
      N ET M ANAGE
WinSock TCP ActiveX Control
The following Help Topics are available:
General
Naming Conventions
Properties
Property Page
Methods
Events
Error Messages
Localization
Sample Session
For Help on Help, Press F1

NetManage
NetManage develops, markets and supports an integrated set of TCP/IP inter-networking applications
and development tools for Microsoft Windows. NetManage software facilitates communication,
productivity and the administration of personal computers across dissimilar networking environments.
The Company's award-winning product families include Chameleon and ECCO.
The company is located at 10725 North De Anza Blvd. Cupertino, CA 95014, USA
Phone: 408-973-7171 Fax: 408-973-8272.
International phone: +972-4-8550234 Fax +972-4-8550122

General
The WinSock TCP ActiveX Control implements the WinSock Transmission Control Protocol (TCP) for
both client and server applications.
Invisible to the user, the TCP Control provides easy access to TCP network services. It can be used
by both Delphi and C++ programmers. To write client or server applications you do not need to
understand the details of TCP or to call low level WinSock APIs. By setting properties and calling
methods on the control, you can easily connect to a remote machine and exchange data in both
directions. Events are used to notify you of network activities.

Properties
Following is an alphabetical list of all properties supported by the TCP Control.

Note: Some common ActiveX properties of the control, such as Name, Index, About Box, and others,
may appear in the Object Browser but are not documented here.

BytesReceived
LocalHostName
LocalIP
LocalPort
RemoteHost
RemoteHostIP
RemotePort
SocketHandle
State

Naming Conventions
Objects described in the Properties, Methods and Events section are preceded by the required
parameter: object. During execution object translates to the name of the control. The actual object
name will be:
NMTCPn
where n is the number identifier. For example, the first TCP in a form becomes TCP1, the second is
TCP2 and so forth.

BytesReceived
Description
Advanced property. It shows the amount of data received (currently in the receive buffer). The
GetData method should be used to retrieve data.
Syntax
object.BytesReceived
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
Long.
Default Value
0.
Range
0 - 0xFFFFFFFF

LocalHostName
Description
Local machine name.
Syntax
object.LocalHostName
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A

LocalIP
Description
The IP address of the local machine. It has the format:

number.number.number.number
Syntax
object.LocalIP
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A

LocalPort
Description
For the client, this designates the local port to use. Specify port 0 if the application does not need a
specific port. In this case, the control will select a random port. After a connection is established, this
is the local port used for the TCP connection.
For the server, this is the local port to listen on. If port 0 is specified, a random port is used. After
calling the Listen method, the property contains the actual port that has been selected.
Syntax
object.LocalPort [= Long]
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Permission
W (Read/Write).
Availability
D (Design).
Data Type
Long.
Default Value
0.
Range
0 - 65535

RemoteHost
Description
The remote machine to connect to if the RemoteHost parameter of the Connect method is not
specified. You can either provide a host name or an IP address string in dotted format.
Syntax
object.RemoteHost [= String]
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Permission
W (Read/Write).
Availability
D (Design).
Data Type
String.
Default Value
Empty.
Range
N/A
Comment
This is the default property of the control.

RemoteHostIP
Description
For the client, after a connection has been established (i.e., after the Connect event has been
activated), this property contains the IP string of the remote machine in dotted format.
For server, after an incoming connection request (ConnectionRequest event), this property contains
the IP string (in dotted format) of the remote machine initiating the connection.
Syntax
object.RemoteHostIP
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Permission
R (Read-only).
Availability
R (Runtime).
Data Type
String.
Default Value
Empty.
Range
N/A

RemotePort
Description
For the client, this is the remote port number to which to connect if the RemotePort parameter of the
Connect method is not specified.
For the server, after an incoming connection request event, (ConnectionRequest has been activated)
this property contains the port that the remote machine uses to connect to this server.
Syntax
object.RemotePort [= Long]
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Permission
W (Read/Write).
Availability
D (Design).
Data Type
Long.
Default Value
0.
Range
0 - 65535

SocketHandle
Description
This is the socket handle the control uses to communicate with the WinSock layer.
Syntax
object.SocketHandle
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Permission
R (Read only).
Availability
R (Runtime).
Data Type
Long.
Default Value
-1.
Range
-1 - 65535
Comment
This property is for advanced programmers. You can use SocketHandle in direct WinSock API calls.
However, you should be aware that if WinSock calls are used directly, certain events may not be
activated appropriately.

State
Description
The state of the control, expressed as an enum type.
Syntax
object.State
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Permission
R (Read only).
Availability
R (Runtime).
Data Type
Integer.
Default Value
0.
Range
0-9. Constants defined for enum types in this property are:

Enum Type Meaning
sckClosed = 0 Closed
sckOpen = 1 Open
sckListening = 2 Listening
sckConnectionPending
= 3

Connection pending

sckResolvingHost = 4 Resolving host
sckHostResolved = 5 Host resolved
sckConnecting = 6 Connecting
sckConnected = 7 Connected
sckClosing = 8 Peer is closing the

connection
sckError = 9 Error

Property Page
One property page is provided for viewing and editing the following properties:

· RemoteHost
· RemotePort
· LocalPort

Methods
The methods performed by the TCP Control are:

Accept
Close
Connect
GetData
Listen
PeekData
SendData

Accept
Description
This method is used to accept an incoming connection when handling a ConnectionRequest event.
Return Value
Void.
Syntax
object.Accept RequestID
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
RequestID

The incoming connection request identifier. This should be the requestID passed in the
ConnectionRequest event.
Data Type: Long
Param: IN

Comment
Accept should be used on a new control instance (other than the one that is in the listening state.)

ConnectionRequest Event

Close
Description
Closes a TCP connection or a listening socket for both client and server.
Return Value
Void.
Syntax
object.Close
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
None.

Connect
Description
Initiates connection to remote machine.
Return Value
Void.
Syntax
object.Connect [RemoteHost,] [RemotePort]
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
RemoteHost

Optional. If this parameter is missing, Connect will connect to the remote host specified in the
RemoteHost property. If this parameter is missing, Connect will connect to the remote host
specified in the RemoteHost property.

Data Type: VARIANT
Param: IN

RemotePort
Optional. If this parameter is missing, Connect will connect to the remote port specified in the
RemotePort property. If this parameter is missing, Connect will connect to the remote port
specified in the RemotePort property.

Data Type: VARIANT
Param: IN

Comment
If the connection is successfully established, the Connect event will be activated. If an error occurs
during connection, the Error event will be activated.

GetData
Description
Retrieves data.
Return Value
Void.
Syntax
object.GetData data [,type] [,maxLen]
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
Data

Stores retrieved data after the method returns successfully. If there is not enough data
available for requested type, data will be set to Empty.
Data Type: VARIANT
Param: OUT

Type
Optional. Type of data to be retrieved.
Data Type: VARIANT
Param: IN
Default Value: vbArray + vbByte
Currently, the following variant types are supported.
Type C++ VB Type
Byte VT_UI1 vbByte
Integer VT_I2 vbInteger
Long VT_I4 vbLong
Single VT_R4 vbSingle
Double VT_R8 vbDouble
Currenc
y

VT_CY vbCurrency

Date VT_DATE vbDate
Boolean VT_BOOL vbBoolean
SCODE VT_ERROR vbError
String VT_String vbString
Byte
Array

VT_ARRAY |
VT_UI1

vbArray +
vbByte

maxLen
Optional length parameter. This parameter can be used to specify the desired size when
receiving a byte array or a string . If this parameter is missing for byte array or string, all
available data will be retrieved. If provided, for data types other than byte array and string, this
parameter is ignored.
Data Type: VARIANT
Param: IN
Default Value: All data available.

Comments

If the type is specified as vbString, string data is converted to UNICODE before returning to the user.

Listen
Description
It includes creating a socket and putting the socket in the listening mode.
Return Value
Void.
Syntax
object.Listen
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
None.
Comment
When there is an incoming connection, the ConnectionRequest event is activated. When handling
ConnectionRequest, the application should use the Accept method (on a new control instance) to
accept the connection.

PeekData
Description
Similar to GetData except PeekData does not remove data from input queue.
Return Value
Void.
Syntax
object.PeekData data, [type,] [maxLen]
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
Data

Stores retrieved data after the method returns successfully. If there is not enough data
available for requested type, data will be set to Empty.
Data Type: VARIANT
Param: OUT

Type
Optional. Type of data to be retrieved.
Data Type: VARIANT
Param: IN
Default Value: vbArray + vbByte
Currently, the following variant types are supported.
Type C++ VB Type
Byte VT_UI1 vbByte
Integer VT_I2 vbInteger
Long VT_I4 vbLong
Single VT_R4 vbSingle
Double VT_R8 vbDouble
Currenc
y

VT_CY vbCurrency

Date VT_DATE vbDate
Boolean VT_BOOL vbBoolean
SCODE VT_ERROR vbError
String VT_String vbString
Byte
Array

VT_ARRAY |
VT_UI1

vbArray +
vbByte

maxLen
Optional length parameter. This parameter can be used to specify the desired size when
receiving a byte array or a string . If this parameter is missing for byte array or string, all
available data will be retrieved. If provided, for data types other than byte array and string, this
parameter is ignored.
Data Type: VARIANT
Param: IN
Default Value: All data available.

Comments
If the type is specified as vbString, string data is converted to UNICODE before returning to the user.

SendData
Description
Sends data to peer.
Return Value
Void.
Syntax
object.SendData data
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
Data

Data to be sent. For binary data, byte array should be used.
Data Type: VARIANT
Param: IN
Currently, the following variant types are supported.
Type C++ VB Type
Byte VT_UI1 vbByte
Integer VT_I2 vbInteger
Long VT_I4 vbLong
Single VT_R4 vbSingle
Double VT_R8 vbDouble
Currency VT_CY vbCurrency
Date VT_DATE vbDate
Boolean VT_BOOL vbBoolean
SCODE VT_ERROR vbError
String VT_String vbString
Byte Array VT_ARRAY |

VT_UI1
vbArray +
vbByte

Comments
When a UNICODE string is passed in, it is converted to an ANSI string before being sent out on the
network.

Events
The list of events follows.
Close
Connect
ConnectionRequest
DataArrival
Error
SendComplete
SendProgress

Error
Description

This standard error event is activated whenever an error occurs in background processing (for example, 
failed to connect, or failed to send or receive in the background).

Syntax
object_Error (ErrCode As Integer, Description As String, Scode As Long, Source As String,
HelpFile As String, HelpContext As Long, CancelDisplay As Boolean)
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
ErrCode

An integer that defines the error code. For a list of possible WinSock error codes see WinSock
Error Codes.

Description
String containing error information.

Scode
The long SCODE.

Source
String describing the error source.

HelpFile
String containing help file name.

HelpContext
Help file context.

CancelDisplay
Indicates whether to cancel the display. The default is TRUE (no display of the default error
message box). If you do want to use the default message box, set CancelDisplay to FALSE.

Close
Description
The event is activated when the peer closes the connection. Applications should use the Close
method to correctly close the connection.
Syntax
object_Close
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
None.

Connect
Description
The event is activated when a connection has been successfully established. After this event is
activated, you can send or receive data on the control.
Syntax
object_Connect
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
None.

ConnectionRequest
Description
The event is activated when there is an incoming connection request. RemoteHostIP and
RemotePort properties store the information about the client after the event is activated.
The server can decide whether or not to accept the connection. If the incoming connection is not
accepted, the peer (client) will get the Close event. Use the Accept method (on a new control
instance) to accept an incoming connection.
Syntax
object_ConnectionRequest (RequestID As Long)
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
RequestID

The incoming connection request identifier. This parameter should be passed to the Accept
method on the second control instance.
Data Type: Long
Param: IN

DataArrival
Description

The event is activated when new data arrives.    
Syntax
object_DataArrival (BytesTotal As Long)
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
BytesTotal

The total amount of data that can be retrieved.
Data Type: Long
Param: IN

Comment
This event will not be activated if you do not retrieve all the data in one GetData call. It is activated
only when there is new data. You can always use the BytesReceived property to check how much
data is available at any time.

SendComplete
Description

The event is activated when the send buffer is empty.
Syntax
object_SendComplete
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
None.

SendProgress
Description
This event notifies the user of sending progress. It is activated when more data has been accepted
by the stack.
Syntax
object_SendProgress (BytesSent As Long, BytesRemain As Long)
The object placeholder is required and evaluates to the name of the relevant control or collection
during execution.
Parameters
BytesSent

The number of bytes that have been sent since the last time this event was activated.
Data Type: Long
Param: IN

BytesRemain
The number of bytes in the send buffer waiting to be sent.
Data Type: Long
Param: IN

Localization
The resources for the control's about box, property page, and strings are in resource DLL nmorenu.dll.
The resource DLL is localized for each language.

Sample Session
The sample session illustrates a real life scenario using the TCP ActiveXControl. From this example
you can see how to write for both the client and server.
TCP Client
TCP Server

TCP Client
A TCP client actively initiates a connection to a remote machine. You would then call the Connect
method.
When the connection has been established successfully, a Connect event occurs. If the remote host
rejected the connection, an Error event occurs.
After a connection has been established, use the SendData method to stream data to a remote
machine. A DataArrival event occurs when there is incoming data. Use the Close method to
terminate the connection.

TCP Server
A TCP server listens at a particular port for incoming connections. To write an echo server which
echoes back all data it receives, the server would listen at the standard echo port 7. You should set
LocalPort to 7 and call the Listen method. When there is an incoming connection request, a
ConnectionRequest event occurs. Use another instance of TCP Control to accept the incoming
connection. When this is complete, the application can send and receive data on the newly accepted
connection as described in TCP Client section.

ActiveX
ActiveX is a trademark of Microsoft Corporation.

WinSock Error Codes
The following error codes apply to the WinSock ActiveX Controls.

Error
Number

Error Message

 10004 The operation is canceled
10013 The requested address is a

broadcast address, but flag is not
set

10014 Invalid argument
10022 Socket not bound, invalid

address or listen is not invoked
prior to accept

10024 No more file descriptors are
available, accept queue is empty

10035 Socket is non-blocking and the
specified operation will block

10036 A blocking Winsock operation is
in progress

10037 The operation is completed. No
blocking operation is in progress.

10038 The descriptor is not a socket
10039 Destination address is required
10040 The datagram is too large to fit

into the buffer and is truncated
10041 The specified port is the wrong

type for this socket
10042 Option unknown, or unsupported
10043 The specified port is not

supported
10044 Socket type not supported in

this address family
10045 Socket is not a type that

supports connection oriented
service

10047 Address Family is not supported
10048 Address in use
10049 Address is not available from the

local machine
10050 Network subsystem failed
10051 The network cannot be reached

from this host at this time
10052 Connection has timed out when

SO_KEEPALIVE is set
10053 Connection is aborted due to

timeout or other failure
10054 The connection is reset by

remote side
10055 No buffer space is available
10056 Socket is already connected
10057 Socket is not connected
10058 Socket has been shut down
10060 The attempt to connect timed out
10061 Connection is forcefully rejected
10201 Socket already created for this

object
10202 Socket has not been created for

this object
11001 Authoritative answer: Host not

found
11002 Non-Authoritative answer: Host

not found
11003 Non-recoverable errors
11004 Valid name, no data record of

requested type

