/95-5/31/95).
 - $50.00 rebate coupon inside for Pascal owners. 3.5" disks
 available separately from Borland for $19.95 plus $5.00
 shipping.

Contents
 Delphi for Windows
 Local InterBase Server
 ReportSmith 2.5 PC version

 Manuals:
 Delphi User's Guide
 Delphi Database Application Developer's Guide
 Delphi Component Writer's Guide
 Creating Reports
 InterBase User's Guide

Target Audience

 Programmers, VARs, Pascal developers, C++ developers, Visual
 Basic Pro developers, PowerBuilder developers, Paradox and
 dBASE developers.

Delphi Accessories:

Turbo Assembler
 $99.95
 3.5" HD disks

 Description:
 Whether you're writing time-critical systems or speeding up
 your Delphi applications, the Turbo Assembler ensures your
 applications are as robust and efficient as possible.

 Buyers:
 Windows developers who want to build fast applications or
 add fast code to existing applications. Programmers using
 Microsoft Assembler who want a way to do faster, more
 flexible assembly language programming.

Visual Solutions Pack
 $99.95
 3.5" HD disks

 Description:
 With the Visual Solutions Pack you can add spreadsheets,
 databases, word processing, graphics, and more to your
 Delphi applications with virtually no coding.

 Buyers:
 Windows developers using Delphi or any other development
 tool that supports VBX format custom controls.

Paradox 5.0 for Windows
 $495
 CD-ROM or 3.5" HD disks

 Special limited-time upgrade price of $129.95 for suite
 owners of competing databases. $30 rebate for previous
 Paradox owners.

 Description:
 With Paradox you get relational database power made easy.
 DLLs and OLE 2.0 controls built with Delphi are completely
 compatible with your Paradox applications.

 Buyers:
 Windows database developers who want to build fast,
 efficient, database applications.

Borland Delphi support services

 Fast Fax for Detailed Information: 1-800-408-0001
 TechFax for Technical Information: 1-800-822-4269
 Connections Developer Program: 1-800-353-2211
 Free Install Support: (408) 461-9195
 Credit Card Advisor Line: 1-800-330-3372

 On-line Services
 - On CompuServe, type GO BORLAND
 - On BIX, type JOIN BORLAND
 - On GEnie, type BORLAND
 - Borland Download Bulletin Board Service: (408) 431-5096
 - For other Assist Support Services: 1-800-523-7070

Attention Borland resellers
 - For information on obtaining evaluation copy order forms:
 1-800-408-0001
 - To request collateral: (408) 431-1950
 - For more information: (408) 461-9000

Minimum System Requirements
 - Intel 386-based PC or higher
 - Microsoft Windows 3.1 or later, 100%-compatible version
 - 6Mb of extended memory or higher
 - CD-ROM drive (3.5" floppy dissks available separately)
 - 30Mb hard disk space

Satisfaction guaranteed!

 You can buy Delphi for Windows with complete assurance. If
 for any reason you are not fully satisfied with your
 purchase, you can return it to Borland within 90 days. No
 questions asked!

*Scholar price available through authorized Borland
Educational resellers. Call 1-800-847-7797.

Copyright 1995 Borland International, Inc. All rights reserved.
All Borland product names are trademarks of Borland
International, Inc. Corporate Headquarters: 100 Borland Way,
Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in:
Australia, Belgium, Brazil, Canada, Chile, Denmark, France,
Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia,
Netherlands, New Zealand, Singapore, Spain, Sweden, Switzerland,
Taiwan, and United Kingdom.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Instructions for Running Delphi from CD-ROM
 NUMBER : 2777
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Instructions for Running Delphi from CD-ROM

 RUNNING DELPHI FROM THE CD-ROM

Delphi can be run from a CD-ROM directly. However, it is highly
recommended that at least a minimum installatiion be seriously
considered before opting for running Delphi from CD-ROM.

For a minimum installation, 33MB of available hard disk space is
required.

Running from a CD-ROM, 9MB of available hard disk space is
required.

To configure the system to run Delphi from the CD-ROM,

1. Copy all files found in the CD's \RUNIMAGE\WINDOWS directory to the
Windows directory of the hard disk.

2. Copy all files found in the CD's \RUNIMAGE\WINDOWS\SYSTEM
directory to the Windows SYSTEM directory of the hard disk.

3. Edit DELPHI.INI in a text editor like Windows Notepad. Look
for the section titled [Globals]. Make entry for the PrivateDir
setting that resides on a writeable disk, preferably a local
hard disk.

For instance, if a directory on the C: drive where chosen called
DELPRIV, the relevant section of DELPHI.INI would look as
follows.

[Globals]
PrivateDir=C:\DELPRIV\

Now, Delphi can be run from the \RUNIMAGE\DELPHI\BIN directory
of the CD-ROM.

 MODIFYING COMPONENTS

To allow modification of the component library used by Delphi
while running from a CD ROM an copy of the Component Library
must exist on a writeable disk. Use the following steps as a
guide.

1. Copy COMPLIB.DCL from the CD's \RUNIMAGE\DELPHI\BIN directory

to a desired directory on the hard disk.

2. Run Delphi.

3. Bring down the Options menu and select Open Library.

4. Specify the directory and file name for the COMPLIB.DCL
copied to the hard disk.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Making your Delphi apps show minimized.
 NUMBER : 2778
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Making your Delphi apps show minimized.

Q: When I select the "Run Minimized" option in Program Manager
 to attempt to make my Delphi application execute in a minimized
 state, the Delphi application seems to ignore the setting and
 run normally. Why is this, and how to I fix it?

A: Delphi's Application object creates a hidden "application
 window," and it is that window, rather than your main form,
 that is being sent the command to show minimized. To fix this,
 make your main form's OnCreate event handler look like this:

 procedure TForm1.FormCreate(Sender: TObject);
 {$IFDEF WIN32} { Delphi 2.0 (32 bit) }
 var
 MyInfo: TStartUpInfo;
 {$ENDIF}
 begin
 {$IFDEF WIN32} { Delphi 2.0 (32 bit) }
 GetStartUpInfo(MyInfo);
 ShowWindow(Handle, MyInfo.wShowWindow);
 {$ENDIF}
 {$IFDEF WINDOWS} { Delphi 1.0 (16 bit) }
 ShowWindow(Handle, cmdShow);
 {$ENDIF}
 end;

 In other words, for 16 bits, just pass cmdShow to ShowWindow.
 For 32 bits you need to obtain the start up info by calling the
 GetStartUpInfo procedure, which fills in a TStartUpInfo record,
 and then pass TStartUpInfo.wShowWindow to ShowWindow.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi Client/Server and Power Builder Compared
 NUMBER : 2779
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Delphi Client/Server and Power Builder Compared

An Evaluation of
Client/Server Development Tools:
A Comparison Between
Delphi Client/Server and PowerBuilder Enterprise

Prepared by Michael Lant, Sphere Data Systems

Table of Contents

Introduction: An Overview of Client/Server Tools
 PCs and the Evolving Client/Server Model
 The Next Generation

What is Delphi?
 Redefining Client/Server Development
 The Delphi Component Model

Performance
 Compiled vs Interpreted Code
 Data Access - A New Approach

Rapid Application Development (RAD)
 Minimum Coding, Maximum Flexibility
 DataWindows vs Reusable Forms

Component Reuse
 The Delphi Inheritance Model
 A DataWindows Alternative
 Exception Handling

Database Scalability
 Borland Database Engine
 Local InterBase Server

Conclusion

Introduction: An Overview of Client/Server Tools

Client/server development tools remain one of the fastest-growing
sectors of the software industry. Forrester Research predicts
that the number of client/server developers will climb from
128,400 in 1994 to 698,000 in 1996, while META Group research

suggests that over 90% of all new applications will be based on
the client/server model. This is an overwhelming endorsement of
the popularity of client/server computing.

Client/server computing, however, is not the panacea that many
have been predicting. Complex environments, with mixed data
sources and immature development tools, have made client/server
development a complex undertaking. Researchers such as the
Gartner Group have found that the most pressing issues facing
current developers of client/server applications include
performance of deployed applications, rapid application
development (RAD), component reuse and database scalability.
Although these concerns are not unique to client/server
application development, they are perhaps even more important in
this sector, because of the well-documented limitations of
first-generation client/server tools.

PCs and the Evolving Client/Server Model

PCs facilitated the downsizing era, by providing inexpensive
platforms for the production of reasonably capable solutions
that addressed genuine business needs. These applications brought
with them the promise of freedom from host-based technologies and
shortened development cycles. But as these PC- and network-based
applications grew, user counts expanded and more functionality
was necessary. PC database applications frequently "hit the
wall."

In addition, all database applications have at their very heart
business rules. These rules control processes such as creating
new customers and data validation. Historically, PC application
development has placed the enforcement of business rules into the
user interface, so programmers would create a screen and write
code to respond to user input. This code would perform a specific
action based on the presence, or value of, certain information.
Such actions might include allowing or preventing the posting of
changes to customer data. But the user interface is certainly not
the best place to store business rules.

The advent of client/server brought with it a new model that
allows for business rules to be stored with the data itself. This
is accomplished through the use of triggers and stored procedures
created in the actual database. These procedures would enact
routines to perform much the same processing that might be
performed in a PC application, except that the host handles this
task for all of its clients. This approach ensured that there was
only one source for the business rules, since they were stored
with the data. In many ways, this approach is enticing, but in
reality it is plagued with problems.

When business rules are created to be enforced at the server
level, they tend to be difficult to write and debug. According to
David Sarna and George Febish in the September 1994 issue of
Datamation: "These are not the tools for creating and maintaining
good code. Doing it this way is SQL-abuse; SQL as a query
language was never designed to do this kind of procedural

computation."

With this model, as an application grows, so do the number of
rules that must be created and controlled by the database. Rather
than focusing on the efficient storage and retrieval of data,
server resources become tied down enforcing business rules - such
as ensuring that a last name is supplied for each new customer.
Again, Sarna and Febish point out that "many of your business and
validation rules are needed so often that they must sit on the
client, or performance will go straight to hell."

The Next Generation

Borland's Delphi is truly a next generation client/server
development tool. Although it fully supports the placement of
business rules in the user interface or on the server (or even a
combination of both), it also presents the possibility of another
model that separates the business rules from both the user
interface and the server. This approach has the potential to
provide greater performance, better scalability, better code
reuse and an ideal platform for RAD. Delphi makes this possible
because it employs an open architecture, whereby developers can
use or create a wide variety of specialized components when
creating applications.

Comparative reports of software tools typically focus on feature
matrices or checklists to relate the features of one product
versus those of its competitors - and in this context Delphi
would certainly emerge as a winner. Checklists, however, do not
necessarily help developers understand how one product could be
far more effective than another. Thus, the content of this white
paper is focused on the needs of client/server application
developers, and how Delphi addresses those needs.

What is Delphi?

Delphi represents the next generation of client /server and
general Windows application development tools. It is a product of
Borland's long-standing leadership in programming languages,
database development tools, and object-oriented programming (OOP)
technology. Delphi is unique in providing a completely visual
integrated development environment (IDE) that is built around a
powerful object-oriented compiled language (Object Pascal). The
IDE shields programmers from the complexity of Windows
development, by encapsulating the Windows application programming
interface (API) inside robust, reusable components.

The implementation of a component-based architecture enhances
power and flexibility. Components range from simple items (such
as buttons, text edit regions or sliders) through to powerful
specialized tools (such as high-performance database components
used for table access, queries and batch updates). While most
client/server development tools include a limited selection of
these basic components, Delphi ships with more than 75 reusable
components.

Developers may modify Delphi components, create their own, or
purchase third-party components (which include text processors,
graphics, communications and statistical utilities, among
others). Once installed on Delphi's component palette, these
additional components become part of the IDE, so that Delphi can
be tailored to whatever the developer (or team of developers)
specifically requires.

Because of the unique way in which components are implemented in
Delphi, it offers similar open architecture benefits to those of
the ISA bus, for example. A component is a self-contained block
of code that includes all functionality to work within a Delphi
application. Just like inserting a new PC expansion card, any new
component added to the library becomes part of Delphi and is
indistinguishable from those that ship with the product. This
open, component-based structure means that Delphi developers are
not tied to any particular development methodology, and may use
whatever tools or components are necessary to accomplish a task.
Redefining Client/Server Development

First generation visual client/server development tools (such as
PowerBuilder) feature environments where all components are
tightly integrated and dependent upon one another. Such an
approach does not encourage modification or customization of
existing components, because when a component is significantly
altered, it has the potential of changing the way in which it
interacts with others. This not only impedes the evolution of the
base product, but it also has the potential to introduce
unpredictable behavior.

Delphi, on the other hand, has as its foundation a true
object-oriented language, with the result that its components are
essentially autonomous objects. Component changes are therefore
unlikely to affect overall product stability. Also, problems with
any specific component behavior can often be corrected by the
developer via subclassing, and thereby overriding the errant
behavior. This also holds true for components created by a
developer or purchased from third-party suppliers.

Delphi Component Types

Delphi's Visual Component Library (VCL) includes more than 75
pre-built components, which can be used in applications and
deployed freely. These include the following:

Standard - Menus, Edit, Label, Buttons, Scroll Bar;

Additional - Bitmap Button, SpeedButton, Notebook, Outline,
DrawGrid, Image, Multimedia; Data Access - Database, Table,
Query, Batch Move, Report;

Data Controls - DataGrid, DBNavigator, DBLabel, DBEdit, DBImage,
ComboBoxes;

Dialogs - Open, Save, Font, Color, Print, Print Setup,

Search/Replace, Tabbed Notebook;

System - Timer, FileListBox, Drive and Directory Combo OLE, DDE;

VBX - Chart, Picture, Gauge;

Samples - Gauge, ColorGrid, SpinButton, SpinEdit, Outline,
Calendar.

Delphi developers can also create their own components, by
modifying existing Delphi components or building them from
scratch. The source code for Delphi's VCL is available to help
developers in this task. Newly-developed components (or those
purchased from third-party developers) can be added to Delphi's
component palette.

Performance

In a client/server environment, overall performance depends upon
a combination of factors, including efficiency of the database
server, network bandwidth, "middleware" or driver performance,
data access techniques, and speed of the user interface. A
well-designed architecture should leverage all of these
characteristics. In almost all respects, Delphi outperforms
PowerBuilder by a significant margin, due to its optimizing
compiler, efficient VCL components and high-performance native
SQL drivers. Some sample benchmark results are listed below:

Operation (All times in seconds) Delphi PowerBuilder
String parse to measure 2.7 22.8
non-database performance;reading
file and splitting record into
substrings

Use a query to load a form from 4.6 70.9
a 20,000 record table. Form
supports searching and filtering.

Post a record (single order) 1.4 1.3

Apply a filter on 20,000 record 3.0 6.2
table

Update record 1.5 1.1

Search for a value, 20,000 records 1.1 1.5

User Interface Performance and Compiled vs Interpreted Code
The user interface (UI) is the most visible portion of any
application. UI performance covers obvious functionality such as
screen updates, along with the underlying processing of data
(including numerical calculations and string manipulations). It
is the portion that users interact with every day, and it is also
the first place where performance differs noticeably between
PowerBuilder and Delphi.

Delphi uses an optimizing native code compiler to generate
standalone executable files (.EXEs) containing machine code
instructions. These executable files are self-contained and,
other than the database engine and the data itself, require no
external files to run. Although PowerBuilder creates an
executable file, it is not truly compiled. When a PowerBuilder
application is run, source code instructions are converted to
machine code before the instructions may be executed. This extra
level of translation introduces significant run-time overhead and
seriously degrades performance.

To support its runtime interpretation, PowerBuilder requires
external support files in the form of runtime interpreter
Dynamic Link Libraries (DLLs). In addition to the application
code, these DLLs must be loaded into memory at runtime, creating
a larger memory "footprint" and leaving less memory for
processing and buffering data. As a result, Delphi applications
execute between 10 and 20 times faster than applications created
using p-code ("pseudo-code") interpreters such as PowerBuilder,
even on target systems with minimal memory.

In moving from PowerBuilder 3.0a to 4.0, PowerSoft tuned its
runtime interpreter to achieve slightly better performance on
systems fitted with 16M of memory. This performance boost often
comes at a cost, however, as final applications can increase from
20 to 70 percent in size. Despite minor enhancements, there is no
way for an interpreted p-code language to even approach the
execution speed of a compiled language like that of Delphi.

Data Access - A New Approach

The two primary methods of implementing client/server solutions
with PowerBuilder involve placing business rules on either the
client or the server. Unfortunately, neither one adequately
addresses the issue of overall performance. If developers choose
to place the burden of enforcing business rules on the server,
they risk performance bottlenecks due to server and network
overload. Yet shifting this task to the comparatively slow
PowerBuilder UI is not an ideal solution. As it turns out,
PowerBuilder's design makes it difficult not to attach at least
some of the business rules directly to the UI.

Delphi, on the other hand, fully supports either of these
techniques, as well as allowing for a more flexible model. Delphi
developers can create a "virtual third-tier" layer containing
business rules independent of the UI and the server. Instead,
these rules can be encapsulated in non-visual components (NVCs)
in a layer between the UI and database engine. Physically and
conceptually, this separates the data and related rules from its
representation to the user.

This approach brings the distributed computing vision of
client/server another step closer to reality, and also provides a
practical means of enhancing performance. All data moving to and
from the application passes through this central conduit. The

"third-tier" NVCs may be single Delphi components such as a
TTable or TQuery or sophisticated combinations of components. By
having a single access point to lookup tables (such as State,
Province or Product Codes that may be used by several forms), the
application need only fetch this data once - when it is started.
This can greatly reduce the number of server requests,
alleviating network traffic and server load.

More importantly, developers can place connections to the main
database tables here as well. As users move between forms,
cursors to their data would remain in place. Thus, if basic
customer information were displayed in one form, moving to
another form displaying credit history would invoke it already
pointing to the appropriate customer. PowerBuilder has limited
functionality in this area through the dwShareData function,
which allows sharing of data between DataWindows. This process
results in duplication of large, complex components, and unless
sufficient RAM is available, this can further degrade client
performance. In the same situation, Delphi reduces the number of
components used, since data access and display are accomplished
with separate components.

Rapid Application Development (RAD)

Rapid Application Development (RAD) is an attempt to address the
issues of building applications tailored to customer requirements
and completing projects with minimal re-working. Historically,
serious application development involved tremendous effort from a
team of analysts who quizzed potential users to determine every
possible requirement of the application. From this collection of
information, volumes of carefully documented specifications were
produced, then the users would sign off and programming
commenced. Some time later, the development team would finally
emerge with an application, and users were then expected to adopt
the product.

This model had several shortcomings. Often, the people who built
the application were not the same as those who did the analysis,
resulting in reinterpretation of the specifications. Furthermore,
users are often not well equipped to diagnose and describe their
technology needs. During the development process, little
communication existed between the developers and eventual users
of the application. In days gone by, when terminals and batch
operations were the only UI, this may have been an adequate
model. However, with the advent of PCs, user expectations are
significantly higher in regard to the UI characteristics of
modern client/server applications. These applications must now
provide access to data, and present it in ways that are most
meaningful to users, with tools to assist in the analysis and
interpretation of the data. As a result, most large organizations
are confronted with a backlog of applications, which must be
tackled with limited staff, budgets and time.

RAD is a development methodology based around an iterative
process of specifying, creating and enhancing an application

until the final product is completed. RAD is based on the notion
that it is difficult to fully predefine a problem domain as
complex as today's typical business applications. As the
developers step through each iteration from prototype to finished
product, the requirements become more clearly defined. Although
not ideal for batch-style applications, RAD is very effective for
the development of applications where the UI design is a key
consideration.

Minimum Coding, Maximum Flexibility

RAD development tools should allow developers to quickly build
prototypes with as little code as possible, and Delphi is very
powerful in this respect. Building a database application with a
classic Customer -> Orders -> Details form (including database
connections) can be done with no lines of code in Delphi. By
comparison, PowerBuilder developers must write a dozen lines of
code to simply link to a database, then they must also write code
to open the form, query the tables and synchronize the tables
appropriately.

Delphi's comprehensive array of data-aware components minimizes
the level of customization that must be done to deliver a
necessary feature or function. Where appropriate functionality
does not exist in a VCL component, developers have the option of
modifying the component or using a third-party component (such as
a VBX control or Delphi native component). Any component may be
subclassed (exploiting inheritance) and reused in other areas.

DataWindows vs Reusable Forms

RAD methodology assumes that application design evolves through
several phases, so a true RAD tool should allow developers to
easily adapt to changes (which can be significant). Because
PowerBuilder combines data access and display in a single
component, some design changes can prove extremely difficult.
When a customer requirement suddenly dictates a new approach to
either data access or display, this often requires a rewrite of
the DataWindow and/or the entire form. Since Delphi separates
these two concepts, the adaptation process is much simpler.

As with most first-generation visual development tools,
PowerBuilder embeds application code inside objects - with the
exception of the DataWindow, which represents both the conduit
and the display format of the data. A DataWindow is created in a
separate section (or "painter"), and cannot have event-handling
code written until it is pasted into a form, whereupon the
relevant application code is then permanently attached to that
DataWindow. Since code is hidden inside objects scattered about
the form, it becomes difficult for developers to locate, and it
also may be affected by modifications to objects on the form.
Furthermore, by "hard-wiring" the DataWindow to the code, it
becomes difficult to reuse that DataWindow in other forms.
Delphi developers address this issue by writing event handlers,
which are pointers to specific procedures, or references within
components that indicate what procedure will be called when a

particular event occurs (mouse click, timer interrupt, etc). Form
procedures are stored in a "unit" file, with all the code visible
to the developer, so there is no need to search through various
objects track down specific code fragments. Once procedures are
created, they may be called by any event of any component. Event
handlers can also call procedures written for any other event
handler, or even directly access components or procedures
residing in other forms. Deleting an object (such as a button)
does not delete procedures created for that object, so that code
changes are easier, faster and safer.

Since Delphi uses the same property/event model for all
components, whether they are visual or non-visual, it is more
consistent and easier to learn than products such as
PowerBuilder. The end result is that Delphi clearly provides an
ideal environment for RAD.

Component Reuse

Inheritance is the ability to create new objects (descendants)
from a base object (ancestor). A descendant inherits all
characteristics of the ancestor, although these can be
overridden. Inheritance is an object-oriented programming (OOP)
fundamental that provides a means by which programmers can reuse
code, and it encourages development of base objects with
characteristics that are likely to be used again. Since
descendants inherit any changes made to the parent object,
changes that are made will propagate throughout any objects that
descend from a base object. The resulting collection of objects
is often called a class hierarchy or class library.

PowerBuilder allows developers to use inheritance to create a
class library based on forms or groups of controls. The problem
with the PowerBuilder approach is that it emphasizes inheritance
of the user interface. Because DataWindows perform the task of
both data access and data display, and because of the close
binding between a DataWindow and various objects (and code) on a
form, UI inheritance is the only type of inheritance that makes
sense in PowerBuilder. However, what developers mostly need to
preserve and reuse is not the visual representation of the data,
but instead the complex logic that drives the business rules. In
fact, the visual representation usually changes the most. Hence,
reuse through inheritance in PowerBuilder often requires the
developer to spend significant time overriding the UI in order to
preserve the underlying code. As a result, PowerBuilder forms
often carry around much unwanted baggage.

Delphi takes an entirely different approach. In its first
release, Delphi, supports inheritance of forms in code only,
compared to PowerBuilder's support of UI inheritance. With the
ability to separate business rules from the UI, a Delphi
developer need only write these once. Different forms can access
the same data components and inherit their business rules, but
are not bound to them. Hence the developer is free to create any

number of forms displaying data in whatever format is
appropriate, knowing that the non-visual components supplying
data to the user interface have fully encapsulated these business
rules.

Such an approach would be difficult with a product such as
PowerBuilder, because the underlying interpreter-based
architecture is not truly object-oriented. According to Steve
Benfield, quoted in the June/July 1994 issue of PowerBuilder
Developers Journal: "PowerBuilder's DataWindows is not truly
object-oriented. I could try to not use DataWindows and code
PowerBuilder in a purely object-oriented way. However, the system
would be so slow that it would be useless."

The Delphi Inheritance Model

Inheritance is fundamental to Delphi, and all VCL components
ultimately descend from an object known as TObject (the "T"
prefix is an accepted standard to denote an object type).
TObject has a great deal of capability built into it, and knows
how to handle certain types of errors, along with how to display
itself in the form designer. Many other components descend from
TObject, each acquiring more capability and becoming more
specialized along the way.

The familiar case of copying to the Windows clipboard is an
example of where Delphi's inheritance can be most powerful. This
turns out to be a complex procedure requiring more than 100 lines
of code in PowerBuilder, whereas the following code sample shows
how the same CopyToClipBoard is handled in Delphi:

 if ((ActiveControl) is TCustomEdit) then
TCustomEdit(ActiveControl).CutToClipBoard

This examples surfaces three important issues. The first is that
it highlights how some very basic functionality is missing from
PowerBuilder. The second is that Delphi developers deal with
functions such as this on a much higher level than with
traditional programming languages. Thirdly, the inheritance
benefits are obvious. TCustomEdit is an ancestor of most of the
editable components in Delphi (such as TEdit, TDBEdit and so on)
In this example, the is operator checks to see if the active
component is a descendant of TCustomEdit, and if so, the next
line casts the active control as its ancestor - TCustomEdit.
Because CutToClipBoard is a method of TCustomEdit, all controls
inherited from it will also inherit this method.

A DataWindows Alternative

DataWindows are an important feature of PowerBuilder. By
attempting to incorporate all database capability into a single
structure, the result is a component that is extremely powerful,
but highly complex. The PowerBuilder 3.0a reference manual
allocates almost 150 pages to explaining the properties and
syntax of the dwDescribe and dwModify functions, which are just

two of the more than 130 functions used within DataWindows.
According to Breck Carter, quoted in the June/July issue of
PowerBuilder Developers Journal: "dwModify() and dwDescribe is a
topic that I know has been a sticking point for many developers.
These functions can be daunting with their screwy syntax and
difficult-to-debug commands . . . If DataWindows' bazillion
functions and events don't get you, you probably won't avoid
being shocked and overwhelmed by dwModify."

PowerBuilder developers place all of their code and forms in a
single .PBL application file, while Delphi applications reside in
three main file types. The application itself comprises .DPR and
.PAS files, while .DFM files contains the binary representation
of forms (buttons, grids etc). Delphi's project manager provides
a high-level view of all these files, and units from other
directories or projects can be easily included. By storing units
in separate files, team development is simplified and the
allocation of tasks is made easier. Developers need not even be
in the same physical location.

During compilation, Delphi keeps track of which files have
changed since the last compile and only generates those changes.
Delphi's compilation speed is the fastest in the industry, at
more than 350,000 lines of code per minute on a 66MHz Pentium
fitted with 8M of RAM. A reasonably complex client/server
application containing over a dozen forms will compile all files
in less than a minute.

PowerBuilder's interpreter-based design makes direct comparisons
with Delphi's compiled performance unrealistic. PowerBuilder
developers cannot exit the code painter until their code is
syntactically correct, so that moving between different code
areas is greatly restricted. PowerBuilder then generates p-code
from its scripting language, along with a runtime executable
file. This p-code generation stage takes about the same amount of
time as the complete syntax checking and compilation to machine
code of a Delphi application. The PowerBuilder application,
however, still requires translation and decoding overhead each
time it is executed.

As the complexity of applications and size of development teams
grows, so does the need to maintain control of the process.
Keeping track of the latest versions of source files is an
important part of this process, and Delphi accomplishes this by
providing a direct interface to PVCS, a leading version control
utility. Delphi will directly link to the PVCS DLL and integrate
it into the development environment.

PowerBuilder developers frustrated with limitations of its
programming language are forced to leave the environment and must
turn to languages such as C++ or Pascal. Once they leave
PowerBuilder, they must abandon any of their custom class
libraries, which are not supported by other products. Delphi does
not present such obstacles, as it is built around a comprehensive

structured, object-oriented language featuring pass-through SQL
commands and inline assembler. Since Delphi can encapsulate
applications into DLL format, any Windows program (including
PowerBuilder) can call a Delphi-generated DLL. In the same
manner, Delphi applications can also access DLLs created using
other development tools.

Exception Handling

When developing serious client/server applications, it becomes
essential to write code that is able to deal with the possibility
of any process failing. Again, according to Breck Carter in the
1994 Special Issue of PowerBuilder Developers Journal: "The
PowerScript language is less than ideal when it comes to error
handling, Most functions can diagnose errors, but with very few
exceptions the default action is to ignore the error and proceed.
There are no debugging switches or compiler directives to change
this behavior to trap all errors and halt. With the exception of
the global SystemError event, there is little language support
for automatic error detection or handling."

This lack of support from the PowerScript language makes it
difficult, if not impossible to create robust error-handling
routines without writing enormous amounts of code. In contrast,
Delphi introduces a new and more powerful error-handling
methodology. To understand how important this new approach is, we
must first look at how it is done.

Fundamental to Delphi is the concept of objects. Every control in
Delphi descends ultimately from a base object control called
TObject. As shown in the diagram above, TObject and hence, all of
its descendants already knows about errors. This knowledge is
passed to the programmer by means of objects. When an error
occurs, Delphi instantiates an Exception object of that exception
type. For example, if a divide by zero error occurs, an
EDivideByZero object is created. All forms have built into them,
the means of dealing with most errors. Rather than having to
write code to test for every possible failure, the following
construct is used:

try
 { statements }
 except
 on ESomething do { specific exception handling code } ;
 else {default exception-handling code } ;
 end;

Delphi also allows developers to create their own exception types
as follows:

type
EpasswordInvalid = class(Exception) ;

This new user type exception is used simply as follows:

 if Password <> CorrectPassword then
raise EpasswordInvalid.Create(Incorrect password entered') ;

These examples are trivial and meant only to display concepts.
Delphi exception handling actually has capabilities far beyond
this. For instance, Windows General Protection Failure (GPF)
errors that are impossible to deal with in PowerBuilder
applications may be handled via Delphi's EGPFault exception type.
This simple construct provides enormous power and flexibility,
and minimizes the amount of code that needs to be written,
further shrinking the development cycle.

Scalability

As more attention is focused on client/server development, the
scope of such applications is expanding. Where once it was
sufficient to provide basic data entry and inquiry capabilities,
users now demand that their applications have functionality far
beyond what can be provided from mainframe solutions. Delphi is
the ideal tool for this type of transition, being built around
Object Pascal, an enhancement of a language that is already known
by more than two million developers.

Delphi does not hide code within UI objects, and is thus more
familiar to mainframe developers and easier to work with than
PowerBuilder. It maximizes code reuse, minimizes development
turnaround time and has the performance and stability necessary
for large applications. It is also infinitely extensible, due to
its OOP architecture, comprehensive array of components and
full-featured programming language.

Many applications are also being scaled up from PC databases
written in dBASE, Clipper, FoxPro and Paradox. As these
applications make the transition from PC environments into the
full client/server model, they must be able to address both PC
and server data. PowerBuilder has extremely poor performance when
accessing PC databases, and does not provide support for Paradox
tables beyond the Paradox 3.5 format, nor does it fully support
the Paradox file locking mechanism.

Some organizations decide that a portion of their data should
reside on a server platform such as Oracle, while other portions
should remain in a PC format such as dBASE. Because of Delphi's
broad database support and extremely good performance against
both PC and server data, it is the ideal tool for when mixed data
access is required. Developers need only one development tool
regardless of whether the data source is PC-based, server-based
or both. Delphi is the only development tool that can adequately
address all of these models. On the other hand, PowerBuilder has
opted to largely ignore the PC database side.

Borland Database Engine

Although not component-based itself, the component-like

architecture of the Borland Database Engine (BDE) fits neatly
into the architecture of Delphi. As the core technology for most
of Borland's database tools including dBASE and Paradox, and used
by millions of database users, the BDE has evolved into an
extremely stable, high-performance technology that can deal with
almost any database format It may be easily configured to access
popular server formats (including Oracle, Sybase, Informix and
InterBase) using high-performance SQL Links. PC database formats
such as dBASE and Paradox are accessed directly via drivers built
into BDE, which also includes support for the wealth of ODBC
drivers.

The BDE is also sold as a separate product, as all of its
functionality is accessible to developers via an API. However,
Delphi developers are most likely to use the native data-aware
components to interact with the BDE, although it is possible to
write directly to the API or even bypass it altogether if
required. This open architecture provides a level of power and
flexibility not possible within PowerBuilder.

Local InterBase Server

The Local InterBase Server is a locally-installed Windows version
of Borland's powerful InterBase workgroup server. Unlike the
Watcom SQL engine that ships with PowerBuilder, this product is a
full-featured SQL database, including:

Stored Procedures and triggers
Automatic two-phase commit
Explicit transaction management
Declarative referential integrity
Event alerters
Simultaneous access to multiple databases and transactions
Multi-generational architecture
Updatable views
Outer joins
User defined functions (UDFs)

Because the Local InterBase Server supports most of the
functionality of the high-end InterBase server, developers can
create SQL-based applications using locally-stored data. Thorough
testing of these applications can be performed locally, without
concern for either the server load or the possibility of damaging
live data. Once an application has been tested and debugged
locally, it may then be scaled to work with an external database
server. If the developer has elected to use specific features of
InterBase, these will perform identically when the application is
deployed against an external InterBase server.

With PowerBuilder, because the Windows version of WATCH SQL lacks
many of the features on the server versions of Watcom SQL,
developers cannot experience the benefits of direct scaling that
Delphi provides. When PowerBuilder accesses the Windows version
of Watcom SQL, it must open a separate application window. Since
this is a standard window, users can task-switch to the window or
close it - either from the window itself or externally. This

makes the Windows version of Watcom SQL unsuitable in a
production environment.

The Local InterBase Server, however, loads as a DLL in Delphi and
cannot be accessed by users. This, combined with its
comprehensive feature set, make the Local InterBase Server ideal
for applications running on notebook PCs. When a user returns to
the office, the application can be linked to the server version
of the database. Applications may therefore scale from notebooks
up to Windows NT or Novell NetWare NLM servers, and all the way
up to the largest Unix-based systems, without developers needing
to change a single line of code. By offering this capability,
Delphi represents the ultimate in database scalability.

Conclusion

This paper has examined just a few of the many differences
between Delphi and PowerBuilder. Both are clearly high end
client/server development tools with excellent features. When
examined from the perspectives of performance, scalability,
reuse and RAD, Delphi clearly leads the way into the next
generation of client/server development.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Moving to a tab by name on a TabSet
 NUMBER : 2799
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Moving to a tab by name on a TabSet

Moving to a page by name on a TabSet.

Place a Tabset(TabSet1) and an Edit (Edit1) on
your form. Change the Tabset's Tabs Property in
the String List Editor to include 4 Tabs:
 Hello,
 World,
 Of,
 Delphi,

Change Edit1's onChange event to:

procedure TForm1.Edit1Change(Sender: TObject);
var
 I : Integer;
begin
 for I:= 0 to tabset1.tabs.count-1 do
 if edit1.text = tabset1.tabs[I] then
 tabset1.tabindex:=I;
end;

If You type any of the Tabs names in edit1 it
will focus on the appropriate tab.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Step by Step Configuration of an ODBC Driver
 NUMBER : 2781
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Step by Step Configuration of an ODBC Driver

 CONFIGURING AN ODBC DRIVER AND ALIAS FOR DELPHI

CONTROL PANEL'S ODBC OPTION

Delphi installs an ODBC option to the Windows Control Panel
program. The ODBC option indicates the available data sources
(drivers) installed for use by ODBC. As you will find by
selecting the ODBC option, a number of formats are installed
with Delphi and are seen in the main window titled Data Sources.
Additional formats may be supported by the drivers installed and
can be configured by selecting the Add... button.

If a new driver is to be added or removed,

1. Select the Drivers... button from the Data Sources Window.
From the drivers dialog, select the Add... button and provide
the path where the ODBC driver will be found.

2. Return to the Data Sources Windows and include the possible
data sources available through the new driver by selecting its
Add... button.

3. To configure options available for a particular data
source use the Setup... button. The function of the Setup...
button will vary with each data format. Very often options like
the working directory for the driver are configured in this
area.

Online help is available for each dialog involved with the ODBC
option.

BDE CONFIGURATION UTILITY

After installing the ODBC driver, run the BDE Configuration
utility to configure the database engine to use the new driver.

1. From the drivers page, select the New ODBC driver button.

2. A dialog titled Add ODBC driver will appear. The option for
SQL link driver is what will distinguish the databases created
using this ODBC driver.

3. Next select the default ODBC driver. Dropping down the list

from the combobox will reveal the file types supported by ODBC
drivers installed on the system.

4. Select the default data source for the ODBC driver. Having
set the ODBC driver in step 3 above, the list of this combobox
will have the data source names appropriate for use with the
selected driver.

5. Select Ok.

6. Returning to the drivers page, select File/Save from the main
menu to save this configuration.

CREATING AN ALIAS IN THE DATABASE DESKTOP

While this can be done from the BDE Configuration utility, it is
more convenient overall to create ODBC aliases from the Database
Desktop.

1. From the File menu, select Aliases...

2. From the resulting Alias Manager dialog, select New.

3. Type the name for your new alias in the area labeled Database
Alias.

4. Use the drop down list of the Driver Type combobox to select
the driver appropriate for this alias. Paradox and dBase tables
are considered STANDARD. If the ODBC driver was properly
configured in the BDE Configuration utility it's name will
appear in this list.

5. Additional options may appear depending upon the driver type
you select.

6. When finished, select Keep New to store the new alias. Then
select Ok. You will be prompted for whether or not to save the
aliases to IDAPI.CFG. Select Okay.

The alias will now be usable from both the Database Desktop and
Delphi.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Creating Database Aliases in Code
 NUMBER : 2783
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Creating Database Aliases in Code

This Technical Information document will help step thru
concepts regarding the creation and use of ALIASES within
your Delphi Applications.

Typically, you use the BDE Configuration Utility BDECFG.EXE to
create and configure aliases outside of Delphi. However, with
the use of the TDatabase component, you have the ability to
create and use this ALIAS within your application-- not
pre-defined in the IDAPI.CFG.

The ability to create Aliases that are only available within
your application is important. Aliases specify the location
of database tables and connection parameters for database servers.
Ultimately, you can gain the advantages of using ALIASES within
your applications-- without having to worry about the existance
of a configuration entry in the IDAPI.CFG when you deploy your
application.

Summary of Examples:
------- -- ---------
Example #1:

Example #1 creates and configures an Alias to use
STANDARD (.DB, .DBF) databases. The Alias is

 then used by a TTable component.
Example #2:

Example #2 creates and configures an Alias to use
 an INTERBASE database (.gdb). The Alias is then

used by a TQuery component to join two tables of
the database.

Example #3:
Example #3 creates and configures an Alias to use

 STANDARD (.DB, .DBF) databases. This example
demonstrates how user input can be used to
configure the Alias during run-time.

Example #1: Use of a .DB or .DBF database (STANDARD)

1. Create a New Project.
2. Place the following components on the form:
 - TDatabase, TTable, TDataSource, TDBGrid, and TButton
3. Double-click on the TDatabase component or choose Database
 Editor from the TDatabase SpeedMenu to launch the Database
 Property editor.
4. Set the Database Name to 'MyNewAlias'. This name will

 serve as your ALIAS name used in the DatabaseName Property for
 dataset components such as TTable, TQuery, TStoredProc.
5. Select STANDARD as the Driver Name.
6. Click on the Defaults Button. This will automatically add
 a PATH= in the Parameter Overrides section.
7. Set the PATH= to C:\DELPHI\DEMOS\DATA
 (PATH=C:\DELPHI\DEMOS\DATA)
8. Click the OK button to close the Database Dialog.
9. Set the TTable DatabaseName Property to 'MyNewAlias'.
10. Set the TDataSource's DataSet Property to 'Table1'.
11. Set the DBGrid's DataSource Property to 'DataSource1'.

12. Place the following code inside of the TButton's
 OnClick event.

procedure TForm1.Button1Click(Sender: TObject);
begin

 Table1.Tablename:= 'CUSTOMER';
 Table1.Active:= True;

end;

13. Run the application.

*** If you want an alternative way to steps 3 - 11, place the
 following code inside of the TButton's OnClick event.

procedure TForm1.Button1Click(Sender: TObject);
begin

 Database1.DatabaseName:= 'MyNewAlias';
 Database1.DriverName:= 'STANDARD';

 Database1.Params.Clear;
 Database1.Params.Add('PATH=C:\DELPHI\DEMOS\DATA');
 Table1.DatabaseName:= 'MyNewAlias';
 Table1.TableName:= 'CUSTOMER';
 Table1.Active:= True;
 DataSource1.DataSet:= Table1;
 DBGrid1.DataSource:= DataSource1;

end;

Example #2: Use of a INTERBASE database

1. Create a New Project.
2. Place the following components on the form:
 - TDatabase, TQuery, TDataSource, TDBGrid, and TButton
3. Double-click on the TDatabase component or choose Database
 Editor from the TDatabase SpeedMenu to launch the Database
 Property editor.
4. Set the Database Name to 'MyNewAlias'. This name will
 serve as your ALIAS name used in the DatabaseName Property for
 dataset components such as TTable, TQuery, TStoredProc.
5. Select INTRBASE as the Driver Name.
6. Click on the Defaults Button. This will automatically add
 the following entries in the Parameter Overrides section.

SERVER NAME=IB_SERVER:/PATH/DATABASE.GDB
USER NAME=MYNAME
OPEN MODE=READ/WRITE
SCHEMA CACHE SIZE=8
LANGDRIVER=
SQLQRYMODE=
SQLPASSTHRU MODE=NOT SHARED
SCHEMA CACHE TIME=-1
PASSWORD=

7. Set the following parameters

SERVER NAME=C:\IBLOCAL\EXAMPLES\EMPLOYEE.GDB
USER NAME=SYSDBA
OPEN MODE=READ/WRITE
SCHEMA CACHE SIZE=8
LANGDRIVER=
SQLQRYMODE=
SQLPASSTHRU MODE=NOT SHARED
SCHEMA CACHE TIME=-1
PASSWORD=masterkey

8. Set the TDatabase LoginPrompt Property to 'False'. If you
 supply the PASSWORD in the Parameter Overrides section and set
 the LoginPrompt to 'False', you will not be prompted for the
 password when connecting to the database. WARNING: If an
 incorrect password in entered in the Parameter Overrides
 section and LoginPrompt is set to 'False', you are not prompted
 by the Password dialog to re-enter a valid password.

9. Click the OK button to close the Database Dialog.
10. Set the TQuery DatabaseName Property to 'MyNewAlias'.
11. Set the TDataSource's DataSet Property to 'Query1'.
12. Set the DBGrid's DataSource Property to 'DataSource1'.

13. Place the following code inside of the TButton's
 OnClick event.

procedure TForm1.Button1Click(Sender: TObject);
begin

 Query1.SQL.Clear;
 Query1.SQL.ADD(

'SELECT DISTINCT * FROM CUSTOMER C, SALES S
WHERE (S.CUST_NO = C.CUST_NO)
ORDER BY C.CUST_NO, C.CUSTOMER');

 Query1.Active:= True;
end;

14. Run the application.

Example #3: User-defined Alias Configuration

This example brings up a input dialog and prompts the
user to enter the directory to which the ALIAS is to
be configured to.

The directory, servername, path, database name, and other
neccessary Alias parameters can be read into the
application from use of an input dialog or .INI file.

1. Follow the steps (1-11) in Example #1.
2. Place the following code inside of the TButton's
 OnClick event.

procedure TForm1.Button1Click(Sender: TObject);
var
 NewString: string;
 ClickedOK: Boolean;
begin
 NewString := 'C:\';
 ClickedOK := InputQuery('Database Path',

'Path: --> C:\DELPHI\DEMOS\DATA', NewString);
 if ClickedOK then
 begin
 Database1.DatabaseName:= 'MyNewAlias';
 Database1.DriverName:= 'STANDARD';
 Database1.Params.Clear;
 Database1.Params.Add('Path=' + NewString);
 Table1.DatabaseName:= 'MyNewAlias';
 Table1.TableName:= 'CUSTOMER';
 Table1.Active:= True;
 DataSource1.DataSet:= Table1;
 DBGrid1.DataSource:= DataSource1;
 end;
end;

3. Run the Application.

See Also:

Delphi On-line help -->
Database Properties Editor
TDatabase

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Creating & Deleting TFields at run-time
 NUMBER : 2790
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 24, 1996

 TITLE : Creating & Deleting TFields at run-time

TField components (or more appropriately, descendants of the TField
component of types corresponding to field types) can be created at design-
time using the Fields Editor. The Fields Editor is invoked by double-
clicking on the design icon for a TTable or TQuery component. But TField
descendants can also be created and deleted at run-time.

Descendants of the TField component (such as TStringField, TIntegerField,
etc.) are created by invoking the Create method for the type of TField
descendant appropriate to the field in the data set. That is, the Create
method for the TStringField descendant of TField would be called to create
a TField descendant for a string-type field in the current data set. The
Create method requires one parameter, that of the owner of the TField
descendant, which is the containing TForm. After creating the TField
descendant component, a number of key properties need to be set in order
to connect it with the field in the data set. These are:

FieldName: the name of the field in the table.
Name: a unique identifier for the TField descendant component.
Index: the TField descendant component's position in the array of
 TFields (the Fields property of the TTable or TQuery with which
 the TField will be associated).
DataSet: the TTable or TQuery with which the TField will be associated.

The code snippet below demonstrates creating a TStringField. The
containing TForm is called Form1 (referred to here with the Self
variable), the active data set is a TQuery named Query1, and the field for
which the TStringField component is being created is a dBASE table field
named CO_NAME. This new TField descendant will be the second TField in the
Fields array property of Query1. Note that the data set with which the new
TField descendant will be associated (in this case, Query1) must be closed
prior to adding the TField and then reopened afterwards.

procedure TForm1.Button2Click(Sender: TObject);
var
 T: TStringField;
begin
 Query1.Close;
 T := TStringField.Create(Self);
 T.FieldName := 'CO_NAME';
 T.Name := Query1.Name + T.FieldName;
 T.Index := Query1.FieldCount;
 T.DataSet := Query1;
 Query1.FieldDefs.UpDate;
 Query1.Open;
end;

The example above example creates a new TStringField named Query1CO_NAME.

Deleting an existing TField descendant is merely a matter of invoking the
Free method for that component. In the example below, the TForm's Find-
Component method is used to return a pointer to the TStringField component
named Query1CO_NAME. The return value for the FindComponent will either be
of type TComponent if successful or nil if unsuccessful. This return value
can be used to determine whether the component actually exists prior to
invoking its Free method.

procedure TForm1.Button1Click(Sender: TObject);
var
 TC: TComponent;
begin
 TC := FindComponent('Query1CO_NAME');
 if not (TC = nil) then begin
 Query1.Close;
 TC.Free;
 Query1.Open;
 end;
end;

As with creating a TField, if the data set associated with the TField
descendant is currently active, it must be closed or deactivated prior to
invoking this method.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to iterate through the fields of a table
 NUMBER : 2791
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to iterate through the fields of a table

Getting a list of the fields in a table at run-time can be as simple as a
call to the GetFieldNames method of the TTable, TQuery, or TStoredProc
component. The DetFieldNames method returns a list of the fields that
comprise the structure of the data set in the form of a TStrings list,
which may be inserted into such visual components as a TListBox through
its Items property:

 ListBox1.Clear;
 Table1.GetFieldNames(ListBox1.Items);

Of course, the TStrings list returned by the GetFieldNames method need not
be used with a visual component. It could just as well serve as an array
of field names stored entirely in memory, that can be used as a list or
array.

But it is also possible to retrieve much more information about the
fields in a table than just the names. Other descriptive attributes incl-
ude field types and sizes. Retrieving tyhese values is slightly more
involved than the use of the GetFieldNames. Basically, this process
involves iterating through the FieldDefs property of the TTable, TQuery,
or TStoredProc component. The FieldDefs property is essentially an
array of records, one record for each field in the structure. Each field
record contains information about the field, including its name, type,
and size. It is a relatively straightforward process to iterate through
this array of field descriptions, extracting information about individual
fields.

There are a number of reasons why a program might need to query the
structure of a table used in the application. One reason is a prelude to
creating TField components at run-time that represent the fields in the
table. The information gleaned from the structure of the table form the
basis of the TField components to be created.

The example below demonstrates how to iterate through the fields available
in a TTable or TQuery. The example extracts information about the available
fields and displays the information in a TListBox, but the same methodology
can be used to provide information necessary for the dynamic building of
TField descendants. The example uses a TTable as the data set, but a TQuery
can be used in the same manner as both TTable and TQuery components incorp-
orate the Field-Defs property the same way.

procedure TForm1.Button1Click(Sender: TObject);
var
 i: Integer;
 F: TFieldDef;

 D: String;
begin
 Table1.Active := True;
 ListBox1.Items.Clear;
 with Table1 do begin
 for i := 0 to FieldDefs.Count - 1 do begin
 F := FieldDefs.Items[i];
 case F.DataType of
 ftUnknown: D := 'Unknown';
 ftString: D := 'String';
 ftSmallint: D := 'SmallInt';
 ftInteger: D := 'Integer';
 ftWord: D := 'Word';
 ftBoolean: D := 'Boolean';
 ftFloat: D := 'Float';
 ftCurrency: D := 'Currency';
 ftBCD: D := 'BCD';
 ftDate: D := 'Date';
 ftTime: D := 'Time';
 ftDateTime: D := 'DateTime';
 ftBytes: D := 'Bytes';
 ftVarBytes: D := '';
 ftBlob: D := 'BLOB';
 ftMemo: D := 'Memo';
 ftGraphic: D := 'Graphic';
 else
 D := '';
 end;
 ListBox1.Items.Add(F.Name + ', ' + D);
 end;
 end;
 Table1.Active := False;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to match file date/time stamps.
 NUMBER : 2792
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to match file date/time stamps.

Q: "How can I write a function that sets the date of one file equal to the
 date of another file?"

A: No problem. Just use the following function, which takes two strings
 representing full DOS path/file names. The file who's date you
 wish to set is the second parameter, and the date you wish to set it to
 is given by the file in the first parameter.

procedure CopyFileDate(const Source, Dest: String);
var
 SourceHand, DestHand: word;
begin
 SourceHand := FileOpen(Source, fmOutput); { open source file }
 DestHand := FileOpen(Dest, fmInput); { open dest file }
 FileSetDate(DestHand, FileGetDate(SourceHand)); { get/set date }
 FileClose(SourceHand); { close source file }
 FileClose(DestHand); { close dest file }
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Adding Graphics in Your Listboxes and Comboboxes
 NUMBER : 2793
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Adding Graphics in Your Listboxes and Comboboxes

TI: Inserting graphics in Owner Drawn ListBoxes and ComboBoxes

The ability to place graphics inside ListBoxes and ComboBoxes
can improve the look of your application and set your user
interface apart from the others.

Q: How do I stick graphics in a Listbox or ComboBox???

Here is an step-by-step example.....

1. Create a form.

2. Place a ComboBox and Listbox component on your form.

3. Change the Style property of the ComboBox component to
csOwnerDrawVariable and the Style property of the ListBox to
lbOwnerDrawVariable.

An Owner-Draw TListBox or TComboBox allows you to display
both objects (ex. graphics) and strings as the items. For
this example, we are adding both a graphic object and a
string.

4. Create 5 variables of type TBitmap in the Form's VAR
section.

5. Create a Procedure for the Form's OnCreate event.

6. Create a Procedure for the ComboBox's OnDraw Event.

7. Create a Procedure for the ComboBox's OnMeasureItem.

8. Free the resources in the Form's OnClose Event.

{START OWNERDRW.PAS}
unit Ownerdrw;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls;

type

 TForm1 = class(TForm)
 ComboBox1: TComboBox;
 ListBox1: TListBox;
 procedure FormCreate(Sender: TObject);
 procedure FormClose(Sender: TObject; var Action: TCloseAction);
 procedure ComboBox1DrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
 procedure ComboBox1MeasureItem(Control: TWinControl; Index: Integer;
 var Height: Integer);
 procedure ListBox1DrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
 procedure ListBox1MeasureItem(Control: TWinControl; Index: Integer;
 var Height: Integer);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;
 TheBitmap1, TheBitmap2, TheBitmap3, TheBitmap4,
 TheBitmap5 : TBitmap;
implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 TheBitmap1 := TBitmap.Create;
 TheBitmap1.LoadFromFile('C:\delphi\images\buttons\globe.bmp');
 TheBitmap2 := TBitmap.Create;
 TheBitmap2.LoadFromFile('C:\delphi\images\buttons\video.bmp');
 TheBitmap3 := TBitmap.Create;
 TheBitmap3.LoadFromFile('C:\delphi\images\buttons\gears.bmp');
 TheBitmap4 := TBitmap.Create;
 TheBitmap4.LoadFromFile('C:\delphi\images\buttons\key.bmp');
 TheBitmap5 := TBitmap.Create;
 TheBitmap5.LoadFromFile('C:\delphi\images\buttons\tools.bmp');
 ComboBox1.Items.AddObject('Bitmap1: Globe', TheBitmap1);
 ComboBox1.Items.AddObject('Bitmap2: Video', TheBitmap2);
 ComboBox1.Items.AddObject('Bitmap3: Gears', TheBitmap3);
 ComboBox1.Items.AddObject('Bitmap4: Key', TheBitmap4);
 ComboBox1.Items.AddObject('Bitmap5: Tools', TheBitmap5);
 ListBox1.Items.AddObject('Bitmap1: Globe', TheBitmap1);
 ListBox1.Items.AddObject('Bitmap2: Video', TheBitmap2);
 ListBox1.Items.AddObject('Bitmap3: Gears', TheBitmap3);
 ListBox1.Items.AddObject('Bitmap4: Key', TheBitmap4);
 ListBox1.Items.AddObject('Bitmap5: Tools', TheBitmap5);

end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
 TheBitmap1.Free;
 TheBitmap2.Free;

 TheBitmap3.Free;
 TheBitmap4.Free;
 TheBitmap5.Free;
end;

procedure TForm1.ComboBox1DrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
var
 Bitmap: TBitmap;
 Offset: Integer;
begin
 with (Control as TComboBox).Canvas do
 begin
 FillRect(Rect);
 Bitmap := TBitmap(ComboBox1.Items.Objects[Index]);
 if Bitmap <> nil then
 begin
 BrushCopy(Bounds(Rect.Left + 2, Rect.Top + 2, Bitmap.Width,
 Bitmap.Height), Bitmap, Bounds(0, 0, Bitmap.Width,
 Bitmap.Height), clRed);
 Offset := Bitmap.width + 8;
 end;
 { display the text }
 TextOut(Rect.Left + Offset, Rect.Top, Combobox1.Items[Index])
 end;
end;

procedure TForm1.ComboBox1MeasureItem(Control: TWinControl; Index:
 Integer; var Height: Integer);
begin
 height:= 20;
end;

procedure TForm1.ListBox1DrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
var
 Bitmap: TBitmap;
 Offset: Integer;
begin
 with (Control as TListBox).Canvas do
 begin
 FillRect(Rect);
 Bitmap := TBitmap(ListBox1.Items.Objects[Index]);
 if Bitmap <> nil then
 begin
 BrushCopy(Bounds(Rect.Left + 2, Rect.Top + 2, Bitmap.Width,
 Bitmap.Height), Bitmap, Bounds(0, 0, Bitmap.Width,
 Bitmap.Height), clRed);
 Offset := Bitmap.width + 8;
 end;
 { display the text }
 TextOut(Rect.Left + Offset, Rect.Top, Listbox1.Items[Index])
 end;
end;

procedure TForm1.ListBox1MeasureItem(Control: TWinControl; Index: Integer;

 var Height: Integer);
begin
 height:= 20;
end;

end.
{END OWNERDRW.PAS}

{START OWNERDRW.DFM}
object Form1: TForm1
 Left = 211
 Top = 155
 Width = 435
 Height = 300
 Caption = 'Form1'
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 PixelsPerInch = 96
 OnClose = FormClose
 OnCreate = FormCreate
 TextHeight = 16
 object ComboBox1: TComboBox
 Left = 26
 Top = 30
 Width = 165
 Height = 22
 Style = csOwnerDrawVariable
 ItemHeight = 16
 TabOrder = 0
 OnDrawItem = ComboBox1DrawItem
 OnMeasureItem = ComboBox1MeasureItem
 end
 object ListBox1: TListBox
 Left = 216
 Top = 28
 Width = 151
 Height = 167
 ItemHeight = 16
 Style = lbOwnerDrawVariable
 TabOrder = 1
 OnDrawItem = ListBox1DrawItem
 OnMeasureItem = ListBox1MeasureItem
 end
end
{END OWNERDRW.DFM}

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Using OnHint Events Among Mulitiple Forms
 NUMBER : 2796
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Using OnHint Events Among Mulitiple Forms

 Using OnHint Among Multiple Forms

Delphi's Online Help and Visual Component Library Reference
describe an example for processing TApplication's OnHint event.
The example shows how a panel can be used to display hints
associated with other components. As the example sets the
Application's OnHint method in the Form's OnCreate event, a
program involving more than one form will have difficulty using
this technique.

Moving the assignment of OnHint from the Form's OnCreate event
to its OnActivate method will allow different forms involved in
the application to treat Hints in their own way.

Here is an altered form of the source code presented in the
Online Help and the VCL Reference.

type
 TForm1 = class(TForm)
 Button1: TButton;
 Panel1: TPanel;
 Edit1: TEdit;
 procedure FormActivate(Sender: TObject);
 private
 { Private declarations }
 public
 procedure DisplayHint(Sender: TObject);
 end;

implementation

{$R *.DFM}

procedure TForm1.DisplayHint(Sender: TObject);
begin
 Panel1.Caption := Application.Hint;
end;

procedure TForm1.FormActivate(Sender: TObject);
begin
 Application.OnHint := DisplayHint;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Making the Enter key work like a Tab in a TDBGrid
 NUMBER : 2798
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Making the Enter key work like a Tab in a TDBGrid

Code to make the <Enter>key act as the tab key while inside a grid.

This code also includes the processing of the <Enter> key for the entire
application - including fields, etc. The grid part is handled in the
ELSE portion of the code. The provided code does not mimic the behavior
of the <Tab> key stepping down to the next record when it reaches the last
column in the grid - it moves back to the first column - .

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
{ This is the event handler for the FORM's OnKeyPress event! }
{ You should also set the Form's KeyPreview property to True }
begin
 if Key = #13 then { if it's an enter key }
 if not (ActiveControl is TDBGrid) then begin { if not on a TDBGrid }
 Key := #0; { eat enter key }
 Perform(WM_NEXTDLGCTL, 0, 0); { move to next control }
 end
 else if (ActiveControl is TDBGrid) then { if it is a TDBGrid }
 with TDBGrid(ActiveControl) do
 if selectedindex < (fieldcount -1) then { increment the field }
 selectedindex := selectedindex +1
 else
 selectedindex := 0;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi vs Visual Basic
 NUMBER : 2780
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Delphi vs Visual Basic

An Evaluation of
Rapid Application Development Tools for Windows:
A Comparison Between
Delphi and Visual Basic

Table Of Contents

Introduction
Windows Visual Development
Performance
Benchmarks
Benchmark Results
Rapid Application Development (RAD)
Controls
Control Icon Array
Templates and Experts
Object Placement
Property Lists
Code Window
Debugging And Object Inspecting
Component Reuse
Shared Event Functions
Reusable Functions and Libraries
Components
Programming Language
OOP Design Methodology
Database Scalability
Moving Up to Delphi
Conclusion

Introduction

With the growing demands on Windows applications developers to
create increasingly complex applications in less time, the
evolution of Rapid Application Development (RAD) tools has become
a crucial focus of the development community. First-generation
RAD tools for Windows included application frameworks (such as
OWL and MFC), DLL-based class libraries, and VBXs (Visual Basic
custom controls).

The release of Borland's Delphi heralds a new generation of RAD
tools that combines the power of traditional 3GL compilers with
the ease of use and development speed of a 4GL environment. This
white paper will contrast the approach of the new technology used
by Delphi with that of Microsoft's Visual Basic.

Windows Visual Development

The earliest methodology for Windows applications programming was
to code directly using calls to the Windows API. The API
provided a crude mechanism for creating such items as menus and
windows, leaving the developer with an enormous coding task even
when creating a rudimentary application. These early programs
were typically created with C compilers that were equally crude
by today's standards. As a result, the expectations for what
could reasonably be achieved by professional developers was
severely limited by schedule and performance constraints. Early
applications were also, for the most part, independent. In other
words, they were generally not reliant on each other and did not
share data or invoke other applications.

Appreciating the underlying potential of the Windows environment,
the development community demanded better tools, to enhance their
productivity and facilitate the creation of more sophisticated
applications. As Windows evolved, inter-application
communications using DDE and OLE was introduced, then more
powerful application frameworks products such as Borland's OWL
and Microsoft's MFC appeared, as well as third-party products
such as zApp from Zinc and Island Systems' object-Menu.

These libraries were used to encapsulate the most common
functions of Windows applications, as well as to leave room for
expansion and customization by developers. Thus, a programmer
could quickly create a window with a certain border style, make
it modal and add a "Close" button, then invoke it with a single
call. Further, the advent of C++ compilers for Windows allowed
experienced developers to exploit the power of object-oriented
technology. Developers now had the means to create complex
applications within acceptable schedules.

Object-oriented languages allowed developers to create classes
and override specific virtual functions, providing a direct path
to building custom libraries. This generation of tools still had
two major shortcomings:

1. Although productivity had been significantly increased,
 schedules for complex applications development were still
 quite lengthy. For example, the common development scenario
 would proceed as follows:
 a) some sample screens would be created in a prototype
 environment or a resource tool;
 b) marketing would critique the screen design and
 modifications would be made;
 c) the "final" screens would be integrated with code to
 complete the application;
 d) any changes that were requested often became
 complicated and painful, since the code and the screens
 were so closely linked.

2. The expertise required made Windows programming the sole
 domain of the experienced developer. In other words, the

 extensive needs of the corporate community simply could not
 be met due to the requirement for significant programmer
 expertise.

Thus evolved the next stage of Windows development, characterized
by 4GL visual design environments such as Microsoft Visual Basic
and high-end products such as Powersoft's PowerBuilder. These
environments provided a major step forward in user-friendly
development, with high-level, reusable components called controls
which introduced the concept of a "building block" approach to
software development. Most of the application development effort
could now occur within a visual design tool where the programmer
would piece together an interface from a suite of available
libraries. Customization of the components can be accomplished
by modifying a corresponding collection of properties sheet. Any
"work" to be done within the application is triggered via events
that affect the interface components (mouse clicks, keyboard
entries and so on). With these first-generation visual
development tools, the specification of the actions to be taken
on these events is defined using a Basic-like scripting language.

As proven by their broad popularity, these tools went a long way
toward solving some of the problems of corporate developers.
However, there remained a serious deficit in their capabilities,
due to their reliance on the visual design process for creating
the application and also their underlying interpreted languages.

As the demands of Windows applications buyers continued to grow,
developers were stretching the limits of the existing
technologies to create projects such as mission-critical
client/server applications. Team development and software
quality assurance issues were becoming prominent. Applications
were being designed as a series of modules that would need to
interact seamlessly, and capable of communicating with and
invoking other applications. For example, a user may have a need
to insert a graphic in the context of an application. The graphic
would be found by accessing a database created by some other
application potentially residing over a network on a remote
system. All of this needed to be transparent to the application
at hand, so that users need not be concerned with where the
graphic came from or how it was created.

Specifically, the following issues thus became crucial to
professional applications developers:

* Performance
* Rapid Application Development
* Component Reuse
* Database Scalability

The next logical step in this evolution is technology that
combines the significantly enhanced productivity of modern RAD
tools with the power and flexible architecture of proven 3GL
compiled languages. The remainder of this paper will contrast
how Delphi and Visual Basic address these four key criteria for a

robust Windows development system.

It is assumed that readers of this paper are familiar with RAD
design concepts, but a detailed knowledge of Visual Basic or
Delphi is not necessary in order to understand this paper.

Performance

Performance of deployed applications is a key issue in today's
highly competitive software market. Particularly for large,
distributed client/server applications, any shortfalls in
execution speed become far more apparent, due to higher overall
system demands.

Delphi is based upon Object Pascal (a significant extension of
the popular Borland Pascal 7.0) whereas Visual Basic uses
Microsoft Basic as its underlying language. Delphi's performance
is significantly better, simply because it generates compiled
executable files, while Visual Basic produces semi-interpreted
code. That is, Delphi is built around an optimizing native code
compiler instead of the slower interpreted p-code used by
products such as Visual Basic. This results in Delphi
applications executing 10 to 20 times faster than interpreted
code. Delphi's intelligent linker also enables segment
optimization, thereby reducing executable file size by as much as
30 percent, which enables faster loading and additional
performance gains.

Delphi can compile standalone executable files (.EXEs) as well as
reusable Dynamic Linked Libraries (DLLs). For the ultimate in
execution speed, Delphi also allows professional programmers to
go one step further by writing in-line assembler code, for direct
control of the microprocessor.

Other areas in which Delphi displays considerable performance
gains over Visual Basic is in database connectivity. The database
layer of Visual Basic is implemented via ODBC, as opposed to the
more efficient Borland Database Engine used in Delphi (and other
core Borland development tools). However, Delphi also supports
links to data via ODBC drivers. The high-performance native SQL
Links supplied with Delphi Client/Server also outperform
comparable Visual Basic SQL connectivity options.

Benchmarks

Delphi's superior performance over Visual Basic becomes
immediately apparent when running a few simple benchmarks.
Consider the following examples, where a database is filled with
items of text representing lastname, firstname, phone and street
information. The phone number field is filled with consecutive
integers, then the database is re-read and filled with a global
array of integers from the phone number field. Finally, the
global array is sorted to become reverse-ordered using a
comparatively slow bubble sort algorithm.

Similar code can be written in both Delphi and Visual Basic, with

the stages of the benchmarks summarized in the following code
fragments:

VB - Fill

Sub btnFill_Click ()
Dim k As Integer
 MaxArray = EdArraySize.Text
 For k = 1 To MaxArray
 Data1.Recordset.AddNew
 Data1.Recordset("LastName") = "Smith " + Str(k)
 Data1.Recordset("FirstName") = "Joe " + Str(k)
 Data1.Recordset("Phone") = Str(k)
 Data1.Recordset.Update
 Next k
 Data1.Recordset.MoveLast
End Sub

VB - Read

Sub btnSearch_Click ()
Dim k As Integer
Dim n As Integer
Dim s As String
 Data1.Recordset.MoveFirst
 For k = 1 To MaxArray
 s = edPhone.Text
 n = Val(s)
 Call AppendArray(k, n)
 Data1.Recordset.MoveNext
 Next k
End Sub

VB - Sort

Sub btnSort_Click ()
 Dim j As Integer
 Dim k As Integer
 Dim tmp As Integer
 For j = 1 To MaxArray - 1
 For k = 1 To MaxArray - j
 If GlobArray(k) < GlobArray(k + 1) Then
 ' Swap GlobArray[k+] with GlobArray[k] ...
 tmp = GlobArray(k + 1)
 GlobArray(k + 1) = GlobArray(k)
 GlobArray(k) = tmp
 End If
 Next k
 Next j
End Sub

Delphi - Fill

procedure TForm1.Button4Click(Sender: TObject);
var
 k,err: integer;
 s: string;
begin
 val(edDBsize.Text,maxArray,err);
 for k:=1 to maxArray do
 with Table1 do
 begin
 str(k,s);
 Append;
 FieldByName('Lastname').AsString := 'NewGuy'+s;
 FieldByName('Firstname').AsString := 'Paul'+s;
 FieldByName('Phone').AsString := s;
 Post;
 end
end;

Delphi - Read

procedure TForm1.btnSearchTestClick(Sender: TObject);
var
 s: string;
 n,err,k: integer;
begin
 val(edDBsize.Text,MaxArray,err);
 Table1.First;
 for k:=1 to MaxArray do
 begin
 s := DBedPhone.EditText;
 val(s,n,err);
 AppendArray(k,n);
 Table1.Next;
 end;
end;

Delphi - Sort

procedure TForm1.btnSortArrayClick(Sender: TObject);
var
 j,k,tmp: integer;
begin
 for j:=1 to MaxArray-1 do
 for k:=1 to MaxArray-j do
 if GlobArray[k] < GlobArray[k+1] then
 begin
 { Swap GlobArray[k+] with GlobArray[k] ... }
 tmp := GlobArray[k+1];
 GlobArray[k+1] := GlobArray[k];
 GlobArray[k] := tmp;
 end;
end;

Benchmark Results

The following table shows the results for database tables ranging
in size from 100 to 4000 records. The test stages Fill, Read and
Sort correspond the code sections described on the previous
pages.
(All benchmark times are in seconds.)

D = Delphi
FL = Fill
RD = Read
X = x Sort
ST = Sort

D VB D VB D X VB D X Total VB
items
 FL FL RD RD ST ST Total Total
 -- -- -- -- -- -- ----- -----
100 2 2 30 1 0 0 0 2 1.5 3

1000 16 70 6 23 1 22 22 23 5 115

2000 33 141 12 46 4 21 84 49 5.5 271

3000 50 227 17 69 8 23.6 189 76 6.4 485

4000 67 297 23 77 15 19.6 294 106 6.3 668

As can be seen from the results, the resulting Delphi-generated
code outperformed the Visual Basic routines, especially in
code-bound portions such as the Sort stage, by about 20 times
faster. Delphi's database access functionality was also shown to
be about five times more efficient than that of the Visual Basic
code.

Rapid Application Development (RAD)

The other side of the performance issue relates to the speed of
application development, which is crucial for programmers intent
on ensuring the fastest time to market for their products. The
RAD features of an environment are the key to establishing how
easy it is for programmers to progress from initial design and

prototyping through to final implementation and deployment.

A modern RAD environment provides developers with several
elements that significantly speed the development process over
the traditional sequential coding approach. These include:

* A visual design environment;
* High-level building block components (often called
 "controls");
* Contextual access to code segments directly, via objects.
 In other words, homing in on the specific code relating to a
 particular object.

Under Windows, the structure of an application is frequently
molded around its graphical user interface (GUI), with the
behavior of the application triggered by various Windows
messages or events. The methodology for RAD flows according to
the following outline:

1) The developer creates an empty window or form to contain the
 application's interface components;

2) The developer selects a component from a pool of available
 components, which are generally displayed as an array of
 icons. Components are then placed and sized on the form;

3) Relevant properties are set or adjusted for each component,
 according to the application's requirements;

4) Code is written and "attached" to all relevant events for
 each component;

5) The application is run within the development environment;

6) The developer can then continue to modify the form design or
 underlying code until the final working application is
 completed.

Both Visual Basic and Delphi subscribe to this general
methodology, making the products appear deceptively similar.
However, there are several key enhancements that Delphi adds to
this process, including:

* More built-in controls Enhanced icon layout, via a
 fully-customizable, multi-page (tabbed) component palette;

* Extensive gallery of extensible project templates and
 experts;

* Enhanced object placement capabilities;

* Enhanced modification of property lists;

* Two-way, synchronized code window;

* Shared event functions;

* Integrated graphical debugging and object inspection

Controls

Visual Basic custom controls are referred to as VBXs, and a
limited selection is supplied with Visual Basic itself.
Additional controls are sold by third-party manufacturers,
although these not only cost additional money but also extend the
overall learning curve, due to variations in product styles. To
utilize controls for a tabbed folder, notebook, database grid or
3D list box, for example, Visual Basic owners must obtain
third-party VBXs. Some of the controls supplied with Visual Basic
suffer from memory and other limitations, making it necessary to
purchase third-party alternatives.

Delphi's Visual Component Library (VCL) is a comprehensive suite
of high- performance controls that support all standard Windows
functionality, along with additional features such as tabbed
folders, notebooks, database grids and 3D list boxes. Delphi also
supports third-party VBXs, providing access to a wide range of
third-party components.

Control Icon Array

The Visual Basic control display is an array of icons with
pictorial representations that are not always intuitive. In
other words, developers can be left searching for the Image
Control, for example, amongst many other icons with a similar
look. Developers must then place a control into the form to be
certain as to its identity. The Visual Basic control icon array
can quickly become unwieldy as additional third-party custom
controls are acquired. Since these icons are organized as a
configurable rectangle, developers working with a large set of
VBX controls are forced to give up valuable screen space or
sacrifice accessibility of some controls.

Delphi solves these component layout problems with several
enhancements. Firstly, Delphi's component palette is organized
with several tabbed notebook pages, displaying icons in a
single-row, scrollable toolbar format. This keeps the display
uncluttered, yet fully accessible. More importantly, Delphi's
customization options allow full configuration of the grouping,
placement and display of components, so that the environment can
be fine-tuned to suit the working style of an individual or
development team. To address the problem of obscure or
similar-looking icons, Delphi offers "fly-by help" showing the
purpose of the control associated with the icon as the cursor is
dragged over it.

Templates and Experts

Delphi includes pre-built templates that make it easy to develop
standard applications or complex components such as MDI windows,
database forms, multi-pages dialog and dual list boxes. The
architecture is fully extensible, allowing developers to easily

register their own custom templates and experts into the gallery.

Object Placement

Delphi facilitates visual design with features such as automatic
object alignment, sizing and scaling, while Visual Basic supports
placement only. Delphi's automatic alignment also speeds up the
creation of aesthetic forms.

Property Lists

A subtle yet significant distinction between the two development
tools can be seen in the means of accessing property lists.
Visual Basic users access a pull-down selection of options for a
particular property via an entry bar at the top of the list, so
that changing several property items, requires selection of the
item, clicking on the entry bar to make the change, then clicking
on the next item, and so forth. Delphi provides pull-down lists
that can be accessed directly alongside the property value,
making for more efficient and intuitive modifications.

Code Window

Delphi's code editing window synchronizes all visual design
representations with the underlying source code. In other words,
as the application is constructed by dropping objects into a
form, the corresponding bug-free code is generated
simultaneously. There are no limitations, since the code is
always accessible, and developers can instantly switch between
the code editor and the visual design tools, allowing them to
select the most efficient mode for each part of the project.

Debugging and Object Inspecting

Visual Basic provides program debugging capabilities such as
variable watches and a call stack monitor. However, this
functionality is limited in that it cannot break on a specific

condition, and the call stack is modal, so it cannot be viewed
during the entire debug session.

Delphi provides a full-featured debugger with conditional
breakpoints and a modeless call stack viewer. The debug window
and viewers can be saved from session to session, allowing
developers to create a comfortable custom environment. Delphi
also includes a powerful object browser similar to that used
within Borland C++, which provides a comprehensive display of
code objects and classes - including the capability to trace
object lineage (inheritance, children) and virtual procedures.

Component Reuse

One of the most significant advances in applications development
methodology is the concept of creating an application from
high-level components. By linking predefined building blocks,
developers need only define the "glue" between objects that

specifies the unique qualities of an application, with the
potential for substantial productivity gains. Although Delphi
and Visual Basic both provide various ways to reuse and share
components and code, Delphi again delivers a cleaner and simpler
solution.

The issue of reuse can be viewed in three areas:

* shared event functions

* reusable functions

* reusable building blocks (components)

Shared Event Functions

A common problem encountered in Windows programs is how to share
a function that is executed upon the occurrence of several
Windows events. Although the implementation is similar in both
Delphi and Visual Basic, the Delphi solution has some obvious
advantages. In Visual Basic, shared functions must be placed in
the local code file or in a global .BAS file if the function is
to be shared. The problem with this is that the function is now
global to the entire project. In contrast, Delphi allows the
function to be placed in the local file or in a DCU (Pascal unit
file) which must be explicitly referenced only by the files that
use it.

Reusable Functions and Libraries

In Visual Basic, common functions or libraries are accomplished
by use of a global .BAS file, which then makes the functions
accessible to every file in the project. The disadvantage to this
approach is that the shared functions must be global to every
file. Alternatively, Visual Basic can take advantage of
functions organized in a DLL, but DLLs (like VBXs) must be
created by another development tool external to Visual Basic,
which requires a different level of expertise and an additional
learning curve. All libraries for Delphi can be created from
within the Delphi environment. Pascal code is organized as units,
and shared functions are accessible through a Pascal unit by
simply referencing the "library" unit that contains the desired
function. Delphi can also use and create high-performance
Windows DLLs. Further, Delphi's underlying programming language
allows developers to reuse and customize functionality within a
class via subclassing (see further details of OOP methodology
below).

Components

VBXs can be developed for Visual Basic with functionality that is
usable across different projects, but a significant disadvantage
of VBXs is the complexity involved in creating them. There is a
detailed set of restrictions associated with creation of a VBX
such that they cannot be created within Visual Basic itself.
Instead, the most common method to create a VBX is to use a C/C++

compiler to create a DLL and then put a VBX "wrapper" around it.
The advantage of this is the speed of computation gained by using
optimized C/C++ compiled code over the Visual Basic's interpreted
technology. The disadvantage is that developers are forced to
"switch gears" in order to work with the compiler, and the added
complexity can lead to additional troubleshooting and debugging
time.

Delphi components are more easily created. Unlike Visual
Basic, where VBXs must be built using an external compiler,
Delphi components are built within the Delphi development
environment itself. This is an important distinction, because

professional developers prefer to work with a consistent set of
tools. Being able to use Delphi to create reusable components
becomes a major productivity enhancement, enabling more rapid
development with the added benefits of reusability.

Additionally, since Delphi components are created with Delphi's
optimizing native code compiler and linker, there is improved
performance over traditional VBXs. One other considerable
advantage of Delphi components is that developers can subclass
the functionality of a component to create their own custom
versions. If a specific VBX is insufficient for a Visual Basic
user, the only alternative is to build (or purchase) an
alternative VBX.

Programming Language

An obvious difference between Visual Basic and Delphi is the
underlying programming language. The use of Object Pascal within
Delphi has several important repercussions:

* Pascal is a more powerful and structured language than
 Basic.

* Object Pascal is a true object-oriented programming
 language, providing the benefits of inheritance,
 encapsulation and polymorphism;

* Pascal is a compiled language, ensuring high-performance
 executables;

* The organization of files as DCUs provides a cleaner
 mechanism for creating libraries of reusable code (see
 Shared Event Code);

* Object Pascal utilizes the world's fastest commercial
 compiler technology;

* Object Pascal support in-line assembler code for maximum
 performance;

One final point of differentiation is that in Visual Basic, all
code files must be specifically associated with a form, except
for a global .BAS file. In other words, a function must be

global to the entire project unless associated with a form. In
Delphi, however, code files (and therefore classes and
functions) can be disassociated with any form, allowing proper
scoping of functions without any loss of functionality.

OOP Design Methodology

The power and flexibility of an object-oriented design
methodology is widely accepted as the best way to solve complex,
real-world programming problems. Object-oriented design provides
both a solid foundation and elegant architecture for an
application. Some of the benefits of OOP are:

* Shorter development cycles;

* Code that is highly maintainable;

* Code that is easily shared with other modules or other
 projects;

* Facilitation of team programming and version control;

* By exploiting object inheritance and polymorphism, the
 coding process can become much simpler and the code itself
 significantly more coherent;

* Applications can incorporate several functions that are
 mostly similar but have certain distinct "personality
 traits".

Object Pascal is a structured, object-oriented programming
language, providing full support for class architectures,
inheritance, virtual functions and polymorphism. Visual Basic is
not an object-oriented language. Note that although developers
need not be familiar with object-oriented concepts to create
programs using Delphi, professional programmers will appreciate
the benefit of these capabilities.

Database Scalability

A good RAD environment must address the pervasive issue of
creating a database application, and Visual Basic and Delphi are
no exceptions. In Visual Basic, developers can place a database
component onto a form which can then have a property set that
allows it to bidirectionally communicate with an ODBC-compatible
database. The database component can be used as a crude mechanism
to navigate through the database using arrows representing first,
next, previous and last records. SQL queries can also be defined
in code, to form a query snapshot into the database for viewing
or computation. Crystal Reports is shipped with Visual Basic,
providing a report generating capability. Setup of the database
structures, the associated forms, interaction between them and
most of the navigation through the database must all be done
explicitly via the visual design tools or within code.

Delphi includes extensive database support including the Borland

Database Engine (BDE) for Paradox and dBASE access, and
middleware layers that support local and remote SQL data access.
The Borland database architecture provide developers with
high-performance access to a variety of data sources including
ODBC drivers. Delphi includes data access components and
data-aware user interface components to provide a comprehensive
database solution.

Delphi ships with several controls for data entry and display,
including tables and grids. The grid control (TDBGrid Component)
can be used to build a spreadsheet-style of application. A unique
characteristic of the database grid control is that it can be
linked to multiple database sources.

Delphi also includes wizards and experts that facilitate rapid
design and implementation of databases and the corresponding user
interface. The DataSet designer facility included with Delphi
allows developers to rapidly create table or query data for
database components. It is a simple matter to specify which set
of fields from the database must be incorporated into the table
or query.

When designing a database grid, an application often needs an
editor to allow in-place modification of field data. Delphi's
DBEdit provides a consolidated component to handle this task.
Grid-aware, specialized versions of the control are available for
labels, lists, combo boxes, images, memo (multi-line editors),
check and radio buttons, lookup lists and lookup combo lists.

Delphi also features built-in support for queries and reports. A
query control (TQuery Component) provides the ability to perform
SQL queries in order to form the data set corresponding to the
filtered elements of a database. If this data was extracted from
dBASE or Paradox, you would also have the ability to modify,
insert or delete records. By placing this component into a form
that also contains the database component, developers can create
a filtered, printable report based on some SQL or query into the
data set. Delphi includes the award-winning ReportSmith report
writer for PC and SQL databases. ReportSmith provides an
intuitive interface for report creation using live data at design
time, and it supports queries, crosstabs, templates, calculations
and unlimited report sizes.

Moving Up to Delphi

Visual Basic developers who may be considering migrating their
applications to Delphi, you may be concerned about the effort
required to migrate existing Visual Basic applications in order
to continue project development and maintenance within Delphi.
Project migration is actually a fairly straightforward process. A
conversion utility is available from EarthTrek, Inc (617)
273-0308 that performs most of the translation including project
files, form files and code translation. The utility completes
all of the possible automatic translation leaving some ambiguous
language elements to be identified by a simple syntax check using
the Delphi compiler. Many projects can be translated with

virtually no effort. Others may require a few hours of post-work
to complete.

Conclusion

When examining the various RAD products in the marketplace, both
Visual Basic and Delphi stand out as leading edge products.
However, Delphi has clearly emerged as a next generation tool
with its higher performance, highly facilitated visual design
capability, extensive support for reusable components and
database readiness. Delphi achieves its goals as a powerful
application development system by combining a state-of-the-art
visual design environment with the power, flexibility and
reusability of a fully object-oriented language, the world's
fastest compiler, and leading-edge database technology. Further,
through the integration of Object Pascal, Delphi empowers
developers with a full-featured programming environment without
sacrificing rapid visual development thus allowing construction
of sophisticated client-server applications in record time.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Calling a Delphi DLL from C
 NUMBER : 2800
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Calling a Delphi DLL from C

Calling a DLL from your C Code.

First create a simple DLL in Delphi:

{ Begin DLL code }

Library MinMax;

Function Min(X, Y: Integer): Integer; export;
begin
 if X < Y then Min := X else Min := Y;
end;

Function Max(X, Y: Integer): Integer; export;
begin
 if X > Y then Max := X else Max := Y;
end;

Exports
 Min index 1,
 Max index 2;

begin
end.

{ End DLL code }

Then to Call it from your C Code:

1. In your .DEF File add:

 IMPORTS
 Min =MINMAX.Min
 Max =MINMAX.Max

2. In your C application, you must prototype the functions as:

 int FAR PASCAL Min(int x, y);
 int FAR PASCAL Min(int x, y);

3. Now you can call Min or Max anywhere in your application.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information

pertains.

Getting a query's Memo field as a string
 NUMBER : 2801
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Getting a query's Memo field as a string

Returning a Memo value to an Edit field without
using a memo field.

Place a query object on your form (Query1)
Place a Edit object on your form (Edit1)
Place a Button object on your form (Button1)
Double-Click on the query and add the memo field.
 (Biolife.db using notes field)
Set Query1's SQL property to: Select * from Biolife
Set Query1's Active property to: True
Add the following code to Button1's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var
 bs : TBlobStream;
 p : array [0..50] of char;
begin
 FillChar(p, SizeOf(p), #0);
 bs:= TBlobStream.Create(Query1Notes, bmRead);
 try
 bs.Read(p,50);
 finally
 bs.Free;
 end;
 Edit1.Text:=StrPas(p);
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to encrypt a String
 NUMBER : 2803
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to encrypt a String

Here is a program that demonstrates routines for encryption and
decryption of strings. Note: We claim no responsibily for the
security of these functions.

{ Begin code }

program Crypt;

uses WinCRT;

const
 C1 = 52845;
 C2 = 22719;

function Encrypt(const S: String; Key: Word): String;
var
 I: byte;
begin
 Result[0] := S[0];
 for I := 1 to Length(S) do begin
 Result[I] := char(byte(S[I]) xor (Key shr 8));
 Key := (byte(Result[I]) + Key) * C1 + C2;
 end;
end;

function Decrypt(const S: String; Key: Word): String;
var
 I: byte;
begin
 Result[0] := S[0];
 for I := 1 to Length(S) do begin
 Result[I] := char(byte(S[I]) xor (Key shr 8));
 Key := (byte(S[I]) + Key) * C1 + C2;
 end;
end;

var
 S: string;
begin
 Write('>');
 ReadLn(S);
 S := Encrypt(S,12345);
 WriteLn(S);
 S := Decrypt(S,12345);

 WriteLn(S);
end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Undo in a Memo field
 NUMBER : 2804
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Undo in a Memo field

Doing an UnDo in a Memo Field:

 If you have a pop-up menu in a TMemo, and put shortcuts
on it for the Cut,Copy, Paste, then you can handle those
events, and call CuttoClipBoard, CopytoClipBoard, etc.

 However, if you put an Undo option onto your pop-up menu
(normally Ctrl-Z) how do you instruct the TMemo to do the Undo?
If the built-in undo is sufficient, you can get it easier than
a Ctrl+Z:

 Memo1.Perform(EM_UNDO, 0, 0);

 To check whether undo is available so as to enable/disable
an undo menu item:

 Undo1.Enabled := Memo1.Perform(EM_CANUNDO, 0, 0) <> 0;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Getting the Line number in a memo Field
 NUMBER : 2805
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Getting the Line number in a memo Field

How do you figure out what line number you are currently
on with a TMemo control?

The trick is to use the em_LineFromChar message. Try this:

procedure TMyForm.BitBtn1Click(Sender: TObject);
var
 iLine : Integer ;
begin
 iLine := Memo1.Perform(em_LineFromChar, $FFFF, 0);
 { Note: First line is zero }
 messageDlg('Line Number: ' + IntToStr(iLine), mtInformation,
 [mbOK], 0) ;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Loading Bitmaps Into dBASE And Paradox BLOB Fields
 NUMBER : 2807
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Loading Bitmaps Into dBASE And Paradox BLOB Fields

There are a number of ways to load a bitmap image into the BLOB field of a
dBASE or Paradox table. Three of the easier methods involve 1) copying the
data from the Windows clipboard into a TDBImage component connected to the
BLOB field, 2) using the LoadFromFile method of the TBLOBField component,
and 3) using the Assign method to copy an object of type TBitmap into the
Picture property of a TBDBImage.

The first method, copying the bitmap from the clipboard, is probably most
handy when an application needs to add bitmaps to a table when the end-
user is running the application. A TDBImage component is used to act as an
interface between the BLOB field in the table and the image stored in the
clipboard. The PasteFromClipboard method of the TDBImage component is
invoked to copy the bitmap data from the clipboard into the TDBImage. When
the record is posted, the image is stored into the BLOB field in the
table.

Because the Windows clipboard can contain data in formats other than just
bitmap, it is advisable to check the format prior to calling the CopyFrom-
Clipboard method. To do this, a TClipboard object is created and its Has-
Format method is used to determine if the data in the clipboard is indeed
of bitmap format. Note that to use a TClipboard object, the Clipbrd unit
must be included in the Uses section of the unit that will be creating
the object.

Here is an example showing the contents of the clipboard being copied into
a TDBImage component, if the contents of the clipboard are of bitmap
format:

 procedure TForm1.Button1Click(Sender: TObject);
 var
 C: TClipboard;
 begin
 C := TClipboard.Create;
 try
 if Clipboard.HasFormat(CF_BITMAP) then
 DBImage1.PasteFromClipboard
 else
 ShowMessage('Clipboard does not contain a bitmap!');
 finally
 C.Free;
 end;
 end;

The second method of filling a BLOB field with a bitmap involves loading
the bitmap directly from a file on disk into the BLOB field. This method

lends itself equally well to uses at run-time for the end-user as for
the developer building an application's data.

This method uses the LoadFromFile method of the TBLOBField component, the
Delphi representation of a dBASE for Windows Binary field or a Paradox for
Windows Graphic field, either of which may be used to store bitmap data
in a table.

The LoadFromFile method of the TBLOBField component requires a single
parameter: the name of the bitmap file to load, which is of type String.
The value for this parameter may come from a number of sources from the
end-user manually keying in a valid file name to the program providing a
string to the contents of the FileName property of the TOpenDialog comp-
onent.

Here is an example showing the use of the LoadFromFile method for a
TBLOBField component named Table1Bitmap (a field called Bitmap in the
table associated with a TTable component named Table1):

 procedure TForm1.Button2Click(Sender: TObject);
 begin
 Table1Bitmap.LoadFromFile(
 'c:\delphi\images\splash\16color\construc.bmp');
 end;

The third method uses the Assign method to copy the contents of an object
of type TBitmap into the Picture property of a TDBImage component. An
object of type TBitmap might be the Bitmap property of the Picture object
property of a TImage component or it may be a stand-alone TBitmap object.
As with the method copying the data from the clipboard into a TDBImage
component, the bitmap data in the TDBImage component is saved into the
BLOB field in the table when the record is successfully posted.

Here is an example using the Assign method. In this case, a stand-alone
TBitmap object is used. To put a bitmap image into the TBitmap, the
LoadFromFile method of the TBitmap component is called.

 procedure TForm1.Button3Click(Sender: TObject);
 var
 B: TBitmap;
 begin
 B := TBitmap.Create;
 try
 B.LoadFromFile('c:\delphi\images\splash\16color\athena.bmp');
 DBImage1.Picture.Assign(B);
 finally
 B.Free;
 end;
 end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Searching your application's help file
 NUMBER : 2818
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Searching your application's help file

The following code demonstrates how to bring up the WinHelp "Search"
dialog for your application's help file. You can use TApplication's
HelpCommand method to send the Help_PartialKey command to the WinHelp
system. The parameter for this command should be a PChar (cast to a
longint to circumvent typechecking) that contains the string on
which you'd like to search. The example below uses an empty string,
which invokes "Search" dialog and leaves the edit control in the
dialog empty.

procedure TForm1.SearchHelp;
var
 P: PChar;
begin
 Application.HelpFile := 'c:\delphi\bin\delphi.hlp';
 P := StrNew('');
 Application.HelpCommand(Help_PartialKey, longint(P));
 StrDispose(P);
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Extracting A Bitmap From A BLOB Field
 NUMBER : 2810
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Extracting A Bitmap From A BLOB Field

Extracting a bitmap from a dBASE or Paradox blob field -- without first
saving the bitmap out to a file -- is a simple process of using the Assign
method to store the contents of the BLOB field to an object of type
TBitmap. A stand-alone TBitmap object or the Bitmap property of the
Picture object property of a TIMage component are examples of compatible
destinations for this operation.

Here is an example demonstrating using the Assign method to copy a bitmap
from a BLOB field into a TImage component.

 procedure TForm1.Button1Click(Sender: TObject);
 begin
 Image1.Picture.Bitmap.Assign(Table1Bitmap);
 end;

In this example, the TBLOBField object Table1Bitmap is a BLOB field in a
dBASE table. This TBLOBField object was created using the Fields Editor.
If the Fields Editor is not used to create TFields for the fields in the
table, the fields must be referenced using either the FieldByName method
or the Fields property, both part of the TTable and TQuery components. In
cases where one of those means is used to reference the BLOB field in a
table, the field reference must be type-cast as a TBLOBField object prior
to using the Assign method. For example:

 procedure TForm1.Button1Click(Sender: TObject);
 begin
 Image1.Picture.Bitmap.Assign(TBLOBField(Table1.Fields[1]));
 end;

A bitmap stored in a BLOB field may also be copied directly to a stand-
alone TBitmap object. Here is an example showing the creation of a
TBitmap object and storing into it a bitmap from a BLOB field.

 procedure TForm1.Button2Click(Sender: TObject);
 var
 B: TBitmap;
 begin
 B := TBitmap.Create;
 try
 B.Assign(Table1Bitmap);
 Image1.Picture.Bitmap.Assign(B);
 finally
 B.Free;
 end;
 end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Bitmaps And InterBase BLOB Fields
 NUMBER : 2811
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Bitmaps And InterBase BLOB Fields

dBASE and Paradox tables provide a BLOB field to store binary data that,
when the stored data is of bitmap-format, work as-is with the TDBImage
component to display images. In Database Desktop, these field types are
listed as Binary and Graphic (for dBASE and Paradox tables, respectively).
However, the process of storing bitmap images in InterBase BLOB fields
and using the stored data with TDBImage components is not as straight-
forward.

InterBase tables do not have just one type of BLOB field. There are three
variants, or sub-types: type 0, type 1, and user-defined sub-types. Types
0 and 1 are pre-defined types. Type 0 BLOB fields (the default type) are
for storing general binary data. Type 1 BLOB fields are for storing text
BLOB data. Either the pre-defined type 0 or a user-defined BLOB sub-type
will allow the automated retrieval of bitmap data from the BLOB field that
is to be displayed in a TDBImage component. Type 0 BLOB fields may be used
for storing bitmap-format data or raw binary data. Here is an example of
manually extracting bitmap data stored in a type 0 BLOB field (Table1-
BLOBField) and displaying the data in a (non-data-aware) TImage component:

 procedure TForm1.ExtractBtnClick(Sender: TObject);
 begin
 Image1.Picture.Bitmap.Assign(Table1BLOBField);
 end;

This manual method may be used or, more commonly, a data-aware control
would be used so that the display of a given record's bitmap (in a BLOB
field) will be automatically displayed. The TDBImage serves this purpose,
and by setting the DataSource property to the TDataSource component
associated with the underlying table and setting the DataField to the BLOB
field containing the bitmap, the TDBImage component will display the image
stored in the BLOB field and automatically load each record's BLOB field
contents as the record pointer is changed.

The Database Desktop utility will allow the creation only of type 0 binary
BLOB fields, no provision was made for user-defined BLOB field sub-types.
If it is desired that a user-defined BLOB sub-type be used to store the
bitmap data, it would need to be created with an SQL statement. Typically
this would be through the WISQL utility, but an appropriate SQL statement
in a TQuery would suffice. Here is an SQL statement that creates a table
with a user-defined BLOB field sub-type:

 CREATE TABLE WITHBMP
 (
 FILENAME CHAR(12),
 BITMAP BLOB SUB_TYPE -1

)

Once a table with a compatible BLOB field is created, storing bitmap data
to the BLOB field and displaying the bitmap images in a TDBImage component
uses the same methods as would be used with dBASE or Paradox tables.

There are a number of ways to load a bitmap image into a BLOB field. Three
of the easier methods involve 1) copying the data from the Windows clip-
board into a TDBImage component connected to the BLOB field, 2) using the
LoadFromFile method of the TBLOBField component, and 3) using the Assign
method to copy an object of type TBitmap into the Picture property of a
TBDBImage.

The first method, copying the bitmap from the clipboard, is probably most
handy when an application needs to add bitmaps to a table when the end-
user is running the application. A TDBImage component is used to act as an
interface between the BLOB field in the table and the image stored in the
clipboard. The PasteFromClipboard method of the TDBImage component is
invoked to copy the bitmap data from the clipboard into the TDBImage. When
the record is posted, the image is stored into the BLOB field in the
table.

Because the Windows clipboard can contain data in formats other than just
bitmap, it is advisable to check the format prior to calling the CopyFrom-
Clipboard method. To do this, a TClipboard object is created and its Has-
Format method is used to determine if the data in the clipboard is indeed
of bitmap format. Note that to use a TClipboard object, the Clipbrd unit
must be included in the Uses section of the unit that will be creating
the object.

Here is an example showing the contents of the clipboard being copied into
a TDBImage component, if the contents of the clipboard are of bitmap
format:

 procedure TForm1.Button1Click(Sender: TObject);
 var
 C: TClipboard;
 begin
 C := TClipboard.Create;
 try
 if Clipboard.HasFormat(CF_BITMAP) then
 DBImage1.PasteFromClipboard
 else
 ShowMessage('Clipboard does not contain a bitmap!');
 finally
 C.Free;
 end;
 end;

The second method of filling a BLOB field with a bitmap involves loading
the bitmap directly from a file on disk into the BLOB field. This method
lends itself equally well to uses at run-time for the end-user as for
the developer building an application's data. This method uses the Load-
FromFile method of the TBLOBField component, the Delphi representation of
an InterBase BLOB field.

The LoadFromFile method of the TBLOBField component requires a single
parameter: the name of the bitmap file to load, which is of type String.
The value for this parameter may come from a number of sources from the
end-user manually keying in a valid file name to the program providing a
string to the contents of the FileName property of the TOpenDialog comp-
onent.

Here is an example showing the use of the LoadFromFile method for a TBLOB-
Field component named Table1Bitmap (a field called Bitmap in the table
associated with a TTable component named Table1):

 procedure TForm1.Button2Click(Sender: TObject);
 begin
 Table1Bitmap.LoadFromFile(
 'c:\delphi\images\splash\16color\construc.bmp');
 end;

The third method uses the Assign method to copy the contents of an object
of type TBitmap into the Picture property of a TDBImage component. An
object of type TBitmap might be the Bitmap property of the Picture object
property of a TImage component or it may be a stand-alone TBitmap object.
As with the method copying the data from the clipboard into a TDBImage
component, the bitmap data in the TDBImage component is saved into the
BLOB field in the table when the record is successfully posted.

Here is an example using the Assign method. In this case, a stand-alone
TBitmap object is used as the source of the bitmap data. To put a bitmap
image into the TBitmap, the LoadFromFile method of the TBitmap component
is called.

 procedure TForm1.Button3Click(Sender: TObject);
 var
 B: TBitmap;
 begin
 B := TBitmap.Create;
 try
 B.LoadFromFile('c:\delphi\images\splash\16color\athena.bmp');
 DBImage1.Picture.Assign(B);
 finally
 B.Free;
 end;
 end;

Going the opposite direction -- extracting a bitmap from an InterBase BLOB
field (without first saving the bitmap out to a file) is a simple process
of using the Assign method of the TBLOBField object to store the contents
of the BLOB field to an object of type TBitmap. A stand-alone TBitmap
object or the Bitmap property of the Picture object property of a TIMage
component are examples of compatible destinations for this operation.

Here is an example demonstrating using the Assign method to copy a bitmap
from a BLOB field into a TImage component (Table1Bitmap is the TBLOBfield
for the BLOB field in the table).

 procedure TForm1.Button1Click(Sender: TObject);
 begin

 Image1.Picture.Bitmap.Assign(Table1Bitmap);
 end;

In this example, the TBLOBField object Table1Bitmap is a BLOB field in an
InterBase table. This TBLOBField object was created using the Fields
Editor. If the Fields Editor is not used to create TFields for the fields
in the table, the fields must be referenced using either the FieldByName
method or the Fields property, both part of the TTable and TQuery comp-
onents. In cases where one of those means is used to reference the BLOB
field in a table, the field reference must be type-cast as a TBLOBField
object prior to using the Assign method. For example:

 procedure TForm1.Button1Click(Sender: TObject);
 begin
 Image1.Picture.Bitmap.Assign(TBLOBField(Table1.Fields[1]));
 end;

A bitmap stored in a BLOB field may also be copied directly to a stand-
alone TBitmap object. Here is an example showing the creation of a
TBitmap object and storing into it a bitmap from a BLOB field.

 procedure TForm1.Button2Click(Sender: TObject);
 var
 B: TBitmap;
 begin
 B := TBitmap.Create;
 try
 B.Assign(Table1Bitmap);
 Image1.Picture.Bitmap.Assign(B);
 finally
 B.Free;
 end;
 en

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Control Font Styles
 NUMBER : 2812
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Control Font Styles

Control Font Styles:

This code will change the font style of a Edit
when selected. This code could be implemented to
control font style on other objects.

With a Edit(Edit1) and a ListBox(ListBox1) on a form
Add the following Items to the ListBox:
 fsBold
 fsItalic
 fsUnderLine
 fsStrikeOut

procedure TForm1.ListBox1Click(Sender: TObject);
var
 X : Integer;
type
 TLookUpRec = record
 Name: String;
 Data: TFontStyle;
 end;
const
 LookUpTable: array[1..4] of TLookUpRec =
 ((Name: 'fsBold'; Data: fsBold),
 (Name: 'fsItalic'; Data: fsItalic),
 (Name: 'fsUnderline'; Data: fsUnderline),
 (Name: 'fsStrikeOut'; Data: fsStrikeOut));
begin
 X := ListBox1.ItemIndex;
 Edit1.Text := ListBox1.Items[X];
 Edit1.Font.Style := [LookUpTable[ListBox1.ItemIndex+1].Data];
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Handling EDBEngineError Exceptions
 NUMBER : 2814
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Handling EDBEngineError Exceptions

Information that describes the conditions of a database engine error can
be obtained for use by an application through the use of an EDBEngineError
exception. EDBEngineError exceptions are handled in an application through
the use of a try..except construct. When an EDBEngineError exception
occurs, a EDBEngineError object would be created and various fields in that
EDBEngineError object would be used to programmatically determine what
went wrong and thus what needs to be done to correct the situation. Also,
more than one error message may be generated for a given exception. This
requires iterating through the multiple error messages to get needed info-
rmation.

The fields that are most pertinent to this context are:

 ErrorCount: type Integer; indicates the number of errors that are in
 the Errors property; counting begins at zero.

 Errors: type TDBError; a set of record-like structures that contain
 information about each specific error generated; each record is
 accessed via an index number of type Integer.

 Errors.ErrorCode: type DBIResult; indicating the BDE error code for the
 error in the current Errors record.

 Errors.Category: type Byte; category of the error referenced by the
 ErrorCode field.

 Errors.SubCode: type Byte; subcode for the value of ErrorCode.

 Errors.NativeError: type LongInt; remote error code returned from the
 server; if zero, the error is not a server error; SQL statement
 return codes appear in this field.

 Errors.Message: type TMessageStr; if the error is a server error, the
 server message for the error in the current Errors record; if not a
 server error, a BDE error message.

In a try..except construct, the EDBEngineError object is created directly
in the except section of the construct. Once created, fields may be
accessed normally, or the object may be passed to another procedure for
inspection of the errors. Passing the EDBEngineError object to a special-
ized procedure is preferred for an application to make the process more
modular, reducing the amount of repeated code for parsing the object for
error information. Alternately, a custom component could be created to
serve this purpose, providing a set of functionality that is easily trans-
ported across applications. The example below only demonstrates creating

the DBEngineError object, passing it to a procedure, and parsing the
object to extract error information.

In a try..except construct, the DBEngineError can be created with syntax
such as that below:

 procedure TForm1.Button1Click(Sender: TObject);
 var
 i: Integer;
 begin
 if Edit1.Text > ' ' then begin
 Table1.FieldByName('Number').AsInteger := StrToInt(Edit1.Text);
 try
 Table1.Post;
 except on E: EDBEngineError do
 ShowError(E);
 end;
 end;
 end;

In this procedure, an attempt is made to change the value of a field in a
table and then call the Post method of the corresponding TTable component.
Only the attempt to post the change is being trapped in the try..except
construct. If an EDBEngineError occurs, the except section of the con-
struct is executed, which creates the EDBEngineError object (E) and then
passes it to the procedure ShowError. Note that only an EDBEngineError
exception is being accounted for in this construct. In a real-world sit-
uation, this would likely be accompanied by checking for other types of
exceptions.

The procedure ShowError takes the EDBEngineError, passed as a parameter,
and queries the object for contained errors. In this example, information
about the errors are displayed in a TMemo component. Alternately, the
extracted values may never be displayed, but instead used as the basis for
logic branching so the application can react to the errors. The first step
in doing this is to establish the number of errors that actually occurred.
This is the purpose of the ErrorCount property. This property supplies a
value of type Integer that may be used to build a for loop to iterate
through the errors contained in the object. Once the number of errors
actually contained in the object is known, a loop can be used to visit
each existing error (each represented by an Errors property record) and
extract information about each error to be inserted into the TMemo comp-
onent.

 procedure TForm1.ShowError(AExc: EDBEngineError);
 var
 i: Integer;
 begin
 Memo1.Lines.Clear;
 Memo1.Lines.Add('Number of errors: ' + IntToStr(AExc.ErrorCount));
 Memo1.Lines.Add('');
 {Iterate through the Errors records}
 for i := 0 to AExc.ErrorCount - 1 do begin
 Memo1.Lines.Add('Message: ' + AExc.Errors[i].Message);
 Memo1.Lines.Add(' Category: ' +
 IntToStr(AExc.Errors[i].Category));

 Memo1.Lines.Add(' Error Code: ' +
 IntToStr(AExc.Errors[i].ErrorCode));
 Memo1.Lines.Add(' SubCode: ' +
 IntToStr(AExc.Errors[i].SubCode));
 Memo1.Lines.Add(' Native Error: ' +
 IntToStr(AExc.Errors[i].NativeError));
 Memo1.Lines.Add('');
 end;
 end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to handle text drawing in a TDBGrid
 NUMBER : 2815
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : How to handle text drawing in a TDBGrid

The following method can be used as the event handler for a
TDBGrid.OnDrawDataCell event. This method demonstrates how
to paint the text in one column a different color than the
rest of the text in the grid.

procedure TForm1.DBGrid1DrawDataCell(Sender: TObject; const Rect: TRect;
 Field: TField; State: TGridDrawState);
{ NOTE: DefaultDrawing propery of Grid(s) must be set to False }
begin
 { if field name is "NAME" }
 if Field.FieldName = 'NAME' then
 { change font color to red }
 (Sender as TDBGrid).Canvas.Font.Color := clRed;
 { draw text in the grid }
 (Sender as TDBGrid).Canvas.TextRect(Rect, Rect.Left + 2, Rect.Top + 2,
 Field.AsString);
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Trouble running Delphi programs from Delphi
 NUMBER : 2816
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Trouble running Delphi programs from Delphi

 Delphi Integrated Debugger

Delphi's integrated debugger is a feature of the IDE that allows
you to execute, step, trace, and otherwise debug your Delphi
applications. By default, Delphi's integrated debugger is enabled (via
Options|Project|Integrated Debugging) on startup of Delphi.

The debugger handles certain interrupts and operating system debugger
hooks in an effort to trap General Protection Faults and other types
of exceptions. Other programs that attempt to handle exceptions in the
same way will quite possibly conflict with the integrated debugger.
DataSafe is one example of a program that conficts with the integrated
debugger. Classic symptoms include, Delphi not recognizing that you've
stopped your program and getting kicked into DOS without warning at
various stages.

To test for a debugger conflict, compiling the program from Delphi,
and run it from File Manager. If it runs, then disable the integrated
debugger, and run your application. If it still runs, then the problem
is most likely a conflict between the exception-handling software and
the integrated debugger.

There are two ways to fix this. The first is to remove the
conflicting software. The other is to disable the integrated
debugger by un-selecting Options|Enviroment|Integrated Debugging.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Understanding the PARADOX.NET file with the BDE
 NUMBER : 2817
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : August 5, 1996

 TITLE : Understanding the PARADOX.NET file with the BDE

 When using Paradox type table with the Borland Database
 Engine (BDE), a Paradox net file is used in the same way that
 Paradox does--to keep track of the number of users. Each
 Paradox and BDE user is given one count. So, for example, if
 three Paradox and three BDE users use the same Paradox net
 file, the user count would be six (one for each Paradox user,
 and one for each BDE user).

 The net file also regulates access to tables. Table access
 is enforced through the use of lock files, which are written
 out to the directories containing Paradox tables. A lock
 file points to a particular net file, which has exclusive
 control over the table. This means that any user wanting
 access to the table must use the net file that controls the
 table.

 If you are using Paradox for Windows 5.0 or greater, IDAPI is
 used for both Paradox and BDE. The "NET DIR" path is set in
 the IDAPICFG.EXE or BDECFG.EXE: BDE/IDAPI Configuration
 Utility. Once the configuration tool is running, hi-light
 PARADOX, which is in the "Driver Name" List Box on the
 "Drivers" page. Set the "NET DIR" path to a network drive
 where all users that are accessing the tables have write
 access to.

 If you are using an older version of Paradox for Windows,
 Paradox for DOS, or the Paradox Engine, use the appropriate
 method for each of these products to set the netfile path to
 the identical path that is set within the IDAPI/BDE
 Configuration Utility. In the case of two BDE programs
 sharing tables, the net paths must be identical.

 The message "Multiple Paradox net file found" (Error 0x2C06
 or 11270: DBIERR_NETMULTIPLE) indicates that these rules have
 not been followed. If you are certain that all current users
 have the same net path, this message usually indicates that
 an old lock file exists that points to a different net file.
 Old lock files can be deleted if care is taken to ensure that
 no one is currently using them. Deleting active lock files
 can produce unpredictable results and could cause loss of
 data.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that

you received with the Borland product to which this information
pertains.

Printing the contents of a TMemo or TListbox
 NUMBER : 2809
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Printing the contents of a TMemo or TListbox

Q: How can I print all of the lines within a TMemo or TListbox component?

A: The function below accepts a TStrings object as a parameter and prints
 out each string to the default printer. Because it uses a TStrings, the
 function will work with any type of component that contains a
 TStrings-type property, such as a TDBMemo or TOutline.

{ Begin code listing }

uses Printers;

procedure PrintStrings(Strings: TStrings);
var
 Prn: TextFile;
 i: word;
begin
 AssignPrn(Prn);
 try
 Rewrite(Prn);
 try
 for i := 0 to Strings.Count - 1 do
 writeln(Prn, Strings.Strings[i]);
 finally
 CloseFile(Prn);
 end;
 except
 on EInOutError do
 MessageDlg('Error Printing text.', mtError, [mbOk], 0);
 end;
end;

{ End code listing }

To print out the contents of a TMemo or TListbox, use the following
code:

PrintStrings(Memo1.Lines);

or

PrintStrings(Listbox1.Items);

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that

you received with the Borland product to which this information
pertains.

Searching Through Query Result Sets
 NUMBER : 2820
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Searching Through Query Result Sets

The TQuery component does not offer the index-based search capabilities of
the TTable component (FindKey, GotoKey, and GotoNearest). So how do you
search within the result data set from a TQuery to find a row with a spec-
ific field value?

One way to search a query result set is a sequential search. This type of
search starts at the first row in the data set and, in a While loop,
sequentially compares the value of a field in the row with a search value.
One of two results are possible: a value will be found (success) or the
end of the data set will be reached (failure). The problem with this way
of searching the data set is that the further into the data set a row with
a matching value is, the longer it takes to arrive at that row. And, a
failed search takes longest of all because it must go all the way to the
last row in the data set. If the data set being searched is a large one,
this process may take a considerable amount of time.

Here is a function that will perform a sequential search of the result set
from a TQuery:

 function SeqSearch(AQuery: TQuery; AField, AValue: String): Boolean;
 begin
 with AQuery do begin
 First;
 while (not Eof) and (not (FieldByName(AField).AsString = AValue)) do
 Next;
 SeqSearch := not Eof;
 end;
 end;

This function takes three parameters:

 1. AQuery: type TQuery; the TQuery component in which the search is to
 be executed.
 2. AField: type String; the name of the field against which the search
 value will be compared.
 3. AValue: type String; the value being searched for. If the field is of
 a data type other than String, this search value should be
 changed to the same data type.

The Boolean return value of this function indicates the success (True) or
failure (False) of the search.

An alternative is using a bracketing approach. On a conceptual level, this
method acts somewhat like a b-tree index. It is based on the given that
for a row at a given point in the data set, the value of the field being

searched compared to the search value will produce one of three possible
conditions:

 1. The field value will be greater than the search value, or...
 2. The field value will be less than the search value, or...
 3. The field value will be equal to the search value.

A bracketing search process uses this means of looking at the current row
in respect to the search value and uses it to successively reduce the rows
to be search by half, until only one row remains. This search field value
for this sole remaining row will either be a match to the search value
(success) or it will not (failure, and no match exists in the data set).

Functionally, this process lumps the condition of the search field being
less than or equal to the search value into a single condition. This
leaves only two possible results for the comparison of the current
search field value with the search value: less than/equal to or greater
than. Initially, a range of numbers is established. The low end of the
range is represented by an Integer, at the start of the search process set
to 0 or one less than the first row in the data set. The far end of the
range is also an Integer, with the value of the RecordCount property of
the TQuery. The current row pointer is then moved to a point half way
between the low and high ends of the range. The search field value at that
row is then compared to the search value. If the field value is less than
or equal to the search value, the row being sought must be in the lower
half of the range of rows so the high end of the range is reduced to the
current row position. If the field value is greater than the search value,
the sought value must be in the higher half of the range and so the low
end is raised to the current point. By repeating this process, the number
of rows that are encompassed in the range are successively reduced by
half. Eventually, only one row will remain.

Putting this into a modular, transportable function, the code would look
like that below:

 function Locate(AQuery: TQuery; AField, AValue: String): Boolean;
 var
 Hi, Lo: Integer;
 begin
 with AQuery do begin
 First;
 {Set high end of range of rows}
 Hi := RecordCount;
 {Set low end of range of rows}
 Lo := 0;
 {Move to point half way between high and low ends of range}
 MoveBy(RecordCount div 2);
 while (Hi - Lo) > 1 do begin
 {Search field greater than search value, value in first half}
 if (FieldByName(AField).AsString > AValue) then begin
 {Lower high end of range by half of total range}
 Hi := Hi - ((Hi - Lo) div 2);
 MoveBy(((Hi - Lo) div 2) * -1);
 end
 {Search field less than search value, value in far half}
 else begin

 {Raise low end of range by half of total range}
 Lo := Lo + ((Hi - Lo) div 2);
 MoveBy((Hi - Lo) div 2);
 end;
 end;
 {Fudge for odd numbered rows}
 if (FieldByName(AField).AsString > AValue) then Prior;
 Locate := (FieldByName(AField).AsString = AValue)
 end;
 end;

Because there will never be a difference of less than one between the low
and high ends of the range of rows, a final fudge was added to allow the
search to find the search value in odd numbered rows.

This function takes the same three three parameters as the SeqSearch
function described earlier.

The return value of this function is of type Boolean, and reflects the
success or failure of the search. As the search does move the row pointer,
the effects of this movement on the implicit posting of changed data and
on where the desired position of the row pointer should be after a failed
search should be taken into account in the calling application. For
instance, a TBookmark pointer might be used to return the row pointer to
where it was prior to a search if that search fails.

How is this process better than a sequential search? First, in bracketing
the search value, only a fraction of the number of rows will be visited as
would be the case in a sequential search. Unless the row with the value
being sought is in the first 1,000 rows, this search method will be faster
than a sequential search. Because this process always uses the same number
of records, the search time will be consistent whether searching for the
value in row 1,000 or row 90,000. This is in contrast with the sequential
search that takes longer the farther into the data set the desired row is.

Can this method be used with any TQuery result set? No. Because of the way
this method works in basing the direction of the search as either high or
low, it depends on the row being ordered in a descending manner based on
the field in which the search will be conducted. This means that it can
only be used if the data set is naturally in a sequential order or an
ORDER BY clause is used in the SQL statement for the TQuery. The size of
the result set will also be a factor when deciding whether to perform a
sequential or bracketing search. This process is most advantageous for
speed when used with larger result sets. With smaller sets (1,00 or less
rows), though, a sequential search will often be as fast or faster.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

dBASE .DBF File Structure
 NUMBER : 2821
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : dBASE .DBF File Structure

Sometimes it is necessary to delve into a dBASE table outside the control
of the Borland Database Engine (BDE). For instance, if the .DBT file (that
contains memo data) for a given table is irretrievably lost, the file will
not be usable because the byte in the file header indicates that there
should be a corresponding memo file. This necessitates toggling this byte
to indicate no such accompanying memo file. Or, you may just want to write
your own data access routine.

Below are the file structures for dBASE table files. Represented are the
file structures as used for various versions of dBASE: dBASE III PLUS 1.1,
dBASE IV 2.0, dBASE 5.0 for DOS, and dBASE 5.0 for Windows.

**
The data file header structure for dBASE III PLUS table file.
**

The table file header:
======================

Byte Contents Description
----- -------- --
0 1 byte Valid dBASE III PLUS table file (03h without a memo
 (.DBT file; 83h with a memo).

1-3 3 bytes Date of last update; in YYMMDD format.
4-7 32-bit Number of records in the table.
 number
8-9 16-bit Number of bytes in the header.
 number
10-11 16-bit Number of bytes in the record.
 number
12-14 3 bytes Reserved bytes.
15-27 13 bytes Reserved for dBASE III PLUS on a LAN.
28-31 4 bytes Reserved bytes.
32-n 32 bytes Field descriptor array (the structure of this array is
 each shown below)
n+1 1 byte 0Dh stored as the field terminator.

n above is the last byte in the field descriptor array. The size of the
array depends on the number of fields in the table file.

Table Field Descriptor Bytes
============================

Byte Contents Description

----- -------- --
0-10 11 bytes Field name in ASCII (zero-filled).
11 1 byte Field type in ASCII (C, D, L, M, or N).
12-15 4 bytes Field data address (address is set in memory; not useful
 on disk).
16 1 byte Field length in binary.
17 1 byte Field decimal count in binary.
18-19 2 bytes Reserved for dBASE III PLUS on a LAN.
20 1 byte Work area ID.
21-22 2 bytes Reserved for dBASE III PLUS on a LAN.
23 1 byte SET FIELDS flag.
24-31 1 byte Reserved bytes.

Table Records
=============

The records follow the header in the table file. Data records are preceded
by one byte, that is, a space (20h) if the record is not deleted, an
asterisk (2Ah) if the record is deleted. Fields are packed into records
without field separators orrecord terminators. The end of the file is
marked by a single byte, with the end-of-file marker, an OEM code page
character value of 26 (1Ah). You can input OEM code page data as indicated
below.

Allowable Input for dBASE Data Types
====================================

Data Type Data Input
-------------- ---
C (Character) All OEM code page characters.
D (Date) Numbers and a character to separate month, day, and year
 (stored internally as 8 digits in YYYYMMDD format).
N (Numeric) - . 0 1 2 3 4 5 6 7 8 9
L (Logical) ? Y y N n T t F f (? when not initialized).
M (Memo) All OEM code page characters (stored internally as 10
 digits representing a .DBT block number).

Binary, Memo, and OLE Fields And .DBT Files
===

Memo fields store data in .DBT files consisting of blocks numbered
sequentially (0, 1, 2, and so on). The size of these blocks are internally
set to 512 bytes. The first block in the .DBT file, block 0, is the .DBT
file header.

Memo field of each record in the .DBF file contains the number of the
block (in OEM code page values) where the field's data actually begins. If
a field contains no data, the .DBF file contains blanks (20h) rather than
a number.

When data is changed in a field, the block numbers may also change and the
number in the .DBF may be changed to reflect the new location.

This information is from the Using dBASE III PLUS manual, Appendix C.

**

The data file header structure for dBASE IV 2.0 table file.
**

File Structure:
===============

Byte Contents Meaning
------- ---------- ---
0 1byte Valid dBASE IV file; bits 0-2 indicate version
 number, bit 3 the presence of a dBASE IV memo
 file, bits 4-6 the presence of an SQL table, bit
 7 the presence of any memo file (either dBASE III
 PLUS or dBASE IV).
1-3 3 bytes Date of last update; formattted as YYMMDD.
4-7 32-bit number Number of records in the file.
8-9 16-bit number Number of bytes in the header.
10-11 16-bit number Number of bytes in the record.
12-13 2 bytes Reserved; fill with 0.
14 1 byte Flag indicating incomplete transaction.
15 1 byte Encryption flag.
16-27 12 bytes Reserved for dBASE IV in a multi-user environment.
28 1 bytes Production MDX file flag; 01H if there is an MDX,
 00H if not.
29 1 byte Language driver ID.
30-31 2 bytes Reserved; fill with 0.
32-n* 32 bytes each Field descriptor array (see below).
n + 1 1 byte 0DH as the field terminator.

* n is the last byte in the field descriptor array. The size of the array
depends on the number of fields in the database file.

The field descriptor array:
===========================

Byte Contents Meaning
------- ------------ --
0-10 11 bytes Field name in ASCII (zero-filled).
11 1 byte Field type in ASCII (C, D, F, L, M, or N).
12-15 4 bytes Reserved.
16 1 byte Field length in binary.
17 1 byte Field decimal count in binary.
18-19 2 bytes Reserved.
20 1 byte Work area ID.
21-30 10 bytes Reserved.
31 1 byte Production MDX field flag; 01H if field has an
 index tag in the production MDX file, 00H if not.

Database records:
=================

The records follow the header in the database file. Data records are
preceded by one byte; that is, a space (20H) if the record is not deleted,
an asterisk (2AH) if the record is deleted. Fields are packed into
records without field separators or record terminators. The end of the
file is marked by a single byte, with the end-of-file marker an ASCII 26
(1AH) character.

Allowable Input for dBASE Data Types:
====================================

Data Type Data Input
---- ---------- ---
C (Character) All OEM code page characters.
D (Date) Numbers and a character to separate month, day, and
 year (stored internally as 8 digits in YYYYMMDD
 format).
F (Floating - . 0 1 2 3 4 5 6 7 8 9
 point binary
 numeric)
N (Binary - . 0 1 2 3 4 5 6 7 8 9
 coded decimal
 numeric)
L (Logical) ? Y y N n T t F f (? when not initialized).
M (Memo) All OEM code page characters (stored internally as 10
 digits representing a .DBT block number).

Memo Fields And .DBT Files
===

Memo fields store data in .DBT files consisting of blocks numbered
sequentially (0, 1, 2, and so on). SET BLOCKSIZE determines the size of
each block. The first block in the .DBT file, block 0, is the .DBT file
header.

Each memo field of each record in the .DBF file contains the number of the
block (in OEM code page values) where the field's data actually begins. If
a field contains no data, the .DBF file contains blanks (20h) rather than
a number.

When data is changed in a field, the block numbers may also change and the
number in the .DBF may be changed to reflect the new location.

This information is from the dBASE IV Language Reference manual, Appendix
D.

**
The data file header structure for dBASE 5.0 for DOS table file.
**

The table file header:
======================

Byte Contents Description
----- -------- --
0 1 byte Valid dBASE for Windows table file; bits 0-2 indicate
 version number; bit 3 indicates presence of a dBASE IV
 or dBASE for Windows memo file; bits 4-6 indicate the
 presence of a dBASE IV SQL table; bit 7 indicates the
 presence of any .DBT memo file (either a dBASE III PLUS
 type or a dBASE IV or dBASE for Windows memo file).
1-3 3 bytes Date of last update; in YYMMDD format.
4-7 32-bit Number of records in the table.

 number
8-9 16-bit Number of bytes in the header.
 number
10-11 16-bit Number of bytes in the record.
 number
12-13 2 bytes Reserved; filled with zeros.
14 1 byte Flag indicating incomplete dBASE transaction.
15 1 byte Encryption flag.
16-27 12 bytes Reserved for multi-user processing.
28 1 byte Production MDX flag; 01h stored in this byte if a prod-
 uction .MDX file exists for this table; 00h if no .MDX
 file exists.
29 1 byte Language driver ID.
30-31 2 bytes Reserved; filled with zeros.
32-n 32 bytes Field descriptor array (the structure of this array is
 each shown below)
n+1 1 byte 0Dh stored as the field terminator.

n above is the last byte in the field descriptor array. The size of the
array depends on the number of fields in the table file.

Table Field Descriptor Bytes
============================

Byte Contents Description
----- -------- --
0-10 11 bytes Field name in ASCII (zero-filled).
11 1 byte Field type in ASCII (B, C, D, F, G, L, M, or N).
12-15 4 bytes Reserved.
16 1 byte Field length in binary.
17 1 byte Field decimal count in binary.
18-19 2 bytes Reserved.
20 1 byte Work area ID.
21-30 10 bytes Reserved.
31 1 byte Production .MDX field flag; 01h if field has an index
 tag in the production .MDX file; 00h if the field is not
 indexed.

Table Records
=============

The records follow the header in the table file. Data records are preceded
by one byte, that is, a space (20h) if the record is not deleted, an
asterisk (2Ah) if the record is deleted. Fields are packed into records
without field separators orrecord terminators. The end of the file is
marked by a single byte, with the end-of-file marker, an OEM code page
character value of 26 (1Ah). You can input OEM code page data as indicated
below.

Allowable Input for dBASE Data Types
====================================

Data Type Data Input
-------------- ---
C (Character) All OEM code page characters.
D (Date) Numbers and a character to separate month, day, and year

 (stored internally as 8 digits in YYYYMMDD format).
F (Floating - . 0 1 2 3 4 5 6 7 8 9
 point binary
 numeric)
N (Numeric) - . 0 1 2 3 4 5 6 7 8 9
L (Logical) ? Y y N n T t F f (? when not initialized).
M (Memo) All OEM code page characters (stored internally as 10
 digits representing a .DBT block number).

Memo Fields And .DBT Files
===

Memo fields store data in .DBT files consisting of blocks numbered
sequentially (0, 1, 2, and so on). SET BLOCKSIZE determines the size of
each block. The first block in the .DBT file, block 0, is the .DBT file
header.

Each memo field of each record in the .DBF file contains the number of the
block (in OEM code page values) where the field's data actually begins. If
a field contains no data, the .DBF file contains blanks (20h) rather than
a number.

When data is changed in a field, the block numbers may also change and the
number in the .DBF may be changed to reflect the new location.

Unlike dBASE III PLUS, if you delete text in a memo field, dBASE 5.0 for
DOS may reuse the space from the deleted text when you input new text.
dBASE III PLUS always appends new text to the end of the .DBT file. In
dBASE III PLUS, the .DBT file size grows whenever new text is added, even
if other text in the file is deleted.

This information is from the dBASE for DOS Language Reference manual,
Appendix C.

**
The data file header structure for dBASE 5.0 for Windows table file.
**

The table file header:
======================

Byte Contents Description
----- -------- --
0 1 byte Valid dBASE for Windows table file; bits 0-2 indicate
 version number; bit 3 indicates presence of a dBASE IV
 or dBASE for Windows memo file; bits 4-6 indicate the
 presence of a dBASE IV SQL table; bit 7 indicates the
 presence of any .DBT memo file (either a dBASE III PLUS
 type or a dBASE IV or dBASE for Windows memo file).
1-3 3 bytes Date of last update; in YYMMDD format.
4-7 32-bit Number of records in the table.
 number
8-9 16-bit Number of bytes in the header.
 number
10-11 16-bit Number of bytes in the record.
 number

12-13 2 bytes Reserved; filled with zeros.
14 1 byte Flag indicating incomplete dBASE IV transaction.
15 1 byte dBASE IV encryption flag.
16-27 12 bytes Reserved for multi-user processing.
28 1 byte Production MDX flag; 01h stored in this byte if a prod-
 uction .MDX file exists for this table; 00h if no .MDX
 file exists.
29 1 byte Language driver ID.
30-31 2 bytes Reserved; filled with zeros.
32-n 32 bytes Field descriptor array (the structure of this array is
 each shown below)
n+1 1 byte 0Dh stored as the field terminator.

n above is the last byte in the field descriptor array. The size of the
array depends on the number of fields in the table file.

Table Field Descriptor Bytes
============================

Byte Contents Description
----- -------- --
0-10 11 bytes Field name in ASCII (zero-filled).
11 1 byte Field type in ASCII (B, C, D, F, G, L, M, or N).
12-15 4 bytes Reserved.
16 1 byte Field length in binary.
17 1 byte Field decimal count in binary.
18-19 2 bytes Reserved.
20 1 byte Work area ID.
21-30 10 bytes Reserved.
31 1 byte Production .MDX field flag; 01h if field has an index
 tag in the production .MDX file; 00h if the field is not
 indexed.

Table Records
=============

The records follow the header in the table file. Data records are preceded
by one byte, that is, a space (20h) if the record is not deleted, an
asterisk (2Ah) if the record is deleted. Fields are packed into records
without field separators orrecord terminators. The end of the file is
marked by a single byte, with the end-of-file marker, an OEM code page
character value of 26 (1Ah). You can input OEM code page data as indicated
below.

Allowable Input for dBASE Data Types
====================================

Data Type Data Input
-------------- ---
B (Binary) All OEM code page characters (stored internally as 10
 digits representing a .DBT block number).
C (Character) All OEM code page characters.
D (Date) Numbers and a character to separate month, day, and year
 (stored internally as 8 digits in YYYYMMDD format).
G (General All OEM code page characters (stored internally as 10
 digits or OLE) representing a .DBT block number).

N (Numeric) - . 0 1 2 3 4 5 6 7 8 9
L (Logical) ? Y y N n T t F f (? when not initialized).
M (Memo) All OEM code page characters (stored internally as 10
 digits representing a .DBT block number).

Binary, Memo, and OLE Fields And .DBT Files
===

Binary, memo, and OLE fields store data in .DBT files consisting of blocks
numbered sequentially (0, 1, 2, and so on). SET BLOCKSIZE determines the
size of each block. The first block in the .DBT file, block 0, is the .DBT
file header.

Each binary, memo, or OLE field of each record in the .DBF file contains
the number of the block (in OEM code page values) where the field's data
actually begins. If a field contains no data, the .DBF file contains
blanks (20h) rather than a number.

When data is changed in a field, the block numbers may also change and the
number in the .DBF may be changed to reflect the new location.

Unlike dBASE III PLUS, if you delete text in a memo field (or binary and
OLE fields), dBASE for Windows (unlike dBASE IV) may reuse the space from
the deleted text when you input new text. dBASE III PLUS always appends
new text to the end of the .DBT file. In dBASE III PLUS, the .DBT file
size grows whenever new text is added, even if other text in the file is
deleted.

This information is from the dBASE for Windows Language Reference manual,
Appendix C.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Setting File Handles For A Windows BDE Application
 NUMBER : 2822
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : August 5, 1996

 TITLE : Setting File Handles For A Windows BDE Application

 "Setting the number of file handles for Borland Database
 Engine Applications"

 Solving the Borland Database Engine (BDE) error, "Not Enough
 file handles" (Error 0x2502 or 9474: DBIERR_NOFILEHANDLES), is
 not a difficult task, but it requires an understanding of how
 file handles are used by DOS, Windows, and your application.

 At the lowest level, the number of file handles available to
 any application running on your computer is specified in the
 "FILES=nn" statement of CONFIG.SYS. For Windows running with
 Windows and DOS applications, a bare minimum value is 30-40.
 A value of 80-120 is a more realistic starting value, which
 you should increase according to your application's needs.

 When your application starts in Windows, the number of files
 available to it is based on the following two values: (1) The
 number you specify in a call to the Windows API call
 'SetHandleCount' (default = 20), and (2) the number of files
 specified in the _NFILE_ constant in Borland's RTL source
 (default = 20). These two values should be the same; if
 they're not, the lower one will apply.

 If your application requires more than the default twenty file
 handles for its own use, you'll need to follow the procedures
 outlined in Borland's TI-870. This document is available on
 our Download BBS and Compuserve as TI870.ZIP and on TechFax as
 document #870. When estimating the number you'll need, note
 that in addition to whatever files you need for the BDE and
 for files you want to open, a C/C++ application will open five
 file handles for stdin, stdout, etc., on startup.

 The number of file handles the BDE itself can use is specified
 on the System Page in the MaxFileHandles parameter of the BDE
 Configuration utility. It is important to realize that the
 number specified by MaxFileHandles is the number of file
 handles that the BDE will expect to receive for its own
 exclusive use, not for use by your application as a whole.
 The BDE doesn't allocate file handles on its own, it gets
 these from your application. Thus, if you make a call to
 SetHandleCount with a value of 20 and set the MaxFileHandles
 parameter to 20, all twenty handles may go to the BDE,
 leaving none for your application's other needs.

 To sum up, the number of file handles your BDE application

 will need will be the sum of 1) five standard file handles,
 2) the number needed by the BDE (MaxFileHandles), and 3) the
 number you need for other file manipulation routines. This
 sum should be the number you specify in SetHandleCount, and
 if this total is greater than 20, you'll need to change the
 RTL source according to TI870 as well.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Passing a Variable to a ReportSmith Report
 NUMBER : 2824
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Passing a Variable to a ReportSmith Report

The following code demonstrates how to pass variables to a ReportSmith
report.

Note: this technical information sheet assumes that you know how to
create a report that includes report variables. For additional
information see chapter four of the ReportSmith manual 'Creating
Reports' that shipped with Delphi.

In this case we are assigning a value ('CA') to a string report
variable named 'state'.

ReportSmith Code:
This is the info in the ReportVariables Dialog box in ReportSmith.
You can get to this dialog from the reportsmith menu by choosing
Tools | Report Query and pushing the Report Variables button.

Name: state
Type: string
Title: state var
Prompt: Enter your favorite state.
Entry: type-in
Report Variables: state ; Note this variable and the value it holds are
 both case sensitive when passed to ReportSmith.

Delphi Code:

This code assumes that you have placed a TReport component on your form
named 'Report1' and set the ReportName property to the name of the report
that will be accepting the variable as defined above.

Place the following code in the OnClick Method of a pushbutton on your
form. I use a pushbutton for simplicity, but this code could just as
easily be triggered by any other event.

 procedure TForm1.Button1Click(Sender: TObject);
 var s: string;
 begin

 s:='CA';
 Report1.InitialValues.Add('@state=<'+s+'>');
 Report1.run;

 end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Extracting Index Data From A Table
 NUMBER : 2825
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Extracting Index Data From A Table

Getting a list of the indexes associated with a table at run-time can be
as simple as a call to the GetIndexNames method of the TTable, TQuery, or
TStoredProc component. The GetIndexNames method returns a list of the
that are available for the data set in the form of a TStrings list, which
may then be inserted into such visual components as a TListBox through its
Items property:

 ListBox1.Clear;
 Table1.GetIndexNames(ListBox1.Items);

Of course, the TStrings list returned by the GetIndexNames method need not
be used with a visual component. It could just as well serve as an array
of index names stored entirely in memory, that can be used as a list or
array.

But it is also possible to retrieve much more information about the
indexes for a table than just the names. Other descriptive attributes
include the name of each index, the names of the fields that comprise each
index, and the index options used when each index was created. Retrieving
these values is slightly more involved than the use of the GetIndexNames.
Basically, this process involves iterating through the IndexDefs property
of the TTable, TQuery, or TStoredProc component. The IndexDefs property is
essentially an array of records, one record for each index for the table.
Each index record contains information about the index. It is a relatively
straightforward process to iterate through this array of index descrip-
tions, extracting information about individual indexes.

The IndexDefs property of the TTable component contains information about
the indexes for the table used by the TTable, TQuery, or TStoredProc comp-
onent in use. The IndexDefs property itself has various properties that
allow for the extraction of information about specific indexes. The two
properties in the IndexDefs object are:

 Count: type Integer; available only at run-time and read-only; indicates
 the number ofentries in the Items property (i.e., the number of
 indexes in the table).
 Items: type TIndexDef; available only at run-time and read-only; an
 array of TIndexDef objects, one for each index in the table.

The Count property of the IndexDefs object is used as the basis for a
loop program construct to iterate through the Items property entries to
extract specific information about each index. Each IndexDef object con-
tained in the Items property consists of a number of properties that pro-
vide various bits of information that describe each index. All of the
properties of the IndexDef object are available only at run-time and are

all read-only. These properties are:

 Expression: type String; indicates the expression used for dBASE multi-
 field indexes.
 Fields: type String; indicates the field or fields upon which the
 index is based.
 Name: type String; name of the index.
 Options: type TIndexOptions; characteristics of the index (ixPrimary,
 ixUnique, etc.).

Before any index information (Count or Items) can be accessed, the Update
method of the IndexDefs object must be called. This refreshes or init-
ializes the IndexDef object's view of the set of indexes.

Examples
========

Here is a simple For loop based on the Count property of the IndexDefs
object that extracts the name of each index (if any exist) for the table
represented by the TTable component Table1:

 procedure TForm1.ListBtnClick(Sender: TObject);
 var
 i: Integer;
 begin
 ListBox1.Items.Clear;
 with Table1 do begin
 if IndexDefs.Count > 0 then begin
 for i := 0 to IndexDefs.Count - 1 do
 ListBox1.Items.Add(IndexDefs.Items[i].Name)
 end;
 end;
 end;

Below is an example showing how to extract information about indexes at
run-time, plugging the extracted values into a TStringGrid (named SG1).

 procedure TForm1.FormShow(Sender: TObject);
 var
 i: Integer;
 S: String;
 begin
 with Table1 do begin
 Open;
 {Refresh IndexDefs object}
 IndexDefs.Update;
 if IndexDefs.Count > 0 then begin
 {Set up columns and rows in grid to match IndexDefs items}
 SG1.ColCount := 4;
 SG1.RowCount := IndexDefs.Count + 1;
 {Set grid column labels to TIndexDef property names}
 SG1.Cells[0, 0] := 'Name';
 SG1.ColWidths[0] := 200;
 SG1.Cells[1, 0] := 'Fields';
 SG1.ColWidths[1] := 200;
 SG1.Cells[2, 0] := 'Expression';

 SG1.ColWidths[2] := 200;
 SG1.Cells[3, 0] := 'Options';
 SG1.ColWidths[3] := 300;
 {Loop through IndexDefs.Items}
 for i := 0 to IndexDefs.Count - 1 do begin
 {Fill grid cells for current row}
 SG1.Cells[0, i + 1] := IndexDefs.Items[i].Name;
 SG1.Cells[1, i + 1] := IndexDefs.Items[i].Fields;
 SG1.Cells[2, i + 1] := IndexDefs.Items[i].Expression;
 if ixPrimary in IndexDefs.Items[i].Options then
 S := 'ixPrimary, ';
 if ixUnique in IndexDefs.Items[i].Options then
 S := S + 'ixUnique, ';
 if ixDescending in IndexDefs.Items[i].Options then
 S := S + 'ixDescending, ';
 if ixCaseInsensitive in IndexDefs.Items[i].Options then
 S := S + 'ixCaseInsensitive, ';
 if ixExpression in IndexDefs.Items[i].Options then
 S := S + 'ixExpression, ';
 if S > ' ' then begin
 {Get rid of trailing ", "}
 System.Delete(S, Length(S) - 1, 2);
 SG1.Cells[3, i + 1] := S;
 end;
 end;
 end;
 end;
 end;

Special Considerations
======================

There are idiosyncracies associated with extracting information about
indexes for different table types that Delphi can access.

dBASE Tables

With dBASE indexes, which properties of Fields and Expression will be
filled will depend on the type of index, simple (single-field) or
complex (based on multiple fields or a dBASE expression). If the index
is a simple one, the Fields property will contain the name of the field
in the table on which the index is based and the Expression property will
be blank. If the index is a complex one, the Expression property will
show the expression on which the index is based (e.g., "Field1+Field2")
and the Fields property will be blank.

Paradox Tables

With Paradox primary indexes, the Name property will be blank, the Fields
property will contain the field(s) on which the index is based, and the
Options property will contain ixPrimary. With secondary indexes, the Name
property will contain the name of the secondary index, the Fields prop-
erty will contain the field(s) on which the index is based, and the
Options property may or may not have values.

The Fields property for indexes based on more than one field will show
the field names separated by semi-colons. Indexes based on only a single
field will show the name of only that one field in the Fields property.

InterBase Tables

For both index types, single- or multiple-field, the Expression property
will be blank. For single-field indexes, the Fields property will contain
the field on which the index is based. For multi-field indexes, the Fields
property will show all of the multiple fields that comprise the index,
each separated by a semi-colon.

Indexes designated as PRIMARY when the CREATE TABLE command is issued will
have "RDB$PRIMARYn" in the Name property, where n is a number character
uniquely identifying the primary index within the database metadata.
Secondary indexes will show the actual name of the index.

Foreign key constraints also result in an index being created by the sys-
tem. These indexes appear in the IndexDefs property, and will have the
name "RDB$FOREIGNn" where n is a number character that uniquely identifies
the index within the database metadata.

The Fields property for indexes based on more than one field will show
the field names separated by semi-colons. Indexes based on only a single
field will show the name of only that one field in the Fields property.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Redistributing the Borland Database Engine
 NUMBER : 2834
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Redistributing the Borland Database Engine

Follow the following steps in order to deploy the redistributable
BDE engine on a target machine:

1) Format two diskettes in the diskette drive of the target
 machine. Label the diskettes "Disk 1" and "Disk 2".

2) From the DELPHI CD, Copy the \REDIST\BDEINST\DISK1 directory
 to the diskette labeled "Disk 1" and
 \REDIST\BDEINST\DISK2 to the diskette "Disk 2".

3) Insert the diskette labeled "BDE Install 1" to a floppy
 drive (We'll use drive A: in this example) of the target
 machine.

4) Make sure there are no other programs running in Windows.
 From the Windows Program Manager select File|Run, enter
 "A:\DISK1\SETUP" in the space labeled "Command Line" and
 press "OK" to begin install of the Borland Database Engine
 on the target machine.

5) A dialog labeled "Database Engine Install" will appear
 briefly, then a dialog labeled "preparing to install...",
 and finally a background screen labeled "BDE
 Redistributable" will appear along with a dialog allowing
 you to Continue or Exit. Press "Continue".

6) A dialog "Borland Database Engine Location Settings" will
 appear and allow you to change the path for BDE programs
 and configuration file. Leave the default settings at and
 press "Continue".

7) The "Borland Database Engine Installation" dialog will
 appear and allow you to display previous dialogs, or
 execute the install. Press "Install".

8) Installation progress will display while files from the
 "Disk 1" diskette are processed.

9) The "BDE Redistributable Install Request" dialog will appear.
 Load the diskette labeled "Disk 2". Press "continue".

10) On completion, the "Borland Database Engine Installation
 Notification" dialog will inform you that BDE is installed.
 Press "Exit".

11) Exit Windows, remove any floppy disks from your drives and
 reboot the target machine.

 If default settings were used, changes listed below will have
 taken place.

 Two new directories, \IDAPI, and \IDAPI\LANGDRV will exist on
 the target machine. Note that the BDE Configuration Utility,
 BDECFG.EXE is located in the \IDAPI directory. Language
 drivers will now be located in \IDAPI\LANGDRV as *.LD files.
 AUTOEXEC.BAT, CONFIG.SYS, AND SYSTEM.INI will not be affected.

WIN.INI in the \WINDOWS\SYSTEM directory will have new entries:

[IDAPI]
DLLPATH=C:\IDAPI
CONFIGFILE01=C:\IDAPI\IDAPI.CFG

[Borland Language Drivers]
LDPath=C:\IDAPI\LANGDRV

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Cascading Deletes With Pdox Referential Integrity
 NUMBER : 2837
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Cascading Deletes With Pdox Referential Integrity

Paradox tables offer a Referential Integrity feature. This feature pre-
vents adding records to a child table for which there is no matching
record in the parent table. It will also cause the key field(s) in the
child table to be changed when the corresponding key field(s) in the
parent are changed (commonly referred to as a cascading update). These
events occur automatically, requiring no intervention by a Delphi appli-
cation using these tables. However, the Paradox Referential Integrity
feature will not accommodate cascading deletes. That is, Delphi will not
allow you to delete a record in the parent table while matching records
exist in the child table. This would make "orphans" of the child records,
losing referential integrity. Delphi raises an exception when an attempt
is made to delete such a parent record.

To effect a cascading delete requires that the deletion of the matching
child records be deleted programmatically -- before the parent record is
deleted. In a Delphi application, this is done by interrupting the process
of deleting the record in the parent table, deleting the matching records
in the child table (if there are any), and then continuing with the dele-
tion of the parent record.

A record in a table is deleted by a call to the Delete method of the
TTable component, which deletes the current record in the associated
table. Interrupting the this process to first perform some other opera-
tions is a matter creating a procedure associated with the BeforeDelete
event of the TTable. Any commands in a BeforeDelete event procedure are
executed before the call actually goes out from the application to the
Borland Database Engine (BDE) to physically remove the record from the
table file.

To handle the deletion of one or more child records, in a BeforeDelete
event procedure the Delete method for the TTable representing the child
table is called in a loop. The loop is based on the condition of the
record pointer in the table not being positioned at the end of the data
set, as indicated by the Eof method of the TTable. This also accounts for
there being no child records at all matching the parent record to be
deleted: if there are no matching records, the record pointer will already
be at the end of the data set, the loop condition will evaluate to False,
and the Delete method in the loop nevers gets executed.

 procedure TForm1.Table1BeforeDelete(DataSet: TDataset);
 begin
 with Table2 do begin
 DisableControls;
 First;
 while not Eof do

 Delete;
 EnableControls;
 end;
 end;

In the above example, the parent table is represented by the TTable comp-
onent Table1 and the child by Table2. The DisableControls and Enable-
Controls methods are used as a cosmetic measure to freeze any data-aware
components that might be displaying data from Table2 while the records
are being deleted. These two methods make the process visually appear
smoother, but are only optional and not essential to this process. The
Next method need not be called within this loop. This is because the loop
begins at the first record and, as each record is deleted, the record that
previously followed the deleted record moves up in the data set, becoming
both the first and the current record.

This example presumes that the parent and child tables are linked with a
Master-Detail relationship, as is typical for tables for which such
Referntial Integrity is configured. Linking the tables in this manner
results in only those records in the child table that match the current
record in the parent table being available. All other records in the child
table are made unavailable through the Master-Detail filtering. If the
tables are not so linked, there are two additional considerations that
must be accounted for when deleting the child records. The first is that
a call to the First method may or may not put the record pointer on a
record that matches the current record in the parent table. This necessi-
tates using a search method to manually move the record pointer to a
matching record. The second consideration affects the condition for the
loop. Because records other than those matching the current record in the
parent table will be accessible, the condition for the loop must check
that each record is a matching record before attempting to delete it. This
checking is in addition to querying the Eof method. Because the records
will be ordered by this key field (from a primary or secondary index),
all of the matching records will be contiguous. This leads to the given
that, as soon as the first non-matching record is reached, it can be
assumed that all matching records have been deleted. Thus, the previous
example would be modified to:

 procedure TForm1.Table1BeforeDelete(DataSet: TDataset);
 begin
 with Table2 do begin
 DisableControls;
 FindKey([Table1.Fields[0].AsString])
 while (Fields[0].AsString = Table1.Fields[0].AsString) and
 (not Eof) do
 Delete;
 EnableControls;
 end;
 end;

In the above, it is the first field in the parent table (Table1) upon
which the Referential Integrity is based, and the first field in the
child table (Table2) against which matching is judged.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to copy files in Delphi.
 NUMBER : 2855
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : How to copy files in Delphi.

Q: How do I copy a file?

A: Here are three ways:

{This way uses a File stream.}
Procedure FileCopy(Const sourcefilename, targetfilename: String);
Var
 S, T: TFileStream;
Begin
 S := TFileStream.Create(sourcefilename, fmOpenRead);
 try
 T := TFileStream.Create(targetfilename,
 fmOpenWrite or fmCreate);
 try
 T.CopyFrom(S, S.Size) ;
 finally
 T.Free;
 end;
 finally
 S.Free;
 end;
End;

{This way uses memory blocks for read/write.}
procedure FileCopy(const FromFile, ToFile: string);
 var
 FromF, ToF: file;
 NumRead, NumWritten: Word;
 Buf: array[1..2048] of Char;
begin
 AssignFile(FromF, FromFile);
 Reset(FromF, 1); { Record size = 1 }
 AssignFile(ToF, ToFile); { Open output file }
 Rewrite(ToF, 1); { Record size = 1 }
 repeat
 BlockRead(FromF, Buf, SizeOf(Buf), NumRead);
 BlockWrite(ToF, Buf, NumRead, NumWritten);
 until (NumRead = 0) or (NumWritten <> NumRead);
 CloseFile(FromF);
 CloseFile(ToF);
end;

{This one uses LZCopy, which USES LZExpand.}
procedure CopyFile(FromFileName, ToFileName: string);
var

 FromFile, ToFile: File;
begin
 AssignFile(FromFile, FromFileName); { Assign FromFile to FromFileName }
 AssignFile(ToFile, ToFileName); { Assign ToFile to ToFileName }
 Reset(FromFile); { Open file for input }
 try
 Rewrite(ToFile); { Create file for output }
 try
 { copy the file an if a negative value is returned }
 { raise an exception }
 if LZCopy(TFileRec(FromFile).Handle, TFileRec(ToFile).Handle) < 0
 then
 raise EInOutError.Create('Error using LZCopy')
 finally
 CloseFile(ToFile); { Close ToFile }
 end;
 finally
 CloseFile(FromFile); { Close FromFile }
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Removing the vertical scrollbar from a TDBGrid
 NUMBER : 2840
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Removing the vertical scrollbar from a TDBGrid

In order to remove the vertical scrollbar from a TDBGrid component,
you must override its Paint method. Inside the Paint method you
must call the SetScrollRange API procedure to set the min and max
scroll values to zero (this disables the scrollbar), and then call
the inherited Paint. The code below is a unit containing a new
component called TNoVertScrollDBGrid that does this. You can copy
the code into a file called NEWGRID.PAS, and add it to the component
library as a custom component.

unit Newgrid;

interface

uses
 WinTypes, WinProcs, Classes, DBGrids;

type
 TNoVertScrollDBGrid = class(TDBGrid)
 protected
 procedure Paint; override;
 end;

procedure Register;

implementation

procedure TNoVertScrollDBGrid.Paint;
begin
 SetScrollRange(Self.Handle, SB_VERT, 0, 0, False);
 inherited Paint;
end;

procedure Register;
begin
 RegisterComponents('Data Controls', [TNoVertScrollDBGrid]);
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi Consultants and Training Centers
 NUMBER : 2841
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Delphi Consultants and Training Centers

Listings of Delphi consultants and training centers are
available from Borland Fast Fax at 1-800-408-0001. From Fast
Fax, select 1 for "General Information About Borland and its
Products," then select 3 for "Third Party Consultants,
Developers, System Integrators, and Training Centers." These
lists are also available from CompuServe and the Borland
Download BBS. From the Delphi CompuServe Forum, download the
files DEV.ZIP and TRN.ZIP. From the Borland Download BBS,
download the file DEV.ZIP and TRN.ZIP from the Delphi - General
file area of the Delphi Conference. To access the Borland
Download BBS, call 1-408-431-5096. For additional information
about Borland Online Services, refer to Technical Information
Sheet #9604.

If you would like to receive assistance from Borland's third
party Connections members who offer specific software solutions
for your industry, please download TI 9680 "Borland Connection
Solution Request Form," fill it out, and return it back by faxing
it to Borland Connections at (408) 431-4142.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

InterBase BLOB Fields: A Primer
 NUMBER : 2842
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : InterBase BLOB Fields: A Primer

InterBase BLOB fields are not all the same. They actually consist in a
variety of forms, or sub-types of the general BLOB type. Knowing which
sub-type of BLOB field to use when is essential to creating database appl-
ications that incorporate InterBase BLOB fields. BLOB fields come in three
varieties: sub-type 0 and sub-type 1 (the two predefined sub-types), and
user-defined sub-types.

Sub-type 0 BLOB fields are the type created when a CREATE command is
issued and a sub-type is not specified. For clarity in SQL syntax, though,
it is possible to explicitly indicate that the BLOB field is to be of sub-
type 0. This sub-type of BLOB field is for the storage of binary data.
InterBase makes no analysis of the data stored, it just stores it in the
BLOB field on a byte-for-byte basis. The most common intended use for BLOB
fields in Windows applications is the storage of bitmap binary data, typi-
cally for display in a TDBImage component. Either the BLOB field sub-type
0 or a user-defined sub-type BLOB field will work for this purpose.

The second predefined sub-type is 1. This BLOB field sub-type is designed
for the storage of text. Typically, this is the free-form memo or notes
data displayed and edited with the TDBMemo component. This BLOB field sub-
type is better for storing text data than the VARCHAR field because,
unlike with the VARCHAR field, there is no design-time limit placed on the
storage capacity of the field.

In SQL syntax, the sub-type 1 BLOB field is created by following the BLOB
field type keyword with the SUB_TYPE keyword and the integer one:

 CREATE TABLE WITHBLOB
 (
 ID CHAR(3) NOT NULL PRIMARY KEY,
 MEMO BLOB SUB_TYPE 1,
 AMOUNT NUMERIC
)

Aside from the two predefined BLOB field sub-types, there are user-defined
sub-types. User-defined sub-types are designated by a negative integer
value in association with the SUB_TYPE keyword. The actual integer value,
as long as it is negative, is actually arbitrary and up to the discretion
of the table creator. A designation of -1 is functionally the same as that
of a -2. The only consideration when using user-defined sub-types is
ensuring that the same type of binary data is stored for every row in the
table for a BLOB field of a given user-defined sub-type. InterBase will
not evaluate whether this criteria is met, and it is the responsibility of
the application inserting the binary data to store the appropriate type of
data. No error will occur from the InterBase side if an incorrect type of

binary data is stored in a user-defined BLOB field sub-type, but an appl-
ication can incur difficulties if it is expecting one type of data but
encounters another.

A BLOB field of a user-defined sub-type is created with the SQL syntax
such as that below:

 CREATE TABLE IMAGE_DATA
 (
 FILENAME CHAR(12) NOT NULL PRIMARY KEY,
 BITMAP BLOB SUB_TYPE -1,
 EXEs BLOB SUB_TYPE -2,
)

When using a table created with the above command, the field BITMAP would
only be used to store one distinct type of binary data for all records. In
this case, bitmap data. The field EXEs implies the storage of executable
files loaded from disk. If an application using this table were to mis-
takenly store binary data that should have been in the EXEs field into the
BITMAP field, InterBase would generate no errors, but the application
would have extreme difficulties displaying a stored executable file in a
TDBImage component.

InterBase BLOB fields and Delphi

When defining TField objects for InterBase BLOB fields in Delphi, the
various BLOB field sub-types are assigned TField derivative types as
follows:

 Sub-type 0: TBlobField
 Sub-type 1: TMemoField
 User-defined: TBlobField

Because both the predefined sub-type 0 and user-defined sub-types are
recognized as TBlobField objects, care must be taken when designing an
application to not mistake a field of one sub-type for that of another.
The only way to differentiate between a field of sub-type 0 from that of
a user-defined type is by viewing the metadata information for the table,
which cannot be done from within Delphi. The Local InterBase Server
utility WISQL can be used to view table metadata.

InterBase BLOB fields and Database Desktop
--

The Database Desktop utility that comes with Delphi (DBD) does not create
user-defined subtypes. When using BLOB fields created in Database Desktop,
use the "BLOB" field type for binary data, including bitmap data. This
creates a BLOB field of the predefined sub-type 0.

The DBD also offers a BLOB field type TEXT BLOB. This is equivalent to the
pre-defined subtype 1, and should be used where free-form text storage
will be needed. While it is functionally equivalent to the pre-defined
subtype 1 BLOB field, it will appear with a slightly different type des-
ignation if you view the metadata for the table in the WISQL utility.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Using The ASCII Driver With Comma-delimited Files
 NUMBER : 2844
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Using The ASCII Driver With Comma-delimited Files

Delphi (and the BDE) has the capability to use ASCII files to a limited
degree as tables. The ASCII driver has the capability to translate the
data values in an ASCII fixed-length field or a comma-delimted file into
fields and values that can be displayed through a TTable component. How
this translation of the ASCII file takes place depends on an accompanying
schema file. The schema file for an ASCII data file defines various attri-
butes necessary for parsing the ASCII data file into individual field
values. The field definitions for an ASCII fixed-length field file is
relatively straightforward, the offsets of various fields in the ASCII
file being consistent across all rows in the file. However, for comma-
delimited files, this process is slightly more complicated due to the
fact that not all data values in such a file may be the same length for
all rows in the file. This article, then, concentrates on this more
difficult task of reading data from comma-delimited, or varying-length
field, files.

The Schema File
===============

The schema file for an ASCII data file contains information that defines
both the file type (comma-delimited versus fixed-length field), as well as
defining the fields that are represented by the data values in each row of
the ASCII data file. (All of the settings used in a schema file are case
insensitive, so "ascii" is just as valid as "ASCII".) In order that a
schema file be recognized as such, it must have the same filename as the
ASCII data file for which it provides definitions, but with the filename
extension .SCH (for SCHema). The attributes that describe the file are:

 File name: Enclosed in square brackets, this setting specifies the
 name of the ASCII data file (sans the filename extension,
 which must be .TXT).

 Filetype: Specifies whether the ASCII data file is structured as a
 fixed-length field file (use a setting of FIXED) or a comma-
 delimited file (with data values of potentially varying
 length (use a setting of VARYING).

 Delimiter: Specifies the character that surrounds String type data val-
 ues (typically, the double quotation mark, ASCII decimal 34).

 Separator: Specifies the character that is used to separate individual
 data values (typically, a comma). This character must be a
 visible character, i.e., cannot be a space (ASCII decimal
 32).

 CharSet: Specifies the language driver (use a setting of ASCII).

Following the file definition settings are field definitions, one for each
data value on each row of the ASCII data file. These field definitions
supply the information Delphi and the BDE will need to create a virtual
field in memory to hold the data value, that virtual field's data type
which will affect how the value is translated after being read from the
ASCII file, and size and positioning attributes. The various settings that
will appear in each field definition are:

 Field: Virtual field name, will always be "Field" followed
 by an integer number representing that field's ord-
 inal position in respect to the other fields in the
 ASCII data file. E.G., the first field is Field1,
 the second Field2, and so on.

 Field name: Specifies the display name for the field, which
 appears as the column header in a TDBGrid. Naming
 convention for ASCII table fields follows that for
 Paradox tables.

 Field type: Specifies the data tyoe BDE is to use in translating
 the data value for each field and tells Delphi what
 type of virtual field to create.

 Use the setting For values of type
 --------------- ---------------------
 CHAR Character
 FLOAT 64-bit floating point
 NUMBER 16-bit integer
 BOOL Boolean (T or F)
 LONGINT 32-bit long integer
 DATE Date field.
 TIME Time field.
 TIMESTAMP Date + Time field.

 (The actual format for date and time data values
 will be determined by the current setting in the BDE
 configuration, Date tab page.)

 Data value length: Maximum length of a field's corresponding data
 value. This setting determines the length of the
 virtual field that Delphi creates to receive values
 read from the ASCII file.

 Number of decimals: Applicable to FLOAT type fields; specifies the
 number of digit positions to the right of the deci-
 mal place to include in the virtual field defini-
 tion.

 Offset: Offset from the left that represents the starting
 position for the field in relation to all of the
 fields that preceed it.

For example, the field definition below is for the first field in the
ASCII table. It defines a String type data value with a name of "Text",

a maximum data value length of three characters (and the field will
appear as only three characters long in Delphi data-aware components such
as the TDBGrid), no decimal places (a String data value will never have
any decimal places), and an offset of zero (because it is the first field
and there would not be any preceeding fields).

 Field1=Text,Char,3,00,00

Here is an example of a schema file with three fields, the first of String
type and the second and third of type date. This schema file would be
contained in a file named DATES.SCH to provide file and field definitions
for an ASCII data file named DATES.TXT.

 [DATES]
 Filetype=VARYING
 Delimiter="
 Separator=,
 CharSet=ascii
 Field1=Text,Char,3,00,00
 Field2=First Contact,Date,10,00,03
 Field3=Second,Date,10,00,13

This schema defines a comma-delimited field where all String type data
values can be recognized as being surrounded by the double quotation mark
and where distinct data values are separated by commas (excepting any
commas that may appear within the specified delimiter, inside individual
String data values). The character field has a length of three characters,
no decimal places, and an offset of zero. The first date field has a
length of 10, no decimals, and an offset of three. And the second date
field has a length of 10, no decimals, and an offset of 13.

For reading ASCII comma-delimited files, the length and offset parameters
for the field definitions do not apply to data values in the ASCII files
(as is the case for fixed-length field files), but to the virtual fields,
defined in the application, into which the values read will be placed. The
length parameter will need to reflect the maximum length of the data value
for each field -- not counting the delimiting quotation marks or the comma
separators. This is most difficult to estimate for String type data values
as the actual length of such a data value may vary greatly from row to row
in the ASCII data file. The offset parameter for each field will not be
the position of the data value in the ASCII file (as is the case for
fixed-length field files), but the offset as represented by the cumulative
length of all preceding fields (again, the defined fields in memory, not
the data values in the ASCII file.

Here is a data file that would correspond to the schema file described
above, in a file named DATES.TXT:

 "A",08/01/1995,08/11/1995
 "BB",08/02/1995,08/12/1995
 "CCC",08/03/1995,08/13/1995

The maximum length of an actual data value in the first field is three
("CCC"). because this is the first field and there are no preceding
fields, the offset for this field is zero. The length of this first field
(3) is used as the offset for the second field. The length of the second

field, a date value, is 10, reflecting the maximum length of a data value
for that field. The accumulated length of the first and second fields are
then used as the offset for the third field (3 + 10 = 13) .

It is only when the proper length for the data values in the ASCII file
are used and each fields length added to any preceding fields to produce
offset values for succeeding fields that this process will correctly read
the data. If data is misread because of improper length settings in the
schema file, most values will suffer adverse translation effects, such
as truncation of character data or numeric values being interpreted as
zeros. Data will usually still be displayed, but no error should occur.
However, values that must be in a specific format in order to be trans-
lated into the appropriate data type will cause errors if the value read
includes characters not valid in a date value. This would include a date
data value which, when incorrectly read may contain extraneous characters
from other surrounding fields. Such a condition will result in a data
translation exception requiring an adjustment of the field length and
offset settings in the schema file.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Determining Record Number In A dBASE Table
 NUMBER : 2849
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Determining Record Number In A dBASE Table

dBASE tables employ a fairly static record numbering system. The record
number for a given record reflects its physical position in the table
file. These record number are not subject to change dependent on the
filtering of data or index ordering. For instance, a record that is the
first record stored in the .DBF file would be record number 1. It is
possible that, through the ordering of an index, this record may be
displayed as the last of 100 records. In such a case, its record would
remain the same -- one -- and would not be changed to 100 to reflect its
position in the index ordered data set. This is in contrast with Paradox
tables, where there is a sequence number. The Paradox sequence number is
like the dBASE record number except that it is much more fluid and the
number for a given record will reflect its position relative to the data
set. That is, a record may not always have the same sequence number given
filtering of the data set to reduce the number of records or when an index
is active that may change the displayed order of the record.

In database applications created with Delphi and the Borland Database
Engine (BDE), there is no provision built into the stock data components
for extracting or determining the record for dBASE tables. Such an opera-
tion is, however, possible by making a call from the application a BDE
function.

There are a number of BDE functions that will return information about the
current dBASE record, such as the record number. Basically, any function
that fills a BDE pRECProps structure would suffice. Such BDE functions
include DbiGetRecord, DbiGetNextRecord, and DbiGetPriorRecord. Of course,
only the first of these functions really applies to retrieving information
about the current record. The other two move the record pointer when in-
voked, similar in effect to the Next and Prior methods of the TTable or
TQuery components.

The pRECProps structure consists of the fields:

 iSeqNum: type LongInt; specifies the sequence number of the record
 (relative to the data set, including filtering and index ordering);
 applicable if the table type supports sequence numbers (Paradox only).

 iPhyRecNum: type LongInt; specifies the record number for the record;
 applicable only when the table type supports physical record numbers
 (dBASE only).

 bRecChanged: type Boolean; not currently used.

 bSeqNumChanged: type Boolean; not currently used.

 bDeleteFlag: type Boolean; indicates whether the record is deleted;
 applicable only for table types that support soft-deletes (dBASE
 only).

One of these BDE functions may be invoked in a Delphi application to fill
this structure, from which the physical record number may be retrieved.
Below is an example of the DbiGetRecord function used for this purpose.

 function RecNo(ATable: TTable): LongInt;
 var
 R: RECProps;
 rslt: DbiResult;
 Error: array [0..255] of Char;
 begin
 ATable.UpdateCursorPos;
 rslt := DbiGetRecord(ATable.Handle, dbiNoLock, nil, @R);
 if rslt = DBIERR_NONE then
 Result := R.iPhyRecNum
 else begin
 DbiGetErrorString(rslt, Error);
 ShowMessage(StrPas(Error));
 Result := -1;
 end;
 end;

As with invoking any BDE function in a Delphi application, the BDE wrapper
units DbiTypes, and DbiErrs, DbiProcs must be included in the Uses section
of the unit in which the BDE function will be invoked (the Uses section
not shown here). To make this function more transportable, it does not
reference the subject TTable component directly, but a reference to the
TTable is passed as a parameter. If this function is used in a unit that
does not reference the Delphi units DB and DBTables, they must be added so
that references to the TTable component will be valid.

The UpdateCursorPos method of the TTable is called to ensure that the
record number current in the TTable component is synchronized with that
of the underlying table.

BDE functions do not in themselves cause an exception if they fail.
Rather, they return a value of BDE type DbiResult that indicates the succ-
ess or failure of the intended operation. This return value must then be
retrieved and evaluated by the front-end application, and the appropriate
action taken. A result other than DBIERR_NONE indicates an unsuccessful
execution of the function. An extra step may be taken (as in the example
above) to query the BDE to translate an error code into a readable mess-
age with the BDE function DbiGetErrorString. In this example, the return
value from the invoking of DbiGetRecord is stored in the variable rslt,
and then compared against DBIERR_NONE to determine the success of the
function call.

If the call to DbiGetRecord succeeds, the physical record number from the
iPhyRecNum field of the pRECProps structure is stored to the variable
Result, which is the function's return value. To indicate when the
function has failed (i.e., the involing of the DbiGetRecord function
failed), a value of negative one is returned instead of the record
number. This value is purely arbitrary, and any value of a compatible

type may be used at the discretion of the programmer.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Managing disk volume labels in Delphi
 NUMBER : 2854
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Managing disk volume labels in Delphi

This document contains the source code for a unit that is useful for
getting, setting, and deleting volume labels from a floppy or hard disk.
The code for getting a volume label uses the Delphi FindFirst function,
and the code for setting and deleting volume labels involves calling DOS
interrupt 21h, functions 16h and 13h respectively. Since function 16h
isn't supported by Windows, it must be called through DPMI interrupt 31h,
function 300h.

{ *** BEGIN CODE FOR VOLLABEL UNIT *** }
unit VolLabel;

interface

uses Classes, SysUtils, WinProcs;

type
 EInterruptError = class(Exception);
 EDPMIError = class(EInterruptError);
 Str11 = String[11];

procedure SetVolumeLabel(NewLabel: Str11; Drive: Char);
function GetVolumeLabel(Drive: Char): Str11;
procedure DeleteVolumeLabel(Drv: Char);

implementation

type
 PRealModeRegs = ^TRealModeRegs;
 TRealModeRegs = record
 case Integer of
 0: (
 EDI, ESI, EBP, EXX, EBX, EDX, ECX, EAX: Longint;
 Flags, ES, DS, FS, GS, IP, CS, SP, SS: Word);
 1: (
 DI, DIH, SI, SIH, BP, BPH, XX, XXH: Word;
 case Integer of
 0: (
 BX, BXH, DX, DXH, CX, CXH, AX, AXH: Word);
 1: (
 BL, BH, BLH, BHH, DL, DH, DLH, DHH,
 CL, CH, CLH, CHH, AL, AH, ALH, AHH: Byte));
 end;

 PExtendedFCB = ^TExtendedFCB;
 TExtendedFCB = Record

 ExtendedFCBflag : Byte;
 Reserved1 : array[1..5] of Byte;
 Attr : Byte;
 DriveID : Byte;
 FileName : array[1..8] of Char;
 FileExt : array[1..3] of Char;
 CurrentBlockNum : Word;
 RecordSize : Word;
 FileSize : LongInt;
 PackedDate : Word;
 PackedTime : Word;
 Reserved2 : array[1..8] of Byte;
 CurrentRecNum : Byte;
 RandomRecNum : LongInt;
 end;

procedure RealModeInt(Int: Byte; var Regs: TRealModeRegs);
{ procedure invokes int 31h function 0300h to simulate a real mode }
{ interrupt from protected mode. }
var
 ErrorFlag: Boolean;
begin
 asm
 mov ErrorFlag, 0 { assume success }
 mov ax, 0300h { function 300h }
 mov bl, Int { real mode interrupt to execute }
 mov bh, 0 { required }
 mov cx, 0 { stack words to copy, assume zero }
 les di, Regs { es:di = Regs }
 int 31h { DPMI int 31h }
 jnc @@End { carry flag set on error }
 @@Error:
 mov ErrorFlag, 1 { return false on error }
 @@End:
 end;
 if ErrorFlag then
 raise EDPMIError.Create('Failed to execute DPMI interrupt');
end;

function DriveLetterToNumber(DriveLet: Char): Byte;
{ function converts a character drive letter into its numerical equiv. }
begin
 if DriveLet in ['a'..'z'] then
 DriveLet := Chr(Ord(DriveLet) -32);
 if not (DriveLet in ['A'..'Z']) then
 raise EConvertError.CreateFmt('Cannot convert %s to drive number',
 [DriveLet]);
 Result := Ord(DriveLet) - 64;
end;

procedure PadVolumeLabel(var Name: Str11);
{ procedure pads Volume Label string with spaces }
var
 i: integer;
begin
 for i := Length(Name) + 1 to 11 do

 Name := Name + ' ';
end;

function GetVolumeLabel(Drive: Char): Str11;
{ function returns volume label of a disk }
var
 SR: TSearchRec;
 DriveLetter: Char;
 SearchString: String[7];
 P: Byte;
begin
 SearchString := Drive + ':*.*';
 { find vol label }
 if FindFirst(SearchString, faVolumeID, SR) = 0 then begin
 P := Pos('.', SR.Name);
 if P > 0 then begin { if it has a dot... }
 Result := ' '; { pad spaces between name }
 Move(SR.Name[1], Result[1], P - 1); { and extension }
 Move(SR.Name[P + 1], Result[9], 3);
 end
 else begin
 Result := SR.Name; { otherwise, pad to end }
 PadVolumeLabel(Result);
 end;
 end
 else
 Result := '';
end;

procedure DeleteVolumeLabel(Drv: Char);
{ procedure deletes volume label from given drive }
var
 CurName: Str11;
 FCB: TExtendedFCB;
 ErrorFlag: WordBool;
begin
 ErrorFlag := False;
 CurName := GetVolumeLabel(Drv); { get current volume label }
 FillChar(FCB, SizeOf(FCB), 0); { initialize FCB with zeros }
 with FCB do begin
 ExtendedFCBflag := $FF; { always }
 Attr := faVolumeID; { Volume ID attribute }
 DriveID := DriveLetterToNumber(Drv); { Drive number }
 Move(CurName[1], FileName, 8); { must enter volume label }
 Move(CurName[9], FileExt, 3);
 end;
 asm
 push ds { preserve ds }
 mov ax, ss { put seg of FCB (ss) in ds }
 mov ds, ax
 lea dx, FCB { put offset of FCB in dx }
 mov ax, 1300h { function 13h }
 Call DOS3Call { invoke int 21h }
 pop ds { restore ds }
 cmp al, 00h { check for success }
 je @@End

 @@Error: { set flag on error }
 mov ErrorFlag, 1
 @@End:
 end;
 if ErrorFlag then
 raise EInterruptError.Create('Failed to delete volume name');
end;

procedure SetVolumeLabel(NewLabel: Str11; Drive: Char);
{ procedure sets volume label of a disk. Note that this procedure }
{ deletes the current label before setting the new one. This is }
{ required for the set function to work. }
var
 Regs: TRealModeRegs;
 FCB: PExtendedFCB;
 Buf: Longint;
begin
 PadVolumeLabel(NewLabel);
 if GetVolumeLabel(Drive) <> '' then { if has label... }
 DeleteVolumeLabel(Drive); { delete label }
 Buf := GlobalDOSAlloc(SizeOf(PExtendedFCB)); { allocate real buffer }
 FCB := Ptr(LoWord(Buf), 0);
 FillChar(FCB^, SizeOf(FCB), 0); { init FCB with zeros }
 with FCB^ do begin
 ExtendedFCBflag := $FF; { required }
 Attr := faVolumeID; { Volume ID attribute }
 DriveID := DriveLetterToNumber(Drive); { Drive number }
 Move(NewLabel[1], FileName, 8); { set new label }
 Move(NewLabel[9], FileExt, 3);
 end;
 FillChar(Regs, SizeOf(Regs), 0);
 with Regs do begin { SEGMENT of FCB }
 ds := HiWord(Buf); { offset = zero }
 dx := 0;
 ax := $1600; { function 16h }
 end;
 RealModeInt($21, Regs); { create file }
 if (Regs.al <> 0) then { check for success }
 raise EInterruptError.Create('Failed to create volume label');
end;

end.
{ *** END CODE FOR VOLLABEL UNIT *** }

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

dBASE Expression Indexes: A Primer
 NUMBER : 2838
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : dBASE Expression Indexes: A Primer

Indexes for dBASE tables may be based on a the values from a single field,
unmodified, or on an expression. Index expressions, unique to dBASE
indexes, may be composed of multiple fields, modifications of field
values, or combinations of these. The expression for a dBASE expression
index is created by using dBASE functions and syntax to concatenate multi-
ple fields or to perform the modifications of field values for fields
included in the index expressions.

Two section are included at the end of this technical article which desc-
ribe the mechanics of creating dBASE expression indexes, one applicable
to doing this in the Database Desktop utility and the other for including
this capability in Delphi applications.

Expression Indexes Based On Multiple Fields
===

dBASE functions are available for use in Delphi or the Database Desktop
for the express use in index expressions, and then only in conjunction
with dBASE indexes. That is, you cannot use dBASE functions or syntax
to build an index expression for a Paradox or Local InterBase Server
(LIBS) table. Nor can dBASE functions be used in Delphi programming. They
are only available for dBASE expression indexes. The dBASE functions and
syntax that can be used for expression indexes are provided by the Borland
Database Engine (BDE) Dynamic Linked Library (DLL) file IDDBAS01.DLL.

When creating a dBASE index that is to be based on the values from two or
more fields in the table for which the index is being created, the two or
more fields are concatenated (connected together) in a manner similar to
how String type values are concatenated in Delphi syntax: the "+" oper-
ator. For example, the expression needed to create an index that orders
first on a LastName field and then on a FirstName field would be:

 LastName + FirstName

Unlike in dBASE itself, such indexes that are based on multiple fields are
limited to using just those fields in the one table. dBASE allows the
creation of indexes based on multiple fields contained in different
tables. This is possible only by having the other table open at the time
the index is created or when the table containing the index is used.

With multi-field indexes for other table types (e.g., Paradox and Inter-
Base), the multiple fields are delimited by the semi-colon (;), as in:

 LastName;FirstName

In dBASE expression indexes that concatenate multiple fields, an actual
expression is used:

 LastName + FirstName

When creating index expressions that concatenate two or more fields, all
of the fields included in the index expression must be of the same data
type. Additionally, if they are to be concatenated instead of added
together, the fields must all be of String type. For example, given two
Integer type fields, Value1 and Value2, the index expression...

 Value1 + Value2

...would not cause an error. But then, neither would it concatenate the
two field values; it would add them together. Thus, if Value1 for a given
record contained 4 and Value2 5, the resulting index node would be an
Integer value of 9, not a String concatenation "45".

If fields to be included in an expression index are not of String type,
they must be converted. Here are some dBASE functions to convert various
data types to String for purposes of creating index expressions:

 STR(<numeric value> [, <width> [, <decimal places>]])
 Converts from either Float or Numeric dBASE types to Character (String)

 DTOS(<date value>)
 Converts Date value to Character, format YYYYMMDD

 MLINE(<memo field>, <line number>)
 Extracts a single line from a memo field as a Character value

Another consideration in creating indexes based on the concatenation of
multiple field is the maximum allowable length of the index value. The
value returned by an index expression may not exceed 100 characters. This
is a limit on the length of the value returned by the expression, not on
the length of the expression itself. For example, you cannot index on the
concatenation of two fields that both have a length of 255 characters.

Expression Indexes Based On Modifications Of Field Values
===

In addition to creating indexes based on the concatenation of two or more
field values, it is also possible to construct an index that is based on
a modification of a field value. Examples of this include indexing on just
the first three characters of a String type field, on just the year and
month from a Date field, indexing on a contantenation of a String and Date
field such that the ordering of the String field is ascending but the Date
descending, and even indexing on Boolean field values.

Creating indexes that are based on modifications of field values requires
at least a working knowledge of dBASE functions and syntax -- because the
process uses dBASE, and not Delphi, functions and syntax. The dBASE func-
tion SUBSTR() extracts a substring of a String value. The Delphi equiv-
alent for this dBASE function is Copy. But, of these two functions that
serve the same purpose, only SUBSTR() may be used in dBASE index express-
ions.

To use dBASE functions in dBASE index expressions, simply include the
function wherever an index expression is called for, using the approp-
riate dBASE syntax for the function, along with a reference to the
name(s) of the field(s) used in the function. For example, an index expr-
ession based on only the last three characters of a String type field
called Code, that is 20 characters long, would be:

 RIGHT(Code, 3)

Caution should be used in constructing dBASE index expressions that modify
field values to ensure that the resulting expression would return a value
of a consistent length for every record in the table. For instance, the
dBASE TRIM() function removes the trailing blanks (ASCII decimal 32) from
a String type value. If this were used in conjunction with concatenating
two String fields where the field does not contain values of the same
length for all records, the value resulting from the expression will not
be the same for all records. Case in point, an index expression based on
the concatenation of a LastName and a FirstName field, where the TRIM()
function is applied to the LastName field:

 TRIM(LastName) + FirstName

This expression would not return values of a consistent length for all
records. If the LastName and FirstName fields contained the values...

 LastName FirstName
 -------- ---------
 Smith Jonas
 Wesson Nancy

...the result of applying the index expression above would be:

 SmithJonas
 WessonNancy

As can be seen, the length of the value for the first record would be 10
characters, while that for the second 11 characters. The index nodes
created for this index expression would be based on the field values for
the first record encountered. This would result in an index node 10 char-
acters long being applied to the field values for all record. In this
example, that would result in the truncation of the expression value for
the second record to "WessonNanc". This would subsequently cause searches
based on the full field value to fail.

The solution to this dilemma would be to not use the TRIM() function so
that the full length of the LastName field, including padding from the
trailing spaces, is used. In indexes that use the IIF() function to order
by one field or another, based on the evaluation of a logical expression
in the IIF(), if the two fields are of different lengths, the shorter
field would need to be padded with spaces to make it the same length as
the longer field. For example, assuming an index that uses the IIF() func-
tion to index either on a Company or a Name field, based on the contents
of Category field, and where the Company field is 40 characters long but
the Name field is 25 characters long, the Name field would need to be
padded with 15 spaces; accomplished with the dBASE function SPACE(). That

index expression would then be:

 IIF(Category = "B", Company, Name + SPACE(15))

Searches And dBASE Expression Indexes
=====================================

dBASE expression indexes are exceptions to the norm in how they are
handled by Delphi and the BDE as opposed to how multiple field indexes for
other table types are handled.

This puts such dBASE indexes into a separate class. Handling of such
indexes by Delphi and the BDE is different than those for other table
types. One of these differences is that not all index-based searching
using Delphi syntax can be used with these dBASE expression indexes. The
FindKey, FindNearest, and GotoKey methods of the TTable component cannot
be used with expression indexes. If an attempt to use FindKey is made,
this will result in the error message: "Field index out of range." If the
GotoKey method is tried, this error message may occur or the record
pointer may just not move (indicating the search value was not found).
Only the GotoNearest method may be used with expression indexes. Even
then, the GotoNearest method may not work with some index expressions.
Experimentation will be needed to see whether the GotoNearest method
will work with a given index expression.

Filtering With dBASE Expression Indexes
=======================================

As with index-based searches, dBASE expression indexes present some
exceptions when using Delphi filtering.

With an expression index active, the SetRange method of the TTable comp-
onent will produce the error: "Field index out of range." However, with
the same expression index active, the SetRangeStart and SetRangeEnd
methods will successfully filter the data set.

For example, with an expression index concatenating a LastName and a
FirstName field active, the code below using the FindKey method (intended
to filter to just those records where the first character of the LastName
field is "S") will fail with an error:

 begin
 Table1.SetRange(['S'], ['Szzz'])
 end;

Whereas, the code below, with the same expression index active and filter-
ing on the same LastName field, will successfully filter the data and not
incur an error:

 begin
 with Table1 do begin
 SetRangeStart;
 FieldByName('LastName').AsString := 'S';
 SetRangeEnd;
 FieldByName('LastName').AsString := 'Szzz';
 ApplyRange;

 end;
 end;

And, as is the case with index-based searches, with filtering, success of
a filtering attempt will also be dependent on the index expression. The
use of the SetRangeStart and SetRangeEnd methods in the preceeding example
worked with an index that simply concatenated two String type fields. But
if the expression for the index was instead based conditionally on one or
the other fields through use of the IIF() function, the same filtering
routine would fail (although without an error).

Some Handy dBASE Index Expressions
==================================

Here are some handy dBASE index expressions. Some are readily apparent in
the intended purpose, others are more arcane.

Character field ascending and Date field descending

With a Character field called Name and a Date field OrdDate:

 Name + STR(OrdDate - {12/31/3099}, 10, 0)

Character field ascending and Numeric (or Float) field descending

With a Character field called Company and a Numeric field Amount (the
Amount field being 9 digits wide with two decimal places):

 Company + STR(Amount - 999999.99, 9, 2)

Ordering by a Logical field

To have True values appear before False values for a Logical field called
Paid:

 IIF(Paid, "A", "Z")

Two Numeric (or Float) fields

Assuming two Numeric fields with widths of five and two decimal places,
the first field named Price and the second Quantity:

 STR(Price, 5, 2) + STR(Quantity, 5, 2)

Ordering by one field of two, depending on a logical condition
--

Ordering by the names of months in a Character field
--

Assuming a field containing the names of the months ("Jan," "Feb" etc.)
to put the records in proper month order (field named M):

 IIF(M="Jan", 1, IIF(M="Feb", 2, IIF(M="Mar", 3, IIF(M="Apr", 4,
 IIF(M="May", 5, IIF(M="Jun", 6, IIF(M="Jul", 7, IIF(M="Aug", 8,
 IIF(M="Sep", 9, IIF(M="Oct", 10, IIF(M="Nov", 11, 12)))))))))))

(The above is a single expression line, broken into multiple lines here
due to page width.)

Ordering by the first line of a memo field
--

For a memo field named Notes:

 MLINE(Notes, 1)

Ordering by the middle three characters in a nine character long field
--

For a nine character long field called StockNo:

 SUBSTR(StockNo, 4, 3)

Creating dBASE Expression Indexes In Database Desktop
===

In the Database Desktop utility, indexes may be created for a table either
duting the process of creating a new table or by restructuring an existing
table. In both cases, the Define Index dialog is used to create one or
more indexes for the table used.

To get to the Create Index dialog while creating a new table, in the
Create dBASE Table dialog (showing the structure), from the Table Proper-
ties listbox select "Indexes" and click the Define button.

To get to the Create Index dialog to create an index for an existing
table, select Utilities|Restructure, select the table file from the Select
File dialog, and in the Restructure dBASE Table dialog (showing the table
structure) from the Table Properties listbox select "Indexes" and click
the Define button.

Once in the Create Index dialog, expression indexes can be created by
clicking the Expression Index button and entering the expression to be
used in the Expression Index entry field. To assist in this process, you
can double-click on a field name in the Field List listbox and that field
name will be inserted into the Index Expression entry field at the current
insertion point (caret position).

Once the index expression has been entered, click the OK button. Enter the
name of the new index tag in the Index Tag Name entry field on the Save
Index As dialog and click OK. (Remember, dBASE index tag names cannot
exceed ten characters in length and must abide by the normal dBASE naming
conventions.)

Creating dBASE Expression Indexes In Delphi Applications
==

dBASE indexes can be created programmatically in Delphi applications,
either as a new table is being created (CreateTable method of the TTable
component) or by adding an index to an existing table.

Creating an index as part of a new table being created is a matter of
calling the Add method for the IndexDefs property of the TTable. A special
consideration that the index options must include the option ixExpression.
This index option is unique to dBASE indexes, and should only be used with
dBASE expression indexes. For example:

 with Table1 do begin
 Active := False;
 DatabaseName := 'Delphi_Demos';
 TableName := 'CustInfo';
 TableType := ttdBASE;
 with FieldDefs do begin
 Clear;
 Add('LastName', ftString, 30, False);
 Add('FirstName', ftString, 20, False);
 end;
 with IndexDefs do begin
 Clear;
 Add('FullName', 'LastName + FirstName', [ixExpression]);
 end;
 CreateTable;
 end;

Adding an index to an existing table is accomplished by calling the Add-
Index method of the TTable. Again, the index options must include the
TIndexOptions value ixExpression.

 Table1.AddIndex('FullName', 'LastName + FirstName', [ixExpression]);

Learning More About dBASE Functions And Syntax
==

Only dBASE functions and syntax that apply to data manipulation can be
used to construct a dBASE expression index. However, it is beyond the
scope of this technical article to fully list and describe all of these
functions. To learn more about dBASE data manipulation functions, the user
is advised to consult the dBASE Language Reference manual or one of the
many third-party dBASE books.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to terminate all running applications
 NUMBER : 2856
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : How to terminate all running applications

Q: How do I terminate all running tasks?

A: Below is some code that will help if you want to terminate ALL tasks,
 no questions asked.

A word of caution, before you run this for the first time, make sure
that you save it and anything else that may have some pending data.

procedure TForm1.ButtonKillAllClick(Sender: TObject);
var
 pTask : PTaskEntry;
 Task : Bool;
 ThisTask: THANDLE;
begin
 GetMem (pTask, SizeOf (TTaskEntry));
 pTask^.dwSize := SizeOf (TTaskEntry);

 Task := TaskFirst (pTask);
 while Task do
 begin
 if pTask^.hInst = hInstance then
 ThisTask := pTask^.hTask
 else
 TerminateApp (pTask^.hTask, NO_UAE_BOX);
 Task := TaskNext (pTask);
 end;
 TerminateApp (ThisTask, NO_UAE_BOX);
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to check to see if a drive is ready.
 NUMBER : 2857
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to check to see if a drive is ready.

Q: How can I check to see if there is a disk in the "A" drive
 without an error message box telling you that it is not ready?

A: The following function accepts a drive letter as a parameter,
 and it will return a boolean value that indicates whether
 or not there is a disk in the drive.

function DiskInDrive(Drive: Char): Boolean;
var
 ErrorMode: word;
begin
 { make it upper case }
 if Drive in ['a'..'z'] then Dec(Drive, $20);
 { make sure it's a letter }
 if not (Drive in ['A'..'Z']) then
 raise EConvertError.Create('Not a valid drive ID');
 { turn off critical errors }
 ErrorMode := SetErrorMode(SEM_FailCriticalErrors);
 try
 { drive 1 = a, 2 = b, 3 = c, etc. }
 if DiskSize(Ord(Drive) - $40) = -1 then
 Result := False
 else
 Result := True;
 finally
 { restore old error mode }
 SetErrorMode(ErrorMode);
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to do pointer arithmetic in Delphi.
 NUMBER : 2858
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : How to do pointer arithmetic in Delphi.

Q: How do I do pointer arithmetic in Delphi?

A: First a brief explanation of pointer arithmetic. When you
are dealing with dynamic memory locations and all you have is a
pointer to where it all begins, you want to have the ability to
traverse that line of memory to be able to perform whatever
functions you have in mind for that data. This can be
accomplished by changing the place in memory where the pointer
points. This is called pointer arithmetic.

The main idea that must be kept in mind when doing your pointer
arithmetic is that you must increment the pointer's value by
the correct amount. (The correct amount is determined by the
size of the object receiving the pointer. e.g. char = 1 byte;
integer = 2 bytes; double = 8 bytes; etc.) The Inc() and
Dec() functions will alter the amount by the correct amount.
(The compiler knows what the correct size is.)

For an example of the practical application of pointer
arithmetic, download the BreakApart() TI2905.

If you are doing dynamic memory allocation, it is done like this:

uses WinCRT;

procedure TForm1.Button1Click(Sender: TObject);
var
 MyArray: array[0..30] of char;
 b: ^char;
 i: integer;
begin
 StrCopy(MyArray, 'Lloyd is the greatest!'); {get something to point to}
 b := @MyArray; { assign the pointer to the memory location }
 for i := StrLen(MyArray) downto 0 do
 begin
 write(b^); { write out the char at the current pointer location. }
 inc(b); { point to the next byte in memory }
 end;
end;

The following code demonstrates that the Inc() and Dec() functions
will increment or decrement accordingly by size of the type the pointer
points to:

var

 P1, P2 : ^LongInt;
 L : LongInt;
begin
 P1 := @L; { assign both pointers to the same place }
 P2 := @L;
 Inc(P2); { Increment one }

{ Here we get the difference between the offset values of the
two pointers. Since we originally pointed to the same place in
memory, the result will tell us how much of a change occured
when we called Inc(). }

 L := Ofs(P2^) - Ofs(P1^); { L = 4; i.e. sizeof(longInt) }
end;

You can change the type to which P1 and P2 point to something other than a
longint to see that the change is always the correct value (SizeOf(P1^)).

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to do bit-wise manipulation.
 NUMBER : 2859
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to do bit-wise manipulation.

Q: How do I do bit-wise manipulation?

A:

{**
TheBit parameter is counted from 0..31
**}

unit Bitwise;

interface
 function IsBitSet(const val: longint; const TheBit: byte): boolean;
 function BitOn(const val: longint; const TheBit: byte): LongInt;
 function BitOff(const val: longint; const TheBit: byte): LongInt;
 function BitToggle(const val: longint; const TheBit: byte): LongInt;

implementation

function IsBitSet(const val: longint; const TheBit: byte): boolean;
begin
 result := (val and (1 shl TheBit)) <> 0;
end;

function BitOn(const val: longint; const TheBit: byte): LongInt;
begin
 result := val or (1 shl TheBit);
end;

function BitOff(const val: longint; const TheBit: byte): LongInt;
begin
 result := val and ((1 shl TheBit) xor $FFFFFFFF);
end;

function BitToggle(const val: longint; const TheBit: byte): LongInt;
begin

 result := val xor (1 shl TheBit);
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Basic Delphi DLL template
 NUMBER : 2860
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : May 21, 1996

 TITLE : Basic Delphi DLL template

DLL sample

Without units

First the DLL "framework" that you wanted, save as DLLFRAME.DPR:

{---------------------DLLFRAME.DPR--------------------------}
library Dllframe;

uses WinTypes;

function GetString : string ; export ;
begin
 Result := 'Hello from the DLL!' ;
end;

exports
 GetString;

begin
end.
{---}

Now here's the calling program, save it as DLLCALL.DPR:

{---------------------DLLCALL.DPR---------------------------}
program Dllcall;

uses
 Dialogs;

{$R *.RES}

function GetString : string ; far ; external 'DLLFRAME' ;

begin
 MessageDlg(GetString, mtInformation, [mbOK], 0) ;
end.

With units

Here's the calling program, save it as DLLCALL.DPR:

{---------------------DLLCALL.DPR---------------------------}

program Dllcall;

uses
 Dialogs;

{$R *.RES}

function GetString : string ; far ; external 'MyDLL' ;

begin
 MessageDlg(GetString, mtInformation, [mbOK], 0) ;
end.
{---}

The DLL "framework" that you wanted, save as DLLFRAME.DPR:

{---------------------DLLFRAME.DPR--------------------------}
library Dllframe;

uses DLLUnit;

exports
 GetString;

begin
end.
{---}

The unit we will save as dllunit.pas:

{---------------------dllunit.pas--------------------------}

unit DLLUnit;
interface

uses WinTypes;

function GetString: string; export;

implementation

function GetString: string;
begin
 GetString := 'Hello from the DLL!' ;
end ;

begin
end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Form display with different screen resolutions.
 NUMBER : 2861
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Form display with different screen resolutions.

When designing forms, it is sometimes helpful to write the code
so that the screen and all of its objects are displayed at the
same size no matter what the screen resolution is. Here is
some code to show how that is done:

implementation
const
 ScreenWidth: LongInt = 800; {I designed my form in 800x600 mode.}
 ScreenHeight: LongInt = 600;

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 scaled := true;
 if (screen.width <> ScreenWidth) then
 begin
 height := longint(height) * longint(screen.height) div ScreenHeight;
 width := longint(width) * longint(screen.width) div ScreenWidth;
 scaleBy(screen.width, ScreenWidth);
 end;
end;

Then, you will want to have something that checks to see that
the font sizes are OK. You can iterate over each child
control's font to adjust its size as necessary. This can be
done as follows:

type
 TFooClass = class(TControl); { needed to get at protected }
 { font property }

var
 i: integer;
begin
 for i := ControlCount - 1 downto 0 do
 TFooClass(Controls[i]).Font.Size :=
 (NewFormWidth div OldFormWidth) *
 TFooClass(Controls[i]).Font.Size;
end;

Note: The following are issue to bear in mind when scaling
Delphi applications (forms) on different screen resolutions:

 * Decide early on in the form design stage whether you're
going to allow the form to be scaled or not. The advantage of
not scaling is that nothing changes at runtime. The
disadvantage of not scaling is that nothing changes at runtime
(your form may be far too small or too large to read on some
systems if it is not scaled).

 * If you're NOT going to scale the form, set Scaled to False.

 * Otherwise, set the Form's Scaled property to True.

 * Set AutoScroll to False. AutoScroll = True means 'don't
change the form's frame size at runtime' which doesn't look
good when the form's contents do change size.

 * Set the form's font to a scaleable TrueType font, like
Arial. MS San Serif is an ok alternate, but remember that it
is still a bitmapped font. Only Arial will give you a font
within a pixel of the desired height. NOTE: If the font used
in an application is not installed on the target computer, then
Windows will select an alternative font within the same font
family to use instead. This font may not match the same size
of the original font any may cause problems.

 * Set the form's Position property to something other than
poDesigned. poDesigned leaves the form where you left it at
design time, which for me always winds up way off to the left
on my 1280x1024 screen - and completely off the 640x480 screen.

 * Don't crowd controls on the form - leave at least 4 pixels
between controls, so that a one pixel change in border
locations (due to scaling) won't show up as ugly overlapping
controls.

 * For single line labels that are alLeft or alRight aligned,
set AutoSize to True. Otherwise, set AutoSize to False.

 * Make sure there is enough blank space in a label component
to allow for font width changes - a blank space that is 25% of
the length of the current string display length is a little too
much, but safe. (You'll need at least 30% expansion space for
string labels if you plan to translate your app into other
languages) If AutoSize is False, make sure you actually set
the label width appropriately. If AutoSize is True, make sure
there is enough room for the label to grow on its own.

 * In multi-line, word-wrapped labels, leave at least one line
of blank space at the bottom. You'll need this to catch the
overflow when the text wraps differently when the font width
changes with scaling. Don't assume that because you're using
large fonts, you don't have to allow for text overflow -
somebody else's large fonts may be larger than yours!

 * Be careful about opening a project in the IDE at different
resolutions. The form's PixelsPerInch property will be

modified as soon as the form is opened, and will be saved to
the DFM if you save the project. It's best to test the app by
running it standalone, and edit the form at only one
resolution. Editing at varying resolutions and font sizes
invites component drift and sizing problems.

 * Speaking of component drift, don't rescale a form multiple
times, at design time or a runtime. Each rescaling introduces
roundoff errors which accumulate very quickly since coordinates
are strictly integral. As fractional amounts are truncated
off control's origins and sizes with each successive
rescaling, the controls will appear to creep northwest and get
smaller. If you want to allow your users to rescale the form
any number of times, start with a freshly loaded/created form
before each scaling, so that scaling errors do not accumulate.

 * Don't change the PixelsPerInch property of the form, period.

 * In general, it is not necessary to design forms at any
particular resolution, but it is crucial that you review their
appearance at 640x480 with small fonts and large, and at a
high-resolution with small fonts and large before releasing
your app. This should be part of your regular system
compatibility testing checklist.

 * Pay close attention to any components that are essentially
single-line TMemos - things like TDBLookupCombo. The Windows
multi-line edit control always shows only whole lines of text
- if the control is too short for its font, a TMemo will show
nothing at all (a TEdit will show clipped text). For such
components, it's better to make them a few pixels too large
than to be one pixel too small and show not text at all.

 * Keep in mind that all scaling is proportional to the
difference in the font height between runtime and design time,
NOT the pixel resolution or screen size. Remember also that
the origins of your controls will be changed when the form is
scaled - you can't very well make components bigger without
also moving them over a bit.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to keep the app iconized.
 NUMBER : 2862
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : How to keep the app iconized.

iconized apps

Q: How do I keep the form in icon form when I run it?

A:

1. You must set WindowState to wsMinimized in the form's properties.

2. In the private section of the form object's declaration, put:

 PROCEDURE WMQueryOpen(VAR Msg : TWMQueryOpen); message WM_QUERYOPEN;

3. In the implementation section, put this method:

 PROCEDURE TForm1.WMQueryOpen(VAR Msg : TWMQueryOpen);
 begin
 Msg.Result := 0;
 end;

That's it! The form will always remain iconic.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to use a custom cursor.
 NUMBER : 2863
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to use a custom cursor.

Q: How do I use one of the cursor files in the c:\delphi\images\cursors?

A: Use the image editor to load the cursor into a RES file.
 The following example assumes that you saved the cursor in the RES file
 as "cursor_1", and you save the RES file as MYFILE.RES.

(*** BEGIN CODE ***)
{$R c:\programs\delphi\MyFile.res} { This is your RES file }

const PutTheCursorHere_Dude = 1; { arbitrary positive number }

procedure stuff;
begin
 screen.cursors[PutTheCursorHere_Dude] := LoadCursor(hInstance,
 PChar('cursor_1'));
 screen.cursor := PutTheCursorHere_Dude;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to use a form several times
 NUMBER : 2896
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 14, 1996

 TITLE : How to use a form several times

multiple forms

Q: I have a form that is a sort of template. I want to be
able to create and show the same form several times (with
different data in the fields). How do I use the same form
several times?

A: You need to make modeless window by calling create and
show for each form instance, like this:

with TMyForm.create(self) do show;

To demonstrate how to use and control these new forms, here is
an example that changes the caption and name of each form that
is created. You have access to it through the form's component
array. This example uses an about box (named "box") as the
other form. Also, there is a variable called "TheFormCount"
that keeps track of how many times the form is instantiated.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with TBox.create(self) do begin
 Name := 'AboutBox_' + intToStr(TheFormCount);
 caption := 'About Box # ' + intToStr(TheFormCount);
 Show;
 end;
 inc(TheFormCount);
end;

These forms can be found and used by their name by means of the
FindComponent method used something like this:

with Form1.FindComponent('AboutBox_' + IntToStr(Something)) as TForm do
 DoSomethingHere;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to set a max and min form size.
 NUMBER : 2865
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to set a max and min form size.

When you want to control how much your users can resize your
form, you can control that by setting the MinMax values. (If
you use the resize method to limit the size, it will work, but
it won't look quite as good.)

Note: To make it so that the user cannot change the form's
size at all, make the min and max sizes the same values.

This is an example of how to declare and use the wm_GetMinMaxInfo
windows message in your applications.

unit MinMax;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs;

type
 TForm1 = class(TForm)
 private
 { Private declarations }
 procedure WMGetMinMaxInfo(var MSG: Tmessage); message WM_GetMinMaxInfo;
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.WMGetMinMaxInfo(var MSG: Tmessage);
Begin
 inherited;
 with PMinMaxInfo(MSG.lparam)^ do
 begin
 with ptMinTrackSize do
 begin
 X := 300;
 Y := 150;
 end;

 with ptMaxTrackSize do
 begin
 X := 350;
 Y := 250;
 end;
 end;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to get the windows and DOS versions.
 NUMBER : 2866
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : How to get the windows and DOS versions.

Q: How can I get the Windows or DOS version numbers?

A: The API call GetVersion will do it, but the information is
encrypted into a longint. Here is how to get and decrypt the information:

 Type
 TGetVer = record
 WinVer,
 WinRev,
 DosRev,
 DosVer: Byte;
 end;

 const
 VerStr = '%d.%d';

 procedure TForm1.Button1Click(Sender: TObject);
 var
 AllVersions: TGetVer;
 begin
 AllVersions := TGetVer(GetVersion);
 Edit1.Text := Format(VerStr, [AllVersions.WinVer, AllVersions.WinRev]);
 Edit2.Text := Format(VerStr, [AllVersions.DOSVer, AllVersions.DOSRev]);
 end;

Note1: The values that windows displays for the versions and the values
that it returns through its API call are not always the same. e.g. The
workgroup version displays as 3.10 rather than 3.11.

Note2: Win32 applications should call GetVersionEx rather than GetVersion.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to tell what kind of drive is used.
 NUMBER : 2867
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to tell what kind of drive is used.

When dealing with multiple drives, it is helpful to know
whether a drive is associated with a is attached to a letter
(A, B, C, etc), and what its type is. This code uses the API
GetDriveType function to do that.

function ShowDriveType(DriveLetter: char): string;
var
 i: word;
begin
 if DriveLetter in ['A'..'Z'] then {Make it lower case.}
 DriveLetter := chr(ord(DriveLetter) + $20);
 i := GetDriveType(ord(DriveLetter) - ord('a'));
 case i of
 DRIVE_REMOVABLE: result := 'floppy';
 DRIVE_FIXED: result := 'hard disk';
 DRIVE_REMOTE: result := 'network drive';
 else result := 'does not exist';
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to determine the current record number.
 NUMBER : 2869
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to determine the current record number.

Q: "How can I determine the current record number for a dataset?"

A: If the dataset is based upon a Paradox or dBASE table then
the record number can be determined with a couple of calls to
the BDE (as shown below). The BDE doesn't support record
numbering for datasets based upon SQL tables, so if your server
supports record numbering you will need to refer to its
documentation.

 The following function is given as part of a whole unit and
takes as its parameter any component derived from TDataset
(i.e. TTable, TQuery, TStoredProc) and returns the current
record number (greater than zero) if it is a Paradox or dBASE
table. Otherwise, the function returns zero.

 NOTE: for dBASE tables the record number returned is always
the physical record number. So, if your dataset is a TQuery or
you have a range set on your dataset then the number returned
won't necessarily be relative to the dataset being viewed,
rather it will be based on the record's physical position in
the underlying dBASE table.

uses
 DB, DBTables, DbiProcs, DbiTypes, DbiErrs;

function GetRecordNumber(Dataset: TDataset): Longint;
var
 CursorProps: CurProps;
 RecordProps: RECProps;
begin
 { Return 0 if dataset is not Paradox or dBASE }
 Result := 0;
 with Dataset do
 begin
 { Is the dataset active? }
 if State = dsInactive then
 raise EDatabaseError.Create('Cannot perform this operation '+
 'on a closed dataset');

 { We need to make this call to grab the cursor's iSeqNums }
 Check(DbiGetCursorProps(Handle, CursorProps));

 { Synchronize the BDE cursor with the Dataset's cursor }

 UpdateCursorPos;

 { Fill RecordProps with the current record's properties }
 Check(DbiGetRecord(Handle, dbiNOLOCK, nil, @RecordProps));

 { What kind of dataset are we looking at? }
 case CursorProps.iSeqNums of
 0: Result := RecordProps.iPhyRecNum; { dBASE }
 1: Result := RecordProps.iSeqNum; { Paradox }
 end;
 end;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to automate logon for Paradox tables
 NUMBER : 2870
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 1, 1996

 TITLE : How to automate logon for Paradox tables

Password automation

Q: I have a paradox table that uses a password. How do I make it so
that the form that uses the table comes up without prompting the user
for the password?

A: The table component's ACTIVE property must be set to FALSE (If
it is active before you have added the pasword, you will be prompted).
Then, put this code in the handler for the form's OnCreate event:

 Session.AddPassword('My secret password');
 Table1.Active := True;

Once you close the table, you can remove the password with
RemovePassword('My secret password'), or you can remove all current
passwords with RemoveAllPasswords. (Note: This is for Paradox tables
only.)

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

packing a dBASE table
 NUMBER : 2873
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : May 21, 1996

 TITLE : packing a dBASE table

packing a dBASE table

Q: How do I pack a dBASE table?

A: To pack a dBASE table that has been opened with a TTable,
use the BDE function DbiPackTable. There are two basic steps
to do this:

1. Add the following units to your uses clause:

{ For Delphi 1.0: } DBITYPES, DBIPROCS and DBIERRS;
{ For Delphi 2.0: } BDE;

2) Then call the DbiPackTable BDE function as follows:

Check(DbiPackTable(Table1.DbHandle, Table1.Handle, Nil, szDBASE, TRUE));

Notes:
* The table must be opened in exclusive mode.
* Use the Check procedure when calling BDE API functions. Check
 will raise an exception if an error occurs on the BDE call.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

string manipulation routines
 NUMBER : 2892
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : May 21, 1996

 TITLE : string manipulation routines

Here are some standard string manipulation functions:

{To determine if the character is a digit.}
function IsDigit(ch: char): boolean;
begin
 Result := ch in ['0'..'9'];
end;

{To determine if the character is an uppercase letter.}
function IsUpper(ch: char): boolean;
begin
 Result := ch in ['A'..'Z'];
end;

{To determine if the character is an lowercase letter.}
function IsLower(ch: char): boolean;
begin
 Result := ch in ['a'..'z'];
end;

{Changes a character to an uppercase letter.}
function ToUpper(ch: char): char;
begin
 Result := chr(ord(ch) and $DF);
end;

{Changes a character to a lowercase letter.}
function ToLower(ch: char): char;
begin
 Result := chr(ord(ch) or $20);
end;

{ Capitalizes first letter of every word in s }
function Proper(const s: string): string;
var
 i: Integer;
 CapitalizeNextLetter: Boolean;
begin
 Result := LowerCase(s);
 CapitalizeNextLetter := True;
 for i := 1 to Length(Result) do
 begin
 if CapitalizeNextLetter and IsLower(Result[i]) then
 Result[i] := ToUpper(Result[i]);
 CapitalizeNextLetter := Result[i] = ' ';

 end;
end;

{ NOTE: The following functions are available in Delphi 2.0,
 but not in Delphi 1.0. }

{Supresses trailing blanks in a string.}
function TrimRight(const s: string): string;
var
 i: integer;
begin
 i := Length(s);
 while (I > 0) and (s[i] <= ' ') do Dec(i);
 Result := Copy(s, 1, i);
end;

{Removes the leading spaces from a string.}
function TrimLeft(const S: string): string;
var
 I, L: Integer;
begin
 L := Length(S);
 I := 1;
 while (I <= L) and (S[I] <= ' ') do Inc(I);
 Result := Copy(S, I, Maxint);
end;

{ Removes leading and trailing whitespace from s);
function Trim(const S: string): string;
var
 I, L: Integer;
begin
 L := Length(S);
 I := 1;
 while (I <= L) and (S[I] <= ' ') do Inc(I);
 if I > L then Result := '' else
 begin
 while S[L] <= ' ' do Dec(L);
 Result := Copy(S, I, L - I + 1);
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

WinExecAndWait
 NUMBER : 2894
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : WinExecAndWait

Q: How do I execute a program and have my code wait until it is finished?

A:

uses Wintypes,WinProcs,Toolhelp,Classes,Forms;

Function WinExecAndWait(Path : string; Visibility : word) : word;
var
 InstanceID : THandle;
 PathLen : integer;
begin
 { inplace conversion of a String to a PChar }
 PathLen := Length(Path);
 Move(Path[1],Path[0],PathLen);
 Path[PathLen] := #0;
 { Try to run the application }
 InstanceID := WinExec(@Path,Visibility);
 if InstanceID < 32 then { a value less than 32 indicates an Exec error }
 WinExecAndWait := InstanceID
 else
 begin
 Repeat
 Application.ProcessMessages;
 until Application.Terminated or (GetModuleUsage(InstanceID) = 0);
 WinExecAndWait := 32;
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to check for app already running.
 NUMBER : 2895
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : May 21, 1996

 TITLE : How to check for app already running.

Q: How can I write my Delphi program to detect if there is
already another copy running and exit if so?

A: Create a unit called PrevInst and add it to your uses clause.
Here's the code:

 unit PrevInst;

 interface

 uses
 WinTypes, WinProcs, SysUtils;

 type
 PHWND = ^HWND;
 function EnumFunc(Wnd:HWND; TargetWindow:PHWND): bool; export;
 procedure GotoPreviousInstance;

 implementation

 function EnumFunc(Wnd:HWND; TargetWindow:PHWND): bool;
 var
 ClassName : array[0..30] of char;
 begin
 Result := true;
 if GetWindowWord(Wnd,GWW_HINSTANCE) = hPrevInst then
 begin
 GetClassName(Wnd,ClassName,30);
 if StrIComp(ClassName,'TApplication') = 0 then
 begin
 TargetWindow^ := Wnd;
 Result := false;
 end;
 end;
 end;

 procedure GotoPreviousInstance;
 var
 PrevInstWnd : HWND;
 begin
 PrevInstWnd := 0;
 EnumWindows(@EnumFunc,longint(@PrevInstWnd));
 if PrevInstWnd <> 0 then
 if IsIconic(PrevInstWnd) then
 ShowWindow(PrevInstWnd, SW_RESTORE)

 else
 BringWindowToTop(PrevInstWnd);
 end;

 end.

And then make the main block of your *.DPR file look
something like this--

begin
 if hPrevInst <> 0 then
 GotoPreviousInstance
 else
 begin
 Application.CreateForm(MyForm, MyForm);
 Application.Run;
 end;
end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to use a popup menu with a VBX.
 NUMBER : 2864
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : How to use a popup menu with a VBX.

Q: I want to be able to right click on my VBX and have a
popup menu display. When I use a popup menu for the form, it
shows no matter where I right click. I want to just have it
popup for right clicks on the vbx.

How do I trap for that?

A: Here it is:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if button = mbRight then
 with (Sender AS TControl) do
 with ClientToScreen(Point(X,Y)) do
 begin
 PopupMenu1.PopupComponent := TComponent(Sender);
 PopupMenu1.Popup(X,Y);
 end;
end;

Note: The form's PopupMenu property must be empty, or it will popup
from everywhere. If you want the form to be the only place showing
the popup, place this method on the form's OnMouseDown event. If
you want the VBX to be the only place, then place it on the VBX's
OnMouseDown event, etc.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Manually Installing Delphi
 NUMBER : 2899
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : February 28, 1996

 TITLE : Manually Installing Delphi

 To manually install Delphi you should first copy the entire
run-image directory off of the CD-ROM onto you hard-drive.
This is one of the main directories on the delphi CD-ROM.
This includes copying all the files from the run-image\windows
to your local \windows directory and the \windows\system files
into your \windows\system directory, UNLESS you have NT.
If you have NT you will want to do as above, but do not
overwrite any existing files.
 It is important that if you have another Borland DataBase
product that you Z-copy the \idapi directory from the run-image
ONTO the existing \idapi directory on your computer.

 To manually install delphi you first need to add the
following lines to your win.ini
(this is all dependent on which drive/directory that
 you copied the run-image to):

 [IDAPI]
 DLLPATH=C:\IDAPI
 CONFIGFILE01=C:\IDAPI\IDAPI.CFG

 [Borland Language Drivers]
 LDPath=C:\IDAPI\LANGDRV

 [BWCC]
 BitmapLibrary=BWCC.DLL

 [Interbase]
 RootDirectory=C:\IBLOCAL

 [Paradox Engine]
 UserName=PxEngine
 NetNamePath=C:\
 RecBufs=64
 MaxLocks=64
 MaxFiles=64
 SwapSize=64

 [DDE Servers]
 DBD=C:\DBD\DBD

 [DBD]
 WORKDIR=C:\DBD
 PRIVDIR=C:\DBD\DBDPRIV

You will also want to add the following lines to your
autoexec.bat file:

 rem add the following if it they are not already present
 rem you only need share if using windows 3.1

 Share /f:4096 /l:40
 path=%path%;c:\iblocal\bin;

These are once again dependent on the exact drive/directory
that you
copied the run-image to.

You will now want to download the file dlpgrp.zip from
our download BBS or from the web site.
This file will create the Icons and the Delphi Program Group.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Printing in the DOS IDE under Windows 95
 NUMBER : 2901
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 14, 1996

 TITLE : Printing in the DOS IDE under Windows 95

Printing from the DOS IDE in Windows 95

To print from the Borland Pascal IDE under Windows 95 can
require more than just selecting print from the file menu. Follow
this step by step procedure if you can print from Windows applications
but cannot print from the DOS IDE.

1.Open the printers folder under the control panel sub-directory. You
can get to the control panel by going from the start button to the
settings then click control panel. Inside control panel double click
the printers folder.

2.Click the icon for the printer you are going to print on.

3.On the file menu click properties.

4.Click on the details tab and then click on the Capture Printer
Port button.

5.In the Device list, select the printer port that you want to capture.

6.Type the network path to the printer, and then click OK to save the
selection.

7.In the Print To The Following Port dialog box, select the port you
just mapped.

For a handy additional reference on the topic also see the Windows help
file under "Capture".

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Different colored characters in a string grid
 NUMBER : 2903
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 14, 1996

 TITLE : Different colored characters in a string grid

This unit will show how to have text in a string grid where the
characters are different colors.

unit Strgr;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, Grids, StdCtrls, DB;

type
 TForm1 = class(TForm)
 StringGrid1: TStringGrid;
 procedure StringGrid1DrawCell(Sender: TObject; Col, Row: Longint;
 Rect: TRect; State: TGridDrawState);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.StringGrid1DrawCell(Sender: TObject; Col, Row: Longint;
 Rect: TRect; State: TGridDrawState);
const
 CharOffset = 3;
begin
 with StringGrid1.canvas do
 begin
 font.color := clMaroon;
 textout(rect.left + CharOffset, rect.top + CharOffset, 'L');
 font.color := clNavy;
 textout(rect.left + CharOffset + TextWidth('L'),
 rect.top + CharOffset, 'loyd');
 end;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Returns the amount required to repay a debt.
 NUMBER : 2906
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : Returns the amount required to repay a debt.

PAYMENT()

Returns the periodic amount required to repay a debt.

function payment(princ, int, term: double): double;
var temp: double;
begin
 int := int / 100;
 temp := exp(ln(int + 1) * term);
 result := princ * ((int * temp) / (temp - 1));
end;

Syntax

PAYMENT(<principal expN>, <interest expN>, <term expN>)

<principal expN>

The original amount to be repaid over time.

<interest expN>

The interest rate per period expressed as a positive decimal
number. Specify the interest rate in the same time increment
as the term. It is to be expressed as a percentage. The
number is divided by 100 inside the function.

<term expN>

The number of payments. Specify the term in the same time
increment as the interest.

Description

Use PAYMENT() to calculate the periodic amount (payment)
required to repay a loan or investment of <principal expN>
amount in <term expN> payments. PAYMENT() returns a numeric
value based on a fixed interest rate compounding over a fixed
length of time. If <principal expN> is positive, PAYMENT()
returns a positive number. If <principal expN> is negative,
PAYMENT() returns a negative number. Express the interest
rate as a decimal. For example, if the annual interest rate is
9.5%, <interest expN> is 9.5 for payments made annually.

Express <interest expN> and <term expN> in the same time

increment. For example, if the payments are monthly, express
the interest rate per month, and the number of payments in
months. You would express an annual interest rate of 9.5%, for
example, as 9.5/12, which is the 9.5% divided by 12 months.
The formula used to calculate PAYMENT() is as follows:

 term
 int*(1 + int)^
pmt = princ * -------------------
 term
 (1 + int)^ - 1

where int = rate / 100 (as a percentage).

For the monthly payment required to repay a principal amount of
$16860.68 in five years, at 9% interest, the formula expressed
as a dBASE expression looks like this:

MyVar := PAYMENT(16860.68, 9/12, 60) {Returns 350.00}

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to click and move components at runtime.
 NUMBER : 2909
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1996

 TITLE : How to click and move components at runtime.

Q: How can I program a component, such as a TPanel, so that I
can move it around with a click and drag of the mouse?

A: This code goes on the OnMouseDown event of the component in
question (a TPanel in this case):

procedure TForm1.Panel1MouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
const
 SC_DragMove = $F012; { a magic number }
begin
 ReleaseCapture;
 panel1.perform(WM_SysCommand, SC_DragMove, 0);
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi 1.02 Maintenance Release Information
 NUMBER : 2936
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : March 5, 1996

 TITLE : Delphi 1.02 Maintenance Release Information

THE DELPHI 1.02 MAINTENANCE RELEASE

BRIEF OVERVIEW OF DELPHI 1.02

Thank you for your interest in Borland's new RADical application
development tool, Delphi. Below you will find information
regarding the product's overview as well as the problems fixed with
this release, but here, we would like to give you a brief
overview of Delphi 1.02.

o The Delphi 1.02 maintenance release is not a patch; it is a
 complete product.
o This release is available only through Borland. It is not
 available via CompuServe, Borland's Web site, Borland's
 FTP site, or resellers.
o This maintenance release includes the patch release of
 Delphi 1.01.
o Delphi 1.02 is not Delphi32. Delphi32 will be released as
 a separate product.

To order the Delphi 1.02 maintenance release, please call our
Order Desk at 800-453-3375 extension 1327.

NOTE: All printed and online documentation assume that you
have installed Delphi using the default directory structure.

TABLE OF CONTENTS

 1. Product overview
 2. Problems fixed in this release
 3. Delphi Supplemental Documentation Set
 4. Minimum system requirements

1. PRODUCT OVERVIEW

Delphi's visual design environment lets you create sophisticated
Windows applications faster than any other development tool.
Because Delphi is built around and optimizing native code
compiler, Delphi applications are up to 10-20 times faster than
interpreted code.

Delphi integrates the Borland Database Engine, so you have
instant support for dBase, Paradox, and ODBC local databases.

Delphi includes the Local InterBase Server so you can create
standalone client/server applications with a high-performance
ANSI SQL-92 compatible database server.

Delphi includes Borland's award-winning ReportSmith report
writing tool, which allows programmers to prepare innovative
reports using live data in all popular database formats.

Delphi Client/Server includes all of Delphi plus high performance
native drivers for Oracle, Sybase, Microsoft SQL Server, Informix
and InterBase remote servers with unlimited application
deployment. You also get team development support, ReportSmith
SQL, a Visual Query Builder, source code to the Visual Component
Library (VCL), and the Local InterBase Server Deployment Kit.

Delphi includes an Open Tools API capability that allows
you to extend the Delphi environment to include your own tools,
experts, and so on. By using this API, you can seamlessly integrate
these extensions into the Delphi environment. For details,
refer to the file TOOLINTF.PAS located in the \DELPHI\DOC for Delphi
or in the \DELPHI\SOURCE\VCL directory for Delphi Client/Server.
Source code for an example expert is also located in the
\DELPHI\DEMOS\EXPERTS directory.

2. PROBLEMS FIXED IN THIS RELEASE

The purpose of this section is to provide a general list of
problems that are fixed in the 1.02 Delphi release.

ReportSmith

o Create master/detail reports to combine multiple reports in one
 using heterogenous data.
o Choose to group, sort or summarize data locally or on a database
 server.
o Access data using Borland's BDE drivers.
o Include columns in a report for query-only or value-only.
o Utilize an updated ReportBasic macro language.
o Place page totals to display summary values for each page in a
 report.
o Create data dictionaries to use with the PC or SQL versions of
 ReportSmith, to simplify the view of the data.

Delphi

o Fixed problems in the Delphi online help system.

Local InterBase

o Improved performance of index creation and SQL request involving
 sort operations on data that exceeds the database cache as
 defined during database create.
o Improved I/O diagnostic and error messages from the server.
o Enhanced the Local InterBase engine to handle complex requests

 that reference more than 500 columns causing internal buffers
 to exceed 64k.
o Improved performance of Local InterBase requests that reference
 more than 500 columns.
o Removed the Local InterBase internal requirement
 that databases have a page size of 1024. It is now
 possible to create and use a Database specifying any
 allowable InterBase page size.
o Numeric overflow errors are now trapped by Local
 InterBase and reported correctly to the client application.
o Fixed the incompatibility with Dashboard when using DashBoard,
 from Starfish Inc., and viewing users in the InterBase
 security database (Task|User Security) with the InterBase Server
 Manager tool.
o Fixed cleanup problems encountered when exiting the Windows
 Interactive SQL tool while executing a database validate
 (Task|Database Validate) in the InterBase Server Manager.

BDE

This version of the Borland Database Engine is the same version
that is used with the new Visual dBASE 5.5.

o Fixed TQuery and TTable so that they support Oracle synonyms.
 Synonyms can now be viewed by typing its name in the name
 table property.
o Editing now supported of an opened Paradox table simultaneously
 in Delphi with referential integrity constraints.
o Fixed the ability to support Stored Procedures that have string
 parameters.
o Fixed problems relating to accessing tables on Lantastic 6.0
 network.
o Removed the nine parameter limitation for SQL queries.
o Fixed problems relating to opening Access 2.0 files through ODBC.
o Fixed DBD so that it is now able to open Watcom 4.0 tables.
o Fixed 32K memory leak associated with live-query results sets and
 also for local queries involving joins.
o Fixed problem moving batch from ASCII fixed-length files.
o Now supports the SYBASE forcedindex feature.

3. DELPHI SUPPLEMENTAL DOCUMENTATION SET
--
The Supplemental Documentation Set includes the following:

 o Object Pascal Language Reference Guide
 (objlang.pdf is 1.3M.)
 o Delphi Visual Component Library
 Reference (vclref.pdf is 5.1M.)

In the United States, you can purchase hard copy versions of the
Delphi Supplemental Documentation Set by calling the Borland
order desk at 1-800-331-0877.

Internationally, you can purchase hard copy versions of the
Delphi Supplemental Documentation Set by contacting the
nearest Borland office.

4. MINIMUM SYSTEM REQUIREMENTS

Delphi requires Windows 3.1 or a 100% compatible operating
system, an 80386 or newer processor (486 recommended), and 6Mb of
system memory (Delphi Client/Server requires 8Mb, 12Mb or more is
recommended for Client/Server development). A minimum
installation requires approximately 30Mb of disk space (a full
installation of Delphi Client/Server requires approximately
80Mb).

DCC.EXE, the DOS command-line compiler, requires at least 1Mb of
extended memory.

Delphi has been tested under Windows 3.1, Windows for Workgroups
3.11, Windows NT 3.5, OS/2 Warp, and Windows 95.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Creating Dynamic Components at Runtime
 NUMBER : 2938
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : June 24, 1996

 TITLE : Creating Dynamic Components at Runtime

Using Delphi forms and components is simple. When coupled with the
object inspector, controlling those objects requires little effort.
Creating these types dynamically is also not difficult. This document
is intended to give you some tips and hints on how to make dynamic
component work for you.

(please note this term "dynamically" is subjective, behind the scenes,
Delphi creates all objects dynamically. The information presented herein
is for the programmer setting creation/properties/deletion the given
type at run time)

All types (a form or a component) can be created dynamically. To do
this, one needs to put a declaration in the VAR section of their code.
This does not create an instance of the object, it creates a pointer.
This pointer resides in the data segment (if the variable is declared
globally) or the stack (if the variable is declared local to a procedure
or function). In order to instantiate this class, you must call the
constructor. This will allocate memory in the computers global heap
for the class instance. Trying to access the component before
allocating memory will produce a general protection fault.

The Create() constructor is a class method descended from the TObject
Class. Create() returns a pointer. This method may or may not take one
or more parameters. For most components (all objects which descend from
TComponent are referred to as components), the constructor takes one
parameter, the "owner" of type TComponent.

When dynamically creating a component, setting the Owner to "Self"
is the most common practice. If you are in one of a form's methods,
"Self" refers to that form in that context. If the owner is a valid
object, freeing that object will also free the "owned" component.
Another common parameter is "Application". This might be used for a
visual component that will not be displayed to the program's users.
However, most components do not require that you set a specific owner,
so it is not uncommon to set the owner to Nil. Keep in mind, though,
that you will not be able to change the owner afterwards. If you do
pass Nil to a component's constructor, you must remember to call that
component's Free method when you are through using the component.

After creation, but before they can be displayed, windowed components
(those descending from TWinControl) require the Parent property to be set.
At the time you set the Parent property, it's usually also a good time to
set other properties of this components instance, including event
handlers (ie, Width, Color, OnClick).

Event handlers are identical to those specified in the object inspector.
Simply set the component's property name for the event you want to handle
to name of the event handler method you want invoked. Example 1 below
would call the method called "myclick" whenever the button is clicked.
Please note this method will be sent the appropriate parameters, and its
incoming parameter list must be exact.

Example 1:
var
 b1 : TButton;
begin
 .
 .
 .
 b1 := TButton.Create(Self);
 with b1 do begin
 Left := 20;
 Top := 20;
 Width := 90;
 Height := 50;
 Caption := my button';
 Parent := Form1;
 OnClick := MyClick; { a procedure I defined somewhere else }
 end;
 .
 .
 .
end;

The next example demonstrates how to create a button at run time by
clicking a predefined button. Note the different way the button has
been created. Either way would work. Also note the buttons that are
created are not freed in this code, they will be freed when the form
is released.

unit Unit1;
interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls;

type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 procedure myClick(Sender: TObject);
 end;

var
 Form1: TForm1;

const
 i : integer = 0;

implementation
{$R *.DFM}

procedure TForm1.myClick(Sender: TObject);
begin
 with Sender as TButton do
 Self.Caption := ClassName + ' ' + Name;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 with TButton.Create(self) do begin
 Left := 20;
 Top := 30 + i;
 Width := 120;
 Height := 40;
 Name := 'ThisButton' + IntToStr(i);
 Caption := 'There' + IntToStr(i);
 OnClick := MyClick; { a procedure I defined somewhere else }
 Parent := Form1;
 end; {end with}
 inc(i, 40);
end; {end button1.click}

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Loading a Custom Cursor from a RES File
 NUMBER : 2945
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 4, 1996

 TITLE : Loading a Custom Cursor from a RES File

Q: How do I use one of the cursor files in the c:\delphi\images\cursors?

A: Use the image editor to load the cursor into a RES file.
 The following example assumes that you saved the cursor in the RES file
 as "cursor_1", and you save the RES file as MYFILE.RES.

(*** BEGIN CODE ***)
{$R c:\programs\delphi\MyFile.res} { This is your RES file }

const PutTheCursorHere_Dude = 1; { arbitrary positive number }

procedure stuff;
begin
 screen.cursors[PutTheCursorHere_Dude] := LoadCursor(hInstance,
 PChar('cursor_1'));
 screen.cursor := PutTheCursorHere_Dude;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Loading Bitmaps and Cursors from RES Files
 NUMBER : 2947
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 5, 1996

 TITLE : Loading Bitmaps and Cursors from RES Files

 Loading Bitmaps and Cursors from RES files

Bitmaps and cursors can be stored in a resource (RES) files and
linked into your application's EXE file. RES files can be created
with Delphi's Image Editor or Borland's Resource Workshop that comes
with the Delphi RAD Pack. Bitmaps and cursors stored in RES files
(after being bound into an EXE or DLL) can be retrieved by using the
API functions LoadBitmap and LoadCursor, respectively.

Loading Bitmaps

The LoadBitmap API call is defined as follows:

function LoadBitmap(Instance: THandle;
 BitmapName: PChar): HBitmap;

The first parameter is the instance handle of the module (EXE or DLL)
that contains the RES file you wish to get a resource from. Delphi
provides the instance handle of the EXE running in the global variable
called Hinstance. For this example it is assumed that the module that
you are trying to load the bitmap from is your application. However,
the module could be another EXE or DLL file. The following example
loads a bitmap called BITMAP_1 from a RES file linked into the
application's EXE:

procedure TForm1.Button1Click(Sender: TObject);
var
 Bmp: TBitmap;
begin
 Bmp := TBitmap.Create;
 Bmp.Handle := LoadBitmap(HInstance,'BITMAP_1');
 Canvas.Draw(0, 0, Bmp);
 Bmp.Free;
end;

There is one drawback to using the LoadBitmap API call though
LoadBitmap is a Windows 3.0 API call and loads in bitmaps only as
DDBs (Device Dependent Bitmaps). This can cause color palette
problems when retrieving DIBs (Device Independent Bitmaps) from
RES files. The code listed below can be used to retrieve DIBs from
RES files. This code loads the bitmap as a generic resource, puts
it into a stream, and then does a LoadFromStream call which causes

Delphi to realize the color palette automatically.

procedure TForm1.Button1Click(Sender: TObject);
const
 BM = $4D42; {Bitmap type identifier}
var
 Bmp: TBitmap;
 BMF: TBitmapFileHeader;
 HResInfo: THandle;
 MemHandle: THandle;
 Stream: TMemoryStream;
 ResPtr: PByte;
 ResSize: Longint;
begin
 BMF.bfType := BM;
 {Find, Load, and Lock the Resource containing BITMAP_1}
 HResInfo := FindResource(HInstance, 'BITMAP_1', RT_Bitmap);
 MemHandle := LoadResource(HInstance, HResInfo);
 ResPtr := LockResource(MemHandle);

 {Create a Memory stream, set its size, write out the bitmap
 header, and finally write out the Bitmap }
 Stream := TMemoryStream.Create;
 ResSize := SizeofResource(HInstance, HResInfo);
 Stream.SetSize(ResSize + SizeOf(BMF));
 Stream.Write(BMF, SizeOf(BMF));
 Stream.Write(ResPtr^, ResSize);

 {Free the resource and reset the stream to offset 0}
 FreeResource(MemHandle);
 Stream.Seek(0, 0);

 {Create the TBitmap and load the image from the MemoryStream}
 Bmp := TBitmap.Create;
 Bmp.LoadFromStream(Stream);
 Canvas.Draw(0, 0, Bmp);
 Bmp.Free;
 Stream.Free;
end;

Loading Cursors

The LoadCursor API call is defined as follows:

function LoadCursor(Instance: THandle;
 CursorName: PChar): HCursor;

The first parameter is the Instance variable of the module that
contains the RES file. As above, this example assumes that the
module that you are trying to load the cursor from is your
application. The second parameter is the name of the cursor.

Under the interface section declare:

const

 crMyCursor = 5; {Other units can use this constant}

Next, add the following two lines of code to the form's OnCreate
event as follows:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Screen.Cursors[crMyCursor] := LoadCursor(HInstance, 'CURSOR_1');
 Cursor := crMyCursor;
end;

or you may want to change one of the standard Delphi cursors as
follows (the Cursor constants can be found in the On-line Help
under Cursors Property):

procedure TForm1.FormCreate(Sender: TObject);
begin
 {This example changes the SQL Hourglass cursor}
 Screen.Cursors[crSQLWait] := LoadCursor(HInstance, 'CURSOR_1');
end;

Note: Normally it is necessary to delete any cursor resources with
the DeleteCursor, however, in Delphi this is not necessary because
Delphi will delete the all cursors in the Cursors array.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

SQL: Embedded Spaces in Field/Column Names
 NUMBER : 2948
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 4, 1996

 TITLE : SQL: Embedded Spaces in Field/Column Names

Implementing SQL with spaces or special characters in field/column names

Implementing SQL statements in Delphi's TQuery component (or the
SQL query facilities of Database Desktop, Visual dBASE or Paradox
for Windows) requires special syntax for any columns that contain
spaces or special characters.

Using the Biolife.DB table of from Delphi's demo data to
illustrate, and without the use of any special syntax
requirements, a SQL Select statement might be formed as follows,

SELECT
 Species No,
 Category,
 Common_Name,
 Species Name,
 Length (cm),
 Length_In,
 Notes,
 Graphic
FROM
 BIOLIFE

While appearing normal, the space in the species number and name
columns and the column expressing length in centimeters - as well
as the parentheses present - cause syntax errors.

Two changes must be taken to correct the syntax of the above SQL
statement. First, any columns containing spaces or special
characters must be surrounded by single (apostrophe) or double
quotes. Secondly, a table reference and a period must precede
the quoted column name. This second requirement is particularly
important since a quoted string alone is interpreted as a string
expression to be yielded as a column value. A properly formatted
statement follows:

SELECT
 BIOLIFE."Species No",
 BIOLIFE."Category",
 BIOLIFE."Common_Name",
 BIOLIFE."Species Name",
 BIOLIFE."Length (cm)",
 BIOLIFE."Length_In",
 BIOLIFE."Notes",
 BIOLIFE."Graphic"

FROM
 "BIOLIFE.DB" BIOLIFE

The above example uses the table alias BIOLIFE as the table
reference that precedes the column name. This reference may take
the form of an alias name, the actual table name, or a quoted
file name when using dBASE or Paradox tables. The following
SQL statements would serve equally well.

Note: This SQL statement may be used provided that the necessary
alias is already opened. In the case of the TQuery this means the
alias is specified in the DatabaseName property.

SELECT
 BIOLIFE."Species No",
 BIOLIFE.Category,
 BIOLIFE.Common_Name,
 BIOLIFE."Species Name",
 BIOLIFE."Length (cm)",
 BIOLIFE.Length_In,
 BIOLIFE.Notes,
 BIOLIFE.Graphic
FROM
 BIOLIFE

If an alias is not available then the entire path to the table
can be specified as in this example:

SELECT
 "C:\DELPHI\DEMOS\DATA\BIOLIFE.DB"."Species No",
 "C:\DELPHI\DEMOS\DATA\BIOLIFE.DB"."Category",
 "C:\DELPHI\DEMOS\DATA\BIOLIFE.DB"."Common_Name",
 "C:\DELPHI\DEMOS\DATA\BIOLIFE.DB"."Species Name",
 "C:\DELPHI\DEMOS\DATA\BIOLIFE.DB"."Length (cm)",
 "C:\DELPHI\DEMOS\DATA\BIOLIFE.DB"."Length_In",
 "C:\DELPHI\DEMOS\DATA\BIOLIFE.DB"."Notes",
 "C:\DELPHI\DEMOS\DATA\BIOLIFE.DB"."Graphic"
FROM
 "C:\DELPHI\DEMOS\DATA\BIOLIFE.DB"

Finally, two facilities that automatically handle this special
formatting exist. The first is the Visual Query Builder that is
a part of the Client/Server version of Delphi. The Visual Query
Builder performs this formatting automatically as the query is built.
The other facility is Database Desktop's Show SQL feature, available
when creating or modifying a QBE-type query. After selecting
Query|Show SQL from the main menu, the displayed SQL text may be
cut and pasted where needed.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Dynamically Allocating Arrays
 NUMBER : 2949
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 4, 1996

 TITLE : Dynamically Allocating Arrays

{
Dynamic Arrays

Is it possible to create a dynamically-sized array in Delphi?

Yes. First, you need to create an array type using the largest
size you might possibly need. When creating a type, no memory
is actually allocated. If you created a variable of that type,
then the compiler will attempt to allocate the necessary memory
for you. Instead, create a variable which is a pointer to that
type. This causes the compiler to only allocate the four bytes
needed for the pointer.

Before you can use the array, you need to allocate memory for
it. By using AllocMem, you will be able to control exactly how
many bytes are allocated. To determine the number of bytes
you'll need to allocate, simply multiply the array size you
want by the size of the individual array element. Keep in mind
that the largest block that can be allocated at one time in a
16-bit environment is 64KB. The largest block that can be
allocated at one time in a 32-bit environment is 4GB. To
determine the maximum number of elements you can have in your
particular array (in a 16-bit environment), divide 65,520 by
the size of the individual element.
Example: 65520 div SizeOf(LongInt)

Example of declaring an array type and pointer:

type
 ElementType = LongInt;

const
 MaxArraySize = (65520 div SizeOf(ElementType));
 (* under a 16-bit environment *)

type
 MyArrayType = array[1..MaxArraySize] of ElementType;

var
 P: ^MyArrayType;

const
 ArraySizeIWant: Integer = 1500;

Then when you wish to allocate memory for the array, you could

use the following procedure:

procedure AllocateArray;
begin
 if ArraySizeIWant <= MaxArraySize then
 P := AllocMem(ArraySizeIWant * SizeOf(LongInt));
end;

Remember to make sure that the value of ArraySizeIWant is less
than or equal to MaxArraySize.

Here is a procedure that will loop through the array and set a
value for each member:

procedure AssignValues;
var
 I: Integer;
begin
 for I := 1 to ArraySizeIWant do
 P^[I] := I;
end;

Keep in mind that you must do your own range checking. If you
have allocated an array with five members and you try to assign
a value to the sixth member of the array, you will not receive
an error message. However, you will get memory corruption.

Remember that you must always free up any memory that you
allocate. Here is an example of how to dispose of this array:

procedure DeallocateArray;
begin
 P := AllocMem(ArraySizeIWant * SizeOf(LongInt));
end;

Below is an example of a dynamic array:

}

unit Unit1;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls;

type
 ElementType = Integer;

const
 MaxArraySize = (65520 div SizeOf(ElementType));
 { in a 16-bit environment }

type
 { Create the array type. Make sure that you set the range to

 be the largest number you would possibly need. }
 TDynamicArray = array[1..MaxArraySize] of ElementType;
 TForm1 = class(TForm)
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;
 { Create a variable of type pointer to your array type. }
 P: ^TDynamicArray;

const
 { This is a typed constant. They are actually static
 variables hat are initialized at runtime to the value taken
 from the source code. This means that you can use a typed
 constant just like you would use any other variable. Plus
 you get the added bonus of being able to automatically
 initialize it's value. }
 DynamicArraySizeNeeded: Integer = 10;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 { Allocate memory for your array. Be very careful that you
 allocate the amount that you need. If you try to write
 beyond the amount that you've allocated, the compiler will
 let you do it. You'll just get data corruption. }
 DynamicArraySizeNeeded := 500;
 P := AllocMem(DynamicArraySizeNeeded * SizeOf(Integer));
 { How to assign a value to the fifth member of the array. }
 P^[5] := 68;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 { Displaying the data. }
 Button1.Caption := IntToStr(P^[5]);
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
 { Free the memory you allocated for the array. }
 FreeMem(P, DynamicArraySizeNeeded * SizeOf(Integer));
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Resource Expert: What It Is and How to Install It
 NUMBER : 2950
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : March 4, 1996

 TITLE : Resource Expert: What It Is and How to Install It

Resource Expert: what it is and how to install and use it.

What is the Resource Expert

The Resource Expert is a Delphi expert add-on that is available
as a part of the Delphi Rad Pack. The expert assists the
programmer in porting existing projects to Delphi by converting
dialog and menu resource scripts intended for use in traditional
Windows applications. Dialog resources and their contents are
converted to Delphi forms with the analogous controls converted
to Delphi components.

How to install the Resource Expert

The Resource Expert is installed via the Delphi Rad Pack's
Resource Workshop 4.5 install procedure. Once installed, it is
incorporated into the Delphi component library and is available
as an option on the Delphi Help Menu or via the Experts page of
the Forms Gallery dialog. Installation of the Resource Expert
files may be installed from within the Windows environment or
from the command line under Windows 95 or Windows NT.

To install the Resource Expert files from within Windows,

 1) Begin the installation procedure for Borland Resource
 Workshop.
 2) On the third dialog, entitled 'Resource Workshop - Resource
 Expert Options', ensure that the 'Install Resource Expert'
 check box is checked.
 3) The 'Install to:' entry indicates the destination directory
 for the Resource Expert files, indicating C:\DELPHI\RCEXPERT
 by default. Change this entry as needed.
 4) Proceed with the rest of the Resource Workshop installation
 process as normal.

To install the Resource Expert files from the command line, type
the following commands,

 1) MD C:\DELPHI\RCEXPERT
 2) CD C:\DELPHI\RCEXPERT
 3) E:\INSTALL\RW\UNPAQ -X E:\INSTALL\RW\RESEXP.PAK

Note: The last command above assumes that the E: drive is a
CD-ROM drive containing the Rad Pack Installation CD.

Once the installation of the Resource Expert files is completed,
the Delphi Component Library must be recompiled. To do this,

 1) Load Delphi.
 2) Select Options|Install Components.
 3) Click the Add... button.
 4) When the Add Module dialog appears, enter the full path name
 of the rcexpert.pas file or find the file via the Browse...
 button.
 5) Finally, choose the OK button on the Install Components
 Dialog.

How to use the Resource Expert

To convert a resource script, all source files normally required
to compile the script must be present. This would include .RC,
.MNU, or .DLG file(s) and any .H or .PAS include files they refer
to. Resource scripts typically use WINDOWS.H and BWCC.H. These
files are usually located in directories such as \BC4\INCLUDE or
\BP7\UNITS. The Resource Expert supports the RC language
extensions defined by Resource Workshop.

Again, the Resource Expert may be invoked via the Help|Resource
Expert menu option or via the Experts page of the Forms Gallery
dialog. The latter will appear if the 'Use on new form' check
box is checked on the Preferences page of the Environment Options
dialog.

Once the Resource Expert has been invoked, click the 'Next'
button to bypass the page that introduces the expert to the user.
The second page of the expert allows the user to select the
resource scripts to convert. A number of scripts may be chosen
provided that they all reside in the same directory. The
particular type of script to view (.RC, .DLG or .MNU) can be
selected via the 'List Files of Type' combo box. After selecting
the scripts to convert, click the 'Next' button again. The third
page presents a single 'Include Path' edit box. Enter the list
of directories containing .H, .INC, or .PAS include files used by
the resource scripts, (if any). Each directory name should be
separated by a semicolon. Again, click the 'Next' button to
continue. On the fourth and final page of the expert, the
'Convert' button appears. Clicking it begins the actual
conversion process. If the resources script contain many
dialogs, the 'Show all forms' check box may be un-checked in
order to speed the conversion process and to minimize impact on
Windows system resources.

If a syntax error is encountered during the conversion process,
the erroneous statement will be discarded and conversion will

resume at the next statement or block. Errors will be noted in
the log file ERRLOG.TXT and displayed in a Delphi editor window.

Once the conversion process is complete, separate forms for each
dialog resource will have been created. For menu resources, a
simple form containing the converted menu component will have
been created. If a project was active before the conversion
began, the converted forms are added to the project. Each form
may now be used and modified as would any Delphi form.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi Configuration Files
 NUMBER : 2951
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : March 4, 1996

 TITLE : Delphi Configuration Files

Delphi employs a number of files for its configuration, some
global to the Delphi environment, some project specific. Chief
among all the configuration files is DELPHI.INI. DELPHI.INI
resides in the Windows directory and contains most of the
configurable items to be found within Delphi. Being the largest
Delphi configuration file, DELPHI.INI contains settings to
control the Delphi speed bar, component palette, component
library, gallery, installed experts, editor, printing, tools menu
and all the environment options found on the Environment Options
dialog. This document will explore DELPHI.INI in depth.

DELPHI.CBT is a copy of DELPHI.INI (minus the ReportSmith
section) that is installed along with Delphi and may serve as a
sort of backup for restoring the original Delphi setup. It
resides in the Windows directory along with DELPHI.INI. Below is
the ReportSmith section and its one entry that should be placed
in a DELPHI.INI created from DELPHI.CBT.

[ReportSmith]
ExePath=C:\RPTSMITH

Delphi also makes use of Desktop (.DSK) files. Desktop files,
like most Delphi configuration files, are formatted in the same
manner as .INI files, with section headers and individual
settings in each section. The purpose of desktop files is to
retain the appearance and content of the Delphi desktop between
sessions or between projects. Each desktop file contains
information regarding the presence and appearance of the Delphi
main window, the Object Inspector, the Alignment Palette, the
Project Manager, and the Watch, Breakpoint, CallStack, and
component list windows. Also kept in each desktop file is the
number of editor windows open as well as the names, number and
order of files open in each editor window.

If the 'Desktop files' check box (on the Preferences page of the
Environment Options dialog) is checked, Delphi will automatically
create desktop files for each project closed and saved. Each
desktop file carries the same root name as the saved project
file. If no project is active when Delphi exits, a default
desktop file, DELPHI.DSK, is created. The last active project
determines which desktop file Delphi loads at startup. Again,
if no project was active when Delphi exited last, then DELPHI.DSK
is loaded. While project specific desktop files reside in the
same directory with the corresponding project, DELPHI.DSK resides

in the \DELPHI\BIN directory. The PrivateDir setting in the
Globals section of DELPHI.INI may be used to relocate DELPHI.DSK
to a different location.

Option files (.OPT) are another INI-like file in which Delphi
maintains values directly corresponding to those settings on the
Compiler, Linker, and Directories/Conditionals pages of the
Project Options dialog. Each of these pages has a corresponding
section in the option file and each setting has a individual
entry in that section. Each option file also retains the last
parameter string entered via the Run Parameters dialog. An
option file is created for each project saved. Like .DSK files,
the root name of the .OPT file is the same as its corresponding
project and reside in the same directory as that project.

A default option file, DEFPROJ.OPT, is created if the Default
check box of the Project Options dialog is checked. The settings
in DEFPROJ.OPT serve as the default project settings each time a
new project is created.

Additionally, the Delphi command line compiler, DCC.EXE, supports
the use of the configuration file DCC.CFG. DCC.CFG is a text
file opened when the command line compiler starts and is used in
addition to options entered on the command line. Command line
options may be placed in DCC.CFG, each on a separate line. When
DCC starts, it looks for DCC.CFG in the current directory. If it
is not found there, the directory in which DCC.EXE resides is
then searched. A sample DCC.CFG follows:

/b
/q
/v
/eC:\DELPHI\WORK

The above settings instruct the command line compiler to build
all units (/b), compile without displaying file names and line
numbers (/q), append debug information to the .EXE (/v), and
place the compiled units and exEcutable in the C:\DELPHI\WORK
directory (/eC:\DELPHI\WORK). The contents of the installed
DCC.CFG are included below to serve in restoring it should it be
deleted or damaged.

/m
/cw
/rD:\DELPHI\LIB
/uD:\DELPHI\LIB
/iD:\DELPHI\LIB

STDVCS.CFG is a file installed with the Client/Server of Delphi,
but is only used in conjunction with the Version Control manager
DLL. The contents of the installed STDVCS.CFG are included here
to serve in restoring it should it be deleted or damaged.

NODELETEWORK WRITEPROTECT
NOCASE VCSID

COMMENTPREFIX .PAS = "{ "
COMMENTPREFIX .PRJ = "{ "

NOEXPANDKEYWORDS .FRM
NOEXPANDKEYWORDS .EXE
NOEXPANDKEYWORDS .DLL
NOEXPANDKEYWORDS .DOC
NOEXPANDKEYWORDS .ICO
NOEXPANDKEYWORDS .BMP

Lastly, MULTIHLP.INI is a file Delphi uses to provide
context-sensitive help across multiple help files. This file
should not be modified; doing so may cause the Delphi Help system
to behave erratically. The contents of the installed
MULTIHLP.INI are included here to serve in restoring it should it
be deleted or damaged.

[Index Path]
DELPHI.HLP=C:\DELPHI\BIN
WINAPI.HLP=C:\DELPHI\BIN
CWG.HLP=C:\DELPHI\BIN
CWH.HLP=C:\DELPHI\BIN
LOCALSQL.HLP=C:\DELPHI\BIN
VQB.HLP=C:\DELPHI\BIN
SQLREF.HLP=C:\IBLOCAL\BIN
WISQL.HLP=C:\IBLOCAL\BIN
BDECFG.HLP=C:\IDAPI
RPTSMITH.HLP=C:\RPTSMITH
RS_DD.HLP=C:\RPTSMITH
SBL.HLP=C:\RPTSMITH
RS_RUN.HLP=C:\RPTSMITH
DBD.HLP=C:\DBD

Note:

What follows below is a comprehensive dissection of the
DELPHI.INI file. In order to save space, a few conventions were
observed in the describing possible values for settings.

Where only one of a limited set of values is applicable, a pipe
symbol is used to separate each of the possible value, e.g.:

MapFile=0|1|2|3

allows only the values 0, 1, 2, or 3

Where a single value within a range is applicable, the range of
values is presented inside brackets with the minimum and maximum
values separated by two periods, e.g.:

GridSizeX=[2..128]

permits any value between 2 and 128, inclusively.

===

Section: [Globals] - The Globals section contains settings not
 included in other sections and that have an effect on
 Delphi as a whole. Items in the Globals section may be
 changed only by editing DELPHI.INI.

PrivateDir=

 This item controls where Delphi both creates and locates
 the files DELPHI.DSK, DELPHI.DMT, DEFPROJ.OPT and STDVCS.CFG.
 The default location is the \DELPHI\BIN directory. If Delphi
 is run from a read-only directory (or from a CD-ROM) this item
 should be set to a writeable directory, either on a network or
 local drive. This item should contain a fully qualified path,
 including the drive letter. Example:

 PrivateDir=J:\USERS\JSMITH ; Private network directory

HintColor=

 This item controls the color of the fly-by hint window for the
 Delphi IDE. The value may be a decimal or hex constant, or one
 of the symbolic color constants defined in VCL (e.g. clCyan).
 Note that the text in the hint window is always painted using
 clWindowText. The default value is clYellow.

PropValueColor=

 This item controls the color of the text in the right-hand
 (value) pane of the Object Inspector. The value may be a
 decimal or hex constant, or one of the symbolic color constants
 defined in VCL (e.g. clBlue). The default value is
 clWindowText.

Section: [Library] - The Library section contains entries for
 those settings found on the Library page of the
 Environment Options dialog (accessed via
 Options|Environment). The options in this section take
 effect when the Options|Rebuild Library menu option is
 chosen.

SearchPath=

 Specifies search paths where the compiler can find the units
 needed to build the component library. Path names should be
 listed consecutively, separated by a semicolon. This entry is

 changed via the 'Library Path' combo box. Example:

 SearchPath=D:\DELPHI\LIB;d:\delphi\rcexpert

ComponentLibrary=

 Specifies the name of the active component library. This item
 is changed via the Options|Open Library menu option. It may
 also be changed from the 'Library filename' edit of the Install
 Components dialog (accessed via Options|Install Components).
 Example:

 ComponentLibrary=D:\DELPHI\BIN\REXPERT.DCL

SaveLibrarySource=0|1

 Indicates whether Delphi saves the source code for the
 component library when installing new components or rebuilding
 it via Options|Rebuild Library. A setting of 1 causes the
 project source to be saved using the library file's root name
 with a .DPR extension. The default value is 0. This setting
 is changed via the 'Save library source code' check box.

MapFile=0|1|2|3

 Determines the type of map file produced, if any, when the
 component library is rebuilt. The map file is placed in the
 same directory as the library, and it has a .MAP extension.
 The default value is 0. This setting is changed via the
 'Map file' radio button group.

 Option Effect
 ------------ ------
 0 - Off Does not produce map file.
 1 - Segments Linker produces a map file that includes a list
 of segments, the program start address, and any
 warning or error messages produced during the
 link.
 2 - Publics Linker produces a map file that includes a list
 of segments, the program start address, any
 warning or error messages produced during the
 link, and a list of alphabetically sorted public
 symbols.
 3 - Detailed Linker produces a map file that includes a list
 of segments, the program start address, any
 warning or error messages produced during the
 link, a list of alphabetically sorted public
 symbols, and an additional detailed segment map.
 The detailed segment map includes the address,
 length in bytes, segment name, group, and module
 information.

LinkBuffer=0|1

 Specifies the location of the link buffer. A setting of 1
 causes Delphi to use available disk space for the link buffer;
 0 causes the use of available memory. The default value is
 0. This setting is changed via the 'Link Buffer' radio button
 group.

DebugInfo=0|1

 Determines whether the component library file is compiled and
 linked with debug information. A setting of 1 causes the
 inclusion of debug information. The default setting is 0. The
 setting is changed via the 'Compile with debug info' check box.

Section: [Gallery] - The Gallery section controls the use and
 base location of the form and project galleries. It
 contains those settings found in the Gallery: group box
 on the Preferences page of the Environment Options
 dialog.

BaseDir=

 Points to the directory where Delphi attempts to find Gallery
 files. To share a gallery directory with other users, set this
 item to point to a shared network directory. This item
 should contain a fully qualified path, including the drive
 letter. This entry may be changed only by editing DELPHI.INI.
 Example:

 BaseDir=D:\DELPHI\GALLERY

GalleryProjects=0|1

 Indicates whether Delphi displays the Browse Gallery dialog box
 when the File|New Project menu option is chosen. A setting of
 1 causes the Browse Gallery dialog box to display. The default
 setting is 0. The setting is changed via the 'Use on New
 Project' check box.

GalleryForms=0|1

 Indicates whether Delphi displays the Browse Gallery dialog box
 when the File|New Form menu option is chosen. A setting of 0
 prevents the Browse Gallery dialog box from displaying. The
 default setting is 1. The setting is changed via the 'Use on
 New Form' check box.

Section: [Experts] - The Experts section lists the Experts
 which Delphi will attempt to load and initialize upon
 startup. Any value may be used on the left of the
 equals sign, as the item name is not interpreted.
 Borland recommends using a combination of the vendor
 name and the product name. Example:

 [Experts]
 ComponentWare.CommExpert=c:\delphi\cware\commexpt.dll
 CodeFast.TheExpert=c:\delphi\codefast\codefast.dll

Section: [ReportSmith] - The ReportSmith section contains just
 one entry which specifies the directory in which
 ReportSmith is installed.

ExePath=

 ExePath indicates the location of RPTSMITH.EXE. This entry is
 placed in DELPHI.INI at install time and may be changed only by
 editing DELPHI.INI. Example:

 ExePath=D:\RPTSMITH

Section: [Session] - The Session section and its one entry
 identify the active project when Delphi
 was last closed.

Project=

 Identifies the active project when Delphi was last closed.
 This setting is only meaningful if the DesktopFile setting in
 the AutoSave section is set to 1. This setting also serves to
 identify the project's desktop file (using a .DSK extension).
 This setting is updated automatically when Delphi exits.
 Example:

 Project=D:\DELPHI\WORK\MAILAPP.DPR

Section: [MainWindow] - The MainWindow section defines
 characteristics of the Delphi main window as they relate
 to the speedbar and component palette. The SpeedBar
 Layout section details the actual contents of the
 speedbar. Likewise, the <libraryname>.Palette section
 details the actual contents of the component palette.

Split=[-1..400]

 Indicates the horizontal position if the vertical bar
 separating the speedbar and component palette. The default
 value is 183. This setting is changed by moving the split bar
 with the mouse.

SpeedHints=0|1

 Determines whether hints are displayed as the mouse passes over
 buttons on the speedbar. A setting of 0 prevents the display
 of speedbar hints. The default setting is 1. This setting is
 changed using the Show Hints menu option of the speedbar
 speedmenu.

PaletteHints=0|1

 Determines whether hints are displayed as the mouse passes over
 buttons on the palette. A setting of 0 prevents the display
 of palette hinsts. The default setting is 1. This setting is
 changed using the Show Hints menu option of the palette
 speedmenu.

Speedbar=0|1

 When set to 0, prevents the display of the speedbar. The
 default setting is 1. This setting is changed via the
 View|Speedbar menu option or via the Hide option of the
 speedbar speedmenu.

Palette=0|1

 When set to 0, prevents the display of the component palette.
 The default setting is 1. This setting is changed via the
 View|Component Palette menu option or via the Hide option of
 the component palette speedmenu.

Section: [Speedbar Layout] - The Speedbar Layout details the
 specific contents of the speedbar. The contents of this
 section are changed via the Configure option of the
 speedbar speedmenu.

Count=[0..52]

 Specifies the number of buttons on the speedbar. The default
 is 14.

Button[0..51]=n,x,y

 This entry appears once for each button on the speedbar. Each

 button entry is uniquely numbered, the first being Button0.
 The number n identifies a unique pre-defined id code. The
 x value is a number specifying the horizontal position of the
 button on the speedbar. The y value is a number specifying the
 vertical position of the button on the speedbar. Below is a
 listing of the default speedbutton set and their corresponding
 menu options.

 Button0=30001,4,2 ; File|Open Project...
 Button1=30002,27,2 ; File|Save Project
 Button2=30007,4,25 ; File|Open File...
 Button3=30008,27,25 ; File|Save File
 Button4=30009,50,2 ; File|Add File...
 Button5=30010,50,25 ; File|Remove File...
 Button6=30069,79,2 ; View|Units...
 Button7=30070,102,2 ; View|Forms...
 Button8=30068,79,25 ; View|Toggle Form/Unit
 Button9=30004,102,25 ; File|New Form
 Button10=30090,131,2 ; Run|Run
 Button11=30093,154,2 ; Run|Program Pause
 Button12=30092,131,25 ; Run|Trace Into
 Button13=30091,154,25 ; Run|Step Over

Section: [Desktop] - The Desktop section contains a single
 entry that determines which desktop settings are saved
 when Delphi exits. This section and its one entry is
 only meaningful if the DesktopFile entry in the AutoSave
 section is 1.

SaveSymbols=0|1

 Determines if browser symbol information is saved along with
 Desktop information when Delphi exits. This setting is changed
 via the 'Desktop contents:' radio button group box. The
 default setting is 1.

 Option Effect
 ------ ------
 0 - Desktop only Saves directory information, open
 files in the editor, and open windows.
 1 - Desktop and symbols Saves desktop information and browser
 symbol information from the last
 successful compile.

Section: [AutoSave] - The Autosave section determines which
 files and options are saved automatically when the
 current project is run or when Delphi exits. This
 section corresponds to the 'Autosave options:' group box
 of the Preferences page of the Environment Options
 Dialog.

EditorFiles=0|1

 When set to 1, causes Delphi to save all modified files in the
 Code Editor when Run|Run, Run|Trace Into, Run|Step Over, or
 Run|Run To Cursor are chosen, or when Delphi exits. The
 default setting is 0. This setting is changed via the 'Editor
 files' check box on the Preferences page of the Environment
 Options Dialog.

DesktopFile=0|1

 When set to 0, prevents Delphi from saving the arrangement of
 the desktop when a project is closed or when Delphi exits. The
 default setting is 1. This setting is changed via the
 'Desktop' check box on the Preferences page of the Environment
 Options Dialog.

 Note: Further discussion regarding desktop files are discussed
 below under Desktop (.DSK) files.

Section: [FormDesign] - The FormDesgin section contains those
 settings that control the appearance and behavior of a
 forms grid at design time. This section corresponds to
 the 'Form designer:' group box of the Preferences page
 of the Environment Options Dialog.

DisplayGrid=0|1

 Determines the design time visibility of the dots that comprise
 the form grid. A setting of 0 avoids grid display. The
 default setting is 1. This setting is changed via the 'Display
 grid' check box.

SnapToGrid=0|1

 Indicates whether components are automatically aligned with the
 grid when components are moved with the mouse. A setting of 0
 avoids grid alignment. The default setting is 1. This setting
 is changed via the 'Snap to grid' check box.

GridSizeX=[2..128]

 Sets grid spacing in pixels along the x-axis. The default
 value is 8. This setting is changed via the 'Grid Size X'
 edit.

GridSizeY=[2..128]

 Sets grid spacing in pixels along the y-axis. The default

 value is 8. This setting is changed via the 'Grid Size Y'
 edit.

DefaultFont=

 This item controls the default font for new forms. The name
 of the font, the font size, and optionally the style of the
 font may be entered, each separated by commas. (Supported font
 styles are "bold" and "italic.") This setting may be changed
 only by editing DELPHI.INI. Example:

 DefaultFont=MS Sans Serif, 8, bold, italic

Section: [Debugging] - The Debugging section contains those
 settings that control integrated debugging and the
 appearance of Delphi during project execution. This
 section corresponds to the 'Debugging:' group box of the
 Preferences page of the Environment Options Dialog.

IntegratedDebugging=0|1

 Allows or prevents the uses of the Delphi Integrated Debugger.
 A setting of 0 prevents integrated debugging. The default
 setting is 1. This setting is changed via the 'Integrated
 Debugging' check box.

DebugMainBlock=0|1

 When set to 1, causes the debugger to stop at the first unit
 initialization that contains debug information. The default
 setting is 0. This setting is changed via the 'Step program
 block' check box.

BreakOnExceptions=0|1

 When set to 1, stops the application when an exception is
 encountered and displays the following the exception class,
 exception message and the location of the exception. When
 set to 0, exceptions do not stop the running application.
 The default setting is 1. This setting is changed via the
 'Break on exception' check box.

MinimizeOnRun=0|1

 When set to 1, minimizes Delphi when the current project is
 executed. The default is 0. This setting is changed via the
 'Minimize on run' check box.

HideDesigners=0|1

 When set to 1, hides designer windows, such as the Object
 Inspector and Form window, while the application is running.
 The default setting is 1. This setting is changed via the
 'Hide designers on run' check box.

NoResetWarning=0|1

 When set to 1, prevents Delphi from presenting a warning
 message when Program Reset is selected. The default setting is
 0. This setting may be changed only by editing DELPHI.INI.

Section: [Compiling] - The compiling section contains a single
 entry that determines whether the user is presented with
 a dialog that reports compiler progress. This section
 corresponds to the 'Compiling:' group box of the
 Preferences page of the Environment Options Dialog.

ShowCompilerProgress=0|1

 Specifies whether compilation progress is reported. A setting
 of 1 causes Delphi to display a window detailing compilation
 progress. The default setting is 0. This setting is changed
 via the 'Show compiler progress' check box.

Section: [Browser] - The Browser section contains settings that
 are found on the Browser page of the Environment Options
 dialog. These settings specify how ObjectBrowser
 functions and what symbol information is displayed.

Filters=

 This setting determines which filters are active in the Object
 Browser. The value is the sum of the values listed below for
 each filter desired.

 Value Filter
 ----- ------
 2 Constants
 4 Types
 8 Variables
 16 Functions and Procedures
 32 Properties
 128 Inherited
 256 Virtuals only
 1024 Private
 2048 Protected

 4096 Public
 8192 Published

 The default setting is 15806, which activates all filters.
 Each filter corresponds to a check box in the 'Symbol filters:'
 group box. For example, the following setting activates the
 Properties, Public and Published filters:

 Filters=12320 ; 8192 + 4096 + 32 = 12320

InitialView=1|2|3

 InitialView determines the type of information the browser
 displays when first opened. The default setting is 2. This
 setting is changed via the 'Initial view:' radio button group
 box.

 Value Viewed
 ----- ------
 1 Units
 2 Objects
 3 Globals

Sort=0|1

 When set to 1, causes Delphi to display symbols in alphabetical
 order by symbol name. When set to 0, symbols display in order
 of declaration. The default setting is 0. This setting is
 changed via the 'Sort always' check box.

QualifiedSymbols=0|1

 When set to 1, causes Delphi to display the qualified
 identifier for a symbol. When set to 0, only the symbol name
 is displayed. The default setting is 0. This setting is
 changed via the 'Qualified symbols' check box.

CollapsedNodes=

 Specifies which branches of the object tree hierarchy are
 collapsed when the ObjectBrowser is started. This entry is a
 list of class names, separated by separated by semicolons.
 This setting is changed via the 'Collapse Nodes:' combo box.
 Example:

 CollapsedNodes=Exception;TComponent

ShowHints=0|1

 Determines whether hints are displayed as the mouse passes over
 filter buttons. A setting of 0 prevents the display of filter

 hints. The default setting is 1. This setting is
 changed using the Show Hints menu option of the ObjectBrowser
 speedmenu.

Section: [Custom Colors] - The Custom colors section lists up
 to sixteen user defined colors. Each color is specified
 as a six-digit hexadecimal RGB value. An unused color
 entry is indicated by the hexadecimal value FFFFFFFF.
 Entries in this section are created and updated via the
 Color dialog of any components Color property (accessed
 by double-clicking the entry area of the Color
 property).

Color[A..P]=

 Specifies an individual RGB value for a user defined color.

Section: [Print Selection] - The Print Selection section
 contains those options that appear when the File|Print
 menu option is chosen. These settings correspond to the
 options displayed in the 'Options:' group box.

HeaderPage=0|1

 When set to 1, Delphi includes the name of the file, current
 date, and page number at the top of each page. The default
 setting is 0. This setting is changed via the 'Header/page
 number' check box.

LineNumbers=0|1

 When set to 1, Delphi places line numbers in the left margin of
 the printed output. The default setting is 0. This setting is
 changed via the 'Line numbers' check box.

SyntaxPrinting=0|1

 When set to 1, Delphi uses bold, italic, and underline
 characters to indicate elements with syntax highlighting. When
 set to 0, Delphi uses no special formatting when printing. The
 default value is 1. This setting is changed via the 'Syntax
 print' check box.

UseColor=0|1

 When set to 1, causes Delphi to print colors that match colors
 on screen. This option requires that the current printer

 support color. The default value is 0. This setting is
 changed via the 'Use Color' check box.

WrapLines=0|1

 When set to 1, causes Delphi to use multiple lines to print
 characters beyond the page width. When set to 0, code lines
 are truncated and characters beyond the page width do not
 print. The default value is 0. This setting is changed via
 the 'wrap lines' check box.

LeftMargin=[0..79]

 Specifies the number of character spaces used as a margin
 between the left edge of the page and the beginning of each
 line. The default value is 0. This setting is changed via the
 'Left margin' edit.

Section: [Highlight] - The Highlight section contain those
 settings that determine the syntax and context specific
 colors used in the Code Editor. The settings in this
 section are changed via the Editor Colors page of the
 Environment Options dialog.

ColorSpeedSetting=0|1|2|3

 Determines which color scheme was last selected. Changing this
 setting directly does not affect the actual colors used for
 individual elements. The Color SpeedSetting combo box does not
 save color schemes; it only serves as a quick means of setting
 all color elements at once. The default setting is 0. The
 table below shows each value's corresponding speedsetting.

 Value SpeedSetting
 ----- ------------
 0 Defaults
 1 Classic
 2 Twilight
 3 Ocean

<Element color>=

 All the color entries correspond to a single color element.
 Each color element entry uses the following format:

 <Element name>=fRGB,bRGB,attr,deffore,defback,fcell,bcell

 Value code Meaning
 ---------- -------
 fRGB Foreground RGB value

 bRGB Background RGB value
 attr Text attribute; zero or more of B, I and U
 deffore Use default foreground color (1=yes, 0=no)
 defback Use default background color (1=yes, 0=no)
 fcell Foreground color grid cell number
 bcell Background color grid cell number

Section: [Editor] - This section describes the appearance and
 behavior of the Delphi Code Editor. Settings from both
 the Editor options and Editor display pages are detailed
 here.

DefaultWidth=
DefaultHeight=

 These two items, if present, control the initial width and
 height of the Delphi Code Editor window. Delphi does not
 update these values, but it does read them each time a Code
 Editor is created. The default width is 406; the default
 height is 234. These settings may be changed only by editing
 DELPHI.INI.

FontName=
FontSize=

 These settings specify the name and size, respectively, of a
 mono-spaced font that the Code Editor uses to display text.
 Courier New is the default font, 10 the default size. These
 entries may be changed via the 'Editor font:' and 'Size:' combo
 boxes on the Editor display page.

BlockIndent=[1..16]

 Specifies the number of spaces to indent a marked block. The
 default value is 1. This setting may be changed via the 'Block
 indent' combo box on the Editor display page.

UndoLimit=[0..]

 Specifies the number of keystrokes that can be undone, which is
 limited by available memory. The default value is 32,767.
 This setting may be changed via the 'Undo limit:' combo box on
 the Editor Options page.

TabRack=

 Determines the columns at which the cursor will move to each
 time the Tab key is pressed. Each successive tab stop must be
 separated by a space and must be larger than its predecessor.

 If only one number is specified, tab stops are spaced apart
 evenly, using that number. If two numbers are specified then
 tab stops occur at the specified positions and at positions
 that mark the difference between the two values. The default
 tab stops are 9 and 17. This setting may be changed via the
 'Tab stops:' combo box on the Editor Options page. Note:
 this option has no effect if the smart tabs setting is enabled.

RightMargin=[0..1024]

 Specifies the right margin of the Code Editor. The default
 value is 80. The valid range is 0 to 1024. This setting may
 be changed via the 'Right margin:' combo box on the Editor
 display page.

Extensions=

 Combo Box
 Specifies file masks of those files that will display with
 syntax highlighting. Typically, only specific extensions are
 included. The default setting is
 '*.PAS;*.DPR;*.DFM;*.INC;*.INT'. This setting may be changed
 via the 'Syntax extensions:' combo box on the Editor Options
 page. Example:

 Extensions=*.PAS;*.DPR;*.SRC

FindTextAtCursor=0|1

 When set to 1, causes Delphi to Place the text at the cursor
 into the 'Text To Find' combo box in the Find Text dialog box
 when the Search|Find menu option is chosen. When set to 0,
 the default setting, the search text must be typed in. This
 entry may be changed via the 'Find text at cursor' check box
 on the Editor Options page.

BRIEFRegularExpressions=0|1

 When set to 1, permits the use of Brief-style regular
 expressions when searching for text. The default setting is 0.
 This entry may be changed via the 'BRIEF regular expressions'
 check box on the Editor Options page.

PreserveLineEnds=0|1

 Determines whether end-of-line characters are changed to
 carriage return/line feed pairs or are preserved. When
 set to 0, Delphi converts end-of-line characters to carriage
 return/line feed pairs. The default value is 1. This
 entry may be changed via the 'Preserve Line Ends' check box
 on the Editor display page.

FullZoom=0|1

 Determines whether the Code Editor fills the entire screen when
 maximized. When set to 0 (the default), the Code Editor does
 not cover the Delphi main window when maximized. A setting of
 1 allows the Code Editor window to encompass the entire screen.
 This setting may be changed via the 'Zoom to full screen' check
 box on the Editor Display page.

DoubleClickLine=0|1

 When set to 1, causes Delphi to highlight the whole line when
 the user double-clicks any character in the line. When set to
 0 (the default), only the selected word is highlighted. This
 entry may be changed via the 'Double click line' check box on
 the Editor Options page.

BRIEFCursors=0|1

 Determines whether Delphi uses BRIEF-style cursor shapes in the
 Code Editor. A setting of 1 causes Delphi to use Brief-style
 cursors. The default setting is 0. This setting may be
 changed via the 'BRIEF cursor shapes' check box on the Editor
 Display page.

ForceCutCopyEnabled=0|1

 When set to 1, enables the Edit|Cut and Edit|Copy menu options,
 even when no text is selected. The default setting is 0. This
 entry may be changed via the 'Force cut and copy enabled' check
 box on the Editor Options page.

KeyBindingSet=0|1|2|3

 Determines which pre-defined key mapping set Delphi recognizes.
 The default setting is 0. This setting may be changed via the
 'Keystroke mapping:' list box on the Editor Display page. The
 table below identifies the appropriate mapping for the desired
 value.

 Value Mapping
 ----- -------
 0 Default
 1 Classic
 2 Brief
 3 Epsilon

Mode=

 This setting determines the state of sixteen of the options
 available on the Editor Options page and two of the options on
 the Editor Display page. The value is the sum of the values
 listed below for each check box checked. Unless noted, all
 the options below correspond to a similarly named check box on
 the Editor Options page.

 1 Insert mode - Inserts text at the cursor without
 overwriting existing text.
 2 Auto indent mode - Positions the cursor under the
 first nonblank character of the preceding nonblank
 line when Enter is pressed.
 4 Use tab character - Inserts tab character. If
 disabled, inserts space characters. This option and
 the Smart Tabs option are mutually exclusive.
 enabled, this option is off.
 16 Backspace un-indents - Aligns the insertion point to
 the previous indentation level (out-dents it) when
 Backspace is pressed, if the cursor is on the first
 nonblank character of a line.
 32 Keep trailing blanks - Saves trailing spaces and tabs
 present at the end of a line.
 64 Optimal fill - Begins every auto-indented line with
 the minimum number of characters possible, using tabs
 and spaces as necessary.
 128 Cursor through tabs - Enables the arrow keys to move
 the cursor to the beginning of each tab.
 256 Group undo - Undoes the last editing command as well
 as any subsequent editing commands of the same type
 when Alt+Backspace, Ctrl+Z is pressed or the
 Edit|Undo menu option is chosen.
 512 Persistent blocks - Keeps marked blocks selected even
 when the cursor is moved, until a new block is
 selected.
 1024 Overwrite blocks - Replaces a marked block of text
 with whatever is typed next. If Persistent Blocks is
 also selected, text entered is added to the currently
 selected block.
 4096 Create backup file - Creates a backup file when
 source files are saved. This item is set via the
 'Create backup file' check box on the Editor Display
 page.
 8192 Use Syntax highlight - Enables syntax highlighting.
 16384 Visible right margin - Enables the display of a line
 at the right margin of the Code Editor. This item is
 set via the 'Visible right margin' check box on the
 Editor Display page.
 32768 Smart tabs - Tabs to the first non-whitespace
 character in the preceding line. This option and
 the Smart Tabs option are mutually exclusive.
 131072 Cursor beyond EOF - Allows cursor positioning beyond
 the end-of-file.
 262144 Undo after save - Allows retrieval of changes after a
 save.

EditorSpeedSetting=0|1|2|3

 Determines which editor emulation scheme was last selected.
 Changing this setting directly does not affect the actual
 keystroke mapping or the editor options used. The Editor
 SpeedSetting combo box does not save emulation schemes; it
 only serves as a quick means of setting many editor options at
 once. The default setting is 0. The table below shows each
 value's corresponding speedsetting.

 Value SpeedSetting
 ----- ------------
 0 Default keymapping
 1 IDE classic
 2 Brief emulation
 3 Epsilon emulation

Section: [<Library name>.Palette] - This section describes the
 content of the Component Palette. Each entry name in
 this section matches a single page name on the component
 palette. The value for each entry is a list of the
 component type names that appear on that page, each
 separated by a semicolon. This section appears once for
 each component library configured via the Palette page
 of the Environment Options dialog.

Section: [Transfer] - The Transfer section defines those items
 that appear on the Tools menu. Entries in this section
 are defined when using the Tool Properties dialog. The
 Tool Properties dialog is itself accessed via the
 Options|Tools menu option.

Count=

 Specifies the number of items that should appear on the Tools
 menu. This item is changed by adding or removing programs from
 the Tools Options dialog.

Title#=
Path#=
WorkingDir#=
Params#=

 These entries appear once each for every item on the Tools
 menu. Each item name is immediately followed by a number
 indicating its position in the Tools menu, zero being the
 first.

 Title# Specifies the text that actually appears on the
 Tools menu.
 Path#= Specifies the full path to the program that the
 menu option will execute.

 WorkingDir# Determines the current directory when the
 program starts.
 Params# Specifies the parameters to pass to the program
 at startup.

Section: [Closed Files] - The Closed Files section lists the
 full path name of the last three closed project files.
 The files are listed in the order of most recently used
 first. Each entry takes the form

 File_#=<projectname>.DPR,col1,row1,col2,row2

 where # is either 0, 1 or 2. Col1 identifies the first
 visible column in the code editor, row1 the first
 visible row. Col2 is the cursor column, row2 the cursor
 row.

Section: [VBX] - The VBX section contains various settings that
 are available when installing a VBX into the Delphi
 Component Library.

VBXDir=

 Contains the last location from which a VBX was installed.
 This value is saved automatically by Delphi upon installing a
 VBX.

UnitDir=

 Specifies the last location in which Delphi placed a source
 unit for use with the previously installed VBX. This value is
 saved automatically by Delphi upon installing a VBX.

PalettePage=BVSP

 This entry retains the last specified name of the component
 palette page onto which Delphi placed the most recently
 installed VBX. This value is saved automatically by Delphi
 upon installing a VBX.

Section: [Version Control]

VCSManager=

 This item specifies the fully qualified path of a Version
 Control manager DLL. Delphi Client/Server, which includes team
 support, supplies a Version Control manager by the name
 STDVCS.DLL, located in the \BIN directory. Example:

 VCSManager=d:\delphi\bin\stdvcs.dll

Section: [Resource Expert] - The Resource Expert section
 appears only if the Delphi Resource Expert is installed.
 This section has but one entry.

RCIncludePath=

 Specifies the list of directories (separated by semicolons)
 that the expert should search to find any include files needed
 for resource file conversion. Example:

 RCIncludePath=D:\DELPHI\WORK;D:\RESOURCE\INCLUDE

Section: [History_##] - A number of history sections, each with
 a unique number following the underscore, reside in
 DELPHI.INI. Each history section corresponds directly
 to a particular combo box in a Delphi dialog. Each
 section contains at least one entry; the Count entry,
 indicating the number of history items in the section.
 Each actual history item is named by an H, followed by
 its order in the history list, H0 being first. The
 table below indicates to which combo box the particular
 section belongs. Only those histories saved by Delphi
 are listed.

 Section Combo box location
 ----------- ---
 [History_0] 'Text to find', Find Text or Replace Text dialog
 [History_1] 'Replace with', Replace Text dialog
 [History_2] 'Output directory', Directory/conditionals page
 of Project Options dialog
 [History_3] 'Search path', Directory/conditionals page of
 Project Options dialog
 [History_7] 'Conditionals', Directory/conditionals page of
 Project Options dialog
 [History_8] 'Undo Limit', Editor options page of Environment
 Options dialog
 [History_9] 'Right margin', Editor display page of
 Environment Options dialog
 [History_10] 'Tab stops', Editor options page of Environment
 Options dialog
 [History_11] 'Syntax extensions', Editor options page of
 Environment Options dialog
 [History_12] 'Enter new line number', Go to Line Number dialog
 [History_18] 'Block indent', Editor options page of
 Environment Options dialog
 [History_20] 'File name', Open Project dialog
 [History_23] 'File name', Install VBX file dialog
 [History_25] 'File name', Unit file name dialog (under
 Install VBX)

 [History_33] 'Collapse nodes', Browser page of Environment
 Options dialog
 [History_34] 'Library path', Library page of Environment
 Options dialog
 [History_35] 'File name', Open Library dialog
 [History_36] 'File name', Save Project1 As dialog

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

BDE: Writing Buffer to Disk
 NUMBER : 2953
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 4, 1996

 TITLE : BDE: Writing Buffer to Disk

Product: Delphi and the Borland Database Engine
Number: ?????
Versions: 1.x, 2.x
OS: WINDOWS 3.x, WINDOWS 95, WINDOWS NT
DATE: December 7, 1995
TITLE: Using DbiUseIdleTime and DbiSaveChanges.

General:
=======

Changes made to a table are not written directly to disk until
the table is closed. A power failure or system crash can
result in a loss of data, and an inconvenience. To avoid this
loss of data, two direct Database Engine calls can be made,
both of which have the similar effects. These functions are
DbiUseIdleTime and DbiSaveChanges.

DbiSaveChanges(hDBICur):
=======================

DbiSaveChanges saves to disk all the updates that are in the
buffer of the table associated with the cursor (hDBICur). It
can be called at any point. For example, one may want to make
save changes to disk every time a record is updated (add
dbiProcs to uses clause):

procedure TForm1.Table1AfterPost(DataSet: TDataSet);
begin
 DbiSaveChanges(Table1.handle);
end;

This way, one does not have to worry about losing data if a
power failure or system crash occurs after a record update.

DbiSaveChanges can also be used to make a temporary table
(created by DbiCreateTempTable) permanent.

This function does NOT apply to SQL tables.

DbiUseIdleTime:
==============

DbiUseIdleTime can be called when the "Windows Message Queue"
is empty. It allows the Database Engine to save "dirty buffers"
to disk. In other words, it does what DbiSaveChanges does, but

performs the operation on ALL the tables that have been
updated. This operation however, will not necessarily occur
after every record update, because it can only be executed when
there is an idle period.

In Delphi, it can be used in this fashion (add dbiProcs to uses clause):

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.onIdle := UseIdle;
end;

procedure Tform1.UseIdle(Sender: TObject; var Done: Boolean);
begin
 DbiUseIdleTime;
end;

USAGE NOTES:
===========

Using both DbiUseIdleTime and DbiSaveChanges (after every
record modification) is redundant and will result in
unnecessary function calls. If the application is one that
perfroms a great deal of record insertions or modifications in
a small period of time, it is recommended that the client
either call DbiUseIdleTime during an idle period, or call
DbiSaveChanges after a group of updates.

If not very many updates are being performed on the table, the
client may choose to call DbiSaveChanges after every post or
set up a timer and call DbiUseIdleTime when a timer even is generated.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Creating and Using Parameterized Queries
 NUMBER : 2954
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 4, 1996

 TITLE : Creating and Using Parameterized Queries

Q: How do I pass a variable to a query?

A: First, you must write a query that uses a variable.

Select Test."FName", Test."Salary Of Employee"
From Test
Where Test."Salary of Employee" > :val

Note: If you just write the field name as
"Salary of Employee" you will get a Capability Not
Supported error. It must be Test."Salary of Employee".

In this can the variable name is "val", but it can be whatever
you want (of course). Then, you go to the TQuery's params
property and set the "val" parameter to whatever the
appropriate type is. In our example here we will call it an
integer.

Next, you write the code that sets the parameter's value.
We will be setting the value from a TEdit box.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with Query1 do
 begin
 Close;
 ParamByName('val').AsInteger := StrToInt(Edit1.Text);
 Open;
 end;
end;

Note: you may want to place this code in a try..except
block as a safety precaution.

If you want to use a LIKE in your query, you can do
it this way:

Note: This next section uses the customer table from
the \delphi\demos\data directory. It can also be
referenced by using the DBDEMOS alias.

SQL code within the TQuery.SQL property:

 SELECT * FROM CUSTOMER

 WHERE Company LIKE :CompanyName

Delphi code:

procedure TForm1.Button1Click(Sender: TObject);
begin
 with Query1 do
 begin
 Close;
 ParamByName('CompanyName').AsString := Edit1.Text + '%';
 Open;
 end;
end;

An alternate way of referencing a parameter
(other then ParamByName) is params[TheParameterNumber].

The way that this line:

 ParamByName('CompanyName').AsString := Edit1.Text + '%';

can be alternately written is:

 Params[0].AsString := Edit1.Text + '%';

The trick to the wildcard is in the concatenating of the
percentage sign at the end of the parameter.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Changing the NET DIR Programmatically
 NUMBER : 2919
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : August 5, 1996

 TITLE : Changing the NET DIR Programmatically

General:
The "NET DIR" parameter for the Paradox driver is usually
indicated in the BDE Configuration Utility on the drivers
tab. The NET DIR indicates where the PDOXUSRS.NET file is
located. If the NET DIR is pointing to a location not
containing a PDOXUSRS.NET file, one will be created there.

Changing the NET DIR programmatically:
It is possible to change where the NET DIR is pointing
programmatically by using the DbiSetProp() function, but
first, a handle to the BDE session must be acquired. The
session handle can be acquired through DbiGetCurrSession().
Here is how one could change the NET DIR:

void main(void)
{
 hDBISes hSes;

 DbiInit(NULL);
 DbiGetCurrSession(&hSes);
 DbiSetProp(hSes, sesNETFILE, (UINT32)"c:\\temp");
 Dbi...
 ...
}

Notes:
The sesNETFILE constant is an Object Property and a clearer
definition can be found by searching for "Object Property" in
the BDE On-Line help. Another way to change the default
NET DIR is to pass DbiInit() a DBIEnv structure that specifies
a different .cfg (configuration) file other than the default
IDAPI.CFG (calling DbiInit(NULL) will use IDAPI.CFG). This
method is not reccommended because only one configuration file
can be used for all BDE applications.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to Populate a TDBComboBox Or TDBListBox
 NUMBER : 2956
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 4, 1996

 TITLE : How to Populate a TDBComboBox Or TDBListBox

Filling dblistboxs and dbcomboboxs

Most of Delphi's data aware components will populate
themselves after they are wired up to a open dataset. However
DbListboxs and DbComboboxs do not display this characteristic.
These two components are not for displaying your datasets, but
filling them. Use of these components is straight forward.
When you update your table, the value of the DbListbox or
DbCombobox will be posted in the appropriate field.

Filling the DbCombobox or DbListbox the same as filling normal
comboboxs or listboxes. The lines of text in a listbox or
combobox are really a tstring list. The "Items" property of
the given component holds this list. Use the "Add" method for
adding items to a tstring. If you want to use data types other
than strings they must be converted at run time. If your list
has a blank line at the end, consider setting the
"IntegralHeight" property to True.

Filling a DbListbox with 4 lines programmatically might look
similar to this:

 DbListbox1.items.add('line one');
 DbListbox1.items.add('line two');
 DbListbox1.items.add('line three');
 DbListbox1.items.add('line four');

Filling a DbListbox at design time requires using the object
inspector. By double clicking on the components "Items"
property, you can bring up the "String List Editor" and input
the desired rows.

Unfortunately, if a combobox is filled this way, there is not
default value. Setting a DbComboboxs "text" property will
achieve this result. (the "text" property is not available in
the object inspector, so it must be set programmatically).
Setting the default value to the first value in the
DbCombobox's list looks like this:

DbCombobox1.text := DbCombobox1.items[0];

Often it is useful to fill a DBListBox from a dataset. This
can be done using loop:

procedure TForm1.FormCreate(Sender: TObject);
begin
 with table2 do begin
 open;
 while not EOF do
 begin
 DBlistbox1.items.add(FieldByName('name').AsString);
 next;
 end;
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

New Language Features in Delphi 2.0
 NUMBER : 2957
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : May 21, 1996

 TITLE : New Language Features in Delphi 2.0

New Language Features in Delphi 2.0 - 32

Delphi 2.0 defines several new data types that exploit the
features available by Windows 95. Delphi 2.0 has also changed
a few data types to take advantage of the 32-bit environment.

New data types include:

 Character type
 String type
 Variant type
 Currency type

Changed data types:

 Integer
 Cardinal

Additional Syntax:

 Unit finalization section

New Data Types
--- ---- -----

Character Type

Delphi 2.0 introduces new wide character types to support
Unicode. Delphi 1.0 treated characters as 8-bit values of type
Char.

These are the standard types that represent characters in
Delphi 2.0.

 ANSIChar - A standard 8-bit ANSI character, equivalent to the
 Char type in previous versions of Delphi.

 WideChar - A 16-bit character, representing a Unicode
 character. If the high-order byte is zero, the

 low-order byte contains an ANSI character.

 Char - By default, Char is equivalent to ANSIChar. Char
 works in the same way as the

 implementation-dependent Integer type, which is

 equivalent to SmallInt in 16-bit versions of Delphi
 and to LongInt in 32-bit versions of Delphi. In

 Delphi 2.0, Char defaults to an 8-bit value.

Character-pointer types:

 Pointer type Character type

 PANSIChar ANSIChar

 PWideChar WideChar
 PChar Char

 The semantics of all the character-pointer types
 are identical. The only thing that varies is the
 size of the character pointed to.

String Type

Delphi 2.0 supports strings of nearly unlimited length in
addition to the 255-character counted strings previously
supported. A new compiler directive, $H, controls whether the
reserved word "string" represents a short string or the new,
long string. The default state of $H, is $H+, using long
strings by default. All Delphi 2.0 components use the new long
string type.

These are the new string types.

 ShortString - A counted string with a maximum length of 255
 characters. Equivalent to String in
 Delphi 1.0. Each element is of type ANSIChar.
 AnsiString - A new-style string of variable length, also

 called a "long string." Each element is of
 type ANSIChar.

 string - Either a short string or an ANSI string,
 depending on the value of the $H compiler

 directive.

Here are the compatibility issues.

Although most string code works interchangeably between short
strings and long strings, there are certain short-string
operations that either won't work on long strings at all or
which operate more efficiently when done a different way. The
following table summarizes these changes.

Short String Long string
operation equivalent Explanation
--
PString type string All long strings are
 dynamically allocated, so
 PString is redundant and

 requires more bookkeeping.
S[0] := L SetLength(S,L) Because long strings are
 SetString(S,P,L) dynamically allocated, you

 must call the SetLength
 procedure to allocate the

 appropriate amount of memory.
StrPCopy StrPCopy(Buffer,
(Buffer, S) PChar(S)) You can typecast long strings

 into null-terminated strings.
 The address of the long
 string is the address of its
 first character, and the long

 string is followed by a null.
S := StrPas(P) S := P Long strings can automatically
 copy from null-terminated

 strings.

Long strings cannot be passed to OpenString-type parameters or
var short-string parameters.

Variant Type

Delphi 2.0 introduces variant types to give you the flexibility
to dynamically change the type of a variable. This is useful
when implementing OLE automation or certain kinds of database
operations where the parameter types on the server are unknown
to your Delphi-built client application.

A variant type is a 16-byte structure that has type
information embedded in it along with its value, which can
represent a string, integer, or floating-point value. The
compiler recognizes the standard type identifier Variant as the
declaration of a variant.

In cases where the type of a variant is incompatible with the
type needed to complete an operation, the variant will
automatically promote its value to a compatible value, if
possible. For instance, if a variant contains an integer and
you assign it to a string, the variant converts its value into
the string representing the integer number, which is then
assigned to the string.

You can also assign a variant expression to a variable of a
standard type or pass the variant as a parameter to a routine
that expects a standard type as a parameter. Delphi coerces the
variant value into a compatible type if necessary, and raises
an exception if it cannot create a compatible value.

Currency Type

Delphi 2.0 defines a new type called Currency, which is a
floating-point type specifically designed to handle large
values with great precision. Currency is assignment-compatible
with all other floating-point types (and variant types), but
is actually stored in a 64-bit integer value much like the Comp
type.

Currency-type values have a four-decimal-place precision. That
is, the floating-point value is stored in the integer format

with the four least significant digits implicitly representing
four decimal places.

Changed Data Types
------- ---- -----
The implementation-dependent types Integer and Cardinal are
32-bit values in Delphi 2.0, where they were 16-bit values in
Delphi 1.0. To explicitly declare 16-bit integer data types,
use the SmallInt and Word types.

Additional Syntax
---------- ------
You can include an optional finalization section in a unit.
Finalization is the counterpart of initialization, and takes
place when the application shuts down. You can think of the
finalization section as "exit code" for a unit. The
finalization section corresponds to calls to ExitProc and
AddExitProc in Delphi 1.0.

The finalization begins with the reserved word finalization.
The finalization section must appear after the initialization
section, but before the final end. statement.

Once execution enters an initialization section of a unit,
the corresponding finalization section is guaranteed to
execute when the application shuts down. Finalization sections
must handle partially-initialized data properly, just as class
destructors must.

Finalization sections execute in the opposite order that units
were initialized. For example, if your application initializes
units A, B, and C, in that order, it will finalize them in the
order C, B, and A.

The outline for a unit therefore looks like this:

unit UnitName;
interface
{ uses clause; optional }
...
implementation
{ uses clause; optional }
...
initialization { optional }
...
finalization { optional }
...
end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Preventing a Form from Resizing
 NUMBER : 2958
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 4, 1996

 TITLE : Preventing a Form from Resizing

In some cases, developers would want to create a regular window
(Form) in Delphi that contains some of the characteristics of a
dialog box. For example, they do not want to allow their users
to resize the form at runtime due to user interface design
issues. Other than creating the whole form as a dialog box,
there is not a property or a method to handle this in a regular
window in Delphi. But due to the solid connection between Delphi
and the API layer, developers can accomplish this easily.

The following example demonstrates a way of handling the Windows
message "WM_GetMinMaxInfo" which allows the developer to restrict
the size of windows (forms) at runtime to a specific value. In
this case, it will be used to disable the functionality of sizing
the window (form) at runtime.

Consider the following unit:

unit getminmax;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

type
 TForm1 = class(TForm)
 private
 { Private declarations }
 procedure WMGetMinMaxInfo(var Msg: TWMGetMinMaxInfo);
 message WM_GETMINMAXINFO;
 procedure WMInitMenuPopup(var Msg: TWMInitMenuPopup);
 message WM_INITMENUPOPUP;
 procedure WMNCHitTest(var Msg: TWMNCHitTest);
 message WM_NCHitTest;
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

 procedure TForm1.WMGetMinMaxInfo(var Msg: TWMGetMinMaxInfo);
 begin
 inherited;
 with Msg.MinMaxInfo^ do
 begin
 ptMinTrackSize.x:= form1.width;
 ptMaxTrackSize.x:= form1.width;
 ptMinTrackSize.y:= form1.height;
 ptMaxTrackSize.y:= form1.height;
 end;
 end;

 procedure TForm1.WMInitMenuPopup(var Msg: TWMInitMenuPopup);
 begin
 inherited;
 if Msg.SystemMenu then
 EnableMenuItem(Msg.MenuPopup, SC_SIZE, MF_BYCOMMAND or MF_GRAYED)
 end;

 procedure TForm1.WMNCHitTest(var Msg: TWMNCHitTest);
 begin
 inherited;
 with Msg do
 if Result in [HTLEFT, HTRIGHT, HTBOTTOM, HTBOTTOMRIGHT,
 HTBOTTOMLEFT, HTTOP, HTTOPRIGHT, HTTOPLEFT] then
 Result:= HTNOWHERE
 end;
end. { End of Unit}

A message handler for the windows message "WM_GetMinMaxInfo" in
the code above was used to set the minimum and maximum TrackSize
of the window to equal the width and height of the form at design
time. That was actually enough to disable the resizing of the
window (form), but the example went on to handle another couple
of messages just to make the application look professional. The
first message was the "WMInitMenuPopup" and that was to gray out
the size option from the System Menu so that the application does
not give the impression that this functionality is available.
The second message was the "WMNCHitTest" and that was used to
disable the change of the cursor icon whenever the mouse goes
over one of the borders of the window (form) for the same reason
which is not to give the impression that the resizing
functionality is available.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

SQL: Sorting on a Calculated Column
 NUMBER : 2961
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 14, 1996

 TITLE : SQL: Sorting on a Calculated Column

At times, a given data schema will require that a data set will need to be
ordered by the result of a calculation. In Delphi applications using SQL,
this is possible, but the methodlogy varies slightly depending on the
database type used.

For local SQL involving Paradox and dBASE tables, the calculated field
would be given a name using the AS keyword. This allows the calculated
field to be referenced for such purposes as setting a sort order with an
ORDER BY clause in an SQL query. For example, using the sample table
ITEMS.DB:

 SELECT I."PARTNO", I."QTY", (I."QTY" * 100) AS TOTAL
 FROM "ITEMS.DB" I
 ORDER BY TOTAL

In this example, the calculated field is designated to be referred to as
TOTAL, this column name then being available for the ORDER BY clause for
this SQL statement.

The above method is not supported for InterBase. It is still possible,
though, to sort on a calculated field in InterBase (IB) or the Local
InterBase Server tables. Instead of using the name of the calculated
field, an ordinal number representing the calculated field's position in
field field list is used in the ORDER BY clause. For example, using the
sample table EMPLOYEE (in the EMPLOYEE.GDB database):

 SELECT EMP_NO, SALARY, (SALARY / 12) AS MONTHLY
 FROM EMPLOYEE
 ORDER BY 3 DESCENDING

While IB or LIBS tables require this second method and cannot use the
first method described, either of the two methods can be used with local
SQL. For example, using the SQL query for the Paradox table and adapting
it to use the relative position of the calculated field rather than the
name:

 SELECT I."PARTNO", I."QTY", (I."QTY" * 100) AS TOTAL
 FROM "ITEMS.DB" I
 ORDER BY 3

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information

pertains.

Working With Auto-increment Field Types
 NUMBER : 2955
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : March 4, 1996

 TITLE : Working With Auto-increment Field Types

In Delphi applications, the use of tables containing fields that
autoincrement, or change automatically in some manner unknown to
the application, can be problematic. Paradox, InterBase, Sybase
and Informix tables all provide means of inserting or updating
field values automatically, without intervention from the front-
end application. Not every table operation is affected by this
mechanism, however. So, this document will attempt to provide a
guideline for dealing with issues relating to the use of such
field types in Paradox 5.0, Informix 5.x, MS/Sybase SQL Server
4.x, InterBase 4.0 and Local InterBase tables.

For each table type, a different mechanism provides this
behind-the-scenes behavior. Paradox tables support an
Autoincrement field type. When new records are added to such
tables, the Borland Database Engine determines the highest
current value in that column, adds one, and updates the new row
with the new value.

For Informix tables, this behavior is provided by an
Informix-specific field type called Serial. Serial columns
differ from Paradox Autoincrement fields in that their values may
be changed, while Autoincrement columns are read-only.

InterBase and MS/Sybase SQL Server tables do not support a special
type for this kind of behavior, but may employ triggers to
accomplish the same task. Triggers are specialized procedures
that reside on the database server and automatically execute in
response to events such as table inserts, updates and deletes.
The use of tables with associated triggers can be particularly
problematic, since triggers are capable of doing much more than
just incrementing column values.

The three areas that are affected by these field types are simple
inserts, batchmoves, and table linking.

Handling Update and/or Append BatchMoves

Paradox Tables

Since the Autoincrement field type is a read-only type,
attempting to perform a batchmove operation with such a column in
the destination table may cause an error. To circumvent this,
the TBatchMove components Mappings property must be set to match

source table fields to the target destination fields excluding
the destination table's Autoincrement field.

Informix Tables

Batch moving rows to Informix tables with Serial columns will not
cause an error in and of itself. However, caution should be used
since Serial columns are updateable and are often used as primary
keys.

InterBase Tables
MS/Sybase SQL Server Tables

Triggers on InterBase and SQL Server tables may catch any
improper changes made to the table, but this depends strictly
upon the checks placed in the trigger. Here again, caution
should be used since trigger-updated columns are often used as
primary keys.

Linking Tables via MasterSource & MasterFields

Paradox Tables
Informix Tables

If the MasterFields and MasterSource properties are used to
create linked tables in a master-detail relationship and one of
the fields in the detail table is an Autoincrement or Serial
field, then the matching field in the master table must be a Long
Integer field or a Serial field. If the master table is not a
Paradox table then the master table's key field may be any integer
type it supports.

InterBase Tables
MS/Sybase SQL Server Tables

Linking with these tables types presents no particular problems
relating to trigger-modified fields. The only necessity is
matching the appropriate column type between the two tables.

Simple Inserts/Updates

Paradox Tables

Since Paradox Autoincrement fields are read-only, they are not
typically targeted for update when inserting new records.
Therefore, the Required property for field components based on
Autoincrement fields should always be set to False. This can be
accomplished from within Delphi, using the Fields Editor to
define field components at design time by double clicking on the
TQuery or TTable component or at runtime with a statement similar
to the following.

Table1.Fields[0].Required := False;

 or

Table1.FieldByName('Fieldname').Required := False;

Informix Tables

Although Informix Serial fields are updateable, if their
autoincrement feature is to be used, then the Required property
of field components based on them should be set to False. Do
this in the same manner described for Paradox Tables.

InterBase Tables
MS/Sybase SQL Server Tables

Handling inserts on these trigger-modified table types requires a
number of steps for smooth operation. These additional steps are
particularly necessary if inserts are accomplished via standard
data-aware controls, such as DBEdits and DBMemos.

Inserting rows on trigger-modified InterBase and SQL Server
tables may often yield the error message 'Record/Key Deleted'.
This error message appears despite that the table is properly
updated on the server. This will occur if:

 1. The trigger updates the primary key. This is not only
 likely when a trigger is used, but is probably the most
 common reason for using a trigger.

 2a. Other columns in the table have bound default values.
 This is accomplished with the DEFAULT clause at table
 creation in the case of InterBase. or with the
 sp_bindefault stored procedure in SQL Server.

 or

 2b. Blob type fields are updated when a new row is inserted.

 or

 2b. Calculated fields are defined in an InterBase table.

The fundamental cause for this is that when the record (or
identifying key) is changed at the server, the BDE no longer has
means of specifically identifying the record for re-retrieval.
That is, the record no longer appears as it did when it was
posted, therefore the BDE assumes that the record has been
deleted (or the key changed).

Firstly, the field components of trigger-modified fields must
have their Required property set to False. Do this in the same

manner described for Paradox Tables.

Secondly, to avoid the spurious error, order the table by an
index that does not make use of fields updated by the trigger.
This will also prevent the newly entered record from disappearing
immediately after insertion.

Lastly, if requirement 1 above holds but neither 2a, 2b nor 2c
hold, then code similar to the following should be used for the
table component's AfterPost event handler.

procedure TForm1.Table1AfterPost(DataSet: TDataset);
begin
 Table1.Refresh
end;

A Refresh of the table is necessary to re-retrieve the values
changed by the server.

If criteria 2a, 2b or 2c cannot be avoided, then the table should
be updated without using Delphi's data-aware controls. This can
be accomplished using a TQuery component targeted at the same
table. Once the query has posted the update, any table components
using the same table should be Refreshed.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi 2.0 for Windows 95 & Windows NT Factsheet
 NUMBER : 2996
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : May 6, 1996

 TITLE : Delphi 2.0 for Windows 95 & Windows NT Factsheet

 Delphi 2.0
 for Windows 95 and Windows NT
 Factsheet

Delphi 2.0 is the only Rapid Application Development tool that
combines the performance of the world's fastest optimizing 32-bit
native-code compiler, the productivity of visual component-based
design, and the flexibility of scalable database architecture in
a robust object-oriented environment.

"The most exciting new programming tool. Delphi combines the
intuitive ease of a visual programming tool with the power of a
true compiler." -PC Magazine, January 1996

The fastest way to the fastest 32-bit applications
--

Now, whether you are a beginning programmer, professional
developer, or client/server developer, there is a version of
Delphi that is right for you. Introducing Delphi Desktop 2.0,
Delphi Developer 2.0, and Delphi Client/Server Suite 2.0. Delphi
2.0 for Windows 95 and Windows NT combines the most intuitive
visual design environment and scalable database tools
with the world's fastest optimizing 32-bit native-code compiler.

The NEW! high-performance, optimizing 32-bit native-code compiler
creates standalone executables that are up to 300 to 400% faster
than 16-bit Delphi applications, and up to 15 to 50 times faster
than applications built with p-code interpreters. Create fast,
standalone, royalty-free EXEs with no runtime interpreter DLLs
required.

Only Delphi 2.0 brings the power of true 32-bit development to a
visual environment. The 32-bit architecture eliminates all 16-bit
memory restrictions, enabling you to build strings and data
structures up to two gigabytes.

Delphi 2.0 includes FREE! Delphi 1.0 for 16-bit Windows 3.1
application development, making it a complete solution no matter
where your Windows-based applications reside today. A simple
recompile allows rapid migration of 16-bit applications to 32
bits, preserving your existing investment in code.

Reuse: The key to productivity

The NEW! 32-bit Visual Component Library (VCL) includes more than
90 customizable, reusable components and a dozen NEW! Windows 95
components, so you can drag-and-drop your way to your first
32-bit application in no time. Everything from tree views and
list boxes, to notebook tabs, grids, and multimedia controls, is
right at your fingertips. You can easily modify and reuse Delphi
components and OCX controls, saving time and boosting
productivity.

FREE! Quick Reports components allow you to easily create,
preview, and print simple embedded reports.

NEW! Visual Form Inheritance maximizes reuse, simplifies the
implementation of standards, and makes code maintenance easier.
Visual Form Inheritance lets you visually create new forms that
inherit all properties from another form.

Create reusable DLLs easily

Build DLLs in Delphi and use them with C++, Paradox,(R) Visual
Basic, and other tools. And gain tighter integration between all
of your Borland(R) C++ and Delphi applications with NEW! support
for OBJ files and COM objects.

Raising the bar in Rapid Application Development
--

The object-oriented architecture and Two-Way-Tools(TM) in Delphi
maximize productivity. Everything you do visually is
automatically reflected in code.

The NEW! centralized Object Repository stores forms, Data Module
Objects, and business rules for reuse. Any new application can
inherit, use, or copy an existing structure so you can pick the
architecture that best fits your development needs.

NEW! Data Module Objects act as your application's information
core, allowing you to define data sources, store relationships,
and apply business rules to your database. You can separate your
business rules from application code for easier maintenance.

A comprehensive suite of visual design and debugging tools
accelerate development so you move seamlessly from prototype to
production. The NEW! multi-error compile with hints and warnings
helps you resolve errors faster. Programmers can jump to and fix
multiple problems in a single compile. For quick and easy
debugging of even your largest applications, the new compiler
even catches logic errors like empty loops, uninitialized
pointers, and unused variables.

Unleash the power of Windows 95 and Windows NT
--

Delphi 2.0 provides complete access to Windows 95 and NT APIs
including multi-threading, MAPI, and Unicode, so you can leverage
the power of the 32-bit operating system.

NEW! OCX support lets you drag-and-drop OCX controls directly
into your applications from the Delphi Component Palette. Delphi
also lets you subclass OCXs for easy customization. You can also
integrate OLE-enabled applications like Visual Basic, Excel,
Borland C++, and Paradox, with NEW! OLE Automation controller and
server support.

Drag-and-drop database development

Create high-performance, scalable database applications with
integrated database support. NEW! data-aware controls let you
manipulate live data at design time. Simply select the fields,
and Delphi instantly builds the connections.

Let Delphi 2.0 do the database work for you with NEW! Fast
Filters and Smart Lookups. Fast Filters make viewing a specific
subset of your data as fast and easy as changing a property.
Smart Lookups automatically provide a dropdown box to seamlessly
display data from multiple tables.

The NEW! Database Explorer allows you to visually browse and
manage tables and aliases without leaving the Delphi IDE.

NEW! 32-bit Borland(R) Database Engine (BDE) includes a new query
engine and takes advantage of 32-bit flat address space for
increased performance. It provides direct access to Visual
dBASE(R) and Paradox tables, and forms a solid foundation for all
your database applications.

Delphi Developer: The choice for professional programmers

If you are building sophisticated, multiuser LAN or corporate
database applications, you need Delphi Developer 2.0. It provides
all the power of Delphi Desktop 2.0, plus a comprehensive set of
professional programming tools.

Powerful programming tools

The VCL Source Code lets you easily modify native Delphi
components, and build your own custom components. Also included
are sample OCXs for graphing, charting, spreadsheet, and
spell-checking.

Easily add your favorite custom development tools directly to the
Delphi environment with the NEW! Open Tools API. Interact with
CASE tools or link to your favorite editor--whatever you need to
be your most productive.

Build sophisticated, professional reports using live data at

design time with the NEW! 32-bit ReportSmith.(R)

When you're ready to distribute your applications, the integrated
install utility, InstallShield(R) Express, instantly builds a
professional installation program for even your most complex
database applications.

Advanced database power

Quickly establish and maintain data integrity with the NEW!
scalable Data Dictionary. It stores customized information about
the data in your tables, extended field attributes like min, max,
default values, display preferences, and edit masks.

Easily build detailed views of your data with the NEW!
Multi-Object Grid. It provides codeless support for quick
searching and automatic lookups, and lets you decide whether data
appears in rows or individual panels. Panel views support
multiple dropdowns, check boxes, and edit fields.

Leverage the power of the NEW! 32-bit BDE with complete access to
the BDE API and help files. You also get complete ODBC
connectivity.

Complete scalability

The scalable NEW! 32-bit Local InterBase(R) Server is included
for economical off-line development and testing, and for building
standalone ANSI SQL-92 compliant applications.

Delphi Client/Server Suite: Gain the competitive advantage
--

Delphi Client/Server Suite 2.0 gives you a complete suite of
tools to build scalable, high-performance client and server
applications for Windows 95, Windows NT, and Windows 3.1.

Deploy royalty-free applications across corporate database
servers using the NEW! 32-bit SQL Links high-performance native
drivers for InterBase, Oracle, Sybase, and MS SQL Server.

Visually browse and modify server-specific meta data including
stored procedures, triggers, event alerters, and domains with the
NEW! SQL Database Explorer. Gain optimum performance by testing,
debugging, and tuning your SQL applications with the NEW! SQL
Monitor. Build and test sophisticated multiuser client/server
applications with NEW! InterBase NT database server (2-user
license). Use the NEW! Visual Query Builder to visually create
complex database queries and automatically generate bug-free ANSI
SQL-92 commands.

NEW! Cached Updates increase server responsiveness by reducing
the amount of network traffic between client and server. Scale
networked applications and move data between formats and host

platforms with the NEW! Data Pump Expert. Manage complex team
projects with sophisticated source code check-in, check-out, and
version control using the NEW! integrated PVCS Version Manager.

Delphi Client/Server Suite 2.0 shortens every stage of the
development cycle, allowing you to respond to changing business
needs, and gain the competitive advantage.

Delphi 2.0 Specifications and system requirements

Optimizing Native-Code Compiler
 * Compiles at more than 350,000 lines per minute
 * Create fast standalone EXEs with no runtime interpreter
 Dynamic Link Library (DLL)
 * Applications run up to 15 to 50 times faster than
 interpreted p-code
 * Create DLLs that work with C++, Visual dBASE, Paradox,
 Visual Basic, PowerBuilder, and others
 * Full access to Windows 95 and NT APIs
 * Optimized case statements, sets, 32-bit math operations,
 string and file routines, and more
 * Smart Linker removes unused objects and code
 * Automatic form linking defines uses clauses
 * Advanced math library for extended statistical and financial
 analysis

Visual Component Library (VCL)
 * More than 90 reusable components
 * Support for the latest Microsoft systems technologies
 including OCX, OLE Automation controller and server, MAPI,
 and ODBC
 * Standard components for menus, buttons, masked edit fields,
 panels, graphics, notebook tabs, grids, outlines, list
 boxes, and more
 * "Live" design-time data access
 * VCL Source Code available separately

Object Pascal Language
 * Structured, object-oriented language
 * Supports inheritance, polymorphism, and encapsulation
 * Control over privacy with Public, Private, Protected, and
 Published reserved words
 * Create components with properties and events
 * Use inheritance to customize any object
 * Runtime type information and object persistence
 * Automatic, extensible exception handling
 * Support for open arrays, user-defined types, objects, and
 pointers
 * Support for delegation and class references

Borland Database Engine
 * High-performance engine with native drivers for Visual
 dBASE, Paradox, and Local InterBase Server
 * Fully scalable support for migrating applications from
 desktop to client/server

 * Royalty-free deployment of database engine
 * ODBC support for Access, Btrieve, Excel, DB2, AS/400,
 Ingres, HP ALBASE/SQL, and gateways like IBM DDCS/2, Micro
 Decisionware, and Sybase Net-gateway (available separately)
 * Local InterBase is a high-performance ANSI SQL-92 conformant
 SQL database server

Documentation and Help
 * More than 5Mb of online help
 * Manuals: Getting Started, Object Pascal Language Guide,
 Delphi User's Guide, Component Writer's Guide, and Database
 Application Developer's Guide

Minimum System Requirements
 * Intel 486-based PC or higher
 * Microsoft Windows 95 or Windows NT
 * 8Mb of extended memory or higher
 * 50Mb hard disk space
 * CD-ROM drive (3.5" disks available separately)

Networks Supported
 * Any Microsoft Windows 95 or NT-compatible networks

The fastest way to the
fastest Windows 95/NT Delphi Delphi Delphi
applications Desktop Developer C/S Suite
---------------------------- ------- --------- ----------
Optimizing 32-bit native code X X X
compiler

32-bit Borland Database Engine (BDE) X X X

Create reusable DLLs and X X X
royalty-free, standalone EXEs
that are up to 15 to 50 times
faster than p-code interpreters

Full Windows 95/NT support for OLE X X X
Automation controllers, servers,
and OLE Controls (OCXs)

Complete access to Windows 95/NT X X X
APIs for multi-threading, Unicode,
long filenames, MAPI, and more

Complete suite of Windows 95 X X X
common controls

Integrated Development Environment X X X

Object-oriented, fully extensible X X X
component architecture

Object Repository for storing and X X X

reusing forms, Data Modules, and
DLLs

Visual Form Inheritance to reduce X X X
coding and simplify maintenance

Visual Component Library (VCL) X X X
with more than 90 reusable
components

Data-aware components for drag- X X X
and-drop database applications

Data Module Objects to separate X X X
business rules from application
code

Database Explorer to visually X X X
browse and modify tables,
aliases, and indexes

FREE! Quick Reports to easily X X X
create, preview, and print
embedded reports

FREE! 16-bit Delphi 1.0 for X X X
Windows 3.1 Deployment

Complete documentation including X X X
Object Pascal Language Guide

VCL Source Code and manual to X X
develop or customize components

Scalable Data Dictionary to X X
implement and maintain data
integrity

Complete ODBC connectivity X X

Additional components like the X X
Multi-Object Grid

32-bit Local InterBase Server for X X
off-line scalable SQL development

32-bit ReportSmith for sophisticated X X
reporting

InstallShield Express for building X X
professional installs

WinSight(TM) 32 for monitoring Windows X X
messaging

BDE low-level API support and Help X X

files

Expanded Open Tools API to integrate X X
your favorite tools

Team development interface (requires X X
InterSolv PVCS)

Versatile sample OCXs for charting, X X
graphics, spreadsheet, and
spell-checking

32-bit SQL Links native drivers, with X
unlimited deployment license for
Oracle, Sybase, Informix, MS SQL
Server, and InterBase

InterBase NT (2-user license) for X
scalable multiuser SQL development

SQL Database Explorer to visually X
manage server-specific meta data

SQL Monitor to test, debug, and tune X
SQL applications

Integrated InterSolv PVCS Version X
Manager for team development

Visual Query Builder to generate X
bug-free SQL code

Cached Updates to speed up server X
response time

Data Pump Expert for rapid upsizing X
and application scaling

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

SQL: Summarizing a Calculated Column
 NUMBER : 2963
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 14, 1996

 TITLE : SQL: Summarizing a Calculated Column

Occasionally in a Delphi application that uses SQL to access data, it
becomes necessary to summarize calculated data. That is, to create a
calculated column and apply the SUM function to it.

When performing this operation against SQL tables (such as those for the
Local InterBase Server), it is a simple matter of enclosing the
calculation within the SUM function. For example, using the sample table
EMPLOYEE (in the EMPLOYEE.GDB database):

 SELECT SUM(SALARY / 12)
 FROM EMPLOYEE

This same methodology can also be used when the returned data set is to be
grouped by the value in another column with a GROUP BY clause:

 SELECT EMP_NO, SUM(SALARY / 12)
 FROM EMPLOYEE
 GROUP BY EMP_NO
 ORDER BY EMP_NO

While SQL databases support the summarization of calculated columns,
local SQL will not. Other means would be needed to obtain the results,
such as copying the results of a query with a calculated column to a
temporary table (as with a TBatchMove component) and then using a TQuery
component to summarize the data in the temporary table.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Managing Data Segment Size
 NUMBER : 2964
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : March 4, 1996

 TITLE : Managing Data Segment Size

Managing Data Segment Size

 The "Data Segment too large" error occurs in Delphi 16
bit applications when the size of static data, stack and local
heap are larger than the 64k application limit imposed by
Windows. This document discusses how to identify and measure
portions of your code that consume memory in the data segment,
and how to manage this limited resource.

What does the data segment consist of?

Task header: 16 bytes of various Windows system information
Static data: Contains global variables and typed constants.
Stack: Stores local variables allocated by procedures

and functions. The default stack size is 16k
and can be modified in the
Options|Project|Linker page.

Local heap: Used by Windows for temporary storage and
defaults to 8k. Do not set the local heap to 0.
Windows may expand this area of memory if
necessary.

How do I measure total data segment size?

To get the size of a 16 bit Delphi application static
data, stack and local heap for a project, compile the project
and select the Delphi menu item Compile|Information. The dialog
will list the following, given a new project with one form:

Source compile:12 lines
Code size: 128981 bytes
Data size: 3636 bytes
Stack size: 16384 bytes
Local Heap size: 8192 bytes

A Delphi application starts with the overhead of static
data declared in units that provide the applications initial
functionality. If the only global variable is the form name,
the application will still consume at least 3,636 bytes.
Adding a second form increases the datasize to only 3640 --
an increase of only the size of the global variable needed to
declare a second form.

var
 Form2: TForm2; { 4 byte pointer }

The total data segment size, (the sum of static data,
stack and local heap) is 28,212 bytes:

Data size: 3,636
Stack size: 16,384
Local Heap size: 8,192

 28,212

What portions of my project increase data size?

-- Variables declared within the interface and implementation
 sections.
-- Typed constants declared anywhere within the application.
 An example of a typed constant declaration:

const
 MyConst: integer = 100;

Units declared in the Uses clause and components
contain code that may hvae global variables or typed constants.
For instance, a TBitBtn adds 180 bytes when added to a project,
where at least 132 bytes are accounted for by typed constants
and global variables within the Buttons.Pas unit. Adding 10
more TBitBtns to the project does not increase the project
size beyond the initial 180 byte increase.

The following sample unit includes comments describing memory
usage:

unit Test;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls;

{ Functions used from the units may have global variables
 and typed constants that will increase the size of the
 data segment. }

type
 { Class objects are stored on the global heap, not the data
 segment}
 TForm1 = class(TForm)
 Label1: TLabel;
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 public
 { MyInteger and MyString are stored
 on the global heap. }

 MyInteger: Integer;
 MyString: String;
 end;

const
{ MyConst is a typed constant and is stored in
 static data portion of the data segment.
 Minimize the number of typed constants. }
 MyConst: integer = 23;

var
{ Form1 is a global variable - stored in the static
 data portion of the data segment. You should minimize
 the number and size of global variables. Form1 is
 pointer and uses only four bytes. }
 Form1: TForm1;
{ MyGlobalString will consume 256 bytes even if the
 string is only a few characters long. }
 MyGlobalString: string;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var
{ MyLocal is a local variable and is not stored
 in the data segment. }
 MyLocal: String;
begin
 MyLocal := 'Test application';
 Label1.Caption := MyLocal
end;

end.

What is the impact of components on the data size?
--
Here is a list of components from the Standard, Additional,
Data Access, and Data Control(partial list) pages of the
component pallette. The list shows the compile size after
added a single instance of the component to a new project.
In descending order by data size usage:

Component App Bytes
in Over
bytes 3,636

table 4272 636
batchmove 4272 636
storedproc 4258 622
query 4250 614
database 4036 400
datasource 3886 250

outline 3838 202
bitbtn 3816 180
stringgrid 3794 158
drawgrid 3790 154
maskedit 3762 126
memo 3750 114
report 3722 86
listbox 3704 68
edit 3694 58
tabset 3692 56
combobox 3674 38
scrollbar 3654 18
button 3652 16
checkbox 3652 16
radiobutton 3652 16
radiogroup 3652 16
panel 3650 14
label 3648 12
speedbutton 3646 10
header 3644 8
scrollbox 3644 8
notebook 3638 2
menu 3636 0
groupbox 3636 0
tabbednotebook3636 0
image 3636 0
shape 3636 0

How do I manage data segment size?

1) Avoid declaring global variables or typed constants,
 particularly large arrays. Instead, declare a type and
 a pointer to that type. Then use memory management
 routines such as Getmem to allocate memory from the
 global heap.
 This reduces the resource hit on the data segment to the
 4 bytes used by the pointer variable. See code sample below.
2) Be aware of the impact of components. See above.
3) If you have a large number of strings, or arrays of strings,
 allocate these dynamically. Note: strings default to 255 in
 length -- declare as a specific size where possible:
 (i.e. MyShortString: string[20]).
4) A TStringList object can be used to create and manipulate
 large numbers of strings.
5) The Pchar type, "pointer to a string", can be used to
 dynamically create and manipulate character strings using
 little data segment space. See online help under
 "String-handling routines (Null-terminated)".
6) Information on memory issues is available in Object Pascal
 Language Guide, OBJLANG.ZIP and can be downloaded from
 Compuserve, DELPHI forum, and the World Wide Web,
 www.borland.com/TechInfo/delphi/whatsnew/dwnloads.html.

Alternative to global declaration of a large structure

--

Here's an example that will waste 32 bytes of data segment,
followed by a second example using only 4 bytes, and
accomplishes essentially the same task.

1)
 { Declaring TMyStructure causes no change
 in the data segment size. }
 TMyStructure = record
 Name: String[10];
 Data: array[0..9] of Integer;
 end;

 var
 Form1: TForm1;

 { MyStructure declaration causes a 32 byte
 increase:
 Mystructure pointer = 1 byte
 Name = 11 bytes (10 chars + length byte)
 Data = 20 bytes (10 * 2 bytes per integer)
 }
 MyStructure: TMyStructure;

2)
 { Declaring TMyStructure causes no change
 in the data segment size. }
 PMyStructure = ^TMyStructure;
 TMyStructure = record
 Name: String[10];
 Data: array[0..9] of Integer;
 end;

 var
 Form1: TForm1;
 { MyDataPtr causes 4 byte increase
 for the pointer variable. }
 MyDataPtr: PMyStructure;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 { Here, resources are taken from the heap. }
 New(MyDataPtr);
 MyDataPtr.Name := 'Fred';
 MyDataPtr.array[0] := 560;
 Dispose(MyDataPtr);
end;

You can also put a variable declaration within a class:

type
 TMyBigArray = array[1..100] of string

 TForm1 = class(TForm)
 public
 { This declaration has no impact on data segment size. }
 MyBigArray: TMyBigArray;
 end;

var
 { This declaration increases data segment by 25,600 bytes. }
 MyOtherBigArray: TMyBigArray;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Validating input in TEdit components
 NUMBER : 2967
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1997

 TITLE : Validating input in TEdit components

 Q: How can I validate input in my TEdit components?

 A: Assuming you're using regular TEdit components,
 during OnExit, you will see irregular behavior from
 controls if you attempt to change focus at that time.

 The solution is to post a message to your form in the TEdit's
 OnExit event handler. This user-defined posted message will
 indicate that the coast is clear to begin validating input.
 Since posted messages are placed at the end of the message
 queue, this gives Windows the opportunity to complete the
 focus change before you attempt to change the focus back to
 another control.

 Attached is a unit and text representation of a DFM (form)
 file which demonstrates this technique.

 { *** BEGIN CODE FOR UNIT5.PAS *** }
 unit Unit5;

 interface

 uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls, Mask;

 const
 { User-defined message }
 um_ValidateInput = wm_User + 100;

 type
 TForm5 = class(TForm)
 Edit1: TEdit;
 Edit2: TEdit;
 Edit3: TEdit;
 Edit4: TEdit;
 Button1: TButton;
 procedure EditExit(Sender: TObject);
 procedure EditEnter(Sender: TObject);
 private
 Refocusing: TObject;
 { User-defined message handler }
 procedure ValidateInput(var M: TMessage); message um_ValidateInput;
 end;

 var
 Form5: TForm5;

 implementation

 {$R *.DFM}

 procedure TForm5.ValidateInput(var M: TMessage);
 var
 E : TEdit;
 begin
 { The following line is my validation. I want to make sure }
 { the first character is a lower case alpha character. Note }
 { the typecast of lParam to a TEdit. }
 E := TEdit(M.lParam);
 if not (E.Text[1] in ['a'..'z']) then begin
 Refocusing := E; { Avoid a loop }
 ShowMessage('Bad input'); { Yell at the user }
 TEdit(E).SetFocus; { Set focus back }
 end;
 end;

 procedure TForm5.EditExit(Sender: TObject);
 begin
 { Post a message to myself which indicates it's time to }
 { validate the input. Pass the TEdit instance (Self) as }
 { the message lParam. }
 if Refocusing = nil then
 PostMessage(Handle, um_ValidateInput, 0, longint(Sender));
 end;

 procedure TForm5.EditEnter(Sender: TObject);
 begin
 if Refocusing = Sender then
 Refocusing := nil;
 end;

 end.
 { *** END CODE FOR UNIT5.PAS *** }

 { *** BEGIN CODE FOR UNIT5.DFM *** }
 object Form5: TForm5
 Left = 489
 Top = 303
 Width = 318
 Height = 205
 Caption = 'Form5'
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 PixelsPerInch = 96
 TextHeight = 16
 object Edit1: TEdit
 Left = 32
 Top = 32

 Width = 121
 Height = 24
 TabOrder = 0
 Text = 'Edit1'
 OnEnter = EditEnter
 OnExit = EditExit
 end
 object Edit2: TEdit
 Left = 160
 Top = 32
 Width = 121
 Height = 24
 TabOrder = 1
 Text = 'Edit2'
 OnEnter = EditEnter
 OnExit = EditExit
 end
 object Edit3: TEdit
 Left = 32
 Top = 64
 Width = 121
 Height = 24
 TabOrder = 2
 Text = 'Edit3'
 OnEnter = EditEnter
 OnExit = EditExit
 end
 object Edit4: TEdit
 Left = 160
 Top = 64
 Width = 121
 Height = 24
 TabOrder = 3
 Text = 'Edit4'
 OnEnter = EditEnter
 OnExit = EditExit
 end
 object Button1: TButton
 Left = 112
 Top = 136
 Width = 89
 Height = 33
 Caption = 'Button1'
 TabOrder = 4
 end
 end
 { *** END CODE FOR UNIT5.DFM *** }

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

DDE: A simple example
 NUMBER : 2970
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : May 21, 1996

 TITLE : DDE: A simple example

Q: How can I do DDE under Delphi using API calls ?

A: Its fairly easy to accomplish, following is an example of how to have a
client program talk with a server program. Both are completely written in
Delphi. In total there are 2 projects, 3 forms, and 3 units. This demo
uses DDE ML API methods to handle the DDE requests.

The server must be running before the client will load. This demo program
shows 3 different ways data can be moved between a client and a server.

1. The Client can 'POKE' data to the server.
2. The Server can automaticaly pass data to the Client and the Client
 will update a graph based on the results from the Server.
3. The Server's Data changes, then the Client will make a request to the
 Server for the new data, then update the graph.

 ***** How to handle the program. *****

Following are 8 files concatenated together. Each one has a
{ *** BEGIN CODE FOR FILENAME.EXT *** } CODE { *** END CODE FOR
FILENAME.EXT *** } take each block of code BETWEEN THE { *** } lines and
place in a file of the corresponding name, then compile and have fun !!!!

{ *** BEGIN CODE FOR DDEMLCLI.DPR *** }
program Ddemlcli;

uses
 Forms,
 Ddemlclu in 'DDEMLCLU.PAS' {Form1};

{$R *.RES}

begin
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.
{ *** END CODE FOR DDEMLCLI.DPR *** }

{ *** BEGIN CODE FOR DDEMLCLU.DFM *** }
object Form1: TForm1
 Left = 197
 Top = 95

 Width = 413
 Height = 287
 HorzScrollBar.Visible = False
 VertScrollBar.Visible = False
 Caption = 'DDEML Demo, Client Application'
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 Menu = MainMenu1
 PixelsPerInch = 96
 OnCreate = FormCreate
 OnDestroy = FormDestroy
 OnShow = FormShow
 TextHeight = 16
 object PaintBox1: TPaintBox
 Left = 0
 Top = 0
 Width = 405
 Height = 241
 Align = alClient
 Color = clWhite
 ParentColor = False
 OnPaint = PaintBox1Paint
 end
 object MainMenu1: TMainMenu
 Top = 208
 object File1: TMenuItem
 Caption = '&File'
 object exit1: TMenuItem
 Caption = 'E&xit'
 OnClick = exit1Click
 end
 end
 object DDE1: TMenuItem
 Caption = '&DDE'
 object RequestUpdate1: TMenuItem
 Caption = '&Request an Update'
 OnClick = RequestUpdate1Click
 end
 object AdviseofChanges1: TMenuItem
 Caption = '&Advise of Changes'
 OnClick = AdviseofChanges1Click
 end
 object N1: TMenuItem
 Caption = '-'
 end
 object PokeSomeData: TMenuItem
 Caption = '&Poke Some Data'
 OnClick = PokeSomeDataClick
 end
 end
 end
end
{ *** END CODE FOR DDEMLCLU.DFM *** }

{ *** BEGIN CODE FOR DDEMLCLU.PAS *** }
{***}
{ }
{ Delphi 1.0 DDEML Demonstration Program }
{ Copyright (c) 1996 by Borland International }
{ }
{***}

{ This is a sample application demonstrating the use of the DDEML APIs in
 a client application. It uses the DataEntry server application that
 is part of this demo in order to maintain a display of the entered data
 as a bar graph.

 You must run the server application first (in DDEMLSRV.PAS), and then
 run this client. If the server is not running, this application will
 fail trying to connect.

 The interface to the server is defined by the list of names (Service,
 Topic, and Items) in the separate unit called DataEntry (DATAENTR.TPU).
 The server makes the Items available in cf_Text format; they are con-
 verted and stored locally as integers.
}

unit Ddemlclu;

interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, VBXCtrl, ExtCtrls, DDEML, Menus, StdCtrls;

const
 NumValues = 3;

type

 { Data Structure which constitutes a sample }
 TDataSample = array [1..NumValues] of Integer;
 TDataString = array [0..20] of Char; { Size of Item as text }

 { Main Form }
 TForm1 = class(TForm)
 MainMenu1: TMainMenu;
 File1: TMenuItem;
 exit1: TMenuItem;
 DDE1: TMenuItem;
 RequestUpdate1: TMenuItem;
 AdviseofChanges1: TMenuItem;
 PokeSomeData: TMenuItem;
 N1: TMenuItem;
 PaintBox1: TPaintBox;
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure RequestUpdate1Click(Sender: TObject);
 procedure FormShow(Sender: TObject);
 procedure AdviseofChanges1Click(Sender: TObject);
 procedure PokeSomeDataClick(Sender: TObject);

 procedure Request(HConversation: HConv);
 procedure exit1Click(Sender: TObject);
 procedure PaintBox1Paint(Sender: TObject);

 private
 { Private declarations }
 public
 Inst: Longint;
 CallBackPtr: ^TCallback;
 ServiceHSz : HSz;
 TopicHSz : HSz;
 ItemHSz : array [1..NumValues] of HSz;
 ConvHdl : HConv;

 DataSample : TDataSample;
 end;

var Form1: TForm1;

implementation

const
 DataEntryName : PChar = 'DataEntry';
 DataTopicName : PChar = 'SampledData';
 DataItemNames : array [1..NumValues] of pChar = ('DataItem1',
 'DataItem2',
 'DataItem3');
{$R *.DFM}

{ Local Function: CallBack Procedure for DDEML }

function CallbackProc(CallType, Fmt: Word; Conv: HConv; hsz1, hsz2: HSZ;
 Data: HDDEData; Data1, Data2: Longint): HDDEData; export;
begin
 CallbackProc := 0; { See if proved otherwise }

 case CallType of
 xtyp_Register:
 begin
 { Nothing ... Just return 0 }
 end;
 xtyp_Unregister:
 begin
 { Nothing ... Just return 0 }
 end;
 xtyp_xAct_Complete:
 begin
 { Nothing ... Just return 0 }
 end;
 xtyp_Request, Xtyp_AdvData:
 begin
 Form1.Request(Conv);
 CallbackProc := dde_FAck;
 end;
 xtyp_Disconnect:

 begin
ShowMessage('Disconnected!');

 Form1.Close;
 end;
 end;
end;

{ Posts a DDE request to obtain cf_Text data from the server. Requests
 the data for all fields of the DataSample, and invalidates the window
 to cause the new data to be displayed. Obtains the data from the
 Server synchronously, using DdeClientTransaction.
}
procedure TForm1.Request(HConversation: HConv);
var
 hDdeTemp : HDDEData;
 DataStr : TDataString;
 Err, I : Integer;
begin
 if HConversation <> 0 then begin
 for I := Low(ItemHSz) to High(ItemHSz) do begin
 hDdeTemp := DdeClientTransaction(nil, 0, HConversation, ItemHSz[I],
 cf_Text, xtyp_Request, 0, nil);
 if hDdeTemp <> 0 then begin
 DdeGetData(hDdeTemp, @DataStr, SizeOf(DataStr), 0);
 Val(DataStr, DataSample[I], Err);
 end; { if }
 end; { for }
 Paintbox1.Refresh; { Redisplay the Screen }
 end; { if }
end;

procedure TForm1.FormCreate(Sender: TObject);
var
 I : Integer;
{ Constructs an instance of the DDE Client Window. Constructs the
 window using the inherited constructor, then initializes the instance
 data.
}
begin
 Inst := 0; { Must be zero for first call to DdeInitialize }
 CallBackPtr:= nil; { MakeProcInstance is called in SetupWindow }
 ConvHdl := 0;
 ServiceHSz := 0;
 TopicHSz := 0;
 for I := Low(DataSample) to High(DataSample) do begin
 ItemHSz[I] := 0;
 DataSample[I] := 0;
 end;
end;

procedure TForm1.FormDestroy(Sender: TObject);
{ Destroys an instance of the Client window. Frees the DDE string
 handles, and frees the callback proc instance if they exist. Also
 calls DdeUninitialize to terminate the conversation. Then calls on

 the ancestral destructor to finish the job.
}
var I : Integer;
begin
 if ServiceHSz <> 0 then
 DdeFreeStringHandle(Inst, ServiceHSz);
 if TopicHSz <> 0 then
 DdeFreeStringHandle(Inst, TopicHSz);
 for I := Low(ItemHSz) to High(ItemHSz) do
 if ItemHSz[I] <> 0 then
 DdeFreeStringHandle(Inst, ItemHSz[I]);

 if Inst <> 0 then
 DdeUninitialize(Inst); { Ignore the return value }

 if CallBackPtr <> nil then
 FreeProcInstance(CallBackPtr);
end;

procedure TForm1.RequestUpdate1Click(Sender: TObject);
begin
{ Generate a DDE Request in response to the DDE | Request menu selection.}
 Request(ConvHdl);
end;

procedure TForm1.FormShow(Sender: TObject);
{ Completes the initialization of the DDE Server Window. Performs those
 actions which require a valid window. Initializes the use of the DDEML.
}
var
 I : Integer;
 InitOK: Boolean;
begin
 CallBackPtr := MakeProcInstance(@CallBackProc, HInstance);

{ Initialize the DDE and setup the callback function. If server is not
 present, call will fail.
}
 if CallBackPtr <> nil then begin
 if DdeInitialize(Inst, TCallback(CallBackPtr), AppCmd_ClientOnly,
 0) = dmlErr_No_Error then begin
 ServiceHSz:= DdeCreateStringHandle(Inst, DataEntryName, cp_WinAnsi);
 TopicHSz := DdeCreateStringHandle(Inst, DataTopicName, cp_WinAnsi);
 InitOK := True;
{ for I := Low(DataItemNames) to High(DataItemNames) do begin }
 for I := 1 to NumValues do begin
 ItemHSz[I]:= DdeCreateStringHandle(Inst, DataItemNames[I],
 cp_WinAnsi);
 InitOK := InitOK and (ItemHSz[I] <> 0);
 end;

 if (ServiceHSz <> 0) and (TopicHSz <> 0) and InitOK then begin
 ConvHdl := DdeConnect(Inst, ServiceHSz, TopicHSz, nil);
 if ConvHdl = 0 then begin

 ShowMessage('Can not start Conversation!');
 Close;

 end
 end
 else begin
 ShowMessage('Can not create Strings!');
 Close;
 end
 end
 else begin
 ShowMessage('Can not Initialie!');
 Close;
 end;
 end;
end;

procedure TForm1.AdviseofChanges1Click(Sender: TObject);
{ Toggles the state of the DDE Advise setting in response to the
 DDE | Advise menu selection. When this is selected, all three
 Items are set for Advising.
}
var
 I: Integer;
 TransType: Word;
 TempResult: Longint;
begin
 with TMenuITem(Sender) do begin
 Checked := not Checked;
 if Checked then
 TransType:= (xtyp_AdvStart or xtypf_AckReq)
 else
 TransType:= xtyp_AdvStop;
 end; { with }

 for I := Low(ItemHSz) to High(ItemHSz) do
 if DdeClientTransaction(nil, 0, ConvHdl, ItemHSz[I], cf_Text,
 TransType, 1000, @TempResult) = 0 then
 ShowMessage('Can not perform Advise Transaction');

 if TransType and xtyp_AdvStart <> 0 then Request(ConvHdl);
end;

procedure TForm1.PokeSomeDataClick(Sender: TObject);
{ Generates a DDE Poke transaction in response to the DDE | Poke
 menu selection. Requests a value from the user that will be
 poked into DataItem1 as an illustration of the Poke function.
}
var
 DataStr: pChar;
 S: String;
begin
 S := '0';
 if InputQuery('PokeData', 'Enter Value to Poke', S) then begin
 S := S + #0;
 DataStr := @S[1];
 DdeClientTransaction(DataStr, StrLen(DataStr) + 1, ConvHdl,
 ItemHSz[1], cf_Text, xtyp_Poke, 1000, nil);
 Request(ConvHdl);

 end;
end;

procedure TForm1.exit1Click(Sender: TObject);
begin
 close;
end;

procedure TForm1.PaintBox1Paint(Sender: TObject);
{ Repaints the window on request. Plots a graph of the current sales
 volume.
}
const
 LMarg = 30; { Left Margin of graph }
var
 I,
 Norm: Integer;
 Wd: Integer;
 Step : Integer;

 ARect: TRect;

begin
 Norm := 0;
 for I := Low(DataSample) to High(DataSample) do begin
 if abs(DataSample[I]) > Norm then
 Norm := abs(DataSample[I]);
 end; { for }

 if Norm = 0 then Norm := 1; { Just in case we have all zeros }

 with TPaintBox(Sender).Canvas do begin
 { Paint Background }
 Brush.color := clWhite;
 FillRect(ClipRect);

 { Draw Axis }
 MoveTo(0, ClipRect.Bottom div 2);
 LineTo(ClipRect.Right, ClipRect.Bottom div 2);

 MoveTo(LMarg, 0);
 LineTo(LMarg, ClipRect.Bottom);

 { Print Left MArgin Text }
 TextOut(0,0, IntToStr(Norm));
 TextOut(0, ClipRect.Bottom div 2, '0');
 TextOut(0, ClipRect.Bottom + Font.Height, IntToStr(-Norm));

 TextOut(0, ClipRect.Bottom div 2, '0');
 TextOut(0, ClipRect.Bottom div 2, '0');
 TextOut(0, ClipRect.Bottom div 2, '0');
 { Print X Axis Text }

 { Now draw the bars based on that Normalized value. Compute the
 width of the bars so that all will fit in the window, and
 compute an inter-bar space that is approximately 20% of the

 width of a bar.
 }
{ SelectObject(PaintDC, CreateSolidBrush(RGB(255, 0, 0)));
 SetBkMode(PaintDC, Transparent);
}
 ARect := ClipRect;
 Wd := (ARect.Right - LMarg) div NumValues;
 Step := Wd div 5;
 Wd := Wd - Step;
 with ARect do begin
 Left := LMarg + (Step div 2);
 Top := ClipRect.Bottom div 2;
 end; { with }

 { Display Bars and X-Axis Text }
 For i := Low(DataSample) to High(DataSample) do begin
 with ARect do begin
 Right := Left + Wd;
 Bottom:= Top - Round((Top-5) * (DataSample[I] / Norm));
 end; { with }
 { Fill Bar }
 Brush.color := clFuchsia;
 FillRect(ARect);
 { Display Text - Horizontal Axis }
 Brush.color := clWhite;
 TextOut(ARect.Left, ClipRect.Bottom div 2 - Font.Height,
 StrPas(DataItemNames[i]));
 with ARect do
 Left := Left + Wd + Step;
 end; { for }
 end; { with }
end;
end.{ *** END CODE FOR DDEMLCLU.PAS *** }

{ *** BEGIN CODE FOR DDEMLSVR.DPR *** }
program Ddemlsvr;

uses
 Forms,
 Ddesvru in 'DDESVRU.PAS' {Form1},
 Ddedlg in '\DELPHI\BIN\DDEDLG.PAS' {DataEntry};

{$R *.RES}

begin
 Application.CreateForm(TForm1, Form1);
 Application.CreateForm(TDataEntry, DataEntry);
 Application.Run;
end.
{ *** END CODE FOR DDEMLSVR.DPR *** }

{ *** BEGIN CODE FOR DDESVRU.DFM *** }
object Form1: TForm1
 Left = 712

 Top = 98
 Width = 307
 Height = 162
 Caption = 'DDEML Demo, Serve Application'
 Color = clWhite
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 Menu = MainMenu1
 PixelsPerInch = 96
 OnCreate = FormCreate
 OnDestroy = FormDestroy
 OnShow = FormShow
 TextHeight = 16
 object Label1: TLabel
 Left = 0
 Top = 0
 Width = 99
 Height = 16
 Caption = 'Current Values:'
 end
 object Label2: TLabel
 Left = 16
 Top = 24
 Width = 74
 Height = 16
 Caption = 'Data Item1:'
 end
 object Label3: TLabel
 Left = 16
 Top = 40
 Width = 74
 Height = 16
 Caption = 'Data Item2:'
 end
 object Label4: TLabel
 Left = 16
 Top = 56
 Width = 74
 Height = 16
 Caption = 'Data Item3:'
 end
 object Label5: TLabel
 Left = 0
 Top = 88
 Width = 265
 Height = 16
 Caption = 'Select Data|Enter Data to change values.'
 end
 object Label6: TLabel
 Left = 96
 Top = 24
 Width = 8
 Height = 16
 Caption = '0'

 end
 object Label7: TLabel
 Left = 96
 Top = 40
 Width = 8
 Height = 16
 Caption = '0'
 end
 object Label8: TLabel
 Left = 96
 Top = 56
 Width = 8
 Height = 16
 Caption = '0'
 end
 object MainMenu1: TMainMenu
 Left = 352
 Top = 24
 object File1: TMenuItem
 Caption = '&File'
 object Exit1: TMenuItem
 Caption = '&Exit'
 OnClick = Exit1Click
 end
 end
 object Data1: TMenuItem
 Caption = '&Data'
 object EnterData1: TMenuItem
 Caption = '&Enter Data'
 OnClick = EnterData1Click
 end
 object Clear1: TMenuItem
 Caption = '&Clear'
 OnClick = Clear1Click
 end
 end
 end
end
{ *** END CODE FOR DDESVRU.DFM *** }

{ *** BEGIN CODE FOR DDESVRU.PAS *** }
{***}
{ }
{ Delphi 1.0 DDEML Demonstration Program }
{ Copyright (c) 1996 by Borland International }
{ }
{***}

{ This sample application uses the DDEML library in the server side of a
 cooperative application. This server is a simple data-entry application
 which allows an operator to enter three data items, which are made
 available through DDE to interested clients.

 This server makes its service available under the following names:

 Service: 'DataEntry'

 Topic : 'SampledData'
 Items : 'DataItem1', 'DataItem2', 'DataItem3'

 Conceivably, other topics under this service could be defined. Things
 such as historical data, information about the sampling, and so on
 might make useful topics.

 You must run this server BEFORE running the client (DDEMLCLI.PAS), or
 the client will fail the connection.

 The interface to this server is defined by the list of names (Service,
 Topic, and Items) in the separate unit called DataEntry (DATAENTR.TPU).
 The server makes the Items available in cf_Text format; they can be
 converted and stored locally as integers by the client.
}
unit Ddesvru;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, Menus,

 DDEML, { DDE APi }
 ShellApi;

const
 NumValues = 3;
 DataItemNames : array [1..NumValues] of PChar = ('DataItem1',
 'DataItem2',
 'DataItem3');
type
 TDataString = array [0..20] of Char; { Size of Item as text }
 TDataSample = array [1..NumValues] of Integer;

{type
{ Data Structure which constitutes a sample }
{ TDataSample = array [1..NumValues] of Integer;
{ TDataString = array [0..20] of Char; { Size of Item as text }

const
 DataEntryName: PChar = 'DataEntry';
 DataTopicName: PChar = 'SampledData';

type
 TForm1 = class(TForm)
 MainMenu1: TMainMenu;
 File1: TMenuItem;
 Exit1: TMenuItem;
 Data1: TMenuItem;
 EnterData1: TMenuItem;
 Clear1: TMenuItem;
 Label1: TLabel;
 Label2: TLabel;
 Label3: TLabel;

 Label4: TLabel;
 Label5: TLabel;
 Label6: TLabel;
 Label7: TLabel;
 Label8: TLabel;
 procedure Exit1Click(Sender: TObject);

 function MatchTopicAndService(Topic, Service: HSz): Boolean;
 function MatchTopicAndItem(Topic, Item: HSz): Integer;
 function WildConnect(Topic, Service: HSz; ClipFmt: Word): HDDEData;
 function AcceptPoke(Item: HSz; ClipFmt: Word;
 Data: HDDEData): Boolean;
 function DataRequested(TransType: Word; ItemNum: Integer;
 ClipFmt: Word): HDDEData;
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure FormShow(Sender: TObject);
 procedure EnterData1Click(Sender: TObject);
 procedure Clear1Click(Sender: TObject);

 private
 Inst : Longint;
 CallBack : TCallback;
 ServiceHSz : HSz;
 TopicHSz : HSz;
 ItemHSz : array [1..NumValues] of HSz;
 ConvHdl : HConv;
 Advising : array [1..NumValues] of Boolean;

 DataSample : TDataSample;

 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation
uses DDEDlg; { DataEntry Form }

{$R *.DFM}

procedure TForm1.Exit1Click(Sender: TObject);
begin
 Close;
end;
{ Initialized globals }

const
 DemoTitle : PChar = 'DDEML Demo, Server Application';

 MaxAdvisories = 100;
 NumAdvLoops : Integer = 0;

{ Local Function: CallBack Procedure for DDEML }

{ This callback procedure responds to all transactions generated by the
 DDEML. The target Window object is obtained from the stored global,
 and the appropriate methods within that objects are used to respond
 to the given transaction, as indicated by the CallType parameter.
}
function CallbackProc(CallType, Fmt: Word; Conv: HConv; HSz1, HSz2: HSZ;
 Data: HDDEData; Data1, Data2: Longint): HDDEData; export;
var
 ItemNum : Integer;
begin
 CallbackProc := 0; { See if proved otherwise }

 case CallType of

 xtyp_WildConnect:
 CallbackProc := Form1.WildConnect(HSz1, HSz2, Fmt);

 xtyp_Connect:
 if Conv = 0 then
 begin
 if Form1.MatchTopicAndService(HSz1, HSz2) then
 CallbackProc := 1; { Connected! }
 end;
{ When a connection is confirmed, record the conversation handle as the
 window's own.
}
 xtyp_Connect_Confirm:
 Form1.ConvHdl := Conv;

{ The client has requested data, either as a direct request or
 in response to an advisory. Return the current state of the
 data.
}
 xtyp_AdvReq, xtyp_Request:
 begin
 ItemNum := Form1.MatchTopicAndItem(HSz1, HSz2);
 if ItemNum > 0 then
 CallbackProc := Form1.DataRequested(CallType, ItemNum, Fmt);
 end;

{ Respond to Poke requests ... this demo only allows Pokes of DataItem1.
 Return dde_FAck to acknowledge the receipt, 0 otherwise.
}
 xtyp_Poke:
 begin
 if Form1.AcceptPoke(HSz2, Fmt, Data) then
 CallbackProc := dde_FAck;
 end;

{ The client has requested the start of an advisory loop. Note
 that we assume a "hot" loop. Set the Advising flag to indicate
 the open loop, which will be checked whenever the data is changed.
}

 xtyp_AdvStart:
 begin
 ItemNum := Form1.MatchTopicAndItem(HSz1, HSz2);
 if ItemNum > 0 then begin
 if NumAdvLoops < MaxAdvisories then begin { Arbitrary number }
 Inc(NumAdvLoops);
 Form1.Advising[ItemNum] := True;
 CallbackProc := 1;
 end;
 end;
 end;

{ The client has requested the advisory loop to terminate.
}
 xtyp_AdvStop:
 begin
 ItemNum := Form1.MatchTopicAndItem(HSz1, HSz2);
 if ItemNum > 0 then
 begin
 if NumAdvLoops > 0 then
 begin
 Dec(NumAdvLoops);
 if NumAdvLoops = 0 then
 Form1.Advising[ItemNum] := False;
 CallbackProc := 1;
 end;
 end;
 end;
 end; { Case CallType }

end;

{ Returns True if the given Topic and Service match those supported
 by this application. False otherwise.
}
function TForm1.MatchTopicAndService(Topic, Service: HSz): Boolean;
begin
 Result := False;
 if DdeCmpStringHandles(TopicHSz, Topic) = 0 then
 if DdeCmpStringHandles(ServiceHSz, Service) = 0 then
 Result := True;
end;

{ Determines if the given Topic and Item match one supported by this
 application. Returns the Item Number of the supported item (in the
 range 1..NumValues) if one is found, and zero if no match.
}
function TForm1.MatchTopicAndItem(Topic, Item: HSz): Integer;
var
 I : Integer;
begin
 Result := 0;
 if DdeCmpStringHandles(TopicHSz, Topic) = 0 then
 for I := 1 to NumValues do
 if DdeCmpStringHandles(ItemHSz[I], Item) = 0 then
 Result := I;

end;

{ Responds to wildcard connect requests. These requests are generated
 whenever a client tries to connect to a server with either service or
 topic name set to 0. If a server detects a wild card match, it
 returns a handle to an array of THSZPair's containing the matching
 supported Service and Topic.
}
function TForm1.WildConnect(Topic, Service: HSz; ClipFmt: Word): HDDEData;
var
 TempPairs: array [0..1] of THSZPair;
 Matched : Boolean;
begin
 TempPairs[0].hszSvc := ServiceHSz;
 TempPairs[0].hszTopic:= TopicHSz;
 TempPairs[1].hszSvc := 0; { 0-terminate the list }
 TempPairs[1].hszTopic:= 0;

 Matched := False;

 if (Topic= 0) and (Service = 0) then
 Matched := True { Complete wildcard }
 else
 if (Topic = 0) and (DdeCmpStringHandles(Service, ServiceHSz) = 0) then
 Matched := True
 else
 if (DdeCmpStringHandles(Topic, TopicHSz) = 0) and (Service = 0) then
 Matched := True;

 if Matched then
 WildConnect := DdeCreateDataHandle(Inst, @TempPairs, SizeOf(TempPairs),
 0, 0, ClipFmt, 0)
 else
 WildConnect := 0;
end;

{ Accepts and acts upon Poke requests from the Client. For this
 demonstration, allows only the value of DataItem1 to be changed by a
 Poke.
}
function TForm1.AcceptPoke(Item: HSz; ClipFmt: Word;
 Data: HDDEData): Boolean;
var
 DataStr : TDataString;
 Err : Integer;
 TempSample: Integer;
begin
 if (DdeCmpStringHandles(Item, ItemHSz[1]) = 0) and
 (ClipFmt = cf_Text) then
 begin
 DdeGetData(Data, @DataStr, SizeOf(DataStr), 0);
 Val(DataStr, TempSample, Err);

 if IntToStr(TempSample) <> Label6.Caption then begin
 Label6.Caption := IntToStr(TempSample);
 DataSample[1] := TempSample;

 if Advising[1] then
 DdePostAdvise(Inst, TopicHSz, ItemHSz[1]);
 end;
 AcceptPoke := True;
 end
 else
 AcceptPoke := False;
end;

{ Returns the data requested by the given TransType and ClipFmt values.
 This could happen either in response to either an xtyp_Request or an
 xtyp_AdvReq. The ItemNum parameter indicates which of the supported
 items (in the range 1..NumValues) was requested (note that this method
 assumes that the caller has already established validity and ID of the
 requested item using MatchTopicAndItem). The corresponding data from
 the DataSample instance variable is converted to text and returned.
}
function TForm1.DataRequested(TransType: Word; ItemNum: Integer;
 ClipFmt: Word): HDDEData;
var ItemStr: TDataString; { Defined in DataEntry.TPU }

begin
 if ClipFmt = cf_Text then
 begin
 Str(DataSample[ItemNum], ItemStr);
 DataRequested := DdeCreateDataHandle(Inst, @ItemStr,
 StrLen(ItemStr) + 1, 0, ItemHSz[ItemNum], ClipFmt, 0);
 end
 else
 DataRequested := 0;
end;

{ Constructs an instance of the DDE Server Window. Calls on the
 inherited constructor, then sets up this objects own instandce
 data.
}
procedure TForm1.FormCreate(Sender: TObject);
var I : Integer;
begin
 Inst := 0; { Must be zero for first call to DdeInitialize }
 @CallBack := nil; { MakeProcInstance is called in SetupWindow }

 for I := 1 to NumValues do begin
 DataSample[I] := 0;
 Advising[I] := False;
 end; { for }

end;

{ Destroys an instance of the DDE Server Window. Checks to see if the
 Callback Proc Instance had been created, and frees it if so. Also
 calls DdeUninitialize to terminate the conversation. Then just calls
 on the ancestral destructor to finish.

}
procedure TForm1.FormDestroy(Sender: TObject);
var
 I : Integer;
begin
 if ServiceHSz <> 0 then
 DdeFreeStringHandle(Inst, ServiceHSz);
 if TopicHSz <> 0 then
 DdeFreeStringHandle(Inst, TopicHSz);
 for I := 1 to NumValues do
 if ItemHSz[I] <> 0 then
 DdeFreeStringHandle(Inst, ItemHSz[I]);

 if Inst <> 0 then
 DdeUninitialize(Inst); { Ignore the return value }

 if @CallBack <> nil then
 FreeProcInstance(@CallBack);
end;

procedure TForm1.FormShow(Sender: TObject);
var
 I : Integer;
{ Completes the initialization of the DDE Server Window. Initializes
 the use of the DDEML by registering the services provided by this
 application. Recall that the actual names used to register are
 defined in a separate unit (DataEntry), so that they can be used
 by the client as well.
}
begin
 @CallBack:= MakeProcInstance(@CallBackProc, HInstance);

 if DdeInitialize(Inst, CallBack, 0, 0) = dmlErr_No_Error then begin
 ServiceHSz:= DdeCreateStringHandle(Inst, DataEntryName, cp_WinAnsi);
 TopicHSz := DdeCreateStringHandle(Inst, DataTopicName, cp_WinAnsi);
 for I := 1 to NumValues do
 ItemHSz[I] := DdeCreateStringHandle(Inst, DataItemNames[I],
 cp_WinAnsi);

 if DdeNameService(Inst, ServiceHSz, 0, dns_Register) = 0 then
 ShowMessage('Registration failed.');
 end;
end;

procedure TForm1.EnterData1Click(Sender: TObject);
{ Activates the data-entry dialog, and updates the stored
 data when complete.
}
var
 I: Integer;

begin
 if DataEntry.ShowModal = mrOk then begin
 with DataEntry do begin
 Label6.Caption := S1;
 Label7.Caption := S2;

 Label8.Caption := S3;
 DataSample[1] := StrToInt(S1);
 DataSample[2] := StrToInt(S2);
 DataSample[3] := StrToInt(S3);
 end; { with }

 for I := 1 to NumValues do
 if Advising[I] then
 DdePostAdvise(Inst, TopicHSz, ItemHSz[I]);
 end; { if }
end;

procedure TForm1.Clear1Click(Sender: TObject);
{ Clears the current data.
}
var
 I: Integer;

begin
 for I := 1 to NumValues do begin
 DataSample[I] := 0;
 if Advising[I] then
 DdePostAdvise(Inst, TopicHSz, ItemHSz[I]);
 end;

 Label6.Caption := '0';
 Label7.Caption := '0';
 Label8.Caption := '0';
end;

end.
{ *** END CODE FOR DDESVRU.PAS *** }

{ *** BEGIN CODE FOR DDEDLG.DFM *** }
object DataEntry: TDataEntry
 Left = 488
 Top = 132
 ActiveControl = OKBtn
 BorderStyle = bsDialog
 Caption = 'Data Entry'
 ClientHeight = 264
 ClientWidth = 199
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = [fsBold]
 PixelsPerInch = 96
 Position = poScreenCenter
 OnShow = FormShow
 TextHeight = 13
 object Bevel1: TBevel
 Left = 8
 Top = 8
 Width = 177

 Height = 201
 Shape = bsFrame
 IsControl = True
 end
 object OKBtn: TBitBtn
 Left = 16
 Top = 216
 Width = 69
 Height = 39
 Caption = '&OK'
 ModalResult = 1
 TabOrder = 3
 OnClick = OKBtnClick
 Glyph.Data = {
 BE060000424DBE06000000000000360400002800000024000000120000000100
 080000000000880200
 80000080000000808000800000008000800080800000C0C0C000C0DCC000F0CA
 A600
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 000000000000000000000000000000000000F0FBFF00A4A0A000808080000000
 FF0000FF000000FFFF00FF000000FF00FF00FFFF0000FFFFFF00030303030303
 03
 03FF030303030303030303
 03030303030303040403030303030303030303030303030303F8F8FF03030303
 03030303030303030303040202040303030303030303030303030303F80303F8
 FF030303030303030303030303040202020204030303030303030303030303F8
 03030303F8FF0303030303030303030304020202020202040303030303030303
 0303F8030303030303F8FF030303030303030304020202FA0202020204030303
 0303030303F8FF0303F8FF030303F8FF03030303030303020202FA03FA020202

 040303030303030303F8FF03F803F8FF0303F8FF03030303030303FA02FA0303
 03FA0202020403030303030303F8FFF8030303F8FF0303F8FF03030303030303
 FA0303030303FA0202020403030303030303F80303030303F8FF0303F8FF0303
 0303030303030303030303FA0202020403030303030303030303030303F8FF03
 03F8FF03030303030303030303030303FA020202040303030303030303030303
 0303F8FF0303F8FF03030303030303030303030303FA02020204030303030303
 03030303030303F8FF0303F8FF03030303030303030303030303FA0202020403
 030303030303030303030303F8FF0303F8FF03030303030303030303030303FA
 0202040303030303030303030303030303F8FF03F8FF03030303030303030303
 03030303FA0202030303030303030303030303030303F8FFF803030303030303
 030303030303030303FA0303030303030303030303030303030303F803030303
 03
 0303}
 Margin = 2
 NumGlyphs = 2
 Spacing = -1
 IsControl = True
 end
 object CancelBtn: TBitBtn
 Left = 108
 Top = 216
 Width = 69
 Height = 39
 Caption = '&Cancel'
 TabOrder = 4
 Kind = bkCancel
 Margin = 2
 Spacing = -1
 IsControl = True
 end
 object Panel2: TPanel
 Left = 16
 Top = 88
 Width = 153
 Height = 49
 BevelInner = bvLowered
 BevelOuter = bvNone
 TabOrder = 1
 object Label1: TLabel
 Left = 24
 Top = 8
 Width = 5
 Height = 13
 end
 object Label2: TLabel
 Left = 8
 Top = 8
 Width = 48
 Height = 13
 Caption = 'Value 2:'
 end
 object Edit2: TEdit
 Left = 8
 Top = 24
 Width = 121
 Height = 20

 MaxLength = 10
 TabOrder = 0
 Text = '0'
 end
 end
 object Panel1: TPanel
 Left = 16
 Top = 16
 Width = 153
 Height = 49
 BevelInner = bvLowered
 BevelOuter = bvNone
 TabOrder = 0
 object Label4: TLabel
 Left = 8
 Top = 8
 Width = 48
 Height = 13
 Caption = 'Value 1:'
 end
 object Edit1: TEdit
 Left = 8
 Top = 24
 Width = 121
 Height = 20
 MaxLength = 10
 TabOrder = 0
 Text = '0'
 end
 end
 object Panel3: TPanel
 Left = 16
 Top = 144
 Width = 153
 Height = 49
 BevelInner = bvLowered
 BevelOuter = bvNone
 TabOrder = 2
 object Label6: TLabel
 Left = 8
 Top = 8
 Width = 48
 Height = 13
 Caption = 'Value 3:'
 end
 object Edit3: TEdit
 Left = 8
 Top = 24
 Width = 121
 Height = 20
 MaxLength = 10
 TabOrder = 0
 Text = '0'
 end
 end
end

{ *** END CODE FOR DDEDLG.DFM *** }

{ *** BEGIN CODE FOR DDEDLG.PAS *** }
{***}
{ }
{ Delphi 1.0 DDEML Demonstration Program }
{ Copyright (c) 1996 by Borland International }
{ }
{***}

{ This unit defines the interface to the DataEntry DDE
 server (DDEMLSRV.PAS). It defines the Service, Topic,
 and Item names supported by the Server, and also defines
 a data structure which may be used by the Client to
 hold the sampled data locally.

 The Data Entry Server makes its data samples available
 in text (cf_Text) form as three separate Topics. Clients
 may convert these into integer form for use with the
 data structure defined here.
}
unit Ddedlg;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms, Controls, Buttons,
 StdCtrls, Mask, ExtCtrls;

type
 TDataEntry = class(TForm)
 OKBtn: TBitBtn;
 CancelBtn: TBitBtn;
 Bevel1: TBevel;
 Panel2: TPanel;
 Label1: TLabel;
 Label2: TLabel;
 Panel1: TPanel;
 Label4: TLabel;
 Panel3: TPanel;
 Label6: TLabel;
 Edit1: TEdit;
 Edit2: TEdit;
 Edit3: TEdit;
 procedure OKBtnClick(Sender: TObject);
 procedure FormShow(Sender: TObject);
 private
 { Private declarations }
 public
 S1, S2, S3: String;
 { Public declarations }
 end;

var
 DataEntry: TDataEntry;

implementation

{$R *.DFM}

procedure TDataEntry.OKBtnClick(Sender: TObject);
begin
 S1 := Edit1.Text;
 S2 := Edit2.Text;
 S3 := Edit3.Text;
end;

procedure TDataEntry.FormShow(Sender: TObject);
begin
 Edit1.Text := '0';
 Edit2.Text := '0';
 Edit3.Text := '0';
 Edit1.SetFocus;
end;

end.
{ *** END CODE FOR DDEDLG.PAS *** }

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

TDBGrid and Multi-Selecting Records
 NUMBER : 2976
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : June 3, 1997

 TITLE : TDBGrid and Multi-Selecting Records

When you add [dgMultiSelect] to the Options
property of a DBGrid, you give yourself the ability
to select multiple records within the grid.

The records you select are represented as bookmarks
and are stored in the SelectedRows property.

The SelectedRows property is an object of type
TBookmarkList. The properties and methods are
described below.

// property SelectedRows: TBookmarkList read FBookmarks;

// TBookmarkList = class
// public

 {* The Clear method will free all the selected records
 within the DBGrid *}
 // procedure Clear;

 {* The Delete method will delete all the selected rows
 from the dataset *}
 // procedure Delete;

 {* The Find method determines whether a bookmark is
 in the selected list. *}
 // function Find(const Item: TBookmarkStr;
 // var Index: Integer): Boolean;

 {* The IndexOf method returns the index of the
 bookmark within the Items property. *}
 // function IndexOf(const Item: TBookmarkStr): Integer;

 {* The Refresh method returns a boolean value to notify
 whether any orphans were dropped (deleted) during the
 time the record has been selected in the grid. The
 refresh method can be used to update the selected list
 to minimize the possibility of accessing a deleted
 record. *}
 // function Refresh: Boolean; True = orphans found

 {* The Count property returns the number of currently
 selected items in the DBGrid *}
 // property Count: Integer read GetCount;

 {* The CurrentRowSelected property returns a boolean
 value and determines whether the current row is
 selected or not. *}
 // property CurrentRowSelected: Boolean
 // read GetCurrentRowSelected
 // write SetCurrentRowSelected;

 {* The Items property is a TStringList of
 TBookmarkStr *}
 // property Items[Index: Integer]: TBookmarkStr
 // read GetItem; default;

// end;

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, Grids, DBGrids, DB, DBTables;

type
 TForm1 = class(TForm)
 Table1: TTable;
 DBGrid1: TDBGrid;
 Count: TButton;
 Selected: TButton;
 Clear: TButton;
 Delete: TButton;
 Select: TButton;
 GetBookMark: TButton;
 Find: TButton;
 FreeBookmark: TButton;
 DataSource1: TDataSource;
 procedure CountClick(Sender: TObject);
 procedure SelectedClick(Sender: TObject);
 procedure ClearClick(Sender: TObject);
 procedure DeleteClick(Sender: TObject);
 procedure SelectClick(Sender: TObject);
 procedure GetBookMarkClick(Sender: TObject);
 procedure FindClick(Sender: TObject);
 procedure FreeBookmarkClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;
 Bookmark1: TBookmark;
 z: Integer;

implementation

{$R *.DFM}

//Example of the Count property
procedure TForm1.CountClick(Sender: TObject);
begin
 if DBgrid1.SelectedRows.Count > 0 then
 begin
 showmessage(inttostr(DBgrid1.SelectedRows.Count));
 end;
end;

//Example of the CurrentRowSelected property
procedure TForm1.SelectedClick(Sender: TObject);
begin
 if DBgrid1.SelectedRows.CurrentRowSelected then
 showmessage('Selected');
end;

//Example of the Clear Method
procedure TForm1.ClearClick(Sender: TObject);
begin
 dbgrid1.SelectedRows.Clear;
end;

//Example of the Delete Method
procedure TForm1.DeleteClick(Sender: TObject);
begin
 DBgrid1.SelectedRows.Delete;
end;

{*
 This example iterates through the selected rows
 of the grid and displays the second field of
 the dataset.

 The Method DisableControls is used so that the
 DBGrid will not update when the dataset is changed.
 The last position of the dataset is saved as
 a TBookmark.

 The IndexOf method is called to check whether or
 not the bookmark is still existent.
 The decision of using the IndexOf method rather
 than the Refresh method should be determined by the
 specific application.
*}

procedure TForm1.SelectClick(Sender: TObject);
var
 x: word;
 TempBookmark: TBookMark;
begin
 DBGrid1.Datasource.Dataset.DisableControls;
 with DBgrid1.SelectedRows do
 if Count > 0 then
 begin

 TempBookmark:= DBGrid1.Datasource.Dataset.GetBookmark;
 for x:= 0 to Count - 1 do
 begin
 if IndexOf(Items[x]) > -1 then
 begin
 DBGrid1.Datasource.Dataset.Bookmark:= Items[x];
 showmessage(DBGrid1.Datasource.Dataset.Fields[1].AsString);
 end;
 end;
 DBGrid1.Datasource.Dataset.GotoBookmark(TempBookmark);
 DBGrid1.Datasource.Dataset.FreeBookmark(TempBookmark);
 end;
 DBGrid1.Datasource.Dataset.EnableControls;
end;

{*
This example allows you to set a bookmark and
and then search for the bookmarked record within
selected a record(s) within the DBGrid.
*}

//Sets a bookmark
procedure TForm1.GetBookMarkClick(Sender: TObject);
begin
 Bookmark1:= DBGrid1.Datasource.Dataset.GetBookmark;
end;

//Frees the bookmark
procedure TForm1.FreeBookmarkClick(Sender: TObject);
begin
 if assigned(Bookmark1) then
 begin
 DBGrid1.Datasource.Dataset.FreeBookmark(Bookmark1);
 Bookmark1:= nil;
 end;
end;

//Uses the Find method to locate the position of the
//bookmarked record within the selected list in the DBGrid
procedure TForm1.FindClick(Sender: TObject);
begin
 if assigned(Bookmark1) then
 begin
 if DBGrid1.SelectedRows.Find(TBookMarkStr(Bookmark1),z) then
 showmessage(inttostr(z));
 end;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Listing the field structures of a table.
 NUMBER : 2977
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : May 21, 1996

 TITLE : Listing the field structures of a table.

Q: How can I list the field structures of a table?

A: This project demonstrates listing the field structure from
a given table, using the Fields and IndexDefs arrays, and
displaying them in a listbox.

There is a demo (dbbrowsr.dpr) approaches this task
differently. You may want to compare the two versions of this
code.

Note: This code works with 16 bit only.

procedure TForm1.Button1Click(Sender: TObject); const
MyFielddefs: array[ftUnknown..ftGraphic] of string [8] =
 ('Unknown', 'String', 'Smallint', 'Integer', 'Word',
 'Boolean', 'Float', 'Currency', 'BCD', 'Date',
 'Time', 'DateTime', 'Bytes', 'VarBytes', 'Blob',
 'Memo', 'Graphic');

var
 i, Indx: integer;
 Definition: string;
begin
 for i := 0 to Table1.FieldCount - 1 do begin
 Definition := Table1.Fields[i].DisplayLabel;
 Definition := Definition + ' ' +
 MyFieldDefs[Table1.Fields[i].DataType];
 Table1.IndexDefs.Update;
 if Table1.Fields[i].IsIndexField then begin
 Indx := Table1.IndexDefs.Indexof(Table1.Fields[i].Name);
 if Indx > -1 then
 if ixPrimary in Table1.IndexDefs[Indx].Options then
 Definition := Definition + ' (Primary)';
 end;
 Listbox1.Items.Add(Definition);
 end;
end;

The version above does not work with the 32 bit version as
there are more field types that must now be taken into
account. Here is a version that works with the 32 bit version:

procedure TForm1.Button1Click(Sender: TObject);
const
 MyFielddefs: array[ftUnknown..ftTypedBinary] of string [11] =

 ('Unknown', 'String', 'Smallint', 'Integer',
 'Word', 'Boolean', 'Float', 'Currency', 'BCD',
 'Date', 'Time', 'DateTime', 'Bytes', 'VarBytes',
 'AutoInc', 'Blob', 'Memo', 'Graphic', 'FmtMemo',
 'ParadoxOle', 'DBaseOle', 'TypedBinary');

var
 i, Indx: integer;
 Definition: string;
begin
 for i := 0 to Table1.FieldCount - 1 do begin
 Definition := Table1.Fields[i].DisplayLabel;
 Definition := Definition + ' ' +
 MyFieldDefs[Table1.Fields[i].DataType];
 Table1.IndexDefs.Update;
 if Table1.Fields[i].IsIndexField then begin
 Indx := Table1.IndexDefs.Indexof(Table1.Fields[i].Name);
 if Indx > -1 then
 if ixPrimary in Table1.IndexDefs[Indx].Options then
 Definition := Definition + ' (Primary)';
 end;
 Listbox1.Items.Add(Definition);
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Showing deleted records in a dBASE table.
 NUMBER : 2979
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 14, 1996

 TITLE : Showing deleted records in a dBASE table.

Q: How can I view dBASE records marked for deletion. That is,
I want to view those records marked as "soft deletion"?

A: In a dBASE table, records are not removed from the table
until the table is packed. Until that happens, records that
are "deleted" are actually just marked as "to be" deleted. To
show these existing but not displayed records, the following
function, ShowDeleted(), makes use of a BDE API function,
DbiSetProp(), to show records marked for deletion. It is not
necessary to close and re-open the table when using this
function. ShowDeleted() takes a TTable and a boolean variable
as parameters. The boolean parameter determines whether or not
to show deleted records.

Example code follows:

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, ExtCtrls, DBCtrls, Grids, DBGrids,
 DB, DBTables;

type
 TForm1 = class(TForm)
 Table1: TTable;
 DataSource1: TDataSource;
 DBGrid1: TDBGrid;
 DBNavigator1: TDBNavigator;
 CheckBox1: TCheckBox;
 procedure CheckBox1Click(Sender: TObject);
 public
 procedure ShowDeleted(Table: TTable; ShowDeleted: Boolean);
 end;

var
 Form1: TForm1;

implementation

uses DBITYPES, DBIERRS, DBIPROCS;

{$R *.DFM}

procedure TForm1.ShowDeleted(Table: TTable; ShowDeleted: Boolean);
var
 rslt: DBIResult;
 szErrMsg: DBIMSG;
begin
 Table.DisableControls;
 try
 Check(DbiSetProp(hDBIObj(Table.Handle), curSOFTDELETEON,
 LongInt(ShowDeleted)));
 finally
 Table.EnableControls;
 end;
 Table.Refresh;
end;

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
 ShowDeleted(Table1, CheckBox1.Checked);
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Determining a memo's number of lines showing.
 NUMBER : 2980
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 14, 1996

 TITLE : Determining a memo's number of lines showing.

Q: How can I tell how many lines a memo is capable of showing?

A: Here is the short and elegant way that works (most of the
time):

function TForm1.MemoLinesShowing(memo: TMemo): integer;
var
 R: TRect;
begin
 Memo.Perform(EM_GETRECT, 0, Longint(@R));
 Result := (R.Bottom - R.Top) div Canvas.TextHeight('XXX');
end;

The problem with this code is that the TForm and the TMemo must
both be using the same font. If the fonts are different, then
the calculations are not accurate.

You have to retrieve the font height by selecting it into a
device context. The reason you cannot use the font Height
provided by Delphi is because Delphi caches the font infomation
but doesn't acutally select the font into the DC (canvas) until
it is actually going to draw something. This occurs in the
painting event of the memo.

To get around this problem, you can get the memo's device
context using the Windows API and get the font information
from the device context to calculate the text height.

The function below illustrates this process:

function TForm1.MemoLinesShowingLong(Memo: TMemo): integer;
Var
 Oldfont: HFont; {the old font}
 DC: THandle; {Device context handle}
 i: integer; {loop variable}
 Tm: TTextMetric; {text metric structure}
 TheRect: TRect;
begin
 DC := GetDC(Memo.Handle); {Get the memo's device context}
 try
 {Select the memo's font}
 OldFont := SelectObject(DC, Memo.Font.Handle);
 try
 GetTextMetrics(DC, Tm); {Get the text metric info}
 Memo.Perform(EM_GETRECT, 0, longint(@TheRect));

 Result := (TheRect.Bottom - TheRect.Top) div
 (Tm.tmHeight + Tm.tmExternalLeading);
 finally
 SelectObject(DC, Oldfont); {Select the old font}
 end;
 finally
 ReleaseDC(Memo.Handle, DC); {Release the device context}
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi 2.0 Install Issues
 NUMBER : 2981
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : May 21, 1996

 TITLE : Delphi 2.0 Install Issues

 Install Issues for Delphi 2.0
 Last updated 3/13/96

 1) Minimum System Requirements
 2) a. Canceling the Delphi 2.0 install
 b. Canceling Delphi 2.0 Online Registration
 3) Un-Installing
 4) Re-installing Delphi 2.0 on Window's 95
 5) Installing to systems with Paradox 7.0
 6) Installing Delphi 1.0 and 2.0 on the same
 system
 7) Errors During the Install

 1) Minimum System Requirements

 Disk space:
 a) OCX, DLL, and licensing files will require
 approx. 10 megs in your \windows\system directory.

 b) Expansion of files during installation
 temporarily requires 10-15 megs in the drive that
 contains your \temp directory. For example, if
 you are installing Delphi 2.0 to drive D:, and
 your temporary directory path is C:\WINDOWS\TEMP,
 so that drive C will require 10 - 15 megs during
 file expansion.

 Minimum system requirements:

 Processesor
 Desktop : intel 386dx based pc or higher with
 math coprocessor
 Developer: intel 486/25 based pc or higher
 C/S Suite: intel 486/25 based pc or higher
 MS windows '95 or NT 3.51
 8 meg memory (12 recommended)
 50 meg hard disk space
 CD rom drive (3.5 floppy disks available seperately)
 mouse or Windows pointing device

 The chart below shows disk space used resulting
 from sample installs run on a Windows '95 system.

 "Permananet Megs Used" represents the amount of
 disk used after a sample install to a stock
 Window's '95 system with no other applications
 running. These figures are approximate. Your
 disk cluster size may cause the file sizes to
 vary. Also, Window's '95 handling of swap file
 may vary according to your system configuration.

 Permanent
 Megs \Windows (Swap
 Product Used \Borland \System File)
 CSS compact 45 39 6 9
 CSS full 105 98 7 24
 Dev compact 43 37 6 9
 Dev full 104 97 7 20
 Desk compact 32 30 2 9
 Desk full 61 59 2 15

 2)
 a) Canceling the Delphi 2.0 install
 Canceling before 10 - 15% may not clean the
 Window's '95 registry. This appears to be a
 limitation of the Install Shield engine.

 Canceling the install after 15% will cause Delphi
 2.0 to be un-installed.

 b) Canceling Delphi 2.0 Online Registration
 If you wish to register Delphi 2.0 at a later
 time, you may cancel the Registration Wizard.
 Canceling the Registration Wizard will not cause
 an un-install. You may register Delphi 2.0 later
 from the "Delphi 2.0 Online Registration" icon
 located in the Borland Delphi 2.0 directory.

 3) Un-Installing
 Files created after the install of Delphi 2.0 and
 the directories that contain them, will not be
 deleted. For example, if you were to create a new
 project in \Borland\Delphi 2.0\Bin, the un-install
 would leave your project files and the
 \Borland\Delphi 2.0\Bin directory that contained
 them.

 A general rule of thumb is that only files from
 the most recent install will be un-installed.

 Files marked as shared, OCX's and DLL's for
 example, that have a "use" count of zero will
 cause a delete confirmation dialog to appear for
 each file. Microsoft standards for un-installing
 do not include a "Delete All" option at this
 stage.

 4) Re-installing Delphi 2.0 on Window's 95
 If an earlier installation of Delphi 2.0 already

 exists on your Window's 95 system, you must run
 the un-install program. This is necessary to
 cleanup the system registry. The un-install
 utility is located off the Start menu,
 Settings|Control Panel|Add/Remove Programs.

 5) Installing to systems with Paradox 7.0
 The necessary order to install both Delphi 2.0 and
 Paradox 7.0 is to

 a) install Paradox 7.0
 b) install Delphi 2.0.

 If Delphi 2.0 already exists on the system,
 un-install Delphi 2.0, then do a) and b) listed
 above. If you un-install either Delphi 2.0 or
 Paradox 7.0, you will need to re-install the 32
 bit IDAPI.

 6) Installing Delphi 1.0 and 2.0 on the same
 system
 Although Delphi 1.0 and 2.0 will run on the same
 system, don't combine Delphi 1.0 and 2.0 into the
 same directory. Installing to the same directory
 will cause difficulty when the Delphi IDE attempts
 to locate the Help file.

 7) Errors During the Install

 Error 101
 Error 112;
 There is not enough room in the \Temp directory to
 expand files. Expansion of files during
 installation temporarily requires 10-15 megs in
 the drive that contains your \temp directory. For
 example, if you are installing Delphi 2.0 to drive
 D:, and your temporary directory path is
 C:\WINDOWS\TEMP, so that drive C will require 10 -
 15 megs during file expansion.

 "Cannot install Delphi, Local Interbase is
 Running"
 Shut down Interbase from the system tray by right
 clicking the Interbase icon. The System Tray is
 the indentation located on right hand side of the
 task bar)

 Registration Wizard dialog appears as a blank
 InstallShield could not find the install script.
 Cancel the dialog and run the Registration Wizard
 from the icon "Delphi 2.0 Online Registration".

 Temporary directories remain after install to NT.
 On NT systems temporary directories named
 \ISTEMP0x may be left over. These directories
 will probably be empty, and may be deleted.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to Validate ISBNs
 NUMBER : 2988
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 14, 1996

 TITLE : How to Validate ISBNs

ISBNs (or International Standard Book Numbers) are mystical code numbers
that uniquely identify books. The purpose of this article is to remove the
mystery surrounding the structure of the ISBN, allowing applications to
perform data validation on entered candidate ISBNs.

ISBNs are composed of thirteen characters, limited to the number
characters "0" through "9", the hyphen, and the letter "X". This thirteen-
character code is divided into four parts, each separated by hyphens:
group identifier, publisher identifier, book identification for the
publisher, and the check digit. The first part (group identifier) is used
to identify countries, geographical regions, languages, etc. The second
part (publisher identifier) uniquely identifies the publisher. The third
part (book identifier) uniquely identifies a given book within a
publisher's collection. The fourth and final part (check digit) is used
with the other digits in the code in an algorithm to derive a verifiable
ISBN. The number of digits in the first three parts of an ISBN may contain
a variable number of digits, but the check digit will always consist of a
single character (between "0" and "9", or "X" for a value of 10) and the
ISBN as a whole will always consists of thirteen characters (ten numbers
plus the three hyphens dividing the four parts of the ISBN).

The ISBN 3-88053-002-5 breaks down into the parts:

 Group: 3
 Publisher: 88053
 Book: 002
 Check Digit: 5

An ISBN can be verified to be a valid code using a simple mathematical
algorithm. This algorithm takes each of the nine single digits from the
first three parts if the ISBN (sans the non-numeric hyphens), multiplies
each single digit by a number that is less than eleven the number of
positions from the left each digit that is in the ISBN, adds together the
result of each multiplication plus the check digit, and then divides that
number by eleven. If that division by eleven results in no remainder
(i.e., the number is modulo 11), the candidate ISBN is a valid ISBN. For
example, using the previous sample ISBN 3-88053-002-5:

 ISBN: 3 8 8 0 5 3 0 0 2 5
 Digit Multiplier: 10 9 8 7 6 5 4 3 2 1
 Product: 30+72+64+00+30+15+00+00+04+05 = 220

Since 220 is evenly divisible by eleven, this candidate IDBN is a valid
ISBN code.

This verification algorithm is easily translated into Pascal/Delphi code.
String manipulation functions and procedures are used to extract the
check digit and the remainder of the ISBN from the String type value
passed to a validation function. The check digit is converted to Integer
type, which forms the start value of the aggregate variable onto which the
multiplication of each digit in the remainder of the ISBN (the single
digits that comprise the first three parts of the ISBN) will be added. A
For loop is used to sequentially process each digit in the remainder,
ignoring the hyphens, multiplying each digit times its position in the
ISBN remainder relative to the other digits in the remainder. The final
value of this aggregate variable is then checked to see whether it is
evenly divisible by eleven (indicating a valid ISBN) or not (indicating an
invalid candidate ISBN).

Here is an example of this methodology applied in a Delphi function:

function IsISBN(ISBN: String): Boolean;
var
 Number, CheckDigit: String;
 CheckValue, CheckSum, Err: Integer;
 i, Cnt: Word;
begin
 {Get check digit}
 CheckDigit := Copy(ISBN, Length(ISBN), 1);
 {Get rest of ISBN, minus check digit and its hyphen}
 Number := Copy(ISBN, 1, Length(ISBN) - 2);
 {Length of ISBN remainder must be 11 and check digit between 9 and 9 or
 X}
 if (Length(Number) = 11) and (Pos(CheckDigit, '0123456789X') > 0) then
 begin
 {Get numeric value for check digit}
 if (CheckDigit = 'X') then
 CheckSum := 10
 else
 Val(CheckDigit, CheckSum, Err);
 {Iterate through ISBN remainder, applying decode algorithm}
 Cnt := 1;
 for i := 1 to 12 do begin
 {Act only if current character is between "0" and "9" to exclude
 hyphens}
 if (Pos(Number[i], '0123456789') > 0) then begin
 Val(Number[i], CheckValue, Err);
 {Algorithm for each character in ISBN remainder, Cnt is the nth
 character so processed}
 CheckSum := CheckSum + CheckValue * (11 - Cnt);
 Inc(Cnt);
 end;
 end;
 {Verify final value is evenly divisible by 11}
 if (CheckSum MOD 11 = 0) then
 IsISBN := True
 else
 IsISBN := False;
 end
 else
 IsISBN := False;

end;

This is a simplified example, kept simple to best demonstrate the
algorithm to decode ISBNs. There are a number of additional features that
would be desirable to add for use in a real-world application. For
instance, this example function requires the candidate ISBN be passed as a
Pascal String type value, with the hyphens dividing the four parts of the
ISBN. Added functionality might accommodate evaluating candidate ISBNs
entered without the hyphens. Another feature that might be added is
checking that ensures three hyphens are properly included, as opposed to
just thirteen number characters.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

BDE setup for Peer-To-Peer(Non-Dedicated) Networks
 NUMBER : 2989
 PRODUCT : BDE
 VERSION : 3.0
 OS : Windows
 DATE : June 24, 1996

 TITLE : BDE setup for Peer-To-Peer(Non-Dedicated) Networks

Using a BDE32 Application on a Peer-To-Peer Network

A Peer-To-Peer network (a network where each machine acts
as a client and a server) can be one of the following,
including other network platforms that are compatible
with these:
1) Windows 95
2) Windows NT
3) Lantastic
4) Netware Lite

The BDE automatically detects when tables reside on a
network drive, but it cannot detect whether the tables
are on a dedicated server or a server/client. Dedicated
servers notify client applications that a file has been
modified or locked. This functionality is not present in
Peer-To-Peer (non-dedicated) networks. To achieve this
functionality with Peer-To-Peer networks set "LOCAL
SHARE" to TRUE in the BDE Configuration Utility on the
System page. This must be done on all BDE clients that
access the tables on networks listed above. This is not
necessary for Novell File Server type networks.

If the tables that are being used are Paradox, there must
also be a directory used for network control. This
directory must also reside on the network for all client
applications to use. It is good practice to have a
separate directory for the application, network, and
tables. The following is an example:

(Shared Directory)
 |
 |--- (Tables Directory)
 |--- (EXE Directory)
 |--- (Network Directory)

There are two different BDE environments that must also
be considered:
1) Using only BDE 32Bit applications.
2) Using BDE 32Bit applications along with BDE 16Bit
 applications.

Setup for 32Bit Only Applications

The 32Bit BDE fully supports the UNC naming convention
along with long file names. It is recommended that the
UNC convention is used for all BDE network connections.
UNC removes the need for mapped drives. This will allow
access to the tables and network directory without the
user being mapped to the drive. UNC has the following
syntax:
 \\(server name)\(share name)\(path)+(file name)

Here is a simple example of a standard BDE alias using
UNC:

Alias: MyUNCAlias
 Type: STANDARD
 Path: \\FooServer\FooShare\Sharedir\Tables
 Default Driver: Paradox

The network directory can be setup in the same fashion:
Drivers: Paradox
 Net Dir: \\FooServer\FooShare\Sharedir\NetDir

The network directory can be set at runtime using
session.netfiledir (Delphi) or DbiSetProp (C++ / Delphi)

If for some reason UNC cannot be used with the 32Bit
application, follow directions for using BDE 32Bit and
16Bit applications.

Setup for 16Bit and 32Bit BDE Applications
--

Since the 16Bit Windows API does not support UNC, neither
does the 16Bit BDE. To allow applications to share the
tables, all clients must be mapped to the same directory
on the server. If the server is also used as a client,
all other clients must be mapped to the root of the
drive. Drive letters from client to client do not have
to be identical. Here are some examples of what will and
will not work:

Client1:
 Path: X:\ShareDir\Tables
Client2:
 Path: X:\ShareDir\Tables
 This is OK

Client1: (Also the machine with the tables):
 Path: C:\ShareDir\Tables
Client2:
 Path: X:\ShareDir\Tables
 This is OK

Client1: (Also the machine with the tables):
 Path: C:\ShareDir\Tables
Client2:
 Path: X:\ShareDir\Tables
Client3:
 Path: R:\ShareDir\Tables
This is OK

Client1:
 Path: X:\ShareDir\Tables
Client2:
 Path: X:\Tables (Where X:\Tables is actually
X:\ShareDir\Tables, but shared on the ShareDir directory)
 This will not work. The BDE must be able to make the
same entry into the Network Control file.

In Summary (setup for Peer-To-Peer networks):

16 and / or 32Bit Applications:
1) Turn "LOCAL SHARE" to TRUE in the BDE Configuration
 Utility.
2) Do not use the UNC naming convention.
3) Do not use tables with long file names.
4) Make sure that all clients are mapped to the same
 directory on the server.

32Bit Only Applications:
1) Turn "LOCAL SHARE" to TRUE in the BDE Configuration
 Utility
2) Use the UNC naming convention to achieve a path to the
 network directory and table directory.

If the above steps are not followed, users could be
locked out of the tables getting error:
"Directory is controlled by other .NET file."
"File: (Path1) PDOXUSRS.LCK"
"Directory: (Path2)"
 OR
"Multiple .NET files in use."
"File: (Path) PDOXUSRS.LCK"

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Removing "Lock file has grown too large" Error
 NUMBER : 2993
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : August 5, 1996

 TITLE : Removing "Lock file has grown too large" Error

Lock file has grown too large, Decimal:9495 Hex:2517
--
This problem is specific to Paradox tables and can be caused
in any BDE (16 or 32 Bit) application that meet some or all
of the following criteria:

 1) The Executable is in the same directory as the table.
 2) The Private Directory is not correctly set or not set
 at all.
 3a) Delphi: Having a TTable open on a paradox table and
 then performing multiple TQuery operations.
 3b) C / C++: Having a table open with DbiOpenTable and
 then performing multiple queries with DbiQExec and/or
 DbiQExecDirect.
 4) LOCAL SHARE set to true in the BDE Configuration
 Utility on the System page.

To solve the problem, make sure that your application has
done ALL of the following:

 1) Under the directory where the executable is, create
 three new directories: TABLES, PRIV, and NET. Place
 all the tables for the application into the TABLES
 directory.
 2) Set the session's private directory to the PRIV
 directory. Take the following steps according to
 the software you are using.

 DELPHI:
 Session.PrivateDir := ExtractFilePath(ParamStr(0)) + 'PRIV';

 C / C++:
 DbiSetPrivateDir(szPath);
 // szPath is the fully qualified path (not relative)
 // to the PRIV directory.

 3) Set the session's network directory to the NET
 directory. Take the following steps according to
 the software you are using.

 DELPHI:
 Session.NetFileDir := ExtractFilePath(ParamStr(0)) + 'NET';

 C / C++:

 DbiSetProp(hSes, sesNETFILE, (UINT32)szPath);
 // szPath is the fully qualified path (not relative)
 // to the NET directory.

 // hSes is the current session handle. This can be
 // retrieved using the DBiGetCurrSession function.

 4) If LOCAL SHARE is set to true and you are not sharing
 tables between different applications at the same time,
 change LOCAL SHARE to false.

The above steps will correct the Lock File Too Large error.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

SQL: Using the SUBSTRING Function
 NUMBER : 2962
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 14, 1996

 TITLE : SQL: Using the SUBSTRING Function

The SQL function SUBSTRING can be used in Delphi applications that include
local SQL queries, but is not supported for InterBase (IB) or the Local
InterBase Server (LIBS) tables. What follows is the syntax for the
SUBSTRING function, examples of its use in local SQL queries, and an
alternative that will return the same results for IB/LIBS tables.

The syntax for the SUBSTRING function is:

 SUBSTRING(<column> FROM <start> [, FOR <length>])

Where:

 <column> is the name of the column in the table from which the sub-
 string is to be extracted.

 <start> is the point in the column value from which the sub-string to
 be extracted will start.

 <length> is the length of the sub-string to be extracted.

Using these values, the use of the SUBSTRING function below would return
the second, third, and fourth characters from a column named COMPANY:

 SUBSTRING(COMPANY FROM 2 FOR 3)

The SUBSTRING function can be used either in the field list for a SELECT
query or in the WHERE clause of a query to allow for comparing a value
with a specific sub-set of a column. The SUBSTRING function can only be
used with String type columns (the CHAR type in SQL parlance). Here is an
example of the SUBSTRING function used in a columns list in a SELECT
query (using the sample Paradox table CUSTOMER.DB):

 SELECT (SUBSTRING(C."COMPANY" FROM 1 FOR 3)) AS SS
 FROM "CUSTOMER.DB" C

This SQL query extracts the first three characters from the COMPANY
column, returning them as the calculated column named SS. Now, an example
of the SUBSTRING function used in the WHERE clause of an SQL query (using
the same sample table):

 SELECT C."COMPANY"
 FROM "CUSTOMER.DB" C
 WHERE SUBSTRING(C."COMPANY" FROM 2 FOR 2) = "an"

This query returns all rows from the table where the second and third

characters in the COMPANY column are "ar".

As the SUBSTRING function is not supported at all by IB or LIBS databases,
it is not possible to have a sub-string operation in the column list of
a query (exception: IB can do sub-strings via User-Defined Functions).
But through use of the LIKE operator and the accompanying character
substitution marker, it is possible to effect a sub-string in a WHERE
clause. For example, using the sample table EMPLOYEE (in the EMPLOYEE.GDB
database):

 SELECT LAST_NAME, FIRST_NAME
 FROM EMPLOYEE
 WHERE LAST_NAME LIKE "_an%"

This SQL query would return all rows in the table where the second and
third characters of the LAST_NAME column are "an", similar to the
previous example for the Paradox table. While IB and LIBS databases
would require this method for performing sub-string comparisons in the
WHERE clause of a query and cannot use the SUBSTRING function, Paradox and
dBASE tables (i.e., local SQL) can use either method.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi Client/Server Suite 2.0 for Windows 95 & NTDelphi
Client/Server Suite 2.0 for Windows 95 & NT
 NUMBER : 3003
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : May 17, 1996

 TITLE : Delphi Client/Server Suite 2.0 for Windows 95 & NT

Delphi Client/Server Suite 2.0 for Windows 95 and NT
Quick Info Guide

Delphi Client/Server Suite 2.0 provides you with all the tools
you need to build scalable client and server applications while
shortening every stage of the development cycle everything you
need to boost productivity and gain a competitive advantage.

Scalable client/server architecture

 * Create fast, standalone, royalty-free scalable applications
 that are up to 15 to 50 times faster than p-code interpreters.
 * Unleash the power of Windows 95 and Windows NT with complete
 support for OCXs, OLE Automation, multi-threading, Unicode,
 MAPI, and more.
 * Increase productivity with more than 100 reusable components.
 * Deploy royalty-free applications using the NEW! 32-bit SQL
 Links native drivers for Oracle, Sybase, MS SQL Server, and
 InterBase.(R)
 * Visually manage server-specific meta data like stored
 procedures and triggers with the NEW! SQL Database Explorer.
 * Test, debug, and tune SQL applications with the NEW! SQL
 Monitor.
 * Increase server responsiveness with NEW! Cached Updates.
 * Build and test multiuser SQL applications with the NEW!
 InterBase NT (2-user license).
 * Use the NEW! Data Module Objects to separate business rules
 from application code, and scalable NEW! Data Dictionary to
 implement and maintain data integrity.
 * Generate bug-free ANSI SQL-92 code with the Visual Query
 Builder.
 * Manage complex team projects with the NEW! integrated PVCS
 Version Control.

--

Everything you need to gain a competitive advantage!

 * High-performance, optimizing 32-bit native-code compiler
 * Create reusable DLLs and royalty-free, standalone EXEs
 * Full Windows 95 support for OCX controls, and OLE Automation
 controllers and servers
 * Complete access to Windows 95 APIs for multi-threading,
 Unicode, MAPI, and more

 * Complete suite of Windows 95 components
 * 32-bit SQL Links native drivers, with unlimited deployment
 license for Oracle, Sybase, MS SQL Server, and InterBase
 * InterBase NT (2-user lic.) for scalable multiuser SQL
 development
 * SQL Database Explorer to visually manage server-specific meta
 data
 * SQL Monitor to test, debug, and tune SQL applications
 * Integrated InterSolv PVCS Version Control for team development
 * Visual Query Builder to generate bug-free SQL code
 * Cached Updates to speed up server response time
 * Data Pump Expert for rapid upsizing and application scaling
 * Object-oriented component architecture
 * Object Repository for storing and reusing objects, business
 rules, and forms
 * Visual Form Inheritance to reduce coding and simplify
 maintenance
 * Integrated Development Environment
 * Visual Component Library (VCL) with more than 100 reusable
 components
 * VCL Source Code and manual to develop or customize components
 * Sophisticated data-aware components
 * 32-bit Borland(R) Database Engine with low-level API support
 and Help files
 * Database Explorer to visually browse and modify tables and
 aliases
 * Data Module Objects to separate business rules from
 application code for easier maintenance
 * Scalable Data Dictionary to implement and maintain data
 integrity
 * Complete ODBC connectivity
 * 32-bit Local InterBase Server for off-line SQL development
 * 32-bit ReportSmith(R) for sophisticated reporting
 * InstallShield(R) Express for building professional installs
 * WinSight(TM) to monitor Windows messages
 * Expanded Open Tools API to integrate your favorite tools
 * Complete documentation including Object Pascal Language
 Guide
 * Includes 16-bit Delphi 1.0 for Windows 3.1 development

--

Delphi Facts Visual
 Delphi PowerBuilder Basic
 ------ ------------ ------
Optimizing 32-bit native-code Y N N
 compiler
Create standalone EXEs and DLLs Y N N
Create multi-threaded Windows 95/NT Y N N
 applications
Full support for OLE Automation Y N Y
 and OCXs
Includes more than 100 reusable Y N N
 components
Easily build or customize components Y N N
High-performance Visual Form Y N N

 Inheritance
Object Repository for forms and Y N N
 Data Modules
Scalable Data Dictionary Y N N
Fully scalable client/server Y Y N
 architecture
Fast learning curve for increased Y N Y
 productivity
SQL Database Explorer to visually Y N N
 manage meta data
SQL Monitor to test, debug, and Y N N
 true SQL apps
--

Minimum System Requirements

 * Intel 486/25-based PC or higher
 * Microsoft Windows 95 or Windows NT 3.51
 * 8Mb of memory (12Mb recommended)
 * 50Mb hard disk space
 * CD-ROM drive
 * Mouse or other Windows pointing device

Borland Delphi Client/Server Suite support services

 * Fast Fax for Detailed Information: 1-800-408-0001
 * TechFax(TM) for Technical Information: 1-800-822-4269
 * Connections Developer Program: 1-800-353-2211
 * Free Install Support: (408) 461-9195
 * Credit Card Advisor Line: 1-800-330-3372
 * 900-Advisor Lines:
 o Delphi and Delphi Client/Server: 1-900-555-1015
 o Local InterBase Server: 1-900-555-1013
 o ReportSmith: 1-900-555-1011
 o For Technical Support Service contracts and
 information: 1-800-523-7070

Satisfaction guaranteed!

You can buy the Delphi Client/Server Suite with complete
assurance. If for any reason you are not fully satisfied
with your purchase, you can return it to Borland within
90 days. No questions asked!

Authorization required to sell these products. Call
1-800-408-0001 to request a client/server authorization
form. Educational pricing is available through Borland
Authorized Educational Resellers. Call 1-800-847-7797.
Advisor Line charges: $2.00 per minute, first minute free.

Borland's DELPHI products and services are not associated
with or sponsored by Delphi Internet, an online service
and Internet access provider.

DISCLAIMER: You have the right to use this technical information

subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Performing database queries in a background thread
 NUMBER : 3005
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : June 13, 1996

 TITLE : Performing database queries in a background thread

This document explains how to perform queries in a
background thread by using the TThread class. For
information on the general usage of the TThread class,
please refer to the Borland documentation and to the online
help. You should be aware of how to use Delphi 2.0's
database components to understand the this TI's contents.

Two requirements must be met in order to perform a threaded
query. First, the query to be threaded must be contained
within its own session by using a separate TSession
component. Therefore, you would place a TSession component
on your form and assign it's name to the SessonName property
of the TQuery component to be used in the thread. You must
use a separate TSession component for each TQuery component
to be used in a thread. If you are also using a TDataBase
component, a separate TDataBase must be used for each
threaded query as well. The second requirement is that the
threaded TQuery component must not be connected to a
TDataSource in the context of the thread in which it will be
executed. This must be done in the context of the primary
thread.

The code example below illustrates this process. This unit
shows a form which contains two each of the following
comopnents: TSession, TDatabase, TQuery, TDataSource and
TDBGrid. These components have the following property
settings:

Session1
Active True;
SessionName "Ses1"

DataBase1
AliasName "IBLOCAL"
DatabaseName "DB1"
SessionName "Ses1"

Query1
DataBaseName "DB1"
SessionName "Ses1"
SQL.Strings "Select * from employee"

DataSource1
DataSet ""

DBGrid1
DataSource DataSource1

Session2
Active True;
SessionName "Ses2"

DataBase2
AliasName "IBLOCAL"
DatabaseName "DB2"
SessionName "Ses2"

Query2
DataBaseName "DB2"
SessionName "Ses2"
SQL.Strings "Select * from customer"

DataSource2
DataSet ""

DBGrid1
DataSource DataSource2

Notice that the DataSet property for both TDataSource
components do not refer to anything initially. This will be
set at run-time as illustrated in the code.

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs,
 StdCtrls, Grids, DBGrids, DB, DBTables;

type

 TForm1 = class(TForm)
 Session1: TSession;
 Session2: TSession;
 Database1: TDatabase;
 Database2: TDatabase;
 Query1: TQuery;
 Query2: TQuery;
 DataSource1: TDataSource;
 DataSource2: TDataSource;
 DBGrid1: TDBGrid;
 DBGrid2: TDBGrid;
 GoBtn1: TButton;
 procedure GoBtn1Click(Sender: TObject);
 end;

 TQueryThread = class(TThread)
 private

 FSession: TSession;
 FDatabase: TDataBase;
 FQuery: TQuery;
 FDatasource: TDatasource;
 FQueryException: Exception;
 procedure ConnectDataSource;
 procedure ShowQryError;
 protected
 procedure Execute; override;
 public
 constructor Create(Session: TSession; DataBase:
 TDatabase; Query: TQuery; DataSource: TDataSource);
 virtual;
 end;

var
 Form1: TForm1;

implementation

constructor TQueryThread.Create(Session: TSession; DataBase:
 TDatabase; Query: TQuery; Datasource: TDataSource);
begin
 inherited Create(True); // Create thread in a
suspendend state
 FSession := Session; // connect all private fields
 FDatabase := DataBase;
 FQuery := Query;
 FDataSource := Datasource;
 FreeOnTerminate := True; // Have thread object free
itself when terminated
 Resume; // Resume thread execution
end;

procedure TQueryThread.Execute;
begin
 try
 { Run the query and connect the datasource to the TQuery
 component by calling ConnectDataSource from main
 thread (Synchronize used for this purpose)}
 FQuery.Open;
 Synchronize(ConnectDataSource);
 except
 { Capture exception, if one occurs, and handle it in the
 context of the main thread (Synchonize used for this
 purpose. }
 FQueryException := ExceptObject as Exception;
 Synchronize(ShowQryError);
 end;
end;

procedure TQueryThread.ConnectDataSource;
begin
 FDataSource.DataSet := FQuery; // Connect the DataSource
to the TQuery

end;

procedure TQueryThread.ShowQryError;
begin
 Application.ShowException(FQueryException); // Handle the
exception
end;

procedure RunBackgroundQuery(Session: TSession; DataBase:
TDataBase;
 Query: TQuery; DataSource:
TDataSource);
begin
 { Create a TThread instance with the various parameters. }
 TQueryThread.Create(Session, Database, Query, DataSource);
end;

{$R *.DFM}

procedure TForm1.GoBtn1Click(Sender: TObject);
begin
 { Run two separate queries, each in their own thread }
 RunBackgroundQuery(Session1, DataBase1, Query1,
Datasource1);
 RunBackgroundQuery(Session2, DataBase2, Query2,
Datasource2);
end;

end.

The TForm1.GoBtn1Click method is an event handle for a
button click event. This event handler calls the
RunBackgroundQuery procedure twice, each time passing a
different set of database components. RunBackgroundQuery
creates a separate instance of the TQueryThread class,
passing the various database components to its constructor
which in turn assigns them to the appropriate TQueryThread
private data fields.

The TQueryThread contains two user-defined procedures:
ConnectDataSource and ShowQryError. ConnectDataSource
connects FDataSource.DataSet to FQuery. However, it does
this in the primary thread by using the TThread.Synchronize
method. ShowQryError handles the exception in the context of
the primary thread, again by using the Synchronize method.
The Create constructor and Execute method are explained in
the code's comments.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Obtaining the Physical Path of a Table
 NUMBER : 3100
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : August 20, 1996

 TITLE : Obtaining the Physical Path of a Table

TITLE: Obtaining The Physical Path of a Table
Submitted: August 13, 1996
Author: Xavier Pacheco

When a Table is referenced through an alias, the physical path is
not readily available. To obtain this path, use the
DbiGetDatabaseDesc BDE function. This function takes the alias
name and a pointer to a DBDesc structure. The DBDesc structure
will be filled with the information pertaining to that alias.
This structure is defined as:

pDBDesc = ^DBDesc;
DBDesc = packed record { A given Database Description }
 szName : DBINAME; { Logical name (Or alias) }
 szText : DBINAME; { Descriptive text }
 szPhyName : DBIPATH; { Physical name/path }
 szDbType : DBINAME; { Database type }
end;

The physical name/path will be contained in the szPhyName field
of the DBDesc structure.

Possible return values for the DBIGetDatbaseDesc function are:

DBIERR_NONE The database description for pszName was
retrieved successfully.

DBIERR_OBJNOTFOUND The database named in pszName was not found.

The code example below illustrates how to obtain the physical path
name of a TTable component using the DBDemos alias:

var
 vDBDesc: DBDesc;
 DirTable: String;
begin
 Check(DbiGetDatabaseDesc(PChar(Table1.DatabaseName), @vDBDesc));
 DirTable := Format('%s\%s', [vDBDesc.szPhyName, Table1.TableName]);
 ShowMessage(DirTable);
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

TForm.MDIChildren[] Array and Form Creation
 NUMBER : 3050
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 13, 1996

 TITLE : TForm.MDIChildren[] Array and Form Creation

The documentation of TForm.MDIChildren[] states that the index
of the first-created MDI child is 0. This is incorrect -- the
index of the most-recently-created MDI child is always 0, and
the index of the first-created MDI child is always
MDIChildCount - 1.

With this in mind, you can use the following code to iterate
over the MDI child array from from the first-created to the
last:

procedure TForm1.IterateOverMDIChildren;
var
 i: integer;
begin
 for i := MDIChildCount - 1 downto 0 do begin
 { do something with MDI child here }
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi Client/Server Certification Program
 NUMBER : 3051
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : June 12, 1996

 TITLE : Delphi Client/Server Certification Program

 Borland International

 Delphi Client/Server Certification Program

The Delphi Client/Server Certification Program was developed by
Borland to meet the needs of IS departments, developers, and
training professionals. Certification is a key accomplishment
earned by an alliance of organizations and individuals devoted
to the ongoing delivery of training and of quality business
solutions built with Delphi Client/Server. This alliance
enables Borland partners to deliver distinctive applications
and education to our customers worldwide.

Certification Tracts

Through certification, Borland validates an individual's Delphi
Client/Server knowledge and skill. The validation is earned by
meeting requirements in one of two tracts:

1) Certified Delphi Client/Server Developer
2) Certified Delphi Client/Server Training Professional

Borland's certified professionals enjoy the important status
required to develop and train in America's most demanding
corporate development environments. In addition, Borland
certified developers and trainers:

- receive a Certificate of Recognition
- are entitled to use the Borland Delphi C/S Certified logo
 which designates their expertise with Delphi Client/Server
- are entitled to purchase Borland Delphi Client/Server 2.0
 courseware (Training Professionals only)
- receive a free listing on Borland's On-line Resource Locator*

Requirements for Certified Delphi C/S Developers
--

To become a Certified Delphi C/S Developer, you must:

- complete the Borland Delphi Client/Server Exam with a
 passing score
- sign a Delphi C/S Developer Certification Agreement

Requirements for Certified Delphi C/S Training Professionals
--

To achieve the status and distinction of becoming a Certified
Delphi Client/Server Training Professional, you must:
- complete the Borland Delphi Client/Server Exam with a passing
 score
- successfully complete a Borland-sponsored Delphi
 Client/Server 2.0 Train-the-Trainer course
- sign a Delphi Client/Server Training Professional
 Certification Agreement

Certification Renewal

Certification renewal is required annually or in conjunction
with major new releases of Delphi Client/Server Suite. To
maintain continuous Certification status, you must renew
certification within 60 days of release of new certification
testing. Renewal may include passing another certification
exam, additional fees, and attendance at additional Borland
authorized training courses.

Following are details and instructions on each of the
requirements for certification.

- complete the Borland Delphi C/S Certification Exam with a
 passing score

 A certified professional must have exceptional Delphi C/S
 skills and knowledge in order to assist others in the full
 use the product. Individuals who are seeking the status of
 Delphi C/S certification can make two attemtps at passing the
 exam. If both attempts are unsuccessful, you must attend a
 Delphi C/S training course taught by a certified instructor
 before making a third attempt to pass the exam. For
 information on Delphi Client/Server product training send an
 email to kalderman@wpo.borland.com.

 Preparing for the Delphi Client/Server Exam:

 Individuals may download the Study Guide
 (http://www.borland.com) which outlines the objectives used to
 create the questions on the Delphi Client/Server Exam.
 Candidates are also encouraged to take advantage of any Delphi
 Client/Server 2.0 classes taught by Certified Delphi
 Client/Server Training Professionals and study Borland Press
 books.

 Testing Centers and Costs:

 Price: $140/exam
 (Currently testing is available in the United State and
 Canada. Watch this space as we bring additional testing
 centers online internationally.

 All testing is administered by Sylvan Prometric testing
 centers. Sylvan Prometric has over 200 testing centers
 worldwide. You are allowed 75 minutes to complete the Delphi
 C/S exam. Your score will be presented at the conclusion of
 the exam. To register to take the Delphi Client/Server Exam
 in a Sylvan testing center near you, call 1-800-430-EXAM
 (1-800-430-3926).

- successfully complete a Borland Delphi Client/Server 2.0
 Train-the-Trainer course

 The Delphi C/S 2.0 Train-the-Trainer class is required by all
 Training Professionals seeking certification. This five-day
 class of in-depth courseware instruction offers instructor
 discussions, teachbacks, reviews and tips of Borland's
 official Delphi Client/Server 2.0 courseware. Included in
 the $2995 price is one Delphi Client/Server Instructor Guide,
 ten Delphi Client/Server Student Guides and five free support
 phone calls to Borland's courseware developer all valued at
 over $2800.

 For specific dates and locations of the upcoming Train-the-
 Trainer classes, please contact Lisa Coenen at 408-431-5758
 or by email at lcoenen@wpo.borland.com.

- sign a Delphi C/S Developer or Training Professional
 Certification Agreement

 Once Borland receives your exam results from Sylvan
 Prometric, you will be notified. A Certification Agreement
 will be mailed to you for signature. When the signed original
 agreement is returned to Borland, you will receive official
 notification of certification along with the certifiation logo
 and Certificate of Recognition. A copy of the Certification
 Agreement is downloaded with this document.

Note: Certification qualifications may vary slightly by country.
For details on certification programs outside the United States
and Canada contact your local Borland sales office. *Free
listings are available to members of Borland Connections,
Premier Partners and Authorized Education centers.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Authorized Client/Server Education Centers
 NUMBER : 3052
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : June 12, 1996

 TITLE : Authorized Client/Server Education Centers

 Borland International

 Authorized Client/Service Education Centers

Borland Authorized Client/Server Education Centers program
includes organizations whose training expertise and environment
meet the high technical and training standards set by Borland.
Our purpose is to create an alliance with organizations that
provide professional quality and value-added services necessary
to meet the technical and educational needs of Borland's
client/server customers worldwide.

Benefits of
Borland Authorized Client/Service Education Centers Status

In addition to the prestige of attaining the status of a Borland
Authorized Client/Server Education Center, recognized
organizations enjoy the following benefits:

- Preferred pricing of Borland's Delphi Client/Server 2.0
 courseware
- Ability to deliver Borland Delphi Client/Server 2.0 Training
 Bundles

Authorization Requirements

To attain the status of Borland Authorized Client/Server
Education Center, an organization must meet the following
criteria:

- Be a member in good standing of one of the following Borland
 Premier Partner programs:
 * Borland Premier System Integrator
 * Borland Value-added Resellers
 * Borland Premier Alliance
 * Borland Connections for Delphi Client/Server
 * Borland Training Connections for Delphi Client/Server
- Employ at least one Borland Certified Delphi Client/Server
 trainer as a full-time staff member
- Sign an Authorized Client/Server Education Center Agreement or
 an amendment to an existing Borland partner contract
- Maintain a "current" status on Borland accounts receivable

- Maintain a formal classroom with a minimum of 8 student PC
 workstations and one instructor workstation meeting the
 following specifications:

 Student Configuration: Instructor Configuration:
 486 PC or faster 486 PC or faster
 16MB RAM 16MB RAM
 200 MB hard disk 200 MB hard disk
 VGA Monitor & card VGA Monitor & card
 MS compatible mouse MS compatible mouse
 CD-ROM drive
 9600 Baud or faster modem

Authorized Client/Server Education Center Classroom
specifications as of 5/1/96:

- Air conditioning and heating
- PC projection equipment (overhead and LCD minimum
 requirements)
- Projection screen
- Ability to darken room for display and presentation purposes
- 10 sq. ft. erasable writing board (white board or equivalent)
- Minimum seating for 8 hands-on student participants

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi Client/Server 2.0 Courseware
 NUMBER : 3053
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : June 12, 1996

 TITLE : Delphi Client/Server 2.0 Courseware

 Borland, International

 Delphi Client/Server 2.0 Courseware

Courseware Philosophy

Borland has developed course materials for Delphi Client/Server
2.0 Suite. The courseware is designed to emphasize concepts of
Delphi Client/Server 2.0, not just techniques of using the
product. There are highly structured examples integrated into
the courseware which focus on key Delphi aspects central to most
development. An instructional slide show, which supplements
the instructor's teaching, is closely correlated to the
courseware and keeps both the instructor and learner on track.

The student exercises are thought-provoking and realistic.
There are additional advanced exercises for high-end students,
as well as appendices for supplemental topics. The courseware
becomes useful reference material after the class because of its
technical depth and educational quality. This document provides
a thumbnail sketch of the courseware and the environment
and audience for which it is intended.

Course Description

The course is designed to ensure that Delphi Client/Server
developers have an understanding of, and can successfully
implement, Delphi Client/Server in a distributed computing
environment.

The courseware covers the Delphi Client/Server 2.0 fundamental
concepts of Delphi application development including
IDE, Pascal Language basics, debugging, event-driven
programming, database tasks, the Borland Database Engine, and
database tools.

The bulk of the course highlights and teaches concepts of Delphi
Client/Server application development including database
components, working with SQL, migration to Client/Server,
exception handling, component creation, and InstallShield.

 Delphi Client/Server 2.0 Courseware Chapter Headings

Chapter 1 A Tour of Delphi
Chapter 2 Projects, Units and Forms
Chapter 3 Form Designer
Chapter 4 Component Sampler
Chapter 5 Menus
Chapter 6 The Object Pascal Language
Chapter 7 Program Structure and Scoping
Chapter 8 Object Oriented Programming in Delphi
Chapter 9 Using the Debugger
Chapter 10 Exceptions in Delphi
Chapter 11 Templates
Chapter 12 Event Driven Programming
Chapter 13 Borland Database Engine Overview
Chapter 14 Database Desktop
Chapter 15 Creating Database Applications
Chapter 16 Using Database Experts
Chapter 17 Using TField Objects
Chapter 18 Manipulating Datasets
Chapter 19 Using TQuery Components
Chapter 20 Using TDatabase Components
Chapter 21 User Interface Techniques
Chapter 22 Advanced Object Pascal
Chapter 23 Local InterBase
Chapter 24 Migrating to Client/Server
Chapter 25 Advanced TDatasets
Chapter 26 Using the SQL Explorer
Chapter 27 Advanced Exception Handling Techniques
Chapter 28 Using the SQL Monitor
Chapter 29 Simple Component Creation
Chapter 30 Creating Delphi Components
Chapter 31 Quick Reports
Chapter 32 Integrating ReportSmith Reports
Chapter 33 InstallShield Express

Intended Audience

The course is targeted at those who may be new to Delphi
Client/Server 2.0 Suite, but who have experience with a visual
development tool.

Length of Course

The courseware is five days of planned curriculum in an
instructor-led setting.

Courseware Contents

Student materials include the following:
- 150-page Courseware Manual
- 100-page Student Guide
- Exercise Diskettes

The Student Guide was created to display the slide show and
printed exercises, and is a perfect place to take copious notes.

The 350-page Instructor Guide is an educationally sound
combination of reference material, speaking points, sample code,
and common questions.

Course Prerequisites

A working knowledge of Windows is imperative. Experience
programming applications for Local Area Networks and a working
knowledge of another Windows 4th generation database programming
platforms (e.g. Paradox for Windows, dBASE for Windows, Visual
Basic, PowerBuilder) is recommended. We encourage learners to
also have experience developing applications for one of the
following SQL datavase servers: InterBase 3.3/4.0, Microsoft
SQL Server, Sybase, Oracle, Informix, or an ODBC supported
server.

Preparation for Certification Testing

Attending a training class where this courseware is used will be
one of many ways for candidates to prepare for successful
completion of the Delphi Client/Server certification exam.
However, taking this course and learning the material contained
within may not be sufficient preparation for passing the test.
The courseware covers a broad set of features and concepts many
of which are included on the test. The training materials were
not written as the sole preparation for certification, but
instead to educate and prepare people for a real-world Delphi
development environment.

Courseware Availability

The official Borland Delphi Client/Server 2.0 courseware is
taught by Delphi Client/Server Certified Training Professionals
only. These professionals have demonstrated a high level of
technical skills and competence through Delphi Client/Server
certification and completed a rigorous train-the-trainer program
for this courseware.

Pricing (U.S. and Canada)

Only Certified Training Professionals can order these materials.

 Certified Authorized
 Training Education
 Professional Center

Student $275/each $225/each
Manual

Instructor $500/each* $500/each*
Guide

* One Instructor Guide is included in each Train-the-Trainer

 course. You must be a certified Delphi Client/Server trainer
 to order a replacement guide.

How to Order

There are three ways to order courseware from Crestec Los
Angeles, Inc., Borland's printer and distributor of Delphi
training materials. You can use fax, email or the automated
attendant (voicemail) 24 hours a day, seven days a week.
Monday through Friday during business hours, you will receive a
confirmation within three hours of your order. Order forms are
available on Borland's web site and enclosed with each order.

Fax Number: 310-715-9761
Email Address: borland@crestecla.com
Toll-free Voicemail Number: 888-234-4553

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Study Objectives for the Delphi Client/Server Exam
 NUMBER : 3054
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : June 12, 1996

 TITLE : Study Objectives for the Delphi Client/Server Exam

 Borland International

 Study Objectives
 for the Delphi Client/Server Exam

Borland's Delphi Client/Server Exam is a comprehensive test of
knowledge and skills of the Delphi Client/Server technology.
This document is for individuals who are seeking Delphi
Client/Server certification and are preparing to take the Exam.
The information provided is a list of knowledge objectives
that can be used as a study guide for the Delphi Client/Server
Exam. It is intended to help you understand the content of the
Exam so you can effectively study and achieve your certification
goals. It is also recommended that you take an official Borland
Delphi Client/Server Training Course and use Borland Press Books
to prepare.

The Delphi Client/Server Exam will be administered by Sylvan
Prometric at over 200 testing centers worldwide. A limited
number of discounted test seats will also be offered on site at
Borland's Developer Conference (BDC) in Anaheim, CA, July 29 &
30, 1996. To register for Delphi Client/Server Certification at
BDC or at a Sylvan Prometric testing center near you, call
Sylvan Prometric 1-800-430-EXAM (1-800-430-3926). The test fee
for the United States and Canada is $140. For International
test fees, contact your local Borland sales office.

Windows

- Describe the features of the Windows API relevant to Delphi.
- Describe the correct use of the TOLEContainer to embed an object.
- Describe characteristics of OLE and DDE. Given a situation
 identify the correct use of each.

Object Pascal

- Define the major sections of a unit (i.e. interface; uses;
 implementation; initialization).
- Describe procedural and variable scope.
- Describe when to use virtual and override and given a
 situation, describe the correct use of each.
- Identify the differences between constructors and destructors
 and, given a situation, identify the correct use of each.
- Describe the methods available for destroying objects.

- Identify and define the major sections of a class declaration
 (i.e., class(...), private, protected; public; published).
- Describe when to use try...finally and try...except, and
 given a situation, identify the correct usage of each.
- Describe when it is necessary to use raise and given a
 situation, identify its correct usage.
- Identify the methods which access object-type information
 at run-time (e.g., is, ClassType; as; etc.). Given a situation
 identify the correct use of each.

IDE

- Identify the files (e.g. .dpr; .dfm; .pas; etc.) that make up
 a project.
- List the steps required to make a DLL project. Identify a
 properly constructed DLL project.
- Identify the steps to create and destroy forms dynamically.
 Given a situation identify the correct use of the Create and
 Free methods.
- Describe when it is appropriate to use Show vs. ShowModal
 (i.e. overlapped windows vs. dialogs). Given a situation
 identify the correct use of each.
- List the Project and Environment options which are useful for
 development vs. deployment (e.g. "Range Checking", "Break on
 Exception"). Given a situation, identify the correct usage.

Components

- Describe the differences between ownership (e.g. Owner,
 Components[], etc.) and parenthood (e.g. Parent, Controls[],
 etc.) with respect to a child.
- Identify the properties and methods available for creating a
 drag-and-drop application. Given a situation identify their
 correct usage (e.g., DragMode, BeginMode, etc.).
- Define the role of the ModalResult property in relation to
 the closing of a form.
- Given a situation identify the correct use of the GroupIndex
 property as it applies to several related components (i.e.,
 TSpeedButton, TMenuItem).
- Given a situation identify the correct use of the Cursor
 property (e.g., set to an hourglass during repetitive process).
- List some of the properties and methods related to TCanvas
 (e.g., Brush, FillRect,, etc.). Given a situation identify
 their correct usage.

Database Components (1)

- Identify the methods which affect a TDataSet.
- Identify the issues involved in creating a calculated field.
- Describe how to search for a record using keyed fields vs.
 non-keyed fields.
- Describe the functionality of the TQuery's DataSource
 property. Describe how it is related to the TTable's
 MasterSource property.
- Identify the types of SQL which are used with the TQuery
 components.

- Identify the issues involved when using the Prepare method of
 the TQuery component?
- Given a situation, tell how to correctly assign values to a
 TField.
- Demonstrate knowledge of the Session global variable,
 including its function, scope, and where it is created.

- List the properties and methods available for manipulating
 fields in a TDBGrid. Given a situation identify the correct
 usage.

Database Tasks (1)

- Identify properties and methods used to traverse a dataset.
- Identify the correct use of the TDataSet events.
- Identify the properties and methods used to format and
 validate database fields at runtime.

Component Design

- Identify the steps required to create and register a custom
 component.
- Identify the steps required to create a property and an event
 for a component.

SQL

- Given a situation identify the differences between
 pass-through SQL and standard.
- Given a situation identify the correct result of the SELECT
 statement.
- Given a situation identify the correct use of the DELETE
 statement.
- Given a situation identify the correct use of the INSERT
 statement.
- Given a situation identify the correct use of the UPDATE
 statement.
- Identify the correct use of the CREATE TABLE statement.
- Identify the correct use of the CREATE VIEW statement.
- Given a situation, identify the correct use of a CREATE
 INDEX statement.

Database Components (2)

- List the components, properties and methods necessary for
 server interaction (i.e., TDatabase). Given a situation
 identify their correct usage (e.g., logging-on to a server
 without prompting the user).
- Identify the necessary steps in creating your own login
 dialog.
- Demonstrate knowledge of the AliasName and the DriverName
 properties of the TDatabase component.
- Identify the correct usage of StartTransaction, Commit,
 Rollback and their related behavior.
- List the advantages of using a TDatabase component.
- Describe the purpose of TDatabase's KeepConnection property.

- Demonstrate knowledge of TDatabase's UpdateMode property.
- Identify the record searching methods of a dataset.
- Demonstrate familiarity with the properties and methods of
 the TStoredProc component.
- Demonstrate competence using Params and ParamByName to
 satisfy the parameters of dynamic queries.
- Demonstrate knowledge of moving data using TBatchMove and
 other Delphi components.
- Describe the advantages and disadvantages which arise when
 using TTable components vs. TQuery and TStoredProc components
 on remote databases (i.e., network traffic).

Database Tasks (2)

- Describe how to deal with referential integrity constraints
 using triggers and stored procedures.
- Given a situation identify the correct use of SQL exceptions
 (e.g., warning of a key violation).
- Given a situation identify the correct use of grant.
- Describe the locking mechanisms used by the BDE (e.g.,
 optimistic locking).

Up-Sizing Applications

- Given a situation identify the correct uses of the TBatchMove
 component.

Borland Database Engine

- Identify the available settings in the BDE configuration for
 configuring a SQL connection.
- Describe how to manually create and edit a BDE alias.

ReportSmith

- Identify the properties of the TReport component.
- Identify the steps required to avoid the connect dialog when
 loading a report.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi Client/Server 2.0 Train-the-Trainer Class
 NUMBER : 3055
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : June 12, 1996

 TITLE : Delphi Client/Server 2.0 Train-the-Trainer Class

 Borland, International

 Delphi Client/Server 2.0 Train-the-Trainer

The Train-the-Trainer class for Delphi Client/Server 2.0 is an
essential requirement for technical trainers who want to boost
their competency in the classroom and complete the Delphi
Client/Server Certification Program.

The class incorporates training strategies to showcase Delphi
Client/Server 2.0 courseware and is taught by technical and
educational specialists who have been personally involved in
the instructional design of the Delphi Client/Server 2.0
courseware.

As the cornerstone for trainer certification, this class
provides an opportunity for technical trainers to build on
their already sound product knowledge, expand their courseware
knowledge, and hone their classroom presence. This is a
dynamic, fast-paced program which emphasizes practice and
participation in order to build skills and confidence of our
valued group of Delphi Client/Server training professionals.

Objectives of Delphi Client/Server 2.0 Train-the-Trainer
--
- Provide a recognized process for trainers seeking Delphi
 Client/Server 2.0 trainer certification.
- Ensure the high quality of instructors representing and
 teaching Delphi Client/Server 2.0.
- Build consistency among the instructors using the official
 Borland courseware.

General Overview

Daily section reviews, sample exercises, and Train-the-Trainer
discussions provide the structure for the class and allow
individuals to systematically progress through the material.
Student teachings are also a major component of the class.
Each of the instructors in attendance has a unique style,
teaching methods and Delphi knowledge from which the class can
benefit. Therefore, we want you in the instructor role part of
the time. Both individual and team teaching is available. The
teaching modules are integrated with the instructor's daily
agenda.

Who Should Attend

This class is open to those instructors who are working toward
completion of the Delphi Client/Server Trainer Certification
Program. All of the following prerequisites are recommended:
- at least two years of technical training experience
- successfully passing the Delphi Client/Server Exam
- attendance at a Delphi class using the official Borland Delphi
 Client/Server 2.0 courseware (this may be waived if you have
 been teaching Delphi 1.0 or successfully pass the Exam in
 two attempts)
- evidence of superior presentation skills

Cost

$2995/student

This price includes one Delphi Client/Server Instruction Guide,
ten copies of the Client/Server 2.0 courseware for your first
class, and five free courseware support phone calls to Borland's
courseware developer, all valued at over $2800.

Length

4.5 days

Class Size

12 students

How to Register

For specific dates, locations, or to request a registration form
for upcoming Train-the-Trainer classes, please call Lisa Coenen
at 408-431-5758.

Cancellation Policy

If a student cancels a class within 10 business days prior to
the start date of the course, a full refund may be obtained.
Any cancellation or rescheduling with less than 10 business days
will cause the student to incur a 50% late cancellation penalty.
Registrants who do not cancel and do not attend will forfeit the
entire course fee. All cancellations must be in writing.

Course Cancellation

Borland reserves the right to cancel any training class. Should
Borland cancel a class, a full refund of tuition or fees will be
issued to the student or applied as credit toward a rescheduled
class. Borland cannot assume responsibility for any other costs
to the student (i.e. non-refundable airline tickets).

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that

you received with the Borland product to which this information
pertains.

Redistributing Applications using the ISP
 NUMBER : 3078
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : December 13, 1996

 TITLE : Redistributing Applications using the ISP

Redistributing Applications using the Internet Solutions Pack

Applications built with the Internet Solutions Pack can be
redistributed using most third party installation programs,
including the InstallShield Express utility that ships with
Delphi 2.0 Client/Server and Developer. In order to deploy
your application, any OCX controls you used in building the
application need to be redistributed along with your executable,
as well as any other necessary files (eg. dll's) your program
requires.

In addition, the Internet controls are dependent upon NetManage's
support dll's, and must be included with your program. The
following list contains of all the OCX files and NetManage DLLs
that ship with the Internet Solutions Pack (and that may need to
be redistributed):

 OCX files

 HTML.OCX
 HTTPCT.OCX
 NNTPCT.OCX
 POPCT.OCX
 SMTPCT.OCX
 WINSCK.OCX
 FTPCT.OCX

 NetManage DLLs

 NMOCOD.DLL
 NMSCKN.DLL
 NMFTPSN.DLL
 NMW3VWN.DLL
 NMORENU.DLL

For a list of which files you actually need to include with your
distribution, use the following dependency matrix:

 --
 | Winsock | FTP | NNTP | SMTP | POP3 | HTTP | HTML | |
|---|---|---|---|---|---|---|---|
|NMSCKN.DLL | X | X | X | X | X | X | X |
|---|

|NMORENU.DLL | | X | X | X | X | X | X |
|---|
|NMOCOD.DLL | | X | X | X | X | X | X |
|---|
|WINSCK.OCX | X | | | | | | |
|---|
|FTPCT.OCX | | X | | | | | |
|---|
|NMFTPSN.DLL | | X | | | | | |
|---|
|NNTPCT.OCX | | | X | | | | |
|---|
|SMTPCT.OCX | | | | X | | | |
|---|
|POPCT.OCX | | | | | X | | |
|---|
|HTTPCT.OCX | | | | | | X | |
|---|
|HTML.OCX | | | | | | | X |
|---|
|NMW3VWN.DLL | | | | | | | X |

Patches:

The following patches are available for download from the Borland
Delphi 32 CompuServe Forum (BDELPHI32) and the Borland website
(www.borland.com).

NMPATCH.ZIP - Unzip this file and follow the included directions.
This patch was supplied by NetManage and will actually update the
controls themselves.

ISP.DCU - Place in the Delphi 2.0\lib subdirectory and recompile
your project. This will prevent the error message about not being
licensed.

To deploy your program using InstallShield Express, follow these
steps:

1) Start up ISXpress, and build your Setup project as you
 normally would (if you are unfamiliar with building a
 Setup project with InstallShield Express, refer to the
 InstallShield online help).

2) In the Components & Groups portion of the setup, add your
 executable file into an appropriate group (eg. the Program
 Files group (default)).

3) Create a new group for the shared files (eg. "Shared Files"),
 and set the Destination Directory to <WINSYSDIR>. Then launch
 the Explorer and drag the necessary files (as determined by
 using the above matrix) to the newly created folder. These
 files should be located in your Windows\System directory on
 your hard drive (if not, you can find them on the Delphi 2.0

 CD-ROM under \RUNIMAGE\DELPHI20\WINDOWS\SYSTEM32).

4) Finish the rest of the Setup procedure.

You are now ready to deploy your application. InstallShield will
automatically register all OCX's and DLLs that have <WINSYSDIR> set
as their destination directory.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Sharing Violation Error with Paradox Tables
 NUMBER : 3089
 PRODUCT : BDE
 VERSION : All
 OS : Windows
 DATE : August 14, 1996

 TITLE : Sharing Violation Error with Paradox Tables

Description:
 This error is most commonly caused by a "Lock File
Contention". A lock file contention occurs in this
situation:
 One user, User "A", is accessing one or more Paradox
tables in a directory. "A" is closing the last table
in the directory. The BDE detects that "A" is the last
program accessing the tables in the directory. Since
"A" is the last user on the tables, the .LCK files are
going to be deleted. At this time, User "B" attempts
to open a table in the same directory as "A" (who is
about to delete the .LCK files). "B" opens the .LCK
files to write an entry to. This is when "A" tries to
delete the .LCK files that "B" has now opened. This
will cause a sharing violation on the .LCK files. The
share violation usually occurs on the last client to
close the table.

Solutions:
 One solution is to override Windows error routines
and ignore the error. In all test cases, then a
sharing violation occurs, the table is still opened or
closed.
 Another solution is to keep the .LCK files in the
table's directories. If the BDE detects that more
than one Application (or Session) is using the tables,
it will not attempt to delete the .LCK files therefore
solving the problem.

1) C / C++ / Delphi / Paradox:
Use the Windows API SetErrorMode passing the
SEM_FAILCRITICALERRORS constant. You would only need
to do this before opening and closing a table and
then check to see if the table has actually been open.
Please see Routine 1a and 1b below for a basic Delphi
(any version) routine or Routine 2a and 2b for
C / C++ routines. Paradox users will need to call
into the appropriate DLL where SetErrorMode resides.

2) C / C++ / Delphi / Paradox:
Create a "Dummy" Paradox table in each table
directory that the application uses. Example:
executable is in directory C:\MyProg. This executable
opens tables in two different directories - C:\MyTables

and D:\TempTbl. Create a "Dummy" table with the
Database Desktop, or any other Paradox table creation
utility, in both the C:\MyTables and D:\TempTbl
directories. Once the tables are created, create an
application that opens each of the "Dummy" programs at
startup. Leave this program running at all times. If
the executable can be placed on a server machine, like
Windows NT, that is optimal. In this scenario,
whenever applications are accessing the data, the
server also has the "Dummy" tables open.

3) C / C++ / Delphi / Paradox:
Leave at least one table during the entire
application's run. Open one table during startup and
close the table at exit. You could even open a
"Dummy" table described above.

4) C / C++ / Delphi:
Use DbiAcqPersistTableLock BDE function to create
a lock on a table that does not exist (Delphi or C++
only).

Syntax:
(Delphi) Check(DbiAcqPersistTableLock(Database1.Handle,
'NoTable1.DB', szPARADOX));

(C++) rslt = DbiAcqPersistTableLock(hDb, 'NoTable2.DB',
szPARADOX);

NOTE: Each instance of the application must have a
unique, non-existent table name or an attempt to place
a lock in the directory will fail. If this method is
used, an algorithm must be used to guarantee a unique
table name. If a user can only run one instance of
the program at a time, the network user name can be
used as a table name.

5) Paradox ObjectPAL:
If your application is apt to cause .LCK files to be
created and deleted often, the easiest (and least
resource-intensive) way to prevent this is to place a
read lock on a non-existent table within the directory
when your application starts up. (Paradox allows us
to place semaphore locks on tables that don't exist.)
Since read locks don't conflict with one another, all
users can do this, and the net result will be that the
.LCK file will not be deleted until the last user
exits the system.

Syntax:
At program startup:
Table.attach("DummyTbl.db")
Table.lock(Read)

At program shut-down:
Table.unlock(Read)
Table.unAttach

NOTES - These are observations on the problem:

1) The problem does not seem to occur on NT
workstation machines. The application can be either
16 or 32 bit. SetErrorMode seems to work with both
cases.

2) The problem is more likely to occur if the
network protocol is netBEUI. If possible use netBIOS
or IPX/SPX.

3) Constant closing and opening of tables will cause
this error more often.

4) The error most commonly occurs on the close of the
table, not the open. In this situation the closing
application tries to delete files that another
application now has open.

Example Routines:

Routine 1a) (Delphi Table Open Routine)
--
procedure TForm1.OpenTable(MyTable: TTable);
begin
 { Set the error mode to ignore critical errors }
 SetErrorMode(SEM_FAILCRITICALERRORS);
 { Open the table and check if it was opened }
 MyTable.Open;
 if MyTable.Active = False then
 begin
 { Retry opening the table }
 MyTable.Open;
 { If an error happens again, raise an exception }
 if MyTable.Active = False then
 raise
 EDatabaseError.Create('Error Opening table');
 end;
 { Set the error mode back to the default }
 SetErrorMode(0);
end;

Routine 1b) (Delphi Table Close Routine)

procedure TForm1.CloseTable(MyTable: TTable);
begin
 { Set the error mode to ignore critical errors }
 SetErrorMode(SEM_FAILCRITICALERRORS);
 { Close the table and check if it was closed }
 MyTable.Close;
 if MyTable.Active = True then
 begin
 { Retry closing the table }
 MyTable.Close;
 { If an error happens again, raise an exception }
 if MyTable.Active = True then
 raise
 EDatabaseError.Create('Error Closing table');
 end;
 { Set the error mode back to the default }
 SetErrorMode(0);
end;

Routine 2a) (C / C++ Table Open Routine)

DbiResult OpenTable(hDBIDb hTmpDb, pCHAR szTblName,
 phDBICur phTmpCur)
{
 DBIResult rslt;

 // Set the error mode to ignore critical errors
 SetErrorMode(SEM_FAILCRITICALERRORS);

 // Open the table and check if it was opened
 rslt = DbiOpenTable(hTmpDb, szTblName, NULL,
 NULL, NULL, NULL, dbiREADWRITE, dbiOPENSHARED,
 xltFIELD, FALSE, NULL, phTmpCur);
 if (rslt != DBIERR_NONE)

 // Retry opening the table
 rslt = DbiOpenTable(hTmpDb, szTblName, NULL,
 NULL, NULL, NULL, dbiREADWRITE, dbiOPENSHARED,
 xltFIELD, FALSE, NULL, phTmpCur);

 // Set the error mode back to the default
 SetErrorMode(0);
 return rslt;
}

Routine 2b) (C / C++ Table Open Routine)
--
DBIResult CloseTable(phDBICur phTmpCur)
{
 DBIResult rslt;

 // Set the error mode to ignore critical errors
 SetErrorMode(SEM_FAILCRITICALERRORS);

 // Close the table and check if it was closed
 rslt = DbiCloseCursor(phTmpCur);
 if (rslt != DBIERR_NONE)

 // Retry closing the table
 rslt = DbiCloseCursor(phTmpCur);

 // Set the error mode back to the default
 SetErrorMode(0);
 return rslt;
}

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to Create a TDBGrid Lookup Field in Delphi 2.0
 NUMBER : 3096
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : August 21, 1996

 TITLE : How to Create a TDBGrid Lookup Field in Delphi 2.0

How to create a lookup field in a TDBGrid for Delphi 2.0

1. Drop 2-TTable's, 1-TDataSource and 1-TDBGrid on a form.

2. Connect Table1 to DataSource1 to DBGrid1
 a. DataSource1.DataSet = Table1
 b. DBGrid1.DataSource = DataSource1

3. Setup Table1
 a. Table1.Database = DBDemos
 b. Table1.TableName = Customer
 c. Table1.Active = True

4. Setup Table2
 a. Table2.Database = DBDemos
 b. Table2.TableName = Orders
 c. Table2.Active = True

5. Add all of the fields for Table1 by bringing up the Fields Editor:
 a. Double click on Table1
 b. Right click on Fields Editor
 c. Add New Fields. Add all of them

6. Add a new field for Table1.
 a. Right click on Fields Editor, and select New Field.

7. Specify the following parameters for the newly added field.
 a. Name: Bob
 b. Type: String
 c. Size: 30
 d. Select Lookup
 e. Key Fields: CustNo - Field in Table1 to store value
 f. DataSet: Table2 - Table lookup is being done on
 g: LookUpKeys: CustNo - This Key gets copied to KeyField
 h: Result Field: OrderNo - Value to display to the user in the
 drop down box

8. Run the application

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Dynamically Creating Page Controls and Tab Sheets
 NUMBER : 3097
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : August 20, 1996

 TITLE : Dynamically Creating Page Controls and Tab Sheets

{ Create a Page Control and all the TabSheets and buttons dynamically }
{ Delphi 2.0 or greater }

var
 T : TTabSheet;
 P : TPageControl;
begin
 // Create the PageControl
 // need to reference the page control so we need a reference to it.
 P := TPageControl.Create(application);
 with P do begin
 Parent := Form1; // set how controls it.
 Top := 30;
 Left := 30;
 Width := 200;
 Height := 150;
 end; // with TPageControl

 // Create 3 pages
 T := TTabSheet.Create(P);
 with T do begin
 Visible := True; // This is necessary or form does not repaint
 // correctly
 Caption := 'Page 1';
 PageControl := P; // Assign Tab to Page Control
 end; // with

 T := TTabSheet.Create(P);
 with T do begin
 Visible := True; // This is necessary or form does not repaint
 // correctly
 Caption := 'Page 2';
 PageControl := P; // Assign Tab to Page Control
 end; // with

 T := TTabSheet.Create(P);
 with T do begin
 Visible := True; // This is necessary or form does not repaint
 // correctly
 Caption := 'Page 3';
 PageControl := P; // Assign Tab to Page Control
 end; // with

 // Create 3 buttons, 1 per page
 with tbutton.create(application) do begin

 Parent := P.Pages[0]; // Tell which page owns the Button
 Caption := 'Hello Page 1';
 Left := 0;
 Top := 0;
 end; // with

 with tbutton.create(application) do begin
 Parent := P.Pages[1]; // Tell which page owns the Button
 Caption := 'Hello Page 2';
 Left := 50;
 Top := 50;
 end; // with

 with tbutton.create(application) do begin
 Parent := P.Pages[2]; // Tell which page owns the Button
 Caption := 'Hello Page 3';
 Left := 100;
 Top := 90;
 end; // with

 // This needs to be done or the Tab does not sync to the
 // correct page, initially. Only if you have more then
 // one page.
 P.ActivePage := P.Pages[1];
 P.ActivePage := P.Pages[0]; // page to really show
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Navigating a Multiselected Listbox
 NUMBER : 3098
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : August 20, 1996

 TITLE : Navigating a Multiselected Listbox

Navigating a multiselected listbox

This example shows a message for every element in a listbox that
has been selected by the user.

procedure TForm1.Button1Click(Sender: TObject);
var
 Loop: Integer;
begin
 for Loop := 0 to Listbox1.Items.Count - 1 do begin
 if Listbox1.Selected[Loop] then
 ShowMessage(Listbox1.Items.Strings[Loop]);
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Making Your Delphi 2.0 Applications "Sing"
 NUMBER : 3099
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : August 20, 1996

 TITLE : Making Your Delphi 2.0 Applications "Sing"

(*
This TI demonstrates how to make your Delphi 2.0
application "sing" by loading and playing a wave file
four different ways:

1) Use the sndPlaySound() function to directly
play a wave file.

2) Read the wave file into memory, then use the
sndPlaySound() to play the wave file

3) Use sndPlaySound to directly play a wave
file thats embedded in a resource file attached
to your application.

4) Read a wave file thats embedded in a resource
 file attached to your application into memory,
 then use the sndPlaySound() to play the wave file.

 To build the project you will need to:

1) Create a wave file called 'hello.wav'
in the project's directory.

2) Create a text file called 'snddata.rc'
in the project's directory.

3) Add the following line to the file 'snddata.rc':
HELLO WAVE hello.wav

4) At a dos prompt, go to your project directory
and compile the .rc file using the Borland Resource
compiler (brcc32.exe) by typing the path to brcc32.exe
and giving 'snddata.rc' as a parameter.

Example:

bin\brcc32 snddata.rc

This will create the file 'snddata.res' that
Delphi will link with your application's .exe
file.

Final Note: Keep on Jamm'n!

*)

unit PlaySnd1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type
 TForm1 = class(TForm)
 PlaySndFromFile: TButton;
 PlaySndFromMemory: TButton;
 PlaySndbyLoadRes: TButton;
 PlaySndFromRes: TButton;
 procedure PlaySndFromFileClick(Sender: TObject);
 procedure PlaySndFromMemoryClick(Sender: TObject);
 procedure PlaySndFromResClick(Sender: TObject);
 procedure PlaySndbyLoadResClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

{$R snddata.res}

uses MMSystem;

procedure TForm1.PlaySndFromFileClick(Sender: TObject);
begin
 sndPlaySound('hello.wav',
 SND_FILENAME or SND_SYNC);
end;

procedure TForm1.PlaySndFromMemoryClick(Sender: TObject);
var
 f: file;
 p: pointer;
 fs: integer;
begin
 AssignFile(f, 'hello.wav');
 Reset(f,1);
 fs := FileSize(f);
 GetMem(p, fs);
 BlockRead(f, p^, fs);
 CloseFile(f);

 sndPlaySound(p,
 SND_MEMORY or SND_SYNC);
 FreeMem(p, fs);
end;

procedure TForm1.PlaySndFromResClick(Sender: TObject);
begin
 PlaySound('HELLO',
 hInstance,
 SND_RESOURCE or SND_SYNC);
end;

procedure TForm1.PlaySndbyLoadResClick(Sender: TObject);
var
 h: THandle;
 p: pointer;
begin
 h := FindResource(hInstance,
 'HELLO',
 'WAVE');
 h := LoadResource(hInstance, h);
 p := LockResource(h);
 sndPlaySound(p,
 SND_MEMORY or SND_SYNC);
 UnLockResource(h);
 FreeResource(h);
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to check a ComboBox without OnClick ocurring.
 NUMBER : 3009
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : October 23, 1996

 TITLE : How to check a ComboBox without OnClick ocurring.

When you modify the state of a TCheckBox by setting the value
of its Checked property, the OnClick event of that TCheckBox
is fired. For example, the following code:

CheckBox1.Checked := True;

causes CheckBox1.OnClick to execute.

Sometimes, however, you may want to check or uncheck the
CheckBox in code without firing the OnClick event. You
can do this by sending a BM_SETCHECK message to the
ComboBox. The WParam of this message can be 1 (meaning
the box should be checked), or 0 (meaning the box should
be unchecked). The LParam of this message is always 0.

With this in mind, the following procedure accepts as
parameters a TCheckBox called CB and a Boolean parameter
called CheckIt. When CheckIt is True, the box will be
checked, and when it's False, the box will be unchecked:

procedure CheckNoClick(CB: TCheckBox; CheckIt: Boolean);
begin
 CB.Perform(BM_SETCHECK, Ord(CheckIt), 0);
end;

Using this procedure, the code for checking a TComboBox
called ComboBox1 looks like this:

CheckNoClick(ComboBox1, True);

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Making Accelerators Work with a TPageControl
 NUMBER : 3101
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : August 21, 1996

 TITLE : Making Accelerators Work with a TPageControl

The TPageControl found on the Win95 page of the Component
Palette does not currently work with accelerators. However,
it is possible to create a descendant of TPageControl which
includes this feature.

The component shown in the code to follow is such a control.
This TPageControl descendant captures the CM_DIALOGCHAR message.
This allows you to capture key strokes that may be accelerators
for a given form. The CMDialogChar message handler uses the
IsAccel function to determine if the captured key code refers
to an accelerator on one of the TPageControls pages. If so,
the appropriate page is made active and is given focus.

unit tapage;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs, ComCtrls;

type

 TAPageControl = class(TPageControl)
 private
 procedure CMDialogChar(var Msg: TCMDialogChar); message
 CM_DIALOGCHAR;
 end;

procedure Register;

implementation

procedure TAPageControl.CMDialogChar(var Msg: TCMDialogChar);
var
 i: Integer;
 S: String;
begin
 if Enabled then
 for I := 0 to PageCount - 1 do
 if IsAccel(Msg.CharCode, Pages[i].Caption) and
 Pages[I].TabVisible then begin
 Msg.Result := 1;
 ActivePage := Pages[I];
 Change;

 Exit; // exit for loop.
 end;
 inherited;
end;

procedure Register;
begin
 RegisterComponents('Test', [TAPageControl]);
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to Dynamically Create A Page Control
 NUMBER : 3102
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : August 21, 1996

 TITLE : How to Dynamically Create A Page Control

This document demonstrates how to dynamically add tab sheets
(TTabSheet objects) to a Windows 95/NT Page Control (TPageControl
object). Both of these objects are declared in the ComCtrls
unit. So make sure that ComCtrls is listed in the 'uses' clause
on your form.

HOW TO DYNAMICALLY CREATE A PAGE CONTROL
--

Before we get into dynamically creating tab sheets, lets first
discuss how to dynamically create a PageControl (if one isn't
on the form already). This is done by calling TPageControl's
Create constructor with an owner parameter of Self. The Create
constructor returns a object reference of the newly created Page
Control object and assigns it to the 'PageControl' variable.
The second step is to set PageControl's Parent property to Self.
The Parent property determines where the new PageControl is to be
displayed; in this case its the form itself. Here's a code snippet
that demonstrates this.

var
 PageControl : TPageControl;

PageControl := TPageControl.Create(Self);
PageControl.Parent := Self;

Note: When the form gets destroyed the Page Control and it tab
sheets will be destroyed also because they are owned by the form.

HOW TO DYNAMICALLY CREATE A TAB SHEET

There are two basic steps to dynamically add a new page to a
PageControl. The first is to dynamically create the TTabSheet
as follows:

var
 TabSheet : TTabSheet;

TabSheet := TTabSheet.Create(Self);

Then we need to give it a caption as follows:

TabSheet.Caption := 'Tabsheet 1';

And finally, the most important piece is to tell the new tab sheet
which Page Control it belongs to. This is done by assigning the
TTabSheet's PageControl property a TPageControl reference variable
like the one created above (PageControl). Here's a code snippet
that demonstrates this.

TabSheet.PageControl := PageControl;

HOW TO DYNAMICALLY ADD A CONTROL TO A TAB SHEET

The key to creating and placing any control on a tab sheet is to
assign it's Parent property a TTabSheet class reference variable.
Here is an example.

var
 Button : TButton;

Button := TButton.Create(Self);
Button.Caption := 'Button 1';
Button.Parent := TabSheet;

For more information on the TPageControl and TTabSheet objects
refer to the on-line documentation as well as look at the
ComCtrls.pas file in your ..\Delphi 2.0\SOURCE\VCL directory.

FULL SOURCE EXAMPLE

// This code is extracted from a form with a single button on it.

unit DynamicTabSheetsUnit;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, Buttons;

type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 procedure TestMethod(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

uses ComCtrls;

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var
 PageControl : TPageControl;
 TabSheet : TTabSheet;
begin
 // Create the PageControl
 PageControl := TPageControl.Create(Self);
 PageControl.Parent := Self;

 // Create 1st page and associate it with the PageControl
 TabSheet := TTabSheet.Create(Self);
 TabSheet.Caption := 'Tabsheet 1';
 TabSheet.PageControl := PageControl;

 // Create the first page

 with TButton.Create(Self) do
 begin
 Caption := 'Button 1';
 OnClick := TestMethod; // Assign an event handle
 Parent := TabSheet;
 end;

 // Create 2nd page and associate it with the PageControl

 TabSheet := TTabSheet.Create(Self);
 TabSheet.Caption := ' Tabsheet 2';
 TabSheet.PageControl := PageControl;
end;

procedure TForm1.TestMethod(Sender: TObject);
begin
 ShowMessage('Hello');
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Connecting to a 32-bit Sybase server
 NUMBER : 3152
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Connecting to a 32-bit Sybase server

Connecting To Sybase 32-bit

This TI will instruct you on how to connect to a Sybase database via
Borland's native 32-bit Sybase SQL Links packaged with Delphi 2.x.
The Sybase client software should take up approximately 10+
megabytes of hard drive space.

Steps To Connect:
1. Make sure that the SQL Links package is installed on your local
drive. If you installed the full package of Delphi 2.x then it
should be installed already.
2. Install the Sybase client software.
3. When prompted during installation to install either the 16 or 32
bit Sybase links, choose only 32-bit by checking the check box next
to the 32-bit selection and making sure that the check box next to
the 16-bit selection is blank.
4. After the client software is installed on your hard drive, you
will be asked if you would like the install program to automatically
update your AUTOEXEC.BAT file. You should choose YES.
5. When prompted to edit your SQL.INI file, choose yes.
6. In the "Input Server Name:" section, type in the alias of the
server. Click on the 'Add' button to add this name to your "Server
Entry:" list. Next, make sure that the "Service Type:" (It should
be 'query'), the "Platform:" (it usually defaults to either NT, dos,
or Win3), and the "Net-Library Driver:" (should default to either
NLWNSCK or NLNWLINK) edit boxes are correct. Fill out the
"Connection Information/Network Address:" by entering the network
address of the server you will be connecting to in this edit box.
click on the 'Add Service' button. You should now be able to Ping
your server by clicking on the 'Ping' button. Exit and save the
current settings.
7. Shutdown and Restart your machine.
8. Goto the Delphi program group and execute the Database Explorer.
9. In the Database explorer, make sure that you are on the Database
tab. In the pull down menus, choose Object | New... A dialog box
should appear with the name STANDARD next to a down arrow. Click
the down arrow and select SYBASE from the list that is displayed.
10. There should now be an Alias for your Sybase connection called
SYBASE1. Make sure that this name is highlighted. Click on the
definitions tab in the Database Explorer. Under the "Server Name"
section, type the name of one of the servers that you entered in
your SQL.INI that you were able to Ping. In the "User Name" section
type the name of a user with rights to the server specified in your
"Server Name" section. Make sure that you know the password of the
user name that you just specified.

11. Double click on the alias name (SYBASE1) and you should be
prompted for a User Name and Password. The User Name should
default to the name you specified in the "User Name" section of
the Sybase Alias. Type in the password that corresponds to this
User. Click on the OK button. You should now see a little green
box around the icon next to the Sybase Alias (SYBASE1). This means
that you are connected.

Testing your Connection within Delphi 2.x:

1. Drop a TDataSource, a TTable, and a TDBGrid on a blank form.
2. In the Object Inspector for the TDataSource, Set the DataSet
to 'Table1'(no quotes).
3. In the Object Inspector for the TTable, set the DataBase Name to
SYBASE1. Scroll down to the TableName property and double click on
the edit box next to it. You should be prompted for a user name and
a password. The user name that you entered in the Database Explorer
for the Sybase Alias should already be displayed. Enter the
corresponding password. Click the OK button.
4. You should now see a list of table names. Choose one of these
names.
5. Click on the TDBGrid. Set the DataSource Property to
DataSource1.
6. Set the Active property of the TTable to TRUE.
7. You should now see the data in the TDBGrid. When you run this
application, you will be prompted for the username/password. Type in
your password and click OK. You should now see the data in the grid.

Error Messages:
Unable to determine net-library error: This error means that the
.DLL's needed are nowhere to be found. These files should be in your
\Sybase\DLL directory:
Libblk.dll
Libcomn.dll
Libcs.dll
Libct.dll
Libintl.dll
Libsrv.dll
Libsybdb.dll
Libtcl.dll
Mscvrt10.dll
Nldecnet.dll
Nlmsnmp.dll
Nlnwadvt.exe
Nlnwlink.dll
Nlwnsck.dll

Disclaimer: This document does not promise a connection, it only
shows the best and fastest way to connect.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Accessing Paradox Tables on CD or Read-Only Drive
 NUMBER : 3104
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : August 20, 1996

 TITLE : Accessing Paradox Tables on CD or Read-Only Drive

This Technical Information document will step through the concepts
regarding accessing Paradox tables which are located on a CD-ROM or
any read-only device.

The Paradox locking scheme requires the existence of a PDOXUSRS.LCK
file to handle its locking logic. This file is generally created at
run-time and resides in the directory which also contains the tables.
However, with a CD-ROM there is not a way to create this file at
run-time on the CD-ROM. The solution is simple, we create this file
and put it on the CD-ROM when the CD is pressed. The following steps
will give you a very simple utility program for creating the
PDOXUSRS.LCK file which you will then copy to the CD-ROM image.

1. Starting with a blank project add the following components: TEdit,
TButton and TDatabase.

2. In the OnClick event for the button use the following code:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if ChkPath then
 Check(DbiAcqPersistTableLock(Database1.Handle,
 'PARADOX.DRO','PARADOX'));
end;

3. The ChkPath function is a user defined method of the form. It will
simply check the path entered in the Edit box and make sure it exists.
Here is the function:

function TForm1.ChkPath : Boolean;
var
 s : array[0..100] of char;
begin
 If DirectoryExists(Edit1.Text) then begin
 DataBase1.DatabaseName:= 'TempDB';
 DataBase1.DriverName:= 'Standard';
 DataBase1.LoginPrompt:= false;
 DataBase1.Connected := False;
 DataBase1.Params.Add('Path=' + Edit1.Text);
 DataBase1.Connected := TRUE;
 Result := TRUE;
 end
 else begin

 StrPCopy(s,'Directory : ' + Edit1.text + ' Does Not Exist');
 Application.MessageBox(s, 'Error!', MB_ICONSTOP);
 Result := FALSE;
 end;
end;

{ Note: Don't forget to put the function header in the public section
 of the form.}

4. There is one more thing you need to add before compiling, in the
Uses statement at the top of the unit add the following units:
 Delphi 1.0: FileCtrl, DbiProcs, DbiTypes, DbiErrs.
 Delphi 2.0: FileCtrl , BDE

When you have compiled and executed the utility program, it will
create two files in the directory you specified. The two files created
are: PDOXUSRS.LCK and PARADOX.LCK.

Note: The PARADOX.LCK file is only necessary when accessing Paradox for
DOS tables so you can delete it.

5. The only thing left for you to do is copy the remaining file
(PDOXUSRS.LCK) to the CD-ROM image. Of course your tables will be
Read-Only.

Note: If you want to clean up this utility for future use, you can
change the text property of the Edit box to be some default directory
and change the Caption property of the Button to be something more
meaningful.

Here is the final version of the code:

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, DB, StdCtrls, FileCtrl,

 {$IFDEF WIN32}
 BDE;
 {$ELSE}
 DbiProcs, DbiTypes, DbiErrs;
 {$ENDIF }

type
 TForm1 = class(TForm)
 Edit1: TEdit;
 Button1: TButton;
 Database1: TDatabase;

 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 function ChkPath : Boolean;
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

function TForm1.ChkPath : Boolean;
var
 s : array[0..100] of char;
begin
 If DirectoryExists(Edit1.Text) then begin
 DataBase1.DatabaseName:= 'TempDB';
 DataBase1.DriverName:= 'Standard';
 DataBase1.LoginPrompt:= false;
 DataBase1.Connected := False;
 DataBase1.Params.Add('Path=' + Edit1.Text);
 DataBase1.Connected := TRUE;
 Result := TRUE;
 end
 else begin
 StrPCopy(s,'Directory : ' + Edit1.text + ' Does Not Exist');
 Application.MessageBox(s, 'Error!', MB_ICONSTOP);
 Result := FALSE;
 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 if ChkPath then
 Check(DbiAcqPersistTableLock(Database1.Handle,
 'PARADOX.DRO','PARADOX'));
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Synchronize a DLL to an Open Dataset
 NUMBER : 3105
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : August 21, 1996

 TITLE : Synchronize a DLL to an Open Dataset

Synchronize a DLL to an Open Dataset

This document demonstrates how to use Object Pascal to link a
DLL dynamically, on-the-fly, into an active Database, thus, giving the
Developer the ability to 'Modularize' features. (Whether at Run-Time or
Design-Time)

The technique of linking a DLL Dynamically into an EXE is useful in
many cases. Examples include, an Accounting package which offers several
'plug-in' modules (A/R, A/P, General Ledger, etc.) or a Point of Sale
package with Current Stock, FIFO/LIFO Ordering, Vendor Tracking, etc.,
modules.

This TI will provide a solid example of how to do this with one
dll, 'Editdll.dll', but will give the Developer the essentials leading
to extensive modularation in projects.

Prerequisites:

Familiarity with the TTable component, DLL usage, BDE API, and
BDE hCursor knowledge. *WIN API for Dynamical loading of any DLL's.

 SAMPLE APPLICATION

The following form, EditForm, is based on the COUNTRY table in the
DBDEMO's directory. When the user presses the 'Edit' button or
double-clicks a record (row), a dialog box appears, from 'EditDll.dll',
displaying record specific information. At this point, the DLL has
synchronized itself not only with the dataset (& session) but also with
the current record. This mean's, the user can now modify the same data
EditForm is viewing! So, with no ado, let's delve into the sample code.
(For best results, simply cut and paste into appropriate files)

>Main Form Project<

{ MAINDB.DPR }
program maindb;

uses
 Forms,
 mainform in 'mainform.pas' {DBMainForm};

{$R *.RES}

begin
 Application.Initialize;
 Application.CreateForm(TDBMainForm, DBMainForm);
 Application.Run;
end.

>>

{ MAINFORM.PAS }
unit mainform;

interface

uses
 SysUtils, Windows, Messages, Classes, Graphics, Controls,
 StdCtrls, Forms, DBCtrls, DB, DBGrids, DBTables, Grids, ExtCtrls,
 BDE;

type
 TDBMainForm = class(TForm)
 Table1Name: TStringField;
 Table1Capital: TStringField;
 Table1Continent: TStringField;
 Table1Area: TFloatField;
 Table1Population: TFloatField;
 DBGrid1: TDBGrid;
 DBNavigator: TDBNavigator;
 Panel1: TPanel;
 DataSource1: TDataSource;
 Panel2: TPanel;
 Table1: TTable;
 EditButton: TButton;
 procedure FormCreate(Sender: TObject);
 procedure EditButtonClick(Sender: TObject);
 procedure DBGrid1DblClick(Sender: TObject);
 private
 { private declarations }
 public
 { public declarations }
 end;

var
 DBMainForm: TDBMainForm;

implementation

{$R *.DFM}

procedure TDBMainForm.FormCreate(Sender: TObject);
begin
 Table1.Open;
end;

// {NOTES: DBHandle is a Handle to the Database & DSHandle is a cursor
// to the record being viewed. Also, if the purpose is to dynamically

// load a DLL at run-time, use the LoadLibrary, GetProcAddress, and
// FreeLibrary API calls in place of the implicit load calls at startup.
// An Example of the APIcalling convention is: }
// Type
// {For GetProcAddress}
// BDEDataSync =
// function(const DBHandle: HDBIDB; const DSHandle: HDBICur): Boolean;
// stdcall;
// {For the trapping of DLL load error's}
// EDLLLoadError = class(Exception);
// var h: hwnd;
// p: BDEDataSync;
// LastError: DWord;
// begin
// UpdateCursorPos;
// Try
// h := loadLibrary('EDITDLL.DLL');
// {NOTE to Delphi 1.0 users: Whereas Win32 LoadLibrary returns a
// NULL if the DLL load was unsuccessful, thus requiring a call to
// GetLastError to find the error, Win16 LoadLibrary returns
// an error value (less than HINSTANCE_ERROR) which can be checked
// in the Win16API SDK as to the reason for the failure.}
// if h = 0 then begin
// LastError := GetLastError;
// Raise EDLLLoadError.create(IntToStr(LastError) +
// ': Unable to load DLL');
// end;
// try
// p := getProcAddress(h, 'EditData');
// if p(DBHandle, Handle) then Resync([]);
// finally
// freeLibrary(h);
// end;
// Except
// On E: EDLLLoadError do
// MessageDLG(E.Message, mtInformation, [mbOk],0);
// end;
// end;
// {or}
function EditData(const DBHandle: HDBIDB; const DSHandle: HDBICur):
 Boolean; stdcall external 'EDITDLL.DLL' name 'EditData';

procedure TDBMainForm.EditButtonClick(Sender: TObject);
begin
 with Table1 do
 begin
 UpdateCursorPos;
// Call the EditData Procedure from EditDll.dll.
 if EditData(DBHandle, Handle) then Resync([]);
 end;
end;

procedure TDBMainForm.DBGrid1DblClick(Sender: TObject);
begin
 EditButton.Click;
end;

end.

>>

>EDIT DLL PROJECT<

{ EDITDLL.DPR }
library editdll;

uses
 SysUtils,
 Classes,
 editform in 'editform.pas' {DBEditForm};

exports
 EditData;

begin
end.

>>

{ EDITFORM.PAS }
unit editform;

interface

uses
 SysUtils, Windows, Messages, Classes, Graphics, Controls,
 StdCtrls, Forms, DBCtrls, DB, DBTables, Mask, ExtCtrls, BDE;

type
 TTableClone = class;

 TDBEditForm = class(TForm)
 ScrollBox: TScrollBox;
 Label1: TLabel;
 EditName: TDBEdit;
 Label2: TLabel;
 EditCapital: TDBEdit;
 Label3: TLabel;
 EditContinent: TDBEdit;
 Label4: TLabel;
 EditArea: TDBEdit;
 Label5: TLabel;
 EditPopulation: TDBEdit;
 DBNavigator: TDBNavigator;
 Panel1: TPanel;
 DataSource1: TDataSource;
 Panel2: TPanel;
 Database1: TDatabase;
 OKButton: TButton;
 private
 TableClone: TTableClone;

 end;

{ TTableClone }

 TTableClone = class(TTable)
 private
 SrcHandle: HDBICur;
 protected
 function CreateHandle: HDBICur; override;
 public
 procedure OpenClone(ASrcHandle: HDBICur);
 end;

function EditData(const DBHandle: HDBIDB; const DSHandle: HDBICur):
 Boolean; stdcall;

var
 DBEditForm: TDBEditForm;

implementation

{$R *.DFM}

{ Exports }

function EditData(const DBHandle: HDBIDB; const DSHandle: HDBICur):
 Boolean; stdcall;
var
 DBEditForm: TDBEditForm;
begin
 DBEditForm := TDBEditForm.Create(Application);
 with DBEditForm do
 try
// Set the handle of the Database1 to that of the currently opened database
 Database1.Handle := DBHandle;
 TableClone := TTableClone.Create(DBEditForm);
 try
 TableClone.DatabaseName := 'DB1';
 DataSource1.DataSet := TableClone;
 TableClone.OpenClone(DSHandle);
 Result := (ShowModal = mrOK);
 if Result then
 begin
 TableClone.UpdateCursorPos;
 DbiSetToCursor(DSHandle, TableClone.Handle);
 end;
 finally
 TableClone.Free;
 end;
 finally
 Free;
 end;
end;

{ TTableClone }

procedure TTableClone.OpenClone(ASrcHandle: HDBICur);
begin
 SrcHandle := ASrcHandle;
 Open;
 DbiSetToCursor(Handle, SrcHandle);
 Resync([]);
end;

function TTableClone.CreateHandle: HDBICur;
begin
 Check(DbiCloneCursor(SrcHandle, False, False, Result));
end;

end.

>>

{ EDITFORM.DFM }
object DBEditForm: TDBEditForm
 Left = 201
 Top = 118
 Width = 354
 Height = 289
 ActiveControl = Panel1
 Caption = 'DBEditForm'
 Font.Color = clWindowText
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 Position = poScreenCenter
 PixelsPerInch = 96
 TextHeight = 13
 object Panel1: TPanel
 Left = 0
 Top = 0
 Width = 346
 Height = 41
 Align = alTop
 TabOrder = 0
 object DBNavigator: TDBNavigator
 Left = 8
 Top = 8
 Width = 240
 Height = 25
 DataSource = DataSource1
 Ctl3D = False
 ParentCtl3D = False
 TabOrder = 0
 end
 object OKButton: TButton
 Left = 260
 Top = 8
 Width = 75
 Height = 25
 Caption = 'OK'
 Default = True

 ModalResult = 1
 TabOrder = 1
 end
 end
 object Panel2: TPanel
 Left = 0
 Top = 41
 Width = 346
 Height = 221
 Align = alClient
 BevelInner = bvLowered
 BorderWidth = 4
 Caption = 'Panel2'
 TabOrder = 1
 object ScrollBox: TScrollBox
 Left = 6
 Top = 6
 Width = 334
 Height = 209
 HorzScrollBar.Margin = 6
 HorzScrollBar.Range = 147
 VertScrollBar.Margin = 6
 VertScrollBar.Range = 198
 Align = alClient
 AutoScroll = False
 BorderStyle = bsNone
 TabOrder = 0
 object Label1: TLabel
 Left = 6
 Top = 6
 Width = 28
 Height = 13
 Caption = 'Name'
 FocusControl = EditName
 end
 object Label2: TLabel
 Left = 6
 Top = 44
 Width = 32
 Height = 13
 Caption = 'Capital'
 FocusControl = EditCapital
 end
 object Label3: TLabel
 Left = 6
 Top = 82
 Width = 45
 Height = 13
 Caption = 'Continent'
 FocusControl = EditContinent
 end
 object Label4: TLabel
 Left = 6
 Top = 120
 Width = 22
 Height = 13

 Caption = 'Area'
 FocusControl = EditArea
 end
 object Label5: TLabel
 Left = 6
 Top = 158
 Width = 50
 Height = 13
 Caption = 'Population'
 FocusControl = EditPopulation
 end
 object EditName: TDBEdit
 Left = 6
 Top = 21
 Width = 135
 Height = 21
 DataField = 'Name'
 DataSource = DataSource1
 MaxLength = 0
 TabOrder = 0
 end
 object EditCapital: TDBEdit
 Left = 6
 Top = 59
 Width = 135
 Height = 21
 DataField = 'Capital'
 DataSource = DataSource1
 MaxLength = 0
 TabOrder = 1
 end
 object EditContinent: TDBEdit
 Left = 6
 Top = 97
 Width = 135
 Height = 21
 DataField = 'Continent'
 DataSource = DataSource1
 MaxLength = 0
 TabOrder = 2
 end
 object EditArea: TDBEdit
 Left = 6
 Top = 135
 Width = 65
 Height = 21
 DataField = 'Area'
 DataSource = DataSource1
 MaxLength = 0
 TabOrder = 3
 end
 object EditPopulation: TDBEdit
 Left = 6
 Top = 173
 Width = 65
 Height = 21

 DataField = 'Population'
 DataSource = DataSource1
 MaxLength = 0
 TabOrder = 4
 end
 end
 end
 object DataSource1: TDataSource
 Left = 95
 Top = 177
 end
 object Database1: TDatabase
 DatabaseName = 'DB1'
 LoginPrompt = False
 SessionName = 'Default'
 Left = 128
 Top = 176
 end
end

>>

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Clean-Boot Delphi 2.0 Installation
 NUMBER : 3106
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : August 20, 1996

 TITLE : Clean-Boot Delphi 2.0 Installation

--
 HOW TO INSTALL DELPHI IN A CLEAN-BOOT ENVIRONMENT IN WINDOWS 95
--

CONTENTS

Section 1: INTRODUCTION
Section 2: WHAT IS SAFE MODE?
Section 3: HOW TO BOOT-UP WINDOWS 95 IN SAFE MODE

Section 1: INTRODUCTION

This document demonstrates how to do a clean-boot installation for
both desktop and Client/Server versions of Delphi 1.0, and the
Desktop, Developer, and Client/Server versions of Delphi 2.0 in
Windows 95.

Section 2: WHAT IS SAFE MODE?

An important feature that comes with Windows 95 is the "Safe Mode"
option. "Safe Mode" is one of the several different ways of
loading Windows 95. In "Safe Mode", Windows 95 does not load and use
any of your device drivers installed in your system, including your
video card, sound card, modem, monitor, mouse, joysticks, etc.
Instead, Windows 95 loads up and use the default standard VGA mode in
16 colors and a standard mouse and keyboard driver. One of the
advantage of using "Safe Mode" is to free up more conventional
memorys and remove any device driver that can cause conflicts during
the installation process.

SECTION 3: HOW TO BOOT-UP WINDOWS 95 IN SAFE MODE

1. When you boot-up your system the first time, press F8 when you see
STARTING WINDOWS 95 on the screen. Usually the message display on
the top-left hand corner.

2. If you press F8 before Windows 95 starts loading, you will see the
 Boot-Up Main Option as follow:

 1. Normal
 2. Loggged
 3. Safe Mode
 4. Safe Mode With Network Support
 5. Step-by-step Confirmation
 6. Command Prompt Only
 7. Safe Mode Command Prompt Only
 8. Previous Version of MS-DOS

 NOTE: Some of the options listed above might not be avalibale on
 your system, for example, "Safe Mode With Network Support" if your
 system don't have network feature installed. It depends on your
 system configuration.

3. Select "Safe Mode" from the Main Opinion and Windows 95 will load
the operating system.

4. To install Delphi, please refer to Delphi install.txt and
readme.txt.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Creating a Wallpaper Using Delphi
 NUMBER : 3128
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Creating a Wallpaper Using Delphi

To the wallpaper in Windows 95 you must use the Win32
API function SystemParametersInfo. SystemParametersInfo retrieves
and sets system wide parameters including the wallpaper. The
code below illustrates setting the wallpaper to the Athena bitmap.

---- Code Follows ------

procedure TForm1.Button1Click(Sender: TObject);
var
 s: string;
begin
 s := 'c:\windows\athena.bmp';
 SystemParametersInfo(SPI_SETDESKWALLPAPER, 0, PChar(s), 0)
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Detecting Windows Shutdown
 NUMBER : 3133
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : October 4, 1996

 TITLE : Detecting Windows Shutdown

It is possible for you to detect when windows is being shutdown and
to prevent this shutdown from within a running Delphi application.

The simple solution is to add an event handler to the main form's
OnCloseQuery event. This event handler occurs as a result of a
WM_QUERYENDSESSION message which is sent to all running application
in Windows when Windows is about to be shut down. The boolean
CanClose parameter to this event can be set to True to allow Windows
to shut down or, CanClose can be set to False to prevent Windows
from shutting down.

The code below illustrates using this event.

----- Code Follows -------

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
 // Ask user if shutdown should occur.
 if MessageDlg('Are you sure?', mtConfirmation, mbYesNoCancel, 0) = mrYes
 then CanClose := true // Allow Windows to shut down.
 else CanClose := false; // Prevent Windows from shutting down.
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Returning Default Cursor after Running Queries
 NUMBER : 3136
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Returning Default Cursor after Running Queries

Q: Why does the Mouse cursor not change back to an arrow after
 I do a Query?

A: When performing an open on a query, Delphi will change the
 cursor for you, even in the middle of an event, such as a
 button click.The example below will cause the cursor to show
 as a SQL Hourglass Icon, after you close the showmessage
 dialog box. The Mouse will behave as if its in the arrow
 state.

 // Add to a button click event, the Query used does not
 // matter I used
 // Select * from Customer (on IBLocal)

 with query1 do begin
 close;
 open;
 showmessage(IntToStr(RecordCount));
 end; // with

What appears to be happening is that when Delphi tries to
change the Cursor back to the Arrow, a new form has already
been shown (the showmessage dialog) and so its job is done
as the cursor will automaticly be set to the arrow on the
showmessage dialog form.

To solve this problem, add a Application.ProcessMessages
before showing anew form, this will clear all pending
message commands from the message queue, and the Mouse
Cursor will appear normal again.

 // Add to a button click event, the Query used does
 // not matter I used
 // Select * from Customer (on IBLocal)

 with query1 do begin
 close;
 open;
 application.ProcessMessages; // Add This Line.
 showmessage(IntToStr(RecordCount));
 end; // with

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that

you received with the Borland product to which this information
pertains.

Dynamic creation and circularly linking forms
 NUMBER : 3137
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Dynamic creation and circularly linking forms

 Question: How do I make a simple method to rotate between forms?
 How do I add my own return results to a ShowModal form?
 How do I instantiate forms at runtime?

 Answer: The method required is quite simple to implement. For my
 example I used 3 forms, the Mainform, Form1, and Form2. I
 placed a button on the Mainform that will bring up Form1, then
 from that form you could rotate through any number of forms via
 buttons placed on those forms. For my example, only Form1 and
 Form2 can be flipped between.

 step 1. Places these two lines in the interface section of this
 Form, which will be refered to as the main form

 const
 mrNext = 100;
 mrPrevious = 101;

 step 2. On the main form add a button and add the following block
 of code into it.

 var
 MyForm: TForm;
 R, CurForm: Integer;
 begin
 R := 0;
 CurForm := 1;
 while R <> mrCancel do begin
 Case CurForm of
 1: MyForm := TForm1.Create(Application);
 2: MyForm := TForm2.Create(Application);
 end;
 try
 R := MyForm.ShowModal;
 finally
 MyForm.Free;
 end;
 case R of
 MrNext : Inc(CurForm);
 MrPrevious : Dec(CurForm);
 end;
 // these 2 lines will make sure we don't go out of bounds
 if CurForm < 1 then CurForm := 2
 else if CurForm > 2 then CurForm := 1;
 end; // while

 end;

 step 3. Add forms 1 and 2 (and any others you are going to have)
 to the uses statement for the MainForm.

 step 4. On Form1 and Form2 add the MainForm to the uses (so they
 can see the constants.

 step 5. On Form1, Form2 and all subsequent forms add 2 TBitBtn's,
 labeled Next and Previous. In the OnClick Events for these buttons
 add the following line of code.
 If it's a Next Button add : ModalResult := mrNext;
 If it's a Previous Button add : ModalResult := mrPrevious;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Avoid using Resource Heap with Tabbed Notebooks
 NUMBER : 3138
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Avoid using Resource Heap with Tabbed Notebooks

Intended Audience:

Anyone who wants to necessarily avoid using User Resource heap in
conjunction with TTabbedNotebooks.

Prerequisites:

- Familiarity with the TTabbedNotebook and TTimer components.
- Understanding of Microsoft Windows Architecture; specifically
 User resources.

Purpose of the TI:

This document demonstrates how to use Object Pascal to help
control the number of active handlesWindows, the User
Resource heap specifically, keeps track of. Why does this
matter? Simplifying things, Windows keeps track of every Focusable
Control via a Handle. The issue is,Windows cannot simply maintain
an inexhaustible amount of Windows Handles (4 byte pointers) and
this is where this TI's sample code will help "ease" the resource
load which might restrict the Delphi Developer.

The User DLL actually is the Library which allocates and maintains
resources for all Windows and related data structures, including
focusable object's and other unmentioned, but nonetheless
important USER functions, under Windows. It is this USER DLL
resource limitation* which we are temporarily working around.
An example of an added resource load is, every control we add to
a form, takes up 4 bytes of the USER 64k.

With this in mind, what exactly are we doing? We will be
destroying** the Handles which Windows is architecturely designed
to remember. By destroying these Handles, thus freeing USER
resource drain, it does not mean we need to recreate said objects
again. On the contrary, currently built into the VCL is the
ability to keep track of said objects, which are in fact pointers
to structures. So, knowing the VCL will maintain a Handle and
windows will recreate a new Handle as NEEDED, instead of
maintaining one permanently, as designed, we can take control of
the USER resources manually and "ease" the overall USER resource
load.

This TI will demonstrate the freeing of USER Handle resources via
Delphi's TTabbedNoteBook (specifically destroying Page Handles),

Delphi's DestroyHandle (TWinControl procedure for removing USER
handles), and the Windows API call LockWindowUpdate (Locking
unwanted repaints).

The technique of freeing a TTabbedNoteBook Page Handle can be
extended to anyTWinControl descendant. TWinControl is the
ancestor class which introduces the creating/destroying of Windows
Handles; CreateHandle & DestroyHandle.

* 64K for Win3.1 & 64K for Win95 16-bit subsytem alone. For further
information, contact Microsoft or look in the MSDN.
** As a side effect of destroying said Handles, the TTabbedNotebook
used in this TI will experience faster page movement.

 SAMPLE CODE

The following attached events are direct excerpts from a Project
with a TTimer,TTabbedNotebook (with multiple pages) and an
assorted plethora of controls on each notebook page. (The later
is to emphasize the benefits of adding the below code) The attached
Event snippit's should reside in the OnTimer event of the TTimer
control and the OnChange event of the TTabbedNotebook, respectively.
With no further adou, let's try our new code:

<Unit with the TTabbedNotebook and TTimer declared in it>

...
Implementation

Type TSurfaceWin = class(TWinControl);

procedure TForm1.Timer1Timer(Sender: TObject);
begin
{This code will update the Form caption with the percentages of
 free SYSTEM, GDI, &USER for Windows.}
caption := 'SYSTEM: ' +
 inttostr(getfreesystemresources(GFSR_SYSTEMRESOURCES)) +
 ' GDI: ' + inttostr(getfreesystemresources(GFSR_GDIRESOURCES)) +
 ' USER: ' + inttostr(getfreesystemresources(GFSR_USERRESOURCES));
end;

procedure TForm1.TabbedNotebook1Change(Sender: TObject; NewTab:
 Integer; var AllowChange: Boolean);
begin
{LockWindowUpdate prevents any drawing in a given window}
LockWindowUpdate(handle);

{The reason for TSurfaceWin is because the DestroyHandle call is
declared abstract in TWinControl, which means, only descendant
classes can surface this Procedure. The rest of the line is meant
to flag the current page of the TabbedNotebook and destroy its
handle as we move to another page. NOTE: Even though we destroy
the handle, Windows itself remembers the page object and will
reassign/create a new one when the tab is once more clicked to. }
TSurfaceWin(TabbedNotebook1.pages.objects[tabbedNotebook1.
 pageindex]).DestroyHandle;

{Release the Lock on the Form so any Form drawing can work}
LockWindowUpdate(0);
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

The DocInput Object: Properties and Methods
 NUMBER : 3144
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : The DocInput Object: Properties and Methods

The DocInput Object is an object from the NetManage
Internet Solutions Pack deployed with Delphi 2.01.
It descibes the input information for a document
being transferred to the control. All of the internet
controls in the suite that can receive a doc use
this object as a property. The DocInput Object has
the following properties:
BytesTotal, BytesTransferred, DocLink, FileName,
Headers, PushStreamMode, State and Suspended.

BytesTotal is the total byte count of the item to be
transmitted. The default or initial value is zero.
The data type is a Long. It is a runtime and read
only property. This value is obtained from the header
property content-length. This value is used by the
control to determine the amount of information to be
transferred. It is also accessible to you to manage the
buffer that you will use to re-assemble the data after
transfer.

The BytesTransferred property is a property given to you
inside the OnDocInput event. It is a runtime read only
property that is of type long. It is set to zero when a new
transfer begins. It is updated at the beginning of the
OnDocInput Event. This value will reflect the value of the
last transfer when no other transfer is in progress. The
BytesTransferred property can be used to show progress on
a progress bar or to confirm that the actual amount transferred
corresponds to that which is expected.

The DocLink property tells the receiving control that the
source of the document will not be a sent via data streaming
or via an input file. It references a DocOutput.DocLink property
which becomes the source of data in the transfer. This property
is a read/write property that is runtime only. The property is
of type DocLink. It is a string type and the defaultvalue is ''.
When the DocLink property is set to a value other than '', the
FileName property is automatically set to ''. This property is
used to specify a source that is an internet control that has a
DocOutput.DocLink property set to correspond with it (i.e. they
are used in pairs).

The FileName property is a read/write runtime only property that
is of type string. It' default value is''. It must be a valid
filename. This property can be set by passing it as an argument

to a DocInput object. If this property is set to a value other
than '', then the DocLink property is set to ''.

The Headers property is a runtime readonly property. The "headers"is
a collection of DocHeader items that define the doc being transferred.
The contents of the headers property should be modified before
calling the GetDoc method. Each DocHeader represents a MultiPurpose
Internet Mail Extension(MIME). Mime is the mechanism for specifying
and describing the format of Internet Message Bodies. (See rfc1341 for
details). The headers used depend on the protocol used but two are
common to all protocols:
 1. content-type
 content type indicates the MIME specification of the
 ensuing document. "text/plain" is an example of this.
 2. content-length
 content length indicates the size of the documents in
 bytes.

The state property is a runtime read only property of the enumerated
type DocStateConstants. The default value is icDocNone. The state
property is updated by the control itself each time the DocInput event
is activated.

The suspended property is a runtime read only property that is of type
boolean. It is set by calling the suspend method. If it is set to true
transfer is suspended.

The PushStream property is a read/write, runtime only property that is
of the type boolean. The default value is false. If the FileName or
DocLink properties are set to values other than '' then the PushStream
property is not accessible.

The DocInput object has 4 methods:
GetData, PushStream, SetData and Suspend.

The GetData method tells the DocInput object to retrieve the current
block of data when the DocOutput event is activated. This method can
only be called during the OnDocInput event and only when the State
property is set to icDocData(3). When using the FileName or DocLink
properties this method may be used to examine data during transfer.

The PushStream method should only be called when the PushStreamMode
has been set to true and when data is available. PushStream sets the
State property based on the next step of the document transfer and
activates the DocInput event when appropriate. It then returns to
wait for the next call to PushStream. SetData chould be called before
calling PushStream.

The SetData method specifies the next data buffer to be transferred
when the DocInput event is activated. SetData is called during a
DocInput event or before calling SendDoc. If it is used before calling
SendDoc then it is an alternative to sending the InputData parameters
to InputData. The type should be specified as a variant.

The Suspend method takes the form suspend(true) or suspend(false).
If the method has been called true twice then it must be called false

twice to resume transfer.

This is some example code on how to use the DocInput Object.
The full program that this code is from can be seen in the demos
sub directory of the Delphi 2.01 CD-Rom. The project name is
SimpMail.dpr. This example is a great exapmle of using the headers
property of the object. The DocInput event also shows proper use
and testing of the State property.

{Clear and repopulate MIME headers, using the component's DocInput
property. A separate DocInput OLE object could also be used.
See RFC1521/1522 for completeinformation on MIME types.}
procedure TMainForm.CreateHeaders;
begin
 with SMTP1 do
 begin
 DocInput.Headers.Clear;
 DocInput.Headers.Add('To', eTo.Text);
 DocInput.Headers.Add('From', eHomeAddr.Text);
 DocInput.Headers.Add('CC', eCC.Text);
 DocInput.Headers.Add('Subject', eSubject.Text);
 DocInput.Headers.Add('Message-Id', Format('%s_%s_%s',
 [Application.Title,DateTimeToStr(Now), eHomeAddr.Text]));
 DocInput.Headers.Add('Content-Type',
 'TEXT/PLAIN charset=US-ASCII');
 end;
end;

{Send a simple mail message}
procedure TMainForm.SendMessage;
begin
 CreateHeaders;
 with SMTP1 do
 SendDoc(NoParam, DocInput.Headers, reMessageText.Text, '', '');
end;

{Send a disk file. Leave SendDoc's InputData parameter blank and
specify a filename for InputFile to send the contents of a disk file.
You can use the DocInput event and GetData methods to do custom encoding
(Base64, UUEncode, etc.) }
procedure TMainForm.SendFile(Filename: string);
begin
 CreateHeaders;
 with SMTP1 do
 begin
 DocInput.Filename := FileName;
 SendDoc(NoParam, DocInput.Headers, NoParam, DocInput.FileName, '');
 end;
end;

{The DocInput event is called each time the DocInput state changes
during a mail transfer. DocInput holds all the information
about the current transfer, including the headers, the
number of bytes transferred, and the message data itself. Although not
shown in this example, you may call DocInput's SetData method if
DocInput.State = icDocData to encode the data before each block is

 sent.}
procedure TMainForm.SMTP1DocInput(Sender: TObject;
 const DocInput: Variant);
begin
 case DocInput.State of
 icDocBegin:
 SMTPStatus.SimpleText := 'Initiating document transfer';
 icDocHeaders:
 SMTPStatus.SimpleText := 'Sending headers';
 icDocData:
 if DocInput.BytesTotal > 0 then
 SMTPStatus.SimpleText :=
 Format('Sending data: %d of %d bytes (%d%%)',
 [Trunc(DocInput.BytesTransferred), Trunc(DocInput.BytesTotal),
 Trunc(DocInput.BytesTransferred/DocInput.BytesTotal*100)])
 else
 SMTPStatus.SimpleText := 'Sending...';
 icDocEnd:
 if SMTPError then
 SMTPStatus.SimpleText := 'Transfer aborted'
 else
 SMTPStatus.SimpleText := Format('Mail sent to %s
 (%d bytes data)',
 [eTo.Text,Trunc(DocInput.BytesTransferred)]);
 end;
 SMTPStatus.Update;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Creating Class Properties
 NUMBER : 3150
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : October 21, 1996

 TITLE : Creating Class Properties

This TI demonstrates how to add a class property to a new component
like the Font property on most components.

The following example declares a class, TMyClassProp which contains
several fields including an enumerated type field.

Notes:
 1. PropertyObject - must be of type TPersistant or a descendant
 class of TPersistant.
 2. Must create an instance of this TMyClassProp in the Create of
 the component.

----- Unit Follows ------

unit SubClass;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs;

type
 { First Create a enumerated list of elements
 then create a set of these elements }

 TEnumList = (Mom, Dad, Sibling, Sister, Brother);
 TEnum = set of TEnumList;

 { Here is the Class Object we want to use as a property in our
 Component.

 It has 4 properties, a Boolean, Word, String, and the
 enumerated type. }

 TMyClassProp = class(TPersistent)
 FBool: Boolean;
 FWord: Word;
 FString: String;
 FEnum: TEnum;

 published
 property HaveCar: Boolean read FBool Write FBool;
 property Age: Word read FWord write FWord;
 property Name: String read FString write FString;

 property Relation: TEnum read FEnum write FEnum;
 end; // TMyClassProp

 { Now create the component which will contain a property of type
 TMyClassProp.}

 TMyComponent = class(TComponent)
 FEnum: TEnum; { Enumerated type, just for fun }
 FSubClass: TMyClassProp; { The Class Property we want }
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 published
 property Relation: TEnum read FEnum write FEnum;
 property Relative: TMyClassProp read FSubClass write FSubClass;
 { Published declarations }
 end;

procedure Register;

implementation

 { Override Create, to create an instance of the Class property.
 This is required. }

constructor TMyComponent.Create(AOwner: TComponent);
begin
 inherited;
 FSubClass := TMyClassProp.Create;
end;

 { Override Destroy to perform house cleaning. }
destructor TMyComponent.Destroy;
begin
 FSubClass.Free;
 inherited;
end;

procedure Register;
begin
 RegisterComponents('Samples', [TMyComponent]);
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Optimizing Oracle Connections with Windows 95
 NUMBER : 3151
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Optimizing Oracle Connections with Windows 95

Intended Audience:

Anyone who wants to Improve Oracle IP Connection time under Windows 95.

Prerequisites:

- Windows 95
- Oracle Client Software Installed & Setup to connect to a Oracle Server
via TCP/IP.
- (Optional) Delphi 2.0 C/S Software to test result.

Purpose of the TI:

To help speed up Connection time to Oracle under Windows 95. Under WinNT
this is not an issue, therefore, this TI applies only to Windows 95.
Performance times, as seen on some computer's, with &
without this modification are:

Before : Win95 = 10-15 Seconds.
 WinNT = 2-3 Seconds.

After : Win95 = 3-4 Seconds. (Big Improvement)

Problem: Windows 95 inherently searches for IPC addresses on some network
nodes PRIOR to making a connection to a Oracle DNS whereas WinNT does not.

Solution: Modify the Oracle SQLNET.ORA file to disable said Windows 95
feature.

Step-by-Step Solution:

1) Open SQLNET.ORA via Notepad or Write.
(This file can be found in the <ORA_HOME>\network\admin directory.
Disregard any other occurrences of this file)

This files looks like this:

################
Filename......: sqlnet.ora
Node..........: local.world
Date..........: 24-MAY-94 13:23:20
################
TRACE_LEVEL_CLIENT = OFF
sqlnet.expire_time = 15
names.default_domain = borland.world

name.default_zone = borland.world

2) Add the following Parameter to the SQLNET.ORA file:

AUTOMATIC_IPC = OFF

Modified, the SQLNET.ORA file looks like this:

################
Filename......: sqlnet.ora
Node..........: local.world
Date..........: 24-MAY-94 13:23:20
################
AUTOMATIC_IPC = OFF
TRACE_LEVEL_CLIENT = OFF
sqlnet.expire_time = 15
names.default_domain = borland.world
name.default_zone = borland.world

3) Save the file the new SQLNET.ORA file and voila! Anytime an Oracle
Connection is initiated, performance with increase from 15 seconds to
3 seconds required. This improves Delphi's already blazing speed.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

BDE Callbacks to Provide Status on Operations
 NUMBER : 3103
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : August 21, 1996

 TITLE : BDE Callbacks to Provide Status on Operations

This TI demonstrates using a BDE DbiCallBack function
to drive a progress bar during a lengthy batch move
operation under Delphi 2.01.

Additional documentation on BDE function calls can be found
in the file BDE32.HLP (located in the directory where the
32 bit IDAPI is installed).

When you install a callback function to the BDE, the BDE
will "call back" to a function in your application, letting
your application know when certain events take place, and in
some cases, allow your application to return information
back to the BDE.

The BDE defines several callback types that may be installed:

 during large batch operations.
 requests a response from the caller.

This TI details installing a cbGENPROGRESS callback to drive
a progress bar in your application.

To do this, first call the DbiGetCallBack() function to retrieve
the handle to any callback that might already be installed
(and it's parameters), and save this information to a data
structure. Then install your callback, replacing any previous
callback installed.

You will need to pass a pointer the data structure containing
the information to the previously installed callback to the BDE
when you install your callback, so when your callback function
is executed, you can call the original callback
(if one is installed).

The BDE will call back to your application every so often,
reporting either a text message containing the number of records
it has processed or how far the batch move has progressed,
expressed as an integer percentage. Your callback should be able
to deal with either of these situations. If the percentage field
of the callback structure is greater than -1, then the percentage
is correct and you are free to update your progress bar. If the
percentage reported is less than zero, the callback has received
a text message in the szTMsg field containing a message that

includes the number of records processed. In this case, you will
need to parse the text message and convert the remaining string
to an integer, then calculate the percentage done and update
the progress bar.

Finally, when your batch move is complete, you will need to
un-register your callback, and reinstall the previous callback
function (if it exists).

The following code example is based on a form containing two tables,
a batch move component, a progress bar, and a button.

----- Code Follows ---------

unit Testbc1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs, StdCtrls, Grids, DBGrids, DB, DBTables, ComCtrls;

type
 TForm1 = class(TForm)
 Table1: TTable;
 BatchMove1: TBatchMove;
 Table2: TTable;
 Button1: TButton;
 ProgressBar1: TProgressBar;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

uses Bde; {Dbi Types and Procs are located here}

{$R *.DFM}

{data structure type to save previous callback info}
type TDbiCbInfo = record
 ecbType : CBType;
 iClientData : longint;
 DataBuffLn : word;
 DataBuff : pCBPROGRESSDesc;
 DbiCbFn : pointer;
end;
type PDbiCbInfo = ^TDbiCbInfo;

{Our callback function}
function DbiCbFn(ecbType : CBType;
 iClientData : Longint;
 CbInfo : pointer): CBRType stdcall;
var
 s : string;
begin
 {Check to see if the callback type is what we expect}
 if ecbType = cbGENPROGRESS then begin
 {if iPercentDone is less that zero then extract the number}
 {of records processed from szMsg parameter}
 if pCBPROGRESSDesc(cbInfo).iPercentDone < 0 then begin
 s := pCBPROGRESSDesc(cbInfo).szMsg;
 Delete(s, 1, Pos(': ', s) + 1);
 {Calculate percentage done and set the progress bar}
 Form1.ProgressBar1.Position :=
 Round((StrToInt(s) / Form1.Table1.RecordCount) * 100);
 end else
 begin
 {Set the progress bar}
 Form1.ProgressBar1.Position :=
 pCBPROGRESSDesc(cbInfo).iPercentDone;
 end;
 end;
 {was there a previous callback registered}
 {if so - call it and return}
 if PDbiCbInfo(iClientData)^.DbiCbFn <> nil then
 DbiCbFn :=
 pfDBICallBack(PDbiCbInfo(iClientData)^.DbiCbFn)
 (ecbType,
 PDbiCbInfo(iClientData)^.iClientData,
 cbInfo) else
 DbiCbFn := cbrCONTINUE;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 CbDataBuff: CBPROGRESSDesc; {DBi Structure}
 OldDbiCbInfo : TDbiCbInfo; {data structure to save previous
 callback info}
begin
 {Make sure the table we are moving from is open}
 Table1.Open;
 {make sure the table we are batch moving to is closed}
 Table2.Close;
 {get info about any installed callback}
 DbiGetCallBack(Table2.Handle,
 cbGENPROGRESS,
 @OldDbiCbInfo.iClientData,
 @OldDbiCbInfo.DataBuffLn,
 @OldDbiCbInfo.DataBuff,
 pfDBICallBack(OldDbiCbInfo.DbiCbFn));
 {register our callback}
 DbiRegisterCallBack(Table2.Handle,

 cbGENPROGRESS,
 longint(@OldDbiCbInfo),
 SizeOf(cbDataBuff),
 @cbDataBuff,
 @DbiCbFn);

 Form1.ProgressBar1.Position := 0;
 BatchMove1.Execute;

 {if a previous callback exists - reinstall it else}
 {unregister our callback}
 if OldDbiCbInfo.DbiCbFn <> nil then
 DbiRegisterCallBack(Table2.Handle,
 cbGENPROGRESS,
 OldDbiCbInfo.iClientData,
 OldDbiCbInfo.DataBuffLn,
 OldDbiCbInfo.DataBuff,
 OldDbiCbInfo.DbiCbFn) else
 DbiRegisterCallBack(Table2.Handle,
 cbGENPROGRESS,
 longint(@OldDbiCbInfo),
 SizeOf(cbDataBuff),
 @cbDataBuff,
 nil);

 {lets show our success!}
 Table2.Open;

end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Hints on Overcoming Installation Problems
 NUMBER : 3153
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Hints on Overcoming Installation Problems

 Delphi 2.0 Up and Running!

 This technical document is designed to assist you in
 reinstalling Delphi 2.0. If you require additional assistance,
 please call our "Up And Running" hotline at: (408) 461-9195.

 Pre-Installation Recommendations

 * Before reinstalling Delphi 2.0, run the uninstall option
 from the add/remove program icon in the Windows 95 control
 panel, or select the uninstall icon from the Delphi 2.0
 program group under Windows NT.

 * Do not run the uninstall from the Delphi 2.0 CD.

 * Before uninstalling and reinstalling Delphi 2.0, shut down the
 any applications using the Borland Database Engine, and close
 the Local InterBase Server (if running) by selecting the
 Local InterBase icon (right click from the system tray in
 Windows 95) and choose "shutdown".

 * Installing Delphi 2.0 on a Windows NT system requires
 Windows NT version 3.51 or later.

 * Before installing Delphi 2.0, it is suggested that you install
 the latest service pack available for your Windows system.
 Service packs are available from the Microsoft Corporation.
 One good source is Microsoft's World Wide Web site on the
 Internet located at www.microsoft.com.

 * If you already have a Delphi 1.0 installation on your system,
 you should install Delphi 2.0 to a different directory structure.
 The only directory that is recommended to be common to both
 versions of Delphi is the IDAPI directory.

 * Be sure you have proper administration rights on the machine
 you are installing to.

 * Installing Delphi 2.0 to a network server is not supported.

 * To install Delphi 2.0 to a computer that does not have a
 CD-ROM drive, use a network connection or set up a direct
 cable connection using a parallel or serial cable, and copy
 the files in the install directory on the Delphi 2.0 CD to
 a temporary directory on the computer you wish to install to,
 then run the setup program from the temporary directory created
 on the computer without the CD-Rom. After successful
 instalLation, you may delete the files you copied to the
 temporary directory.

 * If you are running stacker, rename VSTACKER.386 (located in your
 windows\system directory) to VSTACKER.$$$. Restart Windows,
 and run the install program again.

 * If you have disabled virtual memory, you need to re-enable it
 for the installation program allowing for at least 64MB of
 virtual memory.

 * Long files names should be enabled on your operating system.

 * If you have installed Paradox, delete all trailing lock files
 before installing.

 Installation Errors

 * If the online registration wizard does not complete your
 online registration, run the install program again, selecting
 cancel when you are presented with the choice of registering
 online. Please complete and mail the registration card included
 with your Delphi 2.0 product.

 * Should you receive a blank dialog box during install, select
 cancel and the install should continue successfully.

 * During the installation, should you receive one of the
 following error messages:

 "out of disk space",
 "no temp var",
 "error 101"
 "error 102"

 Add more disk space and/or make sure you have a "temp"
 environment variable defined and a temp directory created.
 There must be ample free space on the drive the temp
 directory is located on.

 * During the installation, should you receive the error:

 "Install Shield error filename -51"

 Try the following:

 1) Copy all the files (EXCEPT CTL3D32.DLL) from the
 runimage\delphi20\windows\system32 directory on the
 Delphi 2.0 CD to a temporary directory on your hard disk.

 2) Clear the read only attribute on all the files you copied
 to the temporary directory.

 3) Copy the files to your windows\system directory,
 or windows\system32 on Windows NT systems.

 4) Run setup again.

 Other tips and techniques for a successful installation

 * Try running the install from your hard disk. To do this,
 uninstall Delphi 2.0, then simply copy the files from the
 install directory on the Delphi 2.0 CD to a temporary directory
 on any hard drive, then run the install program from that
 temporary directory. After successful installation, you may
 delete the files you copied to the temporary directory.

 * Temporarily rename the win.ini file (located in your Windows
 directory) to win.in$, reboot, and reinstall or rerun Delphi
 2.0. If this helps, suspect any programs listed in the run,
 or load sections of win.ini, or any non standard print drivers.

 * Boot with the standard video driver shipped with your Windows
 system.

 * Check for read-only attributes on files in the Windows and
 windows\system directories.

 Post Installation Issues

 * Should you receive the error message: "odbc is corrupt or not
 installed correctly" or "BDECFG32.EXE Error" when you try to
 install a 32 bit ODBC driver to the BDE, you first need to
 install a 32 bit ODBC manager, available from InterSolv and
 Microsoft. One good source is Microsoft's World Wide Web site
 on the Internet located at www.microsoft.com.

 * If you install Delphi 1.0 after installing Delphi 2.0, and Delphi
 2.0 loads Delphi 1.0's help files, delete any references to the
 Delphi 1.0 help file in the WINHELP.INI file located in your
 Windows directory.

<END>

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

A Better Way To Print a Form
 NUMBER : 3155
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : A Better Way To Print a Form

The following TI details a better way to print the contents of
a form, by getting the device independent bits in 256 colors
from the form, and using those bits to print the form to the
printer.

In addition, a check is made to see if the screen or printer
is a palette device, and if so, palette handling for the device
is enabled. If the screen device is a palette device, an additional
step is taken to fill the bitmap's palette from the system palette,
overcoming some buggy video drivers who don't fill the palette in.

Note: Since this code does a screen shot of the form, the form must
be the topmost window and the whole from must be viewable when the
form shot is made.

unit Prntit;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls, ExtCtrls;

type
 TForm1 = class(TForm)
 Button1: TButton;
 Image1: TImage;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

uses Printers;

procedure TForm1.Button1Click(Sender: TObject);
var
 dc: HDC;
 isDcPalDevice : BOOL;
 MemDc :hdc;
 MemBitmap : hBitmap;
 OldMemBitmap : hBitmap;
 hDibHeader : Thandle;
 pDibHeader : pointer;
 hBits : Thandle;
 pBits : pointer;
 ScaleX : Double;
 ScaleY : Double;
 ppal : PLOGPALETTE;
 pal : hPalette;
 Oldpal : hPalette;
 i : integer;
begin
 {Get the screen dc}
 dc := GetDc(0);
 {Create a compatible dc}
 MemDc := CreateCompatibleDc(dc);
 {create a bitmap}
 MemBitmap := CreateCompatibleBitmap(Dc,
 form1.width,
 form1.height);
 {select the bitmap into the dc}
 OldMemBitmap := SelectObject(MemDc, MemBitmap);

 {Lets prepare to try a fixup for broken video drivers}
 isDcPalDevice := false;
 if GetDeviceCaps(dc, RASTERCAPS) and
 RC_PALETTE = RC_PALETTE then begin
 GetMem(pPal, sizeof(TLOGPALETTE) +
 (255 * sizeof(TPALETTEENTRY)));
 FillChar(pPal^, sizeof(TLOGPALETTE) +
 (255 * sizeof(TPALETTEENTRY)), #0);
 pPal^.palVersion := $300;
 pPal^.palNumEntries :=
 GetSystemPaletteEntries(dc,
 0,
 256,
 pPal^.palPalEntry);
 if pPal^.PalNumEntries <> 0 then begin
 pal := CreatePalette(pPal^);
 oldPal := SelectPalette(MemDc, Pal, false);
 isDcPalDevice := true
 end else
 FreeMem(pPal, sizeof(TLOGPALETTE) +
 (255 * sizeof(TPALETTEENTRY)));
 end;

 {copy from the screen to the memdc/bitmap}
 BitBlt(MemDc,
 0, 0,
 form1.width, form1.height,
 Dc,
 form1.left, form1.top,
 SrcCopy);

 if isDcPalDevice = true then begin
 SelectPalette(MemDc, OldPal, false);
 DeleteObject(Pal);
 end;

 {unselect the bitmap}
 SelectObject(MemDc, OldMemBitmap);
 {delete the memory dc}
 DeleteDc(MemDc);
 {Allocate memory for a DIB structure}
 hDibHeader := GlobalAlloc(GHND,
 sizeof(TBITMAPINFO) +
 (sizeof(TRGBQUAD) * 256));
 {get a pointer to the alloced memory}
 pDibHeader := GlobalLock(hDibHeader);

 {fill in the dib structure with info on the way we want the DIB}
 FillChar(pDibHeader^,
 sizeof(TBITMAPINFO) + (sizeof(TRGBQUAD) * 256),
 #0);
 PBITMAPINFOHEADER(pDibHeader)^.biSize :=
 sizeof(TBITMAPINFOHEADER);
 PBITMAPINFOHEADER(pDibHeader)^.biPlanes := 1;
 PBITMAPINFOHEADER(pDibHeader)^.biBitCount := 8;
 PBITMAPINFOHEADER(pDibHeader)^.biWidth := form1.width;
 PBITMAPINFOHEADER(pDibHeader)^.biHeight := form1.height;
 PBITMAPINFOHEADER(pDibHeader)^.biCompression := BI_RGB;

 {find out how much memory for the bits}
 GetDIBits(dc,
 MemBitmap,
 0,
 form1.height,
 nil,
 TBitmapInfo(pDibHeader^),
 DIB_RGB_COLORS);

 {Alloc memory for the bits}
 hBits := GlobalAlloc(GHND,
 PBitmapInfoHeader(pDibHeader)^.BiSizeImage);
 {Get a pointer to the bits}
 pBits := GlobalLock(hBits);

 {Call fn again, but this time give us the bits!}
 GetDIBits(dc,
 MemBitmap,
 0,
 form1.height,

 pBits,
 PBitmapInfo(pDibHeader)^,
 DIB_RGB_COLORS);

 {Lets try a fixup for broken video drivers}
 if isDcPalDevice = true then begin
 for i := 0 to (pPal^.PalNumEntries - 1) do begin
 PBitmapInfo(pDibHeader)^.bmiColors[i].rgbRed :=
 pPal^.palPalEntry[i].peRed;
 PBitmapInfo(pDibHeader)^.bmiColors[i].rgbGreen :=
 pPal^.palPalEntry[i].peGreen;
 PBitmapInfo(pDibHeader)^.bmiColors[i].rgbBlue :=
 pPal^.palPalEntry[i].peBlue;
 end;
 FreeMem(pPal, sizeof(TLOGPALETTE) +
 (255 * sizeof(TPALETTEENTRY)));
 end;

 {Release the screen dc}
 ReleaseDc(0, dc);
 {Delete the bitmap}
 DeleteObject(MemBitmap);

 {Start print job}
 Printer.BeginDoc;

 {Scale print size}
 if Printer.PageWidth < Printer.PageHeight then begin
 ScaleX := Printer.PageWidth;
 ScaleY := Form1.Height * (Printer.PageWidth / Form1.Width);
 end else begin
 ScaleX := Form1.Width * (Printer.PageHeight / Form1.Height);
 ScaleY := Printer.PageHeight;
 end;

 {Just incase the printer drver is a palette device}
 isDcPalDevice := false;
 if GetDeviceCaps(Printer.Canvas.Handle, RASTERCAPS) and
 RC_PALETTE = RC_PALETTE then begin
 {Create palette from dib}
 GetMem(pPal, sizeof(TLOGPALETTE) +
 (255 * sizeof(TPALETTEENTRY)));
 FillChar(pPal^, sizeof(TLOGPALETTE) +
 (255 * sizeof(TPALETTEENTRY)), #0);
 pPal^.palVersion := $300;
 pPal^.palNumEntries := 256;
 for i := 0 to (pPal^.PalNumEntries - 1) do begin
 pPal^.palPalEntry[i].peRed :=
 PBitmapInfo(pDibHeader)^.bmiColors[i].rgbRed;
 pPal^.palPalEntry[i].peGreen :=
 PBitmapInfo(pDibHeader)^.bmiColors[i].rgbGreen;
 pPal^.palPalEntry[i].peBlue :=
 PBitmapInfo(pDibHeader)^.bmiColors[i].rgbBlue;
 end;
 pal := CreatePalette(pPal^);

 FreeMem(pPal, sizeof(TLOGPALETTE) +
 (255 * sizeof(TPALETTEENTRY)));
 oldPal := SelectPalette(Printer.Canvas.Handle, Pal, false);
 isDcPalDevice := true
 end;

 {send the bits to the printer}
 StretchDiBits(Printer.Canvas.Handle,
 0, 0,
 Round(scaleX), Round(scaleY),
 0, 0,
 Form1.Width, Form1.Height,
 pBits,
 PBitmapInfo(pDibHeader)^,
 DIB_RGB_COLORS,
 SRCCOPY);

 {Just incase you printer drver is a palette device}
 if isDcPalDevice = true then begin
 SelectPalette(Printer.Canvas.Handle, oldPal, false);
 DeleteObject(Pal);
 end;

 {Clean up allocated memory}
 GlobalUnlock(hBits);
 GlobalFree(hBits);
 GlobalUnlock(hDibHeader);
 GlobalFree(hDibHeader);

 {End the print job}
 Printer.EndDoc;

end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Passing Multidimensional Arrays as Parameters
 NUMBER : 3187
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : January 8, 1997

 TITLE : Passing Multidimensional Arrays as Parameters

Passing an array to a procedure or function is straight
forward and behaves as expected. However, passing a
multi-dimensional array to a function or procedure is
not handled in the same way. Consider MyArray to be
defined as:
var
MyArray: array[1..3, 1..5] of double;

And you want to pass it to a procedure called
DoSomeThing() defined as:

procedure DoSomeThing(MyArray: array of double);
begin
 showmessage(floattostr(MyArray[1 , 1]));
end;

One might think a simple statement like
DoSomeThing(MyArray); would do the trick.
Unfortunately, this is not the case.
The statement DoSomeThing(MyArray); will not compile.
The compiler sees the two data structures involved
as different types - so it will not allow the
statement. The DoSomeThing() procedure is
expecting an array of doubles, but the example is
passing a multi-dimensional array.

Delphi handles multi-dimensional arrays as user
defined type, so there is no syntax to tell a procedure
that its parameter(s) are multi-dimensional arrays -
without declaring a type. Creating a type, and using
this type as the parameter is the correct method to pass
a multi-dimensional array. We could just pass a pointer
to the array, but inside the function, we need to typecast
that pointer. What type to cast it as is the next issue.
You would have to have the type defined, or declared
identically in 2 places. This method just doesn't make
sense.

By defining a type, we can change the process to this:
type
 TMyArray = array[1..3, 1..5] of double;

var
 MyArray : TMyArray;

procedure DoSomeThing(MyArray: TMyArray);
begin
 showmessage(floattostr(MyArray[1 , 1]));
end;

Now the actual call looks as we expected:

DoSomeThing(MyArray);

If you want to use the method of passing a pointer, your
function might look like this:

type
 PMyArray = ^TMyArray;
 TMyArray = array[1..3, 1..5] of double;

var
 MyArray : TMyArray;

procedure DoSomeThing(MyArray: PMyArray);
begin
 showmessage (floattostr((MyArray[2,3])));
end;

Note, under 32 bit version Delphi, you do not need to
dereference the MyArray variable inside DoSomeThing().
Under older versions you might have to refer to
MyArray as MyArray^.

If you want to pass just a generic pointer, you may not
be able to use it directly. You can declare a local
variable, and use it. Again, you may need to cast the
local variable for older versions of PASCAL. Of course
this method does offer more flexibility in data usage.

procedure DoSomeThing(MyArray: pointer);
var
 t : ^TMyArray;
begin
 t := MyArray;
 ShowMessage (FloatToStr(t[2,3]));
end;

Regardless, both calls that use a pointer method, will
look something like:
MyArray[2, 3] := 5.6;
DoSomeThing(@MyArray);

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Using InputBox, InputQuery, and ShowMessage
 NUMBER : 3157
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : November 13, 1996

 TITLE : Using InputBox, InputQuery, and ShowMessage

This function will demonstrate 3 very powerful and useful
procedures built into Delphi.

The InputBox and InputQuery both allow user input.

Use the InputBox function when it doesn't matter if the user
chooses either the OK button or the Cancel button (or presses
Esc) to exit the dialog box. When your application needs to
know if the user chooses OK or Cancel (or presses Esc), use
the InputQuery function.

The ShowMessage is another simple way of displaying a message
to the user.

procedure TForm1.Button1Click(Sender: TObject);
var s, s1: string;
 b: boolean;
begin
 s := Trim(InputBox('New Password', 'Password', 'masterkey'));
 b := s <> '';
 s1 := s;

 if b then
 b := InputQuery('Confirm Password', 'Password', s1);

 if not b or (s1 <> s) then
 ShowMessage('Password Failed');
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Create a new file with the .wav extension.
 NUMBER : 3158
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Create a new file with the .wav extension.

This document describes the process for creating added
functionality ,that many Delphi users have requested,
to the TMediaPlayer. The new functionality is the ability
to create a new file with the .wav format when recording.
The procedure "SaveMedia" creates a record type that is
passed to the MCISend command. There is an appexception
that calls close media if any error occurs while attempting
to open the specified file. The application consists two
buttons. Button1 calls the OpenMedia and RecordMedia
procedures in that order.The CloseMedia procedure is called
whenever an exception is generated in this application.
Button2 calls the StopMedia,SaveMedia, and CloseMedia
procedures.

unit utestrec;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs,MPlayer,MMSystem,StdCtrls;

type
 TForm1 = class(TForm)
 Button1: TButton;
 Button2: TButton;
 procedure Button1Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure AppException(Sender: TObject; E: Exception);
 private
 FDeviceID: Word;
 { Private declarations }
 public
 procedure OpenMedia;
 procedure RecordMedia;
 procedure StopMedia;
 procedure SaveMedia;
 procedure CloseMedia;
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

var
 MyError,Flags: Longint;

 procedure TForm1.OpenMedia;
 var
 MyOpenParms: TMCI_Open_Parms;
 MyPChar: PChar;
 TextLen: Longint;
 begin
 Flags:=mci_Wait or mci_Open_Element or mci_Open_Type;
 with MyOpenParms do
 begin
 dwCallback:=Handle; // TForm1.Handle
 lpstrDeviceType:=PChar('WaveAudio');
 lpstrElementName:=PChar('');
 end;
 MyError:=mciSendCommand(0, mci_Open, Flags,
 Longint(@MyOpenParms));
 if MyError = 0 then
 FDeviceID:=MyOpenParms.wDeviceID;
 end;

 procedure TForm1.RecordMedia;
 var
 MyRecordParms: TMCI_Record_Parms;
 TextLen: Longint;
 begin
 Flags:=mci_Notify;
 with MyRecordParms do
 begin
 dwCallback:=Handle; // TForm1.Handle
 dwFrom:=0;
 dwTo:=10000;
 end;
 MyError:=mciSendCommand(FDeviceID, mci_Record, Flags,
 Longint(@MyRecordParms));
 end;

 procedure TForm1.StopMedia;
 var
 MyGenParms: TMCI_Generic_Parms;
 begin
 if FDeviceID <> 0 then
 begin
 Flags:=mci_Wait;
 MyGenParms.dwCallback:=Handle; // TForm1.Handle
 MyError:=mciSendCommand(FDeviceID, mci_Stop, Flags,
 Longint(@MyGenParms));
 end;
 end;

 procedure TForm1.SaveMedia;

 type // not implemented by Delphi
 PMCI_Save_Parms = ^TMCI_Save_Parms;
 TMCI_Save_Parms = record
 dwCallback: DWord;
 lpstrFileName: PAnsiChar; // name of file to save
 end;
 var
 MySaveParms: TMCI_Save_Parms;
 begin
 if FDeviceID <> 0 then
 begin
 // save the file...
 Flags:=mci_Save_File or mci_Wait;
 with MySaveParms do
 begin
 dwCallback:=Handle;
 lpstrFileName:=PChar('c:\message.wav');
 end;
 MyError:=mciSendCommand(FDeviceID, mci_Save, Flags,
 Longint(@MySaveParms));
 end;
 end;

 procedure TForm1.CloseMedia;
 var
 MyGenParms: TMCI_Generic_Parms;
 begin
 if FDeviceID <> 0 then
 begin
 Flags:=0;
 MyGenParms.dwCallback:=Handle; // TForm1.Handle
 MyError:=mciSendCommand(FDeviceID, mci_Close, Flags,
 Longint(@MyGenParms));
 if MyError = 0 then
 FDeviceID:=0;
 end;
 end;

 procedure TForm1.Button1Click(Sender: TObject);
 begin
 OpenMedia;
 RecordMedia;
 end;

 procedure TForm1.Button2Click(Sender: TObject);
 begin
 StopMedia;
 SaveMedia;
 CloseMedia;
 end;

 procedure TForm1.FormCreate(Sender: TObject);
 begin
 Application.OnException := AppException;
 end;

 procedure TForm1.AppException(Sender: TObject; E: Exception);
 begin
 CloseMedia;
 end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Using MS Internet Explorer 3.0 in Delphi 2
 NUMBER : 3159
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Using MS Internet Explorer 3.0 in Delphi 2

Topic: Access Violation when using MS Internet Explorer 3.0
WebBrowser as an OCX in Delphi.

Problem: When you create an OCX wrapper class in Delphi to host the
Internet Explorer 3.0 HTML viewer control (named TExplorer or
TWebBrowser depending on the age of your IE installation) and use it
in a Delphi app that calls the Navigate method of that OCX control,
you'll get an access violation as well as possibly ruin your whole
Win95 OLE session.

Reason: IE 3.0 calls the IOleClientSite.GetContainer method of
Delphi's OCX wrapper implementation. Delphi returns an error code
E_NOTIMPL, but IE 3.0 only looks for error code E_NOINTERFACE. IE
3.0 ignores all other error codes and plows ahead with using the
bogus interface pointer, thus the access violation occurs.

Solution: In Delphi 2.0's OleCtrls.pas, modify method
TOleClientSite.GetContainer to return E_NOINTERFACE instead of
E_NOTIMPL as its function result. Note that this doesn't entirely
solve the IE 3.0 error checking problem, but it at least placates it.

Important Note: Delphi Developer and Delphi C/S customers can make
the change and recompile without affecting any other units. Delphi
Desktop customers don't have the VCL source code, so they will need
an updated DCU from Borland in order to fix it.

Special Thanks: Danny Thorpe

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

BDE and Database Desktop Locking Protocol
 NUMBER : 3160
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 20, 1996

 TITLE : BDE and Database Desktop Locking Protocol

 Intended Audience
 This information will be of benefit to anyone considering
 designing a database application using Delphi and the BDE.

 Prerequisites
 A basic knowledge or interest in Paradox locking protocols
 and table formats.

 Purpose
 To give users a better understanding of the table locking
 protocol.

 Table and field types and features supported
 Each major release of Paradox has implemented improvements
 to table structures since version 2.0. All Paradox table
 types from Paradox 1.0 through Paradox 3.5 are compatible
 with each other.

 Paradox 4.0 adds a new data type to the table format: Binary
 Large Objects, commonly known as BLObs and new types of
 Secondary Indices. Paradox 4.0 supports two types of BLOb
 fields: Memo, and BLOb. Versions of Paradox prior to 4.0,
 or the Engine prior to 3.0, cannot read, write, or create
 this new table format. If you attempt to read or write a
 Paradox 4.0 table type in an earlier version of Paradox,
 it will return an error that the table is password protected.

 Paradox 5.0 added several new data types to the table format:
 Long Integer, Time, TimeStamp, Logical, Autoincrement, BCD,
 Bytes. Paradox 7.0 added a descending secondary index.
 Any table created or modified to include any of these newer
 features will default to the respective table level. The
 default table type created using the Database Desktop and the
 BDE (Borland Database Engine) is a Paradox 4.0. Although the
 default can be changed in the BDE configuration utility or
 the Database desktop configuration utility to default to
 Paradox 3, 4, 5 and 7 for the BDE.

 Paradox 4.0 can read, write, and create Paradox table types that
 are compatible with Paradox 1.0 through Paradox 4.0. So a table
 created in Paradox 1.0 is compatible with Paradox 4.0. A table
 created in Engine 1.0 or 2.0 can be read by or written to by
 Paradox 4.0.

 Paradox and the Engine do not change the table type when reading
 or writing. The table type is only changed when a Restructure is
 performed on the table.

 Paradox Locking Protocols
 There are two different Paradox locking protocols: the protocol
 introduced with Paradox 2.0 and the protocol introduced with
 Paradox 4.0. These two protocols are not compatible with each
 other. The locking protocol has no bearing on which type of
 table a program can work with. There are a few programs that can
 support either locking protocol; however, these programs can only
 support one protocol at a time. We will only focus on the 4.0
 locking protocol.

 Database Desktop/ Paradox 4.0 Locking Protocol
 The Paradox 4.0 locking protocol is the only protocol available
 for Paradox 4.0 and the IDAPI Engine. The designation "Paradox 4.0
 locking protocol" represents this style of locking.

 Directory Locks
 Paradox 4.0 places a locking file, PDOXUSRS.LCK, in each
 directory where tables are being accessed. This locking file
 regulates concurrent access to files in the directory. The lock
 file references PDOXUSRS.NET, so every user must map to
 the data directory the same way. It also places an exclusive
 PARADOX.LCK file in the directory as well. It does this to
 prevent versions of Paradox or the Engine using the older
 locking system from inadvertently accessing tables.

 Working/Shareable Directories
 When Paradox or Database Desktop needs to access tables in a
 directory, they place a "Shareable" PDOXUSRS.LCK file in that
 directory and an "Exclusive" PARADOX.LCK file in that directory.
 This designation means that other Paradox 4.0 users can access
 tables in that directory. The exclusive PARADOX.LCK file is
 placed in this directory to keep the older, incompatible locking
 protocol from putting data at risk. In Paradox, this is known as
 a "Working" directory.

 Private/Exclusive Directories
 Paradox and Database Desktop also need a directory to store
 temporary files, such as the Answer table from a query. When
 Paradox or Paradox Runtime start, they also place an "Exclusive"
 PDOXUSRS.LCK file in a directory and an "Exclusive" PARADOX.LCK
 file in the same directory, designating that directory as the
 location for temporary files. This designation means that other
 Paradox users cannot access tables in that directory. In Paradox
 this is known as a "Private" directory.

 Table Locks
 Paradox 4.0 places each table lock in the directory locking file:
 PDOXUSRS.LCK. It no longer uses the separate table lock file of
 previous versions. For example, if three users are viewing the
 CUSTOMER.DB table and one user is restructuring the ORDERS.DB
 table, the PDOXUSRS.LCK file will have a shareable lock listed
 for each of those three users who are viewing the CUSTOMER.DB

 table, and an exclusive lock on ORDERS.DB for the user who is
 restructuring that table.

 Paradox 4.0 Locking Protocol Concurrency
 In a multi-user environment, the Paradox 4.0 locking protocol
 maintains concurrency, the simultaneous use of applications,
 through the PDOXUSRS.NET file. All users who want to share
 Paradox tables must map to the same PDOXUSRS.NET file in the
 same way using the same path, but not necessarily the same
 drive letter. Paradox places a PDOXUSRS.LCK and an exclusive
 PARADOX.LCK file in each directory where tables are being
 accessed preventing previous versions of Paradox from accessing
 files in the same directory. Each user who wants to share tables
 in that directory must map that directory the same way using
 the same drive letter and path. Paradox then places all of the
 locking information for that table in the PDOXUSRS.LCK file,
 reducing the number of files needed.

 Network Control File
 The Paradox network control file, PDOXUSRS.NET, serves as the
 reference point for all lock files created by Paradox. The
 net file contains the users currently using the BDE and which
 table they're accessing. Each lock file references the network
 control file and contains information regarding the locks on the
 table and by which user, so each user must map to the same
 network control file in the same way, but not necessarily with
 the same drive letter.

 For example, if you are using volume DATA on server SERVER_1 and
 the network control file is in the directory \PDOXDATA each user
 must map \\SERVER_1\DATA:\PDOXDATA the same way, however, each
 user should, but is not required to use the same drive letter.
 If the network you are using does not have volumes, then DATA
 would be a directory off the root of SERVER_1.

 If you are mapping \\SERVER_1\DATA to the root of drive P: then
 each Paradox system would specify the location of PARADOX.NET as
 P:\PDOXDATA\. However, other users could map \\SERVER_1\DATA to
 the root of drive O: and specify O:\PDOXDATA\ as the location of
 the network control file.

 Configuring 16 bit Database Engine / IDAPI.CFG
 The Database Engine configuration file holds the network specific
 information and the list of database aliases, as well as other
 information. You can configure IDAPI using the Database Engine
 configuration program, BDECFG.EXE, to set the location of the
 network control file. Also add, delete, modify database aliases
 including which driver or type of alias used and whether IDAPI
 will share local tables with other programs using the Paradox
 4.0 locking protocol as well as some other specifics regarding the
 tables and how data is displayed.

 Local Settings 16 bit
 The WIN.INI file holds the locations of the IDAPI.CFG file, the
 Database Desktop "Working" directory, and the Database Desktop
 "Private" directory. You can use any text editor to change these

 designations in the WIN.INI file. The location of the IDAPI.CFG
 file is CONFIGFILE=<full drive, path, and file name> or
 CONFIGFILE01=<full drive, path, and file NAME> in the [IDAPI]
 group.

 The locations of the Database Desktop "Working" and "Private"
 directories are in the [DBD] group as WORKDIR=<full drive and
 directory>, and PRIVDIR=<full drive and directory>.

 Configuring 32 bit Database Engine / IDAPI32.CFG
 The BDE configuration file holds the same information as the
 Database Engine configuration file. Use the BDE Configuration,
 BDECFG32.EXE, to configure IDAPI32.CFG. Optionally you can store
 the information in the registry or in both the registry and
 IDAPI32.CFG.

 Local Settings 32 bit
 The registry holds the locations of the IDAPI32.CFG, the "Working"
 directory, and the "Private" directory. The location of the
 IDAPI32.CFG file is stored in
 HKEY_LOCAL_MACHINE\Software\Borland\Database Engine.
 The value CONFIGFILE01 holds the data containing <full drive, path,
 and file name>.

 The location of the BDE "Working" and "Private" directories are
 stored in
 HKEY_CURRENT_USER\Software\Borland\DBD\7.0\Configuration\WorkDir and
 HKEY_CURRENT_USER\Software\Borland\DBD\7.0\Configuration\PrivDir
 respectively. Each directory default value stores the data containing
 <Full drive and directory>.

 Accessing a Paradox Table
 The BDE will first try to access the PDOXUSRS.NET file.
 If a PDOXUSRS.NET file is not found, Paradox will create a
 new PDOXUSRS.NET file and continue with the startup procedure.
 If the PDOXUSRS.NET file is found but the owner of this net file
 used a different path, i.e. mapped to the server differently, an
 exception of "Multiple net files in use" will be raised and the BDE
 will shutdown. After the net is successfully opened an exclusive
 lock, PARADOX.LCK, is placed in the temporary, private, directory.
 If it fails to place the lock the BDE will shut down. This can fail
 if some other user has an exclusive lock in this directory or the
 lock files are using different net files. After it secures a
 directory for private use it will place a shareable PARADOX.LCK in
 the working directory and now Initialization is complete.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Getting a record member char array into a memo.
 NUMBER : 3162
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 22, 1996

 TITLE : Getting a record member char array into a memo.

Handling large strings with the 16 bit Delphi product can
be difficult. Especially when the strings are part of a
record structure and you would like to flow them into a
TMemo. This document shows how to create a record structure
that has a 1000 character member and still write it out
from a memo then read it back into a memo. The main thrust
of the method is to use the GetTextBuf method of the memo.
The record structure used is just a string and the array of
1000 chars, but it could be much more complex.

unit URcrdIO;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls,dbtables;

type
 TForm1 = class(TForm)
 Button1: TButton;
 Memo1: TMemo;
 Button2: TButton;
 procedure Button1Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
type
 TMyRec = record
 MyArray : array [1..1000] of char;
 mystr : string;
 end;

var
 Form1: TForm1;
 MyRec : TMyRec;
 mylist : TStringlist;
 PMyChar : PChar;
 myfile : file;
 mb : TStream;
implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);

begin
 assignfile(myfile, 'c:\testblob.txt');
 rewrite(myfile,1);
 fillchar(MyRec.MyArray,sizeof(MyRec.MyArray),#0);
 pmychar:=@MyRec.MyArray;
 StrPCopy(pmychar,memo1.text);
 Blockwrite(MyFile,MyRec,SizeOf(MyRec));
 closefile(MyFile);
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
 assignfile(myfile, 'c:\testblob.txt');
 reset(myfile,1);
 fillchar(MyRec.MyArray,sizeof(MyRec.MyArray),#0);

 Blockread(MyFile,MyRec,SizeOf(MyRec));
 pmychar:=@MyRec.MyArray;
 Memo1.SetTextBuf(pmychar);

end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to Get the Most Out of DBDEMOS
 NUMBER : 3164
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : December 9, 1996

 TITLE : How to Get the Most Out of DBDEMOS

OVERVIEW:
 To most Delphi Developers, DBDEMOS is just an alias, but this TI
will show that DBDEMOS is more than just sample tables. Included
with Delphi 2.0 is the Delphi Demo Explorer where you can easily
choose to view a wide range of sample applications, based on concept
or by example. Also included in this TI is a directory listing of
where to find various other examples and demonstrations included with
the Delphi 2.0 CD.

TARGET AUDIENCE:
 This TI is aimed at all developers, from beginning to master
programmers. Although beginners will be able to run though these
examples in order to grasp fundamental Delphi concepts, the master
programmers can use this as a reference sheet in order to gain more
experience and to research further in any particular area.

DELPHI 2.0 DEMO EXPLORER

The Demo Explorer allows you to browse through a database of all
Delphi demonstration programs. As outlined in
\info\Borland\Demoexpl\Readdx.Txt on the Delphi 2.0 CD, follow the
directions below to install the Delphi 2.0 Demo Explorer:

1. Close Delphi 2.0 if it is running.
2. Create a \DemoExpl directory off of the directory in which you
 installed Delphi 2.0.
 (i.e., c:\Program Files\Borland\Delphi 2.0\DemoExpl).
3. Copy all of the files from the \info\borland\demoexpl directory
 of the Delphi 2.0 CD-ROM to the directory you created in step 1.
4. Use the Run option from the Start menu to run the REGEDIT
 application. Find:
 \HKEY_CURRENT_USER\Software\Borland\Delphi\2.0\Experts
 key by expanding the tree view in the left pane of the Registry
 Editor window. If you have no experts key then you must create
 one.
5. Highlight the Experts key in the left pane, and right click on
 the right pane of the Registry Editor window. From the local
 menu, select New|String value, enter "DemoExplorer" as the new

 value, and press the Enter key.
6. Right click on DemoExplorer in the right pane, and select Modify
 from the local menu. This will invoke the Edit String dialog.
 In this dialog, enter the full path from step 1 followed by
 "\demoexpl.dll". For example:
 c:\Program Files\Borland\Delphi 2.0\DemoExpl\demoexpl.dll.
7. Demo Explorer is now installed. Run Delphi 2.0, and you can
 invoke Demo Explorer by selecting "Explore Sample Applications"
 from the Help menu.

WHERE TO FIND DB DEMOS, DATA AND RELATED FILES
--
1. \Demos\DB contains 17 directories of demonstration database
 related projects.
2. \Doc
 a) \Dataedit
 b) \DBCal
3. \Demos\Data contains Interbase, Paradox, dBase tables, indexes,
 validation, memos, bitmaps.
4. \Iblocal\Examples contains Interbase tables Employee.GDB and
 INTlemp.GDB for Delphi 1.0.
5. \IntrBase\Examples) contains Interbase tables Employee.GDB and
 INTlemp.GDB for Delphi 2.0.
6. \Source\Samples
 a) Ibctrls.pas
 b) IBEvents.pas
 c) IBProc32.pas

DELPHI 1.0 EXAMPLES

1. Animals:
 Simplest possible example using data aware controls
 and a dBase table. See also FishFact.
2. BDEDLL:
 Demonstrates use of the BDE within a DLL for Delphi
 1.0. If the customer is having trouble with a DLL that uses BDE
 they may check the comments in these two projects. Note: If
 "DB" appears in the uses clause of a unit, they are using BDE.
 This is because DB.PAS contains an initialization section that
 automatically starts the Borland Database Engine. For example,
 if a data aware control is dropped on the form, DB will be added
 to the uses clause, and when the application is run, BDE will
 start, even if the data aware control is removed at a later time.
3. CalcFlds:
 Demonstrates assigning values to calculated fields
 where looking into a secondary table is necessary.
4. Datalist:
 Populates list boxes with list of available
 databases, tables, fields and indexes for a given session.
5. DBAware1:
 Demos the use of TDBEdit, TDBComboBox, and TDBListbox.
6. DBAware2:
 Demos the use of TDBLookupCombo and TDBLookupList.
 The use of TDBLookupCombo and TDBLookupList are commonly

 misunderstood - this project shows these controls being used for
 their intended use.
7. FishFact:
 Simplest possible example using data aware controls
 and a Paradox table. See also Animals.
8. Format:
 Though not specifically a database application, this
 project demonstrates the use of the Format function to manipulate
 the display of floating point numbers.
9. InsQuery:
 Demonstrates inserting and deleting records from a
 server table using SQL statements containing parameters.
10. LinkQry:
 Displays two grids of master and detail records
 where the relationship between the master and child tables is
 performed through a parameterized query.
11. MastApp:
 A complete order entry system with functionality to
 add, modify, browse and report on orders, customers, parts, and
 items. Also contains application help, and comments within the
 main unit on upsizing from the default Paradox to Interbase.
12. QJoin:
 An example of joining two tables using SQL statements.
 Displays customer and order records where customer numbers match.
13. Range:
 Demonstrates the use of SetRangeStart, SetRangeEnd,
 ApplyRange, and CancelRange.
14. Search:
 Demonstrates a single search for customer number
 executed from a button click.
15. Stocks:
 Stock charting application including Market Browser,
 Industry Charts, Customer Details, Customer Charts, and
 reporting. The projects demonstrates dynamically population of
 combo boxes used in turn for dynamically created SQL statements
 and Chart FX.
16. Tools:
 Review the Readme.txt file in this directory for more
 information on setting up these projects. Here's an excerpt from
 the read me:
 * These demos show examples of:
 * An example database MDI application (DBBROWSE.DPR)
 * An example database popup application (SQLMON.DPR)
 * An example of how to derive new database components for the
 Borland Database Engine system tables (BDETABLES.PAS)
 * An example of how to use the database error stack available in
 the VCL exception class EDbEngineError. This exception is
 raised when a Borland Database Engine error occurs (DBEXCEPT.*)
17. TwoForms:
 Shows data aware controls on two forms kept in sync
 by accessing a common dataset control (a TTable) located on the
 first form.

DELPHI 2.0 EXAMPLES

1. BdQuery:
 Demonstrates how to execute a query in a background thread.
2. CachedUp:
 This example demonstrates how cached updates can be
 used with live data and in conjunction with the UpdateSQL
 component for non-live data. See About.txt in this same
 directory for more information.
3. CsDemos:
 Demonstrates Client/Server concepts, including
 triggers, stored procedures executed from both TStoredProc and
 TQuery, and transactions.
4. CtrlGrid:
 A Stock browser showing detail data in a TDBCtrlGrid.
5. DbErrors:
 This example represents a sampling of the way that
 you might approach trapping a number of database errors. See
 comments in the data module of this project.
6. Filter:
 Customer/Orders browser allowing a number of query
 and table based filters. A second form allows building and
 executing filters over the customer table at runtime.
7. Find:
 Demonstrates record location and incremental searches
 on filtered and un filtered tables. Includes examples of
 FindNearest, Locate, and GoToCurrent usage.
8. GdsDemo:
 Order entry application for "Global Diving Supply"
 with grid and single record views.. This project allows you to
 experiment with the effects of form inheritance. The project
 contains two sets of both grid and single record forms which
 allows you to change the "GDS standard" form and watch the
 effects on the inherited form. The project also demonstrates
 techniques for calculating fields, record filtering, and
 locating records that match the filter, using FindFirst,
 FindNext, FindPrior, or FindLast.
9. IBDemo:
 Demonstrates listing, registering, and generating
 InterBase events. The project also includes the TIbEventAlerter
 component from the samples component palette page.
10. Lookup:
 Example of "lookup" TFields that allow for drop down
 combos within a TDBGrid. This feature currently available in
 Delphi 2.0.
11. NavMDI:
 Master and detail data displayed on separate MDI
 forms, and navigator displayed in the MDI parent.
12. NavSDI:
 Navigator, master and detail each displayed on separate forms.
13. NdxBuild:
 Utility to rebuild indexes for one or all tables
 within a given alias. Contains code using the BDE API (the
 dbiRegenIndexes function), application level exception handler,
 and listing of alias for a given session.
14. QBFDemo:
 This example shows a way to provide users with the
 ability to define their own queries. If your query returns

 records, then a Results Viewer displays those results; otherwise,
 you'll receive a message indicating that no records matched the
 search.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Exposing the OnClick of the DBGrid control
 NUMBER : 3165
 PRODUCT : Delphi
 VERSION : 1.0
 OS : Windows
 DATE : December 9, 1996

 TITLE : Exposing the OnClick of the DBGrid control

Many people want to use the OnClick of the TDBGrid.
The TDBGrid has no such event. This document tells
how to surface the OnClick event for the TDBGrid. The
general technique applied here can be used to surface
other properties for other objects. If you know that
an ancestor could do it this is how to make the
descendant do it. One of the powerful things done
here is the addition of the csClickEvents to the
ControlStyle set property of the control. This allows
the control when typecast as THack to recieve and
correctly process the click message from windows. The
assignment of the OnClick for some other control to
the OnClick of the DBGrid1 gives the ability to access
and use the OnClick event of a control that has no such
event.

This is a hack. There are reasons that dbgrid does not
surface the click event. Use this code at your own risk.

unit Udbgclk;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics,
 Controls, Forms, Dialogs,
 StdCtrls, Grids, DBGrids, DBTables, DB;

type
 thack = class(tcontrol);

 TForm1 = class(TForm)
 DBGrid1: TDBGrid;
 Button1: TButton;
 DataSource1: TDataSource;
 Table1: TTable;
 procedure Button1Click(Sender: TObject);
 procedure FormClick(Sender: TObject);

 private
 { Private declarations }
 public

 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
begin
 THack(dbgrid1).controlstyle :=
 THack(dbgrid1).controlstyle + [csClickEvents];
 THack(dbgrid1).OnClick := Form1.OnClick;
end;

procedure TForm1.FormClick(Sender: TObject);
begin
 messagebeep(0);
 application.processmessages;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Getting runtime properties at runtime
 NUMBER : 3166
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : December 9, 1996

 TITLE : Getting runtime properties at runtime

Object Property Information at Runtime.

 You may need to know at runtime what properties are available
for a particular component at runtime. The list can be obtained
by a call to GetPropList. The types, functions and procedures,
including GetPropList, that allow access to this property
information reside in the VCL source file TYPINFO.PAS.

GetPropList Parameters

function GetPropList(TypeInfo: PTypeInfo; TypeKinds: TTypeKinds;
 PropList: PPropList): Integer;

 The first parameter for GetPropList is of type PTypeInfo, and
is part of the RTTI (Run Time Type Information) available for
any object. The record structure defined:

 PPTypeInfo = ^PTypeInfo;
 PTypeInfo = ^TTypeInfo;
 TTypeInfo = record
 Kind: TTypeKind;
 Name: ShortString;
 {TypeData: TTypeData}
 end;

 The TTypeInfo record can be accessed through the objects
ClassInfo property. For example, if you were getting the
property list of a TButton, the call might look, so far, like
this:

 GetPropList(Button1.ClassInfo,

 The second parameter, of type TTypeKinds, is a set type that
acts as a filter for the kinds of properties to include in
the list. There are a number of valid entries that could be
included in the set (see TYPEINFO.PAS), but tkProperties
covers the majority. Now our call to GetPropList would look
like:

 GetPropList(Button1.ClassInfo, tkProperties

 The last parameter, PPropList is an array of PPropInfo and
is defined in TYPEINFO.PAS:

 PPropList = ^TPropList;
 TPropList = array[0..16379] of PPropInfo;

 Now the call might read:

procedure TForm1.FormCreate(Sender: TObject);
var
 PropList: PPropList;
begin
 PropList := AllocMem(SizeOf(PropList^));
 GetPropList(TButton.ClassInfo, tkProperties + [tkMethod],

 PropList);
 .
 .
 .

Getting Additional Information from the TTYpeInfo Record
--
 The example at the end of this document lists not just
the property name, but it's type. The name of the
property type resides in an additional set of structures
Let's take a second look at the TPropInfo record.
Notice that it contains a PPTypeInfo that points
ultimately to a TTypeInfo record. TTypeInfo contains the
class name of the property.

 PPropInfo = ^TPropInfo;
 TPropInfo = packed record
 PropType: PPTypeInfo;
 GetProc: Pointer;
 SetProc: Pointer;
 StoredProc: Pointer;
 Index: Integer;
 Default: Longint;
 NameIndex: SmallInt;
 Name: ShortString;
 end;

 PPTypeInfo = ^PTypeInfo;
 PTypeInfo = ^TTypeInfo;
 TTypeInfo = record
 Kind: TTypeKind;
 Name: ShortString;
 {TypeData: TTypeData}
 end;

Example code

 The example below shows how to set up the call to GetPropList,
and how to access the array elements. TForm will be referenced
in this example instead of TButton, but you can substitute
other values in the GetPropList call. The visible result will
be to fill the list with the property name and type of the

TForm properties.

This project requires a TListBox. Enter the code below in the
forms OnCreate event handler.

uses TypInfo;

procedure TForm1.FormCreate(Sender: TObject);
var
 PropList: PPropList;
 i: integer;
begin
 PropList := AllocMem(SizeOf(PropList^));
 i := 0;
 try
 GetPropList(TForm.ClassInfo, tkProperties + [tkMethod], PropList);
 while (PropList^[i] <> Nil) and (i < High(PropList^)) do
 begin
 ListBox1.Items.Add(PropList^[i].Name + ': ' +
 PropList^[i].PropType^.Name);
 Inc(i);
 end;
 finally
 FreeMem(PropList);
 end;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Search and replace in strings: a task made easy
 NUMBER : 3170
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : December 20, 1996

 TITLE : Search and replace in strings: a task made easy

Search and replace in strings: a task made easy.

An often overlooked, yet strong feature of Delphi is its
history. This product has it roots, and shares some code
with Turbo Pascal version 1 released in 1983. Since
then, every version of Turbo Pascal added new features,
standard functions and procedures to the language.
Under its current incarnation, Delphi continues to add
features and syntax.

Doing search and replace on strings has been made
trivial because of these 3 functions: Pos(), Delete(), and
Insert(). Pos() takes two parameters, a pattern search
string, and a string to find the pattern in - it returns the
location of the string, or 0 if it does not exist. Delete()
takes three parameters, the string to delete from, location
of where to start deleting, and how much to delete.
Similarly, Insert() takes three parameters too. The string
that will be inserted, the string to insert into, the location
to insert.

Many class properties use strings to store values, so one
can use this method on any of them. For instance,
the searching and replacing of an entire TMemo component
might look like this:

procedure TForm1.Button2Click(Sender: TObject);
var
 i : integer;
 s1 : string;
 SearchStr : string;
 NewStr : string;
 place : integer;
begin
 SearchStr := 'line';
 NewStr := 'OneEye';
 for i := 0 to Memo1.Lines.Count -1 do begin
 s1 := Memo1.Lines[i];
 Repeat
 Place := pos(SearchStr, s1);
 if place > 0 then begin
 Delete(s1, Place, Length(SearchStr));
 Insert(NewStr, s1, Place);
 Memo1.Lines[i] := s1;
 end; //if-then

 until place = 0;
 end; //for-loop
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Dynamically creating a TTable & fields at runtime
 NUMBER : 3171
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : April 15, 1997

 TITLE : Dynamically creating a TTable & fields at runtime

Delphi allows rapid addition and configuration of database
elements to a Delphi project within the design environment, but
there are situations where information needed to create and
configure objects is not known at design time. For instance, you
may want to add the ability to add columns of calculated values
(using formulas of the users own creation) to an application at
runtime. So without the benefit of the design environment,
Object Inspector, and TFields editor, how do you create and
configure TFields and other data related components
programmatically?

The following example demonstrates dynamically creating a TTable,
a database table based off the TTable, TFieldDefs, TFields,
calculated fields, and attaches an event handler to the OnCalc
event.

To begin, select New Application from the File menu. The entire
project will be built on a blank form, with all other components
created on-the-fly.

In the interface section of your forms unit, add an OnCalcFields\
event handler, and a TaxAmount field to the form declaration,
as shown below.
Later we will create a TTable and hook this handler to the TTable's
OnCalcFields event so that each record read fires the OnCalcFields
event and in turn executes our TaxAmountCalc procedure.

type
 TForm1 = class(TForm)
 procedure TaxAmountCalc(DataSet: TDataset);
 private
 TaxAmount: TFloatField;
 end;

In the implementation section add the OnCalc event handler as
shown below.

procedure TForm1.TaxAmountCalc(DataSet: TDataset);
begin
 Dataset['TaxAmount'] := Dataset['ItemsTotal'] *
 (Dataset['TaxRate'] / 100);
end;

Create a OnCreate event handler for the form as shown below (for
more information on working with event handlers see the Delphi
Users Guide, Chapter 4 "Working With Code").

procedure TForm1.FormCreate(Sender: TObject);
var
 MyTable: TTable;
 MyDataSource: TDataSource;
 MyGrid: TDBGrid;
begin

 { Create the TTable component -- the underlying
 database table is created later. }
 MyTable := TTable.Create(Self);
 with MyTable do
 begin

 { Specify an underlying database and table.
 Note: Test.DB doesn't exist yet. }
 DatabaseName := 'DBDemos';
 TableName := 'Test.DB';

 { Assign TaxAmountCalc as the event handler to
 use when the OnCalcFields event fires for
 MyTable. }
 OnCalcFields := TaxAmountCalc;

 { Create and add field definitions to the TTable's
 FieldDefs array, then create a TField using the
 field definition information. }
 with FieldDefs do
 begin
 Add('ItemsTotal', ftCurrency, 0, false);
 FieldDefs[0].CreateField(MyTable);
 Add('TaxRate', ftFloat, 0, false);
 FieldDefs[1].CreateField(MyTable);
 TFloatField(Fields[1]).DisplayFormat := '##.0%';

 { Create a calculated TField, assign properties,
 and add to MyTable's field definitions array. }
 TaxAmount := TFloatField.Create(MyTable);
 with TaxAmount do
 begin
 FieldName := 'TaxAmount';
 Calculated := True;
 Currency := True;
 DataSet := MyTable;
 Name := MyTable.Name + FieldName;
 MyTable.FieldDefs.Add(Name, ftFloat, 0, false);
 end;
 end;

 { Create the new database table using MyTable as
 a basis. }

 MyTable.CreateTable;
 end;

 { Create a TDataSource component and assign
 to MyTable. }
 MyDataSource := TDataSource.Create(Self);
 MyDataSource.DataSet := MyTable;

 { Create a data aware grid, display on the
 form, and assign MyDataSource to access
 MyTable's data. }
 MyGrid := TDBGrid.Create(Self);
 with MyGrid do
 begin
 Parent := Self;
 Align := alClient;
 DataSource := MyDataSource;
 end;

 { Start your engines! }
 MyTable.Active := True;
 Caption := 'New table ' + MyTable.TableName;
end;

The following is the full source for the project.

unit gridcalc;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, Grids, DBGrids, ExtCtrls, DBCtrls, DB,
 DBTables, StdCtrls;

type
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 procedure TaxAmountCalc(DataSet: TDataset);
 private
 TaxAmount: TFloatField;
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.TaxAmountCalc(DataSet: TDataset);
begin
 Dataset['TaxAmount'] := Dataset['ItemsTotal'] *

 (Dataset['TaxRate'] / 100);
end;

procedure TForm1.FormCreate(Sender: TObject);
var
 MyTable: TTable;
 MyDataSource: TDataSource;
 MyGrid: TDBGrid;
begin
 MyTable := TTable.Create(Self);

 with MyTable do
 begin
 DatabaseName := 'DBDemos';
 TableName := 'Test.DB';
 OnCalcFields := TaxAmountCalc;

 with FieldDefs do
 begin
 Add('ItemsTotal', ftCurrency, 0, false);
 FieldDefs[0].CreateField(MyTable);
 Add('TaxRate', ftFloat, 0, false);
 FieldDefs[1].CreateField(MyTable);
 TFloatField(Fields[1]).DisplayFormat := '##.0%';
 TaxAmount := TFloatField.Create(MyTable);

 with TaxAmount do
 begin
 FieldName := 'TaxAmount';
 Calculated := True;
 Currency := True;
 DataSet := MyTable;
 Name := MyTable.Name + FieldName;
 MyTable.FieldDefs.Add(Name, ftFloat, 0, false);
 end;
 end;
 MyTable.CreateTable;
 end;

 MyDataSource := TDataSource.Create(Self);
 MyDataSource.DataSet := MyTable;
 MyGrid := TDBGrid.Create(Self);

 with MyGrid do
 begin
 Parent := Self;
 Align := alClient;
 DataSource := MyDataSource;
 end;

 MyTable.Active := True;
 Caption := 'New table ' + MyTable.TableName;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Activation and Use of the CPUWindow in the IDE
 NUMBER : 3172
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : June 2, 1997

 TITLE : Activation and Use of the CPUWindow in the IDE

Warning: The CPU window function is not fully tested and may fail
in some cases. If you are having problems with the debugger or
your program while using it you should disable it and this may
solve your problem. Generally leave it off unless you have a
specific need for it.

Delphi 2 has a built in feature, that is off by default,
called the CPU window or DisassemblyView. It is easy to
use and can be useful in debugging as well as in comparing
code for optimization.

 To activate this feature, run REGEDIT and edit the
registry in the following way.
Go to HKEY_CURRENT_USER\Software\Borland\Delphi\2.0\Debugging.
Once there add a new string key called "ENABLECPU". The value
of the new key will be the string "1". That is all it takes.
Now in thge Delphi IDE Select View|CPUWindow.This should bring
up the new window.

 Now to use this powerful feature to do comparative
analysis on 2 snippets that do the same work with different
source code use the following procedure.

 Create 2 identical event handlers. Inside of each
event handler place one of the snippets to be compared.
Place a breakpoint on the first line within each handler.
Run the application and activate the events. Compare the
assembly code for each method. Is one shorter? If so this
will execute faster.

 Cases worthy of this analysis are lines of code that
will execute repeatedly, code that must be optimized for
real time application, or code in applications that have to
be as fast as possible for whatever reason.

 A great example of code that accomplishes the same
thing but produces different performance is the "with object
do" construct. Many times the source code will be longer
using the "with object do" construct but the unassembled
code will be shorter. Many times you set properties in a
series for dynamically created objects. The code:

with TObject.create do
begin
 property1 := ;

 property2 := ;
 property3 := ;
end;

executes faster than:

MyObj := TObject.create;
MyObj.Property1 := ;
MyObj.Property2 := ;
MyObj.Property3 := ;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Creating a DataAware Control for Browsing Data
 NUMBER : 3156
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : November 13, 1996

 TITLE : Creating a DataAware Control for Browsing Data

OVERVIEW

 This document describes minimal steps necessary to create a
data-aware browsing component that displays data for a single
field. The example component is a panel with DataSource and
DataField properties similar to the TDBText component. See the
Component Writer's Guide "Making a Control Data-Aware" for further
examples.

WHO SHOULD USE THIS DOCUMENT

 To get the best use of this document, you should be familiar
with data aware control functionality and fundamental component
creation tasks, such as

-- deriving components from existing components

-- overriding constructor and destructors

-- creating new properties

-- getting and setting property values

-- assigning event handlers

BASIC STEPS TO CREATE A DATA-BROWSING COMPONENT

-- Create or derive a component that allows the display, but
 not the entry of data. For instance, you could use a
 TMemo with ReadOnly set to true. In the example
 outlined in this document, we'll use a TCustomPanel.
 The TCustomPanel will allow display, but not data entry.

-- Add a data-link object to your component. This object
 manages communication between the component and the
 database table.

-- Add DataField and DataSource properties to the component.

-- Add methods to get and set the DataField and DataSource.

-- Add a DataChange method the component to handle the

 data-link object's OnDataChange event.

-- Override the component constructor to create the datalink
 and hook up the DataChange method.

-- Override the component destructor to cleanup the datalink.

CREATING THE TDBPANEL

-- Create or derive a component that allows the display, but
 not the entry of data. We'll be using a TCustomPanel as
 a starting point for this example.

 Choose the appropriate menu option to create a new component (this
 will vary between editions of Delphi), and specify TDBPanel
 as the class name, and TCustomPanel as the Ancestor type.
 You may specify any palette page.

-- Add DB and DBTables to your Uses clause.

-- Add a data-link object to the components private section.
 This example will display data for a single field, so we will
 use a TFieldDataLink to provide the connection between our new
 component and a DataSource. Name the new data-link object
 FDataLink.

 { example }
 private
 FDataLink: TFieldDataLink;

-- Add DataField and DataSource properties to the component. We
 will add supporting code for the get and set methods in
 following steps.

 Note: Our new component will have DataField and DataSource
 properties and FDataLink will also have its own DataField and
 Datasource properties.

 { example }
 published
 property DataField: string
 read GetDataField
 write SetDataField;
 property DataSource: TDataSource
 read GetDataSource
 write SetDataSource;

-- Add private methods to get and set the DataField and DataSource
 property values to and from the DataField and DataSource for
 FDataLink.

 { example }
 private
 FDataLink: TFieldDataLink;

 function GetDataField: String;
 function GetDataSource: TDataSource;
 procedure SetDataField(Const Value: string);
 procedure SetDataSource(Value: TDataSource);
 .
 .
 implementation
 .
 .
 function TDBPanel.GetDataField: String;
 begin
 Result := FDataLink.FieldName;
 end;

 function TDBPanel.GetDataSource: TDataSource;
 begin
 Result := FDataLink.DataSource;
 end;

 procedure TDBPanel.SetDataField(Const Value: string);
 begin
 FDataLink.FieldName := Value;
 end;

 procedure TDBPanel.SetDataSource(Value: TDataSource);
 begin
 FDataLink.DataSource := Value;
 end;

-- Add a private DataChange method to be assigned to the
 datalink's OnDataChange event. In the DataChange method
 add code to display actual database field data provided
 by the data-link object. In this example, we assign
 FDataLink's field value to the panel's caption.

 { example }
 private
 .
 .
 procedure DataChange(Sender: TObject);

 implementation
 .
 .
 procedure TDBPanel.DataChange(Sender: TObject);
 begin
 if FDataLink.Field = nil then
 Caption := '';
 else
 Caption := FDataLink.Field.AsString;
 end;

-- Override the component constructor Create method. In the
 implementation of Create, create the FDataLink object, and
 assign the private DataChange method to FDataLink's

 OnDataChange event.

 { example }
 public
 constructor Create(AOwner: TComponent); override;
 .
 .
 implementation
 .
 .
 constructor TMyDBPanel.Create(AOwner: TComponent);
 begin
 inherited Create(AOwner);
 FDataLink := TFieldDataLink.Create;
 FDataLink.OnDataChange := DataChange;
 end;

-- Override the component destructor Destroy method. In the
 implementation of Destroy, set OnDataChange to nil (avoids a
 GPF), and free FDatalink.

 { example }
 public
 .
 .
 destructor Destroy; override;
 .
 .
 implementation
 .
 .
 destructor TDBPanel.Destroy;
 begin
 FDataLink.OnDataChange := nil;
 FDataLink.Free;
 inherited Destroy;
 end;

-- Save the unit and install the component (see the Users
 Guide, and the Component Writers Guide for more on
 saving units and installing components).

-- To test the functionality of the component, add a TTable,
 TDatasource, TDBNavigator and TDBPanel to a form. Set the
 TTable DatabaseName and Tablename to 'DBDemos' and 'BioLife',
 and the Active property to True. Set the TDatasource
 Dataset property to Table1. Set the TDBNavigator and
 TDBPanel DataSource property to Datasource1. The TDBpanel
 DataField name should be set as 'Common_Name'. Run the
 application and use the navigator to move between records to
 demonstrate the TDBPanel's ability to detect the change in
 data and display the appropriate field value.

FULL SOURCE LISTING

unit Mydbp;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, ExtCtrls, DB, DBTables;

type
 TDBPanel = class(TCustomPanel)
 private
 FDataLink: TFieldDataLink;
 function GetDataField: String;
 function GetDataSource: TDataSource;
 procedure SetDataField(Const Value: string);
 procedure SetDataSource(Value: TDataSource);
 procedure DataChange(Sender: TObject);
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 published
 property DataField: string
 read GetDataField
 write SetDataField;
 property DataSource: TdataSource
 read GetDataSource
 write SetDataSource;
 end;

 procedure Register;

implementation

 procedure Register;
 begin
 RegisterComponents('Samples', [TDBPanel]);
 end;

 function TDBPanel.GetDataField: String;
 begin
 Result := FDataLink.FieldName;
 end;

 function TDBPanel.GetDataSource: TDataSource;
 begin
 Result := FDataLink.DataSource;
 end;

 procedure TDBPanel.SetDataField(Const Value: string);
 begin
 FDataLink.FieldName := Value;
 end;

 procedure TDBPanel.SetDataSource(Value: TDataSource);
 begin
 FDataLink.DataSource := Value;

 end;

 procedure TDBPanel.DataChange(Sender: TObject);
 begin
 if FDataLink.Field = nil then
 Caption := ''
 else
 Caption := FDataLink.Field.AsString;
 end;

 constructor TDBPanel.Create(AOwner: TComponent);
 begin
 inherited Create(AOwner);
 FDataLink := TFieldDataLink.Create;
 FDataLink.OnDataChange := DataChange;
 end;

 destructor TDBPanel.Destroy;
 begin
 FDataLink.Free;
 FDataLink.OnDataChange := nil;
 inherited Destroy;
 end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Steps for FAT32 Support with the BDE
 NUMBER : 3188
 PRODUCT : BDE
 VERSION : 3.0
 OS : Windows
 DATE : April 3, 1997

 TITLE : Steps for FAT32 Support with the BDE

With the current build of Windows 95, 950B, a new file
system is now supported, FAT32. The FAT file system had
problems with large cluster sizes with large hard disks
making storage inefficient. FAT32 keeps the cluster size at
4k enabling efficient data storage.

COMMON BDE ERRORS EXPERIENCED WITH FAT32 SYSTEMS

"Invalid File Name"
"Invalid Table Name"
"File Not Found"
"Table Not Found"

NOTE: All Delphi and CBuilder exceptions are of
 type EDBEngine error. The errors above are
 displayed within this exception type.

To determine if you have a FAT32 system:
1) Right click the mouse on the My Computer icon on the
desktop. Select the Properties menu item. On the general
tab, under System, it will say 4.00.950 B. NOTE:
4.00.950A or 4.00.950 does not support FAT32. At the
time this was written 4.00.950B is the latest. Microsoft
may decide to create newer builds with FAT32 support.

2) Double click on the My Computer icon on the desktop.
Right click on each local drive and select the Properties
menu item. If any of the drive Types is Local Disk (FAT32),
then you have a FAT32 partition on your system. Note:
Local Disk (FAT) is not FAT32.

If in the above steps you have determined that you have a
FAT32 file system, there are two ways to get the appropriate
patches:
1) Internet (Web). Go to
http://www.borland.com/techsupport/bde/utilities.html and
get the file named 'BDE v3.5 32-Bit core DLLs including FAT32
enhancement (~ 2.4M)'. Unzip and install the new BDE.

2) CompuServe. Go to the BDEVTOOLS forum, Borland DB Engine
section. Get files DEMO35D.ZIP and FAT32.ZIP. Unzip and
install the BDE 3.5. After installation, unzip the
FAT32.ZIP file and place the IDAPI32.DLL over the existing

IDAPI32.DLL.

OTHER OPTIONS/WORKAROUNDS IF UPGRADE IS NOT AN OPTION

If for any reason, the new DLL or set of DLLs cannot be
placed on the system, you must follow the proceeding
criteria:
1) All sub-directories must be 8 characters or less.
2) If tables must be in a 9 character or greater
 sub-directory, you can still open the table by
 a) (Delphi, CBuilder) specifying the full path and file
 name in TTable.Table name, leaving DatabaseName blank.
 b) (BC++) Passing NULL to the pszAliasName parameter and
 using the full path and file name in DbiOpenTable.
 NOTE: DbiSetDirectory will not work.
3) Table names can be greater than 8 characters with
 spaces.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Implementing Drag and Drop Functionality
 NUMBER : 3192
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 4, 1997

 TITLE : Implementing Drag and Drop Functionality

This document describes the process of creating a drag and drop
functionality that could be applied to text items and graphical
objects. Regular text indicates the procedural steps to execute
to achieve the functionality. Text in the parentheses is
explanation and background information.

1. Place the two edit boxes onto your form. {One will serve as
the source for the text that you will drag and drop. The other
will serve as the destination you will drop the text onto.}

2. Select the first edit box and name it SourceEdit by
entering that name in the name property in the Object
Inspector.

3. Select the second edit box and name it SenderEdit. {The
names source and sender are not necessary. They are
suggested because "source" and "sender" are default variables
given to work with in the OnDragOver and OnDragDrop event
procedure code blocks. The source variable is where the
drag operation began, and the sender variable is the control
that was dropped onto. See the help topics related to
messages for further information on this and related topics.}

4. Click the SourceEdit component so it is selected and go to
the Object Inspector. Set its DragMode property to
dmAutomatic.

5. Select the SenderEdit and go to the events page of the
Object Inspector and double click on the OnDragOver event.

6. Type exactly what is in the quotes here where the cursor
is between the begin and end statements: "Accept := True;".
{Notice that the Accept variable is supplied for you by
default inside of the OnDragOver event procedure code block.}

7. Now go to the events page of the Object Inspector and
double click on the OnDragDrop event.

8. Type exactly what is in the quotes here where the cursor
is between the begin and end statements:
" SenderEdit.Text := SourceEdit.Text ".

Now if you run the application you will be able to click down
on the SourceEdit component and drag and drop onto the
SenderEdit component. When you drop onto the SenderEdit it

changes its text to whatever was in the SourceEdit.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Trapping Windows Messages in Delphi
 NUMBER : 3194
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1997

 TITLE : Trapping Windows Messages in Delphi

While Delphi provides many ways to trap the incoming messages
to VCL controls, you may require a quick and effective method
of "stealing" and replacing the windows procedure of a given
window. The method presented here will effectively trap all
Windows messages for any window or VCL control that has a
Window handle property.

Background:
For every window that is created, a structure is created by the
system that holds information about the window. The information
contained in this structure includes, among other things, the
window's parent, instance information, and the address of the
window's main window procedure. It is through this procedure that
all Windows messages are sent for that window.

The Microsoft Windows API provides functions to both retrieve and
set the values contained in this structure, making it possible to
retrieve the address of a window's main procedure and reset that
address to point to a user installed function.

To replace the windows procedure, we will use the API function
SetWindowsLong(), and pass in the handle of the window we wish
to work with, the constant GWL_WNDPROC (telling the function
we wish to replace the windows procedure), and the address of
our function we wish to replace it with.

When we call the SetWindowsLong() function, it will return
the previous value we are replacing. We will want to remember
that value so we can call the original procedure for all the
messages we do not care to trap. We will also want to reinstall
the old procedure when we are done, so that message handling
returns to normal.

In our example code, we will trap the WM_VSCROLL message
of a TDbGrid component, giving us an indication that the
user has scrolled the vertical scroll bar. Since all
messages for the control are passed first through our
procedure, we can effectively trap and do processing for
any event before it is ever received by the component.

For a list of other notification messages you may be
interesed in trapping, you may search the Delphi's
Windows help file for messages starting with WM_.

Also note that the code has been written to compile

under both sixteen and thirty-two bit versions of Delphi.

unit WinProc1;

interface

uses
{$IFDEF WIN32}
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs, Grids, DBGrids, DB, DBTables;
{$ELSE}
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, DB, DBTables, Grids, DBGrids;
{$ENDIF}

type
 TForm1 = class(TForm)
 DBGrid1: TDBGrid;
 Table1: TTable;
 DataSource1: TDataSource;
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

type
{$IFDEF WIN32}
 WParameter = LongInt;
{$ELSE}
 WParameter = Word;
{$ENDIF}
 LParameter = LongInt;

{Declare a variable to hold the window procedure we are replacing}
var
 OldWindowProc : Pointer;

function NewWindowProc(WindowHandle : hWnd;
 TheMessage : WParameter;
 ParamW : WParameter;
 ParamL : LParameter) : LongInt
{$IFDEF WIN32} stdcall; {$ELSE} ; export; {$ENDIF}
begin

{ Process the message of your choice here }

 if TheMessage = WM_VSCROLL then begin
 ShowMessage('The vertical scrollbar is scrolling!');
 end;

{ Exit here and return zero if you want }
{ to stop further processing of the message }

{ Call the old Window procedure to }
{ allow processing of the message. }
 NewWindowProc := CallWindowProc(OldWindowProc,
 WindowHandle,
 TheMessage,
 ParamW,
 ParamL);
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{ Set the new window procedure for the control }
{ and remember the old window procedure. }
 OldWindowProc := Pointer(SetWindowLong(DbGrid1.Handle,
 GWL_WNDPROC,
 LongInt(@NewWindowProc)));
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{ Set the window procedure back }
{ to the old window procedure. }
 SetWindowLong(DbGrid1.Handle,
 GWL_WNDPROC,
 LongInt(OldWindowProc));

end;

end.

(*
{ The program's main source file }
program WinProc;

uses
 Forms,
 WinProc1 in 'WinProc1.pas' {Form1};

{$R *.RES}

begin
{$IFDEF WIN32}
 Application.Initialize;
{$ENDIF}
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

*)

{ end of ti }

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Moving Projects Between Machines or Directories
 NUMBER : 3214
 PRODUCT : Delphi
 VERSION : All
 OS : Windows
 DATE : July 7, 1997

 TITLE : Moving Projects Between Machines or Directories

Moving Projects Between Machines

The main files involved in a project are the DPR, DFM, PAS, and
RES. These are the main files in any project. There are other files
associated with any project. This document focuses on these because they
are the minimum files you need to move a project.

Moving a project between machines is easy if you follow a few
simple rules. First keep all the files associated with the project in
the same directory. This allows for quick movement all in one operation.
To move the files copy the entire directory to a new temporary directory.
Now delete all the files except those with these extensions DPR, PAS, DFM,
and RES. All the other files will be recreated during the first build.
Having a single directory eliminates questions as to which version of a
dcu or pas file is going into the build. If third party components are in
the project you should install those on to the Delphi Component Palette
of the target machine before attempting to open the project on that
machine.

If the project files were not all in one directory you may end up
editing the DPR file to provide the appropriate new path information on
the target machine. The text involved is in the uses clause of the DPR or
main project file. You may also choose to preserve the DSK files or the
DOF files if you have a specific need to preserve your desktop setttings
or your project options settings respectively. The options file can be
important in cases where you have specific unit aliases, you have specified
directories under project options, use packages, version info, run
parameters, and version info. The dsk file is less critical and generally
not moved with a project.

The res file should be moved with the project in cases where your
project uses custom cursors, icons, string resources, bitmaps, etc. These
are resources included by you with the compiler directive to be linked into
the project and become part of the executable. The sting resources are used
for internationalization or localization. Other custom resource are visual
enhancment of the project user interface.

For more detailed information on the specific file types referred
to in this document see the TI on file types, TI 3213.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Creating a form based on a string
 NUMBER : 3197
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1997

 TITLE : Creating a form based on a string

Creating a form based on a string.

OVERVIEW

This document demonstrates how to instantiate a Delphi form
based on a string which specifies the name of the type.
Sample code is given.

WHO SHOULD USE THIS DOCUMENT

Anyone with a basic familiarity with Delphi programming.
Applies to any version of Delphi.

INSTANTIATING A FORM BASED ON A STRING

To be able to instantiate forms based on the string
representing the names of their type, you must first
register the type with Delphi. This is accomplished
with the function "RegisterClass".
RegisterClass is prototyped as follows:

procedure RegisterClass(AClass: TPersistentClass);

AClass is a class of TPersistent. In other words, the class
you are registering must be descended at some point from
TPersistent. Since all Delphi controls, including
forms, fit this requiremnet, we have will have no problem.
This could not be used, for instance, to register classes
descended directly from TObject.

Once the class has been registered, you can find a pointer
to the type by passing a string to FindClass. This will
return a class reference, which you can use to create the
form.
An example is in order:

procedure TForm1.Button2Click(Sender: TObject);
var
 b : TForm;
 f : TFormClass;
begin
 f := TFormClass(findClass('Tform2'));
 b := f.create(self);
 b.show;

end;

This will create the TForm2 type that we registered
with RegisterClass.

WORKING SAMPLE PROGRAM

Create a new project, and then add 4 more forms, for
a total of 5. You can populate them with controls if
you like, but for this example, it is not important.

On the first form, put down an edit control, and
a pushbutton. Take all forms, but the main form,
out of the AutoCreate List.
Finally, paste the following code over the code
in unit1, this will give you the ability to type
the Class NAME into the Edit, and it will create
that form for you.

unit Unit1;

interface

uses
 Unit2, Unit3, Unit4, Unit5, Windows, Messages,
 SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs, StdCtrls;

type
 TForm1 = class(TForm)
 Edit1: TEdit;
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 RegisterClass(Tform2);
 RegisterClass(Tform3);
 RegisterClass(Tform4);
 RegisterClass(Tform5);

end;

procedure TForm1.Button1Click(Sender: TObject);
var
 f : Tformclass;
begin
 f := tformclass(findClass(edit1.text));
 with f.create(self) do
 show;
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Finding the color depth of a canvas
 NUMBER : 3198
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 3, 1997

 TITLE : Finding the color depth of a canvas

When programming graphics in Windows, it it often desirable
to know the number of colors available for a given canvas.
This information is available through the GetDeviceCaps()
functon.

The color depth of a canvas is calculated by multiplying
the number of bits per pixel that is required for a
given canvas by the number of planes the canvas uses.

You can find the color depth of a canvas in by using the
following code:

TotalNumBitsPerPixel :=
 GetDeviceCaps(Canvas.Handle, BITSPIXEL) *
 GetDeviceCaps(Canvas.Handle, PLANES)

Will give you the total number of bits used to color a pixel.

Return values of:

1 = 2 colors (monochrome)
4 = 16 colors
8 = 256 colors
15 = 32,768 colors
16 = 65,536 colors
24 = 16,777,216 colors

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Using FindFirst and the WIN_32_FIND_DATA structure
 NUMBER : 3199
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1997

 TITLE : Using FindFirst and the WIN_32_FIND_DATA structure

Here is how to access the WIN_32_FIND_DATA structure of a
TSearchRec using the FindFirst(), FindNext(), and FindClose()
functions.

In this example, we will show how to display both the long
and short filename for each file found. Notice in the example that
the unit name is fully qualified for the FindFirst(), FindNext(),
and FindClose() functions, since there is more than one
implementation for these function names. The implementations
that we are calling are the Delphi wrapper functions to the
WinApi functons.

var
 sr : TSearchRec;
 R : integer;
begin
 R := Sysutils.FindFirst('C:*.*', faAnyFile, sr);
 while R = 0 do
 begin
 Memo1.Lines.Add(sr.FindData.cFileName);
 if sr.FindData.cAlternateFileName <> '' then
 Memo1.Lines.Add(sr.FindData.cAlternateFileName) else
 Memo1.Lines.Add(sr.FindData.cFileName);
 R := Sysutils.FindNext(sr);
 end;
 Sysutils.FindClose(sr);
end;

<end of ti>

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Setting the pixels per inch property of TPrinter
 NUMBER : 3200
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1997

 TITLE : Setting the pixels per inch property of TPrinter

When changing printers, be aware that fontsizes may
not always scale properly. To ensure proper scaling,
set the PixelsPerInch property of the font after
changing the printer index property. Be sure not to
make the change until you have started the print job.

Here are two examples:

**
uses Printers;

var
 MyFile: TextFile;
begin
 Printer.PrinterIndex := 2;
 AssignPrn(MyFile);
 Rewrite(MyFile);
 Printer.Canvas.Font.Name := 'Courier New';
 Printer.Canvas.Font.Style := [fsBold];
 Printer.Canvas.Font.PixelsPerInch:=
 GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSY);
 Writeln(MyFile, 'Print this text');
 System.CloseFile(MyFile);
end;

**

uses Printers;

begin
 Printer.PrinterIndex := 2;
 Printer.BeginDoc;
 Printer.Canvas.Font.Name := 'Courier New';
 Printer.Canvas.Font.Style := [fsBold];
 Printer.Canvas.Font.PixelsPerInch:=
 GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSY);
 Printer.Canvas.Textout(10, 10, 'Print this text');
 Printer.EndDoc;
end;

<end of ti>

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to use a string table resource
 NUMBER : 3201
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 3, 1997

 TITLE : How to use a string table resource

Stringtable resources are a very useful tool when your
application must store a large number of strings for use
at runtime. While you may be tempted to directly embed
strings into your executable, using a stringtable resource
offers two advantages: 1) The strings contained in the
stringtable do not consume memory until they are loaded
by your application. 2) Stringtables are easily edited,
providing an easy path to internationally localized
versions of your application.

Stringtables are compiled into a ".res" file that is
attached to your application's exe file at build time.
Even after you distribute your appliaction, the stringtable
contained in your application's exe file can be edited with
a resource editor. My favorite resource editor is Borland's
Resource Workshop that ships with the RAD pack. It can produce
and edit both 16 and 32 bit resources that are self contained,
standalone, or embedded in a .exe or .dll in full WYSIWYG
fashion.

It's worth noting that all versions of Delphi ship with the
Borland Resource Command Line Compiler (BRCC.EXE and BRCC32.EXE),
and can be found in Delphi's Bin directory.

For our example, we will build an internationalized application
that displays two buttons. The buttons will have captions for
"Yes" and "No" presented in English, Spanish, and Swedish.

It's worth noting that if you want to build international
applications using Delphi, you should take a look at Borland's
Delphi Translation Suite and Language Pack software. These
packages can make porting your application to international
markets a snap!

Example:

We first must create a text file containing our string
resources in the applications build directory. You may
name the file anything you wish, so long as it has the
file extension ".rc" and the filename without the extension
is not the same as any unit or project filename. This is
very important, as Delphi also will create a number of
resource files for your project automatically.

Here is the contents of the .rc file for our example. It
contains the words "Yes" and "No" in English, Spanish,
and Swedish:

STRINGTABLE
{
 1, "&Yes"
 2, "&No"
 17, "&Si"
 18, "&No"
 33, "&Ja"
 34, "&Nej"
}

The file starts with the key word stringtable denoting that
a string table resource will follow. Enclosed in the
curly braces are the strings. Each string is listed by its
index identifier, followed by the actual string data in
quotes. Each string may contain up to 255 characters. If you
need to use a non-standard character, insert the character
as a backslash character followed by the octal number of
the character you wish to insert. The only exception is
when you want to embed a backslash character, you will need
to use two backslashes. Here are two examples:

1, "A two\012line string"

2, "c:\\Borland\\Delphi"

The Index numbers that you use are not important to the
resource compiler. You should keep in mind that string
tables are loaded into memory in 16 string segments.

To compile the .rc file to a .res file that can be linked
with your application, simply type on the dos command line
the full path to the resource compiler, and the full path
to the name of the .rc file to compile. Here is an example:

c:\Delphi\Bin\brcc32.exe c:\Delphi\strtbl32.rc

When the compiler is finished, you should have a new file
with the same name as the .rc file you've compiled, only
with an extension of ".res".

You can link the resource file with your application simply
by adding the following statement to your application's
code, substituting the name of your resource file:

{$R ResFileName.RES}

Once the .res file is linked to your program, you can load
the resource from any module, even if you specified
the $R directive in the implementation section of a
different unit.

Here is an example of using the Windows API function
LoadString(), to load the third string contained in
a string resource into a character array:

 if LoadString(hInstance,
 3,
 @a,
 sizeof(a)) <> 0 then

In this example, the LoadString() function accepts the
hInstance of the module containing the resource, the
string index to load, the address of the character array
to load the string to, and the size of the character array.
The LoadString function returns the number of characters
that where actually loaded not including the null terminator.
Be aware that this can differ from the number of bytes
loaded when using unicode.

Here is a complete example of creating an international
application with Borland's Delphi. The application is
compatible with both 16 and 32 bit versions of Delphi.

To do this, you will need to create two identical .rc
files, one for the 16 bit version, and the other for the
32 bit version, since the resources needed for each
platform are different. In this example. we will create
one file named STRTBL16.rc and another called STRTBL32.rc.
Compile the STRTBL16.rc file using the BRCC.exe compiler
found in Delphi 1.0's bin directory, and compile STRTBL32.rc
using the BRCC32.exe compiler found in Delphi 2.0's bin
directory.

We have taken into account the language that Windows
is currently using at runtime. The method for getting
this information differs under 16 and 32 bit Windows.
To make the code more consistant, we have borrowed the
language constants from the Windows.pas file used in 32
bit versions of Delphi.

{$IFDEF WIN32}
 {$R STRTBL32.RES}
{$ELSE}
 {$R STRTBL16.RES}
 const LANG_ENGLISH = $09;
 const LANG_SPANISH = $0a;
 const LANG_SWEDISH = $1d;
{$ENDIF}

function GetLanguage : word;
{$IFDEF WIN32}
{$ELSE}
 var

 s : string;
 i : integer;
{$ENDIF}
begin
{$IFDEF WIN32}
 GetLanguage := GetUserDefaultLangID and $3ff;
{$ELSE}
 s[0] := Char(GetProfileString('intl',
 'sLanguage',
 'none',
 @s[1],
 sizeof(s)-2));
 for i := 1 to length(s) do
 s[i] := UpCase(s[i]);
 if s = 'ENU' then GetLanguage := LANG_ENGLISH else
 if s = 'ESN' then GetLanguage := LANG_SPANISH else
 if s = 'SVE' then GetLanguage := LANG_SWEDISH else
 GetLanguage := LANG_ENGLISH;
{$ENDIF}
end;

procedure TForm1.FormCreate(Sender: TObject);
var
 a : array[0..255] of char;
 StrTblOfs : integer;
begin

 {Get the current language and stringtable offset}
 case GetLanguage of
 LANG_ENGLISH : StrTblOfs := 0;
 LANG_SPANISH : StrTblOfs := 16;
 LANG_SWEDISH : StrTblOfs := 32;
 else
 StrTblOfs := 0;
 end;

 {Load language dependent "Yes" and set the button caption}
 if LoadString(hInstance,
 StrTblOfs + 1,
 @a,
 sizeof(a)) <> 0 then
 Button1.Caption := StrPas(a);

 {Load language dependent "No" and set the button caption}
 if LoadString(hInstance,
 StrTblOfs + 2,
 @a,
 sizeof(a)) <> 0 then
 Button2.Caption := StrPas(a);
end;

<end of ti>

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Borland Assist for Delphi/400
 NUMBER : 3202
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : March 10, 1997

 TITLE : Borland Assist for Delphi/400

 Borland Assist for Delphi/400
 Technical Support for U.S. and Canada.

Borland Assist offers online and contract technical support for
Delphi/400. You can obtain guidance on product usability,
application design, programming, operating systems and hardware
compatibility, and issues related to your specific application
and data. While Borland does provide guidance in program design,
coding, and debugging, Borland engineers will not write or debug
user applications specific to your environment. Online resources
are intended to provide a forum for sharing technical information
with other users and obtaining technical support documentation.
Contract support is_for more specific or in-depth user needs.

 Choosing the Best Support for Your Needs

Online Support

Borland offers a complete support environment at Borland Online. This
service is free to the user and includes Frequently Asked Questions
FAQS), discussion forums, bug-submission utilities, a library of
product-specific information, links to related resources, and much
more.

 Borland Online: http://www.borland.com

Telephone Support

Client/Server Developer Assist for Delphi/400:

Client/Server Developer Assist for Delphi/400 is a specialized program
for corporate and independent developers, as well as consultants.
Under this contract, users receive consultative support including
assistance with user-created applications or database design, coding
and debugging issues for Client Objects/400 and Screen Designer/400.
 Price: $3,500 for one contact; additional contact $3,000

How to Order Borland Assist

When you purchase a Borland Assist contract, you will be issued a
Personal Identification Number (PIN) that gives you access to
hotline support. You may purchase Borland Assist via check, VISA,
MasterCard, American Express, or company purchase order.

To learn more about Borland Assist services or purchase a Borland
Assist support contract, please call 1-800-636-7778. Purchase
order acceptance is subject to credit approval.

Money-back Guarantee

Getting quality technical support for your Borland products is
just a phone call away, and Borland ensures your complete
satisfaction via a 30-day, money-back guarantee on any paid
subscription you select.

Terms and Conditions

Your use of the Borland Assist Support Program is subject to Borland's
terms and conditions, which will be sent to you upon request. Among
other things, those terms and conditions provide you with a license
to use the work we do for you under the Program (which Borland
owns, including copyrights) and include Borland's disclaimer of
warranties and limitation of liability. Services subject to change
without notice.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

TRichEdit Printing in Delphi 2 & Windows NT 4.0
 NUMBER : 3204
 PRODUCT : Delphi
 VERSION : 2.0
 OS : Win32
 DATE : April 2, 1997

 TITLE : TRichEdit Printing in Delphi 2 & Windows NT 4.0

TRichEdit Printing Under Windows NT 4.0

This document provides a Delphi Unit that will solve the
"divide by zero" error that occurs when printing from a
TRichEdit control under Windows NT 4.0. To use this Unit
simply include it in the USES clause of the Unit that you
want to print from. Instead of calling the RichEdit.Print()
method to print, call the PrintRichEdit() procedure and pass
it the TRichEdit control that you want to print as a parameter.

If you own the VCL source code you can make the changes
shown below to the TCustomRichEdit.Print method in the
COMCTRLS.PAS file.

unit PrtRichU;

interface

uses
 ComCtrls;

procedure PrintRichEdit(const Caption: string;
 const RichEdt: TRichEdit);

implementation
uses
 Windows, RichEdit, Printers;

procedure PrintRichEdit(const Caption: string;
 const RichEdt: TRichEdit);
var
 Range: TFormatRange;
 LastChar, MaxLen, LogX, LogY, OldMap: Integer;
begin
 FillChar(Range, SizeOf(TFormatRange), 0);
 with Printer, Range do
 begin
 BeginDoc;
 hdc := Handle;
 hdcTarget := hdc;
 LogX := GetDeviceCaps(Handle, LOGPIXELSX);
 LogY := GetDeviceCaps(Handle, LOGPIXELSY);
 if IsRectEmpty(RichEdt.PageRect) then
 begin
 rc.right := PageWidth * 1440 div LogX;

 rc.bottom := PageHeight * 1440 div LogY;
 end
 else begin
 rc.left := RichEdt.PageRect.Left * 1440 div LogX;
 rc.top := RichEdt.PageRect.Top * 1440 div LogY;
 rc.right := RichEdt.PageRect.Right * 1440 div LogX;
 rc.bottom := RichEdt.PageRect.Bottom * 1440 div LogY;
 end;
 rcPage := rc;
 Title := Caption;
 LastChar := 0;
 MaxLen := RichEdt.GetTextLen;
 chrg.cpMax := -1;
 OldMap := SetMapMode(hdc, MM_TEXT);
 SendMessage(RichEdt.Handle, EM_FORMATRANGE, 0, 0);
 try
 repeat
 chrg.cpMin := LastChar;
 LastChar := SendMessage(RichEdt.Handle, EM_FORMATRANGE, 1,
 Longint(@Range));
 if (LastChar < MaxLen) and (LastChar <> -1) then NewPage;
 until (LastChar >= MaxLen) or (LastChar = -1);
 EndDoc;
 finally
 SendMessage(RichEdt.Handle, EM_FORMATRANGE, 0, 0);
 SetMapMode(hdc, OldMap);
 end;
 end;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How to use a user defined resource.
 NUMBER : 3209
 PRODUCT : Delphi
 VERSION : All
 OS : Windows
 DATE : April 3, 1997

 TITLE : How to use a user defined resource.

(*

The following demonstrates linking a user defined resource.

Resources are compiled into a ".res" file that is
attached to your application's .exe file at build time.
Even after you distribute your application, the resources
contained in your application's .exe file can be edited with
a resource editor. The resource editor in Borland's Resource
Workshop, that ships with the RAD pack, can produce and edit
both 16 and 32 bit resources that are self contained,
standalone, or embedded in a .exe or .dll in full WYSIWYG
fashion.

It's worth noting that all versions of Delphi ship with the
Borland Resource Command Line Compiler (BRCC.EXE and BRCC32.EXE),
and can be found in Delphi's Bin directory.

We first must create a text file containing our resource
definitions in the application's build directory. You may
name the file anything you wish, so long as it has the
file extension ".rc" and the filename without the extension
is not the same as any unit or project filename. This is
very important, as Delphi also will create a number of
resource files for your project automatically.

Here is the contents of the .rc file for our example:

MYUSERDATA MYDATATYPE TEST.TXT

MYUSERDATA is the resource name, MYDATATYPE is the resource type
and TEST.TXT is the name of the file continuing the user data we
will link in.

We must next create the TEST.TXT file, using any ASCII editor
(notepad will do fine). For our example, the file needs to
contain one single line:

Hello!

To compile the .rc file to a .res file that can be linked
with your application, simply type on the dos command line
the full path to the resource compiler, and the full path
to the name of the .rc file to compile. Here is an example:

c:\Delphi\Bin\brcc32.exe c:\Delphi\MYRES.RC

When the compiler is finished, you should have a new file
with the same name as the .rc file you've compiled, only
with an extension of ".res".

You can link the resource file with your application simply
by adding the following statement to your application's
code, substituting the name of your resource file:

{$R ResFileName.RES}

where ResFileName.RES is the actual name of the compiled
.res file.

Once the .res file is linked to your program, you can load
the resource from any module, even if you specified the
$R directive in a different unit.

To actually use the resource, you must make a few Windows API
calls. First you will call the FindResource() function, passing
the instance handle of your application, the name of the resource
to load, and the resource type. If FindResource is successful, the
function will return a handle to the unloaded resource.

Next, you can call the SizeOfResource() function to find the aligned
size of the resource, if you want to know the actual size of the
loaded resources memory block. Be forewarned that this not the
actual size of the data, but rather the size of the memory block
that will be allocated when you load the resource. If you want
to know the actual size of the data, you will need to embed that
information in the data itself.

To load the resource, we will call the LoadResource() function,
passing the handle returned to us when we called FindResource().
This function will return a handle to the loaded resource that we
can pass to the LockResource() function to retrieve a pointer to
the resource that we use to actually work with the data.

In our example, we will loop through the data, adding the data
to a string, until we find the embedded '!' character, signaling
that the end of the data has been found.

Finally, we will free the resource by first calling UnLockResource()
and then FreeResource(), passing the handle of the loaded resource.

Example Code:
*)

implementation

{$R *.DFM}

{$R MYRES.RES}

procedure TForm1.Button1Click(Sender: TObject);
var
 hRes : THandle; {handle to the resource}
 pRes : pointer; {pointer to the resource}
 ResSize : longint; {aligned size of the resource}
 i : integer; {counting variable}
 {$IFDEF WIN32}
 s : shortstring; {a string to play with}
 {$ELSE}
 s : string; {a string to play with}
 {$ENDIF}
begin
 {find the resource}
 hRes := FindResource(hInstance,
 'MYUSERDATA',
 'MYDATATYPE');
 if hRes = 0 then begin
 ShowMessage('Could not find the resource');
 exit;
 end;
 {get the aligned size of the resource}
 ResSize := SizeOfResource(hinstance, hRes);
 if ResSize = 0 then begin
 ShowMessage('Nothing to load - size = 0');
 Exit;
 end;
 {load the resource}
 hRes := LoadResource(hInstance, hRes);
 if hRes = 0 then begin
 ShowMessage('Resource Load Failure');
 Exit;
 end;
 {Get a pointer to the resource}
 pRes := LockResource(hRes);
 if pRes = nil then begin
 ShowMessage('Resource Lock Failure');
 FreeResource(hRes);
 Exit;
 end;

{convert the resource pointer to a string}
 s:='';
 i := 0;
 while pChar(pRes)[i] <> '!' do begin
 s := s + pChar(pRes)[i];
 inc(i);
 end;

 {prove it works}
 ShowMessage(s);

 {unlock and free the resource}
 UnLockResource(hRes);
 FreeResource(hRes);
end;

end.

<end of ti>

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

A better way to do pointer arithmetic
 NUMBER : 3210
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : April 3, 1997

 TITLE : A better way to do pointer arithmetic

(*

This document demonstrates a technique for incrementing pointers under
Borland Pascal 7.0, Turbo Pascal for Windows, and Delphi.

Send it any pointer, and an offset of the pointer you really
want (yes, huge pointers > 64 are supported) and it will return
a pointer to that location. Unlike most other huge pointer code,
this snippet will take into account the fact that you may be
sending a pointer that does not have a zero based offset.

Be aware that you cannot access memory that crosses a 64k
boundary in Win16. If you need to access a record that
spans a 64K boundary, you must first grab the portion of the
record that exists before the boundary, then grab the second
portion that exists above the boundary, and piece them together.

Note the function is designed to be upwardly portable to
Win32 where there is no need to do pointer manipulation
since Win32 uses a flat (non-segmented) memory model where
there are no 64k boundaries. While using the function call
to get a pointer under Win32 is not exactly efficient, it
will make porting legacy 16 bit code to Win32 a breeze!

*)

type
 PtrRec = record
 Lo : Word;
 Hi : Word;
 end;
 PHugeByteArray = ^THugeByteArray;
 THugeByteArray = array[0..0] of Byte;

function GetBigPointer(lp : pointer;
 Offset : LongInt) : Pointer;

begin
 {$IFDEF WIN32}
 GetBigPointer := @PHugeByteArray(lp)^[Offset];
 {$ELSE}
 Offset := Offset + PTRREC(lp).Lo;
 GetBigPointer := Ptr(PtrRec(lp).Hi + PtrRec(Offset).Hi * SelectorInc,
 PtrRec(Offset).Lo);
 {$ENDIF}

end;

{Lets test it!}

procedure TForm1.Button1Click(Sender: TObject);
var
 h : THandle; {handle to the memory block}
 p : pointer; {pointer to the memory block}
 p2 : pointer; {pointer for testing}
 p3 : pointer; {pointer for testing}
begin
 {allocate two hundred thousand bytes of memory and zero out}
 h := GlobalAlloc(GHND, 200000);

 {get a pointer to the allocated memory}
 p := GlobalLock(h);

 {get a pointer to the byte at index 75000}
 p2 := GetBigPointer(p, 75000);

 {get a pointer to the byte 80000 bytes from p2}
 p3 := GetBigPointer(p2, 80000);

 {verify the byte p3 points to is zero}
 Memo1.Lines.Add(IntToStr(pByte(p3)^));

 {change the value of the byte p3 points to}
 pByte(p3)^ := 10;

 {verify the change}
 Memo1.Lines.Add(IntToStr(pByte(p3)^));

 {free the memory}
 GlobalUnlock(h);
 GlobalFree(h);
end;

end.

<end of ti>

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Assuring Proper Font Scaling When Printing
 NUMBER : 3211
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : April 9, 1997

 TITLE : Assuring Proper Font Scaling When Printing

When changing printers, be aware that fontsizes may
not always scale properly. To ensure proper scaling,
set the PixelsPerInch property of the font after
changing the printer index property. Be sure not to
make the change until you have started the print job.

Here are two examples:

**
uses Printers;

var
 MyFile: TextFile;
begin
 Printer.PrinterIndex := 2;
 AssignPrn(MyFile);
 Rewrite(MyFile);
 Printer.Canvas.Font.Name := 'Courier New';
 Printer.Canvas.Font.Style := [fsBold];
 Printer.Canvas.Font.PixelsPerInch:=
 GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSY);
 Writeln(MyFile, 'Print this text');
 System.CloseFile(MyFile);
end;

**

uses Printers;

begin
 Printer.PrinterIndex := 2;
 Printer.BeginDoc;
 Printer.Canvas.Font.Name := 'Courier New';
 Printer.Canvas.Font.Style := [fsBold];
 Printer.Canvas.Font.PixelsPerInch:=
 GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSY);
 Printer.Canvas.Textout(10, 10, 'Print this text');
 Printer.EndDoc;
end;

<end of ti>

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

BDE Error listing
 NUMBER : 3212
 PRODUCT : BDE
 VERSION : 2.x
 OS : Windows
 DATE : June 19, 1997

 TITLE : BDE Error listing

This document lists all the errors that can be returned by the
BDE. This information is derived from IDAPI.H (C++) or BDE.INT
(C++ Builder and Delphi). You also wish to look at the
following document(s) for addition information on specific
errors:

TI2733 - Troubleshooting IDAPI Error Messages
TI2814 - Handling EDBEngineError Exceptions
TI3160 - BDE and Database Desktop Locking Protocol

Note: You can use DbiGetErrorString() to retrieve the error
string for any error.

System Related (Fatal Error)

 8449 : $2101 : Cannot open a system file.
 8450 : $2102 : I/O error on a system file.
 8451 : $2103 : Data structure corruption.
 8452 : $2104 : Cannot find Engine configuration file.
 8453 : $2105 : Cannot write to Engine configuration file.
 8454 : $2106 : Cannot initialize with different
 configuration file.
 8455 : $2107 : System has been illegally re-entered.
 8456 : $2108 : Cannot locate IDAPI32 .DLL.
 8457 : $2109 : Cannot load IDAPI32 .DLL.
 8458 : $210A : Cannot load an IDAPI service library.
 8459 : $210B : Cannot create or open temporary file.

Object of Interest not Found

 8705 : $2201 : At beginning of table.
 8706 : $2202 : At end of table.
 8707 : $2203 : Record moved because key value changed.
 8708 : $2204 : Record/Key deleted.
 8709 : $2205 : No current record.
 8710 : $2206 : Could not find record.
 8711 : $2207 : End of BLOB.
 8712 : $2208 : Could not find object.
 8713 : $2209 : Could not find family member.
 8714 : $220A : BLOB file is missing.
 8715 : $220B : Could not find language driver.

Physical Data Corruption

 8961 : $2301 : Corrupt table/index header.

 8962 : $2302 : Corrupt file - other than header.
 8963 : $2303 : Corrupt Memo/BLOB file.
 8965 : $2305 : Corrupt index.
 8966 : $2306 : Corrupt lock file.
 8967 : $2307 : Corrupt family file.
 8968 : $2308 : Corrupt or missing .VAL file.
 8969 : $2309 : Foreign index file format.

I/O related error

 9217 : $2401 : Read failure.
 9218 : $2402 : Write failure.
 9219 : $2403 : Cannot access directory.
 9220 : $2404 : File Delete operation failed.
 9221 : $2405 : Cannot access file.
 9222 : $2406 : Access to table disabled because of
 previous error.

Resource or Limit error

 9473 : $2501 : Insufficient memory for this operation.
 9474 : $2502 : Not enough file handles.
 9475 : $2503 : Insufficient disk space.
 9476 : $2504 : Temporary table resource limit.
 9477 : $2505 : Record size is too big for table.
 9478 : $2506 : Too many open cursors.
 9479 : $2507 : Table is full.
 9480 : $2508 : Too many sessions from this workstation.
 9481 : $2509 : Serial number limit (Paradox).
 9482 : $250A : Some internal limit (see context).
 9483 : $250B : Too many open tables.
 9484 : $250C : Too many cursors per table.
 9485 : $250D : Too many record locks on table.
 9486 : $250E : Too many clients.
 9487 : $250F : Too many indexes on table.
 9488 : $2510 : Too many sessions.
 9489 : $2511 : Too many open databases.
 9490 : $2512 : Too many passwords.
 9491 : $2513 : Too many active drivers.
 9492 : $2514 : Too many fields in Table Create.
 9493 : $2515 : Too many table locks.
 9494 : $2516 : Too many open BLOBs.
 9495 : $2517 : Lock file has grown too large.
 9496 : $2518 : Too many open queries.
 9498 : $251A : Too many BLOBs.
 9499 : $251B : File name is too long for a Paradox version
 5.0 table.
 9500 : $251C : Row fetch limit exceeded.
 9501 : $251D : Long name not allowed for this tablelevel.

Integrity Violation

 9729 : $2601 : Key violation.
 9730 : $2602 : Minimum validity check failed.
 9731 : $2603 : Maximum validity check failed.
 9732 : $2604 : Field value required.

 9733 : $2605 : Master record missing.
 9734 : $2606 : Master has detail records. Cannot delete or
 modify.
 9735 : $2607 : Master table level is incorrect.
 9736 : $2608 : Field value out of lookup table range.
 9737 : $2609 : Lookup Table Open operation failed.
 9738 : $260A : Detail Table Open operation failed.
 9739 : $260B : Master Table Open operation failed.
 9740 : $260C : Field is blank.
 9741 : $260D : Link to master table already defined.
 9742 : $260E : Master table is open.
 9743 : $260F : Detail table(s) exist.
 9744 : $2610 : Master has detail records. Cannot empty it.
 9745 : $2611 : Self referencing referential integrity must
 be entered one at a time with no other
 changes to the table
 9746 : $2612 : Detail table is open.
 9747 : $2613 : Cannot make this master a detail of another
 table if its details are not empty.
 9748 : $2614 : Referential integrity fields must be
 indexed.
 9749 : $2615 : A table linked by referential integrity
 requires password to open.
 9750 : $2616 : Field(s) linked to more than one master.
 9751 : $2617 : Expression validity check failed.

Invalid Request

 9985 : $2701 : Number is out of range.
 9986 : $2702 : Invalid parameter.
 9987 : $2703 : Invalid file name.
 9988 : $2704 : File does not exist.
 9989 : $2705 : Invalid option.
 9990 : $2706 : Invalid handle to the function.
 9991 : $2707 : Unknown table type.
 9992 : $2708 : Cannot open file.
 9993 : $2709 : Cannot redefine primary key.
 9994 : $270A : Cannot change this RINTDesc.
 9995 : $270B : Foreign and primary key do not match.
 9996 : $270C : Invalid modify request.
 9997 : $270D : Index does not exist.
 9998 : $270E : Invalid offset into the BLOB.
 9999 : $270F : Invalid descriptor number.
 10000 : $2710 : Invalid field type.
 10001 : $2711 : Invalid field descriptor.
 10002 : $2712 : Invalid field transformation.
 10003 : $2713 : Invalid record structure.
 10004 : $2714 : Invalid descriptor.
 10005 : $2715 : Invalid array of index descriptors.
 10006 : $2716 : Invalid array of validity check descriptors.
 10007 : $2717 : Invalid array of referential integrity
 descriptors.
 10008 : $2718 : Invalid ordering of tables during restructure.
 10009 : $2719 : Name not unique in this context.
 10010 : $271A : Index name required.
 10011 : $271B : Invalid session handle.

 10012 : $271C : invalid restructure operation.
 10013 : $271D : Driver not known to system.
 10014 : $271E : Unknown database.
 10015 : $271F : Invalid password given.
 10016 : $2720 : No callback function.
 10017 : $2721 : Invalid callback buffer length.
 10018 : $2722 : Invalid directory.
 10019 : $2723 : Translate Error. Value out of bounds.
 10020 : $2724 : Cannot set cursor of one table to another.
 10021 : $2725 : Bookmarks do not match table.
 10022 : $2726 : Invalid index/tag name.
 10023 : $2727 : Invalid index descriptor.
 10024 : $2728 : Table does not exist.
 10025 : $2729 : Table has too many users.
 10026 : $272A : Cannot evaluate Key or Key does not pass
 filter condition.
 10027 : $272B : Index already exists.
 10028 : $272C : Index is open.
 10029 : $272D : Invalid BLOB length.
 10030 : $272E : Invalid BLOB handle in record buffer.
 10031 : $272F : Table is open.
 10032 : $2730 : Need to do (hard) restructure.
 10033 : $2731 : Invalid mode.
 10034 : $2732 : Cannot close index.
 10035 : $2733 : Index is being used to order table.
 10036 : $2734 : Unknown user name or password.
 10037 : $2735 : Multi-level cascade is not supported.
 10038 : $2736 : Invalid field name.
 10039 : $2737 : Invalid table name.
 10040 : $2738 : Invalid linked cursor expression.
 10041 : $2739 : Name is reserved.
 10042 : $273A : Invalid file extension.
 10043 : $273B : Invalid language Driver.
 10044 : $273C : Alias is not currently opened.
 10045 : $273D : Incompatible record structures.
 10046 : $273E : Name is reserved by DOS.
 10047 : $273F : Destination must be indexed.
 10048 : $2740 : Invalid index type
 10049 : $2741 : Language Drivers of Table and Index do not
 match
 10050 : $2742 : Filter handle is invalid
 10051 : $2743 : Invalid Filter
 10052 : $2744 : Invalid table create request
 10053 : $2745 : Invalid table delete request
 10054 : $2746 : Invalid index create request
 10055 : $2747 : Invalid index delete request
 10056 : $2748 : Invalid table specified
 10058 : $274A : Invalid Time.
 10059 : $274B : Invalid Date.
 10060 : $274C : Invalid Datetime
 10061 : $274D : Tables in different directories
 10062 : $274E : Mismatch in the number of arguments
 10063 : $274F : Function not found in service library.
 10064 : $2750 : Must use baseorder for this operation.
 10065 : $2751 : Invalid procedure name
 10066 : $2752 : The field map is invalid.

Locking/Contention related

 10241 : $2801 : Record locked by another user.
 10242 : $2802 : Unlock failed.
 10243 : $2803 : Table is busy.
 10244 : $2804 : Directory is busy.
 10245 : $2805 : File is locked.
 10246 : $2806 : Directory is locked.
 10247 : $2807 : Record already locked by this session.
 10248 : $2808 : Object not locked.
 10249 : $2809 : Lock time out.
 10250 : $280A : Key group is locked.
 10251 : $280B : Table lock was lost.
 10252 : $280C : Exclusive access was lost.
 10253 : $280D : Table cannot be opened for exclusive use.
 10254 : $280E : Conflicting record lock in this session.
 10255 : $280F : A deadlock was detected.
 10256 : $2810 : A user transaction is already in progress.
 10257 : $2811 : No user transaction is currently in progress.
 10258 : $2812 : Record lock failed.
 10259 : $2813 : Couldn't perform the edit because another
 user changed the record.
 10260 : $2814 : Couldn't perform the edit because another
 user deleted or moved the record.

Access Violation - Security related

 10497 : $2901 : Insufficient field rights for operation.
 10498 : $2902 : Insufficient table rights for operation.
 Password required.
 10499 : $2903 : Insufficient family rights for operation.
 10500 : $2904 : This directory is read only.
 10501 : $2905 : Database is read only.
 10502 : $2906 : Trying to modify read-only field.
 10503 : $2907 : Encrypted dBASE tables not supported.
 10504 : $2908 : Insufficient SQL rights for operation.

Invalid context

 10753 : $2A01 : Field is not a BLOB.
 10754 : $2A02 : BLOB already opened.
 10755 : $2A03 : BLOB not opened.
 10756 : $2A04 : Operation not applicable.
 10757 : $2A05 : Table is not indexed.
 10758 : $2A06 : Engine not initialized.
 10759 : $2A07 : Attempt to re-initialize Engine.
 10760 : $2A08 : Attempt to mix objects from different
 sessions.
 10761 : $2A09 : Paradox driver not active.
 10762 : $2A0A : Driver not loaded.
 10763 : $2A0B : Table is read only.
 10764 : $2A0C : No associated index.
 10765 : $2A0D : Table(s) open. Cannot perform this operation.
 10766 : $2A0E : Table does not support this operation.
 10767 : $2A0F : Index is read only.

 10768 : $2A10 : Table does not support this operation because
 it is not uniquely indexed.
 10769 : $2A11 : Operation must be performed on the current
 session.
 10770 : $2A12 : Invalid use of keyword.
 10771 : $2A13 : Connection is in use by another statement.
 10772 : $2A14 : Passthrough SQL connection must be shared

Os Error not handled by Idapi

 11009 : $2B01 : Invalid function number.
 11010 : $2B02 : File or directory does not exist.
 11011 : $2B03 : Path not found.
 11012 : $2B04 : Too many open files. You may need to increase
 MAXFILEHANDLE limit in IDAPI configuration.
 11013 : $2B05 : Permission denied.
 11014 : $2B06 : Bad file number.
 11015 : $2B07 : Memory blocks destroyed.
 11016 : $2B08 : Not enough memory.
 11017 : $2B09 : Invalid memory block address.
 11018 : $2B0A : Invalid environment.
 11019 : $2B0B : Invalid format.
 11020 : $2B0C : Invalid access code.
 11021 : $2B0D : Invalid data.
 11023 : $2B0F : Device does not exist.
 11024 : $2B10 : Attempt to remove current directory.
 11025 : $2B11 : Not same device.
 11026 : $2B12 : No more files.
 11027 : $2B13 : Invalid argument.
 11028 : $2B14 : Argument list is too long.
 11029 : $2B15 : Execution format error.
 11030 : $2B16 : Cross-device link.
 11041 : $2B21 : Math argument.
 11042 : $2B22 : Result is too large.
 11043 : $2B23 : File already exists.
 11047 : $2B27 : Unknown internal operating system error.
 11058 : $2B32 : Share violation.
 11059 : $2B33 : Lock violation.
 11060 : $2B34 : Critical DOS Error.
 11061 : $2B35 : Drive not ready.
 11108 : $2B64 : Not exact read/write.
 11109 : $2B65 : Operating system network error.
 11110 : $2B66 : Error from NOVELL file server.
 11111 : $2B67 : NOVELL server out of memory.
 11112 : $2B68 : Record already locked by this workstation.
 11113 : $2B69 : Record not locked.

Network related

 11265 : $2C01 : Network initialization failed.
 11266 : $2C02 : Network user limit exceeded.
 11267 : $2C03 : Wrong .NET file version.
 11268 : $2C04 : Cannot lock network file.
 11269 : $2C05 : Directory is not private.
 11270 : $2C06 : Directory is controlled by other .NET file.
 11271 : $2C07 : Unknown network error.

 11272 : $2C08 : Not initialized for accessing network files.
 11273 : $2C09 : SHARE not loaded. It is required to share
 local files.
 11274 : $2C0A : Not on a network. Not logged in or wrong
 network driver.
 11275 : $2C0B : Lost communication with SQL server.
 11277 : $2C0D : Cannot locate or connect to SQL server.
 11278 : $2C0E : Cannot locate or connect to network server.

Optional parameter related

 11521 : $2D01 : Optional parameter is required.
 11522 : $2D02 : Invalid optional parameter.

Query related

 11777 : $2E01 : obsolete
 11778 : $2E02 : obsolete
 11779 : $2E03 : Ambiguous use of ! (inclusion operator).
 11780 : $2E04 : obsolete
 11781 : $2E05 : obsolete
 11782 : $2E06 : A SET operation cannot be included in its own
 grouping.
 11783 : $2E07 : Only numeric and date/time fields can be
 averaged.
 11784 : $2E08 : Invalid expression.
 11785 : $2E09 : Invalid OR expression.
 11786 : $2E0A : obsolete
 11787 : $2E0B : bitmap
 11788 : $2E0C : CALC expression cannot be used in INSERT,
 DELETE, CHANGETO and SET rows.
 11789 : $2E0D : Type error in CALC expression.
 11790 : $2E0E : CHANGETO can be used in only one query form at
 a time.
 11791 : $2E0F : Cannot modify CHANGED table.
 11792 : $2E10 : A field can contain only one CHANGETO
 expression.
 11793 : $2E11 : A field cannot contain more than one
 expression to be inserted.
 11794 : $2E12 : obsolete
 11795 : $2E13 : CHANGETO must be followed by the new value
 for the field.
 11796 : $2E14 : Checkmark or CALC expressions cannot be used
 in FIND queries.
 11797 : $2E15 : Cannot perform operation on CHANGED table
 together with a CHANGETO query.
 11798 : $2E16 : chunk
 11799 : $2E17 : More than 255 fields in ANSWER table.
 11800 : $2E18 : AS must be followed by the name for the field
 in the ANSWER table.
 11801 : $2E19 : DELETE can be used in only one query form at
 a time.
 11802 : $2E1A : Cannot perform operation on DELETED table
 together with a DELETE query.
 11803 : $2E1B : Cannot delete from the DELETED table.
 11804 : $2E1C : Example element is used in two fields with

 incompatible types or with a BLOB.
 11805 : $2E1D : Cannot use example elements in an OR
 expression.
 11806 : $2E1E : Expression in this field has the wrong type.
 11807 : $2E1F : Extra comma found.
 11808 : $2E20 : Extra OR found.
 11809 : $2E21 : One or more query rows do not contribute to
 the ANSWER.
 11810 : $2E22 : FIND can be used in only one query form at a
 time.
 11811 : $2E23 : FIND cannot be used with the ANSWER table.
 11812 : $2E24 : A row with GROUPBY must contain SET
 operations.
 11813 : $2E25 : GROUPBY can be used only in SET rows.
 11814 : $2E26 : Use only INSERT, DELETE, SET or FIND in
 leftmost column.
 11815 : $2E27 : Use only one INSERT, DELETE, SET or FIND per
 line.
 11816 : $2E28 : Syntax error in expression.
 11817 : $2E29 : INSERT can be used in only one query form at
 a time.
 11818 : $2E2A : Cannot perform operation on INSERTED table
 together with an INSERT query.
 11819 : $2E2B : INSERT, DELETE, CHANGETO and SET rows may not
 be checked.
 11820 : $2E2C : Field must contain an expression to insert
 (or be blank).
 11821 : $2E2D : Cannot insert into the INSERTED table.
 11822 : $2E2E : Variable is an array and cannot be accessed.
 11823 : $2E2F : Label
 11824 : $2E30 : Rows of example elements in CALC expression
 must be linked.
 11825 : $2E31 : Variable name is too long.
 11826 : $2E32 : Query may take a long time to process.
 11827 : $2E33 : Reserved word or one that can't be used as a
 variable name.
 11828 : $2E34 : Missing comma.
 11829 : $2E35 : Missing).
 11830 : $2E36 : Missing right quote.
 11831 : $2E37 : Cannot specify duplicate column names.
 11832 : $2E38 : Query has no checked fields.
 11833 : $2E39 : Example element has no defining occurrence.
 11834 : $2E3A : No grouping is defined for SET operation.
 11835 : $2E3B : Query makes no sense.
 11836 : $2E3C : Cannot use patterns in this context.
 11837 : $2E3D : Date does not exist.
 11838 : $2E3E : Variable has not been assigned a value.
 11839 : $2E3F : Invalid use of example element in summary
 expression.
 11840 : $2E40 : Incomplete query statement. Query only
 contains a SET definition.
 11841 : $2E41 : Example element with ! makes no sense in
 expression.
 11842 : $2E42 : Example element cannot be used more than twice
 with a ! query.
 11843 : $2E43 : Row cannot contain expression.

 11844 : $2E44 : obsolete
 11845 : $2E45 : obsolete
 11846 : $2E46 : No permission to insert or delete records.
 11847 : $2E47 : No permission to modify field.
 11848 : $2E48 : Field not found in table.
 11849 : $2E49 : Expecting a column separator in table header.
 11850 : $2E4A : Expecting a column separator in table.
 11851 : $2E4B : Expecting column name in table.
 11852 : $2E4C : Expecting table name.
 11853 : $2E4D : Expecting consistent number of columns in all
 rows of table.
 11854 : $2E4E : Cannot open table.
 11855 : $2E4F : Field appears more than once in table.
 11856 : $2E50 : This DELETE, CHANGE or INSERT query has no
 ANSWER.
 11857 : $2E51 : Query is not prepared. Properties unknown.
 11858 : $2E52 : DELETE rows cannot contain quantifier
 expression.
 11859 : $2E53 : Invalid expression in INSERT row.
 11860 : $2E54 : Invalid expression in INSERT row.
 11861 : $2E55 : Invalid expression in SET definition.
 11862 : $2E56 : row use
 11863 : $2E57 : SET keyword expected.
 11864 : $2E58 : Ambiguous use of example element.
 11865 : $2E59 : obsolete
 11866 : $2E5A : obsolete
 11867 : $2E5B : Only numeric fields can be summed.
 11868 : $2E5C : Table is write protected.
 11869 : $2E5D : Token not found.
 11870 : $2E5E : Cannot use example element with ! more than
 once in a single row.
 11871 : $2E5F : Type mismatch in expression.
 11872 : $2E60 : Query appears to ask two unrelated questions.
 11873 : $2E61 : Unused SET row.
 11874 : $2E62 : INSERT, DELETE, FIND, and SET can be used only
 in the leftmost column.
 11875 : $2E63 : CHANGETO cannot be used with INSERT, DELETE,
 SET or FIND.
 11876 : $2E64 : Expression must be followed by an example
 element defined in a SET.
 11877 : $2E65 : Lock failure.
 11878 : $2E66 : Expression is too long.
 11879 : $2E67 : Refresh exception during query.
 11880 : $2E68 : Query canceled.
 11881 : $2E69 : Unexpected Database Engine error.
 11882 : $2E6A : Not enough memory to finish operation.
 11883 : $2E6B : Unexpected exception.
 11884 : $2E6C : Feature not implemented yet in query.
 11885 : $2E6D : Query format is not supported.
 11886 : $2E6E : Query string is empty.
 11887 : $2E6F : Attempted to prepare an empty query.
 11888 : $2E70 : Buffer too small to contain query string.
 11889 : $2E71 : Query was not previously parsed or prepared.
 11890 : $2E72 : Function called with bad query handle.
 11891 : $2E73 : QBE syntax error.
 11892 : $2E74 : Query extended syntax field count error.

 11893 : $2E75 : Field name in sort or field clause not found.
 11894 : $2E76 : Table name in sort or field clause not found.
 11895 : $2E77 : Operation is not supported on BLOB fields.
 11896 : $2E78 : General BLOB error.
 11897 : $2E79 : Query must be restarted.
 11898 : $2E7A : Unknown answer table type.
 11926 : $2E96 : Blob cannot be used as grouping field.
 11927 : $2E97 : Query properties have not been fetched.
 11928 : $2E98 : Answer table is of unsuitable type.
 11929 : $2E99 : Answer table is not yet supported under server
 alias.
 11930 : $2E9A : Non-null blob field required. Can't insert
 records
 11931 : $2E9B : Unique index required to perform changeto
 11932 : $2E9C : Unique index required to delete records
 11933 : $2E9D : Update of table on the server failed.
 11934 : $2E9E : Can't process this query remotely.
 11935 : $2E9F : Unexpected end of command.
 11936 : $2EA0 : Parameter not set in query string.
 11937 : $2EA1 : Query string is too long.
 11946 : $2EAA : No such table or correlation name.
 11947 : $2EAB : Expression has ambiguous data type.
 11948 : $2EAC : Field in order by must be in result set.
 11949 : $2EAD : General parsing error.
 11950 : $2EAE : Record or field constraint failed.
 11951 : $2EAF : When GROUP BY exists, every simple field in
 projectors must be in GROUP BY.
 11952 : $2EB0 : User defined function is not defined.
 11953 : $2EB1 : Unknown error from User defined function.
 11954 : $2EB2 : Single row subquery produced more than one row.
 11955 : $2EB3 : Expressions in group by are not supported.
 11956 : $2EB4 : Queries on text or ascii tables is not supported.
 11957 : $2EB5 : ANSI join keywords USING and NATURAL are not
 supported in this release.
 11958 : $2EB6 : SELECT DISTINCT may not be used with UNION
 unless UNION ALL is used.
 11959 : $2EB7 : GROUP BY is required when both aggregate and
 non-aggregate fields are used in result set.
 11960 : $2EB8 : INSERT and UPDATE operations are not supported
 on autoincrement field type.
 11961 : $2EB9 : UPDATE on Primary Key of a Master Table may
 modify more than one record.
 11962 : $2EBA : Queries on MS ACCESS tables are not supported
 by local query engines.
 11963 : $2EBB : Preparation of field-level constraint failed.
 11964 : $2EBC : Preparation of field default failed.
 11965 : $2EBD : Preparation of record-level constraint failed.
 11972 : $2EC4 : Constraint Failed. Expression:

Version Mismatch Category

 12033 : $2F01 : Interface mismatch. Engine version different.
 12034 : $2F02 : Index is out of date.
 12035 : $2F03 : Older version (see context).
 12036 : $2F04 : .VAL file is out of date.
 12037 : $2F05 : BLOB file version is too old.

 12038 : $2F06 : Query and Engine DLLs are mismatched.
 12039 : $2F07 : Server is incompatible version.
 12040 : $2F08 : Higher table level required

Capability not supported

 12289 : $3001 : Capability not supported.
 12290 : $3002 : Not implemented yet.
 12291 : $3003 : SQL replicas not supported.
 12292 : $3004 : Non-blob column in table required to perform
 operation.
 12293 : $3005 : Multiple connections not supported.
 12294 : $3006 : Full dBASE expressions not supported.

System configuration error

 12545 : $3101 : Invalid database alias specification.
 12546 : $3102 : Unknown database type.
 12547 : $3103 : Corrupt system configuration file.
 12548 : $3104 : Network type unknown.
 12549 : $3105 : Not on the network.
 12550 : $3106 : Invalid configuration parameter.

Warnings

 12801 : $3201 : Object implicitly dropped.
 12802 : $3202 : Object may be truncated.
 12803 : $3203 : Object implicitly modified.
 12804 : $3204 : Should field constraints be checked?
 12805 : $3205 : Validity check field modified.
 12806 : $3206 : Table level changed.
 12807 : $3207 : Copy linked tables?
 12809 : $3209 : Object implicitly truncated.
 12810 : $320A : Validity check will not be enforced.
 12811 : $320B : Multiple records found, but only one was
 expected.
 12812 : $320C : Field will be trimmed, cannot put master
 records into PROBLEM table.

Miscellaneous

 13057 : $3301 : File already exists.
 13058 : $3302 : BLOB has been modified.
 13059 : $3303 : General SQL error.
 13060 : $3304 : Table already exists.
 13061 : $3305 : Paradox 1.0 tables are not supported.
 13062 : $3306 : Update aborted.

Compatibility related

 13313 : $3401 : Different sort order.
 13314 : $3402 : Directory in use by earlier version of
 Paradox.
 13315 : $3403 : Needs Paradox 3.5-compatible language driver.

Data Repository related

 13569 : $3501 : Data Dictionary is corrupt
 13570 : $3502 : Data Dictionary Info Blob corrupted
 13571 : $3503 : Data Dictionary Schema is corrupt
 13572 : $3504 : Attribute Type exists
 13573 : $3505 : Invalid Object Type
 13574 : $3506 : Invalid Relation Type
 13575 : $3507 : View already exists
 13576 : $3508 : No such View exists
 13577 : $3509 : Invalid Record Constraint
 13578 : $350A : Object is in a Logical DB
 13579 : $350B : Dictionary already exists
 13580 : $350C : Dictionary does not exist
 13581 : $350D : Dictionary database does not exist
 13582 : $350E : Dictionary info is out of date - needs Refresh
 13584 : $3510 : Invalid Dictionary Name
 13585 : $3511 : Dependent Objects exist
 13586 : $3512 : Too many Relationships for this Object Type
 13587 : $3513 : Relationships to the Object exist
 13588 : $3514 : Dictionary Exchange File is corrupt
 13589 : $3515 : Dictionary Exchange File Version mismatch
 13590 : $3516 : Dictionary Object Type Mismatch
 13591 : $3517 : Object exists in Target Dictionary
 13592 : $3518 : Cannot access Data Dictionary
 13593 : $3519 : Cannot create Data Dictionary
 13594 : $351A : Cannot open Database

Driver related

 15873 : $3E01 : Wrong driver name.
 15874 : $3E02 : Wrong system version.
 15875 : $3E03 : Wrong driver version.
 15876 : $3E04 : Wrong driver type.
 15877 : $3E05 : Cannot load driver.
 15878 : $3E06 : Cannot load language driver.
 15879 : $3E07 : Vendor initialization failed.
 15880 : $3E08 : Your application is not enabled for use with
 this driver.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi 3 file types with descriptions
 NUMBER : 3213
 PRODUCT : Delphi
 VERSION : All
 OS : Windows
 DATE : July 7, 1997

 TITLE : Delphi 3 file types with descriptions

The .CAB File Format

This is the file format that Delphi now offers its users for web
deployment. The cabinet format is an efficient way to package multiple
files. The cabinet format has two key features: multiple files can be
stored in a single cabinet (.cab file) and data compression is
performed across file boundaries, which significantly improves the
compression ratio. Cabinet file construction can be designed around
the number of files to be compressed and the expected patterns for
gaining access to them (sequential, random, all at once, or a few at
a time). Delphi does not take advantage file compression across file
boudaries.

The .LIC File Format

There really is no .lic file format per se. These files are generally
just text files that contain a key string or two.

The .INF File Format

All inf files are made up of sections and items. Each named section
contains its associated items. All inf files start with the header
section. After the header, sections can be laid out in any order
desired. Each header is as follows [HeaderName]. This is followed
by the items: ItemA = ItemDetail. For detailed information on this
topic please see the Device Information File Reference.

The .dpr file format.

The .dpr file is the central file to a delphi project. It serves as
the primary entry point for the executable. The dpr contains the
references to the other files in the project and links forms with
their associated units. This file should be edited with care as
changes in it can prevent your project from loading. This file is
critical for loading or moving(copying) the project.

The .pas file format.

This is a standard text file that can be edited in a text editor.
Edit this file carfully as it may result in the loss of some
advantages of the two way tool. For example pasting code for a
button into the type declaration for a form does not result in
the corresponding entry into the .dfm file. All pas files in a
project are critical for rebuilding the project.

The .dfm file format.

This file contains the details of the objects contained in a form.
It can be view as text by right clicking on the form and selecting
view as text from the pop-up menu, or it can be converted to text
and back using the convert.exe found in the bin directory. Caution
should be used in altering this file as changes to it could prevent
the IDE from being able to load the form. This file is critical to
moving or rebuilding the project.

The .DOF File Format

This text file contains the current settings for
project options, such as compiler and linker settings,
directories, conditional directives, and command-line
parameters. These settings can be customized on a
project-by-project basis.

The .DSK File Format

This text file stores information about the state of
your project, such as which windows are open and what
position they are in. Like the .DOF file, this file can
be customized project-by-project.

The .DPK File Format

This file contains the source code for a package (analogous to the .DPR
in a standard Delphi project) Like the .DPR file the .DPK file is a
plain text file that can be edited (with caution) using a standard
editor. One of the primary reasons you may need to do this would be
if you were using the command line compiler.

The .DCP File Format

This binary image file consists of the actual compiled package.
Symbol information and additional header information required by the
IDE are all contained within the .DCP file. The IDE must have
access to this file in order to build a project.

The .DPL File Format

This is the actual executable runtime package. This
file is a Windows DLL with Delphi-specific features
integrated into it. This file is essential for
deployment of an application that uses a package.

The .DCI File Format
This text file contains both standard and user-defined
code templates for use within the IDE. The file can be
edited with a standard text editor or through the
IDE. As with any text data file used by Delphi,
modifying the file directly is discouraged.

The .DCT File Format

This proprietary binary file contains the
user-defined component template information. This file
is not meant to be edited by any means other than
through the IDE. Since this file is proprietary the
format and comptability with future versions of Delphi
may likely change.

The .TLB File Format

The .TLB file is a proprietary binary type library file.
This file provides a way for identifying what types of
objects and interfaces are available on an ActiveX
server. Like a unit or a header file the .TLB serves
as a repository for necessary symbol information
for an application. Since this file is proprietary the
format and comptability with future versions of Delphi
may likely change.

The .DRO File Format

This text file contains information about the object
repository. Each entry in this file contains specific
information about each available item in the
object repository. Even though this file is a standard
text file it is not recommended that you edit it by
hand. The repository should only be modified from the
Tools|Repository menu in the IDE.

The .RES File Format

This standard binary windows-format resource file
includes information about an application. By default
Delphi creates a new .RES file every time a project is
compiled into an application.

The .DB File Format

Files with this extension are standard Paradox files.

The .DBF File Format

Files with this extension are standard dBASE files.

The .GDB File Format

Files with this extension are standard Interbase files.

The .DMT File Format

This proprietary binary file contains the
shipped and user-defined menu templates information.
This file is not meant to be edited by any means other

than through the IDE. Since this file is proprietary
the format and comptability with future versions of
Delphi may likely change.

The .DBI File Format

This text file contains initialization information for
the Database Explorer. This file is not meant to be
edited by any means other than through the Database
Explorer.

The .DEM File Format

This text file contains some standard country-specific
formats for a TMaskEdit component. As with any text data file used
by Delphi, modifying the file directly is discouraged.

The .OCX File Format

An .OCX file is a specialized DLL which contains all
or some associated functions of an ActiveX control.
The OCX file can be thought of as a "wrapper" which
contains the object and it's means of communications
with other objects and servers.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Direct Commands to Printer - Passthrough/Escape
 NUMBER : 3196
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : February 28, 1997

 TITLE : Direct Commands to Printer - Passthrough/Escape

Although Delphi's TPrinter unit makes it easy to interface
to a given printer, there are times when you may need
to drop down to the printers level and send device specific
escape sequences. Under 16-bit versions of Windows, this
was as easy as opening the printer port, but under Windows NT,
directly accessing the hardware is is illegal. One solution
is to use the Windows "PASSTHROUGH" escape to send an escape
sequence directly to the printer. In order to use the
"PASSTHROUGH" escape, it must be supported by the printer
driver. Be forwarned that not all printer drivers will support
this feature.

It's worth noting that the "PASSTHROUGH" escape is documented
as obsolete for thirty-two bit applications. It should be a
number of years before this escape goes by the way, since
it is used in many commercial applications.

The example code presented is not targeted to any specific
printer model. You will need to know the correct escape
sequences to send to the printer you are interfacing to.
Note that you must still call the BeginDoc and EndDoc methods
of TPrinter. During the BeginDoc call, the printer driver
initializes the printer as necessary, and during the EndDoc
call, the printer driver will uninitialize the printer and
eject the page. When you do make your escape call, the printer
may be set for the current windows mapping mode if the printer
supports scaling internaly. Technically, you should not do
anything that would cause the printer memory to be reset,
or eject a page with an escape sequence. In other words,
try to leave the printer in the same state it was in when
you made your escape. This is more important on intellegent
printers (Postscript printers), and not important at all on
a standard TTY line printer, where you can do just about
anything you like, including ejecting pages.

Code Example:

You will need to declare a structure to hold the buffer you are
sending. The structure of the buffer is defined as a word containing
the length of the buffer, followed by the buffer containing the data.

Before making the escape call to pass the data, we will use
the escape "QUERYESCSUPPORT" to determine if the "PASSTHROUGH"
escape is supported by the print driver.

Finally, be aware that your data will be inserted directly into
the printers data stream. On some printer models (Postscript),
you may need to add a space to the start and end of your data
to separate your data from the printer drivers data.

(Postscript is a Registered Trademark of Adobe Systems Incorporated)

unit Esc1;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls;

type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{ add the printers unit }
uses
 Printers;

{$R *.DFM}

{ declare the "PASSTHROUGH" structure }
type TPrnBuffRec = record
 BuffLength : word;
 Buffer : array [0..255] of char;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 Buff : TPrnBuffRec;
 TestInt : integer;
 s : string;
begin

{ Test to see if the "PASSTHROUGH" escape is supported }
 TestInt := PASSTHROUGH;
 if Escape(Printer.Handle,
 QUERYESCSUPPORT,
 sizeof(TestInt),

 @TestInt,
 nil) > 0 then begin

 { Start the printout }
 Printer.BeginDoc;

 { Make a string to passthrough }
 s := ' A Test String ';

 { Copy the string to the buffer }
 StrPCopy(Buff.Buffer, s);

 { Set the buffer length }
 Buff.BuffLength := StrLen(Buff.Buffer);

 { Make the escape}
 Escape(Printer.Canvas.Handle,
 PASSTHROUGH,
 0,
 @Buff,
 nil);

 { End the printout }
 Printer.EndDoc;
 end;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

An example of drag and drop between DBGrids
 NUMBER : 3215
 PRODUCT : Delphi
 VERSION : All
 OS : Windows
 DATE : July 7, 1997

 TITLE : An example of drag and drop between DBGrids

Title: An example of drag and drop between DBGrids

This sample component and sample project demonstrates an easy way
of enabling drag and drop of an arbitrary field in one data aware
grid onto an arbitrary field in another data aware grid.

1. Launch Delphi 3 (the code will work in 1 and 2 as well with some
 minor changes).

2. Do a File|New|Unit. Take the MyDBGrid unit (below) and paste it
 in the newly created unit. Do a File|Save As. Save the unit as
 MyDBGrid.pas.

3. Do a Component|Install Component. Switch to the Info New Package
 tab. Put MyDBGrid.pas in the Unit file name box. Call the package
 MyPackage.dpk. Hit Yes when Delphi 3 tells you that the package
 will be built and installed. Hit OK when Delphi 3 tells you that
 VCL30.DPL is needed. The package will now be rebuilt and installed.
 You will now find the TMyDBGrid component on your Samples tab on
 your component palette. Close the package editor and save the
 package.

4. Do a File|New Application. Right click on the form (Form1) and
 select View As Text. Take the GridU1 form source (below) and paste
 it in Form1. Right click on the form and select View As Form. This
 may take a few moments since it's opening up the tables for you.
 Take the GridU1 unit (below) and paste it in the unit (Unit1).

5. Do a File|Save Project As. Save the unit as GridU1.pas. Save the
 project as GridProj.dpr.

6. Now, run the project and enjoy the dragging and dropping of fields
 inbetween or with the two grids.

The MyDBGrid unit

unit MyDBGrid;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs, Grids, DBGrids;

type
 TMyDBGrid = class(TDBGrid)
 private
 { Private declarations }
 FOnMouseDown: TMouseEvent;
 protected
 { Protected declarations }
 procedure MouseDown(Button: TMouseButton; Shift: TShiftState;
 X, Y: Integer); override;
 published
 { Published declarations }
 property Row;
 property OnMouseDown read FOnMouseDown write FOnMouseDown;
 end;

procedure Register;

implementation

procedure TMyDBGrid.MouseDown(Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Assigned(FOnMouseDown) then
 FOnMouseDown(Self, Button, Shift, X, Y);
 inherited MouseDown(Button, Shift, X, Y);
end;

procedure Register;
begin
 RegisterComponents('Samples', [TMyDBGrid]);
end;

end.

The GridU1 unit

unit GridU1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs, Db, DBTables, Grids, DBGrids, MyDBGrid, StdCtrls;

type
 TForm1 = class(TForm)
 MyDBGrid1: TMyDBGrid;
 Table1: TTable;
 DataSource1: TDataSource;
 Table2: TTable;
 DataSource2: TDataSource;
 MyDBGrid2: TMyDBGrid;
 procedure MyDBGrid1MouseDown(Sender: TObject;

 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
 procedure MyDBGrid1DragOver(Sender, Source: TObject;
 X, Y: Integer; State: TDragState; var Accept: Boolean);
 procedure MyDBGrid1DragDrop(Sender, Source: TObject;
 X, Y: Integer);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

var
 SGC : TGridCoord;

procedure TForm1.MyDBGrid1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 DG : TMyDBGrid;
begin
 DG := Sender as TMyDBGrid;
 SGC := DG.MouseCoord(X,Y);
 if (SGC.X > 0) and (SGC.Y > 0) then
 (Sender as TMyDBGrid).BeginDrag(False);
end;

procedure TForm1.MyDBGrid1DragOver(Sender, Source: TObject;
 X, Y: Integer; State: TDragState; var Accept: Boolean);
var
 GC : TGridCoord;
begin
 GC := (Sender as TMyDBGrid).MouseCoord(X,Y);
 Accept := Source is TMyDBGrid and (GC.X > 0) and (GC.Y > 0);
end;

procedure TForm1.MyDBGrid1DragDrop(Sender, Source: TObject;
 X, Y: Integer);
var
 DG : TMyDBGrid;
 GC : TGridCoord;
 CurRow : Integer;
begin
 DG := Sender as TMyDBGrid;
 GC := DG.MouseCoord(X,Y);
 with DG.DataSource.DataSet do begin
 with (Source as TMyDBGrid).DataSource.DataSet do
 Caption := 'You dragged "'+Fields[SGC.X-1].AsString+'"';
 DisableControls;
 CurRow := DG.Row;
 MoveBy(GC.Y-CurRow);

 Caption := Caption+' to "'+Fields[GC.X-1].AsString+'"';
 MoveBy(CurRow-GC.Y);
 EnableControls;
 end;
end;

end.

The GridU1 form

object Form1: TForm1
 Left = 200
 Top = 108
 Width = 544
 Height = 437
 Caption = 'Form1'
 Font.Charset = DEFAULT_CHARSET
 Font.Color = clWindowText
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 PixelsPerInch = 96
 TextHeight = 13
 object MyDBGrid1: TMyDBGrid
 Left = 8
 Top = 8
 Width = 521
 Height = 193
 DataSource = DataSource1
 Row = 1
 TabOrder = 0
 TitleFont.Charset = DEFAULT_CHARSET
 TitleFont.Color = clWindowText
 TitleFont.Height = -11
 TitleFont.Name = 'MS Sans Serif'
 TitleFont.Style = []
 OnDragDrop = MyDBGrid1DragDrop
 OnDragOver = MyDBGrid1DragOver
 OnMouseDown = MyDBGrid1MouseDown
 end
 object MyDBGrid2: TMyDBGrid
 Left = 7
 Top = 208
 Width = 521
 Height = 193
 DataSource = DataSource2
 Row = 1
 TabOrder = 1
 TitleFont.Charset = DEFAULT_CHARSET
 TitleFont.Color = clWindowText
 TitleFont.Height = -11
 TitleFont.Name = 'MS Sans Serif'
 TitleFont.Style = []
 OnDragDrop = MyDBGrid1DragDrop

 OnDragOver = MyDBGrid1DragOver
 OnMouseDown = MyDBGrid1MouseDown
 end
 object Table1: TTable
 Active = True
 DatabaseName = 'DBDEMOS'
 TableName = 'ORDERS'
 Left = 104
 Top = 48
 end
 object DataSource1: TDataSource
 DataSet = Table1
 Left = 136
 Top = 48
 end
 object Table2: TTable
 Active = True
 DatabaseName = 'DBDEMOS'
 TableName = 'CUSTOMER'
 Left = 104
 Top = 240
 end
 object DataSource2: TDataSource
 DataSet = Table2
 Left = 136
 Top = 240
 end
end

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Looping Through the Controls and Components Arrays
 NUMBER : 3216
 PRODUCT : Delphi
 VERSION : All
 OS : Windows
 DATE : July 7, 1997

 TITLE : Looping Through the Controls and Components Arrays

There are 2 important properties in Delphi that everyone using the product
should know about. The components array is a property of all components
that own other components. The controls array is a property of all
TWinControls that are parents of TWinControls. These properties are so
important because they allow you to iterate through a group of components
without knowing the names or knowing what type of controls or components
they are. This could be important for example if you wanted to disable or
enable all the controls on a form or within a container control (such as
a panel). Proper code for this iterative process is shown below for both
cases.

1. Iteration through the components array of the form:

begin
 for i:= 0 to componentcount - 1 do
 begin
 {enter the code to act on each member of the array here}
 end;
end;

2. Iteration through the controls array of the form:

begin
 for i:= 0 to controlcount - 1 do
 begin
 {enter the code to act on each member of the array here}
 end;
end;

The variable 'i' is an integer declared for iteration one array member at
a time and must be declared by the user. The variables controlcount and
componentcount are additional properties of TWinControl and TComponent
respectively. These properties are often used in conjunction with iteration
through the corresponding array properties.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

An Overview of Borland Online Information Services
 NUMBER : 9604
 PRODUCT : Borland
 VERSION : All
 OS : All
 DATE : April 25, 1996

 TITLE : An Overview of Borland Online Information Services

Any time of any day, you can use your modem and a communications
program to gain immediate access to a vast source of information
and files related to Borland products. Your call to the Borland
Download Bulletin Board System (DLBBS) will never be put on hold.
In a matter of minutes, you receive the sample programs, macros,
drivers, or utilities you need - transferred directly to your
computer, so you never have to type them in by hand. Find
answers to your questions 24 hours per day by accessing our
frequently updated collection of technical information files
containing tips on how to get the most out of Borland products.
There is no charge to use the Borland Download Bulletin Board
system.

The Borland areas on the CompuServe Information Service (CIS),
the Byte Information eXchange (BIX), and the General Electric
Network for Information Exchange (GEnie) feature the same
benefits as the Borland Download Bulletin Board System (DLBBS),
plus the added benefit of electronic messages. Charges for using
CompuServe, BIX and GEnie vary.

 Live
Voice Contact Pay/Free Files "chat" Messages 24hrs

DLBBS Free Yes No No Yes
CIS 800/848-8199 Pay Yes Yes Yes Yes

ask for Rep 62
BIX 800/227-2983 Pay Yes Yes Yes Yes
GEnie 800/638-9636 Pay Yes Yes Yes Yes

HOW TO LOG ON:

For Borland's DLBBS, set your communications program to dial
408/431-5096 using the following communications parameters: 9600
baud, 2400 baud or 1200 baud, 8 data bits, no parity, one stop
bit. After a connection is established, press <Enter>.
For CIS, BIX, and GEnie, you may establish an ID and receive
logon instructions by calling the appropriate phone number shown
above.

To access a Borland area on: Type:
CompuServe (CIS) GO BORLAND
BIX JOIN BORLAND
GEnie BORLAND

Technical Support via The Internet:

Users of all Borland products now have the option to retrieve
technical resources and information via 'anonymous' File Transfer
Protocol (FTP) over the Internet. FTP is the Internet standard
for transferring files to and from a remote network host. For
more information about receiving Technical Support via the
Internet refer to Technical Information Sheet #9656.

Note: The Borland FTP site is also accessible via the Tech Info
pages for each product on www.borland.com. From www.borland.com,
choose Tech Info, then choose the product. On each Tech Info
page there is a link to Technical Information. This is the
easiest way to find technical information on the Borland FTP
site.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Displaying System Resources in Win 95 and NT 4
 NUMBER : 3231
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : July 22, 1997

 TITLE : Displaying System Resources in Win 95 and NT 4

 Displaying System Resources

 This document describes the displaying of total system resources or
the amount of available system resources for Windows 95 or Windows NT
4.0. It includes the structure of the TMemoryStatus structure, the
function GlobalMemoryStatus that populates this structure as defined
in Windows.pas, and the Windows API header description. It also
includes a code example of populating a memo with this information
in Delphi.

 TMemoryStatus source can be found in Windows.PAS which is in the
Source\RTL\WIN directory if you have the Client\Server Suite of
Delphi.

Structure of TMemoryStatus:

 TMemoryStatus = record
 dwLength: DWORD;
 dwMemoryLoad: DWORD;
 dwTotalPhys: DWORD;
 dwAvailPhys: DWORD;
 dwTotalPageFile: DWORD;
 dwAvailPageFile: DWORD;
 dwTotalVirtual: DWORD;
 dwAvailVirtual: DWORD;

Function called to populate TMemoryStatus:

procedure GlobalMemoryStatus(var lpBuffer: TMemoryStatus); stdcall;

WINAPI help for said function:

 VOID GlobalMemoryStatus(
 // pointer to the memory status structure
 LPMEMORYSTATUS lpBuffer
);

Code for populating a TMemo with Information about system resources:

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls;

type
 TForm1 = class(TForm)
 Button1: TButton;
 Memo1: TMemo;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var
 MemoryStatus: TMemoryStatus;

begin

 Memo1.Lines.Clear;

 MemoryStatus.dwLength := SizeOf(MemoryStatus);

 GlobalMemoryStatus(MemoryStatus);

 with MemoryStatus do
 begin
// Size of MemoryStatus record
 Memo1.Lines.Add(IntToStr(dwLength) +
 ' Size of ''MemoryStatus'' record');
// Per-Cent of Memory in use by your system
 Memo1.Lines.Add(IntToStr(dwMemoryLoad) +
 '% memory in use');
// The amount of Total Physical memory allocated to your system.
 Memo1.Lines.Add(IntToStr(dwTotalPhys) +
 ' Total Physical Memory in bytes');
// The amount available of physical memory in your system.
 Memo1.Lines.Add(IntToStr(dwAvailPhys) +
 ' Available Physical Memory in bytes');
// The amount of Total Bytes allocated to your page file.
 Memo1.Lines.Add(IntToStr(dwTotalPageFile) +
 ' Total Bytes of Paging File');
// The amount of available bytes in your page file.
 Memo1.Lines.Add(IntToStr(dwAvailPageFile) +
 ' Available bytes in paging file');
// The amount of Total bytes allocated to this program
// (generally 2 gigabytes of virtual space).
 Memo1.Lines.Add(IntToStr(dwTotalVirtual) +
 ' User Bytes of Address space');

// The amount of avalable bytes that is left to your program to use.
 Memo1.Lines.Add(IntToStr(dwAvailVirtual) +
 ' Available User bytes of address space');
 end; // with
end; // procedure

end.

Sample Output of what is contained in Memo1.Lines:

32: Size of 'MemoryStatus' record in bytes
76%: memory in use
33054720: Total Physical Memory in bytes
499712: Available Physical Memory in bytes
53608448: Total Bytes of Paging File
36372480: Available bytes in paging file
2143289344: User Bytes of Address space
2135556096: Available User bytes of address space

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Edit Controls that Align Under NT 4
 NUMBER : 3232
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : July 22, 1997

 TITLE : Edit Controls that Align Under NT 4

Creating an edit control that allows alignment under NT4.

OVERVIEW

This document demonstrates how to create a descendant of
TEdit that allows alignment of the text.

WHO SHOULD USE THIS DOCUMENT

Anyone with a basic familiarity with Delphi programming.
Applies to any version of Delphi.

CREATING JUSTAEDIT

One of the features the TMemo surfaces that a TEdit does
not is the ability to justify the text. This functionality
exists via the Alignment property. Great! So why doesn't
a TEdit have this functionality, or perhaps a more pertinent
question is how do we add it?

This property, unfortunately can not be surfaced from an
ancestor, because the functionality does not exist in any
ancestor. So it needs to be implemented via the window style
flags. ES_LEFT, ES_RIGHT, and ES_CENTER specify the text
alingment for edit controls. These flags do not have
any bearing on single line edit controls...unless running NT 4,
Service pack 3, and that is the reason the functionality
does not exist in the native control. This functionality
in now implemented in NT 4.0 but will have no effect in Win
3.1 and Windows 95.

WORKING CODE

unit JusEdit;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs,
 StdCtrls;

type
 TJustaEdit = class(TEdit)
 private

 { Private declarations }
 fAlignment : TAlignment;
 protected
 { Protected declarations }
 procedure SetAlignment(Value: TAlignment);
 public
 { Public declarations }
 procedure createParams(var Params : TCreateParams); override;
 published
 { Published declarations }
 property Alignment: TAlignment read FAlignment write SetAlignment
 default taLeftJustify;
 end;

procedure Register;

implementation
procedure TJustaEdit.CreateParams(var Params : TCreateParams);
var
 x : Longint;
begin
 inherited CreateParams(Params);
 case fAlignment of
 tarightjustify: x := es_right;
 taleftjustify : x := es_left;
 tacenter : x := es_center;
 end;
 params.style := params.style or x;

end;
procedure TJustaEdit.SetAlignment;
begin
 if FAlignment <> Value then
 begin
 FAlignment := Value;
 RecreateWnd;
 end;
end;
procedure Register;
begin
 RegisterComponents('Samples', [TJustaEdit]);
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

How do I map a network drive in Windows NT or '95?
 NUMBER : 3233
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : July 22, 1997

 TITLE : How do I map a network drive in Windows NT or '95?

How do I map a network drive in Windows NT or '95?

 You can use the WNetAddConnection2 API call. The prototype for the
API call is in Windows.Pas.

 function WNetAddConnection2W(var lpNetResource: TNetResourceW;
 lpPassword, lpUserName: PWideChar;
 dwFlags: DWORD): DWORD; stdcall;

 To make the call you will need to fill a lpNetResource structure
with a minimum set of parameters, shown in the example below. You
pass this structure as the first parameter to the call, the password,
user name, and a flag that indicates whether this mapping should
be persistant every time the machine is logged onto. For more info
on the API itself, see Window's Programmers Reference help (find the
function in Windows.pas, place your text cursor over the function
call, and hit F1 to bring up help).

procedure TForm1.Button1Click(Sender: TObject);
var
 NRW: TNetResource;
begin
 with NRW do
 begin
 dwType := RESOURCETYPE_ANY;
 lpLocalName := 'X:'; // map to this driver letter
 lpRemoteName := '\\MyServer\MyDirectory';
 // Must be filled in. If an empty string is used,
 // it will use the lpRemoteName.
 lpProvider := '';
 end;
 WNetAddConnection2(NRW, 'MyPassword', 'MyUserName',
 CONNECT_UPDATE_PROFILE);
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Adding shortcuts to Win95/WinNT4 Desktop/StartMenu
 NUMBER : 3234
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : July 22, 1997

 TITLE : Adding shortcuts to Win95/WinNT4 Desktop/StartMenu

Title: Adding shortcuts to the Win95/WinNT40 desktop or start menu

This sample project demonstrates an easy way to add shortcuts to
your Windows 95 or Windows NT 4.0 desktop or start menu.

1. Launch Delphi 3.

2. In a new project, drop a TButton on the form (make sure it's
 called Button1). Then double click on Button1. Now you can go
 ahead and directly replace the code for Unit1 with the code for
 Unit1 below.

The program will set up a shortcut either (see the code) on the
desktop or on the start menu. The shortcut will be called FooBar
and it will open up your AUTOEXEC.BAT in NOTEPAD when executed.

It will read the value of the "Desktop" and "Start Menu" strings
from the registry key named (under HKEY_CURRENT_USER):

 Software\MicroSoft\Windows\CurrentVersion\Explorer\Shell Folders

The Unit1 unit

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs, StdCtrls;

type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

uses
 ShlObj, ActiveX, ComObj, Registry;

procedure TForm1.Button1Click(Sender: TObject);
var
 MyObject : IUnknown;
 MySLink : IShellLink;
 MyPFile : IPersistFile;
 FileName : String;
 Directory : String;
 WFileName : WideString;
 MyReg : TRegIniFile;
begin
 MyObject := CreateComObject(CLSID_ShellLink);
 MySLink := MyObject as IShellLink;
 MyPFile := MyObject as IPersistFile;
 FileName := 'NOTEPAD.EXE';
 with MySLink do begin
 SetArguments('C:\AUTOEXEC.BAT');
 SetPath(PChar(FileName));
 SetWorkingDirectory(PChar(ExtractFilePath(FileName)));
 end;
 MyReg := TRegIniFile.Create(
 'Software\MicroSoft\Windows\CurrentVersion\Explorer');

// Use the next line of code to put the shortcut on your desktop
 Directory := MyReg.ReadString('Shell Folders','Desktop','');

// Use the next three lines to put the shortcut on your start menu
// Directory := MyReg.ReadString('Shell Folders','Start Menu','')+
// '\Whoa!';
// CreateDir(Directory);

 WFileName := Directory+'\FooBar.lnk';
 MyPFile.Save(PWChar(WFileName),False);
 MyReg.Free;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Minimizing Application When a Form Minimizes
 NUMBER : 3235
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : July 22, 1997

 TITLE : Minimizing Application When a Form Minimizes

How do I minimize the application when I minimize a secondary form?
I want to replicate the behavior that occurs when I minimize the
main form.

 You can use the same logic found in \source\vcl\forms.pas that
TCustomForm (in Delphi 3) uses when the form receives a system
message to minimize. The form traps WM_SYSCOMMAND messages,
checks to see if the command is to minimize the form, checks
that the form is the MainForm, then performs the application
object's Minimize method. If the message doesn't specify
SC_MINIMIZE then we call inherited so that default processing
can occur. Note: failure to include the call to inherited will
probably cause bad things to happen.

.

.
procedure WMSysCommand(var Message: TWMSysCommand);
 message WM_SYSCOMMAND;
.
.
procedure TCustomForm.WMSysCommand(var Message: TWMSysCommand);
begin
 if (Message.CmdType and $FFF0 = SC_MINIMIZE) and
 (Application.MainForm = Self) then
 Application.Minimize
 else
 inherited;
end;

To get this same behavior you can move this code to your form's
unit, and remove the logic that checks that the form is a MainForm.

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
 TForm1 = class(TForm)

 Button2: TButton;
 private
 procedure WMSysCommand(var Message: TWMSysCommand);

message WM_SYSCOMMAND;
 end;

var
 Form1: TForm1;

implementation

uses Unit2;

{$R *.DFM}

procedure TForm1.WMSysCommand(var Message: TWMSysCommand);
begin
 if (Message.CmdType and $FFF0 = SC_MINIMIZE) then
 Application.Minimize
 else
 inherited;
end;

end.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Graying Out Enabled/Disabled Data Aware Controls
 NUMBER : 3239
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : August 11, 1997

 TITLE : Graying Out Enabled/Disabled Data Aware Controls

Graying out enabled/disabled data aware controls

 Most data aware components are capable of visually showing that they
are disabled (by changing the text color to gray) or enabled (by setting
the color to a user-defined windows text color). Some data aware
controls such as TDBGrid, TDBRichEdit (in Delphi 3.0) and also TDBEdit
(when connected to a numeric or date field) do not display this behavior.

 The code below uses RTTI (Run Time Type Information) to extract
property information and use that information to set the font color to
gray if the control is disabled. If the control is enabled, the text
color is set to the standard windows text color.

 What follows is the step by step creation of a simple example which
consists of a TForm with a TButton and a TDBRichEdit that
demonstrates this behavior.

 1. Select File|New Application from the Delphi menu bar.
 2. Drop a TDataSource, a TTable, a TButton and a TDBEdit
 onto the form.
 3. Set the DatabaseName property of the table to 'DBDEMOS'.
 4. Set the TableName property of the table to 'ORDERS.DB'.
 5. Set the DataSet property of the datasource to 'Table1'.
 6. Set the DataSource property of the DBEdit to 'DataSource1'.
 7. Set the DataField property of the DBEdit to 'CustNo'.
 8. Set the Active property of the DBEdit to 'False'.
 9. Add 'TypInfo' to the uses clause of the form.

Below is the actual procedure to put in the implementation
section of your unit:

// This procedure will either set the text color of a
// dataware control to gray or the user defined color
// constant in clInfoText.

procedure SetDBControlColor(aControl: TControl);
 var
 FontPropInfo: PPropInfo;
 begin
// Check to see if the control is a dataware control
 if (GetPropInfo(aControl.ClassInfo, 'DataSource') = nil) then exit
 else
 begin
// Extract the front property
 FontPropInfo:= GetPropInfo(aControl.ClassInfo, 'Font');

// Check if the control is enabled/disabled
 if (aControl.Enabled = false) then
// If disabled, set the font color to gray
 TFont(GetOrdProp(aControl, FontPropInfo)).Color:= clGrayText
 else
// If enabled, set the font color to clInfoText
 TFont(GetOrdProp(aControl, FontPropInfo)).Color:= clInfoText;
 end;
 end;

The code for the buttonclick event handler should contain:

// This code will cycle through the Controls array and call
// SetDbControlColor for each control on your form
// making sure the font text color is set to what it
// should be.

procedure TForm1.Button1Click(Sender: TObject);
 var
 i: integer;
begin
// Loop through the control array
 for i:= 0 to ControlCount-1 do
 SetDBControlColor(Controls[i]);
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Exposing a multi string object in COM
 NUMBER : 3240
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : August 11, 1997

 TITLE : Exposing a multi string object in COM

 This document is intended for those using OLE/COM and want to
expose a multi string object similar to Delphi's TStrings object.
The IStrings interface for COM parallels the functionality of
Delphi's TStrings object. For example, in a case where you have an
automation client that contains a TStrings descendant, and you would
like the automation server to process the strings, the automation
server can employ an implementation of an IStrings interface to
store and manipulate these strings.

 The example project below contains the elements and steps needed
to implement an IStrings interface in a COM automation server, and
to interact with the interface from a COM automation client.
You'll find the complete unit source listings next, then finally
a discussion of some of the design choices made in this project.

The example project contains these units:

 Project1_TLB: A Pascal wrapper for the type library containing the
 interface definition.

 Unit1: The interface implementation containing storage for
 interface properties and code to implement interface
 methods.

 Unit2: The main form for the automation server. This unit
 is not strictly necessary, but provides feedback to
 know when methods have been successfully called

 AutCli: The automation client that obtains a reference to the
 interface and uses the interface methods.

 The general steps involved are listed below. You can compare each
of these steps with the unit code that follows.

1) Create a type library and add an interface called IStr, with a
single property called Items of type IStrings. See Developer's
Guide, chapter 42 for more information on working with type libraries
and creating interfaces in the type library editor.

2) In the previous step, adding an interface using the type library
editor will cause a Pascal wrapper unit to be produced (in this
example, the unit is called Unit1). Unit1 will contain shell
implementations of get and set methods of the Items property.
In this step you add implementation code to make the get and set

methods functional. Also you need to add a method to create storage
for your Items property, and to clean up that storage when the
interface is no longer needed. Unit1 uses Unit2. Unit2 contains
a form, memo and status bar to display status of each implemtation
method, for diagnostic purposes.

3) Create Unit2 containing a form with TMemo and TStatusBar. The
form is used to reflect activity in Unit1.pas. Though this step is
not strictly necessary, it helps visualize what's happening between
the automation client and server.

4) Create an automation client. In this case the unit is called
AutCli and contains a memo component and two buttons that assign
the Memo's TStrings data to the IStr interface's Items property.

{--}
unit Project1_TLB;

{ This file contains pascal declarations imported from a type library.
 This file will be written during each import or refresh of the type
 library editor. Changes to this file will be discarded during the
 refresh process. }

{ Project1 Library }
{ Version 1.0 }

interface

uses Windows, ActiveX, Classes, Graphics, OleCtrls, StdVCL;

const
 LIBID_Project1: TGUID = '{E6F9F3B6-FD3C-11D0-908F-00C04FC291A4}';

const

{ Component class GUIDs }
 Class_IStr: TGUID = '{E6F9F3B8-FD3C-11D0-908F-00C04FC291A4}';

type

{ Forward declarations: Interfaces }
 IIStr = interface;
 IIStrDisp = dispinterface;

{ Forward declarations: CoClasses }
 IStr = IIStr;

{ Dispatch interface for IStr Object }

 IIStr = interface(IDispatch)
 ['{E6F9F3B7-FD3C-11D0-908F-00C04FC291A4}']
 function Get_Items: IStrings; safecall;
 procedure Set_Items(const Value: IStrings); safecall;
 property Items: IStrings read Get_Items write Set_Items;
 end;

{ DispInterface declaration for Dual Interface IIStr }

 IIStrDisp = dispinterface
 ['{E6F9F3B7-FD3C-11D0-908F-00C04FC291A4}']
 property Items: IStrings dispid 1;
 end;

{ IStrObject }

 CoIStr = class
 class function Create: IIStr;
 class function CreateRemote(const MachineName: string): IIStr;
 end;

implementation

uses ComObj;

class function CoIStr.Create: IIStr;
begin
 Result := CreateComObject(Class_IStr) as IIStr;
end;

class function CoIStr.CreateRemote(const MachineName: string): IIStr;
begin
 Result := CreateRemoteComObject(MachineName, Class_IStr) as IIStr;
end;

end.
{--}
unit Unit1;

interface

uses
 ComObj, Project1_TLB, StdVCL, Classes, AxCtrls, Unit2;

type
 TIStr = class(TAutoObject, IIStr)
 private
 FItems: TStrings;
 public
 destructor Destroy; override;
 procedure Initialize; override;
 function Get_Items: IStrings; safecall;
 procedure Set_Items(const Value: IStrings); safecall;
 end;

implementation

uses ComServ, Dialogs;

procedure TIStr.Initialize;
begin
 Inherited Initialize;
 FItems := TStringList.Create;
end;

destructor TIStr.Destroy;
begin
 FItems.Free;
end;

function TIStr.Get_Items: IStrings;
begin
 Form1.Memo1.Lines.Assign(FItems);
 GetOleStrings(FItems, Result);
 Form1.StatusBar1.SimpleText := 'TIStr.Get_Items: IStrings';
end;

procedure TIStr.Set_Items(const Value: IStrings);
begin
 SetOleStrings(FItems, Value);
 Form1.Memo1.Lines.Assign(FItems);
 Form1.StatusBar1.SimpleText := 'TIStr.Set_Items(const Value: IStrings)';
end;

initialization
 TAutoObjectFactory.Create(ComServer, TIStr, Class_IStr, ciMultiInstance);
end.
{--}
unit Unit2;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, ComCtrls, ToolWin, StdVCL, AxCtrls;

type
 TForm1 = class(TForm)
 StatusBar1: TStatusBar;
 Memo1: TMemo;
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

end.
{--}
unit AutCli;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, ComCtrls, ToolWin, StdVCL, AxCtrls, Project1_TLB;

type
 TForm1 = class(TForm)
 ToolBar1: TToolBar;
 tbLinestoIStrings: TToolButton;
 tbIStringsToLines: TToolButton;
 Memo1: TMemo;
 procedure FormCreate(Sender: TObject);
 procedure tbLinestoIStringsClick(Sender: TObject);
 procedure tbIStringsToLinesClick(Sender: TObject);
 public
 MyIStr: IIStr;
 end;

var
 Form1: TForm1;

implementation

uses ComObj;

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 MyIStr := CoIStr.Create;
end;

procedure TForm1.tbLinestoIStringsClick(Sender: TObject);
var
 TempIStrs: IStrings;
begin
 GetOleStrings(Memo1.Lines, TempIStrs);
 MyIStr.Set_Items(TempIStrs);
end;

procedure TForm1.tbIStringsToLinesClick(Sender: TObject);
var
 TempIStrs: IStrings;
begin
 TempIStrs := MyIStr.Get_Items;
 SetOleStrings(Memo1.Lines, MyIStr.Items);
end;

end.
{--}

 So why was Unit1, the interface implementation created? An Ole
interface, such as IStrings, can be considered a contract that
properties and functions will be defined in a given format and that
the functions will be implemented as defined (see Developer's Guide,
Chapter 36, "An Overview of COM" for more information. The fact that
you define an interface does not provide implementation. For

example, to make a defined IStrings interface useable you need to
provide storage for the strings and mechanism to add and retrieve
strings. Any addtional functionality, defined in the interface,
such as a Clear or IndexOf method, must also be implemented.

 You may notice in Unit1 that we do not override the Create
constructor as the point to create an instance of the FItems
TStrings property. Instead we override the Inialize method.
The reason for this can be found in the hierarchy of components
starting with our TIStr object.

 TComObject
 TTypedComObject
 TAutoObject
 TISTR

In this series of objects, only TComObject has a Create method, and
that method IS NOT VIRTUAL. The Create method calls the
TComObject.CreateFromFactory and it in turn calls the Initilize
method which IS virtual. You can see more detail of the mechanics
of this hierarchy in the \source\rtl\sys\comobj.pas unit.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Getting Version Information From Your Program
 NUMBER : 3241
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : August 11, 1997

 TITLE : Getting Version Information From Your Program

This sample project demonstrates how to get at the version info
in executables.

1. Launch Delphi 3.

2. In a new project, drop a TMemo and a TButton on the form (make
 sure they're called Memo1 and Button1). Double click on Button1.
 Now you can go ahead and directly replace the code for the
 Button1Click procedure (see below).

The Button1Click procedure

procedure TForm1.Button1Click(Sender: TObject);
const
 InfoNum = 10;
 InfoStr : array [1..InfoNum] of String =
 ('CompanyName', 'FileDescription', 'FileVersion', 'InternalName',
 'LegalCopyright', 'LegalTradeMarks', 'OriginalFilename',
 'ProductName', 'ProductVersion', 'Comments');
var
 S : String;
 n, Len, i : Integer;
 Buf : PChar;
 Value : PChar;
begin
 S := Application.ExeName;
 n := GetFileVersionInfoSize(PChar(S),n);
 if n > 0 then begin
 Buf := AllocMem(n);
 Memo1.Lines.Add('FileVersionInfoSize='+IntToStr(n));
 GetFileVersionInfo(PChar(S),0,n,Buf);
 for i:=1 to InfoNum do
 if VerQueryValue(Buf,PChar('StringFileInfo\040904E4\'+
 InfoStr[i]),Pointer(Value),Len) then
 Memo1.Lines.Add(InfoStr[i]+'='+Value);
 FreeMem(Buf,n);
 end else
 Memo1.Lines.Add('No FileVersionInfo found');
end;

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that

you received with the Borland product to which this information
pertains.

Delphi Titles from Leading Book Publishers
 NUMBER : 8520
 PRODUCT : Delphi
 VERSION : All
 OS : Windows/Win32
 DATE : August 21, 1996

 TITLE : Delphi Titles from Leading Book Publishers

 BORLAND'S DELPHI IS
 SUPPORTED BY THESE TITLES
 FROM LEADING BOOK PUBLISHERS
 April 1996

Delphi Version 2.0

The following is a list of book titles for Delphi 2.0 that are
currently available or will be available in the future. For more
information, contact the publisher.

* Delphi 2 Developer's Guide; X. Pacheco/S. Teixeira; Borland
 Press/Sams Publishing; ISBN: 0-672-30914-9
 Phone: 800-428-5331; Fax: 800-448-3804
* Borland's Official No-Nonsense Guide to Delphi 2; M. Manning;
 Borland Press/Sams Publishing; ISBN: 0-672-30871-1;
 Phone: 800-428-5331; Fax: 800-448-3804
* Teach Yourself Delphi 2 in 21 Days; D. Osier; Borland
 Press/Sams Publishing; ISBN: 0-672-30863-0;
 Phone: 800-428-5331; Fax: 800-448-3804
* Database Developer's Guide with Delphi 2; K. Henderson; Borland
 Press/Sams Publishing; ISBN: 0-672-30862-2;
 Phone: 800-428-5331; Fax: 800-448-3804
* Delphi 2 Unleashed, Second Edition; C. Calvert; Borland
 Press/Sams Publishing; ISBN: 0-672-30858-4
 Phone: 800-428-5331; Fax: 800-448-3804
The New Delphi 2 Programming Explorer; J. Duntemann/J. Mischel/D.
 Taylor; Coriolis Group; ISBN: 1-883577-72-1;
 Phone: 800-410-0192; Fax: 602-483-0193
Delphi 2 Nuts and Bolts, 2nd Edition; G. Cornell;
 Osborne/McGraw-Hill; ISBN: 0-07-88203-3
 Phone: 800-227-0900; Fax: 510-549-6603
Special Edition Using Delphi, 2nd Edition; J. Matcho; Que;
 ISBN: 0-7897-0591-5; Phone: 800-428-5331; Fax: 800-882-8583
Delphi 2 By Example, 2nd Edition; B. Watson; Que;
 ISBN: 0-7897-0592-3; Phone: 800-428-5331; Fax: 800-882-8583
Building Delphi 2.0 Database Applications; P. Kimmel; Que; ISBN:
 0-7897-0492-7; Phone: 800-428-5331; Fax: 800-882-8583

Mastering Delphi for Windows 95; M. Cantu; Sybex;
 ISBN: 0-7821-1860-7; Phone: 880-227-2346; Fax: 510-523-2373
Revolutionary Guide to Delphi 2 Programming; B. Long/B. Swart/et
 al; Wrox Press Ltd.; ISBN: 1-874416-67-2;

 Phone: 312-465-3559; Fax: 312-465-4063

* Part of the Borland Press Series

Delphi Version 1.0

* Delphi Developer's Guide; X. Pacheco/S. Teixeira; Borland
 Press/Sams Publishing; ISBN: 0-672-30704-9
* Teach Yourself Database Programming with Delphi in 21 Days;
 Nathan and Uri Gurewich; Borland Press/Sams Publishing;
 ISBN: 0-672-30851-7
Delphi Programming Unleashed; C. Calvert; Sams Publishing; ISBN:
 0-672-30499-6
The Delphi Programmer Explorer; J. Duntemann/J. Mischel/D.
 Taylor; Coriolis Group; ISBN: 1-883577-25-X
Delphi Programming for Dummies; N. Rubenking; IDG Books;
 ISBN: 1-56884-200-7
Foundations of Delphi Programming; T. Swan; IDG Books; ISBN:
 1-56884-347-X
Delphi: A Developer's Guide; V. Kellen/B. Todd; MIS Press; ISBN:
 1-55851-455-4
Teach Yourself Delphi; D. Hall; MIS Press; ISBN: 1-55828-390-0
Delphi Nuts and Bolts; G. Cornell/T. Strain; Osborne/McGraw-Hill;
 ISBN: 0-07-882-136-3
Using Delphi, Spec. Ed; J. Matcho/M. Andrew/et al; Que; ISBN:
 1-56529-823-3
Mastering Delphi; M. Cantu; Sybex; ISBN: 0-7821-1739-2
Borland Delphi How-To; G. Frerking/W. Niddery/N. Wallace; Waite
 Group Press; ISBN: 1-57169-019-0
Developing Windows Applications Using Delphi; P. Penrod; John
 Wiley and Sons; ISBN: 0-471-11017-5
Delphi By Example; B. Watson; Que; ISBN: 1-56529-757-1
Teach Yourself Delphi in 21 Days; A. Wozniewicz; Sams Publishing;
 ISBN: 0-672-30470-8
Instant Delphi; D. Jewell; Wrox Press Ltd.; ISBN: 1-874416-57-5
Delphi for Windows Power Toolkit; H. Davis; Ventanna; ISBN:
 1-56604-292-S

* Part of the Borland Press Series

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Adding ODBC Drivers in Delphi 3.0
 NUMBER : 3217
 PRODUCT : Delphi
 VERSION : All
 OS : Windows
 DATE : July 7, 1997

 TITLE : Adding ODBC Drivers in Delphi 3.0

Adding ODBC Drivers in Delphi 3.0

The minimum requirements necessary to install an ODBC driver in
Delphi 3.0 are as follows:

Microsoft ODBC Manger
Windows 95 or NT
Delphi Developer or Delphi Client/Server edition
Vendor-provided ODBC driver (already installed on your system)

When using Delphi 3.0 there are now two common methods
to add ODBC drivers to the BDE. The first step to using any of the
methods is to first obtain and install the vendor-supplied ODBC driver
onto your system. Once this first essential step is completed the next
steps are fairly simple.

 In the left panel on the screen
is a list of drivers and data sources that have been previously
configured for use with BDE applications.

Method A:

1. First start the BDE Administrator from the Windows Start Menu
(it will be in the Delphi 3.0 folder.)

2. Now select Object|ODBC administrator from the main menu.
(this will bring up a list of currently installed drivers.)

3. Choose Add and then select the ODBC driver you would like to create
a data source for, then click on OK.

4. Next fill in the appropriate information for your driver.
(A minimal configuration will require the Data Source Name field.
You will also need to fill in at least one other field that is a
location specifier for the data. This could be a path in the case of
Paradox or dBase tables or the Server field in the case of configuring
an Interbase ODBC driver. Some non-exhaustive examples include; if
you are using Interbase you would select a path to a .GDB file, if
using Paradox or dBASE files you would specify the data directory
containing your tables or if you were using Oracle you would specify
the entry as it appears in your TNSNAMES.ORA file. Once this is done
you have created a virtual driver and will be able to access your
database files through the datasource your created.)

Method B:

1. First start the BDE Administrator from the Windows Start Menu
(it will be in the Delphi 3.0 folder.)
2. Click on the database tab, then right click inside of the left panel.
3. Select New from the popup menu and then select the type of ODBC driver
you would like to add and click OK.
4. Again right click in the database panel and select Apply from the
popup menu.
5. Now you must select a valid ODBC DSN (Data Source Name) from the
definition panel on the right and select apply.

Both of these methods result in the ability to hook a TDataset in Delphi
to live data.

You may have noticed some new options from the Object|Options
menu, these options allow you to select different configuration modes
to view. It's advisable to have all check boxes in the Select
Configuration Modes to View panel selected. When all the check boxes
are selected you will be provided with an extensive list of all drivers
and aliases available for your use. Without checking the 'virtual'
setting you will not be able to 'see' the drivers that you have added
through the MS ODBC manager but not explicitly through the BDE (as per
method 2).

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Developer Support & Customer Support Phone Numbers
 NUMBER : 9605
 PRODUCT : Borland
 VERSION : All
 OS : All
 DATE : June 5, 1997

 TITLE : Developer Support & Customer Support Phone Numbers

The following is a listing of Borland Developer Support and
Customer Support phone numbers. For detailed information on the
Technical Support programs, please refer to Technical
Information Sheet #9800, "Borland Assist". For information on
Paradox support, refer to the section below "Obtaining Paradox
Support from Corel". For information on ReportSmith support,
refer to the section below "Obtaining ReportSmith Support from
Strategic Reporting Systems, Inc.".

 Developer Support Telephone Numbers

For information about Developer Support telephone numbers, please
contact Borland Assist at 1-800-523-7070 (7 a.m. to 4 p.m.
Pacific Time, Monday through Friday).

 Online Support and Automated Support Phone Numbers

Borland provides the following online and automated support
services:

 - Borland World Wide Web Site www.borland.com
 - Borland Internet FTP site ftp.borland.com
 - TechFax Automated Fax Retrieval System 1-800-822-4269
 - Borland Download BBS (up to 9600 baud 8N1) 408-431-5096

For more information about these services, see Technical
Information Sheet #9800, "Borland Assist", or call 1-800-523-7070
(7 a.m. to 4 p.m. Pacific Time, Monday through Friday).

 Borland Assist and Customer Support Phone Numbers

For detailed information on Borland Assist, refer to Technical
Information Sheet #9800, or call 1-800-523-7070 (7 a.m. to 4 p.m.
Pacific Time, Monday through Friday).

To order the Borland products

 Call End-User Sales 1-800-932-9994
 (24 hours, 7 days a week)

For inquiries about net terms purchase orders

 Call End-User Customer Service 408-461-9190

For all other customer service inquiries

 Call End-User Customer Service 510-354-3828

 Obtaining Paradox Support from Corel

Corel is licensing Paradox from Borland and now assumes
responsibility for Paradox development, support, sales, and
marketing.

For general questions about technical support for Paradox,
contact Corel at 1-800-772-6735 or visit Corel's Web site at:
www.corel.com

 Obtaining ReportSmith Support from Strategic Reporting Systems

Strategic Reporting Systems, Inc. is licensing ReportSmith from
Borland and now assumes responsibility for worldwide service,
maintenance, support, marketing, an sales of the ReportSmith
family of products. For general questions about technical
support for ReportSmith, contact Strategic Reporting Systems at
1-508-531-0905.

 Other References

The following Technical Information Sheets provide additional
information on Borland Technical Support services. You can order
get these documents from TechFax, Borland Download BBS, the
Borland web site (www.borland.com), and the Borland FTP site
(ftp.borland.com).

TI Title
---- --
9604 An Overview Of Borland Online Information Services
9652 Borland International's TechFax System
9656 Technical Support Via The Internet
9800 Borland Assist

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Borland International's TechFax System
 NUMBER : 9652
 PRODUCT : Borland
 VERSION : All
 OS : All
 DATE : April 23, 1996

 TITLE : Borland International's TechFax System

Borland International maintains a library of documents that
pertain to specific technical topics (i.e., common questions and
answers, applications, and programs) and current Borland news
(e.g., product fact sheets, press releases, availability
listings, etc.). With TechFax, you can order these documents and
have them sent directly to your fax machine.

TechFax is a 24-hour automated service that sends free technical
and company information to your fax machine. To access TechFax,
call:

 800-822-4269

from any touch-tone telephone. You will be greeted and directed
to the documents you desire. Simply follow the voice routing
menu system and respond to the prompts. Once you become
proficient with TechFax, you can even type ahead of the prompts
without waiting for them to play in their entirety. You can
request up to three documents per call.

The Main Menu:

The main TechFax menu consists of three choices:

Press 1 Information on the TechFax system.

 Pressing 1 provides you with a condensed verbal
 version of this document.

Press 2 To order a document.

 If you already know the document number associated
 to the document you wish to order, press 2 to
 order the document.

Press 3 To order a TechFax catalog.

 If you have not previously used this service, you
 will first want to order the TechFax information
 catalog. This catalog provides a global list of
 product/interest catalogs. These smaller catalogs
 list specific documents available for particular
 Borland products and various company news
 documents.

 Each catalog consists of a list of document
 numbers and brief descriptions of the information
 presented in each document. A date is also
 provided to show when a document has been added or
 updated in the catalog. The documents appear in
 each catalog sorted by this date so newer
 documents always appear at the beginning of the
 catalog.

Press 4 To cancel an order.

Note: You can press **0 (star, star, zero) at any time to return
to the main menu.

Ordering a Document:

To order documents, call TechFax at 800-822-4269. Pressing 2
from the main voice menu will bring you to the document ordering
prompts. You will be asked to enter up to 3 document numbers.
The document numbers must to be separated by the asterisk (*)
symbol and finished with a pound sign (#).

For example, if you wished to order documents 500, 793 and 542,
you would respond:

 500*793*542#

If you are not sure of the document number or don't know what
documents are available, order one of the catalog documents
listed below.

You can use your touch-tone telephone to request up to three
documents per call. TechFax will attempt to successfully send
each requested document five time before aborting the request.

Ordering a Catalog:

There are two ways you can order a TechFax catalog. First, from
the list of available product/interest catalogs listed below,
locate the document number associated with that catalog. Then
from the main TechFax menu, press 2 to order the catalog.
Second, if you are not sure of the document number of the catalog
you wish to order, press 3 from the main TechFax menu. This will
present you with a verbal prompts for the catalogs you wish to
order.

Available Product/Interest Catalogs:

 Document
 Number Catalog Name
 1 Catalog of available product catalogs
 2 Borland News
 3 Borland and Turbo C, C++, Brief, and BVT
 4 Paradox for DOS
 5 Client/Server (InterBase and ReportSmith)
 6 dBASE for Windows, Visual dBASE

 8 dBASE for DOS, UNIX and VMS
 9 Consultants, training centers, 3rd party
 vendors, and user groups
 10 Paradox for Windows
 11 Paradox Engine (C and Pascal)
 12 SQL Link
 14 Delphi
 15 ObjectVision
 16 Turbo Pascal
 20 Turbo Assembler, Debugger, and Profiler
 24 Borland Product Information

Personal Identification:

When ordering documents from TechFax, an automated computer
service processes your request. If you will be receiving the
documents through a central fax machine that is used by others,
you will want to identify yourself as the recipient of the
documents.

After you have placed your request for documents or catalogs, you
will be prompted to enter a personal identification (such as your
name). TechFax will place this personal identification on the
cover sheet of your order.

Use the keypad on your touch-tone phone as if it were a
typewriter that supports three letters on each key. By pressing
a key once, the first letter on the key is entered. Pressing the
key twice quickly in succession enters the second letter on the
key. Pressing the key three times in rapid succession enters the
third letter on the key. For the letters Q and Z, use the 1
(one) key, pressing it once for Q and twice for Z. To add a
space, press zero. Once you have entered your name as you want
it to appear on the fax cover sheet, press the pound key to
conclude your entry. As you press keys on the keypad, TechFax
will echo the letter it recorded back to you.

If you decide not to use a personal identification for the fax
cover sheet, simply press the pound sign when prompted.

TechFax Limitations:

Due to the automated process used to transmit documents, TechFax
cannot accept international phone numbers. Technical Information
Sheets are also available on the Borland Download BBS,

CompuServe, and on www.borland.com. See the information that
follows for information on these services.

Download BBS:

If you are using a FAX modem to receive documents from TechFax
and are experiencing difficulties, you may wish to consider using
Borland's Technical Support Download BBS. This multi-line
download service contains all documents available through

TechFax, as well as other miscellaneous programs and
applications. To access the BBS, call (408) 431-5096 from your
modem. The settings of your modem are automatically detected so
no special setup is required. The service supports modem baud
rates up to 9600 bps. For additional information on the
Technical Support Download BBS, request document number 9677.

CompuServe:

Technical Information Sheets are also available in the Borland
Forums on CompuServe. TIs are located in the following sections
of the following forums:

 Forum Section(s)
 -------- ----------
 BCPP 2
 BDEVTOOLS 4,7
 DELPHI 2
 DBASEWIN 10
 DBASE 10
 PDOXWIN 1
 PDOXDOS 1

For more information about Borland Online services, refer to
Technical Information Sheet #9604.

www.borland.com:

Technical Information Sheets are also available on the Borland
FTP site, which is accessible from www.borland.com. To access
Technical Information Sheets for a particular product, click the
Tech Info option on the Borland Home Page, then select the
product. You can also access the Borland FTP site directly at
ftp://ftp.borland.com/pub/techinfo/techdocs/
although, it is easier to locate Technical Information Sheets via
the Tech Info pages on www.borland.com.

Borland Fast Fax:

Borland Fast Fax is an automated FAX retrieval system that you
can use to request and receive information about Borland and its
products. You can order up to five documents at one time. Fast
Fax provides the following information:

 - Borland product information
 - Lists of Developers, System Integrators and Training
 Companies
 - Reseller information
 - Educational customer and reseller information
 - Borland corporate programs
 - Borland Connections

 Call 1-800-408-0001

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Technical Support Via the Internet
 NUMBER : 9656
 PRODUCT : Borland
 VERSION : All
 OS : All
 DATE : April 25, 1996

 TITLE : Technical Support Via the Internet

Users of all Borland products now have the option to retrieve
technical resources and information via 'anonymous' File Transfer
Protocol (FTP) over the Internet. FTP is the Internet standard
for transferring files to and from a remote network host.

This service will connect millions of users in the global user-
base of Borland products and the Internet community together.
This adds yet another option and method for our users to obtain
world-class technical support. Through the Internet and
anonymous FTP, users will have the ability to directly access
technical information and obtain world-class technical services
and support.

ACCESS TO FTP
------ -- ----
Most users of the Internet community have the ability to take
advantage of ftp.borland.com. The examples supplied in this
document assume you have:

 1. access to the proper Internet connection
 2. availability to FTP services on a UNIX operating
 system

 See *NOTE below.

You can also access ftp.borland.com from www.borland.com. The
easiest way to access technical information for Borland products
is to select the Tech Info page from www.borland.com for a
particular Borland product. To do this select Tech Info from the
Borland home page (www.borland.com), then choose the product. On
the Tech Info page for each Borland product there is an option
for FTP Files and for Technical Information.

Connecting to ftp.borland.com
---------- -- ---------------
To connect to ftp.borland.com, you can either type 'ftp' or 'ftp
ftp.borland.com' at the UNIX prompt. Either way, you will be
connected to the remote FTP server. UNIX system prompts and
responses are enclosed in {} braces.

 {UNIXPrompt%} <----- TYPE ftp ftp.borland.com
 {Connected to ftp.borland.com.}
 {220 ftp FTP server (SunOS 4.1) ready.}

 {Name (ftp.borland.com:<username>):} <- TYPE anonymous
 {311 Guest login ok, send ident as password.}
 {Password:} <--- TYPE your Internet mailing address here
 {230 Guest login ok, access restrictions apply.}
 {ftp>}

--or--

 {UNIXPrompt%} <----- TYPE ftp
 {ftp>} <----- TYPE open ftp.borland.com
 {Connected to ftp.borland.com.}
 {220 ftp FTP server (SunOS 4.1) ready.}
 {Name (ftp.borland.com:<username>):} <- TYPE anonymous
 {311 Guest login ok, send ident as password.}
 {Password:} <--- TYPE your Internet mailing address here
 {230 Guest login ok, access restrictions apply.}
 {ftp>}

FTP COMMANDS
--- --------
The core commands of the File Transfer Protocol (FTP) are
supplied below. Examples using some of these commands will be
included later in this document.

Command Function
------- --------
ls List contents of remote directory
dir List contents of remote directory
cd <directory> Change remote directory
 (same as DOS)
lcd <directory> Change local directory
cdup Change dir to remote parent dir
pwd Print working directory of remote
 host
prompt Force interactive prompting on
 multiple commands
 (default is on)
get <filename> Receive <filename> to local
 system
mget <filename1 filename2 ...> Receive multiple files to local
 system
open <remote host> Opens a session with remote host
ascii Set ASCII transfer type
binary Set binary transfer type
 for executable, data,
 compressed, or object files
status Show current status
! Shell to local operating system
quit Terminate FTP session and exit

THINGS TO KNOW:
****** ** *****

File Naming Conventions

---- ------ -----------
This is a UNIX application. There are two concerns to be aware
of:

 1. File names are case sensitive.
 2. If you are copying files to your local machine, and
 it uses the DOS file naming convention, it will
 truncate the filename.

 Example: TI1051111.txt
 TI1051112.txt
 TI1051113.txt --> in DOS are all
 TI105111.txt

HELP

In the FTP application, you can type 'Help' or '?' for a listing
of commands. For help on a particular command:

 TYPE help <command name> or ? <command name>

INDEX Files
----- -----
Borland offers users files in the /pub directory that corresponds
to the files and resources available to you. It is recommended
that you download the INDEX and readme text file(s) before
retrieving documents. This will save you a great deal of time
searching for files and information. The exercise steps you
through retrieving these helpful and important files.

Wildcards

You can use the wildcard (*) when specifying (a) filename(s) in
commands.

Command Status
------- ------
When the user issues a command at the FTP prompt, the
application will respond with its current status. For example:

 command successful
 ?Invalid command -or- ?Ambiguous command
 Transfer complete.
 ASCII Transfer complete.
 Binary Transfer complete.

FILE TYPE: Binary vs. ASCII
---- ----- ------ --- -----
Remember to set the file type before sending and retrieving
files. If you do not specify the correct file type, you will
not

be able to correctly use the file.

Use Binary file transmission for files with extension:
 .zip, .exe, .com
Use ASCII file transmission for files with extension:
 .dat, .txt, .pas, .c

NOTE: If you are not sure which file type to use, set file type
 to Binary.

.ZIP Files

Many files at ftp.borland.com are saved in compressed .ZIP
format. They must be uncompressed with PKUNZIP before they can
be used or viewed properly. The files have been compressed with
PKZIP version 2.04g. The /pub/libs/misc/gen directory contains
the self-extracting .EXE version of this utility program.

Abbreviations:

BGI - Borland Graphics Interface Files
BI - Basic Information. General files. Additional product
 samples.
TI - Technical Information sheets. TIs have been created to
 further assist our users accomplish their tasks at hand.
 Tips and Tricks! TIs offer an additional resource that
 compliments and builds upon the information presented in
 our manuals and product HELP.
TL - Template Language for dBASE
TFMS - Text Font Metrics Files
TV - Turbo Vision
QnA - Questions and Answers

HELPFUL EXAMPLE:
******* ********

Open an FTP session at ftp.borland.com and get the INDEX document
in the directory /pub. Then mget filxdir.txt and readme.txt.

* To change directory, type:

 {ftp>} cd /pub
 {250 CWD command successful}

* To get a file, type:

 {ftp>} get INDEX
 {200 PORT command successful.}
 {150 ASCII data connection for INDEX (272775 bytes).}
 {226 ASCII Transfer complete.}
 {272775 bytes received in 16.69 seconds (16.25 Kbytes/s)}
 {ftp>}

* To get a file and save it by another name in the local
 directory. The syntax is:

 get <filename> <new file name>

 For example:

 {ftp>} get INDEX MYINDEX.TXT

* To get multiple files, type:

 {ftp>} mget filxdir.txt readme.txt
 {mget filxdir.txt?} y <- y for yes / n for no
 {200 PORT command successful.}
 {150 ASCII data connection for filxdir.txt(57727 bytes).}
 {226 ASCII Transfer complete.}
 {58954 bytes received in 3.36 seconds (17.13 Kbytes/s)}
 {mget readme.txt?} y
 {etc.}

* To quit, type: {ftp>} quit

*NOTE: Although not included nor discussed in this document,
 there are many programs and applications available that
 will allow PC users, who have the proper Internet
 connection, to directly access FTP sites.

PROBLEMS

Problems accessing information on ftp.borland.com should be
reported to roger@borland.com. Do NOT e-mail messages that do
not concern this system. Please include "SYSTEM PROBLEM" in the
subject of your message.

Borland is currently supporting 67 ports on this site 24 hours, 7
days a week. Depending on the popularity and usage of this
service, this number of connections may increase. Please try
again if the connections are busy.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Borland's Technical Suport Download Bulletin Board
 NUMBER : 9677
 PRODUCT : Borland
 VERSION : All
 OS : All
 DATE : April 25, 1996

 TITLE : Borland's Technical Suport Download Bulletin Board

Borland International maintains a library of documents,
applications and programs that pertain to specific technical
topics and current Borland news. Through the Technical Support
Download BBS, you can download these documents and files to your
computer.

The Technical Support Download BBS is a multi-line 24 hour
download service that allows you to retrieve free technical
information. To access the BBS, from your modem call:

 (408) 431-5096

The settings of your modem are automatically detected so no
special setup is required. However, if you encounter any
difficulties accessing the service, set your modem to use 8 data
bits, no parity, and 1 stop bit (8-N-1). The Download BBS
supports modem baud rates up to 9600 bps.

When you access the BBS you will be greeted with a easy to follow
menu system. Select the area of interest from the menu and you
will see a list of available files and a brief description for
each file. You can download any of the listed files.

Technical information available through the Download BBS include
documents discussing technical product information, tips & traps,
common questions & answers and sample programs & applications.
Current Borland news include press releases, product fact sheets,
announcements, product availability listings and product
comparisons.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Borland Assist
 NUMBER : 9800
 PRODUCT : Borland
 VERSION : All
 OS : All
 DATE : June 5, 1997

 TITLE : Borland Assist

Borland is committed to providing you with the best possible
services and assistance. In keeping with this commitment, we are
proud to introduce the NEW Borland Assist developer support
program. This new program is packed with expert support,
exceptional value, and extra-ordinary flexibility.

Whether you're an occasional user or a power user, Borland is
ready to assist you. To order any or Borland's Assist programs,
please call Borland Assist at 800 523-7070.

The new developer support structure includes several new programs
differentiated by levels of support, rather than by product
lines. This will provide a unified process for speeding response
times and reducing the number of support contracts needing to be
managed by customers.

Beginning May 1, 1997, Borland will begin taking orders for its
new support contracts. Borland will, at the same time, continue
to honor all existing contracts. The new support programs apply
to customers in the U.S. and Canada, and are scheduled to be in
operation by July 1, 1997. To contact a Borland Sales
representative for more information on these support programs,
please call (408) 431-1064.

Support hours for all Borland products will be 7 am to 4 pm.,
Pacific Standard Time, starting June 4, 1997.

 New Developer Support Services for the U.S. and Canada

Following is an overview of new developer support services.
Detailed descriptions of each of the services appears below this
overview.

Installation Assist -- Offers Borland customer support via
telephone on Borland workstation software products. Questions
will be answered concerning local installations during the first
90 days after the first call to Borland's service center. This
service is scheduled for availability starting May 1, 1997.

Primary Assist -- Customers of Borland workstations software
products can call Borland for per-minute telephone support on
local installation and product usability. This service is
scheduled for availability starting June 30, 1997.

Developer Incident Assist -- Customers receive support via
telephone for questions concerning installation, programming,
connections to database servers, and usability of Borland
products in a workstation, network, or client/server environment
on a per incident basis. This service is scheduled for
availability starting June 15, 1997.

Priority Developer Assist -- Provides customers an annual
developer support service with priority hotline assistance during
service hours on all supported Borland workstation products. The
service covers questions concerning the installation,
programming, connections to database servers, and usability of
Borland products in a workstation, network, or client/server
environment for a predefined number of 15 incidents or 12 months.
This service is scheduled for availability starting May 1, 1997.

Extended Developer Assist -- Offers customers priority hotline
services during service hours on all supported Borland
workstation products, including extended products such as
Delphi/400. Questions concerning the installation, programming,
connections to database servers, and usability for Borland
products in a workstation, network, or client/server environment
are covered for a predefined number of 15 incidents or 12 months.
This service is scheduled for availability starting May 1, 1997.

Description of activities
INSTALLATION ASSIST

Service Description
Installation Assist offers Borland customers technical support
via telephone on registered Borland products listed on the
Supported Products List. Questions will be answered concerning
the local installation of Borland products on workstations during
the first 90 days after the first call on a product to the
service center.

Service Features
* Support via telephone
* Access to the Developer Support area on the WWW, Borland
 Online.
* Access to Technical support personnel.
* Charge-free installation assistance for registered Borland
 customers for 90 days, standard telephone toll charges apply.
* For customers of all Borland products covered by Installation
 Assist.
* Questions related to the Borland product on local installation
 and opening sample tables are supported under this service
* Questions on usability issues, programming, connecting to
 database servers, database servers, pre-releases, trial
 versions, Borland OED products and products on the Extended
 Product List are not supported under this service.
* Customer will be given a support reference number to be used
 in consecutive calls on the same issue,
* Installation Assist is provided for owners of products on the

 Supported Product List. This list is available on the WWW, and
 is updated periodically. The list is also available from
 Borland Customer Service upon request.

Customer Responsibilities
* Support will only be given for products that have been
 registered by the customer.
* Customers should first read the on-line text and readme files;
 these files may include information that make it unnecessary
 to call for support.
* The customer must provide a clear, detailed description of the
 problem or the question.
* Installation Assist be provided only for Borland products used
 in accordance with the defined hardware and operating system
 requirements.
* Customer must be at the workstation where the product is being
 installed at time of call.

Duration
* The no charge Installation Assist is provided for up to 90
 days after the first call to the service center on a supported
 Borland product.

Service Hours
* Service hours are from 7 am to 4 pm Pacific time from Monday
 through Friday on business days.

Terms and Conditions
* All services are provided subject to the current Borland
 Developer Support Program's Terms and Conditions (see the
 section at the end of this document).

Description of activities
PRIMARY ASSIST

Service Description
Primary Assist offers Borland customers technical support via
telephone on registered Borland products listed on the Supported
Products List. A single issue will be answered concerning the
local installation or usability of Borland products on
workstations.

Service Features
* Support via telephone.
* Access to the developer support area on the WWW, Borland
 Online.
* Access to technical support personnel.
* Questions related to the Borland product on installation,
 user interface, programming syntax, opening local sample
 tables and explanation of error messages are supported under
 this service.
* Questions on customer's application code, connecting to
 database server, database servers, pre-releases, trial
 versions, Borland OED products and products on the Extended

 Product List are not supported under this service.
* Customer will be given a support reference number to be used
 in consecutive calls on the same issue
* Primary Assist is provided for owners of products on the
 Supported Product List. This list is available on the WWW, and
 is updated periodically. The list is also available from
 Borland Customer Service upon request.
* Primary Assist is delivered for a single incident or question.
 - an incident is defined as a single support issue with a
 Borland product and the reasonable effort needed to resolve
 it. A single support issue is a problem that cannot be
 broken down into subordinate parts. Before Borland
 responds to an incident, the customer and Borland's
 engineer must agree on what the problem is and the
 parameters for providing a resolution
 - it is possible for one incident to span multiple telephone
 calls, it is also possible for one telephone call to
 include multiple incidents
 - when, after 3 attempts on separate business days, the
 customer cannot be reached regarding an open incident, the
 incident is considered closed, unless otherwise agreed by
 Borland and customer.

Customer Responsibilities
* Support will only be given for products that have been
 registered by the customer.
* The customer should provide a clear, detailed description of
 the problem or the question.
* Support will be provided only for Borland products used in
 accordance with the defined hardware and operating system
 requirements.
* Customer must be at the workstation where the product is
 installed at time of call.

Service Hours
* Service hours are from 7 am to 4 pm Pacific time from Monday
 through Friday on business days.

Support Fee
* The price of Primary Assist is $2.95 per minute, with a
 mimimum charge of $15, or a fixed price of $95. The per-minute
 cost is calculated as the sum of phone minutes, off-line
 research and possible call back. The customer and Borland's
 engineer must agree on what pricing model will be used before
 Borland will accept the call.

Terms and Conditions
* All services provided are subject to the current Borland
 Developer Support Program's Terms and Conditions (see the
 section at the end of this document).

Description of activities
DEVELOPER INCIDENT ASSIST

Service Description
Developer Incident Assist offers Borland customers developer
support on registered Borland products listed on the Supported
Product List. A single issue will be answered concerning the
installation, connectivity or development of Borland products.

Service Features
* Support via telephone.
* Access to the Developer Support area on the WWW, Borland
 Online.
* Access to a Borland Developer Support engineer.
* Questions related to the Borland product on installation,
 programming and debugging, connecting to local and remote
 databases, and explanation of error messages are supported
 under this service.
* Questions on customer's application code, pre-releases, trial
 versions, Borland OED products, products on the Extended
 Product List and database servers are not supported under this
 service.
* Customer will be given a support reference number to be used
 in consecutive calls on the same issue.
* Developer Incident Assist is provided for owners of products
 on the Supported Product List. This list is available on the
 WWW, and is updated periodically. The list is also available
 from Borland Customer Service upon request.
* Developer Incident Assist is delivered for a single incident
 or question.
 - an incident is defined as a single support issue with a
 Borland product and the reasonable effort needed to resolve
 it. A single support issue is a problem that cannot be
 broken down into subordinate parts. Before Borland
 responds to an incident, the customer and Borland's
 engineer must agree on what the problem is and the
 parameters for providing a resolution
 - it is possible for one incident to span multiple telephone
 calls, it is also possible for one telephone call to
 include multiple incidents
 - when, after 3 attempts on separate business days, the
 customer cannot be reached regarding an open incident, the
 incident is considered closed, unless otherwise agreed by
 Borland and customer
* Borland will endeavour to provide resolutions to questions
 within a reasonable time, but at least within 2 business days
 after the question has been received. If the nature of the
 question prevents Borland from providing a resolution within
 that period, Borland will contact customer to inform customer
 when a resolution can be expected.

Customer Responsibilities
* Support will only be given for products that have been
 registered by the customer.
* The customer should provide a clear, detailed description of
 the problem or the question.
* Support will be provided only for Borland products used in
 accordance with the defined hardware and operating system
 requirements.

* Customer should be at the workstation where the product is
 installed at time of call.

Service Hours
* Service hours are between 7 am to 4 pm Pacific time from
 Monday through Friday on business days.

Support Fee
* The purchase price for the service is $185.

Terms and Conditions
* All services provided are subject to the current Borland
 Developer Support Program's Terms and Conditions (see the
 section at the end of this document).

Description of activities
PRIORITY DEVELOPER ASSIST

Service Description
Priority Developer Assist offers Borland customers an annual
contract to obtain developer support on registered Borland
products listed on the Supported Product List. Questions will be
answered concerning the installation, connectivity and
development of Borland products.

Service Features
* Support via telephone with priority access over Basic Assist
 and Developer Incident Assist.
* No named customer contact necessary.
* Access to the Developer Support area on the WWW, Borland
 Online.
* Access to a Borland Developer Support engineer.
* Questions related to the Borland product on installation,
 programming and debugging, connecting to local and remote
 databases, and explanation of error messages are supported
 under this service.
* Questions on customer's application code, pre-releases, trial
 versions, Borland OED products, products on the Extended
 Product List and database servers are not supported under this
 service.
* Priority Developer Assist is provided for owners of products
 on the Supported Product List. This list is available on the
 WWW, and is updated periodically. The list is also available
 from Borland Customer Service upon request.
* Priority Developer Assist is provided until the predefined
 number of 15 incidents have been used or 12 months have
 elapsed, whatever comes first.
 - an incident is defined as a single support issue with a
 Borland product and the reasonable effort needed to resolve
 it. A single support issue is a problem that cannot be
 broken down into subordinate parts. Before Borland
 responds to an incident, the customer and Borland's
 engineer must agree on what the problem is and the
 parameters for providing a resolution.

 - it is possible for one incident to span multiple telephone
 calls, it is also possible for one telephone call to
 include multiple incidents
 - when, after 3 attempts on separate business days, the
 customer cannot be reached regarding an open incident, the
 incident is considered closed, unless otherwise agreed by
 Borland and customer.
* Borland will endeavour to provide resolutions to questions
 within a reasonable time, but at least within 2 business days
 after the question has been received. If the nature of the
 question prevents Borland from providing a resolution within
 that period, Borland will contact customer to inform customer
 when a resolution can be expected.

Customer Responsibilities
* Support will only be given for products that have been
 registered by the customer.
* The customer should provide a clear, detailed description of
 the problem or the question.
* Support will be provided only for Borland products used in
 accordance with the defined hardware and operating system
 requirements.
* Contracts and customer identification numbers are non-
 transferrable between different companies or individuals.
* Customer should be at the workstation where the product is
 installed at time of call.

Contract Duration
* The use of Priority Developer Assist for Borland products is
 limited to twelve months from the purchase date of the service
 or until the maximum number of incidents has been exhausted,
 whatever comes first.
* When twelve months have elapsed, or the number of incidents
 has been exhausted, the customer will be offered a new annual
 contract. The twelve month period starts at the first day of
 the month following the purchase of the Priority Developer
 Assist annual contract.
* Non-support services, such as the capability to log on-line
 bug reports and to access product patches and releases will
 remain in effect even when no incidents are available.

Service Hours
* Service hours are between 7 am to 4 pm Pacific time from
 Monday through Friday on business days.

Support Fee
* The purchase price for the service is $2495.

Terms and Conditions
* All services provided are subject to the current Borland
 Developer Support Program's Terms and Conditions (see the
 section at the end of this document).

Description of activities

EXTENDED DEVELOPER ASSIST

Service Description
Extended Developer Assist offers Borland customers an annual
contract to obtain developer support on registered Borland
products listed on the Extended Product List. Questions will be
answered concerning the installation, connectivity and
development of Borland products.

Service Features
* Support via telephone with priority access over Basic Assist
 and Developer Incident Assist support.
* No named customer contact necessary.
* Access to the Developer Support area on the WWW, Borland
 Online.
* Access to a Borland Developer Support engineer.
* Questions related to the Borland product on installation,
 programming and debugging, connecting to local and remote
 databases, and explanation of error messages are supported
 under this service.
* Questions on customer's application code, pre-releases, trial
 versions, and Borland products not on the Extended Supported
 product List are not supported under this service.
* Extended Developer Assist is provided for owners of products
 on the Extended Product List. This list is available on the
 WWW, and is updated periodically. The list is also available
 from Borland Customer Service upon request.
* Extended Developer Assist is provided until the predefined
 number of 15 incidents have been used or 12 months have
 elapsed, whatever comes first.
 - an incident is defined as a single support issue with a
 Borland product and the reasonable effort needed to resolve
 it. A single support issue is a problem that cannot be
 broken down into subordinate parts. Before Borland
 responds to an incident, the customer and Borland's
 engineer must agree on what the problem is and the
 parameters for providing a resolution.
 - it is possible for one incident to span multiple telephone
 calls, it is also possible for one telephone call to
 include multiple incidents
 - when, after 3 attempts on separate business days, the
 customer cannot be reached regarding an open incident, the
 incident is considered closed, unless otherwise agreed by
 Borland and customer.
* Borland will endeavour to provide resolutions to questions
 within a reasonable time, but at least within 2 business days
 after the question has been received. If the nature of the
 question prevents Borland from providing a resolution within
 that period, Borland will contact customer to inform customer
 when a resolution can be expected.

Customer Responsibilities
* Support will only be given for products that have been
 registered by the customer.
* The customer should provide a clear, detailed description of
 the problem or the question.

* In order for the customer to obtain support, the Borland
 product must be used in accordance with the defined hardware
 and operating system requirements.
* Contracts and customer identification numbers are non-
 transferrable between different companies or individuals.
* Customer should be at the workstation where the product is
 installed. If applicable, the workstation should be connected
 to the database server via a supported connectivity software
 at time of call.

Contract Duration
* The use of Extended Developer Assist for Borland products is
 limited to twelve months from the purchase date of the service
 or until the maximum number of incidents has been exhausted,
 whatever comes first.
* When twelve months have elapsed, or the number of incidents
 has been exhausted, the customer will be offered a new annual
 contract. The twelve month period starts at the first day of
 the month following the purchase of the Extended Developer
 Assist annual contract.
* Non-support services, such as the capability to log on-line
 bug reports and to access product patches and releases will
 remain in effect even when no incidents are available.

Service Hours
* Service hours are between 7 am to 4 pm Pacific time from
 Monday through Friday on business days.

Support Fee
* The purchase price for the service is $3495.

Terms and Conditions
* All services provided are subject to the current Borland
 Developer Support Program's Terms and Conditions (see the
 section at the end of this document).

 Borland Developer Support Programs
 Terms and Conditions

Please read these Terms and Conditions Carefully

1. We will undertake commercially reasonable efforts to provide
 technical assistance under this agreement, but do not
 guarantee that all problems will be solved or that any item
 will be error free.

2. We may, from time to time, discontinue products and versions,
 stop supporting selected products and versions within a
 reasonable time after discontinuance, or discontinue any or
 all support services. We also reserve the right to terminate
 service to any individual who abuses any support program
 including, but not limited to sharing special phone numbers
 and customer identification numbers with others.

3. BORLAND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 REGARDING THE SOFTWARE OR ANY SERVICES WE MAY PROVIDE,
 INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTY OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR
 ARISING BY STATUTE, LAW OR TRADE DEALING OR USAGE. ALL
 MATERIALS AND SERVICES ARE PROVIDED "AS IS."

4. We are not liable for incidental, special or consequential
 damages for any reason (including loss of time, loss of data
 or software, loss of profits, or loss of revenue) even if
 Borland has been specifically advised of the possibility of
 such damages, and our liability in all events will not exceed
 the support fees that you have paid under this agreement.

5. We own (including copyrights) all work we do and all
 information we give to you as part of our support programs. We
 grant you a non-exclusive license to use that work and
 information for yourself, or internally within your company,
 to the extent such use would be permitted in the No-Nonsense
 License Statement that you received with the Borland product
 to which this information pertains. We have the right to use
 and treat as non-confidential any information you may give us
 during your use of our support program unless you specify in
 writing the fact that certain material should be treated as
 being confidential.

6. This is the full and final agreement between you and us, and
 supersedes any promises, representations or agreements
 relating to the subject of this agreement. This agreement may
 only be changed if you and our authorized representative do so
 in writing. No inconsistent, additional, or pre-printed terms
 on your purchase order or other business form apply.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

Delphi/400: Activating your License Key
 NUMBER : 3218
 PRODUCT : Delphi
 VERSION : All
 OS : Windows
 DATE : July 7, 1997

 TITLE : Delphi/400: Activating your License Key

 This document describes the steps to obtain and apply a permanent
security key for ClientObjects/400 in the Delphi/400 package. Also
refer to the instructions contained in the pamphlet "Additional
Information for Delphi/400 Users" that ships with Delphi/400.

 Delphi/400 software is installed to both an AS/400 and a PC. When
the AS/400 part of the installation is complete, a temporary automatic
key of two months(60 days) will be created. After this time
functionality will be unavailable, and attempting to access the AS/400
through the supplied components will generate a protection error.

 To obtain a permanent key, fill in the registration card that ships
with Delphi/400 and follow the mailing directions on the card. Be
sure to include your AS/400 model and serial number (these numbers
are used to compute a unique key). The model and serial number can
be obtained by running the following AS/400 commands:

DSPSYSVAL(QMODEL)
DSPSYSVAL(QSRLNBR)

When you receive your permanent key, activate the key by entering the
following commands at an AS/400 terminal.

ADDLIBLE CO400
CALL CO400INS

The screen that appears allows you to enter your permanent key.

DISCLAIMER: You have the right to use this technical information
subject to the terms of the No-Nonsense License Statement that
you received with the Borland product to which this information
pertains.

